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In order to understand long range wave propagation in railway tracks, it is re-

quired to identify how far vibrations can travel along a rail. To answer this question,

the main wave types that propagate along rails and their attenuation characteristics

are determined as a function of frequency. In this work the effective wave types and

their decay rates are investigated for frequencies up to 80 kHz.

Two numerical methods, the conventional finite element method and the wave-

number finite element method, are utilized to predict the predominant wave types

and their decay rates for a rail on a continuous foundation. From these simulations,

the waves that are measurable on various regions of the rail cross-section are identi-

fied. Also, to improve the simulated results, the frequency dependent damping loss

factor of a rail has been measured up to 80 kHz on several short rail samples. The

predominant wave types predicted have been validated by experiments performed

on a short test track. The measured group velocities present very good agreement

with the predicted ones so that it is identified which wave types predominantly prop-

agate in various regions of the rail cross-section. Another measurement has been

performed on an operational track to validate the simulated decay rates. In this

experiment, train-induced rail vibrations were acquired for several trains running

over a long section of rail. The measured decay rates are presented for comparison

with the output of the simulations and good agreement is. found between them.

A feasibility study is carried out of wave reflection and transmission due to

cracks in rails. These are estimated for various cracks of progressively larger size by

means of numerical simulation. Through this simulation, the relative efficiency of

various incident and reflected waves for detecting defects in rails is determined.
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Chapter 1

Introduction

1.1 Background • • *

The structural integrity of rails is a major concern for the railways of the world.

Even though there are several rail inspection techniques and rail inspections are

performed routinely, they do not yet give the desired reliability. The various types

of NDE (Non-Destructive Evaluation) rail inspection techniques that are currently

used or could be used in the future are outlined in ref. [1].

Ultrasonic waves have been used for the inspection of rails for many years. The

most commonly used ultrasonic testing technique is pulse-echo, where sound in the

megahertz frequency range is introduced into a test object and reflections (echoes)

returned from internal imperfections or from the geometrical surfaces are analysed.

This conventional method, however, has some drawbacks. They are associated with

the attenuation characteristics and limited volumetric coverage. Conventional ul-

trasonic waves with wavelengths, of a few millimetres can travel only a few hundred

millimetres in any direction within a rail. Hence these ultrasonic waves can only be

used to inspect the region of a rail close to the transducer location. Moreover this

testing is limited by the speed of inspection. Dedicated ultrasonic inspection trains

which have onboard devices can inspect the two rails with one or several ultrasonic

probes at train speeds of 50 to 100 km/h [2,3].

On the other hand, the use of relatively low frequency ultrasonic waves, some-

times called 'guided waves', has been attempted recently for long range inspection of
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rails. A brief discussion on the history, recent application and potential of this type

of testing is presented in ref. [4]. The application of these waves for rail inspection

is discussed in refs [5-10]. In the low ultrasonic frequency range, a rail becomes an

effective waveguide due to the presence of a boundary, i.e., the rail surface, which

traps the wave energy and makes it propagate efficiently along the rail. Hence these

waves, in the tens of kilohertz frequency range, enable a large area of structure to

be tested from a single transducer position, thereby avoiding the time consuming

scanning required by conventional ultrasonic methods. These waves are particularly

sensitive to transverse vertical defects since they travel along a rail. A further ad-

vantage is that at the frequencies used, attenuation which occurs in weld material

is very low and hence weld material can be readily penetrated and tested. These

benefits make this testing using relatively low frequency ultrasonic waves very at-

tractive. This technique is used effectively to inspect pipe systems but application

to rails has been limited because of the presence of many possible wave modes in

rails, most of which are dispersive. Also there has been little study on the wave

propagation along rails regarding the effect of the rail support and damping loss

factors of a railway track. Furthermore, it has not yet been clearly specified in the

literature which wave types and which frequency range would be most effective for

the propagation over long distances in the railway track. It is apparent that the

answers to these questions are highly related to the sources of damping in the track.

The work in this thesis aims to investigate the propagation of waves in railway

tracks in the tens of kilohertz frequency range. It focuses towards addressing the

following fundamental question that needs to be answered before anything else. How

far along a rail can vibration travel? This simple but essential question requires three

specific answers: in which wave type, at which region of a rail cross-section and at

which frequencies is it most effective. The frequency range considered in this study

spans up to 80 kHz based on the findings in ref. [11]. In fact, at higher frequencies,

e.g., around 80 kHz, a railway track may behave less clearly as a waveguide, because

the wavelength becomes shorter than the dimensions of the rail cross-section. For

instance, the wavelength of a shear wave in steel will be about 38 mm at 80 kHz,

which is about a half of the width of the railhead and a quarter of the rail height.

Moreover, as frequency increases it can be anticipated that spatial attenuation will

increase. The frequency range of interest is therefore unlikely to extend beyond

80 kHz and will probably be limited to less than this. Nevertheless, in this thesis
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the frequency range is chosen simply by following the findings in the literature,

discussed iri Chapter 2. •

1.2 Structure of the thesis

As a first step towards the goals established above, in Chapter 3, the conven-

tional finite element method is employed to analyse the rail. Using this method,

a relevant cross-sectional model is specified and then a track model is set up as a

rail on a continuous foundation. To simulate the waves in an infinite rail, a short

length of the track, is considered with symmetric and/or antisymmetric boundary

conditions at both ends of its length. Modal analysis for this short length of track

will, produce natural frequencies and their mode shapes of the rail section. These

results are used to obtain the frequency-wavenumber relation and the deformation

profiles of each wave. The FE analysis results also exhibit the effect of the damping

in the track model on propagating waves in terms of modal damping. These can

also be converted into the form of a spatial decay rate.

Although the dispersion relations and decay rates are predictable using FE anal-

ysis, it has several drawbacks for dealing with wave propagation in structures. So, a

two-dimensional finite element method called the wavenumber finite element (WFE)

method is used as an alternative to the conventional FE method in Chapter 4. This

method only requires cross-sectional modelling of a railway track and imposes a

significantly smaller computational burden than the classical FE method, both in

terms of time and memory. Since the increment of discrete wavenumber can be

specified arbitrarily, unlike the FE method, this method enables dispersion curves,

group velocities and decay rates to be evaluated on a finer grid. The results pro-

duced by the WFE method will be compared initially with those simulated by the

FE method. Furthermore, since dynamic responses are usually measured normal to

the rail surface, waves that are measurable at various positions on the rail surface

are identified using the energy distributions around the rail surface quantified from

the predicted displacements.

In the FE and WFE simulations, the structural damping loss factor of a rail is

assumed initially simply as a constant value for the entire frequency range. However,

damping is expected to be a frequency-dependent quantity rather than a constant.
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So, in order to improve the simulation results, in Chapter 5 structural damping loss

factors are measured up to 80 kHz from impact hammer tests conducted on rail

samples of three different types. Then improved predictions of the decay rates are

found using the WFE method with the measured damping loss factors for the rail.

In order to validate the predominant wave types simulated, two experiments are

conducted up to 80 kHz on a test track, of approximate length 32 m, using different

input excitation schemes: an impact hammer and piezoceramic transducers (PZTs).

Time-frequency analysis is applied to the measured data in order to visualize disper-

sion relations of the measured waves. The results are compared with the simulated

ones in terms of the group velocity and the various wave types are identified. All

these experimental results are described in Chapter 6.

To be able to validate the simulated decay rates, it is necessary to carry out a

measurement over a longer section of rail. One such experiment is carried out in

Chapter 7, on an operational track, to extract decay rates over a long section of

rail. Also, from a practical point of view, it is apparent that there is great merit

if operational trains can be used as excitation sources for the long range inspection

of a rail instead of using external excitation. Hence, to determine whether train,

excitation can be used or not, its frequency characteristics should be identified in

an operational railway. This will show how effectively the high frequency waves

are generated by a running train and how they propagate in a rail, particularly

between 20 kHz and 40 kHz where the minimum decay rates are found to occur.

In this experiment rail vibrations are measured for seven trains at three different

positions on the rail cross-section. These measured data will allow visualization of

how far waves can travel along a rail and at which frequencies. Finally, the mea-

sured decay rates are compared with the simulated ones produced by WFE analysis.

By using waves which propagate furthest in rails as incident waves, it may

be achievable to detect rail defects at long distances by monitoring their reflected

and/or transmitted powers. In Chapter 8, as a feasibility study, wave reflection and

transmission due to cracks in rails are estimated by means of a newly developed

numerical method, named the combined spectral super element and finite element

(SSE/FE) method. In the literature, a similar method, called the combined spectral

element and finite element (SE/FE) method, has been used to investigate local non-
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uniformities in beam structures at relatively low frequencies. This SE/FE method

is extended here to more complex railway track structures by introducing the SSE

method, in place of the SE method. To check the reliability of 'this method, nu-

merical errors occurring are examined for two limiting cases, i.e., homogeneous and

broken rails, in terms of the power conservation. Then, for various cracks of progres-

sively increasing size, power reflection and transmission characteristics are estimated

by the combined SSE/FE method. Through this simulation, the relative efficiency

of the incident and reflected waves chosen are discussed for detecting defects in rails.

Finally, the conclusions drawn from each chapter are summarized in Chapter 9

and some possible further work is briefly suggested.

1.3 Summary of original contribution

The original contributions of this thesis are:

• prediction of dispersion relations for the waves propagating along the rail at

frequencies up to 80 kHz by means of the FE and WFE methods, including

the contribution of the rail pad as a continuous foundation (Chapters 3 and

4)

• prediction of the decay rates for each individual wave propagating along the

railway track up to 80 kHz by using FE and WFE analyses (Chapters 3 and

4) , ,

• prediction of waves that are measurable on the rail surface by introducing a

new metric which quantifies deformation energies at- several regions of the rail

cross-section (Chapter 4)

• identification of the contribution of the damping in the rail and rail pad to the

decay rates of each individual wave (Chapter 4)

• prediction of the effect of foundation stiffness on each wave's decay rate (Chap-

. .. ter 4) .

• measurement of damping loss factors of rails as a function of frequency up to

80 kHz (Chapter 5)



Chapter 1. Introduction

• identification of the most effective wave types, decay rates and corresponding

frequency ranges for long range wave propagation in rails (Chapters 6 and 7)

• measurement of train-induced rail vibration on an operational track for several

running trains up to 80 kHz (Chapter' 7)

• development of the SSE for semi-infinite waveguide structures (Chapter 8)

• development of the combined SSE/FE method to investigate wave propagation

in rails with local non-uniformities (Chapter 8)



Chapter 2

Literature Review

2.1 Wave Propagation in Railway Tracks

In order to understand the dynamic behaviour of a railway track, above all

appropriate track models are required. Various theoretical models for the dynamic

behaviour of railway track are outlined in ref. [12]. There are several difficulties in

dynamic track modelling. The rail itself has a complex geometry which causes cou-

pling phenomena between the various propagating waves. At low frequency, below

500 Hz, a rail can be considered as an Euler-Bernoulli beam. However such a model

is no longer adequate for the response at higher frequencies as the shear deformation

of the rail becomes increasingly important. The Tirrioshenko-beam model, involving

shear deformation, expands the reliable frequency range only up to around 2 kHz for

the vertical and longitudinal waves. The most important hypothesis of these beam

theories is that the cross-section remains undeformed while undergoing vibrational

movement. This hypothesis is not valid at higher frequencies. Moreover the pres-

ence of supports, i.e., rail pads, sleepers and ballast, etc. (Fig. 2.1) which are also

periodically spaced along the track, makes it more difficult to model.

In terms of the generation of noise by a train in the frequency range 100 to

5000 Hz, useful theoretical models are a 'continuously supported beam model' and

'periodically supported beam model', using Timoshenko-beam theory for the rail

[13]. The support in these models consists of a resilient layer (the rail pads), a mass

layer (the sleepers) and a second resilient layer (the ballast). At higher frequencies,

however, the rail cross-section deforms and many higher order wave types exist in the
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Fig. 2.1. Components of a railway track.

rail. Experimental investigations show that the cross-section deforms significantly

above about 1500 Hz [14]. This cross-sectional deformation has to be taken into

account for an accurate evaluation of the dispersion properties. A model including

cross-sectional deformations was developed by Thompson [14] with the rail standing

on a continuous support. Thompson considered an infinite rail as a periodic struc-

ture of arbitrary period and introduced the short periodic segment made up from

finite elements. The advantages and disadvantages of these three track models were

compared in ref. [13].

For the purpose of long range track inspection, Rose et al. [7,11] suggested,

based on experimental work, that the frequency range up to 80 kHz should be con-

sidered and that the most effective range is between 40 kHz and 80 kHz. Since

no exact theoretical model exists for wave propagation in complex cross-sectional

profiles, such as a rail, covering the frequency range up to tens of kilohertz, the

conventional finite element (FE) method was employed to predict the mode shapes

and dispersion relations for a free rail [15]. The simulation results showed that sev-

eral tens of different wave types are sustained within this frequency range, making

the dispersion curves very complicated. Because of that, there has been little work

aimed at identifying effective wave types and decay rates of waves propagating along

railway tracks.

Although the conventional FE method is a useful tool, it has several drawbacks

for dealing with wave propagation in structures. As well recognised already, this

FE method requires very large models for high frequency analysis. Hence it costs

long computing times and large computing facilities. Furthermore, very consider-

able manual post-processing has to be performed to build dispersion curves from

the FE analysis results. That is required because each natural frequency and the
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corresponding mode shape obtained from FE analysis needs to be checked in order

to determine their wavenumbers. Another disadvantage is that the group veloci-

ties can only be roughly estimated from the discrete dispersion curves by means

of the finite difference approximation between two discrete points, which can intro-

duce significant errors, as will be seen in Chapter 3. • Due to the difficulties stated

above, repeated use of this conventional FE method for any input parameter changes

should be avoided because the same time-consuming process would be required for

each analysis.

A number of methods to reduce the number of degrees of freedom and in-

crease the computational efficiency have been presented in the past, for example,

the spectral finite element method [16-18], the dynamic stiffness method (or spec-

tral element method) [19], spectral super element method [20] and methods using a

periodic structure theory [14,21, 22].

For infinite length waveguide structures, a two-dimensional finite element tech-

nique for modelling the wave propagation was introduced first by Aalami [23] .as an

alternative to the conventional FE method. In this method, an exact wave solution

was utilised for the propagating direction instead of making finite element meshes

and using shape functions along this direction. Two decades later Gavric [24] applied

this method for computing the dispersion curves and mode shapes in undamped rails

up to 6 kHz and good agreement was found between the predicted and experimen-

tal results. This technique is referred to in the literature as the wavenumber (or

waveguide) finite element (WFE) method [25-27]x. One of its great advantages is

that different wave types are readily identified and can be analysed directly in terms

of their waveriumbers, enabling a physical interpretation of the wave propagation in

the structure under investigation.

For high frequency analysis, this method has been used by several authors for

track modelling, because it can compute waves of very short wavelengths. Cawley

and Wilcox et al. [6,8; 10] used this method to predict dispersion curves and wave

modes up to 50 kHz for the purpose of rail testing. Also, Hayashi' et al. [28] pre-

dicted dispersion relations for a free rail up to 100 kHz. Among multiple propagating

[28,29] it is also called the serai-analytical FE (SAFE) method.
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waves, they highlighted waves that have large deformations at the rail head when a

point load is applied at the top of the rail head. Recently, Finnveden [27] formulated

group velocities theoretically for each wave solution obtained by this method. This

is a significant step towards application of this method to predict the decay rates

because the group velocity is one of the crucial quantities required for it. However,

most of the previous work was confined to analysing dispersion relations and group

velocities in undamped free rails.

Most recently, Bartoli et al. [29] presented decay rates for a damped rail, with-

out considering its foundation, up to 50 kHz using this method. In this prediction,

they introduced an energy velocity, rather than the group velocity, to obtain de-

cay rates for damped media because the definition of group velocity is not valid in

the damped case. However, since they disregarded the contribution of the rail pad

which has a large damping, the predicted decay rates seem to be unrealistic from a

practical point of view. Furthermore, they failed to describe the behaviour of each

wave with respect to frequency and did not present which type of waves propagate

furthest along the rail.

For damped waveguide structures, Nilsson [26] derived damped wavenumbers

of individual propagating waves using this WFE method to predict an input power

flowing into the structure. In this formulation, damped wavenumbers are easily

found from the damping loss factor and group velocity that is obtained from the

undamped case. In this thesis, decay rates are evaluated from damped wavenumbers

of individual waves, as presented in ref. [26].

2.2 Experimental Analysis of Wave Propagation

in Rails

While the various track models and numerical methods exist to predict the vi-

bration propagating in rails, experimental studies are particularly challenging due

to the multimodal and dispersive behaviour of the waves at high frequencies.

In terms of wheel-rail rolling noise, Vincent and Thompson [30] have mea-

sured accelerances and decay rates on several operating tracks over the range 100 to

10
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5000 Hz by means of impact excitation using an instrumented hammer. These ex-

perimental results were compared with the simulation results presented in ref. [13].

This comparison showed that the track model with a continuous support gives a

good agreement with measured results at higher frequency. That is because the

periodicity effect of a discrete support does not occur strongly at high frequencies.

In addition, Thompson [31] developed an experimental analysis technique, based

on the Prony method [32], which can produce dispersion curves and decay rates of

propagating waves by using measured data taken on track. However, this method

is less suitable for the wave propagation extending up to 80 kHz because it requires

multiple, equally spaced measurement points along the rail and around the cross-

section. Moreover the spacing of the measurement points along the rail and the

number of the measurements in the cross-section limit the highest measurable fre-

quency and the maximum number of measurable modes.

As an alternative experimental method for the high frequency region, Lanza

di Scalea and McNamara [9,33] applied an impulse excitation to the rail and mea-

sured the direct and echo signals reflected from the opposite end of a 7.3 m long rail

section. Comparing the direct and reflected signals, they extracted group velocity

curves and the frequency-dependent attenuation up to 50 kHz for a free rail using

time-frequency analysis. However, the contribution of the rail fastening, particularly

the rail pad, to the decay rates and the possibility of energy loss or mode conversion

resulting from the reflecting end of the rail were not considered in this experiment.

Hayashi et al. [28] measured phase velocity diagrams up to 100 kHz on a free rail

of about 2.4 m length. In this experiment they used a toneburst type contact trans-

ducer having a 50 kHz centre frequency as an exciter and a non-contact air-coupled

transducer of 60 kHz centre frequency as a receiver. Waveforms were collected at

200 points in 10 mm increments along the rail in order to cover frequencies up to

100 kHz and a two-dimensional Fourier transform technique was applied. However,

since the transducers used in this experiment have a narrow operating frequency

range, the measured results seem to be less reliable at frequencies away from their

centre frequencies. Also this measurement technique is not suitable for practical

application because it requires a large number of measurement points. Rose et al.

[7,11] suggested, based on their experimental work, that waves can travel more

than 2 km along the rail within the frequency range between 40 kHz and 80 kHz.

11
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However, they did not clearly specify the decay rates of the waves in this frequency

range. Instead, they measured waveforms at the top of the rail head at various

distances along a free rail of length 10.7 m by using 60 kHz EMATs (electromag-

netic acoustic transducers) [7]. From this measurement they found a decay rate of

about 0.56 dB/m at around 60 kHz. However, detailed information on the wave

types measured and the contribution of the rail foundation to decay rates in the

high frequency region is lacking in both these previous studies.

Wilcox et al. [6] developed equipment using a transducer array mounted along

the length of the rail, as well as around the perimeter of the rail cross-section, to ex-

cite and detect desired wave modes effectively for rail inspection. Gurvich et al. [34]

also developed an ultrasonic flaw detector, which has a line array of 12 probes placed

along a rail, and is used with a waveguide echo-pulse method to detect rail defects

over long distances. Both of them used frequency ranges up to around 50 kHz and

60 kHz for their measurements. However, they did not present clearly what type of

waves are most efficient for their purpose and how far they can propagate along the

rail.

Rose and Avioli [35] carried out feasibility studies on broken rail detection by

using the waves in the tens of kilohertz frequency range. In this experiment, they •

used waves excited by a train moving down the test track and compared time sig-

nals measured on the web close to the rail break. However, they focused only on

whether these waves are applicable for broken rail detection and did not investigate

the features of the waves.

As described previously, there are several tens of different waves propagating

along rails at high frequencies below 80 kHz. Because of this multiplicity of propa-

gating waves, array transducers are used to extract specific wave types from others.

From a practical point of view, however, it would be very useful if the waves of

interest could be measured by a single sensor attached on the rail surface. To make

it possible, their wave types, i.e., deformation shapes, have to be clearly understood.

However, the investigations in the literature are too limited for this purpose. In this

thesis, therefore, it will be investigated whether waves of interest can be detected

by a single sensor attached on the rail surface.

12
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2.3 Wave Reflection and Transmission due to De-

fects for Long Range Rail Inspection

If an infinite length waveguide structure has a local non-uniformity, like a crack,

it will reflect a part of incident power and transmit the rest of it. These reflection

and transmission characteristics associated with the presence of the discontinuity

may give some indication of both the crack location and depth. In order to be able

to investigate these characteristics, it is necessary above all to model wave propa-

gation in finite or semi-infinite length waveguide structures. For these waveguide

structures with boundaries, the boundary conditions need to be specified in addition

to the homogeneous wave solutions in order to predict the structure's response.

For simple beam structures, Mace [36] estimated the reflection and transmission

properties due.to a discontinuity in a beam, like a joint or support, theoretically.

Doyle et al. [37-39] investigated wave propagation in beams by means of a spec-

tral element (SE) method, also called the dynamic stiffness method (DSM). In this

method, a single SE is modelled in terms of applied forces and displacements at the

boundaries. This method was extended by Gopalakrishnan and Doyle [40] for a beam

with local non-uniformities, like cracks and holes, by introducing the FE method to

model local regions of the non-uniformities. In this method, they subdivided the

beam into a few sub-elements, separating uniform regions from local regions with

discontinuities, which are modelled by SEs and FEs, respectively. Then these SEs

and FEs were combined by condensing the FE nodes at boundaries connected with

the SEs. However, they only considered the forced response of the structure because

the SE method requires input forces. Shone et al. [41,42] imposed incident waves

within this method to predict wave reflection and transmission due to cracks in in-

finite beams. Neither of these works is directly suitable for high frequency analysis,

in which the higher order cross-sectional deformations have to be taken account,

because beam theories are used to make the SEs.

As a numerical method, Finnveden [16] has developed the spectral finite ele-

ment (SFE) method, using a variational principle for simple beam structures with

finite length. In this method, he formulated a dynamic stiffness matrix numerically

using wave solutions of the beam as basis functions. Since the element length is

13
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limited only by discontinuities in geometry and in excitation, this method reduces

the computational effort considerably, compared with standard FE methods. As

described in Section 2.1, for a waveguide structure with a complex cross-section,

homogeneous wave solutions can be predicted numerically from the WFE method.

Combining it with the SFE method, Birgersson et al. [20] developed an improved

method to predict the response of coupled rectangular plates. They named it the

spectral super element (SSE) method2. A great advantage of this method is that

the SSEs can be easily connected to neighbouring elements if the same nodes are

used at the joints between two substructures. Therefore, it is not necessary in this

method to condense the dynamic stiffness matrix of the FE.part to connect it to the

SSEs, as long as the same cross-sectional models are used.

Birgersson et al. [20] utilised the SSE method for finite length plate structures,

consisting of thin-walled strip elements [43]. For studying sound transmission in

infinite waveguides, Peplow and Finneveden [44] attached very long finite length

SSEs, of the order of 109 m, with damping at both ê nds of the finite length SSEs to

approximate the infinite waveguide. In this thesis, the SSE for semi-infinite wave-

guides is developed to model semi-infinite rails. Then the combined SE/FE method

is modified by employing the semi-infinite SSEs, instead of the SEs, in order to

estimate wave reflection and transmission due to cracks in rails at high frequency.

This combined method will be called the SSE/FE method here.

To investigate a relation between rail response and crack depth, Rose et al.

[7,11] measured the pulse-echo and through transmission responses to rail cuts of

varying depths by using 60 kHz EMATs at the top of the rail head. In this mea-

surement, they acquired the variation of corresponding peak-to-peak amplitudes in

time data as a function of the cut depth. However, they did not examine the rail

response either at other positions on the rail cross-section or at other frequencies

covering wider range. In addition, it was not investigated in their experiment which

types of wave are efficient for detecting cracks.

On the other hand, Cawley et al. [8,10] used the reflection matrix, which can

2Doyle and Gopalakrishnan [19,40] also called an element modelled by FEA, which has a local

non-uniformity, a 'Spectral Super-element' in their method. However, note that although it has

the same name, this approach is different from the present SSEM.
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present mode conversions of the incident waves, to identify defects. In the simula-

tion, they used a three-dimensional time-marching FE model to predict reflection

coefficients for several defect geometries. This method of quantifying the wave mode

conversion seems to be an efficient and advanced technique for crack detection. For

practical implementation, however, this requires many transducers to be attached

along the rail and around the rail cross-section as well as an associated signal pro-

cessing to decompose each wave mode separately. Furthermore, this technique would

not be applicable to operational tracks on which trains are running.

In this thesis, as a feasibility study, it will be investigated whether measuring rail

vibration at a single position on the rail cross-section is applicable for crack detection

in rails for frequencies up to 50 kHz by using the combined SSE/FE method.
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Chapter 3

Finite Element Analysis of a

Railway Track

3.1 Modelling a Railway Track

At low frequencies waves propagate in a rail as bending, extensional or torsional

waves. At higher frequencies, however, the rail cross-section deforms and many

higher order wave types exist. This cross-section deformation has to be taken into

account for an accurate evaluation of the dispersion properties. It has been found

that the cross-section deforms significantly above about 1500 Hz [14]. So in this

chapter a rail is modelled by means of the finite element method in order to take

account of the cross-section deformation. The frequency range of interest will extend

up to 80 kHz because it has been suggested in ref. [7] that waves at higher frequencies

attenuate less over distance than those at lower frequencies. In this chapter, a UIC60

rail has been modelled using the finite element package, ANSYS. Throughout, a: will

represent the direction along the rail, y the transverse direction and z the vertical

direction.

3.1.1 Modelling a rail cross-section

Firstly, a rail cross-section was modelled with different element sizes in order

to determine a relevant mesh size which can depict the deformed shapes of the

section properly at the frequencies of interest. Since the UIC60 rail has a symmetric

cross-section, only half of the width is included as shown in Fig. 3.1. This has the

advantage of separating the possible waves into two groups that are uncoupled from
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•v-\.

(a) (b) (c)

Fig. 3.1. FE models for rail cross-section, (a) Model 1, (b) model 2, (c) model 3.

each other as well as reducing computational demands. A symmetric boundary

condition constrains the deformation of the mid-plane in the y direction (i.e., out of

plane) and gives the vertical and symmetric longitudinal modes. An antisymmetric

boundary condition constrains the x and z directions (i.e., in plane) in the mid-plane

and gives the lateral and torsional modes as well as the antisymmetric longitudinal

modes in which opposite sides of the rail move in opposite directions.

Three different cross-sectional FE models are shown in Fig. 3.1. The respective

number of elements in the cross-section of these FE models are 42, 70 and 2398,

and the length of these models is 10 mm in the x direction. It was supposed in

this comparison that model 3 gives precise natural frequencies and mode shapes of

the rail cross-section because it has a very fine mesh and can therefore be used as

a reference. Each FE model consists of solid elements with 20 nodes, defined in

ANSYS as 'solidl86', having three translational degrees of freedom per node. The

web and the rail foot were modelled with a relatively fine mesh because they are

more flexible than other parts of the rail cross-section. To ensure a proper mesh

size, a criterion of at least 6 nodes per wavelength is used.

Modal analysis was performed up to 80 kHz and then the natural frequencies and

mode shapes of the three models were compared with each other. In this analysis,

symmetric boundary conditions were applied at both ends of the FE models (that is,

deflections in the x direction were constrained). Since the length of these FE models

in the x direction is sufficiently short with respect to the possible wavelengths below

80 kHz, no modes occur along the x direction. For instance, if the shear wave speed is
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Table 3.1. Natural frequencies of three FE models in Fig. 3.1 for (a) the vertical modes,
(b) lateral and torsional modes.

(a). (b)

mode

number

. 1

• • 2 '

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

natural frequency (Hz)

model 1

0

5029

9490

18100

22776

27255

31788

36242

39206

47895

52606

58064

59749

'63650

70042

72206

77867

81764

model 2

0

5027

9489

18092

22771

27243

31772

36211

39166

47880

52587

57918

59477

63625

70038

72122

77638 '

80317

model 3

0

5021

9484

18061

22754

27217

31737

36166

39100

47839

52559

57799

59295

63554

69953

72061

77364

79751

mode

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22.

natural frequency (Hz)

model 1

0

0

1275

3822

9225

13113

20536

27936

30661

35234

37734

43660

49433

52469

56496

60370

60921

66715

70563

70960

73086

78398

model 2

0

0

1274

3811

9209

13080

20471

27887

30628

35188

37701

43554

49271

52370

56451

60238

60831

66417

70338

70628

72895

78105

model 3

0

0

1273

3806

9193

13055

20420

27828

30585

35151

37680

43458

49117

52282

56433

60088

60774

66127

69984

70496

72748

77803

assumed as 3000 m/s, the shortest wavelength would be about 37.5 mm at 80 kHz.

Therefore, the boundary conditions used at both ends mean that the FE models

are effectively in a plane strain state because the deformation in the longitudinal

direction is not allowed by the boundary conditions. Although longitudinal modes

are excluded from this analysis it can be expected that a mesh size that is suitable

for bending of the cross-section will also be suitable for longitudinal motion.'
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6 IB 20

(a) (b)

Fig. 3.2. Relative frequency differences between FE models with respect to model 3 for
(a) vertical modes, (b) lateral and torsional modes.

(a) (b)

Fig. 3.3. Comparison of mode shapes at the 16th mode of the vertical modes for (a) model
1 (72.2 kHz), (b) model 3 (72.06 kHz).

(a) (b)

Fig. 3.4. Comparison of mode shapes at the 20th mode of the lateral and torsional modes
for (a) model 1 (70.96 kHz), (b) model 3 (70.5 kHz).
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The natural frequencies of each mode obtained from the three FE models are

listed in Table 3.1 for the vertical, lateral and torsional modes. The correspond-

ing mode shapes were checked visually to ensure that modes are paired correctly.

Fig. 3.2(a) shows the relative frequency differences between the FE models with

respect to model 3 for vertical modes and Fig. 3.2(b) shows equivalent results for

the lateral and torsional modes. This figure indicates that model 1 can predict the

natural frequencies to within a 3% error margin in this frequency region; in fact most

natural frequencies are predicted to within a 1%.margin. So model 1 is applicable

as an appropriate cross-sectional model in this analysis. Model 2 gives improved

results but the reduction in error margin is not sufficient to justify the large increase

in number of degrees of freedom this would entail. Example mode shapes at about

70 kHz for the symmetric and antisymmetric boundary conditions at the mid-plane

are represented and compared with those of model 3 in Fig. 3.3 and Fig. 3.4. These

two figures also reveal that model 1 describes the deformed shape of the cross-section

acceptably with four elements (8 nodes) per wavelength in the web in the mode in

Fig. 3.4.

3.1.2 Modelling a length of railway track

In this section, a short length of rail is modelled by using the cross-section model

1 considered in, the previous section. Since the contribution of the sleeper and bal-

last are limited to the low frequency region below 1 kHz [12], only the rail and rail

pad are included in this model.

The length of the rail model determines the increment of discrete wavenumbers,

An, because the wavenumbers predicted from the rail model are spaced according

to the relation

where L is the length of the rail model in the x direction. This relation will be

discussed later in section 3.2. It is found from Eq.(3.1) that, in order to obtain more

precise results in the wayenumber domain from the FE analysis, a longer rail model

has to be analysed. To make the rail model longer, two approaches can be used:

increasing the size of each element or increasing the number of elements in the x
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Fig. 3.5. FE model of a rail on a distributed elastic foundation.

direction1. However, it may be inappropriate to increase the size of elements in the

x direction because the element size determines the upper frequency limit of the FE

analysis results. Hence it is more reliable to increase the number of elements in the x

direction. The cost, however, is that the storage space required and computational

load increase dramatically due to the increased number of degrees of freedoms and

this may make the analysis impractical. Moreover, if damping is introduced, the

matrices in the FE model will possess complex numbers, requiring yet more space

and computational load. Accordingly, it is necessary for the FE analysis to compro-

mise precision in the results with computing requirements.

In this study, the chosen length of the rail model is 0.3 m, which is selected as

half of the usual sleeper span in railway track. The same solid elements, 'solidl86' in

ANSYS, were used as did in section 3.1.1 and the number of elements in the length

was 50 as shown in Fig. 3.5. Larger models were found to be impractical. In total

there are 2450 elements and 14608 nodes in the FE model in Fig. 3.5. The length

of a single element in the x direction is 6 mm giving six elements per wavelength at

80 kHz for a wave speed of 3000 m/s.

As shown in Fig. 3.5, the rail pad is modelled as a continuous foundation in

this study. In practice, however, rail pads are placed discretely between the rail

and the sleepers. This discrete support induces a strong periodicity effect, so-called

"pinned-pinned resonances", at low frequencies where wavelengths are longer than

xAs an alternative way of increasing the rail length, periodic structure theory could be used

[14,22] but it was not investigated in this thesis.
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the rail pad length and spacing. However, the effect of periodicity resulting from

the discrete foundation reduces as frequency increases [13,30]. The discrete.founda-

tion can be considered in the FE modelling by simply compensating the stiffnesses

of the foundation for the shorter length of it. A discretely supported rail model

and FE analysis results of that are described in detail in Appendix A. From this

investigation it was determined that if discrete rail pads are applied, they make

uneven deformation shapes along the rail.. Furthermore, they allow different wave-

lengths in different regions of the rail at some frequencies. This implies that several

wavelengths can exist at a single frequency. It will, therefore, be hard to determine

frequency-wavenumber relations because wavelengths are not clearly defined in the

deformed rail shapes. Nevertheless, in terms of the long range wave propagation,

the discrete foundation model was confirmed to provide similar features to the dis-

tributed one, particularly at high frequency. It can be seen in Fig. A.5 that decay

rates of each wave obtained from the continuous and discrete foundation models

are very similar at frequencies above 20 kHz. The results of Fig. A.5 demonstrate

that the distributed foundation model provides a good approximation of the real

situation. That is mainly because the stiffness of the rail pad is much less than that

of the rail so that reflections of waves at the start and end of each discrete pad will

be insignificant. According to this simulation result, the rail pads are modelled as

a distributed foundation in the rest of this thesis, as shown in Fig. 3.5.

The low frequency stiffness of the single rail pad placed at 0.6 rh spacing is

assumed to be 150 MN/m for the vertical direction and 20 MN/m for the lateral

and longitudinal directions. These values are chosen to correspond to the relatively

soft pad used in the ISVR test track [45]. The stiffnesses of several other types of

rail pads are given in ref. [30,31] as falling in the range 200 MN/m to 1300 MN/m

for the vertical direction and 48 MN/m to 200 MN/m for the lateral direction. The

effect of the rail pad stiffness on the long range wave propagation will be discussed

in Chapter 4. In addition, the damping loss factor of the rail pad is taken as 0.2 for

all directions. Practical values vary between about 0.1 and 0.25 [13]. The rail clip

is generally much more flexible than the rail pad and is omitted from the model [12].

As a distributed solid layer, the rail pad is modelled by an orthotropic material

in this thesis. In the orthotropic material, nine elastic constants are required to

define the material's elastic characteristics because there is no interaction between
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the normal stresses ax, ay, az and the shear strains eyz, ezx, exy [46]. These nine

constants are comprised of the three Young's moduli Ex, Ey, Ez, the three Pois-

son's ratios uyz, vzx, uxy, and the three shear moduli Gxy, Gyz, Gzx. Additionally,

it is assumed in the modelling that this orthotropic material has the same physical

properties along the directions of each of the axes. This means Ex = Ey = Ez,
vyz — vzx = vxy and Gxy — Gyz = Gzx.

For the vertical direction, the stiffness of the distributed foundation, kPiZ, can

be determined using Hooke's law for a one-dimensional model as

_ EPttS , .

where EPtZ and h are Young's modulus and the thickness of the foundation, re-

spectively. S is the contact area between the rail and the foundation. Since

kp,z = 75 MN/m and S — 0.045 m2 for the rail segment of length 0.3 m, the elastic

modulus of the foundation for h = 0.01 m becomes

EPjt = 1.667 x 107N/m2 . (3.3)

In the same way, when h = 0.01 m the lateral and longitudinal stiffnesses kPiX =

kPtV = 10 MN/m are achieved if the shear modulus for the lateral and longitudinal

directions is chosen as

Gp,xz = Gp>yz = 2.22 x 106 N/m2. (3.4)

Therefore, the moduli of the distributed foundation.are given as

Ep>x = EPiy = EPtZ = 1.667 x 107 N/m2, (3.5)

Gp,xy = Gp,yz - GPtXZ =. 2.22 x 106 N/m2. (3.6)

In an orthotropic material, the normal strains are coupled with three normal stresses

and expressed as

(•xx ~ SXXOXX + SyxOyy + SZXUZZ ,

eyy
 = sxyaxx + syy<jyy + szycrzz , (3.7)

^zz = Sxz&xx i SyzCXyy + SZZOZZ ,

where sxx = l/Ex, syy = l/Ey, szz ~l/Ez, sxy - -vxyjEy (= syx), syz = -uyz/Ez

(— szy) and szx = —vzxjEx (= sxz) [47]. In this study, however, in order to simplify
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the model the coupling terms in Eq. (3.7) are removed by setting the three Poisson's

ratios of the foundation to zero, i.e.,

Vp,xy = Vp,yz = Vp,xz = 0 . (3.8)

In addition, the density of the foundation material was assumed as

pp = 0. - (3.9)

By introducing this last assumption, the rail pad is regarded as a massless spring

component in this model. Consequently this FE model cannot represent internal

resonances occurring in the rail pad. Instead, the contribution of the internal reso-

nances of the rail pad will be considered later by using a stiffness increment.

Using a mass of 60 kg/m x 0.3 m = 18 kg and the required stiffnesses, the natural

frequencies of rigid body motions are theoretically predicted as /o — 324.7 Hz for

the vertical direction and /o = 118.6 Hz for the lateral and longitudinal directions.

In the FE analysis, the model in Fig. 3.5 produced these frequencies as 324.4 Hz

and 118.2 Hz, respectively, confirming that the desired stiffnesses were achieved.

3.1.3 Dynamic stiffening of the rail pad

At high frequencies, the stiffness of the rail pad usually becomes much higher

than the static or low frequency one. This is because the rail pad has mass which

leads to internal resonances at high frequencies. Moreover the rubber material itself

becomes stiffer at higher frequencies [48]. This stiffness of the rail pad, called the

'dynamic stiffness' here, is one of the important parameters for track modelling. It

could be possible to measure this in the laboratory [13] or directly to model the rail

pad with fine finite element layers to capture the dynamic stiffness. In this direct

FE modelling for the rail pad, however, several tens of finite elements in the verti-

cal direction are required even in 1 cm thickness to be able to express the internal

resonance effect. For this reason, the dynamic stiffness was predicted theoretically

from a one-dimensional foundation model in the z direction in this study2 [49].

2Note that the rail pad may not be uniform, for example, studs or.ribs are often present on its

surfaces. However, here a uniform structure is considered for simplicity.
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Fig. 3.6. One dimensional model for a continuous foundation.

Considering a one-dimensional foundation with thickness h as shown in Fig. 3.6,

the longitudinal wave solution in the z direction can be expressed as

w(z) = Bie
JKZ + B2e~JKZ , (3.10)

where K is the wavenumber given by K = UJ/CL with the longitudinal wave speed,

= ^/EPjZ/pp. The two boundary conditions are given as

w = 0 at z = 0 ,

F=-EpzS— atz = h.
dz

(3.H)

(3.12)

Substituting w(z) from Eq. (3.10) into these two boundary conditions gives

"(*) = E, o.^~ff, , - f ^ [^K(/1-Z) - e-Mh-z)] • • (3-13)

Hence for a d i s t r i b u t e d f o u n d a t i o n w i t h t h i cknes s /i, t h e d y n a m i c stiffness, h*, can

b e expres sed f rom Eq . (3.13) a s

p'z w(z)
-jEPtZSK(e-JKh _ EPiZSKcos nh

(3.14)
z=o. e~iKh - eiKh sin nh

If damping is introduced then the elastic modulus and the wavenumber become

complex as

Pp
E:

p,z

1/2

(3.15)

(3.16)

where r]p is the damping loss factor of the foundation [50] and K& is the damped

wavenumber. Hence the damped dynamic stiffness is written as

,d E'pzS
p'z sin Kdh

(3.17)
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Fig; 3.7. Rail pad stiffness in Eq. (3.17) as a function of frequency when pp = 1000 kg/m3

and rjp = 0.2. (a) Magnitude, (b) phase.

Fig. 3.7 illustrates the magnitude and phase of the stiffness, k'£z, of the foun-

dation in the vertical direction as a function of frequency when pv = 1000 kg/m3

and rjp — 0.2. As shown in Fig. 3.7(a), the stiffness increases due to the presence of

standing waves in the foundation and the maxima occur at frequencies correspond-

ing to h = n\/2 with n an integer and A the wavelength. In addition, it can be seen

from this figure that the amplitude of stiffness grows continuously and the phase of

it approaches around 90 degrees as frequency increases. This predicted result shows
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that the rail pad behaviour tends to that of a damper at frequencies above several

kilohertz. Hence, it would be more relevant to model the rail .pad as a damper than a

spring component for high frequency analysis. Nevertheless, the rail pad is modelled

as a spring element with a dynamic stiffness in this thesis because it will not make

much difference in the results of identifying the waves propagating furthest along

the rail. The contribution of the rail pad to this aspect will be discussed in Section

4.4. . .

In the ANSYS model it is not feasible to introduce a frequency-dependent stiff-

ness. Therefore, based on this simulated stiffness, the dynamic stiffnesses of the

foundation were set to 10 times larger than the low frequency ones as a constant

value as shown in Fig. 3.7. That is to say, Ep,x = EPyy = Ep>z = 1.667 x 108 N/m2

and GPtXy = Gp>yz = GPjXZ — 2.23 x 107 N/m2. This dynamic stiffness approxima-

tion will lead to overestimation of the dissipated energy resulting from the rail pad

deformation in the lower frequency region below 5 kHz and will lead to underesti-

mation in the higher frequency region above 20 kHz.

3.2 Prediction of Dispersion Relations

To simulate the waves in an infinite rail, the model was solved with symmetric

and/or antisymmetric boundary conditions at both ends of the 0.3 m length. Fig. 3-8

shows the degrees of freedom allowed for three different combinations of symmetric

and antisymmetric boundary conditions. As shown in this figure, the symmetric

boundary condition allows two translational motions in the y and z directions, and

one rotational motion in the x direction. Conversely the antisymmetric condition

allows two rotational motions in the y and z directions, and one translational motion

in the x direction. For a simple.beam these conditions reduce to sliding or pinned

boundaries as shown in Fig. 3.8.

Modal analysis will produce natural frequencies and the corresponding mode

shapes of the 0.3 m rail section [14]. Each natural frequency and mode shape

produced by the modal analysis has a sinusoidal mode shape in the x direction

and can be interpreted as the sum of two identical waves which travel in opposite

directions and thus form a standing wave in an infinite rail. Each natural frequency

and wavelength of these boundary conditions thus corresponds to a point on the
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z y

(b)

(c)
Fig. 3.8. Released degrees of freedom at both ends of the beam for (a) the symmetric-
symmetric boundary conditions, (b) the antisymmetric-symmetric boundary conditions,
(c) the antisymmetric-antisymmetric boundary conditions.

frequency-wavenumber relation for an infinite rail. For the symmetric-symmetric

(or antisymmetric-antisymmetric) boundary conditions, the wavenumbers will be

AC = nn/L , (3.18)

and for the symmetric-antisymmetric (or antisymmetric-symmetric) case

, (3.19)

where L is the length of the rail section and n is 0,1,2, . . . . Therefore, if both

conditions are included, AK in the predicted dispersion relation becomes n/2L as

stated in Eq. (3.1). •

Fig. 3.9(a) illustrates the dispersion curves generated by connecting the discrete

frequency-wavenumber points produced from the modal analysis for the vertical and

symmetric longitudinal waves. Fig. 3.9(b) shows the corresponding results for the

lateral, torsional and antisymmetric longitudinal waves. These figures reveal that

there are 63 wave types in total in the rail within the frequency range up to 80 kHz.

Of these, 40 waves with zero wavenumber were listed in Table 3.1; the remaining

waves are longitudinal since this motion was constrained in the cross-section model
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(a) (b)
Fig. 3.9. Predicted dispersion curves for (a) the vertical and symmetric longitudinal waves,
(b) the lateral, torsional and antisymmetric longitudinal waves.

used in section 3.3.1. In this thesis, each wave type in this figure is named simply

by the order of the wavenumber from top to bottom, for example, the first wave,

second wave, etc. in the vertical and symmetric longitudinal waves.

Since the dispersion curves within one of the graphs in Fig. 3.9 (i.e., symmetric

or antisymmetric waves with respect to the mid-plane) do not cross each other, these

waves exhibit mode coupling and finally swap their mode shapes when they come

close to one another. This phenomenon is known as the 'curve veering' which is

associated with the coupling between modes [51]. For example, the second (green

line) and third (red line) waves in Fig. 3.9(a) approach one another and swap their

mode shapes at around 5 kHz and 15 kHz. Fig. 3.9(a) shows a non-dispersive

wave increasing to about 100 rad/m by 80 kHz in the frequency-wavenumber plot,

formed by consecutive pieces of different waves with a constant slope. These are

non-dispersive longitudinal waves in which the head, web and foot move longitudi-

nally in the same or opposing directions to each other. The phase speed is around

5000 m/s, the longitudinal wave speed in a rod of steel. Furthermore, it seems

in Fig. 3.9(b) that longitudinal wave motions also take place as a group of waves

appear with a phase speed around 5000 m/s. These longitudinal waves will have

an antisymmetrically deformed mode shape in the rail with respect to the mid-plane.

Fig. 3.10 and Fig. 3.11 show the respective deformation shapes of a number of

waves at about 25 kHz and 50 kHz for the symmetric boundary condition at the
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mid plane. Fig. 3.12 and Fig. 3.13 show equivalent results for the antisymmetric

boundary condition at about 25 kHz and 50 kHz, respectively. In each case they

correspond to the six waves with the highest wavenumbers in Fig. 3.9. '

For the vertical and symmetric longitudinal waves around 25 kHz, the first

two and fourth ones.among the selected six waves are the 1st, 2nd and 3rd order

foot bending waves as illustrated in Fig. 3.10(a), (b) and (d). It can be seen from

Fig. 3.9(a) that these convert from the global bending wave at about 5 kHz and 15

kHz, and from the longitudinal wave at about 18 kHz, respectively. In other words,

the first wave has global bending deformation below 5 kHz, whereas the second

wave has the longitudinal deformation below 5 kHz and global bending deformation

between 5 kHz and 15 kHz. The third wave is the vertical bending wave in the rail

head (Fig. 3.lO(c)) and the fifth and sixth waves appear to have global deformation

shapes possessing large deformations in the foot (Fig. 3.11(e) and (f)). However, at

around 50 kHz, these two were converted to longitudinal type waves in the foot and

rail head, as shown in Fig. 3.11(e) and (f), respectively.

For the lateral, torsional and antisymmetric longitudinal waves around 25 kHz,

the first and second waves selected are the foot bending wave and the Ist order web

bending wave, respectively (Fig. 3.12(a) and (b)). The remaining four from the

third to sixth waves show global deformation shapes in the rail head, web and foot

(Fig. 3.12(c) to (f)). Meanwhile, the first and second waves around 50 kHz are the

same type of waves as those in Fig. 3.12(a) and (b) but have increased wavenumbers.

On the other hand, the third and fourth waves selected around 50 kHz are the 2nd'

order foot bending and web bending waves, respectively, (Fig. 3.13(c) and (d)),

which were converted from the waves of global deformation' at around 20 kHz. The

fifth and sixth waves show mixed motions of the rail head and web (Fig. 3.13(e) and

(f)). The other wave modes around 50 kHz, having lower wavenumbers, generally

have globally Coupled deformation shapes in which head, web and foot all vibrate.

These examples of deformation shapes indicate that waves with larger wavenumbers

are more likely to propagate through a local region of the rail cross-section.

The dispersion curves predicted from the supported rail model are compared

with those for a free rail in Fig. 3.14 for frequencies below 20 kHz. This figure

shows that the effect of the elastic foundation appears mainly at frequencies below
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(b) (c)

(d) (e) (f)

Fig. 3.10. Deformation shapes of the top 6 waves around 25 kHz in Fig. 3.9(a), (a) wave
1 at 24377 Hz, (b) wave 2 at 26348 Hz, (c) wave 3 at 24911 Hz, (d) wave 4 at 23681 Hz,
(e) wave 5 at 24915 Hz, (f) wave 6 at 24401 Hz.

(a) (b) (c)

'X';'

(d) (e)

Fig. 3.11. Deformation shapes of the top 6 waves around 50 kHz in Fig. 3.9(a), (a) wave
1 at 48740 Hz, (b) wave 2 at 50719 Hz, (c) wave 3 at 50398 Hz, (d) wave 4 at 49732 Hz,
(e) wave 5 at 49870 Hz, (f) wave 6 at 50723 Hz.
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(b) (c)

(d) (e) (f)

Fig. 3.12. Deformation shapes of the top 6 waves around 25 kHz in Fig. 3.9(b), (a) wave
1 at 24387 Hz, (b) wave 2 at 25766 Hz, (c) wave 3 at 23905 Hz, (d) wave 4 at 24631 Hz,
(e) wave 5 at 26869 Hz, (f) wave 6 at 24405 Hz.

(a) (b) (c)

(d) (f)

Fig. 3.13. Deformation shapes of the top 6 waves around 50 kHz in Fig. 3.9(b), (a) wave
1 at 51139 Hz, (b) wave 2 at 49193 Hz, (c) wave 3 at 48793 Hz, (d) wave 4 at 50192 Hz,
(e) wave 5 at 49020 Hz, (f) wave 6 at 50505 Hz.
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— - — supported rail

(a) (b)
Fig. 3.14. Comparison of dispersion relations between free and supported rail for (a) the
vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.

10 kHz, resulting in the cut-on frequencies being moved slightly higher. The cut-

on of the first vertical bending wave is most affected, as shown in Fig. 3.14(a),

being increased from 0 to 1 kHz by the presence of the support. It can therefore

be said that the presence of the foundation does not result in large changes in

the frequency-wavenumber plot at high frequencies. However, the foundation will

contribute considerably to the decay rates of each wave because the damping loss

factor of a rail pad is generally much higher than that of the rail itself.

3.3 Prediction of Group Velocities

The phase velocities, c, and group velocities, cg, of each wave can be predicted

from the dispersion curves in Fig. 3.9 by use of the relations

(3.20)

* " (3.21)

U!
c = - ,

K

cg = ~r
an

In this calculation, the group velocity of the ith wave at the nih frequency was

evaluated approximately by a finite difference scheme

OJl . i — U.

Kn+l
(3.22)

b n - l

The predicted phase and group velocities are shown in Fig. 3.15 and Fig. 3.16,

respectively. At a cut-on frequency, the phase velocity becomes infinite, correspond-

ing to rigid body motion of the rail, because the wavenumber, K, is zero at that
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(a) (b)

Fig. 3.15. Predicted phase velocities for (a) the vertical and symmetric longitudinal waves,
(b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond to
Fig. 3.9

/
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(a) (b)

Fig. 3.16. Predicted group velocities for (a) the vertical and symmetric longitudinal waves,
(b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond to
Fig. 3.9

frequency. Conversely the group velocity is zero at the cut-on frequency.

The longitudinal waves are graphically well distinguished in Fig. 3.15 because

they have phase velocities approaching 5000 m/s. As depicted in Fig. 3.16, the

predicted group velocity curves are not smooth enough, particularly for longitudinal

waves, because of the limited resolution An. It seems from these phase and group

velocity figures that many of the phase velocities tend to approach a certain value,

possibly the shear wave speed, as frequency increases. The shear wave speed is about

3100 m/s for a bulk shear wave and about 2850 m/s for a shear wave in a beam with a
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square cross-section. In addition, negative group velocities arise around some cut-on

frequencies. This negative group velocity means that for a wave travelling forwards

the energy carried by the wave propagates backwards and vice versa [22,52]. These

can be seen as curves in the dispersion plot with a negative slope near cut-on, for

example the blue curve just above 20 kHz in Fig. 3.9(a).

3.4 Predictions of Decay Rates

When damping is introduced, waves will decay with distance along the rail and

'this decay rate, A (in dB/m), will determine how far a wave can travel along a rail.

3.4.1 Decay rates

If damping is included in the model by making the elastic modulus complex,

E(l +jrf), with 77 the material loss factor, waves decay as they propagate. The decay

rate, A, can be defined from the amplitude reduction over one wavelength as

where u(x) is the displacement of the travelling wave along x and A is the wavelength.

For the damped propagating wave % at frequency u>, the energy decaying with time

can be expressed as

W{{t) = Wl
Qe-ur<H , . ' (3.24)

where WQ is the energy at t = 0 and rf is the loss factor of this wave. Since this

energy propagates with the group velocity, by the relation between time and space,

t = x/ci
g,

W\x) = Wl
Qe~wr)ixl^ . (3.25)

Since W'(x) oc lu^x)^,

\ij{x)\ = uie-u"ix/2c$' . . . (3.26)

Therefore, for the wave i, the decay rate in Eq.(3.23) is expressed as

A* = ~ log10 e-^/H = 27.29 Q . (3.27)
A cl

As expressed in Eq. (3.27), the damping loss factor of a propagating wave, if', and

its group velocity, cl
g, have to be identified to predict the decay rates of each wave
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in Fig. 3.9. That is, the decay rate of the ith wave at the nth frequency in Fig. 3.9 is

A^ = 27.29/X/cJ.n • (3:28)

For the track model in Fig. 3.5, damping is introduced by assigning a material damp-

ing loss factor to the rail and another to the rail pad.

In ANSYS, the material damping parameter has to be defined by a constant /?,

which is related to the material damping loss factor, 77, by j3 = rj/uj. For the given

constant /3, the modal analysis in ANSYS gives complex natural frequencies due to

the presence of the damping term as

Vd,n = j&n + Un = JCnOJn + ^n , (3.29)

where £„ and uin are the modal damping ratio and the natural frequency of the nth

mode, respectively. Then the damping ratio, (n, of the nth mode can be obtained,

from the imaginary part of the complex natural frequency. This means that in order

to obtain £„ at a specific angular frequency u>n, the input property (3 has to be given

at u)n without knowing cun a priori. This problem can be tackled by introducing a

simple approximation, as presented in ref. [53]. If the input parameter /? is fixed at

some angular frequency, ua, as fia = rj/ua, it can be assumed that the correct (3n at

the nth mode would be

Pn = — Pa , (3.30)

where coa/un is a compensating factor. Therefore, the modal damping ratio at u>n is

approximately calculated from (3a by multiplying by the factortu)a/ujn,

(n=a~-^ (3.31)
UJn U)n

for all modes in a frequency range of interest. This estimation has been tested for

a range of values of ua and found to give consistent results for all modes in the

frequency range of interest. Finally the modal damping loss factor, rjn, used for the

decay rate prediction using Eq. (3.28) can be obtained from the modal damping

ratio, Cri, by the relation r\n = 2(n, valid for small values of £n.

3.4.2 Predicted results

Two material damping components are required for this track model, i.e., the

material damping loss factor of the rail, r]r and of the rail pad, r\v. In practice
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both may be frequency-dependent. In this numerical analysis, however, the material

damping loss factors of the rail and rail pad were set to constant values of 0.0002 and

0.2, respectively. rjr was chosen to represent the material damping loss factor of steel.

The damping of the rail pad corresponds to typical values [13, 30] and is a thousand

times higher than that of the rail, as specified here. In this prediction, the angular

frequency uja for the input property /? is chosen in the middle of the frequency range

of interest, corresponding to 40 kHz. For these two material damping loss factors,

the input parameters, values of f3, for the rail pad and rail at 40 kHz were 7.94 x 10~7

and 7.94xlO~10, respectively.

Fig. 3.17 shows the predicted modal damping loss factors, rfn, of each wave pro-

duced by the modal analysis in ANSYS after applying the correction factor described

above. As given in this figure, the input material damping of the rail, rjr, determines

the lower limit of rfn of all waves. In other words, if there is no damping in the rail

pad then all the waves in the structure will have the same damping loss factors as r]r,

i.e., rfn = r]r, regardless of the wave type. Therefore it reveals that the differences

of the predicted modal damping rfn from the input material damping r\T directly

depend on how much the rail foundation deforms in their modes. For instance, a

wave which propagates only through the rail head as shown in Fig. 3.11(c) will be

little affected by the damping of the foundation. Hence it can be imagined that

waves which have small deformation in the foundation propagate further along the

0 10 20 30 40 SO 60 70 80 0 10 20 30 40 SO 70 SO

(a) (b)

Fig. 3.17. Predicted damping loss factors for (a) the vertical and symmetric longitudinal
waves, (b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond
to Fig. 3.9
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Frequency (kHz) Frequency (kHz)

(a) (b)

Fig. 3.18. Predicted decay rates for (a) the vertical and symmetric longitudinal waves,
(b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond to
Fig. 3.9

rail since r]p is 1000 times larger than r)r. Conversely the wave shown in Fig. 3.14(a)

has a much higher damping loss factor, shown by the upper blue curve in Fig. 3.17.

The decay rates predicted by Eq. (3.28) are illustrated in Fig. 3.18 for all waves

in this track model up to 80 kHz. At cut-on frequencies of each wave, the decay

rates become infinite because the group velocities are zero at those frequencies. Note

that, as described in Section 3.2, the dispersion curves created by a given boundary

condition (i.e., symmetric or antisymmetric boundary conditions in the mid-plane)

do not cross each other. Instead, they swap their deformation shapes when two

dispersion curves approach each other. Hence one has to be aware that when the

deformation shapes are exchanged between two waves, their decay rates are also

swapped so that two decay rate curves do cross each other. Because the decay rate

is directly proportional to the frequency as given Eq. (3.28), the lower limit of the

decay rate increases with frequency as shown in Fig. 3.18. Although longitudinal

waves possess large group velocities, they do not seem to give lower decay rates than

other types of waves. This is because the longitudinal waves normally have global

deformations so that their damping loss factors are relatively larger than those of

other waves. In other words, considerable deformations of the rail foundation occur

when the longitudinal waves propagate. Fig. 3.18 indicates that the minimum decay

rate is about 0.04 dB/m and seems to occur between 10 kHz and 20 kHz.
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In practice, a range of rail pads with different stiffnesses is used in tracks. So

it will be worth investigating the effects of the foundation stiffness (kp) on decay

rates. This will be performed and discussed in Chapter 4 with the wavenumber

finite element approach.

3.5 Summary

In this chapter, the conventional FE method was employed to predict dispersion

relations and decay rates up to 80 kHz. To do that, an appropriate cross-sectional

FE model for UIC6Q rail was found and then a 0.3 m long railway track model was

established as a rail on a distributed elastic foundation, corresponding to the rail

pad. This elastic foundation was modelled as a massless spring and the stiffening

of the rail pad due to internal resonances was compensated by introducing a higher

dynamic stiffness. Two damping components were considered as constants in this

track model: damping for the rail and for the foundation, respectively.

It was found from this simulation that there are more than 60 different types

of waves propagating in the rail below 80 kHz. For these multiple waves, their

dispersion relations and decay rates were predicted. Deformation shapes of each

wave indicated that waves with larger wavenumbers are more likely to propagate

through a local region of the rail cross-section. The other wave modes, having lower

wavenumbers, normally have globally coupled deformation shapes in which head,

web and foot all vibrate.

Through this FE analysis, it was found that the minimum decay rates of about

0.04 dB/m occur between 10 kHz and 20 kHz. Since damping for the foundation is

1000 times larger than that for the rail, it could be said that waves which have small

deformation in the foundation propagate further along the rail. This simulation re-

sult conflicts with that reported in ref. [11] where it is stated that the most effective

frequency range for the long range wave propagation in railway track is 40 kHz to

80 kHz. The validity of the FE results will be verified in the remaining chapters in

this thesis.

Since there are several tens of different waves propagating below 80 kHz in

the track model, it will be worthwhile identifying which of them are measurable at
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various points on the rail surface. That is achievable by quantifying the 'energy'

contained in different parts of the rail surface from the displacement predicted by

FE analysis. However, this is discussed in the next chapter using another numerical

method, called the wavenumber finite element method.
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Chapter 4

Wavenumber Finite Element

Analysis of a Railway Track

In Chapter 3, the FE method was used to generate dispersion curves and decay

rates at frequencies up to 80 kHz. However, it has several drawbacks for practical

application. Primarily the FE method requires very large models for high frequency

analysis and so imposes a large computational burden. Furthermore, considerable

manual post-processing is required to build dispersion and group velocity curves from

the results of the FE analysis. For example, in Chapter 3, more than 2000 natural

frequencies and mode shapes were checked one by one to specify their wavenumbers.

Another disadvantage is that the group velocities are roughly estimated from the

discrete dispersion curves by means of the finite difference approximation between

two discrete points.

In this chapter, to overcome these difficulties, an improved numerical method

called the wavenumber (or waveguide) finite element (WFE) method is employed

as an alternative to the conventional FE method. One of its great advantages is

that different wave types are readily identified and can be analysed, enabling a

physical interpretation of the wave propagation in the structure under investigation.

Further information on this approach can be found in refs [20,25,26,54]. For the

WFE analysis in this thesis a software program, called 'WAFER (WAveguide Finite

Element Resources)', developed at ISVR is used for modelling the wave behaviour

in railway tracks numerically. A more recent version, called 'WANDS', includes

boundary element analysis and is described in [55,56].
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4.1 Wavenumber Finite Element Method

In this part, the basic equations of the WFE method and how they can be solved

to predict dispersion relations and decay rates will be described briefly.

4.1.1 Equation of motion

Suppose that there is an undamped waveguide structure which is infinitely long

in one direction, call it the x direction, and its cross-section normal to the x axis is

uniform along x. In conventional FE analysis, this structure can be modelled for a

finite length with symmetric and/or antisymmetric boundary conditions, as done in

Chapter 3. For the assembled FE model, the global equation of motion is expressed

in matrix form as

{K / e + M / e j ^ } * / e ( M ) = O , •• (4.1)

where K/e and M/ e are stiffness and mass matrices and <fr/e denotes the displace-

ment vector of the FE model. Kye and M/ e are real if damping is not considered.

Note that, in this FE formulation, the displacements u, v and w in the x, y and z •

directions are approximated by the prescribed 'element displacement function' (or

shape function) [57].

For this waveguide structure, it is possible to define a wave solution for the x

direction instead of making a finite element mesh and using a shape function along

this direction. Then time harmonic displacements, (u,v,w), of the element in three

directions of (x,y,z) can be expressed with separable variables as

v{x, y, z, t) = $(y, z) • ve~iKXe^ (4.2)

where t denotes timely and z denote coordinates of the cross-section, x, ip and £

define the displacements of the cross-section and u, v and w are scaling constants.

Note that in Eq.(4.2) only the y and z dependence is specified by shape functions.

By using these wave solutions for the ̂ /direction in the FE formulation, a two-

dimensional FE equation is made over a cross-sectional model, instead of a three-

dimensional full structure model. The differential equation for the cross-section
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modelled with solid finite elements is given by

^ ^ ^u(x,t) = 0 (4.3)

where K2, Ki and Ko are the matrices that come from the stiffeness of the struc-

ture1, M is the mass matrix and u(x,t) is the displacement vector of the cross-

section2 [26,27,54]. In this equation, the three stiffness matrices K2, Kj and Ko

contain derivative components of order (J- , ̂ ) , (^- , ̂ ) and ( j - , J^) , respec-

tively. The matrices K2, Ko and M are symmetric and Ki is antisymmetric. All of

them are independent of x and they are real if there is no damping included.

Since u(x,t) = ^e^ut~KX^ as described in Eq.(4.2), the differential equation in

Eq.(4.3) can be. simplified to an eigenvalue problem,

{K 2(- i«) 2 + K x ( - ^ ) + K o - w 2 M } $ = 0 (4.4)

where <$ contains the displacements (x, ip a n d £) of the cross-section which define

the deformation shapes of waves. Here K, UI and $ are the unknown variables to be

identified.

As. shown in' Eq.(4.3) and Eq.(4.4), there are three different stiffness terms.

They represent slightly different physical behaviour of the structure induced by

waves propagating along the x direction. Since the matrix Ko is independent of

x, it possesses stiffness components which do not vary along the x direction. Thus

if only Ko is present, waves will occur which form cross-sectional modes of the

waveguide structure at re = 0. That is, {Ko — w2M}$ = 0 will generate cut-on

frequencies and the corresponding cross-sectional mode shapes of the structure. On

the other hand, the matrix K2 will have stiffness< components which are associated

with propagating behaviour along the x direction because it is expressed together

with the second derivative of u with respect to x. Note that, K2 contains only

stiffness components that are uncoupled with the y and z directional strains. Those

terms originating from coupled deformations between the x and (y, z) directions are

contained in the matrix Ki which is antisymmetric.

1The physical units of K2, Kx and Ko are Nm, N and N/m, respectively.
2For beam or plate structures, K 4

a ^4'^ will be added in'the left-hand side of Eq.(4.3).
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In elastic structures, there are two coupled relations between each directional

deformation. The first one is defined by the Poisson's ratio. That is, strains normal

to one direction are.coupled with the strains in other directions by the Poisson's

ratio, v. The.other one comes from the rotation of the element by the shear force

applied. That is, a shear stress causes a rotational deformation which is expressed

by two strain components as, for example,

'du dv\ ,
- + •5-) . (4.5)
y ox) •

where G denotes the shear modulus of the material. The first term in Eq.(4.5) will

be contained in K i and the second term will be in K2 because. drxy/dx is used in

the formulation of Eq.(4.3). Since Kj originates only from the coupling between

strains in the x direction with the y or z directions, it would vanish if there is no

coupling between them. For instance, if wave propagation in fluids is investigated

with this WFE method, the matrix K^ will disappear because the Poission's ratio

v and the shear modulus G are normally set to zero for fluids. Also, in terms of the

strain energy which can be stored by each stiffness term in Eq.(4.4), one has to be

aware that the term involving Ki does not store any energy since it only expresses

coupling between the x directional and y or z directional strains. That is,

= 0 -.- (4.6)

The mass and stiffness matrices in Eq.(4.4) for the cross-sectional model are

produced from the WAFER software in this study. The process of using WAFER

is schematically presented in Fig. 4.1. As shown in this chart, the post-processing

Pre-process

Solver

3ost-process

Input file generation
in MATLAB

(cross -section modelling, material properties)

WAFER

(output matrices: k2, K,, K,,, M)

Solve the equation of motion
in MATLAB

{K2 ( - !K)2+K1 ( - iK)+K0 - <B2M}3>=0

Fig. 4.1. Process for using WAFER.
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to solve Eq. (4.4) is performed in MATLAB after assembling each-of the matrices,

K2, K1 ; Ko and M. The details of how to obtain K and u from Eq.(4.4) will be

discussed below.

4.1.2 Dispersion curves

The twin-parameter eigenvalue problem in K and u in Eq.(4.4) has to be solved

to obtain dispersion relations. Since there are two variables, two solution approaches

are available. Firstly, Eq.(4.4) can be solved as a generalized eigenvalue problem for

frequency to if a wavenumber, K, is given. In this case, the equation can be solved by

a MATLAB built-in function, 'eig.m'. If another function, 'eigs.m', is used for sparse

matrices instead,- a small number of eigenvalues can be obtained more rapidly. This

method will give natural frequencies (eigenvalues) and mode shapes (eigenvectors)

of propagating waves at given wavenumbers.

Conversely, if a frequency is given instead of a wavenumber, then the equation

becomes a polynomial eigenvalue problem in the wavenumber, K. Then the func-

tion 'polyeig.m' in MATLAB can be used to obtain n at a given frequency to. This

method outputs wavenumbers and mode shapes at each frequency of both propa-

gating and nearfield waves; the latter decay exponentially with distance. This poly-

nomial eigenvalue problem can be transformed to a generalized eigenvalue problem

in order to reduce its computational time and improve numerical robustness [43].

Nevertheless, it was reported in [27] that this approach still takes about 100 times

longer in computation time than the first solution method.

The choice of how to solve Eq.(4.4) will depend on what response is to be in-

vestigated by using the results obtained. In this chapter, it is preferred to solve for

w at a given k since dispersion relations and decay rates of propagating waves are

of interest. The second method, solving for K at a given frequency to, is used and

discussed in Chapter 8 to investigate wave reflection and transmission characteris-

tics along a rail.

As derived above, the WFE method utilises the exact wave solutions for the

x direction instead of making FE meshes which use approximate shape functions.

Hence it is anticipated that WFE analysis will yield more accurate natural frequen-
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ties than conventional FE analysis for the same cross-sectional model, especially at

high frequencies. The dispersion curves predicted by the FE and WFE methods will

be compared later.

4,1.3 Group velocities

In WFE analysis, group velocities can be derived theoretically from the equation

of motion, Eq.(4.4), using the method given by Finnveden [27]. Since the equation

has to be satisfied for any solutions of K in the dispersion relation, then the derivative

of Eq.(4.4) with respect to the wavenumber should always be zero. That is,

j (4.7)
where K = K2(—JK)2 + K-I(-JK) + K O . This derivative can be written as

0 . (4.8)
18K 8K J L J 8K

By multiplying the above equation by the left eigenvector, $>L, of [K — a>2M],

*LT [~K - 2o;^M] $ + $LT [K - u2M] £ * = 0 , (4.9)
18K 8K J L J 8K

where the superscript T denotes a matrix transpose. From the definition of the left

eigenvector,

$ x T [ K - w 2 M ] = : 0 . (4.10)

Then Eq.(4.9) simplifies to

$LT[,f-K-2a;^M]$'=0 . (4.11)
8'K . 8K .

Since K is Hermitian and M is real and symmetric, Hermitian transpose of Eq.(4.11)

will become

^ [ A K - J Z W ^ M J ^ ' — O , (4.12)
8K 8K

where H denotes Hermitian transpose. From Eq.(4.11) and Eq.(4.12), it is found

that the left eigenvector is equal to the complex conjugate of the right eigenvector,

i$>L _ j£* Hence, the group velocity, cg, can be expressed as
\_dco_ *K*

where

K' = — = -2KK2-JK1 . (4.14)

From this relation the group velocity can be easily evaluated for each individual

solution of the dispersion relations.
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4.1.4 Decay rates

So far all the WFE equations were derived for an undamped structure. Now

suppose that damping is included in the model by adding an imaginary part to the

real valued stiffness matrices as

Kd = K2(l + Jv)(~JK) + K i ( l + JT))(—JK,) + K o ( l + jrj) = K(l + jrj) (4.15)

where IQ indicates the complex stiffness matrix and 77 is the damping loss factor.

For small damping, a damped wavenumber can be expressed approximately using a

Taylor series as

red«re + ^r-^ V •• (4.16)
drj 77=0

where re and /% denote undamped and damped wavenumbers, respectively [26] .

For a given frequency, th;e derivative with respect to 77 at 77 = 0, in Eq.(4.16),

can be evaluated as follows. Since the equation of motion has to be .satisfied even if

damping is slightly increased,

d
{ [ K d a ; M ] i } 0. (4.17)

As the stiffness matrix Kj is a function of re, the derivative of this equation can be

written as

Multiplying by the left eigenvector,

# L T [Kd. - U>2M]—<fr = 0 . (4.19)

Then the derivative with respect to 77 at 77 = 0 is given by

%\n=rz§^- • ' (4-20)

Since K = o;2M when 77 = 0, this becomes

Using the group velocity in Eq.(4.13), it follows that

-ju

drj 2cg
(4.22)
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Therefore, a damped wavenumber can be approximated by

8K

or] 2c, (4-23)
•9

Then decay rates can be obtained from the imaginary part of the damped wavenum-

ber as

A = -201og10(e) Im(Krf) = 8.686 (^) = 27.29 ^ . (4.24)
\ZCg/ Cg •

This decay rate is exactly the same expression as Eq.(3.27) derived in the previous

FE analysis.

As an another way of predicting the decay rate in Eq.(4.24), Im(«;d) could be

directly obtained by solving wavenumbers from [Kd — w2M]# = 0 at each frequency

u>. However, this approach is not efficient for the prediction of decay rates of propa-

gating waves because it gives all the wavenumber solutions and mode shapes, most

of which are nearfield waves. These nearfield waves are not of interest in this section.

Moreover it will require very long computation time. Therefore, this approach has

not been used in the decay rate prediction.

4.2 Modelling a Railway Track

In this section, the WFE method is applied to the railway track which was

used in the FE analysis in Chapter 3, Although the cross-sectional track model

appropriate for the previous FE analysis was already established, it is necessary

to check the suitability of the cross-sectional model for this WFE method. The

physical properties of the rail and foundation are exactly the same as those specified

in Chapter 3.

4.2.1 Modelling a rail cross-section

Firstly, in order to check the proper mesh size for this WFE method, two cross-

sectional models of the UIC60 rail were constructed with two different element sizes.

These models are shown in Fig. 4.2. Model 1 in Fig. 4.2 is the same model as used in

Chapter 3 and model 2 has a finer mesh. Each model consists of quadrilateral solid

elements which possess 8 nodes each having three translational degrees of freedom.

The corresponding numbers of elements are 42 and 70, respectively.
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-01 -0.05 -0.1 -0.05

(a) (b)

Fig. 4.2. FE models for rail cross-section, (a) Model 1 as used in FE analysis in Chapter
3, (b) model 2.

As in the previous FE analysis, symmetric and anti-symmetric boundary con-

ditions were applied at the vertical centreline of the cross-section. The symmetric

boundary condition gives the vertical and symmetric longitudinal modes; the an-

tisymmetric boundary condition gives the lateral, torsional and the antisymmetric

longitudinal modes.

The dispersion curves predicted by the WFE method are shown in Fig. 4.3 for

the two cross-sectional models of Fig. 4.2. As stated earlier, the WFE method utilises

the exact wave solutions for the x direction. Hence it is anticipated that WFE anal-

ysis will yield more accurate natural frequencies than a conventional FE analysis

for the same cross-sectional model, especially at high frequencies. For comparison

the dispersion curves produced by the previous FE method are also illustrated in

Fig. 4.3 for the same discrete wavenumbers.

From Fig. 4.3, it is found that the conventional FE analysis gives slightly lower

frequencies for given wavenumbers than does the WFE analysis at high frequency.

Referring to Table 3.1 in Chapter 3, which listed the natural frequencies for three

different cross-sectional models having different mesh sizes, it can be seen that the

natural frequencies predicted from the finer model become slightly lower than those

created from the coarser model. Therefore, it is apparent that the FE method has

generated more accurate natural frequencies than the WFE method for the same

cross-sectional model, contrary to expectation. The reason for this result is that
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Fig. 4.3. Comparison of dispersion curves predicted by FE and WFE analyses for (a) the
vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.
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the commercial FE software, ANSYS, used in the FE simulation, is making use of

more sophisticated techniques to create mass and stiffness matrices than the WFE

software.

Fig. 4.3 also indicates that the dispersion curves produced from model 2 by WFE

analysis coincide very well with those obtained by FE analysis from model 1. Based

on these comparison results, model 2 will be used as an appropriate cross-sectional

model for WFE analysis from now on.

4.2.2 Modelling a rail on a foundation

Having established a suitable rail cross-sectional model, in this section, a founda-

tion for the rail appropriate for the WFE method will be specified. As in Chapter 3,

only the rail pad will be included in the foundation in this model as the contribu-

tions of the sleepers and ballast are limited to the low frequency region below 1 kHz

[12].

In Chapter 3, the rail pad was considered as a massless single layer elastic

foundation having a constant 'dynamic stiffness' approximated from a simple one-

dimensional model. This was because it was impractical in the FE analysis to model

it with a finer mesh and also not feasible to introduce a frequency-dependent dy-

namic stiffness in the ANSYS. However, it might be possible in this WFE analysis

to model the rail pad with more layers of elements. If so, it would not be neces-

sary to regard the dynamic stiffness separately because this model would be able

to express the internal resonance effects properly by itself. WFE analysis makes

this attempt substantially possible as it can create dispersion curves very quickly

and easily, getting rid of the large manual post-processing which was inevitable

with the FE analysis. Note, however, that it is not possible simply to specify a

frequency-dependent stiffness even in the present WFE analysis due to the form of

eigensolution used in which K is specified and the system solved for u>.

To find an appropriate foundation model, three different models were considered

with the two different cross-sectional FE meshes shown in Fig. 4.4. Foundation

model A is the same as used in the previous FE analysis, having the constant

dynamic stiffness of 10 times the nominal value. Model B has the same FE meshes

51



Chapter 4. Wavenumber Finite Element Analysis of a Railway Track
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.4. Cross-sectional FE models of a rail on foundation, (a) Model A and B, (b) model

Table 4.1. Details on foundation models.

Properties

Number of layers of elements

Density (pp)

Young's Moduli (EPtX, Ep,y, Ep,z)

Shear Moduli (Gp,xy, Gp,yz, Gp,zx)

Model A

1

0 kg/m3

166.7 MN/m2

22.3 MN/m2

Model B

1

1000 kg/m3

16.7 MN/m2

2.2 MN/m2

Model C

20

1000 kg/m3

16.7 MN/m2

2.2 MN/m2

as model A but has a density of 1000 kg/m3 for the foundation and does not have

the higher dynamic stiffness. Model B was considered in order to investigate what

happens if mass is included in the foundation in model A. As the final model, model

C was generated with 20 layers in the vertical direction as well as the density of

1000 kg/m3. The properties specified for each foundation model are listed in Table

4.1.

All dispersion curves evaluated from the three track models are shown in Fig. 4.5

for the vertical and symmetric longitudinal waves. Comparing Fig. 4.5(a) with

Fig. 4.5(b), it can be seen that the dispersion curves obtained from model B possess

several additional waves which propagate slowly along the track. These are internal

waves propagating through the foundation only. The result shown in Fig. 4.5(b)

indicates that if the density of the foundation is introduced, waves propagating

through the rail foundation occur in the numerical simulation. Also it is clear that

the number of waves travelling in the foundation is dependent on the number of de-
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30 40
Frequency [kHz)

(a)

(b) (c)

Fig. 4.5. Dispersion curves for the vertical and symmetric longitudinal waves created from
(a) model A, (b) model B, (c) model C.

grees of freedom in the foundation model. This is demonstrated in Fig. 4.5(c) which

shown results for model C up to 40 kHz. Here, most of the solutions correspond

to internal waves in the foundation. Therefore, it is very difficult to identify the

waves of interest propagating along the rail, rather than along the foundation, from

these complicated curves. Note that the waves propagating along the foundation

layer occur when the rail pad is modelled as a continuous foundation with mass. So,

these internal waves would not appear if the rail pad is modelled as a discrete rail

foundation.

As discussed in section 4.1.1, the stiffness terms which make wave behaviour

along the x direction are contained in the matrices K2 and Ki. So it was examined

what happens to the dispersion relations if the stiffness components for the rail
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Fig. 4.6. Dispersion curves for the vertical and symmetric longitudinal waves created from
model B with K2 and Ki corresponding to the rail foundation set to zero.

pad in K2 and Ki are set to zero. The dispersion curves obtained are shown in

Fig. 4.6 for model B. This figure reveals that the dispersion curves corresponding

to the waves in the foundation are still present but become straight vertical lines,

implying that they are not propagating waves. From this figure, it was found that

this method is not useful to remove the internal waves in the foundation from the

dispersion curves in Fig. 4.5(b), particularly in Fig. 4.5(c).

It turned out from Fig. 4.5 that although the WFE method can deal even

with the complicated model C, the solutions are not suitable for this study. In

other words, most of the dispersion relations generated from model C depict the

waves propagating along the foundation, not along the rail. Also because there

are many solutions for a given wavenumber, longer computation time is required

unnecessarily to create dispersion curves. Consequently, model A, which has zero

density and constant dynamic stiffness in the foundation, will be used again as a

suitable foundation model in this WFE analysis.

4.3 Prediction of Dispersion Relations and Group

Velocities

The track model appropriate to this WFE analysis was identified in the pre-

vious section. For this track model, the predicted dispersion curves are shown in

Fig. 4.7. In FE analysis, the increment of discrete wavenumber, A«, was inversely

proportional to the length of the FE model. In this WFE method, however, the
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(a) (b)

Fig. 4.7. Predicted dispersion curves for (a) the vertical and symmetric longitudinal waves,
(b) for the lateral, torsional and antisymmetric longitudinal waves.

(a) (b)

Fig. 4.8. Comparison of group velocities predicted by the WFE and FE methods for (a)
the vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.

discrete wavenumbers can be selected arbitrarily allowing a finer resolution. In this

prediction, the wavenumber increment used was 1.3 rad/m, which is a quarter of

that specified in FE analysis in Chapter 3, so that smoother curves were generated

as illustrated in Fig. 4.7.

As stated above, the group velocities can be readily predicted by Eq.(4.14)

for each wave. The group velocities obtained by the WFE method are presented

in Fig. 4.8. They are also compared with the previous FE analysis results from

Fig. 3.16. The FE and WFE methods yield generally similar results but the WFE
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method produces more accurate and smoother curves than the FE method. Now it

becomes much easier to recognize each line's behaviour, particularly for the longi-

tudinal waves which have the highest group velocities.

The improved graphical result obtained by the WFE method mainly results

from the finer wavenumber resolution. That is, if a finer wavenumber resolution

were used by extending the length of the model in FE analysis, similarly smooth

curves should be obtained. However, to achieve comparable results to those obtained

by the WFE method in Fig. 4.8, an FE model of length 1.2 m needs to be used,

which would dramatically increase computational requirements. Moreover the finite

difference approach requires an even finer wavenumber resolution than the direct

approach used with the WFE method.

4.4 Prediction of Decay Rates

So far the track model has been analysed without" considering any damping in

the structure. From now on damping will be included in the track model to predict

decay rates of the propagating waves.

There are two damping components in the track model: the damping in the

rail, rir, and in the foundation, r)v. The stiffness matrix of this damped track model

can be separated into two parts

Kd = (4.25)

where K r and K p denote the stiffness matrices for the rail and foundation, respec-

tively. These stiffness matrices possess separate material properties for the rail and

foundation as specified in Table 4.2. Because of the different dampings in the rail

Table 4.2. Elastic moduli of the rail and foundation for the generation of stiffness matrices
in WAFER.

Elastic Modulus

Young's Modulus of rail (Er)

Young's Modulus of foundation (Ep)

Shear Modulus of foundation (Gp)

K r

200 GPa

OMPa

OMPa

Kp

OGPa

166.7 MPa

22.7 MPa
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and foundation, the damped wavenumber of this track model has to be slightly

modified from Eq.(4.23).

For this track model a damped wavenumber, «d, can be expressed as

VP • (4-26)
driT r=o d% r,p=0

Since the equation of motion has to be satisfied for the derivatives with respect to

r]r a n d rjp,

{[(l+i7?r)Kr + ( l+ i7 7 p )K p W M]$} = 0 , (4.27)
OT)r

{[(l+j)K (l+j)K2M)$}O (4.28)

By following the same process as described in section 4.1.4, the two derivative terms

in Eq.(4.26) become

drjr 7jr=o $ ^ K ' # drip

where K = K r + Kp . Therefore, the damped wavenumber is obtained as

Finally the decay rates of waves propagating along the track can be evaluated from

the imaginary part of KJ, as

^ ( K ^ + K ^ ^ (4.31)

As presented above, the damping loss factors of the rail and rail pad are required

for this track model. The material damping loss factors of the rail and rail pad are

set to constant values of 0.0002 and 0.2, respectively, as specified in Chapter 3. The

predicted decay rates are shown in Fig. 4.9, along with the previous FE analysis

results. As revealed in Fig. 4.9, the decay rates predicted from the WFE and FE

methods are almost the same but again the WFE method creates smoother curves

than the FE method.

In practice, a range of rail pads with different stiffnesses is used in track. This

difference in stiffness will bring a change in K p in Eq.(4.30) which will affect the

57



Chapter 4. Wavenumber Finite Element Analysis of a Railway Track
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Fig. 4.9. Comparison of decay rates predicted by the WFE and FE methods for (a) the
vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.

imaginary part of the damped wavenumber. In order to investigate the effects of

the foundation stiffness on decay rates, different values of stiffness are applied here.

The values chosen aim to represent the soft and stiff ends of the stiffness range of

rail pads. In this prediction, the respective stiffnesses of the soft and stiff rail pads

are considered as 80 MN/m and 1500 MN/m in the vertical direction and 11 MN/m

and 200 MN/m in the lateral direction, respectively [12,30]. (The chosen stiffnesses

of the rail pad for the decay rate calculation shown in Fig. 4.9 are 150 MN/m and

20 MN/m in the vertical and lateral directions, respectively.) In each case a factor

of 10 is applied to the stated values to represent the dynamic stiffening.

The predicted decay rates are presented in Fig. 4.10 and Fig. 4.11 for these soft

and stiff foundation models. These figures show that with the soft pad there are

more waves with low decay rates, whereas with the stiff pad most of the waves have

higher decay rates. However, it turns out that the lowest decay rates for frequencies

greater than around 20 kHz are not significantly affected by whether the rail pads

are soft or stiff. This behaviour can be explained from the wave deformation shapes.

Waves inducing large deformations in the rail foot are mainly affected by the stiffness

changes in the foundation. In other words, the most slowly decaying waves propagate

only through localized regions, such as the rail head and the web. Consequently,

the decay rates of these localized waves are primarily dependent on the damping of

the rail, not the rail pad. It is apparent from this sensitivity check that the lower
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Fig. 4.10. Predicted decay rates with the soft rail pad of 80 MN/m for (a) the vertical and
symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric longitudinal

waves.
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Fig. 4.11. Predicted decay rates with the stiff rail pad of 1500 MN/m for (a) the vertical
and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric longitudi-
nal waves.

limits of the decay rates at frequencies above 20 kHz are directly associated only

with the structural damping of the rail. Therefore, the structural damping of the

rail is a principal factor in determining long range wave propagation, even when the

rail pad is quite stiff. This result implies that the lower limits of the decay rates

will be little changed although the rail pad is modelled as a damper, which was

discussed in Section 3.1.3. Structural damping loss factors of rails will be measured

and discussed in Chapter 5.
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4.5 Prediction of Measurable Waves on the Rail
/ . . .

Surface
As described previously, there are 63 different waves propagating below 80 kHz

in the track model. It will, therefore, be worthwhile identifying which waves among,

them belong to which regions of the rail cross-section and also which ones are mea-

surable on the rail surface at different locations. Since dynamic responses are usually

measured normal to the rail surface, the energy distributions around the rail surface

can provide useful information on which waves are detectable in a specific region.

For instance, the deformation energies of waves shown in Fig. 3.11 which have local

deformations are concentrated in local regions. To quantify this feature, the 'en-

ergy' associated with different parts-of the rail surface has been calculated from the

predicted.displacement of the track model produced by the WFE (or FE) method.

For this purpose, four separate regions have been specified on the rail surface

as shown in Fig. 4.12. These are the top of the rail head, the side of the rail head,

the middle of the web and the top of the foot. In this.figure, y and z denote lateral

and vertical directions, respectively. Then the normalized energies for each region

and each direction were predicted using

(4.32)

where $ s denotes displacements in all directions at all nodes on the rail surface,

0.
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Fig. 4.12. Four regions specified for the prediction of energy distribution on the rail surface.
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|| || is the vector norm, &zj is displacement in the z direction (and similarly for the

x and y directions) at nodes belonging to the region j , n,- is the number of nodes

in the region j and Ns is the total number of nodes on the rail surface. Therefore,

this quantity would depict implicitly which waves are measurable in region j among

all the waves in the system. In this calculation, no information on the input force

or modal participation factor is included so that all the modes are treated equally.

These measurable waves predicted by Eq.(4.32) will be used in comparison to the

measured results.in subsequent chapters of this thesis.

4.5.1 Measurable waves in the vertical and lateral directions

The predicted dispersion curves at each region are illustrated in Fig. 4.13 in

terms of the energy ratio given in Eq.(4.32). In these figures, all curves from Fig. 4.7

are present but the strength of the line colour depicts the level of the normalized

energy at each frequency. In other words, the darker curves correspond to waves

that are the. more detectable. Fig. 4.13(a) reveals that only a single type of wave,

i.e;, the head bending wave, is predominantly measurable at the top of the rail head

below 32 kHz. This is the wave shown in Fig. 3.11(c). The changes of colours along

this line indicate that the rail head bending wave is maintained through the wave

mode conversions as stated before. Other vertical waves that are significant tend to

cut-on at around 32 kHz. A similar phenomenon is obtained at the side of the rail

head for the lateral direction (Fig. 4.13(b)) where the wave seen in Fig. 3.11(e) is

most important. Conversely, at the middle of the web a large number of waves are

present throughout the whole frequency range, but the 1st order web bending wave

(Fig. 3.11(b)), i.e., the green line in Fig. 4.13(c), is prominent above 10 kHz. At the

top of the foot, foot bending waves will possess most deformation energy.

In the same manner, the group velocities of waves that are detectable at each

region can be presented in terms of the energy ratio. These measurable group veloc-

ities predicted at each region will be shown in Chapter 6 together with the measured

ones. -

The predicted decay rates at each region are shown in Fig. 4.14 also in terms

of the energy ratio. Again, all lines from Fig. 4.9 are plotted, but the strength of

line colour depicts the level of normalized energy at each frequency. Fig. 4.14(a)
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shows that the minimum decay rate of 0.04 dB/m would appear around 20 kHz if

it is measured at the top of the rail head. It has to be noted from Fig. 4.14(a)

that the decay rates grow when the wave modes are swapped with each other. For

example, around 15 kHz, the green coloured and red coloured waves are exchanging

their deformation shapes. At this point, the low decay rate wave becomes the higher

decay rate wave and vice versa. Hence the decay rate increases when the two lines

cross. The deformation shape of the wave having the minimum decay rate at the top

of the rail head is illustrated in Fig. 4.15(a) which was obtained from the previous

60 70 80

(a) (b)

(c) (d)

Fig. 4.13. Predicted dispersion curves in terms of the energy ratio for the vertical and lat-
eral directions, (a) At the top of the rail head for the vertical and symmetric longitudinal
waves, (b) at the side of the rail head for the lateral, torsional and antisymmetric longi-
tudinal waves, (c) at the middle of the web for the lateral, torsional and antisymmetric
longitudinal waves, (d) at the top of the foot for the vertical and symmetric longitudinal
waves.
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Fig. 4.14. Predicted decay rates in terms of the energy ratio in the vertical and lateral
directions, (a) At the top of the rail head for the vertical and symmetric longitudinal waves,
(b) at the side of the rail head for the lateral, torsional and antisymmetric longitudinal
waves, (c) at the middle of the web for the lateral, torsional and antisymmetric longitudinal
waves, (d) at the top of the foot for the vertical and symmetric longitudinal waves.

(a) (b)

Fig. 4.15. Simulated deformation shapes of waves which have the minimum decay rates
(a) at 20045 Hz in Fig. 4.14(a), (b) at 13028 Hz in Fig. 4.14(b).
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Chapter 4. Wavenumber Finite Element Analysis of a Railway Track

FE analysis. For the case of the lateral response of the rail head, it was determined

in the simulations that the minimum decay rate of about 0.04 dB/m would occur

around 15 kHz and its deformation shape is shown in Fig. 4.15(b). At the middle of

the web the most measurable wave is the 1st order web bending wave and its decay

rate has a minimum at around 20 kHz of about 0.05 dB/m. In the case of the foot,

much larger decay rates are inevitable because of the greater contribution of the rail

pad.

/

70 BO

(a) (b)

r

40 SO
Fr»qu«ncy (kHz)

, I
60 70 80

(c) (d)

Fig. 4.16. Predicted dispersion curves of measurable waves in the longitudinal direction
(a) at the top of the rail head for the vertical and symmetric longitudinal waves, (b) at
the side of the rail head for the lateral, torsional and antisymmetric longitudinal waves,
(c) at the middle of the web for the vertical and symmetric longitudinal waves, (d) at the
middle of the web for the lateral, torsional and antisymmetric longitudinal waves.
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4;5.2 Measurable waves in the longitudinal direction

For the longitudinal direction, the predicted dispersion curves measurable at

the top of the rail head, at the side of the rail head and at the middle of the web,

are illustrated in Fig. 4.16 in terms of the energy ratio. In this figure, any types

of waves having large deformations in the longitudinal direction will appear with

relatively strong line colours, not just purely longitudinal waves. This includes the

vertical and lateral bending waves in the rail head which appear in Fig. 4.16(a) and

(b) with considerable strength. It is found from Fig. 4.16(a) that the symmetric

longitudinal waves appear to have large deformation between 10 kHz and 35 kHz at

the top of the rail head. On the other hand, Fig. 4.16(b) shows that the antisym-

metric longitudinal waves appear to be measurable above 23 kHz at the side of the

rail head. Figs. 4.16(c) and (d) indicate that the symmetric longitudinal waves are

present at the middle of the web but no antisymmetric longitudinal waves are found

there. (The green line in Fig. 4.16(d) is the 1st order web bending wave). That is

because the web is too narrow in the y direction to reveal considerable antisymmet-

ric deformation in the longitudinal direction.

The predicted decay rates at these three regions for the waves which have large

deformations in the longitudinal direction are illustrated in Fig. 4.17 in terms of the

energy ratio. Fig. 4.17(a) illustrates that at the top of the rail head the.minimum

decay rate of the longitudinal waves is about 0.04 dB/m at around 15 kHz. (The

wave coloured purple in Fig. 4.17(a)). At the side of the rail head and at the

middle of the web, they are about 0.05 dB/m at around 32 kHz and 0.06 dB/m at

around 24 kHz, respectively. The mode shapes of these longitudinal waves having

the minimum decay rates are illustrated in Fig. 4.18; these were obtained from the

previous FE analysis. From this simulation, it was confirmed that the longitudinal

waves do not have significantly lower decay rates than other types of waves despite

having a higher group velocity. This is because they normally induce considerable

deformations of the rail foundation which has a large damping loss factor.
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Fig. 4.17. Predicted decay rates of measurable waves in the longitudinal direction (a) at
the top of the rail head for the vertical and symmetric longitudinal waves, (b) at the side
of the rail head for the lateral, torsional and antisymmetric longitudinal waves, (c) at the
middle of the web for the vertical and symmetric longitudinal waves, (d) at the middle of
the web for the lateral, torsional and antisymmetric longitudinal waves.

(a) (b) (c)

Fig. 4.18. Deformation shapes of the longitudinal waves which have the minimum decay
rates in Fig. 4.17. (a) At 16867 Hz in Fig. 4.17(a), (b) at 32365 Hz in Fig. 4.17(b), (c) at
23223 Hz in Fig. 4.17(d).
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4.6 Summary

In this chapter, the WFE method was employed as an alternative and more

advanced approach instead of the conventional FE method. This method requires

only a cross-sectional model by using wave solutions for the direction in which waves

propagate, which makes it very efficient.

An appropriate cross-sectional track model was created as a rail on a distributed

elastic foundation. A cross-sectional model that had twice as many elements as that

used in the FE analysis was chosen as a suitable one in this method. The same

foundation model was used as specified in Chapter 3, which was a massless elastic

layer with the stiffness increased by a factor of 10 to represent dynamic stiffening.

In this WFE method, the group velocity and decay rates are readily formulated

for each individual wave. Comparing the results produced from the FE and WFE

methods, it was observed that both methods produce almost the same dispersion

relations and decay rates but the WFE method creates smoother curves more ef-

ficiently, particularly for the group velocities. Consequently it was confirmed that

the WFE method is more relevant for the work presented in this thesis because it

is much faster and more efficient than the ordinary FE method.

In this chapter, waves measurable on the rail surface were also predicted by

quantifying deformation energies in several regions of the rail cross-section. The

most measurable waves which have the lowest decay rates were

• the vertical bending wave which has a local deformation in the rail head

• the lateral bending wave which has deformation in both the rail head and web

• the 1st order web bending wave in the web.

The reason why a wave can travel furthest through the rail head is shown to be

because the wave makes little deformation of the rail foundation which has a large

damping loss factor. Furthermore, it was predicted that the longitudinal waves do

not propagate further than other types of waves. This is because they induce con-

siderable deformations of the rail foundation.
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Finally, a parameter study was performed on the effect of foundation stiffness on

decay rates and it was revealed that the minimum decay rates are directly related to

the damping of the rail, not of the foundation. The structural damping loss factors

of rails will be investigated in Chapter 5 based on experiments.
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Chapter 5

Damping Loss Factors of Rails

In Chapter 4, the decay rates of waves propagating along a railway track were

predicted by WFE analysis. It was identified from this simulation that the minimum

decay rates are directly determined by the structural damping of the rail, particularly

for the waves with the lowest decay rates at frequencies above 20 kHz. Therefore,

it can be said that structural damping of a rail is a primary input parameter in the

decay rate prediction. However, in those predictions, the structural damping loss

factor of the rail was assumed simply as a constant value of 0.0002 for the entire

frequency range. In this chapter, in order to check this assumption and determine

the value as a function of frequency, structural damping loss factors have been

measured for frequencies up to 80 kHz from impact hammer tests on samples of

three different types of rail. Then the decay rates are improved using the measured

damping factors for rails.

5.1 Measurement for Damping Loss Factors of

Rails

For well separated modes of a structure, the damping ratio, £n, and damping

loss factor, rjn, of the nth resonance mode can be estimated from its resonance peak

and half power bandwidth using

(5.2)
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Chapter 5. Damping Loss Factors of Rails

where con is the resonance frequency of the n^ mode, uia and u>b denote its half

power frequencies, i.e., the frequencies at which the response is 3 dB lower than the

resonance peak value [32].

Measurements have been carried out on three short sections of rail. The rail

types used for this measurement are UIC60, 56E1 (both conventional rail steel) and

MHT (Mill Heat Treated) which has the same cross-section as that of 56E1. The

lengths of the samples used are 0.6 m, 0.45 m and 0.31 m, respectively. Among these

rail samples, the MHT rail is more brittle than the others due to the additional heat

treatment applied to it.

In order to excite the rails, a miniature impact hammer, PCB 086D80, was used

to generate a broadband signal. According to the manufacturer's specification sheet,

the excitation frequency range of this impact hammer is limited to 20 kHz. Lanza

di Scalea et al. [9], however, reported that they were able to excite frequencies up

to between 40 kHz and 50 kHz with this type of hammer. Piezoelectric accelerome-

ters, PCB 352C22, attached by beeswax, were used to measure the response. Again

the specification sheet indicates that this accelerometer has a limited measurement

range of up to 20 kHz and the mounting resonance frequency of the accelerometer is

specified as around 90 kHz. Since the extraction of damping using Eq.(5.1) does not

require a calibrated frequency response amplitude, however, this will not adversely

affect the measurement.

The same experiment was carried out twice for the low and high frequency

regions separately with different data acquisition units. For the region below 20 kHz,

the measurement was performed using an 8 channel data acquisition unit which

works with its own exclusive signal analyser. With this equipment, the frequency

resolution is automatically determined by setting the frequency bandwidth. That

is, the frequency resolution, A / , becomes wider as the overall bandwidth broadens.

If the frequency span is set to 42 kHz as its maximum, the frequency resolution

would be acceptable at the higher frequency region but would be insufficient at

lower frequencies where the resonance peaks are relatively sharp. So, in order to

maintain sufficient frequency resolution at low frequencies, the measurements were

carried out using several different bandwidths, namely, from 0 to 5 kHz, 0 to 10 kHz

and 0 to 20 kHz. The corresponding frequency resolutions were about 0.2 Hz,
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8 Ch. Data Acquisition Unit
(Data Physics Corp.)

Accelerometers
(PCB 352C22)

Signal Analyser
(SignalCalc)

Data Acquisition Unit
(NIPCI-6110)

Impact Hammer
(PCB 086D80)

Accelerometers
(PCB 352C22)

Controller
(MATLAB)

Impact Hammer
(PCB 086D80)

rail rail

(a) (b)

Fig. 5.1. Experimental setups for damping loss factor measurement for (a) low frequencies
up to 20 kHz, (b) high frequencies up to 80 kHz.

Fig. 5.2. A rail sample supported on rope.

0.39 Hz and 0.78 Hz, respectively. Damping values were then determined for modes

in limited frequency bands of 0 to 5 kHz, 5 kHz to 10 kHz, 10 kHz to 20 kHz from

each measurement. For the high frequency range between 20 kHz and 80 kHz, an

NI data acquisition board, PCI 6110, was used with a sampling rate of 200 kHz and

the resulting frequency interval was 1 Hz. (The measurement range was 0 to 80 kHz

but only data above 20 kHz were used.) Regardless of the frequency ranges and

acquisition units, the same impact hammer and accelerometer were used as exciter

and sensor. The measurement setup is shown in Fig. 5.1. In these experiments, the

rail samples were supported on soft ropes as illustrated in Fig. 5.2. It was found

from the measurement that the resonance frequencies of this mounting system are

below 50 Hz and are therefore unlikely to affect measurements of damping above

1 kHz.

The rail specimens were excited at the end of the sample at the top and side of

the railhead and the responses were measured at two points on the top and side of
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30 40 50
Frequency (kHz)

Fig. 5.3. An example of measured response, (a) Frequency spectrum of an input force,
(b) averaged response spectrum of 56E1 rail at the top of the railhead.

the railhead for each excitation as shown in Fig. 5.1. (The UIC60 rail section was

only measured up to 40 kHz).

As an example, Fig. 5.3 shows the frequency spectra of the input force and the

averaged output acceleration levels measured from the 56E1 rail up to 80 kHz. As

shown in Fig. 5.3(a), the impact hammer does not provide a uniform force spectrum

over the whole frequency span. This unevenness came from the duration of the

input impulse excited by the impact hammer, which was not sufficiently short to

generate frequencies above 20 kHz. However, there is still sufficient energy, even at

high frequencies, to excite the resonances of the structure. It is observed from the

response spectrum in Fig. 5.3(b) that the sensor's mounting resonance appears to be

located between around 60 and 70 kHz, causing relatively large responses despite a

small input force. Despite these effects the force and overall response level around the

mounting resonance vary slowly with frequency so that the response spectrum can

be used to extract the half power bandwidths of the structural resonances because

only resonances with large amplitude are of interest. Also it can be seen from the

response spectrum that there is a noise floor but that there are many resonances

with peaks.that are 30 to 50 dB above the noise floor.

Damping loss factors were extracted from the resonance peaks and their half
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(a) (b)

Fig. 5.4. Examples of measured frequency responses of 56E1 rail at the top of the railhead
(a) between 5 kHz and 10 kHz, (b) between 40 kHz and 60 kHz.
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3 0.6-

° UIC60
• 56E1
• MHT

— — approximated (UIC60)

approximated (MHT)
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Frequency (kHz)

80

Fig. 5.5. Measured and approximated damping loss factors of three different rail samples.

power bandwidth for all relatively large amplitude resonance peaks as illustrated

in Fig. 5.4 as an example. For this calculation, a criterion line was created as pre-

sented in Fig. 5.4 by using moving average of the response over 600 Hz bands in

order to select relatively large amplitude resonance peaks, specifically those more

than 10 dB above the moving average. For these selected resonances, the measured

damping loss factors for all the rail samples are illustrated in Fig. 5.5. As shown in

this figure, the extracted damping loss factors vary greatly from mode to mode at

lower frequencies. Despite these variations, the experimental results reveal that the
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Fig. 5.6. (a) Nyquist plot for resonances below 20 kHz, measured at the top of the
railhead of 56E1 rail, (b) comparison of damping loss factors obtained from the amplitude
and Nyquist plots of output response below 20 kHz.

damping loss factors of the rails tend to decrease quite rapidly until about 30 kHz

and then more slowly at higher frequencies.

Since there are large fluctuations in the extracted damping loss factors, partic-

ularly at lower frequencies, the validity of these estimates has been confirmed. It

is known that the accuracy of the estimates of loss factors can be improved using

modal circle fitting, referred to as Nyquist plot [32]. However, this method is much

harder to automate for a large number of modes. So damping loss factors were

estimated from the Nyquist plots only for a small number of resonances below 20

kHz for comparison with estimates obtained from the amplitude plot. For these

resonances, the Nyquist diagrams are shown in Fig. 5.6(a) and the estimated damp-

ing loss factors are compared in Fig. 5.6(b). Fig. 5.6(b) provides evidence that the

scattering of damping loss factors is more likely associated with structure's physical

behaviour rather than any error in the estimate.

Nyquist plots for the modes used in Fig. 5.5 between 40 kHz and 80 kHz are

shown in Fig. 5.7 as examples, although these have not been used to extract damp-

ing values. From these Nyquist plots for the resonances included in Fig. 5.5, it was

observed that most of the modes were sufficiently separated even at high frequencies.

Based on the measured results shown in Fig. 5.5, average damping loss factors
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Fig. 5.7. Nyquist plots for the modes of the 56E1 rail used in Fig. 5.5 (a) between 40 kHz
and 60 kHz, (b) between 60 kHz and 80 kHz.

of each rail sample were found taking averages over 10 kHz bands which were chosen

to be overlapping to create a result at each 5 kHz. In this estimate, for frequencies

above 20 kHz, the average was taken of 1/rj within the band and then inverted to

give r\. This reduces the influence of a small number outlying estimates. The ap-

proximated damping loss factors are shown in Fig. 5.5 for each rail sample. The

linear interpolation was used between the results obtained at each 5 kHz.

It was identified from this experiment that the three rail samples have very

similar damping loss factors regardless of differences in their shapes and heat treat-

ments. So it seems that the damping loss factor is governed by the material of the

rail itself. In addition, it turned out from this experiment that the measured results

did not differ greatly from the estimated damping loss factor of 0.0002, used for the

previous decay rate prediction. For the rest of the work reported in this thesis^ the

moving average curve representing the approximate damping loss factor of the 56E1

rail is used to improve the accuracy of the simulated decay rates.

v • . •

5.2 Decay Rate Recalculation

In this section, the decay rates are recalculated by using the damping loss factor

which was approximated from the measured results for the 56E1 rail, as shown in

Fig. 5.5.
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In the FE analysis in Chapter 3, the decay rate, A, was evaluated by Eq.(3.27) as

a function of ??. For the track model, r\ is specified by the two damping components:

r\r for the rail and r\p for the rail pad. Since rjr was given as a constant in Chapter

3, the loss factor of the iih wave, rf, can be expressed as

r)
i = r]r + F\rip) , (5.3)

where Fl(r]p) denotes a function of r]p. By using the measured damping loss factor

for the 56E1 rail, as shown in Fig. 5.5, decay rates can be recalculated. Since r]r

was given as a constant of 0.0002 in the previous FE simulation, the decay rates

can be recalculated simply by replacing 0.0002 with the averaged damping of the

rail. That is, the improved decay rates are created by subtracting the structural

damping of 0.0002 from rf in Eq.(5.3) and then adding the measured one instead.

This recalculation was performed to obtain improved decay rates for each wave

predicted from the FE analysis [58]. However, since the decay rates predicted by

the WFE method are more accurate, as validated in Fig. 4.9, only those obtained

from the WFE method will be presented in this section.

In WFE analysis, the improved decay rates is predicted from Eq.(4.31) by using

the measured r]r, instead of using the constant value. The revised decay rates are

illustrated in Fig. 5.8 by using the measured damping loss factor of the 56E1 rail.

Comparing these revised decay rates in Fig. 5.8 with the previous ones shown in

Fig. 4.9, it can be seen that using the measured damping loss factor of the rail

40 50 60 70 80 0 10 20 30 40 50

(a) (b)

Fig. 5.8. Decay rates predicted by using the measured structural damping of the 56E1
rail for (a) the vertical and symmetric longitudinal waves, (b) the lateral, torsional and
antisymmetric longitudinal waves.
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causes the curves with low decay rates to increase at frequencies below 25 kHz and

to reduce above 25 kHz. Particularly, the lowest decay rate curves were mainly

modified because they are most strongly affected by the structural damping of the

rail. From this decay rate recalculation, it was found that the minimum values of

decay rate are little changed but the frequency range where the minimum decay

rates occur becomes somewhat broader, moving to the range between 20 kHz and

40 kHz.

Finally, the decay rates of the waves measurable at the top/side of the rail

head, at the middle of the web and at the top of the foot are obtained as shown in

70 80

(a) (b)
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(c) (d)

Fig. 5.9. Decay rates of the measurable waves predicted (a) at the top of the rail head
in the vertical direction, (b) at the side of the rail head in the lateral direction, (c) at
the middle of the web in the lateral direction, (d) at the top of the foot in the vertical
direction.
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(a) (b)

(c)

Fig. 5.10. Simulated deformation shapes of the waves (a) marked ' x ' in Fig. 5.9(a), (b)
marked ' x ' in Fig. 5.9(b), (c) marked ' x ' in Fig. 5.9(c).

Fig. 5.9. The minimum decay rates measurable on the rail surface tend to be about

0.04 dB/m at the top and side of the rail head and about 0.05 dB/m at the middle

of the web, respectively. The wave types that possess the minimum decay rates are

marked ' x ' in Fig. 5.9 and their deformation shapes are illustrated in Fig. 5.10. This

figure verifies that the respective types of these waves are the vertical bending wave

localized in the rail head, the lateral bending wave of the rail head with a global

deformation of the web and the Ist order web bending wave, as presented in Chapter

3. The simulated decay rates in Fig. 5.9 will be compared with field test results in

Chapter 7.

5.3 Summary

Since it was revealed in Chapter 4 that minimum decay rates are directly re-

lated to the damping of the rail, structural damping loss factors were measured up

to 80 kHz from impact hammer tests for three different rail samples.
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From this experiment, it was found that the measured damping loss factor re-

duces as frequency increases although it does not deviate much from the estimated

value of 0.0002, used for the previous numerical simulations. In addition it was

revealed that the damping loss factors tend not to be significantly dependent on

the different rail geometries and heat treatments. Accordingly, it seems that the

damping loss factor is governed by the material of the rail itself.

Using the measured damping of rails, decay rates of measurable waves were re-

calculated. This caused some changes in the predicted decay rates, particularly the

lowest decay rate curves. From the recalculated decay rates, it was identified that

the minimum decay rates are about 0.04 to 0.05 dB/m which were little changed by

using the measured damping but the frequency range where they occur was moved

to between 20 kHz and 40 kHz.
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Chapter 6

Group Velocity Measurements on

ISVR Test Track

In the previous chapters, numerical analyses for railway track have been per-

formed up to 80 kHz. To validate these simulation results, two experiments were

implemented on a short test track. These experiments use an impact hammer to

excite frequencies up to 42 kHz and piezoceramic transducers for frequencies up

to 80 kHz. Accelerometers were used as receivers. The experiments have been per-

formed on the ISVR test track located at Chilworth (Fig. 6.1) which is equipped with

UIC60 rail of about 32 m in length. The rail is mounted with Pandrol Fastclips and

10 mm studded rubber rail pads on concrete sleepers surrounded by ballast. It has

been used previously by de France [45]. Time-frequency analysis has been applied

to the measured data in order to extract dispersion relations. Then the measured

Fig. 6.1. ISVR test track at Chilworth.

80



Chapter 6. Group Velocity Measurements on ISVR Test Track

results are compared with the simulated ones obtained by WFE analysis.

6.1 Measurement Using an Impact Hammer for

Frequencies below 42 kHz

6.1.1 Measurement setup

The same miniature impact hammer used in the measurement of damping loss

factor in Chapter 5 was employed to generate a broadband signal at one end of the

rail. The same model of accelerometer, as used in Chapter 5, was utilised to detect

propagating waves along the rail. As stated before, since the mounting resonance

frequency of the accelerometer is specified as around 90 kHz, they can be used well

beyond the sensor's quoted measurement range of 20 kHz for measuring dispersion

characteristics of propagating waves, as long as the measurements do not need to

be calibrated.

Six accelerometers were set up along the rail, spaced at a distance of five sleeper

spans (about 3 m). They were each placed at the mid span between two sleepers

and attached by means of beeswax. Also, to avoid the near-field effects that take

place around both ends of the rail and to diminish the contributions of the rapidly

decaying waves, the sensors were located in the central portion of the rail. As a

data acquisition unit, an 8 channel SignalCalc Mobilyzer (Data Physics Corp.) was

used. The maximum frequency range of this unit was limited up to 42 kHz, and the

corresponding sampling rate was 107.52 kHz. The measurement setup is shown in

Fig. 6.2. .

In the experiment, the excitations and measurements were implemented for the

three different directions, that is, in the vertical, lateral and longitudinal directions.

For each location, 10 excitations were recorded and analysed. Data were recorded

as time domain signals. For the vertical and lateral directions, four excitation and

receiver points on the rail cross-section are indicated in Fig. 6.3(a): the top and side

of the rail head, middle of the web and top of the foot, respectively. The excitation

points were less than about 10 mm away from the adjacent end of the rail. Since

the frequency range was limited up to 42 kHz, the shortest wavelengths in the rail
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Accelerometers
(PCB 352C22)
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8 Ch. Data Acquisition Unit
(Data Physics Corp.)
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Fig. 6.2. Experimental setup using an impact hammer as an exciter.

(a) (b) (c)

Fig. 6.3. Excitation and measuring points for the decay rate measurement, (a) The four
excitation and measurement points on the rail cross-section in the vertical and lateral
directions, (b) the three excitation points on the rail cross-section in the longitudinal
direction, (c) measurement points on the rail cross-section in the longitudinal direction.

are about 63 mm at the rail head, 48 mm at the web and 42 mm at the rail foot,

respectively (from Fig. 4.13). So, the phase cancellation due to the waves reflected

from the adjacent end of the rail will be negligible.

At all four positions on the rail cross-section, the excitation was applied and

the responses along the rail were measured at the corresponding position on the

cross-section normal to the rail surface. In the calculation of the energy ratio in

Eq.(4.32), it was assumed that all the modes are excited equally. In practice, how-

ever, the rail response will depend on the position of the excitation which determines

the excited modes. In order to make similar condition to that used in Eq.(4.32) in

the measurement, the rail responses were acquired at the same positions on the rail
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cross-section as the excitation is applied. If the excitation and receiving positions

are different, the rail response would appear as a combination of the energy metric

in Eq.(4.32) for the excitation and receiving positions on the cross-section.

For the longitudinal direction, small blocks were attached on the corresponding

rail surfaces as shown in Fig. 6.3(b) and Fig. 6.3(c) to create and measure the prop-

agating waves in the longitudinal direction. (In the experiment for the longitudinal

direction, the foot was not used as an excitation and receiving point). The arrows in

Fig. 6.3(b) depict the excited direction for the longitudinal wave generation. In this

measurement for the longitudinal direction, the web was also used as an excitation

and receiving point at shown in Fig. 6.3(b) and (c). However, it was found from the

measured data that the excitation on the block creates bending waves much more

efficiently than longitudinal waves, because of the flexibility of the web. So the re-

sults measured on the middle of the web in the longitudinal direction are omitted

in this section.

It should be noted that there are two welds in the rail of this test track as

marked in Fig. 6.2 and one of them is illustrated in Fig. 6.4. These welds may lead

to wave reflections, particularly at the web and foot of the rail because there is

considerable thickness change, as seen in Fig. 6.4.

Fig. 6.4. A welded region located between 1st and 2nd measurement positions. An ac-
celerometer can be seen attached at the 2nd measurement position on the web.
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6.1.2 Time-frequency analysis

Since it is anticipated from the simulation results that several propagating waves

will coexist in the measured time signals and the frequency content of the signal

will vary with time, the simple one-dimensional frequency domain results, such as

Fourier spectra, are not sufficient to separate and identify them. Therefore a two-

dimensional time-frequency analysis has been applied to the measured responses.

There are several methods which can be used to generate time-frequency diagrams

from the time signals, for example, spectrogram, Wigner-Ville distribution, wavelet

transform, etc [59]. However, if multiple waves are present in a time signal, the

Wigner-Ville distribution does not create -a clear time-frequency diagram due to

the occurrence of their cross-terms. The scalogram produced by using the wavelet

transform has poor time resolution at low frequency and poor frequency resolution

at high frequency according to the uncertainty principle. So it does not seem to be

suitable for this study because the goal is to distinguish several waves at low and

. high frequencies evenly. Alternatively, the.spectrogram has uniform time-frequency

resolution throughout the whole range of the diagram, although it is still limited by

the uncertainty principle. In this thesis, therefore, the spectrogram, using the Short

Time Fourier Transform, was used for time-frequency analysis of the measured sig-

nals.

In order to make a two-dimensional diagram, a 1024 x 1024 data matrix was

created from the measured time signal by using a weighting function. The data

structure of this two-dimensional matrix is illustrated in Fig. 6.5. The Hanning

window function was used in this analysis. As shown in this figure, each column

of this 2-D matrix corresponds to, each discrete time of the signal and each row is

composed of measured data in a short time length extended with zeros. The data

points in the Hanning window function were given as M = 129 and m = (M+l ) /2 =

65 in Fig. 6.5. The Fourier .transform of every column of this 2-D matrix creates a

time-frequency matrix which can be plotted as a time-frequency diagram. Due to

the limited length of 1024 points, the frequency increment A / of the frequency axis

becomes 105 Hz by the relation of A / -= fs/N = 107520/1024 - 105 Hz, where fs

denotes the sampling frequency.
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Fig. 6.5. Data structure of the two-dimensional matrix for creating a spectrogram.

6.1.3 Measured results at the top of the rail head in the

vertical direction

As described above, the reliable frequency range of the impact hammer and

the accelerometer are specified as up to 20 kHz by the manufacturer. However, in

the signal analysis it was possible to detect frequencies above 40 kHz. Fig. 6.6(a)
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Fig. 6.6. (a) Power spectra of input forces, (b) an example of the measured time signals
at the top of the rail head along the rail.
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shows the power spectra of the 10 input forces measured at the top of the rail head.

Although the spectra are not flat above 20 kHz, there is still a reasonable signal

over the frequency range considered. In addition, examples of the time signals mea-

sured at the top of the rail head at the various positions along the rail are shown

in Fig. 6.6(b) for excitation at one end of the rail. Excellent waveforms of direct

waves and echoes reflected from the far end of the rail were obtained at various

distances. Further examples of the measured time signals at each receiving position

are illustrated in Appendix B.

The time signals measured at positions 2 and 4 at the top of the rail head are

shown in Fig. 6.7 for the case when the excitation was applied at the end of rail.

The origin of the time axis was determined by triggering on the input excitations.

At the 4th sensor, the echo signal reflected from the other end of the rail also appears

from 15 msec, in this figure. The measured time signals at the top of the rail head

appear only slightly dispersive because their waveforms were little changed along

the rail. The section of data indicated in red in Fig. 6.7, which has 1024 data points

and a duration of 9.5 msec, was analysed to construct the spectrograms.

As an example, two spectrograms obtained from measurements using the 2nd

and 4th sensors are shown in Fig. 6.8. The spectrograms were averaged across

measurements. These spectrograms present well the dispersive characteristics of

the propagating waves and indicate that the waves in the range 7 kHz to 32 kHz

dominate the propagating energy. Conversely the waves around 35 kHz propagate

0 00OS 0004 0006 0 006 0 01 0012 0014 0016

0 0002 0004 0006 0008 001 0012 0014 0016

Fig. 6.7. Time signals measured at positions 2 and 4 at the top of the rail head in the
vertical direction.
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(a) (b)

Fig. 6.8. Spectrograms measured at positions 2 and 4 at the top of the rail head in the
vertical direction.

more slowly and decay more rapidly with several wave types present. Below 7 kHz

there is relatively little energy in the signal. The spectrograms measured at the six

positions along the rail are illustrated in Appendix B.

Since the distances between the excitation point and the receiving positions are

known, the time axis of the spectrograms can be easily converted to a velocity axis

using velocity = distance/time. Hence the time-frequency diagrams can be replotted

to show velocity versus frequency. In this diagram, the velocity represents the

group velocity because the energy carried by waves travels with the group velocity.

The group velocity-frequency diagram at position 3 is illustrated in Fig. 6.9 and

compared to the simulation output of measurable waves obtained by WFE analysis.

Note that the scale of the velocity axis in Fig. 6.9(a) is nonlinear, because it is

inversely proportional to the linear time scale. The simulated results in Fig. 6.9(b)

are therefore shown on the same scale.

From this comparison, it is clear that the simulated group velocity curves cor-

respond very well to the measured ones. Therefore, the deformation shapes of the

principal waves that are measured can be inferred from the simulation results. The

wave dominantly measured at the top of the rail head, which was marked ' x ' in

Fig. 6.9(b), was identified as a vertical bending wave propagating along the rail

head as illustrated in Fig. 6.10, which was produced by FE analysis. It should be

noted that the dip in the group velocity at 15 kHz in Fig. 6.9(a) and (b) results from
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(a) (b)

Fig. 6.9. Group velocities at the top of the rail head in the vertical direction, (a) Measured
at position 3, (b) predicted by the WFE method.

(a) (b)

Fig. 6.10. Deformation shapes of the rail, simulated by the FE method, at two points
marked 'x ' in Fig. 6.9(b). (a) 11,065 Hz, (b) 22,456 Hz.

the wave mode conversion which occurs between the second and third waves, see

Fig. 4.7(a). In addition, Fig. 6.9(b) exhibits several waves that coexist above 32 kHz

so that the input energy transmitted from the impact hammer is shared amongst

them. That might be one reason why the energy levels of the waves above 32 kHz

in Fig. 6.9(a) suddenly become lower. Another reason would be that the input force

is reduced, as shown in Fig. 6.6.

6.1.4 Measured results at the underside of the rail head

From a practical point of view, the top of the rail head is not suitable as a

measuring point on an operational track even if it could give better responses in

terms of the long range wave propagation. As an alternative, the underside of the

rail head could be used as a measuring point to acquire the vertical bending wave
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Fig. 6.11. Dispersion curves for waves measurable at the underside of the rail head in the
vertical direction, predicted by the WFE method.

which travels through the rail head. So, the responses at the underside of the rail

head were also measured when the vertical excitation was applied at the top of the

rail head. In this measurement, the excitation was applied at a point about 30 mm

away from the end of the rail. The response point was inclined at an angle to the

vertical due to the slope on the underside of the rail head.

The dispersion curves measurable at the underside of the rail head in the verti-

cal direction are illustrated in Fig. 6.11, predicted by WFE analysis. Fig. 6.11 shows

similar intensities of the measurable dispersion curves to those predicted at the top

of the rail head, illustrated in Fig. 4.13(a). Therefore, it is expected from the simu-

lation results that the underside of the rail head could be an appropriate alternative

measuring point to detect vertical bending waves which propagate through the rail

head.

The spectrograms measured at the underside of the rail head using the 2nd and

4th sensors are shown in Fig. 6.12. Comparing them with those in Fig. 6.8, it is

validated that dispersion relations measured at the underside of the rail head are

very similar to those measured at the top of the rail head. However, Fig. 6.12 shows

somewhat different energy level distributions from those in Fig. 6.8. That is, the

energy measured at the underside of the rail head is concentrated between 15 kHz

and 25 kHz. The exact reason for that is not clear but it appears nevertheless that

the underside of the rail head can be used as an appropriate alternative measuring

point to the top of the rail head.
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9 10 11

(a) (b)

Fig. 6.12. Spectrograms measured at positions 2 and 4 at the underside of the rail head.

(a) (b)

Fig. 6.13. Group velocities at the underside of the rail head in the vertical direction.
Measured at position 3, (b) predicted by the WFE method.

(a)

The group velocity diagram measured at position 3 is compared with the sim-

ulated one for measurable waves in Fig. 6.13. In this figure, it is observed again

that the measured group velocity curves correspond very well to the simulated ones.

From this measurement, it was confirmed that the underside of the rail head can be

used as an alternative measuring point to the top of the rail head.
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6.1.5 Measured results at the side of the rail head in the

lateral direction

The time signals measured laterally at positions 2 and 4 at the side of the rail

head are shown in Fig. 6.14. (Further examples of the measured time signals at each

receiving position are illustrated in Appendix B). The section of data coloured red in

Fig. 6.14, which has a duration of 9.5 msec, was analysed to make the spectrograms,

as before.

The spectrograms for the 2nd and 4th sensors are presented in Fig. 6.15. These

diagrams give more complicated dispersion relations than those measured vertically

at the top of the rail head. The spectrograms in Fig. 6.15 indicate that the waves

below 20 kHz propagate dominantly with large energy. Meanwhile above 25 kHz

several waves are mixed and create intricate diagrams. For this reason the energy

levels of the waves seem to be spread above 25 kHz. Unlike the measured result

at the top of the rail head, these spectrograms illustrate two changes of the propa-

gating wave modes taking place around 8 kHz and 20 kHz, respectively. This also

corresponds to the WFE analysis results shown in Fig. 4.7(b), i.e., changes from

green to red line and from red to magenta line.

The group velocity is plotted as a function of frequency for position 3 in Fig.

6.16(a) and compared with the simulated result obtained by WFE analysis. At

the side of the rail head, the waves measured mainly have a group velocity around

2850 m/s. The measured group velocity diagram gives excellent agreement with the

0 0002 0004 0006 0 001 0012 0014 0.016

Fig. 6.14. Time signals measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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(a) (b)

Fig. 6.15. Spectrograms measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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Frequency (kHz)

(a) (b)

Fig. 6.16. Group velocities at the side of the rail head in the lateral direction, (a) Measured
at position 3, (b) predicted by the WFE method.

(a) (b)

Fig. 6.17. Deformation shapes of the rail, simulated by the FE method, at two points
marked 'x ' in Fig. 6.16(b). (a) 15,359 Hz, (b) 26,869 Hz.
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predicted one. The deformation shapes of the waves marked by ' x ' in Fig. 6.16(b)

are illustrated in Fig. 6.17 at two frequencies. This figure shows that the lateral

bending waves have global deformation in both the rail head and web at the selected

frequencies.

6.1.6 Measured results at the middle of the web in the lat-

eral direction

The time signals measured at positions 2 and 4 at the middle of the web are

shown in Fig. 6.18. These measured time signals exhibit completely different be-

haviour from those obtained at the rail head. The flexibility of the web allows

relatively large deformation as shown by the magnitude of the time signals. In

addition, at the 2nd sensor, an additional waveform following the direct wave was

recorded around 13 msec, which did not appear at the rail head. This occurs too

soon to be a wave reflected from the far end of the rail. It will be discussed further

below.

From these time data, the time-frequency diagrams were generated as shown

in Fig. 6.19. These spectrograms exhibit fairly simple and clear dispersion curves.

Fig. 6.19 shows that the waves in the range 8 kHz to 30 kHz carry large energy and

do not seem to make any wave mode changes in this range. At the web of the rail,

it is expected that the welds will cause considerable energy reflection and that is

indeed observed Fig. 6.19(b). That is to say, the wave reflected from the weld located

between positions 5 and 6 appears in the spectrogram at position 4 between 10 and

Fig. 6.18. Time signals measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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(a) (b)

Fig. 6.19. Spectrograms measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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Fig. 6.20. Group velocities at the middle of the web in the lateral direction, (a) Measured
at position 3, (b) predicted by the WFE method.

12 msec. Therefore it appears that the waveform around 13 msec, shown in Fig. 6.18

at position 2 was also created by waves reflected from the weld located between

positions 5 and 6. Similar wave reflections can also be seen in other spectrograms

shown in Fig. B.10 in Appendix B, especially for positions 1 and 5.

The group velocity diagram measured at the middle of the web is illustrated in

Fig. 6.20(a) and compared with the simulated result. It is clear that these measured

group velocity curves correspond well to the predicted ones, in particular, to the

green line in Fig. 6.20(b). This green line corresponds to the Is4 order web bending
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(a) (b)

Fig. 6.21. Deformation shapes of the rail, simulated by the FE method, at two points
marked 'x ' in Fig. 6.20(b). (a) 11,497 Hz, (b) 16,864 Hz.

wave. However, there is an apparent discrepancy between these two results. That

is, several curves presented in Fig. 6.20(b), for example, the two wave modes marked

with an 'x ' , do not appear in the measured result. The deformation shapes of these

two waves are illustrated in Fig. 6.21 and possess global deformation of the rail. The

main reason that these are not observed in the measurement seems to be associated

with the rapid decay due to the high damping in the rail pad and the influence of

the clip which makes waves with global deformation disappear quickly.

6.1.7 Measured results at the top of the foot in the vertical

direction

The time signals measured at positions 2 and 4 at the top of the foot are given

in Fig. 6.22. These two measured time signals show how rapidly waves decay along

the rail foot. This clearly occurs due to the energy dissipation by the rail pads and

KC 2

0 0002 0.004 0006 0008 0 01 0 012 0.014 0 016

0 0.002 0.004 0.006 0 006 001 0012 0014 0016

Fig. 6.22. Time signals measured at positions 2 and 4 at the top of the foot in the vertical
direction.
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(a) (b)

Fig. 6.23. Spectrograms measured at positions 2 and 4 at the top of the foot in the vertical
direction.

—-,
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(a) (b)

Fig. 6.24. Group velocities at the top of the foot in the vertical direction, (a) Measured
at position 3, (b) predicted by the WFE method.

clips.

The time-frequency diagrams measured at the top of the foot are shown in

Fig. 6.23. It is hard to define any characteristics of propagating waves, especially

below 20 kHz because of noise contamination. This noise appears because the waves

travelling along the rail foot decay very rapidly into the noise floor, due to the energy

dissipation by the rail pads. In addition, there would be multiple wave reflections

arising from the fasteners. These spectrograms demonstrate that waves cannot

propagate over a long range along the rail foot. Although the dispersion curves do
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not clearly appear in the spectrograms, the measured and predicted group velocities

are compared and illustrated in Fig. 6.24. Despite noise contamination, this shows

that the measured group velocity curves correspond well to the predicted ones above

20 kHz, and the dominant wave type is the 1** order foot bending wave, shown in

Fig. 3.11 (a).

6.1.8 Measured results at the top of the rail head in the

longitudinal direction

The time signals measured at positions 2 and 4 at the top of the rail head are

shown in Fig. 6.25 when the excitation was applied at the block attached on the end

of rail in the longitudinal direction. The section of data coloured red in Fig. 6.25 was

analysed to make the spectrograms as before. The measured wave form in Fig. 6.25

reveals that the amplitude of the measured response in the longitudinal direction is

much larger than those measured in the vertical and lateral directions. The reason

for this and the wave type occurring in this large amplitude signal will be discussed

later with the aid of the spectrograms.

The spectrograms for the 2nd and 4th sensors are shown in Fig. 6.26 for the

longitudinal direction. Comparing these diagrams to those measured in the vertical

direction (Fig. 6.8), Fig. 6.26 shows that the vertical bending waves in the rail

head were primarily found in this measurement. The longitudinal waves which

travel faster than the bending waves occur between 4 and 5.5 msec, in Fig. 6.26(b)

with small amplitudes. Therefore, it is clear from these spectrograms that the
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Fig. 6.25. Time signals measured at positions 2 and 4 at the top of the rail head in the
longitudinal direction.
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(a) (b)

Fig. 6.26. Spectrograms measured at positions 2 and 4 at the top of the rail head in the
longitudinal direction.
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Fig. 6.27. Group velocities at the top of the rail head in the longitudinal direction, (a)
Measured at position 3, (b) predicted by the WFE method.

longitudinal excitation at the top of the rail head creates the vertical bending waves

more effectively between 10 kHz and 35 kHz than the longitudinal waves. This

is because the longitudinal excitation at the top of the rail head induces a large

rotational moment with respect to the y axis. These time-frequency analysis results

indicate that the measurable longitudinal waves are contained only in the initial

part of the measured time signals, for instance, between 4 msec, and 5 msec, of the

measured response at the 4th sensor (Fig. 6.25).

The group velocity diagram measured at the top of the rail head is illustrated in
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Fig. 6.27(a) and compared with the simulated result for the longitudinal direction.

Although the longitudinal waves are not clearly highlighted in the measured group

velocity diagram, it is clear that the measured waves correspond well to the predicted

ones between 10 kHz and 25 kHz for the longitudinal direction.

6.1.9 Measured results at the side of the rail head in the

longitudinal direction

In this measurement, the excitation was applied at the side of the rail head in the

longitudinal direction, which is expected to create the antisymmetric longitudinal

waves effectively. However, the measured propagating waves at positions 2 and 4 at

the side of the rail head shown in Fig. 6.28 have similar initial time signals to those

shown in Fig. 6.25 and also have a similar wave form to the measured ones shown

in Fig. 6.14 for the lateral excitation. So it is anticipated that not only longitudinal

waves but also lateral bending waves in the rail head were excited and captured in

this experiment.

The spectrograms for the 2nd and 4th sensors were created from the data coloured

red in Fig. 6.28 and are shown in Fig. 6.29 for the longitudinal direction. Compared

with Fig. 6.15, the diagrams in Fig. 6.29 validate the presence of longitudinal waves

and also bending waves in this measurement. The group velocity diagram measured

at the side of the rail head is shown in Fig. 6.30(a) and the simulated result for the

longitudinal direction is illustrated in Fig. 6.30(b). The antisymmetric longitudinal

waves appear strongly in the simulated group velocity graph. Fig. 6.30(b) reveals

6 8 10 12 Id 16

• * M M . •«*M

Fig. 6.28. Time signals measured at positions 2 and 4 at the side of the rail head in the
longitudinal direction.
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(a) (b)

Fig. 6.29. Spectrograms measured at positions 2 and 4 at the side of the rail head in the
longitudinal direction.

that the first antisymmetric longitudinal wave occurs around 30 kHz. However,

these measured and predicted group velocity diagrams provide completely different

patterns. That is to say, the prominently measured longitudinal waves are not the

antisymmetric ones, but the symmetric ones. The simulated group velocity at the

side of the rail head predicted for the vertical and symmetric longitudinal waves

is displayed again in Fig. 6.30(c). It can be easily recognized that a similar group

velocity diagram to the measured one can be created if Fig. 6.30(b) and Fig. 6.30(c)

are superimposed. So it is clear that the measured longitudinal waves between 3.5

msec, and 5.5 msec, in Fig. 6.29(b) at the side of the rail head are the same symmetric

longitudinal waves as those shown in Fig. 6.26. The reason for this result is that the

longitudinal excitation at the side of the rail head creates symmetric longitudinal

waves effectively as well as antisymmetric ones.
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Fig. 6.30. Group velocities at the side of the rail head in the longitudinal direction, (a) The
measured group velocities, (b) predicted ones for the vertical and symmetric longitudinal
waves, (c) predicted one for the lateral, torsional and antisymmetric longitudinal waves.

6.2 Measurement Using Piezoceramic Transduc-

ers for Frequencies up to 80 kHz

In section 6.1, measurements were carried out only up to 42 kHz. That was

because the data acquisition unit used had a frequency limit of 42 kHz and also

because the impact hammer did not seem to be suitable for the excitation of waves

in the whole frequency range up to 80 kHz. So a further experiment which can cover

the high frequency region between 40 kHz and 80 kHz was required to validate the

FE and WFE analysis results for whole frequency range from 0 to 80 kHz.

This additional experiment was conducted using piezoceramic transducers (PZTs)
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for excitation instead of an impact hammer. In addition, an NI data acquisition

board was used to achieve the higher rate of sampling required. The same pro-

cessing as used for the previous measurement in section 6.1 was applied to extract

dispersion relations. The measured results were then compared with the simulated

ones obtained by WFE analysis.

6.2.1 Piezoceramic transducer

In this second experiment, PZTs were used for excitation because they can cre-

ate a sharp impulse which is capable of exciting the structure up to 80 kHz. The

PZT transfers electrical energy into mechanical energy when an electrical field is

applied and vice versa. That is, applying an A.C. voltage, to a PZT will cause it

to vibrate, and thus generate mechanical vibration with the same frequency as the

electrical voltage.

The type of PZT used in this experiment was Pz27 plate, manufactured by

Ferroperm Piezoceramics A/S [60]. This PZT has a height of 1 mm and a square area

of 12,7 mm x 12.7 mm. The working mechanism of this transducer is schematically

shown in Fig. 6.31. When a voltage is applied it expands or contracts primarily in

the length and width directions. The magnitude of these changes depends on the

strength of the electrical field. As shown in Fig. 6.31, this causes a moment to be.

applied at the edges of the element due to the constraint applied by the structure,

which in this case is the rail. y

In terms of the structural response, the effectiveness of the excitation by PZT

will be associated with how well the transducer's deformation is coupled to the

Piezoceramic
transducer

/ Y I <r-;j^_ -r»;|

rail

Fig. 6.31. Working mechanism of a piezoceramic transducer attached on a rail.
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structural behaviour. For example, suppose that a PZT is attached on a thick

plate. If an excited wave in the plate has much longer wavelength than the attached

transducer's length, then this transducer would be inefficient in generating this

wave. So the transducer used here will be inefficient at creating low wavenumber

(long wavelength) waves because of its small size. On the other hand, the shortest

wavelengths calculated at 80 kHz in the rail are about 35 mm at the rail head, 31

mm at the web and 29 mm at the rail foot, respectively, which are two or three times

longer than the length of the PZT used in the experiment. So it will not exhibit

nulls at frequencies below 80 kHz.

6.2.2 Measurement setup

The same accelerometers, PCB 352C22, as used before were utilised again in

this high frequency measurement. Note that, according to the manufacturer's data

sheet, their mounting resonances are located at about 90 kHz. Before carrying out

the main experiment, a pretest was carried out in a laboratory with two different

types of accelerometer having different mounting resonance frequencies. These two

accelerometers are B&K Type 4344 and PCB 352C22 and their weights are 2.7 and

0.5 grams, respectively. It was reported from the manufacturers that usable fre-

quency ranges for calibrated measurements using these sensors are up to 16.5 kHz

and 20 kHz and also their resonances are located around 50 kHz and 90 kHz, re-

spectively. This pretest was conducted to check the effect of the sensor's mounting

resonance. In this pretest, the same plate type PZT was attached with glue on a

short rail segment of length 15 cm. The accelerometers were attached using beeswax.

For the same input excitations, the responses were measured from both sensors at

the same location at the top of the rail head in turn.

It was found from this pretest that the B&K Type 4344 accelerometer had its

mounting resonance around 30 to 40 kHz while for the PCB' 352C22 it was around

60 to 70 kHz. Consequently the accelerometer, PCB 352C22, gave a larger signal

than B&K Type 4344 at high frequencies above 40 kHz. It may be mentioned

that these measured mounting resonances are a bit lower than those presented in

the manufacturer's data sheets because both sensors were attached with beeswax.

Although beeswax is known as a soft adhesive, it seems to be usable to mount

sensors on the rail for this high frequency experiment because it gives a mounting
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Fig. 6.32. Piezoceramic transducers attached at the top and side of the rail head and the
middle of the web.

resonance which yields large output in the frequency range of interest. Based on

this pretest result, it is anticipated that the accelerometer's resonances will occur

between around 60 and 70 kHz in the test track measurement. It should be recalled

that the measurements in the test are not required to be calibrated.

The Pz27 plate transducers, attached on the rail head and middle of the web

are shown in Fig. 6.32. As a data acquisition unit, a four channel data acquisition

board, PCI 6110 (National Instruments), was used. It was controlled with the MAT-

LAB data acquisition toolbox. Of the four channels in the acquisition unit, one was

allocated to the exciter delivering the impulse signal. The rest were connected to

the sensors capturing the responses. A sampling rate of 200 kHz would be sufficient

for capturing the rail responses but not enough for the generation of a suitable half

sine input impulse with a short duration. Therefore, the sampling frequency of the

acquisition unit was set to 400 kHz.

Like the previous measurement using an impact hammer, six accelerometers

were set up along the rail, spaced at a distance of five sleeper spans apart. They

were each placed at the mid span between two sleepers and attached by means of

beeswax. However, since only three input channels in the data acquisition unit were

available for each excitation, the same experiment was conducted twice with different

sets of three sensors, simply changing sensor connections to the signal conditioner.

That is, sensors 1, 3 and 5 or 2, 4 and 6 were used alternately for each excitation.
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Controller
(Desktop PC)

4 Ch. Data Acquisition Card
(NIPCI-6110)

Input (ch. 2-4) Output (ch. 1)

I

Power Amplifier
(AVC 790 Series)

4 Ch. Signal Conditioner
(PCB442B104) Accelerometers

(PCB 352C22)

Eil
1

Piezoceramic
Transducer

(PZ 27)

rail • Welding Line

3.17m ' 3.19m ' 3.18m ' 3.09m ' 3.42 m

8.38 m (13 sleepers + 0.2 m) 16.5 m (25 sleepers) 7.92 m (13 sleepers)

Fig. 6.33. Experimental setup using piezoceramic transducers as an exciter.

The measurement setup is shown in Fig. 6.33.

The excitations and measurements were implemented at three locations on the

rail cross-section, i.e., at the top and side of the railhead and at the middle of the web

as shown in Fig. 6.32. (Measurements on the foot were excluded in this experiment

because it was found from the previous experiment that waves do not travel long

distances along the rail foot). For each location, 10 excitations were applied and

the responses along the rail were measured at the corresponding positions on the

cross-section normarto the rail surface. A single half sine pulse with a duration of

12.5 /isec. was applied as an excitation signal and was supplied through the power

amplifier set to an output of 200 volts which was its maximum output. In this

measurement, the PZTs were attached about 5 mm away from the adjacent end of

the rail. Since the shortest wavelengths in the rail below 80 kHz are around 30 mm

as stated above, the phase cancellation due to the waves reflected from the adjacent

end of the rail will not be significant for frequencies below 80 kHz.

6.2.3 Measured results at the top of the rail head in the

vertical direction

As described above, the time signals were measured with a 400 kHz sampling

rate. However, since the frequency band of interest in this analysis is limited to

below 80 kHz, the original time data were decimated to a 200 kHz sampling rate by
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Fig. 6.34. An example of the measured time signals at the top of the rail head along the
rail.

a factor of 2 in order to reduce the data size and computing load. In the decimation

process the original data is filtered with a lowpass filter to avoid aliasing and then

resampled at the lower rate.

Examples of the time signals measured at the top of the rail head at each position

along the rail are shown in Fig. 6.34. These time signals display excellent waveforms

of direct waves and echoes reflected from the end of the rail. It should be recalled

that the responses at positions 1, 3 and 5 and positions 2, 4 and 6 in Fig. 6.34

were measured separately because the data acquisition unit had only three input

channels. In addition, the measured time signals were not exactly synchronised

with the instant of excitation because of a time delay internally in MATLAB while

controlling the data acquisition board. Further examples of the measured time

signals at each receiving position are illustrated in Appendix B.

The -time signals measured at positions 2 and 4 at the top of the rail head

are shown in Fig. 6.35 when the excitation was applied at the end of rail. At the

4th sensor, the echo signal reflected from the far end of the rail also appears from

15 msec, in this figure. The section of data indicated in red in Fig. 6.35, which

has 2048 data points and a duration of 10.24 msec, was analysed to construct the

spectrograms. Therefore, the frequency increment A / of the frequency axis will be

98 Hz since A / = (10.24 x 10"3)-1 = 98 Hz.

The spectrograms for the 2nd and 4th sensors are presented in Fig. 6.36. These
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2

.1

0 2 4

Fig. 6.35. Time signals measured at positions 2 and 4 at the top of the rail head in the
vertical direction.

(a) (b)

Fig. 6.36. Spectrograms measured at positions 2 and 4 at the top of the rail head in the
vertical direction.

spectrograms reveal that the waves in the range 50 kHz to 80 kHz were dominant

in the measured signal with large energy. This is mainly because the mounting

resonances of the sensors are located in this frequency range. Another considerable

reason for it is that the piezoceramic transducer is not an efficient exciter for low

wavenumber waves. These diagrams show which wave is dominant at high frequency.

The group velocity-frequency diagram at position 3 is illustrated in Fig. 6.37(a).

As stated above, the time axis in Fig. 6.36 was not exactly synchronized with the

moment of excitation. This probably causes a small bias in the conversion to a

velocity axis in the frequency-velocity diagram but it will be neglected. A normalized

version of Fig. 6.37(a) is shown in Fig. 6.37(b). This was formed by dividing each
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Fig. 6.37. Group velocities at the top of the rail head in the vertical direction, (a)
Measured at position 3, (b) normalized version of (a), (c) predicted by the WFE method.

frequency column by its maximum value so as to improve the graphical visibility

of the group velocity diagram at frequencies below 50 kHz. It is clearly observable

from Fig. 6.37(b) that the exciter generated waves down to 20 kHz although they

had much smaller amplitudes there. Also it can be seen that the low frequency

region below 20 kHz is severely contaminated by noise. From the comparison with

the simulated group velocities in Fig. 6.37(c), it is clear that the measured group

velocity curves correspond very well to the simulated ones. This measured result

indicates that the most measurable wave at the top of the rail head is still the

vertical bending wave in the rail head at high frequencies.
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6.2.4 Measured results at the side of the rail head in the

lateral direction

The time signals measured at positions 2 and 4 at the side of the rail head

are shown in Fig. 6.38. The section of data coloured red in Fig. 6.38, which has a

duration of 10.24 msec, was analysed to make the spectrograms as before.

The spectrograms for the 2nd and Ath sensors are presented in Fig. 6.39. As

shown in Fig. 6.39, most of the measured energy is concentrated at frequencies

above 40 kHz. By comparing all the spectrograms obtained from six accelerometers,

shown in Appendix B, it can be easily seen which wave propagates mainly along the

rail.

Fig. 6.40(a) and (b) show the group velocity vs frequency diagram for posi-

tion 3 and its normalized version. This normalized diagram clearly displays which

waves are more effectively generated by the exciter than others. This effectiveness

is thought to be related to the deformation shapes of the waves in the rail. Further-

more, not all possible waves will be excited by the PZT on the side of the rail head.

However, it was not easy to identify the exact type of the wave measured primarily

at high frequencies. Nevertheless, it could be said from Fig. 6.40(b) and (c) that

the measured group velocity diagram agrees well with the predicted one. Again the

results below 20 kHz are severely contaminated by noise.

• A

D 2 4 6 a
Tim# {ms*c.)

10

•

12 14 I

Fig. 6.38. Time signals measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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(a) (b)

Fig. 6.39. Spectrograms measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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Fig. 6.40. Group velocities at the side of the rail head in the lateral direction, (a) Measured
at position 3, (b) normalized version of (a), (c) predicted by the WFE method.
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6.2.5 Measured results at the middle of the web in the lat-

eral direction

The time signals measured at positions 2 and 4 at the middle of the web are

shown in Fig. 6.41. The flexibility of the web allows relatively large deformation

as shown by the magnitude of the time signals. In addition, at the 4th sensor, a

waveform was recorded around 10 msec, that was created by the reflection due to

the weld located between positions 5 and 6.

From these time data, the time-frequency diagrams were generated as shown in

Fig. 6.42. These spectrograms exhibit fairly simple and clear dispersion curves. It

turns out from Fig. 6.42 that only one wave is primarily measurable through almost

the entire frequency range with a secondary one visible just above 50 kHz. Also,

the wave reflected from the weld located between positions 5 and 6 appears in the

spectrogram at position 4 around 10 msec. The wave reflections can also be seen

clearly in the other spectrograms shown in Appendix B.

The group velocity diagram measured at the middle of the web is shown in

Fig. 6.43(a) and its normalized version shown in Fig. 6.43(b). This normalization

improves the graphical visibility in the low frequency region and demonstrates that

only a single wave is primarily measurable through almost the entire frequency range

with a secondary one visible just above 50 kHz. It is clear that the measured group

velocity curves correspond to the green and purple lines in Fig. 6.43(c), which are

the l s i and 3 r d order web bending waves. Also, the wave reflected from the welding

Fig. 6.41. Time signals measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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(a) (b)
Fig. 6.42. Spectrograms measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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Fig. 6.43. Group velocities at the middle of the web in the lateral direction, (a) Measured
at position 3, (b) normalized version of (a), (c) predicted by the WFE method.
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Fig. 6.44. Normalized group velocity diagram measured at position 5 in the middle of the
web in the lateral direction.

line located just after position 2 appears in the bottom of the measured diagram.

In order to quantify the rate of energy reflection caused by the weld in the

rail, the group velocity diagram measured at the position 5 was investigated. The

normalized diagram is shown in Fig. 6.44(a) and the wave reflected from the weld

located between positions 5 and 6 is well presented. This figure shows that the

reflection occurs primarily between 20 kHz and 60 kHz by the weld. For example,

the normalized amplitudes of the incident and reflected energy at 28.3 kHz are

compared in Fig. 6.44(b). As shown in Fig. 6.44(b), the reflected wave has about

-7.3 dB which means that about 20 % of the incident power is reflected by the weld

25 30 35 40 45 50 55

Fig. 6.45. Normalized amplitude of the energy reflected by the weld, measured at the
middle of the web in the lateral direction.
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at 28.3 kHz. The normalized amplitude of the reflected energy is shown in Fig. 6.45

for frequencies between 20 kHz and 60 kHz. It was found that about 10 to 20 % of

the incident energy tends to be reflected by the weld between 25 kHz and 50 kHz.

6.3 Summary

In this chapter, experiments carried out on the ISVR test track of length about

32 m were reported in order to validate which wave types can propagate furthest

along the rail. In these experiments group velocities were measured along the test

track using an impact hammer and PZTs as exciters. A miniature impact hammer

was used for frequencies below 42 kHz while PZTs were utilised for higher frequen-

cies up to 80 kHz.

From the group velocity versus frequency diagrams measured at four different

regions on the rail cross-section, it was validated that the measured group velocities

give an excellent agreement with those of the measurable waves simulated in almost

the entire frequency range. Therefore, by comparing the measured and simulated

diagrams, the deformation shapes of the measured waves were inferred from the

simulated results. These wave types found were to be identical to those specified in

section 4.6.

From the signals measured on the foot, it was verified that waves do not travel

long distances in that region of the rail. Also it was confirmed that the underside

of the rail head can be used as an alternative measuring point to the top of the rail

head. Meanwhile, in the signals measured at the middle of the web, it was observed

that considerable reflections occur at the web due to welds. From the measured dia-

gram, it was found that about 10 to 20 % of the incident energy carried by the web

bending wave is reflected by a single weld between 25 kHz and 50 kHz. These could

affect the long range propagation of a wave by reflecting a proportion of travelling

energy. This rate of reflection may vary in other types of weld.

Since the waves propagating primarily were measured at six positions along the

rail in the test track measurement, attempts were made to extract their decay rates.

However, it has to be noted that the 32 m length track is not long enough to measure

low decay rates of the order of about 10~2 dB/m precisely. Also sensor calibration
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was an issue because multiple sensors were used and also the beeswax applied to

attach them gives less reliable responses at high frequencies. Nevertheless, it was

attempted to extract decay rates from the measured data by exciting at both ends

of the rail. Details of this attempt are given in Appendix B.3.
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Decay Rate Measurements on an

Operational Track

In Chapter 6, the simulated group velocities were validated from measurements

made on the ISVR test track and the types of main propagating waves are identified

in the various regions of the rail cross-section. However, the ISVR test track is too

short to allow low decay rates to be determined precisely from the measured data,

as presented in Appendix B.3.

In order to validate the simulated decay rates over a longer section of rail, it is

necessary to carry out a field measurement on an operational railway track. Also it

is apparent that there is great merit if operational trains can be used as excitation

sources for the long range inspection of a rail instead of using external excitation.

Hence, to determine whether train excitation is-applicable or not, it is required to

identify its frequency characteristics in an operational railway. This will show how

effectively the high frequency waves are generated by a running train and the extent

to which they propagate in a rail, particularly between 20 kHz and 40 kHz where the

minimum decay rates are expected to occur. So in this chapter, the train-induced

rail vibrations measured on an operational railway track are presented. These exper-

iments were carried out with assistance from Balfour Beatty. Measurements were

made for several running trains. The decay rates have been extracted from the

measured signals and are then compared with those simulated by WFE analysis.
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7.1 Test Site

The field measurement has been performed on the Up Slow track of the West

Coast Main Line at Cattle Arch bridge in Dudswell north of Berkhamsted, UK in

August 2006. This site has four tracks as shown in Fig. 7.1 (a) and the first one

from the right in the picture is the track on which the measurement was carried out.

This track was selected to satisfy the following requirements for the measurement:

a continuously welded rail and at least 500 m of plain line before and after the test

site with no expansion joints, insulated rail joints or switches and crossings. This

track had concrete sleepers but detailed information on the track components, such

as rail geometry, support type, etc., was not available.

During the measurement, an observer located on a footbridge which is 924 m in

advance of the test site gave a radio signal to warn of approaching trains so that the

instrumentation recording could be switched on. The test site, Cattle Arch bridge,

is shown in Fig. 7.1(b).

(a) (b)

Fig. 7.1. Pictures of test site, (a) Tracks near the test site looking North, (b) Cattle Arch
bridge in Dudswell.

7.2 Measurement Setup

Four accelerometers, PCB 352C22, were used to measure the vibration at dif-

ferent locations on the rail cross-section as shown in Fig. 7.2 and Fig. 7.3. Two

accelerometers were attached to the underside of the railhead (ch.2 and 4), one to

the field side of the railhead (ch.l) and one to the middle of the rail web (ch.3).
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Accelerometers
PCB 352C22

Ch. 1

Four-foot

Ch. 2,4

Ch. 3
Field side

(a) (b)

Fig. 7.2. (a) Locations of accelerometers, (b) sensor attachment.

924 m

railway track

Ch.4

Accelerometers
(PCB 352C22)

Ch. 1,2,3 running direction
footbridge

Signal Conditioners
(PCB480B10)

I/O Connector Block
(NIBNC2110)

PC
(withNIPCI-6110)

Fig. 7.3. Experimental setup for the field test.

The underside of the rail head was shown in numerical simulations to give very sim-

ilar responses to the top of the rail head and this was validated from a test track

measurement (see Section 6.1.3). Accelerometer 4 was applied with the intention

of being able to detect train speeds from the signals measured by accelerometers 2

and 4. The distance between them was 3.25 m. All accelerometers were mounted

at a position midway between sleepers using glue. To provide electrical isolation

(both for traction return currents and any signalling issues) a nonconductive lami-

nate material of thickness 0.4 mm was attached between the accelerometer and the

rail. This can be seen in Fig. 7.2(b). The level of isolation provided by this wafer

has been tested at ISVR to greater than 1000 MQ at 1000 Volts DC. The equipment

setup for this experiment is shown in Fig. 7.3.

The accelerometers were attached to the rail by Balfour Beatty staff during a

routine night-time track possession and the cables run to the lineside for later con-

nection to the instrumentation. The measurements took place the next day and
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the instrumentation was removed during the following night. During the measure-

ment, the data acquisition unit and controller (PC) were powered by a portable

petrol-driven generator but the signal conditioners were battery powered. All the

instrumentation was located under the bridge shown in Fig. 7.1(b).

Rail vibration was recorded for seven service trains. The input range of the

data acquisition board and gains of the signal conditioners were varied in order to

maximise the dynamic range of data obtained. The data, acquisition unit digitized

the input analogue signals with 12 bits of resolution. Although this range is limited,

this data acquisition system was chosen because of its ability to acquire long time

samples at a high enough sampling rate. The details on the measured data are listed

in Table 7.1. For each train, two minutes of data were captured with a sampling

rate of 200 kHz. The trains measured were all electric multiple units (EMUs) of

either 4 or 8 coaches.

The train speeds listed in Table 7.1 were evaluated by two slightly different

methods. The average speeds in Table 7.1 were calculated from the elapsed time

between passing the footbridge shown in Fig. 7.3 and passing the site. On the other

hand, the instantaneous speeds were found by using carriage lengths of each train

and the elapsed time for a single carriage passage. The carriage lengths for Class

321 and Class 350 were considered as 19.95 m and 20.5 m, respectively. The elapsed

time for a single carriage passage was identified by means of the autocorrelation of

the vibration measured at the middle of the web. In setting up the measurement, it

was intended to use the signals captured by accelerometers 2 and 4 to measure train

speeds. However, it was observed from the post-processing of the measured data

that the crosscorrelation between them does not present clear information on the

time delay between the two signals. So the autocorrelation of the signal measured

at the middle of the web, which identified well the time delay for a single carriage

passage, was employed to determine train speeds.

For train 3, as an example, the vibration measured at the middle of the web

and its autocorrelation are shown in Fig. 7.4. The passage of 8 bogies can be clearly

seen in the time signal. Also from the autocorrelation of this time signal shown in

Fig. 7.4, it can be found that the time elapsed during a single carriage passage is

about 0.62 second. (Other peaks correspond to the distance between various pairs
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Table

File name

train 1

train 2

train 3

train 4

train 5

train 6

train 7

ambient noise 1

ambient noise 2

7.1. Details of data measured from the field

Train type

8-car Class 321

4-car Class 321

4-car Class 321

8-car Class 350

4-car Class 321

4-car Class 321

4-car Class 321

-

-

Input range (V)

x Amp. gain

± 5 x 1

± 1 x 1

± 0 . 2 x 1

± 0 . 2 x 1

± 0 . 5 x 1

± 0 . 5 x 1

± 1 x 1 0

± 1 x 1 0

± 0 . 2 x 1

test.

Speed (km/h)

Average

-

109

111

166

111

123

115

-

-

Instantaneous

156 v'

119

116

162

119

132

124

-

-

Fig. 7.4. Low pass filtered time signal measured at the middle of the web and its autocor-
relation for train 3.

of wheels.) Hence the instantaneous speed is determined as 116 km/h. In this

computation the time signals were low pass filtered with a 20 kHz cut-off frequency

in order to enhance the autocorrelation.

It can be seen from Table 7.1 that the instantaneous speeds are slightly higher

than the averaged ones in general. Based on these results, it is likely that trains

were accelerating slightly as they approached the test site. However, since the speed

profiles of the individual trains were not measured, the train's running distances have

been estimated by using the instantaneous train speeds in the decay rate calculation.

The effect of the acceleration of trains on measured results will be discussed further
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below.

7.3 Measurement Results

As examples of the measured-time signals, captured time histories for trains.2

and 3 are shown in Fig. 7.5 and Fig. 7.6. According to the input ranges given in

Table 7.1 above, the measurable acceleration ranges for these two trains were about

± 100 g and ± 20 g, respectively, where g denotes the acceleration of gravity. All

30.001 20.002 20.003 20.004 20.005 20.006 20.007 20.008 20.009 20.01

20 30 40 50

Time (sec.)

20.001 20.002 20.003 20.004 20.005 20.006 20.007 20.008 20.009 20.01
Tlme(s)

(a) (b)

Fig. 7.5. Time signals measured for train 2. (a) Prom 20 to 70 seconds for each channel,
(b) around 20 seconds for channels 1 and 2.

10 10.001 10.002 10.003 10.004 10.005 10.006 10.007 10.008 10.009 10.01

20 30 40 50 ' 60 70 60
Time (sec.)

10 2D 30 40 50 60 70
Time (see.)

10 10.001 10.002 10.003 10.004 10,005 10.006 10.007 10.008 10.009 10.01
Tlme{s)

(a) (b)

Fig. 7.6. Time signals measured for train 3. (a) From 10 to 80 seconds for each channel,
(b) around 10 seconds for channels 1 and 2.
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the measured time signals are illustrated in Appendix C.I.

From the time signal for train 2 in Fig. 7.5(a), it was seen that all the data

were captured without any saturation with the ± 1 V input range. Unfortunately,

however, it is found that the low amplitude signals were poorly quantized as re-

vealed in Fig. 7.5 (b). So the sampled low amplitude signals will be less reliable in

this case. On the other hand, the signals captured for train 3 show that saturation

occurred when the train was just passing the test site. However, as depicted in

Fig. 7.6(b), the low amplitude signals were quantized more reliably than those in

Fig. 7.5(b) at the cost of this saturation. So the data for train 3 would be more

useful for the purpose of determining long range propagation than those obtained

for train 2. More detail on the measured signals will be analysed and discussed later.

In this chapter, the analysed results are described only for trains 2, 3, 4 and 7

because trains 5 and 6 produce similar results to trains 2 and 3. The measured data

for train 1 was excluded in this analysis because the ±. 5 volts input range used was

too broad to capture the signals accurately. In addition, analysis of the measured

ambient noise will be described later. All the analysed results for all the measured

data are attached in Appendix C.2.

7.3.1 Analysis results for train 2

For train 2, the measured time signals during the train passage were shown in

Fig. 7.5(a). These signals indicate that the train is passing the test site at between

42 and 45 seconds, inducing large rail vibrations at that time. According to these

measured time signals, the response at the underside of the rail head is larger than

the others, whereas the signal obtained from the middle of the web has the lowest

amplitude. In addition, this figure shows that ±1 volt input range setting enabled

the signals to be captured without clipping. As discussed already, it is apparent

from Fig. 7.5(b) that the low amplitude signals were poorly quantized.

Above all, the responses acquired while a train is passing the measurement point

need to be investigated in order to clarify the frequency characteristics of excitation

which is generated by the wheel/rail rolling contact. The spectrograms obtained

between 42 and 48 seconds are illustrated in Fig. 7.7. It should be noted that the
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(a) (b)

(c) (d)
Fig. 7.7. Spectrograms measured when train 2 passes the test site, (a) At the side of the
rail head (ch. 1), (b) at the underside of the rail head (ch. 2), (c) at the middle of the web
(ch. 3) and (d) at the underside of the rail head (ch. 4).

large responses around 60 kHz and 80 kHz for each channel resulted not from the

physical responses of the rail itself but from the sensor's mounting resonances.

It turned out from Fig. 7.7 that each part of the rail is excited in a different

manner. The number of coaches of this train is detectable from these graphs. There

are four cars in train 2 and thus five groups of wheels. The two responses measured

at the underside of the rail head, that is, ch. 2 and ch. 4, were expected to be almost

identical. As depicted in Fig. 7.7(b) and (d), they look similar in general but a large

difference is found around 34 kHz and 31 kHz. The reason for this has not been

identified. Also the rail responds well at 29 kHz at the side of the rail head and

36 kHz at the middle of the web although the reason for it is not understood.

The frequency spectra of the rail acceleration during the passage of the first
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(a) (b)

Fig. 7.8. Acceleration levels created by the wheel/rail rolling contact, (a) At the side of
the rail head (ch. 1) and middle of the web (ch. 3), (b) at the underside of the rail head
(ch. 2 and 4).

bogie of train 1 past the measurement location are shown in Fig. 7.8. These were

produced from the time signals between 42.7 and 42.9 seconds in Fig. 7.5. It is seen

from this figure that the train induces a considerable rail vibration at frequencies

below 5 kHz. This behaviour coincides very well with the published results in liter-

ature [61] which present the contact filtering effect between wheel and rail surface.

What is more interesting in the present context is that running trains are found to

be capable of exciting the rails quite well even at higher frequencies between 20 kHz

and 50 kHz. The mechanism for this high frequency excitation was not identified

yet.

7.3.2 Analysis results for train 3

For train 3, the measured time signals are illustrated above in Fig. 7.6(a). This

figure showed that the ±0.2 volt input range was too narrow so that the signals

between 40 and 50 seconds were clipped. Conversely, however, this setting gives

better quantization for small amplitude signals, as shown in Fig. 7.6(b). So this

measured signal for train 3 is more reliable for studying the low amplitude response.

The spectrograms created for 0-90 seconds for each channel are presented in

Fig. 7.9. Each column of the spectrograms was produced from 0.1 second of data

and the frequency increment, A / , of the frequency axis is 195 Hz. From these spec-

trograms it is clear that the waves below 20 kHz decay very rapidly, particularly at

124



Chapter 7. Decay Rate Measurements on an Operational Track

40 50
Time (s)

60 70 80 90

(a)

10 20 30 40 50
Time (s)

60 70 80 90

(b)

40 50
Time (s)

70 80 90

(e)

Fig. 7.9. Spectrograms measured for train 3. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).
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Fig. 7.10. Variations of acceleration levels along distance at each measuring point for train
3 in the frequency bands of about 29 kHz (ch.l), about 24 kHz (ch.2 and ch.4) and about
36 kHz (ch.3).

the underside of the rail head. Conversely, at this location, some energy between 20

kHz and 30 kHz is still measurable even about 40 seconds in advance of the train

arrival. The frequency ranges which seem to be particularly useful in a practical

application are about 29 kHz at the side of the rail head (ch.l), 24 kHz at the un-

derside of the rail head (ch.2 and 4) and 36 kHz at the web (ch.3).

In terms of the propagating distance of a wave, the acceleration levels in these

interesting frequency bands are shown in Fig. 7.10 for each measuring point with

the bandwidth of 975 Hz. The train's running distance was converted from the time

axis in Fig. 7.9 by using the instantaneous train speed of 116 km/h. As presented

in Fig. 7.10, the approaching train is likely to be detectable at the underside of the

rail head much more than a kilometre away. Even at the middle of the web, the

detection range of the approaching train seems to be greater than a kilometre. In

addition, this graph implies that it will be necessary to reduce the background noise

level in the measured data in order to increase the detection range.

As displayed in Fig. 7.10, the measured acceleration levels did not vary linearly

with distance. That is, the rate of change increases as the train approaches and

increases further as the train recedes. This is very likely to be related to the accel-

eration of the running train as anticipated from the difference between average and

126



Chapter 7. Decay Rate Measurements on an Operational Track

,110

100

g 80

§j 70

60

50

! jf-
S r - ' • • • ' • •

/ ' i . : .

using the inlantaneous speed at 0 second
using the accual speed

. : ,: \L ; -
• ' ' • • . ' ' • • \ \ v ^ . -

-1000 -300 -GOO -400 -200 0 200 400 600 600 1000
Distance (m)

( a ) • • • . ( b )

Fig. 7.11. Simulation of acceleration level of a rail as a function of distance, (a) train
speed, (b) simulated acceleration level.

instantaneous speeds shown in Table 7.1.

To investigate the effect of an accelerating train on the acceleration level as a

function of distance, a simple simulation was performed assuming linearly increasing

train speed with time as shown in Fig. 7.11 (a). In this figure, zero seconds corre-

sponds to the instant when the train is passing. This imaginary train's average speed

between -30 and 0 seconds becomes about 111 km/h and the instantaneous speed at

about 0 second is about 118 km/h. Also, in this simulation, it was assumed that the

source level of the train is 100 dB and the decay rate of a propagating wave in the

rail is 0.05 dB/m. The simulated acceleration level due to this train is illustrated in

Fig. 7.11(b) as a function of distance, which was obtained from the instantaneous

speed of 118 km/h. As illustrated in this figure, the simulated acceleration level

gives a similar trend to the measured ones in Fig. 7.10. It was therefore plausible

from this simulation result that the train was accelerating during the measurement

and this acceleration caused the curved shape of variation shown in Fig. 7.10.

Also, as depicted in Fig. 7.10, the acceleration level measured at the middle of

the web changes more rapidly near the time of the train passage than the others

measured at the rail head. This may be due to a greater contribution from rapidly

decaying waves propagating through the web, but this could not be clearly identified

yet. . • . .
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From the spectrograms in Fig. 7.9, it appeared that the level of energy drops

suddenly at around 70 seconds. This event is more apparent in Fig. 7.10 around 830

m. Note that if the acceleration of the train is considered, the location of this event

is actually about 900 m. Balfour Beatty Rail Technologies arranged for a track walk

along the rail to look whether a discontinuity of some sort is present there in the

rail but they did not find anything of note. Alternatively the excitation level may

be less for a while around this location because the rate of level change seems to be

consistent between 500 and 1400 m except around the energy drop between 900 and

1250 m. Furthermore, an abrupt surge of energy appears around 1600 m away from

the test site. At approximately this distance the train reaches a tunnel, where it is

70 80

(a) (b)

Frequency (kHz)

(c) (d)

Fig. 7.12. Acceleration levels before the passage of train 3 at different times with the same
time interval of 10 seconds, (a) At the side of the rail head (ch. 1), (b) at the underside
of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of
the rail head (ch. 4).
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possible that there are some rail joints, but this could not be confirmed.

While a train is approaching or receding, the acceleration levels of the rail at a

given frequency will increase or reduce with time. So, decay rates can be obtained

from the level difference between two train positions by dividing it by the train's

running distance between them. The acceleration spectra of the rail at different

times are compared in Fig. 7.12. This shows results before the train passed, spaced

at 5 second intervals. Each line in Fig. 7.12 was produced from the time signals

of about 3 msec, duration with a frequency resolution of 195 Hz. In these figures,

it can be confirmed that the signals in the region 20 kHz to 40 kHz decay more

(a) (b)

(c) (d)

Fig. 7.13. Acceleration levels after the passage of train 3 at different times with the same
time interval of 10 seconds, (a) At the side of the rail head (ch. 1), (b) at the underside
of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of
the rail head (ch. 4).
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slowly than others. Fig. 7.12 indicates that, the acceleration levels from 20 to 40

seconds tend to have consistent level increments and also they seem to be less af-

fected by the background noise. So the acceleration levels from 20 to 40 seconds

in Fig. 7.12 will be used for the decay rate calculation. In the case of the web,

only the signals at 40, 35 and 30 seconds will be included in the calculation because

the signal at 20 seconds was severely contaminated by noise as shown in Fig. 7.12(c).

The measured acceleration spectra after the train passed the measurement lo-

cation are presented in Fig. 7.13 with the same time interval. As described above, it

is clear, that there are relatively large level drops between 69 and 74 seconds. From

the acceleration levels shown in Fig. 7.13, the levels from 49 to 64 seconds were used

for the decay rates calculation. In the case of the web, only the signals at 49, 54

and 59 seconds were included, in order to avoid the contribution of noise. The decay

rates produced from this field test will be presented later in Section 7.3.5, comparing

them with the simulated results obtained by WFE analysis.

7.3.3 Analysis results for train 4

For train 4 the measured time signals between 0 and 60 seconds are shown in

Fig. 7.14. Since this train had 8 coaches and travelled faster, at about 160 km/h,

the measured time histories look like a compressed version of the previous one. Also

this train seems to induce more rail vibration than the previous one. The signals are

clipped for the length of the train (about 8 seconds) on ch. 1 and 3, but for about

16 seconds for ch. 2 and 4.

Fig. 7.14. Time signals for train 4 measured from 0 to 60 seconds at each channel.
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Fig. 7.15. Spectrograms measured for train 4. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).
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The spectrograms measured at each transducer location are presented in Fig. 7.15.

They look similar to those in Fig. 7.9 for train 3 but compressed in the time axis due

to the higher train speed. These spectrograms present almost the same frequency

characteristics as the previous ones although train 4 is of a different type and has

a higher running speed than train 3. Also, despite the saturation of the measured

time data around 30 seconds, the spectrograms clearly indicate how many carriages

are in this train. Meanwhile, a distinctive feature in these spectrograms is that

a comparatively large amount of vibration energy is seen at 70 seconds, at which

the train is about 1650 m away from the measurement point. The reason for this

increase in energy remains unexplained.

The variations of acceleration levels with distance are shown in Fig. 7.16 for

each channel. The frequency bands used for this plot were centred around 29 kHz

at the side of the rail head (ch. 1), around 24 kHz at the underside of the rail head

(ch. 2 and 4) and around 36 kHz at the web (ch. 3) with the bandwidth of 975 Hz

as used previously. The measured acceleration levels for this train indicate the same

behaviour as shown in Fig. 7.10 for train 3. As discussed for train 3, this curved

shape level variation possibly results from the acceleration of the train. Compared

100
side of the railhead (ch. 1)
bottom of the railhead (ch.2)
middle ol the web (ch.3)
bottom ol the railhead (ch 4)

0 500 1000
Distance (m)

Fig. 7.16. Variations of acceleration levels along distance at each measuring point for train
4 in the frequency bands of about 29 kHz (ch.l), about 24 kHz (ch.2 and ch.4) and about
36 kHz (ch.3).
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with Fig. 7.10, it is clear that this train creates rail vibration between 5 and 10 dB

larger than the previous one which is unsurprising since it contains twice as many

coaches and also is much faster than train 3. Therefore, this approaching train will

be detected much more than a kilometre before the train arrival, even at the middle

of the web.

The acceleration spectra of the track at different times are compared in Fig. 7.17

and Fig. 7.18 before and after the train passage. It can be confirmed once again from

these figures that the frequency spectra of trains 3 and 4 are very similar despite the

different train types and running speeds. As before, the decay rates were calculated

(b)

(c) (d)

Fig. 7.17. Acceleration levels before the passage of train 4 at different times with the time
interval of 5 seconds, (a) At the side of the rail head (ch. 1), (b) at the underside of the
rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of the rail
head (ch. 4).
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Fig. 7.18. Acceleration levels after the passage of train 4 at different times with the time
interval of 5 seconds, (a) At the side of the rail head (ch. 1), (b) at the underside of the
rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of the rail
head (ch. 4).

from the acceleration levels measured at 22, 17 and 12 seconds in Fig. 7.17 and at

38, 43 and 48 seconds in Fig. 7.18 for all channels. The decay rates produced from

this field test will be discussed in Section 7.3.5.

7.3.4 Analysis results for train 7

As listed in Table 7.1, train 7 was measured with instrumentation set to the

highest gain, equivalent to ± 0.1 volt input range, so the area around the train

passage will be most overloaded. However, the measured data are expected to have

the lowest noise level and should give the furthest detection range without running

134



Chapter 7. Decay Rate Measurements on an Operational Track

Fig. 7.19. Time signals for train 7 measured from 0 to 80 seconds at each channel.

into the noise. The measured time signals between 0 and 80 seconds are shown in

Fig. 7.19 for train 7. Unfortunately, the signals in channels 3 and 4 have relatively

large contributions of noise as shown in Fig. 7.19. It is suspected that the signal

conditioners, PCB 480B10, connected to channels 3 and 4 introduced this additional

noise when their amplification gains were set to 10 but this has not been clearly

demonstrated.

The spectrograms are presented for channels 1 and 2 only in Fig. 7.20. The

same abrupt level changes appear once again at around 66 seconds and between 85

and 90 seconds in these diagrams. The diagrams for channels 3 and 4 were neglected

due to the poor signal to noise ratio for the low amplitude signals.

The levels in the frequency bands specified above are shown in Fig. 7.21 as a

function of distance for each sensor. The noise which corrupts channels 3 and 4 is

clearly illustrated in Fig. 7.21. The data have a noise floor about 25 dB higher than

those in the other channels. On the other hand, the noise levels in channels 1 and 2

become about 4 or 5 dB lower than those in Fig. 7.10 and Fig. 7.16 for trains 3 and

4, as expected. This is because the narrower input range has been used, as stated

earlier. According to Fig. 7.21, the rail responses at the side and underside of the

rail head are likely to give an early warning of the approaching train at least 1.5 km

or even 2 km before it arrives. Also if the problem of additional noise contamination

in channel 3 could be overcome, it might be possible to detect an approaching train

about 1.5 km before its arrival from the web vibration.
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Fig. 7.20. Spectrograms measured for train 7. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2).
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Fig. 7.21. Variations of acceleration levels versus distance at each measuring point for
train 7.
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The changes in acceleration spectra with time obtained from train 7 were almost

the same as described before so will not be presented here. Instead, averaged decay

rates created from all the individual decay rates obtained from each train will be

presented later and compared with the simulated ones.

7.3.5 Averaged decay rates obtained from the field test

For each train, decay rates were extracted from the acceleration level differences

at 5 second intervals. The decay rates obtained from the signals for trains 3 to 7 are

compared in Fig. 7.22 for each train. The measured decay rates below 10 kHz were

disregarded in Fig. 7.22 because the waves decay too rapidly in this frequency band,

leaving just the background noise. It was found from Fig. 7.22 that the measured

decay rates are not significantly affected by different train types and running speeds.

The averaged decay rates were calculated from the results shown in Fig. 7.22,

simply finding mean values. These are shown in Fig. 7.23 together with the previous

simulated ones in Chapter 5. As presented in the previous spectrograms, the waves

below 20 kHz decay very quickly. Hence in order to obtain accurate decay rates

in this low frequency region, it is necessary to extract them from the acceleration

levels in the vicinity of the train passage. For this reason, the decay rates between

10 kHz and 20 kHz in Fig. 7,23 were produced from the signals of train 2 because

they were not overloaded at all during the train passage.

It is revealed in Fig. 7.23 that the field test results agree very well with the

simulated ones for all frequencies above 10 kHz. The comparison at the underside of

the rail head in Fig. 7.23(b) suggests that the measured decay rate between 10 kHz

and 20 kHz corresponds to the simulated one but is shifted to slightly higher fre-

quencies. This slight difference between the measured and simulated results may be

associated with the rail geometry or the stiffness of the rail pad. The exact types of

the rail and rail pads in the operational track or the extent to which the rail head

is worn are not known. Nevertheless, the measured decay rates show considerable

agreement with the predicted ones particularly between 20 kHz and 50 kHz. .

In terms of the long range wave propagation, interesting frequencies at each
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Fig. 7.22. Decay rates obtained from the field test for each train, (a) At the side of the
rail head (ch. 1), (b) at the underside of the rail head (ch. 2 and ch. 4), (c) at the middle
of the web (ch. 3)

channel were specified as around 29 kHz at the side of the rail head, around 24 kHz

at the underside of the rail head and around 36 kHz at the middle of the web.

At these frequencies relatively large amplitudes were excited at this test site. The

measured decay rates at these frequencies are about 0.04, 0.035 and 0.05 dB/m,

respectively, but are not much different from results at other frequencies around

them. Also it was confirmed from this field measurement that a dynamic range of

more than 50 dB is measurable in the rail vibration. So, if a 50 dB level reduction

is assumed, then the maximum propagating distances at each sensing location will

be about 1.2 km, 1.4 km and 1.0 km, respectively.

As compared in Fig. 7.23, the measured decay rates at the side and underside
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Fig. 7.23. Decay rates obtained from the field test, presented with those predicted by the
WFE method, (a) At the side of the rail head (ch. 1), (b) at the underside of the rail head
(ch. 2), (c) at the middle of the web (ch. 3)

of the rail head are slightly less than the predicted ones above 40 kHz. On the other

hand, the decay rate measured at the middle of the web looks slightly higher than

the simulated one. This increase in the measured decay rate at the middle of the

web is likely to be related to the presence of the welds which reflect energy primarily

in the web, as discussed in Section 6.2.5.

7.3.6 Analysis of the background vibration signal

The background vibration signal was acquired in the field measurement and

investigated here. This measurement was carried out with the same input range

and gain as set for train 7, i.e., ± 0.1 volt. It can be clearly seen in Fig. 7.24 how

large the electrical noise was in channels 3 and 4. During this measurement, a train
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Fig. 7.24. Measured background vibration signals.

passed on an adjacent track. This can be seen in the time signal between 40 and 45

seconds in Fig. 7.24. Analysis of this event will inform how much interference will

arise from adjacent tracks.

Since the data acquisition board used in this measurement has a 12 bit quantizer

for A/D conversion, the step size, 5, of the quantizer becomes

5 =
211 (7.1)

where Xm denotes the full-scale level of the A/D converter [62]. For instance, Xm

for this background vibration measurement is ab.out l lg and 5 is about 0.005<?. The

smallest quantization levels are then ±5.

As shown previously in spectrograms and plots of acceleration levels versus

distance, such as Fig. 7.10, Fig. 7.16 and Fig. 7.21, the latter parts of the measured

signals for each train seem to consist of noise. The time signals measured with

various input ranges are compared in Fig. 7.25 for a short time duration around 120

seconds.in each case. From this comparison, it is clear that the measured signals in

Fig. 7.25(a) and (b) were severely distorted by the poor quantization and the error

associated with the quantization decreases as S becomes smaller.

In terms of spectra of the vibration, the level is directly dependent on the

power contained in its' time signal. Therefore, it is obvious that the levels of the
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Fig. 7.25. Signals measured at channel 2 for (a) trains 2, (b) train 5, (c) train 3, (d) train
7 with different input ranges as stated in the figure.
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Fig. 7.26. Comparison of acceleration levels for trains 2, 5, 3 and 7, having different input
ranges, measured in (a) channel 1, (b) channel 2.

frequency spectra of the signals shown in Fig. 7.25 will drop gradually as 8 reduces

until they reach a background level which may be caused by ambient vibration or

by electrical noise in the instrumentation chain. This kind of behaviour is observed

in Fig. 7.26 which compares frequency spectra of the signals for trains 2, 5, 3 and

7 around 120 seconds. This figure also identifies that any significant background

vibration is mainly concentrated at low frequencies below 1 kHz and decreases as

frequency increases. Based on this result, it is expected that if a greater resolution

or a narrower input range are used for the background vibration measurement, it

would reduce the level further only at high frequencies above 1 kHz.

Finally, the contribution of a train running on a neighbouring track was inves-
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Fig. 7.27. Time histories measured during the train passage on the Up Fast track in (a)
ch. 1, (b) ch. 2.
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Fig. 7.28. Power spectra of the background vibration at around 20 and 43 seconds in (a)
ch. 1, (b) ch. 2.

tigated by analysing the data obtained before and during the train passage on an

adjacent track. The measured time histories during the train passage on the neigh-

bouring track are shown in Fig. 7.27, indicating that the train, a Pendolino, had 9

coaches. The frequency spectra corresponding to the train passage on the neigh-

bouring track are shown in Fig. 7.28 along with the background levels for channels

1 and 2. The spectra in Fig. 7.28 were obtained from the time signals of about 2

seconds duration. From this comparison, it is clear that the train passing on the

adjacent track does not have any significant effect, except in the low frequency re-

gion below 3 kHz. This is as expected because the resilience of the track support

will tend to isolate it at high frequencies.
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7.4 Summary

In order to validate the simulated decay rates over a longer rail section, a field

measurement was performed on an operational railway track. In this experiment,

train-induced rail vibration was measured up to 80 kHz for several service trains at

the side and underside of the rail head and at the middle of the web.

From these measurements, it was revealed that running trains are very effective

in exciting rails even at high frequencies between 20 kHz and 50 kHz and each part

of the rail is excited in a different manner. Spectrograms were plotted for each train

passage and it was found that waves can propagate more than a1 kilometre at some

frequencies between 20 kHz and 40 kHz even at the middle of the web. Finally de-

cay rates were extracted from the measured data and compared with the predictions.

This field test validated that the measured decay rates coincide very well with

the simulated ones in almost the entire frequency range up to 80 kHz. The measured

minimum decay rates and the frequencies at which they occur are

• about 0.035 dB/m at the underside of the rail head around 25 kHz

• about 0.035 dB/m at the side of the railhead around 25 kHz

• about 0.04 dB/m at the middle of the web around 29 kHz.

From the field measurement, particularly strong signals were found at 24 kHz under

the rail head, at 29 kHz on the side of the head and at 36 kHz on the web. These

frequencies might be different at other sites and with different trains. Also it was

found that a train passing on an adjacent track does not have any significant con-

tribution to the measured results at frequencies above 3 kHz.

The characteristics of rail vibration induced by the different trains measured

were almost the same, despite differences in running speeds and train type. This

may be because the trains measured were all EMUs, mainly of the same class. Nev-

ertheless, this is a very desirable result in terms of the practical application.

A diagram such as the acceleration level versus distance could be used in order

to monitor and detect defects in a railway track because abrupt level changes due
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to rail defects could be indicated in this diagram from each train passage on the

track. To detect waves at greater distances, it is essential to minimize the level of

electrical noise in the measurement and to reduce the quantization error in the data

acquisition by using an A/D converter with a wider range.
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Chapter 8

Wave Reflection and Transmission

at Cracks in Rails

So far in this thesis wave propagation has been investigated for homogeneous

infinite rails. However, if a rail has a local non-uniformity, like a crack, it will reflect

a part of the incident power and transmit the rest of it. These reflection and trans-

mission characteristics associated with the presence of the discontinuity may give

some indication of both the crack location and depth. In particular, if the waves

that propagate furthest in rails are employed as incident waves, it may be achievable

to inspect a long section of rail with every train passage. For example, the diagram

of acceleration level versus distance (or time) as shown^in Chapter 7 will present an

abrupt level drop or surge when a train is passing-over a discontinuity in rail. This

Distance

Fig. 8.1. Scheme of acceleration level versus distance diagram for a rail with two different
rail defects at x\ and X2- (A denotes decay rates).
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Fig. 8.2. Cross-sectional model of a rail on foundation. The shaded elements represents
the rail pad.

is described schematically in Fig. 8.1 for a case where a rail has two different rail de-

fects at x\ arid %2- The level of this abrupt change will depend predominantly on the

transmission characteristics of the rail defect. The reflected waves will be masked

by the waves directly produced by the train. So in terms of practical application

on an operational track, the transmission coefficients would be more useful than the

reflection coefficients for crack detection. On the other hand, if artificial excitation

is used instead of relying on excitation by trains, the reflected waves could also be

utilised.

In this chapter, to check the feasibility of this application, wave reflection and

transmission are investigated for cracks in rails by means of numerical simulations.

The waves which propagate furthest along rails, found in the previous chapters, are

used as incident waves. Since these fall in the frequency range between 20 kHz and

40 kHz, it is not possible to use simple beam models as in ref. [41,42]. Therefore,

in order to do that, the spectral super element method (SSEM) [20] is introduced

and combined with the conventional FE method to estimate power reflection and

transmission coefficients associated with cracks in rails. The cross-sectional model

used in this study is shown in Fig. 8.2, which is the same cross-section used for

the previous FE analysis presented in Chapter 3. A finer cross-sectional model was

created and used in the previous WFE analysis in Chapter 4 to improve accuracy

in the results. In this chapter, however, that finer model was not suitable because

the resulting FE model has too many dofs to handle.

In practice, a crack would induce damping as well as reflection. However, to
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make matters simpler, it is assumed in this chapter that the crack itself does not

introduce any additional damping effects to the structure. Also it is supposed that

the damping of the structure contributes only to the decay of propagating waves,

not to the reflection and transmission of waves induced by cracks. Based on these

assumptions, the simulation for wave reflection and transmission is performed for

undamped rails in this feasibility study.

8.1 Spectral Super Element Method

The spectral super element (SSE) method was developed by Birgersson et al.

[20] and used to predict the dynamic responses of vibrating finite length plate struc-

tures. This method is described briefly in this section, applying it to the rail which

is modelled with solid elements. Since this method is a combination of the WFE

method with the spectral finite element (SFE) method [16], it will be stated how

these two methods are combined in the SSE method. Then the SSE for semi-infinite

waveguide structures is newly developed modifying the original formulation in this

. section.

8.1.1 Homogeneous wave solutions

For an infinite waveguide structure, homogeneous wave solutions can be ob-

tained from the WFE method. This method was already employed to create disper-

sion relations and decay rates of propagating waves, as presented in Chapter 4.

In this WFE analysis, the equation of motion of a cross-section is given as

[ K 2 ( - J K ) 2 + KX(-JK) + Ko - u;2M]«l = 0 (8.1).

where K2, Ki and Ko are matrices associated with the stiffness of the structure,

M is the mass matrix of the cross-section and # contains the displacements of the

cross-section defining the wave shape. Since damping is not included here, all the

stiffness and mass matrices are real. Here the wavenumber K and frequency 00 are

the unknown variables to be identified; once they are found $ can also be obtained.

In Chapter 4, the WFE equation given in Eq.(8.1) was solved as a generalized

eigenvalue problem to obtain frequency u> at a given wavenumber K, because only
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propagating waves were of interest there. In the SSE method, however, all the wave

solutions, including nearfield waves, are required to predict the displacement of the

structure. Hence, Eq.(8.1) has to be solved as a polynomial eigenvalue problem to

obtain all wavenumbers and mode shapes at a given frequency u. Note that Eq.(8.1)

will have paired wavenumber solutions, representing the positive- and negative-going

waves at each frequency. For example, for a cross-sectional model with N dofs, 2N

wavenumbers and mode shapes will be obtained at each to.

It was reported in ref. [43,63] that transforming the polynomial eigenvalue prob-

lem to a generalized eigenvalue problem reduces the computational load required and

increases its numerical stability. To do this, a new variable ^ was introduced as

ij> = —JK$>. Then Eq.(8.1) can be rewritten as

I + . K O -

JK . '

and expressed in standard eigenvalue form as

-JKK2

I
= 0 (8.2)

w 2 M - K 0

0

K2

0
= 0 (8.3)

Wavenumbers K and mode shapes $ are obtained by solying this transformed eigen-

value problem at each frequency u.

Theoretically, at a given frequency o>, all the wavenumber solutions have to be

placed symmetrically about the origin in the complex wavenumber plane. Half of

them are for waves propagating and decaying in the positive x direction and the rest

are for those travelling and decaying in the negative x direction. That is,

«- = - « + , (8.4)

where K+ and re_ denote the wavenumbers travelling in the positive and negative x

directions, respectively. For wavenumbers K+, Eq.(8.1) can be written as

(8.5)

(8.6)

then by the relation in Eq.(8.4),
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Since the matrices K2, Ko and M are symmetric and Kx is anti-symmetric, the

transpose of Eq.(8.6) is given by

K o - u2M] = O7 (8.7)

By the definition of a left eigenvector, <£+ in this transposed equation becomes the

left eigenvector for /c_, whereas its right eigenvector $_ satisfies

[-K2_K2- J Ko - 0 (8.8)

From Eq.(8.7) and Eq.(8.8), it is obtained that 3>_ and 3>+ are respectively the

right and left eigenvectors of K(/c_) — [—AC2_K2 — JK-KI + Ko — u2M] (or the left

and right eigenvectors of K(«+) = [—K\K2 — j«+Kx + Ko — LJ2M]). This relation

between #_ and &+ is valid for damped structures with proportional damping, in

which a stiffness matrix is specified as K( l 4- irj), because the condition described

in Eq.(8.4) will be satisfied even for damped cases.

As an example, some wavenumbers obtained from the rail model shown in

Fig. 8.2 at 21 kHz are illustrated in Fig. 8.3. The wavenumbers for the positive- and

negative-going waves are coloured blue and red, respectively. That is, the blue ones

are K+ and the red ones are K_. In fact, for undamped systems, symmetry exists be-

tween wavenumbers in all four quadrants of the complex plane as can be recognised

from Fig. 8.3. The relations between the eigenvectors for four such wavenumbers

were described in ref. [26]. However, this contains some typing errors. The corrected

ones are listed in Table 8.1.
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Fig. 8.3. Wave solutions around the origin obtained at 21 kHz from the WFEM. The pairs
marked with 'O', ' • ' and 'A' shapes are wavenumbers selected for mode shape comparison.
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Table 8.1. Relations between eigenvectors for wavenumbers symmetric in different quad-
rants for undamped structures.

Quadrant

1st

2nd

3rd

4th

Wavenumber

K

- K *

— K

K*

Right eigenvector

*R

**R

*L

*L

Left eigenvector

In Fig. 8.3, the wavenumbers located on the real axis correspond to positive- and

negative-propagating waves which do not decay along the x direction because there

is no imaginary part. Note that two wavenumbers located at around ±5 rad/m on

the real axis were swapped because they both have negative group velocities. The

remaining wavenumbers indicate nearfield waves exhibiting exponential decay with

distance in x. More strictly, the waves on the imaginary axis decay exponentially

without any oscillation with distance, while those with complex wavenumbers are de-

caying exponentially along with some sinusoidal oscillation with distance. Note that

since waves exist as nearfield waves until they are cut-on, these complex wavenum-

bers are created even though there is no damping in this system.

In order to observe what sort of relation occurs between the mode shapes for K+

and K_, the eigenvectors are compared below for the three wavenumber pairs, marked

with symbols in Fig. 8.3. The mode shapes of positive- and negative-propagating

waves, marked with 'O' in Fig. 8.3, are shown in Fig. 8.4. Since these are purely real

0.02

0.01

0 50 100 150 300 250 300 350 400 450 500

Fig. 8.4. Comparison of mode shapes for the purely real wavenumbers marked 'O' in
Fig. 8.3.
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Fig. 8.5. Mode shapes in complex domain for the wavenumbers, marked 'O' in Fig. 8.3,
for each directional dofs. (a) $_, (b) $ + .

wavenumbers, K ( K _ ) and K(AC+) become Hermitian matrices. Their eigenvectors

are, therefore, complex conjugate pairs, i.e., #_ = &*+ as illustrated in Fig. 8.4 for

all dofs. The mode shapes in this figure indicate that the two waves chosen are

identical but travel in opposite directions. The eigenvectors shown in Fig. 8.4 are

plotted in the complex domain for the x, y and z direction dofs separately and

compared in Fig. 8.5. It can be identified from this figure that the mode shapes in

the x and (y,z) directions have a 90° phase difference between them. This phase

difference occurs in the opposite direction for <$_ and 4>+.

Meanwhile, for wavenumbers which are purely imaginary, K(«_) and K(/c+)

become real and asymmetric so that their eigenvectors are real. For each direction

of dofs, the eigenvectors for the wavenumber pairs, marked with ' • ' , are plotted

and compared in Fig. 8.6. It is found from Fig. 8.6 that the eigenvectors in the

y and z directions are the same but those in the x direction have opposite signs.

These results indicate that the mode shapes obtained when K+ and K_ are on the

imaginary wavenumber axis are the same but out of phase in the x direction.

The eigenvectors for the complex wavenumber pairs, marked with 'A' in Fig. 8.3,

are illustrated in Fig. 8.7 for the dofs in the x, y and z directions. It is difficult to

identify the relation between ^ _ and $ + in this figure. To present it more clearly,

the eigenvectors are replotted in the complex domain and compared in Fig. 8.8. It

can be seen from this figure that for each direction the mode shape of # + shown in
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Fig. 8.6. Comparison of mode shapes for the purely imaginary wavenumbers marked ' • '
in Fig. 8.4(a), (a) in the x direction, (b) in the y direction, (c) in the z direction.

Fig. 8.8(b) is the rotated version of $_ in Fig. 8.8(a). The phase differences found

are 107.75° for the dofs in the x direction and -72.24° for the y and z directions.

These differences in phase between mode shapes will vary for different wavenumber

pairs. However, it is not clear how they are related to the phase of K+ or AC_ . Also

Fig. 8.8 shows that ^ + has a slightly larger magnitude than ^ _ . This difference in

amplitude will be compensated in the wave amplitude vector in the calculation of

displacement.
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Fig. 8.7. Comparison of mode shapes for the complex wavenumbers, marked 'A' in
Fig. 8.4(a), (a) in the x direction, (b) in the y direction, (c) in the z direction.
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Fig. 8.8. Mode shapes in complex domain for the wavenumbers, marked 'A' in Fig. 8.3,
for each directional dofs. (a) ̂ _ , (b) &+.
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8.1.2 Displacement functions

For finite length waveguide structures, the displacement V(x) can be written

as a superposition of each wave solution obtained from Eq.(8.3) [20]. For example,

for a finite length structure in — lx < x < lXy the Nxl vector V(x) at a frequency u

can be written as
2N

V(x) = Yl am$me-JKmX = $E(:r)a , (8.9)
ro=l

where A'' is the number of dofs in the cross-sectional model, 4>m is the mode shape

vector for Acm, <3> is an Nx2N matrix containing each wave's mode shapes, a is the

2Nxl wave amplitude, vector and E(x) is a 2Nx2N diagonal matrix containing

the exponential terms for x. To avoid numerical instability that is caused by large

amplitudes of near field waves at boundaries, E(:r) is scaled by factors of e±JKmlx

[16,20] as

for lm(« m )>0 , (8.10)

forlm(/cm)<0 . (8.11)

In Eq.(8.9), the only unknown variable is the wave amplitude, a, and it can be

determined from the boundary conditions of the structure. For example, suppose

that the finite length waveguide structure has boundaries at x = — lx and lx and the

boundary conditions are defined by the displacements Wi and W2, respectively, at

these locations. The displacements, V(x), at the boundaries are described using

Eq.(8.9) as

= Wi . , (8.12)

= W2 . " (8.13)

Then a can be expressed as a function of the nodal displacements at boundaries,

• = : : ™ \:v}=AW , (8.14)

and the displacement V(a;) is expressed by

Now, the only unknown parameter in this equation is W.
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Birgersson et al. [20] suggested to scale all eigenvectors with (||#m|||Km|2) ,

where Km is the wavenumber corresponding to the eigenvector $ m , in order to

reduce the numerical error which is caused by rapidly decaying waves at low fre-

quencies where most waves in the structure are non-propagating. This weighting

of the eigenvectors was used initially in the present study but it was found that it

does not significantly reduce the error at the frequencies of interest between 20 kHz

and 40 kHz. So, the weighting of the eigenvectors has not been implemented in the

results presented.

For semi-infinite waveguide structures, only half of the wavenumbers and mode

shapes, which propagate and decay in the positive or negative x direction, are present

as stated in the previous section. For instance, for a semi-infinite waveguide that

extends to infinity in the positive x direction (0 < x < oo), the displacement vector

V{x) is expressed as a superposition of wave solutions only for positive-going waves

as
N

V(x) = ^(a+,m)(*+>m)e-^^ = $+E+(x)a+ , (8.16)

where the subscript '+ ' represents variables for the positive-going waves, <&+ and

E+(rc) are the matrices of size JVxiV and a+ is the Nxl wave amplitude vector. If

the boundary condition is defined by the displacements W o at x = 0, a+ can be

expressed as
1 W o = A+Wo . (8.17)

8.1.3 Dynamic stiffness matrix

If an input force vector, F, is specified at the boundaries of finite length struc-

tures, the displacement vector W can be obtained using a dynamic stiffness matrix

of the structure, as developed by Birgersson et al. [20]. The dynamic stiffness matrix,

Ds, of the finite length waveguide structure is given by

D s = A T ( 0 ® E I ) A , (8.18)

where ® denotes the Hadamard product, an element-wise multiplication of two

matrices, and
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(8.19)
' m=0 n=0

flx T
Ei = / diag(E(x))diag(E(a;)) dx . (8.20)

fix
= / di

J-i,

Here emn is a NxN matrix containing strain components used to form the stiffness

matrices K2 , Ki and Ko in the WFE analysis [20] and the operator diag( ) produces

a column vector from the diagonal terms of its argument. For finite length structures,

all the wavenumbers and mode shapes are used to calculate the dynamic stiffness in

Eq.(8.18) and the displacement vector V(ic). So, K in Eq.(8.19) becomes a 2iVx2iV

diagonal matrix of wavenumbers, Ei is also the 2Nx2N matrix and its entries are

given by

CET) = - fe-j(Km+Kn)lx _ e-j(Km+Kn){-lx)~\e-j(±Km±Kn)lx (8 21)
~3\Km.^~ Kn)

where ' ± ' signs are dependent on the signs of the imaginary parts of Km and Kn.

Finally, if an input force F is specified, the nodal displacement W can be found by

solving

D 5 W = F , (8.22)

and from Eq.(8.15) the displacement of the finite length structure can be obtained

at any position.

In the case of semi-infinite structures, only half of the wavenumbers and mode

shapes are used in the calculation and then 0 and Ei in Eq.(8.19) and Eq.(8.20)

need to be modified. Since @ has to be specified for the positive and negative

semi-infinite structures separately,

(
m=0 n=0

where ' ± ' signs in the subscript are dependent on the direction that extends to infin-

ity in the semi-infinite structure and K± are NxN diagonal matrices of wavenumbers

for the positive- or negative-going waves, respectively. Also,

(Ei_)TOn= ~]_ for - o o < a ; < 0 , (8.24)

(E I + ) m n =. * ' for 0 < x < o o . (8.25)
J{Km + Kn)
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Then the dynamic stiffness matrices Ds,± f°r semi-infinite structures are given by

^ , (8.26)

and if an input force Fo is specified at x = 0, the nodal displacement Wo will be

found by

Wo = ( P s . i ^ F o • ' (8.27)

8.2 Combined SSE/FE Method

In the above section, SSEs for semi-infinite waveguide structures were devel-

oped. If homogeneous structures are investigated, they can be modelled by con-

necting these SSEs with finite length SSEs consecutively. If there are local discon-

tinuities, like holes or cracks, in an infinite structure, regions containing these local

non-uniformities can be modelled using FE and then the combined SSE/FE method

is required to investigate wave propagation in the structure. In this section, the

combined SSE/FE method is developed using semi-infinite SSEs to analyse wave

propagation in the structure with local non-uniformities.

i
r

In this combined SSE/FE method, the whole structure with a local discontinu-

ity is subdivided into three regions: two semi-infinite elements and a finite region

containing the local discontinuity. The two semi-infinite regions can be modelled

using the SSE method and the finite part with the local discontinuity is modelled

by the FE method. These three parts can be connected easily if their nodes at

the boundaries are the same. This is one of the great advantages of using SSEs in

this combined method. The modelling scheme in the combined SSE/FE method is

illustrated in Fig. 8.9.

Fig. 8.9. Combined SSE/FE model with a local non-uniformity.
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8.2.1 Coupling between SSE and FE

To couple the SSE with the conventional FE, the dynamic stiffness matrix of

the FE part needs to be transformed so that it is described only by the nodal dofs

at the boundaries. The dynamic stiffness matrix D / of the FE part is defined as

/ = K/e - co M/ e , (8.28)

where K/e and M/ e are the stiffness and mass matrices of the FE part, respectively.

If external forces are applied only to the nodes on boundaries, the dynamic stiffness

matrix in Eq.(8.28) can be partitioned as

(8.29)

where the subscripts b and i denote boundary and internal dofs, respectively. Then

a condensed dynamic stiffness matrix, Dp, is obtained by solving Eq.(8.29) as

Note that, unlike Guyan reduction [57] which uses only the static stiffness matrix

in the condensation process, this does not result in any approximation.

For the combined model shown in Fig. 8.9, dynamic stiffness matrices of the

three substructures can be assembled by the same process as for conventional finite

elements. The nodal displacements W at the two coupled interfaces are found by

5s,_ 0

0 0

0

0

0
= F (8.31)

where Wi and W2 are displacements at the left- and right-hand boundaries, ~Ds,-

and Ds i + are the dynamic stiffness matrices of the left- and right-hand side semi-

infinite SSEs, and F is the generalized force vector acting on the nodes of the coupled

boundaries. Finally, if F is given at the boundaries, the displacement V(a;). in

the SSE parts of the combined model is evaluated by solving Eq.(8.31) and then

Eq.(8.15). The response of the FE part can be found from the lower part of Eq.(8.29).

8.2.2 Modelling for incident wave generation

In order to estimate reflected and transmitted waves in rails with a local non-

uniformity, waves incident on it are required. However, it is not possible to specify
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Fig. 8.10. An equivalent model to predict wave reflection and transmission for an infinite
rail with a local non-uniformity.

them directly in the semi-infinite SSEs. So a technique to add incident waves to the

combined SSE/FE model is necessary. To impose incident waves on the combined

SSE/FE model, a method used by Shone et al. [41,42] is employed here, consider-

ing an equivalent system with positive and negative blocked forces cancelled out by

superposition.

The proposed procedure for imposing an incident wave on the combined SSE/FE

model is illustrated in Fig. 8.10. The desired model, shown in Fig. 8.10(a), needs

to have incident (I), reflected (R) and transmitted (T) waves along the two semi-

infinite SSEs with no external forces acting on the connecting nodes. This desired

model is achieved by superposing the blocked case, which gives a blocked force

vector due to an incident wave (Fig. 8.10(b)), and the combined SSE/FE model

excited by this blocked force vector but with the opposite sign (Fig. 8.10(c)). By

summation of these two, the forces are cancelled out so that the desired model

containing incident, reflected and transmitted waves is obtained. In the blocked

case shown in Fig. 8.10(b), the FE and right-hand side SSE parts are assumed to

have zero response and therefore may be omitted from the model.

The blocked.force, ff,, shown in Fig. 8.10(b) is determined using two connected

semi-infinite SSEs as shown in Fig. 8.11. Suppose that a displacement Wo is created

at Xo by a single incident wave, /, in an infinite homogeneous structure (Fig. 8.11(b)).

Then, the force, fj,, which makes —Wo at XQ in the infinite system can be calcu-

lated from the dynamic stiffnesses of the connected semi-infinite SSEs as shown in
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Fig. 8.11. An equivalent model to predict blocked force and wave reflection in a blocked
rail. •

Fig. 8.11(c),

b — —V Si— •" DSf+J " 0 • [o.OZ)

This force vector fj, is the same as the blocked force in Fig. 8.11 (a).

8.3 Analysis of numerical error

For the combined SSE/FE model, it is worth checking the level of numerical

error associated with this method because artificial separations/connections are in-

troduced and differences exist in element types between the SSE and FE. These

may both potentially cause considerable errors. So prior to introducing cracks in

the combined SSE/FE model, numerical errors are evaluated for a homogeneous

railway track with the cross-section shown in Fig. 8.2. For this track, the dispersion

curves of propagating waves created by WFE analysis are shown in Fig. 8.12 up to

50 kHz.

In this investigation into numerical error, two limit cases of a local non-uniformity

are considered: homogeneous and broken rails. The broken rail can be treated as a

single semi-infinite rail with a free boundary condition at the end. In practice, two

parts of a broken rail may be held together in track by the compressive stress and in

this case it will not be easy to specify their boundary conditions mathematically. In

this thesis, however, it is assumed that they are separated from each other, giving

a free end boundary condition.
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20 25 30
Frequency (kHz)

(a) (b)

Fig. 8.12. Dispersion curves for the rail shown in Fig 8.2 (a) for the vertical and symmetric
longitudinal waves, (b) for the lateral, torsional and antisymmetric longitudinal waves.

In this analysis, potential errors are investigated in terms of the conservation

of incident power. Note that there is no damping in this track model so that the

incident power has to be conserved. Since there are multiple propagating waves in

the rail, as indicated in Fig. 8.12, the total power contained in the reflected and in

the transmitted waves are compared to check the conservation of incident power.

The waves propagating furthest along the rail, which were identified in the previous

chapters, are chosen as incident waves. They are the vertical bending wave localized

in the rail head, the lateral bending wave which has global deformation includ-

ing the web and rail head, and the Is4 order web bending wave, respectively. The

waves chosen are shown in Fig. 8.12 with different marks: the wave marked ' x ' in

Fig. 8.12(a) is for the vertical bending wave in the rail head, two waves with ' • ' and

'o' in Fig. 8.12(b) are for the lateral bending wave in the web and rail head and the

1st order web bending wave, respectively. Using these three waves as incident waves,

presented in Fig. 8.12 with the marks, conservation of incident power is examined

up to 50 kHz. Note that, at frequencies below 10 or 20 kHz, the waves chosen are

not the desired types of incident waves as discussed previously in Chapter 4.

In the case of the homogeneous rail, the power carried by an incident wave has

to be conserved giving complete transmission and no reflection. That is, for an

incident wave, j , the reflected and transmitted waves should satisfy the conditions

H = l , (8-33)
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where r and t denote power reflection and transmission coefficients, respectively,

and the subscript i corresponds to the reflected and transmitted waves propagating

at a given frequency. Conversely, for the broken rail, complete reflection will occur,

giving ;

The power reflection and transmission coefficients of the reflected and transmit-

ted wave i for an incident wave j are defined as

J
 IT?

 J w.
me inc

The respective powers in Eq.(8.35) are evaluated using the displacement vector

as,

L l 2 , (8.36)

Kef = ̂ pA^ci^WxYrefl2 , • (8-37)
A

^ J2 in\2 , - (8-38)
A

where pA is the mass per unit length of the cross-section and YIA m e a n s summation

over the cross-section. Since only waves with purely real wavenumbers carry power

along the structure, only these propagating waves are included in power calculation.

In this case, |V(x)|nc |, |V(a;)*e^| and |V(rr)Jrn| are independent of a;.

8.3.1 Numerical error in combined SSE/SSE models

In order to check the error that comes from the SSEs, the homogeneous and

broken rails are modelled first with SSEs throughout as shown in Fig. 8.13. The

lengths of the finite SSEs in these two models are set to 150 mm and 72 mm, re-

spectively.

As shown in Fig. 8.13(a), the potential error of the homogeneous rail consists of

two components: one from determining the blocked case and another from the model

with the negative blocked force, — f(,. For the blocked, case, the reflected power car-

ried by reflected waves R\ has to be the same as the incident power. For the model
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Fig. 8.13. Two combined SSE/SSE models to predict errors associated with the SSEs. (a)
A homogeneous infinite rail, (b) a semi-infinite rail with free end.

with the negative blocked force, the displacement created by negative-propagating

waves R2 should be equal to that of —R\ to give zero reflection in the superposed

system. Also the transmitted power, carried by waves T2, has to be the same as the

power incident in the wave / .

The errors predicted from the homogeneous rail are shown in Fig. 8.14 for the

three incident waves specified. Fig. 8.14(a) shows the error contained in the reflected

power which was predicted from reflected waves, R\ + R2. This is of the order of

2Q- 2 8
e r r o r m th e transmitted waves T2 is illustrated in Fig. 8.14(b) and is

Iff4*

10-"

o"

w-"

w"

\1 w\

— — vertical bending wave
* lateral bending wave

lateral bending wave

A

4

rail head
ail head
web

—•— vertical bending wave in the rail head
- -*— lateral bending wave in the rail head

**— lateral benc^ng wave in the web

0 $ tO 15 20 25 30 33 40 45 SO 0 5 10 !& 20 25 30 35 40 45 50
Freq(kHz| Freq (kHz)

(a) (b)

Fig. 8.14. Errors predicted from the connected SSE/SSE homogeneous rail, contained in
(a) reflected waves, (b) transmitted waves.
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Fig. 8.15. Error created from the blocked semi-infinite rail shown in Fig. 8.13(a).

between 1CT8 and 10~10. As indicated in Fig. 8.14, the transmitted waves create

larger errors than the reflected ones but both of them are very small. However, it

should be noted that the very small error in the reflected power seen in Fig. 8.14(a)

does not mean both R\ and R2 individually have such small errors, because the

errors in R\ and R2 are cancelled out by adding them. The error contained only in

Ri is presented in Fig. 8.15. From Fig. 8.15, it is clear that the error in Ri is much

larger than those in Fig. 8.14, as high as 10~5 to 10~3 above 25 kHz.

In the case of the broken rail shown in Fig. 8.13(b), the errors predicted from the

reflected waves R, obtained by Ri + R2: are illustrated in Fig. 8.16. Note that the

error contained in Ri in Fig. 8.13(b) is the same as shown in Fig. 8.15. In addition,

it was found that the error in the combined reflected waves R is little affected by

w4
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Fig. 8.16. Error created from the combined SSE/SSE semi-infinite rail with free end,
shown in Fig. 8.13(b).
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the presence of the finite SSE, attached to the semi-infinite one. Therefore, it was

identified from Fig. 8.15 and Fig. 8.16 that both waves R\ and i?2 have considerable

errors for the broken rail, as does their sum.

Accordingly, it was found from the combined SSE/SSE models that relatively

large errors are created by semi-infinite SSEs with blocked and free end conditions.

The order of this error is about 10~4 to 10~3 at frequencies above 20 kHz. The reason

for this relatively large error caused by the semi-infinite SSE has not yet clearly been

identified. However, it is anticipated that this error would be reduced if more dofs are

used in the cross-sectional modelling. To check that, the errors predicted from the

finer cross-sectional model, i.e., model A used in Chapter 4, are shown in Fig. 8.17.

The errors in Ri which come from the blocked semi-infinite rail are illustrated in

Fig. 8.17(a). In Fig. 8.17(b), the errors created from the semi-infinite rail with free

end are presented. Comparing them to those in Fig. 8.15 and Fig. 8.16, it can be

seen that the error is generally reduced with a finer mesh. However, this finer cross-

sectional model could not be utilised in this chapter because it led to the FE model

possessing too many dofs.

io"3

io-T

- vertical banding wave in the rail head (finer model)
lateral bending wave in the rail head (liner modal)
lateral bending wave in ttie web (Finer model)

10"'°

- vertical bending wave in the raS head (finer model)
- lateral bending wave in Ihe rail head (finer model)
- lateral bending wave in the web (Finer model)

(a) (b)

Fig. 8.17. Errors created from the finer cross-sectional model for (a) the blocked semi-
infinite rail shown in Fig. 8.13(a), (b) the combined SSE/SSE semi-infinite rail with free
end as shown in Fig. 8.13(b).
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8.3.2 Numerical error in combined SSE/FE models

In this section, numerical errors are predicted for combined SSE/FE models

in terms of the power conservation. The same homogeneous and broken rails are

considered here as shown in Fig. 8.13, simply replacing the finite SSEs with an FE

mesh. The FE models in the homogeneous and broken rails have 25 and 12 sets of

elements in 150 mm and 72 mm lengths, respectively.

For the homogeneous SSE/FE model, the errors are shown in Fig. 8.18, predicted

from the reflected and transmitted waves for three incident waves. As presented in

Fig. 8.18, the errors are of the order of 10~7 to 10~6 above 20 kHz for both reflected

and transmitted waves. Comparing them with those in Fig. 8.14, it is clear that the

combined SSE/FE model produces higher errors than the SSE/SSE one, but they

are still fairly small. However, one should be aware that the error, coming from the

blocked case, is still the same as presented in Fig. 8.15 because the blocked case

does not involve the FE part.

For the broken SSE/FE rail, the errors predicted from the reflected waves are

shown in Fig. 8.19. Since the errors in Fig. 8.19 are nearly the same as those in

Fig. 8.16, it is clear that the errors contained in the reflected waves are generated

mainly by the blocked semi-infinite SSE, not by the SSF/FE coupling.

Through the analysis of numerical error described above, it was identified that

tO-
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Fig. 8.18. Errors predicted from the connected SSE/FE homogeneous rail, contained in
(a) reflected waves, (b) transmitted waves.
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Fig. 8.19. Error predicted from the combined SSE/FE semi-infinite rail with free end.

the broken rail model creates an error of order about 10~3 above 20 kHz. It was

also found that the error associated with SSE/FE coupling appears to be about

10~6 as shown in Fig. 8.18. However, since the total powers in multiple reflected

and transmitted waves were compared, it is not possible to specify individual errors

associated with each reflected and transmitted wave. The homogeneous and broken

rails considered here correspond to two limit cases of a cracked rail. If a crack is

introduced in the combined SSE/FE model, numerical errors of the model may fall

between these two limit values and approach the broken one as the crack increases.

So it is likely that the numerical error would increase with crack size.

8.4 Prediction of wave reflection and transmis-

sion due to cracks in rails

In this section, a crack is introduced to the combined SSE/FE rail model to

estimate its reflection and transmission characteristics. As used above, the same

three incident waves are imposed on the model with a crack and then their power

reflection and transmission coefficients are predicted up to 50 kHz.

8.4.1 Crack modelling

There are various types of rail defects in practical railway tracks, such as vertical

breaks which occur suddenly, cracks growing from an interior or surface defect of

the rail, spalling, weld defects, etc. Some of the most common types of rail defects
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are described in ref. [3]. However, transverse cracks in the rail have normally been

considered in the literature because they are easy to model and create artificially in

experiment [7,8,10]. Transverse cracks in the rail are regarded also in this section,

which seems to be suitable for this feasibility study.

In the combined SSE/FE rail model, the length of the FE substructure was

set to 150 mm with 25 elements in length. In that FE part, very simple vertical

'cracks' are generated simply by removing elements at a single slice at the middle

of the model. As an example, the FE model with a crack reaching the middle of

the web is illustrated in Fig. 8.20 with different view angles. In fact, this is not

a commonly used geometry for a crack which is more usually modelled as a 'V

shaped notch. To make matters simpler, however, this crack model is considered

in this feasibility study. In addition, the model used in this analysis could also be

adopted to represent a short section of missing rail head or foot which is also of

practical concern in railway tracks.

In order to investigate variations of reflection and transmission coefficients due

to crack size, two sets of crack geometries are specified: a crack growing down from

the top of the rail head and one growing up from the end of the foot, in each case

to the full break of the rail. The increasing size of the crack is classified with the

numbers from 0 to 9 as illustrated in Fig. 8.21. In this classification, crack sizes

'0' and '9' represent homogeneous and fully broken rails, respectively. The vertical

depths of each crack are listed in Table 8.2, which are the height of the cracks taken

from the vertical mid-plane of the rail cross-section. Since only half of the rail cross-

section is modelled, all the cracks specified in this study are symmetric with respect

Fig. 8.20. An example of crack modelled by FEM seen by two different view angles.
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(a) (b)

Fig. 8.21. Two crack models (a) growing down from the top of the rail head, (b) growing
up from the end of the rail foot. The increasing size of the crack is classified with the
numbers from 0 to 9 and the depths of each crack are listed in Table 8.2.

Table 8.2. Depth of crack in the vertical direction (including depth of rail pad).

Crack number

0

1

2

3

4

5

6

7

8

9 (full break)

Crack growing down

from the top of the rail head

0 mm

9 mm

27 mm

45 mm

58 mm

80 mm

104 mm

126 mm

146 mm

182 mm

Crack growing up

from the end of the rail foot

0 mm

36 mm

36 mm

56 mm

78 mm

102 mm

124 mm

137 mm

155 mm

182 mm

to the vertical mid-plane of the rail cross-section.

8.4.2 Predicted reflection and transmission coefficients

Firstly, to understand how the numerical errors depend on the crack size, a

power conservation check was executed for the two growing crack models. The pre-

dieted errors obtained from the power conservation check are illustrated in Appendix

D. From that simulation, it was found that the errors in total power generally in-
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crease with the crack size and approach those of the broken rail.

In the case of the crack growing down from the top of the rail head, the errors

for crack sizes 3 and above in Fig. D.2(a) and (b) are nearly the same as those for

the full break. For the web bending wave in Fig. D.2(c), however, the maximum

error was obtained at crack size 6 which reaches to the middle of the web. For the

crack growing up from the end of the foot, the errors for the vertical bending wave

increase gradually with the crack size as shown in Fig. D.3(a) while the others in

Fig. D.3(b) and (c) are in between about 10~5lto 10"3 for the crack sizes 1 and

above. Similarly to those shown in Fig. D.2(c), the maximum error for the web

bending wave was also appeared at crack size 4 which reaches to the middle of the

web (Fig. D.3(c)). However, the reason for the these variations in numerical errors

with respect to the crack size has not yet been identified.

In addition, to examine the effect of the FE model length on the prediction of

reflection and transmission coefficients, the power conservation check was performed

for three FE models with different lengths of 102 mm, 150 mm and 210 mm, re-

spectively. For the crack size 3 in Fig. 8.21(a), the errors obtained from the three

different FE lengths were nearly the same, regardless of the FE length. This implies

that the variance caused by the FE model length is not significant.

For each crack size specified in Fig. 8.21, power reflection and transmission co-

efficients are predicted for the three wave types which are most measurable at the

head and web and also propagate furthest along the rail. Although reflection and

transmission may be in different wave types, most energy is retained in the same

wave as is incident.

For the crack growing down from the top of the rail head, the reflection and

transmission coefficients, Tjj and tjj, are shown in Fig. 8.22. From Fig. 8.22(a),

it was found that the vertical bending wave's reflection coefficients are nearly the

same for crack sizes 3 and above. Also for the transmission coefficients, the sim-

ilar variation is obtained as illustrated in Fig. 8.22(b). Note that since this wave

chosen has global deformation below 16 kHz, only the coefficients above 16 kHz

are for the vertical bending wave in the head. The results in Fig. 8.22(a) and (b)

indicate that the propagation of this vertical bending wave in the rail head is not
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Fig. 8.22. Power reflection and transmission coefficients predicted from the combined
SSE/FE rail with the crack shown in Fig. 8.21 (a) for (a),(b) the vertical bending wave in
the rail head, (c),(d) the lateral bending wave in the rail head, (e),(f) the Is ' order web
bending wave.
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Fig. 8.23. Power reflection and transmission coefficients predicted from the combined
SSE/FE rail with the crack shown in Fig. 8.21(b) for (a),(b) the vertical bending wave in
the rail head, (c),(d) the lateral bending wave in the rail head, (e),(f) the I s ' order web
bending wave.
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much affected by the changes of the crack size in the web. A similar phenomenon

is also found from the coefficients predicted for the lateral bending wave in the rail

head and web (Fig. 8.22(c) and (d)). In the case of the web bending wave, it can

be seen from Fig. 8.22(e) and (f) that the coefficients are not much affected for the

crack sizes smaller than 6. On the other hand, for the crack growing up from the

end of the foot, the reflection and transmission coefficients are shown in Fig. 8.23

and the similar variations of the coefficients are presented for the growing crack sizes.

In Fig. 8.22(a), dips of the reflection coefficients at 21 kHz and 27 kHz result

from wave mode conversion of the incident wave. To illustrate this phenomenon,

the reflection coefficients estimated at 20 kHz and 21 kHz are compared in Fig. 8.24

for all reflected waves propagating at crack size 3. As shown in Fig. 8.24, waves 8

and 9 cut on between these two frequencies and a significant part of the incident

power is reflected in these newly cut-on waves at 21 kHz. Nevertheless, this figure

confirms that most energy is retained in the same wave as is incident.

As presented in Fig. 8.22 and Fig. 8.23, the numerical error accumulated for all

the reflected and transmitted waves propagating can be determined using the con-

servation of incident power. However, the level of error contained in each individual

wave's reflection and transmission coefficients is unknown because only the accumu-

lated error in all the multiple propagating waves could be quantified. This means

that it may be possible for errors in individual reflected and transmitted waves to be

larger than the accumulated one. In this analysis, nevertheless, the error obtained

Reflected Wave Number. I

Fig. 8.24. Power reflection coefficients of all reflected waves propagating for the incident
vertical bending wave in the rail head.
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£;

by the conservation of total power will be compared with the single wave's predicted

reflection and transmission coefficients because that is the only estimate available.

The interesting frequency range in which waves propagate furthest along rails

is between 20 kHz and 40 kHz as presented in previous chapters. The reflection

and transmission coefficients averaged within this frequency band are presented in

Fig. 8.25.and Fig. 8.26 with respect to crack size. The approximate errors are also

shown in these figures, which were obtained from the results described in Appendix

D by averaging them in the same frequency band. From Fig. 8.25 and Fig. 8.26, it

can be seen that the errors are at least 15 dB lower than the predicted coefficients

in general, excluding some cases where the reflection and transmission coefficients

are very small.

To become an effective crack indicator, the waves chosen should have a large re-

flection coefficient and a small transmission coefficient even in the presence of small

cracks. Fig. 8.25(a) shows that the vertical bending wave in the rail head reflects

about half of its incident power for a crack larger than the size of the rail head.

Conversely, the web bending wave propagates well regardless of a crack present in

the rail head until it reaches crack size 6 in.Fig. 8.21(a), i.e., most of the web is

cracked. Since the lateral bending wave in the rail head has global deformation

including the rail head and web, it generally gives less reflection than the vertical

bending wave, which propagates mainly along the rail head. In transmission, the

transmitted vertical bending wave has about 15 dB reduction of its incident power

for cracks numbered 3 and above. The web bending wave gives a considerable drop

in transmitted power from crack size 6.

From the predicted results for the crack growing down from the top of the rail

head, it was identified that neither the vertical nor lateral waves that propagate

along the rail head give significant reflections for small cracks located in the rail

head (crack T which has a depth of about 10 mm). Also they are insensitive to

changes in crack size once the crack is deeper than the rail head. In addition, the

web bending wave does not create noticeable, changes in its reflected and transmitted

powers until a crack is deeper than half of the web from the top of the rail head.

For cracks growing up from the end of the foot, the predicted coefficients are

174



Chapter 8. Wave Reflection and Transmission at Cracks in Rails

*̂-<c, / ——•
/ -/'*'' \^\;.Y-:*Y:_\Y".Y.:

— • — vertical bending wave in the rail head
— a — lateral bending wave in the rail head
—•»•— lateral bending wave in the web
- • - error in the vertical bending wave in the rail head

" error in the lateral bending wave in the rail head
error in the lateral bending wave in the web

- vertical bending wave in the rail head
- lateral bending wave in the rail head
- lateral bending wave in the web

error in the vertical bending wave in the rail heat
error in the lateral bending wave in the rail head
error in the lateral bending wave tn the web
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Fig. 8.25. Power reflection and transmission coefficients averaged between 20 kHz and
40 kHz for the crack growing down from the top of the rail head, (a) Power reflection
coefficients, (b) power transmission coefficients.

(a) (b)

Fig. 8.26. Power reflection and transmission coefficients averaged between 20 kHz and 40
kHz for the crack growing up from the end of the foot, (a) Power reflection coefficients,
(b) power transmission coefficients.

illustrated in Fig. 8.26. Fig. 8.26 indicates that both waves measurable in the rail

head are insensitive to the presence of a crack located in the bottom half of the rail,

giving small reflections and large transmissions. Similar to the results in Fig. 8.25,

when the crack becomes bigger than size 5, specified in Fig. 8.21 (b), it could be de-

tectable by the web bending wave, giving a large reflection and small transmission.

From the predicted results shown in Fig. 8.26, it was identified that none of the

wave types considered here can detect cracks growing from the end of the rail foot

in the early stage.
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For train-induced rail vibration, the transmitted waves would be more useful for

long range crack detection because the reflected waves will be masked by the waves

directly produced by the train. Consequently, from the results shown in Fig. 8.25(b)

and Fig. 8.26(b), it was found that none of the transmitted wave types considered in

this analysis are effective for the detection of small cracks in rails although they are

the waves propagating furthest along the rail. This outcome indicates that using a

single wave and measuring it at a single position on the rail cross-section is not suf-

ficient to detect cracks efficiently, particularly small cracks, in rails excited by trains.

On the other hand, if artificial excitation is utilised, the reflected waves could

also be used for crack detection. In this case, an reflection coefficient of -20 dB (or

less, depending on-the measurement system) would be usable. From the results in

Fig. 8.25(a) and Fig. 8.26(a), therefore, it was found that the reflection coefficients

would be more useful than the transmition coefficients for the artificial excitation.

Since it was found that using a single response measured on the rail cross-section

is not effective to identify cracks in rails, it would be better to use more responses of

the rail vibration and quantify mode conversion of the incident wave. This approach

would not be relevant for train excitation which allows only a limited access to the

rail because it requires multiple responses along the rail and around the perimeter

of the rail cross-section. If an artificial excitation is considered instead, it would

be possible to use multiple transducers, such as a transducer array mounted along

the length of the rail and around the perimeter of the rail cross-section, to excite

and measure specific wave modes effectively. In this way, matrices of reflection and

transmission coefficients for each incident wave may be constructed. These matrices

would present the mode conversions of the incident waves, which arise from the

presence of cracks.

8.5 Summary
t . '• • •

In this chapter, as a feasible application of the findings in the previous chapters,

wave reflection and transmission due to cracks in rails were investigated by means

of numerical simulations. Since the railway track has a complex cross-section and

the frequency of interest is up to 50 kHz, a new numerical approach was developed

to achieve this in this analysis.
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Firstly, the SSEs for semi-finite waveguide structure were newly developed.

Then combining them with a FE part, a new method, named the combined SSE/FE

method, was introduced in this chapter. In this method, an infinite rail with a defect

is subdivided into three parts: two semi-infinite rails (SSEs) and a finite length one

containing the local defect (FE). Because of the computational limitation, a coarse

cross-sectional model used in the previous FE analysis (Chapter 3) was utilised in

this chapter. Since all the homogeneous wave solutions at a given frequency are

required in this analysis, wavenumbers and mode shapes including propagating and

nearfield waves were obtained and the relations between them for the positive- and

negative-going waves were described briefly. Also cracks in the rail were modelled

simply by removing elements at a single slice of the FE model.

Before entering the main part of the analysis, numerical errors caused by the

combined SSE/FE method were investigated for three incident.waves up to 50 kHz

in order to check the reliability of the method. In this analysis of numerical error,

the accumulated errors in all the multiple propagating waves were quantified by ex-

amining the conservation of incident power. Note that the level of error contained in

each individual wave's reflection and transmission coefficients could not be predicted

in this analysis. From this investigation, it was found that the maximum errors are

of the order of 10~4 to 10~3 at frequencies above 20 kHz and are created from the

semi-infinite SSE model, not from the SSE/FE coupling. This order of numerical

error seems to be rather large for the application for the crack detection, particularly

for small cracks, which may reflect a tiny amount of the incident power. Also this

error may mask the transmitted power at a large crack which only a little amount

of the incident power can pass through. The error would be reduced if more dofs

are used in the cross-sectional modelling.

For two sets of cracks growing from the top of the rail head and from the end

of the foot, power reflection and transmission coefficients were estimated for three

waves that propagate furthest along the rail, measurable on the rail head and the

middle of the web. From this calculation, it was found that neither the vertical nor

lateral bending waves that propagate along the rail head experience considerable

energy drops in their transmission in the presence of small cracks located in the rail

head.. Also the web bending wave did not create noticeable changes in its trans-
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mitted powers until a crack was deeper than half the rail. Accordingly, this result

indicates that measuring rail vibration at a single position on the rail cross-section

is not efficient to detect cracks in rails, particularly small cracks.

In this chapter, the fully broken rail was assumed to consist of two parts that

are well separated from each other. However, as stated before, they may be held

together by the compressive stress in the rail in practice and this full break will still

have some reflection and transmission. However, an appropriate model for this kind

of full break is beyond the scope of the present work.
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Chapter 9

Conclusions and Suggestions for

Further Work

9.1 Conclusions

In this thesis, the characteristics of waves propagating in railway tracks have

been investigated at frequencies up to 80 kHz by means of numerical simulations

and experiments. In terms of the long range wave propagation, the work has fo-

cused on answering the fundamental questio.n: how far along a rail can vibration

travel? Through the research presented in this thesis, the specific answers to this

question have been clearly identified. Above all, the efficient wave types for long

range propagation and their decay rates were found by numerical simulations and

validated by experiments. It was also found which part of the rail cross-section gives

the best measurement of these waves and in which frequency range the waves travel

furthest along the rail. Based on these results, the travelling distances of waves

propagating along rails were identified. Additionally, using the waves found which

propagate furthest as incident waves, the reflection and transmission characteristics

due to cracks in rails have been investigated by introducing a new numerical method.

In Chapter 2, works published in literature, which are associated with the wave

propagation in waveguide structures, particularly in rails, were reviewed briefly.

There was only a limited amount of work on wave propagation in rails at frequen-

cies of several tens of kilohertz, especially in experiments. The difficulties are caused

mainly by the presence of multiple dispersive waves in this frequency range, which
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leads to very complicated dispersion relations. Based on the findings of the litera-

ture, the frequency range up to 80 kHz was set for the present work for studying

the long range wave propagation in rails.

As a numerical approach, the conventional finite element (FE) method has been

employed in Chapter 3, which has been previously used for noise modelling of a rail

at frequencies below 5 kHz or 6 kHz. From this simulation, dispersion relations and

decay rates were predicted up to 80 kHz. It was found that the FE method would be

a useful tool even for frequencies up to 80 kHz, but this method had several draw-

backs for dealing with wave propagation in structures efficiently. The FE method

was therefore not considered suitable for repeated use.

As an alternative approach to the conventional FE method, the wavenumber

finite element (WFE) method has been discussed in Chapter 4. In this method,

group velocity and decay rates were readily evaluated theoretically for each indi-

vidual wave. From the results produced from the FE and WFE methods, it was

observed that both methods produce almost the same dispersion relations and de-

cay rates but the WFE method produces smoother curves, particularly for the group

velocities, more easily. So the WFE method was more relevant for the present study

because it was much faster and more efficient than the FE method.

Also in Chapter 4, the waves measurable on the rail surface were predicted by

quantifying deformation energies at several regions of the rail cross-section. The

most measurable waves which have the lowest decay rates were the vertical bending

wave which has a local deformation in the rail head, lateral bending wave which has

global deformation in the rail head and web and the 1st order web bending wave, re-

spectively. In this prediction for measurable waves, furthermore, it was found that

the longitudinal waves do not have lower decay rates than other types of waves.

This is probably because they normally induce considerable deformations of the rail

foundation which has a large damping loss factor.

In the numerical simulations above, the track was modelled as a rail on a con-

tinuous foundation. This model has two damping components: damping for the rail

and the foundation, respectively. These were set to constants in the simulations but

the parameter study performed in Chapter 4 revealed that the minimum decay rates
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are directly related to the damping of the rail, not of the foundation. So damping

loss factors of rails were measured from several rail samples in Chapter 5 in order to

improve the predicted decay rates. From the structural damping measurement, it

was found that the measured damping loss factor reduces as the frequency increases,

although it does not deviate much from the estimated value of 0.0002 used for the

previous FE and WFE analyses. Introducing this frequency dependency into the

damping of the rail has produced some changes in the predicted decay rates. In

addition it has to be emphasised that the damping loss factors tend not to be signif-

icantly dependent on the different rail geometries or steels. From the recalculated

decay rates, it was identified that the minimum decay rates are about 0.04 to 0.05

dB/m at frequencies between 20. kHz and 40 kHz.

The effective wave types for long range wave propagation, predicted from the

numerical simulations, were validated in Chapter 6 by the experiments carried out

on the ISVR test track. In.this experiment group velocities were measured along the

short section of rail using first an impact hammer and then a piezoceramic trans-

ducer as exciters. It was validated from the measured signals that the measured

group velocities give an excellent agreement with the simulated ones for measurable

waves. It was also found from this measurement that waves do not travel large

distances along the rail foot. In addition, the measured data revealed that a con-

siderable reflection occurs for waves in the web due to welds. In practice, every

track has welds along the rail although at different spacing from those present in

the ISVR test track used in this experiment. They would thus affect the long range

propagation of a wave by reflecting a certain amount of travelling energy.

In Chapter 7, the decay rates were measured on an operational track because

a long section of rail was required to extract them reliably. In this measurement

train-induced rail vibration was acquired for several service trains for measurement

positions at the rail head and web. Through this experiment, features of the train-

induced rail vibration were identified and it was revealed that service trains are very

effective in exciting rail vibration even at high frequencies. Also frequency bands

which are more likely to give the furthest detection range were identified from the

measured data at the rail head and ,web. Consequently, it was validated from this

field test that the measured decay rates coincide very well with the simulated ones

in almost the entire frequency range up to 80 kHz. Furthermore, the characteristics
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of rail vibration induced by the different trains that were measured were almost the

same, despite differences in running speeds and number of coaches. This may be

because the trains measured were all EMUs, mainly of the same class. Nevertheless,

this is a very desirable result in terms of the. practical application. It would be

clearer if more rail responses were measured for other types of railway vehicles, such

as freight trains.

Finally, the question of how far along a rail can vibration travel? could be an-

swered clearly from the simulated and experimental results. The measured minimum

decay rates and their corresponding frequency ranges are

• about 0.035 dB/m at the underside of the rail head around 25 kHz

• about 0.035 dB/m at the side of the rail head around 25 kHz

• about 0.04 dB/m at the middle of the web around 29 kHz.

These outcomes indicate that the most effective frequency range is between 20 kHz

and 40 kHz, not the higher range of 40 kHz to 80 kHz suggested in ref. [11]. In the

latter range, the decay rates measured were 0.04 to 0.06 dB/m at the underside of

the rail head, 0.04 to 0.08 dB/m at the side of the rail head and 0.05 to 0.1 dB/m

at the middle of the web, respectively. It was seen from the field measurement that

an amplitude range of more than 50 dB is measurable in the rail vibration. So in

terms of travelling distance, if a 50 dB level reduction is assumed, the maximum

propagating distances will be about 1.2 km at the rail head and about 1.0 km at the

web, respectively. It has to be noted that high excitation signals were induced by

running trains .at specific frequencies between 20 kHz and 40 kHz. These frequencies

might be different at other sites and with different trains. Their origin is not known.

In terms of monitoring and detecting defects in railway tracks, a diagram such as

the acceleration level versus distance could be used because abrupt level changes due

to rail defects could be observed in this diagram which can be created for each train

running on the track. These sudden level changes will be associated with reflection

and, more likely, transmission characteristics of the defects. So, in Chapter 8, as

a feasible application of the findings on long range wave propagation in rails, wave

reflection and transmission due to cracks in rails was investigated. For this analysis,

the SSE for the semi-infinite rail was formulated and then the combined SSE/FE
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method was developed. In this method, an infinite length track was subdivided into

three elements: two semi-infinite rails modelled by the SSE method and a finite

length rail containing a crack modelled by the FE method. Before introducing a

crack into this track model, numerical errors were examined up to 50 kHz in terms

of the incident power conservation in order to check the reliability of the combined

SSE/FE method. From this investigation, it was observed that the maximum errors

are of the order of 10~4 to 10~3 at frequencies above 20 kHz and are created from

the semi-infinite SSE model, not from the SSE/FE coupling. (However, it was not

possible to predict the level of error contained in each individual wave's reflection

and transmission coefficients in this analysis.) The reason for this error caused by

the semi-infinite SSE has not yet been clearly identified, but it was found that a finer

cross-sectional model gives a reduced error. For two sets of cracks of various sizes,

power reflection and transmission coefficients were estimated for the three waves

that propagate furthest along rails. From this calculation, it was found that none

of these three waves could be used to detect small cracks localized in the rail head

or foot on the basis of train-induced vibration. This result indicates that measuring

rail vibration at a single position on the rail cross-section is not efficient to detect

cracks in rails, particularly small cracks.

9.2 Suggestions for Further Work

Through the work presented in this thesis, it was well identified how far along a

rail vibration can travel. However, there are still several interesting aspects unidenti-

fied in this thesis. In this section some suggestions for future research are highlighted.

In the field measurement, more study and experiment may be necessary to iden-

tify the origin of the rail vibration and to establish why the rail has higher vibration

at several particular frequencies. This would require more rail responses to be mea-

sured during the passage of several different types of railway vehicles, including

freight, as well as more investigation on the wheel/track interaction at high frequen-

cies. Also it will be important, particularly from a practical point of view, to identify

the reason for a sudden energy drop which appeared in the spectrograms measured

from the field test. Measurements at other sites would be required to check whether

these findings are particular to the present site. Those measurements would also be

necessary to investigate the variation of the decay rates for other tracks.
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In the field measurements, the accelerometers were mounted on the rail surface

to detect waves propagating along rails: However, from the practical point of view,

using non-contact type transducers as sensors may give several advantages for the

practical implementation. So, it would be helpful to investigate and search appro-

priate non-contact type sensors.

In the prediction of power reflection and transmission coefficients due to rail

defects, the origin of numerical error needs to be clearly identified to improve the

reliability of the combined SSE/FE method for further application. Also, for the

vertical rail defects modelled in this thesis, it would be possible to replace the FE

section which requires long computation times with a short section of SSE which

only has reduced cross-section. If it is feasible, it would make the work finding ori-

gins of the numerical error easier.

There are various types of rail defects in practical railway tracks, like cracks

growing in the lateral or oblique directions and growing from the interior of the

rail, etc. Further investigation on the reflection and transmission characteristics for

these different types of defects may be necessary. In addition, cracks with asymmet-

ric geometries with respect to the vertical mid-plane of the rail cross-section were

not considered in the crack modelling because only half of the rail cross-section was

modelled in this thesis. It would be required to evaluate reflection and transmission

coefficients for these asymmetric cracks by modelling the entire cross-section of the

rail.

In order to validate the predicted reflection and transmission coefficients, ex-

periments need to be performed on a long section of rail with similar defects to

those used in simulation. Since it would be impracticable to do it on defective

operational tracks for running trains, cracks made artificially, like saw-cuts, in a

long rail specimen may be sufficient for this purpose. Also to improve the detection

performance, it seems to be necessary to use more responses obtained from several

points on the rail cross-section in order to quantify wave mode conversion by us-

ing artificial excitations. In this approach, matrices of reflection and transmission

coefficients for each incident wave would present the mode conversions of the inci-

dent waves, which arise from the presence of cracks. In this situation, it could be
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an important issue how to decompose each mode reliably from the measured signals.
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Appendix A

A Rail Model on Discrete Rail

Pads

The track model with continuous support neglects the discrete nature of the

support. Therefore, a modified track model with discrete support was created here

in order to identify the periodicity effect of a discrete support. Since the contribution

of the sleeper and ballast are limited to the low frequency region below 1 kHz, only

the rail pad was included in this model. The rail pad spacing was 0.6 m. Fig. A.I

shows the FE model with discrete rail pad. The model has a length of 0.3 m and

includes half a rail pad with length 0.072 m. The stiffnesses of the rail pad were

given as below by compensating for the shorter length of the foundation.

Ep,x = EPty = EPtZ = 1.667 x 108 N/m2 x (300/72) = 6.95 x 108 N/m2 (A.I)

Gp,xy = GPtVZ = Gp>xz = 2.23 x 108 N/m2 x (300/72) = 9.29 x 108 N/m2 (A.2)

Due to the presence of the discrete rail pad the symmetric-symmetric and antisymme-

tric-antisymmetric boundary conditions at both ends of the rail segment will pro-

vide different natural frequencies. They will also be different for the symmetric-

antisymmetric and antisymmetric-symmetric boundary conditions. So four differ-

ent combinations of boundary conditions are applied. The FE analysis result shows

that this discrete foundation model has some difficulties to draw dispersion curves.

Firstly, as shown in Fig. A.2, the wavelengths of some modes are not clearly defined

since they have uneven deformation shapes, particularly at,low frequencies. Another

difficulty with this model is that different wavelengths take place in different parts

of the rail as shown in Fig. A.3. :
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Fig. A.I. FE model for a rail on discrete rail pads

r

(a) (b)

Fig. A.2. Two examples of uneven deformation shapes along the rail, (a) 3875 Hz, (b)
5996 Hz.

(a) (b)

Fig. A.3. Two examples of uneven deformation shapes along the rail, (a) 32712 Hz, (b)
57859 Hz.
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Nevertheless, simply by selecting one of the possible values for the cases where

the results are ambiguous, the discrete frequency-wavenumber plots are generated

and compared with the dispersion curves obtained from the rail model with con-

tinuous foundation, as shown in Fig. A.4. From this figure, it is clear that the

contribution of the discrete foundation on the frequency-wavenumber relation oc-

curs only at low frequency, mainly below 10 kHz.

In addition, the damping loss factors predicted from the discrete and continuous

foundation models are compared in Fig. A.5. Unlike the result shown in Fig. A.4,

there is a considerable difference between the damping loss factors from the two

track models. This discrepancy is strongly dependent on the nature of the rail pad's

deformation because the different boundary conditions of the discretely supported

rail model make different deformations of the rail pad. For example, in the con-

tinuously supported rail model, the symmetric-symmetric boundary condition will

create exactly the same deformation shapes as those produced by the antisymmetric-

antisymmetric boundary condition at the same frequency, having 90 ° phase shift in

space. This implies that the rail pad has the same deformation regardless of these

two boundary conditions. Conversely in the discretely supported. rail model the

symmetric-symmetric and antisymmetric-antisymmetric boundary conditions will

exhibit different deformation shapes: one with large pad deformations, the other

with small pad deformations. (See Fig. A.6). Therefore, the damping loss factors

will be altered even at the same frequency. That is the reason why two different

values of damping loss factor, marked ' x ' and '+ ' in Fig. A.5, occur even at the

same natural frequency. However, as depicted in Fig. A.5, the damping loss fac-

tors of the discrete foundation model approach those of the continuous foundation

model as frequency increases. In other words, the difference between two damping

loss factors marked by ' x ' and '+ ' decreases and they tend towards those produced

from the continuous foundation model at high frequencies. The kinds of rail pad

deformations found at low and high frequency are shown graphically in Fig. A.6 and

Fig. A.7 for the different boundary conditions. Since the length of the rail pad was

modelled as 144 mm in this discretely supported rail model, the wavelength for a

shear wave which travels along the rail at 3100 m/s will be shorter than 144 mm

above about 22 kHz. It can be confirmed from Fig. A.5 that the two damping loss

factors become similar above 22 kHz.
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Based on the results shown in Fig. A.4 and Fig. A.5, it could be said that the

contribution of the discrete foundation is limited to the low frequency region. Fur-

thermore, from a practical point of view, if one measures the damping loss factors

for a wave travelling in the rail at a certain frequency, then the result would be some-

where between the two values generated by the two different boundary conditions

of the discretely supported track model which represent standing waves rather than

propagating waves. On the basis of these simulation results, it was considered in this

study that the continuously supported track model could give a reliable outcome.
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250

200

- distributed foundation
discrete foundation (sym.-sym. and antisym.-sym. b.c.)
discrete foundation (sym.-antisym. and antisym.-antisym. b.c.)

30 40 50
Frequency (kHz)

(a)

250

200

100

- distributed foundation
discrete foundation (sym.-sym. and antisym.-sym. b.c.)
discrete foundation (sym.-antisym. and antisym.-antisym. b.c.)

30 40 50
Frequency (kHz)

(b)

Fig. A.4. Comparison of frequency-wavenumber relations for the rail on distributed and
discrete foundations for (a) the vertical and longitudinal modes, (b) the lateral and tor-
sional modes.
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10°
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discrete foundation (sym.-sym. and antisym.-sym. b.c.)
discrete foundation (sym.-antisym. and antisym.-antisym. b.c.)
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Frequency (kHz)
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(b)

Fig. A.5. Comparison of damping loss factors for the rail on distributed and discrete
foundations for (a) the vertical and longitudinal modes, (b) the lateral and torsional
modes.
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railpad

(a)

rail

railpad

(b)

Fig. A.6. Schematic deformations of the rail pad at low frequency for (a) the
antisymmetric-symmetric boundary condition for the model shown in Fig. A.I, (b) the
symmetric-antisymmetric boundary condition for the model shown in Fig. A.I

rail

railpad

(a)

rail

(b)

railpad

Fig. A.7. Schematic deformations of the rail pad at high frequency for (a) the
antisymmetric-symmetric boundary condition for the model in Fig. A.I, (b) the symmetric-
antisymmetric boundary condition for the model in Fig. A.I
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Results Measured on the ISVR

Test Track
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B.I Using an Impact Hammer

B.I.I Time signals

The time signals measured along the rail of the ISVR track are shown below for

the four different points in the rail cross-section.
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Fig. B.I. An example of time signals measured at the top of the rail head along the rail
in the vertical direction, (a) When the point 'a' was excited, (b) when the point 'b' was
excited.
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Fig. B.2. An example of time signals measured at the side of the rail head along the rail
in the lateral direction, (a) When the point 'a' was excited, (b) when the point 'b' was
excited.
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s
S

i •

mmmm
14 16 18

(a) (b)

Fig. B.3. An example of time signals measured at the middle of the web along the rail
in the lateral direction, (a) When the point 'a' was excited, (b) when the point 'b' was
excited.
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Fig. B.4. An example of time signals measured at the top of the foot along the rail in the
vertical direction, (a) When the point 'a' was excited, (b) when the point 'b' was excited.
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(a) (b)

Fig. B.5. An example of time signals measured at the top of the rail head along the rail
in the longitudinal direction, (a) When the point 'a' was excited, (b) when the point 'b'
was excited.
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Fig. B.6. An example of time signals measured at the side of the rail head along the rail
in the longitudinal direction, (a) When the point 'a' was excited, (b) when the point 'b'
was excited.
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Fig. B.7. An example of time signals measured at the underside of the rail head along the
rail in the vertical direction, (a) When the point 'a' was excited, (b) when the point 'b'
was excited.
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B.I. 2 Spectrograms

The averaged spectrograms along the rail in ISVR are shown below for the four

different points in the rail cross-section.
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(a)

(c)

(b)

(d)

(e) (f)

Fig. B.8. Spectrograms measured at the top of the rail head in the vertical direction
at different positions along the rail by using impact hammer. White lines indicate wave
ridges selected for the calculation of decay rate described in Section B.3.
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(a)

(c)

(b)

(d)

11 12 13 14

(e) (f)

Fig. B.9. Spectrograms measured at the side of the rail head in the lateral direction at
different positions along the rail by using impact hammer. White lines indicate wave ridges
selected for the calculation of decay rate described in Section B.3.
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(a) (b)

(c) (d)

(e) (f)

Fig. B.10. Spectrograms measured at the middle of the web in the lateral direction at
different positions along the rail by using impact hammer. White lines indicate wave
ridges selected for the calculation of decay rate described in Section B.3.
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(a) (b)

(c) (d)

15 16

(e) (f)

Fig. B.ll. Spectrograms measured at the top of the rail foot in the vertical direction
at different positions along the rail by using impact hammer. White lines indicate wave
ridges selected for the calculation of decay rate described in Section B.3.
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(a)

(c)

(b)

(d)

3 4 5

(e) (f)

Fig. B.12. Spectrograms measured at the top of the rail head in the longitudinal direction
at different positions along the rail by using impact hammer.

209



Appendix B. Results Measured on the ISVR Test Track

(a)

(c)

(e)

(b)

(d)

(f)

Fig. B.13. Spectrograms measured at the side of the rail head in the longitudinal direction
at different positions along the rail by using impact hammer.
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. B.14. Spectrograms measured at the underside of the rail head in the longitudinal
direction at different positions along the rail by using impact hammer.
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B.2 Using Piezoceramic Transducers

B.2.1 Time signals

The time signals measured along the rail of the ISVR track are shown below for

the three different measuring points in the rail cross-section.
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Fig. B.15. An example of time signals measured at the top of the rail head along the rail
in the vertical direction, (a) When the point 'a' was excited, (b) when the point 'b' was
excited by a PZT.
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Fig. B.16. An example of time signals measured at the side of the rail head along the rail
in the lateral direction, (a) When the point fa' was excited, (b) when the point 'b' was
excited by a PZT.
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Fig. B.17. An example of time signals measured at the middle of the web along the rail
in the lateral direction, (a) When the point 'a' was excited, (b) when the point 'b' was
excited by a PZT.
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B.2.2 Spectrograms

The averaged spectrograms along the rail of the ISVR test track are shown

below for the three different points in the rail cross-section.

214



Appendix B. Results Measured on the ISVR Test Track

(a)

(c)

(b)

(d)

(e) (f)

Fig. B.18. Spectrograms measured at the top of the rail head in the vertical direction at
different positions along the rail by using PZT. White lines indicate wave ridges selected
for the calculation of decay rate described in Section B.3.
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(a) (b)

(c) (d)

(e) (f)

Fig. B.19. Spectrograms measured at the side of the rail head in the lateral direction at
different positions along the rail by using PZT. White lines indicate wave ridges selected
for the calculation of decay rate described in Section B.3.
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. B.20. Spectrograms measured at the middle of the web in the lateral direction at
different positions along the rail by using PZT. White lines indicate wave ridges selected
for the calculation of decay rate described in Section B.3.
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B.3 Extraction of Decay Rates

It seems that the ISVR test track is not long enough to measure decay rates

reliably, particularly for the slowly decaying waves of interest. In this section, nev-

ertheless, it is attempted to extract the decay rates of the main waves propagating

from the data measured. To detect waves propagating along the rail in the mea-

surement, multiple sensors were attached by means of the beeswax; this gives a less

reliable response at high frequencies. Therefore, sensor calibration is an important

factor which can affect the levels of decay rates determined. In order to eliminate

each sensor's frequency-dependent sensitivities, the same measurements were per-

formed twice by exciting at both ends of the rail as depicted in Fig. B.21. In the

measurement using PZTs, the excitation at both ends of the rail was applied in the

same manner. Calibrated decay rates between any two sensors can be obtained from

the two level differences between them created by the excitations at both ends of

the rail.

The analysis procedure used for the decay rate extraction is briefly presented

in Fig. B.22 as a flow chart. Since the rail was excited at both its ends, i.e., a and

b as shown in Fig. B.21, the decay rates between any two sensors i and j , can be

predicted by

~ Aajif)} + {Abjif) ~ Abi (B.I)

where Aaj denotes the output level in dB measured at point j when the rail is excited

r

Accelerometers
(PCB 352C22)

6 5

8 Ch. Data Acquisition Unit
(Data Physics Corp.)

Signal Analyser
(PC)

Impact Hammer n

(PCB 0 8 6 0 8 0 ) ^ - - ; ^

1

rail I <•: Welding Line

r 5.05 m (8) • * -

3.17 m ' 3.19 m 3.18 m ' 3.09 m 3.42 m

8.38 m (13 sleepers + 0.2 m) . 16.5 m (25 sleepers) 7.92 m (13 sleepers)

(a) -

Fig. B.21. Experimental setup for decay rate extraction using an impact hammer.
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< For the excitation at 'a' > < For the excitation at 'b' >

Select two measurement points, i and/ Select two measurement points , i and/

Generate averaged spectrograms
for the direct wave signals

Generate averaged spectrograms
for the direct wave signals

Find maximum levels at each frequency
from the averaged spectrograms

AJf).AaJ{f)

Find maximum levels at each frequency
from the averaged spectrograms
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maximum levels at each frequency
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AJD -4//)
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/

i and/'

))]

Fig. B.22. Flow chart for the decay rate calculation

at a, similarly for b and dij is the distance between two sensors i and j . In detail,

the uncalibrated output level measured at position i, Aai, can be expressed as a

sum of the calibrated output, Ac
ai, and the calibration error,'Cj, in dB scale. Then

Eq. (B.I) can be rewritten as

1
[(Ac

ai + &) - (Ac
bj + Cj) - (A°bi + Ct)]

(B-2)

Therefore, it is clear from Eq. (B.I) and Eq. (B.2) that any calibration error in sen-

sor i is eliminated by taking the level difference Aa% — AM- For instance, Fig. 6.6(b)

shows that the accelerometer located at position 1 gives a smaller response to the

same input signal than the others. However, these characteristics of each sensor are

eliminated in the process of the decay rate extraction. Finally the decay rate was

determined by means of the median of Ay for different combinations i and j .

It should be noted that, even for the maximum distance between sensors, 16.5 m,

decay rates of the order of 0.06 dB/m correspond to a 1 dB attenuation in that dis-

tance, which is likely to be at the limit of what can be measured reliably.. Also to

reduce the measurement error, the decay rates calculated from two adjacent sensors

are neglected because the distance between them (i.e., about 3 m) does not seem to
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be long enough.

In order to be able to predict a propagation distance from the measurement

spectrograms, the wave which has the lowest decay rate at each frequency has to

be identified. As seen in the spectrograms in sections B.I and B.2, however, there

are several waves which have different decay rates. The waves which are expected

to have the lowest decay rate are selected from the spectrograms on the basis of

comparison with the WFE analysis results. For instance, the simulated decay rates

in Fig. B.23(a) indicate that the green and red coloured waves have the lowest

decay rates in the range 7 kHz to 15 kHz and 15 kHz to 60 kHz, respectively. The

corresponding group velocities of these waves predicted are presented in Fig. 6.9(b).

By comparing them with the measured group velocity diagrams, the waves having

the slowest decay rates were selected from the measured results. The selected wave

ridges for the calculation of decay rate are marked in the spectrograms in sections

B.I and B.2 with white lines. Below about 10 kHz, the ridge was created by simply

picking the maximum values so it will be less reliable.

The decay rates extracted from the data measured on the ISVR test track are

shown in Fig. B.23. In this figure, the decay rates obtained from the experiment

using PZT were confined to frequencies above 30 kHz (Fig. B.23(a) and (c)) and

40 kHz (Fig. B.23(b)), because they will be less accurate at low frequencies. For the

same reason, in frequencies between 30 kHz and 42 kHz where two decay rate results

are present, the decay rates measured from the impact hammer test are expected to

be more reliable than those obtained by using PZTs.

It can be seen from Fig. B.23(a) that the minimum decay rate of 0.04 dB/m

seems to occur between 20 kHz and 35 kHz at the top of the rail head. Also

Fig. B.23(b) shows that the minimum decay rate of 0.05 dB/m seems to appear

between 20 kHz and 40 kHz at the side of the rail head. Note that the measured

minimum decay rate, 0.02 dB/m, shown around 25 kHz does not seem to be reliable

because the decay rate at that frequency would be vulnerable to noise as anticipated

from spectrograms measured. In Fig. B.23(c), the measured and predicted decay

rates are shown up to 80 kHz at the middle of the web. According to the experi-

mental results, the measured minimum decay rate on the web is 0.07 to 0.08 dB/m

and occurs at around 20 kHz and around 45 kHz.
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0 10 20 30 40 50 60 70 80 0 10

Frequency (kHz)
30 40 50 60 70

Frequency (kHz)

(a) (b)

Frequency (kHz)

(c)

Fig. B.23. Comparison of measured and predicted decay rates (a) at the top of the rail
head in the vertical direction, (b) at the side of the rail head in the lateral direction, (c)
at the middle of the web in the lateral direction. The solid blue line was obtained from
the impact hammer test and the solid red line was obtained from the measurement using
the PZT, the other lines show the predicted decay rates produced by the WFE analysis.

As revealed in this figure, the measured decay rates present a very similar trend

to the simulated ones but there are some variations in levels between them. That

is, the measured decay rate is higher than the predicted ones in general. Moreover

the measurements show considerable variation with frequency not found in the sim-

ulation. Accordingly, it can be said that the decay rates measured at the ISVR test

track seem to be less reliable because the ISVR test track is too short to measure

low decay rates precisely.
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C.I Time Signals
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Appendix C. Results Measured on an Operational Track
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Fig. C.3. Time signals measured for (a) train 7, (b) ambient 1, (c) ambient 2.
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C.2 Spectrograms
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Fig. C.4. Spectrograms for train 2. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.5. Spectrograms for train 3. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.6. Spectrograms for train 4. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.7. Spectrograms for train 5. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.8. Spectrograms for train 6. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.9. Spectrograms for train 7. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.10. Spectrograms for ambient noise 1. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).
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Fig. C.ll. Spectrograms for ambient noise 2. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).

235



Appendix C. Results Measured on an Operational Track

C.3 Acceleration Levels versus Distance
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Fig. C.12. Variations of acceleration levels versus distance at each measuring point for (a)
train 2, (b) train 3, (c) train 4, (d) train 5, (e) train 6 and (f) train 7. At each channel,
the selected frequencies are around 29 kHz (ch.l), around 25 kHz (ch.2 and 4) and around
36 kHz (ch.3)
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D.I For a Crack Growing Down from the Top of

the Rail Head

Fig. D.I. A crack model growing down from the top of the rail head.

1U

10"1

10"*

10"*

•» 10"'

f,o-
10"*

- . 0

10""

- 1

°K/ \ / i A A
p » /\ A A A A A r
I / \ / \ /u A /^^l A /
l l j ^ v VV v v] V V *
1

:

0

—e—2
—6—3

—•— 5
-^f— 6
— * — 7
— * - 8

9

10 15 20 25 30
Frequency (kHz)

40 45 90 0 5 10 15

(a) (b)

(c)

Fig. D.2. Errors predicted from the connected SSE/FE rail with the crack shown in
Fig. D.I for (a) the vertical bending wave in the rail head, (b) the lateral bending wave
in the rail head, (c) the Is4 order web bending wave.
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D.2 For a Crack Growing Up from the End of the

Foot
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Fig. D.3. A crack model growing up from the end of the foot.
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Fig. D.4. Errors predicted from the connected SSE/FE rail with the crack shown in
Fig. D.3 for (a) the vertical bending wave in the rail head, (b) the lateral bending wave
in the rail head, (c) the 1st order web bending wave.
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