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In order to understa;nd long range wave propdgation in railway tracks, it is re-
quired to identify how far vibrations can travel along a rail. To answer this question,
the main wave types that propagate along rails and their attenuation characteristics
are determined as a function of frequency. In this work the effective wave types and

their decay rates are investigated for frequencies up to 80 kHz.

Two numerical methods, the conventional finite element method and the wave-
number finite element method, are utilized to predict the predominant wave types
and their decay rates for a rail on a contlnuous foundation. From these simulations,

-the waves that are measurable on varlous regions of the rail cross-section are 1dent1—
'ﬁed. Also, to improve the simulated results, the frequency dependent damplvng loss
factor of a rail has béeﬁn measured up to 80 kHz on sevefal short rail samples. The .
predominant wave types predicted have been validated by experiments pérformed
on a short test track. The measured group velocities present very good égreemen’c
with the predicted ories so that it is identified Wflich wave types predo'minantly prop;
agate in -Vafious regions of the rail_croés—section. Another measurement has been
performed on an operational track to validate the simulated decay rates. In this
experiment, train-induced rail vibrations Weré acquired for several trains running
over a long section of rail. The measured decay rates are presented for comparisdn

with the output of the simulations and good agreement is found ibetween them.

A feasibility study is carried out of wave reflection and transmission due to
cracks vir‘l»vr’ails. These are estimated for various cracks of progressively larger s}izevby
- means of numerical simulation. Through this simulation, the relative efﬁéiéncy of

- various incident and reflected waves for detecting _defebts in rails is determined.
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A list of symbols is presented, although most of them are defined in the text.

List of Symbols and ‘Abbreviat_ions

Vectors and matrices are denoted by bold letters.

complex conjugate
Hadamard product, an element-wise multiplication of two matrices
norm of vector '

vector created from its argument’s diagonal terms

transpose

Hermitian transpose (transpose and complex conjugate)
wave amplitude vector o

phase velocity ‘

group velocity

phase velocity of longitudinal wave |

frequency

blocked force

acceleration of gravity '

unitvimaginary number

stiffness

dynamic stiffness of rail pad

damped dynamic stiffness of rail pad

half length of finite waveguide structure

thickness of structure |

number of nodes on region j of FE or WFE model
subscript for rail pad

subscript for rail- .

power reflection coefficient of wave 7 for an incident wave j
relation between stress and strain

time _

pQWer transmissiori coeflicient of wave ¢ for an incident wave j

displacements in Cartesian coordinates

Cartesian coordinates




A '~ cross-sectional area

A matrix used in WFE analysis

D¢ ' dynamic stiffness matrix of combined SSE/FE model

Dy dynamic stiffness matrix of FE model

Dp .+ condensed dynamic stiffness matrix of FE model

Ds dynamic stiffness matrix of WFE model

E Young’s modulus |

E | complex Young’s modulus ,
E(x) diagonal matrix consisted of e=7** for all eigenvalues of &

= [%_diag(E(z))diag(E(z)) dz
«force at boundary

function of its argument
external force vector

shear modulus

wave incident

identity matrix ‘

= Ky(—jr)? + Ki(—jk) + Ko
K,, K1 , Ko stiffness matrices of WFE model

RE S Qm iy

Kg “damped stiffness matrix of WFE model, = K(1 + jn)
Ky stiffness matrix of FE model |
L length of FE model
M mass matrix of WEFE model
M f.e © mass matrix of FE model
N number of degrees of freedom in WFE model
VNS ‘ number of nodes on rail surface of FE or WFE model
- Qzy | energy ratio for the z directional deformation in region j
of FE or WFE model
R waves feﬂected _
S ‘ contacting area between railva'nd foundation in FE model
T o waves transmitted |
V(z) | displacement of cross-section at =
W(z,1t) energy car'ried by waves propagating in space and time
w nodal displacement vector at boundaries o
Xm ~ full scale level of A/D converter
X




'ﬁ material damping parameter input to ANSYS

5 step size of quantifier in A/D converter

€ strain ,

Emn ‘matrix used in WFE analysis

Cn modal damping ratio of the n**» mode of FE model

n | damping loss factor

Mn “modal darﬁping loss factor of the n** mode of FE model, = 2@1
K wavenumber ' ”

Kq damped wavenumber

K4 wavenumber travelling in the positive z direction '
K wavenumber travelling in the negative z direction

A wave léngth- |

v o Poisson’s ratio

P density |

o . Stress

On imaginary part of wy,

x,¥,€  displacements of cross-section in Cartesian coordinates

w angular frequency
Wn, natural frequency of the n!* mode of FE model
Wi n damped natural frequency of the n" mode of FE model
A decay rate in dB/m
Af increment of discrete frequency
Ak~ ihcrement of discrete wavenumber
© matrix used in WFE analysis ’
Il power contained in incident wave j
» power contained in reflected wave ¢ | _
. power contained in transmitted wave %
s matrix consisted of all eigenvectors of &
®;,. . eigenvector of FE model "
i? eigenvector of WFE rhogl/el (mode shape of cross-section)
&, eigenvector of WFE moziel for '
b_ eigenvector of WFE model for K
<i? s e'i\g'e.nvec'tor at nodes on rail surface of WFE model

xi




33 left eigenvector of WFE model
dpr right eigenvector of WFE model
a2 = —jk®

A/D. analdgue to digital

DS dynamic stiffness
EMAT electromagnetic acoustic transducer
FE finite element _
PZT piezoceramic transducer
SE spectral element '

SFE spectral finite element
'SSE spectral super element
WFE  wavenumber (or waveguide) finite element
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Chapter 1
Introduction

1.1 Background -

The structural integrity of rails is a major concern for the railways of the world.
Even ‘thougAh there are several rail inspection techniques and rail inspect-ions are
performed routinely, they do not yet give the desired reliability. The various types
of NDE (Ndn-Destructive Evaluation) rail inspecﬁon techniques that are currently

used or could be used in the future are outlined in ref. [1].

Ultrasonic waves have been used for the inspection of rails for many years. The
“most commonly used ultrasonic testing technique is pulse-echo, where sound in the
megahertz frequency range is introduced into a test object and reflections (echoes)
_returned from internal imperfections or from the geometrical surfaces are analysed.

This conventional method, however, has some drawbacks. They are associated with

the attenuation characteristics and limited volumetric coverage. Conventional ul- _

trasonic waves with wavelengths of a few millimetres can travel only a few hundred
millimetres in any direction within a rail. Hence these ultrasonic waves can only be
used to inspect the rbegion‘of a rail close to the transducer locétioh. Moreover this
tes’ping is limited by the speed of inspection. Dedicated ultrasonic ihspeéfidn trains
which have onboard devices can inspect the two rails with one or several ultrasonic
probes at train speeds of 50 to 100 km/h [2, 3]. |

" On the other hand, the use of r_élatively’ low freqliency -ultfaso_nic Waves, So_rri_e—

times called ‘guided waves’, has been atte_mpted recenﬂy _fof long i':_inge inSpection of
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rails: A brief discussion on the history, recent applieation and potential of this type
of testing is presented in ref. [4]. The applicatiori of these waves for rail inspection

is discussed in refs [5-10]. In the low ultrasonic frequency range, a rail becomes an

effective Waveguide due to the presence of a boundary, i.e., the rail surface, "which.

traps the wave energy and makes it propagate efficiently along the rail. Hence these
waves, in the tens of kilohertz frequency range, enable a large area of structure to

be tested from a single transducer position, thefeby avoiding the time consuming

scanning required by conventional ultrasonic methods. These waves are particularly

sensitive to transverse vertical defects since they travel along a rail. A further ad-
- vantage is that at the frequencies used, attenuation which occurs in weld material
is very low and hence weld materidl can be readily penetrated and tested. These
benefits make this testing using relatively low frequency ultrasonic waves very at-
tractive. This technique is used effectively to inspect pipe systems but application
to rails has been limited because of the presence of many possible wave modes in
rails, most of which are dispersive. Also there has been little study on the wave
propagation along rails r‘egarding the effect of the rail support and damping loss
factors of a railway track. Furthermore, it has not yet been clea,fly specified in the
literature which wave types and which frequency range would be most effective for
the propagation over long distances in the railway track. It is appérent that the

answers to these questions are highly related to the sources of damping in the track.

~ The work in this thesis aims to investigate the propagation of waves in railway
“tracks in the tens of kilohertz frequency range. It focuses towards addressing the
following fundamental question that needs to be answered before anything else. How
far along a rail can vibration travel? This simple but essential question requires three
sﬁeciﬁc answers: in which wave type, at which region of a rail cross-section and at
“which frequencies is it most effective. The frequency range considered in this study
spans up to 80 kHz based on the findings in ref. [11]. In fact, at higher frequencies,
e.g., around 80 kHz, a railway track may behave less clearly as a waveguide, because
the Wavelength becomes shorter than the dimensions of the rail cross-section. For

instance, the wavelength of a shear wave in steel will be about 38 mm at 80 kHz,

" which is about a 'half of the width of the railhead and a quart’er' of ’ghe rail height.

Moreover, as frequency increases it can be anticipated that _spat-ial attenuation will
increase. The frequency range of interest is therefore lin_likeiy to extend beyond
80 kHz and will probably be limited to less than this. Nevertheless, in this thesis
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the frequency range is chosen simply be following the findings in the literature,

discussed i’ Chapter 2.

1.2 Structure of the thesis

As a first step towards the goals established above, in Chapter 3, the conven-
tional finite element method is employed to analysepthe rail. :Using this- method,
a relevant cross-sectional model is specified and then a track modei is set up as a
rail on a continuous foundation. To simulate the waves in an infinite rail, a short-
length of the track.is considered with symmetric and/or antlsymmetrlc boundary
~ conditions at both ends of its length. Modal analysis for this short length of track
will. produce natural frequencies and their mode shapes of the rail section. These
results are used to obtain the frequency-wavenumber relation and the deformation -
profiles of each wave. The FE analysis results also exhibit the effect of the damping
in the track model on prepagating waves in term$ of modal damping. These can

also be converted into the form of a spatial decay rate.

Although the dispersion relations and decay rates are predictable using FE anal-
ysis, it has several drawbacks for dealing with wave propagation in structures. So, a
two-dimensional finite element method called the wavenumber finite element (WFE)
method is used as an alternative to the conventional FE method in Chapter 4. This
~ method only requires cross-sectional modelling of a railway track and imporses a
sighiﬁcantly smaller computational burden than the classical FE method; both in
terms of time and memory. Since the increment of discrete Wavenumber can be
specified arbitrarily, unlike the FE method, this method enables dispersion curves,
group velocities and .decay rates to be evaluated on a finer grid. The results pro-
duced by the WFE method will be compared initially with those simulated by the
FE method. Furthermore, since dyna‘mic responses are usually measured normal to
the rail surface, waves that are measurable at various pos1t10ns on the rail surface
are identified usmg the energy distributions around the rail surface quantlﬁed from

the predlcted displacements.

In the FE and WFE simulations, the structural damping'ldss factor of a rail is
assumed initially simply as a constant value for the entire frequency range. However

dampmg is expected to be a frequency-dependent quantlty rather than a constant
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So, in order to improve the simulation results, in Chapter 5 structural damping loss
factors are measured up to 80 kHz from impact hammer tests conducted on rail
samples of three different types. Then improved predictions of the decay rates are

" found using the WFE miethod with the measured damping loss factors for the rail.

In order to validate the predominant wave types simulated, twe experiments are
conducted up to 80 kHz on a test track, of approximate length 32 m, using different
input excitation schemes: an impact hammer and piezoceramic transduéers (PZTs).
Time-frequency analysis is applied to the measured data in order to visualize disper-
" sion relations of the measured waves. The results are compared with the simulated
ones in terms of the group velocity and the various wave types are identified. All

these experimental results are described in Chapter 6.

To be able to validate thé simulated decay rates, it is neceséary to carry out a
measurement over a longer section of rail. One such experiment is carried out in
» Chapter 7, on an operati}onal' track, to exﬁract decay rates over a long section of
rail. Also, from a ;;ractical point of view, it is apparent that there is great ‘merit
if operational trains can be used as excitation sources for the long range inspection
~ of a rail instead of using external excitation. Hence, to determine whether train
excitation can be used or not, its frequency characteristics should be identified in
an operatiohal railway. This will show how effectively the high frequency waves
are generated by a running train and how they propagate in a rail, particularly
between 20 kHz and 40 kHz where the minimum decay rates are found to occur.
In this experiment rail vibrations are measured for seven trains at three different
" positions on the rail cross-section. These measured data will allow visualization of
" how far waves can travel along a rail and at which freqliencies. Finally, the mea-

sured decay rates are compared with the simulated ones produced by WFE analysis.

By uéing waves which propagate furthest'in_rail‘s as incident waves, it may
be achievable to detect rail défects at long distances by monitoring their reflected
and/or transmitted powers. In Chapter 8, as a feasibility study, wave reflection and
tfanémission dué to cracks in rails are estimated by means of a newly developed
numerical method, named the comb_inéd spectral super element and finite element
(SSE /FE) Iﬁethod. In the litefature,’ a similar method, called_ the combined spectral.

element and finite element (SE/FE) method, has been used tb_vinvestigate local non-
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uniformities in beam structures at relatively low frequencies. This SE/FE method
is extended here to more complex railway track struét_ures by introducing the SSE
method, in placé of the SE method. "To check the reliability of this method, nu- -
merical errors occurring are examined for two Hmiting cases, i.e., homogeneous and-
broken rails, in terms of the power conservation. Then, for various cracks of progres-
sively increasing size, power reflection and transmission characteristics are estimated
by the combined SSE/FE method. Through this simulation, the relative efficiency

of the incident and reflected waves chosen are discussed for detecting defects in rails.

. Finally, the conclusions drawn from each chapter are summarized in Chapter 9

and some possible further work-is briefly suggested.

1.3 Summary of original contribution
The original contributions of this thesis are:

e prediction of dispersion relations for the waves propagating along the rail at
frequenc_ies up to 80 kHz by means of the FE and WFE methods, including

the contribution of the rail pad as a continuous foundation (Chapters 3 and

4)

e prediction of the decay rates for each ind'ivi_dual wave propagating along the
railway track up to 80 kHz by using FE and WFE analyses (Chapters 3 and
4)

e prediction of waves that are measurable on the rail surface by introducing a
new metric which quantifies deformation energies at: several regions of the rail

cross-section (Chapter 4)

e identification of the contribution of the damping in the rail and rail pad to the

decay rates of each individual wave (Chapter 4)

e prediction of the effect of foundation stiffness on each wave’s decay rate (Chép—

. ter 4)

e measurement of dam'p.ing'loss factors of rails as a function of frequericy up to
80 kHz (Chapter 5) | |
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identification of the most effective wave types,-decay rates and corresponding

frequency ranges for long range wave propagation in rails (Chapters 6 and 7)

measurement of train-induced rail vibration on an operational track for several

running trains up to 80 kHz (Chapter' 7) -

 development of the SSE for semi-infinite waveguide structures (Chapter 8)

development of the combined SSE/FE method to investigate wave propagation

in rails with local non-uniformities (Chapter 8) -




Chapter 2
Litera‘ture’ Review

21 ‘Wave Propagation in Railway Tracks

In order to understand the dynamic behaviour of a railway track, above all
app’ropriet_e_traék models are required. Various theoretical models for the dynamic
behaviour of railway track are outlined in ref. [12]. There are several difficulties in
dynamic track modelling. The rail itself has a complex geometry which causes cou-
pling phenomena between the various prop'aga,ting waves. At low frequency, below
500 Hz, a rail can be Cons1dered as an Euler- Bernoulh beam. However such a model
is no longer adequate for the response at higher frequencies as the shear deformation
of the rail be¢omes increasingly important. The Timoshenko-beam maodel, involving
shear deformation, expancls the reliable frequency range only up to around 2 kHz for.
the vertical and longitudinal waves. The most important hypothesis of these beam
theories is that the cross-section remains undeformed while undergoing vibrational
movement. This hypothesis is not valid at higher frequencies. Moreover the pres-
ence of.supports, i.e., rail pads, sleepers and ballast, etc. (Fig. 2.1) which are also

periodically spaced along the track, makes it more difficult to model.

In terms of the generation of noise by a tleain in the fré_quency raug_e 100 to
5000 Hz, useful theoretical models are a ‘continuously supported beam uiodel" and
‘periodically supported beam model’, using Timoshenko- beam theory for the rail
-[13]. The support in these models consists of a resﬂlent layer (the rail pads) a mass
layer (the sleepers) and a second resilient layer (the ballast) At hlg_her frequencies,

however, the rail cross-section deforms and many higher order wave types exist in the
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ot «— rail [-’“J

Slfo e
(- **5:)/ fastener —»/ > 5

sleeper

Fig. 2.1. Components of a railway track.

rail. Experimental investigations show that the cross-section deforms significantly
above about 1500 Hz [14]. This cross-sectional deformation has to be taken into
account for an accurate evaluation of the dispersion properties. A model including
cross-sectional deformations was developed by Thompson [14] with the rail standing
on a continuous support. Thompson considered an infinite rail as a periodic struc-
ture of arbitrary period and introduced the short periodic segment made up from

finite elements. The advantages and disadvantages of these three track models were

compared in ref. [13].

For the purpose of long range track inspection, Rose et al. [7,11] suggested,
based on experimental work, that the frequency range up to 80 kHz should be con-
sidered and that the most effective range is between 40 kHz and 80 kHz. Since
| no exact theoretical model exists for wave propagation in complex cross-sectional
profiles, such as a rail, covering the frequency range up to tens of kilohertz, the
conventional finite element (FE) method was employed to predict the mode shapes
and dispersion relations for a free rail [15]. The simulation results showed that sev-
eral tens of different wave types are sustained within this frequency range, making
the dispersion curves very complicated. Because of that, there has been little work
aimed at identifying effective wave types and decay rates of waves propagating along

railway tracks.

Although the conventional FE method is a useful tool, it has several drawbacké
for dealing with wave propagation in structures. As well recognised already, this
FE method requires very large models for high frequency analysis. Hence it costs
long computing times and large computing facilities. Furthermore, very consider-
able manual post-processing has to be performed to build dispersion curves from

the FE analysis results. That is required because each natural frequency and the
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correéponding mode shape obt\ained from FE analysis needs to be checked in order
to determine their wavenumbers. Another disadvantage is that the group veloci-
ties can only be roughly estimated from the discrete dispersion curves by means
of the finite diﬁ"erencé approximation between two discrete points, which can intro-
duce significant errors, as will be seen in Chapter 3..Due to the difficulties stated
above, repeated use of this conventional FE method for ahy input parameter changes
should be av01ded because the same time- consummg process would be required for

each analy51s

A number of methods to reduce the riumber of degrees of freedom and in-
" crease the computational efﬁciency have been presented in the past, for example,
the spectral finite element method [16-18], the dynainic stiffness method (or spec-
tral element method) [19], spectral super element method [20] and methods using a

periodic structure theory [14, 21, 22].

For mﬁmte length wavegulde structures a two- dlmensmnal finite element tech-
nique for modelhng the wave propagatlon was 1ntroduced first by Aalami [23] as an
alternative to the conventional FE method. In this method, an exact wave solution
was utilised for the propagating direction instead of making finite element meshes
and using shape functions along this direction. Two.decades later Gavric [24] appﬁed
this method for computing the dispersion curves and mode shapes in undamped rails
up to 6 kHz and good agreement was found between the predicted and experimen- |
tal results. This technique is referred to in the literature as the wavenumber (or
waveguidev)' finite element (WFE) method [25-27]1. One of its great advantages is
that different wave types are readily identified and can be anaiysed directly in terms
of their wavenumbers, enabling a physical interpretation of the wave propagation in

the structure under investigation.

For high frequency analysis, this method has been used by several authors for
track modelling, because it can compute waves of very short wavelengths. Cawley
and Wilcox et al. [6,8;10] used this method to- predict dispérsion curves and wave
| modes up to 50 kHz for the purpose of rail testing. Also, Hayashi et al. [28] pre-

dicted dis_persibn relations for a free rail up to 100 kHz. Among multiple propagating

1In [28,29] it is also called the semi-analytical FE (SAFE) method.




- Chapter 2. Literature Review

waves, they highlighted waves that have large deformations at the rail head when a

point load is applied at the top of the rail head. Recently, Finnveden [27] formulated

group velocities theoretically for each wave solution obtained by this method. This
: \

is a significant step towards application of this method to predict the decay rates

because the group velocity is one of the crucial quantities required for it. However,

- most of the previous work was confined to analysing dispersion relations and group

velocities in undamped free rails.

Most recently, Bartoli et al. [29] presented decay rates for a damped rail, with-
out considering its found‘ation, up to 50 kHz using this method. In this prediction,
they introduced an energy velocity, rather than the group velocity, to obtain de-
cay rates for damped media because the d_eﬁn‘ition. of groﬁp' velocity is not valid in
the damped case. However, éince they disregarded the cdntribution of the railApad
which has a large damping, the predicted decay rates seem to be unrealistic from a
practical point of view. Furthermore, they failed to describe the behaviour of each
wave with respect to frequency and. did not present which type of waves propagate

furthest along the rail.

For damped Wavegilide structures, Nilsson [26] derived damped W_ax}enumbers
of individual propagating waves using this WFE method to predict an input power

flowing into the structure. In this formulation, damped wavenumbers are easily

found from the dlamping.loss factor and group velocity that is obtained from' the

undamped case. In this thesis, decay rates are evaluated from damped wavenumbers

of individual waves, as presented in ref. [26].

2.2 Experimental Analysis of Wave Propagation
_in Rails | |

While the various track models and numerical methods exist to predict the vi-
bration propagating in rails, experimental studies are particularly challenging due

to the multimodal and dispersive behaviour of the waves at high frequencies.

In terms of wheel-rail rolling noise, Vincent and Thompson [30] hav’e.m_ea-'

sured accelerances and decay rates on several operating tracks over the range 100 to

10




Chapter 2. Literature Review

. 5000 Hz by means of impact excitation using an instrumented hammer. These ex-
perimental results were compared with the simulation results presented in ref. [13].
~ This comparison showed that the track model with a continuous support gives a
good agreement with measured results at higher frequency That is because the
per10d1c1ty effect of a discrete support does not occur strongly at high frequencies.
In addition; Th_ompson [31] developed an experimental analysis technique, based

on the Prony method [32], which can produce dispersion curves and decay rates of

propagating waves by using measured data taken on track. However, this method

is less suitable for the wave propagatibn_extending up to 80 kHz because it requires
‘multiple, equally spaced measurement points along the rail and around the cross-
section. Moreover the spacing of the measurement points along the rail and the
number of the measurements in the cross'-secf_ion limit the highest measurable fre-

quency and the maximum number of measurable modes.

As an alternative experimental method for the high frequency region, Lanza
di Scalea and McNamara [9, 33] applied an impulse excitation to the rail and mea-
sured the direct and echo signals reflected from the.opposite end of a 7.3 m long rail
section. Comparing the direct and reﬂected signals, they extracted group velocity
curves and the frequency-dependent attenuation up to 50 kHz for a free rail using
time-frequency analysis. However, the contribution of the rail fastening, particularly
the rail pad, to the decay rates and the possibility ef energy loss or mode conversion

resulting from the reflecting end of the rail were not considered in this experiment.

'Hayashi et al. [28] measured phase velocity diagrams up to 100 kHz on a free rail
of about 2.4 m length. In this experiment they used a toneburst type contact trans-
ducer having a 50 kHz centre frequency as an exciter and a non-contact air-coupled
transducer of 60 kHz centre frequency as a receiver.  Waveforms were collected at
200 points in 10 mm increments along the rail in order to cover frequencies up to
100 kHz and a two-dimensional Fourier transform techriique was applied. However,
since the transducers used in this experiment have a narrow operating frequency
range, the measured results seem to be less reliable at frequenmes away from their
centre frequenmes. Also this measurement technique is not suitable for practical
application because it requires a large number of measurement points. Rose et al.

[7,11] suggested, 'based on their experimental work, that waves can travel more

than 2 km along the rail within the frequency range between 40 kHz and 80 kHz.

11
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However, they did not clearly specify the decay rates of the waves in this frequency
range. Instead, they measured waveforms at the top of the rail head at various
- distances along a free rail of length 10.7 m by using 60 kHz EMATSs (electromag-
netic acoustic transducers) [7]. From this measurement they found a decay rate of
about 0.56 dB/m at around 60 kHz. However, detailed informaiion on the wave -
types measured and the contribution of the rail foundation to decay rates in the
high frequency region is lacking in both these previous studies.

Wilcox et al. [6] developed équipment using a ;"ansducer array mounted along
" the length of the rail, as well as around the perimeter of the rail cross-section, to ex-
cite and detect desired wave modes effectively for rail inspection. Gurvich et al. (34]
also developed an ultrasonic flaw detector, which has a line array of 12 probes placed -
along a rail, and is uéed with a waveguide echo-pulse method to detect rail defects
over long distances. Both of them used frequency ranges up to around 50 kHz and
60 kHz for their measurements. However, they did not present clearly what type of-
waves are most efficient for their purpose and how far they can ipropagate along the

rail.

*

‘ Rose and Avioli [35] carried out feasibility studies on broken rail detection by
using the waves in the tens of kilohertz frequency range. In this experiment, they -
used waves excited by a train moving down the test track and compared time sig-
nals measured on the web close to the rail break. However, they focused only on
whether these waves are applicable for broken rail detection and did not investigate

the features of the waves.

As described previously, there are several tens of different waves propagating
along rails at high frequencies below 80 kHz. Because of this multiplicity of propa-
-gating waves, array transducers are used to extract sﬁeciﬁc wave types from others. -
From a practical point of view, however, it would be very useful if the waves of
interest could be measured by a single sensor attached on the rail surface. To make
it possible, their wave types, i.e., deformation shapes, have to be clearly understood.
'Howevver,..th'e investigations in the literature are too limited for this purpose. In-this
thesis,l 'thérémfore, it will be investigated whether waves of interest can be detected

by a single sensor attachied on the rail surface.

12
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2.3 Wave Reflection and Transmission due to De-

fects for Long Range Rail Inspection

If an infinite length waveguide structure has a local noﬁ-uniformity, like a crack,
it will reflect a part of incident power and transmit the rest of it. These reflection
and transmission characteristics associated with the presence of the discontinuity
may give some indication of both the crack location and depth. In order to be able

to investigate these characteristics, it is necessary above all to model wave propa-

“gation in finite or semi-infinite length waveguide structures. For these waveguide

structures with boundaries, the boundary conditions need to be specified in addition

to the homogeneous wave solutions in order to predict the structure’s response.

For simple beam structures, Mace [36] estimated the reflection and transmission .
properties due to a discontinuity in a beam, like a joint or support, theoretically.
Doyle et al. [37-39] investigated wave propagation in beams by means of a spec-
tral element (SE) method, also called the dynamic stiffness method (DSM). In this

method, a single SE is modelled in terms of applied forces and displacements at the

- boundaries. This method was extended by Gopalakrishnan and Doyle [40] for a beam -

with local non-uniformities, like cracks and holes, by introducing the FE method to
model local regions of the non-uniformities. In this method, they subdivided the
beam into a few sub-elements, separating uniform- regions from local regions with
discontinuities, which are modelled by SEs and FEs, respectively. Then these SESI_
and FEs were combined by condensing the FE nodes at boundaries connected with
the SEs. However, they only considered the forced response of the structure because
the SE method req_uirés input forces.‘ Shone et él. [41,42] imposed incident waves
within this method to predici: wave reflection and transmission due to cracks in in-
finite beams. Neiﬁher of these works is directly suitable for high frequency analysis,
in which the higher order cross-sectional deformations have to be taken account,

because beam theories are used to make the SEs.

As a numerical method; Finnveden [16] has developed the spectral finite ele-
ment (SFE) method, using a variational principle for simple beam structures with
finite length. In this method, he formulated a dynamic stiffness matrix numerically

using wave solutions of the beam as basis functions. Since the element length is

13
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limited only by discontinuities in geometry and in excitation, this method reduces

the computational effort considerably, compared with standard FE methods. As
described in Section 2.1, for a waveguidé structure with a complex cross-section,
homogeneous wave solutions can be predicted numerically from the WFE method.
Combining it with the SFE method, Birgersson et al. [20] developed an improved
method to predict the response of coupled rectangular plates. They named it the
spectral super element (SSE) method?. A great advantage of this method is that
the SSEs can be easily connected to neighbouring elements if the same nodes are
used at the joints between two substiuctures. Therefore, it is not necessary in this
- method to condense the dynamic stiffness matrix of the FE part to connect it to the

SSEs, as long as the same cross-sectional models are used.

Birgersson et al. [20] utilised the SSE method for finite length plate structures,

consisting of thin-walled strip ellements [43]. For studying sound transmission in
infinite waveguides, Peplow and Finneveden [44] attached very long finite length
SSEs, of the order of 10° m, with damping at both ends of the finite length SSEs to
approximate the infinite waveguide. In this thesis, the SSE for semi-infinité wave-
guides is developed to model semi-infinite rails. Then the combined SE/FE method
is modified by employing the semi-infinite SSEs, instead of the SEs, in order to
estimate wave reﬂectlon and transmission due to cracks in rails at high frequency
This combined method will be called the SSE/FE method here.

To investigate a relation :between_ rail response and crack ‘depth, Rose et al.

[7,11] measured the pulse-echo and through transmission responses to rail cuts of

varying depths by using 60 kHz EMATs at the top of the rail head. In this mea-

surement, they acquired the variation of corresponding peak-to-peak amplitudes in
time data as a fﬁﬁction of the cut depth. However, they did not examine the rail
response either at other positions on the rail cross-section or at other frequencies
covering wider range In addition, it was not 1nvest1gated in their experiment which

types of wave are efficient for detecting cracks.

On the other hand, Cawley et al. [8,10] used the reflection matrix, which can

2Doyle and Gopalakrishnan [19,40] also called an element modelled by FEA, which has a local
non-uniformity, a ‘Spectral Super-element’ in their method. 'However, note that although it has

the same name, this approach is different from the present SSEM.
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present mode conversions of the incident waves, to identify defects. In the simula-
tion, they used a three-dimensional time-marching FE model to predict reflection
coefficients for several defect geometries. This method of quantifying the wave _modle
conversion séems to be an efficient and advanced technique fo.f‘crack detection. For
practical implementation, however, this requires many transducers to be attached
along the rail and around the rail cross-section as well as an associated signal pro-
cessing to decompose each wave mode separately. Furthermore, this technique would

not be applicable to operational tracks on which trains are running.

- In this thesis, as a feasibility study, it will be investigated whether measuring rail

'vibration at a single position on the rail cross-section is applicable for crack detection

in rails fqr frequenciés up to 50 kHz by using the combined SSE/ FE method.




Chapter 3

Finite Element Analysis of a -

RailWay Track

3.1 Modelling a Railway Track

- At low frequencies waves propagate in a rail as bending, extensional or torsional

waves. At higher frequencies, however, the rail cross-section deforms and many
higher order wave types exist. This cross-section deformation has to be taken into
account -for an accurate evaluation of the dispersion properties. It has been found
that the cross-section deforms _sig’niﬁéantly above about 1500 Hz {14]. So in this
chapter a rail is modelled by means of the finite element method in order to take
account of the cross-section deformation. The frequency range of interest will extend
up to 80 kHz because it has been suggested in ref. [7] that waves at higher frequencies
attenuate less over distance than those at lower frequencies. In this chapter, a UIC60
rail has been modelled using the finite element package, ANSYS. Throughout, z will

represent the direction along the rail, y the transverse direction and z the vertical

direction.

3.1.1 Modelling a rail _crdss-section

Firstly, a rail cross-section was modelled with different element sizes in order

to determine a relevant mesh size which can depict the deformed shapes. of the
section properly at the frequencies of interest. Since the UICGO rail has a symmetric
cross-section, only half of the width is included as shown in Fig. 3.1. This has the

advantage of separating the possible waves into two groups that are uncoupled from
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i

L{/x

(a) (b) (c)
Fig. 3.1. FE models for rail cross-section. (a) Model 1, (b) model 2, (c) model 3.

each other as well as reducing computational demands. A symmetric boundary
condition constrains the deformation of the mid-plane in the y direction (i.e., out of
plane) and gives the vertical and symmetric longitudinal modes. An antisymmetric
boundary condition constrains the z and z directions (i.e., in plane) in the mid-plane
and gives the lateral and torsional modes as well as the antisymmetric longitudinal

modes in which opposite sides of the rail move in opposite directions.

Three different cross-sectional FE models are shown in Fig. 3.1. The respective
number of elements in the cross-section of these FE models are 42, 70 and 2398,
and the length of these models is 10 mm in the z direction. It was supposed in
this comparison that model 3 gives precise natural frequencies and mode shapes of
the rail cross-section because it has a very fine mesh and can therefore be used as
‘a reference. Each FE model consists of solid elements with 20 nodes, defined in
ANSYS as ‘solid186’, having three translational degrees of freedom per node. The
web and the rail foot were modelled with a relatively fine mesh because they are
more flexible than other parts of the rail cross-section. To ensure a proper mesh

size, a criterion of at least 6 nodes per wavelength is used.

Modal analysis was performed up to 80 kHz and then the natural frequencies and
mode shapes of the three models were compared with each other. In this analysis,
symmetric boundary conditions were applied at both ends of the FE models (that is,
deflections in the z direction were constrained). Since the length of these FE models
in the z direction is sufficiently short with respect to the possible wavelengths below

80 kHz, no modes occur along the z direction. For instance, if the shear wave speed is
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Table 3.1. Natural frequencies of three FE models in Fig. 3.1 for (a) the vertical modes,
(b) lateral and torsional modes. :

(a) | " a (b)
mode natural frequency (Hz) mode natural frequency (Hz)
‘number | model 1 | model 2 ‘model 3 number | model 1 | model 2 | model 3
1 0 0 0 1 0 0 0
2| 5029 | 5027 | 5021 2 0 0 0
3 9490 9489 9484 3 1275 1274 | 1273
4 18100 | 18092 | 18061 4 3822 3811 |- 3806
5 22776 | 22771 | 22754 5 | 9325 | 9209 | 9193
6 | 27255 | 27243 | 27217 6 13113 | 13080 | 13055
7 31788 | 31772 | 31737 7 20536 | 20471 | 20420
8 36242 | 36211 | 36166 8 27936 | 27887 | 27828 ‘
9 39206 | 30166 | 39100 | 9 30661 | 30628 | 30585
10 | 47895 | 47880 | 47839 10 35234 | 35188 | 35151
11 52606 | 52587 | 52559 11 37734 | 37701 | 37680
12 | 58064 | 57918 | 57799 12 43660 | 43554 | 43458
13 59749 | 59477 | 59295 13 40433 | 49271 | 49117
14 63650 | 63625 | 63554 14 52469 | 52370 | 52282
15 70042 | 70038 | 69953 15 | 56496 | 56451 | 56433
16 | 72206 | 72122 | 72061 16 60370 | 60238 | 60088
17 77867 | 77638 | 77364 17 | 60921 | 60831 | 60774
18 | 81764 | 80317 | 79751 18 66715 | 66417 | 66127 -
19 70563 | 70338 | 69984
20 | 70960 | 70628 | 70496
21 73086 | 72895 | 72748
22, 78398 | 78105 | 77803 -

assumed as 3000 m/s, the shortest wavelength would be about 37.5 mm at 80 kHz.
Therefore, the boundary conditions used at both ends mean that the FE models
are effectively in a plane strain state because the deformation in. the longiﬁﬁdinal_
direction is not allowed by the boundary conditions. Although longitudinal modes
- are excluded from this analysis it qdn be expected that a mesh Size that is suitable

for bending of the cross-section will also be suitable for longitudihal motion.
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(a) (b)

Fig. 3.2. Relative frequency differences between FE models with respect to model 3 for
(a) vertical modes, (b) lateral and torsional modes.

(a) (b)
Fig. 3.3. Comparison of mode shapes at the 16th mode of the vertical modes for (a) model
1 (72.2 kHz), (b) model 3 (72.06 kHz).

(a) (b)

Fig. 3.4. Comparison of mode shapes at the 20th mode of the lateral and torsional modes
for (a) model 1 (70.96 kHz), (b) model 3 (70.5 kHz).
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The natural frequencies of each mode obtained from the three FE models are
listed in Table 3.1 for the vertical, lateral and torsional modes. The cdfrespond—
ing mode shapes were checked visually to ensure that modes are paired correctly.
Fig. 3.2(a) shows the relative frequency differences between the FE models with
respect to model 3 for vertical modes and Fig. 3.2(b) shows equivalent results for
the lateral and torsional modes. This figure indicates that model 1 can predict the
natural frequencies to within a 3% error margin in this frequency region; in fact most
natural frquencies are predicted to within a 1% .margin. So ﬁodel 1 is applicable
as an appropriate cross-sectional model in this analysis. Model 2 gives improvéd
results but the reduction in error margin is not sufficient to justify the 1afge increase
in number of degrees of freedom this would entail. Example mode shapes at about
70 kHz for the symrﬁetric and antisymmetric boundary conditions at the mid-plarie
are represented and compared with those of model 3 in Fig. 3.3 and Fig. 3.4. These
two ﬁgures also reveal that model 1 describes the deformed shape of the cross-section
acceptably with four elements (8 nodes) per wavelength in the web in the mode in

Fig. 3.4.

3.1.2 Modelling a length of railway:tr"ack

In this section, a short length of rail is modelled by using the cross-section model
1 considered in, the previous section. Since the contribution of the sleeper and bal-
last are limited to the low frequency region below 1 kHz [12], only the rail and rail

pad are included in this model.

The length of the rail model determines the increment of discrete wavenumbers,

Ak, because the wavenumbers predicted from the rail model are spaced according
to the relation '
Ak = — 3.1
MY | (3.1)
where L is the length of the rail model in the z direction. This relation will be
discussed later in section 3.2. It is found from Eq.(3.1) that, in order to obtain more
precise results in the wavenumber domain from the FE analysis, a longer rail model

has to be analysed. To make the rail model longer, two approaches can be used:

increasing the size of each element or increasing the number of elements in the z
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Fig. 3.5. FE model of a rail on a distributed elastic foundation.

direction!. However, it may be inappropriate to increase the size of elements in the
x direction because the element size determines the upper frequency limit of the FE
analysis results. Hence it is more reliable to increase the number of elements in the z
direction. The cost, however, is that the storage space required and computational
load increase dramatically due to the increased number of degrees of freedoms and
this may make the analysis impractical. Moreover, if damping is introduced, the
matrices in the FE model will possess complex numbers, requiring yet more space
and computational load. Accordingly, it is necessary for the FE analysis to compro-

mise precision in the results with computing requirements.

In this study, the chosen length of the rail model is 0.3 m, which is selected as
half of the usual sleeper span in railway track. The same solid elements, ‘solid186’ in
ANSYS, were used as did in section 3.1.1 and the number of elements in the length
was 50 as shown in Fig. 3.5. Larger models were found to be impractical. In total
there are 2450 elements and 14608 nodes in the FE model in Fig. 3.5. The length
of a single element in the z direction is 6 mm giving six elements per wavelength at

80 kHz for a wave speed of 3000 m/s.

As shown in Fig. 3.5, the rail pad is modelled as a continuous foundation in
this study. In practice, however, rail pads are placed discretely between the rail
and the sleepers. This discrete support induces a strong periodicity effect, so-called

“pinned-pinned resonances”, at low frequencies where wavelengths are longer than

LAs an alternative way of increasing the rail length, periodic structure theory could be used

(14, 22] but it was not investigated in this thesis.
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the rail pad length and spacing. However, the effect of periodicity resulting from
the discrete foundation reduces as frequency increases [13,30]. The discrete founda-
tion can be considered in the FE modelling by simply compensating the stiffnesses
of the foundation for the shorter length of it. - A discretely supported rail model
and FE analysis results of that are described in detail in Appendix A. From this
investigation it was determined that if discrete rail pads.are applied, they make
uneven deformation shapes albng the rail., Furfhermore, they allov& different Wave—
lengths in different regions of the rail at some frequencies. This implies that several
wavelengths can exist at a single frequency. It rwill; therefore, be hard to detérmi_ne
- frequency-wavenumber relations because wavelengths are not clearly defined in the
deformed rail shapes. Nevertheless, in terms of the long range wave propagatibn,
the discrete foundation model was conﬁrrhed to provide similar features to the dis-
tfibuted one, particularly at high frequency. It can be seen in Fig. ‘A.5 that decay
ra.t_es of each wave obtained from the continuous and discrete foundation models
are'very similar at frequencies above 20 kHz. The results of Fig. A.5 demonstrate
that the distributed foundation model provides a good approximation of the real
situation. That is maﬁnly because the stiffn'ess'of the rail pad is much less than that
of the rail so that reflections of waves at the étart and end of each discrete pad will
be insignificant. According to this simulation result, the rail pads are modelled as

a distributed foundation in the rest of this thesis, as shown in Fig. 3.5.

The low frequency stiffness of the single rail pad pla_ced at 0.6 m spacing is
assumed to be 150 MN/m for the vertical direction and 20 MN/m for the lateral
and lOngimdinal directions. These values are chosen to correspond to the relatively
soft pad used in the ISVR test track [45] The stiffnesses of several other types of
rail pads are given in ref. [30, 31] as falling in the range 200 MN/m to 1300 MN/m
for the vertical direction and 48 MN/m to 200 MN/m for the lateral direction. The
effect of the rail péd stiffness on the long range wave propagation will be discussed '
in Chapter 4 In addition, the dampihg loss faétor of t_hé rail pad is taken as 0.2 for
all directions. Practical values vary between about 0.1 and 0.25 [13]. The rail clip

is generaﬂly much more flexible than the rail pad and is omitted from the model [12].

As a distributed solid layer, the rail pad is modelled by an orthotropic material
in this thesis. In the orthotropic material, nine elastic constants are required to

define the material’s elastic characteristics because there is no interaction between -




Chaptér 3. Finite Element Analysis of a Railway Track

the normal stresses o, oy, 0, and the shear strains €,,, €5, €, [46]. These nine
constants are comprised of the three Young’s moduli F,, E,, E,, the three Pois-
son’s ratios Vyzs Vazy Vay, and the three shear moduli G@, Gyz, Gz Additionally,
it is assumed iﬁ the modelling that this orthotropic material has the same physical
properties along the directions of each of the axes. -This means E, = E, = E,,

Vyz = Vag = Vgy 80d Gy = Gy, = G .

For the vertical direction, the stiffness of the distributed foundation, kpz, can
be determined using Hooke’s law for a one-dimensional model as
EpzS

ho

where E,, and h are Young’s‘ modulus and the thickness of the foundation, re-

kp,z = (32)

spectively. S is the contact area between the rail and the foundation. Since -

" kp, =175 MN/m and S = 0.045 m? for the rail segment of length 0.3 m, the elastic

modulus of the_ foundation for A = 0.01 m becomes
E,,=1.667 x 10" N/m?. ' (3.3)

In the same way, when h = 0.01 m the lateral and longitudinal stiffnesses k,, =

kpy = 10 MN/m are achieved if the shear modulus for the lateral and longitudinal

directions is chosen as
Gz = Gpyr = 2.22 x 10° N/m?. ' (3.4)
Therefore, the moduli of the distributed foﬁndation,are given as
Epe=E,y = E,, =1667 x 10" N/m?, o (3.5)
Gpay = Gpyz = Gpaz = 2.22 x 10° N/m?. (3.6)

In an orthotropic material, the normal strains are coupled with three normal stresses

and expressed as
€zg = Szz0zz + SyzOyy + 822022 »
€yy = SuyOaz + SyyOyy T 29022 ' v (3.7)
€22 = Sz20zz + SyzOyy + 822022 »

where Spp = 1/Ey, 8yy = 1/Ey, 822 = 1/E,, Soy = —Voy /By (= 8yz), Syz = —Vy:/ E,
(= $2y) and 8,3 = —Vza /By (= S$zz) [47]. In this study, however, in order to simplify
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the model the coupling terms in Eq. (3.7) are removed by setting the three Poisson’s

ratios of the foundation to zero, i.e.,
Vpay = Vpyz = Vpgz = 0. - (38)
In addifioﬁ, the density of the fo}undation ‘material Was'assumed as
=0 | - (3.9)

By introducing this last assumption, the rail pad is regarded as a massless spring.
component in this model. Consequently this FE model cannot represent internal
resonances occurring in the rail pad. Instead, the contribution of the internal reso-

nances of the rail pad will be considered later by using a stiffness increment.

- Using a mass of 60 kg/m x 0.3m =18 kg and the reqﬁired stiﬁ"nesses, the natural-
frequencies of rigid body motions are theoretically predicted as fo = 324.7 Hz for
the vertical direction and fo = 118.6 Hz for the lateral and longitudinal directions.
In the FE analysis, the model in Fig. 3.5 produced these frequencies as 324.4 Hz

and 118.2 Hz, respectively, confirming that the desired stiffnesses were achieved..

3.1.3 Dynamic stiffening of the rail pad

At high frequencies, the stiffness of the rail pad usually becomes much higher
than the static or low frequency one. This is because the railA pad has mass which
leads to internal resonances at high frequenc1es Moreover the rubber material 1tse1f
becomes stiffer at higher frequenc1es} [48]. This stiffness of the rail pad, called the
“‘dynamic stiffness’ here, is one of the important parameters for track modelling. It
could be possible to measure this in the laboratory [13] or directly to model the rail
pad with fine finite element layers to capture the dynamic stiffness. In this direct
FE modelling for the rail pad, however, several tens of finite elements in the verti-
cal direction are required even in 1 cm thickness to be able to express the internal )
resonance effect. For this reason, the dynamic stiffness was predicted theoretically

from a one-dimensional foundation model in the z direction in this study? [49].

2Note that the rail pad may not be uniform, for exarnple studs or ribs are often present on its

surfaces However here a uniform structure is considered for 31mp1101ty

24




|

Chapter 3. Finite Element Analysis of a Railway ‘Track |

W
A

¢F

\&"N

7
Fig. 3.6. One dimensional model for a continuous foundation.

Considering a one-dimensional foundation with thickness % as shown in Fig. 3.6,

the longitudinal wave solution in the z directicn can be expressed as
w(z) = B’ + Bye I | ' ’ (3.10)

where £ is the wavenumber given by x = w/cy, with the longitudinal wave speed,
cr, = \/Ep,2/pp. The two boundary conditions are given as

w=0 . . at z=0, , (3.11)
dw

=-F,,5— =h. .
F .20 7 at z. » (3.12)

Substituting w(z) from Eq. (310) into these two boundary conditions gives

. . 'F ] )
w(z) = J [0 — ] (3.13)

E, . Sk(e"h + emirh)

Hence for a distributed foundation with thlckness h, the dynamm st1ffness k¢, can

" be expressed from Eq. (3.13) as

o _ F | _ —jE.Sk(e?™ + &)  Ep.Srcoskh

= 14
P (2) le=0 e~ikh — eirh ~ sinkh (3:14)

If damping is introduced then the elastic modulus and the wavenumber become

complex as
El = Ep.(1+7mp) » S (315)
» P 12 _
Kd :w(E’p ) N » c (316)

where 7, is the dampmg loss factor of the foundation [50] and #q is ‘the damped

Wavenurnber Hence the- damped dynamic stiffness is written as

/ _
g . By S Kacos Kah
Pz sin kgh

(317)
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‘Fig; 3.7. Rail pad stiffness in Eq. (3.17) as a function of frequency when p, = 1000 kg/m?
and 7, = 0.2. (a) Magnitude, (b) phase.

Fig. 3.7 illustrates the fnagnitude and phase of the stiffness, k;,‘fz, of the foun-
dation in the vertical direction as a function of frequency when p, = 1000 kg/m?3

and 7, = 0.2.. As shown in Flg 3.7(a), the stiffness increases due to the presence- of

standing waves in the foundation and the maxima occur at frequencies correspond-
ing to h = nA/2 with 7 an integer and A the wavelength.. In addition, it can be seen
from this figure that the amplitude of stiffness grows continuously and the phase of

it approaches around 90 degrees as frequency increases. This predicted result shows
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that the rail pad behaviour tends to that of a damper at frequencies above several
kilohertz. Hence, it would be more relevant to model the rail pad as a damper than a
spring component for high frequency analysis. Nevertheless, the rail pad is modelled

as a spring element with a dynamic stiffness in this thesis because it will not make

much difference in the results of -identifying the waves propagating furthest along -
- the rail. The contribution of the rail pad to this aspect will be discussed in Section

4.4.

In the ANSYS model it is not feasible to introduce a frequency-dependent stiff-
ness. Therefore, based on this simulated stiffness, the dynamic stiffnesses of the
foundation were set to 10 times larger than the low frequency ones as a constant
value as shown in Fig. 3.7. That is to say, Bz = Epy = E,, = 1.667 x 10° N/m?
and Gpgy = Gpyr = Gpay = 2.23 x 107 N/m?. This dynamic stiffness approxima-
tion will lead to overestimation of the dissipated energy resulting from the rail pad
deformation in the lower frequency region below 5 kHz and will lead to underesti-

mation in the higher frequency region above 20 kHz.

3.2 Prediction of Dispersidn Relations

To simulate the waves in an infinite rail, the model was solved with symmetric
and /or antisymmetric boundary conditions at both ends of the 0.3 m léngth. Fig. 3.8
shows the degrees of freedom allowed for three different combinations of symmetric
and antisymmetric boundary conditions. As shown in this figure, the symmetric
boundary condition allows two translational motions in the y and z directions, and
one rotational motion in the z direction. Conversely the antisyfnrnetric condition
allows two rotational motions in the y and z directions, and one translational motion
in the z direction. For a simple beam these conditions reduce to sliding or pinned

boundaries as shéwn in Fig. 3.8.

" Modal analysis will produce natural frequencies and the corresponding mode

shapes of the 0.3 m rail section [14]. Each natural frequency and mode shape

“produced by the modal analysis has a sinusoidal mode shape in the z direction

and can be interpreted as the sum of two identical waves which travel in opposite
directions and thus form a standing wave in an infinite rail. Each natural frequency

and wavelength of these boundary c'onditio.ns thus corresponds to a point on the
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(a)

() .
Fig. 3.8. Released degrees of freedom at both ends of the beam for (a) the symmetric-
symmetric boundary conditions, (b) the antisymmetric-symmetric boundary conditions,
(c) the antisymmetric-antisymmetric boundary conditions. '

frequency-wavenumber relation for an infinite rail. ‘For the symmetric-symmetric

(or antisymmetric-antisymmetric) boundary conditions, the wavenumbers will be
k=nw/L , (3.18) .

- and for the symmetric-antisymmetric (or antisymmetric-symmetric) case

= @n+1)n/20 C (319)

where L is the length of the rail section and n is 0, 1,2,.... Thereforé, if both
conditions are included, Ak in the predicted dispersion relation becomes 7 /2L as
+ stated in Eq. (3.1).

Fig. 3.9(a) illustrates the dispersion curves generated by connecting the discrete
ffeqﬁency—wavenumber point:.s‘ produced from the modal analysis for the vertical and
symmetric longitudiﬁal waves. Fig. 3.9(b) shows the cor-responding results for the
lateral, torsional and antisymmetr"ic longitudinal waves. These‘ﬁgu_res reveal that
theré are 63 wave types in total in the rail within the frequency range up to 80 kHz. .
Oof thése, 40 Wavés with zero wavenumber were listed in Table 3.1; the femaini_ng

waves are longitudinal since this motion was constrained in the cross-section model
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(a) (b)
Fig. 3.9. Predicted dispersion curves for (a) the vertical and symmetric longitudinal waves,
(b) the lateral, torsional and antisymmetric longitudinal waves.

used in section 3.3.1. In this thesis, each wave type in this figure is named simply
by the order of the wavenumber from top to bottom, for example, the first wave,

second wave, etc. in the vertical and symmetric longitudinal waves.

Since the dispersion curves within one of the graphs in Fig. 3.9 (i.e., symmetric
or antisymmetric waves with respect to the mid-plane) do not cross each other, these
waves exhibit mode coupling and finally swap their mode shapes when they come
close to one another. This phenomenon is known as the ‘curve veering’ which is
associated with the coupling between modes [51]. For example, the second (green
line) and third (red line) waves in Fig. 3.9(a) approach one another and swap their
mode shapes at around 5 kHz and 15 kHz. Fig. 3.9(a) shows a non-dispersive
wave increasing to about 100 rad/m by 80 kHz in the frequency-wavenumber plot,
formed by consecutive pieces of different waves with a constant slope. These are
non-dispersive longitudinal waves in which the head, web and foot move longitudi-
nally in the same or opposing directions to each other. The phase speed is around
5000 m/s, the longitudinal wave speed in a rod of steel. Furthermore, it seems
in Fig. 3.9(b) that longitudinal wave motions also take place as a group of waves
appear with a phase speed around 5000 m/s. These longitudinal waves will have

an antisymmetrically deformed mode shape in the rail with respect to the mid-plane.

Fig. 3.10 and Fig. 3.11 show the respective deformation shapes of a number of

waves at about 25 kHz and 50 kHz for the symmetric boundary condition at the
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mid plane. Fig. 3.12 and Fig. 3.13 show equivalent results for the antisymmetric
boundary condition at about 25 kHz and 50 kHz, respectively. In each case they

-correspond to the six waves with the highest wavenumbers in Fig. 3.9. -

For the vertical and symmetric longitudinal waves around 25 kHz, the first
two and fourth ones among the selected six waves are the 1%, 27¢ and 3¢ order
foot bending waves as illustrated in Fig. 3.10(a), (b) and (d). It can be seen from
Fig. 3.9(a) that these convert from the global bending wave at about 5 kHz and 15
kHz, and from the longitudinal wave at about 18 kHz, respectively. In other Words,
. the first wave has global bending deformation below 5 kHz, whereas the ‘second
wave has the longitudinal deformation below 5 kHz and global bending deformation
“between 5 kHz and 15 kHz. The third wave is the vertical bending wave in the rail
head (Fig. 3:10(c)) and the fifth and sixth waves appear to have global deformation
shapes possessing large deformations in the foot (Fig. 3.11(e) and (f)) However, at
around 50 kHz, these tW_o were converted to longitudinal type ‘waves in the foot and

rail head, as shown in Fig. 3.11(e) and (f), respectively.

For the lateral, torsional and antisymmetric longitudinal waves around 25 kHz,
the first and second waves selected are the foot bending wave and the 1t order web
bending vwave, 'respectively.(Fig. 3.12(a) and (b)), The remaining four from the
third to sixth waves show global deformation shapes in the rail head, web and foot
(Fig. 3.12(c) to (f)). Meanwhile, the first and second waves around 50 kHz are the .
same type of waves as those in Fig. 3.12(a) and (b) but have increa_séd wavenumbers.
On the other hand, the third and fourth waves selected around 50 kHz are the 27¢
order foot bending and web bending wéves, respectively, (Fig. 3.13(c) and (d)),
which were converted from the waves of global deformation’ at around 20 kHz. The
fifth and sixth waves show mixed motions of the rail head and web (Fig. 3.13(e) and
(f)). The other wave modes around 50 kHz, havjng lower wavenumbers, generally
have globally coupled deformation shapes in which head, web and foot all vibrate. |
These examplés of deformation shapes indicatevt'hat waves with largelr wavenumbers

are more likely to propagate through a local region of the rail cross-section.

The dispersion curves predicted from .the supported rail model are compared
with those for a free rail in Fig. 3.14 for frequencies below. 20 kﬁz. This figure

‘'shows that the effect of the elastic bfoundation appears mainly at frequencies below
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Fig. 3.10. Deformation shapes of the top 6 waves around 25 kHz in Fig. 3.9(a), (a) wave
1 at 24377 Hz, (b) wave 2 at 26348 Hz, (c) wave 3 at 24911 Hz, (d) wave 4 at 23681 Hz,
(e) wave 5 at 24915 Hz, (f) wave 6 at 24401 Hz.
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Fig. 3.11. Deformation shapes of the top 6 waves around 50 kHz in Fig. 3.9(a), (a) wave
1 at 48740 Hz, (b) wave 2 at 50719 Hz, (c) wave 3 at 50398 Hz, (d) wave 4 at 49732 Hz,
(e) wave 5 at 49870 Hz, (f) wave 6 at 50723 Hz.
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Fig. 3.13. Deformation shapes of the top 6 waves around 50 kHz in Fig. 3.9(b), (a) wave
1 at 51139 Hz, (b) wave 2 at 49193 Hz, (c) wave 3 at 48793 Hz, (d) wave 4 at 50192 Hz,
(e) wave 5 at 49020 Hz, (f) wave 6 at 50505 Hz.
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(a) (b)
Fig. 3.14. Comparison of dispersion relations between free and supported rail for (a) the
vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.

10 kHz, resulting in the cut-on frequencies being moved slightly higher. The cut-
on of the first vertical bending wave is most affected, as shown in Fig. 3.14(a),
being increased from 0 to 1 kHz by the presence of the support. It can therefore
be said that the presence of the foundation does not result in large changes in
the frequency-wavenumber plot at high frequencies. However, the foundation will
contribute considerably to the decay rates of each wave because the damping loss

factor of a rail pad is generally much higher than that of the rail itself.

3.3 Prediction of Group Velocities

The phase velocities, ¢, and group velocities, c,, of each wave can be predicted

from the dispersion curves in Fig. 3.9 by use of the relations

i % ; (3.20)
dw

In this calculation, the group velocity of the i* wave at the n'" frequency was
evaluated approximately by a finite difference scheme

] Whi1 = W1
AT (3.22)
R
The predicted phase and group velocities are shown in Fig. 3.15 and Fig. 3.16,
respectively. At a cut-on frequency, the phase velocity becomes infinite, correspond-

ing to rigid body motion of the rail, because the wavenumber, &, is zero at that
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Fig. 3.15. Predicted phase velocities for (a) the vertical and symmetric longitudinal waves,

(b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond to
Fig. 3.9
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Fig. 3.16. Predicted group velocities for (a) the vertical and symmetric longitudinal waves,
(b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond to
Fig. 3.9

frequency. Conversely the group velocity is zero at the cut-on frequency.

The longitudinal waves are graphically well distinguished in Fig. 3.15 because
they have phase velocities approaching 5000 m/s. As depicted in Fig. 3.16, the
predicted group velocity curves are not smooth enough, particularly for longitudinal
waves, because of the limited resolution Ax. It seems from these phase and group
velocity figures that many of the phase velocities tend to approach a certain value,
possibly the shear wave speed, as frequency increases. The shear wave speed is about

3100 m/s for a bulk shear wave and about 2850 m/s for a shear wave in a beam with a
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square cross-section. In addition, negative group velocities arise around some cut-on
frequencies. This negative group velocity means that for a wave travelling forwards
the energy carried by the wave propagates backwards and vice versa [22,52]. These
can be seen as curves in the dispersion plot With a negativé slope near cut-on, for

example the blue curve just above 20 kHz in Fig. 3.9(a).

3.4 _Predictions of Decay Rates

When da’rhping is introduced, waves will decay with distance along the rail and

“this decay rate, A (in dB/m), will determine how far a wave can travel along a rail.

'3.4.1 Decay rates

If damping is included in the model by making the elastic modulus complex,
E(1+jn), with n the material loss factor, waves decay as they propagate. The decay

rate, A, can be defined from the amplitude reduction over.one wavelength as .

__20, [ lu)] |
A= _?loglo<m> , | (3.23)

where u(z) is the displacement of the travelling wave along = and ) is the wavelength.
For the damped propagating wave % at frequency w, the energy decaying with time

can be expressed as

Wi(t) = Wie™mt | : (3.24)
where W¢ is the energy at ¢t = 0 and 7* is the loss factor of this wave. Since this
energy propagates with the group velocity, by the relation between time and space,
t=ux/c, : o
Wi(z) = Wiem=/% . (3.25)
Since Wi(z) o |u'(z)[?,

I,u’z(x)l — uée-wniz/ch ' | v (3.26)

Therefore, for the wave 4, the decay rate in Eq.(3.23) is expresséd as

Al = _”2)TO logy, e—wnm A2 — 97 99 fc? ) o (3.27)
" .

As expressed in Eq. (3.27), the damping loss facto‘r of a propagating wave, n°, and
its group velocity, ¢, have to be identified to predict the decay rates of each wave
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~

in Fig. 3.9. That is, the decay rate of the 1" wave at the n'® frequency in Fig. 3.9 is
AL =27.29fm/ch . - - (3:28)

For the track model in Fig. 3.5, damping is introduced by assigning a material damp- -

ing loss factor to the rail and another to the rail pad.

In ANSYS, the material damping parameter has to be defined by a constant 4,

* which is related to the material damping loss factor, 7, by 8 = n/w. For the given

constant 3, the modal analysis in ANSYS gives complex natural frequencies due to

the presence of the damping term as
Wd,n; = jOp + Wn = JCawn + Wn , | (3'29)

where ¢, and wy, are the modal darhping ratio and the natural frequency of the nt*

mode, respectively. Then the damping ratio, (,, of the n* mode can be obtained.

‘from the imaginary part of the complex natural frequency. This means that in order

to obtain (, at a specific angular frequency wy,, the input property 3 has to be given
at w, without knowing w, a priori. This problem can be tackled by introducing a
simple approximation, as presented in ref, [53]. If the input parameter 3 is fixed at
some angular frequency, w,, as B, = n/w,, it can be assumed that the correct 3, at
the nt* mode would be |

_ W,

B = ;u—ﬂa , (3.30) -

n .
where w,/wy, is a compensating factor. Therefore, the modal damping ratio at w, is
approximately calculated from 3, by multiplying by the factor w,/w,
= Z—: : :’— | - (3.31)
for all modes in a frequehcy_ range of interest. This estimation has Beén'tested for
a range of values of w, and found to give consistent results for all modes in the

frequency range of interest. Finally the modal damping loss factor, 7y, used for the

“decay rate prediction using Eq. (3.28) can be obtained from the modal damping

ratio, (;, by the relation 7, = 2(,, valid for small values of 'Cn.

3.4.2 Predict_ed results

Two materi’él damping components are required for this track model, i.e., the

material damping loss factor of the rail, 7, and of the rail pad, 7,. In practice
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both may be frequency-dependent. In this numerical analysis, however, the material
damping loss factors of the rail and rail pad were set to constant values of 0.0002 and
0.2, respectively. 7, was chosen to represent the material damping loss factor of steel.
The damping of the rail pad corresponds to typical values [13,30] and is a thousand
times higher than that of the rail, as specified here. In this prediction, the angular
frequency w, for the input property 3 is chosen in the middle of the frequency range
of interest, corresponding to 40 kHz. For these two material damping loss factors,
the input parameters, values of 3, for the rail pad and rail at 40 kHz were 7.94x 1077
and 7.94x1071°, respectively.

Fig. 3.17 shows the predicted modal damping loss factors, 7, of each wave pro-
duced by the modal analysis in ANSYS after applying the correction factor described
above. As given in this figure, the input material damping of the rail, 7,, determines
the lower limit of !, of all waves. In other words, if there is no damping in the rail
pad then all the waves in the structure will have the same damping loss factors as 7,,
i.e., nt = n,, regardless of the wave type. Therefore it reveals that the differences
of the predicted modal damping 7! from the input material damping 7, directly
depend on how much the rail foundation deforms in their modes. For instance, a
wave which propagates only through the rail head as shown in Fig. 3.11(c) will be
little affected by the damping of the foundation. Hence it can be imagined that

waves which have small deformation in the foundation propagate further along the

(a) (b)

Fig. 3.17. Predicted damping loss factors for (a) the vertical and symmetric longitudinal
waves, (b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond
to Fig. 3.9
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Decay Rate (dB/m)

(a) (b)

Fig. 3.18. Predicted decay rates for (a) the vertical and symmetric longitudinal waves,
(b) the lateral, torsional and antisymmetric longitudinal waves. Colours correspond to
Fig. 3.9

rail since 7, is 1000 times larger than 7,. Conversely the wave shown in Fig. 3.14(a)

has a much higher damping loss factor, shown by the upper blue curve in Fig. 3.17.

The decay rates predicted by Eq. (3.28) are illustrated in Fig. 3.18 for all waves
in this track model up to 80 kHz. At cut-on frequencies of each wave, the decay
rates become infinite because the group velocities are zero at those frequencies. Note
that, as described in Section 3.2, the dispersion curves created by a given boundary
condition (i.e., symmetric or antisymmetric boundary conditions in the mid-plane)
do not cross each other. Instead, they swap their deformation shapes when two
dispersion curves approach each other. Hence one has to be aware that when the
deformation shapes are exchanged between two waves, their decay rates are also
swapped so that two decay rate curves do cross each other. Because the decay rate
is directly proportional to the frequency as given Eq. (3.28), the lower limit of the
decay rate increases with frequency as shown in Fig. 3.18. Although longitudinal
waves possess large group velocities, they do not seem to give lower decay rates than
other types of waves. This is because the longitudinal waves normally have global
deformations so that their damping loss factors are relatively larger than those of
other waves. In other words, considerable deformations of the rail foundation occur
when the longitudinal waves propagate. Fig. 3.18 indicates that the minimum decay
rate is about 0.04 dB/m and seems to occur between 10 kHz and 20 kHz.
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In practice, a range of rail pads with different stiffnesses is used in tracks. So
it will be worth investigating the effects of the foundation stiffness (k,) on decay -
rates. This will be performed and discussed in Chapter 4 with the wavenumber

finite element approach.

3.5 Summary

In this‘chapter, the conventional FE method was employed to predict dispersion
relations and decay rates up to 80 kHz. To do that, an appropriate cross-sectional
FE model for UIC6( rail was found and then a 0.3 m long railway track model was
established as a rail on a distributed elastic foundation, corresponding to the rail
pad. This elastic foundation was modelled as a massless spring and the stiffening
of the rail pad due to internal resonances was compensated by introducing a higher
dynamic stiffness. Two damprng components were. considered as constants in this

track model: damping for the rail and for the foundation, respectlvely

It rvae found from this simulation that there are more than 60 different types
of waves propagat'ing in the rail below 80 kHz. For these multiple waves, their
dlspersron relations and decay rates were predlcted Deformatlon shapes of each
Wave indicated that waves with larger wavenumbers are more hkely to propagate
through a local region of the rail cross-section. The other wave modes, having lower

wavenumbers normally have globally coupled deformatlon shapes in Wthh head,

web and foot all vibrate.

Through this FE analysis, it was found that the minimum decay rates of about
0.04 dB/m occur between 10 kHz and 20 kHz. Since damping for the foundation is
1000 times larger than that for the rail, it could be said that waves which have small
deformatlon in the foundation propagate further along the rail. This srmulatlon re-
sult conﬁlcts with that reported in ref. [11] where it is stated that the most effective
frequency range for the long range wave propagation in ra1lway track is 40 kHz to

80 kHz. The vahdlty of the FE results will be verlfied in the remaining chapters in

this thesis.

Since there are several tens of different Waves.pro‘pagating' below 80 kHz in

the track model, it will be worthwhile identifying which of them are measurable at
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various points on the rail surface. That is achievable by quantifying the ‘energy’
contained in different parts of the rail surface from the displacement predicted by
FE analysis. However, this is discussed in the next chapter using another numerical -

method, called the wavenumber finite element method.
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Chapter 4

“Wavenumber Finite Element

Analysis of a Railway Track

In :Chapter 3, the FE method was used to generate dispersion curves and decay
rates at frequencies up to 80 kHz. However, it has several drawbacks:for practical
application. Primarily the FE method requires very large fnodefs for high frequency
analysis and so imposes a large computatlonal burden. Furthermore, considerable
manual post-processing is requlred to build dlspersmn and group velocity curves from
the results of the FE analys1s. For example, in Chapter 3, more.than 2000 natural
frequencies and mode shapes were checked one by one to specify their wavenumbers.
Another disadvantage is that the group velocities are roughly estimated from the
discrete dispersion curves by means of the finite difference approximation between

two discrete points.

In this chapter, to overcome these difficulties, an improved n.umerical method
called the wavenumber (or waveguide) finite element (WFE) method is employed -
as an alternative to the conventional FE method. One of its great advantages is
that different wave types are readily identified and can be analysed, enabling a
, physical interpretation of the wave ﬁropagation in the structure unde}rb investigation.
Further infdrmation on this approach can be found in refs [20, 25,26, 54]. For the
WFE analysis in>-this thesis a software prog_rain, cailed ‘WAFER (WAveguide Finite
Element 'R“esources')’ developed at ISVR is used for modelling the wave behaviour
in railway tracks numencally A more recent versmn called ‘WANDS’ 1ncludes

- boundary element analysis and is described in [55, 56]
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4.1 ‘Wavenumber Fihit‘e Element Method

In this part, the basic equations of the WFE method and how they can be solved

to predict dispersion relations and decay rates will be described briefly.

4.1.1 Equation of motioh

Suppose th'at there is an undamped Waveguide_ structure which is infinitely long
in one direction, call it the z direction, and its cross-section normal to the z axis is
uniform along z. In conventional FE analysis, this structure can be modelled for a
finite length with symmetric and/or antisymmetric boundary conditions, as done in
Chapter 3. For the assembled FE model, the global equation of motion is expressed

in matrix form as )

5 _ :
{Kfe + Mo} ®re(,t) =0 ‘ (4.1)

o2 |
WherejK fe and M fe are stiffness and mass matrices and @, denotes the displace-
ment vector of the FE model. Ky, and My, are real if damping is not considered.
Note that, in this FE formulation, the displacements u, v and w in the z, y and z -

.directions are approximated by the prescribed. ‘element displacement function’ (or

shape function) [57].

For this waveguide structure, it is possible to define a wave solution for the z
direction instead of making a finite element mesh and using a shape function along
this direction. Then time harmonic displacements, (u,v,w), of the element in three

directions of (z,y,z) can be expressed with separable variables as

U(CE, Y, Z,'t) = X(y’ z) . ﬂe—jnmejwt |
U(x,y,z, t) = Q/)(y, Z) . f,e—jmejwt v (4.2) :

w(x,y,z,t) = g(y’z) : we—jfmeth '

where ¢ denotes time,"y and z denote coordinates of the cross-section, x, % and ¢
define the displacements of the cross-section and %, ¥ and w are scaling constants.

Note that in Eq.(4.2) only the y and z dependence is specified by shape functions.

By using these wave solutions for the z‘direction in the FE formulation, a two-
dimensional FE equation is made over a cross-sectional model, instead of a three-

dimensional full structure model. The differential equation for the cross-section
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modelled with solid finite elements is given by

5?2 0 0? '
{Kz —i—K1a +KO+M82} u(z,t) =0 (4.3)
where K3, K; and Ky are the matrices that come from the stiffeness of the struc-
ture!, M is the mass matrix and u(z,t) is the displacement vector of the cross-
section? [26,27,54]. In this equation, the three stiffness matrices K2, K3 and Ko
contain derivative components of order (@ , ;’L )0, ( {fy , az) and ( 5y > 362 ) , respec-
tively. The matrices K, Ko and M are symmetric and K, is antisymmetric. All of

them are independent of z and they are real if there is no damping included.

Since u(z,t) = $e/@t=57) a5 described in Eq.(4.2), the differential equation in

Eq.(4.3) can be simplified to an eigenvalue problem,
{Ka(—jk)? + Ki(—jk) + Ko — w*M}® = 0 (4.4)

where ® contains the displacements (x, ¥ and &) of the cross-section which define

the deformation éhapes of waves. Here k, w and & are the unknown variables to be

identified.

As shown in Eq(43) and Eq.(4.4), there are three different stiffness terms.
They represent slightly different physical behaviour of the structure induced by
wa\'/es propagating along the z direction. Since the matrix Ko is independent of
z, it possesses stiffness components which do not vai‘y along the z direction. Thus
. if only Ko is present, waves will occur which form cross-sectional modes of the
waveguide structure at x = 0. That is, {Kq — w?M}® = 0 will generate cut-on
frequencies and the corresponding cross-sectional mode shapes of the stfucfcure. On
the other hand, the matrix Ky will have stiffn‘ess.compo'nents Which are associated
with propagating behaviour along the z direction because it s expressed together
with the second derivative of u with respect to z. Note that, K, contains only
stiffness components that are uhcoupled with the y and z directional strains. Those:
terms orlgmatlng from coupled deformations between the z and (y, z) directions are

contained in the matrlx K, which is antisymmetric.

1The physical units of K3, Ky and Ko are Nm, N and N/m, respectively. _
2For beam or plate structures,'K‘;"“a—‘agé’{’—"’l will be added in"the left-hand side of Eq.(4.3).
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In elastic structures, there are two coupled relations between each directional .
deformation. The first one is defined by the Poisson’s ratio. That is, strains normal
to one direction are.coupled with the strains in other directions by the Poisson’s
ratio, v. The other one comes from the rotation of the element by the shear force
applied. That is, a shear stress causes a rotatidnal deformation which is expressed
by two strain componehts as, for example,

ou 8v) -
oy- Bx ’
where G denctes the shear modulus of the material. The first term in Eq. (4.5) will
‘be contained in Kl‘ and the second term will be in K, because. 07,,/0z is used in
the formulation of Eq.(4.3). Since K; originates only. from the coupling between

strains in the z direction with the y or z directions, it would vanish if there is no

= Gegy = G( (4.5)

coupling between them. For ins‘tah'ce,_ if wave propagation in fluids is investigated
with this WFE method, the matrix K, will disappear because the Poission’s ratio
v-and the shear modulus G are normally set to zero for fluids. Also, in terms of the
strain energy which can be stored by each stiffness term in Eq.(4.4), one has to be
aware that the term involving K does not store any energy since it only expresses

couphng between the x directional and y or z directional strains. That is,

(i) BT K B =0 | (4.6)

" The mass and stiffness matrices in Eq.(4.4) for the cross-sectional model are
produced from the WAFER software in this study. The process of usmg WAFER

is schematlcally presented in Fig. 4.1. As shown in this chart, the post-processing

Input file generation
: in MATLAB

Pre-process | -
(cross -section modelling, material properties)

A

WAFER

(output matrices: K, K,, Ko, M )

Solver

r

Solve the equation of motion
in MATLAB

(K, (-ix )+ K, (i) +Ko- oM} =0 |

Post-process

Fig. 4.1. Process for using WAFER. -
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to solve- Eq.(4.4) is performed in MATLAB after assembling each- of the matrices,
K2, K1, Ko and M. The details of how to obtain x and w from Eq.(4.4) will be

discussed below.

4.1.2 Dispersion curves -

The twin-parameter eigenvalue problem in s and w in Eq.(4.4) has to be solved
to obtain dispersion relations. Since there are two variables, two solution approaches
are available. Firstly, Eq.(4.4) can be solved as a generalized eigenvalue problem for
frequency w if a wavenumber, &, is given. In this case, the equation can be solved by
a MATLAB built-in function, ‘eig.m’. If another function, ‘eigs.m’, is used for sparse
matrices instead, a small number of eigenvalues can be obtained more rapidly. This
method will give natural frequencies (eigenvalues) and mode shapes (eigenvectors)

of propagating waves at given wavenumbers.

Conversely, if a frequency is given instead of a wavenumber, then the equation
becomes a polynomial eigenvalue problem in the wavenumber, x. Then the func-
tion ‘polyeig.m’ in MATLAB can be used to obtain k at a given frequency w. This
method outputs wavenumbers and mode shap’es at each frequency of both propa-
gating and nearfield waves; the latter decay exponentially with distance. This poly-
nomial eigenvalue problem can be transformed to a generalized eigenvalue problem
in order to reduce its computational time and improve numerical robustness [43).
Nevertheless, it was reported in [27] that this approach still tvakes abro.ut 100 times

longer in computation time than the first solution method.

" The choice of how to solve Eq..(4.4) will depend on what response is to be in-
vestigated by using the results obtained. In this chapter, it is preferred to solve for
w at a given i since dispersion relations and decay rates of propagating waves are
of interest. The second method, solving for x at a given freqliency w, is used and

discussed in Chapter 8 to investigate wave reflection and transmission characteris-

tics along a rail.

As derived above, the WFE method utilises the exact wave solutions for the
z direction instead of making FE meshes which use approximate shape functions.

Hence it is anticipated that WFE analysis will yield more accurate natural frequen-
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~ cies than conventional FE analysis for the same cross-sectional model, especially at
high frequencies. The d1sper31on curves predicted by the FE and WFE methods will

be compared later.

4.1.3 Group velocities

In.WFE analysis, group velocities can be derived theoretically from the equation
of motion, Eq.(4.4), using the method given by Finnveden [27]. Since the equation
has to be satlsﬁed for any solutions of & in the dispersion relation, then the derivative

of Eq.(4.4) with respect to the wavenumber should always be zero. That is,
——{[K M@} =0 | | (4.7)

where K = Ky(—jk)? + K (—jk) +Kjo. This derivative can be- ertten as
0 Ow J z

+—K - 2w—M @+ [K - M| —& = : :
[ e W |®+ [ w’M] -8 =0 | (4.8)
By multiplying the above equation by the left eigenvector, ®, of [K — w?M],
= 0 Ow T 0 = - - )
UK - 2w—M]® + & [K — M| —& =0 .
[ 5 W 1@+ [ w ] P 0, (4.9)
where the superscript T denotes a matrix transpose. From the definition of the left
eigenvector, : v :
K -wM]=0 . | - (4.10)
Then Eq.(4.9) simplifies to . V
LT 6 aw . .
—K - 2w—M @ . 4.’
- P o W ] ' 0 (4.11)

Since K is Hermitian and M is real and symmetric, Hermitian transpose of Eq.(4.11)

will become

jod a 8(,0 *
Hr ¥ yr e L _
&[> K 2waﬂM]¢> 0 (4.12)

where 7 denotes Hermitian transpose. From Eq.(4.11) and Eq.(4.12),-it is found
* tHat the left eigenvector is equal to the complex conjugate of the right eigenvector,

&L = &*. Hence, the group velocity, ¢4, can be expressed as

Ow PHK'P
Cg= =

0k = wdEMS -( )

)

where
K=-—-= —2/€K - 1K . o ' 4.14
5 2 —JKBy (4.14)

From this relatlon the group velocity can be ea,sﬂy evaluated for each individual -

solution of the dlspersmn relations.
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4.1.4 Decay rates

So far all the WFE equations were derived for an undamped structure. Now
suppose that damping is included in the model by addlng an 1mag1nary part to the

real valued stlffness matrices as
Ka = K (1 + jn)(=jk)* + Ka (1 + jn)(=jr) + Ko(1 +jn) = K(1 + jn)  (4.15)

where Ky indicates the complex _stif_fnéss matrix and 7 is the damping loss factor.
For small dampiﬁg, a damped wavenumber can be expressed approximately using a
Taylor series as ‘ ' o
 Kg R ~ K+ Ora| n o C(4.16)

on In=0 o

where x and kg4 denote undamped and damped Wavenumbers respectively [26] .

For a given frequency, the derivative with re-spect tonatn=20,in Eq.(4.16),
- can be evaluated as follows. Since the equation of motion has to be satisfied even if

damping is slightly increas'ed,

9 (Ks-w’MB) =0. | (417)
on v : ' _
As the stiffness matrix Kq is a function of «, the derivative of this equation can be
written as 5K 8 : 5 _ _
K d”cp Kq—w?M]—& =0 . 4.1
[-7 + Ok an] [ d .vw ]877 : ‘ ( 8)
Multiplying by the left elgenvector, oL
1" [Kg - w’M] ;é 0 . (4.19)

Then the derivative with respect to n at 7 = 0 is given by

Ok . ;jiJHKé’ 4.0
%}U‘—‘O ~ ®HK'® (4.20)
Since K = w?M when 7 = 0, this becomes
i 2 BHNME
6”' - TweTMe (4.21)
0 ln=o0 PHK'P .
Usmg the group veloc1ty in Eq (4.13), it follows that
Ok | —jw
— =" - 4.22
3n]n=0 i R (4.22)

47




Chapter 4. Wavenumber Finite Element Analys}s of a Railway Track

Therefore, a damped wavenumber can be approximated by

K W
- +—.' =2y 4.23
K= Wl n (4.23)
Then decay rates can be obtained from the imaginary part of the dampéd wavenum-

ber as -

A = —201logyo(e) Im(kq) = 8.686 (%) = 27.29 ’;— . (4.24)
\ y y )

This decay rate is exactly the same expression as Eq.(3.27) derived in the previous

FE analysis.

As an another way of predicting the decay rate in Eq.(4.24), Im(x4) could be
“directly obtained by solving wavenumbers from [Kq4 —w2M]<§ =0 at each frequency
w. However, this approach is not efficient for the prediction of decay rates of propa-
gating waves because it gives all the wavenumber solutions and mode shapes, most
of which are nearfield waves. These nearfield waves are not of interest in this section.
Moreover it will require very long computation time. Therefore, this approach has

not been used in the decay rate prediction.

4.2 Modelling a Railway Track |

In this_ section, the WFE method is applied to the railway track which was
used in the FE analysis in Chapter 3. Although the cro:ss-sec'tional track model
appropriate for the previous FBE analjsis was’ already established, it is ne'céssary
to check the suitability of the cross-sectional model for this WFE method. The

physical properties of the rail and foundation are exactly the same as those specified

in Chapter 3.

4.2.1 Modelling a rail cross-section

Firstly, in order to check the proper mesh size for this WFE method, two cross-
sectional models of the UIC60 rail were constructed with two different element sizes.
These models are shown in Fig. 4.2. Model 1in Fig. 4.2 is the same model as used in
Chapter 3 and model 2 has a finer mesh. Each model consists of quadrilateral solid
elements which possess 8 nodes each having three translational degrees of. freédom.

" The corresponding numbers of elements are 42 and 70, respectively.
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Fig. 4.2. FE models for rail cross-section. (a) Model 1 as used in FE analysis in Chapter
3, (b) model 2.

As in the previous FE analysis, symmetric and anti-symmetric boundary con-
ditions were applied at the vertical centreline of the cross-section. The symmetric
boundary condition gives the vertical and symmetric longitudinal modes; the an-
tisymmetric boundary condition gives the lateral, torsional and the antisymmetric

longitudinal modes.

The dispersion curves predicted by the WFE method are shown in Fig. 4.3 for
the two cross-sectional models of Fig. 4.2. As stated earlier, the WFE method utilises
the exact wave solutions for the x direction. Hence it is anticipated that WFE anal-
ysis will yield more accurate natural frequencies than a conventional FE analysis
for the same cross-sectional model, especially at high frequencies. For comparison
the dispersion curves produced by the previous FE method are also illustrated in

Fig. 4.3 for the same discrete wavenumbers.

From Fig. 4.3, it is found that the conventional FE analysis gives slightly lower
frequencies for given wavenumbers than does the WFE analysis at high frequency.
Referring to Table 3.1 in Chapter 3, which listed the natural frequencies for three
different cross-sectional models having different mesh sizes, it can be seen that the
natural frequencies predicted from the finer model become slightly lower than those
created from the coarser model. Therefore, it is apparent that the FE method has
generated more accurate natural frequencies than the WFE method for the same

cross-sectional model, contrary to expectation. The reason for this result is that
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Fig. 4.3. Comparison of dispersion curves predicted by FE and WFE analyses for (a) the
vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.
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the commercial FE software, ANSYS, uéed in the FE simulation, is making use of

more sophisticated techniques to create mass and stiffness matrices than the WFE

software.

Fig. 4.3 also indicates that the dispersion curves produced from model 2 by WFE
analysis coincide very well with those obtained by FE analysis from model 1. Based
on these comparison results, model 2 will be used as an appropriate cross-sectional

~model for WFE analysis from now on.

4.2.2 Modelling a rail on a foundation

Having established a suitable rail cross-sectional model, in this section, a founda-
tion for the rail appropfiate for the WFE method will be specified. As in Chapter 3,
only the rail pad will be included in the foundation in this model as the contribu-

tions of the sleepers and ballast are limited to theklicv)w frequency region below 1 kHz
[12]. ' '

In Chapter 3, the rail pad was considered as a massless single layer elastic
foundation having a constant ‘dynamic stiffness’” approximated from a simple one-
dimensional model. This was because it was impractical in the FE analysis to model

it with a finer mesh and also not feasible to introduce a frequency-dependent dy-

namic'stiﬂ"ness in the ANSYS. However, it might be possible in this WFE anaiysis '

to model the rail pad with more layers of elements. If so, it would not be neces-
sary to regard the dynamic stiffness separately because this model would be able
. to express the internal resonance éﬂ"ects properly by itself. - WFE analysis makes
this attempt substantially possible as it can create dispersion curves very quickly
and éasily, getting rid of the large manual post-processing which was inevitable

with the FE analysis. Note, however, that it is not possible simply to specify a

fréquency—dep_endent stiffness even in the present WFE analysis due to the fo_rm of .

eigensolution used in which K is specified and the syst‘em solved fblf w.

To find an appropriate foundation model, three different models were considered
with the two different cros_s-se'ct'ional FE meshes shown in Fig. 4.4. Foundation
model A is the same as used in the previous FE analysis, having the constant

dynamic stiffness of 10 times the nominal value. Model B has the same FE meshes

J

51




Chapter 4. Wavenumber Finite Element Analysis of a Railway Track

3
:

TRV

y (m)

B &:H:!:H:tkhﬁﬂji\

y (m)

0.05 0.1

(a)

Fig. 4.4. Cross-sectional FE models of a rail on foundation. (a) Model A and B, (b) model

C.

(b)

Table 4.1. Details on foundation models.

0.05 01

Properties Model A Model B Model C
Number of layers of elements 1 1 20
Density (pp) 0 kg/m? 1000 kg/m® | 1000 kg/m?
Young’s Moduli (Ep z, Epy, Ep.) | 166.7 MN/m? | 16.7 MN/m? | 16.7 MN/m?
Shear Moduli (Gp,zy; Gpyz, Gp,zx) | 22.3 MN/m? | 2.2 MN/m? | 2.2 MN/m?

as model A but has a density of 1000 kg/m? for the foundation and does not have
the higher dynamic stiffness. Model B was considered in order to investigate what
happens if mass is included in the foundation in model A. As the final model, model
C was generated with 20 layers in the vertical direction as well as the density of
1000 kg/m3. The properties specified for each foundation model are listed in Table
4.1.

All dispersion curves evaluated from the three track models are shown in Fig. 4.5
for the vertical and symmetric longitudinal waves. Comparing Fig. 4.5(a) with
Fig. 4.5(b), it can be seen that the dispersion curves obtained from model B possess
several additional waves which propagate slowly along the track. These are internal
waves propagating through the foundation only. The result shown in Fig. 4.5(b)
indicates that if the density of the foundation is introduced, waves propagating
through the rail foundation occur in the numerical simulation. Also it is clear that

the number of waves travelling in the foundation is dependent on the number of de-
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(b) (c)

Fig. 4.5. Dispersion curves for the vertical and symmetric longitudinal waves created from
(a) model A, (b) model B, (c) model C.

grees of freedom in the foundation model. This is demonstrated in Fig. 4.5(c) which
shown results for model C up to 40 kHz. Here, most of the solutions correspond
to internal waves in the foundation. Therefore, it is very difficult to identify the
waves of interest propagating along the rail, rather than along the foundation, from
these complicated curves. Note that the waves propagating along the foundation
layer occur when the rail pad is modelled as a continuous foundation with mass. So,
these internal waves would not appear if the rail pad is modelled as a discrete rail

foundation.
As discussed in section 4.1.1, the stiffness terms which make wave behaviour

along the x direction are contained in the matrices K, and K;. So it was examined

what happens to the dispersion relations if the stiffness components for the rail
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Fig. 4.6. Dispersion curves for the vertical and symmetric longitudinal waves created from
model B with Ky and K; corresponding to the rail foundation set to zero.

pad in Ky and K, are set to zero. The dispersion curves obtained are shown in
Fig. 4.6 for model B. This figure reveals that the dispersion curves corresponding
to the waves in the foundation are still present but become straight vertical lines,
implying that they are not propagating waves. From this figure, it was found that
this method is not useful to remove the internal waves in the foundation from the

dispersion curves in Fig. 4.5(b), particularly in Fig. 4.5(c).

It turned out from Fig. 4.5 that although the WFE method can deal even
with the complicated model C, the solutions are not suitable for this study. In
other words, most of the dispersion relations generated from model C depict the
waves propagating along the foundation, not along the rail. Also because there
are many solutions for a given wavenumber, longer computation time is required
unnecessarily to create dispersion curves. Consequently, model A, which has zero
density and constant dynamic stiffness in the foundation, will be used again as a

suitable foundation model in this WFE analysis.

4.3 Prediction of Dispersion Relations and Group

Velocities

The track model appropriate to this WFE analysis was identified in the pre-
vious section. For this track model, the predicted dispersion curves are shown in
Fig. 4.7. In FE analysis, the increment of discrete wavenumber, Ak, was inversely

proportional to the length of the FE model. In this WFE method, however, the
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2

(a) (b)

Fig. 4.7. Predicted dispersion curves for (a) the vertical and symmetric longitudinal waves,
(b) for the lateral, torsional and antisymmetric longitudinal waves.
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Fig. 4.8. Comparison of group velocities predicted by the WFE and FE methods for (a)
the vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.

discrete wavenumbers can be selected arbitrarily allowing a finer resolution. In this
prediction, the wavenumber increment used was 1.3 rad/m, which is a quarter of
that specified in FE analysis in Chapter 3, so that smoother curves were generated

as illustrated in Fig. 4.7.

As stated above, the group velocities can be readily predicted by Eq.(4.14)
for each wave. The group velocities obtained by the WFE method are presented
in Fig. 4.8. They are also compared with the previous FE analysis results from
Fig. 3.16. The FE and WFE methods yield generally similar results but the WFE

35




Cbéptér 4. Wavenumber Finite Element Analysis of a Railway Track

‘method produces more accurate and smoother curves than the FE method. Now it
becomes much easier to recognize each line’s behaviour, particularly for the longi-

tudinél waves which have the highest group velocities.

The improved graphical result obtained by the WFE method mainly results
from the finer wavenumber resolution. That is, if a finer wavenumber resolution
were used by extending the length of the model in FE analysis, similarly smooth
éurves should be obtained. However, to achieve comparable results to those obtained
by th-e WFE method in Fig. 4.8, an FE model of length 1.2 m needs to be used,
which would dramatically increase computational requirements. Moreover thé finite
differenice approach requires an even finer Wavenumber resolution than the direct
approach used with the WFE method.

4.4 Prediction of Decay Rates

So far the track model has been analysed without considering any damping in
the structure. From now on dainping will be included in the track model to predict

decay rates of the propagating waves.

The.re are two damping components in the track model: the damping in the
rail, n,, and in the foundation, 7,. The stiffness matrix of this damped track model

can be separated into two parts
Ka=(1+7n)Ke+(1+ jnp)Kp (4.25)

where K, and K, denote the stiffness matrices for the rail and foundation, respec-
tively. These stiffness matrices possess separate material properties for the rail and
foundation as specified in Table 4.2. Because of the different dampings in the rail

Table 4.2. Elas’clc moduli of the rail and foundation for the generatlon of stiffness matrices
in WAFER. : '

_ Elastic Modulus K . Kp
Young’s Modulus of rail (E,) 200 GPa { 0GPa
Young’s Modulus of foundation (E,) | 0 MPa | 166.7 MPa

Shear Modulus of foundation (Gyp) 0 MPa | 22.7 MPa
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and foundatioﬁ, the damped wavenumber of this track model has to be slightly
modified from Eq.(4.23). ‘

For this track model a damped wavenumber, k4, can be expressed as

aK)d » aﬁld .
—_— . 4.2
6777' ﬂr—on + anp L ( : 6)

Kd =K

. 77P=0
Since the equation of motion has to be satisfied for the derivativés with respect to

7 and Mps
) . o - - |
%{[(1 + 57 ) K + (1 + jn,)Kp — wQM]@} =0 |, (4.27)
) ) . o = ‘
oy UL+ ) Ke + (L4 ) Kp —w’M|2} =0 (4.28)

By following the same process as described in sectlon 4.1.4, the two derivative terms

in Eq.(4.26) become

oy jRTKE on RS
O ln=o BEK'® ' Omplm=0  PHK'E o
where K = K, + K. Therefore, the damped wavenumber is obtained as
&7 (K, + Kon,)®
g = 15 — 2 e + Kpnp) (4.30)

$HK'®P
Finally the decay rates of waves propagating along the track can be evaluated from
the imaginary part of x4 as ' '

oH (Kr77r + Kpnp)@

(4.31)
BIK'® »

A = 8.686

As presented above, the damping loss factors of the rail and rail pad are required
for this track model. The material damping loss factors of the rail and rail pad are
set to constant values of 0.0002 and 0.2, respectively, as specified in Chapter 3.> The
predicted decay rates are ,shdwn in Fig. 4.9, along with the previous FE analysis
results. As revealed in Fig. 4.9, the decay rates predicted from the WFE and FE

methods are almost the same but again the WFE method creates smoother curves

than the FE-method.

In practice, a range of rail pads with different stiffnesses is used in track. This

dlfference in stlffness will bring a change in Kp in Eq (4. 30) which will affect the
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Fig. 4.9. Comparison of decay rates predicted by the WFE and FE methods for (a) the
vertical and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric
longitudinal waves.

imaginary part of the damped wavenumber. In order to investigate the effects of
the foundation stiffness on decay rates, different values of stiffness are applied here.
The values chosen aim to represent the soft and stiff ends of the stiffness range of
rail pads. In this prediction, the respective stiffnesses of the soft and stiff rail pads
are considered as 80 MN/m and 1500 MN/m in the vertical direction and 11 MN/m
and 200 MN/m in the lateral direction, respectively [12,30]. (The chosen stiffnesses
of the rail pad for the decay rate calculation shown in Fig. 4.9 are 150 MN/m and
20 MN/m in the vertical and lateral directions, respectively.) In each case a factor

of 10 is applied to the stated values to represent the dynamic stiffening.

The predicted decay rates are presented in Fig. 4.10 and Fig. 4.11 for these soft
and stiff foundation models. These figures show that with the soft pad there are
more waves with low decay rates, whereas with the stiff pad most of the waves have
higher decay rates. However, it turns out that the lowest decay rates for frequencies
greater than around 20 kHz are not significantly affected by whether the rail pads
are soft or stiff. This behaviour can be explained from the wave deformation shapes.
Waves inducing large deformations in the rail foot are mainly affected by the stiffness
changes in the foundation. In other words, the most slowly decaying waves propagate
only through localized regions, such as the rail head and the web. Consequently,
the decay rates of these localized waves are primarily dependent on the damping of

the rail, not the rail pad. It is apparent from this sensitivity check that the lower
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Fig. 4.10. Predicted decay rates with the soft rail pad of 80 MN/m for (a) the vertical and
symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric longitudinal

waves.
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Fig. 4.11. Predicted decay rates with the stiff rail pad of 1500 MN/m for (a) the vertical
and symmetric longitudinal waves, (b) the lateral, torsional and antisymmetric longitudi-
nal waves.

limits of the decay rates at frequencies above 20 kHz are directly associated only
with the structural damping of the rail. Therefore, the structural damping of the
rail is a principal factor in determining long range wave propagation, even when the
rail pad is quite stiff. This result implies that the lower limits of the decay rates
will be little changed although the rail pad is modelled as a damper, which was
discussed in Section 3.1.3. Structural damping loss factors of rails will be measured

and discussed in Chapter 5.
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4.5 Prediction of Measurable Waves on the Rail

Surface

As described previously, there are 63 different waves propagating below 80 kHz
in the track model. It will, therefore, be worthwhile 'identifyingywhich waves among.
them belong to which regions of the rail cross-section and élso which ones are mea-
surable on the rail surface at different locations. Since dynamic responses are usually
measured normal to the rail surface, the energy distributions around the rail surface
can provide useful information on which waves are detectable in a specific region.
For instance, the deformation energies of waves shown in Fig. 3.11 which have local
deformations are concentrated in local regions. To quantify this feature, the ‘en-
ergy’ associated with different parts-of the rail surface has been calculated from the
predicted,displacement of the track model producéd by the WFE (or FE) method.

For this purpose, four separate regions have been spec1ﬁed on the rail surface
as shown in Fig. 4.12. These are the top of the rail head, the side of the rail head
the middle of the web and the top of the foot. In this figure, y and z denote lateral
and vertical directions, respectively. . Then the normalized energies for each region
and each direction were predlcted using

—Zl@ ,J|2 |

jnJ

Q= 7, Bt )

where ®, denotes displacements in all directions at all nodes on the rail surface,
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Fig. 4.12. Four regions specified for the prediction of energy distribution on the rail surface.
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| || is the vector norm, &, ; is displacement in the z direction (and similarly for the
z and y directions) at nodes belonging to the region 7, n; is the number of nodes
in the region j and N is the total number of nodes 4(')n the rail surface. Therefore,
this quaﬁtity would depict implicitly which waves are measurable in region j among
all the waves in the system. In this calculation, no information on the input force
or modal participation factor is included so that all the modes are treated equally.
‘These measurable waves predicted by Eq.(4.'32) will be used in comparison to the

measured results.in subsequent chapters of this thesis.

4.5.1 Measurable waves in the vertical and lateral directions

The predicted dispersion curves at each region are illustrated in Fig. 4.13 in
terms of the energy ratio given in Eq.(4.32). In these ﬁgﬁres, all curves from Fig. 4.7
are present but the strength of the line colour depicts the level of the normalized
energy at each frequency. In other Words, the darker curves correspond to waves
that are the more detectable. Fig. 4.13(a) reveals that only a single type of wave,
i.e., the head bending wave, is predominantly measurable at the top of the rail head
below 32 kHz. This is the wave shown in Fig. 3.11(c). The changes of colours along
this line iﬁdicate that the rail head bending wave is maintained through the wave
mode conversions as stated before. Other vertical waves that are significant tend to
cut-on at around 32 kHz. A similar phenomenon is obtained at the side of the rail
head for the lateral direction (Fig. 4.13(b)) where the wave seen in Fig. 3.11(e) is
most important. Conversely, at the middle of the web a large number of waves are
present, throughout the whole frequency range, but the 1% order web bending wave
(Fig. 3.11(b)), i.e., the green line in Fig. 4.13( ), is promment above 10 kHz. At the

top of the foot, foot bending waves will possess most deformation energy.

In the same manner, the group velocities of waves that are detectable at each
region can be presented in terms of the energy ratio. These measurable group-veloc-

ities predicted at each region will be shown in Chapter 6 together with the measured

" ones:

The predicted decay rates at each region are shown in Fig. 4.14 also in terms
of the energy ratio. Again, all lines from Fig. 4.9 are plotted, but the strength of

line colour depicts the level of normalized energy at each frequency. »Fig. 4.14(a)
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shows that the minimum decay rate of 0.04 dB/m would appear around 20 kHz if
it is measured at the top of the rail head. It has to be noted from Fig. 4.14(a)
that the decay rates grow when the wave modes are swapped with each other. For
example, around 15 kHz, the green coloured and red coloured waves are exchanging
their deformation shapes. At this point, the low decay rate wave becomes the higher
decay rate wave and vice versa. Hence the decay rate increases when the two lines
cross. The deformation shape of the wave having the minimum decay rate at the top

of the rail head is illustrated in Fig. 4.15(a) which was obtained from the previous
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Fig. 4.13. Predicted dispersion curves in terms of the energy ratio for the vertical and lat-
eral directions. (a) At the top of the rail head for the vertical and symmetric longitudinal
waves, (b) at the side of the rail head for the lateral, torsional and antisymmetric longi-
tudinal waves, (c) at the middle of the web for the lateral, torsional and antisymmetric
longitudinal waves, (d) at the top of the foot for the vertical and symmetric longitudinal
waves.
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Fig. 4.14. Predicted decay rates in terms of the energy ratio in the vertical and lateral
directions. (a) At the top of the rail head for the vertical and symmetric longitudinal waves,
(b) at the side of the rail head for the lateral, torsional and antisymmetric longitudinal
waves, (c) at the middle of the web for the lateral, torsional and antisymmetric longitudinal
waves, (d) at the top of the foot for the vertical and symmetric longitudinal waves.
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Fig. 4.15. Simulated deformation shapes of waves which have the minimum decay rates
(a) at 20045 Hz in Fig. 4.14(a), (b) at 13028 Hz in Fig. 4.14(b).
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FE analysis. For the case of the lateral response of the rail head, it was determined
in the simulations that the minimum decay rate of about 0.04 dB/m would occur
around 15 kHz and its deformation shape is shown in Fig. 4.15(b). At the middle of
the web the most measurable wave is the 15 order web bending wave and its decay
rate has a minimum at around 20 kHz of about 0.05 dB/m. In the case of the foot,

much larger decay rates are inevitable because of the greater contribution of the rail

pad.
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Fig. 4.16. Predicted dispersion curves of measurable waves in the longitudinal direction
(a) at the top of the rail head for the vertical and symmetric longitudinal waves, (b) at
the side of the rail head for the lateral, torsional and antisymmetric longitudinal waves,
(c) at the middle of the web for the vertical and symmetric longitudinal waves, (d) at the
middle of the web for the lateral, torsional and antisymmetric longitudinal waves.
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4.‘5.2‘ Measurable waves in the longitudinal direction

For the longitudinal direction, the predicted dispersion curves measurable at
' the top of the rail head, at the side of the rail head and at the middle of the web,
are illustrated in Fig. 4.16 in terms of the energy ratio. In this figure, any types
of waves having large deformations in the longitudinal direction will apbpear with
relatively strong line colours, not just purely longitudinal waves. This includes the
vertical and lateral bending waves in the rail head which .appear in Fig. 4.16(a) and
(b) with considerable strength. It is found from Fig. 4.16(a) that the symmetric
longitudinal waves appeaf to have large deformation between 10 kHz and 35 kHz at
the top of the rail head. On the other hand, Fig. 4.16(b) shows that the antisym-
metric longitudinal waves appear to be measurable above 23 kHz at the side of the
rail head. Figs. 4.16(c) and (d) indicate that the symmetric longitudinal waves are
present at the middle of the web but no antlsymmetnc longitudinal waves are found
there. (The green line in Fig. 4.16(d) is the 15t order web bending wave). That is
because the web is too narrow in the y direction to reveal con31derable _antisymmet-

ric deformation in the longltudlnal direction.

The predicted decay rates at these three regions for the waves which have large
deformations in the longitudinal direction are illustrated in-Fi.g 4.17 in terms of the
energy ratio. Fig. 4.17(a) illustrates that at the top of the rail head the. minimum
decay rate of the longltudlnal waves is about 0.04 dB/m at around 15 kHz. (The
wave coloured purple in Fig. 4.17(a)). At the side of the rail head ar_ld at the
middle of the web, they are about 0.05 dB/m at around 32 kHz and 0.06 dB/m at
, around 24 kHz, respectively. The mode shapes of these longitudinal waves having

the minimum deéay rates are illustrated in Fig. 4.18; these were obtained from the
previous FE analysis. From this simulation, it was confirmed that the lohgitudinal
waves do not have‘signiﬁcantly lower decay rates than other types of waves despite.
having a higher group velocity. This is because they normally induce considerable

deformations of the rail foundation which has a large damping loss factor.
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Fig. 4.17. Predicted decay rates of measurable waves in the longitudinal direction (a) at
the top of the rail head for the vertical and symmetric longitudinal waves, (b) at the side
of the rail head for the lateral, torsional and antisymmetric longitudinal waves, (c) at the
middle of the web for the vertical and symmetric longitudinal waves, (d) at the middle of
the web for the lateral, torsional and antisymmetric longitudinal waves.
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Fig. 4.18. Deformation shapes of the longitudinal waves which have the minimum decay
rates in Fig. 4.17. (a) At 16867 Hz in Fig. 4.17(a), (b) at 32365 Hz in Fig. 4.17(b), (c) at
23223 Hz in Fig. 4.17(d).
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- 4.6 Summary

In this chapter, the WFE method was employed as an alternative and more
advanced approach instead of the conventional FE method. This method requires
only a Cross- -sectional model by using wave solutlons for the direction in which waves

propagate, which makes it very efficient.

An appropriate cross-sectional track model was created as a rail on a distributed
elastic foundation. A cross-sectional model that had twice as many elements as that
used in the FE analysis was chosen as a suitable one in this method. The same
foundation model was used as specified in Chapter 3, which was a massless elastic

layer with the stiffness increased by a factor of 10 to represent dynamic stiffening. '

In this WFE method, the group velocity and decay rates are readily formulated
for each individual wave. Comparing the results produced from the FE and WFE
methods, it was observed that both methods produce almost the same dispersion
relations and decay rates but the WFE method creates smoother curves more ef-
ficiently, particularly for the group velocities. Consequently it was confirmed that
the WFE method is more relevant for the work presented in this thesis because it

is much faster and more efficient than the ordinary FE method.

. In this chapter, waves measurable on the rail surface were also predicted by
quantifying deformation energies in several regions of the rail cross-section. The

most measurable waves which have the lowest decay rates were
e the Vertical bending wave which has 2 local deformation in the rail head
e the lateral bendiné wave which has deformati‘o‘n in both the rail head and web
e the 1°* order web bending wave in the web.

The reason why a wave can travel furthest through the rall head is shown to be :
because the wave makes little deformation of the rail foundation which has a large
damping loss factor Furthermore, it was predicted that the longitudinal waves do
not propagate further than other types of waves. This is because they 1nduce con-

31derable deformatlons of the rall foundation.
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Finally, a parameter study was performed on the effect of foundation stiffness on
‘decay rates and it was revealed that the minimum decay rates are directly related to
the damping-of the rail, not.of the foundation. The structural damping loss factors

of rails will be investigated in Chapter 5 based on experiments.
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Chapter 5
Damping Loss Factors of Rails

In Chapter 4, the decay rates of waves propagating along a railway track were
predicted by WFE analysis. It was identified from this simulation that the minimum
decay rates are directly determined by the structural damping of the rail, particularly
for the waves with the lowest decay rates at frequencies above 20 kHz. Therefore,
it can be said that structural damping of a rail is a primary input parameter in the
decay rate prediction. However, in those predictions, the structural damping loss
factor of the rail was assumed simply as a constant value of 0.0002 for the entire
frequéncy range. In this chapter, in order to check this assumption and determine
‘the value as a function of frequency, structural damping loss factors have been
measured YfAdr fréquencies ﬁp to 80 kHz from impact hammer tests on samples of .
three different types of rail. Then the decay rates are improved using the measured

damping factors for rails.

5.1 Measurement for Damping Loss Factors of
Rails

For well separated modes of a stru(;tufe, the damping ratio, (,, and damping -
loss factor, 7,, of the n** resonance mode can_be estimated from its resonance peak

and half power bandwidth using

e, _ _‘

n — 3 . v 3 .1
=5 (1)
=2, (52
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where w, is the resonance frequency of the nth mode, w, and w, denote its half
power frequencies, i.e., the frequencies at which the response is 3 dB lower than the -

resonance peak value [32].

Measurements have been carried out on three short sections of rail. The rail
types used for this measurement are UIC60, 56E1 (both conventional rail steel) and
MHT (Mill Heat Treated) which has the same cross-section as that of 56E1. The
lengths of the samples used are 0.6 m, 0.45 m and 0.31 m, respectively. Among these
rail samples, the MHT rail is more brittle than the others due to the additional heat

treatment applied to it.

In order to excite the rails, a miniature impéct hammer, PCB 086D80, was used
to generate a broadband signal. According to the manufacturer’s speciﬁcatioh sheet,
the excitation ffequen_cy range of this impact hammer is limited to 20 kHz. Lanza
di Scalea et al. [9], however, reported that they were able to excite frequencies up
to between 40 kHz and 50 kHz with this type of hammer. Piezoelectric accelerome-
ters, _PCB 352C22, attached by beeswax, were used to measure the response. Again
the specification sheet indicates that this accelerometer has a limited measurement
rangé of up to 20 kHz and the mounting resonance frequency of the accelerorheter is
specified as around 90 kHz. Since the extraction of damping using Eq.(5.1) does not
~ require a calibrated_ftequency response amf)litude, however, this will not ad'verSely

affect the measurement.

The same experiment was carried out twice for the low and high frequency
regions separ_ately with different data acquisition units. For the region below 20 kHz,
the measurement was performed using an 8 channel data acquisition unit which

works with its own exclusive signal analyser. With this equipment, the frequency
- resolution is automatically determined by setting the frequency bandwidth. That
is,'t'he frequency resolution, A f, becomes wider as the overall bandwidth broadens.
If the frequency span is set to 42 kHz as its maxiinum, the frequency resolution
would be acceptable at the higher freQuency region but would be insuﬁicient at
Ic;wer frequehcies where the resonance peaks are relatively sharp. So, in order to -
maintain suﬁiciént‘frequehcy’resolution at lovi} frequéncies, the measurements were
vcar'ried. out using several different bandwidths, namely, from 0 to 5 kHz, 0 to 10 kHz

and 0 to 20 kHz. The corresponding frequency resolutions were about 0.2 Hz,
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8 Ch. Data Acquisition Unit | | Signal Analyser Data Acquisition Unit Controller
(Data Physics Corp.) (SignalCalc) (NI PCI-6110) (MATLAB)
Accelerometers Impact Hammer Accelerometers Impact Hammer
(PCB 352C22) (PCB 086D80) (PCB 352C22) (PCB 086D80)
— - —— N
rail rail

(a) (b)

Fig. 5.1. Experimental setups for damping loss factor measurement for (a) low frequencies
up to 20 kHz, (b) high frequencies up to 80 kHz.

Fig. 5.2. A rail sample supported on rope.

0.39 Hz and 0.78 Hz, respectively. Damping values were then determined for modes
in limited frequency bands of 0 to 5 kHz, 5 kHz to 10 kHz, 10 kHz to 20 kHz from
each measurement. For the high frequency range between 20 kHz and 80 kHz, an
NI data acquisition board, PCI 6110, was used with a sampling rate of 200 kHz and
the resulting frequency interval was 1 Hz. (The measurement range was 0 to 80 kHz
but only data above 20 kHz were used.) Regardless of the frequency ranges and
acquisition units, the same impact hammer and accelerometer were used as exciter
and sensor. The measurement setup is shown in Fig. 5.1. In these experiments, the
rail samples were supported on soft ropes as illustrated in Fig. 5.2. It was found
from the measurement that the resonance frequencies of this mounting system are
below 50 Hz and are therefore unlikely to affect measurements of damping above
1 kHz.

The rail specimens were excited at the end of the sample at the top and side of

the railhead and the responses were measured at two points on the top and side of
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Fig. 5.3. An example of measured response. (a) Frequency spectrum of an input force,
(b) averaged response spectrum of 56E1 rail at the top of the railhead.

the railhiead for each excitation as shown in Fig. 5.1. (The UIC60 rail section was

only measured up to 40 kHz).

As an example Fig. 5.3 shows the frequency spectra of the input force and the
averaged output accelerat1on levels measured from the 56E1 rail up to 80 kHz As
shown in Fig. 5.3(a), the impact hammer does not provide a uniform force spectrum
over the whole frequency span. This unevenness came from the duration of the
input impulse excited by the impact hammer, which was not sufficiently short to
.generate frequencies above 20 kHz. However, there is still sufficient energy, even at
high frequencies, to excite the resonances of the st_ructnre. It is observed from the
response spectrum in Fig. 5.3(b) that the sensor’s mounting resonance appears to be
located between around 60 and 70 kHz, causing relatively large résponses despite a
small input force. Despite these effects the force and overall responsé levelaround the
mounting resonance vary slowly with frequency so that the resp'onse spectrum can
be used to extract the half power bandwidfhs of the structural resonances' because
' only resonances Wlth large amphtude are of interest. Also it can be seen from the
response spectrum that there is a noise floor but that there are many resonances

with peaks that are 30 to 50 dB above the noise ﬂoor

Damping loss _faétdrs were extracted from the resonance peaks and tvhebir‘ha'lf' ,

t
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Fig. 5.4. Examples of measured frequency responses of 56E1 rail at the top of the railhead
(a) between 5 kHz and 10 kHz, (b) between 40 kHz and 60 kHz.
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Fig. 5.5. Measured and approximated damping loss factors of three different rail samples.

power bandwidth for all relatively large amplitude resonance peaks as illustrated
in Fig. 5.4 as an example. For this calculation, a criterion line was created as pre-
sented in Fig. 5.4 by using moving average of the response over 600 Hz bands in
order to select relatively large amplitude resonance peaks, specifically those more
than 10 dB above the moving average. For these selected resonances, the measured
damping loss factors for all the rail samples are illustrated in Fig. 5.5. As shown in
this figure, the extracted damping loss factors vary greatly from mode to mode at

lower frequencies. Despite these variations, the experimental results reveal that the
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Fig. 5.6. (a) Nyquist plot for resonances below 20 kHz, measured at the top of the
railhead of 56E1 rail, (b) comparison of damping loss factors obtained from the amplitude
and Nyquist plots of output response below 20 kHz.

damping loss factors of the rails tend to decrease quite rdpidly until about 30 kHz

and then more slowly at higher frequencies.

Since there are large fluctuations in the extracted damping loss factors, partic-
ularly at lower frequencies, the validity of these estimates has been confirmed. It
is known that the accuracy of the estimates of loss factors can be improved using
modal circle fitting, referred to as Nyquist plot [32]. However, this method is much
harder to automate for a large number of modes. So damping loss factors were
estimated from the Nyquist plots only for a'small number of resonances below 20
kHz for comparison with estimates obtained from the amplitude plot. For these
resonances, the Nyquist diagrams are shown in Fig. 5.6(a) and the estimated damp-
ing loss factors are compared in Fig. 5.6(b). Fig. 5.6(b) provides evidence that the
scattering of damping losé factors is more likely associated with structure’s physical

behaviour rather than any error in the estimate.
Nyquist plots for the modes used in Fig. 5.5 between 40 kHz and 80 kHz are
shown in Fig. 5.7 as examples, although these have not been used to extract damp-

ing values. From these Nyquist plots for the resonances included in Fig. 5.5, it was

observed that most of the modes were sufficiently separated even at high frequencies.

Based on the measured results shown in Fig. .5.5, average damping loss factors
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Fig. 5.7. Nyquist plots for the modes of the 56E1 rail used in Fig. 5.5 (a) between 40 kHz
and 60 kHz, (b) between 60 kHz and 80 kHz. .

of each rail s'arriple were fouhd taking averages over 10 kHz bands which were chosen
to be overlapping to create a result at each 5 kHz. In this estimate, for frequencies
~above 20 kHz, the average was taken of 1/n within the band and ‘then inverted to
give 7. “This reduces the influence of a small number outlying estimates. The ap-
proximated damping loss factors are shown in Fig. 5.5 for each rail sample. The

linear interpolation was used between the results obtained at each 5 kHz.

It was identified from this experiment that the three rail samples have véry
similar damping loss factors‘regardless of differences in their shapes and heat treat-
~ ments. So it seems that the damping loss factor is governed by the material of the
rail itself. In addition, it turned out from this éxpe'riment that the measured results’
did not differ greatly from the estimated damping loss factor of 0.0002, used for the
previous decay rate prediction. For the rest of the Work reported in this thesis, the
moving average curve representing the approximate damping loss factor of the 56E1

rail is used to ifnprove the accuracy of the simulated decay rates.
5.2 Decay Rate Recalculation

- In this section, the decay rates are recalculated by using the damping loss factor
which was approximated from the measured results for the 56E1 rail, as shown in

Fig. 5.5.
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In the FE analysis in Chapter 3, the decay rate, A, was evaluated by Eq.(3.27) as
a function of 7. For the track model, 7 is specified by the two damping components:
n, for the rail and 7, for the rail pad. Since 7, was given as a constant in Chapter

3, the loss factor of the it" wave, n', can be expressed as

77i =N+ Fi(np) ’ (5'3)

where F"(n,) denotes a function of 7,. By using the measured damping loss factor
for the 56E1 rail, as shown in Fig. 5.5, decay rates can be recalculated. Since 7,
was given as a constant of 0.0002 in the previous FE simulation, the decay rates
can be recalculated simply by replacing 0.0002 with the averaged damping of the
rail. That is, the improved decay rates are created by subtracting the structural
damping of 0.0002 from 7’ in Eq.(5.3) and then adding the measured one instead.
This recalculation was performed to obtain improved decay rates for each wave
predicted from the FE analysis [58]. However, since the decay rates predicted by
the WFE method are more accurate, as validated in Fig. 4.9, only those obtained
from the WFE method will be presented in this section.

In WFE analysis, the improved decay rates is predicted from Eq.(4.31) by using
the measured 7),, instead of using the constant value. The revised decay rates are
illustrated in Fig. 5.8 by using the measured damping loss factor of the 56E1 rail.
Comparing these revised decay rates in Fig. 5.8 with the previous ones shown in

Fig. 4.9, it can be seen that using the measured damping loss factor of the rail

Decay Rate (dB/m)

CX

T
Decay Rate (dB/m)

3

rrp— -
: //.
-
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Fig. 5.8. Decay rates predicted by using the measured structural damping of the 56E1
rail for (a) the vertical and symmetric longitudinal waves, (b) the lateral, torsional and
antisymmetric longitudinal waves.
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Chapter 5. Damping Loss Factors of Rails

causes the curves with low decay rates to increase at frequencies below 25 kHz and
to reduce above 25 kHz. Particularly, the lowest decay rate curves were mainly
modified because they are most strongly affected by the structural damping of the
rail. From this decay rate recalculation, it was found that the minimum values of
decay rate are little changed but the frequency range where the minimum decay
rates occur becomes somewhat broader, moving to the range between 20 kHz and
40 kHz.

Finally, the decay rates of the waves measurable at the top/side of the rail

head, at the middle of the web and at the top of the foot are obtained as shown in
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Fig. 5.9. Decay rates of the measurable waves predicted (a) at the top of the rail head
in the vertical direction, (b) at the side of the rail head in the lateral direction, (c) at
the middle of the web in the lateral direction, (d) at the top of the foot in the vertical

direction.
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Fig. 5.10. Simulated deformation shapes of the waves (a) marked ‘x’ in Fig. 5.9(a), (b)
marked ‘x’ in Fig. 5.9(b), (¢) marked ‘x’ in Fig. 5.9(c).

Fig. 5.9. The minimum decay rates measurable on the rail surface tend to be about
0.04 dB/m at the top and side of the rail head and about 0.05 dB/m at the middle
of the web, respectively. The wave types that possess the minimum decay rates are
marked ‘X’ in Fig. 5.9 and their deformation shapes are illustrated in Fig. 5.10. This
figure verifies that the respective types of these waves are the vertical bending wave
localized in the rail head, the lateral bending wave of the rail head with a global
deformation of the web and the 1! order web bending wave, as presented in Chapter
3. The simulated decay rates in Fig. 5.9 will be compared with field test results in
Chapter 7.

5.3 Summary

Since it was revealed in Chapter 4 that minimum decay rates are directly re-
lated to the damping of the rail, structural damping loss factors were measured up

to 80 kHz from impact hammer tests for three different rail samples.
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From this experiment, it was found that the measured damping loss factor re-
duces as fr.equency increases although it-does not deviate much from the estimated
value of 0.0002, used for the previous numerical sirﬁulations. ‘In addition it was
revealed that the damping loss factors tend not to be significantly dependent on
the different rail geometries and heat tree;tment_s. Accordingly, it seems that the

damping loss factor is governed by the material of the rail itself.

Using the measured damping of rails, decay rates of measurable waves were re-
calculatéd. This caused some changes in the predicted decay rates, particularly the
lowest decay rate curves. From the recalculated decay rates, it was identified that
the minimum decay rates are about 0.04 to 0.05 dB/m which were little changed by
using the measured damping but the'freq'uenc'y range where they occur was moved
to between 20 kHz and 40 kHz. | o
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Chapter 6

Group Velocity Measurements on
ISVR Test Track

In the previous chapters, numerical analyses for railway track have been per-
formed up to 80 kHz. To validate these simulation results, two experiments were
implemented on a short test track. These experiments use an impact hammer to
excite frequencies up to 42 kHz and piezoceramic transducers for frequencies up
to 80 kHz. Accelerometers were used as receivers. The experiments have been per-
formed on the ISVR test track located at Chilworth (Fig. 6.1) which is equipped with
UIC60 rail of about 32 m in length. The rail is mounted with Pandrol Fastclips and
10 mm studded rubber rail pads on concrete sleepers surrounded by ballast. It has
been used previously by de France [45]. Time-frequency analysis has been applied

to the measured data in order to extract dispersion relations. Then the measured

Fig. 6.1. ISVR test track at Chilworth.
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Chapter 6. Group Velocity Measurements on ISVR Test Track

results are compared with the simulated ones obtained by WFE analysis.

6.1 Measurement Using an Impact Hammer for

Frequencies b':elow 42 kHz

6.1.1 Measurement setup

The same miniature impact hammer used in the measurement of damping loss
factor in Chapter 5 was employed to generate a broapdband signal at one end of the
rail. The same model of acceleromeﬁer, as used in Chapter 5, was utilised to detect
propagating waves along the rail. As stated before, since the mounting resonance
frequency of the accelerometer is specified as around 90 kHz, theyvcan be used well
beyond the sensor’s quoted measurement range of 20 kHz for measuring dispersion
charactexl"istics‘of propagating waves, as long as the measurements do not need to

be calibrated.

~Six accelerometers were set up along the rail, spaced at a distance of five sleeper

spans (about 3 m). They were each placed at the mid span between two sleepers
and attached by means of beeswax. Also, to avoid the near-field effects that take
place around both ends of the rail and to diminish the contributions of the rapidly
déCaying waves, the sensors were located in the central portion of the rail. As a
data acquisition unit, an 8 channel SignalCalc Mobilyzer (Data Phyéics Corp.) was
used. The maximum frequency range of this unit was limited up to 42 kHz, and the
corresponding sampling rate was 107.52 kHz. The measurement setup is shown in

Fig. 6.2.

In the experiment, the excitations and measurements were implemented for the

three different directions, that is, in the vertical, lateral and longitudinal directions.

For each location, 10 excitations were recorded and analySed. Data weié recorded

as time domain signals. For the vertical and lateral directions, four excitation and
receiver pb_irits on the rail cross-section are indicated in Fig. 6.3(a): the top and side
of the rail head, middle of the web and top of the foot, respectively. T“he'é;'{c"itat'ion
points were less than about 10 mm away from the adjacent end of the rail. Sincé

the frequency range was limited up to 42 kHz, the shortest wavelengths in the rail
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Fig. 6.2. Experimental setup using an impact hammer as an exciter.

(a) (b)

Fig. 6.3. Excitation and measuring points for the decay rate measurement. (a) The four
excitation and measurement points on the rail cross-section in the vertical and lateral
directions, (b) the three excitation points on the rail cross-section in the longitudinal
direction, (c) measurement points on the rail cross-section in the longitudinal direction.

are about 63 mm at the rail head, 48 mm at the web and 42 mm at the rail foot,
respectively (from Fig. 4.13). So, the phase cancellation due to the waves reflected

from the adjacent end of the rail will be negligible.

At all four positions on the rail cross-section, the excitation was applied and
the responses along the rail were measured at the corresponding position on the
cross-section normal to the rail surface. In the calculation of the energy ratio in
Eq.(4.32), it was assumed that all the modes are excited equally. In practice, how-
ever, the rail response will depend on the position of the excitation which determines
the excited modes. In order to make similar condition to that used in Eq.(4.32) in

the measurement, the rail responses were acquired at the same positions on the rail
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cross-section as the excitation is applied. If the excitation and receiving positions
are different, the rail response would appear as a combination of the energy metric

in Eq.(4.32) for the excitation and receiving positions on the cross-section.

For the longitudinal direction, small blocks were attached on the corresponding
rail surfaces as shown in Fig. 6.3(b) and Fig. 6.3(c) to create and measure the prop-
agating waves in the longitudinal direction. (In the experiment for the longitudinal
direction, the foot was not used as an excitation and receiving point). The arrows in
Fig. 6.3(b) depict the excited direction for the longitudinal wave generation. In this
measurement for the longitudinal direction, the web was also used as an excitation
and receiving point at shown in Fig. 6.3(b) and (c). However, it was found from the
measured data that the excitation on the block creates bending waves much more
efficiently than longitudinal waves, because of the flexibility of the web. So the re-
sults measured on the middle of the web in the longitudinal direction are omitted

in this section.

It should be noted that there are two welds in the rail of this test track as
marked in Fig. 6.2 and one of them is illustrated in Fig. 6.4. These welds may lead
to wave reflections, particularly at the web and foot of the rail because there is

considerable thickness change, as seen in Fig. 6.4.

Fig. 6.4. A welded region located between 1st and 2nd measurement positions. An ac-
celerometer can be seen attached at the 2nd measurement position on the web.
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6.1.2 | Time-frequency‘ analyéis

Since it is anticipated from the simulation results that several propagating waves
will coexist in the measured time signal3 and the frequency content of the signal
~ will vary with time, the simple one-dimensional frequency domain results, such as
Fourier spectra, are not sufficient to separate and :identify them. Thefefore a two-
dimensional time-frequency analysis has been applied to the measured responses..
There are several methods which can be used to generate time-frequency diagrams
from the time signals, for example, spectrogram, Wigner-Ville distribution, wavelet
transform, etc [59]. However, if multiple waves are present in a time signal, the
Wigner—Villé distribution does not create -a clear time-frequency. diagram due to
the occurrence of their croés—terms. The scalogram produced by using the wavelet
transform has poor time resolution at low frequency and poor frequency resolution
at high frequency according to the uncertainty pririciple. So it does not seem to be
suitable for this study because the goal is to distinguish several waves at low and
. high fréquenc‘ies evenly. Alternatively, the spectrogram has uniform time-frequency
resolution throughout the whole range of the diagram, although: it is still limited by
the uncertainty principle. In this thesis, therefore, thé spectfogram, using the Short
Time Fourier Transform, was used for time—freoiuency analyvsis of the measured sig-

nals.

In order to make a two-dimensional diagram, a 1024 x 1024 data matrix was
created from the measured time signal by using a weighting function. The data
structure of this two-dimensional matrix is illustrated in Fig. 6.5. The Hanning |
window function was used in this analysis. As shovx}n in this figure, each column
of this 2-D matrix corresponds to. each discrete time of the signal and each row is -
composed of measured data in a short time length extended with zeros. The data
points in the Hanning window function were given as M = 129 and m = (M +1)/2 =
65 in Fig. 6.5. The Fourier transform of every cohimn of this 2-D matrix creates a
time-frequency matrix which can be plotted as a time-fr.equéncy diagram. Due to
the limited length of 1024 points, the frequency increment A f of the frequency axis
becomes 105 Hz by the relation of Af = f,/N = 107520/1024 = 105 Hz, where f,

denotes the sampling frequency.
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Fig. 6.5. Data structure of the two-dimensional matrix for creating a spectrogram.

6.1.3 Measured results at the top of the rail head in the
vertical direction '
As described above, the reliable frequency range of the impact hammer and

the accelerometer are specified as up to 20 kHz by the manufacturer. However, in

the signal analysis it was possible to detect frequencies above 40 kHz. Fig. 6.6(a)
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Fig. 6.6. ( ) Power spectra of input forces, (b) an example of the measured time signals
at the top of the rail head along the rail.
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shows the power spectra of the 10 input forces measured at the top of the rail head.
Although the spectra are not flat above 20 kHz, there is still a reasonable signal
over the frequency range considered. In addition, examples of the time signals mea-
sured at the top of the rail head at the various positions along the rail are shown
in Fig. 6.6(b) for excitation at one end of the rail. Excellent waveforms of direct
waves and echoes reflected from the far end of the rail were obtained at various
distances. Further examples of the measured time signals at each receiving position

are illustrated in Appendix B.

The time signals measured at positions 2 and 4 at the top of the rail head are
shown in Fig. 6.7 for the case when the excitation was applied at the end of rail.
The origin of the time axis was determined by triggering on the input excitations.
At the 4% sensor, the echo signal reflected from the other end of the rail also appears
from 15 msec. in this figure. The measured time signals at the top of the rail head
appear only slightly dispersive because their waveforms were little changed along
the rail. The section of data indicated in red in Fig. 6.7, which has 1024 data points

and a duration of 9.5 msec., was analysed to construct the spectrograms.

As an example, two spectrograms obtained from measurements using the 274
and 4" sensors are shown in Fig. 6.8. The spectrograms were averaged across
measurements. These spectrograms present well the dispersive characteristics of
the propagating waves and indicate that the waves in the range 7 kHz to 32 kHz

dominate the propagating energy. Conversely the waves around 35 kHz propagate

Acceleration (g)
'

) 0.002 0.004 0.008 0.008 oo 0012 0014 0016

o 0002 0,004 0,006 0.008 001 0012 0014 0016
Time (s)

Fig. 6.7. Time signals measured at positions 2 and 4 at the top of the rail head in the
vertical direction.
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Fig. 6.8. Spectrograms measured at positions 2 and 4 at the top of the rail head in the
vertical direction.

more slowly and decay more rapidly with several wave types present. Below 7 kHz
there is relatively little energy in the signal. The spectrograms measured at the six

positions along the rail are illustrated in Appendix B.

Since the distances between the excitation point and the receiving positions are
known, the time axis of the spectrograms can be easily converted to a velocity axis
using velocity = distance/time. Hence the time-frequency diagrams can be replotted
to show velocity versus frequency. In this diagram, the velocity represents the
group velocity because the energy carried by waves travels with the group velocity.
The group velocity-frequency diagram at position 3 is illustrated in Fig. 6.9 and
compared to the simulation output of measurable waves obtained by WFE analysis.
Note that the scale of the velocity axis in Fig. 6.9(a) is nonlinear, because it is
inversely proportional to the linear time scale. The simulated results in Fig. 6.9(b)

are therefore shown on the same scale.

From this comparison, it is clear that the simulated group velocity curves cor-
respond very well to the measured ones. Therefore, the deformation shapes of the
principal waves that are measured can be inferred from the simulation results. The
wave dominantly measured at the top of the rail head, which was marked ‘x’ in
Fig. 6.9(b), was identified as a vertical bending wave propagating along the rail
head as illustrated in Fig. 6.10, which was produced by FE analysis. It should be
noted that the dip in the group velocity at 15 kHz in Fig. 6.9(a) and (b) results from
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Fig. 6.9. Group velocities at the top of the rail head in the vertical direction. (a) Measured
at position 3, (b) predicted by the WFE method.

(a) (b)

Fig. 6.10. Deformation shapes of the rail, simulated by the FE method, at two points
marked ‘x’ in Fig. 6.9(b). (a) 11,065 Hz, (b) 22,456 Hz.

the wave mode conversion which occurs between the second and third waves, see
Fig. 4.7(a). In addition, Fig. 6.9(b) exhibits several waves that coexist above 32 kHz
so that the input energy transmitted from the impact hammer is shared amongst
them. That might be one reason why the energy levels of the waves above 32 kHz
in Fig. 6.9(a) suddenly become lower. Another reason would be that the input force

is reduced, as shown in Fig. 6.6.

6.1.4 Measured results at the underside of the rail head

From a practical point of view, the top of the rail head is not suitable as a
measuring point on an operational track even if it could give better responses in
terms of the long range wave propagation. As an alternative, the underside of the

rail head could be used as a measuring point to acquire the vertical bending wave
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Fig. 6.11. Dispersion curves for waves measurable at the underside of the rail head in the
vertical direction, predicted by the WFE method.

which travels through the rail head. So, the responses at the underside of the rail
head were also measured when the vertical excitation was applied at the top of the
rail head. In this measurement, the excitation was applied at a point about 30 mm
away from the end of the rail. The response point was inclined at an angle to the

vertical due to the slope on the underside of the rail head.

The dispersion curves measurable at the underside of the rail head in the verti-
cal direction are illustrated in Fig. 6.11, predicted by WFE analysis. Fig. 6.11 shows
similar intensities of the measurable dispersion curves to those predicted at the top
of the rail head, illustrated in Fig. 4.13(a). Therefore, it is expected from the simu-
lation results that the underside of the rail head could be an appropriate alternative
measuring point to detect vertical bending waves which propagate through the rail
head.

The spectrograms measured at the underside of the rail head using the 2*¢ and
4% sensors are shown in Fig. 6.12. Comparing them with those in Fig. 6.8, it is
validated that dispersion relations measured at the underside of the rail head are
very similar to those measured at the top of the rail head. However, Fig. 6.12 shows
somewhat different energy level distributions from those in Fig. 6.8. That is, the
energy measured at the underside of the rail head is concentrated between 15 kHz
and 25 kHz. The exact reason for that is not clear but it appears nevertheless that
the underside of the rail head can be used as an appropriate alternative measuring

point to the top of the rail head.
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Fig. 6.13. Group velocities at the underside of the rail head in the vertical direction. (a)
Measured at position 3, (b) predicted by the WFE method.

The group velocity diagram measured at position 3 is compared with the sim-
ulated one for measurable waves in Fig. 6.13. In this figure, it is observed again
that the measured group velocity curves correspond very well to the simulated ones.
From this measurement, it was confirmed that the underside of the rail head can be

used as an alternative measuring point to the top of the rail head.
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6.1.5 Measured results at the side of the rail head in the

lateral direction

The time signals measured laterally at positions 2 and 4 at the side of the rail
head are shown in Fig. 6.14. (Further examples of the measured time signals at each
receiving position are illustrated in Appendix B). The section of data coloured red in
Fig. 6.14, which has a duration of 9.5 msec., was analysed to make the spectrograms,

as before.

The spectrograms for the 2"¢ and 4 sensors are presented in Fig. 6.15. These
diagrams give more complicated dispersion relations than those measured vertically
at the top of the rail head. The spectrograms in Fig. 6.15 indicate that the waves
below 20 kHz propagate dominantly with large energy. Meanwhile above 25 kHz
several waves are mixed and create intricate diagrams. For this reason the energy
levels of the waves seem to be spread above 25 kHz. Unlike the measured result
at the top of the rail head, these spectrograms illustrate two changes of the propa-
gating wave modes taking place around 8 kHz and 20 kHz, respectively. This also
corresponds to the WFE analysis results shown in Fig. 4.7(b), i.e., changes from

green to red line and from red to magenta line.

The group velocity is plotted as a function of frequency for position 3 in Fig.
6.16(a) and compared with the simulated result obtained by WFE analysis. At
the side of the rail head, the waves measured mainly have a group velocity around

2850 m/s. The measured group velocity diagram gives excellent agreement with the
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Fig. 6.14. Time signals measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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Fig. 6.15. Spectrograms measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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Fig. 6.16. Group velocities at the side of the rail head in the lateral direction. (a) Measured
at position 3, (b) predicted by the WFE method.

(a) (b)

Fig. 6.17. Deformation shapes of the rail, simulated by the FE method, at two points
marked ‘x’ in Fig. 6.16(b). (a) 15,359 Hz, (b) 26,869 Hz.
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predicted one. The deformation shapes of the waves marked by ‘x’ in Fig. 6.16(b)
are illustrated in Fig. 6.17 at two frequencies. This figure shows that the lateral
bending waves have global deformation in both the rail head and web at the selected

frequencies.

6.1.6 Measured results at the middle of the web in the lat-

eral direction

The time signals measured at positions 2 and 4 at the middle of the web are
shown in Fig. 6.18. These measured time signals exhibit completely different be-
haviour from those obtained at the rail head. The flexibility of the web allows
relatively large deformation as shown by the magnitude of the time signals. In
addition, at the 2"¢ sensor, an additional waveform following the direct wave was
recorded around 13 msec., which did not appear at the rail head. This occurs too
soon to be a wave reflected from the far end of the rail. It will be discussed further

below.

From these time data, the time-frequency diagrams were generated as shown
in Fig. 6.19. These spectrograms exhibit fairly simple and clear dispersion curves.
Fig. 6.19 shows that the waves in the range 8 kHz to 30 kHz carry large energy and
do not seem to make any wave mode changes in this range. At the web of the rail,
it is expected that the welds will cause considerable energy reflection and that is
indeed observed Fig. 6.19(b). That is to say, the wave reflected from the weld located

between positions 5 and 6 appears in the spectrogram at position 4 between 10 and
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Fig. 6.18. Time signals measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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Fig. 6.19. Spectrograms measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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Fig. 6.20. Group velocities at the middle of the web in the lateral direction. (a) Measured
at position 3, (b) predicted by the WFE method.

12 msec. Therefore it appears that the waveform around 13 msec. shown in Fig. 6.18
at position 2 was also created by waves reflected from the weld located between
positions 5 and 6. Similar wave reflections can also be seen in other spectrograms

shown in Fig. B.10 in Appendix B, especially for positions 1 and 5.

The group velocity diagram measured at the middle of the web is illustrated in
Fig. 6.20(a) and compared with the simulated result. It is clear that these measured
group velocity curves correspond well to the predicted ones, in particular, to the

green line in Fig. 6.20(b). This green line corresponds to the 1** order web bending
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Fig. 6.21. Deformation shapes of the rail, simulated by the FE method, at two points
marked ‘x’ in Fig. 6.20(b). (a) 11,497 Hz, (b) 16,864 Hz.

wave. However, there is an apparent discrepancy between these two results. That
is, several curves presented in Fig. 6.20(b), for example, the two wave modes marked
with an ‘x’, do not appear in the measured result. The deformation shapes of these
two waves are illustrated in Fig. 6.21 and possess global deformation of the rail. The
main reason that these are not observed in the measurement seems to be associated
with the rapid decay due to the high damping in the rail pad and the influence of

the clip which makes waves with global deformation disappear quickly.

6.1.7 Measured results at the top of the foot in the vertical
direction
The time signals measured at positions 2 and 4 at the top of the foot are given

in Fig. 6.22. These two measured time signals show how rapidly waves decay along

the rail foot. This clearly occurs due to the energy dissipation by the rail pads and
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Fig. 6.22. Time signals measured at positions 2 and 4 at the top of the foot in the vertical
direction.
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Fig. 6.23. Spectrograms measured at positions 2 and 4 at the top of the foot in the vertical
direction.
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Fig. 6.24. Group velocities at the top of the foot in the vertical direction. (a) Measured
at position 3, (b) predicted by the WFE method.

clips.

The time-frequency diagrams measured at the top of the foot are shown in
Fig. 6.23. It is hard to define any characteristics of propagating waves, especially
below 20 kHz because of noise contamination. This noise appears because the waves
travelling along the rail foot decay very rapidly into the noise floor, due to the energy
dissipation by the rail pads. In addition, there would be multiple wave reflections
arising from the fasteners. These spectrograms demonstrate that waves cannot

propagate over a long range along the rail foot. Although the dispersion curves do
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not clearly appear in the spectrograms, the measured and predicted group velocities
are compared and illustrated in Fig. 6.24. Despite noise contamination, this shows
that the measured group velocity curves correspond well to the predicted ones above
20 kHz, and the dominant wave type is the 1°¢ order foot bending wave, shown in
Fig. 3.11(a).

6.1.8 Measured results at the top of the rail head in the

longitudinal direction

The time signals measured at positions 2 and 4 at the top of the rail head are
shown in Fig. 6.25 when the excitation was applied at the block attached on the end
of rail in the longitudinal direction. The section of data coloured red in Fig. 6.25 was
analysed to make the spectrograms as before. The measured wave form in Fig. 6.25
reveals that the amplitude of the measured response in the longitudinal direction is
much larger than those measured in the vertical and lateral directions. The reason
for this and the wave type occurring in this large amplitude signal will be discussed

later with the aid of the spectrograms.

The spectrograms for the 2"¢ and 4*" sensors are shown in Fig. 6.26 for the
longitudinal direction. Comparing these diagrams to those measured in the vertical
direction (Fig. 6.8), Fig. 6.26 shows that the vertical bending waves in the rail
head were primarily found in this measurement. The longitudinal waves which
travel faster than the bending waves occur between 4 and 5.5 msec. in Fig. 6.26(b)

with small amplitudes. Therefore, it is clear from these spectrograms that the
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Fig. 6.25. Time signals measured at positions 2 and 4 at the top of the rail head in the
longitudinal direction.
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Fig. 6.26. Spectrograms measured at positions 2 and 4 at the top of the rail head in the

longitudinal direction.
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Fig. 6.27. Group velocities at the top of the rail head in the longitudinal direction. (a)
Measured at position 3, (b) predicted by the WFE method.

longitudinal excitation at the top of the rail head creates the vertical bending waves
more effectively between 10 kHz and 35 kHz than the longitudinal waves. This
is because the longitudinal excitation at the top of the rail head induces a large
rotational moment with respect to the y axis. These time-frequency analysis results
indicate that the measurable longitudinal waves are contained only in the initial
part of the measured time signals, for instance, between 4 msec. and 5 msec. of the

measured response at the 4" sensor (Fig. 6.25).

The group velocity diagram measured at the top of the rail head is illustrated in
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Fig. 6.27(a) and compared with the simulated result for the longitudinal direction.
Although the longitudinal waves are not clearly highlighted in the measured group
velocity diagram, it is clear that the measured waves correspond well to the predicted

ones between 10 kHz and 25 kHz for the longitudinal direction.

6.1.9 Measured results at the side of the rail head in the

longitudinal direction

In this measurement, the excitation was applied at the side of the rail head in the
longitudinal direction, which is expected to create the antisymmetric longitudinal
waves effectively. However, the measured propagating waves at positions 2 and 4 at
the side of the rail head shown in Fig. 6.28 have similar initial time signals to those
shown in Fig. 6.25 and also have a similar wave form to the measured ones shown
in Fig. 6.14 for the lateral excitation. So it is anticipated that not only longitudinal
waves but also lateral bending waves in the rail head were excited and captured in

this experiment.

The spectrograms for the 2"¢ and 4" sensors were created from the data coloured
red in Fig. 6.28 and are shown in Fig. 6.29 for the longitudinal direction. Compared
with Fig. 6.15, the diagrams in Fig. 6.29 validate the presence of longitudinal waves
and also bending waves in this measurement. The group velocity diagram measured
at the side of the rail head is shown in Fig. 6.30(a) and the simulated result for the
longitudinal direction is illustrated in Fig. 6.30(b). The antisymmetric longitudinal

waves appear strongly in the simulated group velocity graph. Fig. 6.30(b) reveals

8
Time (ms)

Fig. 6.28. Time signals measured at positions 2 and 4 at the side of the rail head in the
longitudinal direction.
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Frequency (kHz)
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Fig. 6.29. Spectrograms measured at positions 2 and 4 at the side of the rail head in the
longitudinal direction.

that the first antisymmetric longitudinal wave occurs around 30 kHz. However,
these measured and predicted group velocity diagrams provide completely different
patterns. That is to say, the prominently measured longitudinal waves are not the
antisymmetric ones, but the symmetric ones. The simulated group velocity at the
side of the rail head predicted for the vertical and symmetric longitudinal waves
is displayed again in Fig. 6.30(c). It can be easily recognized that a similar group
velocity diagram to the measured one can be created if Fig. 6.30(b) and Fig. 6.30(c)
are superimposed. So it is clear that the measured longitudinal waves between 3.5
msec. and 5.5 msec. in Fig. 6.29(b) at the side of the rail head are the same symmetric
longitudinal waves as those shown in Fig. 6.26. The reason for this result is that the
longitudinal excitation at the side of the rail head creates symmetric longitudinal

waves effectively as well as antisymmetric ones.
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Fig. 6.30. Group velocities at the side of the rail head in the longitudinal direction. (a) The
measured group velocities, (b) predicted ones for the vertical and symmetric longitudinal
waves, (c) predicted one for the lateral, torsional and antisymmetric longitudinal waves.

6.2 Measurement Using Piezoceramic Transduc-

ers for Frequencies up to 80 kHz

In section 6.1, measurements were carried out only up to 42 kHz. That was
because the data acquisition unit used had a frequency limit of 42 kHz and also
because the impact hammer did not seem to be suitable for the excitation of waves
in the whole frequency range up to 80 kHz. So a further experiment which can cover
the high frequency region between 40 kHz and 80 kHz was required to validate the
FE and WFE analysis results for whole frequency range from 0 to 80 kHz.

This additional experiment was conducted using piezoceramic transducers (PZTs)
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for excitation instead of an impact hammer. In addition, an NI data acquisition
board was used to achieve the highér rate of sampling required. The same pro-
cessing as used for the previous measurement in section 6.1 was applied to extract
dispersion relations. The measured results were then com’pared with the simulated

ones obtained by WFE dnalysis.

6.2.1 Piezoceramic transducer

In this second experimeht, PZTs were used fo.rb excitation because they_ can cre-
ate a sharp impulse Which is capable of exciting the structure up to 80 kHz. The
PZT transfers electrical energy into mechanical energy when an electrical field is
applied and vice versa. That is, applying an A.C. voltage td a PZT will cause it
to vibrate, and thus generate mechanical vibration with the same frequency as the

electrical voltage.

The type of PZT used ‘in this experiment was Pz27 plate, manufactured by
Ferroperm Piezoceramics A/S [60]. This PZT has'a height of 1 mm and a square area,
of 12.7 mm x 12.7 mm. The working mechanism of this transducer is schematically
shown in Fig. 6.31. When a voltage is applied it expan_ds or contracts primarily in
the length and width directions. The magnitude of these changes depends on the
strength of the electrical field. As shown in Fig..6.31, this causes a moment to be.
applied at the edges of the element due to the constraint applied by the struéture,‘

which in this case is the rail. X

In terms of the structural response, the effectiveness of the excitation by PZT

will be associated with how well the transducer’s deformation is coupled to the

Piezoceramic
transducer

N —

Fibg. 6.31. Working mechanism of a piezoceramic transducer attached on a rail.
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structural behaviour. . For example, suppose that a PZT is attéched on a thick
plate. If an excited wave in the blate has much longer wavelength than the attached
transducer’s length, then this transducer would be inefficient in generating this
~ wave. So the transducer used here will be inefficient at creating low wavenumber
(long wavelength) waves because of its small size. On the other hand, the shortest
wavelengths calculated at 80 kHz in the rail are about 35 mm at the rail head, 31
mm at the web and 29 mm at the fail foot, respecti\}ely, which are two or three times
longer than the length of the PZT used in the experiment. So'it will not exhibit

nulls at frequencies below 80 kHz.

6.2.2 Measurement setup

The same accelerometers, PCB 352C22, as used before were utilised again in
this high frequency measurément. Note that, according to the manufacturer’s data
sheet, their mounting resonances are located at about 90 kHz. Before carrying out
the main experiment, a pretest was carried out in a laboratory with two different
types of accelerometer having different mounting resonance frequencies. These two
accelerometers are B&K Type 4344 and PCB 352C22 and their weights are 2.7 and
0.5 grams, respectively. It was reported from the manufacturers that usable fre-
~ quency ranges for calibrated measurements using thése sensors are up to 16.5 kHz
and 20 kHz and also their resonances’ are located around 50 kHz and 90 kHz, re-
spectively. This pretest was conducted to check the effect of the sensor’s mounting
resonance. In this pretest, the same plate type PZT was attached with glue on a
short rail segment of length 15 cm. The accelerometers were attached using beeswax.
~ For the same input excitations, the responses were measured from both sensors at -

the saLm_e location at the fop of the rail head in turn.

It was found from this pretest that the B&K Type 4344 ac'celerometer had its
mounting resonance around 30 to 40 kHz while for the PCB 352C22 it was around
60 to 70 kHz. Consequently the accelerometer, PCB 352C22, gave a larger signal
than B&K Type 4344 at high frequencies above 40 kHz. It may‘be' mentioned
that these measured mounting reéonances are a bit lower than those presented in

the manufacturer’s data sheets because both sensors were attached with beeswax.

Although beeswax is known as a soft adhesive, it seems to. be usable to mount

sensors on the rail for this high frequency experiment because it gives a mounting
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Fig. 6.32. Piezoceramic transducers attached at the top and side of the rail head and the
middle of the web.

resonance which yields large output in the frequency range of interest. Based on
this pretest result, it is anticipated that the accelerometer’s resonances will occur
between around 60 and 70 kHz in the test track measurement. It should be recalled

that the measurements in the test are not required to be calibrated.

The Pz27 plate transducers, attached on the rail head and middle of the web
are shown in Fig. 6.32. As a data acquisition unit, a four channel data acquisition
board, PCI 6110 (National Instruments), was used. It was controlled with the MAT-
LAB data acquisition toolbox. Of the four channels in the acquisition unit, one was
allocated to the exciter delivering the impulse signal. The rest were connected to
the sensors capturing the responses. A sampling rate of 200 kHz would be sufficient
for capturing the rail responses but not enough for the generation of a suitable half
sine input impulse with a short duration. Therefore, the sampling frequency of the

acquisition unit was set to 400 kHz.

Like the previous measurement using an impact hammer, six accelerometers
were set up along the rail, spaced at a distance of five sleeper spans apart. They
were each placed at the mid span between two sleepers and attached by means of
beeswax. However, since only three input channels in the data acquisition unit were
available for each excitation, the same experiment was conducted twice with different
sets of three sensors, simply changing sensor connections to the signal conditioner.

That is, sensors 1, 3 and 5 or 2, 4 and 6 were used alternately for each excitation.
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4 Ch. Data Acquisition Card
Power Amplifier

Controller ’ - (NIPCI-6110)
(Desktop PC) _ (AVC 790 Series)

Input (ch.2~4)  OQutput (ch. 1)
[ .
- -+
4 Ch. Signal Conditioner :
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I (PCB 352C22) : Piezoceramic
oo : - Transducer
. !;3 12 |1 (PZ27) ,
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Fig. 6.33. Experimental setup using piezoceramic transducers as an exciter.

" The measurement setup is shown in Fig. 6.33.

The excitations and measurements were implemented at three locations on the
rail cross-section, i.e., at the top and side of the rail head and at the middle of the web |
as shown in Fig. 6.32.. (Measurements on the foot were excluded in this experiment
because it was found from the previous experlment that waves do not travel long
dlstances along the rail foot). For each location, 10 excitations were applied and
the responses along the rail were measured at the cerresponding positions on the
5 cros_s-sectio_n'norma,lv to the rail surface. A single half sine pulse with a'duration"of ‘
12.5 usec. was applied as an excitation signal and was Supplied.through the power
amplifier set to an output of 200 volts which was its maximum output. In this
measurement, the PZTs were attached about 5 mm awey from the adjacent end of
the rail. Since the shortest wavelengths in the rail below 80 kHz are around 30 mm
as stated above, the phase cancellation due to the waves reflected from the adjacent

end of the rail will not be srgmﬁcant for frequencies below 80 kHz.

6. 2 3 Measured results at the top of the rail head in the

- vertical dlrectlon

As described above the time signals were measured W1th a 400 kHz sampling
rate However since the frequency band of 1nterest in this analysw is limited to

below 80 -_kHz, the original time data were decimated to a 200 kHz sampling rate by
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Fig. 6.34. An example of the measured time signals at the top of the rail head along the
rail.

a factor of 2 in order to reduce the data size and computing load. In the decimation
process the original data is filtered with a lowpass filter to avoid aliasing and then

resampled at the lower rate.

Examples of the time signals measured at the top of the rail head at each peéition
along the rail are shown in Fig. 6.34. These time signals display excellent waveforms
of direct waves and echoes reflected from the end of the rail. It should be recalled
that the responses at positions 1, 3 and 5 and positions 2, 4 'and 6 in Fig. 6.34
were measured Seperately because the data acquisition unit had only three input
channels. In addition, the measured time signals were not exactly synchronised
with the instant of excitation because of a time delay internally in MATLAB while
controlhng the data acquisition board. Further examples of the measured time

signals at each receiving position are 1llustrated in Appendix B.

The -time Signals measured at positions 2 and 4 at the top of f‘he rail head
are shown in Fig. 6.35 when the echitation was applied at the end of rail. At the
~ 4th sensor, the echo signal reflected from the far end of the rail also appears from
15 msec. in this figure.. The section of data indicated in red in Fig. 6.35, which
has 2048 dafa pdints and a duration of 10.24 msec., was analysed: to construct fhe
spectrograms Therefore the frequency increment A f of the frequency axis will be
98 Hz since Af = (10 24 x 10731 = 98 Hz.

The spectfdgrar_ns'for the 2™ and 4'" sensors are presented in Fig. 6.36. These
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Fig. 6.35. Time signals measured at positions 2 and 4 at the top of the rail head in the
vertical direction.
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Fig. 6.36. Spectrograms measured at positions 2 and 4 at the top of the rail head in the
vertical direction.

spectrograms reveal that the waves in the range 50 kHz to 80 kHz were dominant
in the measured signal with large energy. This is mainly because the mounting
resonances of the sensors are located in this frequency range. Another considerable
reason for it is that the piezoceramic transducer is not an efficient exciter for low

wavenumber waves. These diagrams show which wave is dominant at high frequency.

The group velocity-frequency diagram at position 3 is illustrated in Fig. 6.37(a).
As stated above, the time axis in Fig. 6.36 was not exactly synchronized with the
moment of excitation. This probably causes a small bias in the conversion to a
velocity axis in the frequency-velocity diagram but it will be neglected. A normalized

version of Fig. 6.37(a) is shown in Fig. 6.37(b). This was formed by dividing each
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Fig. 6.37. Group velocities at the top of the rail head in the vertical direction. (a)
Measured at position 3, (b) normalized version of (a), (¢) predicted by the WFE method.

frequency column by its maximum value so as to improve the graphical visibility
of the group velocity diagram at frequencies below 50 kHz. It is clearly observable
from Fig. 6.37(b) that the exciter generated waves down to 20 kHz although they
had much smaller amplitudes there. Also it can be seen that the low frequency
region below 20 kHz is severely contaminated by noise. From the comparison with
the simulated group velocities in Fig. 6.37(c), it is clear that the measured group
velocity curves correspond very well to the simulated ones. This measured result
indicates that the most measurable wave at the top of the rail head is still the

vertical bending wave in the rail head at high frequencies.
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6.2.4 Measured results at the side of the rail head in the

lateral direction

The time signals measured at positions 2 and 4 at the side of the rail head
are shown in Fig. 6.38. The section of data coloured red in Fig. 6.38, which has a

duration of 10.24 msec., was analysed to make the spectrograms as before.

The spectrograms for the 2"¢ and 4" sensors are presented in Fig. 6.39. As
shown in Fig. 6.39, most of the measured energy is concentrated at frequencies
above 40 kHz. By comparing all the spectrograms obtained from six accelerometers,
shown in Appendix B, it can be easily seen which wave propagates mainly along the

rail.

Fig. 6.40(a) and (b) show the group velocity vs frequency diagram for posi-
tion 3 and its normalized version. This normalized diagram clearly displays which
waves are more effectively generated by the exciter than others. This effectiveness
is thought to be related to the deformation shapes of the waves in the rail. Further-
more, not all possible waves will be excited by the PZT on the side of the rail head.
However, it was not easy to identify the exact type of the wave measured primarily
at high frequencies. Nevertheless, it could be said from Fig. 6.40(b) and (c) that
the measured group velocity diagram agrees well with the predicted one. Again the

results below 20 kHz are severely contaminated by noise.

o 2 4 ] 8 10 12 14 16
Time (msec.)

Fig. 6.38. Time signals measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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(a) (b)
Fig. 6.39. Spectrograms measured at positions 2 and 4 at the side of the rail head in the
lateral direction.
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Fig. 6.40. Group velocities at the side of the rail head in the lateral direction. (a) Measured
at position 3, (b) normalized version of (a), (c) predicted by the WFE method.
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6.2.5 Measured results at the middle of the web in the lat-

eral direction

The time signals measured at positions 2 and 4 at the middle of the web are
shown in Fig. 6.41. The flexibility of the web allows relatively large deformation
as shown by the magnitude of the time signals. In addition, at the 4" sensor, a
waveform was recorded around 10 msec. that was created by the reflection due to

the weld located between positions 5 and 6.

From these time data, the time-frequency diagrams were generated as shown in
Fig. 6.42. These spectrograms exhibit fairly simple and clear dispersion curves. It
turns out from Fig. 6.42 that only one wave is primarily measurable through almost
the entire frequency range with a secondary one visible just above 50 kHz. Also,
the wave reflected from the weld located between positions 5 and 6 appears in the
~ spectrogram at position 4 around 10 msec. The wave reflections can also be seen

clearly in the other spectrograms shown in Appendix B.

The group velocity diagram measured at the middle of the web is shown in
Fig. 6.43(a) and its normalized version shown in Fig. 6.43(b). This normalization
improves the graphical visibility in the low frequency region and demonstrates that
only a single wave is primarily measurable through almost the entire frequency range
with a secondary one visible just above 50 kHz. It is clear that the measured group
velocity curves correspond to the green and purple lines in Fig. 6.43(c), which are

the 1°¢ and 3¢ order web bending waves. Also, the wave reflected from the welding
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Fig. 6.41. Time signals measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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Fig. 6.42. Spectrograms measured at positions 2 and 4 at the middle of the web in the
lateral direction.
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Fig. 6.43. Group velocities at the middle of the web in the lateral direction. (a) Measured
at position 3, (b) normalized version of (a), (¢) predicted by the WFE method.
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Fig. 6.44. Normalized group velocity diagram measured at position 5 in the middle of the
web in the lateral direction.

line located just after position 2 appears in the bottom of the measured diagram.

In order to quantify the rate of energy reflection caused by the weld in the
rail, the group velocity diagram measured at the position 5 was investigated. The
normalized diagram is shown in Fig. 6.44(a) and the wave reflected from the weld
located between positions 5 and 6 is well presented. This figure shows that the
reflection occurs primarily between 20 kHz and 60 kHz by the weld. For example,
the normalized amplitudes of the incident and reflected energy at 28.3 kHz are
compared in Fig. 6.44(b). As shown in Fig. 6.44(b), the reflected wave has about
-7.3 dB which means that about 20 % of the incident power is reflected by the weld

Normalized Amplitude of the Reflected Wave (dB)
! | | !

20 25 30 35 45 50 55 60

40
Frequency (KHz)

Fig. 6.45. Normalized amplitude of the energy reflected by the weld, measured at thé
middle of the web in the lateral direction.
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at 28.3 kHz. The normalized amplitude of the reflected energy is shown in Fig. 6.45
for frequencies between 20 kHz and 60 kHz. It was found that about 10 to 20 % of
the incident energy tends to be reflected by the weld between 25 kHz and 50 kHz.

6.3 Summary

In this chapt-er, experiments carried out on the ISVR test track of léngth about
32 m. were reported in order to validate which Wave types can propagate furthest
along the rail. In these experiments group velocities were measured along the test
track using an impact hammer and PZTs as exciters. A miniature impact hammer
was used for frequencies below 42 kHz while PZTs were utilised for higher frequen-

cies up to 80 kHz.

From the group veiocity versus frequency diagrams measured at four different
* regions on the rail cross-section, it was validated that the measured group velocities -
give an excellent agreementvwith those of the measurable waves simulated in almost
the eniire frequency range. Therefore, by comparing the measured and simulated
diagrams, the deformation'sha,pes of the measured waves were inférred from the
simulated results. These wave types found were to be i,dentical.to those speic;iﬁed in

s_ection 4.6.

From the signals measured on the foot, it was verified that waves do not travel
long distances in that region of the rail. Also it was confirmed that the underside
of the rail head can be used as an alternative measuring point to the top of the rail
‘head. Meanwhile, in the signals measured at the middle of the web, it was observed
that considerable reflections occur at the web due to welds. From the measured dia:
gram, it was found that about 10 to 20 % of the incident energy carried by the web
behdingnwave is reflected by a single weld between 25 kHz and 50 kHz. These could
affect the lb_ri'g range propagation of a wave by reﬂecting a p.r'opo'rti‘obn of travelling

energy. This rate of reflection may vary in other types of weld.

Since the waves propagating primarily were measured at six positions along the |
rail in the test track measurement, attempts were made to extract their decay rates. -
However, it haS to be noted that the 32 m length track is not long enough to meaSure

low decay rates of the order of about 10~2 dB /m precisely'.‘ Also sensor calibration
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was an issue because multiple sensors were used and also the beeswax applied to
attach them gives less reliable responses at high Ifrequencies. Nevertheless, it was
attempted to extract decay rates from the measured data by exciting at both ends

of the rail. Details of this attempt are given in Appendix B.3.
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Chapter 7
Decay Rate Measurements on an

Operational Track

In Chapter 6, the simulated group velocities were validated from measurements
made on the ISVR test track and the types of main propagating waves are identified
in the various regions of the rail croSs—sectior_r. However, the ISVR test track is too

“short to allow low decay rates to be determined precisely from the measured data,

as presented in Appehdix B3.

In order to validate the simulated decay r_ates' over a longer section of rail, it is
necessary to carry out a field measurement on an operational railway track. Also it
is apparent that there is_great' merit if operational‘trains can be used as excitation
sources for the long range ins‘plecti.on (;f a rail instead of using external excitation.
Hence, to determine whether train excitation is-applicable or not, it is required to
identify its frequency characteristics in-an operational railway. This will show how
effectively the high frequency waves are generated by a running train and the extent
to which they propagate in a rail, particularly between 20 kHz and 40 kHz where the
minimum decay rates are expected to occur. So in this chapter,'the train-induced
rail vibrations measured on an operational railway track are presented. Theseexper—
iments Were carried out with assistarice from Balfour Beatty. Measurements were
made for several ‘running trains. The decay rates have been extracted from the

measured 81gnals and are then compared with those simulated by WFE analysis.
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7.1 Test Site

The field measurement has been performed on the Up Slow track of the West
Coast Main Line at Cattle Arch bridge in Dudswell north of Berkhamsted, UK in
August 2006. This site has four tracks as shown in Fig. 7.1(a) and the first one
from the right in the picture is the track on which the measurement was carried out.
This track was selected to satisfy the following requirements for the measurement:
a continuously welded rail and at least 500 m of plain line before and after the test
site with no expansion joints, insulated rail joints or switches and crossings. This
track had concrete sleepers but detailed information on the track components, such

as rail geometry, support type, etc., was not available.

During the measurement, an observer located on a footbridge which is 924 m in
advance of the test site gave a radio signal to warn of approaching trains so that the
instrumentation recording could be switched on. The test site, Cattle Arch bridge,
is shown in Fig. 7.1(b).

(a) (b)

Fig. 7.1. Pictures of test site. (a) Tracks near the test site looking North, (b) Cattle Arch
bridge in Dudswell.

7.2 Measurement Setup

Four accelerometers, PCB 352C22, were used to measure the vibration at dif-
ferent locations on the rail cross-section as shown in Fig. 7.2 and Fig. 7.3. Two
accelerometers were attached to the underside of the railhead (ch.2 and 4), one to
the field side of the railhead (ch.1) and one to the middle of the rail web (ch.3).
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Accelerometers
PCB 352C22

Ch.1

Ch.2,4

Four-foot Field side

(a) (b)

Fig. 7.2. (a) Locations of accelerometers, (b) sensor attachment.

le 924 m gl
‘ o,
railway track <« (4 |
/ |
Ch.4| [Ch.1,2,3  running direction )
Accelerometers footbridge
(PCB 352C22)
Signal Conditioners| | 1/0O Connector Block | | PC
(PCB 480B10) (NI BNC 2110) (with NI PCI-6110)

Fig. 7.3. Experimental setup for the field test.

The underside of the rail head was shown in numerical simulations to give very sim-
ilar responses to the top of the rail head and this was validated from a test track
measurement (see Section 6.1.3). Accelerometer 4 was applied with the intention
of being able to detect train speeds from the signals measured by accelerometers 2
and 4. The distance between them was 3.25 m. All accelerometers were mounted
at a position midway between sleepers using glue. To provide electrical isolation
(both for traction return currents and any signalling issues) a nonconductive lami-
nate material of thickness 0.4 mm was attached between the accelerometer and the
rail. This can be seen in Fig. 7.2(b). The level of isolation provided by this wafer
has been tested at ISVR to greater than 1000 MS2 at 1000 Volts DC. The equipment

setup for this experiment is shown in Fig. 7.3.
The accelerometers were attached to the rail by Balfour Beatty staff during a

routine night-time track possession and the cables run to the lineside for later con-

nection to the instrumentation. The measurements took place the next day and
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" the instrumentation was removed during the following night. During the measure-
ment, the data acquisition unit and controller (PC) were powered by a portable
petrol-driven generator but the signal conditioners were battery powered. All the

instrumentation was located under the bridge shoWn in Fig. 7.1(b).

Rail vibration was recorded. for seven service trains. The input range of the
data acquisition board and gains of the signal conditioners were varied in order to
maximise the dynamic range of data obtained. The data, acquisition unit digitized |
the input analogue signals with 12 bits of resolution. Although this range is limited,
. this data acquisition system was chosen because of its ability to acquire long time -
samples at a high enough sampling rate. The details on the measured data are listed
in Table 7.1. For each train, two minutes of data were captured with a sampling
._ rate of 200 kHz. The trains measured were all electric multiple units (EMUs) of -

either 4 or 8 coaches.

The train speeds listed in Table 7.1 were evaluated by two slightly different
methods. The average speeds in Table 7.1 were calculated from the elapsed time
 between passing the footbridge shown in Fig. 7.3 and passing the site. On the other
hand, the instantaneous speeds were found by using carriage lengths of each train
and the elapsed time for a single carriage passage. The carriage lengths for Class |
321 and bClba‘ss 350 were considered as 19.95 m and 20.5 m, respectively; The elapsed
time for a single carriage passage was identiﬁed by means of the autocorrelation‘of
the vibration measured at the middle of the web. In setting up the measurement, it
was intended to use the signals captured by accelerometers 2 and 4 to measure train
speeds. However, it was observed from the po'st-processing of the measured data
that the crosscorrelation between them does not present clear information on the
time delay between the two signals. So the autocorrelation of the signal measured
at the mlddle of the web, which identified well the time delay for a smgle carriage

passage, was employed to determine train speeds.

Fof train 3, as an exampl'e the vibration measured at the middle of the web
and its autocorrelatlon are shown in Flg '7.4. The passage of 8 bogles can’ be clearly
seen in the time s1gnal Also from the autocorrelation of this time SIgnal shown in -
Fig. 7.4, it can be found that the time elapsed during a single carrlage passage 1s
about 0.62 second. (Other peaks correspond to the dlstance between various palrs
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Table 7.1. Details of data measured from the field test.

File name . Train type | Input range (V) Speed (km/h)
| x Amp. gain Average | Instantaneous
train 1 8-car Class 321 +5x1 - 156
train 2 4-car Class 321 | - +1x1 109 119
train 3 .| 4-car Class 321 +02x1 111 116
train4 | 8-car Class 350 |  +0.2 x 1 166 162
train 5 4-car Class 321 +0.5 x 1 111 119
train 6 | 4-car Class 321 |  £0.5 x 1 123 | - 132
train 7 4car Class 321 | +1x10 | 115 124
arhbient noise 1 | - ' +1x10 - -
ambient hoise 2 - +02x1 - -

Acceleration (g)
L

L L
44.5 45 455 48
! - Time (sec.)

o
8x(l()

Autocorrelation

'
- I

1 L L ' L A s L
o 0.1 0.2 03 0.4 10.5 0.6 0.7 08 0.9 1
Time Lag (sec.)

Fig. 7.4. Low pass filtered time signal measured at the middle of the web and its autocor-
relation for train 3. - 4

of wheels.) Hence the instantaneous speed is determined as 116 km/h. In this
computation the time signals were low pass filtered with a 20 kHz cut-off frequency

in order to enhance the autocorrelation.

It can be seen from Table 7.1 that the instantaneous speeds are slightly higher
than the averaged ones in gene'ral; Based on these résults; it is likely that trains
were acceleratiﬁg slightly as they approached the test site. However, since the speed
profiles of the individual trains were not measured, the train’s'running. distances have
been estimated by using the instantaneous train speeds in the decay rate calculation.

‘The effect-of the acceleration of trains.on measured results will be discussed further
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below.

7.3 Measurement Results

As examples of the measured. time signals, captured time histories for trains 2
and 3 are shown in Fig. 7.5 and Fig. 7.6.. According to the input ranges given in
Table 7.1 above, the measurable acceleration ranges for these two trains were about

+ 100 g and + 20 g, respectively, where g denotes the acceleration of gravity. All

ch. 2
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Fig..7.5. Time signals measured for train 2. (a) From 20 to 70 seconds for each channel,
(b) around 20 seconds for channels 1 and 2.
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'Fig. 7.6. Time signals measured for train 3. (a). From 10 to 80 seconds for each channel,
(b) around 10 seconds for channels 1 and 2.
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the measured time signals are illustrated in 'Appendix C.1.

From the time signal for train 2 in Fig. 7.5(a), it was seen that all the data
were captured without any saturation with the & 1 V input range. Unfortunately,
~ however, it is found that the low amplitlide signals were poorly quantized as re-
vealed in Fig. 7.5(b). So the sampled low amplitude signals will be less reliable in
this case. On the ofher hand, theisignals captured for train 3 show that saturation
occurred when the train was just passing the test site. However, as depicted in
Fig. 7.6(b), the low amplitude signals were quantized more reliably than those in
* Fig. 7.5(b) at the cost of this saturation. So the data for train 3 would be more
useful for the purpose of determining long range propagation than those obtained

for train 2. More detail on the measured signals will be analysed and discussed later.

In this chapter, the analysed results are described only for trains 2, 3, 4 and 7
because trains 5 and 6 produce similar results to trains 2 and 3. The measured data
for train 1 was excluded in this analysis because the & 5 volts input range used was
too broad to capture the signals accurately. In additibn, analysis of the measured
ambient noise will be described later. All the analysed results for all the measured

data are attached in Appendix C.2.

7.3.1 Analyéis results for train 2

For train 2, the measured time signals during the train passage were shown in
Fig. 7.5(a). These signals indicate that the train is passing the test site at between
42 and 45 seconds, inducing large rail vibrations at that time. “According to these
measured time signals, the response at the underside of the rail head is larger than
the others, whereas the signal obtained from the middle of the web has the lowest
“amplitude. In addition, this figure shows that +1 volt inpuf range setting enabled
the signals to be captured Withou:c clipping. As discussed already, it is apparent

from Fig. 7.5(b) that the low amplitude signals were poorly quantized.

Above all, the responses acquired while a train is passing the measurement point
need to be investigated in order to V(;larify the frequency characteristics of excitation
which is generated' by the wheel/rail rolling contact. The spectrograms obtained
between 42 and 48 seconds are illustrated in Fig. 7.7. It should be noted that the
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(c)
Fig. 7.7. Spectrograms measured when train 2 passes the test site. (a) At the side of the
rail head (ch. 1), (b) at the underside of the rail head (ch. 2), (¢) at the middle of the web
(ch. 3) and (d) at the underside of the rail head (ch. 4).

large responses around 60 kHz and 80 kHz for each channel resulted not from the

physical responses of the rail itself but from the sensor’s mounting resonances.

It turned out from Fig. 7.7 that each part of the rail is excited in a different
manner. The number of coaches of this train is detectable from these graphs. There
are four cars in train 2 and thus five groups of wheels. The two responses measured
at the underside of the rail head, that is, ch. 2 and ch. 4, were expected to be almost
identical. As depicted in Fig. 7.7(b) and (d), they look similar in general but a large
difference is found around 34 kHz and 31 kHz. The reason for this has not been
identified. Also the rail responds well at 29 kHz at the side of the rail head and
36 kHz at the middle of the web although the reason for it is not understood.

The frequency spectra of the rail acceleration during the passage of the first
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Fig. 7.8. Acceleration levels created by the wheel/rail rolling contact. (a) At the side of
the rail head (ch. 1) and middle of the web (ch. 3), (b) at the underside of the rail head
(ch. 2 and 4).

bogie of train 1 past the measurement location are shown in Fig. 7.8. These were
produced from the time signals between 42.7 and 42.9 seconds in Fig. 7.5. It is seen
from this figure that the train induces a considerable rail vibration at frequencies
below 5 kHz. This behaviour coincides very well with the published results in liter-
ature [61] which present the contact filtering effect between wheel and rail surface.
What is more interesting in the present context is that running trains are found to
be capable of exciting the rails quite well even at higher frequencies between 20 kHz
and 50 kHz. The mechanism for this high frequency excitation was not identified

yet.

7.3.2 Analysis results for train 3

For train 3, the measured time signals are illustrated above in Fig. 7.6(a). This
figure showed that the +0.2 volt input range was too narrow so that the signals
between 40 and 50 seconds were clipped. Conversely, however, this setting gives
better quantization for small amplitude signals, as shown in Fig. 7.6(b). So this

measured signal for train 3 is more reliable for studying the low amplitude response.

The spectrograms created for 0-90 seconds for each channel are presented in
Fig. 7.9. Each column of the spectrograms was produced from 0.1 second of data
and the frequency increment, Af, of the frequency axis is 195 Hz. From these spec-

trograms it is clear that the waves below 20 kHz decay very rapidly, particularly at
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Fig. 7.9. Spectrograms measured for train 3. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).
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Fig. 7.10. Variations of acceleration levels along distance at each measuring point for train
3 in the frequency bands of about 29 kHz (ch.1), about 24 kHz (ch.2 and ch.4) and about
36 kHz (ch.3).

the underside of the rail head. Conversely, at this location, some energy between 20
kHz and 30 kHz is still measurable even about 40 seconds in advance of the train
arrival. The frequency ranges which seem to be particularly useful in a practical
application are about 29 kHz at the side of the rail head (ch.1), 24 kHz at the un-
derside of the rail head (ch.2 and 4) and 36 kHz at the web (ch.3).

In terms of the propagating distance of a wave, the acceleration levels in these
interesting frequency bands are shown in Fig. 7.10 for each measuring point with
the bandwidth of 975 Hz. The train’s running distance was converted from the time
axis in Fig. 7.9 by using the instantaneous train speed of 116 km/h. As presented
in Fig. 7.10, the approaching train is likely to be detectable at the underside of the
rail head much more than a kilometre away. Even at the middle of the web, the
detection range of the approaching train seems to be greater than a kilometre. In
addition, this graph implies that it will be necessary to reduce the background noise

level in the measured data in order to increase the detection range.

As displayed in Fig. 7.10, the measured acceleration levels did not vary linearly
with distance. That is, the rate of change increases as the train approaches and
increases further as the train recedes. This is very likely to be related to the accel-

eration of the running train as anticipated from the difference between average and
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Fig. 7.11. Simulation of acceleration level of a rall as a functlon of distance. (a) train
speed, (b) simulated acceleration level. '

instantaneous speeds shown in Table 7.1.

To investigate the effect of an accelerating train on the aeceleretidn level as a
function of distance, a simple simulation was performed assuming linearly i 1ncreasmg
train speed with time as shown in Fig. 7.11(a). In this figure, zero seconds corre-
sponds to the instant when the train is passing. This imaginary train’s average speed
between -30 and 0 seconds becomes about 111 km/h and the instantaneous speed at

“about 0 second is about 118 km/ h. Also, in this simulation, it was assumed that the'
source level of the train is 100 dB and the decay rate of a propagating wave in the
rail is 0.05 dB/m. The simulated acceleration level due to this train is illustrated-in
Fi_g. 7.11(b) as a function of distance, which was obtained from the instantaneous
speed of 118 km/h. . As illustrated in this figure, the simulated acceleration level

- gives a similar trend to the measured onee in Fig. 7.10. It was therefore plausible

from this simulation result that the train was accelerating during the measurement

and this acceleration caused the curved shape of variation shown in Fig. 7.10.

Also as depicted in Flg 7.10, the acceleration level measured at the mlddle of
the web changes more rapldly near the t1me of the train passage than the others
measured at the rail head. This may be due to a greater contrlb,utron from rapidly

_ deceying wa\}eS'propagating' through the web, but this could not ‘b‘e clearly ‘identiﬁ_ed' |
yet. ' '
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From the spectrograms in Fig. 7.9, it appeared that the level of energy drops
suddenly at around 70 seconds. This event is more apparent in Fig. 7.10 around 830
m. Note that if the acceleration of the train is considered, the location of this event
is actually about 900 m. Balfour Beatty Rail Technologies arranged for a track walk
along the rail to look whether a discontinuity of some sort is present there in the
rail but they did not find anything of note. Alternatively the excitation level may
be less for a while around this location because the rate of level change seems to be
consistent between 500 and 1400 m except around the energy drop between 900 and
1250 m. Furthermore, an abrupt surge of energy appears around 1600 m away from

the test site. At approximately this distance the train reaches a tunnel, where it is
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Fig. 7.12. Acceleration levels before the passage of train 3 at different times with the same
time interval of 10 seconds. (a) At the side of the rail head (ch. 1), (b) at the underside
of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of
the rail head (ch. 4).
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possible that there are some rail joints, but this could not be confirmed.

While a train is approaching or receding, the acceleration levels of the rail at a
given frequency will increase or reduce with time. So, decay rates can be obtained
from the level difference between two train positions by dividing it by the train’s
running distance between them. The acceleration spectra of the rail at different
times are compared in Fig. 7.12. This shows results before the train passed, spaced
at 5 second intervals. Each line in Fig. 7.12 was produced from the time signals
of about 3 msec. duration with a frequency resolution of 195 Hz. In these figures,

it can be confirmed that the signals in the region 20 kHz to 40 kHz decay more
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Fig. 7.13. Acceleration levels after the passage of train 3 at different times with the same
time interval of 10 seconds. (a) At the side of the rail head (ch. 1), (b) at the underside
of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of

the rail head (ch. 4).
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slowly than others. Fig. 7.12 indicates that. the acceleration levels from 20 to 40
seconds tend to have consistent level increments and also they seem to be less af-
fected by the background noise. So the acceleration levels from 20 to 40 seconds
in Fig. 7.12 will be used for- the decay rate calculation. In the case of the web,
only the signals at 40, 35'and 30 seconds will be included in the calculation because

the éignal at 20 seconds was severely contaminated by noise as shown in Fig. 7.12(c).

The measured acceleration spectra after the train passed the measurement lo-
cation are presented in Fig. 7.13 with the same time interval. As described above, it
is clear that there are relatively large level drops’between 69 and 74 seconds. From
the acceleration levels shown in Fig. 7.13, the levels from 49 to 64 seconds were used
for the decay rates calculation. In the case of the web, only the signals at 49, 54
" and 59 seconds were included, in order to avoid the contribution of noise. The decay
rates produced from this field test will be presented later in Section 7.3.5, comparing

them with the simulated results obtained by WFE analysis.

7.3.3 Analysis results for train 4

For train 4 the measured time signals between 0 and 60 seconds are shown in
Fig. 7.14. Since this train had 8 coaches and travelled faster, at about 160 km/h,
the measured time histories look like a compressed version of the previous one. Also
this train seems to induce more rail vibration than the previous one. The signals are
clipped for the length of the traih (about 8 seconds) on ch. 1 and 3, but for about
.16 seconds for ch. 2 anc/l 4. '

ch. 1 ch. 2
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F1g 7.14. Time signals for train 4 measured from 0 to 60 seconds at each channel.
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Fig. 7.15. Spectrograms measured for train 4. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).
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The spectrograms measured at each transducer location are presented in Fig. 7.15.
They look similar to those in Fig. 7.9 for train 3 but compressed in the time axis due
to the higher train speed. These spectrograms present almost the same frequency
characteristics as the previous ones although train 4 is of a different type and has
a higher running speed than train 3. Also, despite the saturation of the measured
time data around 30 seconds, the spectrograms clearly indicate how many carriages
are in this train. Meanwhile, a distinctive feature in these spectrograms is that
a comparatively large amount of vibration energy is seen at 70 seconds, at which
the train is about 1650 m away from the measurement point. The reason for this

increase in energy remains unexplained.

The variations of acceleration levels with distance are shown in Fig. 7.16 for
each channel. The frequency bands used for this plot were centred around 29 kHz
at the side of the rail head (ch. 1), around 24 kHz at the underside of the rail head
(ch. 2 and 4) and around 36 kHz at the web (ch. 3) with the bandwidth of 975 Hz
as used previously. The measured acceleration levels for this train indicate the same
behaviour as shown in Fig. 7.10 for train 3. As discussed for train 3, this curved

shape level variation possibly results from the acceleration of the train. Compared
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Fig. 7.16. Variations of acceleration levels along distance at each measuring point for train
4 in the frequency bands of about 29 kHz (ch.1), about 24 kHz (ch.2 and ch.4) and about

36 kHz (ch.3).
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with Fig. 7.10, it is clear that this train creates rail vibration between 5 and 10 dB
larger than the previous one which is unsurprising since it contains twice as many
coaches and also is much faster than train 3. Therefore, this approaching train will
be detected much more than a kilometre before the train arrival, even at the middle
of the web.

The acceleration spectra of the track at different times are compared in Fig. 7.17
and Fig. 7.18 before and after the train passage. It can be confirmed once again from
these figures that the frequency spectra of trains 3 and 4 are very similar despite the

different train types and running speeds. As before, the decay rates were calculated
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Fig. 7.17. Acceleration levels before the passage of train 4 at different times with the time
interval of 5 seconds. (a) At the side of the rail head (ch. 1), (b) at the underside of the
rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of the rail

head (ch. 4).
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Fig. 7.18. Acceleration levels after the passage of train 4 at different times with the time
interval of 5 seconds. (a) At the side of the rail head (ch. 1), (b) at the underside of the
rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the underside of the rail

head (ch. 4).

from the acceleration levels measured at 22, 17 and 12 seconds in Fig. 7.17 and at
38, 43 and 48 seconds in Fig. 7.18 for all channels. The decay rates produced from
this field test will be discussed in Section 7.3.5.

7.3.4 Analysis results for train 7

As listed in Table 7.1, train 7 was measured with instrumentation set to the
highest gain, equivalent to £+ 0.1 volt input range, so the area around the train
passage will be most overloaded. However, the measured data are expected to have

the lowest noise level and should give the furthest detection range without running
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Fig. 7.19. Time signals for train 7 measured from 0 to 80 seconds at each channel.

into the noise. The measured time signals betWeen 0 and 80 seconds are shown in
Fig. 7.19 for train 7. Unfortunately, the signals in channels 3 and.4 have relatively
large contributions of noise as shown in Fig. 7.19. It is suspected that the signal
conditioners, PCB 480B10, connected to channels 3 and 4 introduced this additional

noise when their- amphﬁcatmn gains were set to 10 but this has not been clearly

1

demonstrated

The sp'ectrograms'are presented for channels 1 and 2 only in Fig. 7.20. The
same abrupt level changes appear once again at around 66 seconds and between 85
and 90 seconds in these diagrams. The diagrams for channels 3 and 4 were neglected

due to the poor signal to noise ratio for the low amplitude signals.

The levels in the frequehcy bands speciﬁéd above are shown in Fig. 7.21 as a
function of distance for each sensor. The noise which corrupts channels 3 and 4 is
clearly illustrated in Fig. 7.21. The data have a noise floor about 25 dB higher than -
those in the other channels. On the other hand, the noise levels in channels 1 and 2
become about 4 or 5 dB lower than those in Fig. 7. 10 and Fig. 7.16 for trains 3 and
4, as expected. This is because the narrower. mput range has been used, as stated
earlier. Accordmg to Fig. 7.21, the rail responses at the side and under51de of the .
rall head are likely to give an early Warnmg of the approaching traln at least 1.5 km
or even 2 km before it arrives. Also if the problem of additional n01se contammatlon
in channel 3 could be overcome, it might be possible to detect an approachmg train

about 1. 5 km before 1ts arrival from the web v1brat10n
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Fig. 7.20. Spectrograms measured for train 7. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2).
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Fig. 7.21. Variations of acceleration levels versus distance at each measuring point for
train 7.
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The changes in acceleration spectra with time obtained from train 7 were almost
the same as described before so will not be presented here. Instead, averaged decay
rates created from all the individual decay rates thained from each train will be

presented later and compared with the simulated ones.

7.3.5 Averaged decay rates obtained from the field test

For each train, decay rates were extracted from the acceleration level differences

at 5 second intervals. The decay rates obtained from the signals for trains 3 to 7 are

compared in Fig. 7.22 for each train. The meaéureddecay rates below 10 kHz were -

disregarded in Fig. 7.22 because the waves decay too rapidly in this frequency band,
leaving just the background noise. It was found from Fig. 7.22 that the measured

decay rates are not significantly affected by different train types and running sp"eeds.

The averaged decay rates were calculated from the results shown in Fig. 7.22,
simply finding mean values. These are shown in Fig. 7.23 together with the previous
simulated ones in Chapter 5. As presented in the previous spectrograms, the waves

below 20 kHz decay very quickly. Hence in order to obtain accurate decay rates

in this low frequency region, it is necessary to extract them from the acceleration .

levels in the vicinity'of the train passage. For this 'reason the decay rates between
10 kHz and 20 kHz in Fig. 7.23 were produced from the signals of tram 2 because

they were not overloaded at all during the train passage.

It is revealed in Fig. 7.‘23. that the field test results agree very well with the

simulated ones for all frequencies above 10 kHz. The comparison at the underside of

the rail head in Fig. 7.23(b) suggests that the measured decay rate between 10 kHz
and 20 kHz corresponds to the simulated one but is shifted to slightly higher fre-
quencies. This slight difference between the measured and simulated results rnay be
assoeiated with the rail geometry or the stiffness of the rail pad. The exact types of

the rail and rail pads in the operational track or the extent to which the rail head‘

'1s worn are not known Nevertheless the measured decay rates show cons1derab1e

agreement Wlth the predicted ones partlcularly between 20 kHz and 50 kHz.

In terms of the long range wave propagation intefesting frequencies at each -
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Fig. 7.22. Decay rates obtained from the field test for each train. (a) At the side of the
rail head (ch. 1), (b) at the underside of the rail head (ch. 2 and ch. 4), (c) at the middle
of the web (ch. 3)

channel were specified as around 29 kHz at the side of the rail head, around 24 kHz
at the underside of the rail head and around 36 kHz at the middle of the web.
At these frequencies relatively large amplitudes were excited at this test site. The
measured decay rates at these frequencies are about 0.04, 0.035 and 0.05 dB/m,
respectively, but are not much different from results at other frequencies around
them. Also it was confirmed from this field measurement that a dynamic range of
more than 50 dB is measurable in the rail vibration. So, if a 50 dB level reduction
is assumed, then the maximum propagating distances at each sensing location will

be about 1.2 km, 1.4 km and 1.0 km, respectively.

As compared in Fig. 7.23, the measured decay rates at the side and underside
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Fig. 7.23. Decay rates obtained from the field test, presented with those predicted by the
WFE method. (a) At the side of the rail head (ch. 1), (b) at the underside of the rail head
(ch. 2), (c) at the middle of the web (ch. 3)

of the rail head are slightly less than the predicted ones above 40 kHz. On the other
hand, the decay rate measured at the middle of the web looks slightly higher than
the simulated one. This increase in the measured decay rate at the middle of the
web is likely to be related to the presence of the welds which reflect energy primarily

in the web, as discussed in Section 6.2.5.

7.3.6 Analysis of the background vibration signal

The background vibration signal was acquired in the field measurement and
investigated here. This measurement was carried out with the same input range
and gain as set for train 7, i.e., = 0.1 volt. It can be clearly seen in Fig. 7.24 how

large the electrical noise was in channels 3 and 4. During this measurement, a train
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Fig. 7.24. Measured background vibration signals.

passed on an adjacent track. This can be seen in the time signal between 40 and 45
seconds in Fig. 7.24. Analysis of this event will inform how much interference will

arise from adjacent tracks.

Since the data acquisition board used in this measurement has a 12 bit quantizer
for A/D conversion, the step size, d, of the quantizer becomes

Xm

5= (7.1)

where X, denotes the full-scale level of the A/D converter [62]. For instance, X,
for this background vibration measurement is about 11g and § is about 0.005g. The

smallest quantization levels are then +0.

As shown previously in spectrograme and plots of acceleration levels’versus
'distanee, such as Fig. 7.10, Fig. 7.16 and Fig. 7.21, the latter parts of the mieasured
signals for each train seem to consist of noise. The' time signals measured with
various 1nput ranges are compared in Fig. 7.25 for a short time duration around 120 |
seconds in each case. From this companson it is clear that the measured 51gnals in
Fig. 7.25( ) and (b) were ‘severely d1storted by the poor quantization and the error

associated with the quantization decreases as § becomes smaller.

In terms of spectra of the Vlbratlon the level is dlrectly dependent on the

power contamed in its time signal. Therefore it is obvious that the levels of the
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Fig. 7.25. Signals measured at channel 2 for (a) trains 2, (b) train 5, (c) train 3, (d) train
7 with different input ranges as stated in the figure.
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Fig. 7.26. Comparison of acceleration levels for trains 2, 5, 3 and 7, having different input
ranges, measured in (a) channel 1, (b) channel 2.

frequency spectra of the signals shown in Fig. 7.25 will drop gradually as ¢ reduces
until they reach a background level which may be caused by ambient vibration or
by electrical noise in the instrumentation chain. This kind of behaviour is observed
in Fig. 7.26 which compares frequency spectra of the signals for trains 2, 5, 3 and
7 around 120 seconds. This figure also identifies that any significant background
vibration is mainly concentrated at low frequencies below 1 kHz and decreases as
frequency increases. Based on this result, it is expected that if a greater resolution
or a narrower input range are used for the background vibration measurement, it

would reduce the level further only at high frequencies above 1 kHz.

Finally, the contribution of a train running on a neighbouring track was inves-
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Fig. 7.27. Time histories measured during the train passage on the Up Fast track in (a)
ch. 1, (b) ch. 2.
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Fig. 7.28. Power spectra of the background vibration at around 20 and 43 seconds in (a)
ch. 1, (b) ch. 2.

tigated by analysing the data obtained before and during the train passage on an
adjacent track. The measured time histories during the train passage on the neigh-
bouring track are shown in Fig. 7.27, indicating that the train, a Pendolino, had 9
coaches. The frequency spectra corresponding to the train passage on the neigh-
bouring track are shown in Fig. 7.28 along with the background levels for channels
1 and 2. The spectra in Fig. 7.28 were obtained from the time signals of about 2
seconds duration. From this comparison, it is clear that the train passing on the
adjacent track does not have any significant effect, except in the low frequency re-
gion below 3 kHz. This is as expected because the resilience of the track support

will tend to isolate it at high frequencies.
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7.4 Summary

In order to validate the simulated decay rates over a longer rail section, a field
measurement was performed on an operational railway track. In this experiment,
train-induced rail vibration was measured up to 80 kHz for several service trains at

the side and underside of the rail head and at the middle of the web.

From these measurements, it was revealed that running trains are very effective
in exciting rails even at high frequencies between 20 kHz and 50 kHz and each part
of the rail is excited in a different manner. Spectrograms were plotted for each train
‘passage and it was found that waves can propagate more than a-kilometre at some
freduencies between 20 kHz and 40 kHz even at the middle of the web. FinaHy de-

cay rates were extracted from the measured data and compared with the predictions.

This field test validated that the measured decay rates coincide very well with
the simulated ones in almost the entire frequency range up to 80 kHz. The measured

mlmmum decay rates and the frequenc1es at which they occur are
e about 0.035 dB/m at the underside of the rail head around 25 kHz
e about 0.035 dB/m at the side of the railhead around 25 kHz
e about 0.04 dB/m at the middle of the web around 29 lkHz.

From the field measurement partlcularly strong signals were found at 24 kHz under
the rail head at 29 kHz on the side of the head and at 36 kHz on the web. These
frequenc1es might be different at other sites and with different trains. Also it was
found that a train passing on an adjacent track does not have any significant con-

tribution to the measured results at frequencies above 3 kHz.

" The characteristics of rail vibration induced by the different trains measured
were almost the same, despite differences in running-speeds and train type. This
may be because the trains measured were all EMUs, mainly of the same class. Nev-

ertheless,' this is a \}ery desirable result in terms of the practical application.

‘A diagram such as the acceleration level versus distance could be used in order

to monitor aud' detect defects in & railway track because a‘brupf 'llevel"chang'es‘.‘due
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to rail defects could be indicated in this di_agrafrl from each train passage on the
track. To detect waves at greater distances, it is essential to minimize the level of
electrical noise in the measurement and to reduce the quantization error in the data

acquisition by using an A/D vconver’ter with a wider range.

144




Chapter 8

Wave Reﬂectlon and Transmlssmn

at Cracks in Rails

So far in this thesis wave propagation has been investigated for homogeneous
infinite rails. However, if a rail has a local non—»uniformity, like a crack, it will reflect
a part of the incident pbwer and transmit the rest of it. AThese' reflection and trans-
mission characteristics associated with the presence of the discontinuity may give
some. indication of both the crack location and depth. In particular, if the waves
that propagate furth_ést in fails are employed as incident waves, it may be‘lachievable _
to inspect a l.ong,secti(;n df rail with every train passage. For example, the diagram
of acceleration level versus distance (or time) as shown in Chapter 7 will present an

abrupt level drop or surge when a train is passing.over a discontinuity in rail. This

train

[ —> rail

7
measuring point

Acceleration Level

Distance

Fig. 8.1. Scheme of acceleratmn 1evel versus dlstance dlagram for a rall with two d1fferent
* rail defects at z; and za. (A denotes decay rates).

145




Chapter 8. Wave Reflection and Tra'nsmissioh at Cracks in Rails
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Fig. 8.2. Cross-sectional model of a rail on foundation. The shaded elements represents
the rail pad.

is described schematically in Fig. 8.1 for a case where a rail has two different rail de-
fects at 1 and z,. The level of this abrupt change will depend predominantly on the-
transmlssmn characteristics of the rail defect. The reflected waves will be masked
by the waves directly produced by the train. So in terms of practical application
on an operatiohal track, the transmission coefficients would be more ljseful than the
reflection coefficients for crack detection. On the other hand, if artificial excitation
is used instead of relying on excitation by trains, the reflected waves could also be

utilised.

In-this chapter, to check the feasibility of this application, wave reﬂecti,o_n and
 transmission are investigated for cracks in rails by means of numerical simulations.
The waves Which propagate furthest along rails, found in the prevviOus chapters, are
used as incident waves. Since these fall in the frequency r.ahge between 20 kHz and
40 kHz, it is not possible to use simple beam models as in ref. ['41',4'2]. Therefore,
in order to do that, the spectral super element method (SSEM) [20] is introduced
and combined with the conventional FE method to estimate power reflection and
transmissicn coefficients associated with cracks in rails. The cross-sectional model
used_ in this studyis shown in Fig. 8.2, which is the same cross—secticn used for
the pr_evicué FE analysis presen'ted‘ in Chapter 3. A finer cross-sectional mlodel: was
created and used in the pfevibus WFE analysis in Chapter 4 to improve accuracy
' ‘1n the results. In this chapter however, that finer model was not sultable because

the resultlng FE model has too many dofs to handle.

In practice, a crack would induce damping as well as reflection. However, to
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make matters simpler, it is assumed in this chaptef that the crack itself does not
introducé any additional damping effects to the structure. Also it is supposed that
the damping of the structure contributes only to the decay of propagating waves,
not to the reflection and transmission of waves induced by cracks. Based on these
assumptions, the simulation for wave reﬂéction and transmission is performed for

undamped rails in this feasibility study.

8.1 Spectral Super Element Method

The spectral super element (SSE) method was developed by Birgersson et al.
[20] and used to predict tﬁe dynamic responses of vibrating finite length plate struc-'
tures. This method is described briefly in this section, applying it to the rail which
is modelled with solid elements. Since this method is a combination of the WFE
method with the spectral finite element (SFE) method [16], it will be stated how
these two methods are combined in the SSE method. Then the SSE for semi-infinite
Waveguide structures is newly developed modifying the original formulation in tﬁis

. section. -

8.1.1 Homogeneous wave solutions

For an infinite waveguide structure, homogeneous wave solutions can be ob-
tained from the WFE method. This method was already emp'loyed to create disper-

sion relations and decay rates of propagating waves, as presented in Chapter 4.

In this WFE analysis, the equation of motion of a cross-section is given as.

[Ka(—j&)? + Ki(—jr) + Ko — w?M]& = 0 (8.1).

where K7, K; and Ky are matrices associated with the stiffness of the structure,
M is the mass matrix of the cross-section and @ contains the displacements of the
cross-section defining the.wave shape. Since damping is-not included here, all the
stiffness and mass matrices are real. Here the wavenumber x and frequency w are

the unknown variables to be identified; once they are‘ found @ can also be obtained.

In Chapter 4, the WFE équation given in Eq.(8.1) was solved as a generalized

eigenvalue problem to obtain frequency w at a given wavenumber s, because only
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propagating waves were of i-nterest there. In the SSE method, however, all the wave
solufions, including nearfield waves, are required to predict the displacement of the '
structure. Hence, Eq.'(8.1) has to be solved as a polyndmial eigehvalue problem to
obtain all wavenumbers and mode shapes at a given frequency w. Note that Eq. (8.1)
will have paired wavenumber solutions, representing the positive- and negative-going
waves at each frequency. For example, for a cross-sectional model with IV dofs, 2N -

wavenumbers and mode shapes will be obtained at each w.

It was reported in ref. [43, 63] that transforming the polynomial eigenvalue prob-
lem to a generalized eigenvalue problem reduces the computational load required and .

increases its numerical stability. - To do this, a new variable U was introduced as
¥ = —jk®. Then Eq.(8.1) can be rewritten as x
5 _
- = , 8.2
H 2
and expressed in standard eigenvalue form as ' _
M—-Ko 0 K, K &) ‘
“ 0 (=) [ T =0 . (83)
.0 I I 0 % ' _

Wavenumbers % and mode shapes & are obtained by solying this transformed eigen-

—jkKy + Ko — ™M  —jsK,
' JjKk S I

value problem at each frequency w.

Theoretically, at a given frequency w, all the wavenumber solutions have to be
placed symmetrically about the origin in the complex wavenumber plane. Half of
them are for waves propagating and decaying in the positive z direction and the rest

are for those travelling and decaying in the negative z direction. That is,
Ko =Ky (84)

where £, and x_ denote the wavenumbers travelling in the positive and negative z

directions, respectivély. For wavenumbers k., Eq.(8.1) can be written as
[-x2Ky — jk K1 + Ko — w?M]&, =0 (8.5)
then by the relation in Eq.(8.4),

[-K2 K, + jrK; + Ko — w’M]@, =0 . (8.6)
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Since the matrices Ko, Ko and M are symmetric and K; is anti-symmetric, the

transpose of Eq.(8.6) is given by
®T[-k2K; — jr_K; + Ko — w?M] = 07 . (8.7)

By the definition of a left eigenvector, &q in this transposed equation becomes the

left eigenvector for k_, whereas its right eigenvector &_ satisfies
[—I‘CEKZ T jK]_Kl == Ko s sz]é_ =)= (88)

From Eq.(8.7) and Eq.(8.8), it is obtained that ®_ and & are respectively the
right and left eigenvectors of K(k_) = [-£2 Kz — jk_K; + Ko — w?M] (or the left
and right eigenvectors of K(k) = [-k2 K2 — jr+ K1 + Ko — w?M]). This relation
between ®_ and <i>+ is valid for damped structures with proportional damping, in
which a stiffness matrix is specified as K(1 + i), because the condition described

in Eq.(8.4) will be satisfied even for damped cases.

As an example, some wavenumbers obtained from the rail model shown in
Fig. 8.2 at 21 kHz are illustrated in Fig. 8.3. The wavenumbers for the positive- and
negative-going waves are coloured blue and red, respectively. That is, the blue ones
are k4 and the red ones are x_. In fact, for undamped systems, symmetry exists be-
tween wavenumbers in all four quadrants of the complex plane as can be recognised
from Fig. 8.3. The relations between the eigenvectors for four such wavenumbers
were described in ref. [26]. However, this contains some typing errors. The corrected

ones are listed in Table 8.1.

b ¥ «  x_(negative-going waves)
5 «  x_(positive-going waves)
150 .
i
100
. & .
50 A
3
E 0 ® @
=
E
50 A
o
-100
$
150 - el S
H
"o 80 60 40 -2 40 60 80 100

[ 20
Re(x) (rad/m)

Fig. 8.3. Wave solutions around the origin obtained at 21 kHz from the WFEM. The pairs
marked with ‘O’, ‘]’ and ‘A’ shapes are wavenumbers selected for mode shape comparison.
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Table 8.1. Relations between eigenvectors for wavenumbers symmetric in different quad-
rants for undamped structures.

Quadrant | Wavenumber | Right eigenvector | Left eigenvector
1st K dp %)
2nd —K* 33 3
3rd —K ) &g
4th %' & %,

In Fig. 8.3, the wavenumbers located on the real axis correspond to positive- and
negative-propagating waves which do not decay along the z direction because there
is no imaginary part. Note that two wavenumbers located at around +5 rad/m on
the real axis were swapped because they both have negative group velocities. The
remaining wavenumbers indicate nearfield waves exhibiting exponential decay with
distance in x. More strictly, the waves on the imaginary axis decay exponentially
without any oscillation with distance, while those with complex wavenumbers are de-
caying exponentially along with some sinusoidal oscillation with distance. Note that
since waves exist as nearfield waves until they are cut-on, these complex wavenum-

bers are created even though there is no damping in this system.

In order to observe what sort of relation occurs between the mode shapes for «,
and k_, the eigenvectors are compared below for the three wavenumber pairs, marked
with symbols in Fig. 8.3. The mode shapes of positive- and negative-propagating

waves, marked with ‘O’ in Fig. 8.3, are shown in Fig. 8.4. Since these are purely real

-0.03 Ve L i L L L
o 50 100 150 200 250 300 350 400 450 500
DOF Numbers

Fig. 8.4. Comparison of mode shapes for the purely real wavenumbers marked ‘O’ in
Fig. 8.3.
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Fig. 8.5. Mode shapes in complex domain for the wavenumbers, marked ‘O’ in Fig. 8.3,
for each directional dofs. (a) ®_, (b) &..

wavenumbers, K(x_) and K(k;) become Hermitian matrices. Their eigenvectors
are, therefore, complex conjugate pairs, i.e., & = <i>*+ as illustrated in Fig. 8.4 for
all dofs. The mode shapes in this figure indicate that the two waves chosen are
identical but travel in opposite directions. The eigenvectors shown in Fig. 8.4 are
plotted in the complex domain for the z, y and z direction dofs separately and
compared in Fig. 8.5. It can be identified from this figure that the mode shapes in
the z and (y,z) directions have a 90° phase difference between them. This phase

difference occurs in the opposite direction for ®_ and & .

Meanwhile, for wavenumbers which are purely imaginary, K(x_) and K(k)
become real and asymmetric so that their eigenvectors are real. For each direction
of dofs, the eigenvectors for the wavenumber pairs, marked with ‘C)’, are plotted
and compared in Fig. 8.6. It is found from Fig. 8.6 that the eigenvectors in the
y and z directions are the same but those in the = direction have opposite signs.
These results indicate that the mode shapes obtained when k., and x_ are on the

imaginary wavenumber axis are the same but out of phase in the x direction.

The eigenvectors for the complex wavenumber pairs, marked with ‘A’ in Fig. 8.3,
are illustrated in Fig. 8.7 for the dofs in the x, y and z directions. It is difficult to
identify the relation between ®_ and <i>+ in this figure. To present it more clearly,
the eigenvectors are replotted in the complex domain and compared in Fig. 8.8. It

can be seen from this figure that for each direction the mode shape of <i>+ shown in
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Fig. 8.6. Comparison of mode shapes for the purely imaginary wavenumbers marked ‘C7’
in Fig. 8.4(a), (a) in the z direction, (b) in the y direction, (c) in the z direction.

Fig. 8.8(b) is the rotated version of ®_ in Fig. 8.8(a). The phase differences found
are 107.75° for the dofs in the z direction and -72.24° for the y and z directions.
These differences in phase between mode shapes will vary for different wavenumber
pairs. However, it is not clear how they are related to the phase of k. or k_. Also
Fig. 8.8 shows that ®_ has a slightly larger magnitude than &_. This difference in
amplitude will be compensated in the wave amplitude vector in the calculation of

displacement.
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Fig. 8.7. Comparison of mode shapes for the complex wavenumbers, marked ‘A’ in
Fig. 8.4(a), (a) in the z direction, (b) in the y direction, (c) in the z direction.
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Fig. 8.8. Mode shapes in complex domain for the wavenumbers, marked ‘A’ in Fig. 8.3,
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153




Chapter 8. Wave Reflection and Transmission at Cracks in Rails

8.1.2 Displacement functions

For finite length waveguide structures, the displacement V(z) can be written

as a superposition of each wave solution obtained from Eq.(8.3) [20]. For example,

for a finite length structure in —{, < z <, the Nx1 vector V(z) at a frequency w

can be written as

V(@)=Y an®ne = $E(z)a (8.9)

where N is the number of dofs in the cross-sectional model, ®,, is the mode shape
~ vector for k,,, ® is an Nx2N matrix containing each wave’s mode shapes, a is the

2N x1 wave amplitude vector and E(z) is a 2N x2N diagonal matrix containing

the exponential terms for z. To avoid numerical instability that is caused by large

amplitudes of near field waves at boundaries, E(z) is scaled by factors of e*irmi=

[16,20] as

Epm = e @) for Im(ky,) >0 , (8.10)
Epm = e irm@t) for Im(kp) <0 . (8.11)

In Eq.(8.9), the only unknown variable is the wave amplitude, a, and it can be
determined from the boundary conditions of the structure. For example, suppose
that the finite length waveguide structure has boundaries at z = —l, and [, and the
boun_dary conditions are defined by the disp;lacements W, and-Wg, respectively, at
these locations. The displacements, V(z), at the boundaries are described using
Eq.(8.9) as ' |

V("lx) ":'(I)E(_lar:)éi =W, ‘ | (8.12)

V(+,) = BE(+l)a= W, . O @13)

Then a can be expressed as a function of the nodal displacements at bdunda'ries,

TE(-L) {Wl}:AW , (8.14)

SE(+1,)

W,

and the displacement V(z) is expressed by

V(z) = $E(@)AW . o (8.15)

Now, the only unknown parameter in this equation is W. '
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Birgersson et al. [20] suggested to scale all eigenvectors with ([|®p][|xm|2) "
where k,, is the wavenumber corresponding to the eigenvector ®,,, in order to
reduce the numerical error which is caused by rapidly decaying waves at low fre-
A quencies where most waves in the structure are riqn-propagating. This weighting
of the eigenvectors was used initially in the present étudy but it was found that it
does not significantly reduce the error at the frequencies of interest bétween 20 kHz
and 40.kHz. So, the weighting of the eigenvectors has not been implemented in the '

results presented.

For semi-infinite waveguide structures, only half of the wavenumbers and mode
shapes, which propagate and decay in the positive or negative = direction, are present
as stated in the previous section. For instance, for a semi-infinite waveguide that
extends to infinity in the positive z direction (0 < z < 00), the displacement vector
V(z) is expressed as a superposition of wave solutions onlyv for positive-going waves

- as
N

V(@) = 3 (1) (@sm)e ™+ = B,E, (g)ay (8.16)

m=1 s .
where the subscript ‘+’ represents variables for the positive-going waves, ®, and
E.(z) are the matrices of size NxV and a4 is the Nx1 wave amplitude vector. If
the boundary condition is defined by the displacements Wy at z = 0, a; can be

expressed as .
. a, = [@_'.E.'_(O)]_lWO = A+W0 . (817) -

8.1.3 Dynamic stiffness matrix

If an input'force'\iector, F, is specified at the boundaries of finite length struc-
tures, the displacement vector W can be obtained using a dynamic stiffness matrix
of the structure, as developed by Birgersson et al. [20]. The dynamic stiffness matrix,

Dy, of the finite length waveguide structure is given by
Ds=AT(@®EpNA v (8-18)

‘where ® denotes the Hadarnard product an element-wise multiplication of two

matrices and
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6:(ZZ(&"‘(@Te‘mn@)n”)—'w2(¢>TM<I>)) . (8.19)
By — /_ : ding(E(z))ding(B(z))dz . (8.20)

Here €, is a NxN matrix containing strain components used to form the stiﬂgess »
matrices K, K; and Ky in the WFE analysis [20] and the operator diag( ) produces
a column vector from the diagonal terms of its afgument. For finite length structures,
all the wavenumbers and mode shapes are used to calculate the dynamic stiffness in
Eq.(8.18) and the displacement vector V(z). So, & in Eq.(8.19) becomes a 2N x2N
diagonal matrix of wavenumbers, Ey is also the 2N x2N matrix and its entries are
given by | '

(ED)mn = :m[e—j(@ﬂn)lz _ e——j(nm+nn)(—lz)]e—j(:l:nm':t/cn)l,; V(8.21)
where ‘%’ signs are dependent on the signs of the imaginary parts of «p, and K-
Finally, if an input force F is specified, the nodal displacement W can be found by
solving | _ : '
DsW=F | (8.22)
and from Eq.(8.15) the displacement of the finite length structure can be obtained

at any position.

In the case of semi-inﬁnifce structures, only half of the wavenumbers and mode
shapes are used in the calculation and then © and E;j in Eq.(8.19) and Eq.(8.20)
need to be modified. Since ® has to be specified for the positive and negative

- semi-infinite structures separately,

_ 11 '
O = (3 Y (kE(@Tem@s)nl) - *(@IMEL)) ,  (8.29)
m=0 n=0
where ‘+’ signs in the subscript are dependent on the direction that extends to infin-

ity in the semi-infinite structure and x4 are N x N diagonal matrices of wavenumbers

for the positive- or negative-going waves, respectively. Also,

‘ 1 .
Ei_ )pwn=—-——""— for —oc0o<z<0 , 8.24
(Be o = 5 _ FENCED
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Then the dynamic stiffness matrices Dg 4 for semi-infinite structures are given by
Dss = AL(O: ®Er)As (8.26)

and if an input force Fy is specified at z = 0, the nodal displacement WO will be

found by
Wo=(Ds,¢)_1Fo . ‘ (8.27)

8.2 Combined SSE/FE Method

In the above section, SSEs for semi-infinite waveguide structures were devel-‘ ,
oped. If homogeneous structures are investigated, they can be modelled by con-
necting these SSEs with finite length SSEs consecutively. If there are local discon-
tinuities, like holes or cracks, in an infinite structure, regions containing these local
non-uniformities can be modelled using FE and then the combined SSE/FE method
is required to investigate wave propagation in the structure. In this section, the
combined SSE/FE method is developed using semi-infinite SSEs to analyse wave
pfopagation in the structure with local non-uniformities.

_ | 1{'

In this combined SSE/FE method, the whole structure with a local discontinu- ,
ity is subdivided into three regions: two semi-infinite elements and a finite region
containing the local discontinuity. The two semi-ihﬁnite_regions can be modelled
using the SSE method and the finite part with the local discontinuity is modelled
by the FE method. These three parts can-be connected easily if their nodes at
the boundaries are the same. This is one of the great advantages of using SSEs in
this combined method. The modelling scheme in the combined SSE/FE method is
illustrated in Fig. 8.9v. ) |

SSE

Fig. 8.9: Combined SSE/FE model with a local non-uniformity.
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8.2.1 Coupling between SSE and FE

To couple the SSE With the coinventional FE, the dynamic stiffness matrix of
the FE part needs to be transformed so that it is described only by the nodal dofs
at the boundaries. The dynamic stiffness matrix Dy of the FE part is defined as

D = Ky, — w’My, (8.28)

~ where K se and My, are the stiffness and mass matrices of the FE part, respectively.
If external forces are applied only to the nodes on boundaries, the dynamic stiffness

matrix in Eq.(8.28) can be partitioned as

| Fe _ Dsw Dyrpi| | We | : ' I(8 29)
0 | Dysip Dyai| | Wi ’

where the subscripts b and ¢ denote boundary and internal dofs, respectively. Then

a condensed dynamic stiffness matrix, Dy, is obtained by solving Eq.(8.29) as
Dp =Dy —DsuD7;Draw - _ (8.30)

Note that, unlike Guyan reduction [57] which uses only the static stiffness matrix

in the condensation process, this does not result in any approximation.

" For the combined model shown in Fig. 8.9, dynamic stiffness matrices of the
three substructures can be assembled by the same process as for conventional finite

elements. The nodal displacements W at the two coupled interfaces are found by

Ds_ 0] _ 0 0 W |
% +Dr+ ‘ 'V =DcW=F , (8.31)
0 0 O DS’+ W2

where W1 and W, are displacements at theuleft- and right-hand boundaries, Dg -
and Dg ;. are the dynamic stiffness matrices of the left- and right—hand side semi-
infinite SSEs, and F is the generalized force vector acting on the nodes of the coupled
boundaries. Finally, if F is given at the boundaries, the displacement V(z). in
the SSE parts of the combined model is evaluated by solving Eq.(8.31) and then
Eq.(8.15). The response of the FE part can be found from the lower part of Eq.(8.29).

8.2.2 Modelling for incident wave generation
In order to estimate reflected and transmitted waves in rails with a local non-

‘uniformity, waves incident on it are required. However, it is not possible to specify
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~ Fig. 8.10. An equivalent model to predict wave reflection and transmlssmn for an infinite
rail with a local non-uniformity.

them directly in the semi-infinite SSEs. ‘So a technique to add incident waves to the
combined SSE/FE model is necessary. To impose incident waves on the combined
SSE/FE model, a method used by Shone et al. [41,42] is employed here, consider-

ing an equivalent system with positive and négativ'e blocked forces cancelled out by

superposition.

'The proposed pfocedure for imposing an incident wave on the combined SSE /FE
model s illustrated in Fig. 8.10. The desired model, shown in Fig. 8.10(a), needs
to have incident (I), reflected (R) and transmitted (T) waves alorig the two semi- -
infinite SSEs with no external forces acting on the connecting nodes. This desiréd
model is achieved by superposing the blocked case, which gives a-blocked force
vector due to an incident wave (Fig. 8.10(b)), and the combined SSE/»FE model
excited by this blocked force vector but with the opposite sign (Fig. 8.10(c)). By
surnmatlon of these two, the forces are cancelled out so that the desired rhodel
contammg incident, reflected and transmitted waves is obtained. In the blocked
case shown in Fig. 8.10(b), the FE and right-hand side SSE parts are assumed to

have zero response and therefore may be omitted from the model.

" The blocked force, f;, shown in Fig. 8.10(b) is determined using two connected
semi-infinite SSEs as shown in Fig. 8.11. Suppose that a displaCement W, is created
at by asingle incident wave, I, in an infinite homogeneous structure (Flg 8.11(b)).
Then, the force, f;, which ‘makes —Wo at zp in the infinite system can be calcu-

lated from the dynamic stiffnesses of the connected semi-infinite SSE_S as shown in
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Fig. 8.11. An equivalent model to predict blocked force and wave reflection in a blocked
rail. o

Fig. 8.11(c), |
f, = —(DS,.. + D5,+)W0 o (8.32)

This force vector f; is the same as the blocked force in Fig. 8.11(a).

8.3 Analysis of numerical error

- For the combined SSE/FE model, it is worth checking the level of numerical . -

error associated with this method because artificial separations/connections are in-
troduced and differences exist in’ element types b'etw‘een the SSE and FE. These
may both potentially cause cons1derable errors. So prior to 1ntroducmg cracks in
the combined SSE/FE model, numerical errors are evaluated for a homogeneous
railway track with the cross-section shown in Fig. 8.2. For this track, the dispersion
“curves of propagating waves created by WFE analysis are shown in Fig. 8.12 up to
50 kHz. '

~ In this investigation into numerical error, two limit cases of a local non-uniformity

are considered: homogeneous and broken rails. The broken rail can be treated as a

single semi- inﬁnite rail with a free boundary condition at the end In practice, two 7

parts of a broken rail may be held together in track by the compresswe stress and in

thls case it will not be easy to specrfy their boundary conditions mathematlcally In _

this the51s however, it 1s assumed that they are separated from each other grvmg.

a free end boundary cond1t10n
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Fig. 8.12. Dispersion curves for the rail shown in Fig 8.2 (a) for the vertical and symmetric
longitudinal waves, (b) for the lateral, torsional and antisymmetric longitudinal waves.

In this analysis, potential errors are investigated in terms of the conservation
of incident power. Note that there is no damping in this track model so that the
incident power has to be conserved. Since there are multiple propagating waves in
the rail, as indicated in Fig. 8.12, the total power contained in the reflected and in
the transmitted waves are compared to check the conservation of incident power.
The waves propagating furthest along the rail, which were identified in the previous
chapters, are chosen as incident waves. They are the vertical bending wave localized
in the rail head, the lateral bending wave which has global deformation includ-
ing the web and rail head, and the 1% order web bending wave, respectively. The
waves chosen are shown in Fig. 8.12 with different marks: the wave marked ‘x’ in
Fig. 8.12(a) is for the vertical bending wave in the rail head, two waves with ‘0]’ and
‘o’ in Fig. 8.12(b) are for the lateral bending wave in the web and rail head and the
1%¢ order web bending wave, respectively. Using these three waves as incident waves,
presented in Fig. 8.12 with the marks, conservation of incident power is examined
up to 50 kHz. Note that, at frequencies below 10 or 20 kHz, the waves chosen are

not the desired types of incident waves as discussed previously in Chapter 4.
In the case of the homogeneous rail, the power carried by an incident wave has

to be conserved giving complete transmission and no reflection. That is, for an

incident wave, j, the reflected and transmitted waves should satisfy the conditions

v =0 N R (8.33)

161




- Chapter 8. Wave Reflection and Transmission- at Cracks in Rails

where 7 and ¢. denote power reflection and transmission coefficients, respectively,
and the subscript ¢ corresponds to the reflected and transmitted waves propagating
at a glven frequency. Conversely, for the broken rail, complete reflection will occur,

giving

Z’I"ij =1 . | ) (834)

The power reflection and transmission coeflicients of the reﬁe_cted and transmit-

ted wave ¢ for an incident wave j are defined as

f‘ Cf Hzrn | :
Ti i = s ti i = . : (8 . 35)
Hznc Hznc '

The respective bowefs in Eq.(8.35) are evaluated using the displacement vector V(z)

as,
T, = 5 pAu? chine D IVhel? (8.36)
ief=%v—pAch;,,efDV(x)iefP N X
M =5 pAw gthlV @inl” )

| ~where pA is the mass per unit length of the cross-section and ) , means summation
over the cross-section. Since only waves with purely real wavenumbers carry power
along the structure, only these propagating waves are included in power calculation.
In this case, |V (z)! .|, [V(z z)io;| and |V ()i, | are independent .of z.

8.3.1 Numerical error in combined SSE/SSE models

In order to check the error that comes from the SSEs, the homogeneous and
. broken rails are modelled first with SSEs throughout as shown in Fig. 8.13. The
lengths of the finite SSEs in these two models are set to 150 mm and 72 mm, re-

| spectively.

As shown in Fig. 8.13(a), the potential error of the homogeneous rail consists of
two components: one from determli'ning the blocked case and another from the model
with the negétive blocked force, —f;. For the blocked case, the reflected power car-

ried by reflected waves R1 has to be the same as the incident power. For the model-
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Fig. 8.13. Two combined SSE/SSE models to predict errors associated with the SSEs. (a)
A homogeneous infinite rail, (b) a semi-infinite rail with free end.

with the negative blocked force, the displacement created by negative-propagating
waves Ry should be equal to that of —R; to give zero reflection in the superposed
system. Also the transmitted power, carried by waves 75, has to be the same as the

power incident in the wave I.

The errors predicted from the homogeneous rail are shown in Fig. 8.14 for the
three incident waves specified. Fig. 8.14(a) shows the error contained in the reflected
power which was predicted from reflected waves, R; + R,. This is of the order of

1028, The error in the transmitted waves T is illustrated in Fig. 8.14(b) and is
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Fig. 8.14. Errors predicted from the connected SSE/SSE homogeneous rail, contained in
(a) reflected waves, (b) transmitted waves.
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Fig. 8.15. Error created from the blocked semi-infinite rail shown in Fig. 8.13(a).

between 1078 and 107!°. As indicated in Fig. 8.14, the transmitted waves create
larger errors than the reflected ones but both of them are very small. However, it
should be noted that the very small error in the reflected power seen in Fig. 8.14(a)
does not mean both R; and R, individually have such small errors, because the
errors in Ry and R, are cancelled out by adding them. The error contained only in
R, is presented in Fig. 8.15. From Fig. 8.15, it is clear that the error in R; is much
larger than those in Fig. 8.14, as high as 1075 to 10~2 above 25 kHz.

In the case of the broken rail shown in Fig. 8.13(b), the errors predicted from the
reflected waves R, obtained by R; + R,, are illustrated in Fig. 8.16. Note that the
error contained in R; in Fig. 8.13(b) is the same as shown in Fig. 8.15. In addition,

it was found that the error in the combined reflected waves R is little affected by
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Fig. 8.16. Error created from the combined SSE/SSE semi-infinite rail with free end,
shown in Fig. 8.13(b).
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the presence of the finite SSE, attached to the semi-infinite one. Therefore, it was
identified from Fig. 8.15 and Fig. 8.16 that both waves R; and R, have considerable

errors for the broken rail, as does their sum.

Accordingly, it was found from the combined SSE/SSE models that relatively
large errors are created by semi-infinite SSEs with blocked and free end conditions.
The order of this error is about 10~ to 1073 at frequencies above 20 kHz. The reason
for this relatively large error caused by the semi-infinite SSE has not yet clearly been
identified. However, it is anticipated that this error would be reduced if more dofs are
used in the cross-sectional modelling. To check that, the errors predicted from the
finer cross-sectional model, i.e., model A used in Chapter 4, are shown in Fig. 8.17.
The errors in R; which come from the blocked semi-infinite rail are illustrated in
Fig. 8.17(a). In Fig. 8.17(b), the errors created from the semi-infinite rail with free
end are presented. Comparing them to those in Fig. 8.15 and Fig. 8.16, it can be
seen that the error is generally reduced with a finer mesh. However, this finer cross-
sectional model could not be utilised in this chapter because it led to the FE model

possessing too many dofs.

lb‘(i—).lrw“

~—=— vertical bending wave in the rail head (finer model)
—o— lateral bending wave in the rail head (finer model)
< |ateral bending wave in the web (finer model)

0 - o
o 5 10 15 0 25 ko ® 40 45 50 o s 10 15 20 25
Freq (kHz) Freq (kHz)

«— lateral bending wave in the rail head (finer model)
+ lateral bending wave in the web (finer model)

——~— vertical bending wave in the rail head (finer model){

35 40 45 50

(a) (b)
Fig. 8.17. Errors created from the finer cross-sectional model for (a) the blocked semi-

infinite rail shown in Fig. 8.13(a), (b) the combined SSE/SSE semi-infinite rail with free
end as shown in Fig. 8.13(b).
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8.3.2 Numerical error in combined SSE/FE models

In this section, numerical errors are predicted for combined SSE/FE models
in terms of the power conservation. The same homogeneous and broken rails are
considered here as shown in Fig. 8.13, simply replacing the finite SSEs with an FE
mesh. The FE models in the homogeneous and broken rails have 25 and 12 sets of

elements in 150 mm and 72 mm lengths, respectively.

For the homogeneous SSE/FE model, the errors are shown in Fig. 8.18, predicted
from the reflected and transmitted waves for three incident waves. As presented in
Fig. 8.18, the errors are of the order of 10~7 to 10~¢ above 20 kHz for both reflected
and transmitted waves. Comparing them with those in Fig. 8.14, it is clear that the
combined SSE/FE model produces higher errors than the SSE/SSE one, but they
are still fairly small. However, one should be aware that the error, coming from the
blocked case, is still the same as presented in Fig. 8.15 because the blocked case

does not involve the FE part.

For the broken SSE/FE rail, the errors predicted from the reflected waves are
shown in Fig. 8.19. Since the errors in Fig. 8.19 are nearly the same as those in
Fig. 8.16, it is clear that the errors contained in the reflected waves are generated
mainly by the blocked semi-infinite SSE, not by the SSF/FE coupling.

Through the analysis of numerical error described above, it was identified that

~—=—— vertical bending wave in the rail head| —=— vertical bending wave in the rail head|

——e— lateral bending wave in the rail head = |ateral bending wave in the rail head
o lateral bending wave in the web  lateral bending wave in the web
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Fig. 8.18. Errors predicted from the connected SSE/FE homogeneous rail, contained in
(a) reflected waves, (b) transmitted waves.
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Fig. 8.19. Error predicted from the combined SSE/FE semi-infinite rail with free end.

the broken rail model creates an error of order about 1073 above 20 kHz. It was
also found that the error associated with SSE/FE coupling appears to be about
10~° as shown in Fig. 8.18. However, since the total powers in multiple reflected
and transmitted waves were compared, it is not possible to specify individual errors
associated with each reflected and transmitted wave. The homogeneous and broken
rails considered here correspond to two limit cases of a cracked rail. If a crack is
introduced in the combined SSE/FE model, numerical errors of the model may fall
between these two limit values and approach the broken one as the crack increases.

So it is likely that the numerical error would increase with crack size.

8.4 Prediction of wave reflection and transmis-

sion due to cracks in rails

In this section, a crack is introduced to the combined SSE/FE rail model to
estimate its reflection and transmission characteristics. As used above, the same
three incident waves are imposed on the model with a crack and then their power

reflection and transmission coefficients are predicted up to 50 kHz.

8.4.1 Crack modelling

There are various types of rail defects in practical railway tracks, such as vertical
breaks which occur suddenly, cracks growing from an interior or surface defect of

the rail, spalling, weld defects, etc. Some of the most common types of rail defects
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are described in ref. [3]. However, transverse cracks in the rail have normally been
considered in the literature because they are easy to model and create artificially in
experiment [7,8,10]. Transverse cracks in the rail are regarded also in this section,

which seems to be suitable for this feasibility study.

In the combined SSE/FE rail model, the length of the FE substructure was
set to 150 mm with 25 elements in length. In that FE part, very simple vertical
‘cracks’ are generated 81mp1y by removmg elements at a single slice at the middle
of the model. As an example, the FE model with a crack reaching the middle of
the web is illustrated in Fig. 8.20 with different view angles. In fact, this is not
a commonly used geometry for a crack which is more usually modelled as a ‘V’
shaped notch. To make matters simpler, however, this crack model is considered
in this feasibility study. In addition, »the model ﬁsed in this analysis could also be
adopted to represent a short section of missing rail head or foot Wthh is also of

practical concern in rallway tracks.

In order to investigate variations of reflection and transmission coeflicients due
to crack size, two sets of crack geometries are specified: a crack growing down from
the top of the rail head and one growing up from the end of the foot, in each case
to the full break of the rail. The increasing size of the crack is classified with ‘the
numbers from 0 to 9 as illustrated in Fig. 8.21. In this classification, crack sizes
‘0 and ‘9’ represent homogeneous and fully broken rails, respectively. The vertical
depths of each crack are listed in Table 8.2, which are the heig(ht of the cracks taken
from the vertical mid-plane of the rail cross-section. Since only half of the rail cross-

section is modelled, all the cracks specified in this study are symmetric with respect

Fig. 8.20. An example of crack modelled by FEM seen by two different view angles.
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Fig. 8.21. Two crack models (a) growing down from the top of the rail head, (b) growing
up from the end of the rail foot. The increasing size of the crack is classified w1th the
numbers from 0 to 9 and the depths of each crack are listed in Table 8.2.

Table 8.2. Depth of crack in the vertical direction (including depth. of rail pad).

Crack number Crack growing down |  Crack growing up
from the top of the rail head | from the end of the rail foot
0 0 mm "0 mm
1 9 mm _ 136 mm
2 27mm . 36 mm
3. 45 mm 56 mm
4 58 mm 78 mm
5 80 mm . 102mm
6 104 mm " 124 mm
7 126 mm . 137 mm
8 146 mm - . 155 mm
9 (full break) _Y , ‘ 182 mm o 182 mm

to the vertical mid-plane of the rail cross-section.

8.4.2 Predicted reflection and transmission coefficients

Firstly, to understand how the numerical errors depend on the crack size, a
power conservation check was executed for the two growing crack models. The pre-
18}

dicted errors obtained from the power conservatlon check are illustrated in Appendlx

D. From that simulation, it was found that the errors in total power generally in-
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crease with the crack size and approach those of the broken rail.

In the case of the crack growinkg down from the top of the rail head, the errors
for crack sizes 3 and above in 'Fig. D.2(a) and (b) are nearly the same as those for
the full break. For the web bending wave in Fig. D.2(c), however, the maximum
error was obtained at crack size 6 which reaches to the middle of the web. For the
cr_ack growing up from the end of the foot, the errors for the vertical bending wave
increase gradually with the crack size as shown in Fig. D.3(a) while the others in
Fig. D.3(b) and (c) are in between about 1075'to 10~° for the crack sizes 1 and
above. Similarly to those shown in Fig. D.2(c), the maximum error for the web
bending wave was also appeared at crack size 4 which reaches to the middle of the
web (Fig. D.3(c)). However, the reason for the these variations in numerical errors

with respect to the crack size has not yet been identified.

In addition, to examine the effect of the FE model length on the prediction of
reflection and transmission coefﬁciénts, the power .chservatio-n check was performed
for three FE models with different lengths of 102 mm, 150 mm and 210 mm, re-
spectively. For the crack size 3 in Fig. 8.21(a), the errors obtained from the three |
different FE lengths were nearly the same, regardless of the FE length‘. This implies
that the variance caused by the FE model length is not significant. ' :

For each crack size specified in Fig. 8.21, power reflection aﬁd transmission co-
efficients are predicted for the three wave types which are mast measurable at the
head and web and also propagate furthest along the rail. Although reflection and
transmission may be in different wave types, most energy is retained in the same

wave as 1s incident.

For the crack growing dowh from the top of the rail head, the reflection and
transmission coefficients, r;; and t;;, are shown in Fig. 8.22. From Fig. 8.22(a),
- it - was found that the vertical bending wave’s reflection coefficients are nearly the
same for crack sizes 3 and above. Also for the transmission coefficients, the sim-
ilar variation is obtained as illustrated in Fig. 8.22(b). Note that since this wave
chosen has global deformation below 16 kHz, only the coefficients above 16 kHz
are for the vertical bending wave in the head. The results in Fig. 8.22(a) and (b)

indicate that the propagation of this vertical bending wave in the rail head is not
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Fig. 8.22. Power reflection and transmission coefficients predicted from the combined
SSE/FE rail with the crack shown in Fig. 8.21(a) for (a),(b) the vertical bending wave in
the rail head, (c),(d) the lateral bending wave in the rail head, (e),(f) the 1°¢ order web
bending wave.
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Fig. 8.23. Power reflection and transmission coefficients predicted from the combined
SSE/FE rail with the crack shown in Fig. 8.21(b) for (a),(b) the vertical bending wave in
the rail head, (c),(d) the lateral bending wave in the rail head, (e),(f) the 15¢ order web
bending wave.
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much affected by the changes of the crack size in the web. A similar phenomenon
is also found from the coefficients predicted for the lateral bending wave in the rail
head and web (Fig. 8.22(c) and (d)). In the case of the web bending wave, it can
be seen from Fig. 8.22(e) and (f) that the coefficients are not much affected for the
crack sizes smaller than 6. On the other hand, for the crack growing up from the
end of the foot, the reflection and transmission coefficients are shown in Fig. 8.23

and the similar variations of the coefficients are presented for the growing crack sizes.

In Fig. 8.22(a), dips of the reflection coefficients at 21 kHz and 27 kHz result
from wave mode conversion of the incident wave. To illustrate this phenomenon,
the reflection coefficients estimated at 20 kHz and 21 kHz are compared in Fig. 8.24
for all reflected waves propagating at crack size 3. As shown in Fig. 8.24, waves 8
and 9 cut on between these two frequencies and a significant part of the incident
power is reflected in these newly cut-on waves at 21 kHz. Nevertheless, this figure

confirms that most energy is retained in the same wave as is incident.

As presented in Fig. 8.22 and Fig. 8.23, the numerical error accumulated for all
the reflected and transmitted waves propagating can be determined using the con-
servation of incident power. However, the level of error contained in each individual
wave’s reflection and transmission coefficients is unknown because only the accumu-
lated error in all the multiple propagating waves could be quantified. This means
that it may be possible for errors in individual reflected and transmitted waves to be

larger than the accumulated one. In this analysis, nevertheless, the error obtained

1
——zow||
—&— 21 kHz

Va o
2 3 4 5 6 7 8 9
Reflected Wave Number. i

Fig. 8.24. Power reflection coefficients of all reflected waves propagating for the incident
vertical bending wave in the rail head.

173




Chapter 8. Wave Reflection and Transmission at Cracks in Rails

by the conservation of total power will be compared with the single wave’s predicted v

reflection and transmission coefﬁcients because that is the only estimate available.

The interesting frequency range in which waves propagate furthest along rails
is between 20 kHz and 40 kHz as presented in previous chapters. The reflection
and transmission coefficients averaged within this ~frequerlcy band are presented in
Fig. 8.25 and Fig. 8.26 with respect to crack size. The approximate errors are also
shown in these figures, which were obtained from the results described in Appendix
D by averaging them in the same frequency band. From Fig. 8.25 and Fig. 8.26, it
can be seen that the errors are at least 15 dB lower than the predicted coefficients

in general, excluding some cases where the reflection and transmission coefficients

are very small.

To become an effective crack indicator, the waves chosen should have a large re-
flection coefficient and a small transmission coefficient even in the presence of small
cracks. Fig. 8.25(a) shows that the vertical bending wave in the rail head reflects
about half of its incident power for a crack larger than the size of the rail head.
Conversely, the web bending wave propagates well regardless of a crack present in
the rail head until it reaches crack size 6 in.Fig. 8. 21( ), ie., most of the web is
cracked. Since the lateral bending wave in the rail head has global deformation
including the rail head and web, it generally gives less reflection than the vertical
brendihg wave, which propagates mainly along the rail head. In transmission, the
transmitted vertical bending wave has about 15 dB reduction of its incident power |
for cracks numbered 3 and above.' The web loending wave gives a considerable drop

in transmitted power from crack size 6.

From the predicted results for the crack growing down from the top of the rail
head it was identified that neither the vertical nor lateral waves that propagate
along the rail head give 31gn1ﬁcant reflections for small cracks located in the rail
head (crack ‘1’ which has a depth of about 10 mmi). Also they are insensitive to
changes in crack size once the crack is deeper than the rail head. In addition, the
web bending wave does not create noticeable changes in its feflected arid transmitted

powers until a crack is deeperv than half of the web from the top of the rail head.

For cracks growing up from the end of the foot, the predicted coefficients are
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Fig. 8.25. Power reflection and transmission coefficients averaged between 20 kHz and
40 kHz for the crack growing down from the top of the rail head. (a) Power reflection
coefficients, (b) power transmission coefficients.
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Fig. 8.26. Power reflection and transmission coefficients averaged between 20 kHz and 40
kHz for the crack growing up from the end of the foot. (a) Power reflection coefficients,
(b) power transmission coefficients.

illustrated in Fig. 8.26. Fig. 8.26 indicates that both waves measurable in the rail
head are insensitive to the presence of a crack located in the bottom half of the rail,
giving small reflections and large transmissions. Similar to the results in Fig. 8.25,
when the crack becomes bigger than size 5, specified in Fig. 8.21(b), it could be de-
tectable by the web bending wave, giving a large reflection and small transmission.
From the predicted results shown in Fig. 8.26, it was identified that none of the
wave types considered here can detect cracks growing from the end of the rail foot

in the early stage.
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For train-induced rail vibration, the transmitted waves would be more useful for
long range crack detection because the reflected waves will be masked .by the waves
directly produced by the train. Consequently, from the results shown in Fig. 8.25(b)
and Fig. 8.26(b), it was found that none of the transmitted wave types considered in
this analysis are effective for the detection of small cracks in rails although they are
the waves propagating furthest along the rail. This outcome indicates that using a
single wave and measuring it at a single position on the rail cross-section is not suf-

ficient to detect cracks efficiently, particularly small cracks, in rails excited by trains.

On the other hand, if artificial excitation is utilised, the reflected waves could
also be used for crack detection. In this case, an reflection coeflicient of -20 dB (or
less, depending on-the meaSurement system) would be usable. From the results in
Fig. 8.25(a) and Fig. 8.26(a), therefore, it was found that the reflection coefficients

. would be more useful than the transmition coefficients for the artificial excitation.

Since it was found that using a single response measured on the rail cross-section
is not effective to identify cracks in r(ails, it would be better to use more responses of
the rail vibration and quantify mode conversion of the incident wave. This approach
would not be relevant for train excitation which allows only a limited access to the
rail because it requires multiple responses along the rail and" around the perlmeter
of the rail cross-section. If an artificial excitation is consrdered instead, it would
be possihle to use multiple transducers, such as a transdué'er_ array mounted along
the length of the rail and around the perimeter of the rail cross-section, to excite
and measure specific wave modes effectively. In this way, matrices of reflection and
transmission coefficients for each incident wave may be constructed. These matrices
would present the mode conversions of the incident waves, which arise from the

presence of cracks.

8.5 Summary

In thls chapter as a feasible application of the findings in the prev1ous chapters
wave reflection and transmission due to cracks in rails were 1nvest1gated by means
of numerlcal srmulatlons Since the rallway track has a complex cross-section and
the frequency of interest is up to 50 kHz a new numerical approach was developed

to achieve this in this analys1s
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~ Firstly, the SSEs for semi-finite waveguide structure were newly developed.
Then combining them with a FE part, a new method, named the combined SSE/FE
method, was introduced in this chapter. In this method, an infinite rail with a defect
is subdivided into three parts: two semi-infinite rails (SSEs) and a finite length one
containing the local defect (FE). Because of the computational limitation, a coarse
cross-sectional model used in the previous FE analysis (Chapter 3) was utilised in
this chapter. Since all the homogeneous wave solutions at a given frequency are
required in this analysis, wavenumbers and mode shapes including propagating ahd
nearfield waves were obtained and the relations between them for the positive- and -
negative-going waves were described briefly. Also cracks in the rail were modelled

simply by removing elements at a single slice of the FE miodel.

Before enfering the main part of the analysis, numerical errors caused by the
combined SSE/FE method were ihvestigated for three incident.waves up to 50 kHz
in order to check the reliability of the method. In this analysis of numerical etror,
_ the accumulated errors in all the multiple propagating waves were quantified by ex-
amining the conservation of incident power. Note that the level of error contained in
each individual Wave’s reflection and transmission coefficients could not be predicted
in this analysis. From this invest_igation, it was found that the maximum errors are
of the order of 107 to 1073 at frequencies above 20 kHz and are created from the
semi-infinite SSE model, not from the SSE/FE coupling. This order of numerical
error seerﬁs to be rather large for the application for the crack detection, particularly
for small cracks, which may reflect a tiny amount of the incident power. Also this
error may mask the transmitted power at a large craék which only a little amount
of the incident power can pass through. The error would be reduced if more dofs

are used in the cross-sectional modelling.

For two sets of cracks growing from the top of the rail head and from the end
of the foot, power reflection and transmission coefficients were estimated for three
waves that propagate furthest along the rail, measurable on the rail head and the
middle of vth'e web. Frdm this calculation, it was found that neither the vertical nor
lateral bending waves that propagate along the rail head experience considerable -
energy drops in their transmission in the presence of small cracks located in the rail

head., Also the web bending wave did not create noticeable changes in its trans-
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mitted powers until a crack was deeper than half the rail. Accordingly, this result
indicates that measuring rail vibration at a single position on the rail cross-section

is not efficient to detect cracks in rails, particularly small cracks.

In this chapter, the fully broken rail was assumed to consist of two parts that
are well separated from each other. However, as stated before, they may be held
together by the compressive stress in the rail in practice and this full break will still
have some reflection and transmission. However, an appropriate model for this kirid'

of full break is beyond the scope of the present work. -
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Chapter 9

Conclusions'and Suggestions for
Further Work

9.1 Conclusions

In this thesis, the characteristics of waves propagating in railway tracks have
been investigated at"frequencies up to 80 kHz by means of 'numerical simulations
and experiments. In terms of the long range wave propagation, the work has fo- |
cused on answering the fundamental question: how far along a rail can vibration
travel? Through the research presented in this th'ésis, the specific answers to this
question have been clearly identified. Above all, the efficient wave types for lohg
range propagation and their decay rates were found by numerical simulations and
validated by experiments. It was also found which part of the rail cross-section gives
the best measurement of these waves and in which frequency range the waves t‘rav‘el
furthest along the rail. Based on these results, the travelling distances of waves
propagating along rails were identified. Additiohally, using the waves found which
propagate furthest as incident waves, the reflection and transmission characteristics

due to cracks in rails have been inVestigated by introducing'a new numerical method.

In Chapter 2, works published in literature, which are associated with the wave
‘propagation in waveguide structures, particularly in rails, Weré reviewed briefly.
~ There was only a limited ,amount of work on 'Wa;\)e prbpagation in rails at frequen-
cies of sevefal tens of kilohertz,'especially in experiments. The d_ifﬁculties are cau_séd

mainly by theApresénce of _multiplé dispersive waves in this 'frequency range, which
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leads to very complicated dispersion relations. Based on the findings of the litera-
ture, the frequency range up to 80 kHz was set for the present work for studying

the long range wave propagation in rails.

As a numerical approach, the conventional finite element (FE) method has been
employed in Chapter 3, which has been previously used for noise modelling of a rail
at frequencies below 5 kHz or 6 kHz. From this simulation, dispersion relations and
decay rates were predicted up to 80 kHz. It was found that the FE method would be
a useful tool even for frequeﬁcies up to 80 kHz, but this method had several draw-
backs for dealing with wave propagation in structures efficiently. The FE method

was therefore not considered suitable for repeated use.

As an alternative approach to the conventional FE method, the wavenumber
finite element (WFE) method has been discussed in Chép_tg:r 4. In this method,
group velocity and decay rates were readily evaluated theoretically for each indi-
vidual wave. From the results produced from the FE and WFE methods, it was
observed that both methods produce almost the same dispersion relations and de-

cay rates but the WFE method produces smoother curves, particularly for the group

velocities, more eas'ily. So the WFE method was more relevant for the present study’

because it was much faster and more efficient than the FE method.

Also in Chapter 4, the waves measurable on the rail surface were predicted by
quantifying deformation energies at several regions of the rail cross-section. The
most measurable waves which have the lowest decay rates were the vertical bending
wave which has a local deformation in the rail head, lateral bending wave which has
global deformation in the rail head and web and the 1° order web bending wave, re-
spectively. In this prediction for measurable waves, furthermore, it was found that
the longitudinal waves do not have lower decay rates than other types of ‘waves.
This is probably because they normally induce considerable deformations of the rail

foundation which has a large damping loss factor.

In the numerical simulations above, the track was modelled as a rail on a con-
tinuous foundation. This model has two damping components: damping for the rail
and the foundation, resperctively.‘ These were set to constants in the simulations but

'~ the parameter study performed in Chapter 4 revealed that the minimum decay rates

© 180




Chapter 9. Conclusions and Suggestions for Further Work

are directly related to the damping of the rail, not of the foundation. So damping
~ loss factors of rails were measured from several rail samples in Chapter 5 in order to
_improve the predicted decay rates. From the structural damping measurement, it
was found that the measured damping loss factor reduces as the frequency increases,
although it does not deviate much from the estimated value of 0.0002 used for the
previous FE and WFE analyses. Introducing this frequency dependency into the
damping of the rail has produced some changes in the predicted decay rates. In
addition it has to be emphasised that the damping loss factors tend not to be signif-
icantly dependent on the different rail geometries or steels. From the recalculated
'deca,y rates, it was identified that the minimum decay rates are about 0.04 to 0.05
dB/m at frequencies between 20 kHz and 40 kHz.

The effective wave types for long range wave propagation, predieted from the
numerical simulations, were validated in Chapter 6 by the experiments carried out
on the ISVR test track. In this experiment group velocities were measured along the
short section of rail using first an impact hammer and then a piezoceramic trans- '
ducer as exciters. It was validated from the meastred eignals that the measured
group velocities give an excellent agreement with the simulated ones for measurable
waves. It was also found from this measurement that waves do not travel large
distances along the rail foot. In addition, the measured data revealed that a con-
siderable reflection occurs for waves in the web due to welds. In practice, every
track has welds along the rail although at different spacing from those present’b in
the ISVR test track used in this experiment. They would thus affect the long range

propagation of a wave by reﬂectlng a certain amount of travelling energy.

In Chapter 7, the decay rates were measured on an operational-track because
a long section of rail was required to extract them reliably. In this measurement
train-induced rail vibration was acquired for several service trains for measurement
posmons at the rail head and web. Through this experiment, features of the train-
induced rail vibration were identified and it was revealed that service trains are very.

effective in exciting rail vibration even at high frequen01es. Also frequency bands

- which are more likely to give the furthest detection range were identified from the

measured data at the rail head and .web. Conseqﬁently, it was validated from this
field test that the measured decay rates coincide very well with the simulated ones
in almost the entire frequency range up to 80 kHz. Furthermore, the characteristics
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of rail vibration induced by the different trains that were measured were almost the
same, despite differences in running speeds and number of coaches. This may be
because the trains measured were all EMUs, mainly of the same class. Nevertheless,
this is a very desirable result in terms of the. practical application. It would be
clearer if more rail responses were measﬁred for other types of railway vehicles, such -

as freight trains.

Fmally, the questlon of how far along a rail can vibration travel? could be an-
swered clearly from the 31mu1ated and experlmental results. The measured minimum

decay rates and their correspondmg frequency ranges are

e about 0.035 dB/m at the underside of the rail head around 25 kHz
e about 0.035 dB/m at the side of the rail head around 25 kHz
e about 0.04 dB/m at the middle of the web around 29 kHz.

These outcomes indicate that the most effective frequency range is between 20 kHz
and 40 kHz, not the hlgher range of 40 kHz to 80 kHz suggested in ref. [11] In the
latter range, the decay rates measured were 0.04 to 0.06 dB/m at the underside of
the rail head, 0.04 to 0.08 dB/m at the side of the rail head and 0.05 to 0.1 dB/m
at the middle of the web, respectively. It wasvsee,r_ll from the field measurement that
an amplitude range_ of more than 50 dB is measurable in the rail vibration. So in
terms of travelling distance, if a 50 dB level reduction is assumed, the maximum
propagating distances will be about 1.2 km at the rail head and about 1.0 km at the
web, respectlvely It has to be noted that high excitation signals were induced by
runnlng trains at specific frequencies between 20 kHz and 40 kHz. These frequencies
~ might be different at other sites and with different trains. Their origin is not known.

In terms of monitoring and detecting defects in railway tracks, a diagram such as
the acceleration level versus distance could be used because abrupt level changes due
to fail defects' could be observed in this diagram Which can be created for each train
running on the track. These sudden level changevs will be associated w1th reflection
and, mo'reli'kely, transmissioh Chaf&ctéristiés of the defects. So, 'iri'C'hvapter 8, as
 a feasible applicatioh of the findings on 1ong range wave pr'opyagation 1n rails, wave
reﬂectidn and transmission due to cracks in rails was investigated. For this analysis,

the SSE for the semi-infinite rail was formulated and then the combined SSE/FE
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method was developed. In this method, an infinite length track was subdivided into
three elements: two semi-infinite rails modelled by the SSE method and a finite
length rail containing a crack modelled by the FE method. Before introducing a
crack into this track model,vnumerical errors were examined up to 50 kHz in terms
of the incident power conservation in order to check the reliability of the combined
SSE/ FE method. From this investigation, it was observed that the maximum errors
are of the order of 10™*.to 1072 at frequencies above 20 kHz and are created from
the semi-infinite SSE model; not from the SSE/FE coupling. (However, it was not
possible to predict the level of error contained in each individual wave’s reflection
and transmission coefficients in this analysis.) The reason for this error caused by
the semi-infinite SSE has not yet been clearly identified, but it was found that a finer
cross-sectional model gives a reduced error. For two sets of cracks of various sizes,
power reflection and transmission coefficients were estimated for the three waves
that propagate furthest along rails. From this calculation, it was found that none
of these three Waves could be used to detect small cracks localized in the rail head
or foot on the basis of train-induced vibration. ‘This result indicates that meashring
rail vibration at a single position on the rail cross- sect1on is not efficient to detect

cracks in rails, particularly small cracks.

9.2 S'uggestions for Further Work

Through the work presented in this thesis, it was well identified how far along a
rail vibration can travel. However, there are still several mterestmg aspects unldentl-

fied in this thesis. In this section some suggestions for future research are hlghhghted.

In the field measurement more study and experiment may be necessary to iden-
tify the origin of the rail vibration and to establish why the rail has higher vibration
at several partlcular frequenc1es This would require more rail responses to be mea-
sured during the passage of several different types of rallway vehlcles, 1nclud1ng
freight, as well as' more investigation on the wheel /track interaction at hfgh frequen-
cies. Also it will be important, particularly from a practical point of view, to identify
the reason for a sudden energy drop which appeared in the spectrograms measured
from the field test. Measurements at other sites would be required to check whether
these ﬁndlngs are partlcular to the present site. Those measurements Would also be

necessary to 1nvest1gate the variation of the decay rates for other tracks.
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In the field measurements, the accelerometers .Werev mounted on the rail surface
to detect waves propagating along rails: However, from the practical point of view,
using non-contact type transducers as sensors may give several advantages for the
practical implementétion. So, it would be helpful to investigate and search appro-

priate non-contact type sensors.

In the prediction of power reflection and transmission coefficients due to rail
defects, the origin of numerical error needs to be clearly identified to improve the
reliability of the combined SSE/FE method for further application. Also, for the
vertical rail defects modelled in this thesis, it would be possible to replace the FE
section which requires long computation times with a short section of SSE which
only has reduced cross-section. If it is feasible, it would make the work finding ori-

gins of the numerical error easier.

There are various fypes of rail defects in practical railway tracks, like cracks
growing in the lateral or oblique directions and growing from the interior of the
rail, etc. Further investigation on the reflection and transmission characteristics for
these different types of defects may be necessary. In addition, cracks with asymmet-
ric geometries with respect to the vertical mid-plane of the rail cross-section were
not _coﬁsidered in the crack modelling because only half of the rail cross-section was
modelled in this thesis. It would be required to evaluate reflection and transmission
coefficients for these asymmetric cracks by rﬁodelling the entire cross-section of the

rail.

In order to validate the predicted reflection and transmission éoefﬁcients, ex-
" periments need to be perfofmed on a long section of rail with similar defects to
those used in simulation. Since it would be impracticable to do it on defective
operational tracks for running trains, cracks made artificially, like saw-cuts, in a
long rail specimen méy be sufficient for this purvpdse.v Also to improve the detecfion
perfdrmance, it seems to be necessary to use more responses obtained from several
points on the rail crossfsectidn in order to quantify wave mode conversion by us-
ing artificial excitations. In this approach, matrices of reflection and transmission
coefficients for each incident wave would present the mode conversions of the inci-

dent waves, which arise from the presence of cracks. In this situation, it could be
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" an important issue how to decompose each mode reliably from the measured signals.
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Appendix A

A Rail Model on Discrete Rail
Pads | |

The track model with continuous support neglects the discrete nature of the
support. Therefore, a modified track model with discrete support was created here
in order to identify the periodicity effect of a discrete support. Since the contribution
of the sleeper and ballast are limited to the low fréquency fegion below 1 kHz, only
the rail pad was included in this model. The rail pad spacing was 0.6 m. Fig. A.1
shows the FE model with discrete rail pad. The model has a length of 0.3 m and
includes half a rail pad-with length 0.072 m. The stiffnesses of the rail pad were

given as-below by compensating for the shorter length of the foundation.

Eyy = Epy = B, = 1.667 x 10° N/m? x (300/72) = 6.95 x 10° N/m®> (A1)
Gpay = Gpyz = Gpzr = 2.23 x 10% N/m? x (300/72) = 9.29 x 10° N/m?  (A.2)

Due to the presence of the discrete rail pad the symmetric-symmetric and antisymme-

‘t.rivc—antisymmetric boundary conditions at both ends of the rail segment will pro-
vide different natural frequencies. The;} will also be different for the symmetric-
antisymmetric and antisyrrimetric—symmetric boundary conditions. So four differ-
entbombi_nations of boﬁndary conditions are applied. T he FE analysis result shows
that this discrete fbundation model has some difficulties to draw'dispersion curves.
Firstly, as shown in Fig. A.2, the wa{/élengths of some mobdes are n»ot‘clearly“deﬁned
since théy have unéven_ deformation shapes, particula_rly at low frequé:iéieé. Another
diﬂiculty with this model is that diffefenﬁ wavelengths take place in different parts
of the rail as shown in Fig. A.3. '
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Fig. A.3. Two examples of uneven deformation shapes along the rail. (a) 32712 Hz, (b)
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Nevertheless, simply by selecting one of the possible values for the cases where
the results are atmbiguous, the discrete frequency-wavenumber plots are generated
and compared with the dispersion curves obtained from the rail model with con-
tinuous foundationv, as shown in Fig. A.4. From this figure, it is clear that the
contribution of the discreté foundation on the frequency-wavenumber relation oc-

curs only at low frequency, mainly below 10 kHz.

- In addition, the damping loss factors predicted from the discrete and continuous
foundation models are compared in Fig. A.5. Unlike the result shown in Fig. A 4,
there is a considerable difference between the damping loss factors from the two
track models. This discrepancy is strongly dependént on the nature of the rail pad’s
deformation because the different boundary conditions of the discretely supported
rail model make different deformations of the rail pad. For example, in the con-
tinuously supported rail model, the symmetric-symmetric boundary condition will
_cfeate exactly the same deformation shapes as those produced by the antisymmetric-
antisymmetric boundary condition at the same frequency, having 90 ° phase shift in
space. This implies that the rail pad has the same deformation’ regardless of these
two boundary conditions. Conversely in the discretely supported rail model the |
symmetric-symmetric and antisymmetric-antisymmetric boundary condition.s will
exhibit different deformation shapes: one with large pad deformations, the other
with small pad deformations. (See Fig. A.6). Therefore, the dampihg loss factors
will be altered even at the same frequency. That is the reason why two different
values of dafnping loss factor, marked ‘x’ and ‘+’ in Fig. A.5, occur even at the
same natural frequency. However, as depicted in Fig. A.5, the damping loss fac-
tors of the discrete foundation model approach those of the continuous foundation
model as frequency increases. In other words, the 'diff.erence between two damping
 loss factors marked by ‘x’ and ‘+’ decreases and they tend towards those produced
from the continuous foundation model at high frequencies. The kinds of rail pad
deformations found at low and high frequency are shown graphically in Fig. A.6 and
Fig. A.7 for the different boundary conditions. Since the length of the rail pad was
modelled as 144 mm in this discretely supported rail model, the wavelength for a
shear wave which travels along the rail at 3100 m/s will be shorter than 144 mm
above about 22 kHz. It can be confirmed from Fig. A.5 that the two damping loss

factors become s1m11ar above 22 kHz.
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Based on the results shown in Fig. A.4 and Fig. A.5, it could be said that the
contribution of the discrete foundation is limited to the low frequency region. Fur-
thermore, from a practical point of view, if one measures the damping.loss factors
for a wave travelling in the rail at a certain frequency, then the result would be some-
where between the two values generated by the two different boundary conditions
of the. discretely supported track model which represent standing waves rather than
propagating waves. On the basis of these simulation results, it was considered in this

study that the continuously supported track model could give a reliable outcome.
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Fig. A.4. Comparison of frequency-wavenumber relations for the rail on distributed and
discrete foundations for (a) the vertical and longitudinal modes, (b) the lateral and tor-
sional modes.
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Fig. A.5. Comparison of damping loss factors for the rail on distributed and discrete
foundations for (a) the vertical and longitudinal modes, (b) the lateral and torsional

modes.
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» rlpad
®
Fig. A.6. Schematic deformations of the rail pad at low frequency for (a) the

antisymmetric-symmetric boundary condition for the model shown in Fig. A.1, (b) the
symmetric-antisymmetric boundary condition for the model shown in Fig. A.1

rail

railpad

(b) \

Fig.. A.7.  Schematic deformations of the rail pad at high frequency for (a) the
antisymmetric-symmetric boundary condition for the model in Fig. A.1, (b) the symmetric-
. antisymmetric boundary condition for the model in Fig. A.1 '
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Appendix B. Results Measured on the ISVR Test Track

B.1 Using an Impact Hammer

B.1.1 Time signals

The time signals measured along the rail of the ISVR track are shown below for

the four different points in the rail cross-section. -
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Fig. B.1. An example of time signals measured at the top of the rail head along the rail
in the vertical direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’ was

excited.
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Fig. B.2. An example of time signals measured at the side of the rail head along the rail
in the lateral direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’ was

excited.
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-Fig. B.3. An example of time signals measured at the middle of the web along the rail

in the lateral direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’ was
~ excited. .
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' Fig. B4. An example. of time signals measured at the top of the foot along the rail in the
vertical direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’ was excited.
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Fig. B.5. An example of time signals measured at the top of the rail head along the rail
in the longitudinal direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’

was excited.
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'Fig. B.6. An example of time signals measured at the side of the rail head along the rail
in the longitudinal direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’

was excited.
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Fig. B.7. An example of time signals measured at the underside of the rail head along the ’
rail in the vertical direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’

was excited.
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B.1.2 Spectrograms

The averaged spectrograms along the rail in ISVR are shown below for the four

different points in ﬁhe rail cross-section.
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Fig. B.8. Spectrograms measured at the top of the rail head in the vertical direction
at different positions along the rail by using impact hammer. White lines indicate wave
ridges selected for the calculation of decay rate described in Section B.3.
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Fig. B.9. Spectrograms measured at the side of the rail head in the lateral direction at
different positions along the rail by using impact hammer. White lines indicate wave ridges
selected for the calculation of decay rate described in Section B.3.
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Fig. B.10. Spectrograms measured at the middle of the web in the lateral direction at
different positions along the rail by using impact hammer. White lines indicate wave
ridges selected for the calculation of decay rate described in Section B.3.
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Fig. B.11. Spectrograms measured at the top of the rail foot in the vertical direction
at different positions along the rail by using impact hammer. White lines indicate wave
ridges selected for the calculation of decay rate described in Section B.3.
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Fig. B.12. Spectrograms measured at the top of the rail head in the longitudinal direction
at different positions along the rail by using impact hammer.
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Fig. B.13. Spectrograms measured at the side of the rail head in the longitudinal direction
at different positions along the rail by using impact hammer.
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Fig. B.14. Spectrograms measured at the underside of the rail head in the longitudinal
direction at different positions along the rail by using impact hammer.
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B.2 Using Piezoceramic Transducers

B.2.1 Time signals

)

The time signals measured along the rail of the ISVR track are shown below for

the three different measuring points in the rail cross-section.
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Fig. B.15. An example of time signals measured at the top of the rail head along the rail
in the vertical direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’ was

excited by a PZT.
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Fig. B.16. An example of time_.sig‘nals measured at the side of the rail head along the rail
in the lateral direction. (a)
excited by a PZT.

When the point ‘a’ was excited, (b) when the poAi‘nt ‘b’ was
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Fig. B.17. An example of time signals measured at the middle of the web along the fail
in the lateral direction. (a) When the point ‘a’ was excited, (b) when the point ‘b’ was
excited by a PZT.
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~

B.2.2 Speétrograms |

The averaged spectrograms along the rail of the ISVR test -track are shown

below for the three different points in the rail cross-section.
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Fig. B.18. Spectrograms measured at the top of the rail head in the vertical direction at
different positions along the rail by using PZT. White lines indicate wave ridges selected
for the calculation of decay rate described in Section B.3.
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Fig. B.19. Spectrograms measured at the side of the rail head in the lateral direction at
different positions along the rail by using PZT. White lines indicate wave ridges selected
for the calculation of decay rate described in Section B.3.
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Fig. B.20. Spectrograms measured at the middle of the web in the lateral direction at
different positions along the rail by using PZT. White lines indicate wave ridges selected
for the calculation of decay rate described in Section B.3.
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B.3 Extraction of Decay Rates

It seems that the ISVR test track is not long enough to measure decay rates’
reliably, particularly for the slowly decaying waves of iﬁtefest. In this section, nev-
ertheless, it is attempted to extract the decay rates of the main waves propagating
- from the data measured. To detect waves propagating along the rail in the mea-
~surement, multiple sensors were attached by means of the beeswax; this gives a less
reliable response at high frequencies. Therefore, sensor calibration is an important
factor which can affect the levels of decay rates deterfnined. In order to eliminate
each sensor’s frequency-dependent sensitivities, the same measurements were per-
formed twice by exciting at both ends of the rail as depicted in Fig. B.21. In the
measurement using PZTs, the excitation at both ends of the rail was applied in the
same manner. Calibrated decay rates between any two sensors can be obtained from

the two level differences between them created by the excitations at both ends of

the rail.

The analysis procedure used for the decay rate extraction is brieﬂy presented
in Fig. B.22 as a flow chart. Since the rail was excited at both its ends, i.e., @ and
b as shown in Fig. B.21, the decay rates between any two sensors ¢ and j, can be

~ predicted by

(B.1)

8y() = 5o [{Aalf) = Aus(} + LAn(1) = Au)}]

where A,; denotes the outputn level in dB measured at point 5 when the rail is excited

Signal Analyser

8 Ch. Data Acquisiﬁon Unit

(Data Physics Corp.)

cee _ . Impact Hammer __
N} ‘ Accelerometers (PCB QSéDSM

(PCB 352C22) _
r_Ll : v a’

Io 6 5 4 3
Welding Line

1 0 ] £

e | o Se Se
"505m(8) 13.17m " 3.19m " 318m " 3.09m " 342m

8.38 m (13 sleepers + 0.2 m) R 16.5 m (25 sleepers) - 7.92 m (13 sleepers).

(a)

Fig. B.21. Experimental setup for decay rate extraction using an impact hammer.
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< For the excitation at ‘a'>

< For the excitation at ‘b’ >

Select two measurement points, / and j l

l Select two measurement points , i and j J

Generate averaged spectrograms
for the direct wave signals

Generate averaged spectrograms
for the direct wave signals

'

'

Find maximum levels at each frequency
from the averaged spectrograms
4,00 ALS)

Find maximum levels at each frequency
from the averaged spectrograms
AL, A

!

l

Calculate level differences from the
© maximum levels at each frequency
between two measurement points

Calculate level differences from the
maximum levels at each frequency
between two measurement points

ALf) -Af) Ay(f) - Ap(f)

Decay rates between the two measurement points, i and j
1 .
Ay(f) = Z_d,!_[(Aai ) ‘Aaj(f))"‘(Ahj N 'Abi(f))]

:

Decay rates
ACS) = median(A i)

Fig. B.22. Flow chart for the decay rate calculation

at a, similarly for b and dj; is the distance between two sensors 4 and j. In detail,
the uncalibrated output level measured at position i, Az, can be expressed as a
sum of the calibrated output, Aj;, and the calibration error, C;, in dB scale. Then

Eq. (B.1) can be rewritten as
Ay (f) = 2d [(A«cu + Cy) — (Ag; + Cy) + (45, + Cy) — (Ag; + C;)]
za

(B2)

= 5 (045 - 45) + (45, - 45
Therefore, it is clear from Eq. (B.1) and Eq. (B.2) that any calibration error in sen-
sor 7 is eliminated by taking the level difference A,; — Ap;. For instance, Fig. 6.6(b)
shows that the'acc'elerorneter located at position 1 gives a smaller response to the
same 1nput agnal than the others. However these characterlstlcs of each sensor are .
ehmmated in the process of the decay rate extractlon Finally the decay rate was

determmed by means of the median of A;; for different combinations ¢ and j.

It should be noted that, éven for the maximum distance between sensors, 16.5 m,
decay rates of the order of 0.06 dB/m co_rres'pdhd to a 1 dB attenuation in that dis-
" tance, which is likely to be at the limit of what can be measured reliably. Also to
reduce the rr;easurement error, the decay rates calculated from two adjacent sensors

are neglected because the distance between them (i.e., about 3 m) does not seem to
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be long enough.

In order to be able to predict a propagation distance from the measurement
spectrograms, the wave which has the lowest decay rate at each frequency has to
be identified. *As seen in the spectrograms in sections B.1 'and'B.2, however, there
are several waves which have different decay rates. The waves which are expected
to have the lowest decay rate are selected from the spectrograms on the basis of
comparison with the WFE analysis results. For instance, the simulated decay rates
. in Fig. B.23(a) indicate that the green and red coloured waves have the lowest
decay rates in the range 7 kHz to 15 kHz and 15 kHz to 60 kHz, respectively. The
corresponding group velocities of these waves predicted are presented in Fig. 6.9(b).
By comparing them with the measured group velocity diagrams, the waves having
the slowest decay rates were seléc_ted from the measured results. The selected wave
ridges for the calculation of decay rate are marked in the spectrograms in sections
B.1 and B.2 with white lines. Below about 10 kHz, the ridge was created by simply

picking the maximum values so it will be less reliable.

The decay rates extracted from the data measured on the ISVR test track are
] shown in Fig. B.23. In this figure, the decay rates obtained from the experiment
using PZT were confined to frequencies above 30 kHz (Fig. B.23(a) and (c)) and
40 kHz (F1g B.23(b)), because they will be less accurate at low frequenéie_s. For the .
same reason, in frequenciés between 30 kHz and 42 kHz where two decay rate results
are present, the decay rates measured from the impact hammer test are expected to

be more reliable than those obtained by using PZTs.

It can be seen from Flg B.23(a) that the minimurh decay rate of 0.04 dB/m
- seems to occur between 20 kHz and 35 kHz at the top of the rail head. Also
Fig. B.23(b) shows that the minimum decay rate of 0.05 dB/m seems to appear
between 20 kHz and 40 kHz at the side of the rail head. Note that the measured
minimum decay rate, 0.02 dB/m, shown around 25 kHz does ndt seem to be reliable .
becauée the decay rate at that frequency would be vulnerable to nQise' as anticipated
from spéctfograrris measured. In Fig. B.23(c), the ineasurédv and predicted decay-
rates are 'shown‘up to 80 kHz at the middle of the’v‘}eb Accofding to the experi-
mental results, the measured minimum decay rate on the Web is 0.07 to 0 08 dB/m

and occurs at around 20 kHz and around 45 kHz.
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Decay Rates (dB/m)
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Fig. B.23. Comparison of measured and predicted decay rates (a) at the top of the rail
head in the vertical direction, (b) at the side of the rail head in the lateral direction, (c)
at the middle of the web in the lateral direction. The solid blue line was obtained from
the impact hammer test and the solid red line was obtained from the measurement using
the PZT, the other lines show the predicted decay rates produced by the WFE analysis.

As revealed in this figure, the measured decay rates present a very similar trend
to the simulated ones but there are some variations in levels between them. That
is, the measured decay rate is higher than the predicted ones in general. Moreover
the measurements show considerable variation with frequency not found in the sim-
ulation. Accordingly, it can be said that the decay rates measured at the ISVR test
track seem to be less reliable because the ISVR test track is too short to measure

low decay rates precisely.
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C.1 Time Signals
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Fig. C.1. Time signals measured for (a) train 1, (b) train'2, (c) train 3.
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Appendix C. Results Meéasured on an Operational Track
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Fig. C.3. Time signals‘measured for (a) train 7, (b) ambient 1, (c) ambient 2.
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C.2 Spectrograms
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Fig. C.4. Spectrograms for train 2. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.5. Spectrograms for train 3. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Appendix C. Results Measured on an Operational Track
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Spectrograms for train 4. (a) At the side of the rail head (ch. 1), (b) at the

underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.7. Spectrograms for train 5. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.8. Spectrograms for train 6. (a) At the side of the rail head (ch. 1), (b) at the

underside of the rail head (ch. 2), (c¢) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).
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Fig. C.9. Spectrograms for train 7. (a) At the side of the rail head (ch. 1), (b) at the
underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at the
underside of the rail head (ch. 4).

233




Appendix C. Results Measured on an Operational Track

&

70
— 60
N
< 50
>
e 40
g
g 30
% 20
10
0
0 10 20 30 40 50 60
Time (s)
(a)
80
80dB
70
75 dB
g% 70 dB
£ 50
2 a0 65 dB
5 60 dB
g 5 55 dB
20 50 dB
10 45dB
0
0 10 20 30 40 50 60
Time (s)
(b)
85 dB
¥
= 80 dB
>
2
S 75dB
g
w
70dB
65 dB
0 10 20 30 40 50 60
Time (s)
(c)

Frequency (kHz)

Fig. C.10. Spectrograms for ambient noise 1. (a) At the side of the rail head (ch. 1), (b)
at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).
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Fig. C.11. Spectrograms for ambient noise 2. (a) At the side of the rail head (ch. 1), (b)

at the underside of the rail head (ch. 2), (c) at the middle of the web (ch. 3) and (d) at
the underside of the rail head (ch. 4).
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C.3 Acceleration Levels versus Distance
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Fig. C.12. Variations of acceleration levels versus distance at each measuring point for (a)
train 2, (b) train 3, (c) train 4, (d) train 5, (e) train 6 and (f) train 7. At each channel,
the selected frequencies are around 29 kHz (ch.1), around 25 kHz (ch.2 and 4) and around
36 kHz (ch.3)
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D.1 For a Crack Growing Down from the Top of

the Rail Head
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Fig. D.1. A crack model growing down from the top of the rail head.
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Fig. D.2. Errors predicted from the connected SSE/FE rail with the crack shown in
Fig. D.1 for (a) the vertical bending wave in the rail head, (b) the lateral bending wave

in the rail head, (c) the 1%¢ order web bending wave.
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D.2

For a Crack Growing Up from the End of the

Foot
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Fig. D.3. A crack model growing up from the end of the foot.
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Fig. D.4. Errors predicted from the connected SSE/FE rail with the crack shown in
Fig. D.3 for (a) the vertical bending wave in the rail head, (b) the lateral bending wave
in the rail head, (c) the 1% order web bending wave.
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