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Automatic pronunciation of unknown words, especially in English, is a hard problem of 

great importance in speech technology. This thesis focuses on a data-driven approach 

namely 'pronunciation by analogy', so-called PbA: for generating the pronunciation of 

unknown words from input text. The aim is to explore many useful aspects of the use 

of PbA in speech synthesis applications. This thesis is mostly devoted to the problem 

of proper name pronunciation, because previous work showed that proper names have 

significant impact on the perfonnance of text-to-speech (TTS) systems. The extension 

of PbA for multilingual pronunciation is also studied. 

The performance of PbA is investigated in a wide variety of aspects including: to incor­

porate automatic syllabification by analogy, to determine the effect of different kinds of 

lexicon, to determine the effect of lexicon size, to test with seven European languages 

in order to quantify the relationship between transcription accuracy and orthography, 

and to compare with other data-driven methods in terms of objective and subjective 

evaluations. 

The experimental results show that PbA can achieve a promising level of word accuracy 

and is superior to other methods tested on the problern of proper name pronuncia­

tion. In the objective evaluation, the best performance is 68.38% names correct and 

94.31% phonemes correct, with a standard PbA using a leave-one-out strategy on 52,911 

names in the CMU dictionary. In the subjective evaluation, the comparison is primarily 

based on 24 listeners' opinions of the acceptability of pronunciations from 150 names. 

'Wilcoxson signed-rank tests show that the dictionary pronunciations are rated superior 

to the automatically-inferred pronunciations; one part of listening tests shows that PbA 

is marginally superior to the other methods, but no such superiority is seen for another 

part of listening tests. \iVith reference to the performance on seven European languages 

(Dutch, English, 1'-renc11, 1"risian, German, Norwegian, and Spanish), PbA achieves more 

than 85% words correct in case of all languages except English. In conclusion, this thesis 

has shown that PbA should become the method of choice in TTS applications. 
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Chapter 1 

Introduction 

Text-to-speech (TTS) synthesis is a computerised system for converting printed text into 

synthetic speech. TTS synthesis, which has developed enormously over the past decade, 

is an emerging technology with many important applications in next-generation informa­

tion systems (Klatt 1987; Dutoit 1997, p.30). These applications have gradually become 

an important feature in our daily lives. A good example for the use of TTS today is di­

rectory assistance in telecommunication services, which can convert textual information 

into voice and respond to a request from a customer over the telephone. TTS systems 

can be used to read aloud the text for the blind and dyslexic. Furthermore, they have 

been used for reading e-mails, news, travel directions, and other information in a wide 

range of applications. They have also been used in computer-aided learning systems for 

students who learn a new language. 

A typical TTS system can be divided into t,vo major modules: a natural language pro­

cessing (NLP) module, and a digital signal processing (DSP) module (Dutoit 1997, p.14; 

Ng 1998, p.3). The NLP module takes input in the form of text and outputs a pho­

netic transcription together with the prosody as the symbolic linguistic representation. 

Next, the DSP module takes the symbolic linguistic representation as input and outputs 

the synthesised speech waveform. The diagram of a simple TTS system is shown in 

Figure 1.1. 

The NLP module first separates the text steam into clauses or sentences. Then, it 

I TEXT-TO-SPEECH SYNTHESISER I 

_T_e_xt-+~ Natural Language 
Processing I-----l~ 

Digital Signal 
Processing 

F1GURE 1.1: A functional diagram of a TTS system. (Redrawn from Dutoit 
1997, p.14). 

1 



1 Introduction 2 

performs text normalisation. where numbers and abbreviations from the raw text are 

converted into their full ,yord equivalents. After normalisation, the next process called 

text-to-phoneme conversion or grapheme-to-phoneme conversion, where phonetic tran­

scriptions are assigned to each vvord, is performed. Next, the NLP module performs 

syllabification, and assigns the prosodic information, mainly comprised of intonation 

and stress. The combination of phonetic transcriptions and prosody forms the symbolic 

linguistic representation, and is an input into the next module. The second module, 

often referred to as a synthesiser, takes the symbolic linguistic representation and con­

verts it into speech sounds. This thesis focuses on the text-to-phoneme conversion in 

the NLP module. 

Text-to-phoneme conversion is a procedure for mapping a spelling of a word into a string 

of phonetic symbols that represents a pronunciation of the word. This process is an 

integral part of TTS synthesis, and is also an important part of speech recognition. 

The most obvious and effective approach is simply to look up pronunciations of input 

words-or, perhaps, morphemes after morphological decomposition-in a dictionary. 

This will work very well, but only provided the word is actually in the dictionary. 

However, it is impractical (strictly, impossible) to store all the words of the language, 

since this constitutes an open set. Thus, the dictionary approach can not be a complete 

or sufficient solution to this problem; some 'back-up' procedure is needed for words not 

in the dictionary. The usual approach is to employ a set of phonological (letter-to-sound, 

or text-to-phoneme) rules written by a linguist or phonetician, with expert knowledge 

of the target language, as a back-up or secondary strategy to the primary strategy 

of dictionary look-up. Since the early 1980's, the problem of automatic pronunciation 

has been considered as a pattern matching probleln in the machine learning community, 

and a data-driven approach has emerged as the next generation of back-up strategy. 

Several current researchers attempt to create a new data-driven Inethod or apply an 

existing approach to convert letters into phonemes. 

1.1 Problem Statement 

One of the biggest challenges for text-to-phoneme conversion is the automatic pronun­

ciation of unknown words, i.e., the words which are not listed in a dictionary. Unknown 

words may be common wordtl, typOtl, neologitlmtl or proper names. An obviontl ,'>'ay to 

address the problem is to compose manually a dictionary with acceptable pronuncia­

tions which itl then consulted during tlynthesis. In general, however, thitl solution can 

never be complete as the potlsibility alwaytl exitlttl of encountering unknown words in 

the system input that are not listed in the dictionary. Hence, a tlecondary or back-np 

strategy to the primary strategy of dictionary look-up must be devised. Many rule-batled 

methods have been proposed as initial attempts to predict word pronunciation from the 

spelling. To create letter-to-sound (LTS) rules, expert linguists are needed to write the 
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rules carefully. The hand-crafted rule-based approach has often been the method of 

choice. Nevertheless, this knowledge-based approach is highly language-specific (Sproat 

1997, p.83), and has to be redone at some expense for each new language. Moreover, 

there is good evidence that manually-written LTS rules work very poorly compared to 

data-driven methods, certainly for English (Damper et al. 1999). Therefore, a data­

driven technique is considered attractive for modern TTS systems, i.e., learning au­

tomatically from data. Numerous data-driven techniques have been proposed to deal 

with the problem of automatic pronunciation. In this thesis, an existing data-driven 

approach named pronunciation by analogy (PbA) is studied to deal with this problem 

in speech synthesis applications. PbA is selected for this study since, for some years 

now, it is well-documented to have easily the best performance relative to a variety of 

competitors (Damper et al. 1999). 

This thesis focuses on pronunciation of unknown words, particularly proper names, for 

several reasons. First, many commercial applications often require the pronunciation of 

proper names, i.e., the names of people, streets, cities, places, companies, etc. Second, 

prior work on large word lists in this area showed that proper llames have sigllificant 

impact on the performance of the speech synthesis system (Vitale 1991; Font Llitjos 

and Black 2001). Finally, the problem of proper names is a special challenge because 

the geographical and language origin of the names can be varied, and the number of 

distinct names is very large (Vitale 1991; Spiegel 2003). A few studies have proposed 

various techniques to solve the problem of proper names, but they have not achieved 

a high level of accuracy (Fackrell and Skut 2004). A proper name in this work means 

that the name is written in English, but the origin of the name may be frOII1 languages 

other than English. 

Syllabification is also an important process in the NLP module. As observed by Marchand 

and Damper (2007), integrating syllable boundary information manually in the ortho­

graphic input can dramatically improve the performance of pronunciation by analogy 

for common words. However, such information is not available in a dictionary of proper 

names. To investigate this phenomenon in proper names, automatic syllabification has 

been evaluated using the models of syllabification and pronunciation by analogy. 

As mentioned above, unknown words typically include proper names and common words 

that have not been listed in the lexicon. In practice, when given an unknown word, we 

wouldnqt know if it is a proper name or a common word. Automatic classification of 

unknown words is possible to be developed, however, the potential errors must be taken 

into account. Therefore, the performance of PbA is investigated when the system infers 

a pronunciation by analogy with different dictionary compositions: (i) common words 

only. (ii) proper names only, and (iii) a mixture of the two. If PbA can achieved a high 

accuracy in case of a mixture, then there would be little or no advantage to attempting 

automatic inference of input-word class. 
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Most studies evaluate the performance objectively, which means that the pronunciation 

generated by their models is taken as correct if it is the same as that in a dictionary that 

is taken as a 'gold standard'. However, a crucial limitation for any TTS system is the 

problem of automatically generating 'acceptable pronunciations'. In terms of acceptable 

pronunciations, it means that the pronunciation should be acceptable to potential users 

of a TTS system. Different people will have different opinions about the extent to which 

a proper name should conform to the pronunciation conventions of the local speech 

community, and the preferred pronunciation may vary between narne owners/origins. 

Thus, subjective evaluation is also important, especially for proper names. Subjective 

evaluation is difficult to conduct because there is no obvious criterion of correctness, and 

cannot deal with large numbers of words. Therefore, only few studies have conducted 

listening experiments. In this thesis, the performance of our chosen method is compared 

to that of the other data-driven models for automatic pronunciation in both subjective 

and objective ways. 

In terms of multilingual synthesis, the difficulty of the prollunciation problem depends on 

the complexity of spelling-to-sound mappings according to the particular writing system 

of the language. Hence, the degree of success achieved varies widely across languages 

and also across dictionaries, even for the same language with the same method. Further. 

the sizes of the training and test sets are an important consideration in data-driven 

approaches. In this thesis, the variation of letter-to-phoneme transcription accuracy 

across seven European languages has been studied, mostly for common words. Also, 

the relationship between the size of dictionary and the accuracy obtained has been 

investigated. 

1.2 Contributions 

The main contribution of this research is to extend PbA for speech synthesis applications. 

The term 'extend' is used for two reasons. Firstly, this thesis contains some original 

work using PbA, but is not just simply repetition or summary of the existing method. 

Secondly, it aims to explore many useful aspects of the use of PbA for TTS applications. 

The primary contribution of this work has been mainly involved with the pronunciation 

of proper namcs. Specifically, the important contributions are: 

It Literature relating to text-to-phoneme conversion and syllabification is revicwed. 

The use of text-to-phoneme conversion in automatic pronunciation of proper names 

is highlighted . 

• Four different data-driven methods are evaluated objectively with a list of Ameri­

can proper names. Pronunciations derived from a dictionary itself and from three 

data driven methods: PbA, decision tree, and table look-up, are selected for sub­

jective evaluation. These rnethods are compared and the results are discussed. 
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ED Using the idea of syllabification by analogy for syllabifying and inferring pronun­

ciation for proper names, experiments are conducted to investigate whether or not 

the performance of PbA improves when using the model of syllabification togdhcr 

with pronunciation by analogy. 

ED Extending PbA for multilingual pronunciation, 7 European languages are evalu­

ated using 12 different lexicons. vVays to quantify the variation of transcription 

difficulty across the deep/shallow continuum of orthography are highlighted. The 

relationship between lexicon size and the accuracy obtained is also studied. 

ED Different lexicon compositions have been tested with PbA. These are discussed 

with reference to the problem of automatic classification of unknown words (com­

mon words or proper names). The performances of PbA are investigated, when 

inferring from a dictionary of the same/different class of input word and also from 

a mixture of the two. The results are compared and discussed with regard to the 

possibility of avoiding automatic word categorisation. 

The work in this thesis has contributed in part or full to the following publications: 

ED Soonklang, T, Damper, R 1. and Marchand, Y. (2007). Multilingual pronuncia­

tion by analogy. Natural Language Engineering. Submitted . 

.. Damper, R 1. and Soonklang, T (2007). Subjective evaluation of techniques for 

proper narne pronunciation. IEEE Transactions on Audio; Speech and Language 

Processing. In press . 

.. Soonldang, T, Damper, R 1. and Marchand, Y. (2007). Effect of lexicon compo­

sition in pronunciation by analogy (Speech). In Proceedings of 10th International 

Conference on Speech and Dialogue (TSD 2007), pp. 464-471, Pilsen, Czech 

Republic. 

ED Soonklang, T, Damper, R 1. and Marchand, Y. (2005) Comparative objective 

and subjective evaluation of three data-driven techniques for proper name pro­

nunciation (Poster). In Proceedings of Interspeech 2005, pp. 1905-1908, Lisbon, 

Portugal. 

.. Damper, R 1., Marchand, Y., Adsett, C. R, Soonklang, T. and Marsters, J. D. S. 

(2005) YIultilingual data-driven pronunciation (Speech). In Proceedings of 10th 

International Cor~ference on Speech and Comvuter (SPECOM 2005), pp. 167-170, 

Patras, Greece. 
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1.3 Structure of the Thesis 

This prelude has introduced the basics of a TTS system and its components. The prob­

lem of text-to-phoneme conversion has been stated, and has highlighted the difficulties 

of unknown word pronunciation, particularly for proper names written in English text. 

A literature review on text-to-phoneme conversion is described in detail in Chapter 2. 

Various techniques are reviewed and discussed. Previous studies involving automatic 

pronunciation of proper names have been addressed. 

Chapter 3 introduces the principles of pronunciation by analogy. PbA is one of the rnost 

successful backup strategies that exploit the phonological knowledge implicit in the 

dictionary of known words to generate a pronunciation for an unknown word. A review 

of lllaIlY variants of PbA with their resultCi on different datasets mostly for common words 

is provided. This chapter illustrates the process of PbA with a step-by-step example. 

Chapter 4 introduces the important topic of syllabification. A review of previous \'.'Ork 

dealing with this problem is presented. Syllabification algorithms using the analogy 

concept are described. The results of applying the series model for automatic syllabifi­

cation and pronunciation by analogy, in which syllabification is followed sequentially by 

pronunciation generation, are presented and discussed. 

A further potential advantage of data-driven approaches is that they are highly portable 

bet\veen different languages, only provided a database (or lexicon) of words and their 

pronunciationCi is available. In Chapter 5, seven European languages have been eval­

uated using a PbA method. The results are presented and discussed. Much of this 

discussion suggests the idea that the transcription accuracy maybe relates to the depth 

of orthography of a language. The effect of lexicon size on accuracy is also considered 

in this chapter. Conducting experiments on different sizes of lexicon would give an idea 

of the reasonable size of lexicon that should be used to compromise a trade-off between 

the performance anel the processing time of the PbA approach. 

It remains to be decided whether or not the unknown word needs to be classified in 

advance as a common word or proper name. Chapter 6 is concerned with investigating 

the effect of lexicon composition: common words only. proper names only, and a mixture. 

Experiments are conducted to see how performance of PbA varies for different kinds 

of \vords when inferring from different lexical databases. These are illustrative of the 

problems that are encountered when miss-classification happens, or no prior classification 

is provided. If good results can be obtained on the mixture dictionary of common words 

and proper names, comparable to those on common words or proper names alone, these 

would suggests that there nmy be no need for automatic word categorisation (common 

word vs. proper name) to be attempted, with its attendant dangers of mis-classification. 

Chapter 7 and Chapter 8 are devoted to the comparison of PbA with other data-driven 
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methods. Objective and subjective evaluations are provided with discussion. The main 

focus of interest in this chapter is the problem of proper names written in English. The 

quality of a pronunciation model is judged by comparing with the standard dictionary 

and by assessing the pronunciations by humans. Re-implementations of each method are 

described in Chapter 7. The listening tests are conducted and described in Chapter 8. 

The pronunciation of the dictionary itself is also included and compared with those of 

data-driven methods in the listening tests because it is generally used as the primary 

strategy in any practical TTS system. The results are presented and discussed in a 

statistically meaningful sense. 

The thesis concludes with Chapter 9, which highlights the overall contributions, and 

provides some ideas for future work. 



Chapter 2 

Text-to-Phoneme Conversion 

2 .1 Introduction 

In a TTS system, after normalising the text, phonetic transcriptions are assigned to 

each word by the text-to-phoneme conversion module (also known as 'grapheme-to­

phoneme', or 'letter-to-sound', these terms will be used interchangeably in this thesis). 

The module maps the spelling of a word into a string of phonetic symbols. Phonetic 

transcription can be viewed as a symbolisation, mapping sounds into discrete context­

free symbols. It represents the pronunciation of a word, and therefore it is an essential 

part of speech synthesis systems and automatic speech recognition (ASR). For example, 

phonetic transcription can then be combined together with prosody and feeds as an 

input to digital signal processing in a TTS system to create the speech sound. In an 

ASR system, phonetic transcription can be provided as a reference transcription for the 

words in the vocabulary. 

There are several strategies to determine the pronunciation of a word from its spelling. 

These are commonly classified into three broad categories: dictionary look-up: hand­

crafted rule-based, and data-driven approach. These strategies, together with their 

previous researches in speech synthesis applications will be reviewed in the following 

sections. However, the data-driven approach is the main focus here due to the promising 

preliminary results of the pilot research study, which is not reported here. 

2.2 Dictionary Look-Up Approach 

In the dictionary look-up approach, a dictionary is generated and used to map the 

orthographic form of a word into the phonetic form. To make it applicable on a large 

scale, modern TTS systems exploit a dictionary containing root and affix forms of words 

called morphemes (Dutoit 1997, p.lll; Holmes and Holmes 2001, p.100). In this way, the 

8 
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dictionary can be kept to a rea80nable 8ize. The concept of a morpheme dictionary was 

fir8t proposed by Lee (1969). A morpheme is the smalle8t unit of meaning that a word 

can be divided into. For example, the word unlikely contain8 three morphemes: un, 

like, and ly. The pronunciation of an input word i8 determined by looking up the input 

word in the dictionary. If it is found, the phonemes with the pronunciation specified 

in the dictionary are provided. If it is not, morphemic decomposition is performed 

and the morpheme8 are 8earched in a dictionary. Then morphological rule8 are u8ed to 

combine the pronunciation of the input word with the pronunciation of its component 

morphemes. Allen et al. (1979) followed thi8 concept in developing an algorithm for 

morphemic decomp08ition in MITalk, containing ten8 of thou8ands of morphemes. The 

AT &T I3ell Laboratories TTS 8Y8tem al80 operate8 u8ing this principle (Dutoit 1997, 

p.l11). 

This approach is the simple8t and the most reliable method; it has the advantage of being 

quick and accurate (Vitale 1991). However, it completely fails when the pronunciation 

cannot be determined by u8ing a dictionary. The 8et of all words of a language i8 

unbounded due to the exi8tence of neologi8m8, proper name8, and compound8. Thus, 

it is impos8ible to li8t all word8 in a language in a dictionary. The occurrence of out­

of-vocabulary (OOV) word8 is inevitable in this ca8e. Actual inve8tigations reported 

OOV rates within a 20k neW8paper corpus in five languages: 2.5% for Engli8h, about 

4% for Japane8e and Italian, 5.8% for French and 10% for German (l\IIat8uoka et al. 

1996). Thi8 occurrence within a 8peech synthe8i8 application i8 very harmful for the 

u8er's acceptance (Muller et al. 1996). Hence, a 'backup' 8trategy, such a8 LTS rule8 

and data-driven approache8, i8 required to gue88 a pronunciation of an unknown word, 

while the dictionary look-up method i8 usually used as a primary strategy to determine 

the pronunciation of a known word. 

2.3 Hand-Crafted Rule-Based Approach 

In TTS sY8tem8, the derivation of word pronunciation was principally focused on 

the rule-ba8ed approach (Sproat 1997, p.83; Holmes and Holme8 2001, p.96). Rules 

of pronunciation are applied to input word8 to find ont their pronunciation8 based on 

their 8pellings. This approach is well known as LTS rule8. \;\lith thi8 8trategy, m08t of 

the phonological knowledge of dictionaries i8 tral18ferred into a 8et of LTS rules. Thi8 

set of hand-crafted rule8 require8 extensive knowledge from expert linguists. Each rule 

specifies a phoneme corresponding to one or more letters. The set of rule8 i8 used to 

guess the pronunciation of any word by giving a letter string's context to determine 

which rule 8hould be applied. The rules are u8ually compri8ed of four part8 in the form: 

A[B]C -+ D. 
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The meaning is that character string B , occurring with left context A and right context C, 

gets a pronunciation defined by the phonemes D. The most specific rule is typically at 

the top, and the most general rule at the bottom of an ordered list. The pronunciation 

of a word can be found if the rules are applied to each letter in the string normally from 

left to right; however, some rules may operate from right to left. The rules are searched 

for each a target string, starting with the first letter of the word. If the matching text is 

found, and the right and left context patterns also match, the corresponding phonemes D 

for that rule are output and the next untranscribed letter is taken as the target . 

Several studies have proposed rule sets for TTS systems over the past decades. The 

historical timeline of selected rule-based approaches is presented in Figure 2.1. An 

excellent review of these techniques prior to 1987 can be found in the work of Klatt 

(1987). More recently, Spiegel (2003) reports spending up to 15 years improving the 

pronunciation of proper names using rules. The rule-based approach persisted because 

of a belief that it can outperform the other techniques in generating pronunciations, 

despite being costly to develop and very time-consuming (Sproat 1997, p .75). An 

example of a public ally-accessible set of rules is that of Elovitz et al. (1976) which 

is expected to achieve approximately 90% words correct in a random sample of English 

text . Bagshaw (1998) and Damper et al. (1999) evaluated this claim by using different 

datasets; however, they did not achieve such a high accuracy, the first finding around 

20% words correct with the latter finding 25% words correct. The main reason for 

this considerable discrepancy is probably the difference between their scoring methods. 

Elovitz et al. (1976) used frequency weighting and based their scoring on the listeners' 

acceptance of "good" pronunciations, while the others based their scoring strictly on 

'correct' pronunciations, identical to the dictionary entries. One of the drawbacks of 

the rule-based approach is that the rules need to be created from scratch when a new 

language is included (Daelemans and van den Bosch 1997). Additionally, although 

the rule-based approach can work on any input, the complexity of the rules grows 

substantially when irregular spellings or pronunciations are taken into account. This 
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is especially true for the English language, which has a complex spelling-to-phonology 

correspondence. Both dictionary look-up and rule-based approaches have advantages 

and disadvantages. Therefore; many TTS systems use a combination of bot h approaches 

in text-to-phoneme conversion (Vitale 1991), e.g.; in MITalk (Allen et al. 1987, p.12-13) 

and DECtalk (Hallahan 1996). Another solution is to use a combination of dictionary 

look-up and data-driven approaches, which is discussed in the next section. 

2.4 Data-Driven Approach 

In most modern TTS systems, the dictionary look-up approach is used as the primary 

strategy, and the rule-based method as the backup strategy. Recently, the data-driven 

approach has been focused upon as a promising backup strategy for transcribing words 

that are not in t he dictionary (Marchand and Damper 2000). The data-driven approach 

for text-to-phoneme conversion is a machine learning technique that implicitly extracts 

knowledge from training data, and then exploits it to convert text to phonemes automat­

ically. Since 1987, the emergence of NETtalk by Sejnowski and Rosenberg (1987) has 

provided an inspiration in applying data-driven methods to speech synthesis, although 

NETtalk was not the first attempt to apply machine learning to text-to-phoneme conver­

sion (the first atkmpt was a mk induction - sec later in Section 2.4.4). The availability 

of machine-readable pronunciation dictionaries and the development of the machine 

learning model have also catalysed the evolution of t his system (Damper 2001 ; p.1). 

Furthermore, this is a key element for the design of multilingual TTS systems; since the 

data-driven approach is essentially language-independent . 
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During the past decade, a large number of data-driven methods have been proposed for 

text-to-phoneme conversion, such as decision trees, neural networks, and analogy-based 

techniques. The development of these systems has been surveyed and is partially 

presented chronologically in Figure 2.2. An excellent survey of these techniques prior 

to 1994 can be found in the reviews of Klatt (1987) and Yvon (1994). Data-driven 

techniques in the diagram are categorised and reviewed in this section. All techniques 

reviewed here are supervised learning methods in which the phoneme (output) to be 

predicted is provided during a learning stage. From this point forward, the training 

data will refer to pairs of orthographic and phonemic form. 

2.4.1 Neural Networks 

Neural networks, so-called connectionist architectures, have been used to learn the 

correspondence between phonemes and the letters of each word. In the learning process, 

training data are encoded into a set of connection weights and thresholds between the 

nodes. Examples of this approach are NETtalk (Sejnowski and Rosenberg 1987) and 

NETspeak (McCulloch et al. 1987), which were trained by backpropagation to convert 

text to phonemes. 

NETtalk requires text pre-aligned with its corresponding phonemes. Each word in 

a dictionary was converted into a sequence of 7-letter window. Binary coding of 29 bits 

was used to represent a 7-letter context, 26 bits for English alphabets, plus three 

additional bits for punctuation and word boundaries. Thus, the number of input units 

was 203 (7 x 29). The number of output units was 26, representing the phonemes in 

terms of 21 articulatory features, such as the location of articulation point, voicing, 

vowel height, plus five additional units for stress and syllable boundaries. Each word in 

the dictionary was stepped though the window letter-by-Ietter, and encoded into input 

and output units . Then these units were fed into the networks to compute an output, 

and the weights were adjusted after each word so as to reduce the error. The output 

was given as a vector of 26 output activations (between 0 and 1) . The 21-bit phoneme 
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code that made the smallest angle with the output activation vector was chosen as 

the output. The network was evaluated with the 20,012 words of Webster's Pocket 

Dictionary. The performance was reported to be about 90% phonemes correct by using 

120 hidden units trained on the 1,000 most commonly occurring words, and tested with 

the whole dictionary, after five training passes. Various numbers of hidden units and 

layers were studied, and it was found that the performance improved when increasing 

hidden units and layers. Different sizes of window, ranging from 3 to 11 letters, were also 

studied, and it was found that the performance improved with the size of the windows. 

NETtaik is a very well-known data-driven approach, since then the problem of English 

text-to-phoneme conversion has becorne a benchmark for machine learning (Damper 

2001, p.ll). Neural networks have been extensively studied and various results have 

been presented. A selected survey of neural networks in text-to-phoneme conversion is 

shown chronologically in Figure 2.3. 

A re-implementation of NETtaik was studied by McCulloch et al. (1987), exploring 

the impact of different input and output encodings using a different dictionary and 

output phoneme set. In 1989, this architecture has been tested again with a large data 

set of 70,000 words (Ainsworth and Pell 1989). However, the performance in terms of 

phonemes correct hardly exceeds 90%. 

This approach is not limited to multilayer perceptrons. Attempts have been made to 

use alternative network designs. For example, Hochberg et al. (1991) presented an 

approach they called 'default hierarchy', using rules like an expert-made system, but 

trained automatically like a neural network. In training, specific rules were learned only 

if they were exceptions to general rules. Using the hierarchy, default rules were used 

when no relevant specific rules were found. After training on 18,008 words, the model 

achieved 90% phonemes correct on an unseen 2.000-word test set. Another example is 

a self-organising neural network, which was developed for a multilingual pronunciation 

dictionary project (Hensen 1994). 

Various neural networks have also been adapted to cope with the transcription of 

non-aligned data such as a syntactic neural network (Lucas and Damper 1992), the exten­

sion of NETtaik (Bullinaria 1994), and recurrent neural networks (Adamson and Damper 

1996). More recently, Arciniegas and Embrechts (2000) used a series of two-staged 

neural networks for converting text to phonemes. The first stage learns which one or 

two phonemes were represented for each letter, so that different networks can be used 

at the next stage, to learn the letter to phoneme mapping. They also introduced a new 

window positioning structure, in which there was an unequal number of letters before 

and after the target. The algorithm was trained on the 2.000 most common words in 

American English. It achieved a letter accuracy of 97% on an unfair test because the 

training and test set are the same. 

In summary, neural network classifiers work reasonably effectively for the classification 
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problem. Thus, there are several attempts for predicting phonemes by using neural 

networks. Neural networks have been used to model the transformation between letter 

sequence and phonetic sequence by training on a pronunciation dictionary. Various 

results reported here tend to demonstrate that the performance of such attempts is 

limited. Despite the high accuracy in terms of phonemes correct often reported, some 

studies showed that the performance of this architecture has not yet achieved a high 

accuracy in terms of words correct, and is considered inferior to that of the other 

data-driven approaches (Golding and Rosenbloom 1993; Dietterich et al. 1995; Damper 

et al. 1999). One drawback of applying neural networks to solve these problems is that 

the trained networks are often viewed as a black box, because of a lack of explanation 

of the inner workings and a lack of the capability to extract knowledge to gain better 

understanding of the problems. 

2.4.2 Decision Trees 

A clear disadvantage of the linguistic rule-based strategy is that it requires expert 

linguists to build a set of hand-crafted rules. Thus, the trained rule-based technique 

has emerged to build LTS rules automatically. One of the most popular techniques 

is a decision tree learning method such as ID3 (Quinlan 1987), in which the learned 

function is represented by a decision tree. ID3 builds a classification tree from a given 

set of classified instances, then this decision tree can be used to classify an unknown 

instance. To build a decision tree, starting at the root node of the tree, an instance is 

classified into two groups (child nodes) by testing or questioning the attribute specified 

by this node, then this process is repeated iteratively for the subtree rooted at the child 

node until each leaf node corresponds to the class of the instance. Decision trees can 

also be represented as sets of if-then rules. In the case of text-to-phoneme conversion, 

decision trees can be used to predict phonemes from examples of aligned training data. 

The use of decision trees has been reported by many researchers as can be seen in the 

chronological diagram in Figure 2.4. 

In 1982, Klatt and Shipman first proposed the concept of decision tree to solve the 

problem of text-to-phoneme conversion. With their model, induction rules were created 
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from each instance of each letter in a 20,000-word English dictionary by using left and 

right context of the letter. Then decision trees were built in the form of an ordered list 

of context-dependent rules for rapid execution. This work can also fall into the category 

of rule induction. A fixed-size input window, a learning pattern similar to NETt alL 

has been used to build a search tree recognition model frorn a 50,000-word dictionary 

(Lucassen and Mercer 1984). The results were reported in terms of phonemes correct 

from 5,000 random-selected words, and achieved an accuracy of which was superior 

to that of NETtalL Later in the work of Daelemans and van den Bosch (1993), a trie 

(a special kind of tree structure) was built from the training data. The first level of the 

tree corresponds to the focus letter and the other levels correspond to letter context. 

This can be viewed as a hierarchical description of rules. 

Other attempts of using ID3-like techniques with multilingual lexicons were successfully 

reported with promising results (Torkkola 1993; van den Bosch and Daelemans 1993; 

Black et al. 1998). For example, Black et al. (1998) proposed to use classification and 

regression tree (CART). In their worL for each letter in the alphabet of the language, 

CART was trained by giving the focus letteI', together with three context letters on either 

side, to predict the phoneme. In their best case, the automatic LTS model achieved 

a comparable or higher accuracy than the manual LTS rules. CART has been applied to 

four lexicons, including Oxford Advanced Learners Dictionary (UK English), CMUDICT 

(US English), BRULEX (French), and Celex Lexicon (German), ,,,-here it achieved 75%, 

58%, 93% and 89% words correct respectively. However, it was not quite clear how many 

words they used as a train set and test set as they wrote "\Ve split the data into train and 

test data by removing every tenth word from the lexicon". CART has been used as the 

phonetic transcription process in Festival, a public domain system intended for speech 

synthesis research available from http://www.cstr.ed.ac . uk. In the latest work of 

Kienappel and Kneser (2001), they proposed the decision tree technique for automatic 

grapheme-to-phoneme transcription in ASR systems. One UK-English name and two 

German lexicons (names and common words) were tested. The results were reported 

in terms of phoneme error rate and string error rate (SER). The best performance was 

8% SER when training on 320,000 words and testing on 16,000 words from the German 

common-word lexicon. The poorest performance was 33.7% SER when training on 

74,000 words and testing on 19,000 words from the English lexicon. 

In summary, this approach uses decision trees built on a statistical basis from a number 

of context-to-phoneme pairs derived from a phonetic dictionary, to find the best feature 

sets of predicting phonemes with a certain probability. Comparisons of decision trees 

with other techniques in English have also been made (Dietterich et al. 1995; Damper 

et al. 1999; Damper and Soonklang 2007). The results showed that they performed sub­

stantially better than the rule-based approach and at about the same level as other data­

driven methods such as table look-up and neural networks (approximately 60% words 

correct). 
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The analogy concept is basically developed by inference from observed human perfor­

mance in unknown word pronunciation. In the process of reading aloud, an unknown 

word can be read on the basis of its analogy to known words whose spelling and 

pronunciation are familiar to the reader. This approach has emerged on the basis of the 

cognitive theories in the work of Glushko (1979), who introduced the model of reading 

by using an idea of a similarity matching component, that converts spelling strings of 

a given word to their pronunciation by matching them with lexical entries. 

The most famous approach in this area is pronunciation by analogy (PbA). PbA uses 

the phonological knowledge from a dictionary by matching substrings of the input to 

substrings of lexical words, then collecting a partial pronunciation for each matched 

substring to create a directed graph. Later the phonemes along the shortest path 

are concatenated together to form the pronunciation. If there is only one candidate 

corresponding to a unique shortest path, this is selected as the output. If there are 

tied paths, the scoring strategy is used to select the output among multiple candidate 

pronunciations. PbA requires a dataset in which each letter of each word's pronunciation 

is aligned with a corresponding phoneme. The first version of PbA for TTS applications 

was proposed by Dedina and Nusbaum (1991). They reported the results with a small 

set of 70 pseudowords at 91% word accuracy. Since then, many studies have used the 

basic model of Dedina and Nusbaum to improve the PbA system (Sullivan and Damper 

1993; Yvon 1996; Damper and Eastmond 1997; Bagshaw 1998; Marchand and Damper 

2000; Damper and Marchand 2006) . 

There are two basic versions of PbA: explicit and implicit analogy (Damper and East­

mond 1997). Explicit analogy corresponds to lazy learning in terms of machine learning, 

in which the lexicon is retained and the extent of any prior training process is minimised. 

Implicit analogy corresponds to eager learning, in which significant prior training is 

necessary. For example, the version of Sullivan and Damper (1993) and Bagshaw (1998) 

are implicit analogy in which the lexicon can be discarded after pre-compiling to produce 

a knowledge base for generating pronunciation. The other PbA versions in Figure 2.5 
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are explicit analogy in which the training process is not required and the lexicon is 

always available at any time. In 1993, Golding and Rosenbloom proposed an analogy­

based pronunciation system, called Anapron, and compared it with the other seven 

pronunciation systems on a surname dataset (see more detail in Section 2.5). In the latest 

work, Damper and Marchand (2006) proposed a PbA with several further enhancements, 

boasting a significant improvement in results with three different-size dictionaries. The 

detail of the PbA approach will be described in the next chapter. 

2.4.4 Miscellaneous 

The very first data-driven method applied to text-to-phoneme conversion was rule in­

duction (Oakey and Cawthorn 1981) . Rules were extracted by using examples of aligned 

pairs of orthographic string and phonemic form, beginning with a set of 26 rules for each 

letter pronunciation. Then, the system used this rule set to hypothesize a pronunciation 

by comparing with a dictionary pronunciation. If the pronunciation was incorrect, a new 

rule was created to correct the errors. The difficulties in this technique lay in handling 

the conflict between rules as well as the induction of rules from scratch (Yvon 1994). 

The work of van Coile (1991) is another example of this technique. The decision tree 

method may also viewed as a rule induction by some researchers. 

After the emergence of ::\ETtalk, the first table look-up method was proposed by Weijters 

(1991) who drew the conclusion that a simple look-up procedure was superior to a neural 

network method. The table look-up method can be classified as implicit analogy, 

in which the lexical database is pre-compiled to yield the generalised phonological 

knowledge so the dictionary can be discarded . By constructing a table from a training 

lexicon, the lexicon was compressed into the table containing patterns of letters together 

with a target phoneme. The patterns of letters in the table have to be accounted for by 

expanding the context letter to the right or the left . The lack of generalisation power 

of Weijters's method led van den Bosch and Daelemans (1993) to devise a look-up table 

with defaults, which could be invoked in the case of a matching failure. The results 

of both table look-up methods by Weijters and van den Bosch and Daelemans were 
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reported to have a higher percentage of phonemes correct than those from NETtalk. 

Since hand-crafted rule-based approaches have existed for many years, there have been 

some attempts to improve the system by compiling the rules into finite state transducers 

(FSTs). FSTs are compact representations that enable one to build models in speech 

processing more efficiently. One of the advantages of FST representation is that different 

methods can be combined (Caseiro et al. 2002). The FST-based techniques for text­

to-phoneme conversion have been proposed by many researchers for different languages 

such as English, Dutch and Portuguese, as shown in Figure 2.6 . .Note that some work 

in FSTs can be viewed as a rule-based method with a rule compiler. 

Hidden Markov models (HMMs) have been applied to the problems in speech processing 

over the past decades, especially in speech recognition. Recently, they were applied to 

grapheme-to-phoneme conversion problem (Taylor 2005). In HJVIYIs, phonemes are the 

hidden states and graphemes are the observations. In Taylor's work, he proposed HiVIMs 

and enhancements using pre-processing, a context dependent model and a syllable 

stress model. The advantage of his work is that the model performs in just one step, 

including the aligmnent between graphemes and phonemes. The best result achieved 

was 61o/c words correct by using 4-gram with stress adjustments on the U nisyn dictionary 

(Fitt 2000) containing llO,OOO words. This result showed that HMlVI-based technique 

can be seen as a competitive method to the table look-up and neural network approach. 

The chronological history of miscellaneous methods in this section is shown in Figure 2.6. 

2.5 Pronunciation of Proper Names 

TTS systems encounter person names, addresses, places, and company names, so the 

problem of proper name pronunciation has recently received more attention. It is 

a special problem, because the origin of names may be from Inany different languages; 

but they are written in English, which has an extremely irregular spelling system. Many 

speech synthesisers often rely heavily upon dictionaries. However, creating a dictionary 

that covers all names is impracticable, despite the availability of large dictionaries and 

computer memories. Also, the coverage of names can never be WOo/( by the use of 

a dictionary because there will always be some rare/new naInes created in the course of 

time and those names are not yet included in a dictionary. Thus, back-up strategies must 

always be provided. This is why proper name pronunciation still presents a challenge 

for many researchers in speech technology. The most relevant studies for this problem 

are reviewed in this section. 

As an early study in proper name pronunciation, four speech synthesisers that were 

available in 1984 were evaluated with the 2,000 most common American surnames by 

Spiegel (1985). The outputs from the four synthesisers were tape recorded, then listened 
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to and judged by humans. The outputs were rated into four categories: correct, mild 

error (somewhat acceptably wrong), worst error (embarrassingly wrong), and percep­

tually wrong due to poor synthesis. Errors were lumped into the last three categories. 

The author's choice of error criterion was to accept any plausible pronunciation, based 

on interviews with 3-4 co-workers about ambiguous surnames. As Spiegel admitted, 

the results were a somewhat liberal acceptance of pronunciation. The results for each 

synthesiser were coded in alphabetic letters (A through D), because the author did not 

want these as an endorsement for any particular synthesiser. The average error rate for 

the four synthesisers was 28.7%. The lowest error score was 24.2% and the highest score 

was 32.8%. The majority of errors were serious (embarrassingly wrong) and occurred on 

multiple-syllable surnames. The errors made by the synthesisers were mostly unlikely to 

be made by humans. The author suggested that providing a special set of hand-crafted 

rules with a large exception phonetic dictionary for names should be a more efficient 

long-term approach to the problem of surname pronunciation. 

\Vith the rule-based method, there has been an assumption that the pronunciation of 

proper nallles is difficult to predict using the saUle pronullciation rules as ordinary words, 

because it depends on the origin of the spelling (Church 1985; Dutoit 1997, p.125; Holmes 

and Holmes 2001, p.10l). Thus, the TTS system requires special rules for names. This 

assumption has inspired the applications of LTS rules within language origin classes in 

the work of Church (19R5), Vitale (1991) and Font Llitj6s (2001). Church (1985) initially 

proposed letter-to-phoneme rules for proper names by using the statistics to estimate 

the language family before applying the specific rules for that language. The statistics 

were based on the number of occurrences of three-letter sequences in each languages. 

The performance was claimed to be superior to that of the other rule-based systems 

for proper names. In the work of Vitale (1991), the name pronunciation system was 

described and evaluated. Starting from searching in a dictionary, if a name was not 

found. the language of origin of the name was identified from its characteristic letter 

patterns. After identifying the language by filter rules, a set of hand-crafted LTS rules 

for that language was applied to predict the pronunciation. A decade later, this scheme 

is follow(xl by the work of Font Llitj6s (20CH) based on the CART technique of Black 

et al. (1998). Her work aimed to ilnprove pronunciation accuracy of proper names with 

language origin classes. However this method has quite a low accuracy, reported at 

55.22% vvords correct with stress and 60.76% words correct without stress on a lexicon 

containing 56,000 names, of which 90% were used for training and the remaining for 

testing. Consequently, a fully mltomatic lcmgllage identifier as implemented in this work 

is not a propitious am:i\ver, 

A comparison of Anapron, an analogical pronunciation systeIl1, with seven other name 

pronunciation systems was reported by Golding and Rosenbloom (1993). In this work, 

eight systems were compared in a subjective aspect, in which listeners rated synthesised 

pronunciations using a 3-point scale: clearly acceptable, somewhat between, and clearly 
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bad. The eight systems included Anapron, three early 90s state-of-the-art commercial 

systems, two variants of NETtalk, and two humans. Anapron generated a rough pronun­

ciation by applying a set of rules adapted from MITalk and elementary textbooks of four 

European languages, and drawing analogies from names in a case library of 5,000 as ex­

ception coverage. The experiment was conducted on 4,000 names, carefully chosen from 

over 1.5 million surnames. The pronunciations of Anapron and the other systems that 

have no phonetics-to-speech component were piped through DECtalk and 14 subjects 

judged the acceptability. The scores of clearly acceptable and somewhat between were 

lumped together into acceptable scores, counting clearly bad as unacceptable. The results 

were given in terms of the percentage of acceptable scores, and showed that the humans 

performed the best at an accuracy of 93%, Anapron performed at 86%, which was 

superior to the two versions of NETtalk but was inferior to the commercial systems. 

From a multilingual perspective, there has been a European collaboration in the form 

of the ONOMASTICA project (The Onomastica Consortium). This project's aim 

was to create a multi-language pronunciation dictionary of proper names, covering the 

11 major languages in European countries: English, Danish, Dutch, French, German, 

Greek Italian, Norwegian, Portuguese, Spanish and Swedish. The lexicon consists of 

different numbers of entries in each language, ranging from 1,000 to more than 1 million 

names per language. The other objective of this project was the development of semi­

automatic pronunciation of proper names. Many techniques were studied depending on 

each language, such as rule-based methods, neural networks, table look-up methods, 

and analogy-based approaches. These proposed methods, and the problems in this 

project, were addressed by Trancoso (1995). The result of this project was a multilingual 

dictionary of European proper names, which can be used in a dictionary look-up name 

pronunciation system. One part of this dictionary, which contains 4.5 million entries and 

has been checked by human experts working on the project, was available on CD-ROM. 

The fuller lexicon of 8.5 million names was available on magnetic tape. The CD-ROM 

and tape were distributed to 22 organisations throughout Europe. 

Deshmukh et al. (1997) presented an N-best pronunciations system based on a Boltz­

mann machine neural network that generates the N most-likely pronunciations of sur­

names from their spellings. A pronunciation dictionary of surnames was created con­

sisting of 18,494 surnames from a diversity of ethnic origins and 25,648 corresponding 

multiple pronunciations. The vVorldbet standards (Hieronymus 1994) were used to 

perform the phonetic transcription manually. The data were automatically aligned by 

a dynamic programming algorithm to produce a one-to-one aligmnent of the spellings 

with the corresponding phoneme, before using them as the input to the Boltzmann 

machine. The experimental results with the full data set (15,000 names for training, 

3.494 for testing) showed that their method produced a very poor performance. The 

best performance was 29.33% for all correct pronunciations (counting all of the possible 

pronunciations as correct) with 200 hidden neurons and a context length of three. They 
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concluded that their training strategy failed to learn the letter-to-phoneme distribution 

with conflicting constraints in the training data, regardless of the network architecture. 

Thus, the basic neural networks were found to be incapable of generating the iV-best 

list pronunciations of proper nouns. 

Spiegel (2003) described a large hand-crafted rule-based approach, complemented by 

a small dictionary. It was claimed that this 15-year research can achieve a high accuracy 

for a name pronunciation system. The result of this work was a program called N amepro, 

a pronunciation component in the Orator II TTS system. To generate a pronunciation 

of an input word, a small exception dictionary was searched. The dictionary was 

refined using the morphology of names, words, and business neologisms, to contain 

a couple of dozen entries. If the word was not matched, then it will pass through the 

steps of ethnographic classification, morphological analysis, LTS rules, syllabification, 

stress assignment and intonation rules. The model attempts to produce the actual 

US pronunciations. However, this paper did not present an evaluation of the approach. 

A method of deriving rewrite rules from an existing name pronunciation dictionary 

was proposed recently by Fackrell and Skut (2004). This method has contributed to 

the dictionary coverage of proper names, rather than a high accuracy for prediction 

of out-of-vocabulary words. The algorithm was simply based on rule induction from 

a reverse dictionary, which eliminates the one-to-one Inapping of pronunciation and 

its spelling. The remaining pairs of spellings which share a pronunciation were used 

to generate an ordered set of rules. As a result, this rule set was able to improve 

dictionary coverage for surnames by adding 5,000 new entries that corresponds to about 

half a million names. A subjective evaluation showed that about 80% of the suggested 

pronunciations are good, with a high degree of agreement arnong five subjects. 

In summary, most researchers tend to develop hand-crafted rules or learning algorithms 

to cope with name pronunciations. However, high accuracy have not been achieved so 

far. One obstructive problem encountered is that most dictionaries for proper names 

have been developed privately and deemed proprietary. Standard dictionaries of proper 

names are not widely available. 

2.6 Conclusion 

The conversion of letters into phonemes is not simply a one-to-one mapping process 

in many languages, for example, English and French which are notorious for their 

irregularities between the writing system and the phoneme system. Dutoit (1997, p.106) 

explained that "This phenOInenon partly originates in the natural delay between the 

spoken language, in perpetual evolution, and the much more rigid written one." The 

most frequently striking example is the substring ough, which is pronounced /013/ in the 

word although, /u/ in the word through, and / Af/ in the word enough: the left context 
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is a key to determine a pronunciation of this substring in each case. This illustrates 

the lack of invariance in the correspondence between letters and phonemes, and also 

between the number of letters and the number of phonemes in English words. In many 

languages, pronunciation of a word may also depend upon lexical features that have no 

direct manifestation in the spelling of the word (Sproat 1997, p.84). There are some 

words that have multiple pronunciations such as read, which is pronounced differently 

when it is used in past and present tense. Therefore, sometimes it is extremely difficult 

to convert from text into phonemes by using only the spelling of word. Furthermore, 

pronunciation of a word also varies from one person to another, and/or from one moment 

to another (Dutoit 1997, p.111) especially for proper names; therefore, it is difficult to 

choose one as an arbitrarily correct answer. Consequently, these make text-to-phoneme 

conversion a hard problem. 

Many attempts have been made to deal with the problem of text-to-phoneme conver­

sion over the years. The first and oldest technique is to develop a rule set by hand, 

based on linguistic knowledge. The second approach is to use a dictionary to provide 

transcriptions, a method currently used as a primary strategy because of the accuracy it 

allm1ls. There are drawbacks to the rule-based approach, such as language dependency, 

the length of time for rule development, the requirernent of explicit knowledge from 

a human expert, and the poor performance. Also, it is not possible to store all of the 

words in one language into a system dictionary. There will always be proper names 

and new words which will be created in the course of time. These have led to the 

emergence of a backup strategy, a so-called 'data-driven' approach in which it is learned 

automatically from data. 

Inductive learning was the first data-driven method to extract rules from examples 

of data. However. text-to-phoneme conversion has become a benchmark problem in 

machine learning since the pioneering vvork of Sejnowski and Rosenberg on NETtalk 

in 1987. A large number of different machine lea ruing methods have been applied to 

the task of automatic transcription, such as various neural networks, decision trees and 

pronunciation by analogy. All data-driven techniques in the current review are classified 

as supervised learning, in which the training data consist of pairs of input letters and 

target output phonemes. These techniques often require alignment between graphemes 

and phonemes. 

Some studies compared different methods. For example, Damper et al. (1999) evaluated 

the performance of a rule-based approach and three data-driven techniques: PbA. 

NETspeak and IGtree. The performance was evaluated with an English lexicon, and 

reported in terms of words correct which is more stringent and sensitive than phonemes 

correct. The best performance is obtained with PbA, at approximately 72% words 

correct on 16,280 words from the Teachers' \Vord Book dictionary. Recently, Damper 

and Marchand (2006) reported the best results of PbA at about 87% on 178,041 words 

from the British English Example Pronunciation dictionary. Therefore, PbA has been 
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investigated in many useful aspects for using in speech synthesis applications in this 

thesis. 

The problem of automatic pronunciation of proper names has also received considerable 

attention from researchers. Many researchers attempt to cope with this problem by using 

traditional approach such as hand-crafted rule-based system and dictionary look-up. 

Few data-driven approaches have been studied. Some studies augmented their method 

with languages identification. These pronunciation systems have not yet achieved a high 

accuracy so far, although promising improvement has been seen. This problem remains 

a real challenge for text-to-phoneme conversion among speech researchers. Thus, this 

thesis has been primarily focused on the automatic pronunciation of proper names. 



Chapter 3 

Pronunciation by Analogy 

3.1 Introduction 

Pronunciation by analogy (PbA) is a data-driven approach for automatic text-to-phoneme 

transcription. PbA exploits the phonological knowledge implicitly contained in a dictio­

nary, including words and their pronunciations. The original idea of PbA was based on 

the theory of reading aloud from Glushko (1979)'s studies. He proposed a psychological 

model to pronounce pseudowords using analogy with known \'lords which are similar in 

spelling. This theory has been proved computationally feasible by Dedina and Nusbaum 

(1991) (D&N). They developed the original and well-known system called PRONOUNCE 

for TTS applications. It can be categorised into the 'lazy learning' section of the machine 

learning paradigm, and fits into various groups of the artificial intelligence paradigm such 

as analogy-based, memory-based, and case-based reasoning, as well as instance-based 

learning (Damper and Marchand 2006). Since then, there have been many variants of 

PbA based on the PRONOUNCE system. The variant of PbA implemented to use in 

this work is based on the classical PRONOUNCE system, with several enhancements as 

proposed by Marchand and Damper (2000). 

In the next section, the principle of the PbA algorithrn used in this work is described 

in detail. Then, previous work on PbA are presented with their results using common 

word dictionaries. 

3.2 Principles 

The PbA algorithm consists of three steps: substring matching, building the pronun­

ciation lattice, and a decision function. In substring matching, substrings of the input 

word are compared with substrings of all words in the lexicon, gaining information of the 

phoneme set for each matching substring. Then, a directed graph called a pronunciation 
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FIGl:RE 3.1: Dedina and Nusbaum's PRONOUNCE. (Original source: Damper et al. 
20l)1). 
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lattice is built using information from the previous step. The lattice contains nodes and 

arcs which represent possible phonemes at particular positions in the pronunciation. 

Phoneme sets along the paths of the lattice are assembled to determine all possible 

pronunciations of the input word. In the last step, the decision function \vill apply 

heuristic scoring methods to select the best pronunciation from the potential candidates 

as a final result. The variants of PbA differ mainly in terms of the representative lattice 

and the heuristic method used in the decision function. The process of PbA is comprised 

of four components, best described by referring to the original PRONOUNCE program as 

shown in Figure 3.1. The description given here closely follows Marchand and Damper 

(2000). This section merely repeats the method for a better illustration. 

3.2.1 Aligned Lexical Database 

Like most automatic pronunciation techniques, PbA requires a dictionary in which the 

letters of each word's spelling are aligned with the phonelnes of the corresponding 

pronunciation. In this research, the algorithm presented in Damper et al. (2004) was used 

to align the lexicon automatically. This alignment used the expectation-maximisation 

algorithm, which was an iterative approach to a problem where the set of observations 

(in this case, the pairs of words and pronunciations in the lexicon) was missing some 

data, and the; likdihood function can not be; easilv difkrentiatcd to find its maxima. The 

missing data were the parameters describing the probabilistic correspondence between 

words and letters which underlies the alignment process. \iVith this approach, null 
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FIGURE 3.2: Alignment of word and its spelling. 

symbols (-) were automatically added to the spellings or pronunciations in the lexicon to 

preserve the one-to-one correspondence. For example, consider a word in the CMUDICT 

lexicon of spelling AABERG as / AA B ER G / (CMU phoneme symbols) or / ub3g/ (IPA 

symbols), for which a possible alignment is shown in Figure 3.2. 

After the alignment process, the lexical database was arranged in two columns: the first 

being the words and the second being the pronunciations (phoneme symbols) to create 

a sample shown below: 

AABERG AA B ER G 
AAKER AA K ER 
AAMODT AA M AH T 
AARDEMA AA R D EH M AH 
AARON EH R AH N 

3.2.2 Substring Matching 

~When an unknown word is presented as an input to the system, 'full' pattern match­

ing between the input letter string and the dictionary entries is performed. This is 

called 'full' matching, as opposed to 'partial' matching which was used in the original 

PRO:'-iOUNCE system. It starts with the initial letter of the input string aligned with the 

end letter of the dictionary entry. If common letters in matching positions in the two 

substrings are found, their corresponding phonemes and the information about these 

matching substrings are forwarded to the next nlOdule. Then the shorter of the two 

strings is shifted right by one letter. For partial matching, this continues until the two 

are right-aligned. }or full matching, this continues until the end letter of the input 

string aligns with the initial letter of the dictionary entry, which means the number of 

right shifts is equal to the sum of the lengths of the two strings minus one. This process 

is repeated for all entries in the dictionary. The main reason to use full matching is 

that the morpheme can be an affix that either comes at the beginning (prefix) or at the 

ending (suffix), and an affix is often used to form a new word. Thus, as Marchand and 

Damper (2000) mentioned "full matching seeIns worth consideration". 

To clarify the process, the example of the input word ANN will be given, matching 

the lexical entry ANNA. Figure 3.3 illustrates the full pattern matching process of this 

example. At the first iteration, the initial A in ANN A aligns with the final N in ANN, 

and there are common substrings. Next, ANN and ANNA substrings are shifted one 
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FIGuRE 3.3: Substring matching between input word ANN and lexicon entry ANNA. 
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position, giving no common substrings from the AN in ANNA aligning with the NN in 

ANN. The third iteration, the common substring ANN, is extracted from the alignment 

between the input string ANN and the ANN in ANNA. The process terminates at the 

sixth iteration, when the final A in AN::\A aligns with the initial A in A::\N, giving the 

common substring A. For partial matching, the process stops at iteration 4. 

3.2.3 Building the Pronunciation Lattice 

The pronunciation lattice is a directed graph containing nodes and arcs. Matching 

substring information is used to construct nodes and arcs in the lattice for the input 

string. A lattice node represents a matched letter, Li , at some position, i, in the input. 

The node is labelled with its position ·i and the corresponding phoneme to Li in the 

matched substring, Pim say, for the mth matched substring. An arc is labelled with 

phonemes between P im and P jm in the relevant part of the matched substring and 

the frequency count, increasing by one each time the substring with these phonemes is 
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FIGCRE 3.4: The step-by-step process to build a pronunciation lattice for the word 
ANN with the matched substrings froll! the lexical entry ANNA, corresponding to the 

pronuIlciation / AE - N AH/. The matched substrings are shown in bold. 
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matched during the search throughout the lexical. If the arcs correspond to bigrams 

(the two phonemes), the arcs are labelled only with the frequency. Digram phonemes 

label the nodes at both ends. Additionally, there is a Start node at position 0, and an 

End node at position, which is the length of the input string plus one. 

A step-by-step example in Figure 3.4 is given to clarify how to build the lattice for the 

input word ANN with the matched substrings from the lexical entry ANNA, correspond­

ing to the pronunciation / AE - N All/. Each node and arc in the lattice is constructed 

by using the lists of matched substrings from the previous module. The explanation for 

each step is as follows: 

Step 1: start with the matched substring N found in iteration 2, the position of N in the 

input is 3 and the position of N in the lexicon entry is 2, giving the phoneme \iVith 
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this information. the node (I-/, 3) is created. 

Step 2: the input string ANN is matched with the substring ANN in the word ANNA 

(iteration 3). The matched substring ANN can be divided into 5 matched substrings: 

A, AN, ANN, NN, N. For the matched substring A, the node (I AEI, 1) and an arc with 

label (1) are created, since the position of A in the input and in the lexicon entry are 

the same, which is the position Start giving the phoneme I AE/, 

Step 3: for the matched substring AN, first, the node (I-/, 2) because the last letter N 

in substring AN, is matched at position 2 in the input and lexicon entry giving phoneme 

Then, the arc with label (I AE -I, 1) is created to connect from Start to the 

node (I-/, 2) because the first letter A in the matched substring AN, is match at the 

beginning of the input word and the lexicon entry giving phoneme I AEj. 

Step 4: the input string ANN is matched with the substring ANN, giving the phonemes 

I AE - N I for the substring from Start to 3. With this information, the node (IN j. 3) 

is created, since the last position of the matched substring is 3 and an arc with label 

(I AE 1) is created. 

Step 5: for the matched substring NN, the nodes corresponding to these 2 letters, N at 

positions 2 and 3, are already created from the previous step. Thus, the arc with label 

(1) is created to link between node (I-I, 2) and node (lN/, 3). 

Step 6: the node (IN/, 3) corresponding to the matched substring N is already created 

from the previous step. 

Step 7: the matched substring N is found in iteration 4, the position of N in the input 

is 2 and the position of N in the lexicon entry is 3, giving the phoneme IN j. Thus, the 

node (IN/, 2) is created. 

Step 8: the matched substring A is found in iteration 6, the position of A in the input 

is 1 and the position of A in the lexicon entry is 4, giving the phoneme I AH/. Thus, 

the node (I AH/, 1) is created. 

Figure :3.5 represents the final pronunciation lattice corresponding to the input word, 

ANN, given the following words in the lexicon: (ANNA,IAE N AH/), (AN, IAE N/), 

(AND, IAE N D/), and (AYIANN, IAE M AH N/). In this example, there are two 

shortest paths and both paths produce the correct pronunciation as I AE - N I. 

3.2.4 Decision Function 

Finally, the decision function finds the complete shortest path through the lattice from 

Start to End. A justification for using only the shortest path has not been directly 

stated by D&N: one possibility is that to find all paths is time-consuming, therefore 

considering only the shortest paths would reduce the computational time. Furthermore, 
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A N N 

4 

FIGURE 3.5: The pronunciation lattice for the word ANN. 

pronunciation errors tend to appear with Inore frequency at the boundaries of matched 

substrings than at the inner letters, and so reducing the number of arcs in the lattice 

tends to reduce the chance of error. The possible pronunciation for the input corresponds 

to the output string assembled by concatenating the phoneme labels on the nodes or arcs 

in the order that they are traversed. In the case of only one candidate corresponding to 

a unique shortest path, this is selected as the output. If there are tied shortest paths, 

multiple scoring strategies are used to select the output. Note that, different paths can 

correspond to the same pronunciation. 

There are five different strategies used by Marchand and Damper (2000) in calculating 

scores for all pronunciation candidates. Scores are then ranked in either ascending or 

descending order. These ranks are used to give points for the candidates on each strategy. 

These points are next multiplied together to get the final score. 

The number of points given to each scoring strategy depends on the number of candidate 

pronunciations. The total numbers of points (T) m'\'arded for each strategy is: 

T(N) = tT = N(J~ + 1) (3.1) 
T=1 

where N is the number of candidate pronunciations. 

These T points are divided among the candidates depending on the rank of each one. 

Let cand(RsJ equal the number of candidates with rank R for the scoring strategy Hi, 

then P(Cj ; Rs), the nurnber of points awarded to candidate Cj is: 

i + 1) 
(3.2) 

The fillal score for each candidate, FS(CjJ, is simply calculated as the product of the 
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FIGURE 3.6: Partial pronullciation lattice for the word LONGEVITY. (Original source: 
Marchand and Damper 2000). 

numbers of points yielded from each of the S strategies as follows: 

5 

FS(Cj ) = II P(Cj , RsJ + (1 - (3.3) 
;=1 

where is 1 if strategy Si is included in the combined score, and 0 otherwise. 

Finally, the result is the pronunciation candidate that achieved the highest final score. 

Scoring strategies 

To explain each strategy, the representation of the sets used in the lattice is as follows: 

denoting the candidates and Cj is consisted of Dj : P j ) where: 

Fj = II; ... ,f;, is the set of arc frequencies along the j th candidate path (length n). 

Dj = d1 , ... ,dk , .... ,d" is the set of the difference of the position index of the nodes 

at either end of the ,z1:h arc, called the path structure. 

Pj = P1,'" 'Pm'···· ,PI is the set of pronunciation candidates with Pm's from the set 

of phonemes and l is the length of the pronunciation. 

To clarify how to calculate the scoring method for each strategy, the pronunciation lattice 

given in Figure 3.6 is used as an example. Note that the NETtaik phoneme symbols 

are used in this example. From this lattice, the program produces the six candidate 

pronunciations as presented in Table 3.1. 

Strategy 1: The product of the arc frequencies (PF). The candidate scoring values are 

ranked in descending order. 
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Candidate I Pronunciation I Path structure I Arc frequencies I 

1 /lanJEvxti/ {4,1,,5} {2, 80, 2} 
2 /lanJEvxti/ {3, 2, 5 } {2, 9, 2} 
3 /lonJEvxti/ {3, 2, 5} {I, 9, 2} 
4 /lcGgEvxti/ {4, 1, 5} {I, 11, 2} 
5 /lcGg~vxti/ {5, L 4} {L 24, 22} 
6 /lcGg~vIti/ {5, 2, 3} {I, 2, 2} 

TABLE 3,1: The six candidate pronunciations for the word LONGEVITY. 

n 

PF(Cj ) = II ii (3.4) 
i=l 

I Candidate I 1 I 2 I 3 I 4 I 5 I 6 I 
Score, PFO 320 36 18

1

22 528 4 
Rank 2 3 5 4 1 6 
Points 5 4 2 I 3 6 1 

TABLE 3,2: The computation of PF() for the six candidates, 

Strategy 2: the standard deviation of the values associated with the path structure 

(SDPSj, The candidate scoring values are ranked in ascending order. 

JL~l (di ~ d)2 
n 

d = L~~l di 

n 
(3,5) 

Candidate I 1 I 2 

Score, SDPS() 

1 

1.7 1.2 1.2 1.7 1.7 1.2 
Rank 4 1 1 4 4 1 
Points I 2 5 2 2 2 5 

TABLE 3,3: The computation of SDPS() for the six candidates, 

Strategy 3: the frequency of the same pronunciation (FSPj, i,e, the number of 

occurrences of the same pronunciation within the tied shortest paths, The candidate 

scoring values are ranked in descending order. 

FSP(Cj ) = cand{PjJPj = Pd with j #- k and k E [1,N] (3,6) 

I Candidate I 1 I 2 I 3 I 4 I 5 I 6 I 
I Score, FSP() 2 2 1 1 1 1 

I 
I Rank 1 1 3 3 3 

3 1 

I Points 5,5 5,5 2,5 2,5 2,5 2,5 

TABLE 3.4: The computation of FSP() for the six candidates. 
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Strategy 4: the number of different symbols NDS() between a pronunciation candi­

date Cj and the other candidates. The candidate scoring values are ranked in ascending 

order. 

n ]V 

NDS(Cj ) = LL5(Pj ,i,Pk ,d (3.7) 
i=l k=l 

where 50 is 1 if pronunciations Pj and Pk differ in position i and is 0 otherwise. Table 3.6 

illustrates the cornputation of NDS() for Candidate l. 

Points 4.5 4.5 2.5 2.5 1 

TABLE 3.5: The compntatioll of NDS() for the six candidates. 

Candidate 1 a n J IE I v I x t 

a n J E v x t 
Other candidates 0 n J E v x t 
to be compared c G g E v x t 

with Candidate 1 c g v x t 

TABLE 3.6: Illustration of the computation of NDS() for Candidate 1. Phonemes 
differed to those of the pronunciation are written in bold. 

Strategy 5: weak link WL(), i.e.the minimum of the arc frequencies. The candidate 

scoring values are ranked in descending order. 

WL(Cj ) min i E [i, n] (3.8) 

I Candidate I 1 I 2 I 3 I 4 I 0 6 I 
Score, WL() 2 2 1 1 1 I 1 

Rank 1 1 3 3 3 I 3 
Points 5.5 .5.5 2.5 2.5 2.5 I 2.5 

TABLE 3.7: The computatioll of WL() for the six candidates. 

Final result: these five strategies for scoring the shortest paths are used to determine 

the final result by combining all possible combinations. The number of possible combi­

nations is (25 1) = 3l. A 5-bit code is represented by the combinations in which '1' 

at position i indicates that strategy Si was included in the combination, or otherwise 

'0'. For example, the code '10000' indicates that strategy 3 (FSP) is used singly, and 
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A N E c D o T E 

@ ot~ 

FIGuRE 3.7: The silence problem occurs in the word AKECDOTE which fails to 
produce an output. (Original source: Damper and Eastmolld 1997). 
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the code '10101' indicates that strategies 1, 3, and 5 are used together. An example of 

the use of combination '10101' for deriving a pronunciation of the word LONGEVITY 

is shown in Table 3.8. The points used to calculate the final score are shown in bold. 

As can be seen, the final result is Candidate 1 which is the correct pronunciation in this 

case. 

I Candidate I PF I SDPS I FSP I NDS I WL I Final score I 
1 5 2 5.5 4.5 5.5 151.25 
2 4 

,.. 
0 5.5 4.5 5.5 121 

3 2 0 2.5 2.5 2.5 12.5 
4 3 2 2.5 6 2.5 18.7.5 
5 6 2 2.5 2.5 2.5 37.5 
6 1 0 2.5 1 2.5 6.25 

TABLE 3.8: Example of multi~strategy scoring for the word LONGEVITY using the 
'10101' combination and product rule. 

One drawback of this implementation is that it suffers the silence problem, which occurs 

when there is no complete path from Start to End nodes. In this case, the program 

can not produce any pronunciation. An example of the silence problem is shown in 

Figure 3.7. In the pronunciation lattice of the word ANECDOTE, the figure shows only 

a subset ofthe arcs for clarity. This lattice has no arc between nodes (/k/, 4) and (/ dl: .5) 

because there is no substring cd matching with phonemes /kdj in the dictionary except 

in the word itself. Thus, there is no complete path through this lattice, so the program 

fails to produce the pronunciation of this word. As a result of the silence problem, an 

output is not necessarily guaranteed using PbA alone. 

3.3 Appraisal with Common Words 

In this section, previous ,vork is briefly reviewed with their results mostly on lexicons of 

common words. The main differences of each variant of PbA are addressed. 
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3.3.1 PRONOU:.JCE 

In the work of D&N, the classical PRONODNCE program was evaluated on 70 mono­

syllabic pseudowords, a subset of those previously used in reading studies by Glushko 

(1979). Approximately 20,000 words from \Vebster's Pocket Dictionary were used as 

a lexicon of known words. In substring matching, they used 'partial' matching which 

starts with the left-most letter of the input word and of the dictionary entry, and 

continues until the two are right-aligned. In the decision function, if there are tied 

shortest paths, the sum of arc frequencies of each candidate is computed. The output 

is the pronunciation obtained with the highest score. This is similar to strategy 1 in 

the multiple-strategy approach, in which the product of arc frequencies has been used 

instead. The correct pronunciations of these pseudowords were given by seven human 

subjects. They reported results, in terms of word accuracy, at 91%. However, their 

test set was not representative of general English. Later work showed repeating of the 

experiment on both sets of pseudowords and sets of realistic words failed to accomplish 

such a high accuracy (Sullivan and Damper 1993; Yvon 1996; Damper and Eastmond 

1997; Bagshaw 1998). 

3.3.2 Synthesis-by-Analogy 

The impact of implementational choices on performance of the PbA system has been 

studied by Sullivan and Damper (199:3). They developed a synthesis-by-analogy system 

by employing analogy in both orthographic and phonological domains. Three different 

English lexicon" and one German database wa" uCied with different treatment of word 

boundaries and candidate scoring methods. Each lexicon consisted of 800 words except 

one English lexicon which consisted of 3,926 words. The pronunciation lattice was 

different from the D&N model. in which the nodes represent the junctures between letters 

or phonemes rather than the letters or phonemes themselves, and the arcs represent 

possible phoneme(s) with preference values. The preference value refiects the probability 

of individual orthographic-to-phoneme mappings. Strategy 1 was u"ed as a scoring 

method. In evaluating the system's output, a set of pseudowords was created and the 

'correct' pronunciations \vere given by native speakers (131 words in English and 100 

words for German). A pseudoword may have more than one 'correct' pronunciation, that 

i" the pronunciation produced by any "ubject was considered as a correct pronunciation. 

The best results for the two languages were obtained from different implementations. For 

English, phonemic analogy performed much better than orthographic analogy. However, 

the reverse wa" true for German. The best performance for English and German was 

78.7% and 82% word" correct respectively. However, a high accuracy in re"ults was not 

achieved for English: in fact, the error rate" on their similar test set were much higher 

than PRONOD:\'CE. 
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3.3.3 Multiple Unbounded Overlapping Chunks 

Yvon (1996) proposed an extension of D&N's algorithrn in which the pronunciation 

lattice has been modified. To construct the lattice, this system used multiple unbounded 

overlapping portions of existing transcriptions, and a shared phoneme between contigu­

ous matching substrings is applied. In order to find the output, the recombination of the 

smallest number of nodes that overlap maximally is deemed a possible pronunciation. 

Then, if there are the possible ties, the best pronunciation corresponding to the path 

that has the minimum weight in a lattice is chosen as an output. His extension has 

been evaluated and compared with PRONOUNCE and DEC, a decision tree method by 

Torkkola (1993). Five dictionaries from diflerent languages were used for evaluation. 

Two of them are common-word dictionaries: NETtalk (English) and DDLEX (French), 

and the rest are proper-name dictionaries (Italian, French, Dutch). The results showed 

that his method outperforms PRONOUNCE in all lexicons. For a decision tree approach, 

the accuracy of results is in between those of PRONOUNCE and his algorithm. The 

results of English lexicons were poor (63.96% words correct) when compared to the 

other languages, and the results of the Italian lexicon achieved the highest word accuracy 

(95% words correct). Nevertheless, he concluded that his analogy-based models failed 

to provide appropriate pronunciations for the phonetic transcription task. 

3.3.4 Pronunciation by Analogy 

Damper and Eastmond (1997) studied the impact of implementational choices on the 

performance of various PbA models. Three models were evaluated; the first model 

was the re-implementation of D&N, and the other two models were also based on the 

D&N's model but with different scoring methods: the maximum product of the arc 

frequencies (PROD), and the maximum sum of the score from all paths corresponding 

to the same pronunciation so-called total product (TP). Sets of pseudowords and sets 

of lexical words were tested. There are two sets of pseudowords: the 70 pseudowords 

used in PRONOUNCE and the 131 pseudowords used by Sullivan and Damper (1993) 

plus 5 more words. Also. two databases, Webster's and Teacher's \Vord Dook (T\VD) 

dictionary, were used as a test set and a lexicon. Each lexicon was tested by using the 

leave-one-out strategy: that is, each word is removed in turn from its lexicon, and a 

pronunciation inferred by analogy with the remainder. The replication of D&N models 

was unable to reproduce the same level of performance reported in their original work. 

The best results were obtained with the TP model in all cases. In the testing of lexical 

words, results on TWD were better than on \Vebster's in all models. 
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3.3.5 Phonemic transcription by Analogy 

In the work of Bagshaw (1998), pronunciation by implicit analogy has been proposed 

for a real-time synthesiser. Context-dependent grapheme-to-phoneme rules were derived 

from a phonetic dictionary in the training stage. Then, the dictionary can be dis­

carded. These rules were minimised to maintain sufficient speed for real-time processing. 

Principally, a lexical lookup with a system of pronunciation by analogy was used to 

generate a pronunciation. A lattice was generated by searching for context-dependent 

grapheme rules that match at each letter. In the case that no rule was matched, an 

exception rule was invoked, in which the most probable pronunciation for that letter 

regardless of its context is given. Each path in a lattice was considered as a possible 

pronunciation by calculating a score S, which is the sum of weights of the applied 

rules, and a penalty score Z, which is the number of exception rules applied in a path. 

In Bagshaw's PbA system, the syllable boundary and stress were also included in the 

transcriptions. The CNET lexicon of 110,000 words was used as training and testing 

data. The result achieved was 77.06% words correct. The lexicon of 68,000 proper names 

from Onomastica was also evaluated and yielded a lower accuracy at about 49%. 

3.3.6 Multi-Strategy PbA 

::\I10re recently, Marchand and Damper (2000) proposed a multi-strategy approach to 

improving pronunciation by analogy with some silnple heuristics for silence avoidance. 

They also extended the method to the problems of phoneme-to-letter conversion and 

letter-to-stress conversion. The algorithm of this variant with multiple strategies was 

already presented in Section 3.2.4. The multiple strategies were studied with two 

combination methods: the product rule and the sum rule. Webster's dictionary was 

tested and the best results obtained were 6.5 . .5% word accuracy from the product of all five 

strategies. The results of this multi-strategy approach showed a significant improvement 

in the performance over the single strategy versions of the PbA. Furthermore, this 

multi-strategy PbA was compared with the rule-based approach, and two data-driven 

techniques: NETspeak and IGTree (Damper et a1. 1999). The results shovved that 

PbA outperforms the other methods on a small lexicon. The best results were obtained 

at approximately 72% of words correct on the T\iVB database. Thus, PbA has been 

re-implemented for use in this thesis based on the version of Marchand and Damper 

(2000). 

Table 3.9 shows the best results obtained from diffcrc:nt versions of PbA, mentioned in 

this section, with various languages and lexicons. 
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The work of. Lexicon Number of I Language Number of Type of word I % vVords 
word i test set correct 

Dedina & Nusbaum 
vVebster 20.009 English 70 pseuc!oword I 91.00 

(1987) 
Basic English 800 English 131 i 78.70 

Sullivan & Damper KF800 800 I English 131 62.50 
(1993) OALD 3,926 English 131 

pseudoworcl 
! 74.00 

Meier 800 German 100 82.00 
\Vebster 20,009 English COlnman word 63.96 
BDLEX ~20K-25K }'rench cornrnon ·word 86.54 

Yvon (1996) IT-NP ~20K-25K Italian the 10th proper name 95.73 
FR-NP ~20K-25K French of lexicon proper name 79.14 
NE-NP ~20K-25K Dutch proper name 89.86 
Webster 20,009 

i 
70 pseudoword 

I 
85.70 

Damper & Eastmond vVebster 20.009 

I 
English 

136 pseudoword 85.30 
(1997) Webster 20,009 whole lexicon con11l1011 word I 60.70 

TWB 16.280 whole lexicon common word I 67.90 

Bagshaw (1998) 
CNET 114,614 I English 

whole lexicon common word 77.06 
CNET 114.614 I 68.046 proper name 49.21 

lVlarchand & Damper Webster 19,594 
English 

whole lexicon COlTlITIon \vord 65.50 
(2000) TWB 16,280 whole lexicon connTIon word 71.80 

TABLE 3.9: The best results of each version of PbA with various lexical databases. 

3.4 Conclusion 

The psychological model of Glushko (1979) and the first implelnentation program by 

D&N have greatly infiuenced automatic pronunciation methods by analogy. Since then, 

pronunciation by analogy ha;.; been a well-known and ;.;ucce;.;;.;ful approach for phonetic 

transcription in TTS synthe;.;is. PbA ha;.; been studied and extended by many re­

;.;earcher;.;. The principle of PbA used in thi;.; the;.;i;.; has been described. The various 

extensions of PbA were addressed with their results. 

The assumption underlying PbA is that the dictionary contains implicit phonological 

knowledge which can be exploited to generate a pronunciation for an unknown word. By 

hypothesising a partial pronunciation from lexicon for each matched substring between 

input word and lexical entries, an output is formed by joining those partial pronuncia­

tions. This idea denies the assumption of IvIiller (1981, pA9) that: 

the pronunciation of part of a word is not generally part of its pronunciation: 

if x and yare segments of a word, then Pronunciation(:c)+ Pronunciation(y) # 
Pronunciation( ::c+y)." 

PbA is a kind of explicit analogy or lazy learning, in vvhich the prior training process 

is minimised and the dictionary i;.; ;.;till kept for looking up or inferring a pronunciation; 

this may be one of the reason;.; that makes PbA more ;.;uccessful than other methods. In 

fact, there is good empirical evidence to support thi;.; reason; Daelemans et a1. (1999) 

provided the empirical re;.;ults ;.;uggested that keeping exceptional training instance;.; in 

memory can be beneficial for generalisation accuracy in language learning. They also 

suggested that editing or abstracting instances in implicit analogy method;.;, such as 

deci;.;ion-tree learning, can be harmful. Some rare information maybe discarded while 

compre;.;sing the training data into some other kind of representation. 
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\Vith very good results obtained in terms of word accuracy, PbA seems to be a very 

promising approach. Marchand and Damper (2000) revealed that the performance of 

PbA still has room for improvement based on selecting among shortest paths. There 

are many aspects of PbA which may help to improve performance and have not been 

studied yet. Furthermore, D&N mentioned that pronunciation by analogy may cope 

with the problem of surname pronunciation. Consequently, PbA was chosen for further 

investigation in this thesis and the problem of name pronunciation is focused. 



Chapter 4 

Syllabification by Analogy of 

Proper Names 

4.1 Introduction 

The syllable is an important unit of a word often mentioned in phonological studies. 

However, its definition is still a controversial issue among the linguistic community 

(Holmes and Holmes 2001, p.286). There arc variolls definitions for a syllable; here is 

the exalllple of a definitioll from the Cambridge Advanced Learner's Dictionary: 

"Syllable [noun] a single unit of speech, either a whole word or one of the 

parts into ,;\lhich a word can be separated, usually containing a voweL". 

The separation of a word into syllables is called syllabification. In English, it is difficult 

to syllabify words, whether spoken or written, due to the difficulty in defining a syllable 

and the irregular correspondence between spelling and sound. The process of syllab­

ification is ambiguous whether it should operatn in the orthographic or phonological 

domain. Strictly speaking, the term syllable might be more accurately applied only 

to the phonological domain. However, it is often used to apply in the orthographic 

domain, related to a hyphenation problem since the syllable boundary is usually marked 

by a hyphen. For instance, the possible syllabification of the word FEELING might be 

lfi-IIDI in the pronunciation domain, or alternatively FEEL-ING in the spelling domain. 

Irrespective of t he definition, syllabification is undoubtedly one of the important com­

ponent in any TTS system (Kiraz and MCSbius 1998). In Inost languages, syllable 

boundaries are usually treated as an aid to pronunciation. The syllable is also used to 

assign the stress on a word and its location affects the duration of the phone (Tian 2004; 

Marchand and Damper 2007). In unit selection of concatenative synthesis, syllables may 

be used as a basic unit. 

40 
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T\ative speakers of a language are able to count syllables easily based on intuition, 

but their given boundaries can vary from one to another (Marchand and Damper 2007). 

Furthermore, there arc no rnlcs or aliSorithms for syllabification that have been generally 

accepted so far. Many attempts to syllabify have been proposed (Tian 2004). Thus, 

designing an algorithm for dividing words into syllables is still a challenging problem 

in a wide range of research fields, not only in the linguistic area but also in machine 

learning and speech technology. 

Different approaches have been used to solve the problem of automatic syllabification 

and/or hyphenation. Rule-based systems, which are mainly reliant on a maximal onset 

principle (Pulgram 1970, p.47; Kahn 1976, p.41) or a sonority hierarchy (Clements 1988), 

are the traditional methods applied to the problem. A few data-driven approaches have 

been proposed, especially for English and German. Daelemans and van den Bosch (1992) 

investigated the backpropagation neural network approach for Dutch and compared 

the results with various symbolic pattern matching approaches and an exemplar-based 

generalisation technique. The training set consisted of 19,451 words and the test set 

consist cd of 1,945 words. DiH'crcllt ncuralnctworks have becn tested and the ultimate 

accuracy achieved was about 96% correctly-placed hyphens. Comparison of perfor­

mance showed that the backpropagation approach was not superior to the other two 

methods. The FST method has been applied in the phonological domain for Gennan 

and English syllabification by Kiraz and l\Ti:ibius (199M). However, evaluation results 

have not been formally reported. A probabilistic context-free grammar has also been 

used to predict syllable boundaries for German (Muller 2001). The corpus was split 

into 10 folds and various models of grammar were evaluated by training on 9 folds 

and testing with the rest (approximately 240,000 words). The best model achieved 

up to 96.4% word accuracy. Tian (2004) investigated two data-driven approaches 

for modelling syllabification: decision-tree and neural network. Both methods were 

evaluated on 108,080 words from CMUDICT. However, the number of words used as 

train and test sets in this paper is not clear. His results showed that when training 

with 2,000 sarnples, neural network approach performed better than the decision tree 

approach. In a recent paper, syllabification was formulated as a tagging task, and 

a syllable tagger based on an Hl\IIM was proposed by Schmid et a1. (2007). The 

German CELEX dictionary, containing about 300,000 words, was evaluated using 10-fold 

cross-validation. The results shows the syllable boundaries were correctly predicted with 

a very high accuracy of 99.85%. Recently, Marchand and Damper (2007) introduced 

a syllabification algorithm for English. The results showed that integrating syllable 

boundary information manually in the orthographic input can dramatically improve the 

performance of automatic pronunciation by analogy. They reported that the rate of word 

accuracy was increased by approximately 5% when the correct (according to the corpus) 

positions of syllable boundaries were given. However, the automatic syllabification that 

they proposed using the same concept as PbA did not yield better results. 



Chapter 4 Syllabification by Analogy of Proper Names 42 

In this chapter, the aim is to assess the possibility of improving the performance of 

PbA by using the same analogy concept to syllabify proper narnes. Experiments were 

carried out using the concept of syllabification by analogy (SbA) proposed by ::Vlarchand 

and Damper (2007). SbA is an algorithm for determining syllable boundaries in the 

orthographic form by using analogical reasoning from a lexicon of known syllabifications. 

The experiments ,vere conducted using a separate syllabification step, and then inferring 

the pronunciation by analogy. In the remainder of this chapter, the syllable structure 

of the dictionary used in this task is given. The SbA algorithm is described next. Then 

the implementation and results are presented when SbA is applied to the problem of 

proper names. Finally, discussion and conclusion are presented in the last section. 

4.2 Syllable Structure 

Typically a syllable consists of one or more vowel sounds preceding or following zero/­

more consonant sounds or certain consonants alone. This structure generally applies in 

the phonological domain, not the orthographic domain. However, the SbA algorithm 

must operate in the orthographic domain, since its input is text. Also, there is no syllable 

boundary in a dictionary of proper narnes. It is interesting to see how syllabification 

reflects into the orthographic domain. Thus, in this experiment the syllable boundaries 

are applied in the spelling domain as below. 

VVebster's dictionary is the only dictionary, from all dictionaries used in this thesis, that 

contains pronunciation with a stress and syllable boundary for each word. Thus, this 

lexicon was used for inferring the syllabification, and a dictionary of proper names was 

used for inferring the pronunciation. A sample of \Vebster's dictionary is shown as below: 

aardvark a-rdvark 1«<>2« 
aback xb@k- 0>1« 
abacus @bxkxs 1<0>0< 
abaft xb@ft 0> 1« 

The lexical database is arranged in three columns: the spelling, the pronunciation (ex­

pressed in the phoneme symbols listed in Appendix D), and the stress and syllabification 

patterns. The syllable boundaries can be extracted from the third column by inferring 

from four regular expressions: 

Rl: [<>] 
R2: [<digit] 
R2: [digit>] 
R2: [digit digit] 

=? 

=? 

=? 

=? 

[< I >] 
[< Idigit] 
[digiti >] 
[digit I digit] 

The number in the third colunm indicates the level of stress: 1 for primary stress, 2 for 

secondary stress, and 0 for tertiary stress. The «' and (>' symbols denotes the right 
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and left syllable boundary. The' I' symbol in the rules denotes the syllable boundaries. 

For the above example words, after applying these rules, the syllabifications are: 

<AARDIVARK> 
<AIBACK> 
<ABIAICUS> 
<AIBAFT> 

4.3 Syllabification by Analogy 

Syllabification by analogy is a modification of PbA which predicts syllable boundaries 

from their spelling by infcrcn(:(~ from a syllabified dictionary. It was initially proposed by 

Marchand and Damper (2007). They developed a syllabification system by employing 

analogy in the orthographic domain. The following description of SbA and three models 

of syllabification/pronunciation in this section are elaborated in their article. 

4.3.1 Principle of SbA 

The principle of SbA is similar to that of PbA in Chapter 3. The maiu difference is that 

the junctures between letters are added explicitly to modify PbA in three parts: input 

words, lexical entries, and the output. The '*' symbols represent possible boundaries in 

the input words, and are used as input symbols to label the lattice nodes, for example, 

<ABAFT> is expanded to <A*B*A*F *T>. For lexical entries, the T symbols indicate 

the positions of syllable boundary and '*' is also added as a juncture where there is no 

boundary presence, e.g., <AIB*A*C*K>. Both 'and 'I' are represented as possible 

output symbols, and are used to label the arcs in a lattice. In substring matching, '*' 

in the input can match with either '*' or 'I' in lexical entries. A '*-*' match is entered 

in the lattice as a '*' and a '*-1' match is entered in the lattice as 'I'. The following 

processes are performed in exactly the same way as in PbA, except that in the final 

step, the '*' symbols are removed to yield the output. One problem with SbA is that 

the processing time increases significantly compared to PbA, clue to the extension of 

word lengths by juncture symbols. 

4.3.2 Three Models of Syllabification and Pronunciation 

The concept of SbA has been adapted to infer syllabification and pronunciation together. 

This was done to investigate whether automatic syllabification can lead to superior 

pronunciation performance or not. There are three models: 

e A perfect model, S*(P)bA - in this case, we assume that the input word is already 

syllabified correctly and compared to syllabified lexical entries, giving matched 



ChapteT 4 SyllabificaUon by Analogy of Propel' IV ames 44 

substring with their corresponding pronunciations including syllable markers to 

construct the lattice. From here, the process proceeds exactly as for PbA . 

., A parallel modeL (SIIP)bA the syllabification of an input word is unknown, and 

the process is similar to SbA, except that pronunciation information and syllable 

markers are included to build the lattice. From here, the process proceeds exactly 

as for PbA . 

., A series model, (S+P)bA - the syllabification of the input is given by processing 

SbA first, then this is used as an input for processing as in the S*(P)bA model. 

4.3.3 Previous Results 

The models in the previous sections were evaluated using 19,596 entries from 'Webster's 

dictionary the 413 homonyms were removed from the original NETtalk. A fair test was 

conducted by using the leave-one-out strategy and reported in terms of ,vords correct. 

The best results were obtained from SbA using the 10101 combination at 78.10% word 

correct and 93.1% boundaries correct. For the three models for inferring syllabification 

and pronunciation together, the results were reported in terms of word accuracy, which 

means if all phonemes of a word, including the null phoneme, are correct then this 

word was counts as a correct pronunciation. The best results of S*(P)bA achieved a 

very significant improvement compared to those of PbA, from 65.35% words correct for 

PbA to 71. 74% words correct for S* (P) bA. This illustrated that perfect syllabification 

successfully improved the performance of pronunciation. However, the other two models 

failed to improve the performance of PbA. The results of a parallel model were slightly 

superior to those of the series model. They both obtained their best results from the 

10100 combination, 64.82% words correct for the (SIIP)bA model and 64.26% words 

correct for the (S+ P)bA model. 

4.4 Experimental Results 

Because of the success in improving the performance of pronunciation using a perfect 

model for inferring syllabification and pronunciation, an investigation was carried out to 

see how well autmnatic: syllabification can cope with proper names. Experiments were 

carried out using the (S+P)bA model '''lith the 52,911 proper names in ClVIUDICT. The 

set of proper names in CMUDICT was syllabified by inferring the syllable boundaries 

from a dictionary of common words ("Webster's dictionary). The details of these two 

dictionaries are fully described in the next chapter. At this stage, the percentage of 

boundaries correct can not be determined because the correct syllabifications of these 

proper names were unavailable. Thus, the different outputs ,,,ere created from all 

cOInbinations as we do not know which combination can produce the best syllabification 
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(close to 'perfect '). Then these were used as an input for the next step, the normal PbA. 

to find the pronunciation. The results were evaluated using the leave-one-out method. 

Tables 4.1-4.4 show the results of syllabification and pronunciation by analogy. using the 

(S+P)bA model with CMUDICT proper names in the form of the confusion matrix for 

all combinations of SbA and (S+ P)bA. The best results are written in bold. As can be 

seen, the best results were achieved when syllabified using the 00010 combination, and 

when the pronunciation was inferred using the 10101 combination. However, the best 

result of 65.14% words correct for (S+P)bA versus 68.35% for PbA was significantly 

poorer (binomial tests, one-tailed, p < < 0.01). The best performance was observed 

using a 10101 combination of (S+P)bA. 

The (SIIP)bA model can not be evaluated because \i\lebster and CMUDICT use different 

phoneme inventories. Therefore, syllable boundaries and pronunciation can not be 

inferred at the sarne time. 

4.5 Conclusion 

Syllabification is an important task in speech recognition and synthesis, since syllables 

can help a pronunciation system in assigning stress and duration of phones. Recent work 

showed that manually-syllabified information enhanced the performance of pronuncia­

tion in letter-to-phoneme conversion. However, automatic syllabification is uifficult anu 

still a challenging problem. ~Why is automatic syllabification from text hard? Various 

reasons are given in the research literature. Having identified the syllable boundary with 

the absence of precise definition of itself is one of the most cited reasons. The ambiguity 

whether sylbbification from spellinfS' or phonetic transcription is also an issue. The 

lack of a golu standard syllabified lexicoll makes a syllabification algorithm difficult 

to learn from examples. Even, there is a dictionary to uetermine the syllabification 

by look-up technique, it is still a problem when encountering new words that do not 

have a corresponding entry in the dictionary. Further, the step for syllabification 

and pronunciation induction should be concerned with finding the pronunciation first 

followed by the syllabification, or vice versa, or finding both in parallel. These are the 

possible reasons that automatic syllabification is a very hard problem. 

Many researchers have proposed a variety of data-driven approaches to assign syllable 

boundaries. In this chapter, an attempt was made to use the concept of analogy for 

syllabification and pronunciation of proper narnes. The series model of syllabifica­

tion/pronunciation based on the PbA approach was evaluated with the set of proper 

names from CMUDICT. Using a leave-one-out strategy, the performance of PbA has 

not been improved relative to that of our standard model. The errors in automatically­

inferred syllabification seem to disrupt the substring matching process in PbA. One 

possibility to irnprove the performance is to provide the manually-syllabified dictionary 
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I Combination I 00001 I 00010 I 00011 I 00100 I 00101 I 00110 ! 00111 ! 01000 ! 

51.73 00001 53.15 55.43 54.83 53.43 I 53.49 53.95 54.09 

00010 54.22 55.64 55.36 54.38 

I 
.54.67 54.71 55.01 51.69 

00011 58.20 59.68 59.45 58.48 58.66 58.88 59.12 56.11 

00100 59.66 60.43 59.80 60.21 I 59.94 60.01 60.11 57.44 

00101 63.09 64.17 63.88 63.67 I 63.71 63.75 63.89 61.19 

00110 58.63 .59.52 59.41 59.17 
I 

59.49 59.34 59.62 56.34 

00111 61.14 62.29 62.12 61.72 

I 

61.94 61.94 62.18 59.10 

01000 36.46 37.87 37.35 36.45 36.08 36.92 36.74 36.56 

01001 50.93 52.72 52.28 50.96 51.27 51.56 51.76 50.13 

01010 .54.58 55.79 55.70 54.74 55.17 55.32 55.58 52.31 

01011 57.65 58.97 58.94 57.94 58.17 58.42 58.73 55.80 

01100 58.62 59.35 59.17 59.13 59.18 59.28 59.40 56.72 

01101 61.65 62.72 62.44 62.29 62.42 62.42 62.60 59.91 

01110 58.36 59.26 59.22 58.91 59.30 59.15 59.43 56.09 

01111 60.82 61.82 61.69 61.27 61.67 61.55 61.82 58.65 

10000 57.60 59.35 58.92 57.99 58.11 58.41 58.54 56.25 

10001 56.51 58.59 57.98 .56.51 56.81 57.18 57.23 55.42 

10010 59.04 60.42 60.38 59.37 59.79 59.82 60.04 57.16 

10011 59.69 61.34 61.21 60.07 60.34 60.57 60.79 58.00 

10100 63.63 64.52 64.35 64.21 64.37 64.25 64.38 61.96 

10101 63.88 65.14 64.93 64.47 64.60 64.73 64.83 62.17 

10110 61.36 62.42 62.33 61.78 62.16 62.11 62.27 59.53 

10111 62.32 63.71 63.51 62.92 63.20 63.26 63.40 60.39 

11000 54.75 56 .. 51 56.02 54.76 55.14 55.42 55.58 54.49 

11001 55.03 56.96 56.46 55.05 55.45 55.72 55.80 54.43 

11010 58.82 60.20 60.07 59.12 59.·51 59.58 59.85 57.18 

11011 58.64 60.25 60.10 58.85 59.31 59.47 59.69 57.37 

11100 63.38 64.22 64.02 63.79 64.10 63.93 64.09 61.62 

11101 62.57 63.69 63.48 62.96 63.27 63.28 63.45 60.87 

11110 61.59 62.68 62.58 62.00 62.36 62.30 62.41 59.66 

11111 61.93 63.17 63.03 62.38 62.78 62.86 62.94 60.08 

TABLE 4.1: Results of the series (S+P)bA model, in which pronunciation is inferred 
after SbA. The columns represent the combinations of scoring 
strategy, ranging from 00001 to OlOOO, in which the results obtained from when inferring 
syllabification from vVebster's dictionary. The rovvs represent the 31 combinations of 
scoring strategy when inferring pronunciatioll horn CMUDICT proper name. The 

results are presented ill terms of percentage word accuracy. 
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Combination 1 01001 I 01010 I 01O1l 01100 I 01101 0l1l0 Ollll 10000 

00001 53.14 55.14 55.06 53.41 53.78 54.00 54.51 53.33 

00010 53.69 55.34 55.63 54.22 54.79 54.74 55.36 54.87 

00011 57.78 59.43 59.56 58.55 58.69 58.95 59.20 58.78 

00100 58.56 59.95 60.22 59.99 60.00 60.07 60.58 60.04 

00101 62.48 63.97 64.02 63.62 63.70 63.77 64.05 63.70 

00110 57.90 59.43 59.47 59.10 59.40 59.38 59.78 59.22 

001ll 60.63 62.19 62.19 61.75 61.92 61.97 62.21 61.83 

01000 36.17 37.75 37.56 36.45 36.37 36.86 37.01 36.41 

01001 51.04 52.72 52.47 51.09 51.58 51.68 51.93 51.05 

01010 54.15 55.72 55.74 54.84 55.30 55.31 55.66 55.02 

010ll 57.31 58.95 59.05 58.04 .58.28 58.48 58.68 58.ll 

01100 57.77 59.28 59.29 59.19 59.25 59.29 59.58 59.05 

01101 61.23 62.63 62.70 62.24 62.39 62.48 62.66 62.33 

O1ll0 57.72 59.25 59.22 58.93 59.20 59.17 59.45 59.01 

Ollll 60.33 61.78 61.85 61.33 61.64 61.60 61.80 61.38 

10000 57.72 59.27 59.08 58.01 58.28 58.41 58.62 58.00 

10001 56.57 58.39 58.21 56.71 57.06 57.23 57.47 56.57 

10010 58.72 60.37 60.38 59.51 59.80 59.87 60.00 59.62 

1O01l 59.36 61.28 61.25 60.22 60.39 60.64 60.74 60.32 

10100 62.97 64.37 64.36 64.28 64.39 64.27 64.42 64.20 

10101 63.47 64.90 65.05 64.58 64.67 64.74 64.89 64.39 

1O1l0 60.94 62.33 62.32 61.88 62.13 62.14 62.26 61.86 

lOll 1 61.89 63.65 63.59 63.10 63.16 63.27 63.37 63.03 

11000 54.99 56.51 56.41 5':i.00 55.43 55.54 55.79 54.63 

11001 55.15 56.98 56.75 55.25 55.65 55.73 56.03 54.93 

1l01O 58.50 60.09 60.30 59.27 59.57 59.58 59.82 59.26 

1l01l 58.49 60.29 60.25 59.17 59.41 59.54 59.69 59.14 

lllOO 62.81 64.05 64.25 63.84 64.10 63.97 64.22 63.79 

lllO1 62.21 63.55 63.72 63.04 63.32 63.27 63.53 62.99 

1l1l0 61.05 62.56 62.67 62.05 62.28 62.29 62.44 62.12 

lllll 61.52 63.07 63.09 62.60 62.76 62.83 62.90 62.55 

TABLE 4.2: Results of the series (S+P)bA model. in which pronunciation is inferred 
after syllabification by SbA. The columns represent the combinations of scoring 
strategy, from 01010 to 10000, in which the results obtained from when inferring 
syllabification from \Vebster's The rows represent the 31 combinations of 
scoring strategy when inferriug pronunciation from CMUDICT proper name. The 

results are presented in terms of percentage word accuracy. 
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I Combination I 10001 I 10010 I 10011 I 10100 I 10101 I 10110 I 10111 ! 11000 ! 

53.66 00001 53.33 54.92 54.42 53.76 53.61 54.19 54.16 

00010 54.60 55.83 55.50 54.99 54.58 55.30 55.47 54.97 

00011 58.79 59.68 59.57 ·59.13 58.93 59.21 59.37 59.12 

00100 59.76 60.41 59.96 60.43 60.03 60.48 60.56 59.63 

00101 63.62 64.02 63.94 64.07 63.90 63.97 64.07 63.48 

00110 59.14 59.76 59.65 59.66 59.38 59.75 59.87 59.23 

00111 61.67 62.26 62.26 62.24 62.14 62.21 62.32 61.90 

01000 36.03 37.58 37.06 36.47 36.13 37.03 36.81 36.43 

01001 ·51.19 52.37 51.99 51.41 51.40 51.73 51.65 51.38 

01010 54.98 ·56.05 55.85 55.26 55.15 55.66 55.75 55.35 

01011 58.16 59.10 59.02 58.42 58.42 58.62 58.77 58.51 

01100 58.91 59.44 59.20 59.46 59.29 59.56 59.63 59.00 

01101 62.24 62.69 62.66 62.68 62.56 62.62 62.65 62.22 

01110 58.86 59.56 59.39 59.37 59.19 59.54 59.59 59.05 

01111 61.30 61.87 61.89 61.71 61.73 61.82 61.9·5 61.57 

10000 57.92 59.08 58.79 58.22 58.28 58.60 58.54 58.47 

10001 56.81 ·58.12 57.70 57.02 57.08 57.42 57.32 57.12 

10010 59.68 60.42 60.44 59.98 59.87 60.07 60.20 59.87 

10011 60.28 61.30 61.27 60.70 60.53 60.82 60.84 60.54 

10100 64.15 64.50 64.44 64.43 64.45 64.41 64.46 64.27 

10101 64.54 65.08 65.04 64.78 64.91 64.90 64.93 64.52 

10110 61.93 62.40 62.46 62.23 62.21 62.35 62.43 62.16 

10111 62.96 63.59 63.57 63.33 63.33 63.37 63.54 63.16 

11000 55.04 56.12 55.76 55.21 55.16 55.60 55.56 55.52 

11001 55.33 56.49 56.09 55.57 55.56 55.92 55.80 55.77 

11010 59.50 60.19 60.14 59.68 59.56 59.92 60.04 59.64 

11011 59.23 60.19 60.06 59.51 59.37 59.72 59.74 59.51 

11100 63.90 64.25 64.19 64.24 64.11 64.13 64.25 64.01 

11101 63.15 63.67 63.64 63.45 63.43 63.51 63.60 63.16 

11110 62.30 62.63 62.69 62.42 62.42 62.50 62.61 62.23 

11111 62.·58 63.19 63.21 62.85 62.86 63.02 63.11 62.73 

TABLE 4.3: Results of the series model, in which pronuIlciation is inferred 
after s'y·llabification SbA. The columns represent the combinations of scoring 
strategy, ranging from 10001 to 11000, in which the results obtained from when inferring 
syllabification from VVebster's dictionary. The rov\·s represent the 31 combinations of 
scoring strategy when inferring pronunciation from CMUDICT proper name. The 

results are presented in terms of percentage word accuracy. 
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[Combination I llOO1 : llOlO I llOll I ll100 I llim ! llllO i lllll ! 
00001 53.75 54.78 54.64 54.04 54.06 54.39 54.30 

00010 54.65 55.63 55.98 ·55.16 55.31 55.50 55.62 

OOOll 58.99 59.53 59.62 59.08 59.22 59.36 59.39 

00100 59.71 60.09 60.40 60.50 60.43 60.54 60.63 

00101 63.63 63.90 64.03 64.00 64.00 64.09 64.ll 

OOllO 59.ll 59.64 59.80 59.72 59.69 59.86 60.00 

00111 61.88 62.25 62.35 62.18 62.22 62.29 62.39 

01000 36.28 37.43 37.32 36.60 36.51 37.06 37.01 

01001 51.46 52.24 52.14 51.79 51.75 51.88 51.96 

01010 55.01 55.92 56.02 55.48 55.52 55.76 55.87 

010ll 58.35 59.03 59.02 58.60 58.71 58.77 58.85 

OllOO 58.90 59.37 59.40 59.61 59.40 59.67 59.74 

OllO1 62.27 62.58 62.69 62.70 62.65 62.74 62.78 

01110 58.88 59.42 .59.49 59.48 59.39 59.61 59.66 

Ollll 61.49 61.87 61.96 61.87 61.86 61.89 61.99 

10000 58.27 59.08 58.82 58.35 58.40 58.72 58.65 

10001 57.07 57.94 57.82 57.27 57.31 57.58 57.44 

10010 59.69 60.45 60.54 59.90 59.96 60.23 60.27 

10011 60.51 61.36 61.24 60.65 60.67 60.95 60.97 

10100 64.ll 64.41 64.49 64.46 64.46 64.48 64.57 

10101 64.49 65.03 65.10 64.93 64.85 64.01 64.03 

lOll0 62.00 62.44 62.50 62.25 62.30 62.44 62.53 

101ll 63.08 63.59 63.64 63.37 63.46 63.51 63.55 

llOOO 55.39 56.13 56.00 55.43 55.47 55.80 55.79 

11001 55.67 56.43 56.25 55.82 55.83 56.08 56.02 

llOlO 59 .. 52 60.13 60.16 59.68 59.74 60.09 60.06 

llOll 59.55 60.20 60.13 59.60 59.57 59.93 59.92 

lll00 63.87 64.23 64.36 64.27 64.22 64.33 64.36 

ll101 63.10 63.64 63.73 63 .. 55 63.57 63.72 63.73 

llllO 62.22 62.61 62.71 62.52 62.54 62.65 62.69 

lllll 62.67 63.20 63.20 62.99 63.03 63.12 63.07 

TABLE 4.4: Results of the series (S+P)bA modeL ill which pronunciation is inferred 
after syllabification SbA. The columns represent the combinations of scoring 
strategy, ranging from 11001 to 1111 L in which the results obtained from when inferring 

from 'Webster's The rows represent the 31 combinations of 
scoring strategy when inferring pronunciation from CMUDICT proper Harne. The 

results are presented in terms of percentage word accuracy. 
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of proper name for inferring syllabification/pronunciation. Also, it is hoped that other 

methods for syllabification which can achieve an increased performance will be discovered 

in future work. 



Chapter 5 

Multilingual Pronunciation 

5.1 Introduction 

The difficulty of the automatic pronunciation problem is known to vary widely across 

different languages, according to the complexity of the relationship between pronuncia­

tion and orthography in each specific language. This is generally taken to vary across 

a so-called deep/shallow continuum (Coltheart 1978; Liberman et a1. 1980; Katz and 

Feldman 1981; Turveyet a1. 1984; Sampson 1985). A 'shallow' orthography means that 

the correspondences between letters and sounds (graphemes/phonemes) in the writing 

system are close to one-to-one (Davis 2(05). For languages like English or French whose 

writing system is generally agreed to be 'deep', there is a supposedly complex relation 

between spelling and sound, unlike the 'shallow' orthographies of Finnish or Serbian, for 

example, where the correspondence is mostly if not entirely consistent and transparent. 

Thus, \ve expect that automatic pronunciation will be particularly difficult for English. 

However, it does seem to be relatively easier to convert spelling into sound for languages 

such as Spanish and Italian. So that the difficulty of letter-to-phoneme conversion varies 

fi"om language to language. One potential advantage of data-driven method like PbA 

is that they are highly portable between different languages. All that is necessary is 

to change the lexicon that acts as the source of example pronunciations. To date, the 

success of PbA for multilingual pronunciation generation has not been seriously assessed. 

Hence, one goal for this thesis is to study PbA performance on multilingual transcription 

as a way of quantifying the variation of difficulty of the task across languages, and gaining 

insight into manifestations of the deep/shallow continuum. 

Since PbA uses a dictionary of example spellings and pronunciations as its knowledge 

base, an important question is what size of dictionary we should employ in a text-to­

speech system. Intuitively, we might feel that the larger it is, the better. However, large 

dictionaries are expensive to compile, lead to an increase in processing time, and may not 

exist for all languages that we wish to synthesise, especially minority languages. Also, 
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there are inherent dangers in extrapolating from results on a small database or dictionary 

to asymptotic performance on a very large dictionary. A few years ago, Baayen (200L 

p.xxi) wrote: 

'\Vord frequency distributions are characterised by very large numbers of rare 

words. This property leads to strange phenomena such as mean frequencies 

that systelnatically change as the number of observations is increased, rela­

tive frequencies that even in large samples are not fully reliable estimators 

of population probabilities, and model parameters that vary with text or 

corpus size'. 

The problems that this phenomenon can cause for speech synthesis have often gone 

unrecognised or underestimated (Mobius 2003). For instance, early developers of rule­

based letter-to-sound systems tested on small datasets and assumed that error rates 

would be independent of test set size, leading to dramatic over-estimates of performance 

(Damper et al. 1999). \iVith the increased interest in data-driven approaches (Damper 

2001, p.xiii), an important issue becomes the sizes of the training and test sets if, as 

Baayen (2001, p.xxi) says 'model parameters ... vary with ... corpus size'. So although 

it is likely: and some preliminary results from Damper et al. (1999) suggest it is the case, 

it is by no means certain that 'bigger is better'. 

Given this background, our purposes in this chapter are two-fold: 

L To evaluate PbA on a range of different languages, so as to quantify the variation 

of transcription difficulty across the deep/shallow continuum of orthography. 

2. Also, to explore the effect of lexicon size on performance for multilingual tran­

scription using PbA. 

Specifically, we have invcstigate(l the performc\l1cc of PbA applied to 7 European lan­

guages, which are Dutch, English, French, Frisian, German. Norwegian, and Spanish~ 

with 12 different lexicons. Also, we artificially varied the size of (some of) these lexicons 

by evaluating transcription accuracy on different subsets of the complete dictionary. 

Ideally, we aim to investigate performance on the lexicons of proper names in each 

languages. However, such dictionaries are not available in every language. In this 

work, dictionaries of common words were used instead of proper names except one for 

English language source (CMUDICT), which includes both types of word. In the next 

section, the dictionaries used in this work are described. In Section 5.3, we set out the 

various evaluations of transcription accuracy that have been performed. The results are 

presented and discussed in Section 5.4. Conclusions and suggestions are presented in 

Section 5.5. 
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Language / Lexicon 
Number of ... 

Letters Phonemes \Vords 

Dutch 43 44 116,252 
Frisian 39 85 61,976 
German 31 59 49,421 
Norwegian 29 47 41,713 
Spanish 33 26 31,491 

French: Lexique 40 39 36,460 
Brulex 40 39 27,473 
::iovlex 38 40 9,447 

English: BEEP 26 43 198,632 
CMUDICT 26 39 112,091 
\iVebster 26 51 20,008 
TWB 26 51 16,280 

TABLE 5.1: ~ umber of letters, phonemes and word types in each dictionary. 

5.2 Lexical Databases 

The lexicons used in this research vary in size from about 9,000 to almost 200,000 words, 

and are all available at http://www . pascal-network. org/Challenges/PRONALSYL/ 

Datasets/. \iVe have used the automatically-aligned dictionaries for seven languages: 

Dutch, English, French, Frisian, German, Norwegian, and Spanish. In totaL twelve dif­

ferent dictionaries are used in this work. For French, we have used Lexique, Brulex, and 

Novlex. For English, we have used the British English Example Pronunciation (BEEP) 

dictionary, CMUDICT from Carnegie-Mellon University, \iVebster's, and Teachers' Word 

Book (TvVB). The phonerne sets used for these lexicons are different, even for the same 

language. For the other five languages, there is only one lexicon per language. The 

letters and phonemes in all dictionaries are automatically aligned using the algorithm 

of Damper et aL (2005), except in the case of \iVebster, used in ::iETtalk. and TWR 

used in ::iETspeak. which were manually aligned by the original authors. Since most of 

these dictionaries do not include stress and/or syllable boundary markers, these aspects 

of the transcription task have had to be ignored, in spite of their obvious importance. 

Table 5.2 summarises the number of letter, phoneme and word types in each dictionary. 

It can be seen that there is wide variation in the phoneme inventory, not only between 

languages but also between different dictionaries for the same language. 

5.3 Experimental Design 

In line with the two goals previously stated, the following evaluations were conducted: 

1. Transcription performance was evaluated on the complete dictionary for each of 
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the twelve dictionaries covering the seven languages. The purpose here was to 

quantify the variation of transcription difficulty across the deep/shallow continuum 

of orthography represented by these seven languages. 

2. For each of the seven languages, transcription performance was evaluated as a 

function of dictionary size. The purpose here was to explore the effect of lexicon 

size on performance for multilingual transcription using PbA. 

Regarding 2, where there are multiple dictionaries for a language (i.e., French and 

English), the largest available dictionary (i.e., Lexique and BEEP, respectively) is se­

lected. Dictionary size was then varied artificially by randomly dividing the dictionary 

for language l into 10 approximately equal size partitions, or 'folds', pi· P~, ... pio· 
Ten different-sized subsets were then formed as pI, (Pi u P~), ... ; (Pi u P~ u ... u pio)· 

Because the size of each of the seven dictionaries is not the same, it follows that, in 

generaL I prn I cF I Pi' J, m cF Il. Because the dictionary sizes for each language are not 

necessarily exactly divisible by ten, in generaL the tenth partition for a language is 

smaller in size than the other nine partitions: 

JPioJ :S IPbl = JP~J = ... = JPiJ 

5.4 Experimental Results 

In this section, we present the results of applying PbA to the lexicons described in 

the previous section. These are reported in terms of words and phonemes correct. 

Transcription accuracy was evaluated using both a leave-one-out strategy and 10-fold 

cross validation (Cherkassky and Mulier 1998). That is, in the case of a leave-one-out 

method, each word Vias removed in turn from the dictionary and a pronunciation 

derived from the remaining words. In the ease of 10-fold cross validation, each of the 

12 dictionaries was divided into 10 partitions (folds), as described in the previous section. 

Each fold was removed in turn and used as a test set; the remaining nine folds acting 

as the dictionary for inferring pronunciations. It should be obvious that leave-one-out 

is also a form of k-fold cross-validation vvhere k is equal to the number of entries in the 

dictionary. 

5.4.1 Results on the 12 different dictionaries 

Table 5.l(a) summarises results on all 12 dictionaries using the leave-one-out method. 

The corresponding results obtained by averaging across the 10 folds shown in Table 5.l(b) 

were very similar (a fraction of one percentage point in all but one case), although they 

are consistently lower. The binary coding in the final colurnn of these tables indicates 
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(a) Leave-one-out 

11111 
Frisian 97.58 10101 
German 98.94 10101 
Norwegian 95.05 99.09 10100 
Spanish 99.43 99.80 11011/11101 

French Lexique 9l.31 98.18 11100 
Brulex I 9l.95 98.34 10101 
Novlex 86.94 96.47 11100 

English: BEEP 87.50 98.43 10100 
CMUDrCT 72.13 95.56 11111 
\Vebster's 65.46 92.42 11111 
TWB 71.98 94.36 11100 

(b) lO-fold cross validation 

Dutch 94.34 (0.184) 99.18 (0.033) 11111 
Frisian 84.60 (0.434) 97.47 (0.080) 10101 
German 92.74 (0.464) 98.91 (0.070) 10101 
Norwegian 94.94 (0.243) 99.05 (0.068) 10100 
Spanish 99.38 (0.161/0.161) 99.78 (0.090/0.090) 11011/11101 

French: Lexique 9l.02 (0.339/0.399) 98.10 (0.076/0.075) 11100/11101 
Brulex 9l.78 (0.487) 98.29 (0.130) 10101 
Novlex 86.53 (l.666) 96.34 (0.747) 11100 

English: BEEP 87.31 (0.257) 98.41 (0.034) 10100 
GMUDICT 7l.99 (0.485) 95.53 (0.110) 10101 
\i\1ebster's 64.52 (l.512) 92.16 (0.325) 10111 
TWB 70.77 (l.121) 94.08 (0.332) 11100 

TABLE 5.2: Results of applying FbA to 12 dictionaries. Accuracies for lO-fold cross­
validation in (b) are averages across the 10 folds with standard deviations in brackets. 
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which combination of PbA heuristic scoring strategies gave best performance. A 1 in 

position p of the binary code indicates that the pth strategy in Marchand and Damper 

(2000) was included in the rank-fusion combination: a 0 indicates that it was not. 

Broadly in line with expectations based on our initial intuitions about the relative 

difficulty of letter-to-phoneme conversion in different languages, the best results are 

achieved for Spanish at > 99% word accuracy and the lowest performance is obtained 

for English. Performance for the other languages (Dutch, French, German, Norwegian) 

was generally at > 90o/c words correct, whereas for Frisian the result was'" 85% words 

correct. There are few data in the literature on the problem of multilingual letter-to­

phoneme conversion with which to compare our results. One exception is van den Bosch 

et al. (1994) who attempt to measure the complexity of the French, Dutch and English 

writing systems based on the two measures of success at letter-phoneme alignment and 
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accuracy of letter-to-phoneme conversion. Generally, they find that French is easier 

to transcribe from spelling to pronunciation than Dutch which in turn is easier than 

English. Our results are somewhat different in that the relative difficulty of French and 

Dutch are reversed in our data. Obviously, some differences are to be expected in light 

of the use of different dictionaries and different methods for automatic transcription. 

For French and English, the results vary across the dictionaries; the variation is especially 

wide for English. Factors accounting for this variation are likely to include: 

• the different sizes of the dictionaries; 

• the different sizes of the phoneme inventories; 

• differing transcript ion standards employed by t he dictionary compilers. 

Figure 5.1 shows the variation of word accuracy with dictionary size for English. There is 

a reasonably strong positive correlation (R2 = 0.797) between accuracy and size, showing 

that this factor seems to have a real effect. We speculate that larger dictionaries have 

lower complexity in that the extra words are likely to be morphologically related to other 

entries, and this lower complexity is reflected in higher transcription accuracy. 

Figure 5.2 shows the variation of word accuracy with the size of phoneme inventory 

employed by the dictionary, again for English. Here, there is a relatively much weaker 

negative correlation (R2 = 0.225) between accuracy and size of the phoneme set. Some 

such negative correlation is only to be expected; the lower t h e size of the phoneme 

inventory, the broader is the transcription standard being used, and so t he less potential 

there is for phoneme substitution errors. 

We have not attempted any similar analysis of the results for French because of the fewer 

number of dictionaries employed (three rather than four, with two being very similar 
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in size), and because the variation in transcription p erformance and in size of phoneme 

inventory is much less than for English. 

5.4.2 Results as a function of dictionary size 

Figure 5.3 shows t he variation of word transcription accuracy in the seven languages 

as a function of dictionary size, with different-size dictionaries constructed as described 

in Section 5.3. The results shown here were obtained using leave-one-out and the b est 

combination as tabulated in Table 5.l(a). 

There is a clear and obvious tendency for transcription performance to grow monoton­

ically with dictionary size. This goes some way to explaining why the lO-fold cross 

validation results in Table 5.l(b) are consistently very slightly smaller than the leave-
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Norwegian 7.99 11.2 0.9850 
German 6.10 27.6 0.9752 
French 4.97 39.7 0.9759 
Dutch 4.81 39.0 0.9746 
Frisian 7.02 8.22 0.9893 
English 9.52 28.23 0.9984 

TABLE .5.3: Best-fit parameters for the model T = Q InS + (3. 

one-out results in Table 5.1(a), because the size of dictionary used for inference is smaller 

than with leave-one-out. It is ?o ths the size of the complete dictionary. 

For each language, the data are well-modelled by a function of the form: 

T = cy InS !j (5.1) 

where T is percentage transcription accuracy, S is lexicon size, and nand {j are language­

dependent regression parameters, tabulated in Table 5.4.2. As can be seen from the final 

column of the table, the fit to the Inathematical model of equation (5.1) is excellent, 

with R2 > 0.9 in all cases. 

In spite of the high R2 correlation coefficients obtained, there is one obvious sense in 

which this model is deficient: The logarithmic function does not saturate (although 

it does decelerate) as S increases, whereas the actual transcription accuracy obtained 

Ciinnot exceed 100%. This deficiency in the model is clearly seen in the curve for 

Norwegiau ill Fig. 5.3. where the extrapolated best-fit curve appears to be tending to a 

value well above 100%. The situation bears similarities to the mathematical modelling of 

lexicon coverage in the earlier work of Damper et al. (1999). In this case, consideration 

of Zipf's law led to a logarithmic model like (5.1) that was lilTlited by setting a parameter 

(effectively Q) according to the total number of words in the language. This concept of 

"the total number of words in the language" is, of course, problematic from a theoretical 

point of view. The unbounded set of all words in any language makes it impossible to 

list every word. In the present situation, the growth of transcription accuracy T can 

be similarly limited by appropriate setting of nand 0, assuming that S can never 

exceed some 11pper bound. Although this artificial device is rather unsatisfactory, it is 

interesting that very similar problems arise in the two cases. 

In equation 1), n controls the rate of growth of transcription accuracy whereas 

(J controls the vertical placement of the growth curve. Fronl this perspective, we would 

expect a language possessing shallow orthography to display a high value of probably 

in conjunction with a low value of a (since high transcription accuracy will already be 
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achieved for a relatively small lexicon). This is precisely the pattern seen for Spanish 

(Table 5.4.2). On the other hand, a language with deep orthography should show a low 

value of (3; it is less clear how this would couple with the value of a. One might expect 

that 0 would be low (i.e., low growth) because transcription is 'difficult '; alternatively, 

one might predict that 0 would be relatively large because growth is from a lower value 

for S rv a few thousand words. 

To explore this issue, we plot (3 versus 0 in Figure 5.4, whereupon a clear linear trend 

between the two parameters of the form is found: 

(3 = -13.0690 + 104.05 (5.2) 

with R2 > 0.9701. There was no particular reason that we can see to expect any such 

relation a priori, since (as outlined above) we interpreted one parameter to control 

growth rate and the other to control vertical placement. \iVith hindsight, however, it 

makes sense for there to be a dependence between the two, with larger growth to the 

100% asymptote for a language with a deep orthography, starting from a relatively low 

transcription accuracy for a small dictionary. 

Substituting 5.2 into 5.1 to eliminate (3 gives the model: 

(5.3) 

This is an interesting form, indicating that transcription accuracy is limited to 100% for 

S < e13 (approximately 450,000) independent of the value o. 

Note that (5.3) means that this is a one-parameter model to fit only the data of 

Figure 5.3. Assuming the constant of rv 100 is playing the role of setting asymptotic 

performance, the constant of 13 in (5.3) should be viewed as another 'parameter' which 
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Norwegian 6 2 3.5 
German 6.10 4 3.5 3.5 
French 4.97 3 3.5 3.5 
Dutch 4.81 2 5 3.5 
Frisian 7.02 5 6 6 
English 9.52 ! 7 7 7 

TABLE 5.4: Ranking of 0: values, asymptotic transcription accuracy and 'low' 
transcription accuracy on a small dictionary. 

60 

turns out empirically to be the same across all seven languages studied here. Further 

work is required to determine how general this is across a wider range of languages. 

The question then arises: How good a measure is the language-dependent parameter 

0: of the depth of orthography (or the difficulty of letter-to-phoneme transcription) for 

that language? Table 5.4 shows the seven languages and ranks assigned to the value 

of 0: obtained by regression (RankQ ) and to the difficulty of transcription (Rankasymp) 

assigned according to the ordering of asymptotic performance in Figure 5.3. For 0:, 

ranking is in ascending order; for transcription accuracy, it is in descending order. Note 

that we have ranked Spanish as easier to transcribe than Norwegian (in spite of a slower 

rate of deceleration of its T-S curve) as the regression for the latter language looks 

suspect, and we have considered French and German to tie as it is difficult to separate 

the performance for these two languages. Let the null hypothesis be that there is no 

relation between the asymptotic: difficult of transcription and G. By the Spearman rank 

correlation test (Siegel and Castellan 1988, p.202-213), Ts = 0.5335 is obtained according 

to which there is no reason to reject the null hypothesis. 

However, the asymptotic performance in Figure 5.3 is possibly unreliable, being based 

011 extrapolation from a model fitted to empirical data. All alternative, preferable 

measure of the degree of transcription difficulty might be the 'low' measure obtained on 

a dictionary of about 10,000 vvords, Ranklou;, where at least we have actual data. Since 

it turns out to be rather difficult to separate Norwegian, French, German and Dutch 

at 5 = 10,000 in Figure 5.3, these have been treated as tied on Ranklow . This yields 

Ts = 0.8078, allowing us to reject the null hypothesis at the 5% level of significance. 

Hence, 0: for a language appears to be a good predictor of performance on a small 

dictionary of that language. 

5.5 Conclusions 

In this chapter, we have studied the variation of accuracy of transcription across 12 lex­

icons from 7 European languages (Dutch, English, French, Frisian, German, Norwegian, 
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and Spanish). The success of the transcription task is assumed to reflect the complexity 

of the writing system the deep/shallow continuum of orthography) of the particular 

language. Also, the size of learning data set seems to be the main factor impacting 

results. Thus, we have studied the full extent of the relationship between size and 

accuracy. The selected lexicons from these languages are divided into 10 different 'sizes' 

of dictionaries and evaluated. These results give an idea of the reasonable size of 

lexicon that should be used to compromise a trade-off between the performance and 

the processing time of PbA approach. 

Considering the efi"ect of lexicon size on performance for seven languages. the size of 

phoneme set used by the dictionary compilers can have an efi"ect, as shown in the results 

of Section 5.4.1. However, when different-si:6ed lexicons are constructed as unions of 

10 folds of the same dictionary (Section 5.3), the results in Section 5.4.2 show that 

transcription accuracy increases monotonically with the size of the lexicon used for 

analogical inferencing. These results also suggest that the bigger the size of dictionary, 

the better the performance achieved. 

Although this simple result might be thought unsurprising, there are good reasons for 

treating it as something other than vacuous. The Ll'\RE phenomenon (I3aayen 2001, 

p.51-57; Mobius 2003) means that simple-minded assumptions about how parameters 

of a language model grow with corpus size are dangerous. Further, it is one thing 

to assume a relationship and quite another to demonstrate that it holds empirically. 

Finally, test and training dataset sizes can have a profound effect on results of data­

driven approaches to language learning. This is most obviously the case in eager learning 

methodologies, like neural networks, where overfitting to the training data is an ever­

present danger. It seem that yet another advantage of lazy learning is the avoidance 

of the over-regularisation with can result from a prior training phase (Daelemans et al. 

1999). 

\Vith reference to the variation of transcription difficulty across these seven languages, 

this work may be one of only very few attempts to quantify depth of orthography 

computationally. In line with general beliefs in the field, it is found that Spanish 

is at one extreme of the deep/shallow continuum for the languages tested, whereas 

English is at the other. English is notorious for the lack of regularity in its spelling-to­

sound correspondence, which largely reflects the many complex historical influences on 

the spelling system (Venezky 1965, p.3-4; Scragg 1975, p.12; Carney 1994, p.1,p.12) .. 

Indeed, Abercrombie (1981) describes English orthography as "one ofthe least successful 

applications of the Roman alphabet." This is reflected in a very large value for the 

language-dependent parameter 0: in equation (5.3) of 9.52, where as for Spanish it is 

0: = l.12. The case of Norwegian appears somewhat anomalous, having a high value 

for Q (7.99, the second highest found in this work) but seeming to be about as easy 

to transcribing as Ftench, German and Dutch according to the results displayed in 

Figure 5.3. This remarkable raises a question that an apparently anomalous value of 
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ex is a genuine feature of the language or it is an artefact of some idiosyncrasy of the 

particular dictionary used here. Further work is needed on this point. It is also noticeable 

that its rate of deceleration towards asymptotic performance seems to slow. 

Although (the case of Norwegian notwithstanding) ex seems to be a reasonably good 

predictor of transcription performance on a dictionary of '" 10,000 words, it is less 

good at quantifying the asymptotic performance. This may be because the measure of 

asymptotic perfonnance used here is unreliable, being based on extrapolation from the 

fitted regression model, quite distant from supporting data points. This poorly-fitting 

line probably suggests that a single function may not apply well to all languages. It 

is also possible that some other function might fit for all languages, instead of the one 

that we used here. A better extrapolated function is an important aspect that should 

be further investigated. 

The PbA method is inspired by a model of reading aloud, suggesting that unknown words 

might be pronounced by analogy to real words that they resemble. For instance, adults 

who know the pronunciations of many words tend to pronounce an unseen word more 

correctly than children who know only a few. This hypothesis is affirmed by the results 

on difFerent sizes of dictionaries. Considering the number of lexicon entries, bigger size 

would yield better performance of PbA. Not only the lexicon size affects the performance 

of PbA, but also the deep/shallow continuum plays as a key role in the success of PbA. 

Reading text in a language with shallow orthography would be easier for non-native 

speaker than reading text in a language with deep orthography. As Davis (2005) wrote, 

'Finnish provides a good example, with 23 associations that match the exact number 

of letters. This effectively means that a non-Finnish perSOll, who is a fiuent reader 

in his/her own language, would be capable of reading aloud a Finnish text and make 

it perfectly comprehensible to a Finnish listener.' This assumption is reflected in the 

eff'ectiveness of PbA across 7 languages. It is noticeable that the highest performance is 

obtained for Spanish, a language well known to have a shallow orthography. Additionally, 

the poorest result is achieved for English, which is notorious as a language with a deep 

orthography. 



Chapter 6 

Effect of Lexicon Composition 

PhA 

6.1 Introduction 

• 
In 

So faL many variants of PbA have been proposed and evaluated with different lexicons. 

In practice. when encountering an unknown 'Nord in the system input, it is unlikely 

to know if it is a proper name or a technical word, or a common word. It should 

be possible to develop techniques for automatic classification, but these will never be 

entirely error-free. Therefore, one of several aspects to investigating the performance 

of PbA is to dctenniue whether or Hot it makes a difference when the system infers 

a pronunciation by analogy with a lexicon containing: 

1. known common words only, 

2. known proper names only, or 

3. a mix of common words and proper names. 

If high accuracy can be obtained in case 3, then automatic classification of unknown 

words (with attendant potential for errors) might be avoided. Since PbA infers pronun­

ciations using lexical words most similar (in an analogical sense) to the unknown word, 

there is a reasonable chance of this. In this chapter, we test this possibility, focusing on 

the effect that lexicon composition has on pronunciation accuracy for PbA. 

6.2 Lexical Databases 

Two publically-available dictionaries of pronunciations have been used in this work: 

DEEP containing common words and the eMU dictionary containing common words 

63 
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and proper names. The de:.;cription of the:.;e two dictionaries was previou:.;ly detailed 

in Chapter 5. However, information about the:.;e dictionarie:.; is repeated again and 

some more detail:-; are added here for the sake of clarity. These two dictionaries are 

u:.;ed becau:.;e BEEP i:.; intended to document Briti:.;h English pronunciations, wherea:.; 

CMUDICT contain:.; American English pronunciations. \iVe have also studied proper­

name and common-word :.;ub:.;et:.; of CMUDICT and mixtures of BEEP and CMU proper­

name subset. 

6.2.1 BEEP 

BEEP is originally available as file beep. tar. gz from ftp: / / svr-ftp. eng. cam. ac. uk/ 

camp. speech/dictionaries/. It contain:.; approximately 250,000 word :.;pellings and 

their transcription:-;. After removing :.;ome words that contain non-letter symbols and/or 

word:.; with multiple pronunciations. the number of words u:.;ed in this work is 198,632. 

The phoneme set for BEEP consist:.; of 44 :.;ymbolD. 

6.2.2 CMUDICT 

CMU dictionary contain:.; both cornmon word:.; and proper names, and their phone­

mic tran:.;cription:.;. The phoneme set for CMU contains 39 symbols. The latest ver­

:.;ion (CMU version 0.6) can be downloaded from http://www . speech. cs. cmu. edu/ 

cgi-bin/cmudict. There are :.;ome duplicate word:.;, :.;ome containing non-letter symbols 

and :.;ome where the pronunciation obviously does not match the spelling. These were 

removed to leave 112,091 word:.;. In this chapter, CMUDICT is partitioned into two 

:.;ubset:.; as follows. 

Proper Name Subset : there is no :.;ingle, easily-available li:.;t of proper names and 

their pronunciations. However, a proper-name dictionary can be developed by 

using a list of proper mune:.; (without pronunciation:.;) together with the :.;tandard 

CMU version 0.6. The list of names can be downloaded as file cmunames .lex. gz 

from http://www.festvox.org.Itincludes the most frequent names and sur­

names in the USA and their pronunciation:.; (Font Llitj6s 2001), from a wide variety 

of origin:.;. The procedure wa:.; sirnply to extract from CNIU pronunciations for the 

names on the first list. (Note, however, that some names on this list were not 

found in CMU.) This :.;ubset of CMUDICT is referred as Names. The number of 

proper name:.; in Names is 52,911. 

Common Word Subset : after extracting the proper names from CMU as above, the 

remaining words form the common word subset of 59)80 words. This dictionary 

is called Com. 
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I BEEP I eMU I IPA II BEEP i eMU I IPA I 
aa AA Q k K k 
ae AE a I I L I 
ah AH A n1 M III 

ao AO J n N n 
aw AW a13 ng NG lJ 
ax ER ;:} oh AA 'D 

ay AY aI ow OW 013 
b B b oy OY DI 
ch eH tf p P p 
d D d r R r 

dh DH 0 s S s 
ea Ell e sh SH f 
eh EH € t T t 
er ER 3 th TH El 
ey EY eI ua AO u 
f F f uh UH 13 
o· 
b G 9 uw UW U 

hh HH h v V v 
ia III I w W w 
ih IH I Y Y J 
iy IY i z Z z 
jh JH ct zh ZH 3 

TABLE 6.1: Harmonisation scheme used to lllap the BEEP phoneme set onto the 
CJVIUDICT set. 

6.2.3 Mixture Dictionary 
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This dictionary is a combination of BEEP and Names dictionaries as mentioned above. 

Because of the different phoneme sets between these two dictionaries, we need to collapse 

the BEEP phoneme set into the smaller of the two sets, which is the eMU phoneme 

set as specified in Table 6.l. This process is called harmonisation (Damper et al. 1999). 

As call be seell, five phoneme symbols of the BEEP phoneme sct arc collapsed into the 

eMU phoneme symbols that have the similar sounds, which are shown in bold. This 

dictionary is referred as Mixture. 

6.3 Experimental Results 

Performance was evaluated using a leave-one-out strategy and results are reported in 

terms of words correct. Stress assignment has been ignored for simplicity. 

Table 6.2 shows the results of PbA with BEEP, Names and the Mixture dictionary in 

the form of a confusion matrix for all combinations of the three dictionaries as test set 

and lexical database. It should be noted that all entries are significantly different from 
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Test set 

BEEP 
Names 

Mixture 

Lexicon 

BEEP I Names I Mixture 

87.,50 I 15.9~ I 83.62 
23.57 I 68.30 . 55.08 
73.34 I 26.62 I 78.08 

TABLE 6.2: Percentage words correctly transcribed by PbA with BEEP, Kames and 
Mixture dictionaries. 
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one another (binomial tests, one-tailed, p «0.01). As can be seen, best results for a 

given test-set dictionary are achieved ,vhen the same dictionary is used as the lexical 

database. JVIuch higher accuracy is achieved when BEEP is used as the test set and 

lexical database (87.50% words correct) than when Names is used as the test set and 

lexical database (68.35% words correct). This is to be expected in view of the diversity of 

origin of the proper names and different degrees of assimilation into English (Vitale 1991; 

Spiegel 2003), making their pronunciation harder to infer. Cross-lexicon test/inference 

leads to a very large deterioration in performance. Although it is tempting to think 

that this indicates that proper names transcription is a harder problem than common 

word transcription. the difference could be due primarily or solely to the different sizes 

of lexicon, since PbA transcription accuracy is a strong function of dictionary size, 

increasing as the size of dictionary increases (see the previous chapter). 

Using the Mixtures dictionary as test set and lexical database reflects the practical 

situation in which no attempt is made to classify the word class, merely treating all 

words as from the same class. Here the relevant result is 78.08% words correct, a long 

way below the performance when words from BEEP are pronounced by analogy with the 

entire BEEP dictionary. Note that a simple weighted linear sum of the BEEP/BEEP 

and Names/Names results (where the weights are the proportions of the two classes of 

word) would predict a result of 83.50% words correct, some way above the 78.08% result 

actually obtained. In effect. this weighted linear sum forms an upper bound on the 

performance that could be obtained if we had a perfect means of identifying the class of 

any input word. 

In the results of the previous paragraph, the l\!Iixture dictionary is of course hetero­

geneous, consisting of a British English lexicon of common words (whose phoneme set 

has had to be harmonised to GMU) and an American English dictionary of proper 

names. This was done to have the largest possible dictionaries. The performance of PbA 

have also been studied when the three dictionaries (common words; proper names and 

mixture) are homogeneous, all being derived from CMU. That is, Com, Names and 

CMU were used as the three dictionaries. Table 6.3 shows the corresponding results. 

Here; the pattern of the results is the same as those of PbA with BEEP, Names and 

the Mixture dictionary. Again, it should be noted that all entries arc also significantly 

different from one another (binomial one-tailed, p« 0.01). The highest accuracy 
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Lexicon 
Test set Com Names CMU 

Com 7,5,67 28,20 73,72 
Names 38,63 68,35 64,96 
CMU 58,12 47,15 69,61 

TABLE 6,3: Percentage words correctly transcribed by PbA with Com, Names and 
CMU dictionaries, 
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is achieved when testing Com words against the Com lexicon itself. This Com vs, Com 

result (75,67% words correct) is much higher than Name vs, Names (68,35% words 

correct), This firmly supports the assumption that proper names are more difficult 

to pronounce than common words, Since the results are in the same way as those 

of heterogeneous sets, and the number of words in COM and Name are quite similar. 

Cross-lexicon test yields an expected low result in percentage of words correct, These 

results are slightly higher than in those of the cross-lexicon test with BEEP and Names, 

vVhen testing COM or Names against the full CMU dictionary, deterioration is smaller 

than the corresponding case of the Mixture dictionary, \tVe inclined to believe that 

the difference is due to the inhomogeneity of the latter (:\Iixture) dictionary, and the 

avoidance of harmonisation for Com/CMU, A huge drop in performance when testing 

Names against C:\1"(; firmly indicates that proper names have some special characteristics 

different from common words, as expected from their diversity. 

Turning finally to the result of most practical interest, that is the third case mentioned 

in Section 6,1, using the full CMU dictionary as the lexical database, This reflects 

the situation where we have a single, undivided lexicon in the TTS system, Here, the 

relevant figures are 69,61 % words correct when testing with C:\;IU itself. This figure is 

lower than the result of 72, words correct that we would predict from a weighted 

linear sum of the Com vs, Com and Names vs, Names results, The Com/CMU result 

reflects the situation when input words are common words, \ve can get 73,72% words 

correct, but if the right automatic inference of input-word class is made, we can get 

75,67% words correct instead, To the same extent, there is also a great loss in accuracy 

when testing Names against the full CMU dictionary, if no attempt is made to classify 

the class of input word, That is, testing Names against the CMU lexicon gave 64,96% 

words correct; testing Names against itself gave 68,35% words correct, 

With reference to the performance on a mix dictionary of common words and proper 

names, in both heterogeneous and homogeneous, it suggests that automatic inference of 

input-word class "vould be advantageous for accuracy of PbA in TTS synthesis, However, 

we need to be aware of the dangers of misclassificatioll, since this would lead to a very 

large deterioration in performance, 
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6.4 Conclusion 

Pronunciation by analogy has been tested with different lexicon compositions: common 

words only, proper names only, and a mixture of the two. Two different dictionaries 

have been used: the large BEEP dictionary containing common words with their pro­

nunciations for British English, and the GMU dictionary containing common words and 

proper names with their pronunciations for American English. BEEP was exploited 

because of the existence of the large dictionary: the attempt was complicated by the 

absence of a list of proper names. Thus, we believe that more credible results are given 

to those for the eMU dictionary. However, the results of both dictionaries are very 

similar. Excellent performance has been obtained when testing a dictionary of common 

words against itself or a dictionary of proper naInes against itself. Treating all words as 

from the same class, that is the mixed lexicon is used in all case, leads to a noticeable 

deterioration in performance. These experimental results recommend that automatic 

word class categorisation (common word vs. proper name) is useful for PbA approach. 

This could be beneficial for any analogy-based approach in the phonetic transcription 

module as well. 

These studies also provide empirical support for the assumption that pronunciation of 

proper names is mnch more difficult than common words. }'vicwy reasons behind this 

assumption are given by many researchers. For instance, the most commonly cited 

reason is that for a specific language American English) names originate from 

very different language families (Vitale 1991). The pronunciations of those names may 

assimilate to the phonological system of the new language over the years, thus names 

are often prononnced differently from their origins of languages (Font Llitjos 2001). 

Furthermore, there is more than one correct pronunciation for any given name depending 

on personal preference or regional influences (Spiegel 2003). Name pronunciation is also 

known to be idiosyncratic, that is many pronunciations contradict the phonological 

patterns of common words (Font Llitjos 2001). Particularly, the last presumption is 

affirmed by the results in this experiment wh(m t(osting proper names alone against 

common words only or proper names against a combination of common-word and proper­

name. 
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Objective Evaluation 

7.1 Introduction 

In this chapter, PbA is compared with three other data-driven methods for proper name 

pronunciation, namely: the decision tree method described by Black et al. (1998), the 

table look-up method by Weijters (1991), and the table look-up method by van den 

Dosch and Daelemans (1993). These methods were selected on the basis that, first, we 

believe PbA, our main study approach, to be the best currently-available technique for 

pronunciation of common words (Damper et al. 1999) and, second, table look-up and 

decision trees are very representative of the competitor data-driven techniques to PbA. 

Indeed, table look-up can be seen as an alternative implementation of the broad concept 

of 'analogy'. and also decision trees can be interpreted as a framework for building letter­

to-sound rules. The comparison involves both objective and subjective performance. 

The objective results are reported and discussed here. The subjective evaluation is 

detailed in the next chapter. 

For the PbA approach, the algorithm was exhaustively described in Chapter 3. The 

other three automatic pronunciation approaches that were used for objective and sub­

jective evaluation are briefly described in the next section. Section 7.3 describes the 

re-implementation details of each method. Then, we briefly describe how the proper 

name dictionary of manually-supplied pronunciations was constructed. The results of 

objective evaluation are presented in Section 7.5. The conclusion is in Section 7.6. 

7.2 Overview of the Techniques 

In this section, we describe the three automatic pronunciation approaches. Data-driven 

approaches to letter-to-phoneme conversion generally require the letters of each word in 

the dictionary to be aligned with the corresponding phonemes, so converting the problem 
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Phoneme 7 -gram vector 

- - - - A A R I D 

AA I 
I - IA A I R 

, 
D E - i 

R - A I R I D E I M A 

D A A I R 
i D E I M A 

EH A R D E M A 
i 
i -

M R D E M A - I - I 

I I 
I , 

AH D E ~ M A I - - - i , I I I 

FIGlJRE 7.1: Complete set of 7-gram learning vectors for the name AARDENIA. 
pronounced IAA R D ER ~1 AR/. The first element of the vector if:> the phoneme 

corresponding to the 4th letter in the 7 -gram (bold letters). 
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of transduction into one of classification. For the three techniques compared here, the 

algorithm described in Damper et al. (2005) was used for alignment. 

7.2.1 CART: Decision Tree 

Since letter-to-phoneme conversion (of aligned strings) is a classification problem, deci­

sion trees have long been used for this purpose. Perhaps the earliest such attempt was 

that of Klatt and Shipman (1982). In this work, we have used the CART algorithm 

of Black et al. (1998). where CART stands for Classification and Regression Tree (see 

Breiman et al. 1984, p.ix). The CART approach uses feature data to predict class 

membership. In this case, the feature data are the letters in a fixed-length context 

window and the class is the phoneme corresponding to the central, 'target' letter. Since 

the letter and phoneme strings are aligned, a one-to-one correspondence between the 

target letter and the class , the corresponding phoneme) can be assumed. 

The first Rtep in building a decision tree is to create from each word of the training data 

a set of learning vectors containing n-grams (context windows consisting of strings of 

n letters, where n is odd) and the corresponding phoneme for the middle letter of each. 

As an example, Figure 7.1 shows all 7-grarn learning vectors for the name AARDE~fA 

whose pronunciation is / AA R D Ell M All/ (according to the C::VIUDICT phoneme set 

used in this work-see Appendix A). 

Next, the learning vectors for each word in the training dataset are fed as the input 

into CART to create the decision tree. In the training process, predictions about the 

phonemes corresponding to earlier letters in the word can be used to make decisions 

about the phoneme corresponding to the current, target letter; this is called phonemic 

feedback. Thus, there are two parameters in CART that we need to fine-tune, namely 

the width n of the context window and number of previous phonemes, P, to be used in 

phonemic feedback. 
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7.2.2 Table Look-Up I: A Simple Look-Up Procedure 

This method "vas proposed by Weijters (1991) who drew the conclusion that his simple 

look-up procedure is superior to NETtalk (Sejnowski and Rosenberg 1987). The first 

step is to create a look-up table from a training set containing n-grams (string of n letters, 

n odd), their corresponding phoneme ( s) for the middle letter of n-gram, and their 

frequencies in the training data. One n-gram is produced for each letter of the input, 

with each letter serving in turn as the centre of the n-gram. To obtain the pronunciation 

for an input string, we search for the closest fit of n-grams, i.e., those with the highest 

matched value between the n-grams of the input and those of the pre-compiled look-up 

table. 

Weight [1. .7J := 1,4, 16, 64, 16, 4, 1 
MatchValue := 0 
for i : = 1 to 7 do 
begin 

if windowL [iJ = windowT [iJ then 
MatchValue 

end if 
end for 

MatchValue + Weight[iJ 

The matched value indicates the similarity between a n-grams of an input and an-gram 

of a look-up table. The matched values is calculated as in the example pseudocode (i.e., 

n = 7, so-called heptagram) above. 

Here, the heptagram in a look-up table is referred to as windowL and the heptagram in an 

input is referred to as windowT. The nth letter in windowL is referred to as windowL [nJ . 

To clarify the look-up procedure, we explain by giving an example of the heptagram 

ENDROTH from the word ABENDROTH. The heptagram INDROTH from the word 

LINDROTH is found to be the closest fit. The algorithm determines the MatchValue 

between the heptagrams ENDROTH and INDROTH to be: 

o --r- 4 + 16 64 + 16 4 + 1 = 105 

In the table the middle grapheme of INDROTH has been transcribed as the phoneme /R/. 

Thus, the middle grapheme in ENDROTH is assigned to the phoneme /Rj. 

After matching, the phonemes of the closest-fit n-grams are concatenated to form the 

pronunciation of the word. In the case that the closest-fit n-grams are tied and corre­

spond to different phonemes, the phoneme that occurs most frequently will be chosen. 

If the frequencies arc equal, the first one of the ti(~d phonemes is chosen arbitrarily. 

Weijters actually used a wide variety of weight sets and window sizes, but results did not 

differ too much for the clifkrent choices. l'ctble 7.1 is an example of 15 different weight 
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"\Vindow positions and corresponding weights % phonemes 
1 2 3 4 5 6 7 8 9 10 11 correct 

0 0 0 0 0 1 0 0 0 0 0 51.25 
0 0 0 0 1 4 0 0 0 0 0 69.39 
0 0 0 0 0 4 1 0 0 0 0 69.40 
0 0 0 0 1 4 1 0 0 0 0 83.77 
0 0 0 1 4 16 4 0 0 0 0 86.19 
0 0 0 0 4 16 4 1 0 0 0 88.67 
0 0 0 1 4 16 4 1 0 0 0 89.68 
0 0 0 1 4 16 4 2 0 0 0 89.86 
0 0 1 4 16 64 16 4 1 0 0 90.52 
0 0 1 4 16 64 16 5 1 0 0 90.60 
0 1 4 16 64 256 64 17 4 0 0 90.45 
0 0 4 16 64 256 64 16 4 1 0 90.81 
0 0 4 16 64 256 64 17 4 1 0 90.82 
0 0 16 64 256 1024 256 64 16 4 1 90.86 
0 0 16 64 256 1024 256 65 16 4 1 90.88 

TABLE 7.1: The percentage of phonemes correct for different values of 15 weight sets 
on a ll-grarn window. 
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sets on a ll-grapheme window size, reported with the percentage of phonemes correct 

on the test data. 

7.2.3 Table Look-Up II: Table Look-Up with Defaults 

Van den Bosch and Daelemans (1993) describe a simple table look-up procedure with 

some default tables that are invoked in the case of matching failure so as to improve 

generalisation ability. During table construction, all unambiguous one-to-one letter­

to-phoneme mappings are found and stored in the 0-1-0 subtable. Then, the width 

of the letter window is expanded on the right by one character, and all unambiguous 

0-1-1 patterns found and stored in the 0-1-1 subtable, excluding those patterns already 

in the 0-1-0 subtable. Then, the window width is expanded on the left by one character 

and the procedure repeated. The process of expanding the window on right or left and 

storing all the patterns that have not been stored in the earlier table continues until 

all patterns in the training set are compressed in the look-up table. In this work, this 

occurs with a 10-1-10 window. Additionally, two default tables are assembled to provide 

generalisation ability. The first default table, referred to as the best-guess table, contains 

all occurring 1-1-1 patterns and their most frequently occurring phonemic mapping. The 

second table, referred to as the final-guess table, contains all letters and their most 

frequently occurring phonernic mappings. 

The conversion algorithm starts by searching for a matching letter pattern for each 

letter of an input word in the 0-1-0 subtable. Note that, if found, this is guaranteed to 
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I Left context I Focus letter Right context I Target phoneme I Subtable I 
I 

-I- U P /AH/ best guess 
P D /P/ 0-1-1 
D /D/ final guess 

D I K /IH/ best guess 
K E /K/ 0-1-1 

DIK E +++ /-/ 3-1-3 

TABLE 7.2: Example of the retrieval for the pronuIlciation of the word UPDIKE. 

be unambiguous. If no pattern is matched, each (single-letter) pattern is extended 

to a 0-1-1 pattern and the 0-1-1 subtable is then searched. This is repeated until 

a matching pattern with a minimal extension is found and the corresponding letter­

phoneme mapping is returned. If no match can be found, the best-guess table is scanned 

to return the 'best' mapping. If table look-up fails again, the default phoneme for that 

letter from the final-guess table is returned. Finally, all phonemes are concatenated to 

create the pronunciation of the word. 

From the example in Table 7.2, an unambiguous pattern with minimal context is searched 

for each focus letter. Plus symbols represent spaces and blank spaces mean no left or 

right context. In the case of the first letter (U) and the fourth letter (I), no pattern in 

subtables is matched. Thus, the algorithm searches for 1-1-1 pattern in the best-guess 

table. When the best-table retrieval fails in the third letter. the corresponding phoneme 

of 0-1-0 pattern for letter D in the final-guess table is returned. 

7.3 Re-Implementation Details 

The re-implementation of three data-driven methods: PbA, Table look-up I, and Table 

look-up II, was programmed in Python version 2.3.4 running on \iVindows XP using 

a PC with 2.66 CHz Intel Pentium 4 and 1 CI3 RAM. For the CART method only, 

the source code was provided and run on a different computer (see Section 7.3.2). The 

re-implementation details of three methods are described below, including how to run a 

CART program. 

7.3.1 PbA 

The re-implementation of multi-strategy PbA ,vas programmed in Python 2.4, as details 

in Chapter 3. Prior to selecting a subset of pronunciations for subjective testing in the 

next chapter, pronunciations were produced for all names in the dictionary. This served 

as the objective evaluation. It is, of course, essential that these pronunciations are 

for 'unknown' words (i.e., 'unseen' in the sense of not being available to the analogical 
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inferencing process). For PbA, this is easily achieved using the very simple leave-one-out 

strategy. 

7.3.2 CART 

The source code for CART was developed by Vincent Pagel (Faculte Poly technique 

de Mons) and Kevin Lenzo (Carnegie Mellon University, USA) (Pagel 2005). The 

programs were implemented in C and Perl. The package, which was compressed in 

a file ID3_GPL050913. tar. gz, consisted of two parts: programs for alignment and 

programs to build and run a decision tree from an aligned corpus. Since the data 

we used were already aligned using the algorithms of Damper et al. (2004), the second 

part of the packc'1ge only was used here. VVe run these programs on RedHat Linux 6.2 

using a PC server with 650 MHz Intel Pentium III and 512 MD RA~vl. The vector file was 

automatically built from an aligned dictionary using the file ali2vecid3. pl. Then, this 

vector file was fetched into another program to build a decision tree. To run a decision 

tree, the package provided a program to evaluate using 10-fold cross validation, namely 

tenfold_crossvalid. pl. There are three parameters to fine-tune the performance, 

which are the number of letters on the left and right context, and phonemic feedback 

(as mentioned in the previous section). 

Again, it is obviously important that the pronunciations used in the subjective tests 

are 'unseen'. To ensure this, we trained and tested the trees using leave-one-out on 

the entire set of dictionary words (52,911 names, see Section 7.4 below). This served 

as the objective evaluation of CART. To evaluate using leave-one-out, the original 

10-fold cross validation file was modified. Leave-one-out was enormously expensive 

computationally (approximately one month elapsed time) since the trees had to be 

rebuilt over 50,000 times. This was done with parameters n = 9 and P = 3, which were 

the best performing in a prior lO-fold cross-validation. 

7.3.3 Table Look-Up I 

The re-implementation of a Table look-up I ,vas programmed, following the paper of 

VVeijters (1991). In this work, a heptagram structure (window size, n = 7) ,,'as used 

with the weight vector of (1, 4, 16, 64, 16, 4, 1). The other ::oet::o of weight vectors and 

n-grams ::otructure were not used due to the fact that the re::oults presented in his work 

did not significantly differ. 

To evaluate the performance using leave-one-out, a note was nwde during table compi­

lation of those heptagrams which were unique to a particular word and that word was 

stored with the heptagram. Then, when finding a pronunciation for a particular word, 

heptagrams unique to that word were removed from the table look-up table. Frequencies 
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of non-unique heptagrams of that particular word were left unaltered because of the 

computational difficulty of adjusting them to account for the separate removal of over 

50,000 entries. This was done for all 52,911 names in the dictionary, and also served as 

the objective evaluation of Table look-up 1. 

7.3.4 Table Look-Up II 

The re-implementation of a Table look-up II was programmed, following the paper of 

van den Bosch and Daelemans (1993). In the table-construction step, we found that 

there were no unambiguous patterns stored in the 0-1-0 subtable. All the patterns in 

the training are compressed in the look-up table at 10-1-10 window. Figure 7.2 displays 

the magnitudes of the subtables in this model. The 2-1-2 subtable stored the majority of 

the unambiguous patterns and the number of stored patterns gradually decreases when 

window widths were extended. 

VI 

E 
~ .. 
Co ..... 
0 ... 
CIl 10000 .!l 
E 
:::l 
Z 

Table pattern 

FIGURE 7.2: Table magnitudes of look-up subtables in re-implementation of van den 
Bosch and Daelernans (1993). 

As with the other data-driven methods, it was important that pronunciations corre­

sponded to 'unseen' words. This was achieved as follows. During table creation, the 

specific words used to derive each pattern (i.e., table entry) was noted. If the pattern 

was unique, in the sense that only one word exhibited that pattern, this pattern was 

ignored in deriving a pronunciation for that unique word. This was the only adjustment 

made. Strictly, the frequency of the mappings ought also to be reassessed, but for 

simplicity (and because we believe it had little effect on results) this was omitted. Again, 

this was done for all 52,911 names in the dictionary, and also served as the objective 

evaluation of Table look-up II. Note that no unambiguous 0-1-0 patterns were actually 

found in CMUDICT. 
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PbA 
CART 61.45 90.67 
Table look-up I 58.55 91.26 
Table look-up II 61.89 92.14 

TABLE 7.3: Evaluation of prollunciations of 52,911 proper names by four automatic 
methods in terms of words correct and phonemes correct. 

7.4 Material 
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The test data were a list of 52,911 proper names from CMUDICT, which were previously 

described in Chapter 6. The listed pronunciations were taken to be the correct 'gold 

titandard' for all four data-driven methodti. 

7.5 Experimental Results 

In this section, we present the result;,; obtained with the four automatic pronunciation 

approaches as deticribed in the previous tiection. The results were reported in terms of 

words correct and phonemeti correct. The performances of all four methods were evalu­

ated using leave-one-out. Taking the dictionary pronunciations as correcL resultti were 

obtained by ticoring the automatically-derived pronunciations against the pronunciation 

in the name list. Ati Damper et al. (1999) mentioned, words correct iti a more stringent 

measure of pronunciation accuracy and tihould be used in strong preference to phonemes 

correct. Thuti, the percentage of word accuracy wati used for analysis and discussion. 

Ati can be seen in Table 7.3, PbA achieved the highetit percentage of words correct 

and percentage of phonemes correct. The difference between word accuracy for PbA 

and for the next best method (Table look-up II) wati enormously statistically significant 

(binomial tetit. z rv 30.74, p rv 0). Ati expected, Table look-up II achieved enormously 

better performance than Table look-up I because of the extension to include default 

tables. The difference between word accuracy for Table look-up II at 61.89% and for 

CART at 61 was apparently small, but is in fact titatistically significant (binomial 

test, z rv 2.07, p rv 0.04) when dealing with tenti of thousands of words. Note that the 

phonemes correct measures do not align with words correct. Table look-up I achieved 

better phonemes correct score compare to CART but was far poorer in terms of words 

correct (binomial test, Z rv 13.54, p rv 0). This indicated that phoneme errors are 

not independently distributed across wordti, and iti another reason for preferring words 

correct as our measure of dl(x:tiveness. Note finetlly that, for simplicity. ;,;tretiS assignment 

wetS ignored in thi8 objective evaluation. 
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7.6 Conclusion 

vVe have compared four automatic, data-driven methods for proper name pronunciation 

within a text-to-speech system for English, namely: pronunciation by analogy (PbA), 

decision trees (CART), and the table look-up method by vVeijters (Table look-up I). 

and the table look-up method by van den Bosch and Daelemans (Table look-up II). 

These four data-driven methods are intended as candidates for the back-up strategy 

used when dictionary look-up fails in a practical TTS system. The comparison was 

primarily objective, on 52,911 names in CMUDICT. The best result was 68.35% words 

correct, achieved using PbA. This was significantly far better than the results of the 

other three methods. From best to worst in terms of words correct, the three methods 

are ordered Table look-up II, then CART, then Table look-up I, 

This experiment has contributed to an understanding of why PbA is better on this 

task. The results are a good support to the hypothesis of Daelemans et al. (1999), 

mentioned earlier in Chapter 3, that "keeping full memory of all training instances is at 

all times good idea in language learning". Furthermore, it is a good empirical evidence 

of the advantage of explicit analogy. The other three pronunciation methods are implicit 

analogy, in which phonological knmvledge from dictionary is implicitly extracted, and 

converted into a knowledge-based representation i.e., decision trees and tables in this 

case. During the learning process, implicit analogy tends to compress the redundancy 

into small descriptions of the original data. Some exceptions or low-frequency data 

may be discarded since the method tends to generalise and abstract the training data. 

The exceptions of proper names seem to be rare, the rare events are characterised as 

belonging to the LNRE class of distributions. To obtain high accuracy in learning NLP 

tasks, carefully handling of the LNRE phenomenon is essential (:yrarchand and Damper 

2007). To generate a pronunciation of an unknown word, PbA implicitly exploits the 

knowledge from the dictionary itself, while the other three methods use their compress 

representation. Thus, the exceptions are kept at all times in case of PbA. That may 

be the reason why PbA performance is much better than that of the other methods. 

Moreover, PbA does not use a fixed-size window on the input text. Instead, substring 

matching in PbA uses variable-size chunks. vVe believe that this is another advantage, 

since different-size chunks will be appropriate in different transcription situations. 

It is also interesting to assess the acceptability of the pronunciations to potential users 

of a TTS system. Therefore, subjective evaluation was carried out. The results is 

presented in the next chapter. To reduce the amount of test data for subjective testing, 

Table look-up I was not used in subjective evaluation, because it achieved the lowest 

words accuracy and shared a similar concept to Table look-up II, 
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Subjective Evaluation 

8.1 Introduction 

Numerous studies have proposed various approaches to the problem of proper name 

pronullciation and have reported the results in difiEmc'nt ways. J\!Iost studies evaluate the 

performance objectively in terms of word accuracy, by comparing the pronunciations 

generated by their models with those in some data set taken as a 'gold standard'. 

However, the pronunciation should also be acceptable to users of the TTS system, which 

obviously includes members of the general public with minimal exposure to synthetic 

speech. Thus, subjective evaluation is also important, particularly for proper names, 

which can be pronounced differently depending on the linguistic background of the 

speaker and other cultural factors. Because subjective evaluation is difficult compared 

to objective evaluation, and cannot deal v"ith large numbers of names, there have been 

few attempts to do this (but sec Font Llitjos and Black 2002 who have conducted informal 

subjective evaluation of proper name pronunciations over the internet). 

In this chapter, the acceptability of the differently-produced pronunciations is assessed 

by potential users of a TTS system. The comparison here is a subjective counterpart 

to the objective evaluation introduced in the previous chapter, Four different methods 

of proper name pronunciation for English TTS synthesis is compared. The first uses 

a dictionary of rnanually-supplied pronunciations, containing a list of proper names 

from CNIUDICT. The dictionary is referred to as a 'method' in this chapter because 

it is generally the primary strategy in any practical TTS system. The remaining three 

methods are different data-driven approaches that use the dictionary of (known) proper 

names to infer pronunciations for unknown names; these are candidates as secondary or 

back-up strategies for those cases where dictionary matching fails. The three candidate 

techniques studied are: PbA. CART, and the table look-up method II. The description 

of the dictionary and these techniques have already been presented in the previous 

chapter. 
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Table look-up I, from the previou8 chapter, was not chosen for several reasons. First, 

it achieved the lowest word accuracy among the four data-driven methods presented in 

Chapter 7 and, 8econd, we need to reduce the number of te8t data used for test stimuli. 

Both table look-up method8 8tudied in the objective te8ts share the 8ame concept. So, 

it was not felt necessary to include both. 

The remainder of this chapter i8 structured as follows. Section 8.2 details the li8tening 

te8ts that were performed to evaluate the acceptability of the pronunciation8 produced by 

the dictionary and by the three data-driven techniques, including the means of 8electing 

a rea80nable number of names to test from among the large number (> 50, 000) available 

in the dictionary. Section 8.3 present8 the re8ult8 of the 8ubjective evaluation. Section 8.4 

discu88e8 and conclude8. 

8.2 Experimental Design 

The listening tests were de8igned to a8sess the acceptability of the proper name pro­

nunciations produced by the four methods (manually-specified via C:YIUDICT hereafter 

'CMU', and the three different data-driven methods) to potential user8 of a text-to-speech 

system for English. Although 8eparately evaluated a8 such, we do not intend the 

dictionary pronunciation8 to be considered a8 exactly equivalent to the data-driven 

pronunciation8 for two rea80ns. First, dictionary look-up would be used in a practical 

system in conjunction with one or other data-driven method (in the way of a prirnary 

and a back-up strategy). Second. the data-driven methods U8e the dictionary a8 a 

knowledge base from which to make inference8 about an acceptable pronunciation of 

'unknown' names, 80 the two (dictionary and automatic inference) are clearly neither 

equivalent nor independent. 

8.2.1 Selection of Test Stimuli 

It i8 obviously not practical to expect listener8 to rate all 52,911 pronunciation8 in our 

dictionary, so 80me principled way of selecting among the large number of names to 

produce a much 8maller sub8et suitable a8 te8t stimuli is required. Thi8 is not especially 

easy to do for two main reason8: 

1. In spite of the CMU pronunciation8 being taken as the 'gold standard' for the 

automatic inference of pronunciation8 using the three data-driven methods, we did 

not wish to assume that the dictionary pronunciations are actually correct. (There 

are, in fact, some very obviou8 error8 in the dictionary.) The CIVIU method is to 

be assessed via the li8tening tests on the same basis a8 FbA, CART and TLU. 

This means that we cannot identify 'error8' in pronunciation as such. Rather, 
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Pattern N umber of cases 

All pronunciations same, zero disagreement C(4,0) = 1 
Three pronunciations same, remaining 1 different C(4 , 1) =4 
Two pronunciations same, remaining 2 different C(4, 2) =6 

Two pronunciations same, remaining 2 same CJ}~ = 3 

Zero pronunciations same, zero agreement C(4,4) = 1 

I TOTAL 15 

T A BLE 8. 1: Possible patterns of disagreement/ agreement in pronunciations produced 
across the four methods. The number of "two pronunciations same, remaining 2 same" 

cases is reduced by a factor of 2 because of symmetry. 

all different. 3213. 

Table=CART. 938, 1 

CMU=CART. 1100. 

only PbA different. 
3.34% 

5.87% 

PbA=CMU, 2139, 4.04% 

only CART different. 3591. 
6.79% 

same. 25020. 47.29% 

FIGURE 8.1: Pattern of (dis)agreement across the four methods. 
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pronunciations are to be treated as more or less acceptable to potential users. So 

we cannot use any notion of error in selecting stimuli for presentation to listeners . 

2. Since we have four methods of arriving at pronunciations , the number of possible 

patterns of disagreement/agreement across the four is quite large. In fact , con­

sideration of the combinatorics shows that there are 15 different possible patterns 

(Table 8.1). Figure 8.1 shows the proportion of pronunciations exhibiting each of 

these different possible patterns of (dis)agreement. If we were to select names as 

stimuli at random from within the total of 52,911, there would b e no control of the 

pattern of disparity across methods, rendering meaningful analysis of the results 

virtually impossible. It seems preferable to focus on just one of the patterns of 

(dis ) agreement, i.e., just one of the rows of Table 8.1. 

For these reasons, especially 2), we decided to use as stimuli a randomly-sampled subset 

of those names on which only one of the four methods disagreed. This corresponds 
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to the second row of Table 8.1 for which there are 4 cai:3ei:3 listed, one for each of 

the 4 methods. This is the only pattern of (dis )agreeInent giving clear separation 

of methods. Those pronunciations for names in the sampled subset which were pro­

duced by just one of the four methods (the others agreeing) we will henceforth call 

one-of-a-kind. Those pronunciations on which the remaining 3 of the 4 methods (i.e., 

the rest) agree we V'.rill henceforth call rest. The reasoning behind this choice is that, 

given that we have no strong bai:3is for deciding what an error is, name pronunciationi:3 

on which 3 out of 4 methods agree are likely to be acceptable to listeners, whereas the 

corresponding one-of-a-kind pronunciationi:3 are likely to be representative of the wori:3t 

pronunciations made by the particular method delivering the deviant output. 

Thus, we randomly i:3elected 150 namei:3 ,vith one-of-a-kind pronunciations for each 

method, a total of 600. For example, we i:3elected 150 names from the 3,591 namei:3 

for which CART produced a pronunciation at variance with the other three methods, 

which agreed (see 'only CART diHerent' in Figure 8.1). As well as these 600 namei:3 

with one-of-a-kind prollunciationi:3, we also had the i:3ame set of 600 names with a 

corresponding rest pronunciation, a total of 1200 stimuli. 

8.2.2 Synthesis 

Speech output was by diphone synthesis using Festival, a public domain system intended 

for speech synthesis research available from http://www.cstr.ed.ac . uk. To achieve 

good pronunciations, it was necessary to syllabify the words and add stress. Syllabifi­

cation was done using the Festival function lex. syllabify. phstress (PHONELIST). To 

obtain stress patterns, we passed the spelling patterns through Festival's letter-to-sound 

rules (Black et al. 1998) and then manually transferred the stress pattern of the output 

to the 1200 stimuli. The voice used was male KAL. 

8.2.3 Test Conditions 

Subjects listened to the 1200 synthesised names over headphones in the soundproof room 

in our laboratory at Southampton. vVe decided firmly against online internet-based 

evaluatioll, as used by FOllt Llitjos alld Black (2002), because of the inherent lack of 

experimental control with that approach. Subjects saw the naInes printed on a sheet as 

well as hearing the synthesised version. They were instructed to rate their opinions on 

the quality of the pronunciations on a five-point scale, according to the mean opinion 

score (MOS) (ITU-T Rec.830 1996) as follows: 

1 Unacceptable, no one would ever pronounce this name like this 

2 Poor, very few people would recognise the name frOIn this pronunciation 
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3 Acceptable, some people would recognise this name 

4 Almost correct, most people would recognise this name 

5 Correct, almost everybody would be able to recognise this name 

Listeners wrote their ratings next to the printed names. They were given printed 

instructions at the outset. Subjects were informed that apostrophes in names (e.g., 

"O'Connell") had been removed. They were further told that they would hear one name 

every two seconds, and be given a short break at the end of each page of (30) printed 

names, after which they should press a button to signal that they were ready to continue. 

They were asked to assess the pronunciations as if they had been produced by a telephone 

directory assistance service. 

The complete experiment took some 70-80 minutes per subject. It was quite demanding 

of listeners both in time and concentration. \iVe therefore feel that the number of names 

selected for the experiment (600 one-of-a-kind and 600 Test) is eHectively a practical 

maximum. 

8.2.4 Subject Profiles 

Since MOS values generally become more stable as the number of listeners increases, 

a reasonably large pool of subjects should be used, balanced by the time and cost 

of testing; Clark (2005) suggests using at least 16 subjects. Accordingly, 24 listeners 

(15 male, 9 female) took part in this study. All were students at the University of 

Southampton, and native speakers of British English, aged between 18 and 31 years. Of 

the 23 subjects who responded to a prior question about their familiarity with synthetic 

speech (see Appendix C), 2 were "very familiar", 14 were "somewhat familiar", and 

7 were "not at all familiar". (Note that one of the 24 subjects omitted to answer this 

question.) Listeners were paid a small sum (£20 each) for their participation. 

Subjects were warned that they would hear 'Americanised' names. vVe were well aware of 

the disparity between our subjects' version of English (British) and that of the materials 

to which they were exposed (American English) but this was unavoidable. There are 

no corresponding materials easily available for British English, and we did not have 

access to a pool of American English subjects. \Ve do not believe this had a serious 

effect: young educated British people generally have considerable exposure to popular 

American culture. 
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8.3 Experimental Results 

In this section, results in terms of MOS values for one-of-a-kind pronunciations and rest 

pronunciations (on which 3 of the 4 methods agree) are presented. Given the justifica­

tion in Section 8.2.1 for the selection of names to test, it is reasonable to view high 

lVIOS values for one-of-a-kind pronunciations as indicative of the overall quality of a 

method, since they are likely to be representative of the worst pronunciations produced 

by that method. Things are not so simple, however, for the Test pronunciations. Here, 

the pronunciations are representative of the general quality of the 'opposition', i.e., the 

three competitor methods. So high MOS values for the rest pronunciations can be 

taken to indicate that the corresponding method is problematic, or at least inferior to 

the opposition. In other words, if a particular method produces pronunciations which 

are rated highly by subjects but which are different to pronunciations produced by the 

remaining methods, these latter being rated poorly by listeners, then there is a sound 

basis for considering this method to be superior to its competitors. It is necessary 

to emphasise that we are referring here to relatively high/low values across methods. 

We expect the one-of-a-kind 1/10S values to be relatively lower than the Test values 

within methods, just because the former are likely to be representative of the worst 

pronunciations produced, as argued previously. 

Before describing the results quantitatively, some example pronunciations are highlighted 

for purposes of illustration. Table 8.2 shows the worst and best pronunciations, both 

one-of-a-kind and rest, in terms of obtained MOS values for each of the four competitor 

methods. (The reader should note that here the 'rnean' is for a particular pronunciation 

across all 24 listeners.) The CYIU phoneme symbols are used here in preference to those 

of the International Phonetic Alphabet (International Phonetic Association 1999). Not 

only do these examples give an idea of the range of quality of pronunciations produced, 

there are also some interesting trends evident. The expectation that the one-of-a-kind 

MOS values should be generally lower than the Test values within methods is con­

firmod, rtt Imst for these best /worst pronnncirttions. The relatively high 1V10S values for 

one-of-a-kind coupled with relatively low values for rest pronunciations for CMU indicate 

that the dictionary pronunciations are generally superior. Thii::i ii::i to be expected, since 

the dictionary forms the 'gold standard' knowledge base from which the data-driven 

methods infer pronunciations. There is no obvioui::i basis on which the inferential process 

could improve on the dictionary pronunciat ioni::i. 
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(a) 'Worst one-of-a-kind 

I Method I name one-of-a-kind pron. I MOS rest pron. I MOS I 
CJVIU Freda FREHD 1.63 FREHDAH 2.88 
PbA Czech CHAHHH 1.21 CHEHK 4.92 

CART Joey JHAAIY 1.29 JHOWIY 4.75 
TLU Borchard BERAARD 1.58 BERSHAARD 4.00 

(b) Best one-of-a-kind 

CART 
TLU 

HHAEMLEHT 4.96 
Stasney S T AE Z N IY 4.83 

Imperato IH:vIPERRAA TOW 4.83 

HHAEMLAHT 
ST AESNIY 

IHMPERAATOW 

4.92 
4.50 
4.38 

(c) vVorst Test 

I :Vlethod I name one-of-a-kind pron. , MOS" 'rest pron. I MOS I 
CMU Tutor TUWTER 4.67 T AHTER 1.50 
PbA Dupre DAHPR 1.96 DAHPER 2.33 

CART Goucher GAWCHER 3.96 GAWKER 2.42 
TLU Birr BR 2.25 TIER 1 2.25 

(el) Best Test 

I :~'/lethod , name one-of-a-kind pron. I MOS rest pron. I MOS I 

CMU Fossett I FAASAHT 4.83 F AASEHT 4.83 
PbA Pandora PAANDAORAH 4.46 PAENDAORAH 4.92 

CART Melanie MEHLAANIY 4.79 MEHLAHNIY 4.96 
TLU Terri TERRIY 3.67 TEHRIY 4.88 

TABLE 8.2: Example pronunciations. showing the worst and best pronunciations, both 
one-of-o-kind and rest in terms of obtained MOS values for each of the four competitor 

methods. 

8.3.1 Results for One-of-a-Kind Pronunciations 

General statistics of :vIOS values for these pronunciations are listed in Table 8.3. (Note 

that here the 'mean' is for a particular method across all one-of-a-kind pronunciations 

and all 24 listeners.) MOS values exceed 3.7 (i.e., tending towards 'Almost correct') 

indicating that all methods gave reasonable pronunciations. As expected, dictionary 

pronunciations have a higher MOS than any of the automatically-inferred methods. 

From best to worst in terms of MOS of one-of-a-kind pronunciations, the data-driven 

methods are ordered PbA, then CART. then TLU. 

Since our data are not interval data but ordinal and, as a consequence, can not be 

normally-distributed, and because many statisticians believe that means are an inappro­

priate measure of central tendency for ordinal data (although the MOS measure already 

violates this belief) we believe non-paralnetric statistical analysis (Siegel and Castellan 

1988, p.75-83) is appropriate. Specifically, we have used the \Vilcoxon signed-rank test. 
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I Mean I Std. Deviation I 

CMU 4.0372 0.5443 
PbA 3.8319 0.6760 
CART 3.7790 0.7285 
TLU 3.7305 0.7157 

TABLE 8.3: ?vlean opinion scores for subjective evaluation by 24 listeners of 600 Olle­
of-a-kind pronunciations. 

I Subject I CMU I PbA I CART I TLU I 

1 1 2 3 4 
2 1 2 4 3 
3 1 2 3 4 
4 1 2 4 3 
5 1= 1= 3 4 

6 1 2 4 3 
7 1 3 2 4 

8 1 2 3 4 

9 1 3 2 4 

10 1 2 3 4 

11 1 3 4 2 

12 1 2 3 4 

13 1 2= 2= 4 

14 1 3 2 4 
15 1 2 3 4 

16 1 2 3 4 

17 1 4 2 3 
18 1 2 4 3 
19 1 2 3 4 

20 1 2 3 4 

21 1 4 3 2 

22 1 2 3 4 
23 1 4 2= 2= 
24 1 2= 4 2= 

TABLE 8.4: Rankings of the four methods for the one-of-a-kind prollunciation by the 
24 subjects according to MOS values. The equals sign 'J indicates tied rankings. 
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Table 8.4 shows the order in which each of the 24 listeners ranked the one-of-a-kind 

pronunciations produced by each of the 4 methods according to the corresponding 

MOS values. It is very striking that all 24 consistently rated the CMU pronunciations 

first. The data-driven methods have been ranked fairly consistently in the order PbA, 

CART, TLU; 10 out of 24 listeners ranked the methods in this order. Table 8.5 shows 

the results for the \Vilcoxon signed-rank test applied to these data. The only significant 

differences in the opinions of the listeners are between eMU and each of the data-driven 

methods (p < 0.05, two-tailed, df = 149), with CMU superior to the others. 
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z I Sig. (two-tailed) I 

CMU-PbA -2.535 0.011 
CMU-CART -2.737 0.006 
CMU-TLU -3.268 0.001 
PbA-CART -0.366 0.715 
PbA-TLU -0.974 0.330 
CART-TLU -0.341 0.733 

TABLE 8.5: Results of \Vilcoxon signed-rank test for one-of-a-kind pronunciations. 

I Mean I Std. Deviation I 
CMU 4.0036 0.6396 
PbA 4.1975 0.4685 
CART 4.2800 0.4628 
TLU 4.2778 0.3937 

TABLE 8.6: .Mean opinion scores for subjective evaluation 24 listeners ofthe 600 rest 
pronunciations. 

8.3.2 Results for Rest Pronunciations 

General statistics of MOS values for these words are listed in Table 8.6. (The reader 

should note that here the 'mean' is for a particular method across all Test pronunciations 

and all 24 listcncrs.) As explained and justified earlier, we expect the MOS values to be 

generally higher for Test pronunciations than for one-of-a-kind pronunciations (because 

the latter are representative of the worst pronunciations produced by a given method), 

whereas relatively high MOS values for one-of-a-kind pronunciations and relatively Imv 

values for Test pronunciations for a given method are taken to be indicative of the 

quality of that method. As the table shows, MOS values generally exceed 4 (i.e.,'Almost 

correct') and there is indeed a strong tendency towards higher MOS values than for 

one-of-a-kind pronunciations. 

Comparing Table 8.6 v.rith Table 8.3 earlier, we see (as expected) an almost inverse 

or 'complementary' pattern of results. The CMU Test pronunciations have the lowest 

MOS value, with the remaining three data-driven methods ordered from lowest to highest 

as PbA, TLU, CART with the latter two almost indistinguishable. Figure 8.2 shows 

a composite plot of the variation of MOS across the four methods for both one-of-a-kind 

and Test pronunciations, making the 'complementary' nature of the results very clear. 

In interpreting this figure, readers should recall that one-of-a-kind scores are considered 

to be representative of the worst pronunciations produced by a method whereas Test 

scores are considered to be representative of the quality of pronunciations produced 

by the three competitor methods. One interesting feature is that listeners rated the 

CMU one-of-a-kind and Test pronunciations as effectively indistinguishable, meaning 

that the worst dictionary pronunciations are comparable in acceptability to some form 

of average of the three data-driven methods. This is perhaps understandable in hindsight 

as the latter take the dictionary as their 'gold standard' knowledge source for automatic 
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4.4 
4.3 
4.2 
4.1 

C/) 4 
0 3.9 
:E 

3.8 

-
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~ 
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"'-... 
3.7 
3.6 
3.5 
3.4 

CMU PbA 

------ -
~ 

CART Table 

Method 

-+- one-of-a kind 
___ rest 

FIGURE 8.2 : Composite pattern of MOS values across the four methods for both one-of­
a-kind and rest pronunciations. Scores for one-of-a-kind words for a method are taken 
to be indicative of the poorest pronunciations produced by that method. Scores for rest 
words for a method are taken to be indicative of the general quality of pronunciat ions 
produced by the three competitor approaches to that method. See text for further 

explanation. 
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inferencing. We also t ake this as indirect evidence of the quality and suit ability of the 

dictionary as a 'gold standard '. 

Table 8.7 shows the order in which each of t he 24 listeners ranked the rest pronunciations 

produced by each of the 4 methods according to the corresponding MOS values. As 

expected, these rankings are almost a complete reversal of those for the one-of-a-kind 

pronunciations in Table 8.4. 

Table 8.8 shows the results for the Wilcoxon signed-rank test applied to these data. 

There are highly significant differences between G:VIU and each of t he data-driven 

methods, with CMU superior to the other techniques (p < 0.05 , two-tailed t est, df = 149) , 

and marginally significant differences between PbA and the remaining two data-driven 

methods (p rv 0.1). This is taken as suggestive evidence for t he superiority of P bA as 

a back-up strategy. 

8.4 Conclusion 

Four methods for proper name pronunciation within a TTS system for English were 

compared. These were (1) a manually-compiled dictionary (method CMU) and (2) three 

automatic, data-driven methods for proper name pronunciation, namely: pronunciation 

by analogy (PbA) , a decision tree method (CART), and a table look-up method (TLU). 

These four methods are not intended to be viewed as entirely free choices for deployment 
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I Subject I CMU I PbA I CART I TLU I 
1 4 3 2 1 

2 4 3 2 1 

3 4 3 1 2 

4 4 3 2 1 

5 4 3 1 1 

6 4 3 2 1 

7 4 1 2 3 

8 4 3 2 1 

9 4 1 3 2 
10 4 3 1 2 

11 4 3 2 1 

12 4 3 2 1 

13 4 3 1 2 

14 4 3 2 1 

15 4 3 2 1 

16 4 3 1 2 

17 4 3 2 1 

18 4 2 3 1 

19 4 3 1 2 

20 4 3 1 2 
21 3= 3= 2 1 

22 3 4 1 2 

23 4 1 2 3 
24 4 1 2 2 

TABLE 8.7: Rankillgs for the four methods for the rest pronunciations the 24 subjects 
according to ;vIOS values. The equals sigll indicates tied rankings. 

Z Sig. (two-tailed) 

CM"(>PbA 2.370 0.018 
C~l1.J-CART -4.566 0.000 
GMU-TL1.J -4.108 0.000 
PbA-CART 1.620 0.105 
PbA-TLU -1.605 0.109 
CART-TLC -0.099 0.921 

TABLE 8.8: Results of vVilcoxon signed-rallk test for rest pronunciations. 

in a practical TTS system; rather we envisage that the dictionary method will form the 

primary strategy whereas one of the data-driven methods will constitute the back-up 

strategy used when dictionary look-up fails. The comparison was primarily subjective, 

on the basis of 24 listeners' opinions of the acceptability of so-called one-of-a-kind and 

rest pronunciations. The fonner, in which one particular method of the four produced 

a pronunciation which differed from that produced by the other three, was expected 

to be representative of the worst pronunciations that that particular method would 

produce. For each one-of-a-kind pronunciation, there is a corresponding so-called rest 

pronunciation, being that produced by the remaining three competitor methods. These 



Evaluation 89 

were expected to be generally better (in terms of acceptability) than the one-of-a-kind 

pronunciations, and also representative of the quality of pronunciations that competitor 

methods could produce. So a pattern of relatively high one-of-a-kind scores and rela­

tively low rest scores is taken as an indication of high performance for a given method. 

Listeners rated one-of-a-kind pronunciations somewhere around 'Almost correct', with 

an MOS close to 4, or just below for all four methods, whereas rest pronunciations 

were rated somewhere around 'Almost correct' or just above (see Figure 8.2). 'Wilcoxon 

signed-rank tests showed highly significant differences between C::.\lU and the data-driven 

methods, for both one-of-a-kind and rest words. The direction of these differences was 

such as to show that the CMU pronunciations were markedly superior. This was to 

be expected as the dictionary forms the knowledge base for automatic inference of 

pronunciations by the data-driven methods. Hence, there is no reason to expect the latter 

to improve systematically on the dictionary pronunciations. For the rest pronunciations, 

there was a marginal superiority of PbA over the CART and TLU methods. This 

mirrored the objective evaluation. No such superiority was seen for the one-of-a-kind 

pronunciations. 

The issue for the assessment methods probably opens the debate whether subjective test­

ing is sCllsitive cnough to differelltiate between ::;ystems. As mentioned by Sproat (1997, 

p. 230), a listener usually comments on speech output in the form of rating scales such 

as MOS in subjective assessment. Thus, we asked listeners to judge the acceptability of 

the pronunciations on a five-point MOS scale. The phonetic transcriptions produced by 

each method were piped through Festival, producing waveforms for the listening test. 

Pronunciation methods were hidden from the subjects. \Ve have 24 subjects in this 

experiment, which is a reasonable number to make MOS values more stable. The results 

showed that our subjective testing failed to find a strong distinction between the three 

data-driven methods. It is an open question ,,;hether this is because the methods are 

subjectively indistinguishable or because our testing methodology was simply insufficient 

to reveal a difference. The fact that the dictionary pronunciation emerged as superior 

suggests that the testing methodology has at least reasonable discriminative power. 
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Conclusions 

Automatic pronunciation of unknown words is a hard problem of great importance 

in speech technology. Over the past decades many researchers have tried to predict 

word pronunciations from the spelling using a wide variety of methods. The initial 

attempts were to create LTS rules by expert linguists. As the storage capabilities of 

a computer increase, dictionary look-up methods have been proposed as a primary 

strategy. A secondary strategy is required when finding a word in the input which is 

not in the dictionary. A data-driven approach, as studied in this thesis, is an alternative 

approach that is increasingly being used as the method of choice in TTS applications. 

This thesis focuses on a data-driven approach namely pronunciation by analogy (PbA) 

for generating the pronunciation of unknown words. To date, rnany variants of PbA have 

been proposed and evaluated, mostly for common words in English. PbA is selected for 

this study because of its well-documented superior performance in the Damper et al. 

(1999) evaluations. The goal of this thesis is to study PbA performance on many 

important aspects for use in speech synthesis applications. The issue of proper name 

pronunciation is focused on for the most part. The multilingual aspect of PbA is also 

studied. This chapter summarises the work presented in this thesis and proposes some 

future directions. 

9.1 Summary of Work 

As the classical version of PbA (Dedina and Nusbaum 1991) mentions, there are many 

advantages of using PbA in text-to-phoneme conversion. First, it eliminates the need for 

expert linguists to generate LTS rules that may contain errors. Second, it is a language­

independent approach; by changing the dictionary, PbA can be used with different 

languages. The performance of PbA depends mostly on the degree of consistency 

of relations between orthographic and phonemic patterns. This method rnay solve 
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the problem of proper name pronunciation. In this thesis, the aim is to explore the 

performance of PbA in respect of the abilities referred above. Other aspects of PbA 

that may help to improve performance were also studied. 

Chapter 1 introduced the principles of speech synthesis systems and text-to-phoneme 

conversion. The problem of automatic pronunciation of unknown words, particularly 

proper names, was emphasised. 

The history of text-to-phoneme conversion techniques was reviewed in Chapter 2. These 

techniques were categorised and presented into three main approaches. A data-driven 

approach, which is the inspiration of the PbA method, was mainly focused upon. 

Pronunciation models for proper names were also reviewed. 

In Chapter 3, PbA was reviewed in full detail with examples of each process involved. 

PbA exploits the phonological knowledge implicit in the system dictionary of known 

words to infer a pronunciation for an unknown word by computing different ways 

of assembling the input word from fragments of partially-matching letter substrings 

and their corresponding partial pronunciations, and choosing between these candidate 

pronunciations according to some objective criterion. Many variants of PbA were 

presented and discussed with respect of their performance. The main differences of 

each variant were also reviewed. 

The problem of syllClbificCltion was introduced in Chapter 4. A review of previous vmrk 

on automatic syllabification was summarised. The concept of syllabification by anal­

ogy (SbA) was introduced. The results when applying a series model of syllabification 

and pronunciation, (S+P)bA, \vith proper names was presented and discussed. 

Chapter 5 fulfilled the multilingual potential of PbA. The difficulty of text-to-phoneme 

conversion on different languages was addressed. PbA was evaluated with 7 European 

languages using 12 different lexicons. The relationship between transcription accuracy 

and orthography in these seven languages was studied. As the size of dictionary is an 

important issue when employing PbA in a TTS system, the relationship between the 

size of lexicon and the word accuracy obtained were also presented and discussed. 

Unknown words typically include proper names or neologisrns that have not been yet 

listed in the lexicon. The issue of classification of unknown words was addressed in 

Chapter 6. In previous work PbA has been evaluated with single 'type' of dictionary: 

that is as researchers assumed that unknown words tend to be neologisms, so the lexicon 

of common words has been used only. If they focused on proper name pronunciation, a 

lexicon of proper names would be used only. Therefore, the effect of lexicon composition 

was studied to investigate the performance of PbA when inferring pronunciations with 

the lexicon that contains the same or different or mixture types of words. 

This thesis compares a number of pronunciation modelling rnethods on a proper name 

dataset. In Chapter 7, four different approaches were evaluated objectively, in which 
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inferred pronunciations were compared with 'gold standard' dictionary pronunciations. 

The dictionary itself and 3 of those 4 approaches were evaluated subjectively, in which 

listeners rated synthesised pronunciation using a 5-point scale, in Chapter 8. The results 

of objective and subjective evaluation were compared and discussed using statistical 

tests. 

In conclusion, this thesis has extended the problem of automatic pronunciation of 

unknown "lOrds in TTS applications, particularly the word class of proper names, using 

the PbA approach. The performance of PbA was investigated in various aspects. The 

experimental results show that PbA can achieve a promising level of word accuracy 

and is superior to other methods tested on the problem of proper name pronunciation. 

Finally, this thesis has shown that PbA should become the method of choice in a future 

TTS applications. 

9.2 Future Work 

Many important aspects of PbA for TTS applications have been examined. A large part 

of this thesis has been concerned with the problem of proper names. However, there are 

some aspects of PbA that should be evaluated further. Of these follmv-up studies, the 

most interesting suggestions are as follows: 

II Stress assignment. The importance of lexical stress vanes across languages. 

In English, it has been found that stress assignment has a serious eflect on intelli­

gibility (Slowiaczek 1990). Many researchers have discovered that including stress 

in letter-to-phoneme conversion helps to improve the accuracy and naturalness of 

pronunciation. Thus, lexical stress assignment is required in a TTS system to 

produce a reasonable pronunciation. In our listening tests, Festival's LTS rules 

were used for stress assignment in all cases, but it would perhaps be better to 

use a stress-assignment method particular to each pronunciation technique, e.g., 

manually-assigned for the dictionary, inferred by analogy for PbA, etc., not least 

because using a common stress assignment for the diflerent methods will contribute 

to similarity between the three data-driven methods. 

II Automatic syllabification. syllabification were included in PbA and evaluated 

the performance with proper names in Chapter 4. However, the results of the 

series model, which uses both PbA and SbA, show that this syllabification and 

pronunciation rnodel is inferior to the simple PbA. A possible way to improve 

the performance of PhA is to include syllabification manually. The comparison of 

automatic syllabification algorithms would also be worthwhile to investigate, to see 

which algorithms can improve PbA relative to our standard model. The listening 

tests should be performed again to evaluate the performance after incorporating 

syllabification and stress. 
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e Alternative ways of selecting stimuli. The procedural difficulties in selecting 

word pronunciations to use as stimuli for listening tests have been described in 

Chapter 8. The experimental design adopted here, which used one-of-a-kind and 

rest pronunciations, is by no means the only one possible, nor is it obviously the 

best. Hence, future work should explore other ways of selecting stimuli for the 

listening tests. It ,vould also be worthwhile to test a wider range of methods 

(perhaps including proprietary rules if we can gain access to a set), although the 

high costs of subjective testing and the practicalities of limiting test times to 

reasonable durations means that we can never hope to compare large numbers of 

different approaches. 

e Tests with other languages. More diverse languages and multiple dictionaries 

for each language should be studied, if the databases are available. In this thesis, 

only 7 European languages have been studied. It would be interesting to find 

out how PbA works in languages other than these, particularly those that do not 

use rornan orthography for their writing system. This might confirm the effect of 

lexicon size in PbA across all language and maybe clarify the relation between the 

depth of orthography of a language and the transcription accuracy obtained. 

ED Computational requirement. Since this research has not been concerned with 

the issue of processing time, this implementation of PbA, which was developed in 

Python, may not be appropriate for a real world application that needs to respond 

quickly. Possible ways to reduce the computational requirement for a real-time 

TTS applications include implementing in CjC++ programming language. The 

comparison to the other data-driven methods in terms of the processing time would 

be valuable to justify the performance of PbA. 



Appendix A 

eMU Phoneme Set 

eMU symbol I As in . .. I IPA I I eMU svmbol I As in . .. I IPA I 
" 

AA f.<:lther Q L let 1 

AE bat a M met In 

AH hllt A N net n 

AO bought J NG sing IJ 

AW bout au OW boat 015 

AY bite aI OY boy DI 

13 bet b P Eet p 

eH chin tf R red r 

D gime d S §.et s 

DH this 0 SH shin f 
EH bet ~ T test t 

ER bird 3 TH thin e 
EY b.<:lke eI UH book 15 

F fin f UW 111te u 

G ~uess 9 V vest v 

HH head h ~! wet w 

IH bit I Y let j 

IY peat i Z zoo z 

JH ~in 43 ZH lei§.ure 3 
K kitten k 
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NETtaik Phoneme Set 

NETtalk symbol As in ... NETtalk symbol As in ... 

a wQd.dQt,Qdd D the, mother 
b bad E many,end,head 
c Qr, caught, awe G length,long, bank 
d I give, bl1sy, captain 
e blQde,way J lam,~em 
f farm K an~ious,se~ual 
o· ~ap L evil,abk b 

h got,who M chasm 
bee N shorten, basin 

k fab,keep 0 oiLboy 
lad Q quilt 

nl manjmp R honer ,after ,satyr 
n and, gnat S ofean,wish 
0 Qnly,own T thaw,bath 
p rad U wood,could,P!!t 
r rap W out, toweL house 
s fent,a§.k X mi~ture,anne~ 

t .tab Y l1se,feud,new 
u boot.ooze,you Z u~ual, vi§ion 
v yat @ cQb,plaid 
w }Ye naz:i, pizza 
x pirQte, welcQme # au~iliary, e~ist 

y res * what 
z z:oo,goe§. /\ I l1P, sQn, blood 
A ice, hillght + abattoir, mademoiselle 
C chart,fello 
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Appendix C 

Subjective Evaluation Form 

Image. Spc.och and Im:clligen[ Systems 

PROPER NAME PERFORMANCE EVALUATION 

SUBJECT INFORMATION 

How familiar are you with synthetic speech? (delete as appropriate). 

VERY FAMILIAR / SOMEWHAT FAMILIAR / NOT AT ALL 

EVALUATION GUIDEUNES 

This is an evaluation of a speech synthesis system for proper names . 
Please follow the instructions; 

1) Listen to pronunciations of the names on the provided list. 
2) Rate the pronunciations using the following scales: 

1 = Unacceptable, no one would ever pronounce this name like this 
2 = Poor, very few people would recognise the name from the pronunciation 
3 = Acceptable, some people would recognise this name 
4 = Almost correct, most people would recognise this name 
5 = Correct, almost everybody would be able to recognise this name 

NOTES 

Apostrophes in names (e.g. in "O'Connell") have been removed. 
You will hear one name every 2 seconds. 
There will be a short break (20 seconds) at the bottom of each page. 
You should assess the pronunciations as if they had been produced by a telephone 
directory assistance service. 

You will receive £10 payment and will be asked to sign a receipt for this amount. 
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