UNIVERSITY OF SOUTHAMPTON

Extending Pronunciation by Analogy for
Speech Synthesis Applications

by

Tasanawan Soonklang

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics
School of Electronics and Computer Science

February 2008



UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Tasanawan Soonklang

Automatic pronunciation of unknown words, especially in English, is a hard problem of
great importance in speech technology. This thesis focuses on a data-driven approach
namely ‘pronunciation by analogy’, so-called PbA, for generating the pronunciation of
unknown words from input text. The aim is to explore many useful aspects of the use
of PbA in speech synthesis applications. This thesis is mostly devoted to the problem
of proper nanle pronunciation, because previous work showed that proper names have
significant impact on the performance of text-to-speech (TTS) systems. The extension

of PbA for multilingual pronunciation is also studied.

The performance of PbA is investigated in a wide variety of aspects including: to incor-
porate automatic syllabification by analogy, to determine the effect of different kinds of
lexicon, to determine the effect of lexicon size, to test with seven European languages
in order to quantify the relationship between transcription accuracy and orthography,
and to compare with other data-driven methods in terms of objective and subjective

evaluations.

The experimental results show that PbA can achieve a promising level of word accuracy
and is superior to other methods tested on the problem of proper name pronuncia-
tion. In the objective evaluation, the best performance is 68.38% names correct and
94.31% phonemes correct, with a standard PbA using a leave-one-out strategy on 52,911
names in the CMU dictionary. In the subjective evaluation, the comparison is primarily
based on 24 listeners’ opinions of the acceptability of pronunciations from 150 names.
Wilcoxson signed-rank tests show that the dictionary pronunciations are rated superior
to the automatically-inferred pronunciations; one part of listening tests shows that PbA
is marginally superior to the other methods, but no such superiority is seen for another
part of listening tests. With reference to the performance on seven European languages
(Dutch, English, French, Frisian, German, Norwegian, and Spanish), PbA achieves more
than 85% words correct in case of all languages except English. In conclusion, this thesis

has shown that PbA should become the method of choice in TTS applications.
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Chapter 1

Introduction

Text-to-speech (TTS) synthesis is a computerised system for converting printed text into
synthetic speech. TTS synthesis, which has developed enormously over the past decade,
is an emerging technology with many important applications in next-generation informa-
tion systems (Klatt 1987; Dutoit 1997, p.30). These applications have gradually become
an important feature in our daily lives. A good example for the use of TTS today is di-
rectory assistance in telecommunication services, which can convert textual information
into voice and respond to a request from a customer over the telephone. TTS systems
can be used to read aloud the text for the blind and dyslexic. Furthermore, they have
been used for reading e-mails, news, travel directions, and other information in a wide
range of applications. They have also been used in computer-aided learning systems for

students who learn a new language.

A typical TTS system can be divided into two major modules: a natural language pro-
cessing (NLP) module, and a digital signal processing (DSP) module (Dutoit 1997, p.14;
Ng 1998, p.3). The NLP module takes input in the form of text and outputs a pho-
netic transcription together with the prosody as the symboliyc linguistic representation.
Next, the DSP module takes the symbolic linguistic representation as input and outputs
the synthesised speech waveformi. The diagram of a simple TTS system is shown in

Figure 1.1.

The NLP module first separates the text steam into clauses or sentences. Then, it

TEXT-TO-SPEECH SYNTHESISER
Text | | Nafural language |Pronemses|  Digital Signal Speech
= Processing Prosody Processing

FiGUurE 1.1: A simple functional diagram of a TTS system. (Redrawn from Dutoit
1997, p.14).

1



Chapter 1 Introduction

performs text normalisation, where numbers and abbreviations from the raw text are
converted into their full word equivalents. After normalisation, the next process called
text-to-phoneme conversion or grapheme-to-phoneme conversion, where phonetic tran-
scriptions are assigned to each word, is performed. Next, the NLP module performs
syllabification, and assigns the prosodic information, mainly comprised of intonation
and stress. The combination of phonetic transcriptions and prosody forms the symbolic
linguistic representation, and is an input into the next module. The second module,
often referred to as a synthesiser, takes the symbolic linguistic representation and con-
verts it into speech sounds. This thesis focuses on the text-to-phoneme conversion in

the NLP module.

Text-to-phoneme conversion is a procedure for mapping a spelling of a word into a string
of phonetic symbols that represents a pronunciation of the word. This process is an
integral part of TTS synthesis, and is also an important part of speech recognition.
The most obvious and effective approach is simply to look up pronunciations of input
words—or, perhaps, morphemes after morphological decomposition—in a dictionary.
This will work very well, but only provided the word is actually in the dictionary.
However, it is impractical (strictly, impossible) to store all the words of the language,
since this constitutes an open set. Thus, the dictionary approach can not be a complete
or sufficient solution to this problem; some ‘back-up’ procedure is needed for words not
in the dictionary. The usual approach is to employ a set of phonological (letter-to-sound,
or text-to-phoneme) rules written by a linguist or phonetician, with expert knowledge
of the target language, as a back-up or secondary strategy to the primary strategy
of dictionary look-up. Since the early 1980°s, the problem of automatic pronunciation
has been considered as a pattern matching problem in the machine learning community,
and a data-driven approach has emerged as the next generation of back-up strategy.
Several current researchers attempt to create a new data-driven method or apply an

existing approach to convert letters into phonemes.

1.1 Problem Statement

One of the biggest challenges for text-to-phoneme conversion is the automatic pronun-
ciation of unknown words, i.e., the words which are not listed in a dictionary. Unknown
words may be common words, typos, neologisms or proper names. An obvious way to
address the problem is to compose manually a dictionary with acceptable pronuncia-
tions which is then consulted during synthesis. In general, however, this solution can
never be complete as the possibility always exists of encountering unknown words in
the system input that are not listed in the dictionary. Hence, a secondary or back-up
strategy to the primary strategy of dictionary look-up must be devised. Many rule-based
methods have been proposed as initial attempts to predict word pronunciation from the

spelling. To create letter-to-sound (LTS) rules, expert linguists are needed to write the
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rules carefully. The hand-crafted rule-based approach has often been the method of
choice. Nevertheless, this knowledge-based approach is highly language-specific (Sproat
1997, p.83), and has to be redone at some expense for each new language. Moreover,
there is good evidence that manually-written LTS rules work very poorly compared to
data-driven methods, certainly for English (Damper et al. 1999). Therefore, a data-
driven technique is considered attractive for modern TTS systems, i.e., learning au-
tomatically from data. Numerous data-driven techniques have been proposed to deal
with the problem of automatic pronunciation. In this thesis, an existing data-driven
approach named pronunciation by analogy (PbA) is studied to deal with this problem
in speech synthesis applications. PbA is selected for this study since, for some years
now, it is well-documented to have easily the best performance relative to a variety of

competitors (Damper et al. 1999).

This thesis focuses on pronunciation of unknown words, particularly proper names, for
several reasons. First, many commercial applications often require the pronunciation of
proper names, i.e., the names of people, streets, cities, places, companies, etc. Second,
prior work on large word lists in this area showed that proper names have significant
impact on the performance of the speech synthesis system (Vitale 1991; Font Llitjds
and Black 2001). Finally, the problem of proper names is a special challenge because
the geographical and language origin of the names can be varied, and the number of
distinct names is very large (Vitale 1991; Spiegel 2003). A few studies have proposed
various techniques to solve the problem of proper names, but they have not achieved
a high level of accuracy (Fackrell and Skut 2004). A proper name in this work means
that the name is written in English, but the origin of the name may be from languages

other than English.

Syllabification is also an important process in the NLP module. As observed by Marchand
and Damper (2007), integrating syllable boundary information manually in the ortho-
graphic input can dramatically improve the performance of pronunciation by analogy
for common words. However, such information is not available in a dictionary of proper
names. To investigate this phenomenon in proper names, automatic syllabification has

been evaluated using the models of syllabification and pronunciation by analogy.

As mentioned above, unknown words typically include proper names and common words
that have not been listed in the lexicon. In practice, when given an unknown word, we
would not know if it is a proper name or a common word. Automatic classification of
unknown words is possible to be developed, however, the potential errors must be taken
into account. Therefore, the performance of PbA is investigated when the system infers
a pronunciation by analogy with different dictionary compositions: (i) common words
only, (ii) proper names only, and (iii) a mixture of the two. If PbA can achieved a high
accuracy in case of a mixture, then there would be little or no advantage to attempting

automatic inference of input-word class.
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Most studies evaluate the performance objectively, which means that the pronunciation
generated by their niodels is taken as correct if it is the same as that in a dictionary that
is taken as a ‘gold standard’. However, a crucial limitation for any TTS system is the
problem of automatically generating ‘acceptable pronunciations’. In terms of acceptable
pronunciations, it means that the pronunciation should be acceptable to potential users
of a TTS system. Different people will have different opinions about the extent to which
a proper name should conform to the pronunciation conventions of the local speech
community, and the preferred pronunciation may vary between name owners/origins.
Thus, subjective evaluation is also important, especially for proper names. Subjective
evaluation is difficult to conduct because there is no obvious criterion of correctness, and
cannot deal with large numbers of words. Therefore, only few studies have conducted
listening experiments. In this thesis, the performance of our chosen method is compared

to that of the other data-driven models for automatic pronunciation in both subjective

and objective ways.

In terms of multilingual synthesis, the difficulty of the pronunciation problem depends on
the complexity of spelling-to-sound mappings according to the particular writing system
of the language. Hence, the degree of success achieved varies widely across languages
and also across dictionaries, even for the same language with the same method. Further,
the sizes of the training and test sets are an important consideration in data-driven
approaches. In this thesis, the variation of letter-to-phoneme transcription accuracy
across seven Furopean languages has been studied, mostly for common words. Also,
the relationship between the size of dictionary and the accuracy obtained has been

investigated.

1.2 Contributions

The main contribution of this research is to extend PbA for speech synthesis applications.
The term ‘extend’ is used for two reasoms. Firstly, this thesis contains some original
work using PbA, but is not just simply repetition or summary of the existing method.
Secondly, it aims to explore many useful aspects of the use of PbA for TTS applications.
The primary contribution of this work has been mainly involved with the pronunciation

of proper naines. Specifically, the important contributions are:

e Literature relating to text-to-phoneme conversion and syllabification is reviewed.
The use of text-to-phoneme conversion in automatic pronunciation of proper names
is highlighted.

e Four different data-driven methods are evaluated objectively with a list of Ameri-
can proper names. Pronunciations derived from a dictionary itself and from three
data driven methods: PbA, decision tree, and table look-up, are selected for sub-

jective evaluation. These methods are compared and the results are discussed.
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e Using the idea of syllabification by analogy for syllabifying and inferring pronun-
ciation for proper names, experiments are conducted to investigate whether or not
the performance of PbA improves when using the model of syllabification together

with pronunciation by analogy.

e Extending PbA for multilingual pronunciation, 7 European languages are evalu-
ated using 12 different lexicons. Ways to quantify the variation of transcription
difficulty across the deep/shallow continuum of orthography are highlighted. The

relationship between lexicon size and the accuracy obtained is also studied.

e Different lexicon compositions have been tested with PbA. These are discussed
with reference to the problem of automatic classification of unknown words (com-
mon words or proper names). The performances of PbA are investigated, when
inferring from a dictionary of the same/different class of input word and also from
a mixture of the two. The results are compared and discussed with regard to the

possibility of avoiding automatic word categorisation.
The work in this thesis has contributed in part or full to the following publications:

e Soonklang, T., Damper, R. T. and Marchand, Y. (2007). Multilingual pronuncia-

tion by analogy. Natural Language Engineering. Submitted.

e Damper, R. I. and Soonklang, T. (2007). Subjective evaluation of techniques for
proper name pronunciation. IEEE Transactions on Audio, Speech and Language
Processing. In press.

e Soonklang, T., Damper, R. I. and Marchand, Y. (2007). Effect of lexicon compo-
sition in pronunciation by analogy (Speech). In Proceedings of 10th International
Conference on Text, Speech and Dialogue (TSD 2007), pp. 464-471, Pilsen, Czech
Republic.

e Soonklang, T., Damper, R. 1. and Marchand, Y. (2005) Comparative objective
and subjective evaluation of three data-driven techniques for proper name pro-
nunciation (Poster). In Proceedings of Interspeech 2005, pp. 1905-1908, Lisbon,

Portugal.

e Damper, R. 1., Marchand, Y., Adsett, C. R., Soonklang, T. and Marsters, J. D. S.
(2005) Multilingual data-driven pronunciation (Speech). In Proceedings of 10th
International Conference on Speech and Computer (SPECOM 2005). pp. 167-170,

Patras, Greece.
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1.3 Structure of the Thesis

This prelude has introduced the basics of a T'TS system and its components. The prob-
lem of text-to-phoneme conversion has been stated, and has highlighted the difficulties

of unknown word pronunciation, particularly for proper names written in English text.

A literature review on text-to-phoneme conversion is described in detail in Chapter 2.
Various techniques are reviewed and discussed. Previous studies involving automatic

pronunciation of proper names have been addressed.

Chapter 3 introduces the principles of pronunciation by analogy. PbA is one of the most
successful backup strategies that exploit the phonological knowledge implicit in the
dictionary of known words to generate a pronunciation for an unknown word. A review
of many variants of PbA with their results on different datascts mostly for common words

is provided. This chapter illustrates the process of PbA with a step-by-step example.

Chapter 4 introduces the important topic of syllabification. A review of previous work
dealing with this problem is presented. Syllabification algorithms using the analogy
concept are described. The results of applying the series model for automatic syllabifi-
cation and pronunciation by analogy, in which syllabification is followed sequentially by

pronunciation generation, are presented and discussed.

A further potential advantage of data-driven approaches is that they are highly portable
between different languages, only provided a database (or lexicon) of words and their
pronunciations is available. In Chapter 5, seven European languages have been eval-
uated using a PbA method. The results are presented and discussed. Much of this
discussion suggests the idea that the transcription accuracy maybe relates to the depth
of orthography of a language. The effect of lexicon size on accuracy is also considered
in this chapter. Conducting experiments on different sizes of lexicon would give an idea
of the reasonable size of lexicon that should be used to compromise a trade-oft between

the performance and the processing time of the PbA approach.

Tt remains to be decided whether or not the unknown word needs to be classified in
advance as a common word or proper name. Chapter 6 is concerned with investigating
the effect of lexicon composition: common words only, proper names only, and a mixture.
Experiments are conducted to see how performance of PbA varies for different kinds
of words when inferring from different lexical databases. These are illustrative of the
problems that are encountered when miss-classification happens, or no prior classification
is provided. If good results can be obtained on the mixture dictionary of common words
and proper names, comparable to those on common words or proper names alone, these
would suggests that there may be no need for automatic word categorisation (common

word vs. proper name) to be attempted, with its attendant dangers of mis-classification.

Chapter 7 and Chapter 8 are devoted to the comparison of PbA with other data-driven
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methods. Objective and subjective evaluations are provided with discussion. The main
focus of interest in this chapter is the problem of proper names written in English. The
quality of a pronunciation model is judged by comparing with the standard dictionary
and by assessing the pronunciations by humans. Re-implementations of each method are
described in Chapter 7. The listening tests are conducted and described in Chapter 8.
The pronunciation of the dictionary itself is also included and compared with those of
data-driven methods in the listening tests because it is generally used as the primary
strategy in any practical TTS system. The results are presented and discussed in a

statistically meaningful sense.

The thesis concludes with Chapter 9, which highlights the overall contributions, and

provides some ideas for future work.



Chapter 2

Text-to-Phoneme Conversion

2.1 Introduction

In a TTS system, after normalising the text, phonetic transcriptions are assigned to
each word by the text-to-phoneme conversion module (also known as ‘grapheme-to-
phoneme’, or ‘letter-to-sound’, these terms will be used interchangeably in this thesis).
The module maps the spelling of a word into a string of phonetic symbols. Phonetic
transcription can be viewed as a symbolisation, mapping sounds into discrete context-
free symbols. It represents the pronunciation of a word, and therefore it is an essential
part of speech synthesis systems and automatic speech recognition (ASR). For example,
phonetic transcription can then be combined together with prosody and feeds as an
input to digital signal processing in a TTS system to create the speech sound. In an
ASR system, phonetic transcription can be provided as a reference transcription for the

words in the vocabulary.

There are several strategies to determine the pronunciation of a word from its spelling.
These are commonly classified into three broad categories: dictionary look-up, hand-
crafted rule-based, and data-driven approach. These strategies, together with their
previous researches in speech synthesis applications will be reviewed in the following
sections. However, the data-driven approach is the main focus here due to the promising

preliminary results of the pilot research study, which is not reported here.

2.2 Dictionary Look-Up Approach

In the dictionary look-up approach, a dictionary is generated and used to map the
orthographic form of a word into the phonetic form. To make it applicable on a large
scale, modern TTS systems exploit a dictionary containing root and affix forms of words

called morphemes (Dutoit 1997, p.111; Holmes and Holmes 2001, p.100). In this way, the

8
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dictionary can be kept to a reasonable size. The concept of a morpheme dictionary was
first proposed by Lee (1969). A morpheme is the smallest unit of meaning that a word
can be divided into. For example, the word unlikely contains three morphemes: un,
like, and ly. The pronunciation of an input word is determined by looking up the input
word in the dictionary. If it is found, the phonemes with the pronunciation specified
in the dictionary are provided. If it is not, morphemic decomposition is performed
and the morphemes are searched in a dictionary. Then morphological rules are used to
combine the pronunciation of the input word with the pronunciation of its component
morphemes. Allen et al. (1979) followed this concept in developing an algorithm for
morphemic decomposition in MITalk, containing tens of thousands of morphemes. The
AT&T Bell Laboratories TTS system also operates using this principle (Dutoit 1997,
p.111).

This approach is the simplest and the most reliable method; it has the advantage of being
quick and accurate (Vitale 1991). However, it completely fails when the pronunciation
cannot be determined by using a dictionary. The set of all words of a language is
unbounded due to the existence of neologisms, proper names, and compounds. Thus,
it is impossible to list all words in a language in a dictionary. The occurrence of out-
of-vocabulary (OOV) words is inevitable in this case. Actual investigations reported
OO0V rates within a 20k newspaper corpus in five languages: 2.5% for English, about
4% for Japanese and Italian, 5.8% for French and 10% for German (Matsuoka et al.
1996). This occurrence within a speech synthesis application is very harmful for the
user’s acceptance (Muller et al. 1996). Hence, a ‘backup’ strategy, such as LTS rules
and data-driven approaches, is required to guess a pronunciation of an unknown word,
while the dictionary look-up method is usually used as a primary strategy to determine

the pronunciation of a known word.

2.3 Hand-Crafted Rule-Based Approach

In early TTS systems, the derivation of word pronunciation was principally focused on
the rule-based approach (Sproat 1997, p.83; Holmes and Holmes 2001, p.96). Rules
of pronunciation are applied to input words to find out their pronunciations based on
their spellings. This approach is well known as LTS rules. With this strategy, most of
the phonological knowledge of dictionaries is transferred into a set of LTS rules. This
set of hand-crafted rules requires extensive knowledge from expert linguists. Each rule
specifies a phoneme corresponding to one or more letters. The set of rules is used to
guess the pronunciation of any word by giving a letter string’s context to determine

which rule should be applied. The rules are usually comprised of four parts in the form:

A[B]C — D.
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FIGURE 2.1: Historical timeline of linguistic rule-based algorithms in TTS systems.

The meaning is that character string B, occurring with left context A and right context C,
gets a pronunciation defined by the phonemes D. The most specific rule is typically at
the top, and the most general rule at the bottom of an ordered list. The pronunciation
of a word can be found if the rules are applied to each letter in the string normally from
left to right; however, some rules may operate from right to left. The rules are searched
for each a target string, starting with the first letter of the word. If the matching text is
found, and the right and left context patterns also match, the corresponding phonemes D

for that rule are output and the next untranscribed letter is taken as the target.

Several studies have proposed rule sets for TTS systems over the past decades. The
historical timeline of selected rule-based approaches is presented in Figure 2.1. An
excellent review of these techniques prior to 1987 can be found in the work of Klatt
(1987). More recently, Spiegel (2003) reports spending up to 15 years improving the
pronunciation of proper names using rules. The rule-based approach persisted because
of a belief that it can outperform the other techniques in generating pronunciations,
despite being costly to develop and very time-consuming (Sproat 1997, p.75). An
example of a publically-accessible set of rules is that of Elovitz et al. (1976) which
is expected to achieve approximately 90% words correct in a random sample of English
text. Bagshaw (1998) and Damper et al. (1999) evaluated this claim by using different
datasets; however, they did not achieve such a high accuracy, the first finding around
20% words correct with the latter finding 25% words correct. The main reason for
this considerable discrepancy is probably the difference between their scoring methods.
Elovitz et al. (1976) used frequency weighting and based their scoring on the listeners’
acceptance of ”good” pronunciations, while the others based their scoring strictly on
‘correct’ pronunciations, identical to the dictionary entries. One of the drawbacks of
the rule-based approach is that the rules need to be created from scratch when a new
language is included (Daelemans and van den Bosch 1997). Additionally, although
the rule-based approach can work on any input, the complexity of the rules grows

substantially when irregular spellings or pronunciations are taken into account. This
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FIGURE 2.2: Historical timeline of the data-driven approach in TTS systems.

is especially true for the English language, which has a complex spelling-to-phonology
correspondence. DBoth dictionary look-up and rule-based approaches have advantages
and disadvantages. Therefore, many TTS systems use a combination of both approaches
in text-to-phoneme conversion (Vitale 1991), e.g., in MITalk (Allen et al. 1987, p.12-13)
and DECtalk (Hallahan 1996). Another solution is to use a combination of dictionary

look-up and data-driven approaches, which is discussed in the next section.

2.4 Data-Driven Approach

In most modern TTS systems, the dictionary look-up approach is used as the primary
strategy, and the rule-based method as the backup strategy. Recently, the data-driven
approach has been focused upon as a promising backup strategy for transcribing words
that are not in the dictionary (Marchand and Damper 2000). The data-driven approach
for text-to-phoneme conversion is a machine learning technique that implicitly extracts
knowledge from training data, and then exploits it to convert text to phonemes automat-
ically. Since 1987, the emergence of NETtalk by Sejnowski and Rosenberg (1987) has
provided an inspiration in applying data-driven methods to speech synthesis, although
NETtalk was not the first attempt to apply machine learning to text-to-phoneme conver-
sion (the first atteinpt was a rule induction — sce later in Scction 2.4.4). The availability
of machine-readable pronunciation dictionaries and the development of the machine
learning model have also catalysed the evolution of this system (Damper 2001, p.1}.
Furthermore, this is a key element for the design of multilingual TTS systems, since the

data-driven approach is essentially language-independent.
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During the past decade, a large number of data-driven methods have been proposed for
text-to-phoneme conversion, such as decision trees, neural networks, and analogy-based
techniques. The development of these systems has been surveyed and is partially
presented chronologically in Figure 2.2. An excellent survey of these techniques prior
to 1994 can be found in the reviews of Klatt (1987) and Yvon (1994). Data-driven
techniques in the diagram are categorised and reviewed in this section. All techniques
reviewed here are supervised learning methods in which the phoneme (output) to be
predicted is provided during a learning stage. From this point forward, the training

data will refer to pairs of orthographic and phonemic form.

2.4.1 Neural Networks

Neural networks, so-called connectionist architectures, have been used to learn the
correspondence between phonemes and the letters of each word. In the learning process,
training data are encoded into a set of connection weights and thresholds between the
nodes. Examples of this approach are NETtalk (Sejnowski and Rosenberg 1987) and
NETspeak (McCulloch et al. 1987), which were trained by backpropagation to convert

text to phonemes.

NETtalk requires text pre-aligned with its corresponding phonemes. Fach word in
a dictionary was converted into a sequence of 7-letter window. Binary coding of 29 bits
was used to represent a 7-letter context, 26 bits for English alphabets, plus three
additional bits for punctuation and word boundaries. Thus, the number of input units
was 203 (7 x 29). The number of output units was 26, representing the phonemes in
terms of 21 articulatory features, such as the location of articulation point, voicing,
vowel height, plus five additional units for stress aud syllable boundaries. Each word in
the dictionary was stepped though the window letter-by-letter, and encoded into input
and output units. Then these units were fed into the networks to compute an output,
and the weights were adjusted after each word so as to reduce the error. The output

was given as a vector of 26 output activations (between 0 and 1). The 21-bit phoneme
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code that made the smallest angle with the output activation vector was chosen as
the output. The network was evaluated with the 20,012 words of Webster’s Pocket
Dictionary. The performance was reported to be about 90% phonemes correct by using
120 hidden units trained on the 1,000 most commonly occurring words, and tested with
the whole dictionary, after five training passes. Various numbers of hidden units and
layers were studied, and it was found that the performance improved when increasing
hidden units and layers. Different sizes of window, ranging from 3 to 11 letters, were also
studied, and it was found that the performance improved with the size of the windows.
NETtalk is a very well-known data-driven approach, since then the problem of English
text-to-phoneme conversion has become a benchmark for machine learning (Damper
2001, p.11). Neural networks have been extensively studied and various results have
been presented. A selected survey of neural networks in text-to-phoneme conversion is

shown chronologically in Figure 2.3.

A re-implementation of NETtalk was studied by McCulloch et al. (1987), exploring
the impact of different input and output encodings using a different dictionary and
output phoneme set. In 1989, this architecture has been tested again with a large data
set of 70,000 words (Ainsworth and Pell 1989). However, the performance in terms of

phonemes correct hardly exceeds 90%.

This approach is not limited to multilayer perceptrons. Attempts have been made to
use alternative network designs. For example, Hochberg et al. (1991) presented an
approach they called ‘default hierarchy’, using rules like an expert-made system, but
trained automatically like a neural network. In training, specific rules were learned only
if they were exceptions to general rules. Using the hierarchy, default rules were used
when no relevant specific rules were found. After training on 18,008 words, the model
achieved 90% phonemes correct on an unseen 2,000-word test set. Another example is
a self-organising neural network, which was developed for a multilingual pronunciation

dictionary project (Hensen 1994).

Various neural networks have also been adapted to cope with the transcription of
non-aligned data such as a syntactic neural network (Lucas and Damper 1992), the exten-
sion of NET'talk (Bullinaria 1994), and recurrent neural networks (Adamson and Damper
1996). More recently, Arciniegas and Embrechts (2000) used a series of two-staged
neural networks for converting text to phonemes. The first stage learns which one or
two phonemes were represented for each letter, so that different networks can be used
at the next stage, to learn the letter to phoneme mapping. They also introduced a new
window positioning structure, in which there was an unequal number of letters before
and after the target. The algorithm was trained on the 2,000 most common words in
American English. Tt achieved a letter accuracy of 97% on an unfair test because the

training and test set are the same.

In summary, neural network classifiers work reasonably effectively for the classification
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problem. Thus, there are several attempts for predicting phonemes by using neural
networks. Neural networks have been used to model the transformation between letter
sequence and phonetic sequence by training on a pronunciation dictionary. Various
results reported here tend to demonstrate that the performance of such attempts is
limited. Despite the high accuracy in terms of phonemes correct often reported, some
studies showed that the performance of this architecture has not yet achieved a high
accuracy in terms of words correct, and is considered inferior to that of the other
data-driven approaches (Golding and Rosenbloom 1993; Dietterich et al. 1995; Damper
et al. 1999). One drawback of applying neural networks to solve these problems is that
the trained networks are often viewed as a black box, because of a lack of explanation
of the inner workings and a lack of the capability to extract knowledge to gain better

understanding of the problemnis.

2.4.2 Decision Trees

A clear disadvantage of the linguistic rule-based strategy is that it requires expert
linguists to build a set of hand-crafted rules. Thus, the trained rule-based technique
has emerged to build LTS rules automatically. One of the most popular techniques
is a decision tree learning method such as ID3 (Quinlan 1987), in which the learned
function is represented by a decision tree. ID3 builds a classification tree from a given
set of classified instances, then this decision tree can be used to classify an unknown
instance. To build a decision tree, starting at the root node of the tree, an instance is
classified into two groups (child nodes) by testing or questioning the attribute specified
by this node, then this process is repeated iteratively for the subtree rooted at the child
node until each leaf node corresponds to the class of the instance. Decision trees can
also be represented as sets of if-then rules. In the case of text-to-phoneme conversion,
decision trees can be used to predict phonemes from examples of aligned training data.
The use of decision trees has been reported by many researchers as can be seen in the

chronological diagram in Figure 2.4.

In 1982, Klatt and Shipman first proposed the concept of decision tree to solve the

problem of text-to-phoneme conversion. With their model, induction rules were created
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from each instance of each letter in a 20,000-word English dictionary by using left and
right context of the letter. Then decision trees were built in the form of an ordered list
of context-dependent rules for rapid execution. This work can also fall into the category
of rule induction. A fixed-size input window, a learning pattern similar to NETtalk,
has been used to build a search tree recognition model from a 50,000-word dictionary
(Lucassen and Mercer 1984). The results were reported in terms of phonemes correct
from 5,000 random-selected words, and achieved an accuracy of 94% which was superior
to that of NETtalk. Later in the work of Daelemans and van den Bosch (1993), a trie
(a special kind of tree structure) was built from the training data. The first level of the
tree corresponds to the focus letter and the other levels correspond to letter context.

This can be viewed as a hierarchical description of rules.

Other attempts of using ID3-like techniques with multilingual lexicons were successfully
reported with promising results (Torkkola 1993; van den Bosch and Daelemans 1993;
Black et al. 1998). For example, Black et al. (1998) proposed to use classification and
regression tree (CART). In their work, for each letter in the alphabet of the language,
CART was trained by giving the focus letter, together with three context letters on either
side, to predict the phoneme. In their best case, the automatic LTS model achieved
a comparable or higher accuracy than the manual LTS rules. CART has been applied to
four lexicons, including Oxford Advanced Learners Dictionary (UK English), CMUDICT
(US English), BRULEX (French), and Celex Lexicon (German), where it achieved 75%,
58%, 93% and 89% words correct respectively. However, it was not quite clear how many
words they used as a train set and test set as they wrote “We split the data into train and
test data by renioving every tenth word from the lexicon”. CART has been used as the
phonetic transcription process in Festival, a public domain system intended for speech
synthesis research available from http://www.cstr.ed.ac.uk. In the latest work of
Kienappel and Kneser (2001), they proposed the decision tree technique for automatic
grapheme-to-phoneme transcription in ASR systems. One UK-English name and two
German lexicons (names and common words) were tested. The results were reported
in terms of phoneme error rate and string error rate (SER). The best performance was
8% SER, when training on 320,000 words and testing on 16,000 words from the German
common-word lexicon. The poorest performance was 33.7% SER. when training on

74.000 words and testing on 19,000 words from the English lexicon.

In summary, this approach uses decision trees built on a statistical basis from a number
of context-to-phoneme pairs derived from a phonetic dictionary, to find the best feature
sets of predicting phonemes with a certain probability. Comparisons of decision trees
with other techniques in English have also been made (Dietterich et al. 1995; Damper
et al. 1999; Damper and Soonklang 2007). The results showed that they performed sub-
stantially better than the rule-based approach and at about the same level as other data-
driven methods such as table look-up and neural networks (approximately 60% words

correct).
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2.4.3 Analogy Method

The analogy concept is basically developed by inference from observed human perfor-
mance in unknown word pronunciation. In the process of reading aloud, an unknown
word can be read on the basis of its analogy to known words whose spelling and
pronunciation are familiar to the reader. This approach has emerged on the basis of the
cognitive theories in the work of Glushko (1979), who introduced the model of reading
by using an idea of a similarity matching component, that converts spelling strings of

a given word to their pronunciation by matching them with lexical entries.

The most famous approach in this area is pronunciation by analogy (PbA). PbA uses
the phonological knowledge from a dictionary by matching substrings of the input to
substrings of lexical words, then collecting a partial pronunciation for each matched
substring to create a directed graph. Later the phonemes along the shortest path
are concatenated together to form the pronunciation. If there is only one candidate
corresponding to a unique shortest path, this is selected as the output. If there are
tied paths, the scoring strategy is used to select the output among multiple candidate
pronunciations. PbA requires a dataset in which each letter of each word’s pronunciation
is aligned with a corresponding phoneme. The first version of PbA for TTS applications
was proposed by Dedina and Nusbaum (1991). They reported the results with a small
set of 70 pseudowords at 91% word accuracy. Since then, many studies have used the
basic model of Dedina and Nusbaum to improve the PbA system (Sullivan and Damper
1993; Yvon 1996; Damper and Eastmond 1997; Bagshaw 1998; Marchand and Damper
2000; Damper and Marchand 2006).

There are two basic versions of PbA: ezplicit and implicit analogy (Damper and East-
mond 1997). Explicit analogy corresponds to lazy learning in terms of machine learning,
in which the lexicon is retained and the extent of any prior training process is minimised.
Implicit analogy corresponds to eager learning, in which significant prior training is
necessary. For example, the version of Sullivan and Damper (1993) and Bagshaw (1998)
are implicit analogy in which the lexicon can be discarded after pre-compiling to produce

a knowledge base for generating pronunciation. The other PbA versions in Figure 2.5
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are explicit analogy in which the training process is not required and the lexicon is
always available at any time. In 1993, Golding and Rosenbloom proposed an analogy-
based pronunciation system, called Anapron, and compared it with the other seven
pronunciation systems on a surname dataset (see more detail in Section 2.5). In the latest
work, Damper and Marchand (2006) proposed a PbA with several further enhancements,
boasting a significant improvement in results with three different-size dictionaries. The

detail of the PbA approach will be described in the next chapter.

2.4.4 Miscellaneous

The very first data-driven method applied to text-to-phoneme conversion was rule in-
duction (Oakey and Cawthorn 1981). Rules were extracted by using examples of aligned
pairs of orthographic string and phonemic form, beginning with a set of 26 rules for each
letter pronunciation. Then, the system used this rule set to hypothesize a pronunciation
by comparing with a dictionary pronunciation. If the pronunciation was incorrect, a new
rule was created to correct the errors. The difficulties in this technique lay in handling
the conflict between rules as well as the induction of rules from scratch (Yvon 1994).
The work of van Coile (1991) is another example of this technique. The decision tree

method may also viewed as a rule induction by some researchers.

After the emergence of NETtalk, the first table look-up method was proposed by Weijters
(1991) who drew the conclusion that a simple look-up procedure was superior to a neural
network method. The table look-up method can be classified as implicit analogy,
in which the lexical database is pre-compiled to yield the generalised phonological
knowledge so the dictionary can be discarded. By coustructing a table from a training
lexicon, the lexicon was compressed into the table containing patterns of letters together
with a target phoneme. The patterns of letters in the table have to be accounted for by
expanding the context letter to the right or the left. The lack of generalisation power
of Weijters’s method led van den Bosch and Daelemans (1993) to devise a look-up table
with defaults, which could be invoked in the case of a matching failure. The results

of both table look-up methods by Weijters and van den Bosch and Daelemans were
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reported to have a higher percentage of phonemes correct than those from NETtalk.

Since hand-crafted rule-based approaches have existed for many years, there have been
some attempts to improve the system by compiling the rules into finite state transducers
(FSTs). FSTs are compact representations that enable one to build models in speech
processing more efficiently. One of the advantages of FST representation is that different
methods can be combined (Caseiro et al. 2002). The FST-based techniques for text-
to-phoneme conversion have been proposed by many researchers for different languages
such as English, Dutch and Portuguese, as shown in Figure 2.6. Note that some work

in FSTs can be viewed as a rule-based method with a rule compiler.

Hidden Markov models (HMMs) have been applied to the problems in speech processing
over the past decades, especially in speech recognition. Recently, they were applied to
grapheme-to-phoneme conversion problem (Taylor 2005). In HMMs, phonemes are the
hidden states and graphemes are the observations. In Taylor’s work, he proposed HMMs
and enhancements using pre-processing, a context dependent model and a syllable
stress model. The advantage of his work is that the model performs in just one step,
including the alignment between graphemes and phonemes. The best result achieved
was 61% words correct by using 4-gram with stress adjustments on the Unisyn dictionary
(Fitt 2000) containing 110,000 words. This result showed that HMM-based technigue

can be seen as a competitive method to the table look-up and neural network approach.

The chronological history of miscellaneous methods in this section is shown in Figure 2.6.

2.5 Pronunciation of Proper Names

TTS systems encounter person names, addresses, places, and company names, so the
problem of proper name pronunciation has recently received more attention. It is
a special problem, because the origin of names may be from many different languages;
but they are written in English, which has an extremely irregular spelling system. Many
speech synthesisers often rely heavily upon dictionaries. However, creating a dictionary
that covers all names is impracticable, despite the availability of large dictionaries and
computer memories. Also, the coverage of names can never be 100% by the use of
a dictionary because there will always be some rare/new names created in the course of
time and those names are not yet included in a dictionary. Thus, back-up strategies nust
always be provided. This is why proper name pronunciation still presents a challenge
for many researchers in speech technology. The most relevant studies for this problem

are reviewed in this section.

As an early study in proper name pronunciation, four speech synthesisers that were
available in 1984 were evaluated with the 2,000 most common American surnames by

Spiegel (1985). The outputs from the four synthesisers were tape recorded, then listened
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to and judged by humans. The outputs were rated into four categories: correct, mild
error (somewhat acceptably wrong), worst error (embarrassingly wrong), and percep-
tually wrong due to poor synthesis. Errors were lumped into the last three categories.
The author’s choice of error criterion was to accept any plausible pronunciation, based
on interviews with 3-4 co-workers about ambiguous surnames. As Spiegel admitted,
the results were a somewhat liberal acceptance of pronunciation. The results for each
synthesiser were coded in alphabetic letters (A through D), because the author did not
want these as an endorsement for any particular synthesiser. The average error rate for
the four synthesisers was 28.7%. The lowest error score was 24.2% and the highest score
was 32.8%. The majority of errors were serious (embarrassingly wrong) and occurred on
multiple-syllable surnames. The errors made by the synthesisers were mostly unlikely to
be made by humans. The author suggested that providing a special set of hand-crafted
rules with a large exception phonetic dictionary for names should be a more cfficient

long-term approach to the problem of surname pronunciation.

With the rule-based method, there has been an assumption that the pronunciation of
proper naines is difficult to predict using the same pronunciation rules as ordinary words,
because it depends on the origin of the spelling (Church 1985; Dutoit 1997, p.125; Holmes
and Holmes 2001, p.101). Thus, the TTS system requires special rules for names. This
assumption has inspired the applications of LTS rules within language origin classes in
the work of Church (1985), Vitale (1991) and Font Llitjos (2001). Church (1985) initially
proposed letter-to-phoneme rules for proper names by using the statistics to estimate
the language family before applying the specific rules for that language. The statistics
were based on the number of occurrences of three-letter sequences in each languages.
The performance was claimed to be superior to that of the other rule-based systems
for proper names. In the work of Vitale (1991), the name pronunciation system was
described and evaluated. Starting from searching in a dictionary, if a name was not
found, the language of origin of the name was identified from its characteristic letter
patterns. After identifying the language by filter rules, a set of hand-crafted LTS rules
for that language was applied to predict the pronunciation. A decade later, this scheme
is followed by the work of Font Llitjés (2001) based on the CART technique of Black
et al. (1998). Her work aimed to improve pronunciation accuracy of proper names with
language origin classes. However this method has quite a low accuracy, reported at
55.22% words correct with stress and 60.76% words correct without stress on a lexicon
containing 56,000 names, of which 90% were used for training and the remaining for
testing. Conscquently, a fully automatic language identifier as implemented in this work

is not a propitious answer.

A comparison of Anapron, an analogical pronunciation system, with seven other name
pronunciation systems was reported by Golding and Rosenbloom (1993). In this work,
eight systems were compared in a subjective aspect, in which listeners rated synthesised

pronunciations using a 3-point scale: clearly acceptable, somewhat between, and clearly
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bad. The eight systems included Anapron, three early 90s state-of-the-art commercial
systems, two variants of NETtalk, and two humans. Anapron generated a rough pronui-
ciation by applying a set of rules adapted from MITalk and elementary textbooks of four
European languages, and drawing analogies from names in a case library of 5,000 as ex-
ception coverage. The experiment was conducted on 4,000 names, carefully chosen from
over 1.5 million surnames. The pronunciations of Anapron and the other systems that
have no phonetics-to-speech component were piped through DECtalk and 14 subjects
judged the acceptability. The scores of clearly acceptable and somewhat between were
lumped together into acceptable scores, counting clearly bad as unacceptable. The results
were given in terms of the percentage of acceptable scores, and showed that the humans
performed the best at an accuracy of 93%, Anapron performed at 86%, which was

superior to the two versions of NETtalk, but was inferior to the commercial systems.

From a multilingual perspective, there has been a European collaboration in the form
of the ONOMASTICA project (The Onomastica Consortium). This project’s aim

ras to create a multi-language pronunciation dictionary of proper names, covering the
11 major languages in European countries: FEnglish, Danish, Dutch, French, German,
Greek, Italian, Norwegian, Portuguese, Spanish and Swedish. The lexicon consists of
different numbers of entries in each language, ranging from 1,000 to more than 1 million
names per language. The other objective of this project was the development of semi-
automatic pronunciation of proper names. Many techniques were studied depending on
each language, such as rule-based methods, neural networks. table look-up methods,
and analogy-based approaches. These proposed methods, and the problems in this
project, were addressed by Trancoso (1995). The result of this project was a multilingual
dictionary of European proper names, which can be used in a dictionary look-up name
pronunciation systeni. One part of this dictionary, which contains 4.5 million entries and
has been checked by human experts working on the project, was available on CD-ROM.
The fuller lexicon of 8.5 million names was available on magnetic tape. The CD-ROM

and tape were distributed to 22 organisations throughout Europe.

Deshmukh et al. (1997) presented an N-best pronunciations system based on a Boltz-
mann machine neural network that generates the N most-likely pronunciations of sur-
names from their spellings. A pronunciation dictionary of surnames was created con-
sisting of 18,494 surnames from a diversity of ethnic origins and 25,648 corresponding
multiple pronunciations. The Worldbet standards (Hieronymus 1994) were used to
perform the phonetic transcription manually. The data were automatically aligned by
a dynamic programming algorithm to produce a one-to-one alignment of the spellings
with the corresponding phoneme, before using them as the input to the Boltzmann
machine. The experimental results with the full data set (15,000 names for training,
3,494 for testing) showed that their method produced a very poor performance. The
best performance was 29.33% for all correct pronunciations (counting all of the possible

pronunciations as correct) with 200 hidden neurons and a context length of three. They



Chapter 2 Text-to-Phoneme Conversion 21

concluded that their training strategy failed to learn the letter-to-phoneme distribution
with conflicting constraints in the training data, regardless of the network architecture.
Thus, the basic neural networks were found to be incapable of generating the N-best

list pronunciations of proper nouns.

Spiegel (2003) described a large hand-crafted rule-based approach, complemented by
a small dictionary. It was claimed that this 15-year research can achieve a high accuracy
for a nanie pronunciation system. The result of this work was a program called Namepro,
a pronunciation component in the Orator II TTS system. To generate a pronunciation
of an input word, a small exception dictionary was searched. The dictionary was
refined using the morphology of names, words, and business neologisms, to contain
a couple of dozen entries. If the word was not matched, then it will pass through the
steps of ethnographic classification, morphological analysis, LTS rules, syllabification,
stress assignment and intonation rules. The model attempts to produce the actual

US pronunciations. However, this paper did not present an evaluation of the approach.

A method of deriving rewrite rules from an existing name pronunciation dictionary
was proposed recently by Fackrell and Skut (2004). This method has contributed to
the dictionary coverage of proper names, rather than a high accuracy for prediction
of out-of-vocabulary words. The algorithm was simply based on rule induction from
a reverse dictionary, which eliminates the one-to-one mapping of pronunciation and
its spelling. The remaining pairs of spellings which share a pronunciation were used
to generate an ordered set of rules. As a result, this rule set was able to improve
dictionary coverage for surnames by adding 5,000 new entries that corresponds to about
half a million namnes. A subjective evaluation showed that about 80% of the suggested

promunciations are good, with a high degree of agreement among five subjects.

In summary, most researchers tend to develop hand-crafted rules or learning algorithms
to cope with name pronunciations. However, high accuracy have not been achieved so
far. One obstructive problem encountered is that most dictionaries for proper names
have been developed privately and deemed proprietary. Standard dictionaries of proper

names are not widely available.

2.6 Conclusion

The conversion of letters into phonemes is not simply a one-to-one mapping process
in many languages, for example, English and French which are notorious for their
irregularities between the writing system and the phoneme system. Dutoit (1997, p.106)
explained that "This phenomenon partly originates in the natural delay between the
spoken language, in perpetual evolution, and the much more rigid written one.” The
most frequently striking example is the substring ough, which is pronounced /ou/ in the

word although, /u/ in the word through, and /af/ in the word enough; the left context
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is a key to determine a pronunciation of this substring in each case. This illustrates
the lack of invariance in the correspondence between letters and phonemes, and also
between the number of letters and the number of phonemes in English words. In many
languages, pronunciation of a word may also depend upon lexical features that have no
direct manifestation in the spelling of the word (Sproat 1997, p.84). There are some
words that have multiple pronunciations such as read, which is pronounced differently
when it is used in past and present tense. Therefore, sometimes it is extremely difficult
to convert from text into phonemes by using only the spelling of word. Furthermore,
pronunciation of a word also varies from one person to another, and/or from one moment
to another (Dutoit 1997, p.111) especially for proper names; therefore, it is difficult to
choose one as an arbitrarily correct answer. Consequently, these make text-to-phoneme

conversion a hard problem.

Many attempts have been made to deal with the problem of text-to-phoneme conver-
sion over the years. The first and oldest technique is to develop a rule set by hand,
based on linguistic knowledge. The second approach is to use a dictionary to provide
transcriptions, a method currently used as a primary strategy because of the accuracy it
allows. There are drawbacks to the rule-based approach, such as language dependency,
the length of time for rule development, the requirement of explicit knowledge from
a human expert, and the poor performance. Also, it is not possible to store all of the
words in one language into a system dictionary. There will always be proper names
and new words which will be created in the course of time. These have led to the
emergence of a backup strategy, a so-called ‘data-driven’ approach in which it is learned

automatically from data.

Inductive learning was the first data-driven method to extract rules from examples
of data. However, text-to-phoneme conversion has become a benchmark problem in
machine learning since the pioneering work of Sejnowski and Rosenberg on NETtalk
in 1987. A large number of different machine learning methods have been applied to
the task of automatic transcription, such as various neural networks, decision trees and
pronunciation by analogy. All data-driven techniques in the current review are classified
as supervised learning, in which the training data consist of pairs of input letters and
target output phonemes. These techniques often require alignment between graphemes

and phonemes.

Some studies compared different methods. For example, Damper et al. (1999) evaluated
the performance of a rule-based approach and three data-driven techniques: PDbA,
NETspeak, and 1Gtree. The performance was evaluated with an English lexicon, and
reported in terms of words correct which is more stringent and sensitive than phonemes
correct. The best performance is obtained with PbA, at approximately 72% words
correct on 16,280 words from the Teachers’ Word Book dictionary. Recently, Damper
and Marchand (2006) reported the best results of PbA at about 87% on 178,041 words

from the British English Example Pronunciation dictionary. Therefore, PbA has been



Chapter 2 Text-to-Phoneme Conversion 23

investigated in many useful aspects for using in speech synthesis applications in this

thesis.

The problem of automatic pronunciation of proper names has also received considerable
attention from researchers. Many researchers attempt to cope with this problem by using
traditional approach such as hand-crafted rule-based system and dictionary look-up.
Few data-driven approaches have been studied. Some studies augmented their method
with languages identification. These pronunciation systems have not yet achieved a high
accuracy so far, although promising improvement has been seen. This problem remains
a real challenge for text-to-phoneme conversion among speech researchers. Thus, this

thesis has been primarily focused on the automatic pronunciation of proper names.



Chapter 3

Pronunciation by Analogy

3.1 Introduction

Pronunciation by analogy (PbA) is a data-driven approach for automatic text-to-phoneme
transcription. PbA exploits the phonological knowledge implicitly contained in a dictio-
nary, including words and their pronunciations. The original idea of PbA was based on
the theory of reading aloud from Glushko (1979)’s studies. He proposed a psychological
model to pronounce pseudowords using analogy with known words which are similar in
spelling. This theory has been proved computationally feasible by Dedina and Nusbaum
(1991) (D&N). They developed the original and well-known system called PRONOUNCE
for TTS applications. It can be categorised into the ‘lazy learning’ section of the machine
learning paradigm, and fits into various groups of the artificial intelligence paradigm such
as analogy-based, memory-based, and case-based reasoning, as well as instance-based
learning (Damper and Marchand 2006). Since then, there have been many variants of
PbA based on the PRONOUNCE system. The variant of PbA implemented to use in
this work is based on the classical PRONOUNCE system, with several enhancements as

proposed by Marchand and Damper (2000).

In the next section, the principle of the PbA algorithm used in this work is described
in detail. Then, previous work on PbA are presented with their results using common

word dictionaries.

3.2 Principles

The PbA algorithm consists of three steps: substring matching, building the pronun-
ciation lattice, and a decision function. In substring matching, substrings of the input
word are compared with substrings of all words in the lexicon, gaining information of the

phoneme set for each matching substring. Then, a directed graph called a pronunciation

24
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INPUT
(speling pattern}

Aligned lexical . .......; Substring
database matching
Build
pronunciation
lattice

Decisian
function

OUTPUT
(pronunciatfion)

F1GURE 3.1: Dedina and Nusbaum’s PRONOUNCE. (Original source: Damper et al.
2001).

lattice is built using information from the previous step. The lattice contains nodes and
arcs which represent possible phonemes at particular positions in the pronunciation.
Phoneme sets along the paths of the lattice are assembled to determine all possible
pronunciations of the input word. In the last step, the decision function will apply
heuristic scoring methods to select the best pronunciation from the potential candidates
as a final result. The variants of PbA differ mainly in terms of the representative lattice
and the heuristic method used in the decision function. The process of PbA is comprised
of four components, best described by referring to the original PRONOUNCE program as
shown in Figure 3.1. The description given here closely follows Marchand and Damper

(2000). This section merely repeats the method for a better illustration.

3.2.1 Aligned Lexical Database

Like most automatic pronunciation techniques, PbA requires a dictionary in which the
letters of each word’s spelling are aligned with the phonemes of the corresponding
pronunciation. In this research, the algorithm presented in Damper et al. (2004) was used
to align the lexicon automatically. This alignment used the expectation-maximisation
algorithm, which was an iterative approach to a problem where the set of observations
(in this case, the pairs of words and pronunciations in the lexicon) was missing some
data, and the likelihood function can not be casily differentiated to find its maxima. The
missing data were the parameters describing the probabilistic correspondence between

words and letters which underlies the alignment process. With this approach, null



Chapter 3 Pronunciation by Analogy 26

EAABERG
NN
- |AAB R - G

FIGURE 3.2: Alignment of word and its spelling.

symbols (—) were automatically added to the spellings or pronunciations in the lexicon to
preserve the one-to-one correspondence. For example, consider a word in the CMUDICT
lexicon of spelling AABERG as /AA B ER G/ (CMU phoneme symbols) or /absg/ (IPA

symbols). for which a possible alignment, is shown in Figure 3.2.

After the alignment process. the lexical database was arranged in two columns: the first
being the words and the second being the pronunciations (phoneme symbols) to create

a sample shown below:

AABERG - AA B ER - G
AAKER - AA K ER -

AAMODT - AA M AH - T
AARDEMA - AA R D EH M AH
AARON - EH R AH N

3.2.2 Substring Matching

When an unknown word is presented as an input to the system, ‘full’ pattern match-
ing between the input letter string and the dictionary entries is performed. This is
called ‘full’ matching, as opposed to ‘partial’ matching which was used in the original
PRONOUNCE system. It starts with the initial letter of the input string aligned with the
end letter of the dictionary entry. If common letters in matching positions in the two
substrings are found, their corresponding phonemes and the information about these
matching substrings are forwarded to the next module. Then the shorter of the two
strings is shifted right by one letter. For partial matching, this continues until the two
are right-aligned. For full matching, this continues until the end letter of the input
string aligns with the initial letter of the dictionary entry, which means the number of
right shifts is equal to the sum of the lengths of the two strings minus one. This process
is repeated for all entries in the dictionary. The main reason to use full matching is
that the morpheme can be an aflix that either comes at the beginning (prefix) or at the
ending (suffix), and an affix is often used to form a new word. Thus, as Marchand and

3

Damper (2000) mentioned “full matching seems worth consideration”.

To clarify the process, the example of the input word ANN will be given, matching
the lexical entry ANNA. Figure 3.3 illustrates the full pattern matching process of this
example. At the first iteration, the initial A in ANNA aligns with the final N in ANN,

and there are common substrings. Next, ANN and ANNA substrings are shifted one
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lteration Subsiring matching

v

Input word A Ni N

Lexicon entfry A N N A
|
Input word Al NI N
2 T ‘ |
Lexicon entry A NIN A .
Input word A
3 |
Ltexiconentry |1 A A
Input word ‘ A N
4 :
texiconentry = Al N A
| |
Input word A N N
5 :
texiconentry A Nil N
[ !
Input word AN N
s |
Lexicon entry A N N A

FIGURE 3.3: Substring matching between input word ANN and lexicon entry ANNA.

position, giving no common substrings from the AN in ANNA aligning with the NN in
ANN. The third iteration, the common substring ANN, is extracted from the alignment
between the input string ANN and the ANN in ANNA. The process terminates at the
sixth iteration, when the final A in ANNA aligns with the initial A in ANN, giving the

common substring A. For partial matching. the process stops at iteration 4.

3.2.3 Building the Pronunciation Lattice

The pronunciation lattice is a directed graph containing nodes and arcs. Matching
substring information is used to construct nodes and arcs in the lattice for the input
string. A lattice node represents a matched letter, L;, at some position, 4, in the input.
The node is labelled with its position 7 and the corresponding phoneme to L; in the
matched substring, Py, say, for the mth matched substring. An arc is labelled with
phonemes between Pj,, and Pj, in the relevant part of the matched substring and

the frequency count, increasing by one each time the substring with these phonemes is
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Step Matched substring A N N

; AN @
: e e
; ) e
: : e

FIGURE 3.4: The step-by-step process to build a pronunciation lattice for the word
ANN with the matched substrings from the lexical entry ANNA, corresponding to the
pronunciation /AE — N AH/. The matched substrings are shown in bold.

matched during the search throughout the lexical. If the arcs correspond to bigrams
(the two phonemes), the arcs are labelled only with the frequency. Bigram phonemes
label the nodes at both ends. Additionally, there is a Start node at position 0, and an

End node at position, which is the length of the input string plus one.

A step-by-step example in Figure 3.4 is given to clarify how to build the lattice for the
input word ANN with the matched substrings from the lexical entry ANNA, correspond-
ing to the pronunciation /AE — N AH/. Each node and arc in the lattice is constructed
by using the lists of matched substrings from the previous module. The explanation for

each step is as follows:

Step 1: start with the matched substring N found in iteration 2, the position of N in the

input is 3 and the position of N in the lexicon entry is 2, giving the phoneme /-/. With
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this information, the node (/—/. 3) is created.

Step 2: the input string ANN is matched with the substring ANN in the word ANNA
(iteration 3). The matched substring ANN can be divided into 5 matched substrings:
A, AN, ANN, NN, N. For the matched substring A, the node (/AE/, 1) and an arc with
label (1) are created, since the position of A in the input and in the lexicon entry are

the same, which is the position Start giving the phoneme /AE/.

Step 3: for the matched substring AN, first, the node (/—/, 2) because the last letter N
in substring AN, is matched at position 2 in the input and lexicon entry giving phoneme
/=/. Then, the arc with label (/AE —/, 1) is created to connect from Start to the
node (/—/, 2) because the first letter A in the matched substring AN, is match at the

beginning of the input word and the lexicon entry giving phoneme /AE/.

Step 4: the input string ANN is matched with the substring ANN, giving the phonemes
/AE — N/ for the substring from Start to 3. With this information, the node (/N/. 3)
is created, since the last position of the matched substring is 3 and an arc with label

(/AE -/, 1) is created.

Step 5: for the matched substring NN, the nodes corresponding to these 2 letters, N at
positions 2 and 3, are already created from the previous step. Thus, the arc with label
(1) is created to link between node (/-/, 2) and node (/N/, 3).

Step 6: the node (/N/, 3) corresponding to the matched substring N is already created

from the previous step.

Step 7: the matched substring N is found in iteration 4, the position of N in the input
is 2 and the position of N in the lexicon entry is 3, giving the phoneme /N/. Thus, the

node (/N/. 2) is created.

Step 8: the matched substring A is found in iteration 6, the position of A in the input
is 1 and the position of A in the lexicon entry is 4, giving the phoneme /AH/. Thus,

the node (/AH/, 1) is created.

Figure 3.5 represents the final pronunciation lattice corresponding to the input word,
ANN, given the following words in the lexicon: (ANNA, /AE — N AH/), (AN, /AE N/),
(AND, /AE N D/), and (AMANN, /AE M AH - N/). In this example, there are two

shortest paths and both paths produce the correct pronunciation as /AE - N/.

3.2.4 Decision Function

Finally, the decision function finds the complete shortest path through the lattice from
Start to End. A justification for using only the shortest path has not been directly
stated by D&N; one possibility is that to find all paths is time-consuming, therefore

considering only the shortest paths would reduce the computational time. Furthermore,
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A N N

FIGURE 3.5: The pronunciation lattice for the word ANN.

pronunciation errors tend to appear with more frequency at the boundaries of matched
substrings than at the inner letters, and so reducing the number of arcs in the lattice
tends to reduce the chance of error. The possible pronunciation for the input corresponds
to the output string assembled by concatenating the phoneme labels on the nodes or arcs
in the order that they are traversed. In the case of only one candidate corresponding to
a unique shortest path, this is selected as the output. If there are tied shortest paths,
multiple scoring strategies are used to select the output. Note that, different paths can

correspond to the same pronunciation.

There are five different strategies used by Marchand and Dammper (2000) in calculating
scores for all pronunciation candidates. Scores are then ranked in either ascending or
descending order. These ranks are used to give points for the candidates on each strategy.

These points are next multiplied together to get the final score.

The number of points given to each scoring strategy depends on the number of candidate

pronunciations. The total numbers of points (T) awarded for each strategy is:

N(N +1)

where N is the number of candidate pronunciations.

These 71" points are divided among the candidates depending on the rank of each one.
Let cand(Rg, ) equal the number of candidates with rank R for the scoring strategy S;,

then P(C;, Rg,), the number of points awarded to candidate Cj is:

e Zis}{;cand(]?,sﬂ/l(j\/’ —i41) 52)
(s = cand(Rs,) 3

The final score for cach candidate, FS(C;), is simply calculated as the product of the
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L O N G E V I T Y

1

FIGURE 3.6: Partial pronunciation lattice for the word LONGEVITY. (Original source:
Marchand and Damper 2000).

numbers of points yielded from each of the S strategies as follows:

s
FS(Cy) =[] 95, P(C), Rs,) + (1 = ds,) (3.3)

i=1
where 0g, is 1 if strategy S; is included in the combined score, and 0 otherwise.
Finally, the result is the pronunciation candidate that achieved the highest final score.
Scoring strategies
To explain each strategy, the representation of the sets used in the lattice is as follows:

L(W;) = C1,....C;,...,Cn is the lattice for the word W;.

Cieq,ny denoting the candidates and Cj is consisted of (F;, D;, P;) where:

D; = dy,....dx,....,dy is the set of the difference of the position index of the nodes

at either end of the kth arc, called the path structure.

Pj = p1,....pm,.....p1 1s the set of pronunciation candidates with py,’s from the set

of phonemes and [ is the length of the pronunciation.

To clarify how to calculate the scoring method for each strategy, the pronunciation lattice
given in Figure 3.6 is used as an example. Note that the NET'talk phoneme symbols
are used in this example. From this lattice, the program produces the six candidate

pronunciations as presented in Table 3.1.

Strategy 1: The product of the arc frequencies (PF). The candidate scoring values are

ranked in descending order.
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mandidate ‘ Pronunciation [ Path structure ‘ Arc frequencies |

1 JlanJEvxti/ {4, 1, 5} {2, 80, 2}
2 /lanJEvxti/ {3,2,5} {2,9, 2}
3 JlonJEvxti/ {3, 2, 5} {1, 9, 2}
4 /leGgEvxti/ {4, 1, 5} {1, 11, 2}
5 /lcGg—vxti/ {5, 1, 4} {1, 24, 22}
6 /leGg—vTti/ {5, 2, 3} {1, 2, 2}

TaBLE 3.1: The six candidate pronunciations for the word LONGEVITY.

PE(Cy) =]]# (3.4)
i=1

[Candidate | 1 [2[3 4] 5 |6]
Score, PF() [ 320 [ 36 | 18 [ 22 [ 528 | 4
Rank 2 [ 35 41 |6
Points 5 4 1 2] 3 6 |1

TABLE 3.2: The computation of PF() for the six candidates.

Strategy 2: the standard deviation of the values associated with the path structure

(SDPS). The candidate scoring values are ranked in ascending order.

nor )2 S g
SDPS(C;) = \/M d= iz di (3.5)
n (2
| Candidate [ 1 [ 2 [ 3[4 ] 5 [ 6 |
Score, SDPS() [17 12121717 ] 1.2
Rank 4 1 1 4 4 1
Points 2 2 2 5

TABLE 3.3: The computation of SDPS() for the six candidates.

Strategy 3: the frequency of the same pronunciation (FSP), ie. the number of

occurrences of the same pronunciation within the tied shortest paths. The candidate

scoring values are ranked in descending order.

FSP(C;) = cand{P;|P; = P} with j#k and k€ [l,N] (3.6)

[ Candidate | 1 [ 2 [ 3[4 5 [ 6 |

Score, FSP() | 2 | 2 1 1 1 1
Rank 101 3 1313 3
Points 55155252525 |25

TaBLE 3.4: The computation of FSP() for the six candidates.
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Strategy 4: the number of different symbols NDS() between a pronunciation candi-

date C; and the other candidates. The candidate scoring values are ranked in ascending

order.
NDS(C ZZO Pji, Py (3.7)
1=1 k=1

where () is 1 if pronunciations P; and Py, differ in position 7 and is 0 otherwise. Table 3.6

illustrates the computation of NDS() for Candidate 1.

| Candidate | 1 [ 2 | 3 ;
Score, NDS() | 13 | 13 | 14 | 12| 14 | 18
Rank 2 2 3 1 3
Points 451451250 6 |25 1

TABLE 3.5: The computation of NDS() for the six candidates.

! Candidate 1 ‘1 niJ‘E‘vx}tm
lla|n|J|E v x|t i
Other candidates llo|n | J|E|v ‘ x|t |1
to be compared llelGlg|E|vix|t]|i
with Candidate 1 lle| Glg|— Vv E x| t]i
lle|Glg | —|v|I|t]i
Differences at position 7 | 0 ‘ 4 l 3 ‘ 3 J 2 ‘ OJ 1 [ 0 \ 0
NDS() Score

TABLE 3.6: Illustration of the computation of NDS() for Candidate 1. Phonemes
differed to those of the target pronunciation are written in bold.

Strategy 5: weak link WL(), i.e.the minimum of the arc frequencies. The candidate

scoring values are ranked in descending order.

WL(Cy) = min; f;, i€ [i,n] (3.8)

W L

Score, WL()‘ 2
1
5555125252525

| Candidate | 1 | 2 [ 3
1

Rank 1 3
Points 5

TABLE 3.7: The computation of WL() for the six candidates.

Final result: these five strategies for scoring the shortest paths are used to determine
the final result by combining all possible combinations. The number of possible combi-
nations is (2° — 1) = 31. A 5-bit code is represented by the combinations in which ‘1’
at position ¢ indicates that strategy S; was included in the combination, or otherwise

‘0. For example, the code ‘10000" indicates that strategy 3 (FSP) is used singly, and
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F1Gure 3.7: The silence problem occurs in the word ANECDOTE which fails to
produce an output. (Original source: Damper and Eastmond 1997).

the code ‘10101° indicates that strategies 1, 3, and 5 are used together. An example of
the use of combination ‘10101" for deriving a pronunciation of the word LONGEVITY
is shown in Table 3.8. The points used to calculate the final score are shown in bold.

As can be seen, the final result is Candidate 1 which is the correct pronunciation in this

case.
| Candidate | PF | SDPS | FSP | NDS | WL | Final score |
1 5 2 | 55 | 45 | 5.5 151.25
2 4 5 55 | 45 5.5 121
3 2 5 2.5 | 25 | 2.5 12.5
4 3 2 |25 | 6 |25 18.75
5 6 2 | 25 | 25 |25 375
6 1 5 25 | 1 | 25 6.25

TABLE 3.8: Example of multi-strategy scoring for the word LONGEVITY using the
‘10101° combination and product rule.

One drawback of this implementation is that it suffers the silence problem, which occurs
when there is no comiplete path from Start to End nodes. In this case, the program
can not produce any pronunciation. An example of the silence problem is shown in
Figure 3.7. In the pronunciation lattice of the word ANECDOTE, the figure shows only
a subset of the arcs for clarity. This lattice has no arc between nodes (/k/, 4) and (/d/, 5)
because there is no substring ¢d matching with phonemes /kd/ in the dictionary except
in the word itself. Thus, there is no complete path through this lattice, so the program
fails to produce the pronunciation of this word. As a result of the silence problem, an

output is not necessarily guaranteed using PbA alone.

3.3 Appraisal with Common Words

In this section, previous work is briefly reviewed with their results mostly on lexicons of

common words. The main differences of each variant of PhA are addressed.
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3.3.1 PRONOUNCE

In the work of D&N, the classical PRONOUNCE program was evaluated on 70 mono-
syllabic pseudowords, a subset of those previously used in reading studies by Glushko
(1979). Approximately 20,000 words from Webster’s Pocket Dictionary were used as
a lexicon of known words. In substring matching, they used ‘partial’ matching which
starts with the left-most letter of the input word and of the dictionary entry, and
continues until the two are right-aligned. In the decision function, if there are tied
shortest paths, the sum of arc frequencies of each candidate is computed. The output
is the pronunciation obtained with the highest score. This is similar to strategy 1 in
the multiple-strategy approach, in which the product of arc frequencies has been used
instead. The correct pronunciations of these psendowords were given by seven human
subjects. They reported results, in terms of word accuracy, at 91%. However, their
test set was not representative of general English. Later work showed repeating of the
experiment on both sets of pseudowords and sets of realistic words failed to accomplish
such a high accuracy (Sullivan and Damper 1993;: Yvon 1996; Damper and Eastmond

1997; Bagshaw 1998).

3.3.2 Synthesis-by-Analogy

The impact of implementational choices on performance of the PbA systemn has been
studied by Sullivan and Damper (1993). They developed a synthesis-by-analogy system
by employing analogy in both orthographic and phonological domains. Three different
English lexicons and one German database was used with different treatment of word
boundaries and candidate scoring methods. Each lexicon consisted of 800 words except
one English lexicon which consisted of 3,926 words. The pronunciation lattice was
different from the D&N model, in which the nodes represent the junctures between letters
or phonemes rather than the letters or phonemes themselves, and the arcs represent
possible phoneme(s) with preference values. The preference value reflects the probability
of individual orthographic-to-phoneme mappings. Strategy 1 was used as a scoring
method. In evaluating the system’s output, a set of pseudowords was created and the
‘correct’ pronunciations were given by native speakers (131 words in English and 100
words for German). A pseudoword may have more than one ‘correct” pronunciation, that
is the pronunciation produced by any subject was considered as a correct pronunciation.
The best results for the two languages were obtained from different implementations. For
English, phonemic analogy performed much better than orthographic analogy. However,
the reverse was true for German. The best performance for English and German was
78.7% and 82% words correct respectively. However, a high accuracy in results was not
achieved for English; in fact, the error rates on their similar test set were much higher

than PRONOUNCE.
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3.3.3 Multiple Unbounded Overlapping Chunks

Yvon (1996) proposed an extension of D&N’s algorithm in which the pronunciation
lattice has been modified. To construct the lattice, this system used multiple unbounded
overlapping portions of existing transcriptions, and a shared phoneme between contigu-
ous matching substrings is applied. In order to find the output, the recombination of the
smallest number of nodes that overlap maximally is deemed a possible pronunciation.
Then, if there are the possible ties, the best pronunciation corresponding to the path
that has the minimum weight in a lattice is chosen as an output. His extension has
been evaluated and compared with PRONOUNCE and DEC, a decision tree method by
Torkkola (1993). Five dictionaries from different languages were used for evaluation.
Two of them are common-word dictionaries: NETtalk (English) and BDLEX (French),
and the rest are proper-name dictionaries (Italian, French, Dutch). The results showed
that his method outperforms PRONOUNCE in all lexicons. For a decision tree approacls,
the accuracy of results is in between those of PRONOUNCE and his algorithm. The
results of English lexicons were poor (63.96% words correct) when compared to the
other languages, and the results of the Italian lexicon achieved the highest word accuracy
(95% words correct). Nevertheless, he concluded that his analogy-hased models failed

to provide appropriate pronunciations for the phonetic transcription task.

3.3.4 Pronunciation by Analogy

Damper and Eastmond (1997) studied the impact of implementational choices on the
performance of various PbA models. Three models were evaluated; the first model
was the re-implementation of D&N, and the other two models were also based on the
D&N’s model but with different scoring methods: the maximum product of the arc
frequencies (PROD), and the maximum sum of the score from all paths corresponding
to the same pronunciation so-called total product (TP). Sets of pseudowords and sets
of lexical words were tested. There are two sets of pseudowords: the 70 pseudowords
used in PRONOUNCE and the 131 pseudowords used by Sullivan and Damper (1993)
plus 5 more words. Also, two databases, Webster’s and Teacher’'s Word Book (TWD)
dictionary, were used as a test set and a lexicon. Each lexicon was tested by using the
leave-one-out strategy; that is, each word is removed in turn from itg lexicon, and a
pronunciation inferred by analogy with the remainder. The replication of D&N models
was unable to reproduce the same level of performance reported in their original work.
The best results were obtained with the TP model in all cases. In the testing of lexical

words, results on TWD were better than on Webster’s in all models.
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3.3.5 Phonemic transcription by Analogy

In the work of Bagshaw (1998), pronunciation by implicit analogy has been proposed
for a real-time synthesiser. Context-dependent grapheme-to-phoneme rules were derived
from a phonetic dictionary in the training stage. Then, the dictionary can be dis-
carded. These rules were minimised to maintain sufficient speed for real-time processing.
Principally, a lexical lookup with a system of pronunciation by analogy was used to
generate a pronunciation. A lattice was generated by searching for context-dependent
grapheme rules that match at each letter. In the case that no rule was matched, an
exception rule was invoked, in which the most probable pronunciation for that letter
regardless of its context is given. Each path in a lattice was considered as a possible
pronunciation by calculating a score S, which is the sum of weights of the applied
rules, and a penalty score Z, which is the number of exception rules applied in a path.
In Bagshaw’s PbA system, the syllable boundary and stress were also included in the
transcriptions. The CNET lexicon of 110,000 words was used as training and testing
data. The result achieved was 77.06% words correct. The lexicon of 68,000 proper names

from Onomastica was also evaluated and yielded a lower accuracy at about 49%.

3.3.6 Multi-Strategy PbA

More recently, Marchand and Damper (2000) proposed a multi-strategy approach to
improving pronunciation by analogy with some simple heuristics for silence avoidance.
They also extended the method to the problems of phoneme-to-letter conversion and
letter-to-stress conversion. The algorithm of this variant with multiple strategies was
already presented in Section 3.2.4. The multiple strategies were studied with two
combination methods: the product rule and the sum rule. Webster’s dictionary was
tested and the best results obtained were 65.5% word accuracy from the product of all five
strategies. The results of this multi-strategy approach showed a significant improvement
in the performance over the single strategy versions of the PbA. Furthermore, this
multi-strategy PbA was compared with the rule-based approach, and two data-driven
techniques: NETspeak and IGTree (Damper et al. 1999). The results showed that
PbA outperforms the other methods on a small lexicon. The best results were obtained
at approximately 72% of words correct on the TWD database. Thus, PbA has been
re-implemented for use in this thesis based on the version of Marchand and Damper

(2000).

Table 3.9 shows the best results obtained from different versions of PbA, mentioned in

this section, with various languages and lexicons.
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The work of ... Lexicon Number of | Language Number of Type of word | % Words

word test set correct

Dedma( 1&;8i>;mbaum Webster 20,009 English 70 pseudoword 91.00—T
Basic English 800 English 131 78.70
Sullivan & Damper KF800 800 English 131 s 62.50
(1993) OALD 3,026 English 131 pseudoword 74.00
Meier 800 German 100 82.00
Webster 20,009 English common word 63.96
BDLEX ~20K-25K French common word 86.54
Yvon (1996) IT-NP ~20K-25K Italian the 10th proper name 95.73
FR-NP ~20K-25K French of lexicon proper name 79.14
NE-NP ~20K-25K Duteh proper name 89.86
Webster 20,009 70 pseudoword 85.70
Damper & Eastmond Webster 20,009 Fnelish 136 pseudoword 85.30
(1997) Webster 20,009 © whole lexicon | common word 60.70
TWB 16,280 whole lexicon | common word 67.90
| CNET 114,614 .y whole Iexicon | common word 77.06
Bagshaw (1998) CNET 114,614 English 68,046 proper name 49.21
Marchand & Damper Webster 19,594 Enslish whole lexicon | common word 65.50
(2000) TWB 16,280 e whole lexicon | common word 71.80

TABLE 3.9: The best results of each version of PbA with various lexical databases.

3.4 Conclusion

The psychological model of Glushko (1979) and the first implementation program by
D&N have greatly influenced automatic pronunciation methods by analogy. Since then,
pronunciation by analogy has been a well-known and successful approach for phonetic
transcription in TTS synthesis. PbA has been studied and extended by many re-
searchers. The principle of PbA used in this thesis has been described. The various

extensions of PbA were addressed with their results.

The assumption underlying PbA is that the dictionary contains implicit phonological
knowledge which can be exploited to generate a pronunciation for an unknown word. By
hypothesising a partial pronunciation {rom lexicon for each matched substring between
input word and lexical entries, an output is formed by joining those partial pronuncia-
tions. This idea denies the assumption of Miller (1981, p.49) that:

. the pronuuciation of part of a word is not generally part of its pronunciation:
if z and y are segments of a word, then Pronunciation(z)+ Pronunciation(y) #

Pronunciation(z+y).”

PbA is a kind of explicit analogy or lazy learning, in which the prior training process
is minimised and the dictionary is still kept for looking up or inferring a pronunciation;
this may be one of the reasons that makes PbA more successful than other methods. In
fact, there is good empirical evidence to support this reason; Daelemans et al. (1999)
provided the empirical results suggested that keeping exceptional training instances in
memory can be beneficial for generalisation accuracy in language learning. They also
suggested that editing or abstracting instances in implicit analogy methods, such as
decision-tree learning, can be harmful. Some rare information maybe discarded while

compressing the training data into some other kind of representation.
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With very good results obtained in terms of word accuracy, PbA seems to be a very
promising approach. Marchand and Damper (2000) revealed that the performance of
PbA still has room for improvement based on selecting among shortest paths. There
are many aspects of PbA which may help to improve performance and have not been
studied yet. Furthermore, D&N mentioned that pronunciation by analogy may cope
with the problem of surname pronunciation. Consequently, PbA was chosen for further

investigation in this thesis and the problem of name pronunciation is focused.



Chapter 4

Syllabification by Analogy of

Proper Names

4.1 Introduction

The syllable is an important unit of a word often mentioned in phonological studies.
However, its definition is still a controversial issue among the linguistic community
(Holmes and Holmes 2001, p.286). There are various definitions for a syllable; here is

the example of a definition from the Cambridge Advanced Learner’s Dictionary:

“Syllable [nounj a single unit of speech, either a whole word or one of the

parts into which a word can be separated. usually containing a vowel.”.

The separation of a word into syllables is called syllabification. In English, it is difficult
to syllabify words, whether spoken or written, due to the difficulty in defining a syllable
and the irregular correspondence between spelling and sound. The process of syllab-
ification is ambiguous whether it should operate in the orthographic or phonological
domain. Strictly speaking, the term syllable might be more accurately applied only
to the phonological domain. However, it is often used to apply in the orthographic
domain, related to a hyphenation problem since the syllable boundary is usually marked
by a hyphen. For instance, the possible syllabification of the word FEELING might be

/fi-lIy/ in the pronunciation domain, or alternatively FEEL-ING in the spelling domain.

Irrespective of the definition, syllabification is undoubtedly one of the important com-
ponent in any TTS system (Kiraz and Mobius 1998). In most languages, syllable
boundaries are usually treated as an aid to pronunciation. The syllable is also used to
assign the stress on a word and its location affects the duration of the phone (Tian 2004;
Marchand and Damper 2007). In unit selection of concatenative synthesis, syllables may

be used as a basic unit.

40
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Native speakers of a language are able to count syllables easily based on intuition,
but their given boundaries can vary from one to another (Marchand and Damper 2007).
Furthermore, there arc no rules or algorithms for syllabification that have been generally
accepted so far. Many attempts to syllabify have been proposed (Tian 2004). Thus,
designing an algorithm for dividing words into syllables is still a challenging problem
in a wide range of research fields, not only in the linguistic area but also in machine

learning and speech technology.

Different approaches have been used to solve the problem of automatic syllabification
and/or hyphenation. Rule-based systems, which are mainly reliant on a maximal onset
principle (Pulgram 1970, p.47; Kahn 1976, p.41) or a sonority hierarchy (Clements 1988).
are the traditional methods applied to the problem. A few data-driven approaches have
been proposed, especially for English and German. Daelemans and van den Bosch (1992)
investigated the backpropagation neural network approach for Dutch and compared
the results with various symbolic pattern matching approaches and an exemplar-based
generalisation technique. The training set consisted of 19,451 words and the test set
consisted of 1,945 words. Different neural networks have been tested and the ultimate
accuracy achieved was about 96% correctly-placed hyphens. Comparison of perfor-
mance showed that the backpropagation approach was not superior to the other two
methods. The FST method has been applied in the phonological domain for German
and English syllabification by Kiraz and Mobius (1998). However, evaluation results
have not been formally reported. A probabilistic context-free grammar has also been
used to predict syllable boundaries for German (Miiller 2001). The corpus was split
into 10 folds and various models of grammar were evaluated by training on 9 folds
and testing with the rest (approximately 240,000 words). The best model achieved
up to 96.4% word accuracy. Tian (2004) investigated two data-driven approaches
for modelling syllabification: decision-tree and ncural network. Both methods were
evaluated on 108,080 words from CMUDICT. However, the number of words used as
train and test sets in this paper is not clear. His results showed that when training
with 2,000 samples, neural network approach performed better than the decision tree
approach. In a recent paper, syllabification was formulated as a tagging task, and
a syllable tagger based on an HMM was proposed by Schmid et al. (2007). The
German CELEX dictionary, containing about 300,000 words, was evaluated using 10-fold
cross-validation. The results shows the syllable boundaries were correctly predicted with
a very high accuracy of 99.85%. Recently, Marchand and Damper (2007) introduced
a syllabification algorithm for English. The results showed that integrating syllable
boundary information manually in the orthographic input can dramatically improve the
performance of automatic pronunciation by analogy. They reported that the rate of word
accuracy was increased by approximately 5% when the correct (according to the corpus)
positions of syllable boundaries were given. However, the automatic syllabification that

they proposed using the same concept as PbA did not yield better results.
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In this chapter, the aim is to assess the possibility of improving the performance of
PbA by using the same analogy concept to syllabify proper names. Experiments were
carried out using the concept of syllabification by analogy (SbA) proposed by Marchand
and Damper (2007). SbA is an algorithm for determining syllable boundaries in the
orthographic form by using analogical reasoning from a lexicon of known syllabifications.
The experiments were conducted using a separate syllabification step, and then inferring
the pronunciation by analogy. In the remainder of this chapter, the syllable structure
of the dictionary used in this task is given. The SbA algorithm is described next. Then
the implementation and results are presented when SbA is applied to the problem of

proper names. Finally, discussion and conclusion are presented in the last section.

4.2 Syllable Structure

Typically a syllable consists of one or more vowel sounds preceding or following zero/-
more consonant sounds or certain consonants alone. This structure generally applies in
the phonological domain, not the orthographic domain. However, the SbA algorithm
must operate in the orthographic domain, since its input is text. Also, there is no syllable
boundary in a dictionary of proper names. It is interesting to see how syllabification
reflects into the orthographic domain. Thus, in this experiment the syllable boundaries

are applied in the spelling domain as below.

Webster’s dictionary is the only dictionary, from all dictionaries used in this thesis, that
contains pronunciation with a stress and syllable boundary for each word. Thus. this
lexicon was used for inferring the syllabification, and a dictionary of proper names was

used for inferring the pronunciation. A sample of Webster’s dictionary is shown as below:

aardvark a-rdvark 1 <<<> 2 <<

aback xb@Qk- 0>1<<
abacus @bxkxs 1<0>0<
abaft xb@ft 0>1<<

The lexical database is arranged in three columns: the spelling, the pronunciation (ex-
pressed in the phoneme symbols listed in Appendix B), and the stress and syllabification
patterns. The syllable boundaries can be extracted from the third column by inferring

from four regular expressions:

Rl: [<>] = [<|>]
R2:  [<digit] = [< |digit]
R2:  [digit>] = [digit| >]
R2: [digit digit] = [digit|digit]

The number in the third column indicates the level of stress: 1 for primary stress, 2 for

secondary stress, and 0 for tertiary stress. The ‘<’ and ‘>’ symbols denotes the right
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and left syllable boundary. The ‘|” symbol in the rules denotes the syllable boundaries.

For the above example words, after applying these rules, the syllabifications are:

<AARD|VARK>
<A|BACK>
<AB|A|CUS>
<A|BAFT>

4.3 Syllabification by Analogy

Syllabification by analogy is a modification of PbA which predicts syllable boundaries
from their spelling by inference from a syllabified dictionary. It was initially proposed by
Marchand and Damper (2007). They developed a syllabification system by employing
analogy in the orthographic domain. The following description of SbA and three models

of syllabification /pronunciation in this section are elaborated in their article.

4.3.1 Principle of SbA

The principle of SbA is similar to that of PbA in Chapter 3. The muaiu difference is that
the junctures between letters are added explicitly to modify PbA in three parts: input
words, lexical entries, and the output. The ‘«’ symbols represent possible boundaries in
the input words, and are used as input symbols to label the lattice nodes, for example,
<ABAFT> is expanded to <A=BxAxF«T>. For lexical entries, the ‘|’ symbols indicate
the positions of syllable boundary and *x’ is also added as a juncture where there is no
boundary presence, e.g., <A|BxAs=Cs«K>. Both ‘«" and ‘!’ are represented as possible
output symbols, and are used to label the arcs in a lattice. In substring matching, ‘*’
in the input can match with either «” or ‘|” in lexical entries. A ‘«—«’ match is entered
in the lattice as a ‘«’ and a ‘|’ match is entered in the lattice as ‘|". The following
processes are performed in exactly the same way as in PbA, except that in the final
step. the ‘+” symbols are removed to yield the output. One problem with SbA is that
the processing time increases significantly compared to PbA, due to the extension of

word lengths by juncture symbols.

4.3.2 Three Models of Syliabification and Pronunciation

The concept of ShA has been adapted to infer syllabification and pronunciation together.
This was done to investigate whether automatic syllabification can lead to superior

pronunciation performance or not. There are three models:

e A perfect model, S«(P)bA — in this case, we assume that the input word is already

syllabified correctly and compared to syllabified lexical entries, giving matched
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substring with their corresponding pronunciations including syllable markers to

construct the lattice. From here, the process proceeds exactly as for PbA.

e A parallel model, (S||P)bA — the syllabification of an input word is unknown, and
the process is similar to SbA, except that pronunciation information and syllable
markers are included to build the lattice. From here, the process proceeds exactly

as for PbA.

e A series model, (S+P)bA — the syllabification of the input is given by processing

SbA first, then this is used as an input for processing as in the S+(P)bA model.

4.3.3 Previous Results

The models in the previous sections were evaluated using 19,596 entries from Webster’s
dictionary — the 413 homonyms were removed from the original NETtalk. A fair test was
conducted by using the leave-one-out strategy and reported in terms of words correct.
The best results were obtained from SbA using the 10101 combination at 78.10% word
correct and 93.1% boundaries correct. For the three models for inferring syllabification
and pronunciation together, the results were reported in terms of word accuracy, which
means if all phonemes of a word, including the null phoneme, are correct then this
word was counts as a correct pronunciation. The best results of S#(P)bA achieved a
very significant improvement compared to those of PbA, from 65.35% words correct for
PbA to 71.74% words correct for S(P)bA. This illustrated that perfect syllabification
successfully improved the performance of pronunciation. However, the other two models
failed to improve the performance of PbA. The results of a parallel model were slightly
superior to those of the series model. They both obtained their best results from the
10100 combination, 64.82% words correct for the (S|/P)bA model and 64.26% words
correct for the (S+P)bA model.

4.4 Experimental Results

Because of the success in improving the performance of pronunciation using a perfect
model for inferring syllabification and pronunciation, an investigation was carried out to
see how well automatic syllabification can cope with proper names. Experiments were
carried out using the (S+P)bA model with the 52,911 proper names in CMUDICT. The
set of proper names in CMUDICT was syllabified by inferring the syllable boundaries
from a dictionary of common words (Webster’s dictionary). The details of these two
dictionaries are fully described in the next chapter. At this stage, the percentage of
boundaries correct can not be determined because the correct syllabifications of these
proper names were unavailable. Thus, the different outputs were created from all

combinations as we do not know which combination can produce the best syllabification
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(close to ‘perfect’). Then these were used as an input for the next step, the normal PbA,
to find the pronunciation. The results were evaluated using the leave-one-out method.
Tables 4.1-4.4 show the results of syllabification and pronunciation by analogy, using the
(S+P)bA model with CMUDICT proper names in the form of the confusion matrix for
all combinations of SbA and (S+P)bA. The best results are written in bold. As can be
seen, the best results were achieved when syllabified using the 00010 combination, and
when the pronunciation was inferred using the 10101 combination. However, the best
result of 65.14% words correct for (S+P)bA versus 68.35% for PbA was significantly
poorer (binomial tests, one-tailed, p << 0.01). The best performance was observed

using a 10101 combination of (S+P)bA.

The (S||P)bA model can not be evaluated because Webster and CMUDICT use different
phoneme inventories. Therefore, syllable boundaries and pronunciation can not be

inferred at the same time.

4.5 Conclusion

Syllabification is an important task in speech recognition and synthesis, since syllables
can help a pronunciation system in assigning stress and duration of phones. Recent work
showed that manually-syllabified information enhanced the performance of pronuncia-
tion in letter-to-phoneme conversion. However, automatic syllabification is difficult and
still a challenging problem. Why is automatic syllabification from text hard? Various
reasons are given in the research literature. Having identified the syllable boundary with
the absence of precise definition of itself is one of the most cited reasons. The ambiguity
whether syllabification from spelling or phonetic transcription is also an issue. The
lack of a gold standard syllabified lexicon makes a syllabification algorithm difficult
to learn from examples. Fven, there is a dictionary to determine the syllabification
by look-up technique, it is still a problem when encountering new words that do not
have a corresponding entry in the dictionary. TFurther, the step for syllabification
and pronunciation induction should be concerned with finding the pronunciation first
followed by the syllabification, or vice versa, or finding both in parallel. These are the

possible reasons that automatic syllabification is a very hard problem.

Many researchers have proposed a variety of data-driven approaches to assign syllable
boundaries. In this chapter, an attempt was made to use the concept of analogy for
syllabification and pronunciation of proper names. The series model of syllabifica-
tion/pronunciation based on the PbA approach was evaluated with the set of proper
names from CMUDICT. Using a leave-one-out strategy, the performance of PbA has
not been improved relative to that of our standard model. The errors in automatically-
inferred syllabification seem to disrupt the substring matching process in PbA. One

possibility to improve the performance is to provide the manually-syllabified dictionary
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[Combination | 00001 | 00010 | 00011 [ 00100 | 00101 | 00110 | 00111 | 01000
00001 53.15 | 55.43 | 54.83 | 53.43 | 53.49 | 53.95 | 54.09 | 51.73 |
00010 54.22 | 55.64 | 55.36 | 54.38 | 54.67 | 54.71 | 55.01 | 51.69
00011 58.20 | 59.68 | 59.45 | 58.48 | 58.66 | 58.88 | 59.12 | 56.11
00100 59.66 | 60.43 | 59.80 | 60.21 | 59.94 | 60.01 | 60.11 | 57.44
00101 63.09 | 64.17 | 63.88 | 63.67 | 63.71 | 63.75 | 63.89 | 61.19
00110 58.63 | 59.52 | 59.41 | 59.17 | 59.49 | 59.34 | 59.62 | 56.34
00111 61.14 | 62.29 | 62.12 | 61.72 | 61.94 | 61.94 | 62.18 | 59.10
01000 36.46 | 37.87 | 37.35 | 36.45 | 36.08 | 36.92 | 36.74 | 36.56
01001 50.93 | 52.72 | 52.28 | 50.96 | 51.27 | 51.56 | 51.76 | 50.13
01010 54.58 | 55.79 | 55.70 | 54.74 | 55.17 | 55.32 | 55.58 | 52.31
01011 57.65 | 58.97 | 58.94 | 57.94 | 58.17 | 5842 | 58.73 | 55.80
01100 58.62 | 59.35 | 59.17 | 59.13 | 59.18 | 59.28 | 59.40 | 56.72
01101 61.65 | 62.72 | 62.44 | 62.29 | 6242 | 62.42 | 62.60 | 59.91
01110 58.36 | 59.26 | 59.22 | 58.91 | 59.30 | 59.15 | 59.43 | 56.09
01111 60.82 | 61.82 | 61.69 | 61.27 | 61.67 | 61.55 | 61.82 | 58.65
10000 57.60 | 59.35 | 58.92 | 57.99 | 5811 | 5841 | 58.54 | 56.25
10001 56.51 | 5859 | 57.98 | 56.51 | 56.81 | 57.18 | 57.23 | 55.42
10010 59.04 | 60.42 | 60.38 | 59.37 | 59.79 | 59.82 | 60.04 57.16
10011 59.69 | 61.34 | 61.21 | 60.07 | 60.34 | 60.57 | 60.79 | 58.00
10100 63.63 | 64.52 | 64.35 | 64.21 | 64.37 | 64.25 | 64.38  61.96
10101 63.88 | 65.14 | 64.93 | 64.47 | 64.60 | 64.73 | 64.83 | 62.17
10110 61.36 | 62.42 | 62.33 | 61.78 | 62.16 | 62.11 | 6227 | 59.53
10111 62.32 | 63.71 | 63.51 | 62.92 | 63.20 | 63.26 | 63.40 | 60.39
11000 5475 | 56.51 | 56.02 | 54.76 | 55.14 | 55.42 | 55.58 | 54.49
11001 55.03 | 56.96 | 56.46 | 55.05 | 55.45 | 55.72 | 55.80 | 54.43
11010 58.82 | 60.20 | 60.07 | 59.12 | 59.51 | 59.58 | 59.85 | 57.18
11011 58.64 | 60.25 | 60.10 | 58.85 | 59.31 | 59.47 | 59.69 | 57.37
11100 63.33 | 64.22 | 64.02 | 63.79 | 6410 | 63.93 | 64.09 | 61.62
11101 62.57 | 63.69 | 63.48 | 62.96 | 63.27 | 63.28 | 63.45 | 60.87
11110 61.59 | 62.68 | 62.58 | 62.00 | 62.36 | 62.30 | 6241 | 59.66
11111 61.93 | 63.17 | 63.03 | 62.38 | 62.78 | 62.86 | 62.94 | 60.08 |

TABLE 4.1: Results of the series (S+P)bA model, in which pronunciation is inferred
The columns represent the combinations of scoring

after syllabification by SbA.

strategy, ranging from 00001 to 01000, in which the results obtained from when inferring
syllabification from Webster’s dictionary. The rows represent the 31 combinations of
scoring strategy when inferring pronunciation from CMUDICT proper name. The
results are presented in terms of percentage word accuracy.
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[ Combination | 01001 | 01010 | 01011 [ 01100 [ 01101 | OL110 | 01111 [ 10000 |
00001 53.14 | 55.14 | 55.06 | 5341 | 53.78 | 54.00 | 5451 | 53.33 |
00010 53.69 | 55.34 | 55.63 | 54.22 | 54.79 | 54.74 | 55.36 | 54.87
00011 57.78 | 59.43 | 59.56 | 58.55 | 58.69 | 58.95 | 59.20 | 58.78
00100 58.56 | 59.95 | 60.22 | 59.99 | 60.00 | 60.07 | 60.58 | 60.04
00101 6248 | 63.97 | 64.02 | 63.62 | 63.70 | 63.77 | 64.05 | 63.70
00110 57.90 | 59.43 | 59.47 | 59.10 | 59.40 | 59.38 | 59.78 | 59.22
00111 60.63 | 62.19 | 62.19 | 61.75 | 61.92 | 61.97 | 62.21 | 61.83
01000 36.17 | 37.75 | 37.56 | 36.45 | 36.37 | 36.86 | 37.01 | 306.41
01001 51.04 | 52.72 | 5247 | 51.09 | 51.58 | 51.68 | 51.93 | 51.05
01010 5415 | 55.72 | 55.74 | 54.84 | 55.30 | 55.31 | 55.66 | 55.02
01011 57.31 | 58.95 | 59.05 | 58.04 | 58.28 | 58.48 | 58.68 | 58.11
01100 57.77 | 59.28 | 59.29 | 59.19 | 59.25 | 59.29 | 59.58 | 59.05
01101 61.23 | 62.63 | 62.70 | 62.24 | 62.39 | 62.48 | 62.66 | 62.33
01110 57.72 | 59.25 | 59.22 | 58.93 | 59.20 | 59.17 | 59.45 | 59.01
01111 60.33 | 61.78 | 61.85 | 61.33 | 61.64 | 61.60 | 61.80 | 61.38
10000 5772 | 59.27 | 59.08 | 58.01 | 58.28 | 58.41 | 58.62 | 58.00
10001 56.57 | 58.39 | 58.21 | 56.71 | 57.06 | 57.23 | 57.47 | 56.57
10010 58.72 | 60.37 | 60.38 | 59.51 | 59.80 | 59.87 | 60.00 = 59.62
10011 59.36 | 61.28 | 61.25 | 60.22 | 60.39 | 60.64 | 60.74 | 60.32
10100 62.97 | 64.37 | 64.36 | 64.28  064.39 | 64.27 | 6442 6420
10101 63.47 | 64.90 | 65.05 | 64.58 | 64.67 | 64.74 | 64.89 | 64.39
10110 60.94 | 62.33 | 62.32 | 61.88 | 6213 | 62.14 | 62.26 | 61.86
10111 61.89 | 63.65 | 63.59 | 63.10 | 63.16 | 63.27 | 63.37 | 63.03
11000 54.99 | 56.51 | 56.41 | 55.00 | 5543 | 55.54 | 55.79 | 54.63
11001 55.15 | 56.98 | 56.75 | 55.25 | 55.65 | 55.73 | 56.03 | 54.93
11010 58.50 | 60.09 | 60.30 | 59.27 | 59.57 | 59.58 | 59.82 | 59.26
11011 58.49 | 60.29 | 60.25 | 59.17 | 59.41 | 59.54 | 59.69 = 59.14
11100 62.81 | 64.05 | 64.25 | 63.84 | 64.10 | 63.97 | 6422 | 63.79
11101 6221 | 63.55 | 63.72 | 63.04 | 63.32 | 63.27 | 63.53 | 62.99
11110 61.05 | 62.56 | 62.67 | 62.05  62.28 | 62.29 | 6244 | 62.12
11111 61.52 | 63.07 | 63.09 | 62.60 | 62.76 | 62.83 | 6290 | 62.55

TABLE 4.2: Results of the series (S+P)bA model, in which pronunciation is inferred
after syllabification by SbhA.
strategy, ranging from 01010 to 10000, in which the results obtained from when inferring
syllabification from Webster’s dictionary. The rows represent the 31 combinations of
scoring strategy when inferring pronunciation from CMUDICT proper name. The

results are presented in terms of percentage word accuracy.

The columns represenut the combinations of scoring
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[Combination | 10001 | 10010 | 10011 | 10100 | 10101 [ 10110 [ 10111 | 11000
00001 53.33 | 54.92 | 54.42 | 53.76 | 53.61 | 54.19 | 54.16 | 53.66
00010 5460 | 55.83 | 55.50 | 54.99 | 54.58 | 55.30 | 35.47 | 54.97
00011 58.79 | 59.68 | 59.57 | 59.13 | 58.93 | 59.21 | 59.37 | 59.12
00100 59.76 | 60.41 | 59.96 | 60.43 | 60.03 | 60.48 | 60.56 | 59.63
00101 63.62  64.02 | 63.94 | 64.07 | 63.90 | 63.97 | 64.07 | 63.48
00110 59.14 | 59.76 | 59.65 | 59.66 | 59.38 | 59.75 | 59.87 | 59.23
00111 61.67 | 6226 | 62.26 | 62.24 | 62.14 | 62.21 | 62.32 | 61.90
01000 36.03 | 37.58 | 37.06 | 36.47 | 36.13 | 37.03 | 36.81 | 3643
01001 51.19 | 52.37 | 51.99 | 51.41 | 51.40 | 51.73 | 51.65 | 51.38
01010 54.98 | 56.05 | 55.85 | 55.26 | 55.15 | 55.66 | 55.75 | 55.35
01011 58.16 | 59.10 | 59.02 | 5842 5842 | 58.62 | 58.77 | 585l
01100 58.91 | 59.44 | 59.20 | 59.46 | 59.29 | 59.56 | 59.63 = 59.00
01101 62.24 | 62.69 | 62.66 | 62.68 | 62.56 | 62.62 | 62.65 | 62.22
01110 58.86 | 59.56 | 59.39 | 59.37 | 59.19 | 59.54 | 59.59 | 59.05
01111 61.30 | 61.87 | 61.89 | 61.71 | 61.73 | 61.82 | 61.95 | 61.57
10000 57.92 | 59.08 | 58.79 | 58.22 | 58.28 | 58.60 | 58.54 | 5847
10001 56.81 | 58.12 | 57.70 | 57.02 | 57.08 | 57.42 | 57.32 | 57.12
10010 59.68 | 60.42 | 60.44 | 59.98 | 59.87 | 60.07 | 60.20 | 59.87
10011 60.28 | 61.30 | 61.27 | 60.70 | 60.53 | 60.82 | 60.84 | 60.54
10100 64.15 | 64.50 | 64.44 | 64.43 | 64.45 | 64.41 | 6446 | 64.27
10101 64.54 | 65.08 | 65.04 | 64.78 | 64.91 | 64.90 | 64.93 | 64.52
10110 61.93 | 62.40 | 62.46 | 6223 | 6221 | 62.35 | 6243 | 62.16
10111 62.96 | 63.59 | 63.57 | 63.33 | 63.33 | 63.37 @ 63.54 | 63.16
11000 55.04 | 56.12 | 55.76 | 55.21 | 55.16 | 55.60 | 55.56 | 55.52
11001 55.33 | 56.49 | 56.09 | 55.57 | 55.56 | 55.92 | 55.80 | 55.77
11010 59.50 | 60.19 | 60.14 | 59.68 | 59.56 | 59.92 | 60.04 | 59.64
11011 59.23 | 60.19 | 60.06 | 59.51 | 59.37 | 59.72 | 59.74 | 59.51
11100 63.90 | 64.25 | 64.19 | 64.24 | 64.11 | 64.13 | 64.25 | 64.01
11101 63.15 | 63.67 | 63.64 | 6345 | 63.43 | 63.51 | 63.60 | 63.16
11110 62.30 | 62.63 | 62.69 | 6242 | 6242 & 62.50 | 6261 | 62.23

| 1111 62.58 | 63.19 | 63.21 | 62.85 | 62.86 | 63.02 | 63.11 | 62.73

TABLE 4.3: Results of the series (S+P)bA model, in which pronunciation is inferred
The columns represent the combinations of scoring

after syllabification by SbA.

strategy, ranging from 10001 to 11000, in which the results obtained from when inferring
syllabification from Webster’s dictionary. The rows represent the 31 combinations of
scoring strategy when inferring pronunciation from CMUDICT proper name. The
results are presented in terms of percentage word accuracy.
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[Combination | 11001 | 11010 [ 11011 | 11100 | 11101 [ 11110 [ TI111 |

F 00001 53.75 | 54.78 | 54.64 | 54.04 | 54.06 | 54.39 | 54.30
00010 54.65 | 55.63 | 55.98 | 55.16 | 55.31 | 55.30 | 55.62
00011 58.99 | 59.53 | 59.62 | 50.08  59.22 | 59.36 | 59.39
00100 59.71 | 60.09 | 60.40 | 60.50 | 60.43 | 60.54 | 60.63
00101 63.63 | 63.90 | 64.03 | 64.00 | 64.00 | 64.09 | 64.11
00110 59.11 | 59.64 | 59.80 | 59.72 | 59.69 | 59.86 | 60.00
00111 61.88 | 62.25 | 62.35 | 62.18 | 62.22 6229 | 62.39
01000 36.28 | 37.43 | 37.32 | 36.60 | 36.51 | 37.06 | 37.01
01001 5146 | 52.24 | 5214 | 51.79 | 51.75 | 51.88 | 51.96
01010 55.01 | 55.92 | 56.02 | 5548 | 55.52 | 55.76 | 55.87
01011 58.35 | 59.03 | 59.02 | 58.60 | 58.71 | 58.77 | 58.85
01100 58.90 | 59.37 | 59.40 | 59.61 | 59.40 | 59.67 | 59.74
01101 62.27 | 62.58 | 62.69 | 62.70 | 62.65 | 62.74 | 62.78
01110 58.88 | 59.42 | 59.49 | 59.48 | 59.39 | 59.61 | 59.66
01111 61.49 | 61.87 | 61.96 | 61.87 | 61.86 | 61.89 | 61.99
10000 58.27 | 59.08 | 58.82 | 58.35 | 58.40 | 58.72 | 58.65
10001 57.07 | 57.94 | 57.82 | 57.27 | 57.31 | 57.58 | 57.44
10010 59.69 | 60.45 | 60.54 | 59.90 | 59.96 | 60.23 | 60.27
10011 60.51 | 61.36 | 61.24 | 60.65 | 60.67 | 60.95 | 60.97
10100 64.11 | 64.41 | 64.49 | 64.46 | 64.46 | 6448 | 64.57
10101 | 64.49  65.03 | 65.10 | 64.93 | 64.85 | 64.01 | 64.03
10110 62.00 | 6244 | 6250 | 62.25 | 62.30 | 62.44 | 62.53
10111 63.08 | 63.59  63.64 | 63.37 | 63.46 | 63.51 | 63.55
11000 55.39 | 56.13 | 56.00 | 55.43 | 55.47 | 55.80 | 55.79
11001 55.67 | 56.43 | 56.25 | 55.82 | 55.83 | 56.08 | 56.02
11010 50.52 | 60.13 | 60.16 | 59.68 | 59.74 | 60.09 | 60.06
11011 59.55 | 60.20 | 60.13 | 59.60 | 59.57 | 59.93 | 59.92
11100 63.87 | 64.23 | 64.36 | 64.27 | 64.22 | 64.33 | 64.36
11101 63.10 | 63.64 | 63.73 | 63.55 | 63.57 | 63.72 | 63.73
11110 62.22 | 62.61 | 62.71 | 62.52 | 6254 | 62.65 | 62.69
11111 62.67 | 63.20 | 63.20 | 62.99 | 63.03 | 63.12 | 63.07

TABLE 4.4: Results of the series (S+P)bA model, in which pronunciation is inferred
The columns represent the combinations of scoring
strategy, ranging from 11001 to 11111, in which the results obtained from when inferring
syllabification from Webster’s dictionary. The rows represent the 31 combinations of
scoring strategy when inferring pronunciation from CMUDICT proper name. The

after syllabification by SbA.

results are presented in terms of percentage word accuracy.
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of proper name for inferring syllabification/pronunciation. Also, it is hoped that other

methods for syllabification which can achieve an increased performance will be discovered

in future work.



Chapter 5

Multilingual Pronunciation

5.1 Introduction

The difficulty of the automatic pronunciation problem is known to vary widely across
different languages, according to the complexity of the relationship between pronuncia-
tion and orthography in each specific language. This is generally taken to vary across
a so-called deep/shallow continuum (Coltheart 1978; Liberman et al. 1980; Katz and
Feldman 1981; Turvey et al. 1984; Sampson 1985). A ‘shallow’ orthography means that
the correspondences between letters and sounds (graphemes/phonemes) in the writing
system are close to one-to-one (Davis 2005). For languages like English or French whose
writing system is generally agreed to be ‘deep’, there is a supposedly complex relation
between spelling and sound, unlike the ‘shallow’ orthographies of Finnish or Serbian, for
example, where the correspondence is mostly if not entirely consistent and transparent.
Thus, we expect that automatic pronunciation will be particularly difficult for English.
However, it does seem to be relatively easier to convert spelling into sound for languages
such as Spanish and Italian. So that the difficulty of letter-to-phoneme conversion varies
from language to language. One potential advantage of data-driven method like PbA
is that they are highly portable between different languages. All that is necessary is
to change the lexicon that acts as the source of example pronunciations. To date, the
success of PbA for multilingual pronunciation generation has 1ot been seriously assessed.
Hence, one goal for this thesis is to study PbA performance on multilingual transcription
as a way of quantifying the variation of difficulty of the task across languages, and gaining

insight into manifestations of the deep/shallow continuum.

Since PbA uses a dictionary of example spellings and pronunciations as its knowledge
base, an important question is what size of dictionary we should employ in a text-to-
speech system. Intuitively, we might feel that the larger it is, the better. However, large
dictionaries are expensive to compile, lead to an increase in processing time, and may not

exist for all languages that we wish to synthesise, especially minority languages. Also,
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there are inherent dangers in extrapolating from results on a small database or dictionary
to asyniptotic performance on a very large dictionary. A few years ago. Baayen (2001,

p-xxi) wrote:

‘Word frequency distributions are characterised by very large numbers of rare
words. This property leads to strange phenomena such as mean frequencies
that systematically change as the number of observations is increased, rela-
tive frequencies that even in large samples are not fully reliable estimators
of population probabilities, and model parameters that vary with text or

corpus size’.

The problems that this phenomenon can cause for speech synthesis have often gone
unrecognised or underestimated (Mobius 2003). For instance, early developers of rule-
based letter-to-sound systems tested on small datasets and assumed that error rates
would be independent of test set size, leading to dramatic over-estimates of performance
(Damper et al. 1999). With the increased interest in data-driven approaches (Damper
2001, p.xiii), an important issue becomes the sizes of the training and test sets if, as
Baayen (2001, p.xxi) says ‘model parameters ... vary with ... corpus size’. So although
it is likely, and some preliminary results from Damper et al. (1999) suggest it is the case,

it is by no means certain that ‘bigger is better’.

Given this background, our purposes in this chapter are two-fold:

1. To evaluate PbA on a range of different languages, so as to quantify the variation

of transcription difficulty across the deep/shallow continuum of orthography.

2. Also, to explore the effect of lexicon size on performance for multilingual tran-

scription using PbA.

Specifically, we have investigated the performance of PbA applied to 7 FEuropean lan-
guages, which are Dutch, English, French, Frisian, German, Norwegian, and Spanish—
with 12 different lexicons. Also, we artificially varied the size of (some of) these lexicons
by evaluating transcription accuracy on different subsets of the complete dictionary.
Ideally, we aim to investigate performance on the lexicons of proper names in each
languages. However, such dictionaries are not available in every language. In this
work, dictionaries of common words were used instead of proper names except one for
English language source (CMUDICT), which includes both types of word. In the next
section, the dictionaries used in this work are described. In Section 5.3, we set out the
various evaluations of transcription accuracy that have been performed. The results are
presented and discussed in Section 5.4. Conclusions and suggestions are presented in

Section 5.5.
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( Language / Lexicon Number of ...
Letters [ Phonemes | Words
Dutch 43 44 116,252
Frisian 39 85 61,976
German 31 59 49,421
Norwegian 29 47 41,713
Spanish 33 26 31,491
French:  Lexique 40 39 36,460
Brulex 40 39 27,473
Novlex 38 40 9,447
English: BEEP 26 43 198,632
CMUDICT 26 39 112,091
Webster 26 51 20,008
TWDB 26 51 | 16,280

TABLE 5.1: Number of letters, phonemes and word types in each dictionary.

5.2 Lexical Databases

The lexicons used in this research vary in size from about 9,000 to almost 200,000 words,
and are all available at http://www.pascal-network.org/Challenges/PRONALSYL/
Datasets/. We have used the automatically-aligned dictionaries for seven languages:
Dutch, English, French, Frisian, German, Norwegian, and Spanish. In total, twelve dif-
ferent dictionaries are used in this work. For French, we have used Lexique, Brulex, and
Novlex. For English, we have used the British English Example Pronunciation (BEEP)
dictionary, CMUDICT from Carnegie-Mellon University, Webster’s, and Teachers’ Word
Book (TWB). The phoneme sets used for these lexicons are different, even for the same
language. For the other five languages, there is only one lexicon per language. The
letters and phonemes in all dictionaries are automatically aligned using the algorithm
of Damper et al. (2005), except in the case of Webster, used in NETtalk, and TWDB,
used in NETspeak, which were manually aligned by the original authors. Since most of
these dictionaries do not include stress and/or syllable boundary markers, these aspects

of the transcription task have had to be ignored, in spite of their obvious importance.

Table 5.2 summarises the number of letter, phoneme and word types in each dictionary.
It can be seen that there is wide variation in the phoneme inventory, not only between

languages but also between different dictionaries for the same language.

5.3 Experimental Design
In line with the two goals previously stated, the following evaluations were conducted:

1. Transcription performance was evaluated on the complete dictionary for each of
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the twelve dictionaries covering the seven languages. The purpose here was to
quantify the variation of transcription difficulty across the deep/shallow continuum

of orthography represented by these seven languages.

2. For each of the seven languages, transcription performance was evaluated as a
function of dictionary size. The purpose here was to explore the effect of lexicon

size on performance for multilingual transcription using PbA.

Regarding 2, where there are multiple dictionaries for a language (i.e., French and
English), the largest available dictionary (i.e., Lexique and BEEP, respectively) is se-

lected. Dictionary size was then varied artificially by randomly dividing the dictionary

for language [ into 10 approximately equal size partitions, or ‘folds’ 73{‘ 795, - 77{0.
Ten different-sized subsets were then formed as PL (PLUPL), ... (PLuPLu...U Pl

Because the size of each of the seven dictionaries is not the same, it follows that, in

general, |P{"| # [P,
necessarily exactly divisible by ten, in general, the tenth partition for a language is

m # n. Because the dictionary sizes for each language are not

smaller in size than the other nine partitions:

Plol < 1Pol =[Pgl = - = P

5.4 Experimental Results

In this section, we present the results of applying PbA to the lexicons described in
the previous section. These are reported in terms of words and phonemes correct.
Transcription accuracy was evaluated using both a leave-one-out strategy and 10-fold
cross validation (Cherkassky and Mulier 1998). That is, in the case of a leave-one-out
method, each word was removed in turn from the dictionary and a pronunciation
derived from the remaining words. In the case of 10-fold cross validation, each of the
12 dictionaries was divided into 10 partitions (folds), as described in the previous section.
Each fold was removed in turn and used as a test set; the remaining nine folds acting
as the dictionary for inferring pronunciations. It should be obvious that leave-one-out
is also a form of k-fold cross-validation where & is equal to the number of entries in the

dictionary.

5.4.1 Results on the 12 different dictionaries

Table 5.1(a) summarises results on all 12 dictionaries using the leave-one-out method.
The corresponding results obtained by averaging across the 10 folds shown in Table 5.1(b)
were very similar (a fraction of one percentage point in all but one case), although they

are consistently lower. The binary coding in the final column of these tables indicates
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(a) Leave-one-out

| % accuracy |

Language / Lexicon —— Best combination
guage / Word | Phoneme |

Dutch 94.43 99.20 11111
Frisian 85.18 97.58 10101
German 92.94 98.94 10101
Norwegian | 95.05 99.09 10100
Spanish 99.43 99.80 11011/11101
French  Lexique 91.31 98.18 11100
Brulex 91.95 98.34 10101
Novlex 86.94 96.47 11100
English: BEEP 87.50 98.43 10100
CMUDICT | 72.13 95.56 11111
Webster’s 65.46 92.42 11111
TWDB 71.98 94.36 11100
{(b) 10-fold cross validation
: % accuracy ‘ o
Language / Lexicon [ Word [ Phonemo Best combination
Dutch 94.34 (0.184) 99.18 (0.033) 11111
Frisian 84.60 (0.434) 97.47 (0.080) 10101
German 92.74 (0.464) 98.91 (0.070) 10101
Norwegian 94.94 (0.243) 99.05 (0.068) 10100
Spanish 99.38 (0.161/0.161) | 99.78 (0.090/0.090) 11011/11101
French:  Lexique 91.02 (0.339/0.399) | 98.10 (0.076/0.075) 11100/11101
Brulex 91.78 (0.487) 98.29 (0.130) 10101
Novlex 86.53 (1.666) 96.34 (0.747) 11100
English: BEEP 87.31 (0.257) 98.41 (0.034) 10100
CMUDICT 71.99 (0.485) 95.53 (0.110) 10101
Webster’s 64.52 (1.512) 92.16 (0.325) 10111
TWB 70.77 (1.121) 94.08 (0.332) 11100 |
TABLE 5.2: Results of applying PbA to 12 dictionaries. Accuracies for 10-fold cross-

validation in (b) are averages across the 10 folds with standard deviations in brackets.

which combination of PbA heuristic scoring strategies gave best performance. A 1 in
position p of the binary code indicates that the pth strategy in Marchand and Damper

(2000)

was included in the rank-fusion combination; a 0 indicates that it was not.

Broadly in line with expectations based on our initial intuitions about the relative
difficulty of letter-to-phoneme conversion in different languages, the best results are
achieved for Spanish at > 99% word accuracy and the lowest performance is obtained
for English. Performance for the other languages (Dutch, French, German, Norwegian)
was generally at > 90% words correct, whereas for Frisian the result was ~ 85% words
correct. There are few data in the literature on the problem of multilingual letter-to-
phoneme conversion with which to compare our results. One exception is van den Bosch
et al. (1994) who attempt to measure the complexity of the French, Dutch and English

writing systems based on the two measures of success at letter-phoneme alighment and
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FIGURE 5.1: Variation of word accuracy with dictionary size for English letter-to-
phoneme transcription, showing best fit regression line.

accuracy of letter-to-phoneme conversion. Generally, they find that French is easier
to transcribe from spelling to pronunciation than Dutch which in turn is easier than
English. Our results are somewhat different in that the relative difficulty of French and
Dutch are reversed in our data. Obviously, some differences are to be expected in light

of the use of different dictionaries and different methods for automatic transcription.

For French and English, the results vary across the dictionaries; the variation is especially

wide for English. Factors accounting for this variation are likely to include:

e the different sizes of the dictionaries;
e the different sizes of the phoneme inventories;

o differing transcription standards employed by the dictionary compilers.

Figure 5.1 shows the variation of word accuracy with dictionary size for English. There is
a reasonably strong positive correlation (R? = 0.797) between accuracy and size, showing
that this factor seems to have a real effect. We speculate that larger dictionaries have
lower complexity in that the extra words are likely to be morphologically related to other

entries, and this lower complexity is reflected in higher transcription accuracy.

Figure 5.2 shows the variation of word accuracy with the size of phoneme inventory
employed by the dictionary, again for English. Here, there is a relatively much weaker
negative correlation (R? = 0.225) between accuracy and size of the phoneme set. Some
such negative correlation is only to be expected; the lower the size of the phoneme
inventory, the broader is the transcription standard being used, and so the less potential

there is for phoneme substitution errors.

We have not attempted any similar analysis of the results for French because of the fewer

number of dictionaries employed (three rather than four, with two being very similar
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FIGURE 5.2: Variation of word accuracy with size of dictionary phoneme inventory for
English letter-to-phonec transcription, showing best fit regression line.
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FIGURE 5.3: Variation of word accuracy with different sizes of dictionaries in seven
languages.

in size), and because the variation in transcription performance and in size of phoneme

inventory is much less than for English.

5.4.2 Results as a function of dictionary size

Figure 5.3 shows the variation of word transcription accuracy in the seven languages
as a function of dictionary size, with different-size dictionaries constructed as described
in Section 5.3. The results shown here were obtained using leave-one-out and the best

combination as tabulated in Table 5.1(a).

There is a clear and obvious tendency for transcription performance to grow monoton-
ically with dictionary size. This goes some way to explaining why the 10-fold cross

validation results in Table 5.1(b) are consistently very slightly smaller than the leave-
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[ Language | « o ‘ R? }
Spanish | 1.12 [ 88.1 | 0.9184 |
Norwegian | 7.99 | 11.2 | 0.9850
German 6.10 27.6 0.9752

rench 4.97 39.7 0.9759
Dutch 4.81 39.0 0.9746
Frisian 7.02 8.22 0.9893

English 9.52 | —28.23 | 0.9984

TABLE 5.3: Best-fit parameters for the regression model T = aInS + .

one-out results in Table 5.1(a), because the size of dictionary used for inference is smaller

than with leave-one-out. It is %ths the size of the complete dictionary.

For each language, the data are well-modelled by a function of the form:

T =wlnS + 4 (5.1)

where T' is percentage transcription accuracy, S is lexicon size, and « and g are language-
dependent regression parameters, tabulated in Table 5.4.2. As can be seen from the final
column of the table, the fit to the mathematical model of equation (5.1) is excellent,

with B2 > 0.9 in all cases.

In spite of the high R? correlation coefficients obtained, there is one obvious sense in
which this model is deficient: The logarithmic function does not saturate (although
it does decelerate) as S increases, whereas the actual transcription accuracy obtained
cannot cxceed 100%. This deficiency in the model is clearly seen in the curve for
Norwegian in Fig. 5.3, where the extrapolated best-fit curve appears to be tending to a
value well above 100%. The situation bears similarities to the mathematical modelling of
lexicon coverage in the earlier work of Damper et al. (1999). In this case, consideration
of Zipf's law led to a logarithmic model like (5.1) that was limited by setting a parameter
(effectively «) according to the total number of words in the language. This concept of
“the total number of words in the language” is, of course, problematic from a theoretical
point of view. The unbounded set of all words in any language makes it impossible to
list every word. In the present situation, the growth of transcription accuracy 7' can
be similarly limited by appropriate setting of o and 4, assuming that S can never
exceed some upper bound. Although this artificial device is rather unsatisfactory, it is

interesting that very similar problems arise in the two cases.

In equation (5.1), « controls the rate of growth of transcription accuracy whereas
3 controls the vertical placement of the growth curve. From this perspective, we would
expect a language possessing shallow orthography to display a high value of &, probably

in conjunction with a low value of v (since high transcription accuracy will already be
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FIGURE 5.4: Relation between « and (8 for seven European languages.

achieved for a relatively small lexicon). This is precisely the pattern seen for Spanish
(Table 5.4.2). On the other hand, a language with deep orthography should show a low
value of f; it is less clear how this would couple with the value of c. One might expect
that o would be low (i.e., low growth) because transcription is ‘difficult’; alternatively,
one might predict that & would be relatively large because growth is from a lower value

for § ~ a few thousand words.

To explore this issue, we plot 3 versus « in Figure 5.4, whereupon a clear linear trend

between the two parameters of the form is found:

3 = —13.069« + 104.05 (5.2)

with B2 > 0.9701. There was no particular reason that we can see to expect any such
relation a priori, since (as outlined above) we interpreted one parameter to control
growth rate and the other to control vertical placement. With hindsight, however, it
makes sense for there to be a dependence between the two, with larger growth to the
100% asymptote for a language with a deep orthography, starting from a relatively low

transcription accuracy for a small dictionary.

Substituting 5.2 into 5.1 to eliminate § gives the model:

T ~ 100 — « (13—|—ln %) (5.3)

This is an interesting form, indicating that transcription accuracy is limited to 100% for

S < e!3 (approximately 450,000) independent of the value a.

Note that (5.3) means that this is a one-parameter model to fit only the data of
Figure 5.3. Assuming the constant of ~ 100 is playing the role of setting asymptotic

performance, the constant of 13 in (5.3) should be viewed as another ‘parameter’ which
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LLanguage | a | Rank, | Rankasymp | Rankio. ‘
Spanish 1.12 1 1 | 1 \
Norwegian | 7.99 6 2 3.5
German 6.10 4 3.5 3.5
French 4.97 3 3.5 3.5
Dutch 4.81 2 5 3.5
Frisian 7.02 5 6 6
English 9.52 7 7 7

TaBLE 5.4: Ranking of o« values, asymptotic transcription accuracy and ‘low’
transcription accuracy on a small dictionary.

turns out empirically to be the same across all seven languages studied here. IFurther

work is required to determine how general this is across a wider range of languages.

The question then arises: How good a measure is the language-dependent parameter
« of the depth of orthography (or the difficulty of letter-to-phoneme transcription) for
that language? Table 5.4 shows the seven languages and ranks assigned to the value
of o obtained by regression (Rank,) and to the difficulty of transcription (Rankasymp)
assigned according to the ordering of asymptotic performance in Figure 5.3. TFor a,
ranking is in ascending order; for transcription accuracy, it is in descending order. Note
that we have ranked Spanish as easier to transcribe than Norwegian (in spite of a slower
rate of deceleration of its 7-S curve) as the regression for the latter language looks
suspect, and we have considered French and German to tie as it is difficult to separate
the performance for these two languages. Let the null hypothesis be that there is no
relation between the asymptotic difficult of transcription and «. By the Spearman rank
correlation test (Siegel and Castellan 1988, p.202-213), r, = 0.5335 is obtained according

to which there is no reason to reject the null hypothesis.

However, the asymptotic performance in Figure 5.3 is possibly unreliable, being based
on extrapolation from a model fitted to cmpirical data. An alternative, preferable
measure of the degree of transcription difficulty might be the ‘low’ measure obtained on
a dictionary of about 10,000 words, Rank;,., where at least we have actual data. Since
it turns out to be rather difficult to separate Norwegian, French, German and Dutch
at § = 10,000 in Figure 5.3, these have been treated as tied on Ranky,,. This yields
re = 0.8078, allowing us to reject the null hypothesis at the 5% level of significance.
Hence, « for a language appears to be a good predictor of performance on a small

dictionary of that language.

5.5 Conclusions

In this chapter, we have studied the variation of accuracy of transcription across 12 lex-

icons from 7 European languages (Dutch, English, French, Frisian, German, Norwegian,
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and Spanish). The success of the transcription task is assumed to reflect the complexity
of the writing system (i.e., the deep/shallow continuum of orthography) of the particular
language. Also, the size of learning data set seems to be the main factor impacting
results. Thus, we have studied the full extent of the relationship between size and
accuracy. The selected lexicons from these languages are divided into 10 different ‘sizes’
of dictionaries and evaluated. These results give an idea of the reasonable size of
lexicon that should be used to compromise a trade-off between the performance and

the processing time of PbA approach.

Considering the effect of lexicon size on performance for seven languages, the size of
phoneme set used by the dictionary compilers can have an effect, as shown in the results
of Scction 5.4.1. However, when different-sized lexicons are constructed as unions of
10 folds of the same dictionary (Section 5.3), the results in Section 5.4.2 show that
transcription accuracy increases monotonically with the size of the lexicon used for
analogical inferencing. These results also suggest that the bigger the size of dictionary,

the better the performance achieved.

Although this simple result might be thought unsurprising, there are good reasons for
treating it as something other than vacuous. The LNRE phenomenon (Baayen 2001,
p-51-57; Mébius 2003) means that simple-minded assumptions about how parameters
of a language model grow with corpus size are dangerous. Further, it is one thing
to assume a relationship and quite another to demonstrate that it holds empirically.
Finally, test and training dataset sizes can have a profound effect on results of data-
driven approaches to language learning. This is most obviously the case in eager learning
methodologics, like neural networks, where overfitting to the training data is an ever-
present danger. It seem that yet another advantage of lazy learning is the avoidance
of the over-regularisation with can result from a prior training phase (Daelemans et al.

1999).

With reference to the variation of transcription difficulty across these seven languages,
this work may be one of only very few attempts to quantify depth of orthography
computationally. TIn line with general beliefs in the field, it is found that Spanish
is at one extreme of the deep/shallow continuum for the languages tested, whereas
English is at the other. English is notorious for the lack of regularity in its spelling-to-
sound correspondence, which largely reflects the many complex historical influences on
the spelling system (Venezky 1965, p.3-4; Scragg 1975, p.12; Carnev 1994, p.1,p.12)..
Indeed. Abercrombie (1981) describes English orthography as “one of the least successful
applications of the Roman alphabet.” This is reflected in a very large value for the
language-dependent parameter « in equation (5.3) of 9.52, where as for Spanish it is
a = 1.12. The case of Norwegian appears somewhat anomalous, having a high value
for o (7.99, the second highest found in this work) but seeming to be about as easy
to transcribing as French, German and Dutch according to the results displayed in

Figure 5.3. This remarkable raises a question that an apparently anomalous value of
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@ is a genuine feature of the language or it is an artefact of some idiosyncrasy of the
particular dictionary used here. Further work is needed on this point. It is also noticeable

that its rate of deceleration towards asymptotic performance seems to slow.

Although (the case of Norwegian notwithstanding) « seems to be a reasonably good
predictor of transcription performance on a dictionary of ~ 10,000 words, it is less
good at quantifying the asymptotic performance. This may be because the measure of
asymptotic performance used here is unreliable, being based on extrapolation from the
fitted regression model, quite distant from supporting data points. This poorly-fitting
line probably suggests that a single function may not apply well to all languages. It
is also possible that some other function might fit for all languages, instead of the one
that we used here. A better extrapolated function is an important aspect that should

be further investigated.

The PbA method is inspired by a model of reading aloud, suggesting that unknown words
might be pronounced by analogy to real words that they resemble. For instance, adults
who know the pronunciations of many words tend to pronounce an unseen word more
correctly than children who know only a few. This hypothesis is affirmed by the results
on different sizes of dictionaries. Considering the number of lexicon entries, bigger size
would yield better performance of PbA. Not only the lexicon size affccts the performance
of PbA, but also the deep/shallow continuum plays as a key role in the success of PbA.
Reading text in a language with shallow orthography would bhe easier for non-native
speaker than reading text in a language with deep orthography. As Davis (2005) wrote,
‘Finnish provides a good example, with 23 associations that match the exact number
of letters. This effectively means that a nou-Finnish person, who is a fluent reader
in his/her own language, would be capable of reading aloud a Finnish text and make
it perfectly comprehensible to a Finnish listener.” This assumption is reflected in the
effectiveness of PbA across 7 languages. Tt is noticeable that the highest performance is
obtained for Spanish, a language well known to have a shallow orthography. Additionally,
the poorest result is achieved for English, which is notorious as a language with a deep

orthography.



Chapter 6

Effect of Lexicon Composition in
PbA

6.1 Introduction

So far, many variants of PbA have been proposed and evaluated with diffcrent lexicons.
In practice, when encountering an unknown word in the system input, it is unlikely
to know if it is a proper nanie or a technical word, or a common word. It should
be possible to develop techniques for automatic classification, but these will never be
entirely error-free. Therefore, one of several aspects to investigating the performance
of PbA is to deterinine whether or not it makes a difference when the system infers

a pronunciation by analogy with a lexicon containing:

1. known common words only,

2. known proper names only, or

3. a mix of common words and proper names.
If high accuracy can be obtained in case 3, then automatic classification of unknown
words (with attendant potential for errors) might be avoided. Since PbA infers pronun-
ciations using lexical words most similar (in an analogical sense) to the unknown word,

there is a reasonable chance of this. In this chapter, we test this possibility, focusing on

the effect that lexicon composition has on pronunciation accuracy for PbA.

6.2 Lexical Databases

Two publically-available dictionaries of pronunciations have been used in this work:

BEEP containing common words and the CMU dictionary containing common words

63
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and proper names. The description of these two dictionaries was previously detailed
in Chapter 5. However, information about these dictionaries is repeated again and
some more details are added here for the sake of clarity. These two dictionaries are
used because BEEP is intended to document British English pronunciations, whereas
CMUDICT contains American English pronunciations. We have also studied proper-
name and common-word subsets of CMUDICT and mixtures of BEEP and CMU proper-

name subset.

6.2.1 BEEP

BEEP is originally available as file beep.tar.gz from ftp://svr-ftp.eng.cam.ac.uk/
comp.speech/dictionaries/. It contains approximately 250,000 word spellings and
their transcriptions. After removing some words that contain non-letter symbols and/or
words with multiple pronunciations, the number of words used in this work is 198,632.

The phoneme set for BEEP consists of 44 symbols.

6.2.2 CMUDICT

CMU dictionary contains both common words and proper names, and their phone-
mic transcriptions. The phoneme set for CMU contains 39 symbols. The latest ver-
sion (CMU version 0.6) can be downloaded from http://www.speech.cs.cmu.edu/
cgi-bin/cmudict. There are some duplicate words, some containing non-letter symbols
and some where the pronunciation obviously does not match the spelling. These were
removed to leave 112.091 words. In this chapter, CMUDICT is partitioned into two

subsets as follows.

Proper Name Subset : there is no single, easily-available list of proper names and
their pronunciations. However, a proper-name dictionary can be developed by
using a list of proper names (without pronunciations) together with the standard
CMU version 0.6. The list of names can be downloaded as file cmunames.lex.gz
from http://www.festvox.org. It includes the most frequent names and sur-
names in the USA and their pronunciations (Font Llitjés 2001), from a wide variety
of origins. The procedure was simply to extract from CMU pronunciations for the
names on the first list. (Note, however, that some names on this list were not
found in CMU.) This subset of CMUDICT is referred as Names. The number of

proper names in Names is 52,911,

Common Word Subset : after extracting the proper names from CMU as above, the
remaining words form the common word subset of 59,180 words. This dictionary

is called Com.
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| BEEP | CMU | IPA || BEEP | CMU | IPA |

aa \ AA a k K Ik
ae AE a 1 L 1
ah AH A m M m
ao AQO o) n N n
aw AW | av ng NG n
ax ER ) oh AA D
ay AY al ow ow 0U
b B b oy 1004 DI
ch CH tf p P D
d D d r R r
dh DH 0 5 S 8
ea EH e sh SH I
eh EH e t T t
er ER 3 th TH 6
ey EY el ua AO U
f F f uh UH U
g G g uw UW u
hh HH h v A% v
ia IH I Y% \Y w
ih H I y Y j
iy Y i 7 Z z
jh JH & zh ZH 3

TABLE 6.1: Harmonisation scheme used to map the BEEP phoneme set onto the
CMUDICT set.

6.2.3 Mixture Dictionary

This dictionary is a combination of BEEP and Names dictionaries as mentioned above.
Because of the different phoneme sets between these two dictionaries, we need to collapse
the BEEP phoneme set into the smaller of the two sets, which is the CMU phoneme
set as specified in Table 6.1. This process is called harmonisation (Damper et al. 1999).
As can be scen, five phoneme symbols of the BEEDP phoneme set are collapsed into the
CMU phoneme symbols that have the similar sounds. which are shown in bold. This

dictionary is referred as Mixture.

6.3 Experimental Results

Performance was evaluated using a leave-one-out strategy and results are reported in

terms of words correct. Stress assignment has been ignored for simplicity.

Table 6.2 shows the results of PbA with BEEP, Names and the Mixture dictionary in
the form of a confusion matrix for all combinations of the three dictionaries as test set

and lexical database. It should be noted that all entries are significantly different from
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Lexicon
Test set | BEEP | Names | Mixture
BEEP 87.50 15.93 83.62
Names 23.57 68.35 55.08
Mixture | 73.34 26.62 78.08

TABLE 6.2: Percentage words correctly transcribed by PbA with BEEP, Names and
Mixture dictionaries.

one another (binomial tests, one-tailed, p << 0.01). As can be seen, best results for a
given test-set dictionary are achieved when the same dictionary is used as the lexical
database. Much higher accuracy is achieved when BEEP is used as the test set and
lexical database (87.50% words correct) than when Names is used as the test set and
lexical database (68.35% words correct). This is to be expected in view of the diversity of
origin of the proper names and different degrees of assimilation into English (Vitale 1991;
Spiegel 2003), making their pronunciation harder to infer. Cross-lexicon test/inference
leads to a very large deterioration in performance. Although it is tempting to think
that this indicates that proper names transcription is a harder problem than common
word transcription, the difference could be due primarily or solely to the different sizes
of lexicon, since PbA transcription accuracy is a strong function of dictionary size,

increasing as the size of dictionary increases (see the previous chapter).

Using the Mixtures dictionary as test set and lexical database reflects the practical
situation in which ne attempt is made to classify the word class, merely treating all
words as from the same clags. Here the relevant result is 78.08% words correct, a long
way below the performance when words from BEEP are pronounced by analogy with the
entire BEEP dictionary. Note that a simple weighted linear sum of the BEEP/BEEP
and Names/Names results (where the weights are the proportions of the two classes of
word) would predict a result of 83.50% words correct, some way above the 78.08% result
actually obtained. In effect, this weighted linear sum forms an upper bound on the
performance that could be obtained if we had a perfect means of identifying the class of

any input word.

In the results of the previous paragraph, the Mixture dictionary is of course hetero-
geneous, consisting of a British English lexicon of common words (whose phoneme set
has had to be harmonised to CMU) and an American English dictionary of proper
names. This was done to have the largest possible dictionaries. The performance of PbA
have also been studied when the three dictionaries (common words, proper names and

mixture) are homogeneous, all being derived from CMU. That is, Com, Names and

CMU were used as the three dictionaries. Table 6.3 shows the corresponding results.

Here, the pattern of the results is the same as those of PbA with BEEP, Names and
the Mixture dictionary. Again, it should be noted that all entries are also significantly

different from one another (binomial tests, one-tailed, p << 0.01). The highest accuracy
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Lexicon

Test set | Com ‘ Names \ CMU
Com j 75.67 | 28.20 | 73.72
Names | 38.63 | 68.35 | 64.96
CMU 58.12 | 47.15 69.61

TABLE 6.3: Percentage words correctly transcribed by PbA with Com, Names and
CMU dictionaries.

is achieved when testing Com words against the Com lexicon itself. This Com vs. Com
result (75.67% words correct) is much higher than Name vs. Names (68.35% words
correct). This firmly supports the assumption that proper names are more difficult
to pronounce than common words. Since the results are in the same way as those
of heterogeneous sets, and the number of words in COM and Name are quite similar.
Cross-lexicon test vields an expected low result in percentage of words correct. These
results are slightly higher than in those of the cross-lexicon test with BEEP and Names.
When testing COM or Names against the full CMU dictionary, deterioration is smaller
than the corresponding case of the Mixture dictionary. We inclined to believe that
the difference is due to the inhomogeneity of the latter (Mixture) dictionary, and the
avoidance of harmonisation for Com/CMU. A huge drop in performance when testing
Names against CMU firmly indicates that proper names have some special characteristics

different from common words, as expected from their diversity.

Turning finally to the result of most practical interest, that is the third case mentioned
in Section 6.1, using the full CMU dictionary as the lexical database. This reflects
the situation where we have a single, undivided lexicon in the TTS system. Here, the
relevant figures are 69.61% words correct when testing with CMU itself. This figure is
lower than the result of 72.12% words correct that we would predict from a weighted
linear sum of the Com vs. Com and Names vs. Names results. The Com/CMU result
reflects the situation when input words are common words, we can get 73.72% words
correct, but if the right automatic inference of input-word class is made, we can get
75.67% words correct instead. To the same extent, there is also a great loss in accuracy
when testing Names against the full CMU dictionary, if no attempt is made to classify
the class of input word. That is, testing Names against the CMU lexicon gave 64.96%

words correct; testing Names against itsell gave 68.35% words correct.

With reference to the performance on a mix dictionary of common words and proper
names, in both heterogeneous and homogeneous, it suggests that automatic inference of
input-word class would be advantageous for accuracy of PbA in TTS synthesis. However,
we need to be aware of the dangers of misclassification, since this would lead to a very

large deterioration in performance.
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6.4 Conclusion

Pronunciation by analogy has been tested with different lexicon compositions: common
words only, proper names only, and a mixture of the two. Two different dictionaries
have been used: the large BEEP dictionary containing common words with their pro-
nunciations for British English, and the CMU dictionary containing common words and
proper names with their pronunciations for American English. BEEP was exploited
because of the existence of the large dictionary; the attempt was complicated by the
absence of a list of proper names. Thus, we believe that more credible results are given
to those for the CMU dictionary. However, the results of both dictionaries are very
similar. Excellent performance has been obtained when testing a dictionary of common
words against itself or a dictionary of proper names against itself. Treating all words as
from the same class, that is the mixed lexicon is used in all case, leads to a noticeable
deterioration in performance. These experimental results recommend that automatic
word class categorisation (common word vs. proper name) is useful for PbA approach.
This could be beneficial for any analogy-based approach in the phonetic transcription

module as well.

These studies also provide empirical support for the assumption that pronunciation of
proper names is much more difficult than common words. Many reasons behind this
assumption are given by many researchers. For instance, the most commonly cited
reason is that for a specific language (e.g., American English) names originate from
very different language families (Vitale 1991). The pronunciations of those names may
assimilate to the phonological system of the new language over the vears, thus names
are often pronounced differently from their origins of languages (Font Llitjos 2001).
Furthermore, there is more than one correct pronunciation for any given name depending
on personal preference or regional influences (Spiegel 2003). Name pronunciation is also
known to be idiosyncratic, that is many pronunciations contradict the phonological
patterns of common words (Font Llitjés 2001). Particularly, the last presumption is
affirmed by the results in this experiment when testing proper names alone against
comunon words only or proper names against a combination of common-word and proper-

name.
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Objective Evaluation

7.1 Introduction

In this chapter, PbA is compared with three other data-driven methods for proper name
pronunciation, namely: the decision tree method described by Black et al. (1998), the
table look-up method by Weijters (1991), and the table look-up method by van den
Bosch and Daelemans (1993). These methods were selected on the basis that, first, we
believe PbA. our main study approach, to be the best currently-available technique for
pronunciation of common words (Damper et al. 1999) and, second, table look-up and
decision trees are very representative of the competitor data-driven techniques to PbA.
Indeed, table look-up can be seen as an alternative implementation of the broad concept
of ‘analogy’, and also decision trees can be interpreted as a framework for building letter-
to-sound rules. The comparison involves both objective and subjective performance.
The objective results are reported and discussed here. The subjective evaluation is

detailed in the next chapter.

For the PbA approach, the algorithm was exhaustively described in Chapter 3. The
other three automatic pronunciation approaches that were used for objective and sub-
jective evaluation are briefly described in the next section. Section 7.3 describes the
re-implementation details of each method. Then, we briefly describe how the proper
name dictionary of manually-supplied pronunciations was constructed. The results of

objective evaluation are presented in Section 7.5. The conclusion is in Section 7.6.

7.2 Overview of the Techniques

In this section, we describe the three automatic pronunciation approaches. Data-driven
approaches to letter-to-phoneme conversion generally require the letters of each word in

the dictionary to be aligned with the corresponding phonemes, so converting the problem
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Phoneme, 7-gram vector
- 1 -l-]-Jalalr]oD
AA - =i A| AR D|E
R - ATR D|E M|A
D A AR D | E M A
EH A R D E M| Al <
M R D E M A - -
AH D EITMI A | = =

FIGURE 7.1: Complete set of 7-gram learning vectors for the name AARDEMA,
pronounced /AA R D EHM AH/. The first element of the vector is the phoneme
corresponding to the 4th letter in the 7-gram (bold letters).

of transduction into one of classification. For the three techniques compared here, the

algorithm described in Damper et al. (2005) was used for alignment.

7.2.1 CART: Decision Tree

Since letter-to-phoneme conversion (of aligned strings) is a classification problem, deci-
sion trees have long been used for this purpose. Perhaps the earliest such attempt was
that of Klatt and Shipman (1982). In this work, we have used the CART algorithm
of Black et al. {(1998), where CART stands for Classification and Regression Tree (see
Breiman et al. 1984, p.ix). The CART approach uses feature data to predict class
membership. In this case, the feature data are the letters in a fixed-length context
window and the class is the phoneme corresponding to the central, ‘target’ letter. Since
the letter and phoneme strings are aligned, a one-to-one correspondence between the

target letter and the class (i.e.. the corresponding phoneme) can be assumed.

The first step in building a decision tree is to create from cach word of the training data
a set of learning vectors containing n-grams (context windows consisting of strings of
n letters, where n is odd) and the corresponding phoneme for the middle letter of each.
As an example, Figure 7.1 shows all 7-gram learning vectors for the name AARDEMA
whose pronunciation is J/AA R D EH M AH/ (according to the CMUDICT phoneme set

used in this work—see Appendix A).

Next, the learning vectors for each word in the training dataset are fed as the input
into CART to create the decision tree. In the training process, predictions about the
phonemes corresponding to earlier letters in the word can be used to make decisions
about the phoneme corresponding to the current, target letter; this is called phonemic
feedback. Thus, there are two parameters in CART that we need to fine-tune, namely
the width n of the context window and number of previous phonemes, P, to be used in

phonemic feedback.
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7.2.2 Table Look-Up I: A Simple Look-Up Procedure

This method was proposed by Weijters (1991) who drew the conclusion that his simple
look-up procedure is superior to NETtalk (Sejnowski and Rosenberg 1987). The first
step is to create a look-up table from a training set containing n-grams (string of n letters,
n odd), their corresponding phoneme(s) for the middle letter of n-gram, and their
frequencies in the training data. Omne m-gram is produced for each letter of the input,
with each letter serving in turn as the centre of the n-gram. To obtain the pronunciation
for an input string, we search for the closest fit of n-grams, i.e., those with the highest
matched value between the n-grams of the input and those of the pre-compiled look-up
table.
Weight[1..7] := 1, 4, 16, 64, 16, 4, 1
MatchValue := 0
for ¢+ := 1 to 7 do
begin
if windowL.[i] = windowT[i] then
MatchValue := MatchValue + Weight[i]
end if
end for

The matched value indicates the similarity between a n-grams of an input and a n-gram
of a look-up table. The matched values is calculated as in the example pseudocode (i.e.,

n = 7, so-called heptagram) above.

Here, the heptagram in a look-up table is referred to as windowL and the heptagram in an

input is referred to as windowT. The nth letter in windowL is referred to as windowL [n].

To clarify the look-up procedure, we explain by giving an example of the heptagram
ENDROTH from the word ABENDROTH. The heptagram INDROTH from the word
LINDROTH is found to be the closest fit. The algorithm determines the MatchValue
between the heptagrams ENDROTH and INDROTH to be:

0+4+164+64+16+4+1=105

Tn the table the middle grapheme of INDROTH has been transcribed as the phoneme /R/.
Thus, the middle grapheme in ENDROTH is assigned to the phoneme /R/.

After matching, the phonemes of the closest-fit n-grams are concatenated to form the
pronunciation of the word. In the case that the closest-fit n-grams are tied and corre-
spond to different phonemes, the phoneme that occurs most frequently will be chosen.

If the frequencies are cqual, the first one of the tied phonemes is chosen arbitrarily.

Weijters actually used a wide variety of weight sets and window sizes, but results did not

differ too much for the different choices. Table 7.1 is an example of 15 different weight
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Window positions and corresponding weights % phonemes
12 3 4 5 6 7 g 9 10 11 correct
00 0 o0 0 1 0 o 0 0 0 51.25
0 0 0 0 1 4 0 0 0o 0 0 69.39
00 0 o0 0 4 1 0o 0o 0 0 69.40
00 0 O 1 4 1 0o 0 0 0 83.77
0 0 0 1 4 16 4 o 0 0 0 86.19
0 0 0 O 4 16 4 10 0 O 88.67
0 0 0 1 4 16 4 1 0 0 0 89.68
0o 0 0 1 4 16 4 2 0 0 0 89.86
00 1 4 16 64 6 4 1 0 0 90.52
0 0 1 4 16 64 6 5 1 0 0 90.60
0 1 4 16 64 256 64 17 4 0 O 90.45
0 0 4 16 64 256 64 16 4 1 0O 90.81
0 0 4 16 64 256 64 17 4 1 O 90.82
0 0 16 64 256 1024 256 64 16 4 1 90.86
0 0 16 64 256 1024 256 65 16 4 1 ] 90.88

TABLE 7.1: The percentage of phonemes correct for different values of 15 weight sets
on a ll-gram window.

sets on a 11-grapheme window size, reported with the percentage of phonemes correct

on the test data.

7.2.3 Table Look-Up II: Table Look-Up with Defaults

Van den Bosch and Daelemans (1993) describe a simple table look-up procedure with
some default tables that are invoked in the case of matching failure so as to improve
generalisation ability. During table construction. all unambiguous one-to-one letter-
to-phoneme mappings are found and stored in the 0-1-0 subtable. Then, the width
of the letter window is expanded on the right by one character, and all unambiguous
0-1-1 patterns found and stored in the 0-1-1 subtable, excluding those patterns already
in the 0-1-0 subtable. Then, the window width is expanded on the left by one character
and the procedure repeated. The process of expanding the window on right or left and
storing all the patterns that have not been stored in the earlier table continues until
all patterns in the training set are compressed in the look-up table. In this work, this
occurs with a 10-1-10 window. Additionally, two default tables are assembled to provide
generalisation ability. The first default table, referred to as the best-guess table, contains
all occurring 1-1-1 patterns and their most frequently occurring phonemic mapping. The
second table, referred to as the final-guess table, contains all letters and their most

frequently occurring phonemic mappings.

The conversion algorithm starts by searching for a matching letter pattern for each

letter of an input word in the 0-1-0 subtable. Note that, if found, this is guaranteed to



Chapter 7 Objective Evaluation 73

Eef’t context | Focus letter ‘ Right context ! Target phoneme LSubtableJ

+ ‘ U 1 P JAH/ best guess
J P D ‘ /P/ 0-1-1
D /D/ final guess
D ] I K ! JTH/ best guess
‘ K E ‘ JK/ 0-1-1
DIK E +4+ , /-/ 3-1-3

TABLE 7.2: Example of the retrieval for the pronunciation of the word UPDIKE.

be unambiguous. If no pattern is matched, each (single-letter) pattern is extended
to a 0-1-1 pattern and the 0-1-1 subtable is then searched. This is repeated until
a matching pattern with a minimal extension is found and the corresponding letter-
phoneme mapping is returned. If no match can be found, the best-guess table is scanned
to return the ‘best’ mapping. If table look-up fails again, the default phoneme for that
letter from the final-guess table is returned. Finally, all phonemes are concatenated to

create the pronunciation of the word.

From the example in Table 7.2, an unambiguous pattern with minimal context is searched
for each focus letter. Plus symbols represent spaces and blank spaces mean no left or
right context. In the case of the first letter (U) and the fourth letter (I), no pattern in
subtables is matched. Thus, the algorithm searches for 1-1-1 pattern in the best-guess
table. When the best-table retrieval fails in the third letter, the corresponding phoneme

of 0-1-0 pattern for letter D in the final-guess table is returned.

7.3 Re-Implementation Details

The re-implementation of three data-driven methods: PbA, Table look-up I, and Table
look-up II, was programmed in Python version 2.3.4 running on Windows XP using
a PC with 2.66 GHz Intel Pentium 4 and 1GB RAM. For the CART method only,
the source code was provided and run on a different computer (see Section 7.3.2). The
re-implementation details of three methods are described below, including how to run a

CART program.

7.3.1 PbA

The re-implementation of multi-strategy PbA was programmed in Python 2.4, as details
in Chapter 3. Prior to selecting a subset of pronunciations for subjective testing in the
next chapter, pronunciations were produced for all names in the dictionary. This served
as the objective evaluation. It is, of course, essential that these pronunciations are

for ‘unknown’ words (i.e., ‘unseen’ in the sense of not being available to the analogical
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inferencing process). For PbA, this is easily achieved using the very simple leave-one-out

strategy.

7.3.2 CART

The source code for CART was developed by Vincent Pagel (Faculte Polytechnique
de Mons) and Kevin Lenzo (Carnegie Mellon University, USA) (Pagel 2005). The
programs were implemented in C and Perl. The package, which was compressed in
a file ID3_GPL0O50913.tar.gz, consisted of two parts: programs for alignment and
programs to build and run a decision tree from an aligned corpus. Since the data
we used were already aligned using the algorithms of Damper et al. (2004), the second
part of the package only was used here. We run these programs on RedHat Linux 6.2
using a PC server with 650 MHz Intel Pentium Il and 512 MB RAM. The vector file was
automatically built from an aligned dictionary using the file ali2vec_id3.pl. Then, this
vector file was fetched into another program to build a decision tree. To run a decision
tree, the package provided a program to evaluate using 10-fold cross validation, namely
tenfold_crossvalid,pl. There are three parameters to fine-tune the performance,
which are the number of letters on the left and right context, and phonemic feedback

(as mentioned in the previous section).

Again, it is obviously important that the pronunciations used in the subjective tests
are ‘unseen’. To ensure this, we trained and tested the trees using leave-one-out on
the entire set of dictionary words (52,911 names, see Section 7.4 below). This served
as the objective evaluation of CART. To evaluate using leave-one-out, the original
10-fold cross validation file was modified. Leave-one-out was enormously expensive
computationally (approximately one month elapsed time) since the trees had to be
rebuilt over 50,000 times. This was done with parameters n = 9 and P = 3, which were

the best performing in a prior 10-fold cross-validation.

7.3.3 Table Look-Up I

The re-implementation of a Table look-up I was programmed, following the paper of
Weijters (1991). In this work, a heptagram structure (window size, n = 7) was used
with the weight vector of (1, 4, 16, 64, 16, 4, 1). The other sets of weight vectors and
n-grams structure were not used due to the fact that the results presented in his work

did not significantly differ.

To evaluate the performance using leave-orne-out, a note was made during table compi-
lation of those heptagrams which were unique to a particular word and that word was
stored with the heptagram. Then, when finding a pronunciation for a particular word,

heptagrams unique to that word were removed from the table look-up table. Frequencies
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of non-unique heptagrams of that particular word were left unaltered because of the
computational difficulty of adjusting them to account for the separate removal of over
50,000 entries. This was done for all 52,911 names in the dictionary, and also served as

the objective evaluation of Table look-up I.

7.3.4 Table Look-Up II

The re-implementation of a Table look-up II was programmed, following the paper of
van den Bosch and Daelemans (1993). In the table-construction step, we found that
there were no unambiguous patterns stored in the 0-1-0 subtable. All the patterns in
the training are compressed in the look-up table at 10-1-10 window. Figure 7.2 displays
the magnitudes of the subtables in this model. The 2-1-2 subtable stored the majority of
the unambiguous patterns and the number of stored patterns gradually decreases when

window widths were extended.

25000

20000

150001

10000

Number of patterns

50007

Table pattern

FIGURE 7.2: Table magnitudes of look-up subtables in re-implementation of van den
Bosch and Daelemans (1993).

As with the other data-driven methods, it was important that pronunciations corre-
sponded to ‘unseen’ words. This was achieved as follows. During table creation, the
specific words used to derive eachi pattern (i.c., table entry) was noted. If the pattern
was unique, in the sense that only one word exhibited that pattern, this pattern was
ignored in deriving a pronunciation for that unique word. This was the only adjustment
made. Strictly, the frequency of the mappings ought also to be reassessed, but for
simplicity (and because we believe it had little effect on results) this was omitted. Again,
this was done for all 52,911 names in the dictionary, and also served as the objective
evaluation of Table look-up II. Note that no unambiguous 0-1-0 patterns were actually
found in CMUDICT.



Chapter 7 Objective Evaluation 76

f J % Wordsj % phonemes

PbA 68.35 9431 |
CART 61.45 90.67

Table look-up I | 58.55 91.26 |
Table look-up IT |  61.89 92.14 !

TABLE 7.3: Evaluation of pronunciations of 52,911 proper names by four automatic
methods in terms of words correct and phonemes correct.

7.4 Material

The test data were a list of 52,911 proper names from CMUDICT, which were previously
described in Chapter 6. The listed pronunciations were taken to be the correct ‘gold

standard’ for all four data-driven methods.

7.5 Experimental Results

In this section, we present the results obtained with the four automatic pronunciation
approaches as described in the previous section. The results were reported in terms of
words correct and phonemes correct. The performances of all four methods were evalu-
ated using leave-one-out. Taking the dictionary pronunciations as correct, results were
obtained by scoring the automatically-derived pronunciations against the pronunciation
in the name list. As Damper et al. (1999) mentioned, words correct is a more stringent
measure of pronunciation accuracy and should be used in strong preference to phonemes

correct. Thus, the percentage of word accuracy was used for analysis and discussion.

As can be seen in Table 7.3, PbA achieved the highest percentage of words correct
and percentage of phonemes correct. The difference between word accuracy for PbA
and for the next best method (Table look-up IT) was enormously statistically significant
(binomial test, z ~ 30.74, p ~ 0). As expected, Table look-up IT achieved enormously
better performance than Table look-up T because of the extension to include default
tables. The difference between word accuracy for Table look-up IT at 61.89% and for
CART at 61.45%, was apparently small, but is in fact statistically significant (binomial
test, z ~ 2.07, p ~ 0.04) when dealing with tens of thousands of words. Note that the
phonemes correct measures do not align with words correct. Table look-up I achieved
better phonemes correct score compare to CART but was far poorer in terms of words
correct (binomial test, z ~ 13.54, p ~ 0). This indicated that phoneme errors are
not independently distributed across words, and is another reason for preferring words
correct as our measure of cffectiveness. Note finally that, for simplicity, stress assignment

was ignored in this objective evaluation.
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7.6 Conclusion

We have compared four automatic, data-driven methods for proper name pronunciation
within a text-to-speech system for English, namely: pronunciation by analogy (PbA),
decision trees (CART), and the table look-up method by Weijters (Table look-up I),
and the table look-up method by van den Bosch and Daelemans (Table look-up II).
These four data-driven methods are intended as candidates for the back-up strategy
used when dictionary look-up fails in a practical TTS system. The comparison was
primarily objective, on 52,911 names in CMUDICT. The best result was 68.35% words
correct, achieved using PbA. This was significantly far better than the results of the
other three methods. From best to worst in terms of words correct, the three methods

are ordered Table look-up 11, then CART, then Table look-up I

This experiment has contributed to an understanding of why PbA is better on this
task. The results are a good support to the hypothesis of Daelemans et al. (1999),
mentioned earlier in Chapter 3, that “keeping full memory of all training instances is at
all times good idea in language learning”. Furthermore, it is a good empirical evidence
of the advantage of explicit analogy. The other three pronunciation methods are implicit
analogy, in which phonological knowledge from dictionary is implicitly extracted, and
converted into a knowledge-based representation i.e., decision trees and tables in this
case. During the learning process, implicit analogy tends to compress the redundancy
into small descriptions of the original data. Some exceptions or low-frequency data
may be discarded since the method tends to generalise and abstract the training data.
The exceptions of proper names seem to be rare, the rare events are characterised as
belonging to the LNRE class of distributions. To obtain high accuracy in learning NLP
tasks, carefully handling of the LNRE phenomenon is essential (Marchand and Damper
2007). To generate a pronunciation of an unknown word, PbA implicitly exploits the
knowledge from the dictionary itself, while the other three methods use their compress
representation. Thus, the exceptions are kept at all times in case of PbA. That may
be the reason why PbA performance is much better than that of the other methods.
Moreover, PbA does not use a fixed-size window on the input text. Instead, substring
matching in PbA uses variable-size chunks. We believe that this is another advantage,

since different-size chunks will be appropriate in different transcription situations.

It is also interesting to assess the acceptability of the pronunciations to potential users
of a TTS system. Therefore, subjective evaluation was carried out. The results is
presented in the next chapter. To reduce the amount of test data for subjective testing,
Table look-up I was not used in subjective evaluation, because it achieved the lowest

words accuracy and shared a similar concept to Table look-up II.
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Subjective Evaluation

8.1 Introduction

Numerous studies have proposed various approaches to the problem of proper name
pronunciation and have reported the results in different ways. Most studies evaluate the
performance objectively in terms of word accuracy, by comparing the pronunciations
generated by their models with those in some data set taken as a ‘gold standard’.
However, the pronunciation should also be acceptable to users of the T'TS system, which
obviously includes members of the general public with minimal exposure to synthetic
speech. Thus, subjective evaluation is also important, particularly for proper names,
which can be pronounced differently depending on the linguistic background of the
speaker and other cultural factors. Because subjective evaluation is difficult compared
to objective evaluation, and cannot deal with large numbers of names, there have been
few attempts to do this (but see Font Llitjés and Black 2002 who have conducted informal

subjective evaluation of proper name pronunciations over the internet).

In this chapter, the acceptability of the differently-produced pronunciations is assessed
by potential users of a TTS system. The comparison here is a subjective counterpart
to the objective evaluation introduced in the previous chapter. Four different methods
of proper name pronunciation for English TTS synthesis is compared. The first uses
a dictionary of manually-supplied pronunciations. containing a list of proper names
from CMUDICT. The dictionary is referred to as a ‘method’ in this chapter because
it is generally the primary strategy in any practical TTS system. The remaining three
methods are different data-driven approaches that use the dictionary of (known) proper
names to infer pronunciations for unknown names; these are candidates as secondary or
back-up strategies for those cases where dictionary matching fails. The three candidate
techniques studied are: PbA, CART, and the table look-up method II. The description
of the dictionary and these techniques have already been presented in the previous

chapter.

78
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Table look-up I, from the previous chapter, was not chosen for several reasons. First,
it achieved the lowest word accuracy among the four data-driven methods presented in
Chapter 7 and, second, we need to reduce the number of test data used for test stimuli.
Both table look-up methods studied in the objective tests share the same concept. So,

it was not felt necessary to include both.

The remainder of this chapter is structured as follows. Section 8.2 details the listening
tests that were performed to evaluate the acceptability of the pronunciations produced by
the dictionary and by the three data-driven techniques, including the means of selecting
a reasonable number of names to test from among the large number (> 50, 000) available
in the dictionary. Section 8.3 presents the results of the subjective evaluation. Section 8.4

discusses and concludes.

8.2 Experimental Design

The listening tests were designed to assess the acceptability of the proper name pro-
nunciations produced by the four methods (manually-specified via CMUDICT, hereafter
‘CMU’, and the three different data-driven methods) to potential users of a text-to-speech
system for English. Although separately evaluated as such, we do not intend the
dictionary pronunciations to be considered as exactly equivalent to the data-driven
pronunciations for two reasons. First, dictionary look-up would be used in a practical
system in conjunction with one or other data-driven method (in the way of a primary
and a back-up strategy). Second, the data-driven methods use the dictionary as a
knowledge base from which to make inferences about an acceptable pronunciation of
‘unknown’ names, so the two (dictionary and automatic inference) are clearly neither

equivalent nor independent.

8.2.1 Selection of Test Stimuli

It is obviously not practical to expect listeners to rate all 52,911 pronunciations in our
dictionary, so some principled way of selecting among the large number of names to
produce a much smaller subset suitable as test stimuli is required. This is not especially

easy to do for two main reasons:

1. In spite of the CMU pronunciations being taken as the ‘gold standard’ for the
automatic inference of pronunciations using the three data-driven methods, we did
not wish to assume that the dictionary pronunciations are actually correct. (There
are, in fact, some very obvious errors in the dictionary.) The CMU method is to
be assessed via the listening tests on the same basis as PbA, CART and TLU.

This means that we cannot identily ‘errors’ in pronunciation as such. Rather,
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| Pattern || Number of casﬂ
All pronunciations same, zero disagreement C(4,0)=1
Three pronunciations same, remaining 1 different C4,1) =
Two pronunciations same, remaining 2 different C(4,2) =
Two pronunciations same, remaining 2 same & 3’2 =3
Zero pronunciations same, zero agreement, C4,4)=1

| TOTAL | 15 |

TABLE 8.1: Possible patterns of disagreement/agreement in pronunciations produced
across the four methods. The number of “two pronunciations same, remaining 2 saine”
cases is reduced by a factor of 2 because of symmetry.

all different, 3213, 6.07%
Table=CART, 938, 1.77%
CMU=CART. 1100, 2.08%

PbA=CART, 2643, 5.00%

CMU=Table. 944, 1.78%
only PbA different, 1766,
3.34%
PbA=CART.CMU=Table,
1425. 2.69%
PbA=Table, 1060, 2.00%

PbA=Table. CMU=CART.
721, 1.36%

all same, 25020, 47.29%

only CMU different, 3104, \
5.87% \

PbA=CMU, 2139, 4.04%
PbA=CMU, Table=CART.
1339, 2.53%

only Table different, 3908,

o
7.39% only CART different, 3591,

6.79%

FIGURE 8.1: Pattern of (dis)agreement across the four methods.

pronunciations are to be treated as more or less acceptable to potential users. So

we cannot use any notion of error in selecting stimuli for presentation to listeners.

2. Since we have four methods of arriving at pronunciations, the number of possible
patterns of disagreement/agreement across the four is quite large. In fact, con-
sideration of the combinatorics shows that there are 15 different possible patterns
(Table 8.1). Figure 8.1 shows the proportion of pronunciations exhibiting each of
these different possible patterns of (dis)agreement. If we were to select names as
stimuli at random from within the total of 52,911, there would be no control of the
pattern of disparity across methods, rendering meaningful analysis of the results
virtually impossible. It seems preferable to focus on just one of the patterns of

(dis)agreement, i.e., just one of the rows of Table 8.1.

For these reasons, especially 2), we decided to use as stimuli a randomly-sampled subset

of those names on which only one of the four methods disagreed. This corresponds
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to the second row of Table 8.1 for which there are 4 cases listed, one for each of
the 4 methods. This is the only pattern of (dis)agreement giving clear separation
of methods. Those pronunciations for names in the sampled subset which were pro-
duced by just one of the four methods (the others agreeing) we will henceforth call
one-of-a-kind. Those pronunciations on which the remaining 3 of the 4 methods (i.e.,
the rest) agree we will henceforth call rest. The reasoning behind this choice is that,
given that we have no strong basis for deciding what an error is, name pronunciations
on which 3 out of 4 methods agree are likely to be acceptable to listeners, whereas the
corresponding one-of-a-kind pronunciations are likely to be representative of the worst

pronunciations made by the particular method delivering the deviant output.

Thus, we randomly selected 150 names with one-of-a-kind pronunciations for each
method, a total of 600. For example, we selected 150 names from the 3,591 names
for which CART produced a pronunciation at variance with the other three methods,
which agreed (see ‘only CART different’ in Figure 8.1). As well as these 600 names
with one-of-a-kind pronunciations, we also had the same set of 600 names with a

corresponding rest pronunciation, a total of 1200 stimnuli.

8.2.2 Synthesis

Speech output was by diphone synthesis using Festival, a public domain system intended
for speech synthesis research available from http://www.cstr.ed.ac.uk. To achieve
good pronunciations, it was necessary to syllabify the words and add stress. Syllabifi-
cation was done using the Festival function lex.syllabify.phstress (PHONELIST). To
obtain stress patterns, we passed the spelling patterns through Festival’s letter-to-sound
rules (Black et al. 1998) and then manually transferred the stress pattern of the output

to the 1200 stimuli. The voice used was male KAL.

8.2.3 Test Conditions

Subjects listened to the 1200 synthesised names over headphones in the soundproof room
in our laboratory at Southampton. We decided firmly against omnline internet-based
cvaluation, as used by Font Llitjés and Black (2002), because of the inherent lack of
experimental control with that approach. Subjects saw the names printed on a sheet as
well as hearing the synthesised version. They were instructed to rate their opinions on
the quality of the pronunciations on a five-point scale, according to the mean opinion

score (MOS) (ITU-T Rec.830 1996) as follows:

1 Unacceptable, no one would ever pronounce this name like this

2 Poor, very few people would recognise the name from this pronunciation
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3 Acceptable, some people would recognise this name
4 Almost correct, most people would recognise this name

5 Correct, almost everybody would be able to recognise this name

Listeners wrote their ratings next to the printed names. They were given printed
instructions at the outset. Subjects were informed that apostrophes in names (e.g.,
“O’Connell”) had been removed. They were further told that they would hear one name
every two seconds, and be given a short break at the end of each page of (30) printed
names, after which they should press a button to signal that they were ready to continue.
They were asked to assess the pronunciations as if they had been produced by a telephone

directory assistance service.

The complete experiment took some 70-80 minutes per subject. It was quite demanding
of listeners both in time and concentration. We therefore feel that the number of names
selected for the experiment (600 one-of-a-kind and 600 rest) is effectively a practical

maximuin.

8.2.4 Subject Profiles

Since MOS values generally become more stable as the number of listeners increases,
a reasonably large pool of subjects should be used, balanced by the time and cost
of testing; Clark (2005) suggests using at least 16 subjects. Accordingly, 24 listeners
(15 male, 9 female) took part in this study. All were students at the University of
Southampton, and native speakers of British English, aged between 18 and 31 years. Of
the 23 subjects who responded to a prior question about their familiarity with synthetic
speech (see Appendix C), 2 were “very familiar”, 14 were “somewhat familiar”, and
7 were “not at all familiar”. (Note that one of the 24 subjects omitted to answer this

question.) Listeners were paid a small sum (£20 each) for their participation.

Subjects were warned that they would hear ‘Americanised’ names. We were well aware of
the disparity between our subjects’ version of English (British) and that of the materials
to which they were exposed (American English) but this was unavoidable. There are
no corresponding materials easily available for British English, and we did not have
access to a pool of American English subjects. We do not believe this had a serious
effect; voung educated British people generally have counsiderable exposure to popular

American culture.
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8.3 Experimental Results

In this section, results in terms of MOS values for one-of-a-kind pronunciations and rest
pronunciations (on which 3 of the 4 methods agree) are presented. Given the justifica-
tion in Section 8.2.1 for the selection of names to test, it is reasonable to view high
MOS values for one-of-a-kind pronunciations as indicative of the overall quality of a
method, since they are likely to be representative of the worst pronunciations produced
by that method. Things are not so simple, however, for the rest pronunciations. Here,
the pronunciations are representative of the general quality of the ‘opposition’, i.e., the
three competitor methods. So high MOS values for the rest pronunciations can be
taken to indicate that the corresponding method is problematic, or at least inferior to
the opposition. In other words, if a particular method produces pronunciations which
are rated highly by subjects but which are different to pronunciations produced by the
remaining methods, these latter being rated poorly by listeners, then there is a sound
basis for considering this method to be superior to its competitors. It is necessary
to emphasise that we are referring here to relatively high/low values across methods.
We expect the one-of-a-kind MOS values to be relatively lower than the rest values
within methods, just because the former are likely to be representative of the worst

pronunciations produced, as argued previously.

Before describing the results quantitatively, some example pronunciations are highlighted
for purposes of illustration. Table 8.2 shows the worst and best pronunciations, both
one-of-a-kind and rest, in terms of obtained MOS values for each of the four competitor
methods. (The reader should note that here the ‘mean’ is for a particular pronunciation
across all 24 listeners.) The CMU phoneme symbols are used here in preference to those
of the International Phonetic Alphabet (International Phonetic Association 1999). Not
only do these examples give an idea of the range of quality of pronunciations produced,
there are also some interesting trends evident. The expectation that the one-of-a-kind
MOS values should be generally lower than the rest values within methods is con-
firmed, at least for these best/worst pronunciations. The relatively high MOS values for
one-of-a-kind coupled with relatively low values for rest pronunciations for CMU indicate
that the dictionary pronunciations are generally superior. This is to be expected, since
the dictionary forms the ‘gold standard’ knowledge base from which the data-driven
methods infer pronunciations. There is no obvious basis on which the inferential process

could #mprove on the dictionary pronunciations.
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(a) Worst one-of-a-kind

Blethod ] name H one-of-a-kind pron. [ MOS H7 rest pron. f MOS]
CMU Freda FREHD 1.63 FREHDAH 2.88
PbA Czech CH AHHH 1.21 CHEHK 4.92
CART Joey JHAATY 1.29 JHOWIY 4.75

| TLU | Borchard BERAARD 1.58 || BERSHAARD | 4.00

(b) Best one-of-a-kind

| Method [ name H one-of-a-kind pron. MOS H rest prou. [ MOSJ
CMU Even IYVAHN 4.88 EHVAHN 3.17
PbA Hamlet HHAEMLEHT 4.96 HHAEMLAHT 4.92
CART | Stasney STAEZNIY 4.83 STAESNIY 4.50

TLU | Imperato | IHMPERRAATOW | 483 || IHMPERAATOW | 4.38

(c) Worst rest

f Method ) name H one-of-a-kind pron. } MOS—H Test prou. [ MOS

CMU Tutor | TUWTER 467 | TAHTER | 1.50
PbA Dupre DAHPR 1.96 | DAHPER | 2.33
CART | Goucher GAWCHER 396 | GAWKER | 2.42
TLU Birr BR 2.25 BER | 225

(d) Best rest
| Method ( name ![T one-of-a-kind pron. [ MOS H rest pron. ‘ MOST
CMU | Fossett | FAASAHT 4.83 FAASEHT 4.83
PbA | Pandora | PAANDAORAH | 446 | PAENDAORAH | 492
CART | Melanie MEHLAANIY 4.79 MEHLAHNIY 4.96
TLU Terri | TERRIY 3.67 TEHRIY 4.88

TABLE 8.2: Example pronunciations, showing the worst and best pronunciations, both
one-of-a-kind and rest in terms of obtained MOS values for each of the four competitor
methods.

8.3.1 Results for One-of-a-Kind Pronunciations

General statistics of MOS values for these pronunciations are listed in Table 8.3. (Note
that here the ‘mean’ is for a particular method across all one-of-a-kind pronunciations
and all 24 listeners.) MOS values exceed 3.7 (i.e., tending towards ‘Almost correct’)
indicating that all methods gave reasonable pronunciations. As expected, dictionary
pronunciations have a higher MOS than any of the automatically-inferred methods.
From best to worst in terms of MOS of one-of-a-kind pronunciations, the data-driven
methods are ordered PbA, then CART, then TLU.

Since our data are not interval data but ordinal and, as a consequence, can not be
normally-distributed, and because many statisticians believe that means are an inappro-
priate measure of central tendency for ordinal data (although the MOS measure already
violates this belief), we believe non-parametric statistical analysis (Siegel and Castellan

1988, p.75-83) is appropriate. Specifically, we have used the Wilcoxon signed-rank test.
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‘ ‘ Mean ‘ Std. DeviationJ

CMU | 4.0372 0.5443
PbA 3.8319 0.6760
CART | 3.7790 0.7285
TLU 3.7305 0.7157

TABLE 8.3: Mean opinion scores for subjective evaluation by 24 listeners of 600 one-
of-a-kind pronunciations.

[ Subject | CMU | PbA | CART | TLU |
1 1 2 3 4
2 1 2 4 3
3 1 2 3 4
4 1 2 4 3
5 1= | 1= 3 4
6 1 2 4 3
7 1 3 2 4
8 1 2 3 4
9 1 3 2 4
10 1 2 3 4
11 1 3 4 2
12 1 2 3 4
13 1 2= | 2= 4
14 1 3 2 4
15 1 2 3 4
16 1 2 3 4
17 1 4 2 3
18 1 2 4 3
19 1 2 3 4
20 1 2 3 4
21 1 4 3 2
22 1 2 3 4
23 1 4 2= | 2=
24 1 2= 4 2=

TABLE 8.4: Rankings of the four methods for the one-of-a-kind pronunciation by the
24 subjects according to MOS values. The equals sign (*=") indicates tied rankings.

Table 8.4 shows the order in which each of the 24 listeners ranked the one-of-a-kind
pronunciations produced by each of the 4 methods according to the corresponding
MOS values. It is very striking that all 24 consistently rated the CMU pronunciations
first. The data-driven methods have been ranked fairly consistently in the order PbA,
CART, TLU; 10 out of 24 listeners ranked the methods in this order. Table 8.5 shows
the results for the Wilcoxon signed-rank test applied to these data. The only significant
differences in the opinions of the listeners are between CMU and each of the data-driven

methods (p < 0.05, two-tailed, df = 149), with CMU superior to the others.
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L zZ ‘ Sig. (two—ta@]

CMU-PbA —2.535 0.011
CMU-CART | —2.737 0.006
CMU-TLU —3.268 0.001
PbA-CART | —0.366 0.715
PbA-TLU —0.974 0.330
CART-TLU | —-0.341 0.733

TABLE 8.5: Results of Wilcoxon signed-rank test for one-of-a-kind pronunciations.

[

Mean ‘ Std. Deviation

CMU | 4.0036 0.6396
PbA 4.1975 0.4685
CART | 4.2800 0.4628
TLU 4.2778 0.3937

TABLE 8.6: Mean opinion sceres for subjective evaluation by 24 listeners of the 600 rest
pronunciations.

8.3.2 Results for Rest Pronunciations

General statistics of MOS values for these words are listed in Table 8.6. (The reader
should note that here the ‘mean’ is for a particular method across all rest pronunciations
and all 24 listeners.) As explained and justified earlier, we expect the MOS values to be
generally higher for rest pronunciations than for one-of-a-kind pronunciations (because
the latter are representative of the worst pronunciations produced by a given method),
whereas relatively high MOS values for one-of-a-kind pronunciations and relatively low
values for rest pronunciations for a given method are taken to be indicative of the
quality of that method. As the table shows, MOS values generally exceed 4 (i.e..,"Almost
correct’) and there is indeed a strong tendency towards higher MOS values than for

one-of-a-kind pronunciations.

Comparing Table 8.6 with Table 8.3 earlier, we see (as expected) an almost inverse
or ‘complementary’ pattern of results. The CMU rest pronunciations have the lowest
MOS value, with the remaining three data-driven methods ordered from lowest to highest
as PbA, TLU, CART with the latter two almost indistinguishable. Figure 8.2 shows
a composite plot of the variation of MOS across the four methods for both one-of-a-kind
and rest pronunciations, making the ‘complementary’ nature of the results very clear.
In interpreting this figure, readers should recall that one-of-a-kind scores are considered
to be representative of the worst pronunciations produced by a method whereas rest
scores are considered to be representative of the quality of pronunciations produced
by the three competitor methods. One interesting feature is that listeners rated the
CMU one-of-a-kind and rest pronunciations as effectively indistinguishable, meaning
that the worst dictionary pronunciations are comparable in acceptability to some form
of average of the three data-driven methods. This is perhaps understandable in hindsight

as the latter take the dictionary as their ‘gold standard’ knowledge source for automatic
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,TO— one-of-a kind
| | —m—rest

MOs
w
©

CMU PbA CART Table
Method

FIGURE 8.2: Composite pattern of MOS values across the four methods for both one-of-

a-kind and rest pronunciations. Scores for one-of-a-kind words for a method are taken

to be indicative of the poorest pronunciations produced by that method. Scores for rest

words for a method are taken to be indicative of the general quality of pronunciations

produced by the three competitor approaches to that method. See text for further
explanation.

inferencing. We also take this as indirect evidence of the quality and suitability of the

dictionary as a ‘gold standard’.

Table 8.7 shows the order in which each of the 24 listeners ranked the rest pronunciations
produced by each of the 4 methods according to the corresponding MOS values. As
expected, these rankings are almost a complete reversal of those for the one-of-a-kind

pronunciations in Table 8.4.

Table 8.8 shows the results for the Wilcoxon signed-rank test applied to these data.
There are highly significant differences between CMU and each of the data-driven
methods, with CMU superior to the other techniques (p < 0.05, two-tailed test, df = 149),
and marginally significant differences between PbA and the remaining two data-driven

methods (p ~ 0.1). This is taken as suggestive evidence for the superiority of PbA as

a back-up strategy.

8.4 Conclusion

Four methods for proper name pronunciation within a TTS system for English were
compared. These were (1) a manually-compiled dictionary (method CMU) and (2) three
automatic, data-driven methods for proper name pronunciation, namely: pronunciation
by analogy (PbA), a decision tree method (CART), and a table look-up method (TLU).

These four methods are not intended to be viewed as entirely free choices for deployment
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| Subject | CMU [ PbA [ CART | TLU |

1 4 3 2 1
2 4 3 2 1
3 4 3 1 2
4 4 3 2 1
5 4 3 1 1
6 4 3 2 1
7 4 1 2 3
8 4 3 2 1
9 4 1 3 2
10 4 3 1 2
11 4 3 2 1
12 4 3 2 1
13 4 3 1 2
14 4 3 2 1
15 4 3 2 1
16 4 3 1 2
17 4 3 2 1
18 4 2 3 1
19 4 3 1 2
20 4 3 1 2
21 3= | 3= 2 1
22 3 4 1 2
23 4 1 2 3
24 4 1 2 2

TABLE 8.7: Rankings for the four methods for the rest pronunciations by the 24 subjects
according to MOS vatues. The equals sign (‘=") indicates tied rankings.

‘ Z [ Sig. (two-tailed) |

CMU-PbA —-2.370 0.018
CMU-CART | —4.566 0.000
CMU-TLU —-4.108 0.000
PbA-CART | —1.620 0.105
PbA-TLU —1.605 0.109
CART-TLU | —-0.099 0.921

TABLE 8.8: Results of Wilcoxon signed-rank test for rest pronunciations.

in a practical TTS system; rather we envisage that the dictionary method will form the
primary strategy whereas one of the data-driven methods will constitute the back-up
strategy used when dictionary look-up fails. The comparison was primarily subjective,
on the basis of 24 listeners’ opinions of the acceptability of so-called one-of-a-kind and
rest pronunciations. The former, in which one particular method of the four produced
a pronunciation which differed from that produced by the other three, was expected
to be representative of the worst pronunciations that that particular method would
produce. For each one-of-a-kind pronunciation, there is a corresponding so-called rest

pronunciation, being that produced by the remaining three competitor methods. These
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were expected to be generally better (in terms of acceptability) than the one-of-a-kind
pronunciations, and also representative of the quality of pronunciations that competitor
methods could produce. So a pattern of relatively high one-of-a-kind scores and rela-

tively low rest scores is taken as an indication of high performance for a given method.

Listeners rated one-of-a-kind pronunciations somewhere around ‘Almost correct’, with
an MOS close to 4, or just below for all four methods, whereas rest pronunciations
were rated somewhere around ‘Almost correct’ or just above (see Figure 8.2). Wilcoxon
signed-rank tests showed highly significant differences between CMU and the data-driven
methods, for both one-of-a-kind and rest words. The direction of these differences was
such as to show that the CMU pronunciations were markedly superior. This was to
be expected as the dictionary forms the knowledge base for automatic inference of
pronunciations by the data-driven methods. Hence, there is no reason to expect the latter
to improve systematically on the dictionary pronunciations. For the rest pronunciations,
there was a marginal superiority of PbA over the CART and TLU methods. This
mirrored the objective evaluation. No such superiority was seen for the one-of-a-kind

pronunciations.

The issue for the assessment methods probably opens the debate whether subjective test-
ing is sensitive enough to differentiate between systems. As mentioned by Sproat (1997,
p. 230), a listener usually comments on speech output in the form of rating scales such
as MOS in subjective assessment. Thus, we asked listeners to judge the acceptability of
the pronunciations on a five-point MOS scale. The phonetic transcriptions produced by
each method were piped through Festival, producing waveforms for the listening test.
Pronunciation methods were hidden from the subjects. We have 24 subjects in this
experiment, which is a reasonable number to make MOS values more stable. The results
showed that our subjective testing failed to find a strong distinction between the three
data-driven methods. It is an open question whether this is because the methods are
subjectively indistinguishable or because our testing methodology was simply insufficient
to reveal a difference. The fact that the dictionary pronunciation emerged as superior

suggests that the testing methodology has at least reasonable discriminative power.
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Conclusions

Automatic pronunciation of unknown words is a hard problem of great importance
in speech technology. Over the past decades many researchers have tried to predict
word pronunciations from the spelling using a wide variety of methods. The initial
attempts were to create LTS rules by expert linguists. As the storage capabilities of
a computer increase, dictionary look-up methods have been proposed as a primary
strategy. A secondary strategy is required when finding a word in the input which is
not in the dictionary. A data-driven approach, as studied in this thesis, is an alternative

approach that is increasingly being used as the method of choice in T'TS applications.

This thesis focuses on a data-driven approach namely pronunciation by analogy (PbA)
for generating the pronunciation of unknown words. To date, many variants of PbA have
been proposed and evaluated, mostly for common words in English. PbA is selected for
this study because of its well-documented superior performance in the Damper et al.
(1999) evaluations. The goal of this thesis is to study PbA performance on many
important aspects for use in speech synthesis applications. The issue of proper name
pronunciation is focused on for the most part. The multilingual aspect of PbA is also
studied. This chapter summarises the work presented in this thesis and proposes some

future directions.

9.1 Summary of Work

As the classical version of PbA (Dedina and Nusbaum 1991) mentions, there are many
advantages of using PbA in text-to-phoneme conversion. First, it eliminates the need for
expert linguists to generate LTS rules that may contain errors. Second, it is a language-
independent approach; by changing the dictionary, PbA can be used with different
languages. The performance of PbA depends mostly on the degree of consistency

of relations between orthographic and phonemic patterns. This method may solve

90
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the problem of proper name pronunciation. In this thesis, the aim is to explore the
performance of PbA in respect of the abilities referred above. Other aspects of PbA

that may help to improve performance were also studied.

Chapter 1 introduced the principles of speech synthesis systems and text-to-phoneme
conversion. The problem of automatic pronunciation of unknown words, particularly

proper names, was emphasised.

The history of text-to-phoneme conversion techniques was reviewed in Chapter 2. These
techniques were categorised and presented into three main approaches. A data-driven
approach, which is the inspiration of the PbA method, was mainly focused upon.

Pronunciation models for proper names were also reviewed.

In Chapter 3, PbA was reviewed in full detail with examples of each process involved.
PbA exploits the phonological knowledge implicit in the system dictionary of known
words to infer a pronunciation for an unknown word by computing different ways
of assembling the input word from fragments of partially-matching letter substrings
and their corresponding partial pronunciations, and choosing between these candidate
pronunciations according to some objective criterion. Many variants of PbA were
presented and discussed with respect of their performance. The main differences of

each variant were also reviewed.

The problem of syllabification was introduced in Chapter 4. A review of previous work
on automatic syllabification was summarised. The concept of syllabification by anal-
ogy (SbA) was introduced. The results when applving a series model of syllabification

and pronunciation, (S+P)bA, with proper names was presented and discussed.

Chapter 5 fulfilled the multilingual potential of PbA. The difficulty of text-to-phoneme
conversion on different languages was addressed. PbA was evaluated with 7 European
languages using 12 different lexicons. The relationship between transcription accuracy
and orthography in these seven languages was studied. As the size of dictionary is an
important issue when employing PbA in a TTS system, the relationship between the

size of lexicon and the word accuracy obtained were also presented and discussed.

Unknown words typically include proper names or neologisms that have not been yet
listed in the lexicon. The issue of classification of unknown words was addressed in
Chapter 6. In previous work, PbA has been evaluated with single ‘type’ of dictionary;
that is as researchers assumed that unknown words tend to be neologisms, so the lexicon
of common words has been used only. If they focused on proper name pronunciation, a
lexicon of proper names would be used only. Therefore, the effect of lexicon composition
was studied to investigate the performance of PbA when inferring pronunciations with

the lexicon that contains the same or different or mixture types of words.

This thesis compares a number of pronunciation modelling methods on a proper name

dataset. In Chapter 7, four different approaches were evalnated objectively, in which
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inferred pronunciations were compared with ‘gold standard’ dictionary pronunciations.
The dictionary itself and 3 of those 4 approaches were evaluated subjectively, in which
listeners rated synthesised pronunciation using a 5-point scale, in Chapter 8. The results
of objective and subjective evaluation were compared and discussed using statistical

tests.

In conclusion, this thesis has extended the problem of automatic pronunciation of
unknown words in TTS applications, particularly the word class of proper names, using
the PbA approach. The performance of PbA was investigated in various aspects. The
experimental results show that PbA can achieve a promising level of word accuracy
and is superior to other methods tested on the problem of proper name pronunciation.

Finally, this thesis has shown that PbA should become the method of choice in a future

TTS applications.

9.2 Future Work

Many important aspects of PbA for TTS applications have been examined. A large part
of this thesis has been concerned with the problem of proper names. However, there are
some aspects of PbA that should be evaluated further. Of these follow-up studies, the

most interesting suggestions are as follows:

o Stress assignment. The importance of lexical stress varies across languages.
In English, it has been found that stress assignment has a serious effect on intelli-
gibility (Slowiaczek 1990). Many researchers have discovered that including stress
in letter-to-phoneme conversion helps to improve the accuracy and naturalness of
pronunciation. Thus, lexical stress assignment is required in a TTS system to
produce a reasonable pronunciation. In our listening tests, Festival’s LTS rules
were used for stress assignment in all cases, but it would perhaps be better to
use a stress-assignment method particular to each pronunciation technique, e.g.,
manually-assigned for the dictionary, inferred by analogy for PbA, etc., not least
because using a common stress assigniment for the different methods will contribute

to similarity between the three data-driven methods.

e Automatic syllabification. syllabification were included in PbA and evaluated
the performance with proper names in Chapter 4. However, the results of the
series model, which uses both PbA and SbA, show that this syllabification and
pronunciation model is inferior to the simple PbA. A possible way to improve
the performance of PbA is to include syllabification manually. The comparison of
automatic syllabification algorithms would also be worthwhile to investigate, to see
which algorithms can improve PbA relative to our standard model. The listening
tests should be performed again to evaluate the performance after incorporating

syllabification and stress.
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e Alternative ways of selecting stimuli. The procedural difficulties in selecting
word pronunciations to use as stimuli for listening tests have been described in
Chapter 8. The experimental design adopted here, which used one-of-a-kind and
rest pronunciations, is by no means the only one possible, nor is it obviously the
best. Hence, future work should explore other ways of selecting stimuli for the
listening tests. It would also be worthwhile to test a wider range of methods
(perhaps including proprietary rules if we can gain access to a set), although the
high costs of subjective testing and the practicalities of limiting test times to
reasonable durations means that we can never hope to compare large numbers of

different approaches.

e Tests with other languages. More diverse languages and multiple dictionaries
for each language should be studied, if the databases are available. In this thesis,
only 7 European languages have been studied. It would be interesting to find
out how PbA works in languages other than these, particularly those that do not
use roman orthography for their writing system. This might confirin the cffect of
lexicon size in PbA across all language and maybe clarify the relation between the

depth of orthography of a language and the transcription accuracy obtained.

e Computational requirement. Since this research has not been concerned with
the issue of processing time, this implementation of PbA, which was developed in
Python, may not be appropriate for a real world application that needs to respond
quickly. Possible ways to reduce the computational requirement for a real-time
TTS applications include implementing in C/C++ programming language. The
comparison to the other data-driven methods in terms of the processing time would

be valuable to justify the performance of PbA.



Appendix A

CMU Phoneme Set

. CMU symbol } Asin ... ’ IPA ‘ } CMU symbol | Asin ... ‘ IPA
AA father a L let 1
AE bat a M met m
AH but A N net n
AO bought ) NG sing D
AW bout au oW boat o
AY bite al 0)4 boy DI

B bet b P pet. P
CH chin tf R red r
D dime d S set S
DH this 0 SH shin I
EH bet 3 T test t
ER bird 3 TH thin 8
EY bake el UH book 8
F fin f Uw lute u
G guess g \Y vest v
HH head h W wet W
H bit T Y vet j
1Y peat i 7 200 z
JH gin & ZH leisure 3
K kitten k
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NETtalk Phoneme Set

NETtalk SymboLL Asin ... [ NETtalk symbol L Asin ... J

a wad.dot,odd D the,mother
b bad E many.end, head
c or, caught, awe G length,long,bank
d add I give, bgsy,—capta;in
e blade,way J jam,gem
f farm K anxious,sexual
g gap L evil,able
h 1_10¥7W_h0 M chasm
i bee N shorten,basin
k cab.keep 0 oil,boy
1 lad Q quilt
m man,imp R hong./zxftg,satlr
n and, gnat S ocean,wish
0 only,own T thaw.bath
p pad U wood,could,put
r rap W out,towel.house
S cent,ask X mixture,annex
1 tab Y use,feud, new
u boot,ooze,you Z usual, vision
v vat @ cab,plaid
W we ! nazi, pizza
x pirate, welcome # auxiliary, exist
v yes * what
Z go&,goeﬁ A up, son, blood
A ice, height + abattoir, mademoiselle

L C chart.cello |




Appendix C

Subjective Evaluation Form

@ Image, Speech and Intelligent Systems

PROPER NAME PERFORMANCE EVALUATION
SUBJECT INFORMATION

Name : Age :
Languages::
How familiar are you with synthetic speech? (delete as appropriate).

VERY FAMILIAR / SOMEWHAT FAMILIAR / NOT AT ALL

EVALUATION G UIDELINES

This is an evaluation of a speech synthesis system for proper names.
Please follow the instructions;

1) Listen to pronunciations of the names on the provided list.
2) Rate the pronunciations using the following scales:

1 = Unacceptable, no one would ever pronounce this name like this

2 = Poor, very few people would recognise the name from the pronunciation
3 = Acceptable, some people would recognise this name

4 = Almost correct, most people would recognise this name

5 = Correct, almost everybody would be able to recognise this name

Apostrophes in names (e.g. in “0O’Connell”) have been removed.

You will hear one name every 2 seconds.

There will be a short break (20 seconds) at the bottom of each page.

« You should assess the pronunciations as if they had been produced by a telephone
directory assistance service.

«  You will receive £10 payment and will be asked to sign a receipt for this amount.
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