
UNIVERSITY OF SOUTHAMPTON

INVESTIGATION INTO POWER MINIMISATION
ALGORITHMS FOR BEHAVIOURAL SYNTHESIS

s. by
i

Marco A. Ochoa-Montiel

A thesis submitted for the degree of

Doctor of Philosophy

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science,

f University of Southampton,

United Kingdom

February 2008

This thesis is dedicated to my bebezinha.

"The burden of suffering seems a tombstone hung about our necks,
while in reality it is only the weight which is necessary to

keep down the diver while he is hunting pearls"

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Investigation into power minimisation algorithms for behavioural synthesis
Marco A. Ochoa-Montiel

The rapid growth of mobile electronics has led power consumption to be considered
as a critical design priority. This necessitates the development of algorithms and
design tools that target power minimisation at all levels of the design abstraction.
The work presented in this thesis addresses the problem of dynamic power
minimisation at behavioural level. A detailed investigation into power reduction
algorithms during behavioural synthesis is presented. The research undertaken has
produced two novel power-aware algorithms: time constrained scheduling and
datapath synthesis. The power-aware time constrained scheduling algorithm selects
the clock period and operations throughput such that power consumption can be
reduced by scaling the voltage until the slack of at least one of the design operations
is zero. It has been shown that by carefully choosing the clock period and operations
throughput, it is possible to produce a set of solutions with different power-area
tradeoffs. To demonstrate the efficiency of the new scheduling algorithm in terms of
solution quality, scheduling results of various benchmark examples have been
included and compared with a multiple supply voltage (MSV) algorithm. It has been
shown that the proposed algorithm is capable of obtaining schedules with single
supply voltage (SSV) that have identical resource requirements and comparable
power consumption to schedules obtained using a MSV algorithm. Using SSV
avoids the difficulties of MSV, including area and power overhead due to required
level shifters to transfer data between functional units operating at different voltages.
To solve the highly interrelated tasks of behavioural synthesis together with the
power minimisation problem, an efficient algorithm for concurrent scheduling,
binding, and clock and operations throughput selection has been introduced. This
represents the second contribution of this work. Using a simulated annealing-based
optimisation and a compound cost function, the exploration of different power-area
tradeoffs is possible. The new scheduling and datapath synthesis algorithms have
been incorporated into a power aware behavioural compiler (PABCOM). Synthesis
results of various benchmark examples are included to demonstrate the higher
solution quality when compared with a power-aware algorithm previously reported.
Furthermore, to demonstrate the applicability of PABCOM in dealing with a real life
design, two solutions for the motion vector reconstructor from MPEG-1 decoder
have been implemented using 0.12nm technology. Power and area values for both
solutions have been obtained using the reports generated after logic synthesis with
Synplify ASIC and power analysis with PrimePower. The solutions dissipate 31%
and 42% less power than if they were operated at the maximum supply voltage of the
library components.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor Bashir M.

Al-Hashimi for his continuos trust, support and guidance throughout the course of

this research. Many thanks are due to Dr. Peter Kollig who has been involved in the

technical supervision of this project. I am also grateful for the technical advice and

friendship from my research colleagues Dr. Arash, Dr. Bis, Dr. Karthik and Dr. Ivo.

Thanks to CONACyT (Consejo Nacional de Ciencia y Tecnologia, Mexico), who

provided the scholarship to pursue my PhD studies. I also want to acknowledge the

University of Southampton, who provided an extension to carry on with my PhD

studies after the fire of the Mountbatten bulding.

Likewise I want to express many thanks to all the people who have contributed

somehow in my life and have helped me to get where I am today. Particularly, thanks

to my parents and my sister, for all the love, support and encouragement they have

given me over the years. I am also extremely grateful with my wife Ana

("bebezinha") for her continuing love, care, advice, encouragement and patience. Te

amo con todo mi corazon, con toda mi alma y con todo lo que tengo condenada!!!

Fica comigo sempre ©. You know that any problem looks so small when I see you

smiling ... Finally, infinite thanks to G. O. D. for always being next to me.

Table of contents

ABSTRACT . I

TABLE OF CONTENTS in

LIST OF FIGURES vi

LIST OF TABLES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Motivation 1

1.2 Contributions and thesis overview 5

CHAPTER 2 Low POWER BEHAVIOURAL SYNTHESIS FUNDAMENTALS 7

2.1 Introduction 7

2.2 Behavioural synthesis..... 7

2.2.1 Graph-based representation of behavioural descriptions 9

2.2.2 Scheduling. 10

2.2.3 Allocation and binding 15

2.2.4 Clock selection 16

2.2.5 Controller design 16

2.3 Sources of power consumption 18

2.4 Combinatorial optimisation.... 20

2.4.1 Optimisation using simulated annealing 21

2.5 Concluding Remarks 24

CHAPTER 3 LITERATURE REVIEW OF RELATED WORK 25

3.1 Introduction 25

3.2 Low power scheduling based on voltage reduction 25

3.3 Low power scheduling based on frequency scaling. 30

3.4 Low power allocation and binding 32

3.5 Combined scheduling and binding for low power 34

3.6 Concluding Remarks 36

CHAPTER 4 POWER-AWARE TIME CONSTRAINED SCHEDULING (PATICS) 37

4.1 Introduction 37

4.2 Preliminaries 38

4.3 Importance of clock and operations throughput selection 40

4.4 Power-aware time constrained scheduling algorithm 44

4.5 Experimental results...... 53

4.5.1 Power-area tradeoffs analysis 53

4.5.2 Comparison with MSV. 66

4.5.3 Comparison with an area optimised scheduler 68

4.6 Concluding Remarks 69

CHAPTER 5 POWER-AWARE BEHAVIOURAL COMPILER (PABCOM) 71

5.1 Introduction 71

5.2 Improved algorithm for clock and operations throughput selection 72

5.3 Power reduction in multiplexer-based interconnections 78

5.4 Power-aware datapath optimisation 84

5.4.1 Cost function 86

5.4.2 Cooling schedule 88

5.4.3 Choice of annealing parameters 89

5.4.4 Performance of the simulated annealing algorithm 91

5.5 Experimental results 94

5.5.1 Power-area tradeoffs , 96

5.5.2 Comparison with a power-aware base case 109

5.6 Concluding Remarks 112

CHAPTER 6 CASE STUDY: MPEG-1 MOTION VECTOR RECONSTRUCTOR 114

6.1 Introduction 114

6.2 MPEG-1 background 115

6.3 Low power behavioural synthesis of a motion vector reconstructor 117

6.3.1 Motion Vector Reconstructor DFG 117

6.3.2 Synthesis constraints and library components 120

6.3.3 Optimisation parameter selection 124

6.3.4 Results of the synthesis process '. 125

6.4 Realisation of the motion vector reconstructor 136

6.4.1 Functional validation 139

6.4.2 Area cost 141

6.4.3 Power cost 143

6.5 Concluding remarks 150

CHAPTER 7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 151

7.1 Conclusions 151

7.2 Suggestions for further research 155

APPENDIX 1VHDL AND VERILOG CODES 157

Al.l VHDL description of the library components 157

A1.2 Structural Verilog for Design 1 and Design 2 165

APPENDIX 2 AREA-DELAY-POWER CHARACTERISATION 170

APPENDIX 3 INPUT AND OUTPUT FILES OF PABCOM 173

APPENDIX 4 LEAST MEAN SQUARE ERROR (LMSE) SCHEDULER 184

A4.1 Conditional branches 186

A4.2Multicycled operations... 187

REFERENCES 188

List of Figures

Figure 1.1 Power reduction at different levels of abstraction 2
Figure 1.2 Synthesis flow and levels of abstraction [112] 3
Figure 2.1 Behavioural synthesis design flow 9
Figure 2.2 RGB-YCrCb converter DFG , 10
Figure 2.3 ASAP schedule of the RGB-YCrCb converter 11
Figure 2.4 ALAP schedule of the RGB-YCrCb converter. 12
Figure 2.5 Single cycled and multicycled operations 14
Figure 2.6 Conditional statement. 14
Figure 2.7 Assignment of operations to control states .17
Figure 4.1 DIFFEQ benchmark 38
Figure 4.2 Operations with different throughputs and delays 39
Figure 4.3 DIFFEQ schedules with different power-area tradeoffs 42
Figure 4.4 DIFFEQ schedules with different power-area tradeoffs 44
Figure 4.5 a) ASAP schedule, b) time constrained schedule, for DIFFEQ with 4
csteps 47
Figure 4.6 Schedules with two values of throughputs a) lower bound b) upper bound

50
Figure 4.7 a) ASAP schedule, b) time constrained schedule, for DIFFEQ with 10
csteps '. 51
Figure 4.8 Power-area tradeoffs for DIFFEQ with different time constraints 54
Figure 4.9 DIFFEQ schedules for , ajtradeoff!, b) tradeoff 56
Figure 4.10 Power-area tradeoffs for DCT with different time constraints 57
Figure 4.11 DCT schedule of tradeofB 59
Figure 4.12 DCT schedule of tradeoff 60
Figure 4.13 Power-area tradeoffs for EWF with different time constraints 61
Figure 4.14 EWF schedule of tradeoff! 63
Figure 4.15 EWF schedule of tradeoff^ ; 64
Figure 4.16 Power consumption of DIFFEQ using MSV [126] and the proposed
algorithm •. 67
Figure 4.17 Power consumption of EWF using MSV [126] and the proposed
algorithm 67
Figure 4.18 Power savings compared with TCS [58] without increasing the number
ofFUs : 68
Figure 5.1 Operations throughput decrease 75
Figure 5.2 List clock_throughputs 77
Figure 5.3 Scheduling a selected operation into a new cstep 79
Figure 5.4 Module binding 79

Figure 5.5 Register binding ; 79
Figure 5.6 Module binding 81
Figure 5.7 Register binding 82
Figure 5.8 Datapath.... 84
Figure 5.9 Overview of PABCOM 85
Figure 5.10 Dependence of design cost on the parameter 8 90
Figure 5.11 Cost increase in function of the parameter es 91
Figure 5.12 Variation of the control parameter during an annealing cycle 92
Figure 5.13 Variation of the standard deviation and cost function during an annealing
cycle 92
Figure 5.14 Variation of the power cost of the datapath components during an
annealing cycle 93
Figure 5.15 Variation of the area cost of the datapath components during an
annealing cycle 94
Figure 5.16 Solutions for EWF using different optimisation goals 97
Figure 5.17 Power area tradeoffs for EWF 99
Figure 5.18 Solutions for DCT using different optimisation goals 100
Figure 5.19 DCT schedule for a= 0.1 101
Figure 5.20 DCT schedule for a =0.4 102
Figure 5.21 DCT module binding for a= 0.1 103
Figure 5.22 DCT module binding for a =0.4 103
Figure 5.23 DCT register binding for a = 0.1 104
Figure 5.24 DCT register binding for a =0.4 105
Figure 5.25 DCT datapath for a =0.1 103
Figure 5.26 DCT datapath for a= 0.4 104
Figure 5.27 Power area tradeoffs for DGT 109
Figure 6.1 MPEG-1 example frame sequence [36] 115
Figure 6.2 Block diagram of MPEG decoding [142] 116
Figure 6.3 Motion vector reconstructor DFG 118
Figure 6.4 Power consumption of multicycled components 123
Figure 6.5 Dependence of design cost on the parameter 8 125
Figure 6.6 Best power-area tradeoffs chosen from Table 6.2 126
Figure 6.7 Design 1 schedule 127
Figure 6.8 Design 2 schedule 128
Figure 6.9 Design 1 module binding 129
Figure 6.10 Design 2 module binding 130
Figure 6.11 Design 1 register binding 131
Figure 6.12 Design 2 register binding 132
Figure 6.13 Design 1 datapath 134
Figure 6.14 Design 2 datapath 135
Figure 6.15 Design flow for the complete design :: 136
Figure 6.16 Functional validation flow for the complete design 139
Figure 6.17 Timing simulation of Design 1 140
Figure 6.18 Timing simulation of Design 2 141
Figure 6.19 Area of two designs for the motion vector reconstructor 142
Figure 6.20 Area of the datapath components in Design 1 and Design 2 143
Figure 6.21 Actual power cost flow 144
Figure 6.22 Total power consumption of Design 1 and Design 2 at different supply
voltages 145
Figure 6.23 Power dissipation in Design 1 146

Figure 6.24 Power dissipation in Design 2 147
Figure 6.25 Datapath components power dissipation in Design 1 148
Figure 6.26 Datapath components power dissipation in Design 2 148
Figure 6.27 Modules power dissipation in Design 1 149
Figure 6.28 Modules power dissipation in Design 2 149
Figure A2.1 Area-delay-power characterisation flow 170
Figure 4.1 Data flow graph with conditional branches [58] 187

List of Tables

Table 3.1 Average energy of a 16-bit level shifter [10] 26
Table 3.2 Energy dissipation of datapath functional units [10] 26
Table 3.3 Energy and delay values used by MOVER 28
Table 3.4 Proportional weights to the transistor count of the resources 28
Table 4.1 0.18/xm library component 40
Table 4.2. Schedule characteristics using different power reduction techniques 42
Table 4.3 Voltage, power and energy consumption for DIFFEQ with 2* 2+ 54
Table 4.4 Characteristics of power-area tradeoffs for DIFFEQ, T= 134ns 55
Table 4.5 Voltage, power and energy consumption for DCT with 6* 6+ 57
Table 4.6 Characteristics of power-area tradeoffs for DCT, T= 183ns 58
Table 4.7 Voltage, power and energy consumption for EWF with 1* 2+ 61
Table 4.8 Characteristics of power-area tradeoffs for EWF, T = 444 ns 62
Table 4.9 Run times for DIFFEQ 7. 65
Table 4.10 Run times for EWF 66
Table 4.11 Run times for DCT 66
Table 4.12 DIFFEQ 69
Table 4.13EWF 69
Table 4.14 DCT 69
Table 5.1 Multiplexers requirement 80
Table 5.2 Multiplexers power '. 80
Table 5.3 Multiplexers requirement... 81
Table 5.4 Multiplexers power 82
Table 5.5 Multiplexers requirement 83
Table 5.6 Multiplexers power 83
Table 5.7 Commutative operations and their inputs 83
Table 5.8 Multiplexers power 84
Table 5.9 0.12am library components 95
Table 5.10 Power consumption of the multiplier with different supply voltages and
throughputs96
Table 5.11 Power consumption of the adder with different supply voltages and
throughputs 96
Table 5.12 Solutions for EWF with 2cp 98
Table 5.13 Solutions for DCT with 2.5cp 108
Table 5.14 Power and time savings when comparing PABCOM and base case 110
Table 5.15 AR solutions I l l
Table 5.16 EWF solutions 112
Table 5.17 DCT solutions 112

Table 5.18 Power and area percentage savings :.... 112
Table 6.1 0.12|im library components 121
Table 6.2 Solutions for the motion vector reconstructor obtained with different a. 126
Table 6.3 Characteristics of the Design 1 and Design 2 128
Table 6.4 Multiplexers requirements for both designs 143
Table 6.5 Actual area and power values for different solutions 145
Table A2.1 Operating voltages for Technology library CORE9GPLL 171
Table A2.2 Verilog commands to generate VCD file 171

List of abbreviations

ALAP

AR

ASAP

CAD

CDFG

CFG

CG

CLB

cp

cs

cstep

DCT

DCU

DFC

DFG

DIFFEQ

EWF

FDLS

FDS

FPGA

FSM

FU

HLS

IDCT

ILP

As Late As Possible

Autoregressive filter

As Soon As Possible

Computer Aided Design

Control Data Flow Graph

Control Flow Graph

Compatibility Graph

Configurable Logic Block

Critical path

cstep

control step

Discrete Cosine Transform

Dynamic Clocking Unit

Dynamic Frequency Clocking

Data Flow Graph

Differential Equation

Elliptical Wave Filter

Force Directed List Scheduling

Force Directed Scheduling

Field Programmable Gate Array

Finite State Machine

Functional Unit

High Level Synthesis

Inverse Discrete Cosine Transform

Integer Linear Programming

LP Linear Programming

MSV Multiple Supply Voltages

PABCOM Power-Aware Behavioural Compiler

PATICS Power-Aware Time Constrained Scheduling

RCS Resource Constrained Scheduling

RTL Register Transfer Level

SoC System on Chip

SSV Single Supply Voltage

TCS Time Constrained Scheduling

VCD Value Change Dump

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

Chapter!

Introduction

1.1 Motivation

Continuous improvement in silicon technology is resulting in chips that are faster,

smaller and have more transistors than their predecessors. This has resulted in

increased processing capacity per chip, as well as a steady growth of operating

frequency, leading to higher power consumption [87]. Power consumption has turned

into a high priority consideration in hand-held mobile electronic system design due

to cost, reliability and portability concerns, making low power design a critical issue

that is being continuously investigated by academia and industry. High power

dissipation can lead to expensive designs since costly packaging and cooling

techniques are required to avoid high operating temperatures, which lead to less

reliable systems. Also, high power dissipation implies a short battery life.

To successfully design low power electronics systems, it is necessary to tackle the

power consumption problem at each level of abstraction of the design hierarchy [24].

The main levels of design abstraction [71] are:

• System level. The system level is concerned with the overall system structure

and information flow. At this level, the design may be modelled as a set of

abstract communicating processes or tasks.

• Behavioural level. This level is also called Algorithmic Level. At this level

the focus is on the operations performed by the system.

• Register transfer level. The system is viewed as a set of interconnect storage

elements and functional blocks.

Introduction 2

Power reduction at the different levels of abstraction can be implemented using

different techniques [135], as shown in Figure 1.1. It can also be seen that the

exploitation of power optimisation at various levels of the design hierarchy offers

different power reductions. It is clear that power optimisation opportunities are

significantly larger at the higher levels, thus reducing power consumption only at

lower levels may not be enough to meet the designer power reduction requirements.

For this reason, power optimisation techniques are being incorporated into the

synthesis process at higher levels of abstraction as shown in [150], [45], [67], [79],

[55] and [69].

Design hierarchy Examples of power reduction techniques

f
L System Level ' Shutting down idle components [44]

5 : '->•• - ~ ~
§. u, " R h if Assigning maximum number of operations to low supply voltage

TO benaviourai Level g n d m i n j m j s i n g SVvitching activity during binding [23]

b Register Transfer Level Using load-enabled registers and clock gating [47]
c <

Figure 1.1 Power reduction at different levels of abstraction

Synthesis consist of finding a structure that implements the behaviour of the design

while satisfying certain goals and constraints specified by the designer [21]. The

behaviour of the design is seen as a black box where the relations between inputs and

outputs are given regardless of their implementation. The structure refers to the set

of interconnected components that constitute the design (described by a netlist).

Finally, the structure must be mapped into a physical design, which gives

information about the location of the structure subparts on a chip.

Different synthesis steps need to be realised before obtaining a physical design, as

shown in Figure 1.2 [112]. System-level synthesis includes hardware-software

partitioning, resource allocation, task scheduling and task resource binding [107].

High Level Synthesis (HLS), also called behavioural synthesis, is the process of

mapping a behavioural description at the algorithmic level to a structural register

transfer level (RTL) description. This RTL description is in terms of functional units,

memory elements and interconnections (i.e. multiplexers and buses) [27]. Logic

synthesis translates an RTL description into an optimised netlist by applying its two

main tasks: logic optimisation and technology mapping. Logic optimisation

Chapter 1 ' 3

transforms a combinatorial or sequential logic function into an equivalent gate level

specification more suitable for technology mapping. Technology mapping transforms

such gate level specification into a network of specific primitives provided by a

particular technology [18]. Physical or layout synthesis performs tasks such as

placement and routing. Placement assigns locations to various circuit components on

the chip and involves the optimisation of objectives such as wire length, timing and

power [28]. Routing generates the interconnections between the various circuit

components [124]. After physical synthesis, a complete layout of the hardware is

obtained, from which masks can be extracted for fabrication.

System specification

Behavioural description

r

System Level Design

t

r

Behavioural Synthesis

Structural RTL description i

Logic-level netlist

Layout

f

Logic Synthesis

>

r

r

Layout Synthesis

f

Figure 1.2 Synthesis flow and levels of abstraction [112]

Behavioural synthesis is becoming a mature research area that has been investigated

for two decades now. However, a renewed interest in behavioural synthesis has been

motivated due to the increasing complexity of digital systems, and the development

of systems-on-a-chip (SoC) [35]. The use of a design methodology based on

behavioural synthesis provides the following advantages [71], [19], [121]: ^

• Better complexity management. Designing at a high level of abstraction is an

effective method to deal with the growing complexity of integrated circuits.

• Shorten verification/simulation cycle. The automatic generation of RTL code

from behavioural descriptions avoids the slow and error-prone manual

process, hence simplifying the design verification and debugging effort.

Introduction 4

Moreover, shortening the design cycle^ allows meeting the aggressive time to

market needs proper of most ASICs designs, lowering the development cost

and enhancing the productivity.

• Ability to search the design space through the rapid exploration of different

area-performance-power tradeoffs, focusing less on the details of logic and

physical design.

• Higher quality of results can be achieved by integrating automatic high level

optimisations together with physical information of logic and interconnects.

To demonstrate how a behavioural synthesis methodology generates efficient

solutions and facilitates the design of electronic systems by using behavioural

descriptions, consider the design of a RGB-YCrCb converter. Listing 1.1 shows a

VHDL behavioural description of the RGB-YCrCb converter. As it can be seen, the

description includes mathematical expressions and contains neither the cycle by

cycle behaviour nor structure of the design. Assuming that this VHDL behavioural

description is suitable for RTL synthesis using SynplifyPro, the generated design

contains 4 combinational multipliers and 8 adders, utilising 105% of the total CLBs

from a FPGA Xilinx Spartan XCS05. However, a design with only 1 multiplier, 1

adder and 1 subtractor, utilising only 50% of the same FPGA, can be obtained using

the behavioural synthesis tool from Chapter 5.

Behavioural synthesis also offers a power optimisation opportunity due to the power

analysis carried out at high level of abstraction. This is why, researchers are still

investigating and developing improved methods for low power behavioural synthesis

as recently demonstrated in [7], [116] and [118]. Power analysis during behavioural

synthesis allows evaluating the impact of various optimisations and design

modifications on power, as well as validating that power budgets are met. Although

power analysis carried out.at high level tends to be less accurate than at lower levels

of the design hierarchy, it is still helpful as it enables designers to forecast correctly

the increase or decrease in power consumption after a design modification.

Consequently, the role of lower level power analysis is limited to support lower level

optimisations and assure that the design meets the power specification with a high

level of confidence [112].

Chapter 1

Listing 1.1 VHDL behavioural description of the colour space converter from RGB to YCrCb
library ieee;
use ieee.std_logic_1164.all;

package converter_defs is
subtype vector is std_logic_vector(9 downto 0);

end converter_defs;
use work.converter_defs.all;

entity converter is
generic(

ACOEF, BCOEF, CCOEF, DCOEF: vector := "0101010101";
YOFFSET, COFFSET: vector := "1010101010");

port(
R, G, B: in vector;
Y, Cb, Cr: out vector);

end entity converter;

architecture converter_a of converter is
signal y_: vector;
process

y_ <= ACOEF * (R - G) + G + BCOEF * (B - G);
Y <= y_ + YOFFSET;
Cb <= CCOEF * (B - y_) + COFFSET;
Cr <= DCOEF * (R - y_) + COFFSET;

end process;
end converter_a;

1.2 Contributions and thesis overview

This thesis presents an investigation into dynamic power minimisation algorithms for

behavioural synthesis. This research makes the following contributions:

• a scheduler capable of producing a set of solutions with different power and

resource requirements yet meeting the imposed time constraint [99].

• a datapath synthesis algorithm that performs simultaneously scheduling,

binding, clock and operations throughput selection.

• a behavioural compiler based on the above scheduler and datapath synthesis

algorithms that explores the design space finding good quality solutions in

terms of area and power according to the user requirements [98].

• realisation of a motion vector reconstructor from the Berkeley MPEG-1

player developed in [40] to further validate the practical applicability of the

proposed power-aware behavioural compiler.

This thesis is organised in seven chapters. Chapter 2 provides a review of

behavioural synthesis concepts, outlines the different contributors of power

consumption and presents combinatorial optimisation fundamentals that lay the

Introduction . 6

foundations of the algorithms developed in following chapters. Chapter 3 presents

the literature review of low power behavioural synthesis. Chapter 4 introduces a new

power-aware time constrained scheduling algorithm that explores efficiently the

design space and obtains a set of power-area tradeoffs through voltage scaling after

appropriate clock and operations throughput selection. Chapter 5 presents a power-

aware behavioural compiler that given a time constraint, performs simultaneously

scheduling, binding, clock and operations throughput selection using a simulated

annealing based algorithm. Chapter 6 demonstrates the practical applicability of the

algorithms developed in Chapter 4 and Chapter 5 through the realisation of the

motion vector reconstructor from the Berkeley MPEG-1 player [40]. Finally, Chapter

7 summarises the main conclusions of the presented investigation and suggests future

directions of research.

Chapter 2
Low power behavioural synthesis fundamentals

2.1 Introduction

To facilitate the understanding of low power behavioural synthesis, the basic

concepts of behavioural synthesis and sources of power consumption are introduced

in this chapter. Section 2.2 presents a general overview of behavioural synthesis.

Section 2.3 describes the sources of power consumption together with some effective

techniques proposed to reduce power consumption using behavioural synthesis.

Section 2.4 introduces combinatorial optimisation with particular emphasis on

simulated annealing, as such technique is employed in Chapter 5 to perform the

design space exploration. Finally, concluding remarks of this chapter are given in
t

Section 2.5.

2.2 Behavioural synthesis

In the context of behavioural synthesis, three different types of behavioural

descriptions can be identified: data dominated, control dominated and control flow

intensive [53]. Control flow intensive designs require a mix of control flow and data

flow within the datapath, and may contain a large number of nested loops and •

conditionals. In data dominated designs' such as digital signal processing and image

processing applications, arithmetic operations are predominant. On the other hand,

control dominated designs have very few arithmetic operations, being predominant

nested conditional constructs, data dependent loops and comparisons. Data

dependent loops make difficult to predict the number of times a loop body is

executed. This means that the number of clock cycles required to execute a control

Low power behavioural synthesis fundamentals 8

dominated design is highly dependent on the input data. In contrast, data dominated

designs present loops that are data independent, facilitating the identification of the

number of clock cycles required to execute the design. Area, power and delay are

dominated by arithmetic units and registers in data dominated designs and by non

arithmetic units, i.e. multiplexers, comparators, etc, in control dominated designs.

Controllers in data dominated designs are simple and have very little impact on the

area, delay and power of the circuit. However, in control dominated designs,

controllers may significantly affect the total circuit delay and power [112].

Behavioural synthesis transforms the algorithmic or behavioural description (data

dominated, control dominated or control flow intensive) of a circuit into a Register

Transfer Level (RTL) implementation [120]. This implementation consists of a

datapath and controller. The datapath executes the operations specified in the

behavioural description and normally consists of functional units, registers and

multiplexers. The controller provides to the datapath the necessary control signals,

i.e. multiplexers select signals or registers load signals, to execute the operations.

The general steps of a behavioural synthesis design flow are shown in Figure 2.1.

The first step requires the translation of the design behavioural description into an

intermediate format that is more suitable for the synthesis process, such as data flow

graph (DFG) and/or control flow graph (CFG), or a combination thereof known as

CDFG [116]. The second step is scheduling, which assigns each operation to a

specific; control step (cstep) such that the design constraints are met. In the case of

time constrained scheduling the aim is to reduce the resource requirements whereas

in resource constrained scheduling the aim is to reduce the execution time. The third

step involves allocation, which determines the functional units necessary to perform

the operations and binding, which assigns operations to functional modules and

values to registers. The aim of this step is to reduce the resources requirements such

as registers and multiplexers. Using the information obtained after scheduling,

allocation and binding, the controller that provides the signals to the datapath is

designed. Finally, a gate level netlist is produced after synthesising the datapath and

the controller using commercial logic synthesis tools.

Chapter 2

Behavioural description

Compiler

CDFG

Scheduling

Scheduled DFG

Allocation and Binding

Datapath

<

Controller

Logic Synthesis

Gate level netlist

Figure 2.1 Behavioural synthesis design flow

2.2.1 Graph-based representation of behavioural descriptions.

The input of a behavioural synthesis system is a behavioural description, which can

be specified in a hardware description language such as VHDL [116], Verilog [130],

SystemC [16] or a high-level programming language like C [35]. The behavioural

description expresses the system function in terms of mathematical algorithms or

difference equations. For example, the function of the colour space converter from

RGB to YCrCb [129] can be expressed like:

T= ACOEF *(R-G) + G + BCOEF *(B-G)

Y = Y'+YOFFSET

Cb = CCOEF *(B-Y') + COFFSET (2-1)

Cr = DCOEF *(R-T) + COFFSET

where R, G and B are the RGB colour space inputs; Y, Cr and Cb are the YCrCb

colour space outputs. ACOEF, BCOEF, CCOEF, DCOEF are parameter values

according to the standard, i.e. NTSC, PAL or YUV. YOFFSET and COFFSET are

constants that facilitate offset compensation.

A VHDL behavioural description of the RGB-YCrCb converter was presented in

Chapter 1 Listing 1.1 without the need of specifying its cycle by cycle behaviour or

its structure. This limits the designer's role to specify the time interval within a

particular operation has to be completed [151], allowing the behavioural synthesis

Low power behavioural synthesis fundamentals 10

tool to determine the structure that better suits the specified requirements. The

behavioural description is then compiled into an internal representation, i.e. DFG,

which illustrates in a graphical way all the operations dependencies from the original

behavioural specification. Figure 2.2 shows the DFG of the RGB-YCrCb converter,

where operations are represented by circles and passing data values by directed

edges.

CCOEF G ACOEF R G BCOEF B G DCOEF COFFSET YOFFSET

Cb Cr Y

Figure 2.2 RGB-YCrCb converter DFG

2.2.2 Scheduling

Scheduling assigns the operations of the algorithmic description to control steps

(csteps) defining the behaviour of the circuit cycle by cycle, i.e. specifying the order

in which operations will be executed [60]. Each cstep corresponds to a time interval

equal to the clock period. The number of csteps used to implement the specified

behaviour is called schedule length (Ls). Various algorithms have been proposed to

solve the scheduling problem in behavioural synthesis, the simplest ones being as-

spon-as-possible (ASAP) and as-late-as-possible (ALAP) [137]. Although both of

them assume unlimited resources, they are important since they determine the fastest

possible implementation, the critical path (in terms of control steps) and an upper

bound on the number of required hardware resources. Moreover, ASAP and ALAP

Chapter 2 11

are the basis for other algorithms that aim to minimise either the implementation

area, i.e. time constrained scheduling (TCS), or the required schedule length to

implement the behaviour, i.e. resource constrained scheduling (RCS). The following

subsections illustrate in more detail-the unconstrained schedules ASAP and ALAP,

before presenting time constrained scheduling and resource constrained scheduling.

Unconstrained schedules

The ASAP scheduling algorithm assigns each operation of the DFG to the earliest

possible cstep allowed by the data dependencies. For example, Figure 2.3 shows the

ASAP schedule of the RGB-YCrCb converter considering that each operation can be

executed in one clock cycle.

cstep

1

2

3

4

5

ACOEF
\

BCOEF
\

G 0
V^N3

N4

YOFFSET

COFFSET
-TSI1O N11V

12 N13V

Cb Cr - Y

Figure 2.3 ASAP schedule of the RGB-YCrCb converter

Since ASAP schedules the operations in the earliest possible cstep, the

implementation that executes the DFG using the least number of control steps is

obtained, giving a lower bound on the schedule length. This lower bound of the

schedule length defines the necessary number of csteps to execute all the operations

in the critical path, i.e. 7 csteps in Figure 2.3. The operations that are in the critical

path are Nl, N3, N5, N6, N7, N10 and N12, or alternatively, Nl , N3, N5, N6, N8,

Low power behavioural synthesis fundamentals 12

Ni l and N13. These operations can not be moved to any other cstep unless the data

dependencies are violated or the schedule length is increased. In addition, ASAP

gives the upper bound of required functional units which is equal to the maximum

number of same type resources used in each cstep. In Figure 2.3, such upper bound

consists of 2 multipliers, 2 adders and 2 subtractors.

To obtain the ALAP schedule it is necessary to define the schedule length in

advance, and then assign each operation to the latest cstep possible respecting the

data dependencies from the DFG. Figure 2.4 shows the ALAP schedule of the RGB-'

YCbCr converter considering a schedule length of 7 csteps.

cstep

4

5

6

7

ACOEF
\

R
\

G
/

5NI

3

B
\

\
BCOEF (^

G
/

/

N11
COFFSET iYOFFSET

N12 'N9

Cb Cr Y
Figure 2.4 ALAP schedule of the RGB-YCrCb converter

Resource Constrained Scheduling (RCS)

The aim of resource constrained scheduling is to assign operations to control steps

such that execution time is minimised for a given number of functional modules.

Although the RCS problem can be formulated and optimally solved using Integer

Linear Programming (ILP) [13], its computational complexity is exponential. To

overcome this overhead, heuristic methods with polynomial time complexity are

used. A commonly used heuristic algorithm to solve the RCS problem is list

scheduling [97]. This algorithm puts all operations whose inputs are available into a

Chapter 2 13

ready list. This list is then sorted according to a priority function. The operations in

the sorted list are subsequently assigned until all operations are scheduled or all

hardware resources have been used. The list scheduling algorithm is the base for

more complex algorithms such as Force Directed List Scheduling (FDLS) [101].

Here, the selection of a candidate operation to be scheduled in a given time step is

done by using the concept of force.

Time Constrained Scheduling (TCS)

The aim of time constrained scheduling is to assign operations to csteps such that the

number of functional modules is minimized for a given execution time. As in the

case of RCS, the time constrained scheduling problem can be formulated and solved .

optimally using ILP [13]. The TCS problem can also be solved using heuristic

algorithms such as force directed scheduling (FDS) [101]. The calculation of the

force is based on distribution graphs which represent the sum of the probability

values that the operations are assigned to certain cstep. Unlike the FDLS algorithm

that considers each schedule step at a time, FDS considers the operations one at a

time for scheduling. Other algorithm based on the distribution graph concept is [58],

where a least mean square error function is used to schedule operations in sequence.

Although this algorithm obtains similar results than FDS [101], it does not evaluate

the influence of all operations on the schedule before the most appropriate operation

is selected and scheduled. This results in a simple implementation with low

computational complexity.

Multicycled operations

During scheduling, the operations can be executed over one clock cycle (single cycle

operations) or n clock cycles (multicycled operations), where n is any integer number

greater than 1. In Figure 2.5, it can be seen that Ol is a single cycled operation

whereas 02, and 03 are multicycled operations. Multicycling is a widely

investigated technique for performance [137] and/or area [26] optimisation in

behavioural synthesis. Scheduling DFGs that contain multicycled operations has

been addressed in [101] and [58]. More recently, multicycled functional units (FUs)

have been employed to reduce the power consumption of digital designs generated

Low power behavioural synthesis fundamentals 14

using a behavioural synthesis methodology [31].

csteps

Figure 2.5 Single cycled and multicycled operations

Conditional branches

Behavioural descriptions that contain conditional statements, i.e. if-then-else, result

in DFG with conditional branches where operations are mutually exclusive, which

means that they are never executed at the same time. Consequently mutual exclusive

operations can be scheduled in the same cstep without increasing the number of

functional units required. Conditional statements are represented using fork and join

nodes in the DFG [145]. Figure 2.6 shows a conditional statement and its respective

representation in the DFG. Note that the branch to be executed depends on the value,

i.e. true or false, obtained after evaluating a given condition, i.e. (u and v). Such

value is represented in the DFG as a dotted line in Figure 2.6.

u v C ,

if (u and v) then
y = x + Cu

else
y=x + C2;

endif;

a) VHDL description b) representation in a DFG

Figure 2.6 Conditional statement

Chapter 2 15

From Figure 2.6, it can also be seen that operations N2 and N3 are mutually

exclusive and can be scheduled onto the same functional unit and into the same

control step without increasing the resource requirements. Some of the algorithms

that solve the problem of scheduling operations in a DFG with conditional branches

are [58], [145], [54] and [136].

2.2.3 Allocation and binding

In this thesis, the terms allocation and binding are used according to the definition

given in [119], which precisely distinguishes between the two. Allocation determines

the amount of resource requirements (functional, storage, and interconnect units) that

can be shared by operations and data transfers specified in the behavioural

description. The allocation process is usually solved as two-step process, before or

during scheduling and during binding. Module allocation is performed before

scheduling in the case of resource constrained scheduling or during scheduling in the

case of time constrained scheduling. The allocation of registers and multiplexers is

performed during binding. Binding maps operations to functional modules and data

transfers to storage units in the synthesised structural design, hence, determining the

interconnect resources to implement the design. The combination of the tasks

allocation and binding is referred to as datapath synthesis. Each of these tasks can be

transformed into a graph-theoretical problem such as graph colouring, clique

covering or clique partitioning [21]. The left edge algorithm [38] is capable of

solving the colouring problem and has been used efficiently for register binding.

This popular binding algorithm was used in the datapath synthesis system described

in Chapter 5 to generate initial solutions, from which new solutions are generated

during a simulated annealing process. The allocation and binding problem can also

be formulated using Integer Linear Programming (ILP), which guarantees global

optimum solutions but at the expense of exponential worst case complexity. This

overhead can be overcome using heuristic techniques such as genetic algorithms or

simulated annealing [117].

Low power behavioural synthesis fundamentals 16

2.2.4 Clock selection

A key decision during behavioural synthesis is choosing the clock period to schedule

the data flow graph (DFG) operations into control steps. Clock selection refers to the

procedure of designating an appropriate clock period for the controller/datapath

circuit [112]. The clock period together with the execution time of the DFG (or

design time constraint), determine the length of the schedule as outlined in [96]:

T=Ls*Tclk (2.2)

where Tis the time constraint or DFG execution time, Ls is the length of the schedule

in terms ofcsteps and Tclk is the clock period.

The clock selection problem is not new in the context of behavioural synthesis and

has been addressed in previous research, showing the significant effect of clock

choice on the design in terms of area [5], [14], performance [96], [115], and power

[73], [99]. Power consumption can be affected directly or indirectly by the choice of

clock period in the following ways [112]:

• Larger values of clock period lead to a significantly increase in the glitching

power consumption since the schedules obtained have more functional unit

chaining. However, the increase in functional unit chaining helps to inhibit

functional unit sharing, which may sometimes lead to larger and more power

consuming datapaths.

• Larger values of the clock period lead to lower power consumption in the

clock network and registers since the design requires fewer clock cycles to

process each input.

An optimal clock period can be found by analysing all possible schedules with

different clock lengths and then choosing the best value [115]. However, this would

require considerable time which makes it highly undesirable. Clock selection is a key

concept used throughout this thesis to minimise power in behavioural synthesis.

2.2.5 Controller design

Once the datapath has been obtained using behavioural synthesis, a controller needs

to be synthesized to complete the design. This controller provides signals to the

datapath to execute the operations according to the schedule obtained after

behavioural synthesis. Such signals comprise for example, enable signals for

Chapter 2 17

functional modules, load signals for registers and select signals for multiplexers. The

most popular style of controller architecture for digital design is finite state machines

(FSMs) [35]. The design of the finite state machine from scheduled designs starts

with the specification of which operations will be executed in each control state. This

process is simple in purely data flow designs, where no conditional branches are

present and each cstep represents a control state. However, in presence of conditional

branches, mutual exclusive operations that are executed in the same cstep can be

either assigned to the same control state or to a control state based on the branch they

are in. The former method is known as global slicing and the latter as local slicing

[131]. Both slicing techniques are illustrated in Figure 2.7, where the states are

demarcated by dashed lines and marked as SI, S2, S3 and so on. The local slicing

method has been used for the example in Figure 2.7a. It can be seen that operations

that are executed in the same cstep and under the same branch are assigned to a

unique state. Hence, operations N4 and N5 are assigned state S3 and operation N6 is

assigned to state S6. However, in global slicing, operations that are executed in the

same cstep and on mutually exclusive conditional branches are assigned to the same

state. Figure 2.7b shows that operations N4, N5 and N6 are all assigned to the same

state S3 after using global slicing.

in2 in3 in4 in5 in6 in2 in3 in4 jnS in6

S9 S7

a) Local slicing b) Global slicing

Figure 2.7 Assignment of operations to control states

Global slicing requires fewer states in the controller than local slicing, leading to

smaller state machines. However, status registers are required to store the

Low power behavioural synthesis fundamentals 18

information about which mutual exclusive operations will be executed in the state. In

[139], the authors presented a complete study on these two types of controllers and

concluded that using global slicing with status registers always results in designs

with lower area. These results were later supported by [35], where the authors claim

that the larger number of states required for local slicing leaded to poorer finite state

machine optimisation.

2.3 Sources of power consumption

In the past, performance and area were the primary considerations in electronics

system design. However, power considerations have become an increasingly

dominant factor in the design of portable systems [70]. The design of portable

devices certainly requires consideration of the peak power consumption for

reliability and proper circuit operation, but the time averaged power is proportional

to the battery weight and volume required to operate circuits for a given amount of

time. Moreover, average power reduction results in [76]:

• extension of the battery life time, which depends on its A h (ampere hour)

rating. When the battery has high power dissipation its life time may reduce

due to high ampere consumption.

• reduction of the chip operating temperature, increasing the system reliability.

It is estimated that components failure rates nearly double for each 10°C

increase in the operating temperature.

• reduction of cooling and packaging costs.

Average power dissipation has two main contributors, the capacitive switching

power Psw.cap. and the leakage power Pieakage, both of equal importance for nanometre

technologies [65]. Psw.CaP. is due to the charge and discharge of the capacitances

associated with each node of the circuit. Neglecting the internal capacitances, the

power consumption of a generic CMOS gate is given by:

1
svcap. „ ,'ddJ (2-3)

2

where a is the switching activity and it is the sum of the probabilities that a rising or

a falling transition occurs on the output in each clock cycle, Ci is the load

capacitance, Vdd is the supply voltage and / is the frequency. The capacitive

Chapter 2 19

switching power is also called dynamic power. Dynamic power has usually been the

dominant component of the total power consumption [104]. However, in many of

today's designs, leakage power has become comparable to dynamic power [103]. For

example, leakage power can contribute as much as 42% of the total power in the

90nm process technology generation [65].

Pleakage is the product of the leakage current leakage and the supply voltage VM [108]:

"leakage = * leakage* dd (2.4)

The leakage current leakage has two sources: /) the current I node that flows through the

reverse-biased diode junctions of the transistors located between the source or drain

and the substrate, and if) the subthreshold current Isubthreshoid- The contribution ofldiode

to the total leakage current is very small and can be ignored. On the other hand,

Isubthreshoid grows exponentially as threshold and supply voltages are scaled down in

today's processes. The current Isubthreshoid can be computed as outlined in [140]:

(2.5)

where Vgs is the gate-source voltage, F ^ i s the drain-source voltage, Vth is the

threshold voltage, Vt is the thermal voltage,- n is the subthreshold slope coefficient,

and Io is a technology constant.

Dynamic and leakage power can be technology dependent or/and design dependent.

Some of the technological measures that reduce dynamic and leakage power are

respectively the use of reduced voltage processes and the use of multiple voltage

thresholds. Dynamic power can also be reduced by taking measures in the design,

such as voltage scaling or switching activity reduction [134].

From equation (2.3), it can be inferred that dynamic power savings can be achieved

by reducing one or more of the following parameters during behavioural synthesis:

• Supply voltage

• Clock frequency

• Switching activity

• Load capacitance

Some techniques developed for low power behavioural synthesis comprise:

• Applying transformations that allow supply voltage or switching capacitance

reduction [8], [39]. Examples of such transformations are control step

Low power behavioural synthesis fundamentals 20

reduction, operation reduction, operation substitution, loop shrinking,

retiming and loop unfolding.

• Optimising the wordlength of functional units [3]. To facilitate this, fast and

reliable word-level power models may be used to estimate the power

consumption in the functional units [17].

• Switching off operators [123] or partitions of the chip [118] by disabling the

clock signal during inactive periods.

• Using lower supply voltages that decrease quadratically the power

consumption. Mixing voltages in a circuit is also possible, applying low

voltages to the operations that are not in the critical path and high voltages to

the critical path operations such that the time constraint is met [122].

Chapter 3 presents a literature survey on power minimisation algorithms for

behavioural synthesis.

2.4 Combinatorial optimisation

Many of the optimisation problems encountered in Computer-Aided Design (CAD)

for Very Large Scale of Integration (VLSI) are combinatorial [27]. This section

introduces combinatorial optimisation and in particular provides an introduction to

simulated annealing as such technique is employed in Chapter 5 to perform the

design space exploration. The objective of an optimisation problem is to find a

solution that can be measured in terms of a cost function such that its value is

maximum or minimum [21]. If a specific case of an optimisation problem can be

characterised by a finite set of discrete variables, i.e. they can only assume a finite

number of distinct values, the problem is called a combinatorial optimisation

problem [27]. Formally, a specific case of a combinatorial optimisation problem can

be defined as < S,f>, where S represents the solution space and/is a cost function of

the form / S —• R. In the case of minimisation, the problem is to find a global

optimum solution sopt e S which satisfies

f(sopt) <f (s), for all s g S (2.6)

In the case of maximisation, sopt satisfies

f(sopt) >f (s), for all s g S (2.7)

The set Ss of all solutions that are in some sense close to a solutions e S is called the

Chapter 2 21

neighbourhood Nofs. s e S is called a local optimum with respect to N if S is better

than, or equal to, all its neighbouring solutions with regard to their cost. More

specifically, in the case of minimization, s is called a local minimum if

f (s) < f(s), for all seSs (2.8)

And in the case of maximisation, s is called a local maximum if

f(s)>f(s)Jova\\SeSi (2.9)

Some combinatorial problems can be solved in polynomial time, therefore, called

tractable. Otherwise, they are called intractable. There exist three possibilities when

trying to solve an intractable problem: exact, approximation and heuristics

algorithms [27]. Exact algorithms provide the exact solution but may have a high

computational cost that prevents their use on typical size problems. The methods of

this category are called "general purpose" since they can be applicable to almost any

combinatorial optimisation problem. Some examples are: exhaustive search,

backtracking with branch and bound, dynamic programming and integer linear

programming. Approximation algorithms find a solution whose cost is within a

certain margin of the optimal cost only when involving problem-specific issues in the

analysis of the algorithm. Heuristic algorithms do not guarantee an optimal solution

but seem to be the only way to solve problems in CAD for VLSI [117]. Some

examples of heuristics techniques are: problem-specific, local search, tabu search,

simulated annealing and genetic algorithms. In Chapter 5, a simulated annealing

technique was employed to perform the design space exploration. Simulated

annealing is relatively easy to implement when compared for example with genetic

algorithms and provides the ability to solve combinatorial problems with polynomial

time complexity [1]. Furthermore, simulated annealing is independent of the

considered optimisation problem and can avoid poor local minimum while

approaching to the global minimum.

2.4.1 Optimisation using simulated annealing

Simulated annealing is a combinatorial optimisation method based on the simulation

of the annealing process [1]. hi condensed matter physics, annealing denotes a

thermal process for obtaining low energy states of a solid in a heat bath. As far back

as 1953, Metropolis [74] presented a method to simulate the evolution to thermal

Low power behavioural synthesis fundamentals 22

equilibrium of a solid in a heat bath. In this method, a new state with energy E2 is

generated after applying a perturbation mechanism to the current state with energy

Ej. The new state with energy E2 is accepted if the energy difference, E2 - Ej, is less

than or equal to 0. If the energy difference is greater than 0, the new state is accepted

with probability

where T is the temperature of the heath bath and kB is a physical constant known as

Boltzmann constant. By repeating this process for a large number of perturbations,

the system eventually evolves into thermal equilibrium, approaching to the

Boltzmann distribution the probability distribution of the states [64].

The idea of applying an analogy that links the simulated annealing of solids with

combinatorial optimisation was first published in [56], which also presented some

applications for VLSI design automation, i.e. placement and global routing. The

analogy is based on the following equivalences:

• solutions in a combinatorial optimisation problem are equivalent to the states

of a physical system

• the cost of a solution f(s) is equivalent to the energy E of the state

• the control parameter c is equivalent to the factor ksT

• the perturbation of the particles in the physical system then becomes

equivalent to a trial in the combinatorial optimisation problem.

Then, the simulated annealing algorithm can be seen as an iteration of Metropolis

algorithms evaluated at decreasing values of the control parameter. The acceptance

criterion determines whether the transition from a solution si to S2 is accepted by

applying the following acceptance probability:

)
(2.11)

iff(S2)>f(S])

The pseudocode for the simulated annealing algorithm [1] is shown in Listing 2.1,

where Ck represents the control parameter value and Lk is the number of transitions

generated at the kth iteration of the Metropolis algorithm.

A characteristic of simulated annealing algorithms is the acceptance not only of

improvements in cost, but also deteriorations in cost to a limited extent. Initially, at

large values of c, high increases in cost will be accepted; as c decreases, only small

Chapter 2 23

increases in cost will be accepted and finally, as c approaches to 0, only

improvements' in cost will be accepted. This feature allows simulated annealing to

escape from local minima. The probability of accepting solutions with higher cost is

realised by comparing the value of exp((/(z) -fij))lc) with a random number obtained

from a uniform distribution on the interval [0,1). The convergence speed of the

algorithm depends on the selection of the parameters Lk and ck-

Listing 2.1 Pseudocode for simulated annealing [1]
procedure SIMULATED_ANNEALING;
begin

INITIALISE (islart,co,Lo);
k = 0;
I ~ Istarti

repeat
for / = 1 to Lk do .

GENERATE (j from 5,);
iffO) <f(i) then i =j\

else if exp JV>j{J> > random[0,1) then i =j;

I J
end for;
k = k+Y,
CALCULATEJ.ENGTH {Lk);
CALCULATE_CONTROL (ck);

until stopcriterion;
end;

A finite time implementation of the simulated annealing algorithm can be realised by

generating homogeneous Markov chains of finite length at decreasing values of the

control parameter. To achieve this, the parameters that rule the convergence of the

algorithm must be specified. The selection of such parameters is referred as cooling

schedule and determines:

• an initial value of the control parameter Co

• a decrement function for decreasing the value of the control parameter

• a final value of the control parameter specified by a stop criterion

• a finite length of each homogeneous Markov chain

In [56], the authors developed a simple cooling schedule that has been used in many

applications of the simulated annealing algorithm. This cooling schedule selects the

initial Co such that approximately all new solutions are accepted. The decrement rule

is given by

ck+]=a-ck (2.12)

Low power behavioural synthesis fundamentals 24

where a is typically between 0.8 and 0.99. The execution of the algorithm is

terminated if the value of the cost function of the solution obtained in the last trial of

a Markov chain remains unchanged for a number of consecutive chains. The length

of the Markov chain is such that equilibrium is reached for each value of the control

parameter. This means that the length of the Markov chain may vary with the control

parameter CA>

2.5 Concluding Remarks

This chapter has presented the key principles of low power behavioural synthesis for

the realisation of digital systems. The process of behavioural synthesis, its three main

tasks: scheduling, allocation and binding, and interrelated tasks such as clock

selection have been reviewed. It has also been discussed the key parameters that can

be used to reduce dynamic power in the context of behavioural synthesis. Due to the

quadratic dependence of power on voltage, reducing the voltage has a higher impact

on power consumption than reducing the switching activity, capacitance or

frequency. Finally, combinatorial optimisation and simulated annealing have been

briefly outlined to lay the foundations for the algorithm developed in Chapter 5.

Chapter 3
Literature review of related work

3.1 Introduction

Power consumption minimisation can be carried out at a single task (scheduling,

allocation, binding) or simultaneously at the various tasks of behavioural synthesis.

This is reflected in the literature survey presented in this chapter. Section 3.2 and

Section 3.3 outline respectively the main reported work carried out on the low power

scheduling problem focusing at two sources of power reduction: supply voltage and

frequency. Section 3.4 describes the proposed algorithms that reduce power

consumption by decreasing the switching activity in the design during the binding

task of behavioural synthesis. Section 3.5 considers the reported approaches that

perform simultaneously scheduling and binding with the aim of reducing power

dissipation in the design. Section 3.6 completes the chapter with concluding remarks.

3.2 Low power scheduling based on voltage reduction

Raje et al. [114] presented a time constrained scheduling algorithm that reduces

power dissipation by using multiple supply voltages (MSV). Scheduling with MSV

considers the assignment of as many operations as possible to modules that operate at

low voltage and the remaining operations are assigned to modules that operate a

higher voltage. The number of allowable voltages is set according to the technology

and the designer's preference. Proofs for optimality of this algorithm are presented in

[113] assuming that the supply voltage versus latency curve is the same for all

functional units, i.e. adders and multipliers. This is a simplistic and rather unrealistic

assumption that may lead to suboptimal solutions and was addressed by Chang et al.

Literature review of related work 26

[10]. Here, a dynamic programming algorithm that solves the time constrained MSV

scheduling problem in both non-pipelined and functionally pipelined data-paths was

presented. This algorithm includes the cost of level shifters, which are necessary to

transfer data between functional units operating at different voltages. To calculate the

energy dissipation of the solutions obtained, the algorithm uses respectively the

energy values from Table 3.1 and Table 3.2 for the level shifter and functional units,

which were implemented in lum technology. The authors consider that the

propagation delay through a level shifter, i.e. Ins, is negligible compared to the

propagation delay through the modules. The delay cost for the level shifter is then

absorbed into the delay of the functional units they follow, because in the module

library, the minimum module delay is at least 20 times larger than the level shifter

delay.

Table 3.1 Average energy of a 16-bit level shifter [10]
x/y

2.4V
3.3V
5V

2.4V
0

49.6
88.0

3.3V
64.0

0
104.0

5V
128.0
142.4

0

Table 3.2 Energy dissipation of datapath functional units [10]

Voltage
2.4V
,3.3V
5V

multiplier
Energy (pJ)

3877.5
7330.9
16829

Delay (ns)
295.4
181.2
103.7

adder
Energy (pJ)

30.10
56.91
130.65

Delay (ns)
60.27
36.14
20.40

More recently, the problem of low power time constrained scheduling using MSV

has been solved using novel formulations. For example, Tsai et al. [63] proposed a

hybrid algorithm than combined simulated annealing with genetic algorithm to solve

the low power scheduling problem using dual Vdd and dual Vth. The goal of this

approach is to minimise the power and delay penalty of the design. Each operation in

the DFG is represented by a chromosome that includes information such as Vdd, Vth

and control cycles. An individual is represented with the same number of

chromosomes as operations in the DFG. The scheduler starts producing the first

generation, and generates many individuals. Then, it randomly selects two

individuals as the parents, and performs the crossover and mutation operations to

Chapter 3 27

generate two children. After that, the scheduler evaluates the power and delay of two

parents and two children, and decides the Boltzmann trial winner.

MSV is a technique for power minimisation that can be applied not only during time

constrained but also during resource constrained scheduling, as shown by Shiue et al.

[126]. Here, two algorithms for power minimisation were described, a time

constrained scheduling (TCS) scheme and a resource constrained scheduling (RCS)

scheme. In the TCS algorithm, operations that have the same mobility form a group,

and groups with the same mobility form a set. Then the groups in a set are sorted

according to a priority function that includes the number of operations in the group.

Groups with mobility zero are assigned to high voltage and groups with high priority

are assigned to low voltage. The RCS algorithm is based on list scheduling, hence

operations are sorted according to a priority function based on the depth, mobility

and level shifter requirements. The algorithm first assigns operations with high

priority to low voltage resources and the remaining operations to high voltage

resources. The authors improved these algorithms in [127], considering the effect of

switching activity on the power consumption of the functional units, the

interconnection complexity [72] and the power consumed by level shifters. Both

algorithms (TCS and RCS) try to reduce the number of level shifters using heuristics.

These algorithms produce schedules where the operations executed at the same

control step may be assigned to modules at different voltage complicating the design

of the controller. This was addressed by Kumar et al. [61], who proposed a RCS

algorithm that identifies available parallelism in an initial schedule and creates

different zones while maximising the hardware sharing. Zones group parallel

operations or smaller zones. Zones are able to be moved together from one voltage to

the lower next reducing the power consumption at the expense of an increased

latency. This increased latency is assumed to be compensated through pipelining.

Zones allow scheduling all operations in a control step at the same voltage,

simplifying the realisation of the controller.

So far, scheduling algorithms targeting the optimisation of a single objective, i.e.

area (TCS) or performance (RCS) have been presented. Scheduling algorithms that

aim towards the optimisation of two objectives, i.e. area and performance are

described in the following. Johnson et al. [48] developed MESVS (Minimum Energy

Schedule with Voltage Selection), an ILP algorithm that incorporates MSV selection

Literature review of related work 28

and level shifter costs into energy optimisation of schedules. The objective function

is an estimate of datapath energy dissipation as a function of supply voltages. The

ILP formulation was permitted to choose from voltages ranging from 1.5V to 5V in

0.5V increments and selected voltages were required to differ by at least IV.

Although this approach reduced power consumption significantly, better results can

be obtained if voltages are selected from a continuous range instead of a discrete one.

This is shown by Johnson et al. in [49], where an ILP algorithm called MOVER

(Multiple Operating Voltage Energy Reduction) was proposed. MOVER initially

finds one minimum voltage for an entire schedule. It then determines a second

voltage for operations where there is still slack. New voltages can be introduced and

minimised until no schedule slack remains. This paper also discusses the effects of

using MSV on IC layout and power supply requirements. Some of such effects

include additional power and ground pins, increase in area due to the routing of the

supplies and partitioning the chip into separate regions. In [47], Johnson et al.

provide further details about the resources (multiplier, adder, register and level

shifter) used by MOVER. Typical energy dissipation of the level shifter was found

to be on the order of 5 to 15p] per switching event per bit, given a 0.1 pF

load. Typical propagation delay ranges were approximately Ins for level

conversions such as 3.3V to 5V or 2.4V to 3.3V. However, a level conversion

from 2.5V to 5V had a delay of about 2.5ns, whereas a 2V to 5V conversion

had a delay of nearly 5ns. Energy and delay values for other 16-bit resources

used by MOVER are shown in Table 3.3. Power and delay values for each

resource were obtained after simulation with HSPICE using 0.8/ym MOSIS

library models. Area of the resources used by MOVER is represented by the

weights of Table 3.4, which are proportional to their transistor count.

Table 3.3 Energy and delay values used by MOVER

,adder
multiplier
register

Energy (pJ)
84

2966
312

Delay (ns)
12.0
18.5
0.48

Table 3.4 Proportional weights to the transistor count of the resources

weight
multiplier

16
adder

1
register

0.75
level shifter

0.15

Chapter 3 29

Lin et al. [66] presented an ILP model that explores the design space considering

time constraints alone, resource constraints alone, and time and resource constraints

together. The objective function of the ILP model is a function of two costs:

hardware and power. Each cost is associated with a weighting factor, which is set by

the user to express a preference of one term over the other. The ILP method is

practical usually for small size DFGs and may turn out to be computationally very

expensive due to its worst case exponential complexity. Consequently, efficient

search methods for the dynamic power minimisation problem that are applicable to

large size DFGs have been developed. For example, Lin et al. [66] described an

heuristic model where scheduling is performed according to a delaying gain that is

calculated based on a linear priority function that includes some operations

characteristics, such as the power gain after using a lower voltage and the mobility.

The priority function also considers the average utilisation of functional units in the

schedule. The operation with the highest delaying gain is selected and a lower

voltage is assigned to it. If a feasible schedule is obtained, the iterative procedure

continues, otherwise an attempt to reduce the voltage in the operation with the

second highest delaying gain is made.

Katkoori et al. [50] extended the FDLS algorithm proposed by Paulin et al. [101] to

heuristically determine the best control step for an operation such that the overall

power consumption is minimised without sacrificing the design throughput. While

scheduling operations in any control step, if sufficient resources are not available

then excess operations are deferred based on their "force". At the operation level, a

power cost function that captures the effect of an operation's deferral on the total

power consumption of the design was developed. For each operation, the power cost

is combined with its force to yield a compound cost used to decide which operation

to defer. The deferred operation must have the largest power consumption in current

time-step and have the least force. Other scheduling algorithm that uses the concept

of force was proposed by Gupta et al. [33]. Here, the concept of force is used to

model the switched capacitance of combinations among DFG operations which could

share a resource and the probability of selecting such a combination.

Manzak et al. [70] presented a low power scheduling algorithm that operates in two

passes. In the first pass, the minimum computation time is obtained using resource

Literature review of related work 30

constrained scheduling, hi the second pass, the difference between the time

constraint and the minimum computation time is distributed among the DFG

operations. The distribution procedure tries to implement the minimum energy

relation derived using the Lagrange Multiplier method in an iterative fashion. In each

iteration, increasing number of resources with high energy-delay ratio are disabled

from the set of resources and operations are scheduled using a list-based algorithm.

Recently, Hariyama et al. [37] used a genetic based algorithm to solve the scheduling

and module selection problem using multiple supply voltages to minimise power

consumption under time and resource constraints. This algorithm considers only

MSV but not partitioning the chip into voltage islands, which may cause some

physical layout problems, i.e. complex routing of interconnections and supply

voltage lines. Wang et al. [138] overcame this problem by presenting a hybrid

algorithm that combined simulated annealing with tabu search to minimise power

consumption under resource and timing constraints when performing simultaneously

partitioning and scheduling. The simulated annealing algorithm searches for the

operating voltage whereas the tabu search technique searches for the cluster of the

operations in the DFG. This algorithm obtains solutions in less time but with higher

power consumption than an algorithm based only on tabu search [68] developed by

the same authors.

3.3 Low power scheduling based on frequency scaling

Krishna et al. [59] developed a time and resource constrained scheduling algorithm

which combines the concepts of Dynamic Frequency Clocking (DFC) and Multiple

Supply Voltages (MSV). DFC takes advantage on the fact that different functional

units such as multipliers and adders can be clocked at different frequency according

to their critical path delay. Consequently, all units can be driven by a single clock

line that changes at run time depending on the functional unit active in that clock

cycle. This algorithm consists of two stages. In the first stage, an initial schedule

based on DFC is generated, where control steps are clocked at different frequencies

and operations are grouped such that the fastest functional units operate concurrently.

All the functional units perform single cycle operations. In the second stage,

operations are moved from one control step to another with the objective of meeting

Chapter 3 31

the time constraint and minimising power consumption using MSV. The target

architecture for the scheduled design includes a datapath, controller and the dynamic

clocking unit (DCU).

The principles of MSV and DFC can also be applied to solve the low power resource

constrained scheduling problem, as shown by Radhakrishnan et al. [109]. Here,

voltage is assigned to the operations according to their type, i.e. multiplications or

additions, and whether they are in the critical path or not. The frequency for each

control step is assigned according to the number of operations of each type that are in

the control step. Recently, Murugavel et al. [92] proposed a game theoretic based

approach for simultaneous voltage and frequency scaling with the aim of minimising

power when scheduling under resource constraints. Game theory was also used by

the same author to model the low power binding problem [91] and low power of

simultaneous scheduling and binding [93].

The problem of low power scheduling using DFC and MSV was further investigated

by Mohanty et al. [86] but considering only time constraints. The authors developed

an algorithm that schedules lower frequency operators at earlier control steps and

delays higher frequency operators to later control steps. Next, the schedule is

modified by moving operations from one control step to another with the objective of

meeting the time constraint. Then, the algorithm finds a suitable clock period and

assigns appropriate voltage. In [83], Mohanty et al. developed an Integer Linear

Programming (ILP) based scheduling approach that uses MSV and DFC principles to

minimise the energy delay product in a design. Same principles were integrated by

Mohanty et al. [80], in another ILP based scheduling algorithm to minimise a

parameter called cycle power function, which captures the peak power, the peak

power differential and the average power of the datapath. More recently, Mohanty et

al. [77] developed ILP based algorithms to minimise simultaneously peak and

average power. In [85], Mohanty et al. developed a low power resource constrained

scheduling algorithm that employs multiple supply voltage and dynamic frequency

clocking.

Literature review of related work 32

3.4 Low power allocation and binding

Raghunathan et al. [I l l] proposed an allocation and binding method for low power

that attempts to reduce both the capacitance and switching activity. Capacitance is

reduced during allocation by trying to minimise the number of functional modules,

registers and multiplexers. Binding reduces power consumption by assigning

operations to modules and variables to registers such that the switching activity is

reduced. Register and module binding is performed simultaneously, while also

aiming to minimise the amount of interconnect needed. The algorithm is based on a

weighted graph called the compatibility graph (CG). Initially, each variable and

operation corresponds to a node in the CG, with undirected edges connecting

compatible pairs. Weights are assigned to edges in the CG to indicate the preference

of two variables (or operations) for sharing the same resource. Weights are

determined according to a function that combines the values of capacitance and

switching activity.

Algorithms that solve only the low power register binding problem have also been

developed. For example, Chang et al. [12] presented an algorithm that calculated the

switching activity of a set of registers shared by different data values. Switching

activity is calculated based on the probability distributions of the input data streams.

After calculating the switching activity between pairs of values that could share the

same register and knowing the registers number, the low power register binding

problem is formulated as a minimum cost clique covering of a compatibility graph.

The problem is then solved optimally using a max-cost flow algorithm. In [11], the

same authors investigated the problem of minimizing the total power consumption

during the binding of operations to functional units in a scheduled datapath with

functional pipelining and conditional branching. The authors formulated the power

optimisation problem as a max-cost multi-commodity flow problem that is solved

optimally. Although [12] and [11] provided optimal solutions, their application is

limited to small sized problems. This was addressed by Choi et al. [147], who

developed a new heuristic algorithm that is applicable to practical designs while

producing near optimal results. The proposed algorithm determines a feasible

binding solution by partially utilising the computation steps for finding a maximum

flow of minimum cost in a network and then refines it iteratively.

Chapter 3 33

Some algorithms have also been proposed to perform low power module binding.

For example, Shiue et al. [125] described a linear programming (LP) based algorithm

that targets power consumption optimisation during resource binding by reducing the

switching activity at the input of the functional units. The algorithm consists of

creating a multistage graph with m stages (corresponding to m cycles in the

schedule) and n nodes per stage (corresponding to n functional units of the same

type). Each edge in the graph has a cost according to the switching activity caused if

two nodes were mapped to the same functional unit. The low power resource binding

problem is then solved by finding n disjoint paths such that the total cost of these

paths is minimal. Although this algorithm reduces efficiently the power

consumption, it may be very time consuming when applied to large designs. A faster

binding algorithm that takes into account candidate pairs of operations between two

consecutive control steps and maximises the resource sharing was developed by Liu

etal. [149].

To further reduce power consumption, voltage assignment problem has included into

the module binding task. For example, in [23], Chen et al. proposed a low power

binding algorithm for dual Vdd designs that minimises switching activity and

maximises the number of low Vdd operations under the assumption that voltages

could be dynamically configured at run time for each functional unit. This algorithm

may results in higher power savings but introduces extra area costs due to complex

control logic and a full chip dual rail power supply system. This disadvantage was

addressed by the same authors in [22], targeting architectures where the voltages of

functional units are fixed during run time.

In [94], Musoll et al. presented a binding algorithm that reduces the spurious

switching activity by using transparent latches at the input ports of the functional

units. However these latches incur area overhead and may reduce the power savings

due to their power dissipation. These disadvantages were overcome in the low power

register binding algorithm proposed by Luo et al. [46], where spurious switching

activity of a given scheduled behaviour and functional unit binding is reduced by

using retentive multiplexers. Retentive multiplexers can preserve their previous

select signal values in the control steps where the select signals are don't cares.

Literature review of related work 34

3.5 Combined scheduling and binding for low power

The work presented in the previous sections focus only at power reduction in a single

behavioural task, i.e. scheduling or binding. However, research has also been carried

out aiming at power optimisation when scheduling and binding are performed

simultaneously. For example, Tang et al. [144] presented an integer linear

programming (ILP) based approach for power optimisation that considers

concurrently module selection, scheduling and binding. The objective function

minimises switching energy consumption of all datapath components under time and

resource constraints. Chabini et al. [7] proposed another ILP formulation that not

only considers scheduling and binding but also retiming while reducing power

consumption due to switching activities. Recently, Zhao et al. [148] considered

multicycling and multiple supply voltages in an ILP based approach that performs

scheduling and binding with the aim of minimising energy or peak power in a design.

Algorithms with less computational complexity than ILP formulations for

simultaneous scheduling and binding have also been developed. For example,

Katkoori et al. [51] presented PDSS, a behavioural synthesis approach that minimises

power consumption by reducing the switching activity in the design. This approach

uses a profiler tool that simulates the DFG using data streams specified by the user,

hence collecting profile data for various operations and variables during the

simulation time. Using this profile data and the switching activity data of all modules

in the library, power consumption is estimated for each feasible solution (obtained

after scheduling and binding) that meets the user constraints. Then, the solution with

the lowest power consumption is chosen and a clique partitioning algorithm is

applied for register optimisation. Interconnect optimisation and controller generation

are also included in this approach.

San Martin et al. [122] presented Power-Profiler, an approach based on a genetic

algorithm that reduces average and peak power consumption during behavioural

synthesis of ASICs. Power consumption is reduced by disabling the clock of modules

when they are idle, using multiple supply voltages, increasing parallelism and using

fast and power hungry operators only in the critical path. Power-profiler performs

simultaneously scheduling and module binding and searches for the best combination

of library modules that minimises the power consumption of the design. Although

this approach obtains good solutions in terms of power, it does not consider tasks

Chapter 3 35

such as clock selection and retiming that are directly related to the main behavioural

synthesis tasks. This was addressed by Raghunathan et al. [110], who developed

SCALP, an iterative improvement algorithm for low power behavioural synthesis

that performs simultaneously scheduling, binding, retiming and functional pipelining,

clock selection and module selection. The effect of these tasks on both supply

voltage and switching capacitance is also considered simultaneously. SCALP

identifies a set of candidate supply voltages that may lead to the lowest power

datapath and then examines possible values of clock period for each supply voltage.

For each combination of supply voltage and clock period, the iterative improvement

synthesis phase is executed with the aim of obtaining the minimum switching

capacitance datapath that meets the time constraint at the current voltage. The

iterative improvement algorithm explores the solution space by applying two types of

modifications: module selection with rescheduling and hardware sharing/splitting

with rescheduling. SCALP reduces the power consumption in data dominated

designs but can not handle control dominated designs. This was overcome by

Williams et al. [141], who presented a system called MOODS that does not impose

any restriction on the system architecture, i.e. supports the full spectrum of designs

from data to control dominated. Further investigation on low power behavioural

synthesis targeting data and control dominated applications was carried out by

Ranganathan et al. [116]. Here, the authors presented CHESS, a low power

behavioural synthesis approach that targets both data and control dominated

applications. Scheduling is performed using an algorithm based on tabu search [4]

that minimises the resource requirements under given time constraints. To perform

the binding task, the authors extended the algorithm proposed by Murugavel et al.

[93] to consider control constructs. Power reduction is due to functional unit sharing,

which attempts to assign the same functional unit to operations with at least one

common input, decreasing the number of changing inputs.

The problem of low power behavioural synthesis has also been formulated using

genetic algorithms. For example, Elgamel et al. [25] proposed a genetic algorithm

based approach that integrates scheduling, allocation and binding with multiple

voltage assignment with the aim of minimising average and peak power. In [95],

Muthumala et al. combined a local search for rescheduling with a genetic algorithm

to determine appropriate supply and threshold voltage for the DFG operations with

Literature review of related work 36

the aim of minimising the leakage and dynamic energy in the functional units.

Binding for interconnection simplification is performed simultaneously with

scheduling and module selection to reduce the interconnection energy.

Interconnection simplification is achieved by increasing the sharing of

interconnections among functional units. Other approach that reduces dynamic and

leakage energy was developed by Jianfeng et al. [45]. Here, dynamic and leakage

power consumption are reduced by assigning lower supply voltage Vdd or higher

threshold voltage Vth to a candidate operation. The candidate operation is defined as

the operation with the highest power-savings in the DFG. Power-savings are

calculated based on a priority function that includes three factors: operation power

difference, operation delay difference and operation mobility. The candidate

operation is scheduled using a modified list scheduling algorithm and a new binding

is performed. Average power savings of 36% using three Vdd and three Vth are

reported when compared to a single supply voltage level.

3.6 Concluding Remarks

The literature review has shown that there has been considerable work reported on

how to minimise power in the context of behavioural synthesis. From this review, it

has been identified that an efficient technique to reduce power consumption is the

use of multiple supply voltages (MSV). However, MSV presents area/power/delay

overhead due to routing of the supplies and the use of level shifters to transfer data

between functional Units operating at different voltages. The possibility of using

single supply voltage during behavioural synthesis overcomes the area/power/delay

overhead of MSV and may result in comparable power savings. This aspect

underpins the development of the reported algorithms in the next chapters.

Chapter 4

Power-Aware Time Constrained Scheduling (PATICS)

4.1 Introduction

In Chapter 2, it was stated that reducing the voltage has a higher impact on power

consumption than reducing the switching activity, capacitance or frequency.

However, voltage reduction can be limited (hence power savings) if the schedule

slack is not fully exploited due to non-uniform path lengths, a fixed clock period and

a fixed number of control steps [47]. To avoid scheduling with a fixed clock period

(fixed number of control steps), it is necessary to perform appropriate clock selection

such that the utilization of the available schedule slack when using single supply

voltage can be improved. The aim of this chapter is to describe a new time

constrained scheduling algorithm [99] that takes into account the influence of the

combined selection of clock and operations throughput on the quality of the

schedules in terms of power and area. Section 4.2 introduces the terms and concepts

used throughout this chapter. Section 4.3 highlights the influence of an appropriate

clock and operations throughput selection on power consumption by means of an

illustrative example. The Power-Aware Time Constrained Scheduling (PATICS)

algorithm is described in Section 4.4 with the help of some examples. PATICS

selects the clock period and operations throughput such that power consumption can

be reduced by scaling the voltage until the slack of at least one of the operations is

zero. Section 4.5 presents extensive experimental results on benchmarks including

differential equation solver, elliptical wave filter and discrete cosine transform, to

demonstrate the efficiency of the algorithm. Finally, the concluding remarks of this

chapter are given in Section 4.6.

Chapter 4 38

4.2 Preliminaries

The proposed algorithm targets data dominated designs, as they are common in the

digital signal and image processing areas [8]. As mentioned in Chapter 2 Section 2.2,

data dominated applications consist mainly of arithmetic operations such as

additions, subtractions, multiplications and divisions. For example, the differential

equation (DIFFEQ) benchmark [102] is a data dominated design whose DFG

contains 6 multiplications, 1 adder, 3 subtractors and 1 comparator, as shown in

Figure 4.1b.

xl = x + dx

ul = u — (3*x*u*dx)-(3*y*dx)

yl =y+ (u*dx)

c = xl <a

3 x u dx 3 ,y u dx x dx

a) difference equations b)DFG
Figure 4.1 DIFFEQ benchmark

An important characteristic of the data dominated applications is that their inputs

arrive at a fixed rate, constraining the input sampling period. If the input samples are

processed faster than the required rate, it is possible to reduce power consumption

using supply voltage scaling [110]. The possibility of scaling the voltage is clearly

determined by the schedule slack, which is the difference between the critical path

and the sample period constraint. The critical path determines the time that takes

each input sample to be processed, whereas the sample period constraint (henceforth

referred to as,time constraint T) is defined by the user. For example, in Figure 4.1,

the shaded operations show the critical path, which can be calculated by adding the

delay of 2 multiplications and 2 subtractions. Assuming that these operations are

performed by the operators from Table 4.1 at 1.8V, the critical path takes 89.6ns to

be executed. If a time constraint of 100ns is set by the user, a schedule slack of

10.4ns is obtained.

Power-aware time constrained scheduling (PATICS) 39

As shown in this simple example, the time required for the datapath to execute the

critical path depends on the delay-of the operations. This delay is considered as a

typical register-to-register transfer that includes reading the operands from the

registers, performing an operation on the operands and storing the results in another

register [96]. Hence, the delay of an operation dop can be calculated as [9]:

dop= delay FU + delay reg+2delayma (4.1)

where delayFU is the delay of the functional unit, delayreg is the delay of the register

and delaymux is the delay of the multiplexer.

The operation delay together with the clock period, determine the number of csteps

required to execute such operation. In this thesis, the number of csteps required to

execute an operation is refered as throughput and can be calculated by:

TPop = \dopITclk\ • (4.2)

, where TPop is the throughput, dop is the operation delay and Tclk is the clock period.

A throughput of 1 cstep means that the operation is single cycled, whereas a

throughput greater than 1 cstep means that the operation is multicycled. For example,

in Figure 4.2, operation Nl has a throughput of 1 cstep (single cycled operation),

whereas operations N2, N3 and'N4 have a throughput of 3 csteps (multicycled

operations).

csteps

1

i

1

slack m

N2

\ /

slack m'

N3

\ l
()

N4

\J
Figure 4.2 Operations with different throughputs and delays.

Although N2, N3 and N4 have the same throughput, i.e. TPN2 = TPm = TPN4 = 3, they

present different delays, i.e. dm > dm > d^, which derive in some operation slack as

in the case of N2 and N3. This operation slack is measured with respect to the

throughput and can be calculated [2]:

slackop = (TPop*Tclk) - dop (4.3)

Chapter 4 40

Assuming that each cstep in Figure 4.2 corresponds to an interval of length equal to

Tclk = 10ns, and operation delays dm = 22.5ns and dm = 25ns, operations slacks of

7.5ns and 5ns are obtained respectively for slacks and slacks- Note that operations

Nl and N4 have an operation slack equal to zero. The presence of operation slacks

may lead to larger operations throughputs that can avoid meeting the design time

constraint for some values of supply voltage, although the critical path can be

executed in less or equal time than the set time constraint. This is better illustrated in

the next section by means of an example.

4.3 Importance of clock and operations throughput selection

To demonstrate how the choice of the clock period and operations throughput affects

the power consumption and functional resources requirements in behavioural

synthesis, the following example is given. For the sake of explanation, consider

throughout this section that a time constraint T of 149ns (10 times the minimum

delay of the library shown in Table 4.1, the delay of an adder at 1.8 V) has been set

for the DIFFEQ benchmark, shown in Figure 4.1. In Table 4.1, the multiplier, adder,

subtracter and comparator are symbolised by *, +, - and <, respectively. Throughout

this chapter, it is considered that the addition, subtraction and comparison can be

executed by the same functional unit. Hence the terms addition, subtraction and

comparison are used indistinctively. The reported dynamic power and delay values

of the library components are for 0.18um technology [106]. It is assumed that the

delay of the functional units (FUs) in Table 4.1 include estimates for register and

multiplexer delays.

V(V)
0.9
1.8

V(V)
0.9
1.8

Table 4.1 O.ltytm library component
*

Pdyn (mW)
0.105
0.42

• + , - , <

Pdyn (mW)
0.008
0.031

£>(ns)
59.7
29.9

£>(ns)
29.8
14.9

Power-aware time constrained scheduling (PATICS) 41

As in [126], it is considered that the clock period Tclk is determined by the delay of

the fastest functional unit when operating at maximum supply voltage. This allows

the delays of the remainder FUs to be specified in multiples of the clock cycle.

According to the functional unit library in Table 4.1, Tclk takes the value of 14.9ns

and using the given time constraint T = 149ns, a schedule length (Ls) of 10 control

steps (csteps) is obtained using equation (2.2) from Chapter 2, Section 2.2. With the

clock period defined previously and the delays taken from the library shown in Table

4.1, it is possible to compute the throughput of the operations using equation (4.2).

Hence, the multiplier of the library has a throughput of 3 and 5 csteps at 1.8V and

0.9V, respectively; whereas for the same voltages, the adder needs 1 and 2 csteps to

complete an operation. Assuming that the FUs are operating with a maximum

supply voltage of 1.8 V, and using the schedule length obtained previously as an input

to the scheduler described in Appendix 4, the schedule of Figure 4.3a was obtained.

The scheduler used aims to determine the minimum number of hardware components

required to perform the DFG operations when a time constraint is given. All the

schedules in this section were obtained using such scheduler.

From Figure 4.3a, it can be seen that the functional resources requirement consist of

2* with throughput of 3 csteps and 2+ (assuming that additions and subtractions are

executed by the same functional unit) with throughput of 1 cstep. The estimated

power consumption for this schedule is 521JUW and the critical path could be

executed in 89.6ns, leaving a schedule slack of 59.4ns. Note that since the clock

period Tclk is equal to the delay of adder, the slack of the addition is zero, whereas

the slack of the multiplication is 14.8ns. Power dissipation values reported in this

motivational example are calculated using the values from Table 4.1 and equation

(4.5). The design parameters of the schedule from Figure 4.3a are summarized in the

first row of Table 4.2, denoted as schl. In the table header, Ls represents the length

of the schedule, TPM the throughput of the multiplier, TPA the throughput of the

adder and slacksch the schedule slack. The slack of the multiplication is slack*, slack+

is the slack of the addition, V the voltage, P the power and #FUs the number of

functional units.

Chapter 4 42

csteps

10

a) sch1 b) sch2

Figure 4.3 DIFFEQ schedules with different power-area tradeoffs

Table 4.2. Schedule characteristics using different power reduction techniques

schl
sch2
sch3
sch4

Tclk
(ns)
14.9
21.3
18.6-
24.8

Ls
(csteps)

10
7
8
6

TPM

(csteps)
3
2
2
2

TPA
(csteps)

1
1
1
1

slacksch
(ns)
59.4
21.3
37.3

0

slack*
(ns)
14.8

0
0
0

slack+
(ns)
0
0
0
0

V
(V)
1.8

1.41
1.57
1.20

P
(MW)
521
458
497
385

#FUs

2*2+
2*2+
2* 1+
3*2+

Now, consider taking advantage of the schedule slack, i.e. 59.4ns, through voltage

scaling, hence reducing the power consumption. The application of voltage scaling

would increase the delay of the operations as represented by the dotted lines in

Figure 4.3a. This in turn would increase the addition throughput from 1 cstep to 2

csteps, violating the time constraint as can be seen in cstep 10. Thus, an inappropriate

choice of the clock period may restrain the exploitation of the schedule slack,

inhibiting the application of greater supply voltage scaling, which leads to higher

power consumption solutions. However, it is possible to take better advantage of the

schedule slack and decrease significantly the power consumption through voltage

reduction, by not constraining the clock period to the fastest functional unit delay, as

in the case of schl, but through appropriate choice of clock period and operations

throughput. For example, consider now the time constraint divided in 7 csteps (Tclk

Power-aware time constrained scheduling (PATICS) 43

= 21.3ns) and multiplier and adder throughputs of 2 csteps and 1 cstep respectively,

see sch2 in Table 4.2. It can be seen that with this new Tclk and operation

throughputs, the schedule slack has been reduced from 59.4ns to 21.3ns, and the .

multiplication and addition slack has decreased to Ons. The supply voltage has

experienced a reduction of 0.39V, which allows lower power consumption than in

schl (from 521/zW to 458/iW). Note that despite this power decrease, the number of

used FUs remains the same that in schl, as shown in the schedule of Figure 4.3b.

Although sch2 provides a solution where power consumption has been effectively

reduced, often designers need guidelines about the possible power-area tradeoffs for

a given design. By carefully choosing the operations throughput and employing

clock selection, the design space can be efficiently explored, obtaining different

power-area tradeoffs, which is the main motivation of the proposed algorithm. For

example, consider sch3 in Table 4.2, where the time constraint has been divided into

8 csteps {Tclk = 18.6ns), and the multiplication and addition have throughputs of 2

csteps and 1 cstep respectively. For the above settings, the minimum voltage required

to meet the time constraint is 1.57V, which leads to a higher power consumption

with respect to sch2 (from 458/xW to 497^iW). However, the number of functional

units is reduced by one adder as shown in the schedule for this solution in Figure

4.4a. It can also be seen that although the schedule slack is increased to 37.3ns, the

multiplication and addition slack remains the same, i.e. Ons.

For the same time constraint, i.e. 149ns, further power reduction can be obtained by

assigning different values to the operations throughput and the clock period, and by

determining the corresponding voltage, as illustrated for sch4 in Table 4.2. Although

sch4 presents lower power consumption (385/zW) than sch3, the functional resources

requirement is increased by one multiplier and one adder as shown in the schedule of

Figure 4.4b. This solution presents the lowest operating voltage possible for this

schedule, i.e. 1.20V, reducing the schedule slack to Ons. Notice that the time

constraint in Figure 4.3 and Figure 4.4 has remained the same (149ns) and that only

the schedule length has changed according to the selected clock period.

Chapter 4 44

csteps csteps

a) sch3 b) sch4

Figure 4.4 DIFFEQ schedules with different power-area tradeoffs

4.4 Power-aware time constrained scheduling algorithm

Section 4.3 has demonstrated the influence of clock and operations throughput

selection on power dissipation during the scheduling task. This section presents an

algorithm capable of identifying the appropriate clock period, operations throughput

and the scaled supply voltage such that solutions with different resource

requirements and reduced power can be obtained within a specified time constraint.

The key idea of the proposed algorithm is taking a better advantage of the operation

slack by scaling the supply voltage (hence reducing power consumption) until the

delay of at least one of the operations in the design fits exactly into its throughput.

This will be explained in more detail when describing the algorithm later in this

section. The inputs of the algorithm are: a time constraint, a maximum clock

frequency and a design DFG. The algorithm also requires the specification of a

library component characterised for power and delay, e.g. Table 4.1. The outputs of

the algorithm are a set of solutions that consist of schedules with different power-

area tradeoffs, from which the designer can choose the solution that best suits his/her

needs.

Power-aware time constrained scheduling (PATICS) 45

The proposed power-aware time constrained scheduling algorithm (PATICS) is

shown in Listing 4.1. The terminology adopted during the explanation of the

algorithm is the following: T is the time constraint in ns, maxj' is the maximum

clock frequency, Tclk is the clock period in ns, Ls is the schedule length, V is the

supply voltage and listop is a list containing the operations ordered according to their

power contribution. The operation delay is represented as Dop, TPop is the operation

throughput, maxDop is the maximum operation delay (taken from the library given in

Table 4.1) and op can be of category power__op or remain_op.

To better illustrate the function of the algorithm, consider again DIFFEQ benchmark

(Figure 4.1b) with a time constraint of 149ns and a maximum clock frequency maxj~

of 500MHz. These values have been arbitrarily set for. illustration purposes. The

algorithm starts calculating the total power of the design at maximum voltage max_V

(line 1) using equation (4.5) and the values from the library component. For the

DIFFEQ example, the algorithm calculates a total power of 521 fiW at maximum

voltage 1.8V. The contribution of multipliers and adders to the total power

dissipation is 506/JW and 15jtiW respectively. Then, the category power op is

assigned to the type of operation which contributes the most to the total power and

the category remain_op is assigned to the remaining operations (line 2). In this case,

the category power_op is assigned to the multiplication, whereas the additions are

assigned to category remain_op. Using the power contribution information defined

before, the operations are ordered in terms of maximum power consumption in the

list listop (line 3). This list is used by the scheduler described in Appendix 4 so that

power consumption is considered when ordering the operations to be scheduled. The

operations are then ordered in the list listop as follows: multiplications first and then

additions. Now, Ls is initialised (line 4) with a schedule length equal to the csteps of

the critical path, which was calculated with the ASAP scheduling algorithm

assuming all the operations single cycled. For the DIFFEQ example, Ls = 4 csteps

since the critical path has four operations, as shown in Figure 4.1b. With this value of

Ls and the time constraint T, the clock period Tclk can be computed (line 5) as

explained in Chapter 2, Section 2.2.4, using equation (2.2). The clock period Tclk has

a value of 37.25ns in this example. The minimum clock period minJTclk that

indicates to the algorithm when to stop is calculated using the maximum frequency

max_f (line 6), i.e. minJTclk = 2ns for the current case.

Chapter 4 46

Listing 4.1 Pseudocode of the power-aware time constrained scheduling [99]
1 calculate total power at max_V
2 identify power_op and remain_op
3 sort operations in listop
4 initialise Ls = critical_path_csteps = ASAP(1, 1)
5 calculate Tclk
6 determine minTclk = VmaxJ
7'while Tclk > minTclk do
8 calculate TPpowerop (Dpowerop(max_V))
9 do
10 increase Dpowerop

11 tiDpowerop < maxDpm,eropdo
12 calculate V
13 calculate Dremain op{V)
14 calculate TPremain op (Dremainop)
15 . critical_ path_csteps = ASAP(TPpower_op, TPremainj>p)
16 if Ls > critical_path_csteps do
17 schedule (Ls, TPpowerop, TPremainop, listop)
18 calculate total_power
19 calculate totalarea
20 end if
21 calculate TPpowerop (Dpower op(min_V))
22 calculate TPremain op (Dremain op(min_V))
23 critical_path_csfeps = ASAP(TPpowerj)p, TPremainop)
24 if Ls > critical_path_csteps do
25 schedule (Ls, TPpowerjjp, TPremainop, listop)
26 calculate total_power
27 calculate totalarea
28 else do
29 while (Ls < critical_path_csteps) do
30 decrease TPpower_op

31 calculate Dpowerop

32 calculate V
33 calculate Dremain_op

"34 CalCUlate lPremain_op (.Dremainop)
35 critical_path_csteps = AS~AP(TPpowerop, TPremainop)
36 if Ls > critical_path_csteps do
37 schedule (Ls, TPpower_op, TPremainop, listop)
38, calculate total_power
39 calculate totaljirea
40 end if
41 end while
42 end if
43 end if
44 while (Dpower_op < maxDpowerop)
45 increase Ls
46 calculate Tclk
47 end while

Next step is to evaluate the throughput TPpowerop (line 8) as shown in equation (4.2),

using DpOwerop calculated at the maximum voltage in the library max_V. For the

DIFFEQ example, the delay DpOWer_op(fnax_y) corresponds to the delay of the

multiplier from Table 4.1 at 1.8V, i.e. 29.9ns, and the throughput TPpower_op takes a

value of one cstep, as shown in Figure 4.5a. The delay Dpower_op is then increased

Power-aware time constrained scheduling (PATICS) 47

(line 10) with the aim to meet exactly the same number of csteps of the throughput

TPPower_op- An increase of the delay Dp0wer_op allows a voltage reduction that has a

higher impact on the power consumption of operations that are more power hungry,

leading to a decrease in the total power dissipated by the schedule. The increased

delay DpOWer_op is denoted in Figure 4.5 a with the dotted lines, where the new value of

Dpower_op is 37.25ns (calculated with equation (4.2)). The increased delay DpoWer_op is

then compared with the maximum delay allowed maxDpower_op (line 11). In case

DPower op is greater than maxDpower op, the algorithm increases the schedule length

(line 45), calculates a new clock period (line 46) and attempts to select new

operations throughputs. In case Dpower_op is lower or equal than maxDpOwer_op, the

supply voltage Fis computed (line 12), i.e. 1.57V for the DIFFEQ case. The delay of

the remaining operations Drematn_opQva& 13) is then evaluated at the supply voltage V,

and the throughput TPremain_op (line 14) is computed.

TT

a) b)

Figure 4.5 a) ASAP schedule, b) time constrained schedule, for DIFFEQ with 4 csteps

According to [47], the propagation delay of CMOS is approximately proportional to

VI(V-Vth)2, where Vth is the threshold voltage. This approximation suggests that the

delay is inversely proportional to the supply voltage V. Consequently, the

relationship between delay and voltage can be modelled using a 1st order Lagrange

interpolating polynomial [6]:

Chapter 4 48

k=0

LJV)=

where V is the supply voltage, Vo and Vj are the minimum and maximum voltage

available in the library, i.e. 0.9V and 1.8V according to Table 4.1, d(Vo) is the delay

at voltage Vo, d(Vj) is the delay at voltage Vlt and D(V) is the delay at voltage V.

Note that using Lagrange or any interpolating polynomial leads to similar results

since only two points are considered for interpolation, i.e. (Vo, d(Vo)) and (Vi, d(Vi)).

Using equation (4.4) and the supply voltage V obtained previously, i.e. 1.57V,

operation delays of 18.66ns have been obtained for the addition, subtraction and

comparison for this example. The throughputs for the addition, subtraction and

comparison are one cstep, as shown in Figure 4.5a.

Now, having TPpower_op and TPremain_op, the critical path can be computed (line 15).

Then, the feasibility of using such throughputs without violating the schedule length'

Ls is verified (line 16). hi this case, the critical path composed by the shaded

operations in Figure 4.5a can be executed in the same number of csteps that the

schedule length, so there is no violation of the schedule length. If the schedule length

is not violated, the DFG operations are then scheduled (line 17) using the modified

scheduler with the current schedule length Ls and operations throughputs TPpowerj}p

and TPremain op- Figure 4.5b shows the schedule for the DIFFEQ example with Ls = 4,

TPpower_op = 1 and TPremain_op = 1 • Now, the total power consumption total_power of

the design is evaluated (line 18) as in [122]:

pry) = AUFUS (4.5)

T

where P(V), DFU(V) and PFU(V) are respectively the design power consumption, the

functional unit (FU) delay and FU power, all at voltage V. NFU is the number of

times each type of FU is used and T is the time constraint. To calculate the delay

DFU(V), equation (4.4) is used, i.e. DFU(V) = D(V). To compute the power PFIAV), the

quadratic dependency of power on voltage is modelled using a 2nd order Lagrange

interpolating polynomial [6]:

Power-aware time constrained scheduling (PATICS) 49

2

t=0

-v,w-v,)
A(*0 = ;

za(K) = -

where Fis the supply voltage, Fo is OV, Vj is the minimum voltage of the library, i.e.

0.9V, V2 is the maximum voltage of the library, i.e. \.SV,p(Vo) is 0xxiW,p(Vi) is the

power at voltage V], p(V2) is the power at voltage V2, and P(V) is the power at

voltage V. The power PFIAY) is then calculated using equation (4.6), i.e. PFU(V) =

P(V). In Listing 4.1, the area of the design total_area (line 19) is estimated as in

[122], checking the maximum number of FU of each type at every cstep. Hence, the

DIFFEQ example presents a power dissipation of 497uW and an area of 2

multipliers and 2 adders, as shown in Figure 4.5b.

So far, the algorithm has examined .the solution only in the lower bound of the

operation throughput TPpower_op. For every Tclk, the lower bound of the operation

throughput may lead to a schedule with low resources requirement. However, the

proposed algorithm not only targets area optimization, but also power optimization.

For this reason, it is also necessary to analyse the upper bound of the operations

throughput for a certain clock period. For every Tclk, the upper bound of the

operation throughput leads to a schedule with low power dissipation. To better

illustrate the impact of the operations throughput bounds on a schedule in terms of

power and area, consider Figure 4.6, where a time constraint of 149ns is divided into

12 csteps resulting in Tclk = 12.4ns. Using this Tclk and the algorithm described in

Listing 4.1, the operations throughput are TPmuitipiier = 3 and TPadder = 2 for the lower

bound (see Figure 4.6a), and TPmuiapner
 = 4 and TPadder = 2 for the upper bound (see

Figure 4.6b). From Figure 4.6a it can be seen that using the lower bound of the

operations throughput results in lower resource requirements. This is because smaller

throughputs may allow operations to be better distributed along the schedule length,

avoiding the overlapping of their execution times, hence, reducing the resource

requirements. From Figure 4.6b it can be seen that larger operations throughput mean

larger delays which result from a lower voltage, hence lower power consumption.

Chapter 4 50

a) b)

Figure 4.6 Schedules with two values of throughputs a) lower bound b) upper bound

In Listing 4.1, the upper bound of TPpower_op (line 21) is evaluated as shown in

equation (4.2), using Dpowerj}p calculated at the minimum voltage in the library

min_V. For example, consider that the algorithm is analysing a solution for DIFFEQ

benchmark with a schedule length Ls of 10 csteps and the upper bound of TPpower_op.

The delay Dpower_pP corresponds then to the delay of the multiplier from Table 4.1 at

0.9V, i.e. 59.7ns, and the throughput TPpower op takes a value of four csteps, as shown

in Figure 4.7a. The throughput TPremain_op (line 22) is computed based on the delay

Dremain_op, which is also calculated at min_V. In this case the delay Dremain op

correspond to the delay of the adder from Table 4.1 at 0.9V, i.e. 29.8ns, leading the

throughput TPremain_op to take a value of two csteps, as shown in Figure 4.7a. With

TPpower_op and TPremainj)p the critical path is calculated (line 23), and later used to

verify if the schedule length Ls has been violated (line 24). If the schedule length is

not violated, the DFG operations are then scheduled (line 25), and the power (line

26) and area (line 27) of the schedule are calculated as described previously. In the

current case, the critical path can be executed in 12 csteps (see Figure 4.7a), which is

larger than the schedule length of 10 csteps defined at the beginning of this

illustrative example. In case the schedule length Ls is violated, the throughput is

decreased TPpower_op (line 30) and the delay Dpower_op is calculated (line 31) to obtain

later the voltage V (line 32). Then the delay Drematn_op (line 33) and the throughput

Power-aware time constrained scheduling (PATICS) 51

TPremain_oP (line 34) are computed. For the DIFFEQ example with schedule length Ls

= 10, the throughput TPpowerop is decreased to three csteps (as denoted in Figure 4.7

with the dotted lines) leading to a Dpower_op of 44.7ns with a scaled voltage of 1.35V.

With this voltage, a delay Dremain_oP of 22.4ns is obtained, which leads to a

throughput TPremain_op of 2 csteps for all the remaining operations.

The critical path is again evaluated with these new values for the throughputs (line

35) and later used to verify that the schedule length Ls is not violated (line 36). If so,

the operations are scheduled (line 37) and the power (line 38) and area (line 39) of

the schedule are computed, hi the current case, the critical path can be executed in 10

csteps, which is equal to the schedule length Ls. Hence, the schedule length is not

violated and the operations are scheduled as shown in Figure 4.7b, requiring 3

multipliers and 2 adders to execute the design. The power dissipation of this schedule

is 438uW. hi case of violation of schedule length Ls, the procedure (lines 30-40) is

repeated until obtaining feasible operations throughput for the schedule length Ls.

The previous steps (lines 10-43) are repeated while Dpower_op is less than, or equal to,

maxD,'power_op . The next step is to increase the value of Ls for the design (line 45),

calculate Tclk (line 46), and repeat the external loop (lines 8-46) until the clock

period Tclk exceeds the inverse of the maximum clock frequency max_f.

a) b)

Figure 4.7 a) ASAP schedule, b) time constrained schedule, for DIFFEQ with 10 csteps

Chapter 4 52

Note that the algorithm described in Listing 4.1 calculates a reduced voltage based

on the delays of operations in category power_op. A voltage reduction has a higher

impact in operations of category power_op than in remain op if the power consumed

by all the operations in power_op is higher than in remain op/as it is the case of the

benchmarks used in this thesis. If this is not the case, a reduced voltage should be

derived from operations in remain_op. To do this, it would be necessary to increase

the delay of all types of operations until it fits exactly into the number of csteps of

the throughputs, and then calculate the respective voltages. The lowest of these

voltages is chosen and then used to calculate the throughputs of all the operations

before performing scheduling.

The key concepts of the algorithm described in Listing 4.1, i.e. clock and operations

throughput selection, can not be applied to control dominated designs with data

dependent loops. Data dependent loops make difficult to determine the execution

time of the critical path in control dominated designs. If the execution time of the

critical path is not known, the algorithm can not determine the schedule slack, and

consequently how much voltage can be reduced. On the other hand, the clock and

operations throughput selection algorithm described in Listing 4.1 can still be applied

to data dominated designs with data independent loops, since the execution time of

the critical path can be identified. Note that there is a significant difference in

scheduling straight line code versus nested loop code due to the ability to overlap

loop iterations in a schedule, which allows functional pipelining. In functional

pipelining, the algorithm description is divided into sequences of operation stages

that operate concurrently. Successive stages are streamed into the pipe so that

different algorithm instances are executed in an overlapping fashion on a single data

path [101]. For a given latency/,, operations scheduled into cstep i in an instance and

into csteps i + kL (k = 1, 2, 3 ...) in the successive instance, run concurrently.

Consequently, the task of scheduling a pipelined algorithm can be solved with the

scheduler used in Listing 4.1 just by combining the distribution graphs of all the

instances, and balancing them across all groups of concurrent csteps.

Power-aware time constrained scheduling (PATICS) 53

4.5 Experimental results

The proposed time constrained scheduling (TCS) algorithm that takes into account

the impact of operations throughputs and clock period on the power-area tradeoffs in

behavioural synthesis has been implemented in C++. Three experiments have been

conducted on a Pentium 4, 2.2GHz, 512 MB RAM under different time constraints

for the DIFFEQ, elliptical wave filter (EWF) and discrete cosine transform (DCT)

benchmarks. Experiment 1 reports the power-area tradeoffs obtained when PATICS

has been used. Experiment 2 provides a comparison between the power consumption

values obtained with PATICS using a single supply voltage (SSV) and those

obtained using a multiple supply voltage (MSV) algorithm. Experiment 3 compared

the solutions obtained by PATICS and an area optimised scheduler that does not take

power consumption into consideration [58]. Power consumption reported later in this

section is based on equation (4.5) and Table 4.1, whereas the area requirement is

estimated considering the maximum number of FU of each type at every cstep [122].

4.5.1 Power-area tradeoffs analysis

DIFFEQ

So far, the power-area tradeoffs of DIFFEQ for a single time constraint have been

shown in Section 4.3. Figure 4.8 shows the power-area tradeoffs of the DIFFEQ for

different time constraints. Two interesting results were observed. The first result is

that for the same functional resources requirement, longer time constraints result in

lower power consumption, as expected. For example, for 2* 2+, the power

consumption is 545[iW when the time constraint is 134ns, however it reduces to

306|aW when the time constraint increases to 179ns. To illustrate the causes of this

power reduction, consider Table 4.3, which shows some solutions parameters with a

resource requirement of 2* 2+ for different time constraints. It can be seen that as the

time constraint increases the schedule slack is larger allowing the use of lower

operating voltages, thus reducing the average energy consumption (E) of the design.

The energy consumption E is calculated as the product of power P and time T, E =

PT. For 134ns, the schedule slack is 44.4ns allowing a scaled voltage of 1.54V,

which leads to an energy of 73.0pJ. This is reduced to 54.8pJ for 179ns because the

larger schedule slack, i.e. 89.4ns, allows a lower voltage application, i.e. 1.16V.

Chapter 4 54

Hence, the power reduction is due not only to the increase of the time constraint, but

also to a decrease in the average energyE.

-0
1*1+ 1*2+ 2*1 + 2*2+

#FUs

3*1+ 3*2+ 4*1 +

Figure 4.8 Power-area tradeoffs for DIFFEQ with different time constraints

Table 4.3 Voltage, power and energy consumption for DIFFEQ with 2* 2+
T

(ns)
112

149
156

1 179
224

slacksch
(ns)
22.4

59.4
66.4

;'; 89.4
134.4

V
(V)
1.73
1.54
1.41
1.35
1.16

1.01

E
(PJ)
77.1
73.0
68.2
65.1
54.8
45.9

P
• (M W)
688

g & 545----V •
458
417
3(16 •
205

obtained considering that all the operations are executed at 1.8 V

The second result that can be obtained from Figure 4.8 is that a greater number of

FUs can lead either to lower or higher power consumption. For example, for a time

constraint of 134ns, increasing the area from 2* 1+ to 2* 2+ allows reducing the

power consumption from 570/iW to 545/JW. However, by changing the resources

from 2* 2+ to 3* 1+ the power dissipation is increased from 545/iW to 563/xW.

Hence, the use of more FUs does not necessarily lead to lower power consumption.

Similar results can be seen for other time constraints such as 149ns, 156ns and

179ns.

Power-aware time constrained scheduling (PATICS) 55

To explain the increase or decrease in the power consumption when increasing the

resources, consider Table 4.4, which provides an insight into the power area tradeoffs

for 134ns. It can be seen that the power variations are due to the application of

different operating voltages. For example, there is a voltage reduction from 1.68V to

1.54V when changing the resources from 2*1+ to 2*2+, and a voltage increase from

1.54V to 1.63V when changing the resources from 2* 2+ to 3* 1+. The different

operating voltages are possible due to the combination of clock period and operations

throughput, which also lead to different schedules.

Table

tradeoff!
tradeoff2
tradeofD
tradeoff4

4.4 Characteristics of power-area tradeoffs for DIFFEQ,
Ls

(csteps)
8

21
19
18

Tclk
(ns)
16.8
6.4
7.0
7.4 •

TPM
(csteps)

2
6
5
6

TPA
(csteps)

1
3
3
3

V
(V)
1.68
1.54
1.63
1.34

T= 134ns
P

(MW)
570
545
563
487

#FUs

2* 1 +
2*2+
3* 1+
3*2+

Figure 4.9 shows the schedules obtained for tradeoff! and tradeoff2 from Table 4.4.

It can be seen that the schedule length is smaller in Figure 4.9a than in Figure 4.9b,

i.e. 8 csteps and 21 csteps respectively, however the time constraint is the same, i.e.

134ns. This is because the selected clock periods have values of 16.8ns and 6.4ns

correspondingly. Note that although the multiplications are multicycled in both

schedules, their throughputs are different, i.e. 2 csteps in Figure 4.9a and 6 csteps in

Figure 4.9b. In the case of the additions, they are single cycled with TPA = 1 in

Figure 4.9a but multicycled with TPA = 3 in Figure 4.9b. The combination of these

operations throughputs with the schedule lengths of 8 csteps and 21 csteps results in

the resource requirements shown in Table 4.4.

From Table 4.4 it can also be clearly noted that increasing the resource usage will

not always lead to significant power reduction. For example, when comparing

tradeoff! and tradeofB, a power saving of only 1.2% is obtained by adding one

multiplier to the design; and hence a significant area increase. On the other hand,

adding one adder (tradeoff and tradeoff4) leads to a power reduction of 13.5%.

Chapter 4 56

csteps csteps

N1

DCT

N10/

N11/

a) b)

Figure 4.9 DIFFEQ schedules for , a) tradeoff 1, b) tradeoff

This benchmark is useful to investigate the capability of scheduling designs with

massive data parallelism. The DCT data flow graph [58] consists on 25 additions, 7

subtractions and 16 multiplications. Figure 4.10 shows the power-area tradeoffs of

the DCT for different time constraints. It can be seen that as in the case of DIFFEQ,

longer time constraints lead to lower power consumption for the same resources. For

example, for 6* 6+, the power consumption reduces from 1.6mW at 130ns to 0.4mW

at 261ns. As explained previously, this power reduction is mainly due to the use of

lower operating voltages that reduce the average energy consumption E, as shown in

Table 4.5. Note that the voltage has been reduced from 1.77V at 130ns to 0.91V at

261ns, decreasing the energy from 214.2pJ to 109.4pJ.

Power-aware time constrained scheduling (PATICS) 57

* * * * * * * *

#FUs

Figure 4.10 Power-area tradeoffs for DCT with different time constraints

Table 4.5 Voltage, power and energy consumption for DCT with 6* 6+
T

(ns)
•; lll'3'Ol*''

156
183
209

slacksch
(ns)

V
(V)

.-25.6 • 'T.77
51.6
78.6
104.6

1.59
1.40
1.22

0-^0191

E
(PJ)

2V4.2
206.1
188.7
162.2

«vy?#-09.4

P
(raW)

• - • * ' 1 . 6

1.3
1.0 .
0.8

1 ..O."4 -3§J
considering that ail the operations are executed at 1.8 V

From Figure 4.10, it can also be seen that it is not possible to establish a relation

between area and power. For example, at 183ns, power increases (from 1.17mW to

1.18mW) when resources change from 4* 4+ to 4* 6+ and decreases (from 1.18mW

to 1.14mW) when resources change from 4* 6+ to 5* 4+. As explained for DIFFEQ,

these power variations are due to different operating voltages, as shown in Table 4.6

for 183ns. Note that schedules with 4* 4+, 4* 6+ and 5* 4+ operate with voltages of

1.70V, 1.78V and 1.59V respectively, and that as of 6* 5+, the voltage is reduced

steadily as the resources increase, resulting in a power consumption decrease.

Chapter 4 58

Table

tradeoff!
tradeoff

|T.traBeoff3W
tradeoff^
tradeoff5
tradeoff6
tradeoff7 ..-„•
tradeoffs
tradeoff^
tradeoff! 0
tradeoff! 1
tradeoff! 2
tradeoff! 3

4.6 Characteristics of power-area
Ls

(csteps)
33
18

&::-.io
20
16
43

-&\ 9
N 17

8
40
7

21
56

Tclk
(ns)
5.5
10.1

• 18.2?

9.1
11.4
4.2
20.3
10.7
22.8
4.5

26.1
8.7
3.2

TPM
(csteps)

6
3

4
3
8

•••:<• 2

4
2
10
2
6
16

tradeoffs for
TPA

(csteps)
3
2
1 *\
2
2
4
i .,•;>-;

2
1
5
1
3
8

DCT, T= 183ns
V

(V)
1.70
1.78

:1*59
1.59
1.66
1.67
1.47
1.40
1.32
1.32
1.12
1.12
1.12

P
(mW)
1.17
1.18

&M.14
1.14
1.16
1.16
1.08
1.03
0.97
0.97
0.81
0.81
0.81

#FUs

4*4+
4*6+
.55#V
5*5+
5*6+
6*4+

,6*5+,.
6*6+
7*6+
7*8+
8*8+
9*8+
10*8+

From Table 4.6 it can also be seen that in solutions with the same operations

throughput, i.e. tradeoff^ and tradeoff7, a larger schedule length leads to schedules

that require less number of functional units. This can be better illustrated with the

help of Figure 4.11 and Figure 4.12, which show the schedules for tradeofD and

tradeoff7 respectively. Note that in both figures the multiplications are multicycled

(with throughput TPM = 2) and the additions are single cycled (with throughput TPA

= 1). It can also be noted that both schedules meet the time constraint of 183ns

although the schedule length is different, i.e. 10 csteps in Figure 4.11 and 9 csteps in

Figure 4.12. For the throughputs TPM = 2 and TPA = \, the schedule length of 10

csteps allows a better distribution of the operations than a schedule length of 9 csteps

because fewer operations overlap their execution times. For example, in Figure 4.11

a maximum of 5 multiplications are overlapping their execution times in csteps 3, 5

and 6, whereas a maximum of 4 additions are overlapping their execution times in

csteps 8, 9 and 10. hi Figure 4.12, a maximum of 6 multiplications are overlapping

their execution times in csteps 3 and 5, whereas a maximum of 5 additions are

overlapping their execution times in cstep 9.

csteps
DO D7 D3 D4 D1 D6 D2 D5 D2 D5 D1 D6 D3 D4 DO D7

10

N20

N28

N21

N48/

N22

N17

N25

3
I
1
I
CD

8
GO

CD

I
CD

3"

O
Go

Figure 4.11 DCT schedule of tradeoff*

Chapter 4 60

CD O>

Power-aware time constrained scheduling (PATICS) 61

EWF .

This benchmark presents complex data dependencies that make difficult to obtain an

optimal solution. The EWF data flow graph [58] consists on 26 additions and 8

multiplications. The power-area tradeoffs of EWF for different time constraints are

shown in Figure 4.13. As in the case of DIFFEQ and DCT, the power decreases

gradually when the time constraint increases for the same resource requirements. For

example, for 1* 2+, the power consumption reduces steadily from 354/iW at 317ns to

89jtiW at 634ns due to a gradual voltage reduction from 1.79V to 0.90V, as shown in

Table 4.7.

1*1 + 1*2+ 1*3+ 2*2+ 2*3+ 3*3+

Figure 4.13 Power-area tradeoffs for EWF with different time constraints

T
(ns)

..T.^:317
380
444
507
634-

Table 4.7 Voltage, power
slacksch

(ns)
63.4
126.4
190.4
253.4
380.4

and energy consum
V

(V)
1.79
1.61
1.42
1.24
0.9 '

ption for EWF with
E

(PJ)
112.2
108.7
99.9
86.2

",, 56.4

1* 2+
P

(/xW)
354 -
286
225
170
89

considering that all the operations are executed at 1.8 V

From Figure 4.13, it can be seen that unlike DIFFEQ and DCT, as the number of FUs

increases the power consumption decreases. To illustrate the cause of this power

Chapter 4 62

reduction consider Table 4.8, which shows the solutions obtained for a time

constrained of 444ns. It can be seen that as the resources increase from 1*2+

(denoted as tradeoff!) to 3*3+ (denoted as tradeoff4) the operating voltage decreases

steadily from 1.42V to 1.12V, reducing the power consumption from 225/zW to

173/xW. Note that the values of clock period and operations throughput from Table

4.8 determine not only the operating voltage, but also the number of functional units

used by the schedule. For example, consider Figure 4.14 and Figure 4.15, which

show the schedules for tradeoff! and tradeoff4 respectively. It can be seen that the

operations are better distributed in Figure 4.14 than in Figure 4.15, due to a larger

schedule length, i.e. 21 csteps when compared with 17 csteps. This results in no

multiplications overlapping their execution times and a maximum of 2 additions

overlapping their execution times (for example in cstep 1) in Figure 4.14. In Figure

4.15, a maximum of 3 multiplications are overlapping their execution times (for

example in cstep 15), and a maximum of 3 additions are overlapping their execution

times (for example in cstep 17).

Table 4.8 Characteristics of power-area tradeoffs for EWF, T = 444 ns

Mtradeofflf ••-*
tradeoff
tradeoffi

,:^tradeoff4

Ls
(csteps)

mm-m
95
18
17 '

Tclk
(ns)

sr-21.1
4.7

24.7
26.1

TPM
(csteps)
% 'i-2d >•

10
2

, 2 , .

TPA
(csteps)

5
1

. ! • • . .

V
(V)

M=.-42!
1.29
1.21
1.12;;;

P
(MW)

204
190

:;-;l73

#FUs

•'W+::
2*2+
2*3+
•3*-3+

Power-aware time constrained scheduling (PATICS) 63

csteps
T38 T39 T33 T26 T13 T2 INPUT T18

10

11

12

13

14

15

16

17

18

19

20

21

Figure 4.14 EWF schedule of tradeoffl

Chapter 4 64

csteps T38 T39 T33 T26 T13 T2 INPUT T18

10

11

12

13

14

15

16

17

I I
Figure 4.15 EWF schedule of tradeoff4

Power-aware time constrained scheduling (PATICS) 65

Computational time

A general observation from Figure 4.8, Figure 4.10 and Figure 4.13 is that the

relation between power and area is non-linear and varies depending on the

benchmark, the time constraint and the functional resources used. This makes the

design space exploration more complex and hence time consuming, and an efficient

algorithm is needed. Due to the iterative nature of PATICS, the running times for

large designs may be high. Therefore a sought feature of the algorithm from [58] is

its low computational complexity (O(nl)), where n is the number of operations and /

is the schedule length. During the execution of PATICS, the number of times the

modified scheduler (based on [58]) is used is (T*max_f- cp), where cp is the critical

path of the design, and T and maxj are respectively the time constraint and

maximum frequency set by the user. Hence, the complexity of the proposed

algorithm is (O(nl(T*max_f- cp))). PATICS has reasonably low computational times

considering the number of solutions obtained, as shown in Table 4.9, Table 4.10 and

Table 4.11. For example, the algorithm needs 154s to obtain the set of solutions of

Table 4.6 (DCT with a time constraint of 183ns). It can also be seen that for all the

benchmarks the computational time increases as the time constraint increases. This is

due to the fact that the number of clock periods to be analysed by the algorithm

increases as the time constraint increases. For example, assuming a minimum clock

period minJTclk of 2ns and a time constraint of 317ns for EWF, the proposed

algorithm analyse 144 clock periods. However, by changing the time constraint to

444ns, the number of clock periods analysed increased to 208.

Table 4.9 Run times for DIFFEQ
Time Constraint

(ns)
112
134
156
179
224

Computational time
(s)
1
2
3
4
9

Chapter 4 66

Table 4.10 Run times for EWF
Time Constraint

(ns)
317
380
444
507
634

Computational time
(s>
77
193
366
610
1511

Table 4.11 Run times for DCT
Time Constraint

(ns)
130
156
183
209
261

Computational time
(s)
44
93
154
232
485

4.5.2 Comparison with MSV

This experiment demonstrates that the single supply voltage (SSV) solutions

obtained by PATICS present comparable power consumption with the solutions

obtained by a multiple supply voltage (MSV) algorithm [126] that uses two voltages,

1.8V and 0.9V. Comparable power values have been achieved without increasing the

functional resource usage whilst meeting the imposed time constraint. Besides the

comparable power consumption, the proposed algorithm avoids the problems

associated with MSV, such as high routing cost of the supply lines and area/delay

overhead of required level shifters [10]. As can be seen from Figure 4.16, the

proposed algorithm produces solutions of comparable quality in terms of power than

those generated using MSV for DIFFEQ. For example the power consumption for 2*

1+ for a time constraint of 134ns is 0.57mW with the presented algorithm, whilst it is

0.53mW with MSV. In the case of EWF, a power dissipation of 0.337mW for 1* 2+

at 328ns is obtained with MSV, whereas the proposed algorithm obtains a schedule

that dissipates 0.341mW, as can be seen from Figure 4.17. Overall, it can be

concluded that the proposed algorithm obtains comparable power values with the

MSV algorithm.

Power-aware time constrained scheduling (PATICS) 67

0.6

0 . 5 -

0 . 4 -

r 0.3

oa.
0.2 --

0.1 - -

.11
2*1 + 2*2+ 3*1 + 3*2+

134ns

2*1 + I-2*2+ | 3*1 +

149ns

time constraint

3*2+ 2*1+ 2*2+ 3*1 + 3*2+

179ns

m MSV m Proposed approach

Figure 4.16 Power consumption of DIFFEQ using MSV [126] and the proposed algorithm

0.4

0.35

f
0.3 •

0.25 •

0.2 -

0.15 -

0.1 -

0.05 •

0
1*2+

328ns

2*2+

403ns

time constraint

3*3+ 1*2+ 2*2+

507ns

3*3+

m MSV m Proposed approach

Figure 4.17 Power consumption of EWF using MSV [126] and the proposed algorithm.

Chapter 4 68

4.5.3 Comparison with an area optimised scheduler

The aim of this section is to demonstrate the benefits of using the proposed algorithm

compared with a time constrained scheduling (TCS) algorithm that targets area

optimisation but that is not power-aware. Although many TCS algorithms have been

proposed, the algorithm developed in [58] has been chosen because of its good

quality solutions and low computational complexity. The schedules obtained with

[58] consider that all the FUs are operating at maximum supply voltage, i.e. 1.8V,

and that the clock period was set to the fastest functional unit from Table 4.1 when

operating at maximum supply voltage. Figure 4.18 shows the power saving that can

be achieved when applying the proposed algorithm to the benchmarks DIFFEQ,

EWF and DCT. Note that all the power savings were obtained with the same number

of FUs that [58]. For example, in the case of DIFFEQ with 2* 1+, the power saving

is approximately 15% when the time constraint is 179ns. For EWF, a power saving

of 35% is obtained at 507ns with 2* 2+, whereas DCT with 4* 3+ experiences a

power reduction of 8% at 261ns. This improvement in power consumption is due to

the low operating voltage obtained after the appropriate selection of the clock period

and operations throughput. The operating voltages for DIFFEQ 2* 1+, EWF with 2*

2+ and DCT with 4* 3+ are 1.35V, 1.09V and 1.49V respectively. From Figure 4.18,

it can also be seen that the power savings increase when increasing the time

constraint, as previously explained in Section 4.5.1.

1*2+ 2*2+

EWF

6*4+ 4*3+

DCT

1134ns m 149ns o 156ns D 179ns • 224ns a 317ns m 380ns g 444ns • 507ns • 183ns a 261ns

Figure 4.18 Power savings compared with TCS [58] without increasing the number of FUs

Power-aware time constrained scheduling (PATICS) 69

The proposed algorithm also obtains other solutions with better power reduction than

the ones shown in Figure 4.18, but with greater number of functional resources when

compared to [58]. For example, Table 4.12, Table 4.13 and Table 4.14 present

respectively the power savings for DIFFEQ, EWF and DCT with an extra multiplier

or adder.

Table 4.12 DIFFEQ

134ns
149ns
156ns
179ns
224ns

Additional FUs
1+
1*
1*
1+
1*

% power saving
15.8
25.9
31.7
29.3
49.8

Table 4.13EWF

380ns
444ns
507ns

Additional FUs
1+
1*
1+

% power saving
11.4
19.4
41.8

Table 4.14 DCT

183ns"
261ns

Additional FUs
1+
1+

% power saving
8.7
13.5

4.6 Concluding Remarks

This chapter presented a new TCS algorithm capable of exploring the design space

and finding trade-offs between power consumption and area. It has been shown that

power consumption and area have a non-linear relation, thus resulting in a large and

complex search space. The proposed algorithm is capable of exploring this search

space in an efficient way and with reasonable computational time. Relevant power-

area tradeoffs are possible because of the careful choice of clock period and

operations throughput, and the generated single supply voltage. The combination of

these three parameters in the proposed algorithm is essential to obtain low power and

area designs. It has been shown that power savings comparable to those obtained by

MSV algorithms are achievable whereby the proposed algorithm leads to lower

implementation complexity (single supply voltage versus multiple supply voltages).

For example, some solutions obtained for DIFFEQ and EWF have respectively less

Chapter 4 70

than 8% and 2% power increase when compared to solutions that use MSV [126].

Moreover, when compared with an area optimised scheduler [58], the proposed

algorithm meets the same time constraint with the same resource requirements but

with less power. For example, a power saving of 13% averaged over DIFFEQ, EWF

and DCT with different time constraints was obtained.

Chapter 5

Power-Aware Behavioural Compiler (PABCOM)

5.1 Introduction

An essential task when synthesising a design from a behavioural description is

selecting the clock period to schedule the DFG operations into control steps. Chapter

4 has illustrated the significant effect that clock and operations throughput selection

has on the scheduling task in terms of power. However, determining the clock period

has also an interaction with binding [96], i.e. resource sharing. Hence, to find good

solutions in terms of power and area, the behavioural synthesis tasks (scheduling and

binding) should be performed simultaneously with clock and operations throughput

selection. This chapter presents a Power-Aware Behavioural COMpiler (PABCOM)

that considers the interrelation between the behavioural synthesis tasks (scheduling

and binding) and the clock and operations throughput selection. For a given time

constraint, PABCOM achieves low power datapaths by determining a low supply

voltage after using the improved algorithm for clock and operations throughput

selection described in Section 5.2. Further power reduction in the multiplexer based

interconnections of the datapath is achieved by employing the techniques described

in Section 5.3. The proposed algorithm is described in Section 5.4 including the

compound cost function that allows obtaining different power-area tradeoffs

according to the optimisation goal set by the user. Section 5.5 demonstrates the

efficiency of the algorithm through extensive experimental results using a number of

benchmarks. The concluding remarks of the chapter are given in Section 5.6.

Power-aware behavioural compiler (PABCOM) 72

5.2 Improved algorithm for clock and operations throughput

selection

PABCOM obtains power savings by reducing the interconnection complexity and the

operating voltage of the datapath. The complexity of multiplexers-based

interconnections is reduced using the techniques presented in Section 5.3, whereas

the low operating voltage is obtained after using a modified version of the algorithm

developed in Chapter 4. This section presents the main modifications done. The first

modification eliminates redundant clock and operations throughput, hence decreasing

the computational time of PABCOM. The second modification aims to obtain a

lower operating voltage by exploring the throughputs of operations that do not

necessarily consume most of the power in the design. This modification was

implemented in a function called upper_bound whereas the first modification was

implemented in the function addjojist. These two functions are included in Listing

5.1, which shows the modified algorithm for clock and operations throughput

selection. This modified algorithm is integrated into PABCOM as shown later in

Section 5.4.

Listing 5.1 Modified algorithm for clock and operations throughput selection
1 Lines 1 to 8 from Listing 4.1 (Chapter 4)
2 Lines 10 to 15 from Listing 4.1 (Chapter 4)
3 if Ls >= critical_path_csteps do
4 (Ls, TPpower_op, TPremainop, V) to l_b_struct
5 upper_bound (Ls, min_V, ubstruct)
6 add_to_list (l_b_struct, ubjstruct, clockthroughputs)
7 end if
8 else
9 calculate TPpower_op (Dpowerop(min_V))
10 calculate TPremainop(Dremain op(min_V))
11 critical_ path_csteps = ASAP(TPpowerop, TPremainop)
12 if Ls >= critical_path_csteps do
13 (Ls, TPpowerop, TPremainop, V) to l_b_struct
14 upper_bound (Ls, rninV, ujbjstruct)
15 add_to_list (l_b_struct, u_b_struct, clockthroughputs)
16 end if
17 end if
18 increase Ls
19 calculate Tclk
20 end while

From Listing 5.1, it can be seen that the first steps (lines 1 to 2) are the same that in

the original algorithm described in Listing 4.1. These steps lead to the computation

of the lower bound of the operations throughput and the critical path. After validating

Chapter 5 73

the critical path (line 3), the schedule length Ls, operating voltage V and throughputs

TPpower_oP and TPremain_op are saved into structure ljb_struct (line 4). Then the

function upper Jbound (line 5) is called to calculate the upper bound of the operations

throughput, which is saved into structure u_b_struct. Finally, the function addjojist

(line 6) apply pruning techniques to decide whether the structures l_b_struct and

u_b_struct will be added to the list clockjhroughputs or not. To facilitate the

explanation of the algorithm from Listing 5.1, the functions addjojist and

upper Jbound are described later in Listing 5.2 and Listing 5.3 respectively. From

Listing 5.1 it can be seen that in case the increased delay Dpower_op is greater than the

maximum delay maxDpower_op, the throughputs TPpowerj)p and TPremain_op are

calculated (lines 9 and 10) at minimum voltage minJ/'= 1.08V. This voltage was

selected according to the library specified in Table 5.9. Then the critical path is

calculated (line 11) and a similar process (line 12 to 16) to the one described in lines

3 to 7 is followed.

Listing 5.2 shows the pseudocode of the function upper Jbound used in Listing 5.1.

This function allows exploring solutions that were not explored by the original

algorithm developed in Chapter 4 with the aim of further voltage reduction.

Listing 5.2 Pseudocode of the function upper bound
I upperJound (Ls, minjf, ubstruct)
2{
3 calculate TPpower op (Dpower op{min_V))
4 calculate TPremain op(Dremain op(min_V))
5 critical_path_csfeps = ASAP(TPpowerop, TPremainop)
6 if Ls >= critical_ path_csteps do
7 (Ls, TPpower_op, TPremainj>p, minV) to u_b_struct
8 else
9 while (upper_bound not found) do
10 decrease TPpowerop

I1 calculate Dpowerop

12 calculate VI
13 decrease' TPremainop

14 calculate Dremain op

15 calculate V2
16 if (VI > maxjf && V2 < maxV) do
17 calculate TPpower op (Dpower op(V2))
18 critical_ path_csteps = ASAP(TPpowerop, TPremainop)
19 if Ls >= critical_ path_csteps do
20 (Ls, TPpower op, TPremain op, V2) to uj_struct
21 end if
22 elsif (VI < max_V && V2 > max_V) do
23 calculate TPremain op(Dremain op(Vl))
24 critical_path_csfeps = ASAP(TPpowerop, TPremamop)
25 if Ls >= critical_ path_csteps do
26 (Ls, TPpowerop, TPremainj>p, VI) \ou_b_struct

Power-aware behavioural compiler (PABCOM) . 74

27 end if
28 elsif (VI < max_V&& V2 < max_V) do
29 if (VKV2) do
30 calculate 7Premmn w (A™™ op(F7))
31 ' critical_ path_csfeps = ASAP(TPpowerop, TPremain_op)
32 if Ls >= critical_ path_csteps do
33 (Ls, TPpower_op, TPremain_op, VI) to u_b_struct
34 else
35 calculate TPremain op(Dremainop(V2))
36 calculate TPpower op(Dpowerop(V2))
37 critical_pa{h_c$=ASAP(fPpoMrop, TPremainop)
38 if Ls >= critical_ path_csteps do
39 (Ls, TPpowerop, TPremainop, V2) to u_b_stmct
40 . end if
41 end if
42 else
43 calculate TPpower op (Dpower op(V2))
44 critical_ pa th_cs teps = ASAP(TPpowerop, TPremainop)
45 if Ls >= critical_ path_csteps do
4 6 •' • (Ls, TPpowerop, TPremainop, V2) to u_b_struct
Al else
48 calculate TPpowerop(Dpowerop(VI))
49 calculate TPremam op (Dremain op(VI))
50 critical_ path_cs=ASAP(r>power_op, TPremainop)
51 if Ls >= critical_ path_csteps do
52 (Ls, TPpowerop, TPremainop, VI) to uj) struct
53 end if
54 end if
55 end if
56 else
57 break
58 end if
59 end while
60 end if
61 end if
62}

Lines 3 to 5 of this function calculate the upper bound of the operations throughput

and critical path as in Listing 4.1, Chapter 4. After the validation of the critical path

(line 6), the schedule length Ls, operating voltage min_V and throughputs TPpower_op

and TPremain_op are saved into the structure u_b_struct (line 7). However, if the critical

path is larger than the schedule length, the upper bound of the operations throughput

will be determined by decreasing the throughput of the operations, and then

calculating their delay and operating voltage (lines 10 to 15). For example, consider a

schedule length Ls = 9 csteps for the DIFFEQ benchmark, where TPpower_op and

TPremain op represent the operations throughputs of the multiplications and additions

respectively. Then, at min_V = 1.08V, the operations throughput are TPpower_op = 3

and TPremainop = 2. With these throughputs, the critical path of DIFFEQ is executed

in 10 csteps, which violates the schedule length Ls. Then the throughputs need to be

Chapter 5 75

decreased as explained in the following. Firstly, TPpower_op is reduced to 2 csteps,

which results in a multiplication delay of 10.6ns using a voltage VI = 1.13V, as

shown in Figure 5.1a. Secondly, TPremain_op is decreased to 1 cstep, resulting in an

addition delay of 5.3ns using a voltage V2 = 1.1 IV (see Figure 5.1b). The algorithm

then evaluates the feasibility of VI and V2 by comparing them with the maximum

allowed voltage, max_V- 1.32V according to the library from Table 5.9. There are

three possible cases: VI is unfeasible and V2 feasible, VI is feasible and V2 is

unfeasible, and VI and V2 are feasible.

csteps

1 5.3ns

0 M at 1.08V
2

3

EU,af
V1 = 1.13V u

\J

D.a l 1.08V

reduced TP^ ^

D^at \ (\
V1 = 1.13V\ \ + / VI -~1.13V

a) multiplication

csteps

5.3ns

DM at 1.08V

•

V2^1.11V VI
DM at 1.08v\ Qm at

V2= 1.11V (0
V2^~ 1.11V

TP^^ reduced TP^^

b) addition

Figure 5.1 Operations throughput decrease

In case VI is unfeasible and V2 is feasible, TPp0Wer_bp is calculated at V2 (line 17) and

later used to calculate the critical path (line 18), which is validated (Iinel9) before

saving the parameters Ls, TPpower_op, TPremain_op, and V2, into the structure u_b_struct

(line 20). hi case VI is feasible and V2 is unfeasible, TP,remain_op is calculated at VI

(line 23) and later used to calculate the critical path (line 24), which is validated (line

25) before saving the parameters Ls, TPt TPpower_op> -1-* remmn_opv, and VI, into the structure

u_b_struct (line 26). In case both voltages VI and V2 are feasible, they need to be

compared to determine the lowest voltage (line 29). If VI is lower than V2,

TPremain_op is calculated at VI (line 30) and later used to calculate the critical path

(line 31), which is validated (line 32) before saving the parameters Ls, TPpower op,

TF\emain_op, and VI, into the'structure u_b_struct (line 33). In the case of a schedule

Power-aware behavioural compiler (PABCOM) 76

length violation, the algorithm attempts to use V2 to compute TPremain_op and

TPr op (line 35 and 36), which are used to compute the critical path (line 37).

This is then validated (line 39) before saving the parameters Ls, TPpowerj}p,

TPremain_op, and V2, into the structure u_b_struct (line 40). A similar process (line 43

to 54) to the one explained (line 30 to 40) is followed if VI is not lower than V2, but

now considering first V2. For example, consider again the voltages VI = 1.13V and

V2 = 1.1 IV previously obtained for DIFFEQ and the schedule length of 9 csteps.

Since V2 is lower than VI, the delay of the multiplication Dmui is calculated at V2 and

then used to compute the multiplication throughput TPpower_op (line 43). This results

for the present case in a multiplication delay Dmui of 11.36ns and a multiplication

throughput TPpower_op of 3 csteps (see Figure 5.1b). Using TPpower_op = 3 and the

reduced TPremain_op - 1 obtained previously (line 13), a critical path of 8 csteps is

obtained. This critical path is lower than the schedule length of 9 csteps, thus Ls = 9,

TPpOwer_op= 3,.TPremain_Op = 1 and V = 1.11, are saved into u_b struct. In case of

violation of the schedule length, the algorithm attempts to use VI to find the upper

bound of the operations throughput (lines 48 to 53).

As explained in Listing 5.1, once the structures l_b_struct and u_b_struct have been

found, the function add_to_list is called to determine which structures should be

pruned. The pseudocode of the function add_toj,ist is presented in Listing 5.3.

Listing 5.3 Pseudocode of the function add to list
1 addjojist (Ijbjstruct, u_b_struct)
2{
3 if {Ibstruct == u_b_struct) do
4 if (\check_redundancy(l_b struct)) do
5 add Ibstruct to list clockjthroughputs
6 prevlowjb = I Jostruct
7 end if
8 elsif (prevlowjb != Ibstruct \\prev_upp_b != u_b_struct) do
9 if (\check_redundancy(l_b struct)) do
10 add l_b_struct to list clockJhroughputs
11 .prevlowjb = Ibstruct
12 end if
13 if (\check_redundancy(u_bjstruct)) do
14 add u_b struct to list clockjthroughputs
15 Prev_uPP_J} = ujbstruct
16 end if
17 end if
.18} .

It can be seen that in case the structures l_b_struct and u_b_struct are the same (line

3), the redundancy of the contents of only l_b_struct is verified with the function

Chapter 5 77

check_redundancy (line 4). This function checks that the contents of the structure,

i.e. Ls, TPpower_op and TPremain_op, are not all multiples of any Ls, TPpower_op and

TPremain_oP included already in the list clockJhroughputs. For example, consider that

a structure containing Ls = 4, TPpower_Op= 1 and TPremainop= 1, is already included in

the list clockJhroughputs. Then, a structure with Ls = 8, TPpower_op = 2 and TPremainj}p

= 2 will not be included in the list clock Jhroughputs since these values of schedule

length and operations throughputs are all multiples of Ls = 4, TPpower_Op = 1 and

TPremam_op = 1- However, a structure with Ls = 8, TPpower_op = 2 and TPremain_op = 1,

may be added to the list (line 5). Then the previous lower bound prev_low_b is

updated with the throughputs contained in the structure l_b_struct (line 6).

Note that in case the throughputs of prevjowjb are different from the ones of

ljb_struct or the throughputs of prev_uppj> are different from the ones of

uj>_struct, the redundancy of the structures l_b_struct and uj>_struct is verified

(line 9 and 13). If there is no redundancy the structures l_b_struct and ujb_struct are

included in the list clockjhroughputs (line 10 and 14). Then, the throughputs of

prevjowjb and prev_uppjb are updated with the throughputs of lj>_struct or

ujbjstruct respectively (line 11 and 15). Note that the function add Jo list included

in Listing 5.3 allows decreasing the number of elements of the list

clock Jhroughputs, hence reducing the number of possible operating voltages when

searching for a low power solution. Consequently, the computational time of the

algorithm is also reduced.

An example of the resultant list clock Jhroughputs containing n clock periods is

shown in Figure 5.2. This list provides the schedule length Ls and operations

throughput TPpower op and TPremainop necessary to generate the schedules of a list of

solutions that will be used in the algorithm presented in Section 5.4. The list

clock Jhroughputs also provides the operating voltage V, which is used to estimate

the power dissipated by the datapath.

Tclki
Tclk2

Tclks

•

Tclkn

Lsj

LS2

Lss

Lsn

TP 7
•*1 power op 1
I* power op 2

I* power op 3

TP
J l power op n

-* •» remain op 1

11"remain op 2

1* remain op 3

•

TP
J 1 remain op n

Vi

v2
v3

Figure 5.2 List clockthroughputs

Power-aware behavioural compiler (PABCOM) 78

5.3 Power reduction in multiplexer-based interconnections

This section illustrates by means of examples the techniques used to reduce the

complexity of multiplexer-based interconnections in the datapath and thus achieve

power savings. These techniques were previously used in [57] during a simulated

annealing process to obtain an area optimised datapath, however their impact on the

power consumption was not considered. The four techniques used comprise:

1) Scheduling a selected operation into a new cstep

A selected operation is scheduled into a cstep randomly chosen from the interval

defined by the ASAP and ALAP values of the operation. For example, consider that

operation N10 in Figure 5.3a has been chosen to be scheduled into a new cstep

selected randomly between the ASAP value, i.e. 1, and the ALAP value, i.e. 5.

Figure 5.3b shows the resultant schedule assuming that operation N10 has been

moved from cstep 1 to the randomly selected cstep 5.

Assigning an operation to a new cstep may lead to a different module or register

binding. The module binding before and after moving operation N10 is shown in

Figure 5.4. It can be seen that module M5 in Figure 5.4a is unused in cstep 5 and

hence the module binding can be maintained as shown in Figure 5.4b. However, the

register binding after moving operation N10 can not be preserved, as shown in

Figure 5.5. Moving N10 from cstep 1 to cstep 5 reduces the lifetime of value N10

starting now in cstep 6 and extends the lifetime of value x until cstep 5. From Figure

5.5a it can be seen that register R2 is not available in cstep 5 and a new register

binding needs to be obtained using the left edge algorithm [38]. Note that this new

solution can be later optimised during the simulated annealing process. After register

binding, value x is moved to register Rl where the lifetime reduction of value N10

has resulted in a sufficiently large gap as shown in Figure 5.5b.

Chapter 5 79

I r~ T • " i i r
a) b)

Figure 5.3 Scheduling a selected operation into a new cstep

M10

M9

MS

M7

M6

MS

M4

M3

M2.

N2

N1

N10

1 2

N:

NE

3

N7

4

N4

5

N11

N5

N9

M10

• M 9

i Ma

M7

M6

M5.

. M4

. M3

M2.

6

N2

N1

1

N£

2

N8

3

N7

4

N10

N4

5

N11

N5

N9

6

a) before scheduling NIO into cstep 5 b) after scheduling NIO into cstep 5
Figure 5.4 Module binding

R20.

R18

R14

Rn
PI?

R8

PR

P"i

R"?

R1.

X

u

N2

N6

I y

N10

N3

N8

N7

_ N 4 _

R20

R18

R14

R13

. R12.
N11 RR

N9 Rfi

R5

R3.

N5 R?

R1

u

-

N2

N1

x

N6

y

, N3

N8

N7

N4

N10

N11

N9

N5

1 2 3 4 5 6 n 1 •"""• 2 3 4 '"" 5 ' 6

a) before scheduling NIO into cstep 5 b) after scheduling NIO into cstep 5
Figure 5.5 Register binding

Power-aware behavioural compiler (PABCOM) 80

From Figure 5.4 and Figure 5.5 it can be seen that the number of modules and

registers remain the same after scheduling N10 into a new cstep. However, the

complexity of the interconnection changes as illustrated in Table 5.1, which shows

the multiplexers connected to the inputs of modules and registers. Such inputs have

been named as inputa and input_b. For sake of explanation, each multiplexer has

been named according to the module or register is connected to. For example, the

multiplexer connected to input_a of module M5 is named as M5a, whereas the

multiplexer connected to register R2 is named as R2a.

Table 5.1 Multiplexers requirement,

Module or register
'viM5 ;>JF

M6

Scheduling N10 into cstep 1
input a

muS2-l (M5a)"-
mux2-l (M6a)

,*rrR2 „•£» mux3-l (R2a)"-
R8 mux2-l (R8a)

input b

-

-

Scheduling N10 into cstep 5
input a input b

mux2-l (\16a)
mux2-l (R2a)
mux2-l (R8a)

-
-
-

From Table 5.1, it can be seen that after scheduling N10 into cstep 5, the multiplexer

M5a is no longer required and the R2a has changed from a 3-input multiplexer to a

2-input multiplexer. These two changes in the interconnection do not only affect the

area requirements, but also the power consumption. This is shown in Table 5.2,

which presents the number of times each multiplexer is used and its power

consumption. Power reported in Table 5.2 was calculated using equation (5.5), the

library from Table 5.9, and considering a time constraint of 16ns and an operating

voltage of 1.32V. Note that the power reduction in R2a is due not only to the fact that

the multiplexer is used less number of times, but also because a lower power

multiplexer is being used, i.e. mux2-l instead of mux3-l.

Table 5.2 Multiplexers power

multiplexer
" > ; M 5 a ••"•:'

M6a
,-.^R2a M

R8a

Scheduling N10 into cstep 1
times used

2
is- '&%,..

2

Power (/xW)
"¥3.0

43.0
•",95.6 '-.

43.0

Scheduling N10 into cstep 5
times used

•y

Power (jiiW)

43.0
*.. 2*i.;. '.:.i^f3.0i^fe

2 43.0

Chapter 5 81

2) Binding a selected operation to a new functional module

A selected operation is executed by a new module that is chosen randomly from a set

of modules specified by the user. For example, consider that operation N10 in Figure

5.6a may be moved from module Ml to module M3 in Figure 5.6b. This new module

binding results in a less complex interconnection as shown in Table 5.3. It can be

seen that Mia has changed from a 5-input multiplexer to a 4-input multiplexer while

the rest of the multiplexers remain the same. This affects the power consumption of

the multiplexers. Consider for example Table 5.4, which reports the multiplexers

power for the bindings shown in Figure 5.6. Power reported in Table 5.4 was

calculated considering a time constraint of 21ns and an operating voltage of 1.32V.

Note that the power dissipated by the multiplexer Mia has been reduced from

215.2/xW to 97.1/AV. Again, this is due not only to the less number of times Mia is

used after the new binding, but also to the reduction of the number of inputs of Mia,

i.e. from 5 to 4 (see Table 5.3). Binding operation N10 to module M3 was possible

because the module was unused during all the csteps. However, in case the module is

not available an exchange of operations between the old module and new module is

attempted.

M11

M9

M8

M7

MR

M1 N10

1

N2

N1

N11

N8

N6

N3

N7

: N9 I N4 : N5

2 3 . 4 5

a) before binding N10 i
6 ' 7

ntoM3

M11

M9

M8

. M7

M6

M3

M1

N10

1

N2

N1

N11

Na

N6

N3

2 3 4

b) after binding]

N7

N9 N4 N5

5 6

M10 into MI
7

•

Figure 5.6 Module binding

Table 5.3 Multiplexers requirement

Module or register

M8
Rl
R2
R6

Binding N10 to module Ml
input a

mux5-M(Mla)
mux2-l (M8a)
mux2-l (Rla)
mux2-l (R2a)
mux2-l (R6a)

input b
mux3-l»(Mlb)

-
-
-

Binding N10 to module M3
input a

mux4-lf(Mla)'
mux2-l (M8a)
mux2-l (Rla)
mux2-l (R2a)
mux2-l (R6a)

input b
mux3-l (Mlb)

-
-
-
-

Power-aware behavioural compiler (PABCOM) 82

Table 5.4 Multiplexers power

multiplexer
lUMlaii,,,

Mlb
M8a
Rla
R2a
R6a

Binding N10 to module Ml
times used

ii, -4fe 5*. ,-%.
3
2
2
2
2

Power (/xW)
W i215.-2 ^

72.8
32.7
32.7
32.7
32.7

Binding N10 to module M3
times used

:**-,#« 41^ ,;,.>„
3
2
2
2
2

Power (/iW)

72.8
32.7
32.7
32.7
32.7

3) Binding a selected operation result into a new register

A selected operation value is saved in a new register that is chosen randomly, from a

set of registers given by the user. For example, consider that operation value N7 in

Figure 5.7a may be moved from register R2 to register R5 in Figure 5.7b. This new

register binding results in a less complex interconnection as shown in Table 5.5. It

can be seen that R2a has changed from a 5-input multiplexer to a 4-input multiplexer

while the rest of the multiplexers remain the same. This affects the power

consumption of the multiplexers as shown in Table 5.6, where the reported power

dissipation was calculated considering a time constraint of 16ns and an operating

voltage of 1.32V. Note that the power dissipated by the multiplexer R2a has been

reduced from 282.4/xW to 127.5JUW. This is due not only to the less number of times

R2a is used after the new binding, but also to the reduction of the number of inputs

of R2a, i.e. from 5 to 4 (see Table 5.5). Binding operation value N7 to register R5

was possible because the register was unused during all the csteps. However, in case

the register is not available an exchange of operations values between the old register

and new register is attempted.

R16

R13

R12

R10

R9.

R4.

R3

R?

R1.

X

1

y

N10

N8

N2

N1

U

N6

2 3 4

a) before binding >

N9

N3

N11

N7

N4

5 • 6

17 to R5

Figure

R16
R1"»

' R10
RQ

R5

R-3

N5 R2

R1

5.7 Registe

X

r bine

y

N10

N8

N2

N1

11

N6

N9

N3

2 3 4 5
b) after binding N7 to Rf

ling

N11

N7

N4

6

N5

Chapter 5 83

Module or register
M2
M9
Rl

* ,< &.R2.-

Table 5.5 Multiplexers requirement
Binding N7 to register R2

input a
mux2-l (M2a)
mux2-l (M9a)
.mux2-l (Rla)

input b
mux2-l (M2b)
mux2-l (M9b)

-
ITIUX5-1 (R2a), . -

Binding N7 to register R5
input a

mux2-l (M2a)
mux2-l (M9a)
mux2-l (Rla)

input b
mux2-l (M2b)
mux2-l (M9b)

-
mux4-l (R2a), 1 ' - • *

multiplexer
M2a
M2b
M9a
M9b
Rla

* *• R2a

Table 5.6 Multiplexers
Binding N7 to register R2
times used

2
2
2
2
2

Power OW)
43.0
43.0
43.0
43.0
43.0

' 282 4

power
Binding N7 to register R5
times used

2
2
2
2
2

Power OW)
43.0
43.0
43.0
43.0
43.0

4 127.5" •

4) Swapping the inputs of a selected operation

The inputs of a randomly selected operation are swapped if the operation is

commutative. This is better illustrated with the help of Table 5.7, which contains the

commutative operations Nl, N2 and N3, with their respective inputs and the registers

where these inputs are saved. Consider that the commutative operations are executed

by module Ml in the datapath shown in Figure 5.8a. It can be seen that two

multiplexers are required to share Ml, i.e. a 3-input multiplexer Mia and a 2-input

multiplexer Mlb. Figure 5.8b shows the generated datapath after swapping the inputs

of operation N3. It can be seen that Mia has become a 2-input multiplexer and Mlb

is no longer required. Hence, the complexity of the interconnection has been reduced

by swapping the inputs of N3, affecting the power consumption as illustrated in

Table 5.8. Power reported in Table 5.8 was calculated considering a time constraint

of 16ns and an operating voltage of 1.32V. It can be inferred from the table that the

power consumption due to multiplexers has been reduced from 138.6(^W to 43.0uW

after swapping the inputs of operation N3.

Table 5.7 Commutative operations and their inputs
operation

Nl
N2

i KN3 .

input a (register)
x(Rl)

Nl (R3)
v\R2) -: *.

Input b (register)
*(R2)
v (R2)

-. = N2(R3) . *.

Power-aware behavioural compiler (PABCOM) 84

a) before swapping inputs of N3 b) after swapping inputs of N3
Figure 5.8 Datapath

Table 5.8 Multiplexers power

multiplexer
Mia
Mlb

Before swapping N3 inputs
times used

3
-2

Power (/AV)
95.6
43.0

After swapping N3 inputs
times used

2
-

Power OW)
43.0

-

5.4 Power-aware datapath optimisation

The power reduction techniques presented in Section 5.2 and Section 5.3 have been

integrated into a power-aware behavioural compiler (PABCOM) as shown in Figure

5.9. For a given time constraint, PABCOM considers concurrently the interrelation

between scheduling, binding, clock and operations throughput selection while

searching for solutions that meet the optimisation objective: power, area or a

combination thereof. The input to PABCOM is a standard text file that contains a

DFG, a set of modules and registers, annealing parameters (6, xo, €s) and user defined

parameters (time constraint T, maximum frequency maxj and power optimisation

weight a). The output consists of a standard text-file that contains details about the

datapath structure and timing information required for the synthesis of the control

path. This output file is then used to write RTL Verilog for the datapath and

synthesisable VHDL for the controller. Examples of the input/output file to/from

PABCOM are given in Appendix 3.

From Figure 5.9 it can be seen that the input file provides the information necessary

i.e. DFG, time constraint and maximum frequency, to apply the improved algorithm

for clock and operations throughput selection developed in Section 5.2. This

Chapter 5 85

algorithm generates the list clock throughputs that contains combinations of possible

clock periods and operations throughputs, as shown previously in Figure 5.2. For

each of these combinations the scheduling task is performed using a modified

version of [58] (as in Chapter 4, Section 4.4). After scheduling, module and register

binding are generated using the left-edge algorithm [38] to produce a complete

solution. Then, all the complete solutions derived from list clock^throughputs are

grouped in the list implementations. The list implementations is then used by a

power-aware datapath optimisation based on simulated annealing.

INPUT FILE
DFG. set of modules and registers

user constraints: /' ma\ I <•
annealing parameters, o y,-, ;..

PABCOM
Improved algorithm for clock and operations

throughput selection (Section 5.2)

List ii ihi

Scheduling (modified scheduler Chapter 4)
Binding (left edge algorithm. Chapter 2)

List implcmenljii"n\

Power aware datapath optimisation

Power reduction in multiplexers-
based interconnection (Section 5 3)

OUTPUT FILE
Information to build the datapath and design controller

Figure 5.9 Overview of PABCOM

Power-aware behavioural compiler (PABCOM) 86

In the power-aware datapath optimisation, the first solution from list implementations

is taken and new designs are examined in two nested loops as shown in Listing 5.4.

The inner loop generates a number of solutions at a constant control parameter value

by applying five different moves in turns. Moves 1 to 4 correspond to the power

reduction techniques presented in Section 5.3. Move 5 consists on taking a new

solution from the list implementations. This new solution includes a new clock

period, operations throughput and operating voltage, resulting in different power and

area requirements. After applying a move, the generated solution can be either

accepted or rejected depending on the acceptance criterion defined in the simulated

annealing algorithm (see Chapter 2, Section 2.4.1). The probability of accepting

solutions with increasing cost depends on a control parameter, which is gradually

lowered with the outer loop. The annealing process stops when the variation of the

solution quality falls below a certain value [64].

Listing 5.4 Power-aware datapath synthesis algorithm
1 while system is not frozen do
2 while valid solutions < solutions to generate at this control parameter do
3 generate a new solution applying one of the following moves:
4 1) schedule a randomly selected operation into a new cstep
5 2) bind a randomly selected operation to a new functional module
6. 3) bind a randomly selected operation value to a new register
7 4) swap the module inputs of a randomly selected operation
8 5) clock and operations throughput selection
9 evaluate the cost of the new solution
10 accept or reject the new solution
11 end while
12 decrease control parameter
13 end while

5.4.1 Cost function

PABCOM considers the minimisation of not only the resource usage but also the

power consumption in a given time constraint. Since two parameters, power and

area, need to be optimised, the following compound cost function is used:

(5.1)

where a is the power weight defined by the user, (1-a) is the area weight, Pi and Qt

are respectively the power and area cost of a new solution, Po and Qo are respectively

the maximum estimated power and maximum estimated area of the design.

Chapter 5 87

The power cost P, is the same that the estimated power consumption in the datapath

of the design. To allow a quick and simple comparison among different design

alternatives, the power of the datapath can be expressed as:

"DP ~ "FU
 +

 "REG
 +

 "MUX (5-2)

where Pop is the power consumption of the datapath, PFU is the power dissipated by

the functional units, PREG is the power dissipated by the registers and PMUX is the

power consumption due to the multiplexers. Note that equation (5.2) does not

consider the power consumed by wires used to transfer data between datapath

components. Power dissipation in wires mainly depends on the switching activity

and capacitance of the wire [150]. The switching activity in turn depends on the

behavioural synthesis tasks scheduling and binding, whereas the wire capacitance is

directly dependent on the wire length, which is determined by floorplanning. The

integration of a floorplanner and PABCOM would allow considering the power

dissipated by wires, which may be a significant part of the total circuit power [67].

At the moment power minimisation in the wires is out of the scope of this thesis.

The power values Ppu, PREG and PMUX from equation (5.2) are calculated assuming

that the inputs of the datapath components are static when they are being used and

clocks are switched off when they are idle. Hence, the power consumption of the

FUs is given as [122]:

U _ All FUs (5.3)
FU ~FU

where NF is the number of times each type of FU is used, DF is the delay of the FU,

PF is its average power and T is the time constraint. The power consumption of the

registers and multiplexers is calculated respectively in the same way that in equation

(5.3):

p _ All registers (5.4)
"REG ~ rp

Yy All multiplexers (5-5)
"MUX

 = ™

where NR is the number of times each register is used, PR is the power of a register,

DR is the delay of a register, Nx is the number of times each multiplexer is used, Px

is the power of a multiplexer and Dx is the delay of a multiplexer.

Power-aware behavioural compiler (PABCOM) 88

The area cost Qt corresponds to the estimated area of the datapath in the design. To

allow a quick and simple comparison among different design alternatives, the area of

the datapath can be expressed as:

QDP = yEFaF+ RaR + Xax (5.6)
All FUs used

where QDP is the area of the datapath, F is the number of FUs used of each type, a/is

the area of each type of FU, R is the number of registers used, CIR is the area of a

register, X is the number of multiplexers and axis the area of a multiplexer.

5.4.2 Cooling schedule

The parameters that determine the cooling schedule of the simulated annealing

process used in PABCOM are calculated as follows:

a) Initial control parameter value and decrement rule [2]

The initial control parameter value Co is determined in such a way that nearly all new

generated solutions (for example 95% [1]) are accepted at the beginning of the

annealing process. The first step to calculate the initial control parameter is setting Co

= 0 and then generate a sequence of mo solutions. After each generated solution, a

new Co is calculated using:

c = A/+ In ^ (5.7)

where xo is the initial acceptance ratio, m.2 and mj is the number of cost increasing

and cost decreasing solutions, and A/+ is the average difference in cost over m .̂ The

final value that equation (5.7) converges to is the initial control parameter Co.

To achieve small decrements in the control parameter c, the stationary distributions

at the end of the Markov chains need to be close to each other [64]. Consequently,

information about the cost distribution within a Markov chain is included in the

following decrement rule:

I ()

I 3<r(c))

where <r(c)is the standard deviation of the cost function values at the control

parameter value c and 6 is the distance parameter that determines the speed at which

Chapter 5 89

the control parameter is lowered. Small values of 8 result in small decrements in c,

whereas large values of 5 result in large decrements in c.

b) Algorithm stop criterion

The annealing process is terminated after the standard deviation a(m) falls below

the given value for the stop parameter €s:

trim) < €s (5.9)

where m is a number of Markov chains, ft is the average cost value of the z-th

Markov chain and / is the average value of all ft over the m Markov chains.

c) Length of the Markov chains

The Markov chain length needs to be chosen such that the algorithm has a

sufficiently large probability of exploring at least a major part of the solution

neighbourhood [1]. A straightforward choice is given with the following equation:

L = 2-N-(M + R + l) (5.11)

where N is the number of operations in the behavioural description, M is the number

of available functional modules and R the number of registers. Hence, the Markov

chain length is constant for a given synthesis problem.

5.4.3 Choice of annealing parameters

Although the performance of the used simulated annealing algorithm is determined

with the parameters 8, xo and es, not all of them have the same impact on the quality

of the solution. The quality of the solution is highly dependent on the distance

parameter 8 and almost independent from the initial acceptance ratio xo and the stop

parameter es when both are chosen with acceptable degree of accuracy [1]. Therefore,

to achieve low cost solutions the distance parameter 5 needs to be carefully selected.

To obtain a simple relation between 8 and the solution quality, the proportional

differences to the optimum solutions have been averaged. Figure 5.10 shows this

dependence for the benchmarks: autoregressive filter (AR), elliptical wave filter

(EWF) and discrete cosine transform (DCT). It can be seen that the expected design

quality (average difference from the best solution) decreases continuously for EWF

Power-aware behavioural compiler (PABCOM) 90

and DCT with values 6 <0.7, and for AR with values 5 <0.5. This shows that the

appropriate selection of the value 8 depends on the design problem. To ensure the

highest possible solution quality, it is advisable to synthesise the design with a set of

different values. During the synthesis of the motion vector reconstructor in Chapter 6

it has been found empirically that 0.1 <6 <0.2 represents a good initial choice.

While the initial acceptance ratio xo is set to 0.95 [1], the stop parameter es requires

further analysis. Figure 5.11 shows the percentage of cost increase as a function of

the stop parameter ts for AR, EWF and DCT. It can be seen that using small values

of the stop parameter, i.e. €s <0.0001, lead to solutions with insignificant or null cost

increase, whereas using values of es > 0.0001 result in solutions with a large cost

increase. During the synthesis of the motion vector reconstructor in Chapter 6 it has

been found empirically that €s <0.0001 represents a good initial choice.

. AR _ •— DCT —*— EWF

Figure 5.10 Dependence of design cost on the parameter 5

Chapter 5 91

1.E-07 1.E-01 1.E+00

-AR. • EWF -DCT

Figure 5.11 Cost increase in function of the parameter es

5.4.4 Performance of the simulated annealing algorithm

This section investigates the performance of the algorithm by examining

characteristic metrics such as the control parameter c and cost function during the

simulated annealing process. Figure 5.12 shows the variation of the control

parameter value when using the cooling schedule described in Section 5.4.2 during

the synthesis of the autoregressive filter (AR) with a = 0.9 and 5 = 0.2. Initially, at

large values of the control parameter c, high increases in cost will be accepted. As c

decreases, only small increases in cost will be accepted and finally, as c approaches

to 0, only improvements in cost will be accepted. Consequently, the average values

of the cost function calculated using equation (5.1) and the standard deviation stdev

from this value are relatively high at large values of c, as shown in Figure 5.13. Note

that both values decrease until the cost function becomes steady and the standard

deviation approximates to zero. The variation of the standard deviation provides

information about the annealing process and is used to calculate the next control

parameter value using equation (5.8).

Power-aware behavioural compiler (PABCOM) 92

2

51 101 151

control parameter index

201 251

Figure 5.12 Variation of the control parameter during an annealing cycle

0.1

1
I
•D
(0

•o

H»j<f*^^

- 0.5

0.45
51 101 151

control parameter index

201 251

-standard deviation -cost function

Figure 5.13 Variation of the standard deviation and cost function during an annealing cycle

To give a better insight into the behaviour of the cost function in Figure 5.13,

consider Figure 5.14 and Figure 5.15, which show respectively the power and area

cost of the datapath compo'nents during subsequent control parameter values. From

Chapter 5 93

Figure 5.14 it can be seen that the modules power cost is rapidly reduced and

becomes steady below 2.2mW. Similar behaviour can be seen for the registers power

cost, which becomes constant around a value of 220jiiW. The module and register

power cost become rapidly steady because the algorithm found a low voltage that

may satisfy the optimisation goal. Unlike the modules and registers, the power cost

of the multiplexers increases during the first half and decreases later until becoming

steady towards the end of the annealing cycle. This is because although a low voltage

has been found, the number and type of multiplexers change due to module and

register sharing, hence changing the power consumption.

From Figure 5.15 it can be seen that during the first 100 control parameter values the

modules area is gradually reduced while the multiplexers area is being increased.

This may be due to higher multiplexers requirement to increase the module sharing

and decrease the modules area. Then the registers and multiplexers area start

decreasing slightly while the modules area remains constant until the 125th control

parameter, where a significant reduction, i.e. 1 multiplier less, can be noticed. After

this, the modules area continues decreasing due to the reduction of adders until it

becomes constant after the 230th control parameter value. Meanwhile, the registers

and multiplexers area experience a gradually decrease as of the 125* control

parameter value, becoming steady at the end of the annealing cycle.

2.1

260

-• 240

-- 220

200

-- 180

- 160

140

o
a
2

B
"a.
"5
E
1
n
i2

-- 120 .2

-- 100

51 101 151

control parameter index

201 251

modules ——registers ——multiplexers

Figure 5.14 Variation of the power cost of the datapath components during an annealing cycle

Power-aware behavioural compiler (PABCOM) 94

17000

80000

70000

60000

50000

40000
101 151

control parameter index

201

modules —registers -multiplexers

251

Figure 5.15 Variation of the area cost of the datapath components during an annealing cycle

5.5 Experimental results

To verify the efficiency of the power-aware datapath synthesis algorithm, three

benchmarks have been used: autoregressive filter (AR), elliptical wave filter (EWF)

and discrete cosine transform (DCT). Experiments with these benchmarks have been

conducted on a Pentium 4, 2.2GHz, 1 GB RAM under different time constraints

corresponding to 1.5, 2, 2.5, 3 and 3.5 times the critical path (cp). The annealing

parameters xo, 5 and es, have been set respectively to 0.95, 0.2 and 0.0001 according

to Section 5.4.3. The maximum allowed frequency max^f has been set arbitrarily to

500MHz and the library components have been characterized for power P, area A

and delay D as shown in Table 5.9. More details about the library characterisation

can be found in Appendix 2. In addition to the data presented in Table 5.9, the library

also contains information about the power variation when changing the throughput of

the multiplier and adder as shown in Table 5.10 and Table 5.11 respectively. In the

header of these tables, Pj represents the power of the component with throughput of

1 cstep, Ps represents the power of the component with throughput of 3 csteps and P5

represents the power of the component with throughput of 5 csteps. The 16-bit

library used during these experiments consists of: Wallace multiplier, CLA adder,

register and diverse multiplexers. The area count and delay of the library components

Chapter 5 95

were obtained after logic synthesis using Synplify ASIC from Synplicity and ST

0.12um technology. Power values at 90MHz were obtained using PrimePower from

Synopsys and experimentally averaged over a number of pseudo-random input

vectors obtained with a Linear Shift Feedback Register (LSFR).

Table 5. 9 0.12u.m library components
MULTIPLIER, A = 10661 \\mz

F(V)
1.08
1.2

1.32

F(V)
1.08
1.2
1.32

V(V)
1.08
1.2

1.32

V(V)
1.08
1.2
1.32

V(V)
1.08
1.2
1.32

F(V)
1.08
1.2

1.32

V(V)
1.08

Pdvn([iW)
1237
1870

, 2556

ADDER, A = 1107 [im2

Pdvn(\iW)
40
49
66

D(ns)
11.05
7.14
4.65

D(ns)
4.29
2.86
1.98

REGISTER, A = 549^m2

Pdyn(nW)
. 47

55
77

MUX2, A = 25S[imz

Pdvn(HW)
19
23
31

MUX3, A = 549^m2

Pdvn(\iW)
28 v
34
46

MUX4, A = 549^m2

Pdvn(liW)
28
34
46

MMT5, A = S07\imz -
Pdvn(liW)

50

D(ns)
0.55
0.34
0.23

D(ns)
0.14
0.09
0.06

£>(ns)
0.37
0.23
0.15

Z>(ns)
0.37
0.23
0.15

£>(ns)
0.55

Power-aware behavioural compiler (PABCOM) 96

1.2
1.32

V(V)
1.08
1.2

1.32

V(V)
1.08
1.2.

1.32

F(V)
1.08
1.2

1.32

60 _j
82

MUX6,A = 1065 urn2

Pdvn(liW)
72
86
117

MUX7,A= 1356(im2

Pdvn(\iW)
81
98
133

MUX8,A= 1356um2

Pdvn(liW)
81
98
133

0.35
0.23

D(ns)
0.55
0.35
0.23

D(ns)
0.55
0.35
0.23

£>(ns)
0.55
0.35
0.23

Table 5.10 Power consumption of the multiplier with different supply voltages and throughputs

1.08V
1.2V

1.32V

1237
1870
2556

1239
1874
2560

PsiliW)
1242
1876
2564

Table 5.11 Power consumption of the adder with different supply voltages and throughputs

1.08 V
1.2V
1.32V

Pi(\iW)
40
49
66

43
52
70

45
55
75

5.5.1 Power-area tradeoffs

The aim of this experiment is to demonstrate that given a time constraint, PABCOM

is capable of obtaining good quality solutions in terms of power and area according

to the power optimisation weight a specified by the designer.

EWF

The solutions obtained for EWF with different time constraints and optimisation

goals are shown in Figure 5.16.

Chapter 5 97

4.5

3.5

r 2.5

I
& 2

1.5

0.5

area optimised

•

•

AA

O

•
•<
•

o
B

•

• •

O

$

_, optimised

Oo

tradeoffs

•

power optimised

^ *

O

•

A
o
•

10000 20000 30000 40000 50000 60000 70000 80000

area (//m)

90000

<>1.5cp !l2cp o3cp

Figure 5.16 Solutions for EWF using different optimisation goals

It can be seen that for each time constraint, PABCOM is capable of obtaining

solutions with different area and power requirements. This range of solutions is

possible due to the compound cost function of PABCOM (see Section 5.4.1), which

carefully explores the solution space through the specification of the power weight a

For example, Table 5.12 shows the solutions obtained for a time constraint of two

times the critical path (2cp) when varying a from 0 to 1 in steps of 0.1. It can be seen

that setting a = 0 results in an area optimised solution whereas setting o; = 1 results in

a power optimised solution. The area optimised and power optimised solutions are

shown in Figure 5.16 to better illustrate the different power and area requirements.

The area optimised and power optimised solutions have been shaded in Table 5.12.

Note that these solutions use different schedule length Ls, multiplication throughput

TPm and addition throughput TPa, resulting in different operating voltages. For

example, the clock period and operations throughput selected for a = 0 allow scaling

the voltage to 1.29V, leading to a power consumption of 3.8mW, while for a = 1 the

operating voltage is 1.13V with a power consumption of 1.9mW. It can also be noted

that different values of clock and operations throughput lead to different area

implementations. For example, for a = 0, Ls = 31, TPm = 2 and TPa = 1, the datapath

requires 1 multiplier (*), 2 adders (+), 13 registers (r) and 4 multiplexers (x), leading

Power-aware behavioural compiler (PABCOM) 98

to an area of 21042 um. For a= 1, Ls = 17, TPm = 2 and 7Pfl = 1, the datapath needs

6*, 5+, 19r and llx, leading to the highest area implementation, 83639um . This is

because the optimisation goal targets only power since the area weight (1 - a)

becomes zero, hence relaxing the area parameter. However, PABCOM is capable of

obtaining optimised power-area tradeoffs with lower area than a power optimised

solution and lower power than an area optimised solution, i.e. solutions with o; = 0.3

and a= 0.5 in Table 5.12.

a

0 .
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
.1- •

Tclk
(ns)

24i
6.5
6.5
4.8
6.5
4.6
2.6
5.4
2.6
5.4
5.4

Ls
(cs)

p l
14
14
19
14
20
35
17
35
17

• 1 7

TPm

(CS)

1
1
2
1

., 2
4
2
4
2

. 2

Table
TPa

(CS)

i->r

l
l
l
l
l
2
1
2
1-
1

5.12 Solutions for EWF with

*

1 >
2
2
2
2
2 N

3
3
3
3
6

+

ff'2T

3 -
3
2
3

* 3-."
3
3
4
4

,5

r

13
13
12
13
13
12
13
13
14
14
19

X

A
11
13
8
10
12
11
11
12
13
11

2cp
V

(V)
• Tb&9

1.26
1.26
1.16
1.26
1.17
1.14
1.13
1.14
1.13

:;1.13

A
(urn2)

•2|p42 :

36651
36038
33607
36102
36070
47021
46731
48355
48613
83639

P
(mW)

•^: 3 . 8 " - :

2.9
2.9
2.5
2.9
2.2 *
2.0
2.0
2.0
1.9

-1.9,
cs: abbreviation of csteps

Optimised power-area tradeoffs for other time constraints are shown in Figure 5.17,

where power and area ratios are normalised with respect to power and area values of

a = 1. It should be noted that a power or area ratio greater than 1 means an increase

whereas a ratio lower than 1 means a decrease with respect t o a = 1. From Figure

5.17 it can be seen that using a= 0.9 for time constraints ranging from 1.5 to 3 times

the critical path (1.5cp to 3cp) reduces the area of the datapath in 40% and increases

its power consumption in 2% approximately. For a time constraint 3.5cp and ct= 0.9,

the area reduction is of 55% with a power increase of 2%. It can also be seen that

further area reductions are possible but at the expense of a larger power increase. For

example, for 2.5cp with a = 0.5, an area reduction of 60% is possible with a power

overhead of 20%. For the same time constraint with a = 0.2, power is increased in

80% with an area reduction of 75%.

Chapter 5 99

o
i

II
a

r

II

1.5cp

*
II

—
n
3

•r,

d
II
a

2cp

d
II
a

d
II
a

OS

d

a

2.5cp

time constraint

a

3cp

O\
d O

II

a

©
ii
a

3.5cp

d area m power

Figure 5.17 Power area tradeoffs for EWF

DCT

Figure 5.18 illustrate the range of solutions obtained for DCT under different time

constraints. It can be seen that as previously shown for EWF, solutions with different

area and power requirements can be obtained for the same time constraint. For

example, for a time constraint 2.5cp, an area optimised solution has 53787/xm2 with a

power consumption of 1 lmW, whereas a power optimised solution dissipates 5.8mW

with an area of 182500/xm2. The optimised power-area tradeoffs present lower area

than the optimised power solution and lower power than the area optimised solution,

i.e. an area of 86028/xm2 with a power consumption of 6.9mW. The different area

and power requirements of the solutions are due to the use of different power weight

<X which leads to a different scheduling and binding. For example, Figure 5.19 and

Figure 5.20 show respectively the schedules obtained for a = 0.1 and a = 0.4 with a

time constraint of 2.5cp. It can be seen that in both schedules the operations are

single cycled, i.e. TPm = 1 and TPa = 1. Note that Figure 5.19 has a schedule length

Ls of 8 csteps whereas Figure 5.20 has a schedule length of 6 csteps. The

combination of these schedule lengths and operations throughput allowed scaling the

voltage to 1.29V in the case of a = 0.1 and to 1.21V in the case of a = 0.4.

Power-aware behavioural compiler (PABCOM) 100

Consequently, a datapath power consumption of 10.8W and 8.7mW is obtained for a

= 0.1 and a = 0.4 respectively, as shown later in Table 5.13.

25

20

15

I 10

area optimised

optimised tradeoffs

\ 1B~

power optimised

30000 50000 70000 90000 110000 130000 150000 170000 190000 210000 230000

area (//m2)

Oi-5cp H2cp A2.5cp o3cp

Figure 5.18 Solutions for DCT using different optimisation goals

Chapter 5 101

a

a
I
JS

H
U
Q

Power-aware behavioural compiler (PABCOM) 102

a

—

1
JS
%
H
U
Q
os

6*

Chapter 5 103

The module bindings for the scheduled operations of Figure 5.19 and Figure 5.20 are

given respectively in Figure 5.21 and Figure 5.22. Note that the binding for a = 0.1

requires 8 modules whereas the binding for a = 0.4 requires 12 modules. In Figure

5.21, the additions are bound to adders Ml, M2, M3, M7 and M10, and the

multiplications to multipliers Mi l , Ml3 and Ml5. In Figure 5.22, the additions are

bound to adders Ml, M2, M4, M5, M7, M8, M9 and M10, and the multiplications to

multipliers Ml 1, Ml2, Ml3 and Ml5.

M15

M13

M12

M11

M10

M9

M8

M7

M5

M4

M2

M1

M15

M13

M11

M10

M7

M3

M2

M1

N22

N23

N20

N21

1

N44

N48

N42

N18

N29

N28

N16

N17

2

N46

N50

N24

N19

N31

3

N62

N52

NSS

N66

N27

N64

4

N60

N54

N56

N25

N68

N26

N70

N71

5

csteps

N38

N36

N40

N73

N67

N30

N69

6

N32

N34

N79

N75

N65

N76

7

N74

N77

N78

_ N 7 2 _

8

Figure 5.21 DCT module binding for a = 0.1

: N60

! N54

• N56

i N50

: N46 • N32

N58 : N52 . : N34

: N48 . • N62 : N38

! MS i

! N26 I N?7 .

• N75

: N79

: N70 ! N78

3 4 5
csteps

Figure 5.22 DCT module binding for a = 0.4

Power-aware behavioural compiler (PABCOM) 104

The register bindings for the operations values of Figure 5.19 and Figure 5.20 are

given respectively in Figure 5.23 and Figure 5.24. Note that the binding for a= 0.1

(Figure 5.23) requires 15 registers whereas the binding for a = 0.4 (Figure 5.24)

requires 17 registers. Having finished the register and module binding, the complete

datapath structures for a = 0.1 and a. = 0.4 are shown in Figure 5.25 and Figure 5.26

respectively. In Figure 5.25, it can be seen that the datapath consist of 5 adders, 3

multipliers, 15 registers and 18 multiplexers. The datapath shown in Figure 5.26

consist of 8 adders, 4 multipliers, 17 registers and 22 multiplexers. Note that both

datapaths use two groups of multiplexers. One group is connected to the inputs of the

functional modules while other group is connected to the inputs of the registers.

These multiplexers allow respectively the sharing of modules and registers.

R29

R23

R21

R20

R19

R18

R17
(A

» R13

R12

R10

R8

R7

R6

R5

R2

D3

D5

D4

D1

D2

D6

1

DO

N21

N20

D7

2

N42

N23

N48

N22

N29

N28

3

N19

N31

N17

N18

N44

N16

N50

N46

N27

N24

N58

N62

4 5
csteps

N26

N64

N71

N25

N60

N70

N54

N68

N52

N66

N56

6

N30

N69

N67

N36

N40

N38

7

N76

N75

N65

N32

N34

N73

N79

8

N77

N72

N78

N74

Figure 5.23 DCT register binding for a = 0.1

Chapter 5 105

R30

R28

R26

R24

R23

R22

R20

R15

R11
«
5
n R10a>

R9

R6

R5

R4

R3

R2

R1

DO

D4

D7

D3

D6

D1

D2

D5

1

N21

N22

2

: ': N42

N20

N29

N28

N23

N56

N17

N16

N18

N19

3

N25

N58

N31

t

N24

N46

N54

N50

N48

N26

N60

4
csteps

N44

N27

N30

N69

N66

N32

N64

N62

N52

5.

N65

N36

N38

N68

N34

N67

N71

N70

N40 .

6

N72

N73

N75

N74

N78

N76

N77

N79

Figure 5.24 DCT register binding for a = 0.4

The schedules (Figure 5.19 and 5.20), bindings (Figures 5.21, 5.22, 5.23 and 5.24)

and datapath structures (Figures 5.25 and 5.26) shown for DCT with a= 0.1 and a =

0.4 were derived from the output file obtained by PABCOM. The output files

generated by PABCOM for a = 0.1 and a = 0.4 are presented in Appendix 3.

R2 I I R5 I R6 R7 I I R8 I I R10 R12 R13 I R17 I R18 R19 R20 R21 I R23 R29

I
CD

o
oI
CD"

DO
O

I

Figure 5.25 DCT datapath for a = 0.1

o

multiplier

R28 R30 '

multiplier multiplier multiplier

Figure 5.26 DCT datapath for a = 0.4

2

Power-aware behavioural compiler (PABCOM) 108

The main parameters of the solutions for a = 0.1 and a = 0.4 are summarised in

Table 5.13. Note that for a = 0.1 the datapath (Figure 5.25) has an area of 52722um2

with a power dissipation of 10.8mW, whereas for a = 0.4 the datapath (Figure 5.26)

presents an area of 67964|am2 with a power consumption of 8.7mW. From Table

5.13, it can also be seen that a = 1 provides the solution with minimum power, i.e.

5.8mW, and highest area implementation, i.e. 182500um2. However, as in the EWF

case, PABCOM obtains optimised power-area tradeoffs with smaller area and

slightly higher power values when compared to a power optimised solution. This is

illustrated in Figure 5.27, where it can be seen that using a.= 0.9 for time constraints

ranging from 2.5cp to 3.5cp reduces the area of the datapath in 52% average and

increases its power consumption in 1% approximately. For time constraints 1.5cp

and 2cp with a = 0.6 and a = 0.8 respectively, an area reduction of 3% is obtained

with a power increase of 1%. It can also be seen that further area reductions are

possible but at the expense of a larger power increase. For example, for 1.5cp with a

= 0.5, an area reduction of 24% is possible with a power overhead of 12%. For the

same time constraint with a = 0.1, the power is increased in 35% with an area

reduction of 35%.

a.

0
wn*V*0.1i.

0.2
0.3

|0:4f.
0.5
0.6
0.7
0.8
0.9
1

Tclk
(ns)
5.9

»P-" *
5.9
7.8

¥2 .8 H

7.8
5.2
6.7
6.7
6.7
6.7

Ls
(cs)

8
v •$<&>

8
6

?r6j'
6
9
7
7
7
7

TPm

(cs)
1

-, *•«• •
1
1

• * i f < * -

1
2
2
2
2
2

rable 5
Tpa

(CS)

1

; ;u
i
i

i
i
i
i
i
i

13 Solution

*

3
% V 3 *
3
4

%f
4
6
8
8
8
14

+

5
*» ^ &

5
8

i 8?
8
5
8
8
10
10

s for DCT with 2.5cp

r

15
;i5.
17
16

in:
17
18
18
20
21
29

X

21

22
20

,*22*
20
19
20
21
24
22

V
(V)
1.29

. ;i.29. i
1.29
1.21

1.21
1.13
1.08
1.08
1.08
1.08

A

53787
,«52722-*

53981
68642

67738
86028
110349
111705
114662
182500

P
(raW)
11.0

10.8
8.8

•"^jj vi - ''
-«>P •:'•:- v

8.7
6.9
5.8
5.8
5.8
5.8

cs: abbreviation of csteps

Chapter 5 109

o

O

1.5 -

1 -

0.5 -

0 -

,—

i

4
t.

•i
<
I!

u

—

||

l|w

&

W
lit

•r,

O
||

a
1.5cp

1
HI

4

o
II
a

rum

I
i1H

'ira
i ill 4

i * l -1
r l

O
II
a

-

1mmJH*r,

O

II
a

2cp

I*••4
r

• «

OO

d
II
B

It
- ks

I'm 1* ^

1 r-1J
•LLM^̂

d
II
a

r f

d
II
B

13l
l
*•
d
II
a

2.5cp

n
1Jj

fm
i ill

d
II
a

11

•1
p i
FHI'tEH

d
II
a

•
m 11 11 1— 1 — •

d
II
a

3cp

d
II
a

•
B II• mi 1

Hidl
rl ilI • |I*M

o
II
a

oo

d
II
8

3.5cp

I
—1I

d
II

a

time constraint

D area a power

Figure 5.27 Power area tradeoffs for DCT

5.5.2 Comparison with a power-aware base case

From the previous work on low power behavioural synthesis, the most relevant to

our work is [110]. The behavioural system developed in [110] performs scheduling,

allocation and binding, and includes supply voltage and clock period pruning

techniques to eliminate inferior design points when searching for the minimum

power solution. Although [110] has performed effective power reduction, the

algorithm focuses only on obtaining the minimum power solution and has some

shortcomings. For example, the optimum power solution is chosen after synthesisirig

a datapath for each combination of supply voltage and clock period that could not be

pruned, leading to high computational times, as explained later in Table 5.14.

Moreover, the optimization cost function ignores the area cost, which may lead to

unnecessary big area implementations, as shown later in Table 5.18.

This section demonstrates the benefits of PABCOM when compared with a power-

aware base case. The base case is a modified version of PABCOM that includes the

clock period and supply voltage pruning techniques from [110] instead of the

algorithm developed in Section 5.2 as part of this research. To find the minimum

power solution, the base case follows the same methodology that [110], which enters

Power-aware behavioural compiler (PABCOM) 110

the synthesis phase for all the values of clock period and supply voltage that could

not be pruned. As the single objective algorithm developed in [110], the base case

targets only power as the cost function and the metric for evaluating moves.

Consequently, the power weight a is set to 1 in PABCOM and the base case to

provide a fair comparison. Table 5.14 shows the improvement percentages in terms

of power P and computational time Ct, for AR, EWF and DCT, with a time

constraint T ranging from 1.5cp to 3cp. It should be noted that a % saving greater

than 0 means a decrease whereas a % saving lower than 0 means an increase with

respect to the base case.

Table 5.14 Power and time savings when comparing PABCOM and base case

T
^lv5cp-%

2cp
2.5cp
3cp

AR
%P

4.8
0.3
0.1

% Q

91.7
93.9
95.9

EWF
%P

4.2
0.0
0.1

%a
91.4
94.1
95.5

DCT
%P

#•6.1 **•

5.8
0.0
0.3

% Q

85.6
90.2
94.4

From Table 5.14, it can be seen that for most of the time constraints, PABCOM is

able to further reduce the power consumption for the three benchmarks. For example,

for T — 1.5cp, power was decreased by 5.2% for AR, whereas for EWF and DCT

there was a power reduction of 4.2% and 6.1% respectively. These power savings are

due to a lower operating voltage as shown later in Tables 5.15, 5.16 and 5.17. From

Table 5.14 it can also be seen that PABCOM obtained optimised power solutions in

much less time than the base case, with computational time savings greater than 80%

in general. For example, for AR at 1.5cp, PABCOM obtains a solution in 1.5min

whereas the base case takes 9.3min. The computational time savings are due to the

inclusion of clock period and operations throughput selection algorithm that

determines the scaled supply voltage into the datapath synthesis. This is unlike the

base case, where the synthesis phase is performed for all the combinations of clock

period and voltage that could not be pruned.

To give a better insight into the achieved power savings from Table 5.14, the

solutions obtained by PABCOM and the base case for AR, EWF and DCT with

different time constraints are shown in Table 5.15, Table 5.16 and Table 5.17

respectively. A general observation from these three tables is that for the first two

time constraints, 1.5cp and 2cp, PABCOM obtains lower supply voltages, thus

Chapter 5 111

reducing the power when compared to the base case. For example, for AR with time

constraint 2cp in Table 5.15, PABCOM decreases the supply voltage from 1.15V to

1.13V, reducing the power consumption from 5.3mW to 5.0mW. In the case of EWF,

PABCOM obtains not only a lower voltage but also longer clock periods and smaller

throughputs than the base case, resulting in further power reduction. For example, for

time constraint 1.5cp in Table 5.16, Tclkhas been increased from 2ns to 4ns, TPm has

decreased from 4 to 2 and TPa has decreased from 2 to 1. Consequently, V has

decreased from 1.22V to 1.21V, leading to a power reduction from 3.3mW to

3.1mW. Another general observation from Table 5.15, Table 5.16 and Table 5.17, is

that for the time constraints 2.5cp and 3cp, PABCOM and the base case obtain the

minimum voltage allowed, i.e. 1.08V. This results in similar power consumption, as

shown in Table 5.17 for DCT with time constraint 2.5cp, where power consumption

of 5.8mW has been obtained.

Unlike the single objective base case that only targets power minimisation,

PABCOM uses a compound cost function that allows investigating explicitly the

power-area tradeoffs of the design and constraining the area when searching for a

low power solution. This may result in substantial area reductions with very few or

null power overhead, as demonstrated in Table 5.18, which shows the comparison

between PABCOM with a= 0.9 and the single objective base case with a - 1. It can

be seen that for AR, EWF and DCT, PABCOM still obtains power savings around

4% for the time constraints 1.5cp and 2cp. For the remaining time constraints the

power has an approximated increase of 2% for AR and EWF, and 1% for DCT.

However, the datapath area has been reduced significantly for all the cases. For

example, average area savings of 58%, 42% and 43% have been obtained for AR,

EWF and DCT respectively.

Table 5.15 AR solutions

T
; 1.5cp';

Base case
Tclk
(ns)

- 4 '
2cp •-•: 5.4

2.5cp
3cp

6.6
6.8

TPm

(cs)
Tpa

(CS)
- -> •» j

' * ** i—i— -

- 2 • 1 •

2
.2

1
1

V
(V)

P
(mW)

T.23 ' 9.0
1-.15 5.3-
1.08
1.08

3.4
2.8

PABCOM
Tclk
(ns)

4
5:4
6.6
8

TPm

(CS)
Tpa

(CS)

V
(V)

P
(mW)

2 \ IT 1.21 „ x 8.4
• 2 ••> 1 ' 1 . 1 3 A 5 . 0

2
2

1
1

1.08
1.08

3.4
2.8

cs: abbreviation of csteps

Power-aware behavioural compiler (PABCOM) 112

Table 5.16 EWF solutions

T
1.5cp
2cp

2.5cp
3cp

Base case
Tclk
(ns)

2
2.4
6.7
6.2

TPm

(cs).
4
5
2
3

(cs)
2
2
1
1

(V)
1.22
1.14
1.08
1.08

P
(/iW)
3.3 *
2.0
1.3
1.1

PABCOM
Tclk
(ns)

4 "
5.4-
6.7
8

TPm
(cs)
2
2
2
2

(cs)
1
1'
1
1

• v
(V)
1.21
1.13
1.08.
1.08

P
(MW)
3.1

•- 1.9

1.3 •

1,1
cs: abbreviation of csteps

Table 5.17 DCT solutions

Base case PABCOM
Tclk
(ns)

TPm

(cs) (cs)
V

(V)
P

(mW) (ns) (cs)
Tpa

(CS) (V)
P

(mW)
1.5cp 4 1.22 1.5 1 1.21 1.4
2cp 5.3 1.15 9.0 5.3 1 1.13 8.7

2.5cp 6.7 1.08 5.8 6.7 1.08 5.8
3cp 3.3 1.08 4.8 6.2 1.08 4.8

cs: abbreviation of csteps

1.5cp
2cp

2.5cp
3cp

Table 5.18 Power and area percentage savings

AR
%A
60.2
58.4
56.2
58.8

%P
4.4
3.9
-2.3

-2.5

EWF
%A
41.2
41.9
42.0
42.1

%P
4.8
3.3
-2.1
-2.2

DCT

40.7
36.6
43.9
48.8

%P
4.5
4.6
-0.3

-1.9

5.6 Concluding Remarks

This chapter has presented a power-aware behavioural compiler that considers the

close interrelation among scheduling, binding, clock and operations throughput

selection. PABCOM with its compound cost function provides solutions not only

optimised for low power or low area, but also facilitates the automatic exploration of

power-area tradeoffs. For example, for DCT with a time constraint equal to 2.5 times

the critical path, a tradeoff with 35% lower power than an area optimised solution

and 53% less area than a power optimised solution was obtained. It has also been

shown that PABCOM obtains solutions in lower computational time and with lower

power than a base case algorithm that uses the clock and supply voltage pruning

techniques from [110] whilst meeting the same time constraint. For example, for a

time constraint equal to 2 times the critical path, a power saving of 5% with

computational time saving of 89% averaged over AR, EWF and DCT were obtained.

Chapter 5 113

Moreover, area savings can be achieved by PABCOM at the expense of a slight or

null increase in power consumption when compared to the base case. For example, a

power saving of 4.6% with area saving of 47% averaged over AR, EWF and DCT

were obtained for a time constraint of 1.5 times the critical path. In general, power

reductions were due to the.use of lower voltages, or a combination of lower voltages

and lower frequencies obtained after an appropriate selection of clock' period and

operations throughput. It has also been shown how the clock and operations

throughput selection affects the schedule, binding and voltage applied leading to

solutions with different area and power consumption. Extensive experimental results

for typical behavioural synthesis benchmarks with different time constraints have

shown that PABCOM is capable of achieving power and area savings.

Chapter 6

Case study: MPEG-1 Motion Vector Reconstructor

6.1 Introduction

Chapters 4 and 5 have presented algorithms for the generation of low power RTL

structures from behavioural descriptions. To validate the practical applicability of

these techniques, their application during the design of a motion vector reconstructor

from the Berkeley MPEG-1 player [40] is considered in this chapter. A synthesisable

RTL VHDL implementation of the motion vector reconstructor was presented in

[34], where different parallelizing transformations were applied during the

behavioural synthesis process. In this chapter, the possible power-area tradeoffs due

to an adequate selection of clock period and operations throughput will be presented.

The motion vector reconstructor was selected as a case study because it is more

complex than the benchmarks used in Chapter 4 and 5. The motion vector

reconstructor consists of 12 conditional statements, 8 multiplications, 10 additions, 9

subtractions, 13 comparisons and 2 shifts. The presence of conditional statements in

the motion vector reconstructor results in a DFG with conditional branches, which

lead to a more complex scheduling, allocation and binding problem. Other reason

why the motion vector reconstructor was selected as a case study is that it belongs to

an application domain (data dominated) targeted by the algorithms developed in this

research. Furthermore, the motion vector reconstructor forms part of a real-life

multimedia application, which can be used for example in TV quality video

communications [133].

The principles of an MPEG-1 video decoder are outlined in Section 6.2. Section 6.3

describes the motion vector reconstructor DFG, library components, selection of

optimisation parameters and the results obtained after low power behavioural

Chapter 6 115

synthesis. Section 6.4 discusses the implementation in 0.12um technology of two

solutions of the motion vector reconstructor, including their Verilog code, functional

validation, and area and power values. These values are based on the reports obtained

after logic synthesis with Synplify ASIC from Synplicity (see Figure 6.15) and

power analysis with PrimePower from Synopsys (see Figure 6.21). Functional

validation is performed using ModelSim in combination with a "C++ program (see

Figure 6.16). Section 6.5 presents the conclusions of this chapter.

6.2 MPEG-1 background

The Moving Picture Experts Group or MPEG [42] developed video and audio

encoding standards such as MPEG-1, MPEG-2, MPEG-3 and MPEG-4 [41]. MPEG-

1 standard is intended for the storage of VHS-quality audio and video on CDROM

[36] and consists of five parts [15]: system, video, audio, compliance testing and

reference software. For compression purposes, video data can be represented as a

sequence of digitised images or frames [100]. In MPEG-1, the frames can be

encoded in three types: intra-frames (I-frames), predicted frames (P-frames) and

bidirectional frames (B-frames). Figure 6.1 shows an example of the frame sequence

for MPEG-1, where the edges indicate that the pointed frame has been constructed

from previous or subsequent frames, called reference frames. For example, I-frames

are encoded without reference to any other frames whereas P-frames are

approximated using the preceding I- or P-frame as reference. B-frames are

constructed using the nearest I- and P-, P- and P-, or P- and I-frame as references.

Each frame can be represented as an array of macroblocks, where each macroblock

corresponds to a 16 by 16 pixels area of the original frame.

Predictions

Bidirectional predictions

Figure 6.1 MPEG-1 example frame sequence [36]

MPEG-1 compresses video data applying motion estimation and motion

compensation techniques to each macroblock in P- and B- frames. Decoding the

Case study: MPEG-1 Motion Vector Reconstructor 116

frames is simpler and faster than the encoding operation since it only requires the

motion compensation technique. Motion compensation produces a predicted

macroblock using the motion vector obtained during the compression process and the

reference frame(s). The decoding scheme for the three types of frames is illustrated

in Figure 6.2. The received bitstream of the I-frame is decoded employing the

variable length and Huffman decoders. Then the obtained DCT coefficients are

inverse quantised and IDCT is applied to generate the referenced frame, which is

stored in memory. This referenced frame is used for motion compensation for both

the P- and B- frames. To decode a P-frame it is necessary to generate the motion

compensated P-frame by employing the referenced frame together with the

reconstructed motion vectors. The quantised DCT coefficients obtained after variable

length and Huffman coding are inverse quantised, and then IDCT is applied. The

result is theri added to the motion compensated P-frame to produce the referenced P-

frame, which is also the decoded P-frame sent to display. To decode a B-frame it is

necessary to generate the motion compensated B-frame by using the pair of nearest

referenced frames and the reconstructed bidirectional motion vectors. The quantised

DCT coefficients obtained after variable length and Huffman decoding are inverse

quantised, and then IDCT is applied. The result is then added to the motion

compensated B-frame to produce the decoded B-frame. Once the frame type (I-, P-

or B-) has been reconstructed, a process called dithering is applied, which converts

the frame to a representation appropriate for display.

Encoded
Bitstream

Variable
length &
Huffman
Decoder

Motion Vector
Reconstructor

Motion
Compensator

Referenced
frames

Figure 6.2 Block diagram of MPEG decoding [142]

Video
output

Chapter 6 117

6.3 Low power behavioural synthesis of a motion vector

reconstructor

This section describes the steps carried out to obtain a low power datapath structure

for the MPEG-1 motion vector reconstructor. Firstly the motion vector reconstructor

is converted into a more suitable representation for behavioural synthesis, i.e. DFG.

Then the synthesis constraints and library components are defined. To complete the

set of inputs from PABCOM it is necessary to specify the optimisation parameters.

Once all the inputs have been defined, PABCOM is able of generating low power

solutions according to the designer requirements.

6.3.1 Motion Vector Reconstructor DFG

A publicly available C implementation of the MPEG-1 decoder was developed by

the Berkeley Multimedia Research Centre [40]. The MPEG-1 player includes the C

specification of the motion vector reconstructor according to the instructions given in

the MPEG December 1991 standard draft. This C specification is not suitable for the

power-aware synthesis tool developed in Chapter 5 and then manual conversion to a

DFG was done. The resultant DFG of the motion vector reconstructor is shown in

Figure 6.3. The black circles do not belong to the original C specification, but they

were added to represent all operations as 2-input operations, hence, allowing the use

of PABCOM. For example, N41 has rrprev_i as one of its inputs, but the other input

can be either 0 or N25 or N26. By inserting NOP3 after the joint of branch 3, and

NOP4 after the joint of branch 2, N41 can be represented as an operation with 2

inputs: rrprevi and NOP4. Notice that the inputs for NOP3 are N25 and N26, and

for NOP4 are 0 and NOP3, consequently the data dependency between the involved

DFG operations is not affected. Since all the input data to PABCOM is through a text

file, a DFG in a text form that exactly corresponds to the DFG shown in Figure 6.3

needs to be generated. This text representation of the DFG is shown in Listing 6.1,

where three sections can be identified: inputs, operations and outputs. Each of these

sections contains information about their components such as name, type, inputs,

branch, and how they interrelate with forks and joints of the conditional branches.

For example, from Listing 6.1 it can be seen that operation N12 is a comparison with

inputs N7 (inpa) and zero (inpb), and a nested branch generated by the condition

Case study: MPEG-1 Motion Vector Reconstructor 118

N16 (nstcnd). Operation N16 is a comparison with inputs N7 (inp_a) and zero

(inp_b), where value N7 comes from fork 7 (fki) when the condition corresponding

to N12 (fk_own) is evaluated to false, i.e. logic zero. In the branch generated by N16,

there is no nested branch (nstcnd). The output of operation N16 is not used as input

to any fork (fk_o) or joint (jnt). Notice that operations NOP1, NOP2, ..., NOP16 are

defined as type auxiliar, and as mentioned previously, do not affect the original data

dependency of all the operations in the DFG.

rrprevo np_o

Figure 6.3 Motion vector reconstructor DFG

rdprev_o rdp_o

Chapter 6 119

Listing 6.1 DFG of the motion vector reconstructor in text form
#name type inp_a inp_b fk_i jnt branch fk_own nstcnd fk_o
#//inputs///
mhc
mhr
mvc
mvr
f

fp
rrprev_i
rdprev_i
zero
1
16
(-16)
32

input
input
input
input
input
input
input
input
input
input
input
input
input

-
-
-
-
-
-
-
-
-
- .

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

Kll
N1
N2
N3
N4
N5
N6
N7
N8
N9
N10
N11 ^
| j 1 2 V l i - t
N13
N14
N15
NOP6
N16r i*f'
NOP12
N17
N18
NOP1
N19
NOP7 ,
N20
N21
NOP2
N32
N33
NOP13
N22
N23
NOP8
N34
N35
NOP14
N24
N25

compare
compare
multiply
multiply
multiply
compare
multiply
compare
or
compare
subtract

I compare*
or
subtract
compare
auxiliar

? coiripare *
auxiliar
subtract
subtract
auxiliar
subtract
auxiliar
subtract
add
auxiliar
multiply
multiply
auxiliar
subtract
add
auxiliar
multiply
multiply
auxiliar
add
subtract

mhc
f
mhc
f
f

fp
mvc
mvc
N1
N3
N4
N7
N8
f
N3
N3

kN7
N7
f
N14
zero
N17
zero
NOP6
NOP6
N20
32
32
N32
NOP12
NOP12
N22
32
32
N34
rrprev
NOP2

zero
1
f
16
(-16)
zero
f
zero
N2
zero
1
zero
N2
1
zero
-
zero
-
1
mhr
N18
mvr
N19
NOP1
NOP1
N21
f
f
N33
NOP7
NOP7
N23
f
f
N35
NOP2
NOP13

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

operations /////
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
2
7
7
6
0
0
0
0
3
3
0
3
3
0
8
8
0
8
8
0
0
3

0
0
0
0
0
0
0
0
0
0
0

• 0 :

0
0
0
0

. 0
0
0
0
1
0
6
0
0
3
0
0
3 *
0
0
8
0
0
8
0
0

-
-
-
-
-
-
-
-
-
-
-
-

• -

/ / / / / / / / / / / / / / / / / ,

-

-

-

-

-

-

-

-

-

-

-

-

-

1F
2F
2F
7F '
7F
6F
1F
,-
6F
- •

2F3T
2F3F
2F
2F3T
2F3F
2F
7F8T
7F8F
7F
7F8T
7F8F
7F
-
2F3T

-
-

- -

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-

-
N9
N10
N10
N12
N12
N13
-
-
-
-
N15
N15
-
N15
N15
-
N16
N16
-
N16
N16
-
-
N15

1,6

4
9
1,2,6,7

N15

Nifr

Case study: MPEG-1 Motion Vector Reconstructor 120

N26
N0P3
N29
N27
N28
N0P9
N30
N31
N36
N37
N38
N39
N0P4
NOP10
N40
N41
N0P5
N42
N43
N0P11
N44
N45
#11111111111111
rrp_o
rdp_o
rrprev_o
rdprev_o

add
auxiliar
add
subtract
add
auxiliar
compare
compare
compare
compare
and
and
auxiliar
auxiliar
add
add
auxiliar
add
add
auxiliar
shift
shift

//////////////////,
output
output
output
output

NOP2
N25
rdprev
NOP8
NOP8
N27
N24
N24
N29
N29
N30
N36
zero
zero
rrprev
rrprev
N40
rdprev
rdprev
N42
NOP5
NOP11

Illlllllllllllh
NOP5
NOP11
NOP5
NOP11

NOP13
N26
NOP8
NOP14
NOP14
N28
N11
N5
N11
N5
N31
N37
NOP3
NOP9
NOP2
NOP4
N41
NOP8
NOP10
N43
-
-

miiiiiiiinii
N44
N45
-
-

3
0
0
8
8
0
0
0
0
0
0
0
0
0
4
4
0
9
9
0
5
10

outputs
0
0
0
0

0
3
0
0
0
8
0
0
0
0
0
0
2
7
0
0
4
0
0
9
0
0

2F3F
2F
-
7F8T
7F8F
7F
-
-
-
-
-
-
-
-
4T
4F
-
9T
9F
-
5T
10T

N15

-
N16
N16
-
-
-
-
-
-
-
-
- .
N38
N38
-
N39
N39
-
N6
N6

-
_
-
-

-
-

-
-
-
-
-
-
-
-
5
-
-
10
-
-

Ill
5
10
0
0

-
-
-
-

-
-

-

-
-
-
-

6.3.2 Synthesis constraints and library components

Section 6.3.1 has presented a suitable DFG of the motion vector reconstructor to be

used as an input for the proposed algorithm developed in Chapter 5. In addition to

the DFG from Listing 6.1, the proposed algorithm requires the specification of the

time constraint T, the maximum allowed frequency fmax and a library component

characterised for power, area and delay. The time constraint and maximum allowed

frequency for the motion vector reconstructor design are set arbitrarily to 50ns and

500MHz respectively. The 16-bit library component consists of: multiplier, adder,

subtractor, comparator, shifter, logic operations (and, or), register and multiplexers.

The library was characterised for power and delay at three different voltages, 1.08V,

1.2V and 1.32V. These voltages are henceforth referred to as characterization

voltages. Table 6.1 shows the library used, where .A is the area, V is the

characterisation voltage, /%, is the dynamic power and D is the delay. The area and

delay of the library components were obtained after synthesising their VHDL

descriptions, which are included in Appendix 1. The logic synthesis process was

Chapter 6 121

performed using Synplify ASIC from Synplicity with ST 0.12um technology library.

Power values at 100MHz were obtained using PrimePbwer from Synopsys and

experimentally averaged over a number of input vectors. Details about the power,

area and delay characterization process of each library component can be found in

Appendix 2.

Table 6.1 0.12um library components
MULTIPLIER, A = 4813 un

F(V)
1.08
1.2

1.32

F(V)
1.08
1.2

1.32

• PjynillW)
130.700
154.300
216.700

ADDER, A = 1107.4
Pdyni\iW)

30.700
37.370
50.830

urn2

n2

Dim)
5.544
3.697
2.636

Dim)
4.050
2.706
1.920

SUBTRACTOR, A = 1176 um2

F(V)
1.08
1.2

1.32

Prfvn(uW)
31.590
42.600
57.780

Dim)
4.260
2.833
1.973

COMPARATOR, A = 1585.5 um2

F(V)
1.08
1.2

1.32

F(V)
1.08
1.2

1.32

F(V)
1.08
1.2

1.32

F(V)
1.08
1.2

Pdvni\iW)
54.850 .
69.960
90.950

SHIFTER, A = 306.6 urn2

Prfvn(uW)
7.264
8.675
11.840

y4iV2), /4 = 74.6 um2

Pdyni\iW)
1.421
1.693
2.338

0 ^ , ^ = 74.6 am2

•Prfyn(M.W)

1.970
2.353

Dins)
4.978
3.197
2.174

Dim)
0.231
0.139
0.095

Dim)
0.377
0.247
0.174

D(ns)
0.405
0.264

Case study: MPEG-1 Motion Vector Reconstructor 122

1.32

v(V)
1.08
1.2

1.32

F(V)
1.08
1.2

1.32

von
1.08
1.2
1.32

von
1.08
1.2
1.32

V(V)
1.08
1.2
1.32

von
1.08
1.2
1.32

von
1.08
1.2
1.32

von
1.08
1.2

1.32

3.234

REGISTER, A = 581
PeUvM)

44.150
52.000
69.000

lim2

MUX2, A = 258.2 \im2

6.713
8.031
10.980

MUX3, A = 548.7 ^m2

PdynillW)
11.060
13.200
18.030

MUX4, A = 548.7 îm2

11.060
13.200
18.030

MVX5, A = 806.9 nm2

PjmtvW)
18.690
-22.550
30.710

MUX6,A = 1065.1 urn2

PdvniiW)
30.800
37.060
50.400

MUX7,A = 1355.6 ^m2

PdvnilW)
35.000
42.260
57.590

MKY«,yi = 1355.6 ^m2

PdvniiW)
35.000
42.260
57.590

0.184

D(ns)
0.529
0.334
0.223

D(ns)
0.142
0.091
0.061

£>(ns)
0.366
0.233
0.150

Z)(ns)
0.366
0.233
0.150

D(ns)
0.551
0.351
0.231 •

£>(ns)
0.551
0.351
0.231

D(ns)
0.553
0.352
0.232

D(ns)
0.553
0.352
0.232

Chapter 6 123

250

200

150

100

50

0

70

60 -

50

40 -

30

20

10

120

100

80

60 -

40

20

0

0

-1.08V

-1.2V

-1.32V

2 - 3 4

throughput (csteps)

a) multiplier

2 3 4
throughput (csteps)

b) adder

2 3 4
throughput (csteps)

c) subtractor

2 3 4
throughput (csteps)

-1.08V
-1.2V
-1.32V

-1.08V
-1.2V
-1.32V

-1.08V
-1.2V
-1.32V

d) comparator
Figure 6.4 Power consumption of muiticycled components

Case study: MPEG-1 Motion Vector Reconstructor 124

It should be noted that similar library characterisation was done in Chapter 5, Table

5.9. The main difference is that the library from Table 5.9 was characterised using

input vectors obtained with a LFSR (Linear Feedback Shift Register) for

demonstrations purposes and library from Table 6.1 was characterised using real

data. In addition to the data presented in Table 6.1, the library also contains

information about the power variation when changing the throughput of some

components, as shown in Figure 6.4. It can be seen that for each characterisation

voltage, i.e. 1.08V, 1.2V or 1.32V, there is a linear increase of the power dissipated

when increasing the number of cycles used by the component.

6.3.3 Optimisation parameter selection

To use PABCOM it is also necessary to define the simulated annealing parameters

related to the cooling schedule. As previously explained in Chapter 5, the initial

acceptance ratio xo is set to 0.95 and the stop parameter es is set to 0.0001. This

section discusses the selection of a suitable distance parameter 5 for the power-aware

synthesis process. Figure 6.5 shows the percentage of difference between achieved

cost and lowest cost as a function of the distance parameter 5. Notice that for values

of 10 <6 < 0.4 the cost difference presents an irregular behaviour and it is difficult to

establish its relation with the distance parameter 8. However, for values of 8 <0.4

there is a clear trend of the cost difference to decrease. An acceptable cost difference

of 2% approximately is obtained for a distance parameter 8 <= 0.2, with the solution

obtained in the lowest runtime for 8 - 0.2. Hence, the distance parameter 8 is set to

0.2, which is used to obtain the solutions presented in next section in Table 6.2. Due

to the strong dependence between the design quality and the distance parameter 8, it

is recommended to perform the power-aware synthesis process for a number of

different 8 values.

Chapter 6 125

14

12

Ou
% 8

I
•o 6

I
2 4 I

I\
\\\
\\\\\

}

I
1

1 1

<•

H

/
i

/
\

\

\
\

\
\ ->\ \ >

10 0.1 0.01

Figure 6.5 Dependence of design cost on the parameter h

6.3.4 Results of the synthesis process

PABCOM explores efficiently the design space and investigates explicitly power-

area tradeoffs that may be of interest to the designer. These optimised power-area

tradeoffs are obtained according to the optimisation goal specified by the user:

power, area or a combination thereof. The optimisation goal is defined in the cost

function by a, which is the optimisation weight for the power cost, and (1-a), which

represents the optimisation weight for the area cost.

By varying the values of a. from 1 to 0 in steps of 0.1, PABCOM obtains solutions

with different area and power costs, as shown in Table 6.2. These power and area

costs were estimated respectively using equations (5.2) and (5.6) from Chapter 5, in

combination with the library component from Table 6.1. Note that equations (5.2)

and (5.6) ignore respectively the contribution of the controller to the power and area

of the design. This is a valid approximation for data dominated designs as

demonstrated later in Section 6.4.2 and Section 6.4.3. Power and area values from

Table 6.2 will be henceforth referred as approximated values.

Case study: MPEG-1 Motion Vector Reconstructor 126

Table 6.2 Solutions for the motion vector reconstructor obtained with different ce
a
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Area (/mi2)
42872
41179
42493
40266
41333
34469
34368
31693
32058
31860
31818

Power (juW)
835
833
848
832
866
1000
999
1015
922
921 ;
1017

The best power-area tradeoffs from Table 6.2 are shown in Figure 6.6, where it can

be seen that the solution for a = 0.3 has similar area to the solution for a - 0.1, but

higher power consumption. Solution for a = 0.7 presents lower power dissipation but

occupies more area than solution for a = 0.1. Thus, solutions for a = 0.7 and ct= 0.1

are chosen for implementation since they present different power and area

requirements. For the remaining of this section, the solution for a = 0.1 will be

referred as Design 1 and the solution for a = 0.7 as Design 2. The datapath and

controller of Design 1 and Design 2 are defined using the scheduling and binding

information that is included in the synthesis results.

a = 0.7 a = 0.3

• Area B Power

a = 0.1

Figure 6.6 Best power-area tradeoffs chosen from Table 6.2.

Chapter 6 127

Scheduling

The schedules of Design 1 and Design 2 are shown in Figure 6.7 and Figure 6.8

respectively. Although both schedules are executed within the same time, i.e. 50ns,

they present different schedule length, i.e. 13 csteps for Design 1 and 20 csteps for

Design 2. Consequently, the clock period for Design 1 is 3.8ns whereas for Design 2

is 2.5ns. The proposed algorithm determined that all operations in Design 1 are

single cycle whereas some operations of Design 2 are multicycled, i.e.

multiplications, additions, subtractions and comparisons. This is better illustrated in

Table 6.3, which summarises the operations throughput and clock period selected by

the proposed algorithm for the schedules of Figure 6.7 and Figure 6.8. In the header

table, Ls is the schedule length, Tclk is the clock period, TPM, TPC, TPA, TPS, TPSFT,

TPAND, and TPOR are the operations throughput for the MULTIPLIER,

COMPARATOR, ADDER, SUBTRACTOR, SHIFTER, AND and OR respectively,

and Fis the operating voltage.

csteps

10

12

13

ruo + + fui

Figure 6.7 Design 1 schedule

Case study: MPEG-1 Motion Vector Reconstructor 128

csteps
1

2

3

mhc 1

i\ • \

[j

}\
U

-16 f
\ /

r) W t /

Figure 6.8 Design 2 schedule

Table 6.3 Characteristics of the Design 1 and Design 2

Design 1
Design 2

Ls
(cs)
13
20

Tclk
(ns)
3.8
2.5

TPM

(cs)
1
3

TPC

(cs)
1
2

TPA
(cs)

1
2

(cs)
1
2

TPsFT
(CS)

1
1

TPAND

(cs)
1
1

7PO*
(cs)

1
1

F
(V)
1.25
1.15

cs: abbreviation of csteps

The combination of clock period and operations throughput presented in Table 6.3

allows a minimum operating voltage of 1.25V for Design 1 and 1.15V for Design 2.

Using these operating voltages, an estimated power consumption of 921 |iW and

832|iW is obtained for Design 1 and Design 2 respectively, as shown in Table 6.2.

Notice that further voltage scaling for these designs is not possible because the time

constraint of 50ns would be violated.

Module Binding

The module bindings of Design 1 and Design 2 are shown in Figure 6.9 and Figure

6.10 respectively. It can be seen that Design 2 requires more functional modules than

Design 1 due to the greater number of same type operations whose execution times

Chapter 6 129

overlap at the same cstep. For example, in Design 2 (Figure 6.10) the execution times

of four comparisons, i.e. N37, N31, N30 and N36, are overlapped along csteps 14

and 15, requiring then four comparators, i.e. M44, M43, M22 and M21. However, in

Design 1 (Figure 6.9), the execution times of only two comparisons are overlapped at

the same cstep, i.e. Nl and N2 in cstep 1, N10 and N8 in cstep 2, N31 and N30 in

cstep 8, N37 and N36 in cstep 9, requiring two comparators, i.e. M22 and M21. In

the case of multiplications, they are mapped to multipliers M7 and M6 in Design 2,

and to multiplier M7 in Design 1. In Design 2, the additions are bound to adders M2

and M4, and the subtractions to subtractors Ml 3 and Ml4. In Design 1 the additions

are bound to adders Ml and M2, and the subtractions to subtractors Ml2 and Ml3.

From Figure 6.9 and Figure 6.10 it can also be seen that mutual exclusive operations

are bound to the same module to reduce the area of the design. For example, in

Design 1 operations N42 and N43 are mapped to module Ml at cstep 12, and in

Design 2 operations N33 and N32 are mapped to module M6 along csteps 13, 14 and

15.

M39

M22

M21

M19

C/}

•9> M 1 8

E M13

M12

M7

M2

M1

N1

N2

N3

• N9

N10

N8

N13

N12

N7 N5

N15 I N16

N14 N17

N18

N6

N20

N19

N4

N21

N31

! N30

N11

N22

N23

N24

N33

N32

N29

N37

: N36

N38

N25

N35

N34

N26

N39

N27

N28

N41

N40 .

N44

N43

N42

N45

1 2 3 4 5 6 7 8 9

csleps

10 11 12 13 14

Figure 6.9 Design 1 module binding

Case study: MPEG-1 Motion Vector Reconstructor 130

M44

M43

M40

M39

M22

M21

M20

M18

M14

M13

M7

M6

M4

M2

12 I

i : N13

La !

lino

N12

: I

: N7 i

: N 3 :

; • N17

: N5

I | \

\

N16

N19

:N6 I 1

N37

N31*

: N30

j ^ 6

16 i N20 : ;N11 :

; N32 i

i : : N35

N4 : : : N34

; f̂ 21 : h

i :NZ7

': N33 :

: N32 =

i !

N39 [

M26

N41

*\49

N45

, "" [

N43 :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
csteps

Figure 6.10 Design 2 module binding

Register Binding

The register bindings of Design 1 and Design 2 are shown in Figure 6.11 and Figure

6.12 respectively. Note that Design 2 requires three more registers than Design 1

leading to less register sharing. It can also be seen that the variables in the registers

of Design 2 have longer lifetime than in Design 1, mainly because of the use of

multicycled functional modules. For example, variable N24 in Design 2 (Figure

6.12) needs to be hold during csteps 14 and 15 so that the multicycled operations

N30 and N31 can be executed, as shown in the schedule of Figure 6.8. Variable N24

in Design 1 (Figure 6.11) needs to be hold only during cstep 8 to execute operations

N30 and N31, as shown in the schedule of Figure 6.7. From Figure 6.11 and Figure

6.12 it can be seen that values of mutual exclusive operations are bound to the same

register to reduce the area of the design. For example, in Design 1 variables N20 and

N21 are mapped to register R4 holding the value from cstep 7 to cstep 11. There are

some cases when more than two values are bound to the same register, for example,

RIO, N25 and N26 in Design 2 are mapped to register Rl. This occurs when two

consecutive joints are present in the DFG, for example in Figure 6.8, N25 and N26

are the inputs to a joint, which in turn is the input to another joint.

Chapter 6 131

R22

R20

R19

R15

R14'

R13

R12

R11

R10

R9

i2
B
•=. R8

R7

R6

R5

R4

R3

R2

R1

mvc

mhc :

N1

n_sixteen

N8

42

fp

mhr :

-

one

mvr

sixteen

N3

thirty2

N7

N14

mprevj

N18

R6

N5

N17

rdprevj

zero

N19 !

R6 .

N4 i

N11

N24

N21

N20

N33

i N31

I N30

: N36

N37

N26

N32 : N25
R6 :

: N23

N29

N22 i

N35 i N28
N34 • N27

: R6

R1

N44

N43

N42

N41

N40

R2

N45

2 3 4 5 6 7

csteps
8 9 10 11 12 13

Figure 6.11 Design 1 register binding

Case study: MPEG-1 Motion Vector Reconstructor 132

R23

R22

R21

R18

R16

R15

R14

R13

R12

S R 1 1

R10

R9

R8

R7

R6

R5

R4

R3

R2

mvt

mhc

N1

N2| ; ; | :

n sixteen

! : N14J

: N17

sixteen :

: : : N5

l ' l •

N7 i

zero

rtprevj

rrprev_i

i : N19 i

: : RIO i

I \ \ i I . ! ; NIB i

i imhr i i I ! i Rio j

• ; : ; N3 • i • :

N36

N31

N37

\

; I N30 ; ; i ; i

: : :

N4 : ;

! i
'-

: ! :

N35i • j • N2B

: : : R10 : :

I I I N23J I

i ! i • N22I I

! I ! ! N21 !

R2

N45

: R1

; N44

N43

i ! i i N20 | j ; ; N4Z

! ! : : N33i ! N2B! \ \
: • • : • . N32: i N25: : N41:

':
N24: ; : R1D \ • : N4(i

10 11 12

csteps

14 15 16 18 19 20

Figure 6.12 Design 2 register binding

Generation of datapath structures

With the information provided by the module and register binding it is possible to

define the datapath of Design 1 and Design 2 as shown in Figure 6.13 and Figure

6.14 respectively. All the functional units in Figure 6.13 execute the single cycle

operations of the schedule shown in Figure 6.7. The functional units used in Figure

6.14 execute both, the single cycle and multicycled operations of the schedule shown

in Figure 6.8. The datapaths in Figure 6.13 and Figure 6.14 use registers with two

different word length: 16-bits and 1-bit. Registers of 16-bits (Rl, R2, ..., R15), are

used to save the resulting values from functional units such as: multiplier, adder,

subtractor and shifter. Registers of 1-bit (R19, R20 and R21 in Design 1, and R16,

R18, R21, R22 and R23 in Design 2), are used to save the resulting values from the

comparator. It can also be seen that both datapaths use status registers (stRl, stR2,

Chapter 6 133

..., stRlO) due to the global slicing technique used for state assignment when

designing the controller. Status registers are 1-bit registers that store the information

about which part of the conditional branch will be executed in the states defined by

the controller. Two groups of multiplexers complete the datapaths from Figure 6.13

and Figure 6.14. One group is connected to the inputs of functional modules whereas

the other group is connected to the inputs of the registers. These groups of

multiplexers allow the functional modules and registers to be shared, reducing the

area of the design.

Next section shows the realisation of the datapaths from Figure 6.13 and Figure 6.14

and the interconnection with their respective controller to complete the design. Both

complete designs will be functionally validated through logic simulation and

subjected to area and power analysis.

s?
8Co

SIR1 stR2 SIR3 i stR4 stRS stR6 stR7 5lR8 stR9 |slR1

I

2"
8
CO.

o

Figure 6.13 Design 1 datapath

Figure 6.14 Design 2 datapath

5
3cB"

Case study: MPEG-1 Motion Vector Reconstructor 136

6.4 Realisation of the motion vector reconstructor

The previous section has described the schedules, bindings and generation of

datapath structures corresponding to two solutions for the motion vector

reconstructor. All these results from the power-aware synthesis are used to complete

the design as shown in Figure 6.15.

©
Scheduling

Binding

©

Design of the controller

©
VHDL Implementation of the controller

Synplify ASIC
(Logic Synthesis)

l
fa
- a

©

Datapath

©

implementation of the
datapath Verilog netlist of the datapath

©

Implementation of the
motion vector
reconstructor

Verilog netlist of the complete design

il

©

Figure 6.15 Design flow for the complete design

The datapath structures CD contain all the information necessary to generate an

equivalent RTL description and the Verilog codes corresponding to Figure 6.13 and

Figure 6.14 are included in Appendix 1. The structural Verilog © represents the

interconnection of the RTL library components ® from Table 6.1, which have been

previously synthesised using Synplify ASIC. To complete the design of the motion

vector reconstructor, a controller modelled as a finite state machine (FSM) is

designed for each datapath. The generation of the FSM starts with the state

assignment of the operations from a scheduled design. The state assignment of the

FSM was performed using a global slicing technique, which assigns to the same state

operations that are mutually exclusive but are executed in the same cstep, as

explained previously in Chapter 2 Section 2.2. According to [2], using global slicing

with status registers always produces designs with lower area than using local

slicing. To complete the FSM, enable signals for both, modules and registers, and

select signals for multiplexers, need to be specified according to the schedule © and

Chapter 6 137

binding © presented in Section 6.3.4. Once the controller is completely designed, it

is implemented in VHDL © and later synthesised using Synplify ASIC. Then, the

synthesised controller® is interconnected to the synthesised datapath © to produce

the complete design ®. Listing 6.2 and Listing 6.3 show respectively the RTL code

of Design 1 and Design 2 after the interconnection of the controller and datapath.

The interconnection is carried out using signals declare as "wire". Listing 6.3

requires more signals for interconnection than Listing 6.2 due to the bigger datapath

of Design 2, as shown in Section 6.3. Notice that in both listings the top level module

"vec_rec" presents the same inputs and outputs. However, the instances "datal" and

"controll" in Listing 6.2 are different from the instances "data2" and "control2" in

Listing 6.3. Instance "data2" represents the module corresponding to the datapath of

Design 2 (Figure 6.14), and the module generated for its respective controller after

logic synthesis is "control2". Instance "datal" represents the module corresponding

to the datapath of Design 1 (Figure 6.13), and the module generated for its respective

controller after logic synthesis is "controll".

Listing 6.2 Complete Design 1 RTL code
module vec_rec (

rst, elk,
mhc, mhr, mvc, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprev_i, rdprev_i,
rrprev_o, rdprev_o, rrp_o, rdp_o,
done

);
input rst;
input elk;
input [15:0] mhc, mhr, mvc, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2;
input [15:0] rrprev_i, rdprev_i;
output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;
output done;

wire stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10;
wire eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39;
wire ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, IdRH, ldR12, ldR13,

ldR14, ldR15, ldR19, ldR20, ldR22;
wire IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, ldstR9, IdstRIO;
wire [2:0] opM21, opM22;
wire [1:0] sM1a, sM1b, sM13a, sM13b, sM21a;
wiresM2a, sM12a, sM12b, sM19a, sM21b, sM22b, sM39a, sR7a, sR11a, sR13a, sR14a,

sR19a, sR22a;
wire [2:0] sM7a, sR1a, sR2a, sR3a, sR4a;

controller control 1 (,
elk, rst, stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10,
eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39,
ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13,

Case study: MPEG-1 Motion Vector Reconstructor 138

ldR14, ldR15, ldR19, ldR20, ldR22,
IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, ldstR9, IdstRIO,
opM21, opM22,
sM1a, sM1b, sM13a, sM13b, sM21a,
sM2a, sM12a, sM12b, sM19a, sM21b, sM22b, sM39a, sR7a, sR11a, sR13a, sR14a,
sR19a, sR22a,
sM7a, sR1a, sR2a, sR3a, sR4a,
done

J;
datapath datai (

rst, elk,
eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39,
ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13,
ldR14, WR15, ldR19, ldR20, ldR22,
IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, IdstRB, ldstR7, ldstR8, ldstR9, IdstRIO,
opM21,opM22,
sM1a, sM1b, sM2a, sM7a, sM12a, sM12b, sM13a, sM13b, sM19a, sM21a, sM21b,
sM22b, sM39a,
sR1a, sR2a, sR3a, sR4a, sR7a, sRi'la, sR13a, sR14a, sR19a, sR22a,
mhc, mhr, mvc, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprevj, rdprevj,
rrprev_o, rdprev_o, rrp_o, rdp_o,
stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10

);
endmodule

Listing 6.3 Complete Design 2 RTL code
module vec_rec (

rst, elk,
mhc, mhr, mvc, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprevj, rdprev_i,
rrprev_o, rdprev_o, rrp_o, rdp_o,
done

);
input rst;
input elk;
input [15:0] mhc, mhr, mvc, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2;
input [15:0] rrprevj, rdprevj;
output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;
output done;

wire stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10;
wire eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eM40,

eM43, eM44;
wire ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13,

ldR14, ldR15, ldR16, ldR18, ldR21, ldR22, ldR23;
wire IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, ldstR9, IdstRIO;
wire [2:0] opM21, opM22, opM43, opM44;
wire [1:0] sM7b, sM13a, sM13b, sM14a;
wire sM2a, sM2b, sM4a, sM4b, sM6a, sM14b, sM21a, sM39a, sM39b, sM44a, sM44b, sR6a,

sR9a, sR11a, sR12a, sR23a;
wire [2:0] sR1a, sR2a, sR3a, sR4a;

controller control2 (
elk, rst, stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10,
eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eM40,
eM43, eM44,
ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13,

Chapter 6 139

ldR14, ldR15, ldR16, ldR18, ldR21, ldR22, ldR23,
IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, IdstRQ, IdstRIO,
opM21, opM22, opM43, opM44,
sM7b, sM13a, sM13b, sM14a,
sM2a, sM2b, sM4a, sM4b, sM6a, sM14b, sM21a, sM39a, sM39b, sM44a, sM44b,
sR6a, sR9a, sR11a, sR12a, sR23a,
sR1a, sR2a, sR3a, sR4a,
done

datapath data2 (
rst, elk,
eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eM40,
eM43, eM44,
ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13,
ldR14, ldR15, ldR16, ldR18, ldR21, JdR22, ldR23,
IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, IdstRJ, ldstR8, ldstR9, IdstRIO,
opM21, opM22, opM43, opM44,
sM2a, sM2b, sM4a, sM4b, sM6a, sM7b, sM13a, sM13b, sM14a, sM14b, sM21a,
sM39a, sM39b, sM44a, sM44b,
sR1a, sR2a, sR3a, sR4a, sR6a, sR9a, sR11a, sR12a, sR23a,
mhc, mhr, mvc, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprev_i, rdprev_i,
rrprev_o, rdprev_o, rrp_o, rdp_o,
stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR1O

);
endmodule

6.4.1 Functional validation

Once Design 1 and Design 2 have been completed, their functionality is validated

following the methodology shown in Figure 6.16.

V

Berkeley MPEG-1 player^

Motion vector
reconstructor

•1!
®

C++ program that
compares two files

©
Text file with input profiles for motion vector

reconstructor

Text file with outputs from the motion vector
reconstructor after logic simuation

©

©

©

Verilog gate netlist
(complete design)

©

Figure 6.16 Functional validation flow for the complete design

Case study: MPEG-1 Motion Vector Reconstructor 140

Firstly, a video is played with a modified Berkeley MPEG-1 player that generates

text files that contain the inputs © and outputs © of the motion vector

reconstructor. The text file with the inputs © is then read by a testbench to provide

the input vectors @ for the timing simulation of the complete design © using

ModelSim. The complete design is in the form of a Verilog gate netlist as explained

at the beginning of Section 6.4. During timing simulation, all the generated output

values from the motion vector reconstructor are saved in a text file © . This text file

is compared with the text file that contains the outputs obtained by the motion vector

reconstructor © when playing a video with the Berkeley MPEG-1 decoder. The

comparison is made using a program written in C++ that finds the differences

between two text files and displays the line numbers where these differences have

been observed. After performing the comparison, no differences were detected

between the text files © and © , which validates the functionality of the design for

all the input vectors ®. After the timing simulation with ModelSim, waveforms ©

for Design 1 and Design 2 are obtained. Examples of such waveforms are given in

Figure 6.17 and Figure 6.18. These diagrams show the inputs (rst, elk, mhc, ...,

rdprev_i) and outputs (rrprev_o, rdprev_o, r rpo , rdpo), of the top level module

shown in Listing 6.2 and Listing 6.3. The inputs were provided by the testbench after

reading the text file © that contains the input profiles for the motion vector

reconstructor.

13 clock cycles, T = 50ns

rst

cik~L_n
mhc 1

mhr 0

mvr 1

I 7

fp 0

nprev 1 J

rdprev o A2Jcl

nip n 1

done

I
I

J-LJ-LT
I-B

H

Ifi

Us
1-21

I-a I

I i

1-21 Ma

I I

"LTLTL

18

rLTLT

I3

lO

11

]-•

LTL_TL

1.51 1.11

110

I M

6

"LTLTl

84 I-54 I.2

in

_n_hu
Is

[3

[-21

1-11

I

1-11]

1.21

1-11 I

I 1

"LTLTL

i 110

6

n_TL_r

i i

LTLTL

I32 [-11

I0 IB

110

-5 I84 I-5

84 1-54

_n_n_r
i

i

i

i

i-ii

\.n

1.11

I
r

~i_r

|.
i.

s I-
1—1

Figure 6.17 Timing simulation of Design 1

Chapter 6 141

ret

d k ~

mhc J

mhr l

f p l

itfpmrl -

rrprev o J

rdprav o A

I

JTJ-
[-8

h

Is

U

1-21

I.

1 11

nn<

_r~i

HI

iiniiin
25

-TLT

I-ie

ho

ut

20 dock cycles, T= 50ns

i

ni

iiiiini

JTJ

it

iiiiinii

TLT

In

MINIM
2502

n i

1.1 B

Illlllll
0 ns

_TLT

1-21

IS4

Ji_r

tea

I-54

miiim

_TLT

I48

250'

JlJ"
IK

|3

I-'
I-'

1-21

1.11

U

I-
r

IIIIIIIM
Om

sir

1

1

|5

H

i la

1I1

~ |

I l l l l l l l

n i

ii

if

_TLT

i

2501

J I T

0 ns

JTT

lo

IU

11

iiiiiini

JTT

I-

Miiiiii
2508

HI

i le

I L

I I I I I I I I
Om

J I T

i i .

-TLT

A I.

I.

Illlllll

_TLT
i i

In

In

In

lo
1 n

lc

TiTTc

n
2511

1

Figure 6.18 Timing simulation of Design 2

In Figure 6.17, outputs are ready every 13 clock cycles, matching with the schedule

length specified earlier in the schedule for Design 1 in Figure 6.7. In Figure 6.18,

outputs are ready every 20 clock cycles, matching with the schedule length specified

earlier in the schedule for Design 2 in Figure 6.8. Note that although the outputs are

ready after different number of clock cycles, the sample period remains the same in

both figures, i.e. 50 ns.

6.4.2 Area cost

This section presents an analysis of the actual area cost of Design 1 and Design 2,

which includes the required area for the datapath and controller after logic synthesis.

As described in the previous section, the datapath is constructed by interconnecting

the synthesised library components from Table 6.1. Hence, the area of the datapath is

equal to the sum of the individual area of each datapath component, i.e. modules,

registers and multiplexers. This results in a datapath area of 31860um2 for Design 1

and 40266 um for Design 2. The difference in area is due to the use of more

functional modules in Design 2 than in Design 1, as can be seen from Figure 6.13

and Figure 6.14. The area values for the controllers of Design 1 and Design 2 were

obtained after performing logic synthesis as shown in Figure 6.15. The controller of

Design 1 has an area of 1456uin2 and the controller of Design 2 occupies 1876um2.

The controller is bigger in Design 2 than in Design 1 since it needs to generate more

control signals due to a more complex datapath (Figure 6.14) that executes

multicycled operations. Moreover, the controller in Design 2 has more states than in

Case study: MPEG-1 Motion Vector Reconstructor 142

Design 1 because of a larger schedule length,, as shown previously in the schedules of

Figures 6.7 and 6.8.

The actual area cost for Design 1 and Design 2 including the datapath and controller

is 33316um2 and 42142um2 respectively. These actual values present a close

correlation with the approximated values from Table 6.2, which do not include the

area of the controller. This proves that the area cost function (equation (5.6) in

Chapter 5) used by PABCOM is reliable for data dominated designs, "where the

controller contributes very few to the total area of the design, as shown in Figure

6.19. ^

50000.000

40000.000

E 30000.000
=L

<j> 20000.000
n

10000.000

0.000

Design 1 Design 2

I datapath m controller

Figure 6.19 Area of two designs for the motion vector reconstructor

Datapath components area

To give an insight into the area contributions of the various components of the

datapath for Design 1 and Design 2, consider Figure 6.20. It can be seen that the area

of the modules in Design 2 is bigger than in Design 1. This is because Design 2 uses

more modules than Design 1, i.e. 1 multiplier, 1 logic-and, 1 shifter and 2

comparators, as shown in the datapaths of Figure 6.13 and Figure 6.14.

Note that the registers area is almost the same for both designs. This is because

Design 2 uses only two 1-bit registers more than Design 1. The multiplexers area is

also very similar for both designs and the quantity, type and individual area of the

multiplexers used in each design is given in Table 6.4.

Chapter 6 143

20000 -

E 15000 -

S loooo -
5

5000 -

- 0 - r . i 1 1 I ! 1

>•

- t "

multiplexers registers modules

I Design 1 • Design 2

Figure 6.20 Area of the datapath components in Design 1 and Design 2

Table 6.4 Multiplexers req
Design 1

quantity
3
10
5
4
1

type
Mux 2-1 (lbit)

Mux 2-1
Mux 4-1
Mux 5-1
Mux 6-1

Area (u.m2)
48.3
2582

2743.5
3227.6
1065.1

Total area of muxes = 9666.5 jam2

uirements for both designs
Design 2

quantity
3
13
4
2
1
1

type
Mux 2-1 (1-bit)

Mux 2-1
Mux 4-1
Mux 5-1
Mux 6-1
Mux 8-1

Area (um2)
48.3

3356.6
2194.8
1613.8
1065.1
1355.6

Total area of muxes= 9634.2 um2

6.4.3 Power cost

To obtain the power dissipated by Design 1 and Design 2 at their respective

operating voltage, i.e. 1.25V and 1.15V (according to PABCOM), the flow shown in

Figure 6.21 was adopted. Firstly, gate-level power analysis using PrimePower [105]

from Synopsys was carried out at each characterization voltage of the 0.12u,m ST

library, i.e. 1.08V, 1.2V and 1.32V, (Figure 6.21a). To estimate the power

consumption at the selected operating voltage for the design, the quadratic

dependency of power on voltage is modelled using the three pairs (voltage, power)

previously obtained and a 2" order Lagrange interpolation polynomial (Figure

6.21b).

Case study: MPEG-1 Motion Vector Reconstructor 144

(a)

Synthesised design usingN

CORE9GPLL. Best.syn,
1.32V ,

Synthesised design using
CORE9GPLL_Nom.syn.

1.20V

Synthesised design using
CORE9GPLL_Worst.synT

1.08V

(b)

(1.32V, P(1.32V»)

(1.20V, P(1.20V))

K
(i.oBv,p(i.oav»)

/ •

Lagrange interpolation
polynomial

Figure 6.21 Actual power cost flow

Figure 6.22 shows the dynamic power consumption for Design 1 and Design 2 at

characterisation voltages 1.08V, 1.20V and 1.32V. Using such power values and

characterisation voltages in combination with a 2nd order Lagrange interpolation

polynomial resulted in an actual power consumption of 3.3mW at 1.25V for Design 1

and of 2.8mW at 1.15V for Design 2. These actual power consumption values are

consistent with the approximated power values from Figure 6.8, where power of the

controller is not considered. This assumption is valid for data dominated designs,

where datapath power consumption is the major contributor to the total power of the

design, as shown later in this section.

Table 6.5 summarises the actual area values shown in Figure 6.19 and actual power

values shown in Figure 6.22. It can be seen that Design 2 consumes less power but

requires more area than Design 1. Intuitively, a bigger area may imply that more

transistors are switching resulting in higher power consumption. This can be seen

when both designs are operated at the same voltage in Figure 6.22. For example,

considering an operating voltage of 1.2V, Design 2 has a power consumption of

3.3mW whereas Design 1 dissipates 2.8mW. However, the combination of selected

clock period and operations throughput (see Table 6.3) allowed a higher voltage

scaling for Design 2 than for Design 1, i.e. 1.15V and 1.25V respectively, leading to

lower power consumption. This shows the benefit of using PABCOM to analyse

Chapter 6 145

different power-area tradeoffs and to obtain the solution that suits better the

optimisation goal. The different power-area tradeoffs were possible due to the

selection of diverse clock period and operations throughput, resulting in designs with

different scheduling, allocation and binding.

5.00

4.50

4.00

3.50

o
Q.

3.00

2.50

2.00

1.05 1.35

• Design 1 • Design 2 A Design 3

Figure 6.22 Total power consumption of Design 1 and Design 2 at different supply voltages

Design 1
Design 2
Design 3

Table 6.5 Actual
Area (/mi2)

33316
42142
31159

area and power values for different solutions
Power (mW)

3.3
2.8
4.8

Power saving
, 31%

42%
-

Area overhead
7%
30%

•

Table 6.5 also provides the power savings and area overhead of Design 1 and Design

2 with respect to Design 3, which was obtained using a power unaware datapath

synthesis algorithm that aims only area minimisation [57]. Consequently, Design 3 is

operated at the maximum supply voltage of the library, i.e. 1.32V. Note that Design 1

presents a power reduction of 31% with an area overhead of only 7%. A more

efficient solution in power terms is Design 2, which reduces 42% the power

dissipation but at the expense of a higher area overhead, i.e. 30%.

Case study: MPEG-1 Motion Vector Reconstructor 146

So far only actual values of dynamic power consumption for the designs have been

presented. This is because leakage power of the designs contributes insignificantly to

the total power consumption. For example, at maximum supply voltage, i.e. 1.32V,

Design 2 has a leakage power dissipation of 14.6uW whereas Design 1 consumes

11.6uW. Consequently, leakage power analysis is out of the scope of this section.

Datapath and controller power consumption

To provide a better insight into the power contributions of the datapath and controller

in Design 1 and Design 2, consider Figure 6.23 and Figure 6.24. As expected, most

of the power is dissipated in the datapath. For example, in Design 1 and Design 2 the

datapath consumes respectively 87% and 84% of the total power. It can also be seen

that the datapath of Design 2 at operating voltage 1.15V consumed 20% less power

than the datapath of Design 1 at operating voltage 1.25 V. However, the controller of

Design 2 consumes approximately 5% more power than the controller of Design 1. A

possible reason for this is that the FSM that controls Design 2 has more states than

the FSM that controls Design 1, increasing the area and switching activity of the

controller, hence the power consumption.

0)

§

2.500 -

2.000 -

1.000 -

0 500 -

0.000 -
• "a •

datapath controller

Figure 6.23 Power dissipation in Design 1

Chapter 6 147

3.000

2.500

2.000

r
I
o 1.000

0.500 - -

0.000
datapath controller

Figure 6.24 Power dissipation in Design 2

Datapath components power consumption

Power dissipation of the datapath individual components is shown in Figure 6.25 and

Figure 6.26 for Design 1 and Design 2 respectively. As expected, most of the total

power in both designs is consumed by the modules. An interesting point to note is

that in Design 1 multiplexers consume more power than registers whereas in Design

2 registers consume more power than multiplexers. This variation of the power

contribution from registers and multiplexers may be due to the change of their

switching activity because of a different binding and schedule length, as shown in

Section 6.3.4.

Case study: MPEG-1 Motion Vector Reconstructor 148

1.200

1.000

g. 0.800

E
T 0.600

I
Q. 0.400

0.200

0.000

r

•

modules registers multiplexers

Figure 6.25 Datapath components power dissipation in Design 1

1 .iUU

1.000 -

0.800 -

E
t . U.DUU -

I
o
°- 0.400 -

0.200 -

0.000 -

f

\

• -

modules registers multiplexers

Figure 6.26 Datapath components power dissipation in Design 2

Modules power consumption

To provide a better insight into the power contribution of the modules in Design 1

and Design 2, consider now Figure 6.27 and Figure 6.28. As expected, multipliers

consume more power than the other modules in both designs. This is because

multiplier is the most power hungry component from the library shown in Table 6.1.

Chapter 6 149

r o
0)

§ °
°- o

0
0
0

500 y

450 -'

400 -

350 •

300 -

250 .

200 \

1 5 0 •

100 •

050 -

000 T-

J2
CD o

2
CO
Q .

O
O

CO 2
S

S an
d o

o
O)

o

Figure 6.27 Modules power dissipation in Design 1

I
Q.

0.500
0.450
0.400 !
0.350
0.300
0.250 -
0.200
0.150
0.100
0.050 -
0.000 •-

CD

"5. 2
CD
Q.

O
O

0

ad
d o

tr
ac

t

CO

CO
O
D)
O

O
O

c?

Figure 6.28 Modules power dissipation in Design 2

An interesting point to note is that in -Design 1 adders consume more power than

subtractors whereas in Design 2 subtractors consume slightly more power than

adders. This variation of the power contribution from adders and subtractors may be

due to the change of their switching activity because of a different binding and

schedule length, as shown in Section 6.3.4.

Case study: MPEG-1 Motion Vector Reconstructor 150

6.5 Concluding remarks

It has been demonstrated that PABCOM is capable of generating good quality

designs in terms of area and power when applied to a real life and complex design

example such as MPEG-1 motion vector reconstructor. For example, Design 1 and

Design 2 dissipate respectively 31% and 42% less power than a power unaware

design operated at the maximum supply voltage of the library components, i.e.

1.32V. These two designs were implemented based on a library component that was

previously synthesised using Synplify ASIC with ST 0.12/xm technology library.

Functional validation of these designs has been performed through timing simulation

with ModelSim and comparison of the design outputs with values obtained by the C

specification of the motion vector reconstructor. Both designs have undergone

extensive analysis of area and power using approximated values based on analytical

equations and actual values based on reports obtained after logic synthesis with

Synplify ASIC and power analysis with PrimePower.

Chapter 7

Conclusions and suggestions for future research

7.1 Conclusions

It is likely that the demand for low power, low cost and high performance digital

circuits will continue to increase in the future to meet the hand-held mobile devices

consumer market requirements. A possible design methodology capable of delivering

such circuits is low power behavioural synthesis. The work presented in this thesis

has focused on the design of low power, low cost and required performance digital

circuits starting from behavioural descriptions. To achieve this goal, novel

algorithms have been developed that can be used within a behavioural synthesis

framework to automate the design process. In particular the following key issues

have been addressed: '

• Low power scheduling of data dominated designs using a single supply

voltage was investigated. A new power-aware time constrained scheduling

algorithm based on appropriate voltage scaling after clock and operations

throughput selection and capable of identifying power-area tradeoffs has been

proposed.

• Development of a datapath synthesis algorithm that performs concurrently

scheduling, binding, clock and operations throughput selection.

• Implementation of PABCOM, a power-aware behavioural compiler' with a

compound cost function that allows optimising power, area or a combination

thereof, in a data dominated design given a time constraint.

Chapter 7 152

• Validation of the algorithms developed in this thesis by implementing two

solutions of the MPEG-1 motion vector reconstructor with different power

and area requirements.

In the following, a summary of the work carried out throughout this thesis is

presented. Chapter 2 has presented the foundations to design low power circuits

using a behavioural synthesis methodology. The process of behavioural synthesis, its

three main tasks (scheduling, allocation and binding) and interrelated tasks such as

clock selection have been reviewed. The importance of power consumption in digital

design as well as the key parameters that allow dynamic power reduction during

behavioural synthesis has also' been discussed. The main principles of combinatorial

optimisation have been briefly outlined to provide the necessary background for the

algorithm developed in Chapter 5.

Chapter 3 has shown that low power behavioural synthesis is an area where extensive

research has already been carried out. Dynamic power optimisation algorithms in

behavioural synthesis are based on either reduction of supply voltage, switching

activity, frequency or a combination thereof. Reducing supply voltage has a higher

impact on dynamic power consumption than reducing switching activity or

frequency. This is because of the quadratic dependence of dynamic power

consumption on the supply voltage. In behavioural synthesis, Multiple Supply

Voltages (MSV) or single supply voltage (SSV) are two techniques used to reduce

power consumption. Although a MSV technique reduce efficiently the power

dissipation, it has a higher routing cost of the supply lines and area/delay overhead

due to required level shifters when compared to SSV.

Chapter 4 has focused on developing a power-aware time constrained scheduling

algorithm (PATICS) capable of achieving comparable power reduction to MSV but

using a single supply voltage yet meeting the same time constraint. For example,

some solutions obtained for DIFFEQ and EWF have respectively less than 8% and

2% power increase when compared to solutions that use MSV [126]. PATICS is also

capable of obtaining a set of useful power-area tradeoffs by identifying the operating

voltage after combining adequate selection of clock period and operations

throughput. It has been shown that power dissipation and area have a non-linear

relation that results in a large and complex search when aiming the optimisation of

power, area or a combination thereof. Moreover, when compared with an area

Conclusions and suggestions for future research 153

optimised scheduler [58] using a number of benchmarks, PATICS obtain solutions

that meet the same time constraint with the same resource requirements but with less

power. For example, a power saving of 13% averaged over DIFFEQ, EWF and DCT

was obtained. Although PATICS provides good power savings, it is important to

consider the power dissipation of registers and multiplexers when searching for a

solution that meets the user requirements. Hence, to find good solutions in terms of

power and area, the behavioural synthesis tasks (scheduling and binding) in

combination with clock and operations throughput selection need to be performed

simultaneously.

Chapter 5 has described PABCOM, a Power-Aware Behavioural COMpiler that

given a time constraint, considers concurrently scheduling, binding, clock and

operations throughput selection using a simulated annealing based algorithm. Clock

and operations throughput selection is performed using an improved version of the

algorithm described in Chapter 4. A description of PABCOM is presented including

its compound cost function, cooling schedule, choice of annealing parameters and

performance. It has been shown that the compound cost function used by PABCOM

allows obtaining optimised solutions for area, power, or a combination thereof,

according to the designer specifications. For example, for DCT with a time constraint

equal to 2.5 times the critical path, a tradeoff with 35% lower power than an area

optimised solution and 53% less area than a power optimised solution was obtained.

Extensive experimental results using benchmarks examples have further

demonstrated the efficiency of the algorithm. It has also been shown that PABCOM

is capable of achieving solutions in less computational time and with lower power

and area than an algorithm based on previously published work [110]. For example,

for a time constraint equal to 2 times the critical path, a power saving of 5% with

computational time saving of 89% averaged over AR, EWF and DCT were obtained.

Power reductions are mainly due to the use of lower supply voltage and/or lower

frequencies, which were obtained after clock and operations throughput selection.

Chapter 6 has demonstrated the capability of PABCOM of generating good quality

solutions in terms of power and area through the realisation of the motion vector

reconstructor from the Berkeley MPEG-1 player [40]. Results after power-aware

behavioural synthesis are presented and two designs were implemented based on a

library component previously synthesised using Synplify ASIC with ST 0.12/mi

Chapter 7 154

technology library. Functional validation of these designs has been performed

through timing simulation with ModelSim. Further validation was carried out by

comparing the design outputs with values obtained by the C specification of the

motion vector reconstructor [40]. Extensive analysis of area and power was carried

out using approximated values based on analytical equations and actual values based

on reports obtained with logic synthesis and power analysis tools such as Synplify

ASIC and PrimePower. Analysis of actual values for area and power showed that the

datapath is the dominant part of the designs, confirming that the study case belongs

to the data dominated application domain despite the presence of conditional

branches. Because of the lack of reported literature on designing a low power motion

vector reconstructor has not been possible to compare. However, to give an insight

into the power savings achieved by PABCOM, it has been found that Design 1 and

Design 2 dissipate respectively 31% and 42% less power than a power unaware

design operated at the maximum supply voltage of the library components, i.e. 1.32V.

In conclusion, behavioural synthesis is a viable methodology for designing power

efficient complex designs. This thesis has investigated algorithms for scheduling and

datapath synthesis that aim at reducing the power consumption when using a

behavioural synthesis design methodology. Two new algorithms for low power time

constrained scheduling and datapath synthesis have been introduced and it was

demonstrated that both algorithms are capable of achieving significant power

savings. Furthermore, it has been shown the influence that clock and operations

throughput selection has on the operating voltage and consequently on the power

consumption and area of the design. The practical applicability of the developed

algorithms has been demonstrated through the low power realisation of a real life

multimedia functional block such as MPEG-1 motion vector reconstructor. It is

hoped that findings of this research have contributed further to the maturity of

behavioural synthesis in generating low power cost effective solutions for complex

design examples starting from behavioural descriptions.

Conclusions and suggestions for future research ' 155

7.2 Suggestions for further research

During the course of this research, a number of challenging research topics directly

related to low power behavioural synthesis have been identified. A short review of

these topics is given in the following.

Leakage power optimisation

Leakage power is gaining importance in nanometre technology where it can

represent up to 40% of the total power consumption [62]. Moreover, predictions for

future technologies show that leakage power will become the dominant component in

power consumption [146]. Leakage power can be reduced during behavioural

synthesis with the help of a dual voltage threshold library component, as shown in

[52], [62] and [143]. Here, power reduction was achieved by identifying the

frequently idle modules and replacing them with high threshold modules. Other

promising technique to reduce leakage power while performing behavioural

synthesis is turning off idle Multi-Threshold CMOS (MTCMOS) modules using

sleep transistors. MTCMOS modules were used during register and module binding

algorithm in [29] and [31]. hi order to sustain performance, the sleep transistor needs

to be sized to large widths, leading to a significant area overhead. This was overcome

in [30] by setting an area constraint while performing the binding task using

MTCMOS resources. Leakage power can also be reduced during behavioural

synthesis by partitioning a circuit into islands which are powered down when its

components are idle [20]. Recently, gate leakage power (gate oxide direct tunnelling)

has attracted the attention of the researchers since it is one of the major components

of power dissipation for a nanoCMOS of sub-65 nm technology. Gate leakage power

minimisation during behavioural synthesis has been addressed in [84], [78], [82] and

[81]. It would be interesting to extend PABCOM to include leakage power

optimisation through the selection of a module from a library with dual voltage

threshold, MTCMOS or multioxide thickness components.

Thermal and power-aware behavioural synthesis

Thermal effects are becoming an important factor in the design of integrated circuits

due to their adverse influence on leakage power [88]. Recently, some efforts have

been done to incorporate awareness of temperature in behavioural synthesis

Chapter 7 156

algorithms. For example, binding algorithms for temperature constrained resource

minimization and resource constrained temperature minimization have been

proposed in [90]. Peak temperature minimisation based on uniform switching activity

distribution was addressed in [89], whereas thermal-aware floorplanning information

was considered in [32] and [65]. All these algorithms reduce efficiently the power

consumption but do not consider how temperature may affect the selection of supply

voltage(s) and threshold voltage(s) when aiming power minimisation under a given

time constraint. Hence, it would be necessary to develop algorithms that consider

how the behavioural synthesis tasks interact with the temperature, supply voltage(s)

and threshold voltage(s).

Appendix 1
VHDL and Verilog codes

Chapter 6 presented the design of two solutions for the motion vector reconstructor

using low power behavioural synthesis algorithms. Important aspects of .these

designs comprise the VHDL realisation of the library components (Section 6.3.2) and

the generation of structural Verilog for the datapaths (Section 6.3.4).

A1.1 VHDL description of the library components

. . . adder
library ieee;
use ieee.std_logic_1164.all;
use ieee. numeric_std.all;

entity adder is
generic(n:NATURAL:=16);
port(

x, y : in std_logic_vector(n-1 downto 0);
z: out std_logic_vector(n-1 downto 0));

end entity adder;

architecture behaviour of adder is
begin

add: process(x, y) is
begin

z <= std_logic_vector(signed(x) + signed(y));
end process add;

end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_adder is
port(

e: in stdjogic;
elk: in stdjogic;
x: in std_logic_vector(15 downto 0);

Appendix 1 158

y: in std_logic_vector(15 downto 0);
z: out std_logic_vector(15 downto 0));

end sync_adder;

architecture behaviour of sync_adder is
signal aux_x, aux_y: std_logic_vector(15 downto 0);
signal aux_z: std_logic_vector(15 downto 0);
signal internal_e: stdjogic;

begin
enable_gen: process (elk, e) is - registering inputs
begin

if (rising_edge(clk)) then
internal_e <= e;

end if;
end process enable_gen;

latch_inp: process (internal_e, x, y)
begin

if (internal_e = '1') then
aux_x<=x;
aux_y <= y; •

else
a u x x <= aux_x;
aux_y <= aux_y;

end if;
end process;

z <= auxz;
uO: entity work.adder port map (aux_x, aux_y, aux_z);

end behaviour;

comparator —
library ieee;
,use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity comp is
generic(n:NATURAL:=16);
port(

x,y : in std_logic_vector(n-1 downto 0);
op: in std_logic_vector(2 downto 0);
z : out stdjogic);

end entity comp;

architecture behaviour of comp is
begin

process(x, y, op) is
begin

case op is
when "000"=>

if (signed(x) = signed(y)) then - equal to
Z<=T;

else
Z<='0';

end if;
when "001 "=>

if (signed(x) > signed(y)) then - greater than

VHDL and Verilog codes 159

when

when

when

when

when
end case;

end process;
end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

Z<=T;
else

Z<='0";
end if;

"010"=>
if (signed(x) < signed(y)) then

Z<=T;
else

Z<='0';
end if;

"011"=>
if (signed(x) <= signed(y)) then

Z<='V;
else

Z<='0';
end if;

"100"=>
if (signed(x) >= signed(y)) then

Z<=T;
else

Z<='0';
end if;

"101"=>
if (signed(x) /= signed(y)) then

Z<=T;
else

Z<='0';
end if;

others=>null;

-

- less than

- less or equal than

- greater or equal than

- different

entity sync_comp is
port(

e: in stdjogicf
elk: in stdjogic;
x: in std_logic_vector(15 downto 0);
y: in std_logic_vector(15 downto 0);
op: in std_logic_vector(2 downto 0);
z: out stdjogic);

end sync_comp;

architecture behaviour of sync_comp is
signal aux_x, aux_y: std_logic_vector(15 downto 0);
signal aux_op: std_iogic_vector(2 downto 0);
signal aux_z: stdjogic;
signal internal_e: stdjogic;

begin
enable_gen: process (elk, e) is - registering inputs
begin

if (rising_edge(clk)) then
internal_e <= e;

end if;
end process enable_gen;

Appendix 1 160

latch_inp: process (intemal_e, x, y, op)
begin

if (internal_e = T) then
auxx <= x;
aux_y <= y;
aux_op <= op;

else
aux_x <= auxx ;
aux_y <= aux_y;
aux_op <= auxop;

end if;
end process latchjnp;

z <= auxz ;
uO: entity work.comp port map (aux_x, aux_y, aux_op, aux_z);

end behaviour;

. multiplier
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity multiplier is
generic(n:NATURAL:=16);
port(

x, y : in std_logic_vector(n-1 downto 0);
z: out std_logic_vector(n-1 downto 0));

end entity multiplier;

architecture behaviour of multiplier is
begin

multiply: process(x, y) is
variable aux1: signed (2*n-1 dowhto 0);
variable aux2: integer;
begin

aux1 := signed(x) * signed(y);
aux2 := to_integer(aux1);
z <= std_logic_vector(to_signed(aux2, n));

end process multiply;
end architecture behaviour;

library ieee;
use ieee.stdjogic_1164.all;

entity syncjnultiplier is
port(

e: in stdjogic;
elk: in stdjogic;
x: in stdjogic_vector(15 downto 0);
y: in stdjogic_vector(15 downto 0);
z: out stdjogic_vector(15 downto 0));

end syncjnultiplier; ' •

architecture behaviour of syncjnultiplier is
signal aux_x, aux_y: stdjogic_vector(15 downto 0);
signal aux_z: stdjogic_vector(15 downto 0);

VHDL and Verilog codes 161

signal internal_e: stdjogic;
begin

enable_gen: process (elk, e) is - registering inputs
begin

if (rising_edge(clk)) then
i internal_e <= e;

end if;
end process enable_gen;

latch_inp: process (internal_e, x, y)
begin

if (internal_e = T) then
aux_x <= x;
aux_y <= y;

else
auxx <= aux_x;
aux_y <= aux_y;

end if;
end process;

z <= auxz;
uO: entity work.multiplier port map (aux_x, aux_y, aux_z);

end behaviour;

shifter
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity shifter is
generic(n:NATURAL:=16);
port(

x: in std_logic_vector(n-1 downto 0);
z : out std_logic_vector(n-1 downto 0));'

end entity shifter;

architecture behaviour of shifter is
begin

shifting: process(x) is
begin

z <= std_logic_vector(signed(x) sll 1);
end process;

end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_shifter is
port(

e: in stdjogic;
elk: in stdjogic;
x: in stdjogic_vector(15 downto 0);
z: out stdjogic_vector(15 downto 0));

end sync_shifter;

architecture behaviour of sync_shifter is
signal a i ixx : stdjogic_vector(15 downto 0);

Appendix 1 162

signal aux_z: std_logic_vector(15 downto 0);
signal internal_e: stdjogic;
begin

enable_gen: process (elk, e) is
begin

if (rising_edge(clk)) then
internal_e <= e;

end if;
end process enable_gen;

latch_inp: process (internal_e, x)
begin

if {internal_e = '1') then
auxx <= x;

else
auxx <= aux_x;

end if;
end process;

z <= aux_z;
uO: entity work.shifter port map (aux_x, aux_z);

end behaviour;

subtractor
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity subtractor is
generic(n:NATURAL:=16);

sport(
x, y : in std_logic_vector(n-1 downto 0);
z: out std_logic_vector(n-1 downto 0));

end entity subtractor;

architecture behaviour of subtractor is
begin

add: process(x, y) is
begin

z <= std Jogic_vector(signed(x) - signed(y));
end process add;

end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_subtractor is
port(

e: in stdjogic;
elk: in stdjogic;
x: in stdjogic_vector(15 downto 0);
y: in stdjogic_vector(15 downto 0);
z: out stdjogic_vector(15 downto 0));

end sync_subtractor;

architecture behaviour of sync_subtractor is
signal aux_x, aux_y: stdjogic_vector(15 downto 0);

VHDL and Verilog codes 163

signal aux_z: std_logic_vector(15 downto 0);
signal internal_e: stdjogic;
begin

enable_gen: process (elk, e) is - registering inputs
begin

if (rising_edge(clk)) then
internal_e <= e;

end if;
end process enable_gen;

latch_inp: process (internal_e, x, y)
begin

if (internal_e = '1') then
aux_x <= x;
aux_y <= y;

else
aux_x <= auxx ;
aux_y <= aux_y;

end if;
end process;

z <= auxz;
uO: entity work.subtractor port map (aux_x, aux_y, aux_z);

end behaviour;

o r .
library ieee;
use ieee.stdjogic_1164.all;
use ieee.numeric_std.all;

entity Igo is
port(

x, y : in stdjogic;
z: out stdjogic);

end entity Igo;

architecture behaviour of Igo is
begin

log_or: process(x, y) is
begin

z <= x or y;
end process log_or;

end architecture behaviour;

library ieee;
use ieee.stdjogic_1164.all;

entity syncjgo is
port(

e: in stdjogic;
elk: in stdjogic;
x: in stdjogic;
y: in stdjogic;
z: out stdjogic);

end syncjgo;

architecture behaviour of syncjgo is

Appendix 1 164

signal aux_x, aux_y: stdjogic;
signal aux_z: stdjogic;
signal internal_e: stdjogic;
begin

enable_gen: process (elk, e) is - registering inputs
begin

if (rising_edge(clk)) then
internal_e <= e;

end if;
end process enable_gen;

latchjnp: process (intemal_e, x, y)
begin

if (intemal_e = '1') then
auxx <= x;
a u x y <= y;

else
aux_x <= aux_x;
aux_y <= aux_y;

end if;
end process;

z <= auxz;
. uO: entity work.igo port map (aux_x, aux_y, aux_z);

end behaviour;

a n (j
library ieee;
use ieee.stdjogic_1164.all;
use ieee.numeric_std.all;

entity Iga is
port(

x, y : in stdjogic; r

z: out stdjogic);
end entity Iga;

architecture behaviour of Iga is
begin

log_and: process(x, y) is
begin

z <= x and y;
end process log_and;

end architecture behaviour;

library ieee;
use ieee.stdjogic_1164.all;

entity syncjga is
port(

e: in stdjogic;
elk: in stdjogic;
x: in stdjogic;
y: in stdjogic;
z: out stdjogic);

end syncjga;

VHDL and Verilog codes ' 165

architecture behaviour of syncjga is
signal aux_x, aux_y: stdjogic;
signal aux_z: stdjogic;
signal internal_e: stdjogic;
begin

enable_gen: process (elk, e) is - registering inputs
begin

if (rising_edge(clk)) then
internal_e <= e; <

end if;
end process enable_gen;

latchjnp: process (internal_e, x, y)
begin

if (internal_e = '1') then
aux_x <= x;
aux_y <= y;

. else
auxx <= auxx;
aux_y <= aux_y;

end if;
end process;

z <= aux_z;
uO: entity work.lga port map (aux_x, aux_y, aux_z);

end behaviour;

A1.2 Structural Verilog for Design 1 and Design 2

II module for the whole datapath
module datapath (

rst, elk,
eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39,
ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13, ldR14,
ldR15, ldR19, ldR20, ldR22,
IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, ldstR9, IdstRIO,
opM21, opM22,
sM1a, sM1b, sM2a, sM7a, sM12a, sM12b, sM13a, sM13b, sM19a, sM21a, sM21b, sM22b,
sM39a, sR1a, sR2a, sR3a, sR4a, sR7a, sR11a, sR13a, sR14a, sR19a, sR22a,
mhc, mhr, mvc, mvr, f, fp, cero, one, sixteen, _sixteen, thirty2,
rrprevj, rdprevj,
rrprev_o, rdprev_o, rrp_o, rdp_o,
stR1o, stR2o, stR3o, stR4o, stR5o, stR6o, stR7o, stR8o, stR9o, stR10o

);
input rst;
input elk;
input eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39;
input ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13,
ldR14,

ldR15, ldR19, ldR20, ldR22;
input IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, ldstR9, IdstRIO;
input [2:0] opM21, opM22;
input [1:0] sM1a, sM1b, sM13a, sM13b, sM21a;
input sM2a, sM12a, sM12b, sM19a, sM21b, sM22b, sM39a, sR7a, sR11a, sR13a, sR14a,

sR19a, sR22a;

Appendix 1 166

input [2:0] sM7a, sR1a, sR2a, sR3a, sR4a;
input [15:0] mhc, mhr, mvc, mvr, f, fp, cero, one, sixteen, _sixteen, thirty2;
input [15:0] rrprevj, rdprev_i;
output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;
output stR1o, stR2o, stR3o, stR4o, stR5o, stR6o, stR7o, stR8o, stR9o, stR10o;

// module inputs
wire [15:0] M1ao, M1bo, M2ao, M7ao, M12ao, M12bo, M13ao, M13bo, M19ao, M21ao,

M21bo, M22bo;
wire M39ao; , :

// module outputs
wire [15:0] M1o, M2o, M7o, M12o, M13o, M19o;
wire M18o, M21o, M22o, M39o;
// register inputs
wire [15:0] R1ao, R2ao, R3ao, R4ao, R7ao, R11ao, R13ao, R14ao;
wire R21ao, R19ao, R22ao;
// register outputs
wire [15:0] R5o, R6o, R7o, R8o, R9o, R10o, R11o, R12o, R13o, R14o, R15o;
wire R19o, R20o, R22o;

sync_adder M1 (eM1, elk, M1ao, M1bo, M1o);
sync_adder M2 (eM2, elk, M2ao, M12ao, M2o);
sync_multiplier M7 (eM7, elk, M7ao, R10o, M7o);
sync_subtractor M12 (eM12, elk, M12ao, M12bo, M12o);
sync_subtractor M13 (eM13, elk, M13ao, M13bo, M13o);
syncjga M18 (eM18, elk, R22o, R19o, M18o);
sync_shifter M19 (eM19, elk, M19ao, M19o);
sync_comp M21 (eM21, elk, M21 ao, M21 bo, opM21, M21 o);
sync_comp M22 (eM22, elk, rrprev_o, M22bo, opM22, M22o);
syncjgo M39 (eM39, elk, M39ao, R19o, M39o);

registro R1 (R1ao, elk, rst, ldR1, rrprev_o);
registro R2 (R2ao, elk, rst, ldR2, rdprev_o);
registro R3 (R3ao, elk, rst, ldR3, rrp_o);
registro R4 (R4ao, elk, rst, ldR4, rdp_o);
registro R5 (mvr, elk, rst, ldR5, R5o);
registro R6 (cero, elk, rst, ldR6, R6o);
registro R7 (R7ao, elk, rst, ldR7, R7o);
registro R8 (fp, elk, rst, ldR8, R8o);
registro R9 (rdprev_i, elk, rst, ldR9, R9o);
registro R10 (f, elk, rst, ldR10, R10o);
registro R11 (R11ao, elk, rst, ldR11, R11o);
registro R12 (thirty2, elk, rst, ldR12, R12o);
registro R13 (R13ao, elk, rst, ldR13, R13o);
registro R14 (R14ao, elk, rst, ldR14, R14o);
registro R15 (rrprev_i, elk, rst, ldR15, R15o);
registro_1b R19 (R19ao, elk, rst, ldR19, R19o); ' v.
registrojb R20 (M21o, elk, rst, ldR20, R20o); .
registro_1b R22 (R22ao, elk, rst, ldR22, R22o);

// status registers, outputs to controller...
registro J b stR1 (M39o, elk, rst, IdstRI, stR1 o);
registro J b stR2 (M22o, elk, rst, ldstR2, stR2o);
registro J b stR3 (M21 o, elk, rst, ldstR3, stR3o);
registro_1 b stR4 (M18o, elk, rst, ldstR4, stR4o);
registro_1 b stR5 (M21o, elk, rst, ldstR5, stR5o);
registro_1b stR6 (M39o, elk, rst, ldstR6, stR6o);
registroj b stR7 (M21o, elk, rst, ldstR7, stR7o);
registrojb stR8(M21o, elk, rst, ldstR8, stR8o);
registroj b stR9 (M18o, elk, rst, ldstR9, stR9o);

VHDL and Verilog codes 167

registrojb stR10 (M21o, elk, rst, IdstRIO, stR10o);

mux5 R1a (mhc, M7o, M1o, M13o, cero, sR1a, R1ao);
mux5 R2a (mhr, M12o, M2o, M1o, cero, sR2a, R2ao);
mux6 R3a (M13o, M7o, M2o, M.19o, cero, rrprev_o, sR3a, R3ao);
mux5 R4a (sixteen, M1o, M13o, M19o, rdprev_o, sR4a, R4ao);
mux2 R7a (one, M13o, sR7a, R7ao);
mux2 R11 a (mvc, M7o, sR11 a, R11 ao);
mux2 R13a (_sixteen, M7o, sR13a, R13ao);
mux2 R14a (M12o, cero, sR14a, R14ao);
mux2_1 b R19a (M21 o, M22o, sR19a, R19ao);
mux2_1b R22a (M22o, M21o, sR22a, R22ao);

mux4 M1a (R14o, R15o, R9o, rrprev_o, sM1a, M1ao);
mux4 M1b (rrprev_o, rdp_o, rdprev_o, rrp_o, sM1b, M1bo);
mux2 M2a (rdprev_o, rdp_o, sM2a, M2ao);
mux5 M7a (rrprev_o, R11o, R13o, rdp_o, R12o, sM7a, M7ao);
mux2 M12a (rrp_o, R11o, sM12a, M12ao);
mux2 M12b (rdprev_o, R5o, sM12b, M12bo);
mux4 M13a (R10o, rrprev_o, rdp_o, rdprev_o, sM13a, M13ao);
mux4 M13b (R7o, R14o, rrp_o, rrprev_o, sM13b, M13bo);
mux2 M19a (rdprev_o, rrprev_o, sM19a, M19ao);
mux4 M21a (R10o, R11o, rrprev_o, R8o, sM21a, M21ao);
mux2 M21b (R7o, R6o, sM21b, M21bo);
mux2 M22b (R6o, R13o, sM22b, M22bo);
mux2_1 b M39a (R22o, R20o, sM39a, M39ao);

endmodule

module datapath (
rst, elk,
eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eM40,
eM43, eM44, // enable signals for modules
ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13, ldR14,
ldR15, ldR16, ldR18, ldR21, ldR22, ldR23, // load signals for registers
IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, ldstR9, IdstRIO, // load
signals for status registers
opM21, opM22, opM43, opM44, // operation that the comparator will execute
sM2a, sM2b, sM4a, sM4b, sM6a, sM7b, sM13a, sM13b, sM14a, sM14b, sM21a, sM39a,
sM39b, sM44a, sM44b,
sR1a, sR2a, sR3a, sR4a, sR6a, sR9a, sR11a, sR12a, sR23a,
mhc, mhr, mvc, mvr, f, fp, cero, one, sixteen, _sixteen, thirty2,
rrprev_i, rdprev_i,
rrprev_o, rdprev_o, rrp_o, rdp_o,
stR1o, stR2o, stR3o, stR4o, stR5o, stR6o, stR7o, stR8o, stR9o, stR10o

);
input rst;
input elk;
input eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eM40,
eM43, eM44;
input ldR1, ldR2, ldR3, ldR4, ldR5, ldR6, ldR7, ldR8, ldR9, IdRIO, ldR11, ldR12, ldR13,
ldR14, ldR15, ldR16, ldR18, ldR21, ldR22, ldR23;
input IdstRI, ldstR2, ldstR3, ldstR4, ldstR5, ldstR6, ldstR7, ldstR8, ldstR9, IdstRIO;
input [2:0] opM21, opM22, opM43, opM44;
input [1:0] sM7b, sM13a, sM13b, sM14a;
input sM2a, sM2b, sM4a, sM4b, sM6a, sM14b, sM21a, sM39a, sM39b, sM44a, sM44b,
sR6a, sR9a, sR11a, sR12a, sR23a;
input [2:0] sR1a, sR2a, sR3a, sR4a;

Appendix 1 168

input [15:0] mhc, mhr, mvc, mvr, f, fp, cero, one, sixteen, _sixteen, thirty2;
input [15:0] rrprev_i, rdprev_i;
output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;
output stR1o, stR2o, stR3o, stR4o, stR5o, stR6o, stR7o, stR8o, stR9o, stR10o;

// module inputs
wire [15:0] M2ao, M2bo, M4ao, M4bo, M6ao, M7bo, M13ao, M13bo, M14ao, M14bo, M21ao,
M44ao, M44bo;
wire M39ao, M39bo;
// module outputs
wire [15:0] M2o, M4o, M6o, M7o, M13o, M14o, M19o, M20o;
wire M18o, M21o, M22o, M39o, M40o, M43o, M44o;
// register inputs
wire [15:0] R1ao, R2ao, R3ao, R4ao, R6ao, R9ao, R11ao, R12ao;
wire R23ao;
// register outputs
wire [15:0] R1o, R2o, R3o, R4o, R5o, R6o, R7o, R8o, R9o, R10o, R11o, R12o, R13o, R14o,
R15o;
wire R16o, R18o, R21o, R22o, R23o;

sync_adder M2 (eM2, elk, M2ao, M2bo, M2o);
sync_adder M4 (eM4, elk, M4ao, M4bo, M4o);
sync_multiplier M6 (eM6, elk, M6ao, R5o, M6o);
sync_multiplier M7 (eM7, elk, R5o, M7bo, M7o);
sync_subtractorM13(eM13, elk, M13ao, M13bo, M13o);
sync_subtractor M14 (eM14, elk, M14ao, M14bo, M14o);
syncjga M18 (eM18, elk, R18o, R23o, M18o);
sync_shifter M19 (eM19, elk, rrprev_o, M19o);
sync_shifter M20 (eM20, elk, rdprev_o, M20o);
sync_comp M21 (eM21, elk, M21ao, R9o, opM21, M21o);
sync_comp M22 (eM22, elk, rrprev_o, R9o, opM22, M22o);
syncjgo M39 (eM39, elk, M39ao, M39bo, M39o);
syncjga M40 (eM40, elk, R22o, R16o, M40o);
sync_comp M43 (eM43, elk, rrprev_o, R12o, opM43, M43o);
sync_comp M44 (eM44, elk, M44ao, M44bo, opM44, M44o);

registro R1 (R1ao, elk, rst, ldR1, rrprev_o);
registro R2 (R2ao, elk, rst, ldR2, rdprev_o);
registro R3 (R3ao, elk, rst, ldR3, rrp_o);
registro R4 (R4ao, elk, rst, ldR4, rdp_o);
registro R5 (f, elk, rst, ldR5, R5o);
registro R6 (R6ao, elk, rst, ldR6, R6o);
registro R7 (rrprev_i, elk, rst, ldR7, R7o);
registro R8 (rdprev_i, elk, rst, ldR8, R8o);
registro R9 (R9ao, elk, rst, ldR9, R9o);
registro R10 (one, elk, rst, ldR10, R10o);
registro R11 (R11 ao, elk, rst, ldR11, R11 o);
registro R12 (R12ao, elk, rst, ldR12, R12o);
registro R13 (thirty2, elk, rst, ldR13, R13o);
registro R14 (M13o, elk, rst, ldR14, R14o);
registro R15 (M14o, elk, rst, ldR15, R15o);
registroj b R16 (M22o, elk, rst, ldR16, R16o);
registrojb R18 (M44o, elk, rst, ldR18, R18o);
registroj b R21 (M21 o, elk, rst, ldR21, R21 o); ''
registrojb R22 (M43o, elk, rst, ldR22, R22o);
registrojb R23 (R23ao, elk, rst, ldR23, R23o);

mux2 M2a (rrp_o, R8o, sM2a, M2ao);
mux2 M2b (rdp_o, rrp_o, sM2b, M2bo);
mux2 M4a (rdprev_o, rrprev_o, sM4a, M4ao);

VHDL and Verilog codes 169

mux2 M4b (rrprev_o, R7o, sM4b, M4bo);
mux2 M6a (rrprev_o, R13o, sM6a, M6ao);
mux4 M7b (rrp_o, R12o, R11 o, R13o, sM7b, M7bo);
mux4 M13a (R5o, R14o, rrp_o, rdprev_o, sM13a, M13ao);
mux4 M13b (R10o, rdp_o, rrprev_o, cero, sM13b, M13bo);
mux4 M14a (R5o, R15o, rrprev_o, R11o, sM14a, M14ao); •
mux2 M14b (R10o, rdprev_o, sM14b, M14bo);
mux2 M2,1a (rrp_o, R60, sM21a, M21ao);
mux2_1b M39a (R21o, R18o, sM39a, M39ao);
mux2_1b M39b (R18o, R23o, sM39b, M39bo);
mux2 M44a (R5o, R60, sM44a, M44ao);
mux2 M44b (RlOo, R12o, sM44b, M44bo);

mux5 R1a (mhc, M60, M4o, M13o, cero, sR1a, R1ao);
mux5 R2a (mhr, M14o, M4o, M2o, cero, sR2a, R2ao);
mux6 R3a (mvc, M7o, M2o, M13o, M19o, rrprev_o, sR3a, R3ao);
mux8 R4a (mvr, M13o, M7o, M2o, M20o, cero, rdprev_o, cero, sR4a, R4ao);
mux2 R6a (fp, M2o, sR6a, R6ao);
mux2 R9a (cero, M14o, sR9a, R9ao);
mux2 R11a (sixteen, M7o, sR11a, R11ao);
mux2 R12a (_sixteen, M7o, sR12a, R12ao);
mux2_1b R23a (M22o, M21o, sR23a, R23ao);

// status registers, outputs to controller...
registro J b stR1 (M39o, elk, rst, IdstRI, stR1o);
registrojb stR2 (M22o, elk, rst, ldstR2, stR2o);
registrojb stR3 (M22o, elk, rst, ldstR3, stR3o);
registrojb stR4 (M40o, elk, rst, ldstR4, stR4o);
registrojb stR5 (M21o, elk, rst, ldstR5, stR5o);
registro J b stR6 (M39o, elk, rst, ldstR6, stR6o);
registrojb stR7 (M21o, elk, rst, ldstR7, stR7o);
registro J b stR8 (M21o, elk, rst, ldstR8, stR8o);
registro J b stR9 (M18o, elk, rst, ldstR9, stR9o);
registro J b stR10 (M210, elk, rst, IdstRI 0, stR1 Oo);

endmodule

Appendix 2
Area-Delay-Power characterisation

This appendix describes the methodology followed for the power-area-delay

characterisation of the library components of Table 5.9 and Table 6.1. The flow

diagram for the power-area-delay characterisation process is shown in Figure A2.1.

LFSR (Chapter 5)

Real data (Chapter 6)

VHDL description of the
library component

Verllog gate netjlst

Figure A2.1 Area-delay-power characterisation flow

The area-delay characterisation requires only the application of VHDL description of

the library components and Technology library file to the logic synthesis tool

Synplify ASIC [128]. The 0.12/xm technology library used is CORE9GPLL provided

by ST Microelectronics and it is composed of three files: CORE9GPLL_Best.lib,

CORE9GPLL_Nom.lib and CORE9GPLL_Worst.lib. CORE9GPLL is a low leakage

standard-cell library for HCM0S9 VLSI digital designs that is designed to work at

1.2V (+10%/-10%), as shown in Table A2.1 [132].

Appendix 2 171

Table A2.1 Operating voltages for Technology library CORE9GPLL

F(V)

CORE9GPLL_Best.lib

1.32

CORE9GPLL Nom.lib

1.2

CORE9GPLL_Worst.lib

1.08

After performing logic synthesis with each file of CORE9GPLL, the generated report

contains information about the area and delay of the component. The delay of the

library component after synthesis depends on the technology library file used for

synthesis, since each library file has a different operating voltage as shown in Table

A2.1. The area of the component is exactly the same in the three cases since the same

number and type of standard cells is used. The result after logic synthesis is a Verilog

netlist that is used together with a VCD and script files to perform power analysis

with PrimePower.

The Value Change Dump (VCD) file can be obtained after simulation with

ModelSim [75] using the Verilog netlist and a testbench that provides the input

vectors. In the case of Chapter 5, the input vectors correspond to pseudo random

numbers generated by a LSFR, whereas in Chapter 6 the input vectors correspond to

real data obtained after playing a video with the MPEG-1 Berkeley decoder [40]. The

generated VCD is an ASCII file that contains information about simulation time,

scope and signal definitions, and signal value changes in the simulation run [43].

VCD file can be generated using verilog's $dumpvar command. Some examples are

shown in Table A2.2.

Table A2.2 Verilog commands to generate VCD file
Command

Initial $dumpfile("filename.vcd");

Initial $dumpvars;

Initial $dumpvars(0, top);

Function

II selects this dump file name

// dumps all signal info

// dumps all the variables in the hierarchy from top. Here

top is an instance name. 0 indicates every level from top.

In addition to the VCD file, a script file is necessary to perform power analysis with

PrimePower. An example of the script file (saved as .tcl) is shown in Listing A2.1,

where search jjath specifies the path for the synopsys library, linkjibrary specifies

the library to be used, i.e. CORE9GPLL_Best.db. This technology file is the same

that the one used for synthesising the design but in different format. For example, if

Area-delay-power characterisation 172

v

Synplify ASIC has been used for synthesis using the "CORE9GPLL_Best.lib",

PrimePower requires CORE9GPLL_Best.db. In Listing A2.1, the command

readverilog specifies the Verilog file name including path, and currentjlesign

indicates the toplevel design name. Similarly readied specifies the VCD file

including path. Note that readjyed command specifies the strip_path. This path is

the testbench/topinstance if VCD is generated from test_bench else the path will

be topinstance if VCD is generated from top module under test. set_input_transition

defines a fixed transition time for input ports. Output files can be specified in

set_waveform options and reportjpower_new options [43].

Listing A2.1 Example of script file to perform power analysis using PrimePower

#adder

link design

set search jpath "library/library"
set linkJibrary "* CORE9GPLL_Best.db"
readverilog {/ library/adder/best_add/sync_adder.vma}
current design sync_adder
link •

read switching activity file

readied -strip_path adder_tb/uO/library/adder/best_add/ sync_adder.vcd

set transition time / annotate parasitics

setinputtransition 0.1 [allinputs]

power analysis

cd /library/adder/best add
setwaveformoptions -interval 0.01 -file sync_adder -format fsdb
calculate_power -waveform -statistics
report_power_new -file sync_adder
removedesign -all

Appendix 3
Input and output files of PABCOM

The input to PABCOM is a standard text file that contains a data flow graph (DFG)

with the corresponding user-specified constraints and optimisation parameters. This

text file is split into sections as can be seen from the example shown in Listing A3.1.

The first part of this file specifies the name of the design and gives the option to save

the resultant binding, multiplexers assignment and datapath netlist into a file. In the

second part the synthesis constraints and annealing parameters are specified whilst

the third part describes the data flow graph. First the DFG inputs are given, followed

by the operations with their input values to determine the data dependencies, and

finally the outputs are presented. The last part of the input file describes the available

functional modules and registers.

Listing A3.1 Input file to PABCOM .
#config file for DCT benchmark
[STATUS]
Design Discrete Cosine Transform
results_to_file 1 #1 save results into a file, 0 print results in screen

time constraint
minimum clock period
optimisation power weight

[CONFIG]
time
min_clk
alpha
operations
multiplications
additions
inputs
outputs
modules
registers

xO
d

47
2
0.1
48
16
32
8
8
26
30

0.95
0.2

annealing parameters
initial acceptance ratio
distance parameter

es 0.0001 # stop criterion

Appendix 3 174

Illlllllllllllllllllllllllllllllll
#name type
[OPERATIONS]
D
D
D
D
D
D
D
D
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

•N"
N"
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

0
1
2
3
4
5
6
7
16
17
18
19
20
21
22
23
24
25
26
27

"28
29
42
44
48
50
54
56
60
62
30
31
32
36
38
40
46
58
34
52
64
66
69
71
72
>6
65
67
68
70
74
>8
73
75
77
79

input
input
input
input
input
input
input
input
add
add
add
add
add
add
add
add
add
add
add
add
add
add
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
add
add
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add

DFG in
inputs

D
D
D
D
D
D
D
D
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

2
1
3
0
2
1
3
0
16
16
18
18
20
22
20
20
21
21
22
22
23
23
24
28
24
26
25
27
28
29
30
31
42
46
56
58
38
38
52
52
50
44
34
32
70
66
64
68

text

D
D
D
D
D
D
D
D
N"
N
N
N
N
N.

N
N.

N
N~
N
N
N
N
N
N
N
N
N
N
N
N
N
N

form

5
6
4
7
5
6
4
7
17
17
19
19
21

_23

26
_29

46
"48
58
62
40
40
60
54
52
52
36
34
71
67
65
69

Input and output files of PABCOM 175

P 0
p 1
P 2
P 3
P 4
P 5
P 6
P_7

output
output
output
output
output
output
output
output

[MODULES]
name type
M 1
M 2
M 3
M 4
M 5
M 6
M 7
M 8
M 9
M 10
M 11
M 12
M 13
M 14
M 15
M 16
M 17
M 18
M 19
M 20
M 21
M 22
M 23
M 24
M 25
M_26

add
add
add
add
add
add
add
add
add
add
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply
multiply

[REGISTERS]
name
R 01
R 02
R 03
R 04
R 05
R 06
R 07
R 08
R 09
R 10
R 11
R 12
R 13
R 14
R 15
R 16
R 17
R 18
R 19

N 72
N 73
N 74
N 75
N 76
N 77
N 78
N_79

Appendix 3 176

R_20
R_21
R_22
R_23
R_24
R_25
R_26
R_27
R_28
R_29
R 30

The output of PABCOM is a text file that contains the information necessary to

generate the datapath and controller of the design. For example, Listing A3.2 and

Listing A3.3 present the output files produced by PABCOM after using the input file

from Listing A3.1 with a = 0.1 and a = 0.4. In both output files, four parts can be

identified: module binding, register binding, multiplexers assignment and datapath

netlist. It can be seen that the first three parts describe the cycle by cycle behaviour

of the design. For example in the module binding of Listing A3.2, module M_2

executes operations N_20 in cstep 1 and N_16 in cstep 2, and becomes idle in csteps

3 and 4. In the register binding, input Dl is loaded into register R_13 in cstep 1 and

held during cstep 2. Then R_13 is idle in cstep 3 and value N_50 is loaded in cstep 4.

A graphical representation of this module binding and register binding was shown

respectively in Figure 5.21 and Figure 5.23 (Chapter 5). In the multiplexers

assignment of Listing A3.2, M_l_a is a 3-input multiplexer whose inputs are R_13,

R05 and R I O . In cstep 1 and 2, the input R 1 3 is selected, in cstep 3 the input R_5

is selected and then R I O is selected in cstep 4. It can be seen that Ml_b only has

one input, i.e. R_02, this means a direct connection from the register R_02 to the

input of module M_l. The timing information provided by the binding and

multiplexers assignment allows the immediate definition of the control signals in the

required finite state machine.

The last part of the output file is the datapath netlist, which specifies the

interconnections between modules, registers and multiplexers. For example, in the

datapath netlist of Listing A3.2, the inputs of module M7 are connected to

multiplexers M_7_a and M_7_b. The inputs of multiplexer M_7_a are connected to

registers R_08 and R_07. The input of register R 0 8 is connected to multiplexer

R_08_a whose inputs are connected to modules M_3 and M_7. A graphical

representation of this datapath netlist was shown in Figure 5.25 (Chapter 5).

Input and output files of PABCOM 111

Listing A3.2 Output file produced by PABCOM for DCT with a = 0.1
Module binding :

#cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9
Module: M_1
N_21 N_17 N_31 N_64 N_71 N_69 N_76 N_72 ./.

Module: M
N_20 N~

Module:M
N_23 N~

Module:M
./. N~

Module:M
N_22 N~

Module:M
./. N"

2
_16 ./.

.3
_28 N_19

7
.29 ./.

10
.18 N_24

11
42 ./.

./.

N.

N.

./.

N

.27

.66

58

N.

N.

N.

N.

N

JO

.26

.68

.25

56

./.

N.

N.

N.

N

.30

.67

.73

40

N.

N.

N.

./.

_65

.75

.79

N.

N.

N.

./.

.78

.77

.74

Module: M_13
./. N_48 N_50 N_52 N_54 N_36 N_34 ./. ./.

Module: M_15
./. N 44 N 46 N 62 N 60 N 38 N 32 ./. ./.

Illlllllllllllllllllllllllllllll Register binding II
#cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9
Register: R_02
D_6 D_6 N_28 N_46 N_62 N_56 N_38 N_38 ./.

Register: R_05
./. ./. N_29 N_29 N_66 N_66 N_66 N_79 N_79

Register: R_06
./. N_22 N_22 N_22 N_22 ./. N_73 N_73 N_73

Register: R_07
D_2 D_2 N_48 N_48 N_52 N_52 N_52 N_34 ./.

Register: R_08
./. N_23 N_23 N_23 N_23 N_68 N_68 ./. N_74

Register: R_10
./. ./. N_42 N_42 N_58 N_58 N_40 N_40 ./.

Register: R_12
D_7 D_7 D_7 N_24 N_24 N_24 N_24 ./. ./.

Register: R_13
D_1 D_1 ./. N_50 N_50 N_54 N_36 N_36 ./.

Register: R_17
D_4 D_4 N_16 N_16 N_16 N_70 ./. ./. N_78

Register: R_18
D_5 D_5 N_44 N_44 N_44 N_60 N_60 N_32 ./.

Register: R_19
./. N_20 N_18 N_18 N_18 N_25 N_67 N_65 ./.

Register: R_20
./. ./. ./. ./. N_27 N_27 ./. N_75 N_75

Register: R_21
D 3 D 3 N 17 N 17 N 17 N 71 N 69 N 76 N 76

Appendix 3 178

Register: R_23
./. N_21 N_21 N_31 N_64 N_64 N_64 N_64 N_72

Register: R_29
DO DO DO N 19 N 19 N 26 N 30 ./. N 77

Multiplexers ###?
#cs1 cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9
Mux: M_1_a, inputs: R_13 R_05 R_10
R_13 R_13 R_05 R_10 R_10 R_10 R_10 R_10 ./.

Mux: M_1_b , inputs: R_02
R_02 R_02 R_02 R_02 R_02 R_02 R_02 R_02 ./.

Mux: M_2_a, inputs: R_18
R_18 R_18 ./. ./. R_18 ./. R_18 R_18 ./.

Mux: M_2_b , inputs: R_07
R_07 R_07 ./. ./. R_07 ./. R_07 R_07 ./.

Mux: M_3_a, inputs: R_29 R_23 R_05
R_29 R_23 R_29 R_29 R_29 R_29 R_05 R_23 ./.

Mux: M_3_b , inputs: R_12 R_19
R_12 R_19 R_12 R_19 R_19 R_12 R_19 R_19 ./.

Mux: M_7_a, inputs: R_08 R_07
./. R_08 ./. R_07 R_07 R_07 R_08 R_07 ./.

Mux: M_7_b, inputs: R_06 R_02 R_13 R_21
./. R_06 ./. R_02 R_13 R_13 R_21 R_13 ./.

Mux: M_10_a, inputs: R_21
R_21 R_21 R_21 ./. R_21 R_21 .7. ./. ./.

Mux: M_10_b, inputs: R_17
R_17 R_17 R_17 ./. R_17 R_17 ./. ./. ./.

Mux: M_11_a, inputs: R_19 R_05 R_06 R_20
./. R_19 ./. R_05 R_06 R_20 ./. ./. ./.

Mux: M_13_a, inputs: R_23 R_06 R_29
./. R_23 R_23 R_23 R_06 R_29 R_29 ./. ./.

Mux: M_15_a, inputs: R_19 R_02 R_08 R_12
./. R_19 R_02 R_08 R_08 R_19 R_12 ./. ./.

Mux: R_02_a, inputs: I/O M_3 M_15 M_11
I/O ./. - M_3 M_15 M_15 M_11 M_15 ./. ./.

Mux: R_05_a, inputs: M_7
./. ./. M_7 ./. M_7 ./. ./. M_7 ./.

Mux: R_06_a, inputs: M_10
./. M_10 ./. ./. ./. ./. M_10 ./. ./.

Mux: R_07_a, inputs: I/O M_13
I/O ./. M_13 ./. M_13 ./. ./. M_13 ./.

Mux: R_08_a, inputs: M_3 M_7
./. M_3 ./. ./. ./. M_7 ./. ./. M_7

Mux: R_10_a, inputs: M_11
./. ./. M_11 ./. M_11 ./. M_11 ./. ./.

Mux: R_12_a, inputs: I/O M_10
I/O ./. ./. M_10 ./. ./. ./. ./. ./.

Mux: R_13_a, inputs: I/O M_13
I/O ./. ./. M 13 ./. M 13 M 13 ./. ./.

Input and output files of PABCOM 179

Mux: R_17_a, inputs: I/O M_2
I/O ./. M_2 ./. ./. M_2 ./. ./. M_2

Mux: R_18_a, inputs: I/O M_15
I/O ./. M_15 ./. ./. M_15 ./. M_15 ./.

Mux: R_19_a, inputs: M_2 M_10 M_7
./. M_2 M_10 ./. ./. M_10 M_7 M_2 ./.

Mux: R_20_a, inputs: M_3
./. ./. ./. ./. M_3 ./. ./. M_3 ./.

Mux: R_21_a, inputs: I/O M_1
I/O ./. M_1 ./. ./. M_1 M_1 M_1 ./.

Mux: R_23_a, inputs: M_1
./. M_1 ./. M_1 M_1 ./. ./. ./. , M_1

Mux: R_29_a, inputs: I/O M_3
I/O ./. ./. M 3 ./. M 3 M 3 ./. M 3

M
M
M
M
M
M
M
M
M
M
M
M
M
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

1
1
2
2
3
3
7
7
10
10
11
13
15
02
05
06
07
08
10
12
13
17

~18
19

.20^
21
23"
29"

a
b
a
b
a
b
a
b
a

_b
a
a

_a
a
a
a
a
a
a
a
a
a
a

_a
_a
a

_a
a

R
R
R
R
R
R
R
R
R
R
R
R
R
I/O
M
M
I/O
M
M
I/O
I/O
I/O
I/O
M
M
I/O
M
I/O

13
02
18
07
29
12
08
06
21
17
19
23
19

7
.10

3
.11

2
3

1

: Datapath
R_05

R
R
R
R.

R
R
R
M.

M
M.

M
M
M
M
M.

M.

M

23
19
07

.02

05
06
02

_3

13
_7

10
13
2
15

JO

J

3

n<
R.

R.

R_

R
R
R
M.

M.

JO

.05

.13

06
29
08
J5

_7

R_

R.

R
M.

HI IIIIIHIIIIIIIIIIIIIIIIIIIIIIIII

.21

.20

12
J1

Listing A3.3 can be explained in a similar way than Listing A3.2, the main difference

is the number of csteps (columns) in the listing. This is because of the different

schedule lengths of the designs, as shown in Figure 5.19 and Figure 5.20 (Chapter 5).

Graphical representations of the bindings and datapath netlist of Listing A3.3 were

also given in Chapter 5.

Appendix 3 180

Listing A3.3 Output file produced by PABCOM for DCT with a = 0.4
IIIIIIIIII till till IIIIII till IIII Module binding lltllHIIIIIIIIIIIIIIItltllllllllllllllt
#cs1 cs2 cs3 cs4 cs5 cs6 cs7
Module: M_1
N 23 N 19 ./. N 64 N 70 N 78 ./.

Module: M_2
./. ./. ./. ./. ./. N_77 ./.

Module: M_4
./. ./. ./. ./. N_68 N_76 ./.

Module: M_5
N_20 N_16 N_26 N_27 ./. N_73 ./.

Module: M_7
N_22 N_18 ./. N_69 N_71 N_79 ./.

Module: M_8
./. N_28 N_24 N_66 N_67 N_74 ./.

Module: M_9
N_21 N_17 N_25 ./. N_65 N_72 ./.

Module: M_10
./. N_29 N_31 N_30 ./. N_75 ./.

Module: M_11
./. N_50 N_48 N_62 N_38 ./. ./.

Module: M_12
./. N_56 N_58 N_52 N_34 ./. ./.

Module: M_13
./.. N_54 N_46 N_32 N_36 ./. ./.

Module: M_15
./. N 60 N 42 N 44 N 40 ./. ./.

Illlllllllllllllllllllllllllllll Register binding IIIIIIIIIIIIIIIIIIlift
#cs1 cs2 GS3 cs4 cs5 cs6 cs7
Register: R_01
./. ./. N_60 N_60 N_60 N_40 ./.

Register: R_02
D_5 D_5 N_19 N_19 ./. N_70 ./.

Register: R_03
D_2 D_2 N_18 N_18 ./. N_71 N_79

Register: R_04
D_1 D_1 N_16 N_26 N_26 N_67 N_77

Register: R_05
D_6 D_6 N_17 N_48 N_52 N_34 ./.

Register: R_06
D_3 D_3 N_56 N_56 N_62 N_68 N_76

Register:

Register:

R
N.
R
N

09
.50

10
54

N.

N

_50

54

N

N

_50

54

N.

N

_38

36

Register: R_11
./. N_23 N_23 N_23 N_64 N_64 N_78

Register: R_15

Input and output files of PABCOM . 181

D_7 D_7 ./. N_46 N_32 N_32 ./.

Register: R 2 0
./. N_22 N_28 N_24 N_66 N_66 N_74

Register: R 2 2
./. ./. ./. ./. N_69 N_69 ./.

Register: R_23
./. ' ./. N_29 N_31 N_30 ./. N_75

Register: R_24
D_4 D_4 ./. N_58 N_58 ./. ./.

Register: R 2 6
./. N_20 N_20 N_20 N_27 ./. N_73

Register: R 2 8
./. N_21 N_21 N_25 N_25 N_65 N_72

Register: R_30
DO DO ./. N 42 N 44 ./. ./.

Illlllllllllllllllllllllllllllllllllll Multiplexers ##/
#cs1
Mux:
R_30

Mux:
R 15

cs2
M
R_

M
R

J_a.
.30

1 b,
15

cs3
inputs:
./.

inputs:
/

cs4
R
R_

R
• R

30
.30

15
15

cs5
R
R_

R
R

15
.30

05
05

cs6

R_15

R 05

cs7

Mux: M_2_a, inputs: R_28
./. ./.. ./. ./. ./. R_28 ./.

Mux: M_2_b, inputs: R_11
./. ./. ./. ./. ./. R_11 ./.

Mux: M_4_a, inputs: R_05 R_01
./. ./. ./. ./. R_05 R_01 ./.

Mux: M_4_b, inputs: R_09
./. ./. ./. ./. - R_09 R_09 ./.

Mux: M_5_a, inputs: R_02
R_02 R_02 R_02 R_02 ./. R_02 ./.

Mux: M_5_b, inputs: R_03
R_03 R_03 R_03 R_03 ./. R_03 ./.

Mux: M_7_a, inputs: R_06
R_06 R_06 ./. R_06 R_06 R_06 ./.

Mux: M_7_b,inputs: R_24 R_22
R_24 R_24 ./. R_24 R_24 R_22 ./.

Mux: M_8_a, inputs: R_26 R_04 R_15 R_10
./. R_26 R_04 R_15 R_10 R_10 ./.

Mux: M_8_b, inputs: R_28 R_05
./. R_28 R_05 R_05 R_05 R_05 ./.

Mux: M_9_a, inputs: R_04 R_01
R_04 R_04 R_04 ./. R_01 R_01 ./.

Mux: M_9_b, inputs: R_05 R_09
R_05 R_05 R_05 ./. R_05 R_09 ./.

Mux: M_10_a, inputs: R_11 R_23 R_04
./. R 11 R 23 R 04 ./. R 04 ./.

Appendix 3 182

Mux: M_10_b, inputs: R_20
./. R_20 R_20 R_20 ./. R_20

Mux: M_11_a, inputs: R_28 R_11
./. R_28 R_28 R_11 R_28 ./.

Mux: M_12_a, inputs: R_20 R_23
./. R_20 R_23 R_23 R_23 ./.

Mux: M_13_a, inputs: R_20 R_04
./. R_20 R_20 R_20 R_04 ./.

Mux: M_15_a, inputs: R_11 R_26
./. R 11 R 26 R 26 R 26 ./.

Mux:

Mux:
I/O

Mux:
I/O

Mux:
I/O

Mux:
I/O

Mux:
I/O

Mux:

Mux:

Mux:

Mux:
I/O

Mux:

Mux:

Mux:

Mux:
I/O

Mux:

Mux:

Mux:
I/O

M 1
M 1
M 2

a
b
a

R 01 a, inputs: M 15
./. M_15 ./.

R_02_a, inputs: I/O

R 03 a, inputs: I/O
./. M_7 ./.

R 04 a, inputs: I/O
./. M_5 M_5

R_05_a, inputs: I/O
./. M_9 M_11

R 06 a, inputs: I/O
./. . M_12 ./.

R 09 a, inputs: M 11
./. M_11 ./.

R 10 a, inputs: M 13
./. M_13 ./.

R 11 a, inputs: M 1
M_1 ./. ./.

R 15 a, inputs: I/O
./. ./. M_13

R 20 a, inputs: M 7
M_7 M_8 M_8

R_22_a, inputs: M_7

R 23 a, inputs: M 10
./. M_10 M_10

R 24 a, inputs: I/O
./. ./. M_12

R 26 a, inputs: M 5
M_5 ./. ./.

R 28 a, inputs: M 9
M_9 ./. M_9

R 30 a, inputs: I/O
./. ./. M_15

R 30 R 15
R 15 R 05
R 28

./.

M_1

M_7

M_5

M 9
M_12

M_12

./.

./.

M 13
M_13

M 8
M_8

M_7

M_10

M_12

M_5

./.

M 15
M_15

netlist i

M.

M.

M.

M
M.

M
M.

M
M.

M.

M.

./.

./.

./.

./.

./.

./.

./.

M_

,

j

7

8
_8

11
J2
11

_4

_n

J3

-

.9

./.

./.

M.

M.

M.

M.

./.

.7.

M.

./.

M_

./.

M.

./.

M.

M.

,

_7

2
_2

.12

4
_4

j

_8

_10

_5

.9

Input and output files of PA BCOM 183

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

2
4
4
5
5
7
7
8
8
9
9
10
10
11
12
13
15
01
02
03
04
05
06
09
10
11
15
20
22
23
24
26
28
30

b
a
b
a
b
a
b
a
b
a
b
a
_b
_a
a
a
_a
a
a
_a
_a
_a
_a
a
a
_a
_a
_a
_a
_a
_a
a
a
a

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
M
I/O
I/O
I/O
I/O
I/O
M
M
M
I/O
M
M
M
I/O
M
M
I/O

11
05
09
02
03
06
24
26
28
04
05
11
20
28
20
20
11
.15

11
13
1

7
7
10

5
9

R.

R
R
R
R
R
R.

R
R
R
R_

M
M
M
M
M.

M
M.

M_

M

_01

22
04
05
01
09
.23

11
23
04
.26

1
7
5
9
_12

13
.8

.12

15

R.

R_

M
M
M

_15

.04

8
11
11

R.

M
M
M

.10

2
12
4

Appendix 4
Least Mean Square Error (LMSE) scheduler

This appendix provides a brief description of the LMSE scheduler [58], which is the

base for the power-aware time constrained scheduling algorithm presented in

Chapter 4. Given a time constraint, the LMSE scheduler assigns operations to control

steps such that the cost of hardware resources is reduced. The LMSE scheduler is

based on the probability that a certain operation is to be scheduled into a specific

control step. This requires the determination of ASAP and ALAP schedules which

define the time frame [ASAPt, ALAPi] into which a particular operation (o,) can be

assigned. The probability of scheduling a particular operation (o,) into any control

step (cstep) is:

ASAPt <cstep <ALAPt

prob(oi,cstep) = lALAPi-ASAPi+\ y (A4.1)
0 otherwise

All calculated probability values are then used to create distribution graphs (DGs)

where values of operations having the same type are added such that:

DG(type,cstep)=y£jprob(oi,cstep)

where Itype is a set containing indices to all operations of the same type. To optimise

the utilisation of functional units, it is necessary to assign operations to csteps such

that the maximum distribution values decrease and the overall DG is more balanced.

The LMSE scheduler achieves this balancing task by assessing DGs and the effect of

operation assignments upon it using a mean square error (MSE) function approach,

as shown in Listing A4.1. The first step of the LMSE scheduler is to sort all DFG

operations in a list according to their mobility, i.e. low/high, increasing ASAP time

and decreasing number of succeeding nodes. When using the LMSE scheduler in the

Appendix 4 185

algorithm developed in Chapter 4, a new criterion is included to sort the DFG

operations, i.e. power consumption. Hence, the DFG operations are sorted in a list

according to their mobility, i.e. low/high, power consumption, increasing ASAP time

and decreasing number of succeeding nodes. This new sorted list gives higher

priority to schedule the most power hungry DFG operations and results in better

schedules in terms of resource requirements when compared to the original version.

Listing 4.1 Pseudocode of the LMSE scheduler
1 sort all operations according to operation mobility, ASAP time, number of successors
2 while there are unscheduled operations do
3 take the next operation out of the sorted list
4 for all csteps into which the operation could be scheduled do
5 assign the operation temporarily to the cstep
6 update time frames of preceding and succeeding nodes
7 calculate distribution graph for the modified data flow graph
8 evaluate the mean square error function
9 end for
10 schedule operation into the cstep for which the lowest MSE value was found
11 update time frames of preceding and succeeding nodes
12 update distribution graph
13 end while

The operation mobility calculated in Listing A4.1 is defined as:

mobility (o,) = ALAPi - ASAPi (A4.3)
and the group of low mobility operations is

1 _. f , - . [, . , . / - > Min mob + Max mob
Olovimob = jo, e O\mobility(Oi) < = = (A4.4)

where O is the group of all operations and Minjnob and Maxjnob are the lowest

and highest mobility values of all operations respectively.

The next step of the algorithm (line 3) consists on taking out of the sorted list the first

unscheduled operation. Then, the operation is assigned to all valid csteps

j € [ASAP^ALAP;] within its time frame. For each operation assignment to a cstep j ,

modified distribution graphs DG/(type, i) should be determined. These modified

distribution graphs are used in combination with an average value to evaluate the

mean square error (MSE) function:

MSE{j,type) = J^iDG'jitypeJ) - AVG^f (A4.S)

where DG) {type, i) is the modified distribution graph for an operation assignment

into cstep j and TV is the number of csteps in the schedule. A VGtype is the average

value obtained from the original distribution graph using:

Least Mean Square Error (LMSE) scheduler 186

•Mtype J=0
(A4.6)

where Mtype is the theoretical number of csteps into which operations of this type can

be scheduled.

Since there is one MSE value for each operation type, all MSE values are added to

find an overall rate:

type

Having determined the MSE values for all valid csteps (lines 4 to 9), the operation is

finally scheduled into the cstep that results in the lowest MSE value (line 10). This is

followed by adjusting ASAP and ALAP times of preceding and succeeding

operations (line 11) and updating the DG values (line 12).

A4.1 Conditional branches

To support scheduling DFGs that contain conditional branches, the LMSE scheduler

number all subgraphs consecutively, as shown in Figure A4.1. A subgraph is formed

by two or more parallel conditional branches. The branches within a subgraph are

assigned a unique two digit number {subgraph, branch}. Having numbered

subgraphs and branches, the next step is to generate a set of DGs for each branch of

the DFG using equations (A4.1) and (A4.2). To obtain the DG for a particular

subgraph the DG values of all branches within the subgraph are combined using the

following formula:

DGsubgraph (j) = . max (DG, (j)) (A4.8)
s y ^Branches

where Branches is a set containing indices to all branches in a subgraph. Usually

there is more than one subgraph and to obtain DG values of the equivalent graph the

following equation is used
DGsubgraph U) =

Nested conditional branches require that equations (A4.8) and (A4.9) are used

recursively. This yields finally a DG of an equivalent unconditional DFG which is

used by the LMSE scheduler.

subgraph U) = YsDGi 0) (A4.9)
ieBranches

Appendix 4 187

Conditional
branches

{1,1}

{3,1}

{2,2}

{3, 2}) subgraph

{0,0}

Figure 4.1 Data flow graph with conditional branches [58]

A4.2 Multicycled operations

The LMSE scheduler [58] is also capable of scheduling DFGs with multicycled

operations. To achieve this, the probability and mobility equations need to be

modified as follows. The single cycle probability value calculation (equation A4.1) is

modified to:

, . . mini cycles,, cstep - ASAP +1, ALAR - cstep +1)
prob(oi, cstep) = — '- - '• '- - — - (A4.10)
F ' ALAP,-ASAP,-cycles,+2 l '

where the parameter cyclest refers to the operation multicycled length measured in

control steps.

The mobility calculation (equation A4.3) is modified to:
mobilityio,) = ALAPt - ASAP, - cycles, +1 (A4.ll)

Equations A4.10 and A4.11 allow scheduling of multicycled functional units without

further modifications to the LMSE scheduler.

References
[1] Aarts E. and Korst J., "Simulated Annealing and Boltzman Machines. A

stochastic approach to combinatorial optimization and neural computing",

Wiley, 1989.

[2] Aarts E. H. L. and van Laarhoven P. J. M., "Statistical cooling: a general

approach to combinatorial optimization problems", Philips Journal of

Research, 40, pp. 193-226, 1985.

[3] Ahmadi A. and Zwolinski M., "Word-Length Oriented Multiobjective

Optimization of Area and Power Consumption in DSP Algorithm

Implementation", 25th International Conference on Microelectronics, pp. 614-

617, May 2006.

[4] Amellal S. and Kaminska B., "Functional Synthesis of Digital Systems with

TASS", IEEE Transactions on Computer Aided Design of Integrated Circuits

and Systems, Vol. 13, No. 5, pp. 537-552, May 1994.

[5] Blythe S. A. and Walker R. A., "Toward a practical methodology for

completely characterizing the optimal design space", Proceedings of the 91

International Symposium on System Synthesis, pp. 8 - 13, November 1996.

[6] Burden R. L. and J. Douglas Faires, "Numerical Analysis", BROOKS/COLE

Thomson Learning, 2001.

[7] Chabini N. and Wolf W., "Unification of scheduling, binding and retiming to

reduce power consumption under timing and resources constraints", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 13, No.

10, pp. 1113 - 1126, October 2005.

[8] Chandrakasan A. P., Potkonjak M., Mehra R., Rabaey J. and Brodersen R.

W., "Optimising Power Using Transformations", IEEE Transactions on

References 189

Computer-Aided Design of Integrated Circuits and Systems, Vol. 14, No.l,

pp. 1 2 - 3 1 , January 1995.

[9] Chang E. S., Gajski D. D. and Narayan Sanjiv, "An Optimal Clock Period

Selection Method Based on Slack Minimization Criteria", ACM Transactions

on Design Automation of Electronics Systems, Vol. 1, No. 3, pp. 352-370,

July 1996. .

[10] Chang J. M. and Pedram M., '.'Energy Minimization Using Multiple Supply

Voltages", IEEE Transactions on Very Large Scale Integration Systems, Vol.

5, No. 4, pp. 436-443, December 1997.

[11] Pedram M. and Chang J. M., "Module Assignment for Low Power",

Proceedings of the conference on European Design Automation, pp. 376 -

381, 1996.

[12] Chang J. M. and Pedram M., "Register Allocation and Binding for Low

Power", 32nd Design Automation Conference, DAC, pp. 29 - 35, 1995.

[13] Chaudhuri S. and Walker R.A., "ILP-based scheduling with time and resource

constraints in high level synthesis", Proceedings of the Seventh International

Conference on VLSI Design, pp. 17-20, January 1994.

[14] Chauduri S., Blythe S. A. and Walker R. A., "A solution methodology for

exact design space exploration in a three dimensional design space", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 5, No. 1,

pp. 6 9 - 8 1 , March 1997.

[15] Chiariglione L., http://www.chiariglione.org/mpeg/standards/mpeg-l/mpeg-

l.htm, Short MPEG-1 description, International Organisation for

standardisation ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and

Audio, 1996.

[16] Chtourou S. and Hammami O., "SystemC space exploration of behavioral

synthesis options on area, performance and power consumption", The 17th

International Conference on Microelectronics, ICM, pp. 67 - 71, December

2005.

[17] Clarke J. A., Gaffar A. A., Constantinides G. A. and Cheung P. Y. K., "Fast

word-level power models for synthesis of FPGA-based arithmetic",

Proceedings of the IEEE International Symposium on Circuits and Systems,

ISCAS, pp. 1299 -1302, May 2006.

References 190

[18] Cong J. and Minkovich K., "Optimality Study of Logic Synthesis for LUT-

Based FPGAs", IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 26, No. 2, pp. 230-239, February 2007.

[19] Cong, J., Yiping F., Guoling H., Wei J. and Zhiru Z., "Platform-Based

Behavior-level and System-Level Synthesis", IEEE International System-on-

Chip Conference, pp. 199-202, September 2006.

[20] Dal D., Nunez A. and Mansouri N., "Power islands: a high-level technique for

counteracting leakage in deep sub-micron", 7th International Symposium on

Quality Electronic Design, ISQED, pp. 6, March 2006.

[21] De Micheli G., "Synthesis and Optimization of Digital Circuits", McGraw

Hill, 1994

[22] Deming C, Cong J., Yiping F. and Junjuan X., "Optimality study of resource

binding with multi-Vdds", 43rd ACM/IEEE Design Automation Conference,

pp. 580-585, July 2006.

[23] Deming C, Cong, J., and Junjuan X., "Optimal module and voltage

assignment for low-power", Proceedings of the Asia and South Pacific Design

Automation Conference, ASP-DAC, Vol. 2, pp. 850-855, January 2005.

[24] Devadas S. and Malik S., "A survey of optimization techniques targeting low

power VLSI circuits", Proceedings of the 32nd Design Automation

Conference, DAC, pp. 242-247, June 1995.

[25] Elgamel M. A. and Bayoumi M. A., "On low power high level synthesis using

genetic algorithms", 9th International Conference on Electronics, Circuits and

Systems, Vol. 2, pp. 725-728, September 2002.

[26] Gajski D. D., "Principles of digital design", Prentice-Hall International, 1997.

[27] Gerez S. H., "Algorithms for VLSI Design Automation", Wiley, 1999.

[28] Gi-Joon N., Reda S., Alpert C.J., Villarrubia P.G. and Kahng A.B., "A fast

hierarchical quadratic placement algorithm", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 4,

pp. 678-691, April 2006.

[29] Gopalakrishnan C. and Katkoori S., "Behavioral synthesis of datapaths with

low leakage power", IEEE International Symposium on Circuits and Systems,

ISCAS, Vol. 4, pp. 699-702, May 2002.

References 191

[30] Gopalakrishnan C. and Katkoori S., "Knapbind: An area efficient binding

algorithm for low leakage datapaths", Proceedings of the 21st International

Conference on Computer Design, pp. 430-435, October 2003.

[31] Gopalakrishnan, C. and Katkoori, S., "Resource allocation and Binding

approach for low leakage power", Proceedings of the 16th International

Conference on VLSI Design, pp. 297-302, January 2003.

[32] Gu Z., Yang Y., Wang J., Dick R. P. and Shang L., "TAPHS: Thermal-Aware

Unified Physical-Level and High-Level Synthesis", Proceedings of the Asia

and South Pacific Design Automation Conference, ASP-DAC, pp. 879 - 885,

January 2006.

[33] Gupta S. and S. Katkoori, "Force-Directed Scheduling for Dynamic power

Optimization", Proceedings of the IEEE Computer Society Annual

Symposium on VLSI, pp. 68-73, April 2002.

[34] Gupta S., "Tutorial for the SPARK parallelizing High-Level Synthesis

Framework. Version 1.1", Center for Embedded Computer Systems.

University of California, San Diego and Irvine, 2004.

[35] Gupta S., Gupta R. K., Dutt N. K. and Nicolau A., "SPARK: A Parallelizing

Approach to the High-Level Synthesis of Digital Circuits", Kluwer Academic

Publishers, 2004.

[36] Halsall F., "Multimedia Communications. Applications, Networks, Protocols

and Standards", Addison-Wesley, 2001.

[37] Hariyama M , Aoyama T. and Kameyama M , "Genetic approach to

minimizing energy consumption of VLSI processors using multiple supply

voltages", IEEE Transactions on Computers, Vol. 54, No. 6, pp. 642-650,

June 2005.

[38] Hashimoto A. and Stevens J., "Wire routing by optimising channel

assignment with large apertures", Proceedings 8th Design Automation

Workshop on Design Automation, DAC, pp. 155-169, June 1971.

[39] Hsueh-Chih Y. and Lan-Rong D., "On multiple-voltage high-level synthesis

using algorithmic transformations", Proceedings of the Asia and South Pacific

Design Automation Conference, ASP-DAC, Vol. 2, pp. 872-876, January

2005.

References 192

[40] http://bmrc.berkeley.edu/frame/research/mpeg/mpeg_play.html, The Berkeley

MPEG player.

[41] http://en.wikipedia.org/wiki/MPEG, Moving Picture Experts Group.

[42] http://www.chiariglione.org/mpeg/, The MPEG Home Page.

[43] http://esdcad.ecs.soton.ac.uk/bin/view/Knowledgebase/KBArticle_KarthikBa

ddam_PrimePower, Estimating power consumption of digital logic using

PrimePower.

[44] Huaxiang L., Yan L., Zhifang T. and Shoujue W., "SOC Dynamic Power

Management Using Artificial Neural Network", Sixth international

Conference on Intelligent Systems Design and Applications, Vol. 1, pp. 133-

137, October 2006. •

[45] Jianfeng H., Jinian B., Zhipeng L. and Yunfeng W., "A fast algorithm for

power optimization using multiple voltages in data path synthesis", 6th

International Conference on ASIC, ASICON, Vol. 2, pp. 900-904, October

2005.

[46] Jiong L., Lin Z., Yunsi F. and Jha N.K., "Register binding-based RTL power

management for control-flow intensive designs", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 23, No. 8,

pp. 1175-1183, August2004.

[47] Johnson M. C. and Roy K., "Data path Scheduling with Multiple Supply

Voltages and Level Converters", ACM Transactions on Design Automation

of Electronics Systems, TODAES, Vol. 2, No. 3, pp. 227 - 248, July 1997.

[48] Johnson M.'C. and Roy K., "Optimal selection of Supply Voltages and Level

Conversions during data path scheduling under resource constraints",

Proceedings of the IEEE International Conference on Computer Design: VLSI

in Computers and Processors, pp. 72 - 77, October 1996.

[49] Johnson M. C. and Roy K., "Scheduling and optimal Voltage Selection for

Low Power Multi-Voltage DSP datapaths", IEEE International Symposium

on Circuits and Systems, ISCAS, Vol. 3, pp. 2152 - 2155, Junel997.

[50] Katkoori S. and Vemuri R., "Scheduling for Low Power under Resource and

Latency Constraints", IEEE International Symposium on Circuits and

Systems, ISCAS, Vol. 2, pp. 53 - 56, May 2000.

[51] Katkoori S., Kumar N., Rader L. and Vemuri R., "A Profile Driven Approach

References 193

for Low Power Synthesis", Proceedings of the Asia and South Pacific Design

Automation Conference, ASP-DAC, pp. 759-765, September 1995.

[52] Khouri K. S. and Jha N. K., "Leakage Power Analysis and Reduction During

Behavioural Synthesis", IEEE Transactions on Very-Large Scale Integration

(VLSI) Systems, Vol. 10, No. 6, pp. 876 - 885, December 2002.

[53] Khouri K. S., Lakshminarayana G. and Jha N. K., "High-Level Synthesis of

Low-Power Control-Flow Intensive Circuits", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, No. 12,

pp. 1715-1729, December 1999.

[54] Kim T., Yonezawa N., Liu J. W. S. and Liu C. L., "A scheduling algorithm

for conditional resource sharing - a hierarchical reduction approach", IEEE

Transactions on Computer Aided Design of Integrated Circuits and Systems,

Vol. 13, No. 4, pp. 425-438, April 1994.

[55] Kirovski D. and Potkonjak M., "System-level Synthesis of Low-power Hard

Real-time Systems", Proceedings of the 34th Design Automation Conference,

DAC, pp. 697-702, June 1997.

[56] Kirpatrick S., Gellat C. D. and Vecchi M. P., "Optimization by simulated.

annealing", Science, 220, pp. 671-680, 1983.

[57] Kollig P. and Al-Hashimi B.M., "Simultaneous scheduling, allocation and

binding in high level synthesis", Electronics Letters, Vol. 33, No. 18, pp. 1516

-1518, August 1997.

[58] Kollig P., Al-Hashimi B.M. and Abbott K.M., "Efficient scheduling of

behavioural descriptions in high-level synthesis", IEE Proceedings Computer

and Digital Techniques, Vol. 144, No.-2, pp. 75 - 82, March 1997.

[59] Krishna V., Ranganathan, N. and Vijaykrishnan, N., "Energy efficient

datapath synthesis using dynamic frequency clocking and multiple voltages",

Proceedings of the 12th International Conference On VLSI Design, pp. 440-

445, January 1999.

[60] Krishnan V. and Katkoori S., "A genetic algorithm for the design space

exploration of datapaths during high-level synthesis", IEEE Transactions on

Evolutionary Computation, Vol. 10, No. 3, pp. 213 - 229, June 2006.

[61] Kumar A. and Bayoumi M , "Multiple Voltage-based scheduling

methodology for low power in the high level synthesis", Proceedings of the

References 194

IEEE International Symposium on Circuits and Systems, ISCAS, Vol. 1, pp.

371-374, June 1999.

[62] Kumar A., Goel S., and Bayoumi M., "A fast heuristic for leakage-aware

synthesis", 48th Midwest Symposium on Circuits and Systems, pp. 903-906,

August 2005.

[63] Kun-Lin T., Szu-Wei C , Feipei L. and Shanq-Jang R., "A low power

scheduling method using dual Vdd and dual Vth", Proceedings of the IEEE

International Symposium on Circuits and Systems, ISCAS, Vol. 1, pp. 684-

687, May 2005.

[64] Laarhoven, P.J.M. van. and Aarts E., "Simulated annealing: Theory and

applications", Kluwer academic, 1988.

[65] Lim P. and Kim T., "Thermal aware high level synthesis based on network

flow method", Proceedings of the 4th International Conference

Hardware/Software codesign and system synthesis, CODES+ISSS, pp. 124-

129, October 2006.

[66] Lin Y. R., Hwang C. T. and Whu C. H., "Scheduling Techniques for variable

voltage low power designs", ACM Transactions on Design Automation of

Electronics Systems, TODAES, Vol. 2, No. 2, pp. 81 - 97, April 1997.

[67] Lin Z. and Jha N.K., "Interconnect-aware low-power high-level synthesis",

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 24, No. 3, pp. 336-351, March 2005.

[68] Ling W., Yingtao J. and Selvaraj H., "Synthesis scheme for low power

designs with multiple supply voltages by tabu search", Proceedings of the

International Symposium on Circuits and Systems, ISCAS, Vol. 5, pp. 261-

264, May 2004.

[69] Luo J. and Jha N. K., "Power-Efficient Scheduling for Heterogeneous

Distributed Real-Time Embedded Systems", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No. 6,

pp. 1161-1170, June 2007.

[70] Manzak A. and Chakrabarti C , "A Low Power Scheduling scheme With

Resources Operating at Multiple Voltages", IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 10, No. 1, pp. 6-14, February 2002.

References 195

[71] McFarland M. C , Parker A. C. and Camposano R., "The High-Level

Synthesis of Digital Systems", Proceedings of the IEEE, Vol. 78, No. 2, pp.

301-318, February 1990.

[72] Mehra R. and Rabaey J., "Exploiting Regularity for Low-Power Design",

Proceedings of the International Conference on Computer-Aided Design,

ICCAD, pp. 166 - 172, November 1996.

[73] Mehra R. and Rabaey J., "Behavioral level power estimation and

exploration", Proceedings of the International Workshop on Low Power

Design, pp. 197-202, 1994.

[74] Metropolis N., Rosenbluth A., Rosenbluth M., Teller A. and Teller E.,

"Equation of state calculations by fast computing machines", Journal of

Chemical Physics, Vol. 21, No. 6, pp. 1087-1092, June 1953.

[75] ModelSim SE User's manual, Version 6.1, Mentor Graphics Corporation,

May 2005

[76] Mohanty S. P., Ranganathan N. and Chapidi S. K., "Simultaneous peak and

average power minimization during datapath scheduling for DSP processors",

GLSVLSI, pp. 215 - 220, April 2003.

[77] Mohanty S.P. and Ranganathan N., "Simultaneous peak and average power

minimization during datapath scheduling", IEEE Transactions on Circuits and

Systems-I: Regular Papers, Vol. 52, No. 6, pp. 1157-1165, June 2005.

[78] Mohanty S.P. and Kougianos E., "Modelling and reduction of gate leakage

during behavioral synthesis of nanoCMOS circuits", 19th International

Conference on VLSI Design held jointly with 5th International Conference on

Embedded Systems and Design, pp. 6, January 2006.

[79] Mohanty S.P. and Kougianos E., "Simultaneous Power Fluctuation and

Average Power Minimization during Nano-CMOS Behavioral Synthesis",

20th International Conference on VLSI Design, pp. 577-582, January 2007.

[80] Mohanty S.P. and Ranganathan N., "A framework for energy and transient

power reduction during behavioral synthesis", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 12, No. 6, pp. 562-572, June

2004.

[81] Mohanty S.P., Kougianos E., Velagapudi R. and Mukherjee V., "Scheduling

and binding for low gate leakage nanoCMOS datapath circuit synthesis",-

References 196

Proceedings of the IEEE International Symposium on Circuits and Systems,

ISCAS, pp. 5291 - 5294, May 2006.

[82] Mohanty S.P., Ramakrishna V. and Kougianos E., "Physical-aware simulated

annealing optimization of gate leakage in nanoscale datapath circuits",

Proceedings of Design, Automation and Test in Europe, DATE, Vol. 1, pp. 6,

March 2006.

[83] Mohanty S.P., Ranganathan N. and Chappidi S.K., "An ILP-based scheduling

scheme for energy efficient high performance datapath synthesis",

Proceedings of the International Symposium on Circuits and Systems, ISCAS,

Vol. 5, pp. 313-316, May 2003.

[84] Mohanty S.P., Velagapudi R. and Kougianos E., "Dual-K versus dual-T

technique for gate leakage reduction: a comparative perspective", 7th

International Symposium on Quality Electronic Design, ISQED, pp. 6, March

2006.

[85] Mohanty S. P. and Ranganathan N., "Energy Efficient Scheduling for Data

path Synthesis", Proceedings of the 16th International Conference on VLSI

Design, pp. 446 - 451, January 2003.

[86] Mohanty S. P., N. Ranganathan and V. Krishna, "Data path Scheduling using

Dynamic Frequency Clocking", Proceedings of the IEEE Computer Society

Annual Symposium on VLSI, pp. 58 - 63, April 2002.

[87] Moore G. E., "No Exponential is Forever: But "Forever" Can Be Delayed!",

IEEE International Solid-State Circuits Conference. Digest of Technical

Papers., Vol. 1, pp. 20 - 23, February 2003.

[88] Mukherjee R. and Memik S. O., "An Integrated Approach to Thermal

Management in High-Level Synthesis", IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 14., No. 11, pp. 1165 - 1174,

November 2006.

[89] Mukherjee R., Memik S. O. and Memik G., "Peak Temperature Control and

Leakage Reduction During Binding in High Level Synthesis", Proceedings of

the International Symposium on Low Power Electronics and Design, ISLPED,

pp. 251-256, August 2005.

References 197

[90] Mukherjee R., Memik S. O. and Memik G., "Temperature-Aware Resource

Allocation and Binding in High-level Synthesis", Proceedings of the 42nd

Design Automation Conference, DAC, pp. 196 - 201, June 2005.

[91] Murugavel A.K. and Ranganathan N., "A game-theoretic approach for

binding in behavioral synthesis", Proceedings of the 16th International

conference on VLSI Design, pp. 452 - 458, January 2003.

[92] Murugavel A.K. and Ranganathan N., "Game theoretic modelling of voltage

and frequency scaling during behavioral synthesis", Proceedings of the 17th

International Conference on VLSI Design, pp. 670 - 673, 2004.

[93] Murugavel A.K., and Ranganathan N., "A game theoretic approach for power

optimization during behavioral synthesis", IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vol. 11, No. 6, pp. 1031 - 1043,

December 2003.

[94] Musoll E. and Cortadella J., "Scheduling and resource binding for low

power", Proceedings of the 8th International Symposium on System Synthesis,

pp. 104-109, September 1995.

[95] Muthumala W.H., Hariyama M. and Kameyama M., "GA-Based Assignment

of Supply and Threshold Voltages and Interconnection Simplification for Low

Power VLSI Design", Proceedings of the Asia Pacific Conference on Circuits

and Systems, APCCAS, pp. 1264 - 1267, December 2006.

[96] Narayanan S. and Gajski D. D., "System clock estimation based on clock

slack minimization", Proceedings of the European Design Automation

Conference, EURO-DAC, pp. 66-71, September 1992.

[97] Nestor J. A. and Thomas D. E., "Behavioural Synthesis with Interfaces",

Proceedings on the International Conference on Computer Aided Design,

ICCAD, pp. 112-115, 1986.

[98] Ochoa-Montiel M.A., Al-Hashimi B.M. and Kollig, P., "Exploiting power-

area tradeoffs in behavioural synthesis through clock and operations

throughput selection", Proceedings of Asia and South Pacific Design

Automation Conference, ASP-DAC, pp. 517 - 522, January 2007.

[99] Ochoa-Montiel M.A., Al-Hashimi B.M. and Kollig, P., "Impact of

Multicycled Scheduling on Power-Area Tradeoffs in Behavioural Synthesis",

References 198

Proceedings of the International Symposium on Circuits and Systems, ISC AS,

Vol. 4, pp. 4163 - 4166, May 2005.

[100] Patel K., Smith B. C and Rowe L. A., "The Berkeley Software MPEG-1

Video Decoder", ACM Transactions on Multimedia Computing,

Communications and Applications, Vol. 1, No. 1, pp. 110 - 125, February

. 2005.

[101] Paulin P. G. and Knight J. P., "Force-Directed Scheduling for the Behavioural

Synthesis of ASICs", IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, Vol. 8, No. 6, pp. 661 - 679, June 1989.

[102] Paulin P.G., Knight J.P. and Girczyc E.F., "HAL: A multi-paradigm approach

to automatic datapath synthesis", Proceedings of the 23th Design Automation

Conference, DAC, pp. 263-270, June 1986.

[103] Pedram M. and Abdollahi A., "Low-power RT-level synthesis techniques: a

tutorial", IEE Proceedings on Computer Digital Techniques, Vol. 152, No. 3,

pp. 333-343, May 2005.

[104] Pedram M., "Power Minimization in IC Design : Principles and

Applications", ACM Transactions on Design Automation of Electronic

Systems, Vol. 1, No. 1, pp. 3-56, January 1996.

[105] PrimePower Full-Chip Dynamic Power Analysis for Multimillion-Gate

Designs Data Sheet Synopsys, 2004.

[106] Private communication, Peter Kollig, Philips Semiconductors, Southampton,

2004.

[107] Qiang W., Renfa L., Wei W., Wei X., Jinian B., Yunfeng W. and Haili W.,

"Extend Force-directed Scheduling for System-level Synthesis in Time-

constrained System-on-Chip Design", Second International Conference on

Embedded Software and Systems, pp. 174 - 180, December 2005.

[108] Rabaey J. M., "Digital Integrated Circuits. A design perspective", 2nd. Edition,

Prentice Hall, 2003.

[109] Radhakrishnan B. and Venkatesan M., "Multiple voltage and frequency

scheduling for power minimization", Proceedings of the Euromicro

Symposium on Digital System Design, pp. 279 - 284, September 2003.

[110] Raghunathan A. and Jha N. K., "SCALP: an iterative-improvement-based

low-power data path synthesis system", IEEE Transactions on Computer-

References 199

Aided Design of Integrated Circuits and Systems, Vol. 16, No. 11, pp. 1260 -

1277, November 1997.

[I l l] Raghunathan A. and Jha N. K., "Behavioural Synthesis for Low Power",

Proceedings of the IEEE International Conference on Computer Design, pp.

318-322, October 1994.

[112] Raghunathan A., Jha N. K. and Dey S., "High-level power analysis and

optimization", Kluwer Academic Publishers, 1998.

[113] Raje S. and Sarrafzadeh M., "Scheduling with multiple voltages", Integration:

The VLSI Journal, Vol. 23, No. 1, pp. 37 -59, 1997.

[114] Raje S. and Sarrafzadeh M., "Variable Voltage Scheduling", Proceedings of

the International Symposium on Low Power Electronics and Design, pp. 9 -

14, 1995.

[115] Ramanujam J., Deshpande S., Hong J. and Kandemir M., "A Heuristic for

clock selection in high level synthesis", Proceedings of the 15th International

Conference on VLSI Design, pp. 414 - 419, January 2002.

[116] Ranganathan N., Namballa R., Hanchate N., "CHESS: a comprehensive tool

for CDFG extraction and synthesis of low power designs from VHDL", IEEE

Computer Society Annual Symposium on Emerging VLSI Technologies and

Architectures, pp. 6, March 2006.

[117] Reeves C. R., "Modern Heuristics Techniques for Combinatorial Problems",

McGraw-Hill International (UK), 1995.

[118] Rettberg A. and Rammig F.J., "A new design partitioning approach for low

power high-level synthesis", Third IEEE International Workshop on

Electronic Design, Test and Applications, DELTA, pp. 6, January 2006.

[119] Rim M., Mujumdar A., Jain R. and De Leone R., "Optimal and heuristic1""

algorithms for solving the binding problem", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 2, No. 2, pp. 211 - 225, June

1994.

[120] Ruiz-Sautua R., Molina M. C. and Mendias J. M., "Exploiting Bit-Level

Delay Calculations to Soften Read-After-Write Dependences in Behavioural

Synthesis", IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 26, No. 9, pp. 1589 - 1601, September 2007.

References 200

[121] Safari S., Esmaeilzadeh H. and Jahangir, A.H., "A novel improvement

technique for high-level test synthesis", Proceedings of the International

Symposium on Circuit and Systems, ISCAS, Vol. 5, pp. 609 - 612, May 2003.

[122] San Martin R. and Knight J. P., "Optimising Power in ASIC Behavioural

Synthesis", IEEE Design & Test of Computers, Vol. 13, No. 2, pp. 58 - 70,

Summer 1996.

[123] San Martin R. and Knight J. P., "Power-Profiler: Optimising ASICs Power

Consumption at the Behavioural Level", 32nd Design Automation Conference,

DAC,pp. 4 2 - 4 7 , 1995.

[124] Sharp R., "Higher-Level Hardware .Synthesis", Series: Lecture Notes in

Computer Science, Springer, Vol. 2963, 2004.

[125] Shiue W. T. and Chakrabarti C , "ILP-Based scheme for low power

scheduling and resource binding", IEEE International Symposium on Circuits

and Systems, ISCAS, Vol. 3, pp. 279 - 282, May 2000.

[126] Shiue W. T. and Chakrabarti C, "Low Power Scheduling with resources

operating a multiple voltages", Proceedings of the International Symposium

on Circuits and Systems, ISCAS, Vol. 2, pp. 437 - 440, June 1998.

[127] Shiue W. T. and Chakrabarti C , "Low Power Scheduling with Resources

Operating at Multiple Voltages", IEEE Transactions on Circuits and Systems

II. Analog and Digital Signal Processing, Vol. 47, No. 6, pp. 536 - 543, June

2000.

[128] Synplify ASIC and Amplify ASIC, Reference manual, Synplicity Inc,

October 2004.

[129] Szedo G., "Color-Space Converter: RGB to YCrCb", Xilinx, XAPP930

(vl.0), Application Note: Virtex-4, Virtex-II, Virtex-II Pro, Spartan3, May

2006.

[130] Thomas D. E. and Moorby P. R., The Verilog Hardware Description

Language, 5th edition, Springer, 2002.

[131] Tseng C.-J., Wei R.-S., Rothweiler S. G., Tong M. M. and Bose A. K.,

"Bridge: A versatile behavioral synthesis system", Proceedings of the IEEE

Custom Integrated Circuits Conference, pp. 415 - 420, May 1988.

[132] UNICAD 2.4 Release Notes, Library CORE9GPLL version 4.1, September

2003.

References 201

[133] VBrick MPEG-1 Encoder/Decoder Datasheet, VBrick Systems Inc., 2004.

[134] Veendrick H, "Deep-Submicron CMOS ICs: from Basics to ASICs", Kluwer

Academic Publishers, 1999.

[135] Virage Logic Corporation, "Technical overview. Power Reduction

Techniques for Ultra-Low-Power Solutions", white paper, June 2004.

[136] Wakabayashi K. and Yoshimura T., "A resource sharing and control synthesis

method for conditional branches", Proceedings of the International

Conference on Computer Aided Design, ICC AD, pp. 62 - 65, November

1989.

[137] Walker R.A. and Chaudhuri S.; "Introduction to the scheduling problem",

• IEEE Design & Test of Computers, Vol. 12, No. 2, pp. 60 - 69, Summer

1995.

[138] Wang L., Jiang Y. and Selvaraj H., "Synthesis scheme for low power designs

with multiple supply voltages by heuristic algorithms", Proceedings of the

International Conference on Information Technology: Coding and

Computing, ITCC, Vol. 2, pp. 826 - 830, 2004.

[139] Weng J.-P. and Parker A. C , "CSG: Control path synthesis in the ADAM

system", Proceedings of the 6th International Workshop on High Level

Synthesis, pp. 52-64, 1992.

[140] Weste N. H. E. and Harris D., "CMOS VLSI Design. A circuits and systems

perspective", 3 rd. edition, Addison Wesley, 2005.

[141] Williams A. C , Brown A. D. and Zwolinski M., "Simultaneous optimisation

of dynamic power, area and delay in behavioural synthesis", IEE Proceedings

Computers and Digital Techniques, Vol. 147, No. 6, pp. 383 - 390, November

2000.

[142] Wu C-H. and Irwin J. D., "Emerging Multimedia Computer Communication

Technologies", Prentice Hall, 1998.

[143] Xiaoyong T., Hai Z. and Banerjee P., "Leakage power optimization with dual-

Vth library in high-level synthesis", Proceedings of the 42nd Design

Automation Conference, DAC, pp. 202 - 207, June 2005.

[144] Xiaoyong T., TianyiJ., Jones A. and Banerjee P., "Behavioral synthesis of

data-dominated circuits for minimal energy implementation", 18th

International Conference on VLSI Design, pp. 267 - 273, 2005.

References 202

[145] Yamada A., Yamazaki T., Ishiura N., Shirakawa I. and Kambe T., "Datapath

scheduling for conditional resource sharing", Asia Pacific Conference on

Circuits and systems, APCCAS, pp. 169 - 174, December 1994.

[146] Yan L., Jiong L. and Jha N.K., "Joint dynamic voltage scaling and adaptive

body biasing for heterogeneous distributed real-time embedded systems",

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 24, No. 7, pp. 1030 - 1041, July 2005.

[147] Yoonseo C. and Taewhan K., "An efficient low-power binding algorithm in

high-level synthesis", IEEE International Symposium on Circuits and

Systems, ISC AS, Vol. 4, pp. 321 - 324, May 2002.

[148] Zhen Z., Jinian B., Zhipeng L., Yunfeng W. and Kang Z., "High Level

Synthesis with Multiple supply Voltages for Energy and Combined Peak

Power Minimization", IEEE Asia Pacific Conference on Circuits and

Systems, APCCAS, pp. 864 - 867, December 2006.

[149] Zhipeng L., Jinian B., Jianfeng H. and Yunfeng W., "Fast and efficiently

binding of functional units for low power design", 6th International

Conference On ASIC, ASICON, Vol. 1, pp. 10-13, October 2005.

[150] Zhipeng L., Jinian B., Qiang Z., Liu Y. and Yunfeng W., "Interconnect Power

Optimization Based on the Integration of High-level Synthesis and

Floorplanning", Proceedings of the International Conference on

Communications, Circuits and Systems, Vol. 4, pp. 2286 - 2290, June 2006.

[151] Zwolinski M., "Digital System Design with VHDL", 2nd. Edition, Prentice

Hall, 2004;

