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The rapid growth of mobile electronics has led power consumption to be considered
as a critical design priority. This necessitates the development of algorithms and
design tools that target power minimisation at all levels of the design abstraction.
The work presented in this thesis addresses the problem of dynamic power
minimisation at behavioural level. A detailed investigation into power reduction
algorithms during behavioural synthesis is presented. The research undertaken has
produced two novel power-aware algorithms: time constrained scheduling and
datapath synthesis. The power-aware time constrained scheduling algorithm selects
the clock period and operations throughput such that power consumption can be
reduced by scaling the voltage until the slack of at least one of the design operations
is zero. It has been shown that by carefully choosing the clock period and operations
throughput, it is possible to produce a set of solutions with different power-area
tradeoffs. To demonstrate the efficiency of the new scheduling algorithm in terms of
solution quality, scheduling results of various benchmark examples have been
included and compared with a multiple supply voltage (MSV) algorithm. It has been
shown that the proposed algorithm is capable of obtaining schedules with single
supply voltage (SSV) that have identical resource requirements and comparable
power consumption to schedules obtained using a MSV algorithm. Using SSV
avoids the difficulties of MSV, including area and power overhead due to required
level shifters to transfer data between functional units operating at different voltages.
To solve the highly interrelated tasks of behavioural synthesis together with the
power minimisation problem, an efficient algorithm for concurrent scheduling,
binding, and clock and operations throughput selection has been introduced. This

‘represents the second contribution of this work. Using a simulated annealing-based

optimisation and a compound cost function, the exploration of different power-area
tradeoffs is possible. The new scheduling and datapath synthesis algorithms have
been incorporated into a power aware behavioural compiler (PABCOM). Synthesis
results of various benchmark examples are included to demonstrate the higher
solution quality when compared with a power-aware algorithm previously reported.
Furthermore, to demonstrate the applicability of PABCOM in dealing with a real life
design, two solutions for the motion_vector reconstructor from MPEG-1 decoder

have been implemented using 0.12um technology. Power and area values for both

solutions have been obtained using the reports generated after logic synthesis with
Synplify ASIC and power analysis with PrimePower. The solutions dissipate 31%
and 42% less power than if they were operated at the maximum supply voltage of the
library components.
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Chapter 1

Introduction

1.1 Motivation

Continuous imprdvément in silicon technology is resulting in chips that are faster,
smaller and have more transistors than their predecessors. This has resulted in
increased processing 'capacity per chip, és well as a steady growth of operating
frequency, leading to higher power consumption [§7]. Power consumption has turned
into a high priority consideration in hand-held mobile electronic system design due
to éost, reliability and portability concerns, making low power design a critical issue
that is being continuously investigated by academia and industry. High power
dissipation can lead to expensive designs since costly packaging and cooling
techniques are required to avoid high operating temperatures, which lead to less
reliable systems. Also, high power dissipation implies a short battery life.

To successfully design low power electronics systems, it is necessary to tackle the
power consumption problem at each level of abstraction of the design'hierarchy [24].
The main levels of design abstraction [71] are:

e System level. The system level is concerned with the overall system structure
and information flow. At this level, thé design may be modelled as a set of
abstract communicating processes or tasks.

e Behavioural level. This level is also called Algorithmic Level. At this level
the focus is on the operations performed by the system.

e Register transfer. level. The system is viewed as a set of intérconnect stor'age

elements and functional blocks.
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Power reduction at the different levels of abstraction can be implemented using
different techniques [135], as shown in Figure 1.1. It can also be seen that the
exploitation of power optimisation at various levels of the design hierarchy offers
different power reductions. It is clear that power optimisation opportunities are
significantly larger at the higher levels, thus reducing power consumption only at
lower levels may not be enough to meet the designer power reduction requirements.
For this reason, power optimisation techniques are being incorporated into the
synthesis process at higher levels of abstraction as shown in [150], [45], [67], [79],
[55] and [69].

Design hierarchy Examples of power reduction techniques
A Shutting down idle components [44]
g ____________________________
S w Assigning maximum number of operations to low supply voltage
gf_:” and minimising switching activity during binding [23]
'g § e e e e e — — — — —— —  —— —  —— e
‘g Using load-enabled registers and clock gating [47]

Figure 1.1 Power reduction at different levels of abstraction

Synthesis consist of finding a structure that implements the behaviour of the design
while satisfying certain goals and constraints specified by the designer [21]. The
behaviour of the design is seen as a black box where the relations between inputs and
outputs are given regardless of their implementation. The structure refers to the set
of interconnected components that constitute the design (described by a netlist).
Finally, the structure must be mapped into a physical design, which gives
information about the location of the structure subparts on a chip.

Different éy‘nthesis steps need to be realised before obtaining a physical design, as
shown in Figure 1.2 [112]. System-level synthesis includes hardware-software
partitioning, resource allocation, task scheduling and task resource binding [107].
High Level Synthesis (HLS), also called behavioural synthesis, is the process of
mapping a behavioural description at the algorithmic level to a structural register
transfer level (RTL) description. This RTL description is in terms of functional units,
memory elements and interconnections (i.e. multiplexers and buses) [27]. Logic
synthesis translates an RTL description into an optimised netlist by applying its two

main tasks: logic optimisation and technology mapping. Logic optimisation
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transforms a combinatorial or sequential logic function into an equivalent gate level
specification more suitablg for technology mapping. Technology mapping transforms
such gate level specification into a network of specific primitives provided by a
particular technology [18]. Physical or layoﬁt synthesis performs tasks such as
placement and routing. Placement assigns locations to various circuit components on
the chip and involves the optimisation of objectives such as wire length, timing and
power [28]. Routing generates the interconnections between the various circuit
components [124]. After physical synthesis, a complete layout of the hardware is

obtained, from which masks can be extracted for fabrication.

System specification

v

System Level Design

Behavioural description

y

Behavioural Synthesis

Structural RTL description

y

Logic Synthesis
Logic-level netlist
y
Layout Synthesis
Layout JV

Figure 1.2 Synthesis flow and levels of abstraction [112]

Behavioural synthesis is becoming a mature research area that has been investigated
for two decades now. However, a>renewed interest in behavioural synthesis has been
motivated due to the increasing complexity of digital systems, and the dévelopment
of systems-on-a—éhip (SoC) [35]. The use of a design methodology based on
behavioural synthesis provides the following advantages [71], [19], [121]: ¢
e Better complexity management, Designing at a high level of abstraction is an
effective method to deal with the growing complexity of integrated circuits.
e Shorten verification/simulation cycle. The automatic generation of RTL code
from Behavioural deécriptions avoids the slow and error-prone  manual

process, hence simplifying the désign verification and debugging effort.




Introduction v 4

Moreover, shortening the design cycle allows nﬁeeting the aggressive time to
market needs proper of most ASICs designs, lowering the development cost
and enhancing the productivity. ’

e Ability to search the design space through the rapid exploration of different
area-performance-power tradeoffs, foéusing less on the details of logic and-
physical design. | o A

e Higher quality of results can be achieved by integrating automatic high level
optimisations together with physical\ infoﬁnation of logié and interconnects.

To demonstrate how a behavioural synthesis methodology generates efficient
‘solutions and facilitates the design of electronic systems by using b_ehavioural
.descriptions, consider the ‘design of a RGB-YCrCb converter. Listing 1.1 shows a
- VHDL behavioural description of the RGB-YCrCb converter. As it can be seen, the
description inéludes mathematical expressions and contains neither the cycle by
cycle behaviour nor structure of the design. Assuming that this VHDL behavioural
description is suitable for RTL synthesis using SynplifyPro, the generated design
contains 4 combinational multipliers and 8 adders, utilising 105% of the total CLBs
“from a FPGA Xilinx Spartan XCS05. However, a design with only 1 multiplier, 1
adder and 1 subtractor, utilising only 50% of the same FPGA, can be obtained using
the behavioural synthesis tool from Chapter 5.

Behavioural synthesis also offers a power optimisation opportunity due to the power
analysis carried out at high level of abstraction. This is why. researchers are still
investigating and developing improved methods for low power behavioural synthesis
as fecently demonstrated in [7], [116] and [118]. Power analysis durjng behavioural
syﬁthesis allows evaluating the impact of various bptimisations and design
modifications on power, as well as validating that power budgets are met. Although
. power analysis carri_éd out.at high level tends to be less accurate thah at lower levels
of the design hierarchy, it is still helpful as it enables designers to forecast correctly
the increase or decrease in power consumption after a design modification.
Consequently, the role of lower level power analysis is limited to support lower level
optimisations and assure that the design meets the power specification with a high

level of confidence [112].
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Listing 1.1 VHDL behavioural description of the colour space converter from RCB to YCrCh

library ieee;
use ieee.std_logic_1164.all;

package converter_defs is

subtype vector is std_logic_vector(9 downto 0);
end converter_defs;
use work.converter_defs.all;

entity converter is
generic(
ACOEF, BCOEF, CCOEF, DCOEF: vector :=“01010101017;
YOFFSET, COFFSET: vector := “1010101010”);
port( '
R, G, B: in vector;
Y, Cb, Cr: out vector);
end entity converter;

_architecture converter_a of converter is
signal y_: vector;
process
y_ <= ACOEF (R-G)+ G+ BCOEF * (B G)
Y <=y + YOFFSET,;
Cb <= CCOEF * (B -y_) + COFFSET,
Cr <=DCOEF * (R y )+ COFFSET
end process;
end converter_a;

1.2 Contributions and thesis overview

This thesis presents an investigation into dynamic power minimisation algorithms for
behavioural synthesis. This research makes the following contributions:
e a scheduler capable of producing a set of solutions with différent power and
resource requirements yet meeting the imposed time constraint [99)].

e a datapath synthesis algorithm that performs siinultaneously scheduling,
binding, clock and operations throughput selection.

* a behavioural compiler based on the above scheduler and datapath synthesis
algorithms that explores the design space finding good quality solutions in

terms of area and powér according to the user requirements [98].

e realisation of a motion vector reconstructor from the Berkeley MPEG-1
player developed in [40] to further validate the practical applicability of the

proposed power-aware behavioural compiler.

This thesis is organised in seven chapters. Chapter 2 provides a review of

behavioural synthesis concepts, outlines the different contributors of power

consumption and presents combinatorial optimisation fundamentals that lay the
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foundations of the algorithms developed in following chapters. Chapter 3 presents
the literature review of low power behavioural synthesis. Chéptér 4 introduces a new
power-aware time constrained vschedul.ing algorithm that explores efficiently the
design space and obtains a set of power-area tradeoffs through voltage scaling after
appropriate clock and operations throughput selection. Chaptér 5 presents a power-
aware behavioural compiler thét given a time constraint, performs simultaneously
scheduling, binding, clock and operations throughput selection using a simulated
annealing based algorithm. Chapter 6 demonstrates the practical applicability of the
algorithms developéd in Chapter 4 and Chapter 5 through the realisation of the
motion vector reconstructor from the Berkeley MPEG-1 player [40]. Finally, Chapter
7 summarises the main conclusions of the presented investigation and suggests future

directions of research.




Chapter 2

Low power behavioural synthesis fundamentals

2.1 Introduction

To facilitate the linderstanding of low power behavioural synthesis, the basic

concepts of behavioural synthesis and sources of power consumption are introduced

in this chapter. Section 2.2 presents a general overview of behavioural synthesis.

Section 2.3 describes the sources of power consumption together with some effective
techniques proposed to reduce power consumption using behavioural synthesis.
Section 2.4 introduces conibinatorial optimisation with particular emphasis on
simulated annealing, as such technique is employed in Chapter 5 to perform the

design space exploration. Finally, concluding remarks of this chapter are given in

)

"Section 2.5.

2.2 Behavioural synthesis

In the context of behavioural synthesis, three different types of behavioural
descriptions can be identified: data dominated, control dominated and control flow

intensive [53]. Control flow intensive designs require a mix of control flow and data

flow within the datapath, and may contain a large number of nested loops and-

conditionals. In data dominated designs such as digital signal processing and image

processing applications, arithmetic operations are predominant. On the other hand,

control dominated designs have very few arithmetic operations, being predominant

nested conditional constructs, data dependent loops and comparisons. Data
dependent loops make difficult to predict the number of times a loop body is

executed. This means that the number of clock cycles required to execute a control
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dominated design is highly dependent on the input data. In contrast, data dominated
designé present loops that are data independent, facilitating the identification of the
number of clock cycles required to execute the design. Area, power and delay are
dominated by arithmetic units and registers in data dominated designs and by non
arithmetic units, i.e. multiplexers, comparators, etc, in control dominated design_s.
Controllers in dafa dominated designs are simple and have very little impact on the
area, delay and power of the circuit. However, in control dominated designs,
controllers may significantly affect the total circuit delay and power [112].
Behavioural synthesis transforms the algorithmic or behavioural description (data
dominated, control dominated or control flow intensive)v of a circuit into a Register
Transfer Level (RTL) implementation [120]. This "implementation ‘consists of a
datapath and controller. The datapath executes the -operations specified in the
behavioural descripﬁon and normally consists of functional units, registers and‘
multiplexers. The controller provides to the datapath the necessary control signals,
ie. multiplexers select signals or registers load signals, to execute the operations.

The general steps of a behavioural syhthesis design flow are shown in Figure 2.1.
The ﬁrst‘ step requires the translation of the design behavioural description into an
‘intermediate format that is more suitable for the synthesis‘ proceés, such as data flow
. graph (DFG) and/or control flow graph (CFG), or a, combination thereof known as
CDFG [116]. The second step is scheduling, which assigns each operation to a
specific; control step (cstep) such that the design constraints are met. In the case of
time constrained scheduling the aim is to reduce the resource requirements whereas
in resource constrained scheduiing the aim is to reduce the execution time. The third
step involves allocetion, which determines the functional units necessary to perform
the operatiens and binding, which assigns-op,erations to functional modules and
values to registers. The aim of this step is to reduce the resources requirements such
as registers and multiplexers. Using the information obtained after scheduling,
allocation and binding, the controller that provides the signals to the datapath is
designed. Finally, a gate level netlist is produced after synthesising the datapath and

the controller using commercial logic synthesis tools.
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Behavioural description

l

Compiler
CDFG I
Scheduling
Scheduled DFG I
Allocation and Binding J
Datapath » Controller extraction
Controller
A A
Logic Synthesis

l

Gate level netlist

Figure 2.1 Behavioural synthesis design flow

2.2.1 Graph-based repreéentation of behavioural descriptions.

The input of a behavioural synthesis system is a behavioural description, which can
be specified in a hardware description language such as VHDL [116], Verilog [130],
SystemC [16] or a high-level programming language like C [35]. The behavioural
| description expresses the system‘ function in terms of mathematical algorithms or
difference equations. For example, the function of the colour space converter from
RGB to YCrCb [129] can be expressed like:

Y'= ACOEF *(R-G)+ G+ BCOEF *(B-G)

Y =Y+YOFFSET

Cb=CCOEF *(B-Y')+ COFFSET
Cr = DCOEF *(R-Y")+ COFFSET

2.1)

where R, G and B are the RGB colour space inputs; Y, Cr and Cb are the YCrCb
colour space outputs. ACOEF, BCOEF, CCOEF, DCOEF are parameter valués
according to the standard, i.e. NTSC, PAL or YUV. YOFFSET and COFFSET are
constants that facilitate offset compensation.

A VHDL behavioural description of thé RGB-YCrCb converter was presentéd in
Chapter 1 Listing 1.1 without the need of specifying its cycle by cycle behaviour or
its structure. This limits the designer’s role to specify the time intérval within a

particular operation has to be completed [151], allowing the behavioural synthesis
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tool to detefmine the structure that better suits the specified requirements. The
behavioural description is then compiled into an internal representation, i.e. DFG,
which illustrates in a graphical way all the bperations dependencies from the original
behavioural specification. Figure 2.2 shows the DFG of the RGB-YCrCb converter,
where operations are representéd by circles and péssing data values by directed

edges.

CCOEF G ACOEF R G BCOEF B G DCOEF COFFSET YOFFSET

S S
(») O
&)
B

> °° +

v

Cb Cr Y
Figure 2.2 RGB-YCrCb converter DFG

2.2.2 Scheduling

Scheduling assigns ’the operations of the algorithmic description to control steps
(csteps) defining the behaviour of the circuit cycle by cycle, i.e. specifying the order
in which operations will be executed [60]. Each cstep corresponds to a time interval
equal to the clock period. The number of csteps used to implement the specified
behaviour is called schedule length (Z,). Various algorithms have been proposed to
solve the scheduling problem in behavioural synthesis, the simplest ones being as-
soon-as-possible (ASAP) and as-late-as-possible (ALAP) [137]. Although both of
them assume unlimited resources, they are important since they determine the fastest
possible implementation, the critical path (in terms of control steps) and an upper

bound on the number of required hardware resources. Moreover, ASAP and ALAP




Chapter 2 ' o 11

are the basis for other algorithms that aim to minimise either the implementation
area, i.e. time constrained scheduling (TCS), or the required schedule length to
- implement the behaviour, i.e. resource constrained scheduling (RCS). The following
subsections illustrate in more detail-the unconstrained schedules ASAP and ALAP,

before presenting time constrained scheduling and resource constrained scheduling.

Unconstrained schedules

The ASAP scheduling algorithm assigns each operation of the DFG to the earliest
possible cstep allowed by the data dependencies. For example, Figure 2.3 shows the
ASAP schedule of the RGB-YCrCb converter considering that each operation can be

executed in one clock cycle.

cstep
1

B G
BCOEF z:s
\ N2

oA

N

YOFFSET

5 B3 DCOEF ‘\135
N7 N9

COFFSET

Figure 2.3 ASAP schedule of the RGB-YCrCb converter

Since ASAP schedules the operations in the earliest possible cstep, the
implementation that executes the DFG using the least number of control steps is
obtained, giving a lower bound on the schedule length. This lower bound of the
schedule length defines the necessary number of csteps to execute all the operations
in the critical path, i.e. 7 csteps in Figure 2.3. The operations that are in the critical

path are Nl, N3, N5, N6, N7, N10 and N12, or alternatively, N1, N3, N5, N6, N8,
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N11 and N13. These operations can not be moved to any other cstep unless the data
dependencies are violated or the schedule 1ength is increased. In addition, ASAP -
gives the upper bound of required functional units which is equal to the maximum
number of same type resources used in each.cstep. In Figure 2.3, such upper bound
consists of 2 multipliers, 2 adders and 2 subtractors. _

To obtain the ALAP schedule it is necessary to define the schedule length in
advance, and then assign each operation to the latest cstep possible respecting the
data dependencies from the DFG. Figure 2.4 shows the ALAP schedule of thé RGB-
YCbCr converter considering a schedule length of 7 csteps.

B G
cstep \ )

\ 7
1 ACOEF @m ' \f |
2 G Gj/N ; | BCC{EF» @NZ

o

»

B e { R
5 CCOEF g N8t§ DCOEF j
AN N7 |

- COFFSET | YOFFSET
© Gj N11\@ /S \ .

N10
7
N12. N13 N9
L |
Cb Cr Y

Figure 2.4 ALAP schedule of the RGB-YCrCb converter

Resource Constrained Scheduling (RCS)

The aim of resource constrained scheduling is to assign operations to control steps
such that execution time is minimised for a given number of functional modules.
Although the RCS problem can be fonhulated and optimally solved using Integer
Linear Programming (ILP) [13], its computational complexity is exponential. To
overcome this overhead, heuristic methods with polynomial time complbexity are
used. A commonly used heuristic algorithm to solve the RCS problerﬁ is list

scheduling [97]. This algorithm puts all operations whose inputs are available into a
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ready list. This list is then sorted according to a priority function. The operations in
the sorted list are subsequently assigﬁed until all operations are scheduled or all
hardware resources have been used. The list scheduling algorithm is the base for
more complex algorithms such as Force Directed List Scheduling (FDLS) [101].
Here, the selection of a candidate operation to be scheduled in a given time step is

done by using the concept of force.

Time Constrained Scheduling (TCS)

The aim of time constrained scheduling is to assign operations to csteps such that the
number of functional modules is minimized ‘for a given execution time. As in the
case of RCS, the time constrained scheduling problem can be formulated and solved .
optimally using ILP [13]. The TCS problem can also be sdlved using heuristic
algorithms such as force directed scheduling (FDS) [101]. The calculation of the
force is based on distribution graphs which represent the sum of the probability
values that the operations are assigned to certain cstep. Unlike the FDLS algoﬁthm
that considers each schedule step at a time, FDS considers the operations one at a
time for scheduling. Other algorithm based on the distribution graph concept is [58],
| where a least mean square error function is used to schedule operations in seqﬁence.
Although this algorithm obtains similar results than FDS [101], it does not evaluate
the influence of all operatidns on the schedule before the most appropriéte opération )
is selected and scheduled. This results in a simple implementation with low

computational complexity.

Multicycled operations

During scheduling, the operations can be executed over one clock cycle (single cycle
operations) or n clock cycles (multicycled operations), where 7 is any integer number-
greater than 1. In Figure 2.5, it can be seen that Ol is a single cycled operation
whereas O2, and O3 are muiticycled operations. Multicycling is a widely
investigated technique - for performance [137] and/or area [26] optimisation in
behavioural synthesis. Scheduling DFGs that contain multicycled operations has
been addressed in [101] and [58]. More recently, multicycled functional units (FUs)

have been employed to reduce the power consumption of digital designs generated

%
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using a behavioural synthesis methodology [31].

csteps
1 @
02
03
2
3.

Figure 2.5 Single cycled and multicycled operations

Conditional branches

Behavioural descriptions that contain conditional statements, i.e. if-then-else, result
in DFG with conditional branches where operations are mutually exclusive, which
means that they are never executed at the same time. Consequently mutual exclusive
operations can be scheduled in the same cstep without increasing the number of
functional units required. Conditional statements are represented using fork and join
nodes in the DFG [145j. Figure 2.6 shows a conditional statement and its respective
representation in the DFG. Note that the branch to be executed depehds on the value,

i.e. true or false, obtained after evaluating a given condition, i.e. (¥ and v). Such
3

value is represented in the DFG as a dotted line in Figure 2.6.

/

if (uandv) then _ ~ NI

y=x+Cy
else -
y=x+0Cy
endif;
Y
a) VHDL description b) representation in a DFG

Figure 2.6 Conditional statement
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From Figure 2.6, it can also be 'seen that operations N2 and N3 are mutually
exclusive and can be scheduled onto the same functional unit and into the same
control step without increasing the resource requirements. Some of the algorithms
that solve the problem of scheduling operations in a DFG with conditional branches

 are [58], [145], [54] and [136].

223 AIIocati_on and binding

In this thesis, the terms allocation and binding are used according to the definition
gi\}en in [119], which precisely distinguishes between the two. Allocation determines
the amount of resource requirements (functional, storage, and interconnect units) that
can be shared by operations and data transfers specified in the behavioural
description. The allocation process is usually solved as two-step process, before or
during scheduling and during binding. Module allocation is performed before
scheduling in the case of resource constrained scheduling or during scheduling in the
case of time constrained scheduling. The allocation of registers and multiplexers is
. performed during binding. Binding maps operations to functional modules and data
transfers to storage units in the synthesised structural design, hence, determining the
interconnect resources to implement the désign. The combination of the tasks
allocation and binding is referred to as datapath synthesis. Each of these tasks can be
transformed into a graph-theoretical problem such as graph colouriﬁg, clique
covering or clique partitioning [21]. The left edge algorithm [38] is capable of
solving the colouring problem and has been used efficiently for register binding.
This popular binding algorithm was used in the datapath synthesis system described
in Chapter 5 to generate initial solutions, from which new solutions are generated
during a simulated annealing process. The allocation and binding problem can also
be formulated -using Integer Linear Programming (ILP), which guarantees global
optimum solutions but at the expense of exponential worst case complexity. This
overhead can be overcome using heuristic techniques such as genetic algorithms or

simulated annealing [117].
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2.2.4 Clock selection

A key decision during behavioural synthesis is choosing the clock period to schedule
the data flow graph (DFG) operations into éontrol steps. Clock selection refers to the
. procedure of designating an appropriate clock period for the controller/datapath
circuit [112]. The clock period together with the execution time of the DFG (or
design time constraint), determine the length of the schedule as outlined in [96]:
T=Ls * Tclk | )
where T is the time constraint or DFG execution time, Ls is the length of the schedule
in terms of csteps and Tclk is the clock period.
The clock selection problem is not new in the context of behavioural synthesis and
has been addressed in previous research, showing the significant effect of clock
choice on the design in terms of area [5], [14], pefformance [96], [115], and power
[731, [99]. Power consumption can be affected directly or indirectly by the choice of
clock period in the follovs_fing ways [112]: |

e Larger values of clock period lead to a significantly increase ‘in the glitching

~ power consumption since the schedules obtained have more functional unit
chaining. However, the increase in functional unit chaining helps to inhibit
functional unit sharing, which may sometimes lead to larger and more power
consuming datapaths. _

e Larger values of the clock period lead to lower power consumption in the
clock network and registers since the design requires fewer clock cycles to
process each input. | '

An optimal clock period c;n be found by analysing all possible schedules with
different clock lengths and then choosing the best value [115]. However, this would
require considérable time which makes it highly undesirable. Clock selection is a key

concept used throughout this thesis to minimise power in behavioural synthesis.

2.2.5 Controller design:

Once the datapath has been obtained using behavioural synthesis, a controller needs
to be synthesized to complete the design. This controller provides signals to the
datapath to execute the operations according to the schedule obtained after-

behavioural synthesis. Such signals comprise for example, enable signals for

o
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functional modules, load signals for registers and select signals for multiplexers. The
most popular style of controller architecture for digital design is finite state machines
(FSMs) [35]. The design of the finite state machine from scheduled designs starts
with the specification of which operations will be executed in each control state. This
process is simple vin purely data flow designs, where no conditional branches are.
_present and each cstep represents a control state. However, in presence of conditional
branches; mutual exclusive operations that are, executed in the same cstep can be
either assigned to the same control state or to a control state based on the branch they
.are in. The former method is known as global slicing and the latter as local slicing
[131]. Both slicing techniques are illustrated in Figure 2.7, where the states are
demarcated by dashed lines and marked as S/, S2, S3 and so on. The local slicing
methbd has been used for the example in Figure 2.7a. It can be seen that operations
that are executed in the same cstep and under the same branch are éssigned to a
unique Stat_e. Hence, operations N4 and N5 are assigned state S3 and operation N6 is
assigned to state S6. However, in global slicing, operations that are executed in the
same cstep and on mutually exclusive conditional branches are assigned to the same
state. Figure 2.7b shows that operations N4, N5 and N6 are all assigned to the same
state S3 after using global slicing. | '

S1

S1
S2 82
S3 S6 S3
S4 S7 S4
S5 S5
S8 S6 N10 N11
S9 S7 N@
l
a) Local shcmg b) Global slicing

Figure 2.7 Assignment of operations to control states

Global slicing requires fewer states in the controller than local slicing, leading to

smaller state machines. However, status registers are required to store the
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information about which mutual exclusive cpcratiohs will be executed in the state. In
[139], the authors presénted a complete study on these two types of controllers and
concluded that using global slicing with status registers always results in designs
with lower area. These results were later supported by [35], where the authors claim
that the larger number of states required for local slicing leaded to poorer finite state

machine optimisation.

2.3 Sources of power consumption

In the past, performance and area were the primary considerations in electronics
system design. However, power considerationc have become an increasingly
dominant factor in the design of portable systems [70]. The design of portable
devices certainly requires consideration of the peak power consumption for
reliability and proper circuit operation, but the time aVeraged power is proportional
to the battery weight and volume required to operate circuits for a given amount of
time. Moreover, average power reduction results in [76]:

e extension of the battery life time, which‘depcnds on its A'h (ampere hour)
rating. When the battery has high power dissipation its life time may reduce
due to high ampere consumption. |

o reduction of the chip operating temperature, increasing the system reliability. -
It is estimated that components failure rates nearly double for each 10°C
increase in the operating temperature.

e - reduction of cooling and packaging costs.

Average power dissipation has two main contributors, the capacitive switching
power P, .op. and the leakage power Piegiage, both of equal impoxjtance for nanometre
technologies [65]. Piy.cqp. is due to the charge and discharge .Of the capacitances
associated with each node of the circuit. Neglecting the internal capacitances, the

power consumption of a generic CMOS gate is given by:

1
P, .= > aC,VLf 23)

sw.cap.

where « is the switching activity and it is the sum of the probabilities that a rising or
a falling transition occurs on the output in each clock cycle, C; is the load

capacitance, Via 1s the supply Voltage ‘and f is the frequency. The capacitive
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switching power is also called dynamic power. Dynamic power has usually been the

dominant component of the total power consumption [104]. However, in many of

today’s designs, leakage power has become comparable to dynamic power [103]. For

- example, leakage power can vc.ontribute as much as 42% of the total power in the

90nm process technolbgy generation [65]. _ _

Pieakage is the product of the leakage current jarqg. and the supply voltage Vg [108]:
P =]

leakage = L tcatage aa . 4
The leakzige current Jjeakage has two sources': i) the current /04, that flows through the
reverse-biased diode junctions of the transistors located between the source or drain
and the spbstrate, and ii) the subthrcshold current Ly pmreshota. The contribution of Zipqe
to the total leakage current is very small and can be ignored. On the other hand,
Lypinreshold grows exponentially as threshold and supply voltages are scaled down in

today’s processes. The current Isubthmh(;ld can be computed as outlined in [140]:

[ Ves—Vin ] Ve v
nV, v, ’
Ixubthre:hold =1 o€ 1 _,e (2.5)

where Vg, is the gaté,-source voltage, Vy is the drain-source voltage, V is the.

threshold voltage, V; is the thermal voltage, 7 is the subthreshold slope coefficient,
and J, is a technology constant.
Dynamic and leakage power can be technology dependent or/and design dependeﬁt.
Some of the technological measures that feduce dynamic and leakage power are
respectively the use of reduced voltage processes and the use of multiple voltage
thresholds. Dynamic power can also be reduced by taking measures in the design,
such as voltage scaling or switching activity reduction [134].
From equation (2.3), it can be inferred that dynamic power savings can be achieved
by reducing one or moré of the following parameters during behavioural synthesis: -

e Supply voltage . |

e Clock frequency

e Switching activity

e Load capacitance ,
Some‘techniques developed for low power behavioural synthesis comprise:

. Applying transformations that allow supply voltage or switching capacitance

reduction (8], [39]. Examples of such transformations are control step
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reduction, operation reduction, operation substitution, loop shrinking,
retiming and loop unfolding. _

e Optimising the wordlength of functional units [3]. To facilitate this, fast and
reliable  word-level power models may be used to estimate the power
consumption in the functional units [17].

e Switching off operators [123] or partitions of the chip [118] by disabling the
clock signal during inactive periods. |

e Using lower supply voltages that decrease quadratically the power
consumption. Mixing voltages in a circuit is also possible, applying low
voltages to the operations that are not in the critical path and high voltages to
the critical path operations such that the time constraint is met [122].

Chapter 3 presents a literature survey on power minimisation algorithms for

behavioural synthesis.

2.4 Combinatorial optimisation

Many of the optimisation problems encountered in Computer-Aided Design (CAD)
for Very Large Scale of Integration (VLSI) are combinatorial [27]. This section‘
introduces combinatorial optimisation and in particular provides an introduction to
simulated annealing as such technique is employed in Chapter 5 to perform the
design space exploration. The objective of an optimisation problem is to find a
solution that can be measured in terms of a cost function such that its value is
maximum or minimum [21]. If a specific case of an optimisation problem can be
characterised by a finite set of discrete variables, i.e. they can only assume a finite
number of distinct values, the problem is called a combinatorial optimisation
problem [27]. Formally, a specific case of a combinatorial optimisation problem can
be defined as < S, >, where S represents the solution space and fis a cost function of
the form £ S — R. In the case of minimisation, the problem is to find a global
optimum so‘lution Sopt € S which satisfies

S (opr) <F(s), forall se S . 2.6)

~ In the case of maximisation, s, satisfies

S (Sopr) =f(s), forall seS 27

The set S, of all solutions that are in some sense close to a solution s € S is called the
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néighbourhood Nofs. §eSis called a local optimum with respect to N if § is better
than, or equal to, all its neighbouring solutions with regard to their cost. More
specifically, in the case of minimization, § is called a local minimum if
S f(s),forall seS, 28)
And in the case of maximisation, § is called a local maximum if |
f(8)= f(s), forall s, | (2.9)
Some combinatorial probléms can be solved in polynomial time, therefore, called
tractable. Otherwise, they are called intractable. There exist three possibilities when
trying to solve an intractable problem: exact, approximation and heuristics
algorithms [27]. Exact algorithms provide the exact solution but may have a high
computational cost that prevenfs their use on typical size problems. The methods of
this category are called “general purpose”' since they can be applicable to almost any
combinatorial optimisation problem. Some examples are: exhaustive search,
backtracking with branch and bound, dynamic programming‘ and integer linear
programming. Approximation algorithms find a solution whose cost is within a
certain margin of the opﬁmal cost only when involving problem-specific issues in the
analysis of the algorithm. Heuristic algorithms do not guarantee an optimal solution
but seem to be the only way to solve problems in CAD for VLSI [117]. Some
examples of heuristics techniques are: problem-specific, local search, tabu search,
simulated annealing and genetic algorithms. In Chapter 5, a simulated annealing
technique was employed to perform the design space exploration. Simulated
annealing is relatively easy to implement when compared for ex.amp.le with genetic
algorithms and provides the ability to solve combinatorial problems with pblyr_xomial
time complex_ity [‘1]. Furthermore, simu]ated annealing is independent of the
considered optimisation problem and can- avo_id poor lécal minimum while

approaching to the global minimum.

2.4.1 Optimisation using simulated annealing

Simulated annealing is a combinatorial optimisation method based on the simulation
of the annealing process [1]. In condensed matter physics, annealing denotes a
thermal process for obtaining low energy states of a solid in a heat bath. As far back

as 1953, Metropolis [74] presented a method to simulate the evolution to thermal
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equilibrium of a solid in a heat bath. In this method, a new state with energy E; is
generated after applying a perturbation mechanism to the current state with energy
" E;. The new state with energy E, is accepted if the energy difference, E, — E}, is less
than or equal to 0. If the energy difference is greater than 0, the new state is accepfed
with probability

E-E
p=e kg . (2.10)

where T is the témperéture of the heath bath and %z is a physical constant known as
Boltzmann constant. By repeating this process for a large number of perturbations,
the system eventually evolves into thermal equilibrium, approaching to the
Boltzmann distribution the probability distribution of the states [64].
The idea of applying an analogy that links the simulated annealing of solids with
combinatorial optimisation was first published in [56], which also presented some
applications for VLSI design automation, i.e. placement and global routing. The
analogy is baéed on the following equivalences:
e solutions in a combinatorial optimisation problem are equivalent to the states
of a physical system
o the cost of a solution f{5) is equivalent to the energy E of the state
e the control parameter ¢ is equivalent to the factor kgT | ‘
o the perturbation of the particles in the physical systém then becomes
equivalent to a trial in the combinatorial optimisation problem.
Then, the simulated annealing algorithm can be seen as an iteration of Metropolis
algorithms evaluated at decreasing values of the control parameter. The acceptance
criterion determines whether the transition from a solution s ; to s, 1s accepted by

applying the following acceptance probability:

! £ (s2) </ (1)

P(s, > 5,)=1 fG)-rsp) @.11)

a— if 1 (s2) > f(s1)

The pseudocode for the simulated annealing algorithm [1] is shown in Listing 2.1,
where ¢ represents the control parameter value and L is the number of transitions
generated at the & iteration of the Metropolis algorithm.

A characteristic of simulated annealing algorithms is the acceptance not only of

improvements in cost, but also deteriorations in cost to a limited extent. Initially, at

large values of ¢, high increases in cost will be accepted; as ¢ decreases, only small
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increases in cost will be ‘accepted almd finally, as c¢ approaches to 0, only
improvements in cost will be accepted. This feature.allows simulated annealing to
escape from local minima. The probability of acéepting solutions with higher cost is
realised by comparing the value of exp((f(i) — f(7))/c) with a random number obtained
from a uniform distribution on the interval [0,1). The convergence speed of the

algorithm depends on the selection of the parameters L; and c¢.

Listing 2.1 Pseudocode for simulated annealing [1]
procedure SIMULATED_ANNEALING;

begin :
INITIALISE (i, co, Lo);
k=0;
1= Ly
repeat
for/i=1tol,.do . .
GENERATE (j from S));
if ) <f(i) theni=j;
else if exp (Mj >random[0,1) then i = ;
S
end for;
k= k+1;
CALCULATE_LENGTH (L;);
: CALCULATE_CONTROL (c;);
until stopcriterion;
end;

~

A finite time implementation of the simulated annealing algorithm can be realised by
generating homogeneous Markov chains of finite length at decreasing values of the
control parameter. To achieve this, the parameters that rule the convergence of the
algorithm must be specified. The selection of such parameters is referred as cooling
schedule and determines:

e an initial value of the control parameter cg

e adecrement functicsn for decreasing the value of the control parameter .

e a final value of the control parameter specified by a stop criterion

e a finite length of each homogeneous Markov chain
In [56], the authors develbped a simple cooling schedule that has been used in many
applications of the simulated annealing algorithm. This cooling schedule selects the
initial ¢ such that approximately all new solutions are accepted. The decrement rule
is given by |

Co =A €, 2.12)
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where o is typically between 0.8 and 0.99. The execution of the algorithm is
terminated if the value of the cost function of the solution obtained in the last trial of
a Markov chain remains unchanged for a number of consecutive chains. The length
of the Markov chain is such that equilibrium is reached for each value of the control
parameter. This means that the length of the Markov chain may vary with the control

parameter c;.

2.5 Conc;luding Remarks

This chapter has presented the key principles of low power behavioural synthesis for
the realisation of digital 'systéms. The process of behavioural synthesis, its three main
tasks: scheduling, allocation and binding, and interrelated tasks such as clock
selection have been reviewed. It has also been discussed the key parameters that can
be used to reduce dynamic power in the context of behavioural synthesis. Due to the
quadratic dependence of power on voltage, reducing the voltage has a higher impact
on power consumption than reducing the switching activity, capacitance or
frequency. Finally, combinatorial optimisation and simulated annealing have been

briefly outlined to lay the foundations for the algorithm developed in Chapter 5.

y
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Literature review of related work

3.1 Introduction

Power consumption minimisation can be carried out at a single task (scheduling,
allocation, binding) or simultaneously at the various tasks of behavioural synthesis.
This is reflected in the literature survey presented in this chapter. Section 3.2 and
Section 3.3 outline respectively the main reported work carried out on the low power
scheduling problem focusing at two sources of power reduction: supply voltage and
frequency. Section 3.4 describes the propbsed algorithms that reduce power
consumption by decreasing the switching activity in the design during the binciing
task of behavioural synthesis. Section 3.5 considers the reported approaches that
perform simultaneously scheduling and binding with the aim of reducing power

dissipation in the design. Section 3.6 completes the chapter with concluding remarks.

3.2 Low power schéduling based on voltage reduction

Raje et al. [114] presented a time constrained scheduling algorithm that reduces
power dissipation by using multiple supply voltages (MSV). Scheduling with MSV
considers the assignment of as many operations as possible to modules that operate at
low voltage and the remaining opérations are assigned to modules that operate a
higher voltage. The number of allowable voltages is set according to the technology
and the designér’s preference. Proofs for optimality of this algorithm are presented in
[113] assuming that the supply voltage versus latency curve is the same for all
* functional units, i.e. adders and multipliers. This is a simplistic and rather unrealistic

assumption that may lead to suboptimal solutions and was addressed by Chang et al.
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[10]. Here, a dynamic programming algorithm that solves the time constrained MSV
scheduling problem in both non-pipelined and functionally pipelined data-paths was
presented. This algorithm includes the cost of level shifters, which are necessary to
fransfer data between functional units operating at different voltages. To calculate the
energy dissipation of the squt.ions obtained, the algorithm useé respectively the
energy values from Table 3.1 and Table 3.2 for the level shifter and functional units,
which were implemented in 1um technology. The authors consider that the
propagation delay through a level shifter, i.e. 1ns, is hegligible compared to the
propagation delay through the modules. The delay cost for the level shifter is then
absorbed into the delay of the functional units they follow, because in the module
~ library, the minimum module delay is at least 20 times larger than the level shifter

delay.

Table 3.1 Average energy of a 16-bit level shifter [10]

x/ly |24V ]33V ] 5V
24V 0 | 64.0 | 128.0
33V 496 | 0 |142.4
5V | 88.0[1040]| 0

Table 3.2 Energy dissipation of datapath functional units [10]

_ multiplier adder
Voltage Energy (pJ) | Delay (ns) | Energy (pJ) | Delay (ns)
2.4V 3877.5 295.4 30.10 60.27
3.3V 7330.9 181.2 56.91 36.14
5V 16829 103.7 130.65 20.40

More recently, the problem of low power time constrained scheduling using MSV
has been solved using novel formulations. For example, Tséi et al. [63] proposed a
hybrid algorithm than combined simulated annealing with genetic algorithm to solve
the low powef schedlfling problem using dual V;; and dual V. The goal of this
approach is to minimise the power and delay penalty of the design. Each operation in
the DFG is represented by a chromosome that includes information such as Vg, Vi
and control  cycles. An individual is represented with the same nﬁmber of
chromosomes as operations in the DFG. The scheduler starts producing the first
generation, and generates many individuals. Then, it randomly selects two

individuals as the parents, and performs the crossover and mutation operations to
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generate two children. After that, the scheduler evaluates the power and delay of two
parents and two children, and decides the Boltzmann trial winner.

MSV is a technique for power minimisation that can be applied not only during time
constrained but also during resource constrained scheduling, as shown by S'hiue et al.
[126]. Here, two algorithms for power minimisation were described, a time
constrained scheduling iTCS) scheme and a resource constrained scheduling (RCS)
scheme. In the TCS algorithm, operations that have the same mobility form a group,
and groups with the same mobility form a set. Then the groups in a set are sorted
according to a priority function that includes the nﬁmber of operations in the group.
Groups with mobiﬁty zero are assigned to high voltage and groups with high priority
are assigned to low voltage. The RCS algorithm is based on list scheduling, hence
opérations are sorted according to a priority function based on the depth, mobility
. and level shifter requirements. The aigorithm first assigns operations with high
priority to low voltage resources and the remaining operations to high voltage
resources. The authors improved these algorithms in [127], considering the effect of
switching activity on the power consumption of the functional units, the
interconnection complexity [72] and the power consumed by level shifters. Both
algorithms (TCS and RCS) try to reduce the number of level shifters using heuristics.
These algorithms produce schedules where the operations executed at the same
control step may be assigned to modules at different voltage complicating the design
of the controller. This was addressed by Kumaf et al. [61], who proposed a RCS
algorithm that identifies available paral'lelism in an initial schedule and creétes
different zones while maximising the hardware sharing. Zones group parallel
operations or smaller zones. Zones are able to be moved together from .one voltage to
the lower next reducing the power consumption at the expense of an increased
latency. This increased latency is assumed to be compensated through pipelining.
Zones allow scheduling all operations in a control step at the same voltage,
simplifying the realisation of the controller. A

So far, scheduling algorithms targeting the optimisation of a single objective, i.e.
area (TCS) or performance (RCS) have been preseﬁted. Scheduling algorithms that
aim towards the optimisation of two objectives, i.e. area and performance are
described in the following. Johnson et al. [48] developed MESVS (Minimum Energy
Schedule with Voltage Selection), an ILP algorithm that incorporates MSV selection

— ]
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and level shifter costs into energy optimisation of schedules. The objective function
is an estimate of datapath energy dissipation as a function of supply voltages. The
ILP formulation was permitted to choose from voltages ranging from 1.5V to 5V in
0.5V increments and selected voltages were required to differ by at least 1V.
Although this approach reduced power consumption significantly, better results can
be obtained if voltages are selected from a continuous range instead of a discrete one.
This is shown by Johnson et al. in ‘[49], where an ILP algorithm called MOVER
(Multiple Operating Voltage Energy Reduction) was proposed. MOVER initially
finds one minimum voltage for an entire schedule. It then determines a second
voltage for operations where there is still slack. New voltages can be introduced and
minimised until no schedule slack remains. This paper 'also discusses the effects of
using MSV on IC layout and power supply requirements. Some of such effects
include additional power and ground pins, increase in area due to the routing of the
suppiies and partitioning the chip into separate regions. In [47], Johnson et al.
provide further details about the resources (multiplier, adder, register and level
shifter) used by MOVER. Typical energy dissipation of the level shifter was found
to be on the order of 5 to 15p] per switching event per bit, given a O.1pF
load. Typical propagation delay ranges were approximately 1ns for level
conversions such as 3.3V to 5V or 2.4V to 3.3V. However, a level conversion
from 2.5V to 5V had a delay of about 2.5ns, whereas a 2V to 5V conversion
" had a delay of nearly 5ns. Energy and delay values for other 16-bit résources
used by MOVER are shown in Table 3.3. Power and delay values for each
resource were obtained after simulation with HSPICE using 0.8um MOSIS
library models. Area of the resources used by MOVER is represented by the

weights of Table 3.4, which are proportional to their transistor count.

Table 3. 3 Energy and delay values used by MOVER

Energy (pJ) | Delay (ns)
.adder. 84 12.0
multiplier 2966 18.5
register 312 0.48

Table 3.4 Proportional weights to the transistor count of the resources
multiplier | adder | register | level shifter
weight 16 1 0.75 0.15
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Lin ef al. [66] presented .an ILP model that explores the design space considering
time constraints alone, resource constraint§ alone, and time and resource constraints
_together. The objective function of the ILP model is a function of two costs:
hardware and power. Each cost is associated with a weighting factor, which is set by
the user to express a preference of one term over the other. The ILP method is
practical usually for small size DFGs and may turn out to be computationally very
expensive due to its worst case exponential complexity. Consequently, efficient
search methods for the dynamic power minimisation problem that are applicable to
large size DFGs have been developed. For eXample, Lin et al. [66] described an
heuristic model where scheduling is performed according to a delaying gain that is
calculated based on a linear priority function that includes some operations
characteristics, such as the power gain after usihg a lower voltage and the mobility.
The priority function also considers the average utilisation of functional units in the
schedule. The operation with the highest delaying gain is ‘selected and a lower
voltage is éssfgned to it. If a feasible schedule is obtained, the iterative procedure
continues, otherwise an attempt to reduce the voltage in the operation with the
second highest delaying gain is made.
Katkoori et al. [50] extended the FDLS algorithm proposed by Paulin et al. [101] to
heuristically determine the best control step for an operation such that the overall
power consumption is minimised without sacriﬁcing the design throughput. While
scheduling operations in any control step, if sufficient resources are not available
then excess operations are deferred based on fheir “force”. At the operation level, a
power cost function that captures the effect of an operation’s deferral on the total
power consumption of the design was developed. For each operation, the power -cost
is combined with its force to yield a compound cost used to decide which operation
to defer. The deferred operation must have the largest power consumption in current
time-step and have the least force. Other scheduling algorithm that uses the concept
of force was proposed by Gupta et al. [33]. Here, the concept of force is used to
model the switched capacitance of combinations among DFG‘op'erations which could |
share a resource and the probability of selecting such a combination.
Manzak et al. [70] presented a low power scheduling algorithm that operates in two

passes. In the first pass, the minimum computation time is obtained using resource
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~ constrained scheduling. In the second pass, the difference between the time
constraint and the minimum computation time is distributed among the DFG
operations. The distribution procedure tries to _implement the minimum energy-
relation derived using the Lagrange Multiplier method in an iterative fashion. In each
iteration, increasing number of resources with high energy-delay ratio are disabled
from the set Qf resources and operations are scheduled using a list-based algorithm.
Recently, Hariyama et al. [37] used a genetic based algorithm to solve the scheduling
and module selection problem using multiple supply voltages to minimise power
consumption under time and resource constraints. This algorithm considers only |
MSV but not partitioning the chip into voltage islands, which may cause some
physical layout problems, i.e. complex routing of interconnections and supply
voltage lines. Wang et al. [138] overcame this problem by presenting a hybrid
algorithm that combined simulated annealing with tabu search to minimise power:
consumption under resource and timing constraints when performing simultaneously
partitioning and scheduling. The simulated annealing algorithm searcheé fo.r the
operating voltage whereas the tabu search technique searches for the cluster of the
operations in the DFG. This algorithm obtains solutions in less time but with higher
power consumption than an algorithm based only on tabu search [68] developed by

the same authors.

3.3 Low power scheduling based on frequency scaling

Krishna et al. [59] developed a time and resource constrained scheduling algorithm
which combines the concepts of Dynamic Frequency Clocking (DFC) and Multiple
Supply Voltages (MSV). DFC takes advantage on the fact that different functional
units such as multipliers and adders can be clocked at different frequency according
to their critical path delay. Consequently, all units can be driven by a single clock
line that changes at run time depending on the functional unit active in that clock
cycle. This algorithm consists of two stages. In the first stage, an initial schedule
based on DFC is generated, where control steps are clocked at different frequencies
and operations are grouped such that the fastest functional units operate concurrently.
All the functional units perform single cycle operations. In the second stage,

operations are moved from one control step to another with the objective of meeting
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the time constraint and minimising power consumption using MSV. The target
architecture for the scheduled design includes a datapath, controller and the dynamic
clocking unit (DCU).

The principles of MSV and DFC can also be applied to solve the low power resource
constrained scheduling problem, as shown by Radhakrishnan et al..[109]. Here,
voltage is dssigned to.the operations ‘according to their type, i.e. rhultiplications or
additions, and Whetﬁer they are in the critical path or not. The frequency for each
control step is assigned according to. the number of operations of each type that are in
the control step. Recently, Murugavel et al. [92] proposed a game theoretic based
| approach for simultaneous voltage and frequency scaling with the aim of fninimising
power when scheduling under resource constraints. Game theory was also used by
the same author to model the low power binding problem [91] and low power of
simultaneous scheduling and binding [93].

The problem of low power scheduling using DFC and MSV was further investigated
by Mohanty et al. [86] but considering only time constraints. The authors developed
an algorithm that schedules lower frequency operators at earlier control steps and
delays higher frequency operators to later control steps. Nexf, the schedule is
modified by moving operations from one control step to another with the objective of
meeting the time constraint. Then, the algorithm finds a suitable clock period and
assigns appropriate voltage. In [83], Mohanty et al. developed an Integer Linear
Programming (ILP) based scheduling approach that uses MSV and DFC principles to
minimise the energy delay product in a design. S‘ame principles were integrated by
Mohanty et al. [80], in another ILP based scheduling algorithm to minimise a
parameter called cycle power function, which captures the peak power, the peak
power differential and the average power of the datapath. More recently, Mohanty et
al. [77] developed ILP based algorithms to minimise simultaneously peak and
average power. In [85], Mohanty et al. developed a low power resource constrained
scheduling algorithm that employs multiple supply voltage and dynamic frequency

clocking.
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3.4 Low power allocation and binding

Raghunathan et al. [111] proposed an allocation and binding method for low power
that attempts to reduce both the capacitance and switching activity. Capacitance is
reduced during allocation by trying to minimise the number of functional modules,
registers and multiplexers. Binding reduces power consumption by assigning
operations to modules and variables to registers such that the switching activity is
reduced. Register and module binding is performed simultaneously, while also
aiming.to minimise the amount of interconnect needed. The algorithm is based on a
weighted graph called the comipatibility graph (CG). Initially, each variable and
operation corresponds- to a node in the CG, with undirected edges connecting
compatible pairs. Weights are assigllcd to edges in the CG to indicate the preference
of two variables (or operations) for sharing the same resource. Weights are
determined according to a function that combines the values of capacitance and
switching activity. ‘

Algorithms that solve .only the low power register binding problem have also been
developed. For example, Chang et al. [12] presehted an algorithm that calculated the
switching activity of a set of registers shared by different data values. Switching
activity is calculated based on the probability distributions of the input data streams. .
After calculating the switching activity between pairs of values that could share the
same register and knowing the registers number, the low power register binding
~ problem is formulated as a minimum cost clique covering of a compatibility graph.
The problem is then solved optimally using a max-cost flow algorithm. In [11], the
same authors investigated the problem of minimizing the total power consumption
during the binding of operations to functional units in a scheduled datapath with
functional pipelining and conditional branching. The authors formulated the power
optimisation problem as a max-cost multi-commodity flow problem that is solved
optimally. Although [12] and [11] provided optimal solutions, theirv applicati;)n is
limited to small sized problems. This was addressed by Choi et al. [147], who
developed a new heuristic algorithm that is applicable to practical designs while
producing near optimal results. The proposed algorithm' determines a feasible
binding solution by partially utilising the computation steps for finding a maximum

flow of minimum cost in a network and then refines it iteratively.
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Some algorithms have also been proposed to perform low power module binding.
For example, Shiue et al. [125] described a linear programming (LP) based algorithm
that targets power consumption optimisation during resource binding by reducing the
switching activity at the input of the functional units. The algorithm consists of
creating a rrllultistage graph with m stages (corresponding to m cycles in the
schedule) and n nodes per stage (corresponding to n functional units of the same
type). Each edge in the graph has a cost according to the switching activity caused if
two nodes were mapped to the same functional unit. The low power resource binding
problem is then solved by finding n disjoint paths such that the total cost of these
paths is minimal. Although this algorithm reduces efficiently the power
consumption, it may be very time éonsuming when applied to large designs. A faster
binding algorithm that takes into account candidate pairs of operations between two
consecutive control steps and maximises the resource sharing was developed by Liu
et al. [149]. '

To further reduce power consumption, voltage assignment problem has included into -
the module binding task. For example, in [23j, Chen et al. proposed a low power
binding algorithm for dual ¥V, designs that minimises switching activity and
maximises the number of low Vy; operations under the assumption that voltages
could be dynamically rconﬁgured at run time for each functional unit. This algorithm
may results in higher power savings but introduces extra area costs due to complex
control logic and a full chip dual rail power suppiy system. This disadvantage was
addressed by the same authors in [22], targeting architectures where the voltages of
functional units are fixed during run time.

In [94], Musoll et al. presented a binding algorithm that reduces the Spurious
switching activity by using transparent latches at the input ports of the functional
units. However these latches incur area overhead and may reduce the power savings
due to their power dissipation. These disadvantages were overcome in the low power
register binding algorithm proposed by Luo et al. [46], where spurious switching
activity of a given scheduled behaviour and functional unit binding is reduced by
using retentive multiplexers. Retentive multiplexers can preserve their previous

select signal values in the control steps where the select signals are don’t cares.
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3.5 Combined scheduling and binding for low poWer

The work presented in the previous sections focus only at power reduction in a single
behavioural task, i.e. scheduling or binding. However, research has also been carried
out aiming at power optimisation when scheduling and binding are performed
simultaneously. For example, Tang et al. [144] presented an integer linear
programming (ILP) based approach for power optimisation that considers |
concurrently module selectioﬁ, schedﬁling and binding. The objective function
minimises switching energy consumption of all datapath components under time and
resource constraints. Chabini et al. [7] proposed another ILP formulation that not
'onlly considers scheduling and binding but also retiming while reducing power
consumption due to switching activities. Récently, Zhao et al. [148] considered
multicycling and multiple supply {/oltages in an ILP based approach that performs
scheduling and binding with the aim of minimising energy or. peak power in a design.
Algorithms with less computational complexity than ILP formulations for
simultaneous scheduling and binding have also been developed. For example,
Katkoori et al. [51] presented PDSS, a behavioural synthesis approach that minimises
power consumption by reducing the switching activity in the design. This approach
uses a profiler tool that simulates the DFG using data streams specified by the user,
hence collecting profile data for various operations and variables during the
simulation time. Using this profile data and the switching activity data of all modules
in the library, power consumption is estimated for each feasible solution (obtained
after scheduling and binding) that meets the user constraints. Then, the solution with
- the lowest power consumption is chosen and a clique partitioning algorithm is
applied for register optimisation. Interconnect optimisation and controller generation
are also included in this approach.
‘San Martin et al. [122] presented Power-Profiler, an approach based on a genetic
algorithm that reduces average and peak power consumption during behavioural
synthesis o'f ASICs. Power consumption is reduced by disabling the clock of modules
when théy are idle, using mﬁltiple supply voltages, increasing parallelism and using
- fast and power hungry operators only in the critical path. Power-profiler performs
simultaneously scheduliﬁg and module biﬁding and searches for the best combination
of library modules that minimises the power consumpﬁon of the design. Although

this approach obtains good solutions in terms of power, it does not consider tasks
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such as clock selection and retiming that are directly related to the main behavioural
synthesis tasks. This was addressed by Raghunathan et al. [110], who developed
SCALP, an iterative improvement algorithm'for low power behavioural syntheéis
that performs simultaneously scheduling, binding, retiming and functional pipelining,
clock selection and module selection. The effect of these tasks on both supply
Voltége and switching capacitance is also considered simuitaneously. SCALP
identifies a set of candidate supply voltages that may lead to thellowest power
datapath and then examines possible values of clock period for each supply voltage.
For each.combination of supply voltage and clock period, the iterative improvement
synthesis phase is executed with the aim of obtaining the minimum switching
capacitance datapathij that meets the time constraint at the current voltage. The
iterative improvementi algorithm explores the solution space by applying two types of
modifications: module selection with rescheduling and hardware sharing/splitting
with rescheduling. SCALP reduces the power consumption in data dominated
designs but can not handle control dominated designs. This was overcome by
Williams et al. [14.1], who presented a system called MOODS that does not impose
any restriction on the system archifecture, i.e. supports the full spectrum of designs
from data to control dominated. Further investigation on low power behavioural
synthesis targeting data and control dominated applications was carried out by
Ranganathan et al. [116]. Here, the authors presented CHESS, a low power
behavioural synthesis approach that targets both data and control dominated
applications. Scheduling is performed using an algorithm based on tabu search (4]
that minimises the resource requirements under given time constraints. To perform
the binding task, the authors extended the algorithm proposed by Murugavel et al.
[93] to consider control constructs. Power reduction is due to functional unit sharing,
which attempts to aésign the same functional unit to operations with at least one
common input, decreésing the number of changing inputs.

The problem of low%power behavioural synthesis has also been formulated using
genetic algorithms. For example, Elgamel et al. [25] proposed a genetic algorithm
- 'based approach that integrates scheduling, allocation and binding with multiple
voltage assignmeht with the aim of minimising average and peak power. In [95],
Muthumala et al. combined a local search for rescheduling with a genetic algorithm

to determine appropriate supply and threshold voltage for the DFG operations with
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the aim of minimisirilg\the leakage and dynamic energy in the functional ‘ units.
Binding for intercohnéction simplification is performed simultaneously with
scheduling and m(;dule vselection to reduce the interconnection energy.
Interconnection simbliﬁcation is achieved by increasing the sharing of
interconnections among functional units. Other approach that reduces dynamic and
leakage energy was developed by Jianfeng et al. [45]. Here, dynamic and leakage
power consumption are reduced by assigning lower supply voltage V4 or highér
threshold voltage ¥y, to a candidate operation. The candidate operation is defined as
the operation with the highest power-savings in the DFG. Power-savings are
calculated based on a priority function that includes three factors: operation power
difference, operationi delay difference and operation mobility. The candidate
operation is schedulecfl using a modified list scheduling algorithm and a new binding
is performed. Average power savings of 36% using three V,; and three V, are

reported when compared to a single supply voltage level.

3.6 Concluding Remarks

The literature review-“ has shown that there has been considerable work reported on
how to minimise power in the context of behavioural synthesis. From this review, it
has been identified that an efficient technique to reduce power consumption is the
use of multiple supplIy voltages (MSV). However, MSvarésents area/power/delay
overhead due to routiing of the supplies and the use of levél shifters to transfer data
between functional dnité operating at different voltages. The posslibility of using

single supply Voltagé during behavioural syhthesis overcomes the area/power/delay

~ overhead of MSV and may result in comparab.le power savings. This aspect

underpins the development of the reported algorithms in the next chapters.
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Power-Aware Time Constrained Scheduling (PATICS)

4.1 Introduction

In Chapter 2, it was stated that reducing the voltage has a higher impact on power
consumption than reducing the switching activity, capacitance or frequency.
However, voltage reduction can be limited (hence power savings) if the schedule
slack is not fully exploited due to non-uniform path lengths, a fixed clock period and
a fixed number of control steps [47]. To avoid scheduling with a fixed clock period
(fixed number of control steps), it is necessary to perform appropriate clock selection
such that the utilvization of the available schedule slack when using singie supply
Voltage can be improved. The aim of this chapter is to describe a new time
constrained scheduling algorithm [99] that takes into account the influence of the
combined selection of clock and operaﬁons throughput on the quality of the
schedules in terms of power and area. Section 4.2 introduces the terms and concepts
used throughout this chapter. Seétion 4.3 highlights the influence of an appropriate
clock and operations throughput selection on power consumption by means of an
illustrative exaniple. The Power-Aware Tlme Constrained Scheduling (PATICS)
algorithm is described in Section 4.4 with the help of some examples. PATICS
selects the clock period and operations throughput such. that power consumption can
be reduced by scaling the voltage until the slack of at least one of the operations is
zero. Section 4.5 presents extensive experimental resqlts on benchmarks including
differential equation solver, elliptical wave filter and discrete cosine transform, to
demonstrate the efficiency of the algorithm. Finally, the concluding remarks of this

chapter are given in Section 4.6.




Chapter 4 - ' . 38

4.2 Preliminaries

The proposed algorithm targets data doﬁlinated designs, as they are common in the
digital signal and image processing areas [8]. As mentioned in Chapter 2 Section 2.2,
data dominated applications consist mainly of arithmetic operations such as
. additions, subtractions, multiplications and divisions. For example, the differential
equation (DIFFEQ) benchmark [102] is a data dominated design whose DFG
contains 6 multiplications, 1 adder, 3 subtractors and 1 comparator, as shown in

~ Figure 4.1b.-

dx
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x] =x+dx
ul = u— (3%x*urdx)-(3*y*dx) x
yl = y+ (u*dx) Y “a
c=xl <a
yl c
ul
a) difference equations b) DFG

Figure 4.1 DIFFEQ benchmark

An important characteristic of the data dominated applications is that their inputs
arrive at a fixed rate, constraining the input sampling period. If the input samples are
" processed faster than the required rate, it is possible to reduce power consumption
using supply voltage scaling [110]. The possibility of scaling the voltage is clearly
determined by the schedule slack, which is the difference between the critical path
and the sample period constraint. The critical path determines the time that takes
each input sample to be processed, whereas the sample period constraint (henceforth
referred to as time constraint ') is defined by the user. Fof example, in Figure 4.1,
the shaded operations show the critical path, which can be calculated by adding the
delay of 2 multiplications and 2 subtractions. Assuming that these operations are
performed by the operators from Table 4.1 at 1.8V, the critical path takes §9.6ns to
be executed. If a time constraint of 100ns is set by the user, a schedule slack of

10.4ns is obtained.
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As shown in this simple example, the time required for the datapath to execute the
critical path depends on the delay. of the operations. This delay is considered as a
typical register-to-register transfer that includes reading the operands from the
registers, performing an operation on the operands and storing the results in another
register [96]. Hence, the delay of an operation d,,, can be calculated as [9]:

d,, =delayy, +delay,, + Zdelayn,m _ @.1)

where delayy, is the delay of the functional unit, delay,,, is the delay of the register
and delay,,. is the delay of the mulfiplexer. A

The operation delay together with the clock period, determine the number of csfeps
required to execute such operation. In this thesis, the number of csteps required to
execute an operation is refered as throughput and can be calculated by:

TPy, =[d, /Telk ] 4.2)
where TP, is the throughput, d,, is the operation delay and Tclk is the clock period.
A throughput of 1 Cstep means that the operation is single cycled, whereas a
throughput greater than 1 cstep means that the operation is multicycled. For example,
in Figure 4.2, operation N1 has a throughput of 1 cstep (single cycled operation),
whereas operations N2, N3 and "N4 have a throughput of 3 csteps (multicycled

operations). ;

csteps
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Figure 4.2 Operations with different throughputs and delays.
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Although N2, N3 and N4 have the same throughput, i.e. T7Py; = TPn3= TPns =3, théy
present different delays, i.e. dyys > dy; > dng, whiph derive in some operation slack as

in the case of N2 and N3. This operation slack is measured with respect to the

throughput and can be calculated [2]:
slacko, = (TPyp*Tclk) - dop “4.3)
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Assuming that each cstep in Figure 4.2 corresponds to an interval of length equal to
Tclk = 10ns, and operation delays dy; = 22.5ns and dy; = 25ns, operations slacks of
7.5ns and 5ns are obtained respectively for slacky, and slacky;. Note that operations
N1 and N4 have an operation slack equal to zero. The presence of operation slacks
may lead to larger operations throughputs that can avoid meeting the design time
constraint for some values of supply voltage, although the critical path can be
executed in less or equal time than the set time constraint. This is better illustrated in

the next section by means of an example.

4.3 Importance of clock and operations throughput selection

To demonstrate how the choice of the clock period and operations throughput affects
the power consump'tion‘ and functional resources requirements in behavioural
* synthesis, the following example is given. For the sake of explanation, consider
throughout/this section that a time constraint 7" of 149ns (10 times the minimum
delay of the library shown in Table 4.1, the delay of an adder at 1.8V) has been set
for the DIFFEQ benchmark, shown in Figure 4.1. In Table 4.1, the multiplier, adder,
subtractor and comparator are symbolised by *, +, - and <, respectively. Throughout
this chapter, it is considered that the addition, subtraction and comparison can be
executed by the same functional unit. Hence the terms addition, subtraction and
comparison are used indistinctively. The reported dynamic power and delay values
of the library components are for 0.18pum technology [106]. It is assumed that the
delay of the functional units (FUs) in Table 4.1 include estimates for register and

multiplexer delays.

Table 4.1 0.18pm library component
* :

V (V) Pdyn (mW) D (ns)
0.9 - 0.105 - 59.7
1.8 0.42 29.9

+, -, <

V (V) Pdyn (mW) D (ns)
09 - 0.008 . 29.8
1.8 - 0.031 14.9

]
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As in [126], it is considered that the clock period Tclk is determined by the delay of
the fastest functional unit when operating at maximum supply voltage. This allows
‘the delays of the remainder FUs to be speéiﬁed in multiples of the clock cycle.
According to the functional unit library in Table 4.1, Tclk takes the value of 14.9ns
and using the given time constraint " = 149ns, a schedule 1ength (Ls) of 10 control
steps (csteps) is obtained using equation (2.2) from Chapter 2, Section 2.2. With the
clock period ,deﬁvned previously and the delays taken from the library shown in Table
4.1, it is possible to- compute the throughput of the operétions using equation (4.2).
Hence, the multiplier of the library has a throughput of 3 and 5 csteps at 1.8V and
0.9V, respectively; whereas for the same voltages, the adder needs 1 and 2 csteps to
complete an'_ dperation. Assuming that the FUs are operating with a maximum
supply voltage of 1.8V, and using the schedule length obtained previously as an input
to the scheduler described in Appendix 4, the schedule of Figure 4.3a was obtained.
The scheduler used aims to determine the minimum number of hardware compbnenté
fequired to perform the DFG operations when a time constraint is given. All the
schedules in this section were obtained using such scheduler.

From Figure 4.3a, it can be seen that the functional resources requiremépt consist of
2* with throughput of 3 csteps and 2+ (assuming that additions and subtractions are
executed by the same functional unit) with throughput of 1 cstep. The estimated
power consumption for this schedule is 521uW and the critical path could be
executed in 89.6ns, leaving a schedule slack of 59.4ns. Note that since the clock
period Tclk is equal to the delay of adder, the slack of the additioﬁ is zero, whereas
the slack of the multiplication is 14.8ns. Power dissipation values reported in this
motivational example are calculated using the values from Table 4.1 and equation
(4.5). The design parameters of the schedule from Figure 4.3a are summarized in the
first row of Table 4.2, denoted as schl. In the table header, LS represents the length
of the schedule, TP, the throughput of the multiplier, 7P, the throughput of the
adder and slack,.;, the schedule slack. The’ slack of the multiplication is slack~, slack.
is the slack of the addition, ¥ the voltage, P the power and #FUs the number of

functional units.
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Figure 4.3 DIFFEQ schedules with different power-area tradeoffs

Table 4.2. Schedule characteristics using different power reduction techniques

Tclk| Ls TPy TP, |slackyy | slack«|slacky| V P HFUs
(ns) | (csteps) | (csteps) | (csteps) | (ns) (ns) | (ns) | (V)| (uW)
schl [14.9] 10 3 1 594 | 14.8 0 1.8 | 521 |2* 2+
sch2 |21.3 7 2 1 21.3 0 0 [1.41] 458 |2*2+
sch3 |18.6] 8 2 1 37.3 0 0 [1.57| 497 |2* 1+
sch4 [24.8 6 2 1 0 0 0 [1.20] 385 |3*2+

Now, consider taking advantage of the schedule slack, i.e. 59.4ns, through voltage
séaling, hence reducing the power consumption. The application of voltage scaling
would increase the delay of the operations as represented by th;e dotted lines in
Figure 4.3a. This in turn would increase the addition throughput from 1 cstep to 2
csteps, violating the time constraint as can be seen in cstep 10. Thus, an inappropriate
choice of the clock period may restrai.n the exploitation of the schedule slack,
inhibiting the application of greater supply voltage scaling, which leads to higher
power consumption sqlutions. However, it is possible to take better advantage of the
schedule sl_ack and decrease significantly the power consumption through voltage
reduction, by not constraining the clock period to the fastest functional unit delay, as
in the case of schl, but through appropriate choice of clock;,period and operations

throughput. For example, consider now the time constraint divided in 7 csteps (Tclk




Power-aware time constrained scheduling (PATICS) ' 43

= 21.3ns) and multiplier and adder throughputs of 2 csteps and 1 cstep ;espectively,
see sch2 in Table 4.2. It can be seen that with this new Tclk and operation
throughputs, the schedule slack has been reduced from 59.4ns to 21.3ns, and the .
multiplication and addition slack has decreésed to Ons. The supply voltage has
experienced a reduction of 0.39V, which allows lower power consumption than in
schl (from 521puW to 458uW). Note that despite this power decrease, the humber of
used FUs remains the same that in sch1, as shown in the schedule of Figure 4.3b.
Although sch2 provides a solution where power consumption has been effectively
reduced, often designers heed guidelines about the possible power-area tradeoffs for
a given design. By carefully choosing the operations throughput and employing
clock selection, the design space can be efficiently explored, obtaining different
power-area tradeoffs, which is the main motivation of the proposed algorithm. For
example, consider sch3 in Table 4.2, where the time constraint has been divided into
8 csteps (Zclk = 18.6ns), and the multiplication and addition have throughputs of 2
csteps and 1 cstep respectively. For the above settings, the minimum voltage required
to meet the time constraint is 1.57V, which leads to a higher power consumption
with respect to sch2 (from 458uW to 497uW). However, the number of functional
units is reduced by one adder as shown in the schedule for this solution in Figure
4.4a. It can also be seen that although the schedule slack is increased to 37.3ns, the
multiplication and addition slack remains the same, i.e. Ons.
For the same time constraint, i.e. 149ns, further power reduction can be obtained by
assigning different values to the operations throughput and the clock period, and by
determining the corresponding voltage, as illustrated for sch4 in Table 4.2. Although
sch4 prese_nté lower power consumption (385uW) than sch3, the functional resources
requirement is increased by one multiplier and one adder as shown in the schedule of
. Figure 4.4b. This soiution presents the lowest operating voltage possible for this
' schedule, i.e. 1.20V, reducing the schedule slack to Ons. Notice that the time
constraint in Figure 4.3 and Figure 4.4 has remained the same (149ns) and that only
the schedule length has changed according to the selected clock period.
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Figure 4.4 DIFFEQ schedules with different power-érea tradeoffs

4.4 Power-aware time constrained scheduling algorithm

| Section 4.3 has demonstrated the influence of clock and operations throughput
selection on power dissipation during the scheduling task. Thié section presents an
algorithm capable of identifying the appropriate clock period, operations throughput
and the scaled supply voltage such that solutions with different resource
requirements and reduced power can be obtained within a specified time constraint.
The key idea of the propoesed algorithm is taking a better advantage of the operation
slack by scaling the supply voltage (hence reducing power consumption) until the
delay of at least one of the operations in the design fits exactly into its throughput.
This will be explained in more detail when describing the algorithm later in this
- section. The inputs of the algorithm are: a time constraint, a maximum clock
frequency and a design DFG. The algorithm also requires the specification of a
library component characterised for power and delay, e.g. Table 4.1. The outputs of
the algorithm are a set of solutions that consist of schedules with different power-

area tradeoffs, from which the designer can choose the solution that best suits his/her

needs.
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The proposed power-aware time constrained scheduling algorithm (PATICS) is
shown in Listing 4.1. The terminology adopted during the explanation of the
algorithm is the following: T is the time constraint in ns, max_f is the maximum
clock frequency, Tclk is the clock period in ns, Ls is the schedule length, V' is the
supply voltage and /istop is a list containing the operations ordered according to their
power contribution. The operatioh delay is represented as D,,, TP, is the operation
throughput, maxD,, is the maximum operation delay (faken from the library given in
Table 4.1) and op can be of category power_op or remain_op.

To better illustrate the function of the algorithm, consider again DIFFEQ benchmark
(Figure 4.1b) with a time constraint-of 149ns and a maximum clock frequency max_f
of 500MHz. These values have been arbitrarily set for. illustration purposes.. The
algorithm starts calculating the total power of the design at maximum voltage max_V
(line 1) using equation (4.5) and the values from the library component. For the
DIFFEQ example, the algorithm calculates a total power of 521uW at maximum
voltage 1.8V. The contribution of multipliers and adders to the total power
dissipation is 506uW and 15uW respectively. Then, the category power op is
assigned to the type of operation which contributes the most to the total power and
the category remain_op is assigned to the remaining operations (line 2). In this case,
the category powér_op is assigned to the multiplication, whereas the additions are
assigned to category remain_op. Using the power contribution information defined
before, the operations are ordered in terms of maximum power:consumption in the
list listop (line 3). This list is used by the scheduler described iﬁ Appendix 4 so that
power consumption is conlsidered when ordering the operations to be scheduled. The
operations are then ordered il:l the list listop as follows: multiplicationé first and then
additions. Now, Ls is initialised (line 4) with a schedule length equal to the csteps of
the critical path, which wés calculated with the ASAP scheduling algorithm
assuming all the operétions single cycled. F'or the DIFFEQ example, Ls = 4 csteps
since the critical path has four operations, as shown in Figure 4.1b. With this value of
Ls and the time constraint 7, the clock period Tclk can be computed (line 5) as
explained in Chapter 2, Section 2.2.4, using equation (2.2). The clock period Tclk has
a value of 37.25ns in this example. The minimum clock period min Tclk that
indicates to the algorithm when to stop is calculated using the maximum frequency

max_f (line 6), i.e. min_Tclk = 2ns for the current case.
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Listing 4.1 Pseudocode of the power-aware time constrained scheduling [99]
1 calculate total power at max V' ' b
2 identify power_op and remain_op
3 sort operations in listop
4 initialise Ls = critical_path_csteps = ASAP(1, 1)
5 calculate Tclk '
6 determine min_Tclk = 1/max_f
7 while Tclk > min_Tclk do

8 “caleulate TP,ouer op (Dpower op(max_V))

9 do

10 increase D,oer op _

1 if Dpower op < MaXDporier op 4O

12 calculate V ‘

13 calculate D,emain_op(V)

14 CaICU|ate TP, remain_op (Dremain_op)

15 . critical_ path_csteps = ASAP(TP,ouer opr TPremain_op)

16 if Ls > critical_path_csteps do

17 ' schedule (Ls, TPpower ops TPremain_opr listop)

18 calculate total power .
19 calculate total_area

20 end if

21 calculate TP, ouer op (Dpower op(min_V))

22 calculate TP,emain op (Dremain_op(min_V))

23 : critical_ path_csteps = ASAP(TP,oer opr TPremain_op)

24 if Ls > critical_path_csteps do

25 schedule (Ls, TP power opr TPremain_op» listop)

26 calculate rotal power

27 ) calculate rotal _area

28 : else do

29 : while (Ls < critical_path_csteps) do -
30 decrease TP,per op

31 ' calculate Dyouer op

32 ) calculate ¥

33 v calculate D,emgin op

34 CalCU‘ate TP remain_op (Dremain_op)

35 critical_path_csteps = ASAP(TPoer opy TPremain_op)
36 if Ls > critical_path_csteps do

37 schedule (Ls, TPpower opr TPremain_op» listop)
38, “calculate rotal power ,
39 calculate total _area

40 . end if

41 end while

42 end if

43 end if

44 while ( Dpoyer op < MaXDpover op)

45 increase Ls

46 calculate Tcik

47 end while

Next step is to evaluate the throughput TP,oyer op (line 8) as shown in equation (4.2),
using Dpower op Calculated at the maximum voltage in the library max V. For the
DIFFEQ example, the delay Dpower_op(maxJ/) corresponds to the delay ofv the
multiplier from Table 4.1 at 1.8V, i.e. 29.9ns, and the throughput TPpower op takes a

value of one cstep, as shown in Figure 4.5a. The delay Dpoyer op i then increased
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(line 10) with the aim to meet exactly the same number of csfeps of the throughput
T Pp;we,_op. An increase of the delay Dp,yer op allows a voltage reduction that has a
higher impact on the power consumption of operations that are more power hungry,
leading to a decrease in the total power dissipated by the schedule. The increased
delay Dpower opis denoted in Figure 4.5a with the dotted lines, where the new value of
Dpower op 18 37.25ns (calculated with equation (4.2)). The increased delay Dpower op 1S
then compared with the maximum delay allowed maxDpower op (line 11). In case
Dpower op 18 greaterv than maxDpower op, the algorithm increases the schedule length
(line 45), calculates a new clock period (line 46) and attempts to select new
operations throughputs. In case Dpower op 15 lower or equal than maxDpower op, the
supply voltage ¥ is computed (line 12), i.e. 1.57V for the DIFFEQ case. The delay of
the remaining operations D,e,,,a,-,,_‘op (line 13) is then evaluated at the supply voltage 7,

and the throughput TP, omqin_op (line 14) is 'computed.

t
csteps . _ _‘r csteps

7=149 ns
7=149ns

N
increased delay

a) ) b)

Figure 4.5 a) ASAP schedule, b) time constrained schedule, for DIFFEQ with 4 csteps

According to [47], the iaropagation delay of CMOS is approximately proportional to
VI(V=Vy)*, where Vy, is the threshold voltage. This approximation suggests that the
delay is inversely proportional to the supply voltage V. Consequently, the
relationship_between.de]ay and voltage can be modelled using a 1% order Lagrange

interpolating polynomial [6]:
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D)= dV)L.(V)
k=0

V-V
L) = (LVO——I—/%) 4.4)
_r-n)
v

where V is the supply voltage, V, and V; are the minimum and maximum voltage
available in the library, i.e. 0.9V and 1.8V according to Table 4.1, d(¥}) is the delay
at voltage Vy, d(V)) is the delay at voltage V;, and D(V) is the delay at voltage V.
Note that using Lagrange or any interpolating polynomial leads to similar results
since only two points are considered for interpolation, i.e. (Vy, d(Vy)) and (V;, d(V})).

Using equation (4.4) and the supply voltage V' obtained previously, i.e. 1.57V,
operation delays of 18.66ns have been obtained for the addition, subtraction and
comparison for this example. The throughputs for the addition, subtraction and
comparison are one cstep, as shown in Figure 4.5a.

Now, having TPpower op a0d TPremain_op, the critical path can be computed (line 15).
Then, the feasibility of using such throughputs without violating the schedule length
Ls is verified (line 16). In this case, the critical path composed by the shaded
operations in Figure 4.5a can be executed in the same number of csteps that the
schedule length, so there is no violation of the schedule length. If the schedule length
is not violated, the DFG operations are then scheduled (line 17) using the modified
scheduler with the current schedule length Ls and bpefatibns throughputs TPpower op
and TPremain op- Figure 4.5b shows the schedule for the DIFFEQ example with Ls = 4,
TPpowe,_op =1 and TPyemain_op = 1. Now, the total power consumption total_power of

the design is evaluated (line 18) as in [122]:

ZNFU : PFU (V) ’ DFU (V)
P(V) — AUFUs “.5)

T
where P(V), Dry(V) and Pry(V) are respectively the design power consﬁmption, the

functional unit (FU) delay and FU power, all at voltage V. Npy is the number of
times each type of FU is used and T is the time constraint. To calculate the delay
Dri(V), equation (4.4) is used, i.e. DpiAV) = D(V). To compute the power Pri(V), the
quadratic dependency of power on voltage is modelled using a 2" order Lagrange

interpolating polynomial [6]:
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PW)=3 pW )L ()
k=0

_r=-m-r)

Ly(V)=
(Vo —Vl)(VO _Vz) 4.6)
“.
Ly T =)
N =V =7)
L y= P =1)

V=V )V, = 1)

where V is the supply voltage, V, is 0V, V; is the minimum voltage of the library, 1.e.
0.9V, V; is the maximum voltage of the library, i.e. 1.8V, p(Vy) is OmW, p(V}) is the
power at voltage V;, p(V,) is the power at voltage V, and P(V) is the power at
voltage V The pdwer Pri(V) is then calculated using equation (4.6), i.e. Pr(V) =
P(V). In Listing 4.1, the area of the design total_ared (line 19) is estimated as in
[122], checking the maximum number of FU of each type at evéry cstep. Hence; the
DIFFEQ example presents a power dissipation of 497uW and an area of 2
multipliers and 2 adders, as shown in Figure 4.5b.

So far, the algorithm has examined .the solution only in the lower bound of the
operation throughput TP,,uer op. For every Tclk, the lower bound of the operation
‘throughput may lead fo a schedule with low resources requirement. However, the
proposed algorithm not only targets area optimization, but also power optimization.
For this reason, it is also necessary to analyse the upper bound of the operations
throughput for a certain clock period. For every Iclk, the upper bound of the
operation throughput ‘leads to a schedule with low power dissipation. To better
illustrate the impact of the operations throughput bounds on a schedule in terms of
power and area, consider Figure 4.6, where a time constraint of 149ns is divided into
12 csteps resulting in Tclk = 12.4ns. Using this Tclk anci the algorithm described in
Listing 4.1, the operations throughput are TPpumipiier = 3 and TP,qq.r = 2 for the lower
bound (see Figure 4.6a), and TPyuisplier = 4 and TP,q4.- = 2 for the upper bound (see
Figure 4.6b). From Figure 4.6a it can be seen that using the lower bound of the
operations throughput results in lower resource requirements. This is because smaller
throughputs may allow operations to be better distributed along the schedule length,
avoiding the overlapping of their execution times, hence, reducing the resource
requirements. From Figure 4.6b it can be seen that larger operations throughput mean

larger delays which result from a lower voltage, hence lower power consumption.
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Figure 4.6 Schedules with two values of throughputs a) lower bound b) upper bound

In Listing 4.1, the upper bound of TPpower op (line 21) is evaluated as shown in
equation (4.2), usix‘lg Dpower op calculated at the minimum voltage in the library
min_V. For example, consider that the algorithm is analysing a solution for DIFFEQ
benchmark with a schedule length Ls of 10 csteps and the upper bound of 7. Ppower_op-

The delay Dp,ower op cotresponds then to the delay of the multiplier from Table 4.1 at
0.9V, i.e. 59.7ns, and the throughput TPy, o, takes a value of four csteps, as shown
in Figure 4.7a. The throughput TP,cmain op (line 22) is computed based on the delay
Diemain_op, Which is also calculated at min_V. In this case the delay Diemain op
correspond to the delay of the adder from Table 4.1 at 0.9V, i.e. 29.8ns, leading the
throughput 7P,emain op to take a value of two csteps, as shown in 'Figure 4.7a. With
TPpower op @nd TP,epain_op the critical path is c_alculated (line 23), and later used to
Verify if the schedule length Ls has’ been violated (line 24). If the schedule length is
not violated, the DFG operations are then scheduled (line 25), and the power (line
26) and area (line 27) of the schedule are calculated as described previously. In the
current case, the criticél path can be executed in 12 csteps (see Figure 4.7a), which is
larger than the schedule length of 10 cstéps defined at the beginning of this
illustrative example. In case the schedule length Ls is violated, the throughput is
decreased TPpower op (line 30) and the delay Dpowe;_op is calculated (line 31) to obtain

later the voltage V (line 32). Then the delay D,emain op (line 33) and the throughput

_!%
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TPremain_op (line 34) are computed. For the DIFFEQ example with schedule length Ls
= 10, the throughput TPpower op is decreased to three csteps (as denoted in Figure 4.7
with the dotted lines) leading to a Dpoyer o5 0f 44.7ns with a scaled voltage of 1.35V.
 With this voltage, a delay Dyemain op Of 22.4ns is obtained, which leads to a
throughput TPyemain_op of 2 csteps for all the remaining operations.
The critical path is again evaluated with these new values for the throughputs (line
35) and later used to verify that the schedule length Ls is not violated (line 36). If so,
the operations are scheduled (line 37) and the power (line 38) and area (line 39) of
~ the schedule are computed. In the current case, the critical path can be executed in 10
csteps, which is equal to the schedule length Ls. Hence, the s_chedule length is not .
‘violated and the operations are scheduled as shown in Figure 4.7b, requiring 3
multipliers and 2 adders to execute the design. The power dissipation of this schedule
is 438uW. In case of violation of schedule length Ls, the procedure (lines 30-40) is
repeated until obtaining feasible operations throughput for the schedule length Ls.
The previous steps (lines 10-43) are repeated while Dp,yer op 15 less than, or equal to,
maxDpower op- The next. step is to increase the value of Ls for the design (line 45), |
calculate Tclk (line 46), and repeat the external loop (lines 8-46) until the clock

period Tclk exceeds the inverse of the maximum clock frequency max_f.

T=149ns ,
T=149ns

power_op

decreased 77,
7

Y |

. 1

AR |

i T

T
decreased delay

i op

a) b)

Figure 4.7 a) ASAP schedule, b) time constrained schedule, for DIFFEQ with 10 csteps
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Note that the algorithm described in Listing 4.1 calculates a reduced voltage based

on the delays of operations in category power_op. A voltage reduction has a higher

impact in operations of category power_op than in remain_op if the power consumed

by all the operations in power_op is higher than in remain_op,’as it is the case of the 4
benchmarks used in this thesis. If this is not the case, a reduced voltage should be

derived from operations in remain_op. To do this, it would be necessary to increase

the delay of all types of operations until it fits exactly into the number of csteps of
the throughputs, and then calculate the respective voltages. The lowest of these

voltages is chosen and then used to calculate the throughputs of all the operations

before performing scheduling.

The key concepts of the algorithm described in Listing 4.1, i.e. clock and operations
throughput selection, can not be applied to control dominated designs with data

dependent loops. Data dependent loops make difficult to determine the execution

time of the critical path in control dominated designs. If the execution time of the

critical path is not known, the algorithm can not determine the schedule slack, and

consequently how much voltage can be reduced. On the other hand, the clock and

operations throughput selection algorithm described in Listing 4.1 can still be applied

to data dominated designs with data independent loops, since the execution time of
the critical path can be identified. Note that there is a significant differenée in

scheduling straight line code versus nested loop code due to the ability to overlap

loop iterations in a schedule, which allows functional pipelining: In functional

pipelining, the algorithm description is divided into sequences of operation stages

that operate concurrently. Successive stages are streamed into the pipe so that

different algorithm instances are executed in an overlapping fashion on a single data

path [101]. For a givén latency L, operations scheduled into cstep  in an instance and

into csteps i + kKL (k =1, 2,3 ..)) in thé successive instance, run concurrently.

Consequently, the task of scheduling a pipelined algorithm can be solved with the

scheduler used in Listing 4.1 just by combining the distribution graphs of all the

instances, and balancing them across all groups of concurrent csteps.




Power-aware time constrained scheduling (PATICS) 53

4.5 Experimental results

The proposed time constrained scheduling (TCS) algorithm that takes into account
the impact of operations throughputs and clock period on the power-area tradeoffs in
behavioural synthesis h>as been implemented in C++. Three experiments have been
conducted on a Pentium 4, 2.2GHz, 512 MB RAM under different time constraints
for the DIFFEQ, elliptical wave filter (EWF) and discrete cosine transform (DCT)
benchmarks. Experiment 1 reports the powér—a;ea tradeoffs obtained when PATICS
has been used. Experiment 2 provides a comparison between the power consumption
values obtained with PATICS using a single supply voltage (SSV) and those
obtained using a multiple supply voltage (MSV) algorithm. Experiment 3 compared
the solutions obtained by PATICS and an area optimised scheduler that ddeé not take
“power consumption into consideration [58]. Power consumption reported later in this
section is based on equation (4.5) and Table 4.1, whereas the area requirement is

estimated considering the maximum number of FU of each type at every cstep [122].

4.5.1 Power-area tradeoffs analysis

DIFFEQ

So far, the power-area tradeoffs of DIFFEQ for a single time constraint have been
shown in Section 4.3. Figure 4.8 shows the power-area tradeoffs of the DIFFEQ for
different time constraints. Two interesting results were observed. The first result is
that for the same functional resources requirement, longer time constraints result in
- lower power consumption, as expected. For example, for 2* 2+, the power
consumption is 545uW when the time constraint is 134ns, however it reduces to
306uW when the time constraint increases to 179ns. To illustrate the causes of this
power reduction, consider Table 4.3, which shows some solutions parameters with a
resource requirerhent of 2* 2+ for different time constraints. It can be seen that as the
time constraint increases the schedule ‘slack is larger allowing the use of lower
operating voltages, thus reducing the average energy consumption (E) of the design.
The energy consumption E is calculated as the product of power P and time 7, E =
P-T. For 134ns, the schedule slack is 44.4ns allowing a sé/aled voltage of 1.54V,
which leads to an energy of 73.0pJ'. This is reduced to 54.8pJ for 179ns because the

larger schedule slack, i.e. §9.4ns, allows a ldwer voltage application, i.e. 1.16V.
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Hence, the power reduction is due not only to the increase of the time constraint, but

also to a decrease in the average energy E. |

0.8
0.6 tors

\§

5 k N m—
g 0.3 I\ \'__'-—-—-&\ i B6re
o \B//.
0.2 \L —— 7918
\.2241’5 >
0.1
‘0 S T T T T T

1% 1+ 1* 2+ 2* 1+ 2% 2+ 3* 1+ 3* 2+ 4* 1+
#FUs

Figure 4.8 Power-area tradeoffs for DIFFEQ with different time constraints

Table 4.3 Voltage, power and energy consumption for DIFFEQ with 2* 2+

T slacks.s V E P
(ns) (ns) V) @) - (W)
688

112 224 173

77.1

1.41 68.2 |
135 | 651 417

224 | 1344 101 | 459 205

" obtained considering that all the operations are executed at 1.8V

The second result that can be obtained from Figuré 4.8 is that a greater number of
FUs éan lead either to lower or higher power consumption. For example, for a time
constraint of 134ns, increasing the area from 2* 1+ to 2* 2+ allows reducing the
power consumption from 570uW to 545uW. However, by changing the resources
from 2* 2+ to 3* 1+ the power dissipation is increased from 545uW to 563uW.
Hence, the use of more FUs does not necessarily lead to lower poweér consumption.
Similar results can be seen for other time constraints such as 149ns, 156ns and

179ns.
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Tb explain the increase or decrease in the power consumption-when increasing the
resources, consider Table 4.4, which provides an insight into the power area tradeoffs
for 134ns. It can be seen that the‘.power variations are due to the application of
different operating voltages. For example, there is a voltage reduction from 1.68V to _
1.54V when changing the resources from 2*1+ to 2*2+, and a voltage increase from
1.54V to 1.63V when changing the resources from 2* 2+ to 3* 1+ The differ_ént
operating voltages are possible due to the combination o‘f clock period and operations

throughput, which also lead to different schedules.

Table 4.4 Character_isticvs of power-area tradeoffs for DIFFEQ, T = 134ns

Wiz | 30 s F 6 1 3 v 5o |
tradeoff3 19 7.0 5 ' 3 1.63 3% 1+
tradeoff4 18 174 6 3 1.34 487 | 3* 2+

Figure 4.9 shows the schedules obtained for tradeoff] and tradeoff2 from Table 4.4.
It can be seen that the schedule length is smaller in Figure 4.9a than in Figure 4.9b,
ie. 8 csteps and 21 csteps respectively, however the time constraint is the same, i.e.
134ns. This is because the selected clock periods have values of 16.8ns and 6.4ns
correspondingly. Note tliat although the multiplications are multicycled in both
schedules, their throughputs are different, i.e.\2 csteps in Figure 4.9a and 6 csteps in
Figure 4.9b. In the case of the additions, they are single cycled with 7P4 = 1 in
Figure 4.9a but multicycled with 7P, = 3 in Figure 4.9b. The combination of these
dperations throughputs with the schedule lengths of 8 csteps and 21 csteps results in
the resource requirements shown in Table 4.4. | |

From Table 4.4 it can also be clearly noted that increasing the resource usage will
not always lead to significant pO\;VGI‘ reduction. For example, when comparing
tradeoff]l and tradeoff3, a power savihg of oniy 1.2% is obtained by adding one
“multiplier to the design; and hence a significant area increase. On the other hand,

adding one adder (tradeoff3 and tradeoff4) leads to a power reduction of 13.5%.
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This benchmark is useful to investigate the capability of scheduling designs with
massive data parallelism. The DCT data flow graph [58] consists on 25 additions, 7 -
subtractions and 16 multiplications. Figure 4.10 shows the power-area tradeoffs of
the DCT for different time constraints. It can be seen that as in the case of DIFFEQ),
longer time constraints lead to lower power consumption for the same resources. For
example, for 6* 6+, the power consumption reduces from 1.6mW at 130ns to 0.4mW

at 261ns. As explained previously, this power reduction is mainly due to the use of

lower operating voltages that reduce the average energy consumption £, as shown in

Table 4.5. Note that the voltage has been reduced from 1.77V at 130ns to 0.91V at

261ns, decreasing the energy from 214.2pJ to 109.4pJ.
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Figure 4.10 Power-area tradeoffs for DCT with different time constraints

T
(ns) _

Table 4.5 Voitage, power and energy consumption for DCT with 6* 6+

slacksch
(ns)

v
(V)

E

P
(mW)

\ considering that all the operations are executed at 1.8V

156 51.6 1.59 206.1 1.3
183 78.6 1.40 188.7 1.0
209 104.6 1.22 162.2 0.8

From Figure 4.10, it can also be seen that it is not possible to establish a relation

between area and power. For example, at 183ns, power increases (from 1.17mW to

1.18mW) when resources change from 4* 4+ to 4* 6+ and decreases (from 1.18mW

to 1.14mW) when resources change from 4* 6+ to 5* 4+. As explained for DIFFEQ,

these power variations are due to different operating voltages, as shown in Table 4.6

for 183ns. Note that schedules with 4* 4+, 4* 6+ and 5* 4+ operate with voltages of
1.70V, 1.78V and 1.59V respectively, and that as of 6* 5+, the voltage is reduced

steadily as the resources increase, resulting in a power consumption decrease.
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Table 4.6 Characteristics of power-area tradeoffs for DCT, 7= 183ns

Ls Tclk TPy TP, vV P SFUs
(csteps) | (ns) | (csteps) | (csteps) | (V) | (mW)
- tradeoffl 33 5.5 6 3 1.70 | 1.17 4% 4+
tradeoff2 18 10.1 3 2 1.78 | 1.18 4* 6+
1485 I 1859 1% i
tradeoff4 9.1 2 1.59 ] 1.14
tradeoffs 11.4 2 1.66 | 1.16

adeoff6
adeoff7

1.03 | 6*6+ |

tradeoff8 't 17 10.7 4 2 1.40

tradeoff9 8 228 | 2 1 1.32 | 0.97 7* 6+
tradeoff10 40 45 | 10 5 1.32 ] 0.97 7* 8+
tradeoffl1 7 26.1 2 . 1 1.12 ] 0.81 8* 8+
tradeoff12 21 8.7 6 3. 1.12 ] 0.81 9* 8+
tradeoff13 56 3.2 16 8 1.12] 0.81 10* 8+

From Table 4.6 it can also be seen that in solutions with the same operations
throughput, i.e. tradeoff3 and tradeoff7, a larger schedule length leads to schedules
that require less number of functional units. This can be better illustrated with the

help of Figure 4.11 and Figure 4.12, which show the schedules for tradeoff3 and |
tradeoff7 respectively. Note that in both figures the multipliéations are multicycled
(with throughput TPy, = 2) and the additions are single cycled (with throughput 7P,
= 1). It can also be noted that both schedules meet the time constraint of 183ns
although the schedule length is different, i.e. 10 csteps in Figure 4.11 and 9 csteps in
Figure 4.12. For the throughputs 7Py, = 2 and TP, = 1, the schedule lehgth of 10
csteps allows a better distribution of the operations than a schedule length of 9 csteps
- because fewer operations overlap their execution times. For example, in Figure 4.11
a maximum of 5 multiplications are overlapping their execution times in csteps 3, 5
and 6, whereas a maximum of 4 additions are overlapping their execution times in
csteps 8, 9 and 10. In Figure 4.12, a maximum of 6 multiplications are overlapping
their execution times in csteps 3 and 5, whereas a maximum of 5 additions are

overlapping their execution times in cstep 9.
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EWF

This benchmark presents complex data dependencies that make difficult to obtain an
optimal solution. The EWF data flow graph .[5 8] consists on 26 additions and 8
multiplications. The power-area tradeoffs of EWF for different time constraints are
shown in Figure 4.13. As in the case of DIFFEQ and DCT, the power decreases
gradually when the time constraint increases for the same resource requirements.l For.
example, for 1* 2+, the power consumption reduces steadily from 3'54p.W at 317ns to
89uW at 634ns due to a gradual voltage reduction from 1.79V to 0.90V, as shown in
Table 4.7. |

0.4
0.35 e o
O 3 37re
g 025 = e
é 380rs
5 07 L\%
§_ 0.15 \\ e— \““" ]
' 0.1 : N— ‘ . r * — 5075
0.05 634rs
0 H 1 ! ! H
11+ = 1% 2+ 1* 3+ 2% 2+ 2*.3+ 3* 3+

#FUs

Figure 4.13 Power-area tradeoffs for EWF with different time constraints

Table 4.7 Voltage, power and energy consumption for EWF with 1* 2+
T slackgcn : V
V)

| con51déhng that all the operations are executed at 1.8V

From Figure 4.13, it can be seen that unlike DIFFEQ and DCT, as the number of FUs

increases the power consumption decreases. To illustrate the cause of this power
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reduction consider Table 4.8, which shows the solutions obtained for a time
constrained of 444ns. It can be seen that as the resources increase from 1%2+
(denoted as tradeoff1) to 3*3+ (denoted as tradeoff4) the operating voltage decreases
steadily from 1.42V to 1.12V, reducing the power consumption from 225uW to
173uW. Note that the values of cldck period and operations throughput from Table
4.8 determine not only the operating voltage, but also the number of functional units
_used by the scﬁedule. For example, consider Figure 4.14 and Figure 4.15, which
show the schedules for tradeoffl and tradeoff4 respectively. It can be seen that the
operations ar'evbetter distributed in Figure 4.14 than in Figure 4.15, due to a larger
schedule length, i.e. 21 csteps when compared with 17 csteps. This results in no
multiplications overlapping their execution times and a maximum of 2 additions -
overlapping their execution times (for example in cstep 1) in Figure 4.14. In Figure
4.15, a maximum of 3 multiplications are overlapping their execution times b(for
example in cstep 15), and a maximum of 3 additions are overlapping their execution

times (for exémple in cstep 17).

Table 4.8 Characteristics of power-area tradeoffs for EWF, T = 444 ns

Ls Tclk TPy TP, |14 P
(ns) (csteps) V(}csteps) (LW)

tradeoff2 05 47 10 G 129 | 204
tradc\ao}ff} 18 24.7 2 1 1.21 190
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Computational time .

A general observation from Figure 4.8, Figure 4.10 and Figure 4.13 is that the
relation between power and area is non-linear and varies depending on the
benchmark, the time constraint and the functional resources used. This makes the
design space exploration more complex and hence time consuming, and an efficient
algoﬁthﬁ is needed. Due to the iterative nature of PATICS, the running times for
large designs may be high. Therefore a sought feature of the algorithm from [58] is
its low computational complexity (O(nl)), where n is the number of operations and /
'~ is the schedule length. During the execution of PATICS, the number of times the
modified scheduler (based on [58]) is used is (T*max_f - cp), where cp is the critical
path of the design, and | T ahd max_f afe respectively the time constraint- and
maximum frequency set by the user. Hence, the complexity of fhe proposed
algorithm is (O(nl(T*max_f - cp))). PATICS has reasonably low computational times
considering the number of solutions obtained, as shown in Table 4.9, Table 4.10 a.nd»
Table 4.11. For example, the algorithm needs 154s to obtain the set of solutions of
Table 4.6 (DCT with a time constraint of 183ns). It can also be seen that for all the
benchmarks the computational time increases as the time constraint increases. This is
due to the fact that the number of clock periods to be analysed by the algorithm
increases as the time constraint increases. For example, assuming a minimum clock
period min_Tclk of 2ns and a time constraint of 317ns for EWF, the proposed
algorithm analyse 144 clock periods. However, by changing the time constraint to

444ns, the number of clock periods analysed increased to 208.

Table 4.9 Run times for DIFFEQ

Time Constraint | Computational time
(ns) (s)
112 1
134 ' 2
156 3
179 4
224 9 ,
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Table 4.10 Run times for EWF
Time Constraint | Computational time

(ns) (s)
317 77
380 193
444 366
507 610
634 1511

Table 4.11 Run times for DCT
Time Constraint | Computational time

(ns) (s)
130 44
156 93
183 154
209 232
261 485

4.5.2 Comparison with MSV

This experiment demonstrates thét the single supply voltage (SSV) solutions
obtained by PATICS present comparable power consumption with the solutions
obtained by a multiple supply voltage (MSV) algorithm [126] that uses two voltages,
1.8V and 0.9V. Compafable power values have been achieved without incfeasing the
functional resource usage whilst meeting the imposed time constraint. Besides the
comparable power consumption, the proposed algorithm avoids the problems
associated with MSV, such as high routing cost of the supply lines and area/delay
overhead of required level shifters [10]. As can be seen from Figure 4.16, the
proposed algorithm produces solutions of comparable quality in terms of power than
those generated using MSV for DIFFEQ. For example the power consumption for 2*
1+ for a time constraint of 134ns is 0.57mW with the presented algorithm, whilst it is
0.53mW with MSV. In the case of EWF, a power dissipation of 0.337mW for 1* 2+
at 328ns is obtained with MSV, whereas the proposed algorithm obtains a schedule
that dissipates 0.341mW, as can be seen from Figure 4.17. Overall, it can be
concluded that the proposed algorithm obtains compa'rable power values with the

MSYV algorithm.
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4.5.3 Comparison with an area optirﬁised scheduler

The aim of this section is to demonstrate the benefits of using the proposed algorithm
compared with a time constrained scheduling (TCS) algorithm that targets area
optimisation but that is not power-aware. Although many TCS algorithms have been
proposed, the algorithm developed in ['58] has been chosen because of its good
quality solutions and low computational 'complexity. The schedules obtairi'ed ‘with
[58] consider that all the FUs are operating at maximum supply V;)ltage, ie. 1.8V,
and that the clock period was set to the fastest functional unit from Table 4.1 when
operating at maximum supply voltage. Figure 4.18 shows the power saving that can
be achi‘eved when applying the proposed algorithm to the benchmarks DIFFEQ,
'EWF and DCT. Note that all the power savings were obtained with the same number
of FUs that [58]. For example, in the case of DIFFEQ with 2* 1+, the power saving
is approximately 15% when the time constraint is 179ns. For EWF, a power saving
of 35% iS obtained at 507ns with 2* 2+, whereas DCT with 4* 3+ experiences a
power reduction of 8% at 261ns. This improvement in power consumption is due to
the low operating voltage obtained after the appropriate selection of the clock period
and operations throughput. The operating voltages for DIFFEQ 2* 1+, EWF with 2*
2+ and DCT with 4* 3+ are 1.35V, 1.09V and 1.49V respectively. From Figure 4.18,
it can also be seen that the power savings increase when increasing the time

constraint, as previously explained in Section 4.5.1.

45.00%

40.00%

35.00%

30.00%

25.00%

20.00%

power saving

2+ ' 272+ | 21+ f 2 1+

DIFFEQ

134ns @ 149ns 0 156ns 0 179ns @ 224ns @ 317ns ® 380ns @ 444ns m 507ns @ 183ns @ 261ns

Figure 4.18 Power savings compared with TCS [S8] without increasing the number of FUs
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The proposed algorithm also obtains other solutions with better power reduction than
the ones shown in Figure 4.18, but with greatér nuinber of functional resources when
compared to [58]. For example, Table 4.12, Table 4.13 and Table 4.14 present
respectively the power savings for DIFFEQ, EWF and DCT with an extra multiplier

or adder.

Table 4.12 DIFFEQ

Additional FUs | % power saving
134ns 1+ 15.8
149ns _1* 25.9
156ns 1* ' 31.7
179ns 1+ 29.3
' 224ns 1* 49.8

Table 4.13EWF
Additional FUs | % power saving

380ns 1+ 114
444ns 1* 19.4
507ns 1+ 41.8

Table 4.14 DCT
Additional FUs | % power saving
183ns’ 1+ 8.7
261ns 1+ 13.5

- 4.6 Concluding Remarks

This chapter presented a new TCS algorithm capable of exploring the design space
and finding trade-offs between power consumption and area. It has been shown that
| power consumption and area have a non-linear relation, thus resulting in a large and
complex search space. The proposed algorithm is capable of exploring this search
space in an efficient way and with reasonable computational time. Relevant power-
area tradeoffs are possible because of the careful choice of clock period and
. operations throughput, and the generated single supply voltage. The combination of
these three parameters in the‘p'roposed algorithm is essential to obtain low power and
area designs. It has been shown that power savings comparable to those obtained by
MSYV algorithms are achievable whereby the proposed algorithm leads to lower
impleméntation complexity (single supply voltage versus multiple supply voltages).

For example, some solutions obtained for DIFFEQ and EWF have respectively less
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than 8% and 2% power increase when compared to solutions that use MSV [126].
Moreover, when compared with an area optimised scheduler [58], the proposed
algorithm meets the same time constraint with the séme resource requirements but
with less power. For example, a power saving of 13% averaged over DIFFEQ, EWF

and DCT with different time constraints was obtained.




Chapter 5

Power-Aware Behavioural Compiler (PABCOM)

5.1 Introduction

An essential task when synthesising a design from a behavioural description is
selecting the clock period to schedule the DFG operations into control steps. Chapter
4 has illustrated the significant effect that clock and operations throughput selection
has on the scheduling task in terms of power. However, determining the clock period
has also an interaction with binding [96], i.e. resource sharing. Hence, to find good
solﬁtions in terms of power and area, the behavioural synthesis tasks (scheduling and
binding) should be performed simultaneously with clock and operations throughput
selection. This chapter presents a Power-Aware Behavioural vCOMpiler (PABCOM)
that considers the interrelation between the behavioural synthesis tasks (scheduling
and binding) and the clock and operations throughput selection. For a given time
constraint, PABCOM achieves low power datapaths by determining a low suppiy
“voltage after using the improved algorithm for clock and operations throughput
selection described in Section 5.2. Further power reduction in the multiplexer based
interconnections of the datapath is achieved by erhploying the techniques described
in Section 5.3. The proposed algorithm is described in Section 5.4 including the
compound cost function that allows obtaining different power-area tradeoffs
according to the optimisation goal set by the user. Section 5.5 demonstrates the
efficiency of the al gorithm through extensive experimental results using a number of

benchmarks. The concluding remarks of the chapter are given in Section 5.6.
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5.2 Improved algorithm for clock and operations throughput

selection

PABCOM obtains power savings by reducing the interconnection complexity and the
operating voltage of the datapath. The complexity of multiplexers-based
interconnections‘ is reduced using the techniques presented in Section 5.3, whereas
the low operating voltage 1s obtained after using a modified version of the algorithm
developed in Chapter 4. This section presents the main modifications done. The first
modification eliminates redundant clock and operations throughput, hence decreasing
the computational time of PABCOM. The second modification aims to obtain a
lower operating voltage by exploring the throughputs of operations that do not
necessarily ‘consume most of the power in the design. This modification was
implemented in a function called upper bound whereas the first modification was
implemented in the function add fo_list. These two functions are included in Listing
5.1, which shows the modified algorithm for clock and operations throughput
selection. This modified algorithm is integrated into PABCOM as shown later in

Section 5.4.

Listing 5.1 Modified algorithm for clock and operations throughput selection

1 Lines 1 to 8 from Listing 4.1 (Chapter 4)
2 Lines 10 to 15 from Listing 4.1 (Chapter 4)

3 if Ls >= critical_path_csteps do

4 (Ls, TPpower opr TPremain opy V) 10 1_b_struct

5 upper_bound (Ls, min_V, u_b_struct)

6 add_to list (I_b_struct, u_b_struct, clock_throughputs)
7 end if

8 else - » _

9 calculate TPpower_op (Dpover_oplmin_V))

10 calculate TPremain_op (Dremain_op(min_V))

11 critical_ path_csteps = ASAP(TP,ouer opr TPremain op)

12 if Ls >= critical_path_csteps do

13 (Ls, TPpover opr TPremain op» V) 10 I_b_struct

14 upper_bound (Ls, min_V, u_b_struct)

15 add _to list (I_b_struct, u_b_struct, clock_throughputs)
16 end if

17 end if

18 increase Ls

19 calculate Tclk

20 end while

From Listing 5.1, it can be seen that the first steps (lines 1 to 2) are the same that in
the original algorithm described in Listing 4.1. These steps lead to the computation
of the lower bound of the operations throughput and the critical path. After validating
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the critical path (line 3), the schedule length Ls, operating voltage ¥ and throughputs
TPpover op and TPyopgin_op are saved intov structure [ b struct (line | 4). Then the
function uppér_bound (line 5’) is called to calculate the upper bound of the operations
throughput, which is saved into structure u_b_struct. Finally, the\function add_to_list
(line 6) apply pruning techniques to decide whether the structures [ b_struct and
u_b_struct will be added to the list clock_throughputs or not. To facilitate the
explanation of the algorithm from Listing 5.1, the functions add to_list and
upper_bound' are described later in Listing 5.2 and Listing 5.3 respectively. From
Listing 5.1 it can be seen that in case the increased delay Dpower op 1s greater than the
maximum delay maxDpower op, the throughputs TPpower op anQ  TPromain op are
calculated (lines 9 and 10) at minimum voltage min_V = 1.08V. This voltage was
selected according to the library specified in Table 5.9. Then the critical path is
calculated (line 11) and a similar process (line 12 to 16) to the one described in lines
3 to 7 is followed. ‘

Listing 5.2 shows the pseudocode of the function upper bound used in Listing 5.1.
" This function allows exploring solutions that were not explored by the original

algorithm developed in Chapter 4 with the aim of further voltage reduction.

Listing 5.2 Pseudocode of the function upper bound

OO~ DEWN =
Loan

upper_bound (Ls, min_V, u_b_struct)

CaICUIate TP, power_op (Dpower_op(min_V))

calculate TPremain_ap (Dremain_op(min_V)) ’

critical_ path_csteps = ASAP(TP,over opr TPremain_op)

if Ls >= critical_ path_csteps do

(LS, TPpower opr TPremain_op» Min_V) t0 u_b_struct
else _ :
while (upper_bound not found) do

10 decrease TP, op ,
11 calculate Dpuer op
12 calculate VI
13 decrease TP, .pin op
14 calculate D,epain_op
15 calculate 72
16 if (VI >max V&& V2 < max_V)do
17 calculate TP,oer op (Dpower op(V2))
18 _ critical_ path_csteps = ASAP(TPpover opr TPremain_op)
19 if Ls >= critical_ path_csteps do
20 (LS, TPpower ops TPremain opr V2) t0 u_b_struct
21 end if
22 : . elsif (VI <max_V && V2 > max_V) do
23 CaICUIate TPremain_op (Dremain_ap( V]))
24 ' critical_ path_csteps = ASAP(TP over op, TPremain_op)
25 if Ls >= critical_ path_csteps do

26 (LS, TPoover opn TPremain_op V1) 10 1 b_struct
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27 end if

28 _ elsif (VI < max V && V2 < max_V) do

29 if (V1<72)do

30 calculate TP emain_op (Dremain op(V1))

31 _ ~ critical_ path_csteps = ASAP(TPyouer opy TPremain_op)
32 if Ls >= critical_ path_csteps do

33 (Ls, TPpowe,_,;p, TP, emain_op» V1) tO u_b_struct

34 ' else

35 ’ Ca|CUIate TPremain_ap (Dremain_op( VZ))

36 : calculate TP,oyer op (Dpower op(¥2))

37 critical_ path_cs=ASAP(TP,ver opy TPremain_op)
38 o if Ls >= critical_ path_csteps do

39 (Ls, TPpower ops TPremain opy V2) 10 u_b_struct
40 . end if

41 end if

42 else

43 calcutate TPower op (Dpower op(72))

44 ' critical_ path_csteps = ASAP(TP,ower ops TPremain_op)
45 if Ls >= critical_ path_csteps do

46 . . (Ls, TPpower opr TPremain opr V2) 10 u_b_struct

47 else :

48 calculate TPpower op (Dpower op(V1))

49 calculate TP,emain_op (Dremain_op(V1))

50 critical _ path_cs=ASAP(TP,,er opr TP remain_op)
51 if Ls >= critical_ path_csteps do

52 (LS, TPpower ops TPremain op» V1) 10 u_b_struct
53 : end if

54 : end if

55 end if

56 else '

57 break

58 end if

59 end while

60 end if

61 end if

62} ~

Lines 3 to 5 of this function calculate the upper bound of the opérétions throughput
and critical path as in Listing 4.1, Chapter 4. After the validation of the critical path
(line 6), the schedule length Ls, operating voltage min_V and throughputs TPpoyer op
and TPyemain_op are saved into the structure u_b_struct (line 7). However, if the criticai
path is larger than the schedule length, the upper bound of the operations throughput
will be determined by decreasing the throughput of the operations, and then
calculating their delay and operating voltage (lines 10 to 15). For example, consider a
schedule length Ls = 9 csteps for the DIFFEQ benchmark, where TPpower op aﬁd
'TP,;mm-,,_op represent the operations throughputs of the multiplications and additions
respectivély. Then, at min_V = 1.08V, the operations throughput are TP ouer op = 3
and 7, Premain_op = 2. With these throughputs, the critical path of DIFFEQ is executed

in 10 csteps, which violates the schedule length Ls. Then the throughputs need to be
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decreased as explained in tﬁe folldwing. Firstly, bT Prower op is Teduced to 2 csteps,
which results in a multiplication delay of 10.6hs using a voltage V1 = 1.13V, as
shown in Figure 5.1a. Secondly, TP emain_op 18 decreased to 1 cstep, resulting in an
addition delay of 5.3ns using a voltage V2 = 1.11V (see Figure 5.1b). The algorithm
then evaluates the feasibility of ¥/ and V2 by comparing them with the maximum
allowed Voltr;lge, max_V =132V accofding to the library from Table 5.9. There are
three possible cases: VI is unfeasible and V2 feasible, VI is feasible and V2 is

unfeasible, and V1 and V2 are feasible.

csteps

/ TP . _at
D, at 1.08v| D at 1 3 o
1 83ns / \ - V1= 1.13VI (+> T | V=113V
3 | A

2 V1=1.13v v 0

; 3 E——————
D, at108Y D, at k * [ » reduced TE,__

a) multiplication

csteps

1 5.3ns

D, at 1.08 D, at
“ v)vz =11y (+> TR o | reduced TR,

y.

D,at108v| Dyat | [ *
2 i v2=111v) | ] T |Tomegls

op ~
v2=111v

b) addition

Figure 5.1 Operations throughput decrease

In case V1 is unfeasible and V2 is feasible, TPpoer op is calculated at V2 (line 17) and
later used to calculate the critical path (line 18), which is validated (linel9) before
saving the parameters Ls, TPpoyer op, I P,emai,;_op, and 72, into the structure‘\u_b_struct
(line 20). In case V1 is feasible and V2 is unfeasible, 7. P,;main_op is calculated at V1
(line 23) and later used to calculate the critical path (line 24), which is validated (line
'25) before saving the parameters Ls, TPpower ops 1 Premain_op, and V1, into the structure
u_b_struct (line 26). In case both voltages ¥/ and V2 are feasible, they need to be
compared to determine the lowest voltage (line 29). If VI is lower than 72,
TP emain op 1s calculated at VI (line 30) and later used to calculate the critical path
(line 31), which is validated (line 32) before saving the parameters Ls, TPpower ops

TP, emain_op, and V1, into the structure u_b_struct (line 33). In the case of a schedule
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length violation, the algorithm attempts to use V2 to compute TP,.pmun op and
TPpower op (line 35 and 36), which are used to compute the critical path (line 37).
This is then validated (line 39) before saving the parameters Ls, T }’powe,_op,
TPremain_op» and V2, into the structure u_b_struct (line 40). A similar process (line 43
to 54) to the one explained (line 30 to 40) is followed if V'/ is not lower than V2, but
now considering first V2. For example, consider again the voltages ¥/ = 1.13V and
V2 = 1.11V previously obtained for DIFFEQ and the schedule length of 9 csteps.
Since V2 is lower than V1, the delay of the multiplication D, is calculated at V2 and
 then used to compute the multiplication throughput 7Ppouer op (line 43). This results
for the present case in a multiplication delay D, of 11,36ns and a multipli'cation
throughput TPpoiver op Of 3 csteps (see Figure 5.1b). Using TPpower op = 3 and the
‘reduced TPremain op = 1 obtained previously (line 13), a critical path.of 8 csteps is
obtained. This critical path is lower than the schedule length of 9 csteps, thus Ls =9,
TPpower op = 35 TPremain op = 1 and V' = 1.11, are saved into u_b_struct. In case of .
violation of the schedule length, the algorithm attempts to use VI to find the upper
bound of the operations throughput (lines 48 to 53).

As explained in Listing 5.1, once the structures / b_struct and u_b_siruct have been
found, the function add to list is called to determine which structures should be

prunéd. The pseudocode of the function add to_list is presented in Listing 5.3.

Listing 5.3 Pseudocode of the function add to list
add _to_list (I_b_struct, u_b_struct)

1
2
3 if ({_b_struct ==u_b_struct) do

4 if (Icheck_redundancy(i_b_struct)) do

5 add I b struct to list clock_throughputs
6 prev low b =1 b struct

7 end if -

8 elsif (prev_low b'=1 b struct || prev_upp b'=u b _struct) do
9 if (\check_redundancy(l_b_struct)) do

10 : add [ b_struct to list clock throughputs

11 .prev low b =1 b struct

12 end if .

13 if ({check _redundancy(u_b_struct)) do

14 add u b struct to list clock_throughputs

15 prev upp b=u b struct

16 end if

17 end if

18}

It can be seen that in case the structures / b struct and u_b_struct are the same (line

3), the redundancy of the contents of only l_b_struét 1s verified with the function
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check _redundancy (line 4). This function checks that the contents of the structure,
i.e. Ls, TPpower op A0 TPremain op, are not all multiples of any Ls, TPpower op and
TPemain op included already in the list clock_throughputs. For example, consider that
a structure containing Ls = 4, TPpower op = 1 and TPyemain op = 1, is already included in
the list clock throughputs. Then, a structure with Ls = 8, TPpower op= 2 and TPyemain_op
= 2 will not be included in the list clock throughputs since these values of schedule
length and operations throughputs are all multiples of Ls = 4, TPpower op = 1 and
TP emain op = 1. However, a structure with Ls = 8, TPpoyer op = 2 and TPremain op = 1,
may be added to the list (line 5). Then the previous lower bound prev_low b is
updated with the throughputs contained in the structure / b _struct (line 6).

Note that in case the throughputs of prev low b are different from the ones of -
I b struct or the throughputs of prev upp b are different from the ones of
u_b_struct, the redundancy of the structures [ b_struct and u_b_struct is verified
(line 9 and 13). If there is no redundancy the structures / b _struct and u_b_struct are
included in the list clock throughputs (line 10 and 14). Then, the throughpﬁts of
prev low b and prev_upp b are updated with the throughputs of I b_struct or
u_b_struct respectively (line 11 and 15). Note that the function add_to_list included
in Listing 5.3 allows decreasing the number of elements of the list
clock__ihroughputs, hence reducing the number of possible operating voltages when
searching for a low power solution. Consequently, the computational time of the
algorithm is also reduced. | '

An example of the resultant list clock throughputs containing n clock periods is
shown in Figure 5.2. This list provides the schedule length’Ls and operations
throughput TP;,ower_op and TPyemain op NECEssary to generate the schedules of a list of
solutions that will be used in the algorithm presented in Section 5.4. The list
clock_throughputs also provides the operating voltage 7, which is used to estimate

the power dissipated by the datapath.

TC[k] LS] TPpower opl TPremain opl V]
Tclk, Ls; TP, power op 2 TPremain op2 V,
TCIk3 LS3 TPpower op3 TPremain op3 A V3
T Clkn Lsn 1P, power Op n TP, remain opn Vn

Figure 5.2 List clock_throughputs
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5.3 Power reduction in multiplexer-based interconnections

This section illustrates by means of examples the techniques used to reduce the
complexity of multiplexer-based interconnections in the datapath and thus achieve
power savings. These techniques were previously us¢d in [57] during a simulated
annealing process to obtain an area optimised datapath, however their impact on the

power consumption was not considered. The four techniques used comprise:

1) Scheduling a selected operation into a new cstep

A selected operation is scheduled into a cstep randomly chosen from the interval
defined by the ASAP and ALAP values of the operation. For example, consider that
“operation N10 in Figure 5.3a has been chosen to be séheduled into a new cstep
selected randomly between the ASAP value, i.e. 1, and the ALAP value, ie. 5.
Figure 5.3b shows the resultant schedule assuming that operation N10 has been
moved from cstep 1 to the randomly selected cstep 5.

Assigning an operation to a new cstep may lead to a different module or register
binding. The module binding before and after moving operation N10 is shown in
Figure 5.4. It can be seen that module' MS5 in Figure 5.4a is unused in cstep 5 and
hence the module binding can be maintained as shown in Figure 5.4b. However, the
register binding after moving operation N10 can not be preserved, as shown in
Figure 5.5. Moving N10 from cstep 1 to cstep 5 reduces thevlifetime of value N10
starting now in cstep 6 and extends the lifetime of value x until cstep 5. From Figure
5.5a it can be seen that register R2 is not available in cstep 5 and a new register
binding needs to be oBtained using the left edge algorithm [38]. Note that this néw
solution can be later optimised during the simulated annealing process. After register
binding, value x is moved to register R1 where the lifetime reduction of value N10

has resulted in a sufficiently large gap as shown in Figure 5.5b.
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Figure 5.4 Module binding
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From Figure 5.4 and Figure 5.5 it can be seen that the ,nurhber of modules and
registers remain the same after scheduling N10 into a new cstep. However, the
complexity of the interconnection changes as illustrated in Table 5.1, which shows
the multiplexers connected to the inputs of modules and registers. Such inputs have
been named as input_a and input_b. For sake of explanation, each multiplexer has
been named according to the module or register is connected to. For example, the
multiplexer connected to input a of module M5 is named as M5a, whereas the

multiplexer connected to register R2 is named as R2a.

Table 5.1 Multiplexers requirement

Scheduhng N10 1nto cstep 1 | Scheduling N10 into cstep 5

AModule or register

' mux2-1 (M6a) |- | mux2-1(M6a) | - |

mux2 1 (R8a) ‘mux2 1 (R8a)

From Table 5.1, it can be seen thaf after scheduling N10 into cstep 5, the multiplexer
M5a is no longer required and the R2a has changed from a 3-input multiplexer to a .
2-input multiplexer. These two changes in the interconnection do not only affect the
area requirements, but also the power consumption. This is shown in Table 5.2,
which presents the number of times each rhultiplexer is used and its power ‘
consumption. Power reported in Table 5.2 was calculated using equation (5.5), the
library from Table 5.9, and considering a time constraint éf l6ns and an operating
| voltage of 1.32V. Note that the power reduction in R2a is due not only to the fact that
the»multiplexer is used less number of times, but also because a lower power

Ihultiplexer is being used, i.e. mux2-1 instead of mux3-1.

Table 5.2 Multipiexers power
Scheduling N10 into cstep 1 | Scheduling N10 into cstep 5
 multiplexer | # times used Power ([.LW) # times used | Power (uW)
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2) Binding a selected opefation to a new functional module

A selected operation is executed by a new module that is chosen randomly from a set
of modules specified by the user. For example, consider that oineration N10 in Figure
5.6a may be moved from module M1 to module M3 in Figure 5.6b. This new module
binding results in a less complex interconnection as shown in Table 5.3. It can be
seen that M1a has changed from a 5-input multiplexer to a 4-input multiplexer while
the rest of the mu’lﬁplexers remain the same. This affects the power cbnsumption of
the multiplexers. Consider for example Table 5.4, which reports the multiplexers
power for the bindings shown in Figure 5.6. Power reported in Table 5.4 was
calculated considering a time constraint of 21ns and an operating voltage of 1.32V.
Note that the power dissipated by the multiplexer Mla has been reduced from
215.2uW to 97.1uW. Again, this is due not only to the less number of times Mla is
used after the new binding, but also to thé reduction of the number of inputs of M1a,
i.e. from 5to 4 (see Table 5.3). Binding operation N10 to module M3 was possible
because the module was unused during all the csteps. However, in case the module is

not available an exchange of operations between the old module and new module is

attempted.
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M7_E3_ ...... ...... MG ...... __NG ...... ......
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— e ——

a) before binding N10 into M3 ‘ b) after binding N10 into M3

Figure 5.6 Module binding

Table 5.3 Multipiexers requirement
Binding N10 to module M1 | Binding N10 to module M3
input a ‘input b

Module or register

mux2-1 (M8a)
R1 mux2-1 (R1a) - mux2-1 (R1a) -
R2 mux2-1 (R2a) - mux2-1 (R2a) -

R6 mux2-1 (R6a) - mux2-1 (R6a) -
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- Table 5.4 Multiplexers power
Binding N10 to module M1 | Binding N10 to module M3
multiplexer # times used | Power (uW) |

M1b 3 72.8 3 72.8
M8a 2 32.7 2 32.7
Rla 2 32.7 2 32.7
R2a 2 32.7 2 32.7
R6a 2 32.7 2 32.7

3) Binding a selected operation result into a new register

A selected operation value is saved in a new register that is chosen randomly. from a
set of registers given by the user. For example, consider that operation value N7 in
Figure 5.7a may be moved from register R2 to register RS in Figure 5.7b. This new
register binding results in a less cofnplex interconnection as shown in Table 5.5. It
can be seen that R2a has changed frorﬂ a 5-input multiplexer to a 4-input multiplexer
while vthe rest of the multiplexers remain the same. This affects the power
consumption of the multiplexers as shown in Table 5.6, where the reported power
dissipation was calculated considering a time constraint of 16ns and an operating
voltage of 1.32V. Note that the power dissipated by the multiplexer R2a has been
reduced from 282.4uW to 127.54W. This is due not only to the less number of times
R2a is used after the new binding, but also to the reduction of the number of inputs
of R2a, i.e. from 5 to 4 (see Table 5.5). Binding operation value N7 to register RS
‘was possible because the register was unused during all the csteps. However, in case
the register is not available an exchange of operations values between the old register

and new register is attempted.
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Figure 5.7 Register binding
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Table 5.5 Multiplexers requirement

" Binding N7 to register R2 Binding N7 to register RS
Module or register input a input b input a input b
M2 mux2-1 (M2a) | mux2-1 (M2b) |mux2-1 (M2a) |mux2-1 (M2b)
M9 mux2-1 (M9a) {mux2-1 (M9b) {mux2-1 (M9a) {[mux2-1 (M9b)
R1 .mux2-1 (R1a) - mux2-1 (R1a) -

4)

Table 5.6 Multiplexers power

‘ Binding N7 to register R2 | Binding N7 to register RS
multiplexer | # times used | Power (uW) | # times used | Power (uW)
M2a 2 43.0 2 43.0
M2b 2 43.0 2 43.0
M9a 2 43.0 . 2 43.0
M9b 2 '43.0 2 43.0
Rla 2 43.0 2 . 43.0

4) Swapping the inputs of a selected opeltation
The inputs of a randomly selected operation are swapped if the ol-)eration is
commutative. This is better illustrated with the help of Table 5.7, which contains the
| commutative operations N1, N2 énd N3, with their respective inputs and the registers
where these inputs are saved. Consider that the commutative operations are executed
by module M1 in the datapath shown in Figure 5.8a. It can be seen that two
multiplexers are required to share M1, i.e. a 3-input multiplexer M1a and a 2-input
multiplexer M1b. Figure 5.8b shows the generated datapath after swapping the inputs
of operation N3. It can be seen that M1a has become a 2-input multiplexer and M1b
is no longer required. Hence, the complexity of the interconnection has been reduced
by swapping the inputs. of N3, affecting the power consumption as illustrated in
Table 5.8. Power reported inv Table 5.8 was calculated cbnsidering a time constraint
of 16ns and an operating voltage of 1.32V. It can be inferred from the table that the
power consumption due to multiplexers has béen reduced from 138.6uW to 43.0pW

after swapping the inputs of operation N3.

Table 5.7 Commutative operations and their inputs

operation | input a (register) | Input b (register)
N1 x (R1) ¥y (R2)

N2 NI (R3) y (R2)
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Figure 5.8 Datapath

Table 5.8 Multiplexers power
‘ Before swapping N3 inputs | After swapping N3 inputs
multiplexer | # times used | Power (uW) | # times used | Power (uW)
Mla 3 95.6 2 43.0
Milb -2 43.0 - - -

5.4 Power-aware datapath optimisation

The power reduction techniques presented in Section 5.2 and Section 5.3 héve been
integrated into a power-aware behavioural compiler (PABCOM) as shown in Figure
5.9. For a given time constraint, PABCOM considers concurrently the interrelation
between scheduling, binding, clock and operations throughput ‘selection while
searching for solutions that meet the optimisation objective: power, area or a
combination thereof. The input to PABCOM is a standard iext file that contains a
DFQG, a set of modules and registers, annealing parameters (8, o, €;) and user defined
- parameters (time constraint 7, maximum frequency max_f and poWer optimisation
weight oz).. The output consists of a standard text-file that contains details aboutvthev
datapath structure and timing information required for the synthesis of the confrpl
path. This output‘ file is then used to write RTL Verilog for the datapath and
synthesisable VHDL for the controller. Examples of the input/output file to/from
PABCOM are given in Appendix 3.
From Figure 5.9 it can be seen that the input file provides the information necessary
i.e. DFG, time constraint and maximum frequency, to apply the imbroved algorithm

for clock and operations throughput selection developed in Section 5.2. This
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algorithm generates the list clock_throughputs that contains combinations of possible
clock periods and operations throughputs, as shown previously in Figure 5.2. For
each of these combinations the scheduling task is performed using é modified
version of [58] (as in Chapter 4, Section 4.4). After scheduling, module and register
binding are generated using the left-edge algorithm [38] to produce a complete
solution. Then, all the complete solutions derived from list clock throughputs are
grouped in the list implementations. The list implementations is then used by a

power-aware datapath optimisation based on simulated annealing.

( PABCOM

Figure 5.9 Overview of PABCOM
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In the power-aware datapath optimisation, the first solution from list implementations
is taken and new designs are examined in two nested loops as shown in Listing 5.4.
The inner loop generates a number of solutions at. a constant control parameter value
- by applying five different moves in turns. Moves 1 to 4 correspond to the power
reduction techniques presented in Section 5.3. Move 5 consists on taking a new
solution from the list implementations. This new solution includes a new clock
period, operatiops throughput and operating voltage, resulting in different power and
area requirements. After applying a move, the generated solution can be either
accepted or rejected depending on the acceptance criterion defined in the simulated
annealing algorithm (see Chapter 2, Section 2.4.1). The probability of accepting
solutions with ir?creasing cost depends on a control parameter, which is gradually
lowered with the outer loop. The annealing process stops when the variation of the

solution qualitff falls below a certain value [64].

Listing 5.4 Power-aware datapath synthesis algorithm
1 while system is not frozen do
2 while valid solutions < solutions to generate at this control parameter do
3 generate a new solution applying one of the following moves:
4 1) schedule a randomly selected operation into a new cstep
5 2) bind a randomly selected operation to a new functional module
6
7
8

3) bind a randomly selected operation value to a new register
4) swap the module inputs of a randomly selected operation
5) clock and operations throughput selection:

9 evaluate the cost of the new solution
10 accept or reject the new solution
11 end while
12 decrease control parameter
13 end while

5.4;1 Cost functidn

PABCOM considers the minimisation of not only the resource usage but also the
power consumption in a given time constraint. Since two parameters, power and

area, need to be optimised, the following compbund cost function is used:

cost = a[ﬁ-J +(1- a)(g] - (5.1)
R) Qo - ‘

where « is the power weight defined by the user, (1-a) is the area weight, P; and Q;

are respectively the power and area cost of a new solution, P and Q are respectively

the maximum estimated power and maximum estimated area of the design. .
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The power cost P; is the saﬁle that the estimated power consumption in the datapath
of the design. To allow a quick and simple comparison among different design
alternativés, the power of the datapath can be expressed as:
| Por = Lry + Freg + Byux .2)

where Ppp is the power consumption of the datapath, Pry is the power dissipated by
the functional units, Prg 1s the power dissipated by the registers and Ppuyy is the
power consumption due to the multiplexers. Note that equation (5.2) does not
consider the power consumed by wires used to transfer data between datapath
components. Power dissipation in wires mainly depends on the switching activity
and' capacitance of the wire [150]. The switching activity in turn depends on the
behavioural synthesis tasks scheduling and binding, whereas the wire capacitanée is
directly dependent on the wire length, which is determined by floorplanning. The
integration of a floorplanner and PABCOM would allow considering the power
dissipated by wires, which may be a significant part of the fotal circuit power [67].
At the moment power minimisation in the wires is out of the scope of this thesis. A
The power values Pry, Prec and Pyyy from equation (5.2) are calculated“ assuming
that the inputs of the datapath components are static when they are being used and
clocks are switched off when they are idle. Hence, the power consumption of the

FUs is given as [122]:

Z NePpDy 53
. All FUs .

P FU = LT—— _ 5:3)
where Nr is the number of times each 'type of FU is used, Dr is the delay of the FU,
Pr is its average power and T is the time constraint. The power consumption of the
registers and multiplexers is calculated respectively in the same way that in equation

(5.3):
ZNRPRDR

__ All registers (5-4)

'~PREG - T

Z N X P X D X
__ All nudtiplexers (5.5)

PMUX_ T

where Ng is the number of times each register 1s used, Py is the power of a register,
Dg 1s the delay of a register, Ny is the number of times each multiplexer is used, Py

is the power of a multiplexer and Dy is the delay of a multiplexer.
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The area cost Q; corresponds to the estimated area of the datapath in the design. To
allow a quick and simple comparison among different design alternatives, the area of

the datapath can be expressed as:

Opp = ZF‘IF + Ra, + Xax , _ (5.6)

All FUs used
where QOpp is the area of the datapath, F is the number of FUs used of each type, aris
the area of each type of FU, R is the number of registers used, ay is the area of a

register, X is the number of multiplexers and ay is the area of a multiplexer.

5.4.2 Cooling schedule

The parameters that determine the cooling schedule of the simulated annealing
process used in PABCOM are calculated as follows:

a) Initial control parameter value and decrement rule [2]

The initial control parameter value ¢y is determined in such a way that nearly all new
generated solutiéns (for example 95% [1]) are accepted at the beginning of the
annealing process. The first step to calculate the initial control parameter is setting co
= 0 and then generate a sequence of m, solutions. After each generated solution, a

new ¢y is calculated using:

-1
c=Af +[ln i ) (5.7)
my 2o —m(1— %)

where yo is the initial acceptance ratio, m, and m; is the number of cost increasing

and cost decreasing solutions, and Af™ is the average difference in cost over m;. The

final value that equation (5.7) converges to is the initial control parameter co.

To achieve small decrements in the control parameter ¢, the stationary distributions
at the end of the Markov chains need to be close to each other [64]. Consequently,
information about the cost distribution within a Markov chain is included in the
following decrement rule: |

-l &9
_ 3o(c)
where o(c)is the standard deviation of the cost function values at the control

parameter value ¢ and  is the distance parameter that determines the speed at which
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the control parameter is lowered. Small values of & result in small decrements in c,
whereas large values of 6 result in large decrements in c.
b) Algorithm stop criterion |

The annealing process is terminated after the standard deviation o(m) falls below

the given value for the stop parameter ¢;:

B (m) <¢ (5.9)
o(m) = iZ(T—?)Z (5.10)

where m is a number of Markov chains, 7, is the average cost value of the i-th

Markov chain and 7 is the average value of all z over the m Markov chains.

¢) Length of the Markov chains

The Markov chain length needs to be chosen such that the algorithm has a

sufficiently large probability of exploring at least a major part of the solution

neighbourhood [1]. A straightforward choice is given with the following equation:
L=2:N-(M+R+)) : (5.11)

‘where N is the number of operations in the behavioural description, A is the number

of available functional modules and R the number of registers. Hence, the Markov

chain length is constant for a given synthesis problem.

5.4.3 Choice of annealing parameters

Although the performance of the used simulated annealing algorithm is determined
with the parameters 6,j o and €, not all of them have the same impact on the quality
of the solution. The quality of the solution is highly dependent on the distance
‘parameter & and almost independent from the initial acceptance ratio y, and the stop
parameter €, when both are chosen with acceptable degree of accuracy [1]. Therefore,
to achieve low cost solutions the distance parameter 6 needs to be carefully selected.
To obtain a simple relation between 6 and the solution quality, the proportional
differences to the optimum solutions have been averaged. Figure 5.10 shows this
dependence for the bench}narks: autoregressive filter (AR), elliptical wave filter
(EWF) and discrete cosine transform (DCT). It‘ can be seen that the expected design

quality (average difference from the best solution) decreases continuously for EWF
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and DCT with values 6 <0.7, and for AR with values 6 <0.5. This shows that the
appropriate selection of the value 6 depends on the design problem. To ensure the
highest possible solution quality, it is advisable to synthesise the design with a set of
different values. During the synthesis of the motion vector reconstructor in Chapter 6
it has been found empirically that 0.1 <6 <0.2 represents a good initial choice.

While the initial acceptance ratio yo is set to 0.95 [1], the stop parameter ¢; requires
furthér analysis. Figure 5.11 shows the percentage of cost increase as a function of
the stop parameter ¢; for AR, EWF and DCT. It -can be seen that using small values
of the stop parameter, i.e. € <0.0001, lead to solutions with insignificant or null cost
incréase, whereas using values of € > 0.0001 result in solutions with a large cost
increase. During the synthesis of the motion vector reconstructor in Chapter 6 it has

been found émpirically that €, <0.0001 represents a good initial choice.

BT | TTT T T T 1

N R N R
e N I\\l NEEY.A IR
Pl N TN
_‘é:)ell|llll ] [ T A T N N | I
° R f\\u/ﬁ\ttf-\f\l
g ||||||W|?Q\| S ]
°\=4I||1|I4l I ot s N I

T 1T | Wlmﬂ
2 T <]
OIJIIII 1 | ll‘lillll |

10 1 0.1

5

—4—AR —5—DCT —a— Ewﬂ

Figure 5.10 Dependence of design cost on the parameter 0
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5.4.4 Performance of the simulated annealing algorithm

This section investigates the performance of the algorithm by examining
characteristic metrics such as the control parameter c-and cost function during the
simulated annealing process. Figure 5.12 shows the variation of the control
parameter value when using the cooling schedule described in Section 5.4.2 during
the synthesis of the autoregressive filter (AR) with = 0.9 and 6 = 0.2. Initially, at
large values of the control parameter ¢, high increases in cost will be éccepted. Asc
decreases, only small increases in cost will be accepted and finally, as ¢ approaches
to 0, only improvements in cost will be accepted. Consequently, the average values
of the cost function calculated using equation (5.1) and the standard deviation stdev
from this value are relatively high at large values of ¢, as shown in Figure 5.13. Note
that both values decrease until the cost function becomes steady and the standard
deviation approximates to zero. The variation of the standard deviation provides
information about the annealing process and is used to calculate the next control

parameter value using equation (5.8).




Power-aware behavioural compiler (PABCOM) 92

0.4

o.35l..f: ...... ,
08 -ttt

control parameter value

0.2 414 heipaiiy

045 {4 ivobocdendonbd

. . . . . ' . . ' '
. . . ® ' B ' . '
' . . ° . ' B ' . '
. . . o ’ ' ' . ' '
' . . . ' s . ' . v . '
1 ) ' [ ' v ' ' ' ' '
B R R L R R LR R EE RS T Jrmpmee Prajumcmmepengan
s ’ ' @ ' ) . o ° . .
' ' . ' ' ® . . " » '
. ' . o ' ' . . . . ' .
» . ' a ' . . ° . . . '
' ' ' 1 ' . o v . . ' '
elendasataes Beadoaalann Lecduoestlans [ R [ [ R R A
' ' ' . v . . v o o l " .
' . . . . . ' , . . .
' o ’ " ' . . o '
o . . . . . o .
. . . ' . . . .
. . o B . . . .
.......................................................................
. B o ' . . . '
. 1 9 ' . . . '
B ' s . ' ' ' s
o ' ' . . 1 B .
B ' ' ' ' ' ' .
1 ' B . ' 1 N ’
B R Nt LR L LR RS RIS MY SR PSS S HERIOCININS SR, ST
° ' ' . ' ' s '
s v ' . ' ' ' '
' ° ' ' . ' '
' ° . . . ' '
. . ' . . . '
................................................................. Semdan
' o ' ' v ' '
' . ' ' . ¢ '
' . . ] i . . v '
v . . . . . .
. ] . . . ’
» . o . . '
caqasepmen Peegesnees P S Poeqesaues Peeyeeamans pemqen
. . . . . .
v . . . .
. . .
. . .
. .
DR IR T teadeacalens L L L T I e daadacntan deadanatna 2.
:
v

101 151 201 251

control parameter index

Figure 5.12 Variation of the control parameter during an annealing cycle
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Figure 5.13 Variation of the standard deviation and cost function during an annealing cycle

To give a better insight

into the behaviour of the cost function in Figure 5.13,

consider Figure 5.14 and Figure 5.15, which show respectively the power and area

cost of the datapath components during subsequent control parameter values. From
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Figure 5.14 it can be seen that the modules power cost is rapidly reduced and
becomes steady below 2.2mW. Similar behaviour can be seen for the registers power
cost, which becomes constant around a value of 220uW. The module and register
power cost become rapidly steady because the algorithm found a low voltage that
may satisfy the optimisation goal. Unlike the modules and registers, the power cost
of the multiplexers increases during the first half and decreases later until becoming
steady towards the end of the annealing cycle. This is because although a low voltage
has been found, the number and type of multipléxers change due to module and
register sharing, hence changing the power consumption.

From Figure 5.15 it can be seen that during the first 100 control parameter values the
modules area is gradually reduced while the multiplexers area is being increased.
This may be due to higher multiplexers requirement to increase the module sharing
and decrease the modules area. Then the registers and multiplexers area start
decreasing slightly while the modules area remains constant until the 125™ control
parameter, where a significant reduction, i.e. 1 multiplier less, can be noticed. After
this, the modules area continues decreasing due to the reduction of adders until it
becomes constant after the 230™ control parameter value. Meanwhile, the registers
and multiplexers area experience a gradually decrease as of the 125% lgontrol

parameter value, becoming steady at the end of the annealing cycle.
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5.5 Experimental results

To verify the efficiency of the power-aware datapath synthesis algorithm, three
benchmarks have been used: autoregressive filter (AR), elliﬁtical wave filter (EWF)
and discrete cosine transform (DCT). Experiments with these benchmarks have been
conducted on a Pentium 4, 2.2GHz, 1 GB RAM under different time constraints
corresponding to 1.5, 2, 2.5, 3 and 3.5 times. the critical path (cp). The annealing
parameters o, 0 and €, have been set respectively to 0.95, 0.2 énd 0.0001 according
to Section 5.4.3. The maximum allowed frequency max_f has been set. arbitrarily to
500MHz and the library components have been characterized for power P, area 4
and delay D as shown in Table 5.9. More details about the library characterisation
can be found in Appendix 2. In addition to the data presented in Table 5.9, the library
‘also contains information about the power variation when changing the throughput of
the multiplier and adder as shown in Table 5.10 and Table 5.11 respectively. In the
headér of these tables, P; represents the power of the component with throughput of
1 cstep, P; represents the power of the componént with throughput of 3 csteps and Ps
represents the power of the component with throughput of 5 csteps. The 16-bit
library used during these experiments consists of: Wallace multipliér, CLA adder,

register and diverse multiplexers. The area count and delay of the library compohents
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were obtained after logic synthesis using Synplify ASIC from Synplicity and ST
0.12pm technology. Power Values at 90MHz were obtained using PrimePower from -
Synopsys and experimentally averaged over a- number of pseudo-random input

vectors obtained with a Linear Shift Feedback Register (LSFR).

Table 5.9 0.12um library components

MULTIPLIER, A = 10661 um”
(V) Pyyn(pW) D(ns)
1.08 1237 11.05
1.2 1870 7.14
1.32 . 2556 4.65
ADDER, A =1107um’
Vv) Payn(pW) D(ns)
1.08 40 4.29
1.2 49 2.86
1.32 66 1.98
REGISTER, A = 549um”
V(v) Payn(WW) D(ns)
1.08 47 0.55
1.2 55 0.34
1.32 77 10.23
MUX2, A =258um"
V(v) Payn(pW) D(ns)
1.08 19 0.14
1.2 23 0.09
1.32 31 0.06
MUX3, A = 549um*
Vv (V) Pin(UW) D(ns)
1.08 28 | 0.37
12 34 0.23
1.32 46 0.15
MUX4, A = 549um>
V (V) Payn(pW) D(ns)
1.08 28 0.37
1.2 34 0.23
1.32 46 0.15
MUXS5, A=807um" -
V(V) Pyyn(WW) D(ns)
1.08 50 0.55
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1.2 60 0.35
1.32 82 - 0.23
MUX6, A = 1065um”

V(V) Pyn(pW) D(ns)
1.08 72 0.55
1.2 86 0.35
1.32 117 0.23
MUX7, A= 1356pm”

Vv) Payn(pW) D(ns)
1.08 81 0.55
1.2 98 0.35
1.32 133 0.23
MUXS, A= 1356um”
yv) Pyn(pW) | D(ns)
1.08 81 0.55
1.2 KR 0.35
1.32 133 0.23

Table 5.10 Power consumption of the multiplier with different supply Voltages and throughputs
P;(uW) | P; (uW) | Ps (W)
1.08V | 1237 1239 1242
1.2V 1870 1874 | 1876
1.32V | 2556 2560 2564

Table 5.11 Power consumption of the adder with different supply voltages and throughputs
P;(uW) | Ps(uW) | Ps (W)

1.08V 40 43 - 45
1.2V 49 52 55
1.32V 66 70 75

5.5.1 Power-area tradeoffs
The aim of this experiment is to demonstrate that given a time constraint, PABCOM
is capable of obtaining good quality solutions in terms of power and area according

to the power optimisation weight o specified by the designer.

EWF

The solutions obtained for EWF with different time constraints and optimisation

goals are shown in Figure 5.16.
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Figure 5.16 Solutions for EWF using different optimisation goals

It can be seen that for each time constraint, PABCOM is cépable of obtaining
solutions with different area and power requirements.' This range of solutions is
possiblé due to the compound cost function of PABCOM (see Section 5.4.1), which
carefully explores the solution space through the specification of the power weight o
For example, Table 5.12 shows the solutions obtained for a time constraint of two
times the critical path (2cp) when vairying o from O to 1 in steps of 0.1. It can be seen
that setting o = O results in an area optimised solution whereas setting o= 1 results in
a power optimised solution. The area optimised and power optimised solutions are
shown in Figure 5.16 to better illustrate the different power and area reQuirements.

The area optimised and power optimised solutions have been shaded in Table 5.12.
Note that these solutions use different schedule length Ls, multiplication throughput
TP, and addition throughput 7P,, resulting in different operating voltages. For
example, the cloék period and operations throughput selected for o= 0 allow scaling
the voltage to 1.29V, leading to a power consumption of 3.8mW, while for ¢ = 1 the
operating voltage is 1.13V with a‘power consumption of 1.9mW. It can also be noted
that different values of clock and operations throughput lead to different area
implementations. For example, for =0, Ls =31, 7P,, = 2 and 7P, = 1, the datapath

requires 1 multiplier (*), 2 adders (+), 13 registers () and 4 multiplexers (x),. leading
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to an area of21042pm2. Fora=1,Ls =17, TP, =2 and TP, = 1, the datapath needs
6%, 5+, 197 and 11x, leading to the highest area implementation, 83639pm2. This is
because the optimisation goal targets only power since the area weight (1 - @)
becomes zero, hence relaxing the area parameter. However, PABCOM is capable of
obtaining optimised power-area tradeoffs with lower area than a power optimised
solution and lower power than an area optimised solutiobn, i.e. solutions with o= 0.3

and o= 0.5 in Table 5.12.

Tclk | Ls | TP,
(cs) | (cs)

N

ps

Optimised power-area tradeoffs for other time constraints are shown in Figure 5.17,
where power and area ratios are normalised with respect to power and area values of
o= 1. It should be noted that a power or area ratio greater than 1 means an increase
whereas a ratio lower than 1 means a decrease with respect to o = 1. From Figure
5.17 it can be seen that using o= 0.9 for time constraints ranging from 1.5 to 3 times
the critical path (1.5¢p to 3cp) reduces the area of the datapath in 40% and increases
[its power consumption in 2% approximately. For a time constraint 3.5cp and o= 0.9,
the area reduction is of 55% with a power increase of 2%. It can also be seen that
further area reductions are possible but at the expense of a larger power increase. For
example, for 2.5¢cp with o= 0.5, an area reduction of 60% is possible with a power
overhead of 20%. For the same time constraint with o = 0.2, power is increased in

80% with an area reduction of 75%.
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Figure 5.17 Power area tradeoffs for EWF

DCT

Figure 5.18 illustrate the range of solutions obtained for DCT under different time
constraints. It can be seen that as préviously shown for EWF, solutions with different
area and power requirements can be obtained for the same time constraint. For
example, for a time constraint 2.5¢cp, an area optimised solution has 53787um? with a
power consumption of 1 lmW, whereas a power optimised solution dissipates 5.8mW
with an area of 182500um>. ‘The optimised power-area tradeoffs present lower area
than the optimised power solution and lower power than the area optimised solution,
i.e. an area of 86028um” with a power consumption of 6.9mW. The different area
and power requirements of the solutions are due to the use of different power weight
o, which leads. to a different scheduling and binding. For example, Figure 5.19 and
Figure 5.20 show respectively the schedules obtainéd for = 0.1 and = 0.4 with a
time constraint of 2.5cp. It can be seen that in both schedules the operations are
single 'cycled, i.e. TP =1 and TP, = 1. Note that Figure 5.19 has a schedule length
Ls of 8 csteps whereas Figure 5.20 has a schedule length of 6 csteps. The
combination of these schedule lengths and operations throughput allowed scaling the

Voltage to 1.29V in the case of o = 0.1 and to 1.21V in the case of a = 0.4.




Power-aware behavioural compiler (PABCOM)

100

Consequently, a datapath power consumption of 10.8W and 8.7mW is obtained for «

= 0.1 and o= 0.4 respectively, as shown later in Table 5.13.
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Figure 5.18 Solutions for DCT using different optimisation goals
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The module bindings for the scheduled operations of Figure 5.19 and Figure 5.20 are

given respectively in Figure 5.21 and Figure 5.22. Note that the binding for = 0.1

requires 8 modules whereas the binding for o = 0.4 requires 12 modules. In Figure
5.21, the additions are bound to adders M1, M2, M3, M7 and MI10, and the
multiplications to multipliers M11, M13 and M15. In Figure 5.22, the additions are
bound to adders M1, M2, M4, M5, M7, M8, M9 and M10, and the multiplications to
multipliers M11, M12, M13 and M15.

M15

M13

M11

M10

modules

M7

M3

M2

M1

M15

M13

M12

M11

M10

M9

modules

M8
M7
M5
M4
M2

- Mt

| Ne4 L N6 L NB2 . NBO

N38_

i N8 L Nso i Ns2 i Nsa

N36

i Na2 | Nss_ i nss

N40

NZ2 D N1B i N2g i N2s_ ¢

N73

i Nes_ i N7e i

P n7e L N72 L

csteps

Figure 5.21 DCT module binding for o= 0.1

Figure 5.22 DCT module binding for o= 0.4
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The register bindings for the operations values of Figure 519 and Figure 5.20 are
given respectively in Figure 5.23 and Figure 5.24. Note that the binding for a = 0.1
(Figure 5.23) requires 15 registers whereas the binding for o = 0.4 (Figure 5.24)
requires 17 registers. Having finished the register and module binding, the complete
datapath structures ‘for o= 0.1 and = 0.4 are shown in Figure 5.25 and Figure 5.26
respectively. In Figure 5.25, it can be seen that the datapath consist of 5 adders, 3
multipliers, 15 registers and 18 multiﬁlexers. The datapath shown in Figure 5.26
consist of 8 adders, 4 multipliers, 17 registers and 22 multiplexefs. Note that both |
datapaths use twb groups of multiplexers. One group is connected to the inputs of the
functional modules while other group is connected to the inputs of the registers.

These multiplexers allow respectively the sharing of modules and registers. .
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Figure 5.23 DCT register binding for a = 0.1
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The schedules (Figure 5.19 and 5.20), bindings (Figures 5.21, 5.22, 5.23 and 5.24)
and datapath structures (Figures 5.25 and 5.26) shown for DCT with = 0.1 and o=
0.4 ‘were derived from the output file obtained by PABCOM. The output files

generated by PABCOM for = 0.1 and ov= 0.4 are presented in Appendix 3.
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The main parameters of the solutions for o = 0.1 and o = 0.4 are summarised in
Table 5.13. Note that for aw= 0.1 the datapath (Figure 5.25) has an area of 52722um’
with a power dissipation of 10.8mW, whereas for o= 0.4 the datapath (Figure 5.26)
presents an area of 67964um2 with a power consumption of 8.7mW. From Table
5.13, it can also be seen that a = 1 provides the solution with minimum power, i.e. -
5.8mW, and highest area implementation, i.e. 182500um’. However, as in the EWF
case, PABCOM obtains optimised power-area tradeoffs with smaller area and
slightly higher power values when compared to a po'Wer optimised solution. This is
illustrated in Figure 5.27, where it can be seen that using o= 0.9 for time constraints
fanging from 2.5¢cp to 3.5cp reduces the area of the datapath in 52% average and
increases its power consumption in 1% approximately. For time constraints 1.5¢p
and 2cp with o = 0.6 and o = 0.8 respectively, an area reduction of 3% is obtained
with a power increase of 1%. It can also be seen that further area reductions are
possible but at the expense of a larger power increase. For example, for 1.5cp with o
= (.5, an area reduction of 24% is possible with a power overhead of 12%. For the
same time constraint with o = 0.1, the power is increased in 35% with an area

reduction of 35%.

Table 5.13 Solutions for DCT with 2.5cp

Ls | TPy | Ipa | N R V A P
(cs) '

(cs) V)

1 15| 21

6 1 1 4 1 8

9 2 1 6 | 5 .
7 2 1 8 | 8 | 18|20 1.08 110349 5.8
7 2 1 8§ | 8 12021 1.08 111705 5.8
7 2 1 8 1102124 1.08 114662 5.8
7 2 1 14 1 10 | 29 | 22 1.08 182500 5.8

cs: abbreviation of csteps
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Figure 5.27 Power area tradeoffs for DCT

5.5.2 Comparison with a power-aware base case

From the previous work on low power behavioural synthesis, the most relevant to
our work is [110]. The behavioural system developed in [110] performs scheduling,
allocation and binding, and includes supply voltage and clock period pruning
techniques to eliminate inferior design points when searching for the minimum
power solution. Although [110] has performed effective power reduction, the
algorithm focuses only on obtaining the minimum power solution and has some
shortcomings. For example, the optimum power solﬁtion is chosen after synthesising
a datapath for each combination of supply voltage and clock period that could not be
pruned, leading to high computational times, as explained later in Table 5.14.
Moreover, the optimization cost function ignores the area cost, which may lead to
unnecessary big area implementations, as shown later in Table 5.18. |

This section demonstrates the benefits of PABCOM when compared with a power-
aware base case. The base case is a modified version of PABCOM that includes the
clock period and supply voltage pruning techniques from [110] instead of the
algorithm developed in Sec;tion 5.2 as part of this research. To find the minimum

power solution, the base case follows the same methodology that [110], which enters
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the synthesis phase for all the values of clock period and supply voltage that could
not be pruned.» As the single objecti\}e algorithm developed in [110], the base case
targets only power as the cost function and the metric for evaluating -moves.
Consequently, the power(' weight o 1s set to 1 in PABCOM and the base case to
/provide a fair comparison. Table 5.14 shows the improvement percentages in terms
' of power P and computational time Cf, for AR, EWF and DCT, with é time
constraint 7" ranging from 1.5¢p to 3cp. It should be noted that a % saving greater
than 0 ineans a decrease whereas a % saving lower than 0 means an increase with

respect to the base case.

Table 5.14 Power and time savings when comparing PABCOM and base case

AR EWF DCT

2cp | 48 | 917 | 42 | 914 | 58 | 856
25cp | 03 | 939 | 00 | 941 | 0.0 | 90.2
3cp | 01 | 959 | 01 | 955 | 03 | 944

From Table 5.14, it can be seen that for most of the time constraints, PABCOM is
able to further reduce the power consumption for the three benchmarks. For example,
for 7' = 1.5¢cp, power was decreased by 5.2% for AR, whereas for EWF and DCT
there was a power reduction of 4.2% and 6‘.1% respectively. These power savings are
due to a lower operating voltage as shown later in Tables 5.15,5.16 and 5.17. From
Table. 5.14 it can also be seen that PABCOM obtained optimised power solutions in
much less time than the base case, with computational time savings greater than 80%

in general. For example, for AR at 1.5¢cp, PABCOM obtains a solution in 1.5min

whereas the base case takes 9.3min. The computational time savings are due to the
inclusion of clock period and operations throughput selection algorithm that
determines the scaled supply voltage into the datapath synthesis. This is unlike the
base case, where the synthesis phase is performed for all the combinations of clock
period and voltage that could not be pruned. .

To give a better insight into the achieved power savings from Table 5.14, the
solutions obtained by PABCOM and the base case for AR, EWF and DCT with
different time constraints are shown in Table 5.15, Table 5.16 and Table 5.17
respectively. A general observation from these three tables is that for the first two

time constraints, 1.5cp and 2cp, PABCOM obtains lower supply voltages, thus

'
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reducing the power when compared to the base case. For example, for AR with time
constraint 2¢p in Table 5.15, PABCOM decreases the supply voltage from 1.15V to
1.13V, reducing the power consumption from 5.3mW to 5.0mW. In the case of EWF,
PABCOM obtains not only a lower voltage but also longer clock periods and smaller
throughputs than the base case, resulting in further power reduction. For example, for
time constraint 1.5¢p in Table 5.16, Tclk has been increased from 2ns to 4ns, TP,, has
decréased from 4 to 2 and TP, has decreased from 2 to 1. Consequently, V" has
decreased from 1.22V to 1.21V, leading to a power reduction from 3.3mW to
3.1mW. Another general observation from Table 5.15, Table 5.16 and Table 5.17, is
that for the time constraints 2.5cp and 3cp, PABCOM and the base case obtain the
minimum voltage allowed, i.e. 1.08V. This results in similar power consumption, as
shown in Table 5.17 for DCT with time constraint 2.5cp, where power consumption
of 5.8mW has been obtained. ’

Unlike the single objective base case that only targets power minimisation,
PABCOM uses a cqmpound cost function that allows investigating explicitly the
power-area tradeoffs of the design and constraining the area when searching for a
low power solution. This may result in substantial area reductions with very few or
null power overhead, as demonstrated in Table 5.18, which shows the comparison
between PABCOM with o= 0.9 and the single objective base case with o= 1. It can
be seen that for AR, EWF and DCT, PABCOM still obtains power savings around
4% for the time con;traints 1.5¢cp and 2cp. For the remaining time constraints the
power has an approximated increase of 2% for AR and EWF, and 1% for DCT.
However, the datapath area has been reduced significantly for all the‘ cases. For
example, average~ area savings of 58%, 42% and 43% have been obtained for AR,

EWF and DCT respectively.

Table 5.15 AR solutions

Base case PABCOM

Tpa | V P | Tck| TP, | Ipa | V
(c9) | (V) | (mW) | (ns) | (cs) | (cs) | (V) | (mV

25cp | 66| 2 | 1 | 1.08] 34 |66] 2 | 1 |108| 34

3cp | 6.8 | 2 1 1.08 28 | 8 2 1 1.08 2.8

cs: abbreviation of csteps
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Table 5.16 EWF solutions
Base case PABCOM
Tclk | TPy, | Ip, | 4 P Telk | TPy | Tp, |V P

2.5¢p | 6.7 2 1 | 1.08 1.3 6.7 2 1 1.08 1.3.

3cp | 6.2 3 1 1.08 1.1" 8 2 1 1.08 1.1

cs: abbreviation of csteps

Table 5.17 DCT solutions
Base-case PABCOM

Scp | 6.7 6.7 1.08
3cp | 3.3 6.2 1 1.08
cs: abbreviation of csteps
Table 5.18 Power and area percentage savings
AR EWF - DCT
T %A %P %A %P %A %P

1.5¢p 60.2 4.4 4]1.2 4.8 40.7 4.5
2¢cp 58.4 3.9 - 41.9 3.3 36.6 4.6
2.5¢p 56.2 -2.3 42.0 -2.1 43.9 -0.3
3cp 588 | -25 42.1 -2.2 48.8 -1.9

5.6 Concluding Remarks

This chapter has presented a power-aware behavioural compiler that considers the
close interrelation among scheduling, binding, clock and operations throughput
selection. PABCOM with its compound cost function provides solutions not only
optimised for low power or low area, but also facilitates the automatic exploraﬁon of
power-area tradeoffs. For example, for DCT with a tim;e constraint equal to 2.5 times
the critical path, a tradeoff with 35% lower power than an area optimised solution
and 53% less area than a power optimised solution was obtained. It has also been
shown that PABCOM obtains solutions in lower computational time and with lower
power than a base case algorithm that uses the clock and supply voltage pruning
techniques from [110] whilst meeting the same time const;aint. For example, for a
time constraint equal to 2 times the critical path, a power saving of 5% with

computational time saving of 89% averaged over AR, EWF and DCT were obtained.
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Moreover, area savings can be achieved by PABCOM at the expense of a slight or
null increase in power consumption when compared to the base case. For example, a
. power saving of 4.6% with area saving of 47% averaged over AR, EWF and DCT
were obtained for a time constraint of 1.5 times the critical path. In general, power
reductions were due to the.use of lower voltages, or a combination of lower voltages
and lower frequencies obtained after an appropriate selection of clock’ period and
operations throughput. It has also been shown how the clock and operations
throughput selection affects the schedule, binding and voltage applied leading to
solutions with different area and power consumption. Extensive experimental results

for typical behavioural synthesis benchmarks with different time constraints have

shown that PABCOM is capable of achieving power and area savings.

ES




Chapter 6
Case study: MPEG-1 Motion Vector Reconstructor

6.1 Introduction |

Chapters 4 and 5 have presented algorithms for the geheration of low power RTL
structures from behavioufal descriptions. To validate the pracﬁcal applicability of
these techniques, their application during the design of a motion vector reconstructor
from the Berkeley MPEG-1 player [40] is considered in this chapter. A synthesisable
RTL VHDL implementation of the motion vector reconstructor was presented in
. [34], where different parallelizing transformations were applied during the
behavioural synthesis process. In this chapter, the possible power-area tradeoffs due
to an adequate selection of clock period and operations throughput will be presented. -
The motion vector reconstructor was selected as a case study because it is more
complex than the benchmarks used in Chapter 4 and 5. The motion vector
reconstructor consists of 12 conditional statements, 8 multiplications, 10 additions, 9
subtractions, 13 comparisons and 2 shifts. The presence of conditional statements in
the motion vector reconstructor results in a DFG with conditional branches, which
lead to a more complex scheduling, allocation and binding problem. Other reason
why the motion vector reconstructor was selected as a case study. is that it belongs to
an application domain (data dominated) targeted by the algorithms developed in this
research. Fuﬂherﬁore, the motion vector reconstructor forms part of a real-life
multimedia application, which can be used for example in TV quality video
communications [1v33]. |

The principles of an MPEG-1 video decoder are outlined in Section 6.2. Section 6.3
describes the motion vector reconstructor DFG, library components, selection of

optimisation parameters and the results obtained after low power behavioural
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synthesis. Section 6.4 discusses the implementation in 0.12pm téchnology of two
solutions of the motion vector reconstructor, inéluding their Verilog code, functional
validation, and area and power values. These values are based on the reports obtained
after logic synthesis with Synplify ASIC from Synplicity (see Figure 6.15) and
power analysis with PrimePower from Synopsys (see Figure 6.21). Functional
validation is performed using ModelSim in combination with a C++ program (see

Figure 6.16). Section 6.5 presents the conclusions of this chapter.

6.2 MPEG-1 background

The Moving Picture Experts Group or MPEG [42] developed video and audio
éncoding standards such as MPEG-1, MPEG-2, MPEG-3 and MPEG-4 [41]' MPEG-
1 standard is intended for the storage of VHS-quality audio and video on CDROM
[36] and consists of five parts [15]: system, video, audio, compliance testing and |
reference software. For compression purposes, video data can be represented as a
sequence of digitised images or frames [100]. In MPEG-1, the frames can be
encoded in three types: intra-frames (I-frames), predicted frames (P-frames) and
bidirectional frames (B-frames). Figure 6.1 shows an example of the frame sequence
for MPEG-1, where the edges indicate that the pointed frame has been constructed
from previous or subsequent frames, called reference frames. For example, I-frames
are encoded without reference to any other frames whereas P-frames are
approximated using the preceding I- or P-frame as reference. B-frames are
constructed using the nearest I- and P-, P- and P-, or P- and I-frame as references.
Each frame can be represented as an array of macroblocks, where each macroblock

coi'responds to a 16 by 16 pixels area of the original frame.'

Predictions

N N
@@@@@ ---------
NV AAS LV VIS VAN

Bidirectional predictions

Figure 6.1 MPEG-1 example frame sequence [36]

MPEG-1 compresses video data applying motion estimation and motion

compensation techniques to each macroblock in P- and B- frames. Decoding the
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framés is simpler and faster than the encoding operation since it only requires the
motion compensation technique. Motion compensation produces a predicted
macroblock using the motion vector obtained during the compression process and the
reference frame(s). The decoding scheme for the three types of frames is illustréted :
in Figure 6.2. The received bitstream of the I-frame is decoded employing the
variable length and Huffman decoders. Then the obtained DCT coefficients are
inverse quantised and IDCT is applied to generate the referenced frame, which is
stored in memory. This referenced frame is used for motion compensation for both
the P- and B- frames. To decode a P-frame it is necessary to generate the motion
compensated P-frame by employing the referenced frame together with the
reconstructed motion vectors. The quantised DCT coefficients obtained after variable
length and Huffman coding are inverse quantised, and then IDCT is applied. The
result is then added to the motion compensated P-frame to produce the referenced P--
frame, which is also the decoded P-frame sent to display. To decode a B-frame it is
necessary to generate the motion compensated B-frame by using the pair of nearest
referenced frames and the reconstructed bidirectional motion vectors. The quantised
DCT coefficients obtained after variable length and Huffman decoding are inverse
quantised, and then IDCT is applied. The result is then added to the motion
compensated B-frame to produce the decoded B-frame. Once the frame type (I-, P-
or B-) has been reéonstructed, a process called dithering is applied, which converts

the frame to a representation appropriate for display.

Encoded

Variable

Bitstream length & Inverse Video
Huffman Quantiser output
Decoder

Motion
Compensator

Referenced
frames

Figure 6.2 Block diagram of MPEG decoding [142]
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6.3 Low power behavioural synthesis of a motion vector
reconstructor | '

This section describes the steps carried out to obtain a low power datapath structure
for the MPEG-1 motion vector reconstructor. Firstly the motion vector reconstructor
is converted into a more suitable representation for behavioural synthesis, i.e. DFG.
Then the syﬁthesis constraints and library components are defined. To complete the
set of inputs from PABCOM it is necessary to specify the optimisation parameters.
Once all the inputs have been defined, PABCOM is able of generating low power

solutions according to the designer requirements.

6.3.1 Motion Vector Reconstructor DFG

A publicly available C implementation of the MPEG-1 decoder was developed by
the Berkeley Multimedia Research Centre [40]. The MPEG-1 player includes the C
. specification of the motion vector reconstructor according to the instructions given in
the MPEG December 1991 standard draft. This C specification is ot suitable for the
power-aware synthesis tool developed in Chapter 5 and then manual conversion to a
DFG was done. The resultant DFG of the motion vector reconstructor is shown in
Figure 6.3. The black circles do not belong to the original C specification, but they
were added to represent all operations as 2-input operations, hence, allowing the use
of PABCOM. For example, N41 has rrprev_i as one of its inputs, but the other input
can be either 0 or N25 or N26. By ihserting NOP3 after the joint of branch 3, and
NOP4 after the joint of branch 2, N41 can be represented as an operation with 2
inputs: rrprev_i and NOP4. Notice that the inputs for NOP3 are N25 and N26, and
for NOP4 are 0 and NOP3, consequently the data dependency between the involved
DFG operations is not affected. Since all the input data to PABCOM is through a text
file, a DFG in a text form that exactly corresponds to the DFG shown in Figure 6.3
needs to be generated. This text representation of the DFG is shown in Listing 6.1,
where three sections can be identified: inputs, operativons and outputs. Each of these
sectibns contains information about their components such as name, type, inputs,
branch, and how they interrelate with forks and joints of the conditional branches.
‘For example, from Listing 6.1 it can be seen that operation N12 is a comparison with

inputs N7 (inp_a) and zero (inp_b), and a nested branch generated by the condition
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N16 (nstcnd). Operation N16 is a comparison with inputs N7 (inp_a) and zero
(inp_b), where value N7 comes from fork 7 (fk_i) when the condition corresponding
to N12 (tfk_own) is evaluated to false, i.e. logic zero. In the branch generated by N16,
there is no nested branch (nstcnd). The output of operation N16 is not used as input
to any fork (fk_o) or joint (jnt). Notice that operations NOP1, NOP2, ..., NOP16 are
deﬁné(i as type auxiliar, and as mentioned previously, do not affect the.original data

dependency of all the operations in the DFG.

prev_o mp_o ) rdprev_o rdp_o

Figure 6.3 Motion vector reconstructor DFG
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Listing 6.1 DFG of the motion vector reconstructor in text form

#name type inp_a inp_b fk i int branch fk_own nstend fk_o
#HIT T inpats T EEEE LI EEE T L LT T T
mhc input - - 0 0 - - - -
mhr input - - 0 0o . - - - -
mvc input - - 0 0 - - - -
mvr input - - 0 0 - - - -

f input - - 0 0 - - - 1,6
fp input - - 0 0 - - - -
rrprev_i  input - - 0 0 - - - 4
rdprev_i input - - 0 0 - - - 9
zero input - - 0 0 - - - 1,2,6,7
1 input < - 0 0 - - - -

16 input - - 0 0 - - - -
(-16) input - - 0 0 - - - -

32 input - - 0 0 Co- - - -
#INTHIHITTTHT T T operations [T LI LTI
N1 .. compare mhc zero 0 0 - - - -
N2 compare f 1 0 0 - - - -
N3 multiply  mhc f 0 0 - - - 2
N4 multiply  f 16 0 0 - - - -
N5 multiply  f (-16) 0 0 - - - -

" N6 compare fp zero 0 0 - - - -
N7 multiply mvc f 0. 0 - - - 7
N8 compare mvc zero 0 -0 - - - -
N9 or N1 N2 .0 0 - - - -

- N10 compare N3 zero 0 0 - - N15 -

0 0 - - - -

N11 subtract N4 1

or o N8 N2
subtract f 1
compare

NDN -0

auxiliar N7 - 7 0 7F - 8

subtract f 1 6 0 6F - -

subtract N14 mhr 0 0 1F - -
NOP1 auxitiar zero N18 0 1 - - - -
N19 subtract N17 mvr 0 0 6F - - -
NOP7 , auxiliar zero N19 0 6 - - - -
-N20 subtract NOP6 NOP1 3 0 2F3T N15 - -
N21 add NOP6 NOPt1 3 0 2F3F N15 - -
NOP2 auxiliar N20 N21 0 3 2F - - 3
N32 multiply 32 f 3 0 2F3T N15 - -
N33 multiply 32 f 3 0 2F3F  N15 - -
NOP13  auxiliar N32 N33 0 3 % 2F - - -
N22 subtract NOP12 NOP7 8 0 7F8T N16 - -
N23 add . NOP12 NOP7 8 0 7F8F N16 - -
NOPS8 auxiliar  N22 N23 0 8 7F - - 8
N34 multiply 32 f 8 0 7F8T N16 - -
N35 multiply 32 f 8 0] 7F8F N16 - -
NOP14  auxiliar N34 N35 0 8 7F - - -
N24 add rrprev. NOP2 0 0 - - - -
N25 subtract NOP2 NOP13 3 0 2F3T N15 - -
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N26 add NOP2 NOP13 3 0 2F3F N15 - -
NOP3 auxiliar N25 N26 0 3 2F - - -
N29 add rdprev. NOP8 0 0 - - - -
N27 subtract NOP8 NOP14 8 0 7F8T  N16 - -
N28 add NOP8 NOP14. 8 0 7F8F N16 - -
NOP9 auxiliar  N27 N28 0 8 7F - - -
N30 compare N24 N11 0] 0 - - - -
N31 =~ compare N24 N5 0 0 - - - -
N36 compare N29 N11 0 0 - - - -
N37 compare N29 N5 0 0 - - - -
N38 and N30 N31 0 0 - - - -

. N39 and N36 N37 0 0 - - - -
NOP4 auxiliar  zero NOP3 O 2 - - - -
NOP10  auxiiar zero  NOP9 0 7 - - - -
N40 add rrprev. NOP2 4 0 4T N38 - - -
N41 add rrprev.. NOP4 4 0 4F N38 - -
NOP5 auxiliar - N40 N41 0 4 - - - 5
N42 add rdprev.  NOP8 9 0 oT N39 - -
N43 add rdprev. NOP10 9 0 oF N39 - -
NOP11 auxiliar  N42 N43 0 9 - - - 10
N44 shift NOP5 - 5 0 5T N6 - -
N45 shift NOP11 - 10 0 10T N6 - -
#ITHITTTTT T T outpuats AT EEEEEE LN EEEEEEE LT LU T T
rrp_o output NOP5 N44 0 5 - - - -
rdp_o output NOP11 N45 0 10 - - - -
rrprev_o output = NOPS - 0 0 - - - -
rdprev_o output NOP11 - 0 0 - - - -

6.3.2 Synthesis constraints and library components

Section 6.3.1 has presented a suitable DFG of thé’motion vector reconstructor to be
used as an input for the proposed algorithm developed in Chapter 5. In addition to
the DFG from Listing 6.1, the proposed algorithm requires the specification of the
time cbnstraint T, the maximum allowed frequency f,,. and a library component
characterised for power, area and delay. The time constraint and maximum allowed
frequency for the motion vector reconstructor design are set arbitrarily to 50ns and
500MHz respectively. The 16-bit library component consists of: multiplier, adder,
subtractor, comparator, shifter, logic operations (and, or), register and multiplexers.
The library was characterised for power and delay at three different voltages, 1.08V,
1.2V and 1.32V. These voltages are henceforth referred to as characterization
voltages. Table 6.1 shows the library used, where 4 is the area, V is the
characterisation voltage, den is the dynamic power and D is the delay. The area and
delay of the library ‘components were obtained after synthesising their VHDL

descriptions, which are included in Appendix 1. The logic synthesis process was
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performed using Synplify ASIC from Synplicity with ST 0.12um technology library.
Power values at 100MHz were obtained using PrimePower from Synopsys and
experimentally averaged over a number of input vectors. Details about the power,
area and delay characterization process of each library component can be found in

Appéndix 2.

Table 6.1 0.12um library components

MULTIPLIER, 4 = 4813 um”

V(V) Payn(pW) D(ns)
1.08 130.700 5.544
1.2 154.300 3.697
1.32 216.700 2.636

- ADDER, A=1107.4 pm’

V (V) Pan(pW) D(ns)
1.08 30.700 4.050
1.2 37.370 2.706
1.32 50.830 1.920

SUBTRACTOR, A = 1176 um’

(V) Pan(pW) D(ns)
1.08 31.590 4.260
1.2 42.600 2.833
1.32 57.780 1.973

COMPARATOR, A = 15855 pum>

y(v) Pgyn(WW) D(ns)
1.08 54.850 4.978
1.2 69.960 3.197
1.32 90.950 2.174

SHIFTER, A = 306.6 um’

44%) Pin(WW) D(ns)
1.08 7.264 0.231
1.2 8.675 0.139
132 11.840 0.095

~ _AND, A=74.6 ym’

y(V) Payn(pW) D(ns)
1.08 1.421 0.377
1.2 1.693 0.247
1.32 2.338 0.174

OR, A =746 ym’

V(v) Pyyn(uW) D(ns)
1.08 1.970 0.405
1.2 2.353 0.264




Case study: MPEG-1 Motion Vector Reconstructor

1.32 | 3.234 | 0.184
REGISTER, A = 581 ym?

y¥(v) Pan(tW) D(ns) .
1.08 44.150 0.529
1.2 52.000 0.334
1.32 69.000 0.223

 MUX2, A=258.2 pm’

V(V) P, dvn(“w_) v D (ns)
1.08 6.713 0.142
1.2 8.031 0.091
1.32 10.980 0.061

MUX3, A = 548.7 um’

y(v) Payn(WW) D(ns)
1.08 11.060 0.366
12 - 13.200 0.233
1.32 18.030 0.150

MUX4, A = 548.7 pm>

yrev) Payn(WW) D(ns)
1.08 11.060 0.366
1.2 13.200 0.233
1.32 18.030 0.150

MUXS5, A = 806.9 um?

r(v) Pgyn(uW) D(ns)
1.08 18.690 0.551
1.2 22.550 0.351
1.32 30.710 0.231

MUXG6, A = 1065.1 pm*

ryrev) Pyn(pW) D(ns)
1.08 30.800 0.551
1.2 37.060 0.351
132 50.400 0.231

MUX7, A =1355.6 pm®

[ 40%) Pan(uW) D(ns)
1.08 35.000 0.553
1.2 42.260 0.352
1.32 57.590 0.232

MUXS8, A =1355.6 um’ -
y¥ev) Payn(uW) D(ns)

1.08 35.000 0.553
1.2 42.260 0.352
1.32 57.590 0.232
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It should be noted that similar library characterisation was done in Chapter 5, Table
5.9. The main difference is that the library from Table 5.9 was characterised using
input vectors obtained with a LFSR (Linear Feedback Shift Register) for
demonstrations purposes and library from Table 6.1 was characterised using real
data. In addition to the data presented in Table 6.1, the library also contains
information about the power “variation when changing .the throughput of some
components, as shown in Figure 6.4. It can be seen that for each characterisation
letage, 1.e. 1.08V, 1.2V or 1.32V, there is a linear increase of the power dissipated

when increasing the number of cycles used by the component.

6.3.3 Optimisation parameter selection

To use PABCOM it is also necessary to define the simulated annealing parameters
related to the cooliﬁg schedule. As previously explained in Chapter 5, the initial
acceptance ratio y, is set to 0.95 and the stop parameter ¢ is set to 0.0001. This
section discusses the selection Qf a suitable distance parameter 6 for the power-aware
synthesis process. Figure 6.5 shows the percentage of difference between achieved
cost and lowest cost as a function of the distance parameter 6. Notice that for values
of 10 <6 < 0.4 the cost difference presents an irregular behaviour and it is difficult to
establish its relation with the distance parameter 6. However, for values of § <0.4
there is a clear trend of the cost difference to decrease. An acceptable cost difference
of 2% approximately is obtained for a distance parameter 6 <= 0.2, with the solution
obtained in the lowest run-time for 6 = 0.2. Hence, the distance parameter § is set to
0.2, which is used to obtain the solutions presented in next section in Table 6.2. Due
to the strong dependence between the design quality and the distance parameter 4, it
is recommended to perform the power-aware synthesis process for a number of

different 6 values.
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Figure 6.5 Dependence of design cost on the parameter 6

6.3.4 Results of the synthesis process

PABCOM explores efficiently the design space and investigates explicitly power-
area tradeoffs that may be of interest to the designer. These optimised power-area
tradeoffs are obtained according to the optimisation goal specified by the user:
power, area or a combination thereof. The optimisation goal is defined in the cost
. function by ¢, which is the optimisation weight for the power cost, and (1-¢), which
R represents the optimisation weight for the area cost.

By varying the values of « from 1 to 0 in steps of 0.1, PABCOM obtains solutions
with different area and power costs, as shown in Table 6.2. These power and area
costs were estimated respectively using ‘equations (5.2) and (5.6) from Chapter 5, in
combination with the library component from Table 6.1. Note that equations (5.2)
and (5.6) ignore respectively the contribution of the controller to the power and area
of the design. This is a valid approximation for data dominated designs as
demonstrated later in Section 6.4.2 and Section 6.4.3. Power and area values from

Table 6.2 will be henceforth referred as approximated values.
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Table 6.2 Solutions for the motion vector reconstructor obtained with different o

o | Area (um®) | Power (uW)
1 42872 835
0.9 41179 833
0.8 42493 848
0.7 40266 - 832
0.6 41333 866
0.5 34469 1000
0.4 34368 999
03 31693 1015
0.2 32058 922
0.1 31860 921
0 31818 1017
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The best power-area tradeoffs from Table 6.2 are shown in Figure 6.6, where it can

be seen that the solution for o= 0.3 has similar area to the solution for o= 0.1, but

higher power consumption. Solution for &= 0.7 presents lower power dissipation but

occupies more area than solution for o= 0.1. Thus, solutions for = 0.7 and = 0.1

are chosen for implementation since they present different power and area

requirements. For the remaining of this section, the solution for @ = 0.1 will be

referred as Design 1 and the solution for o = 0.7 as Design 2. The datapath and

controller of Design 1 and Design 2 are defined using the scheduling and binding

information that is included in the synthesis results.

Figure 6.6 Best power-area tradeoffs chosen from Table 6.2.
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Scheduling

The schedules of Design 1 and Design 2 are shown in Figure 6.7 and Figure 6.8
respectively. Although both schedules are executed within the same time, i.e. 50ns,
they present different schedule length, i.e. 13 csteps for Design 1 and 20 csteps for
Désign 2. Consequently, the clock period for Design 1 is 3.8ns whereas for Design 2
is 2.5ns. The proposed algorithm determined that all operations in Design 1 are
single cycle whereas some operations of | Design 2 are multicycled, i.e. .
multiplications, additions, subtractions and comparisons. This is better illustrated in
Table 6.3, which summarises the operations throughput and clock period selected by
the proposed algorithm for the schedules of Figure 6.7 and Figure 6.8. In the header
table, Ls is the schedule length, 7clk is the clock period, TPy, TPc, TP4, TPs, TPsrr,
TP np, and TPor are the operations throughput for the MULTIPLIER,
COMPARATOR, ADDER, SUBTRACTOR, SHIFTER, AND and OR respectively,

and V is the operating voltage.

csteps L

T B

2 wofez

/

g
+
3
g
3,
'
S
+
§ %
T=50ns

Tprev_o m_o rdprev_o rdp_o

Figure 6.7 Design 1 schedule
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Figure 6.8 Design 2 schedule

Table 6.3 Characteristics of the Design 1 and Design 2
Ls | Tclk | TPy | TPc | TPy | TPs | TPspr | TPanp | TPor |  V
(cs) | (s) | (cs) | (cs) | (cs) [(es) | (cs) | (cs) | (cs) | (V)
Design1 | 13 | 3.8 1 1 1 1 1 1 1 1.25
Design2 | 20 | 2.5 3 2 2 2 1 1 1 1.15

cs: abbreviation of csteps

The combination of clock period and operations throughput presented in Table 6.3
~ allows a minimum operating voltage of 1.25V for Design 1"and 1.15V for Design 2.
Using these operating voltages, an estimated power consumption of 921uW and
832pW is obtained for Design 1 and Design 2 respectively, as shown in Table 6.2.
Notice that further voltage scaling for these designs is not possible because the time

constraint of 50ns would be violated.

Module Binding
The module bindings of Design 1 and Design 2 are shown in Figure 6.9 and Figure -
6.10 respectively. It can be seen that Design 2 requires more functional modules than

Design 1 due to the greater number of same type operations whose execution times
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overlap at the same cstep. For example, in Design 2 (Figure 6.10) the execution times
of four comparisons, i.e. N37, N31, N30 and N36, are overlapped along csteps 14
and 15, requiring then four comparators, i.e. M44, M43, M22 and M21. However, in
Design 1 (Figure 6.9), the execution times of only two comparisons are overlapped at
the same,cst'ep, i.e. N1 and N2 in cstep 1, N10 and N8 in cstep 2, N31 and N30 in
cstep 8, N37 and N36 in cstep 9, requiring two comparators, i.e. M22 and M21. In
the case of multiplications, they are mapped to multipliers M7 and M6 in Design 2,
and to multiplier M7 in Design 1. In Design 2, the additions are bound to adders M2
and M4, and the subtractions to subtractors M13 and M14. In Design 1 the additions
are bound to adders M1 and M2, and the subtractions to subtractors M12 and M13.
From Figure 6.9 and Figure 6.10 it can also be seen that mutual exclusive operations
are bound to the same module to reduce the area of the design. For example, in
Design 1 operations N42 and N43 are mapped to module M1 at cstep 12, and in
Design 2 operations N33 and N32 are mapped to module M6 along cstepé 13, 14 and
15.

M39 CNe DNzl
Ao LI SRR DUNUIDR VSIS SPRREY SRR PR SR b LY R PPREE N
M2z | wfwo G PG i Do o B
M21 | w2 | owe Powie | ows P we P owe P fww imee i oo i i
Mi9 | i E S S L VU TN SO L LN lowes P
73 : : : : : : : : :
2 M8 : E : : é iNss i N ! . . ; :
3 O L R TERTY: PP EPr O PP ETTEPS TP PO ML L. FUNTTIY: POTTRRT STTPIOS MIVORE RS
Q : : : : : : : : : :
Ewmis | G L LON14 L N17 G N20 GO NT PP N2s N d
M12 ) iiNe fowe fowe P b
: : N33 i N3S
M7l Ne LoN7 P s P Lo TN UNUUU S N S " OUUUNU SUUDUORE DURRRPY: SUUURY SURPURS HO%
M2l h i imes i iwes i i i
: i : ; : : : : : iONa N43
MY I S PNat i on2e Dz ENe  Nao Pone2 P i i
1 2 3 4 5 6 7 8 9 10 1 12 13 14
csteps

Figure 6.9 Design 1 module binding
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Figure 6.10 Design 2 module binding
Register Binding

The register bindings of Design 1 and Design 2 are shown in Figure 6.11 and Figure
6.12 respectively. Note that Design 2 requires three more registers than Design 1
leading to less register sharing. It can also be seen that the variables in the registers
of Design 2 have longer lifetime than in Design 1, mainly because of the use of
multicycled functional modules. For example, variable N24 in Design 2 (Figure
6.12) needs to be hold during csteps 14 and 15 so that the multicycled operations
N30 and N31 can be executed, as shown in the schedule of Figure 6.8. Variable N24
in Design 1 (Figure 6.11) needs to be hold only during cstep 8 to execute operations
N30 and N31, as shown in the schedule of Figlire 6.7. From Figure 6.11 and Figure
6.12 it can be seen that values of mutual exclusive operations are bound to the same
- register to reduce the area of the design. For example, in Design 1 variables N20 and
N21 are mapped to register R4 holding the value from cstep 7 to cstep 11. There are
some cases when more than two values are bound to the same register, for example,
R10, N25 and N26 in, Design 2 are mapped to register R1. This occurs when two
consecutive joints are present in the DFG, for example in Figure 6.8, N25 and N26

are the inputs to a joint, which in turn is the input to another joint. -
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Figure 6.12 Design 2 register binding
Generation of datapath structures :

With the information provided by the module and register binding it is possible to
define the datapath of Design 1 and Design 2 as shown in Figure 6.13 and Figure
6.14 respectively. All the functional units in Figure 6.13 execufe the éingle cycle
operations of the schedule shown in Figure 6.7. The functional units used in Figure
6.14 execute both, the single cycle and multicycled operations of the schedule shown
in Figure 6.8. The datapaths in Figure 6.13 and Figure 6.14 use registers with two
different word length: 16-bits and 1-bit. Registers of 16-bits (RL,R2, ..., RliS), are
used to save the resulting values from functional units such as: multiplier, adder,
“subtractor and shifter. Registers. of 1-bit (R19, R20 and R21 in Design 1, and R16,
R18, R21, R22 and R23 in Design 2), are used to save the resulting values from the -

comparator. It can also be seen that both datapathé use status registers (stR1, stR2,
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..., stR10) due to the global slicing technique used for state assignment when
designing the controller. Status registers are 1-bit registers that store the information
about which part of the conditional branch will be executed in the states defined by
the controller. Two groups of multiplexers complete the datapaths from Figure16.13_
and Figure 6.14. One group is connected to the inputs of functional modules whereas
the other group is connected to the inputs of the registers. These groups of
multiplexers allow the functional modules and registers to be shared, reducing the
area of the design. _ '

Next section shows the realisation of the datapaths i;rom Figure 6.13 and Figure 6.14
and the interconnection with their respective controller to complete the design. Both
complete designs will be functionally validated through logic simulation and

subjected to area and power analysis.
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6.4 Realisation of the motion vector reconstructor

The previous section has described the schedules, bindings and generation of
datapath structures corresponding to two solutions for the motion vector
reconstructor. All these results from the power-aware synthesis are used to complete

the design as shown in Figure 6.15.

Synpiify ASIC
{Logic Synthesis)

Design of the VHDL i ion of the

@ .
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Implementation of the

datapath Verilog netlist of the datapath

®

Y

Verilog netlist of the complete desig>

Verilog netlist of the
synthesised RTL library
component

Figure 6.15 Design flow for the complete design

The datapath structures D contain all the information ’necessafy to generate an
equivalent RTL description and the Verilog codes corresponding to Figure 6.13 and
Figure 6.14 are included in Appendixv 1. The structural Verilog ® represents the
interconnection of the RTL library components @ from Table 6.1, which have been
previously synthesised using Synplify ASIC. To complete the design of the motion
vector reconstructor, a controlier modelled as a finite state machine (FSM) is
designed for each datapath. The generation of the FSM starts with the state
assignment of the operations from a scheduled design. The stéte assignment of the
FSM was performed using a global slicing technique, which assigns to the same state
operations that are mutually exclusive but are executed in the same cstep, as
explained previously in Chapter 2 Section 2.2. According to [2], using global slicing
with status registers always produces designs with lower area than using local

slicing. To complete the FSM, enable signals for both, modules and registers, and -

select signals for multiplexers, need to be specified according to the schedule @ and
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binding ® presented in Section 6.3.4. Once the controller is co'rnpletély designed, it
is implemented in VHDL ® and later synthesiéed using Synplify ASIC. Then, the
synthesised controller® is interconnected to the synthesised datapath ® to produce
the complete déSign ®. Listing 6.2 and Listing 6.3 show respectively the RTL code
of Design 1 and Design 2 after the interconnection of the controller and datapath.
The interconnection is carried out using signals declare as “wire”. Listing 6.3
requires more signals for interconnection than Listing 6.2 due to the bigger datapath
of Design 2, as shown in Section 6.3. Notice that in both listings the top level module
“vec_rec” presents the same inputs and outputs. However, the instances “datal” and
“controll” in Listing 6.2 are different from the instances “data2” and “control2” in
Listing 6.3. Instance “data2” represents the module correspondi_ng to the datapath of
Design 2 (Figure 6.14), and the module generated for its respective controller after
logic synthesis is “control2”. Instance “datal” represents the module corresponding
to the datapath of Design 1 (Figure 6.13), and the module generated for its respective

‘controller after logic synthesis is “controll”.

Listing 6.2 Complete Design 1 RTL code

module vec_rec (
rst, clk,
‘mhc, mhr, mve, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprev_i, rdprev_i, .
rrprev_o, rdprev_o, rrp o, rdp_o,
' done
);
input rst;
input clk;
input [15:0] mhc, mhr, mvc, mvr, f, fp, zero, one, S|xteen n_sixteen, thirty2;
input [15:0] rrprev_i, rdprev_i;
output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;
output done;

wire stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10;

wire eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39;

wire [dR1, IdR2, IdR3, IdR4, IdRS5, IdR6, IdR7, IdRS, IdR9, IdR10, IdR11, IdR12, IdR13,
IdR14, IdR15, IdR19, IdR20, IdR22;

wire [dstR1, IdstR2, IdstR3, IdstR4, |dstR5, IdstR6, IdstR7, IdstR8, IdstR9, IdstR10;

wire [2:0] opM21, opM22; :

wire [1:0] sM1a, sM1b, sM13a, sM13b, sM213;

wire sM2a, sM12a, sM12b, sM19a, sM21b, sM22b sM393, sR7a, sR11a, sR13a, sR14a
sR19a, sR22a;

wire [2:0] sM73, sR1a, sR2a, sR3a, sR4a

controller control1 (
clk, rst, stR1, stR2, stR3, stR4 stR5, stR86, stR7, stR8, stR9, stR10,
eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39,
IdR1, IdR2, IdR3, IdR4, IdR5, IdR6, IdR7, IdR8, I|dR9, IdR10, IdR11, IdR12, IdR13,
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IdR14, IdR15, IdR19, IdR20, IdR22, .

IdstR1, IdstR2, IdstR3, IdstR4 IdstR5, IdstR6, |dstR7, IdstR8, IdstR9, |dstR10,
opM21, opM22,

sM1ta, sM1b, sM13a, sM13b, sM213,

sM2a, sM12a, sM12b, sM19a, sM21b, sM22b, sM39a, sR7a, sR11a, sR13a sR143,
sR19a, sR22a,

sM7a, sR1a, sR2a, sR3a, sR4a,

done

)

datapath data1 (
rst, clk,
eM1, eM2, eM7, eM12 eM13, eM18, eM19, eM21, eM22, eM39,
IdR1, IdR2, IdR3, IdR4, IdRS5, IdR6, IdR7, IdR8, IdR9,. IdR10, IdR11 IdR12 IdR13,
IdR14, IdR15, IdR19, IdR20, IdR22,
IdstR1, IdstR2, 1dstR3, IdstR4, idstR5, 1dstR6, IdstR7, IdstR8, IdstRQ 1dstR10,
opM21, opM22,
sM1a, sM1b, sM2a, sM7a sM12a, sM12b, sM13a, sM13b, sM19a, sM21a sM21b,
sM22b, sM39a,
sR1a, sR2a, sR3a, sR4a, sR7a, sR11a, sR13a, sR14a, sR19a, sRZZa
mhc, mhr, mve, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprev_i, rdprev_i, '
rrprev_o, rdprev_o, rrp_o, rdp_o,
stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10
)i

endmodule

Listing 6.3 Complete Design 2 RTL code

module vec_rec (
rst, clk,
mhc, mhr, mve, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprev_i, rdprev_i,
rrprev_o, rdprev_o trp_o, rdp_o,

done
S
input rst;
" input-clk;
input [15:0] mhe, mhr, mvc, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2;
input [15:0] rrprev_i, rdprev_i; ;

output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;
output done;

wire stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10;

wire eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eM40,
eM43, eM44;

wire IdR1, IdR2, IdR3, IdR4, IdR5, IdR6, IdR7, IdRS, idR9, IdR10, IdR11, IdR12, idR13,
IdR14 IdR15, IdR16, IdR18, IdR21, IdR22, IdR23;

wire IdstR1, IdstR2, IdstR3, IdstR4, IdstR5, IdstR6, IdstR7, IdstR8, IdstR9, IdstR10;

wire [2:0] opM21, opM22, opM43, opM44;

wire [1:0] sM7b, sM13a, sM13b, sM14a;

wire sM2a, sM2b, sM4a, sM4b, sM6a, sM14b sM21a, sM39a, sM39b, sM44a, sM44b, sRéa,
sR9a, sR11a, sR12a, sR23a;

wire [2:0] sR1a, sR2a, sR3a, sR4a;

controller control2 (
clk, rst, stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10,
eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eM40
eM43, eM44,
IdR1, |dR2, IdR3, IdR4, IdR5, IdR6, IdR7, IdR8, IdR9, IdR10, IdR11, IdR12, IdR13,
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IdR14, IdR15, IdR16, 1dR18, IdR21, IdR22, |dR23,

IdstR1, IdstR2, IdstR3, IdstR4, IdstR5, IdstR6, IdstR7, IdstR8, IdstR9, IdstR10,
opM21, opM22, opM43, opM44,

sM7b, sM13a, sM13b, sM14a,

sM2a, sM2b, sM4a, sM4b, sM6a, sM14b, sM21a, sM39a sM39b, sM44a, sM44b,
sR6a, sR9a, sR11a, sR12a, sR23a,

sR1a, sR2a, sR3a, sR4a,

done
)
datapath data2 ('
rst, clk,
_eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39, eMA40,
eM43, eM44, ‘
IdR1, IdR2, IdR3, IdR4, IdRS5, IdR6, IdR7, IdR8, IdR9, IdR10, IdR11, IdR12, IdR13,
IdR14, {dR15, IdR16, IdR18, IdR21, IdR22, IdR23, '
IdstR1, IdstR2, IdstR3, IdstR4, IdstRS, IdstR6, 1dstR7, 1dstR8, 1dstR9, 1dstR10,
opM21, opM22, opM43, opM44,
sM2a, sM2b, sM4a, sM4b, sM6a, sM7b, sM13a, sM13b sM14a, sM14b, sM21a,
sM39a, sM39b, sM44a, sM44b,
sR1a, sR2a, sR3a, sR4a, sR6a, sR9a, sR11a, sR12a, sR23a
mhc, mhr, mve, mvr, f, fp, zero, one, sixteen, n_sixteen, thirty2,
rrprev_i, rdprev_i,
rrprev_o, rdprev_o, rrp_o, rdp_o,
stR1, stR2, stR3, stR4, stR5, stR6, stR7, stR8, stR9, stR10
)
endmodule

6.4.1 Functional validation

Once Design 1 and Design 2 have been completed, their functionality is validated
following the methodology shown in Figure 6.16.

Berkeley MPEG-1 player

@

Text file with input profiles 1dr motion vector
reconstructor

Motion vector
reconstructor

MPEG video Testbench

J0)onijsu0s9s
103294 UOHOW 3y}
woJj sindino yum ajiy 1xaL

Verilog gate netiist

C++ program that
{complete design)

compares two files

after logic si

®

< Text file with outputs from the mohor_l vector ModelSim

Figure 6.16 Functional validation flow for the complete design

-
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Firstly, a video is played with a modified Berkeley MPEG-1 player that generates
text files that contain the inputs ® and outputs @ of the motion vector
reconstructor. The text file with the inputs ® is then read by a testbench to provide

the input vectors ® for the timing simulation of the comiplete design ) using
ModelSim. The complete design is in the form of a Verilog gate netlist as explainéd

at the beginning of Section 6.4. During timing simulation, all the generated output

values from the motion vector reconstructor are saved in a text file ® . This text file

is compared with the text file that contains the outputs obtained by the motion vector

reconstructor @ when playing a video with the Berkeley MPEG-1 decoder. The
comparison is made using a program written in C++ that finds the differences.
between two text files and displays the line numbers where these differences have

been observed. After performing the comparison, no differences were detected
between the text files @ and @, which validates the functionality of the design for

all the input vectors @. After the timing simulation with ModelSim, waveforms ®
for Design 1 and Design 2 are obtained. Examples of such waveforms are gi\_/enﬁin
Figure 6.17 and Figure 6.18. These diagrams show the inputs (rst, clk, mhe, ...,
rdprev_i) and outputs (rrprev_o, rdprev_o, 1rp o, rdp;o), of the top level module
shown in Listing 6.2 and Listing 6.3. The inputs were provided by the téstbench after

reading the text file @ that contains the input profiles for the motion vector

reconstructor.
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- Figure 6.17 Timing simulation of Design 1
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20 clock cycles, T = 50ns
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Figure 6.18 Timing simulation of Design 2

In Figure 6.17, outputs are ready every 13 clock cycles, matching with the schedule
length specified earlier in the schedule for Design 1 in Figure 6.7. In Figure 6.18,
outputs are ready every 20 clock éycles, matching with the schedule length specified
earlier in the schedule for Design 2 in Figure 6.8. Note that although the outputs are
ready after different number of clock cycles, the sample period remains the same in

both figures, i.e. 50 ns.

6.4.2 Area cost

This section presents an analysis of the actual area cost of Design 1 and Design 2,
which includes the required area for the datapath and controller after logic synthesis.

~ As described in the previous section, the datapath is constructed by interconnecting
the synthesised library components from Table 6..1. Hence, the area of the datapath is
equal to the sum of the individual area of each datapath cc;mponent, i.e. modules,
registers and multiplexers. This results in a datapath area of 31860pm? for Design 1 -
and 40266pum” for Design 2. The difference in area is due to the use of more
functional modules in Design 2 than in Design 1, as can be seen from Figure 6.13
and Figure 6.14. The area values for the controllers of Design 1 and Design 2 were
obtained after performing logic synthesis as shown in Figure 6.15. The controller of
Design 1 has an area of 1456um?’ and the controller of Design 2 occupies 1876um>.
The controller is bigger in Design 2 than in Design 1 since it needs to generate more
control signals due to a more complex datapath (Figure 6.14) that executes |

multicycled operations. Moreover, the controller in Design 2 has more states than in
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Design 1 because of a larger schedule length, as shown previously in the schedules of
Figures 6.7 and 6.8. ,
The actual area cost for Design 1 and Design 2 includirig the datapath and controller
is 33316um® and 42142pm* fespectively. These actual values present a close
correlation with the approximated Vélues from Table 6.2, which do not include the
area of the controller. This proVes that the area cost function (equation (5.6) in
Chapter 5) used by PABCOM is reliable for data dominated designs, where the
’ controller contributes very few to the total area of the design, as shown in Figure

6.19. ' K

50000.000

40000.000

Design 1 | Design 2 y

datapath @ controller

Figure 6.19 Area of two designis for the motion vector reconstructor

Datapath components area K

To give an insight into the area contributions of the various components of the
datapath for Design 1 and Desigh 2, consider Figure 6.20. It can be seen that the area
of the modules in Design 2 is bigger than in Design 1. This is because Design 2 uses
more modules than Design 1, i.e. 1 multiplier, 1 logic-and, 1 shifter and 2
comparators, as shown in the datapaths of Figure 6.13 and Figure 6.14. |

Note that the registefs area is almost the same for both designs. This is bec'ausbe
Design 2 uses ohly two 1-bit registers more than Design 1. The multiplexers area is
also very similar for both designs and the quantity, tyﬁe and individual area of the

multiplexers used in each design is given in Table 6.4.
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multiplexers modules

AN

Figure 6.20 Area of the dataﬁath components in Design 1 and Design 2

‘Table 6.4 Multiplexers requirements for both designs

Design 1 7 Design 2
quantity type Area (um") | quantity type Area (um°)
3 Mux 2-1 (1bit) 48.3 3 Mux 2-1 (1-bit) 48.3
10 Mux 2-1 2582 13 _ Mux2-1 3356.6
5 Mux 4-1 2743.5 4 Mux 4-1 2194.8
4 Mux 5-1 3227.6 2 Mux 5-1 1613.8
1 Mux 6-1 1065.1 1 ‘Mux 6-1 1065.1
. _ 1 Mux 8-1 1355.6
Total area of muxes = 9666.5 pm” Total area of muxes= 9634.2 pm”

6.4.3 Power cost

To obtain thg power dissipated by Design 1 and Design 2 at their respective
operating voltage, i.e. 1.25V and 1.15V (according to PABCOM), the flow shown in
Figure 6.21 was adopted. Firstly, gate-level power arialysis using PrimePower [105]
from Synopsys was carried out at each characterization voltage of the 0.12um ST
library, i.e. 1.08V, 1.2V and 1.32V, (Figure 6.21.a). To estimate the power
consumption at the selected operating voltage for the design, the quadratic
dependency of power on voltage is modelled using the three pairs (voltage, powér)
previously obtained and a 2™ order Lagrange interpolation - polynomial (Figure

6.21b).
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Figure 6.22 shows the dynamic power consumption for Design 1 and Design 2 at
characterisation voltages 1.08V, 1.20V and 1.32V. Using such power valugs and
characterisation voltages in combination with a 2™ order Lagrange interpolation
polynomial resulted in an actual power ‘consumption of 3.3mW at 1.25V for Design 1
and of 2.8mW at 1.15V for De51gn 2. These actual power consumptlon values are
consistent with the approx1mated power values from Figure 6.8, where power of the
controller is not considered. This assumption is valid for data dominafed designs, -
where datapath power consumption is the major contributor to the total power of the
design, as shown later in this séction.

Tabie 6.5 summarises the actual area values shown in Figure 6.19 and actual power
values shown in Figure 6.22. It can be seen that Design 2 consumes less power but
requires mofe area than Design 1. Intuitively, a bigger area may imply that more
transistors afe switching resulting in higher power consumption. This can be séen
when both designs are operated at the same voltage in Figﬁre 6.22. For example, |
considering an operating voltage of 1'.2V, Design 2 has a power consumption of
3.3mW whereas Design 1 dissipates 2.8mW; However, the combination of selected
clock period and olz)erations‘ throughput (see Table 6.3) allowed a higher voltage
scaling for Design 2 than for Design 1, i.e. 1.15V and 1.25V respectively, leading to

lower power consumption. This shows the benefit of using PABCOM to analyse.
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different power-area tradeoffs and to obtain the solution that suits better the
optimisation goal. The different power-area tradeoffs were possible due to the
selection of diverse clock period and operations throughput, resulting in designs with

different scheduling, allocation and binding.
5.00

4.50 ' /

(1.15,2.8)

Power (mW)
P
3

. : ' (1.25, 3.3)
2.00 - - : : :
1.05 1.1 1.15 S22 1.25 1.3 1.35

Voltage (V)‘

P Design 1 = Design 2 a Design 3

Figure 6.22 Total power consumption of Design 1 and Design 2 at different supply voltages

Table 6.5 Actual area and power values for different solutions

Area (um°) | Power (nW) | Power saving | Area overhead
Design 1 33316 3.3 31% 7%
Design 2 42142 2.8 42% 30%
Design 3 31159 . 4.8 : - : -

Table 6.5 also provides the pbwer savings and area overhead of Design 1 and Design
2 with respect to Design 3, which was obtained using a power unaware datapath
synthesis algorithm that aims only area minimisation [57]. Coﬁsequently, Design 3 is
' operated at the maximum supply voltage of the library, i.e. 1.32V. Note that Design 1
presents a power reduction of 31% with an area overhead of only 7%. A more
efficient solution in power terms is Design 2, which reduces 42% the power

dissipation but at the expense of a higher area overhead, i.e. 30%.
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So far only actual values of dynamic power con’sumption for the designs have been
~ presented. This is because leakage power of the designs contributes insignificantly to
the total power consumption. For example, at maximum supply voltage, i.e. 1.32V,
Design 2 has a leakage power dissipation of 14.6uW whereas Design 1 consumes

11.6uW. Consequently, leakage power analysis is out of the scope of this section.

Datapath and éontroller power consumption

To provide a better insight into the power contributions of the datapath and controller

in Design 1 and Design 2, consider Figure 6.23 and Figure 6.24. As expected, most

of the power is dissipated in the datapath. For example, in Design 1 and Design 2 the .
datapath consumes respectively 87% and 84% of the total power. It can also be seen

that the datapath of Design 2 at operating voltage 1.15V consumed 20% less powér

than the datapath of Design 1 at operating voltage 1.25V. However, the controller of
Design 2 consumes approximately 5% more power than the controller of Design 1. A

possible reason for this is that the FSM that controls Design 2 has more states than

the FSM that controls Design 1, incfeésing the area and switching activity of the

controller, hence the power consumption.

power (mW)
o
o
o
1

datapath controller

Figure 6.23 Power dissipation in Design 1
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power (mW)
o
(=]
o
1

datapath controller
Figure 6.24 Power dissipation in Design 2

Datapath components power consumption

Power dissipation of the datapath individual components is shown in Figure 6.25 and
Figure 6.26 for Design 1 and Design 2 respectively. As expected, most of the total
power in both designs is consumed by the modules. An interesting point to note is
that in Design 1 multiplexers consume more power than registers whereas in Design
2 registers consume more power than multiplexers. This variation of the power
contribution from registers and multiplexers may be due to the change of their

switching activity because of a different binding and schedule length, as shown in

Section 6.3.4.
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Figure 6.25 Datapath components power dissipation in Design 1

power (mW)

modules " registers multiplexers

Figure 6.26 Datapath components power dissipation in Design 2

Modulés power consumption

To provide a better insight into the power contribution of the modules in Design 1
and Design 2, consider now Figure 6.27 and Figure 6.28. As expected, multipliers
consume more power than the other modules in both designs. This is because

multiplier is the most power hungry component from the library shown in Table 6.1.
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Figure 6.28 Modules powef dissipation in Design 2

An interesting point to note is that in .Design 1 adders consume more power than
subtractors whereas in Design 2 subtractors consume slightly more power than
adders. This variation of the power contribution from adders and subtractors may be

due to the change of their switching activity because of a different binding and

schedule length, as shown in Section 6.3.4.
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6.5 Concluding remarks

It has been demonstrated that PABCOM is capablé of generating good quality
designs in terms of area and power when applied to a real life and complex design
example such as MPEG-1 motion vector reconstructor. For examplé, Design 1 andl
Design 2 dissipate respectively 31% and 42% less power than a power unaware
design operated at the maximum supply voltage of the library components, i.e.
1.32V. These two designs were implemented based on a library component that was
previously synthesised using Synplify ASIC with ST 0.12um technology library.
Functional validation of these designs has been performed through timing simulation
with ModelSim and comparison of the design outputs with values obtained by the C
specification of the motion vector reconstructor. Both designs have undergone
extensive analysis of area and power using approximated values based on analytical
equations and actual values based on reports obtained after logic\synthesis with

Synplify ASIC and power analysis with PrimePower.
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Conclusions and suggestions for future research

7.1 Conclusions

It is likely that the demand for low power, low cost and high performance digital
circuits will continue to increase in the future to meet the hand-held mobile devices
consumer market requirements. A possible design methodology capable of delivering
such circuits is low power behavioural synthesis. Thé work presented in this thesis
has focused on the design of low power, low cost and required performance digital
circuits starting from behavioural descriptions. To achieve this goal, novel
-algorithms have been developed that can bé used within a behavioural synthesis
framework to automate the design process. In particular the following key issues
have been addressed: '

. Low power scheduling of data domiriated designs using a single supply
voltage was investigated. A new vpower-aware time constrained scheduling -
algorithm based on appropriate voltage scaling after clock and operations
throughput selection and capable of identifying power-area tradeoffs has been
proposed.

o Dcvelopmént of a datapath synthesis algorithm that performs concurrently‘
vscheduling, binding, clock and operations throughput selection.

e Implementation of PABCOM, a power-aware behavioural compiler' with a
compound cost function that allows optimising power, area or a combination

thereof, in a data dominated design given a time constraint.
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e Validation of the algorithms developed in this thesis by implementing two
solutions of the MPEG-1 motion vector reconstructor with different power
and area requirements.
In the following, a sumrﬁary of the work carried out throughout this thesis:is
pfesented. Chapter 2 has presented the foundations to design low power circuits
using a behavioural synthesis methodology. The process of behavioural synthesis, its
three main tasks (scheduling, allocation and binding) and interrelated tasks such as
clock selection have been reviewed. The importance of power consumption in digital
design as well as the key parameters that allow dynamic power reduction during
behavioural synthesis has also been discussed. The main principles of combinatorial
optimisation have been briefly outlined to .provide the necessary backgrourid for the
algorithm developed in Chapter 5. |
Chapter 3 has shown that low power behavioural synthesis is an area where extensive
research has already been carried out. Dynamic power optimisation algorithms in
behavioural synthesis are based on either reduction of supply voltage, switching
activity, frequéncy or a combination thereof. Reducing supply voltage has a higher
impact on dynéfnic power consumption than reducing switching activity or
frequency. This is because of the quadratic dependence of dynamic power
consumption on the supply voltage. In behavioural synthesis, Multiple Supply
\ Voltages (MSV) or single supply voltage (SSV) are two techni(jues used to reduce
power consumption. Although a MSV technique reduce efﬁg:iéntly the power
dissipation, it has ‘a higher routing cost of the supply lines and area/delay overhead
due to required level shifters when compared to SSV.
Chapter 4 has focused on developing a power-aware time constrained scheduling
algorithm (PATICS) cvapable of achieving comparable power reduction to MSV but
using a single supply voltage' yet meeting the same time constraint. For example;
some solutions obtained for DIFFEQ and EWF have respectively less than 8% and
2% power increase when compared to solutions that use MSV [126]. PATICS is also
capable of obtaining a set of useful'power-area tradeoffs by identifying the operating
voltage after combining adequate selection of clock period and operations
throughput. It has been shown thatﬁ power dissipation and area have a non-linear
relation that results in a large and cémplex seérch when aiming the opfimisation of

power, area or a combination thereof. Moreover, when compared with an area
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optimised scheduler [58] using a number of benchmarks, PATICS obtain solutions
that meet the same time constraint with the same resource requirements but with less
power. For example, a power saving of 13% averaged over DIFFEQ, EWF and DCT
was obtained. Although PATICS provides good power savings, it is important to
consider the power dissipation of registers and multiplexers when searching for a
solution that meets the user requirements. Hence, to find good solutions in terms of
power and area, the behavioural synthesis tasks (scheduling and binding) in
combination with clock and opérations throughput selection need to be performed
simultaneously. , \ |
Chapter 5 has described PABCOM, a Power-Aware Behavioural COMpiler that
given a time constraint, considers concurrently scheduling, binding, clock and
operations throughput selection using a simulated annealing based algorithm. Clock
and operations throughput selection is performed using an improved version of the
algorithm described in Chapter 4. A description of PABCOM is presented including
its compound cost function, cooling schedule, choice of annealing parameters and
performance. It has been shown that the compound cost function used by PABCOM
allows obtaining optimised solutions for area, power, or a combination thereof,
| according to the designer specifications. For example, for DCT with a time constraint
equal to 2.5 times the critical path, a tradeoff withr 35% lower power than an area
optimised solution and 53% less area than a power optimised solution was obtained.
Extensive experimental results using benchmarks examples have further
demonstrated the efficiency of the algorithm. It has also been shown that PABCOM‘
is capable of achieving solutions in less computational time .vand with lower power
~ and area than an algorithm based on previously published work [110]. For example,
for a time constraint equal to 2 times the critical path, a power saving of 5% with
computational time saving of 89% averaged over AR, EWF and DCT were obtained.
~ Power reductions are mainly due to the use of lower supply voltage and/or lower
- frequencies, which were obtained after_ clock and operations throughput selection.
Chapter 6 has demonstrated the capability of PABCOM of generating good quality
solutions in terms of power and area through the realisation of the motion vector
reconstructor from the "Berkeley MPEG-1 player [40]. Results after power-aware
‘behavioural synthesis are presented and two designs were implemented based on a

library component previously synthesised using Synplify ASIC with ST 0.12um
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technology library. Functional validation of these designs has been performed
through timing simulation with ModelSim. Further validation was carried ou:t by
. comparing the design outputs with values obtained by the C specification of the
motion vector reconstructor [40]. Extensive analysis of area and power was carried
out using approximated values based on analytical equations and actual values based
on reports obtained with logic synthesis and /power analysis tools such as Synplify
ASIC and PrimePower. Analysis of actual values for area and power showed that the
datapath is the dominant part of the designs, confirming that the study case belongs
to the ‘data dominated application domain despite the presenée' of conditional
branches. Because of the lack of reported literature on designing a low power motion
vector/reconstructor has not been possible to compare. However, to give an insight
into the power savings achieved by PABCOM, if has been found that Design 1 and
Design 2 dissipate respectively 31% and 42% less power than a power unaware
design operated at the maximum supply Voltage of the library components, i.e.1.32V.
In conclusion, behavioural synthesis is a viable methodolo”gy for designing power
efficient complex designs. This thesis has investigated algorithms for scheduling and
datapath synthesis that aim at ‘redu'ci.ng the power consumption when using a
behavioural synthesis design methodology. Two new algorithms for low power time
constrained scheduling and datapath synthesis have been introduced and it was
demonstrated that both algorithms are capable of achieving signiﬁéant power
savings.* Furthermore, it has been shown the inﬂuenc;e that clock and operations
throughput. selection has on the operating \}oltage and consequently on the power
consumption and area of the design. The practical applicability of the developed
algorithms has been demonstrated through the low power realisation of a real life
multimedia functional block such as MPEG-1 motion vector reconstructor. It is
~hoped that findings of this research have contributed further to the maturity of
behavioural synthe§is in generating low power cost effective solutioﬁs for complex

design examples starting from behavioural descriptions.
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7.2 Suggestions for further research

During the course of this research, a number of challenging research topics directly
related to low power behavioural synthesis have been identified. A short review of

these topics is given in the following.

Leakage power optimisation

Leakage power is gaining importance in nanometre technology where it can
represent up to 40% of the total power consumption [62]. Moreover, predictions for
future technologies show that leakage power will become the dominant compo}leﬁt in
power consﬁmption [146]. Leakage power can be reduced during behavioural
synthesis with the help of a dual voltage threshold library comi)onent, as shown in
| [52], [62] and [143]. Here, power reduétion was achieved by identifyi‘ng the
frequently- idle modules and replacing them with high threshold modules. Other
promising technique to reduce leakage power while performing behavioural
synthesis is turning off idle Multi-Threshold CMOS (MTCMOS) modules using
sleep transistors. MTCMOS modules were used during register and module binding
algorithm in [29] and [31]. In order to sustain perforrhance, the sleep transistor needs
to be sized to large widths, leading to a significant area overhead. This was overcome
in [30] by setting an area constraint while perforrhing the binding task using
MTCMOS resources. Leakage power can also be reduced during behavioural
synthesis by partitioning a circuit into islands which are powered down when its
components are idle [20]. Recently, gate leakage power (gate oxide direct tunnelling)
has attracted the attention of the researchers since it is one of the major components
of power dissipation for a nanoCMOS of sub-65 nm technology. Gate leakage power
minimisation during behavioural synthesis has been addressed in [84], [78], [82] and
[81]. It would be interesting to extend PABCOM to include leakage power
optimisation through the selection of a module from a library with dual voltage

threshold, MTCMOS or multioxide thickness componeﬁts.

Thermal and power-aware behavioural synthesis
Thermal effects are becoming an important factor in the design of integrated circuits

due to their adverse influence on leakage power [88]. Recently, some efforts have

been done to incorporate awareness of temperature in behavioural synthesis
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algorithms. For example, binding algorithms for temperature constrained resource
minimization and resource constrained temperature minimization have been
proposed in [90]. Peak temperature minimisation based on uniform switching activity
distribution was addressed in [89], whereas thermal-aware floorplanning information
was considered in [32] and [65]. All these algorithms reduce efficiently the power
consumption but do not consider how temperature may affect the selection of supply
voltage(s) and threshold voltage(s) when eiiming power minimisation under a given
time constraint. Hence, it would be nécessary to develop algorithms that. consider
how the behavioural synthesis tasks interact With the temperature, supply voltage(s)

and threshold voltage(s).
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VHDL and Verilog codes

Chapter 6 f)resented the désign of two solutions for the motion vector reconstructor
using low power behavioural synthesis. algorithms. Important aspects of )these
desi gns comprise the VHDL realisation of the library components (Section 6.3.2) and
the generation of structural Verilog for the détapaths (Section 6.3.4).

A1.1 VHDL description of the library components
adder

fibrary ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity adder is
generic(n:NATURAL:=16);
port(
x, y : in std_logic_vector(n-1 downto 0);
z: out std_logic_vector(n-1 downto 0));
end entity adder; ‘ . ,

architecture behaviour of adder is
begin
add: process(x, y) is
begin '
z <= std_logic_vector(signed(x) + signed(y));
end process add;
end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_adder is

port(
e: in std_logic;
clk: in std_logic; .
x: in std_logic_vector(15 downto 0);
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y: in std_logic_vector(15 downto 0)
z: out std_logic - vector(15 downto 0));
end sync_adder; .

architecture behaviour of sync_adder is :
signal aux_x, aux_y: std_logic_vector(15 downto 0);
signal aux_z: std_logic_vector(15 downto 0);

signal internal_e: std_logic;

begin
enable_gen: process (clk, €} is -- registering inputs
begin
if (rising_edge(clk)) then
. internal_e <=e
end if;
end process enable_gen;

latch_inp: process (internal_e, X, y)

begin

if (internal_e ='1") then
aux_x <=x;
aux_y <=y, -

else

' aux_X <= aux_x; _
‘ aux_y <= aux_y; -
end if;

end process;

Z <= aux_z;
u0: entity work.adder port map (aux_x, aux_y, aux_z);

end behaviour;

comparator
library ieee; ‘

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity comp is
generic(n:NATURAL.: 16)
port( : :
X,y : in std_logic_vector(n-1 downto 0);
op: in std_logic_vector(2 downto 0);

z : out std_logic);

end entity comp;

architecture behaviour of comp is

begin
process(x, y, op) is-
begin
case op is ,
when "000"=>
if (signed(x) = signed(y)) then.
Z<="1";
else
Z<='0";
end if;
when "001"=>

if (signed(x) > signed(y)) then

--equal to

-- greater than

158




VHDL and Verilog codes

Z<="1"
else
Z2<="0";
end if;
when "010"=>
if (signed(x) < signed(y)) then
Z<="1",
else '
2<='0";
end if;
when "011"=>

if (signed(x) <= signed(y)) then

Z<="1";
else
Z<="0";
end if;
when "100"=>
if (signed(x) >= signed(y)) then
Z<="1"
else
Z<="0";
end if;
when "101"=>
if (signed(x) /= signed(y)) then

7<="1";
else
Z<="0"; .
end.if;
when others=>null;

end case;
end process;”
end architecture behaviour;

library ieee; ,
use ieee.std_logic_1164.all;

entity sync_comp is

port(
e: in std_logic;
clk: in std_logic;
x: in std_logic_vector(15 downto 0);
y: in std_logic_vector(15 downto 0);
op: in std_logic_vector(2 downto 0);
z: out std_logic);

end sync_comp;

architecture behaviour of sync_comp is

signal aux_x, aux_y: std_logic_vector(15 downto 0);
signal aux_op: std_logic_vector(2 downto 0);

signal aux_z: std_logic;

signal internal_e: std_logic;

begin
enable_gen: process (clk, ) is -- registering inputs
begin
if (rising_edge(clk)) then
internal_e <=¢;
end if;
end process enable_gen;
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latch_inp: process (internal_e, x, y, op)
begin
if (internai_e ='1') then
aux_x <=x;
aux_y <=y,
aux_op <= op;
else
auX_Xx <= aux_Xx;
aux_y <= aux_y;
aux_op <= aux_op;
end if;
end process latch_inp;

Z<= aux_z;
u0: entity work.comp port map (aux_x, aux_y, aux_op, aux_z);

end behaviour;

multiplier
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity multiplier is
generic(n:NATURAL:=16);
port(
X, y : in std_logic_vector(n-1 downto 0);
z: out std_logic_vector(n-1 downto 0));
end entity multiplier;

architecture behaviour of multiplier is
begin ‘
multiply: process(x, y) is
variable aux1: signed (2*n-1 downto 0);
variable aux2: integer;
begin
aux1 ;= signed(x) * signed(y);
" aux2 := to_integer(aux1);
z <= std_logic_vector(to_signed(aux2, n));
end process multiply;
end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_multiplier is
port(

. e:in std_logic;
clk: in std_logic;
x: in std_logic_vector(15 downto 0);
y: in std_logic_vector(15 downto 0);
z: out std_logic_vector(15 downto 0));
end sync_multiplier; S :

architecture behaviour of sync_multiplier is
signal aux_x, aux_y: std_logic_vector(15 downto 0);
signal aux_z: std_fogic_vector(15 downto 0);
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signal internal_e: std_logic;
begin .
enable_gen: process (clk, €) is -- registering inputs
begin

if (rising_edge(clk)) then

i internal_e <=e¢;

end if;

end process enable_gen;

latch_inp: process (internal_e, x, y)

begin

if (internal_e ='1") then
aux_x <= x;
aux_y <=y,

-else

aux_x <= aux_x;
aux_y <= aux_y;

end if;

end process;

Z <= aux_z;

u0: entity work.multiplier port map (aux_x, aux_y, aux_z);

end behaviour;

shifter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity shifter is
generic(n:NATURAL:=16);
port(
x: in std_logic_vector(n-1 downto 0);
z : out std_togic_vector(n-1 downto 0));’
end entity shifter;

architecture behaviour of shifter is
begin
shifting: process(x) is
begin
z <= std_logic_vector(signed(x) sll 1);
, end process;
end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_shifter is
port(

e: in std_logic;

clk: in std_logic;

x: in std_logic_vector(15 downto 0);

z: out std_logic_vector(15 downto 0));
end sync_shifter;

architecture behaviour of sync_shifter is
signal aux_x: std_logic_vector(15 downto 0);
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signal aux_z: std_logic_vector(15 downto 0);
signal internal_e: std_logic;
begin
enable_gen: process (clk, e) is
begin .
if (rising_edge(clk)) then
internal_e <= e;
end if;
_end process enable_gen;

_latch_inp: process (internal_e, x)
begin
if (internal_e ='1") then
aux_x <= x;
else
aux_x <= aux_x;
end if;
end process;

Z <= aux_z; .
u0: entity work.shifter port map (aux_x, aux_z);

end behaviour;

-- subtractor

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity subtractor is
generic(n:NATURAL.:=16);
port(
X, y . in std_logic_vector(n-1 downto 0);
z: out std_logic_vector(n-1 downto 0));
end entity subtractor;

architecture behaviour of subtractor is
begin
add: process(x, y) is
begin _
z <= std_logic_vector(signed(x) - signed(y));
end process add;
end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_subtractor is
port(
e: in std_logic;
clk: in std_logic;
x: in std_logic_vector(15 downto 0);
y: in std_logic_vector(15 downto 0);
z: out std_logic_vector(15 downto 0));
end sync_subtractor;

architecture behaviour of syné_subtractor is
signal aux_x, aux_y: std_{ogic_vector(15 downto 0);
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signal aux_z: std_logic_vector(15 downto 0);
signal internal_e: std_logic; ’
begin :
enable_gen: process (clk, ) is -- registering inputs
begin .
if (rising_edge(clk)) then
‘ internal_e <=g¢;
end if;
end process enable_gen;

latch_inp: process (internal_e, x, y)
begin ,
if (internal_e ='1") then
aux_Xx <= x;
aux_y <=y,
else
aux_x <= aux_x;
: aux_y <= aux_y,;
end if;
end process;

Z <= aux_z; :
u0: entity work.subtractor port map (aux_x, aux_y, aux_z);

end behaviour;

or
library ieee; '
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity Igo is
port(
X, y . in std_logic;
z: out std”_logic);
end entity Igo;

architecture behaviour of igo is
begin -
log_or: process(x, y) is
begin
Z<=Xo0ry;
end process log_or;
end architecture behaviour;

Iibrary ieee;
use ieee.std_logic_1164.all;

entity sync_lgo is

port(
e: in std_logic;
clk: in std_logic;
x: in std_logic;
y:.in std_logic;
z: out std_logic);

end sync_lgo;

architecture behaviour of sync_lgo is
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signal aux_x, aux_y: std_logic;
signal aux_z: std_logic;
signal internal_e: std_logic;
begin
enable_gen: process (clk, e) is -- registering inputs
begin
if (rising_edge(clk)) then
internal_e <= ¢e;
end if;
end process enable_gen;

latch_inp: process (internal_e, X, y)

begin

if (internal_e = '1") then

aux_x <=Xx;
. aux_y <=y;

else
aux_X <= aux_X;
aux_y <= aux_y;

end if;

end process;

Z <= aux_z; A .
. u0: entity work.Igo port map (aux_x, aux_y, aux_z);

end behaviour;

and
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity lga is

port(
X,y :in std_logic; .-
z: out std_logic);

end entity Iga;

architecture behaviour of Iga is
begin ,
log_and: process(x, y) is
begin -

z<=xandy;
end process log_and;
end architecture behaviour;

library ieee;
use ieee.std_logic_1164.all;

entity sync_lga is

port(
e: in std_logic;
clk: in std_logic;
x: in std_logic;
y: in std_logic;
z: out std_logic);

end sync_lga;
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architecture behaviour of sync_Iga is

signal aux_x, aux_y: std_logic;

signal aux_z: std_logic;

signal internal_e: std_logic;

begin
enable_gen: process (clk, e) is -~ registering inputs
begin .

if (rising_edge(clk)) then
internal_e <= ¢; !

end if;

end process enable_gen;

latch_inp: process (internal_e, X, y)
begin
if (internal_e ='1") then
aux_x <= x;
aux_y <=y;
. else
aux_X <= aux_Xx;
aux_y <= aux_y;
end if;
end process;

Z <= aux_z;
u0: entity work.lga port map (aux_x, aux_y, aux_z);

end behaviour;

A1.2 Structural Verilog for Design 1 and Design 2

i S e n e
// module for the whole datapath
module datapath (
rst, clk,
eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39,
{dR1, IdR2, IdR3, IdR4, IdR5, IdR6, IdR7, IdR8 IdR9, IdR10, IdR11, IdR12, idR13, IdR14,
IdR15, IdR19, IdR20, IdR22,
IdstR1, IdstR2, {dstR3, IdstR4, IdstR5, IdstR6, IdstR? IdstR8, 1dstR9, IdstR10,
opM21, opM22,
sM1a, sM1b, sM2a, sM7a, sM12a, sM12b, sM13a, sM13b, sM19a, sM21a, sM21b, sM22b,
sM39a, sR1a, sR2a, sR3a, sR4a, sR7a, sR11a, sR13a, sR14a, sR19a, sR22a,
~mhc, mhr, mve, mvr, f, fp, cero, one, sixteen, _sixteen, thirty2,
rrprev_i, rdprev_i,
rrprev_o, rdprev_o, rrp_o, rdp_o,
stR10, stR20, stR30, stR40, stR50, stR60, stR70, stR80, stR90, stR100
) '
input rst;
input clk;
input eM1, eM2, eM7, eM12, eM13, eM18, eM19, eM21, eM22, eM39;
input IdR1, IdR2, IdR3, IdR4, IdR5, IdR6, IdR7, IdR8, IdR9, IdR10, IdR11, IdR12, IdR13,
IdR14,
IdR15, IdR19, IdR20, IdR22;
input IdstR1, IdstR2, IdstR3, IdstR4, IdstR5, IdstR6, IdstR7, IdstR8, IdstR9, idstR10;
input [2:0) opM21, opM22;
input [1:0] sM1a, sM1b, sM13a, sM13b, sM213;
input sM2a, sM12a, sM12b, sM19a, sM21b, sM22b, sM39a, sR7a, sR11a, sR13a, sR14a,
sR193, sR223a;
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input [2:0} sM73a, sR1a, sR2a, sR3a, sR4a;

input [15:0] mhec, mhr, mve, mvr, f, fp, cero, one, sixteen, _sixteen, thirty2;
input [15:0] rrprev_i, rdprev_i;

output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;

output stR10, stR20, stR30, stR40, stR50, stR60, stR70, stR80o, stR90, stR100

// module inputs

wire [15:0] M1ao, M1bo, M2ao, M7ao0, M12a0, M12bo, M13ao, M13bo, M19ao, M21ao,

M21bo, M22bo;
wire M39ao0; ,
/I module outputs
wire [15:0] M10, M20o, M70, M120, M130, M190;
wire M180, M210, M220, M390;
// register inputs
wire [15:0] R1a0, R2ao0, R3ao, R4ao R7a0, R11a0, R13a0, R14ao;
wire R21ao0, R19a0, R22a0;
Il register outputs
wire [15:0] R50, R60o, R70, R8o, R90 R100, R110, R120, R130, R140, R150;
wire R190, R200, R220;

sync_adder M1 (eM1, clk, M1ao, M1bo, M1o);

sync_adder M2 (eM2, clk, M2ao, M12a0, M20);
sync_multiplier M7 (eM7, clk, M7ao0, R100, M70);
sync_subtractor M12 (eM12, clk, M12ao0, M12bo, M120);
sync_subtractor M13 (eM13, clk, M13a0, M13bo, M130);
sync_lga M18 (eM18, clk, R220, R190, M180);
sync_shifter M19 (eM19, clk, M19ao, M190);

sync_comp M21 (eM21, clk, M21ao, M21bo, opM21, M210);
sync_comp M22 (eM22, clk, rrprev_o, M22bo, opM22, M220);
sync_lgo M39 (eM39, clk, M39ao0, R190, M390);

registro R1 (R1ao, clk, rst, IdR1, rrprev_o);
registro R2 (R2ao, clk, rst, idR2, rdprev_o);
registro R3 (R3ao, clk, rst, IdR3, rrp_o);

registro R4 (R4ao, clk, rst, IdR4, rdp_o);
registro R5 (mvr, clk, rst, {dR5, R50);

registro R6 (cero, clk, rst, IdR6, R60);

registro R7 (R7ao, clk, rst, IdR7, R70);

registro R8 (fp, clk, rst, IdR8, R80);

registro R9 (rdprev_i, clk, rst, IdR9, R90);
registro R10 (f, clk, rst, [dR10, R100);

registro R11 (R11ao, clk, rst, {dR11, R110);
registro R12 (thirty2, clk, rst, IdR12, R120);
registro R13 (R13ao, clk, rst, IdR13, R130);
registro R14 (R14ao, clk, rst, IdR14, R140); -
registro R15 (rrprev_i, clk, rst, IdR15, R150);
registro_1b R19 (R19ao, clk, rst, [dR19, R190); ‘ N
registro_1b R20 (M210, clk, rst, IdR20, R200); ,
registro_1b R22 (R22ao, clk, rst, IdR22, R220);

// status registers, outputs to controller...

registro_1b stR1 (M390, clk, rst, idstR1, stR10);
registro_1b stR2 (M220, clk, rst, IdstR2, stR20);
registro_1b stR3 (M210, clk, rst, IdstR3, stR30);
registro_1b stR4 (M180, clk, rst, IdstR4, stR40);
registro_1b stR5 (M210, clk, rst, IdstR5, stR50);
registro_1b stR6 (M390, clk, rst, IdstR6, stR60);
registro_1b stR7 (M210, cik, rst, IdstR7, stR70);
registro_1b stR8.(M210, clk, rst, IdstR8, stR80);
registro_1b stR9 (M18o, clk, rst, IdstR9, stR90);
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registro_1b stR10 (M210, clk, rst, IdstR10, stR100);

mux5 R1a (mhc, M70, M10, M130, cero, sR1a, R1a0);
mux5 R2a (mhr, M120, M20, M10, cero, sR2a, R2ao);
mux6 R3a (M130, M70, M20, M19o0, cero, rrprev_o, sR3a, R3ao);
mux5 R4a (sixteen, M1o, M130, M190, rdprev_o, sR4a, R4ao);
mux2 R7a (one, M130, sR7a, R7ao0);
mux2 R11a (mvc, M70, sR11a, R11a0);
. mux2 R13a (_sixteen, M70, sR13a, R13a0);
mux2 R14a (M120, cero, sR14a, R14a0);
mux2_1b R19a (M210, M220, sR19a, R19a0);
mux2_1b R22a (M220, M210, sR22a, R22a0);

mux4 M1a (R140, R150, R9o, rrprev_o, sM1a, M1ao);

mux4 M1b (rrprev_o, rdp_o, rdprev_o, rrp_o, sM1b, M1bo);
mux2 M2a (rdprev_o, rdp_o, sM2a, M2ao);

mux5 M7a (rrprev_o, R110, R130, rdp_o, R120, sM7a, M7ao);
mux2 M12a (rrp_o, R110, sM12a, M12a0);

mux2 M12b (rdprev_o, R50, sM12b, M12bo);

mux4 M13a (R100, rrprev_o, rdp_o, rdprev_o, sM13a, M13ao0);
mux4 M13b (R70, R140, rrp_o, rrprev_o, sM13b, M13bo); -
mux2 M19a (rdprev_o, rrprev_o, sM19a, M19ao);

mux4 M21a (R100, R110, rrprev_o, R8o, sM21a, M21a0);
mux2 M21b (R70, R6o, sM21b, M21bo);

mux2 M22b (R60, R130, sM22b, M22bo);

mux2_1b M39a (R220, R200, sM39a, M39ao0);

endmodule

T T DeS|gn v
module datapath (
rst, clk,
eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20 eM21, eM22, eM39, eM40,
eM43, eM44, /I enable signals for modules
IdR1, IdR2, IdR3, IdR4, IdR5, IdR6, IdR7, IdRS8, IdR9, IdR10, IdR11, IdR12, IdR13, IdR14, -
IdR15 IdR16, IdR18, IdR21, IdR22, IdR23, //load signals for registers
IdstR1, IdstR2, IdstR3, IdstR4, IdstR5, IdstR6, IdstR7, IdstR8, IdstR9, IdstR10 /l load
signals for status registers
opM21, opM22, opM43, opM44, // operation that the comparator will execute
sM2a, sM2b, sM4a, sM4b, sM6a, sM7b, sM13a, sM13b, sM14a, sM14b, sM21a, sM39a,
sM39b, sM44a, sM44b,
sR1a, sR2a, sR3a; sR4a, sR6éa, sR9a, sR11a sR12a, sR23a,
mhc, mhr, mve, mvr, f, fp, cero, one, sixteen, _sixteen, thirty2,
rrprev_i, rdprev_i,
rrprev_o, rdprev_o, rrp_o, rdp o,
stR10, stR20, stR30, stR40, stR50, stR60, stR70, stR80, stR90, stR100
)i
input rst;
input clk;
input eM2, eM4, eM6, eM7, eM13, eM14, eM18, eM19, eM20, eM21, eM22, eM39 eM40,
eM43, eM44;
input IdR1, IdR2, IdR3,. IdR4 IdRS, IdR6, IdR? {dR8, IdR9, IdR10, IdR11, IdR12, IdR13,
IdR14, IdR15, IdR16, IdR18, IdR21, IdR22, IdR23;
- input IdstR1, IdstR2, IdstR3, IdstR4, |dstRS5, IdstR6, IdstR7, 1dstR8, IdstR9, IdstR10;
input [2:0] opM21, opM22, opM43, opM44;
input [1:0] sSM7b, sM13a, sM13b, sM14a;
input sM2a, sM2b, sM4a, sM4b, sM6a, sM14b, sM21a, sM39a, sM39b, sM44a, sM44b,
sR6a, sR9a, sR11a, sR12a, sR233;
input [2:0] sR1a, sR2a, sR3a, sR4a;
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input [15:0] mhe, mhr, mve, mvr, f, fp, cero, one, sixteen, _sixteen, th|rty2

input [15:0] rrprev_i, rdprev_i;

output [15:0] rrprev_o, rdprev_o, rrp_o, rdp_o;

output stR10, stR20, stR30, stR40, stR50, stR60, stR70, stR8o, stR90, stR100;

// module inputs

wire [15:0] M2ao, M2bo, M4ao, M4bo, M6ao, M7bo, M13ao, M13bo, M14ao, M14bo, M21ao,
M44ao, M44bo; ,

wire M39ao0, M39bo;

// module outputs

wire [15:0] M20, M4o, M6o, M70, M130, M140, M190, M200;

wire M180, M210, M220, M390, M400, M430, M44o0;

/f register inputs

wire [15:0] R1ao, R2ao0, R3ao0, R4ao, R6ao, R9ao0, R11a0, R12ao0;

.wire R23a0;

[/ register outputs

wire [15:0] R10, R20, R30, R40, R50, R60, R70, R80, R90, R100, R110, R120, R130, R140,
R150;

wire R1 60, R180, R210, R220, R230;

sync_adder M2 (eM2, clk, M2ao, M2bo, M20);

sync_adder M4 (eM4, clk, M4ao, M4bo, M40);
sync_multiplier M6 (eM8, clk, M6ao, R50, M60o);
sync_multiplier M7 (eM?7, clk, R50, M7bo, M70);
sync_subtractor M13 (eM13, clk, M13ao, M13bo, M130); .
sync_subtractor M14 (eM14, clk, M14a0, M14bo, M140);
sync_lga M18 (eM18, clk, R180, R230, M180);
sync_shifter M19 (eM19, clk, rrprev_o, M190);

sync_shifter =~ M20 (eM20, clk, rdprev_o, M200);

sync_comp M21 (eM21, clk, M21ao, R90, opM21, M210);
sync_comp M22 (eM22, clk, rrprev_o, R90, opM22, M220);
sync_lgo M39 (eM39, clk, M39ao, M39bo, M390);
sync_Iga M40 (eM40, clk, R220, R160, M400); !
sync_comp M43 (eM43, clk, rrprev_o, R120, opM43, M430);
sync_comp M44 (eM44, clk, M44ao, M44bo, opM44, M44o);

registro R1 (R1ao, clk, rst, IdR1, rrprev_o);
registro R2 (R2ao, clk, rst, IdR2, rdprev_o);
registro R3 (R3ao, clk, rst, IdR3, rrp_o);
registro R4 (R4ao, clk, rst, IdR4, rdp_o);
registro R5 (f, clk, rst, IdR5, R50);
registro R6 (R6ao, clk, rst, IdR6, R6o);
registro R7 (rrprev_i, clk, rst, IdR7, R70);
registro R8 (rdprev_i, clk, rst, IdR8, R80);
registro R9 (R9ao, clk, rst, [dR9, R90);
registro R10 (one, clk, rst, IdR10, R100);
registro R11 (R11ao, clk, rst, IdR11, R110);
registro R12 (R12ao, clk, rst, IdR12, R120);
registro R13 (thirty2, clk, rst, IdR13, R130);
registro R14 (M13o, clk, rst, [dR14, R140);
-registro R15 (M14o, clk, rst, IdR15, R150);
registro_1b R16 (M220, clk, rst, IdR16, R160);
registro_1b R18 (M44o0, clk, rst, IdR18, R180);
registro_1b R21 (M21o0, clk, rst, IdR21, R210);
. registro_1b R22 (M43o, clk, rst, [dR22, R220);
registro_1b R23 (R23ao, clk, rst, IdR23, R230);

mux2 M2a (rrp_o, R80o, sM2a, M2ao);
mux2 M2b (rdp_o, rrp_o, sM2b, M2bo);
mux2 M4a (rdprev_o, rrprev_o, sM4a, M4ao);




VHDL and Verilog codes ' 169

mux2 M4b (rrprev_o, R70, sM4b, M4bo);

mux2 M6a (rrprev_o, R130, sM6a, M6ao);

mux4 M7b (rrp_o, R120, R110, R130, sM7b, M7bo);
mux4 M13a (R50, R140, rrp_o, rdprev_o, sM13a, M13ao);
mux4 M13b (R100, rdp_o, rrprev_o, cero, sM13b, M13bo);
mux4 M14a (R50, R150, rrprev_o, R110, sM14a, M14a0);
mux2 M14b (R100, rdprev_o, sM14b, M14bo);

mux2 M21a (rrp_o, R6o, sM21a, M21ao0);

mux2_1b M39a (R210, R180, sM39a, M39ao0);

mux2_1b M39b (R180, R230, sM39b, M39bo);

mux2 M44a (R50, R60, sM44a, M44ao);

mux2 M44b (R100, R120, sM44b, M44bo);

mux5 R1a (mhc, M6o, M40, M130, cero, sR1a, R1a0);

mux5 R2a (mhr, M140, M40, M20, cero, sR2a, R2ao);

mux6 R3a (mvc, M70, M20, M130, M190, rrprev_o, sR3a, R3ao);

mux8 R4a (mvr, M130, M70, M20, M200, cero, rdprev_o, cero, sR4a, R4ao0);
mux2 Réa (fp, M20o, sR6a, R6ao);

mux2 R9a (cero, M140, sR9a, R9ao0);

mux2 R11a (sixteen, M70, sR11a, R11a0);

mux2 R12a (_sixteen, M70, sR12a, R12a0);

mux2_1b R23a (M220, M210, sR23a, R23ao0);

/I status registers, outputs to controller...
registro_1b stR1 (M39o, clk, rst, IdstR1, stR10);
registro_1b stR2 (M220, clk, rst, |dstR2, stR20);
registro_1b stR3 (M220, clk, rst, IdstR3, stR30);
registro_1b stR4 (M40o, clk, rst, IdstR4, stR40);
registro_1b stR5 (M210, clk, rst, IdstR5, stR50);
registro_1b stR6 (M390, clk, rst, IdstR6, stR60);
registro_1b stR7 (M210, clk, rst, IdstR7, stR70);
registro_1b stR8 (M210, clk, rst, IdstR8, stR80);
registro_1b stR9 (M18o0, clk, rst, IdstR9, stR90);
registro_1b stR10 (M21o0, clk, rst, IdstR10, stR100);

endmodule
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Appendix 2
Area-Delay-Power characterisation
" This appendix describes the methodology followed for the power-area-delay

characterisation of the library components of Table 5.9 and Table 6.1. The flow

diagram for the power-area-delay characterisation process is shown in Figure A2.1.

LFSR (Chapter 5)

Real data {Chapter 6)

unizy-o
Aseagry ABojouysay

VHDL description of the
library component

ModelSim

Synplify ASIC Verfiog gate netlist

Figure A2.1 Area-delay-power characterisation flow

The area-delay characterisation requires only the application of VHDL description of
the 11brary components and Technology llbrary file to the logic synthes1s tool
Synplify ASIC [128]. The 0. 12um technology library used is CORE9GPLL provided
by ST Microelectronics and it is composed of three files: CORE9GPLL _Best.lib,
CORE9GPLL_ Nom.lib and CORE9GPLL_ Worst.lib. CORE9GPLL is a low leakage
standard-cell library for HCMOS9 VLSI digital designs that is designed to work at
1.2V (+10%/-10%), as shown in Table A2.1 [132]. L
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Table A2.1 Operating voltages for Technology library CORE9GPLL

CORE9GPLL _Best.lib | CORE9GPLL Nom.lib | CORE9GPLL Worst.lib

V(v) 1.32 1.2 1.08

. After performing logic synthesis with each file of CORE9GPLL, the generated report v.
contains information about the area and delay of the component. The delay of the
library component after synthesis depends on the technology library file used for
synthesis, since each library file has a different operating voltage as shown in Table
A2.1. The area of the component is exactly the same in the three cases since the same
number and type of standard cells is used. The result after logic synthesis is a Verilog
netlist that is used together with a VCD and script files to perform power analysis
with PrimePower. ,

The' Value Change Dump (VCD) file can be obtained after simulation with:
ModelSim [75] using the Verilog netlist and a testbench that provides the input
vectors. In the case of Chapter 5, the input vectors correspond to pseudo random
numbers generated by a LSFR, whereasv in Chapter 6 the input vectors correspond to
" real data obtained after playing a videb with the MPEG-1 Berkeley decoder [40]. The
generated VCD is an ASCII file that contains information about simulation time,
scope and signal definitions, and signal value changes in the simulation run [43].
VCD file can be generated using verilog’s $dunipvar command. Some examples are

shown in Table A2.2.

Table A2.2 Verilog commands to generate VCD file

Command Function

Initial $dumpfile(“filename.ved”); | // selects this dump file name

Initial $dumpvars; // dumps all signal info

. // dumps all the variables in the hierarchy from top. Here
Initial $dumpvars(0, top);

top is an instance name. 0 indicates every level from top.

In addition to the VCD file, a script file is necessary to perform power analysis with
PrimePower. An example of the script file (saved as .tcl) is shown in Listing A2.1,
where search_path specifies the path for the ‘synopsys library, link_library specifies
the library to be used, i.e. CORE9GPLL Best.db. This technology file is the same

that the one used for synthesising the design but in different format. For example, if
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L
Synplify ASIC has been used for synthesis using the “COREQGPLL_Best.Iib"’,
- PrimePower requires CORE9GPLL_Best.db. In Listing ‘A2.1', the command
read_verilog specifies the Verilog file name including path, and current design
indicates the top_level design name. Similarly’ read_vcé’ specifies the VCD file
including path. Note that-read_ved command specifies the strip_path. This path is
the test_bench/tor;_instance if VCD is generated from tesf_bencﬁ else the path will
be top_instance if VCD is generated from tép module under test. sei_input_transition
defines a fixed transition time for input ports. Output files can be speciﬁed in

set_waveform_options and report_power _new options [43].

Listing A2.1 Example of script file to perform power analysis using PrimePower

#adder

# link design

set search_path ‘library/library”
set link _library ™ COREQGPLL Best db"

read_verilog {/ ||brary/adder/best add/sync_adder. vma}
current_design Sync adder
link .

# read switching activity file

read_vcd -strip_path adder_tb/u0O/library/adder/best_add/ sync_adder.vcd

# set transition time / annotate parasitics

set_input_transition 0.1 [all_inputs]

# power analysis

cd /library/adder/best_add _ ,
set_waveform_options  -interval 0.01 -file sync_adder -format fsdb

calculate_power " -waveform -statistics
report_power new  -file sync_adder
remove. design C -all
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Input and output files of PABCOM

The input to PABCOM is a standard text file that contains é data flow graph (DFG)
with the corresponding user-specified constraints and optimisation parameters. This
text file is split into sections as can be seen from the example shown in Listing A3.1.
The first part of this file specifies the name of the design and gives the option to save
the resultant binding, multiplexers assignment and datapath netlist into a file. In the
second part the synthesis constraints and annealing parameters are specified whilst
the third part describes the data flow graph. First the DFG inputs are given, followed
‘by fhe operations with their input values to determine the data dependencies, and
finally the outputs are presented. The last part of the ihput file describes the available

functional modules and registers.

Listing A3.1 Input file to PABCOM
#config file for DCT benchmark '

[STATUS]
Design Discrete Cosine Transform
results_to_file 1 # 1 save results into a file, O print results in screen
[CONFIG]
time 47 # time constraint
min_clk 2 # minimum clock period
alpha 0.1 # optimisation power weight
operations 48
multiplications 16
additions 32
inputs - 8
outputs 8
modules - 26
registers 30
# annealing parameters !
x0 0.95 #initial acceptance ratio
d 02 # distance parameter

es 0.0001 # stop criterion
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HIHHRHHHHARAHERHRE DFG in text form #HEHHRHHHHRHHBRABH

#name type inputs
[OPERATIONS]

D 0 input

D_1 input

D 2 input

D 3 input

D 4 input

D 5 input

D 6 input

D_7 input

N_16 add D2 D5
N_17 add D_1 D_6
N_18 add D3 D4
N_19 add D0 D7
N_20 add D2 D5
N_21 add D_1 D_6
N_22 add D3 D4
N_23 add DO D7
N_24 add N_16 N_17
N_25 add N_16 N_17
N_26 add N_18 N_19
N_27 add N_18 N_19
N_28 add N_20 N_21
N_29 add N_22 N_23
N_42 multiply N_20

N_44  multiply N_20

N_48 multiply N_21

N_50 multiply N_21

N_54 multiply N_22

N_56 multiply N_22

N_60 multiply N_23

‘N_62 multiply N_23

N_30. add N_24 N_26
N_31 add N_28 N_29
N_32 multiply N_24

N_36 multiply N_26

N_38 multiply N_25

N_40 multiply N_27

N_46 multiply N_28

N_58 multiply N_29

N_34 multiply N_30

N_52 multiply N_31

N_64 add N_42 N_46
N_66 add N_46 N_48
N_69 add N_56 N_58
N_71 add N_58 N_62
N_72 add 'N_38 N_40
N_76 add N_38 N_40
N_65 add N_52 N_60
N_67 add N_52 N_54
N_68 add N_50 N_52
N_70 add N_44 N_52
N_74 add N_34 N_36
N_78 add N_32 N_34
N_73 add. N_70 N_71
N_75 add N_66 N_67
N_77 add N_64 N_65
N_79 add N_68 N_69
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The output of PABCOM is a text file that contains the information necessary to
generate the datapath and controller of the design’. For example, Listihg A3.2 and
Listing A3.3 present the output files prodliced by PABCOM after using the input file
from Listing A3.1 with &= 0.1 and a= 0.4. In both output files, four parts can be
identified: module binding, register binding, multiplexers assignment and datapath
netlist. It can be seen that the first three parts describe the cycle by cycle behaviour
of the design. For example in the module binding of Listing A3.2, module M 2
executes opérations N_20 in cstep 1 and N_16 in cstep 2, and becomes idle in csteps
3 and 4. In the register binding, input D1 is loaded into register R_13 in cstep 1 and
held during cstep 2. Then R_13 is idl¢ in cstep 3 and value N_50 is loaded in cstep 4.
A graphical representation of this module binding and register binding was shown
respectively in Figure 5.21 and Figure 5.23 (Chapter 5). In ‘the multiplexers
-assignment of Listing A3.2, M 1 aisa 3-ihput multiplexer whose inputs are R_13,
RO5 and R_10. In cstep 1 and 2, the input R_13 is selected, in cstep 3 the input R 5
is selected and then R 10 is selected in cstep 4..It can be seen that M1 _b only has

one input, i.e. R 02, this means a direct connection from the register R 02 to the

input of module M_1. The timing information provided by the binding and
multiplexers assignment allo‘ws the immediate definition of the control signals in the
required finite state machine.

The last part of the output file is the datapath netlist, which specifies the
interconnections between modules, registers and multiplexers. For example, in the
datapath netlist of Listing A3.2, the inputs of module M7 are connected to
multiplexers M_7_a and M_7_b. The inputs of multiplexer M_7_a are connected to
registers R_08 and R_07. The input of register R_08 is connected to multiplexer
R_08_a whose inputs are connected to modules M 3 and M 7. A graphical
representétion of this datapath netlist was shown in Figure 5.25 (Chapter 5).
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Listing A3.2 Output file produced by PABCOM for DCT with a = 0.1

HHHHRHHEHHARHERE Module binding #HHHERHHHHHHEHREHHHE
#cs1  cs2 cs3 cs4 cs5  cs6 cs7 cs8 ch‘

Module:M_1

N_21 N_17 N_31 N_64 N_71 N_69 N_76 N_72 /.
Module:M_2 '

N_20 N_16 .. A N_70 /. N_ 65 N_78 ./
Module:M_3 ‘

N_23 N_ 28 N_19 N_27 N_26 N_30 N_75 N_77 /.
Moduie:M_7 ' :
A N_29 N 66 N_68 N_67 N79 N_74 ./
Moduie:M_10

N_22 N_18 'N_24 /. N_25 N_73 .. A A
Module:M_11 -

A N_42 /. N_58 N_56  N_40 .. A A
Module:M_13

A N_ 48 N_50 N_52 N_54 N_36 N_34 .. A
Module:M_15 - ‘

A N_44 N_46 N_62 N_60 N_38 N_32 .. A

##WWW###Registerbinding HHEHHHHHHH B
#cs1  cs2 cs3 cs4 cs5 cs6 cs7 cs8 cs9

Register: R_02

D6 D6 N28 N46 N 62 N 56 N_38 N_38 ./
Register: R_05 '
J. A N 29 N29 N 66 N66 N 66 N_79 N_79
Register: R_06 ‘

A N 22 N 22 N_22 N_22° /. N_73 N_73 N_73
Register: R_07

D2 D2 N48 N_48 N_52 N_52 N_52 N_34 /.
Register: R_08 .

A N 23 N_23 N_23 N_ 23 N_68 N_68 .. N_74
Register: R 10

A A N_42 N_42 N 58 N_58 N_40 N_40 ./
Register: R_12

D7 D7 D7 N24 N24 N24 N_24 A
Register: ~ R_13 ‘ ’

D 1 D_1 A N_50 N_50 N_54 N_36 N_ 36 ..
Register: R_17 '

D4 D4 N16 N_16 N_16 N_70 ./ A N_78
Register: R_18

D5 D5 N44 N44 N4 N_60 N_60 N_32 .
Register: R_1 9

A N.20 N_18 N_18 N_18 N 25 N_67 N_ 65 ..
Register: R_20

J. A A A N_27 N_27 .. N_75 N_75
Register: R_21

D3 D3 N_17 N_17 N_17 N_71 N_69 N_76 N_76
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Register: R 23 .

A N_21 N_21 N_31 N 64 N 64 N 64 N 64 N_72
Register: R_29

Do DO DO

N_19 N_19 N_26 N_30 .. N_77

HHHHHA N MUItDlexers HHHHHHI S

#cs1  cs2 cs3 cs4 csb cs6 cs? cs8 cs9
Mux: M_1 a,inputs:R_13 R_05 R 10

R13 R13 RO0O5 R 10 R10 R 10 R_10 R_10 ./
Mux: M_1_b , inputs: R_02 o

R02 R02 RO02 R02 R02 R02 R02 RO02 .
Mux: M_2 a, inputs: R_18

R 18 R 18 /. A R_18 /. R_18 R_18 ./
Mux: M_2_b ,inputs: R_07 (

R 07 R 07 -/ J. R 07 .. R 07 RO7 .
Mux: M_3 a, inputs:R 29 R 23 R 05

R29 R23 R29 R29 R29 R29 ROS5 R23 ..
Mux: M_3 b ,inputs:R_12 R_19

R 12 R_19 R 12 R 19 "R 19 R 12 R 19 R_19 ..
Mux: M_7 a,inputs:R_08 R_07 )

A R 08 ./ RO07 RO07 RO07 RO08 RO07 ..
Mux: M_7_b,inputs: R 06 R 02 R_13 R_21

A R_06 ./ R02 R 13 R.13 R21 R 13 /.
Mux: M_10_a, inputs: R_21 .

R2t R21 R21 ./ R21 R21 /. A A
Mux: M_10_b, inputs: R_17 :
R 17 R_ 17 R_17 . R 17 R_17 /. A A
Mux: M_11_a,inputs:R_19 R 05 R 06 R_20

A R_ 19 . R05 R06 R20 ./ J. A
Mux: M_13 a,inputs:R_23 R 06 R_29

A. R23 R23 R23 R06 R29 R29 . g
Mux: M_15 a,inputs:R_19 R 02 R 08 R 12

A R19 R02 R08 R08 R 19 R 12 ./ A
Mux: R_02_a, inputs: /O M3 M15 MM

/O - M3 MA15 M15 M 11 M_15 L A
Mux: R_05_a, inputs: M_7

A A M7 M_7 A M7 L
Mux: R_06_a, inputs: M_10

A M_10 ./ A A A M_10 /. A
Mux: R_07_a, inputs: I/O M_13

/0 A M_13 /. M_13 /. A M_13 /.
Mux: R_08_a, inputs: M_3 M_7 _

A M3 L A A M7 ] A M_7
Mux: R_10_a, inputs: M_11

A . M_11 /. M 11 ./ M_11 /. A
Mux: R_12_a, inputs: I/O M 10 :
f{e] J. A M_10 /. A A J. A
Mux: R_13_a, inputs: I/O M_13

I/O g A M_13 /. M_13 M_13 /. A
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Mux: R 17_a, inputs: I/O M_2

Ie] A M2 / M2 /. A M_2
Mux: R_18_a, inputs: /O M_15 : '

IO A M_15 /. A. M_15 /. M_15 /.
Mux: R 19 a, inputs:M_ 2 M 10 M_7 :

A M2 M0 .. /. M.10 M7 M2
Mux: R_20_a, inputs: M_3

J. A A A M3 L A M3
Mux: R_21_a, inputs: /1O M 1 , :

IO o M1 L A M1 M1 M1
Mux: R_23_a, inputs: M_1 '

A M1 M1 M1 L AN M_1
Mux: R_29_a, inputs: /1O M_3

/O A A M3 ./ M3 M3 ./ M_3

HHHHRHAHRHAHREHEH Datapath netlist #HHEHEHBRHAEHBHARHBAHE

M 1 a R13 RO05 R 10
M 1 b R_02

M 2 a R_18

M 2 b R 07

M 3 a R29 R23 RO05

M 3 b R 12 R_19

M7 a R 08 R 07

M 7 b R06 RO02 R 13 R_21
M_10_a R_21

M_10_b R_17 .

M 11 _a R19 RO05 RO06 R_20
M 13 a R23 RO06 R29
M 15 a R19 RO02 RO08 R 12
R 02 a IO M3 M15 M_11
R_05_a M_7

R 06_a M_10

R 07_a I/ M_13

R 08 _a M3 M7

R_10_a M_11

R 12 a o M_10

R 13 _a o M_13

R 17_a 1o M2

R 18 a 10 M_15

R 19 a M2 M10 M7

R 20 _a M_3 , .
R 21 a 1o M1

R 23 a M_1

R 29 a o M3

Listing A3.3 can be explained in a similar way than Listing A3.2, the main difference
is the number of csteps (columns) in the listing. This is because of the different
schedule lengths of the designs, as shown in Figure 5.19 and Figure 5.20 (Chapter 5).
Graphical representations of the bindings and datapath netlist of Listing A3.3 were

also given in Chapter 5.
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Listing A3.3 Output file produced by PABCOM for DCT with o= 0.4

HHARRHAARAH#HHAR Module binding HHHBHEHHBHHRHHHRHE
#cs1  cs2 cs3 csd4 cs5 cs6 cs7
- Module:M_1
"N_23 N_19 /. N 64 N 70 N_78 ..
Module:M_2
g A A A A N_77 I
. Module:M_4
A A A A N 68 N_76 ./
Module:M_5 .
N 20 N_16 N_26 N_27 /.. N_73 /.
Module:M_7 )
N 22 N_18 /. N 69 N_71 N_79 ./
Module:M_8 '
A N.28 N 24 N 66. N67 N_74 ./
. Module:M_9
N 21 N_17 N_25 ./ N_65 N_72 /.
Module:M_10
A N_ 29 N_31 N30 ./ N_75 /.
Module:M_11 ‘
A N_ 50 N_48 N_62 N_38 .. A
Module:M_12
A N._ 56 N_58 N_52 N_34 /. A
Module:M_13 -
A N_54 N_46 N_32 N_36 .. A
Module:M_15
A "N_60 N_42 N_44 N_40 /. —

HHHHHHERHERHAAEE Register binding  HHHHEHHEHHHRHHHBHEHE
#cs1 cs2 cs3 cs4 cs5 csb cs7

Register: R 01

A A N_ 60 N_ 60 N_60 N_40 /.
Register: R _02

D5 D5 N_19 N_19 ./ N_70 ./
Register:. R_03

D2 D2 N_18 N_18 ./ N_71 N_79
Register: R 04

D 1 D_1 N_16 N_26 N_26 N_67 N_77
Register: R_05

D6 D6 N_17 N_48 N_52 N_34 ./
Register: R 06

D3 D3 NO56 N56 N62 N_68 N_76
Register: R_09

A g N.50 N_50 N_50 N_38 ..
Register: R_10

A . N_54 N_54 N_54 DN_36 ..
Register: R 11 B

A N 23 N_23 N_23 N_64 N_64 N_78
Register: "R_15
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D7 D7 [  N._46
Register: R_20

A N 22 N 28 N 24
Register: R 22

A A A A
Register: R_23

A A N_29 N_31
Register: R 24

D4 D4 N_58
Register: R_26

A N 20 N_20 N_20
Register: R_28-

A N_21 N_21 N_25
Register: R 30

Do DO ./ N_42

N_32
N_66

N_69

N_30

N_58
N_27
N_25

N_44

N_32

N_66

N_69

A
N_74
A

N_75

N_73

N_72

HIHHHHHEHAR AR Multiplexers ########ﬁ###ﬂ#######

#cs1
Mux:
R 30

Mux:
R_15

~ Mux:
A.

Mux:
Mux:
Mux:

Mux:
R_02

Mux:
R_03

Mux:
R_06

Mux:
R 24

Mux:
Mux:

Mux:
R 04

Mux:
R_05

Mux:

P E Jug PE RE RE

cs2 cs3 cs4
M_1_a, inputs: R_30
R_30 .. R_30
M_1_b, inputs: R_15
R 15 /. ‘R_15
M_2_a, inputs: R_28
A, A A

M 2 b, inputs: R_11
A A A
M_4_a, inputs: R_05
A A A

M_4_b, inputs: R_09

A J. Ao
M _5 a, inputs: R_02
R02 R02 R02
M_5 b, inputs: R_03
R 03 R03 R.O03
M_7_a, inputs: R_06
R 06 /. R_06
M_7_b,inputs: R_24
R 24 . - R_24

| 8 a, inputs: R_26
26 R 04 R 15

| 8 b, inputs: R_28
28 R_05 R_05

| 9 a, inputs: R_04
04 R 04 .

_9 b, inputs: R_05
_ 05 R 05 ..

| 10_a, inputs: R_11
11 R 23 R 04

cs5
R_15
R 30

R_05

R_05

R_06

R 22
R 24

R_04
R_10

R_05
R_05

R_O1

R_01
"R_09

R_05

R 23
A

cs6

R 15
R_05
R_zs
R 11
R_01
R_09
R_02
R_03
R_06
R 22
R_15
R_10
R_05

R_01

R_09

R_04
R_04

cs7

1.

181
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Mux:

M_10_b, inputs: R_20

A R20 R20 R_20
Mux: M_11_a, inputs: R_28
A R 28 R 28 R_11
Mux: M_12_a, inputs: R_20
J. R20 R23 R_23
Mux: M_13_a, inputs: R_20
A R 20 R 20 R_20
Mux: M_15_a, inputs: R_11
A R 11 R 26 R_26
Mux: R 01 a,inputs:M_15
A A M_15 /.
Mux: R_02_a, inputs: I/O
/O A M_1 .
‘Mux: R_03_a, inputs: /O
f{e] A M7
Mux: R_04_a, inputs: I/O
/1O A M5 M5
Mux: R _05_a, mputs: /1o .
/(0] A M9 M_11
Mux: R _06_a, inputs: /O
/O A M_12 /.
Mux: R 09 a, inputs:M_11
A A M_11 [
Mux: R_10_a, inputs: M_13
A A M_13 /.
Mux: R_11_a, inputs: M_1
J. M_1 A
Mux: R _15_a, inputs: /0
I{e] A A M_13
Mux: R 20_a, inputs:M_7
g M7 M8 M8
Mux: R_22 a, inputs:M_7
A A A A
Mux: R_23_a, inputs:M_10
A A M_10 M_10
Mux: R_24 a, inputs:l/O
1’0 J. A, M_12
Mux: R_26_a, inputs:M_5
A M5 /L A
Mux: R _28_a, inputs:M_9
A M9 M_9
Mux: R _30_a, inputs: l/O
T[] A J. M_15

A0 ~
N =

;U'JJ
NN

JJIJU
(oNe)

o b WW 00

JJIJJ
NN

~

(4]

- a a0
N

£ 22 2 =~ =~ ~
)

A

A
M_15
M_15

=l

R_20

A

HHHEBHHRHHEHAHHHHHHAS Datapath netlist mmmwwm

1 a R_30 R 15
1 b R 15 R 05
2 a R_28

§§§
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R26 RO04 R 15 R 10

R 28 R_05

R 04 R_01

R 05 R_09
R 23 R 04

R 20, R 23

R 05 R 01
R_09
R 02
R_03
R_06
R 24 R_22
R_11
R_20
R 28 R_11

R_11

Jﬁﬁﬁ)ﬁﬁﬁﬁﬁjwwwwwmjjﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ@@ﬁ&ﬁ
JJJ&&JJﬁJﬁﬁJJJJJJmMﬁﬂﬁﬁﬁﬁﬂﬁﬁﬁjjﬁzﬁ
MMMMMMMMMMMMMMMMMRRRRRRRRRRRRRRRRR




Appendix 4

Least Mean Square Error (LMSE) scheduler

- This appendix.provides a brief description of the LMSE scheduler [58], which is the
base for the power-aware time constrained scheduling algoﬁthm presented in
Chapter 4. Given a time constraint, the LMSE scheduler assigns operations to control
steps such that the cost of hardware resources is reduced. The LMSE scheduler is
based on the probability that a certain operation is to be scheduled into a specific
control step. This requires the determination of ASAP and ALAP schedules which
define the time frame [4SAP;, ALAP;] into which a particular operatioh (0;) can be
assigned. The probability of scheduling a particular operation (0;) into any control

step (cstep) is:

: :
: ASAP; <cstep <ALAP;
prob(o,,cstep) = ALAP, — ASAP, +1 (Ad.1)

0 otherwise
All calculated probability values are then used to create distribution graphs (DGs)

where values of operations having the same type are added such that:

DG(type,cstep) = ) prob(o,,cstep) | (A4.2)

iel,,,

where Iy, 1s a set containing indices to all operations of the same type. To optimise
the utilisation of functional units, it is neceséary_to assign operations to csteps such
that the maximum distribution values decrease and the overall DG is more balanced.
The LMSE scheduler achieves this balancing task by assessing DGs and the effect of
operation assignments upon it using a mean squére error (MSE) function approach,
as shown in 'Listing A4.1. The first step of the LMSE scheduler is to sort all DFG
operations in a list according to their mobility, i.e. low/high, increasing ASAP time

and decreasing number of succeeding nodes. When using the LMSE scheduler in the
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algorithm developed in Chapter 4, a new criterion is included to sort the DFG
operations, i.e. power consumption. Hence, the DFG operations are sorted in a list
according to their mobility, i.e. low/high, power consumption, increasing ASAP time
and decreasing number of succeeding nodes. This new sorted list gives higher
priority to schedule the most power hungry DFG operations and results in better

schedules in terms of resource requirements when compared to the original version.

Listing 4.1 Pseudocode of the LMSE scheduler

1 sort all operations according to operation mobility, ASAP time, number of successors
2 while there are unscheduled operations do

3 take the next operation out of the sorted list

4 for all csteps into which the operation could be scheduled do

5 assign the operation temporarily to the cstep

6 update time frames of preceding and succeeding nodes

7 calculate distribution graph for the modified data flow graph
8 evaluate the mean square ‘error function

9 end for

10 schedule operation into the cstep for which the lowest MSE value was found
11 update time frames of preceding and succeeding nodes

12 update distribution graph

13 end while :

The operation mobility calculated in Listing A4.1 is defined as:
mobility(o,) = ALAP, — ASAP, (A4.3)
and the group of low mobility operations is

Min _mob+ Max _mob
2 .
where O is the group of all operations and Min_mob and Max_mob are the lowest

| 0, = {0,. € OImobility(oi) < (Ad.9)

ow_mob
and highest mobility values of all operations respectively.
The next step of the algorithm (line 3) consists on taking out of the sorted list the first
unscheduled operation. Then, the operation is assigned to all valid csteps
j €[ASAP, ALAP] within its time frame. For each operation assignment to a cstep j,
modified distribution graphs DG/ (¢type, i) should be determined. These modified
distribution graphs are used in combination with an average value to evaluate the

mean square error (MSE) function:

N-1 .
MSE(,pe) = |~ 3 (DG, (tpesi) ~ 4VG,.) (A45)
i=0

type
where DG ’; (type, i) 1s the modified distribution graph for an operation assignment
into cstep j and N is the number of csteps in the schedule. AVGy,, is the average

value obtained from the original distribution graph using:
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1

N-]
> DG(type, i) (A4.6)
" type i=0
where My, is the theoretical number of csteps into which operations of this type can

be scheduled.

Since there is one MSE value for each operation type, all MSE values are added to

AVG,,, =

find an overall rate:

MSE(j) = 3 MSE(j,type) (Ad7)
type
Having determined the MSE values for all valid csteps (lines 4 to 9), the operation is

finally scheduled into the cstep that results in the lowest MSE value (line 10). This is
followed by adjusting ASAP and ALAP times of preceding and succeeding
operations (line 11) and updating the DG values (line 12).

A4.1 Conditional branches

To support scheduling DFGs that contain conditional branches, the LMSE scheduler
number all subgraphs consecutively, as shown in Figure A4.1. A subgraph is formed
by two or more parallel conditional branches. The branches within a subgraph are
assigned a unique two digit number: {subgraph, branch}. Having numbered
subgraphs and branches, the next step is to generate a set of DGs for each branch of
the DFG using equations (A4.1) and (A4.2). To obtain the DG for a particular
subgraph the DG values of all branches within the subgraph are combined using the -

following formula:

DG:ubgraph (j) = ieg'laiﬁes(DGi (.])) ' (A4.8)
where Branches is a set containing indices to all branches in a subgraph. Usually
there is more than one subgraph and to obtain DG values of the equivalent graph the

following equation is used

DGsubgraph (.]) = ZDGz (.]) (A4.9)

ieBranches

Nested conditional branches require that equations (A4.8) and (A4.9) are used
recursively. This yields finally a DG of an equivalent unconditional DFG which is

used by the LMSE scheduler.
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Conditional
branches ~-._

{1, 1}

Figure 4.1 Data flow graph with conditional branches [58]

A4.2 Multicycled operations

The LMSE scheduler [58] is also capable of scheduling DFGs with multicycled
operations. To achieve this, the probability and mobility equations need to ‘be
modified as follows. The single cycle probability value calculation (equation A4.1) is
modified to:

min(cycles,,cstep — ASAP, +1, ALAP, — cstep +‘1)
ALAPF, — ASAF, —cycles, +2
where the parameter cycles; refers to the operation multicycled length measured in

prob(oi,cstep) = (A4.10)

control steps.
The mobility calculation (equation A4.3) is modified to:

» mobility(o;) = ALAP, — ASAP, —cycles, +1 - (A4.11)
Equations A4.10 and A4.11 allow scheduling of multicycled functional units without
further modifications to the LMSE scheduler.
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