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This thesis addresses uncertainty in empirical remote sensing models. Specifically the 
empirical line method (ELM) for atmospheric correction of airborne remotely sensed data 
is examined. 

First, the pairing of the field and remotely sensed data for input into the regression 
model is considered. The typical approach to the ELM averages over all field measure­
ments in each ground target (GT). However, this approach is problematic since only a 
small number of data pairs are utilised in the regression modelling and this leads to a high 
degree of uncertainty in the regression model. The approach is also sensitive to sample 
size and to the use of sub-optimal GTs. Furthermore, the model is defined on a GT-sized 
support, whereas prediction is required on a pixel-sized support. These disadvantages 
were addressed by pairing the field measurements directly with the pixel-based remotely 
sensed data either using the point-pixel approach or block-pixel approach. The latter is 
favoured since it explicitly addresses the support issue, although both methods substan­
tially reduce the uncertainty in the regression model. It is recommended that at least 50 
and preferably 100 measurements should be obtained for each GT. 

Utilisation of the point-pixel and block-pixel approach is contingent on accurate po­
sitioning of the field measurements both relatively and within the image. The impact 
of positional uncertainty is rarely considered in the literature and this thesis quantified 
the impact of positional uncertainty on the outcome of the ELM. \Vhen a moderate level 
of positional uncertainty was introduced, this led to bias in the parameter estimates for 
the point-pixel approach, although this could be minimised by using a sample size of at 
least 50 and preferably 100 measurements for each GT. For the geostatistical block-pixel 
approach introducing positional uncertainty led to an increase in the variogram at short 
lags but did not, ultimately, affect parameter estimation for the ELM. 

Finally, adopting the point-pixel or block-pixel approach led to a regression model 
with heteroskedastic and spatially correlated residuals. However, these conditions are not 
handled in standard regression models. Hence a model that incorporates both weighting 
and spatial correlation was adopted. This was tested first with simulated data and found 
to yield unbiased estimates of all regression parameters, with the exception of the nugget 
variance. When this approach was applied to real data, it led to an increase in the 
uncertainty in the ELM. For the blue and green wavebands, this was manifested by an 
increase in the width of the confidence intervals. For the green and NIR wavebands, 
the predicted values were changed by up to 2% reflectance with confidence intervals in 
excess of 2% reflectance. Finally, it was demonstrated that spatial correlation may still 
be present in a random sample. Hence adopting a random sampling strategy does not 
obviate the need to model this phenomenon. 
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Chapter 1 

Introduction 

The aim of this thesis is to evaluate some of the major considerations that lead to uncer­

tainty in empirical remote sensing models, with particular attention being given to the 

spatial domain. Specifically, the empirical line method (ELM) for atmospheric correction 

of airborne imagery was evaluated. The ELM is an empirical, regression-based technique. 

The issues addressed are also important when empirical methods are applied in other 

areas of remote sensing and geographic information science (GIS). 

This chapter begins with a generic discussion of remote sensing models (section 1.1) 

and introduces the concept of uncertainty and related tenTlinology (section 1.2). This is 

followed by a brief overview of the key issues that will be examined. The thesis structure 

is then outlined. 

1.1 Remote sensing models 

A remote sensing model may be represented by three linked subsystems: a scene model; 

an atmospheric model; and a sensor model (Strahler et al. 1986). The scene model de­

scribes the form and nature of the matter and electromagnetic energy within the scene, 

together with their spatial and temporal components. Scene models may be either dis­

crete or continuous. In the former case, matter consists of discrete objects and energy 

fluxes. In the continuous case, energy and matter can be conceptualised as being contin­

uous in time and space. The atmospheric model describes the interaction between the 

atmosphere and the electromagnetic energy entering and leaving the scene. The sensor 

model describes how the sensor responds to electromagnetic flux incident on it. The ap­

propriate sensor model is dictated largely by engineering decisions made at the time of 

design and construction (Slater 1980). The output of the remote sensing system is an 

image model (Curran et al. 2000). 

Operational use of remote sensing demands that inferences are made from im.age data. 

Thus, inferences of the properties and distribution of matter and energy within the scene 

1 
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are made from the measurements that make up the image model. Such inference involves 

implementation of a remote sensing model. This will involve making assumptions about 

the scene, atmosphere and the sensor, even if explicit use, or reference to, these models is 

not made (Strahler et al. 1986). 

Remote sensing models are not necessarily used in an operational context. Models may 

also be used as prognostic tools where exploring, characterising and understanding the 

relationship between remote sensing measurements and the scene is the aim (Verstraete 

et al. 1996). 

From the above discussion, three purposes of remote sensing models may be established: 

1. Understanding, exploring and characterising relationships between remotely sensed 

measurements and the scene. 

2. Prediction or estimation of biological, chemical or physical entities from remotely 

sensed measurements. 

3. Integrating remote sensing models and measurements with models of environmental 

processes. For example, remotely sensed data n1.ay be used to drive or update 

ecosystem or weather prediction models. 

These three purposes are not mutually exclusive and, in many circumstances, there will be 

overlap among them. However, the last purpose lies outside the scope of the remote sensing 

model described above. It also lies outside the scope of the research conducted for this the­

sis. It is mentioned here for completeness since this activity is of great importance where 

remote sensing is applied in the environmental sciences such as glaciology (e.g., Bamber 

et al. 2000), ecosystems modelling (e.g., Wicks 2000, Shaw et al. 2000), hydrology (e.g., 

Bates et al. 1997, Burke et al. 1997), oceanography (e.g., Harmon & Challenor 1997, Sub­

rahmanyam et al. 2001) and atmospheric science (e.g., Rodgers 2000). 

Verstraete et al. (1996) distinguish between the properties of the scene that directly and 

indirectly influence the measurement. For example, the objective might be to predict 

biomass from radiance (the measurement). However, there is not a direct functional 

relationship between reflectance and biomass such that: 

Z = f(y) (1.1 ) 

where z is the measurement and y the variable of interest (in this case biomass). 

The measurement is affected directly by the geometric arrangement of the media (i.e., size 

and orientation of items with which the radiation interacts), the physical, chemical and 

biological properties of the media (e.g., pigment concentration) and by the atmosphere. 

These properties can be represented by the set of state variables, s. Therefore, at the 

most basic level: 

(1.2) 
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where s is the set of state variables (81, ... , 8 n ) needed to fully describe the physical state 

of the system. Thus, f(s) models the functional relation between the scene (and atmo­

spheric) components and the measurement and the variable of interest can be expressed 

as: 

y = g(s) (1.3) 

where g is a function that describes the relationship between the state variables and the 

variable of interest (y). Together, equations 1.2 and 1.3 demonstrate that there may 

not be a straightforward functional relationship between the variable of interest and the 

remotely sensed measurement. 

The above formalism provides a useful framework on which to develop the discussion. 

Models can be divided into two classes: deterministic and non-deterministic models. 

The inverse of a deterministic model (represented by equation 1.2) may be expressed as: 

(1.4) 

Most deterministic models are the physical models of the form discussed by Strahler 

et al. (1986) and Strahler (1994). These models have their roots in describing the 

physical interactions that occur. However, there are also deterministic empirical models 

where relationships are formed between variables (these may be formulated as in equa­

tion 1.1 or equation 1.2). The semi-empirical approach combines physical and empirical 

models (Strahler 1994). For example the bi-directional reflectance distribution function 

(BRDF) may be modelled as a weighted sum of a few empirical functions (the empirical 

component), where the functions are derived from physical approximations (the physical 

component) (Roujean et al. 1992). 

By contrast, non-deterministic models provide an empirical relationship between variables. 

In this context the model is formulated on the basis of relationships between variables 

using appropriate statistical techniques. However, the relationship is not deterministic. 

Thus, if the objective is to predict biomass from remotely sensed data, the simple, first­

order normal error regression model might be utilised: 

(1.5) 

where E: is an error term. This model is not deterministic, since there is no requirement for 

a functional dependence of y on z - rather z is used to account for the variance in y. ,80 , 

/31 and (J2 are parameters which are estimated using an appropriate statistical technique 

(see chapter 2). 

1.1.1 Estimation and prediction 

Some matters of terminology need to be considered. This is important since different 

disciplines often attach different terminology to similar procedures or the same terminol-
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ogy to different procedures. First, when adopting a statistical framework parameters and 

variables are clearly distinguished. For a given case parameters remain fixed or are drawn 

from a defined distribution (depending on whether a classical or Bayesian framework is 

adopted), whereas variables vary. This distinction is clear in equation 1.5. It is also clear 

in the model for a normal distribution, where the parameters are the mean and variance. 

This distinction often seems blurred in the literature on physical models. For example, 

leaf area index (LAI) might be described as a parameter, as is the case in the SAIL 

(Scattering by Arbitrarily Inclined Leaves) model of Verhoef (1984). This may not be 

appropriate, if we consider a statistical model of the type described in equation 1.5. How­

ever, the terms parameters and variables describe entities with respect to a given model. 

They do not describe the fundamental properties of the entity. In the SAIL model, LAI 

is fixed for a specific set of conditions. Thus, it is the viewing and illumination conditions 

that are the variables and it is consistent to regard LAI as a parameter. Under another 

set of conditions, LAI might be different, in the same way as ,80 and PI (equation 1.5) 

would change if the ambient conditions were changed. The value of the parameter may 

be determined by measurement, prior knowledge, or an estimation procedure. 

It is also necessary to define prediction, estimation and retrieval. In this thesis, estimation 

shall be used where the aim is to derive the parameters of a model. The term prediction 

shall be used where a new value is to be derived on the basis of a model where the appro­

priate parameters and variables are known or have been estimated. The term retrieval is 

common in the model inversion literature, where the aim is to derive the model param­

eters from inversion of the forward model (Goel 1989, Kimes et al. 2000, Rodgers 2000). 

Although this is widely regarded as appropriate and legitimate, in this thesis the term 

prediction or estimation is used as appropriate, according to statistical convention. 

1. 2 Uncertainty 

"Reports that say that something hasn't happened are always interesting to 

me, because as we know, there are known knowns; there are things we know 

we know. We also know there are known unknowns; that is to say we know 

there are some things we do not know. But there are also unknown unknowns 

~ the ones we don't know we don't know." Donald Rumsfeld, US Secretary of 

Defense, February 12, 2002. 

This statement won Secretary Rumsfeld the Plain English Campaign's 2003 "Foot in 

Mouth" campaign for a "baffling quote by a public figure" \ an award that, apparently, 

provoked outcries from academics and journalists. Indeed, it might be argued that Rums­

feld's statement covers the full range of uncertainty relevant to a range of disciplines 

including science, engineering, the social sciences, business and economics. However, he 

lSee: http://www.plainenglish.co.uk/footinmouth.htm 
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is guilty, perhaps, of placing crisp boundaries along a continuum ranging from complete 

understanding2 to complete ignorance. 

The concept of "known knowns" and "unknown unknowns" was developed (indepen­

dently) by Professor Paul Curran in his welcome address to the Uncertainty in Remote 

Sensing and GIS conference held at the University at Southampton in July 2001 and 

developed in his foreword to the associated book (Curran 2002). Here, Curran distin­

guishes between "measurement uncertainty" and "understanding uncertainty". In this 

context the term measurement is not confined to raw data, but may also be the output 

of a model whereas "understanding uncertainty" refers to uncertainty in understanding 

natural, social or engineering phenomena. The key point is that, paradoxically perhaps, 

it is necessary to know something about uncertainty in order to quantify it. Indeed, it 

may be possible to be uncertain about the level of uncertainty in a measurement or model 

output. 

This distinction between Curran's measurement uncertainty and understanding uncer­

tainty was made several decades previously by Knight (1921) who draws his widely cited 

distinction between a measurable uncertainty (risk) and an unmeasureable one (uncer­

tainty): 

"It will appear that a measurable uncertainty, or "risk" proper, as we shall use 

the term, is so far different from an unmeasureable one that it is not in effect 

an uncertainty at all. We shall accordingly restrict the term "uncertainty" to 

cases of the non-quantitative type. It is this "true" uncertainty, and not risk, 

as has been argued, which forms the basis of a valid theory for the divergence 

between actual and theoretical competition." p. 20. 

This quotation, whilst widely cited, is at odds with the more common definition of risk, 

which is a function of uncertainty and the consequences of the (uncertain) event occur­

ring (Adams 1995, Holton 2004). Since this thesis is concerned primarily with uncertainty, 

the issue of risk will not be considered further. 

The discussion has avoided providing a simple, non-circular, definition of uncertainty. 

Indeed, further review of the literature would further expand the use of the term. Hence, 

the decision has been made to retreat to a dictionary definition of "not being definitely 

known or perfectly clear". Specific terminology, such as bias, precision and accuracy as 

well as confidence and prediction intervals, will be used to quantify particular aspects of 

uncertainty and to qualify what aspect of uncertainty is being considered. 

Fisher (1999) considers three models of uncertainty for spatial data: error, vagueness and 

ambiguity. In this context, error may be attributed to deficiencies of the measuring device, 

natural variation and variation not accounted for by a model. This, Fisher (1999) asserts, 

2Strictly this should state "slightly less than complete understanding'· since scientific knowledge is 
never absolutely certain (Feynman 1988, May 2001). 
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can be accounted for using probabilistic approaches. Vagueness and ambiguity arise due 

to problems of classifying objects owing to the difficulty of making crisp distinctions 

(vagueness) or the difficulty of choosing between two or more alternatives (ambiguity). 

It is often argued that these forms of uncertainty are best dealt with by other, non­

probabilistic approaches (e.g., Fisher 1999, Regan et al. 2002, Elith et al. 2002, Helton et al. 

2004) - although this necessity is contradicted by O'Hagan & Oakley (2004)3. Ambiguity 

and vagueness are subsumed under the heading of linguistic uncertainty by Regan et al. 

(2002). Furthermore Foody (2003) distinguishes only two forms of uncertainty: ambiguity 

and vagueness and seems to subsume Fisher's (1999) error under the ambiguity heading. 

For the purpose of this thesis, which is concerned with the n1.odelling of continuous vari­

ables, the taxonomy of Fisher (1999) is most appropriate. Classification is not the topic 

of investigation, whereas quantification and, where possible, reduction of error is. Hence, 

a probabilistic statistical approach is adopted for this thesis. 

In the context of the objectives of remote sensing models outlined in section 1.1 three 

forms of uncertainty require investigation (Chatfield 1995): 

1. Uncertainty in the estimated parameters. 

2. Uncertainty in the input variables and predicted variables. 

3. Uncertainty in the model adopted. This may be termed structural uncertainty (Draper 

1995) or model inadequacy (O'Hagan & Oakley 2004) and arises because the model 

is inadequate for the phenomena under investigation. 

It will become clear that these three forms of uncertainty are interlinked. However, this 

categorisation is useful for discussion. 

When considering empirical models of the type described in equation 1.5, uncertainty 

in the regression coefficients can be described using a confidence interval or probability 

distribution. The former would be adopted within the Jrequentist (or classical) statistical 

paradigm. Frequentists regard the model parameters as having fixed, but unknown val­

ues. Under their interpretation, an event's probability is defined as the limiting relative 

frequency in a large number of trials. Hence, a 95% confidence interval means that, if the 

experiment was repeated multiple times it would be expected that 95% of the intervals 

would contain the true parameter (Neter et al. 1996). Conversely, the Bayesian does not 

believe the parameter to have a fixed value and begins by assigning a prior distribution to 

the parameter, which is then updated using the model and the data (Box & Tiao 1992). 

The resulting probability distribution can then be interrogated to yield, for example, a 

95% credible region. It may be noted that, if vague (uninformative) priors are used for 

3It may be noted that O'Hagan and Oakley are prominent statisticians, whereas the other authors are 
drawn from mathematics, science and engineering. Hence, they are, perhaps, tackling the problem from 
different standpoints and, arguably, with different vested interests. 
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Bayesian estimation then the 95% credible interval will be the same as the 95% confi­

dence interval. Despite the different interpretations, both provide a quantitative measure 

of uncertainty (\iVillink & Lira 2005). 

Difference in the value of the confidence interval and credible interval will arise when 

informative prior information is built into the estimation phase. Furthermore, even if 

no prior information is available there are situations where the Bayesian approach offers 

greater flexibility. This is because models can be built hierarchically and uncertainty in the 

model output at one stage can be propagated to the next level in the hierarchy (Diggle 

et al. 1998, Wikle 2003). An example of such a model is the Bayesian model-based 

geostatistical approach outlined in section 2.2.2.5. Most of the analysis undertaken in 

this thesis adopts a frequentist framework and confidence intervals are calculated. More 

limited attention is given to the Bayesian approach. 

Let us return to the use of confidence intervals or credible intervals as a measure of un­

certainty in the estimated parameters. For a given model structure, the width of these 

intervals will be affected by the residual variance and the sample size. The residual vari­

ance is affected by measurement error in the data, natural variability in the data and 

model inadequacy. In the context of spatial data, it will also be affected by the support 

of the data and its positional uncertainty (Dungan 2002). Further discussion of these 

latter two factors is given in chapter 2 with analytical work presented in chapters 5 and 6. 

Measurement error and traceability to standards has a long history of investigation in 

the field of metrology (Barford 1985), and there are national and international standards 

for quantifying measurement error (e.g., Taylor & Kuyatt 1994). Nevertheless, such is­

sues have received limited attention in remote sensing and the development of rigorous 

and traceable methodologies for calibration and validation of remotely sensed data is 

the objective of the UK Network for Calibration And Validation for Earth Observation4 

(NCAVEO) (Milton et al. 2004). This thesis focuses on issues surrounding spatial sam­

pling and modelling, rather than instrument calibration. The other two sources of error 

given above were natural variability and model inadequacy. Regan et al. (2002) argue 

that natural variability could be eliminated if it could be nlOdelled. However, this can 

be extraordinarily difficult and, in practice, it may be more efficient to model it as part 

of the error term (Armstrong 1998, Regan et al. 2002). Finally, in situations where the 

model can be linked to a functional process, it may be possible to validate the parameter 

estimates using independent data or the output from a physically based model. 

When considering predicted variables, uncertainty can be quantified through a prediction 

interval or probability distribution. The width of the prediction intervals will be affected 

by the same factors that affect the confidence intervals as well as the values of the predictor 

variable( s). It is feasible to have narrow confidence intervals, but very wide prediction 

intervals. Such a situation would arise where the relationship between the predictor 

variables and the dependent variables is clearly defined, but the magnitude of the residuals 

4NCAVEO: www.ncaveo.ac . uk 
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is large. In addition to interrogation of the prediction intervals the model residuals can 

be used to assess the validity of the model. For example. the residuals can be checked for 

independence and homoskedasticity. Furthermore, the predicted variable can be evaluated 

against a reference data set, such as an independent set of measured or simulated data. 

The final area of uncertainty listed above was model uncertainty. This arises when the 

model is inadequate for the data and phenomenon under investigation. It should be 

noted that, even given an approximately perfect model, there will be some uncertainty 

remaining. This is referred to in the engineering and risk assessment literature as aleatory 

uncertainty (Oberkampf et al. 2004). Aleatory uncertainty can be thought of as inherent 

uncertainty that cannot be eliminated. Accordingly, there will always be some residual 

variance due to measurement error, natural variability, uncertainty over support and 

position and model inadequacy. In contrast epistemic uncertainty can be reduced by 

adoption of models that represent more accurately the process under investigation. \Vhilst 

it might be argued that, in the limit, all uncertainty is epistemic in practice the distinction 

is a useful one (O'Hagan & Oakley 2004). 

There is an interesting twist to the above discussion on aleatory and epistemic uncertainty. 

A situation might be conceived where reducing epistemic uncertainty may actually lead 

to an increase in aleatory uncertainty. Indeed, this situation is demonstrated in chap­

ter 7, where the regression model is developed to take account of residual variability 

(heteroskedasticity) and correlation. However, the resultant confidence and prediction 

limits are, in some cases, wider than the case where these factors were not modelled. In 

this situation increased understanding of the underlying process has led to an increase in 

the quantified uncertainty. In the framework of Rumsfeld, Curran and Knight, reducing 

ignorance5 has led to an increase in the uncertainty estimated6 . If it is accepted that the 

revised model is a more correct representation of the process then this increased level of 

uncertainty must also be accepted. 

1.2.1 Accuracy, bias and precision 

This section introduces three key terms that are used for uncertainty analysis: accuracy, 

bias and precision. It seems self-evident that something that is accurate should have 

low error (Taylor & Kuyatt 1994). More specifically, it can be regarded as a composite 

term which is a function of bias and precision (Atkinson 1999a, Atkinson & Foody 2002, 

Dungan 2002). Mathematically, this is given as (Dungan 2002) (see Casella & Berger 

5Rumsfeld's unknown unknowns, Curran's understanding uncertainty and Knight's uncertainty (true 
uncertainty) 

6Rumsfeld's known unknowns, Curran's measurement uncertainty and Knight's risk (measurable un­
certainty) 
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(1990) p. 57 for details of the derivation): 

MSE(f)) E[(f) - y)2] 

E[{(f) y) + (y - y)}2] 

E[(f) - y)2] + E[(y - y)2] 

Var[f)] + (y _ y)2 

imprecision + bias2 

inaccuracy 

9 

(1.6) 

where f) is the predicted or measured value ofthe true value, y, and y is the sample average 

(expected value). Hence E[(f) - y)2] = Var[f)] is the variance of f) about the average. In 

statistics, the inverse of the variance is termed the precision. The value (y y) is the 

difference between the sample average and the true value and is termed the bias. Hence, 

accuracy is a function of bias and precision and for a measurement or model output to 

be accurate it must be both unbiased and precise. The level of accuracy required for 

something to be determined "accurate" is context dependent. 

Dungan (2002) notes that some authors (e.g., Maling 1989, Goovaerts 1997, Mowrer & 

Congalton 2000) equate accuracy with unbiasedness. Indeed, this was the definition pre­

sented to me during my undergraduate degree. However, this notion is rejected by Dungan 

(2002) on the grounds that it ignores random variability. It is rejected in this thesis also, 

in favour of the definition presented in equation 1.6. 

As discussed above, precision is given as the inverse of the sample variance, 8-2
: 

1 n 
A2 ,,",(A -)2 

(J' = --~ Yi - Yi 
n - 1 i=l 

(1. 7) 

Hence, as the variance decreases the precision increases. Alternatively, as the variance 

increases the imprecision also increases. The bias is given by the mean error: 

(1.8) 

Finally, accuracy is quantified by the mean square error (MSE): 

(1.9) 

the square root of which is commonly taken to yield the root mean square error (RMSE). 

These descriptive measures are useful and are widely used. However, they have their 

limitations. The 1\11E and the RMSE are not standardised, making it difficult to draw 

comparisons between predictions of variables with different means (Atkinson 1999a). This 
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can be addressed by providing the root mean square relative error (RMSRE), given as: 

RMSRE (1.10) 

A more fundamental limitation is that these measures provide single, global, values. Such 

global values may not be applicable across geographic space. A further problem relates 

to the difficulty of comparing predicted and reference data, and is discussed below. 

When measurements (or simulations) are made of biophysical properties it is generally 

difficult to define a true value. This may be due to error in the instrument or measure­

ment process or natural variation. Furthermore, different instruments and measurement 

techniques, that measure ostensibly the same entity, may actually measure different fun­

damental properties. This may be due to measurements being taken at different scales 

(Foody & Curran 1994b, Coops & Culvenor 2000), a problem which is apparent when soil 

hydraulic conductivity is measured (Paige & Hillel 1993, Reynolds 1994). It may also be 

noted that the entity commonly referred to as a measurement is often an abstraction, or 

result of a model (Reynolds & Zebchuk 1996). In remote sensing, radiance is often re­

ferred to as the measurement when, in fact, it is the output of the sensor model (Strahler 

et a1. 1986) (See section 1.1). Voltage is the fundamental property that is measured and 

a sensor model, based on engineering considerations, is used to transform voltage to ra­

diance (Slater 1980, Strahler et a1. 1986). A further abstraction is required to tranSfOrIIl 

radiance to reflectance. This discussion highlights two important factors: 

1. Measurements are not fixed, known values (although, in certain circumstances it 

may be appropriate to regard them as such). Therefore, there is no fixed value to 

compare predicted (or estimated) values to. This is contrary to what is implied by 

equations 1.8 and 1.9. 

2. When comparing variables (or parameters) predicted by a model to measurements, 

one needs to be sure that the same entity is being compared. 

The above discussion illustrates the care that needs to be taken when implementing the 

methods for evaluating model accuracy using the JvlE and RM SE. This issue is given 

further consideration in chapter 8. 

1.3 Aims and objectives 

The ELM is a regression model, similar to that described by equation 1.5. Under the 

ELM, remotely sensed pixel-based measurements of radiance are the predictor variable 

and ground-based measurements of reflectance are the dependent variable. Although con­

ceptually straightforward, problems arise to do with (i) standard practice, (ii) uncertain­

ties in the data and (iii) violation of the requirements and assumptions of the regression 
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model. In particular, the spatial aspect of these issues is considered. In the first case. 

standard practice in the implementation of the regression models leads to large uncertain­

ties in estimation and prediction. The reasons for this are discussed in section 3.2.3 and 

illustrated in section 5.1. The uncertainties in the data arise due to: 

1. Different approaches to pairing the remotely sensed and field data. 

2. Sample size and spatial sampling strategy. 

3. Positional uncertainty in the location of the field measurements. 

4. Spatial resolution of the remotely sensed imagery. 

and the problems with the regression model arise due to: 

1. Heteroskedasticity of the residuals. 

2. The data are not independent. 

The key issues to be addressed in this thesis are summarised as: 

1. Pairing of the field and remotely sensed data for input into the ELM regression 

model. This includes consideration of sample size and examination of procedures 

for ensuring that the variables input into the ELM are defined on an appropriate 

spatial support. 

2. Examining the effect of positional uncertainty in field data on results of the ELM 

regression model. 

3. Addressing the issue of heteroskedasticity and spatial correlation in the residuals 

from empirical regression models. 

In the context of the above issues the sample size and sample structure are also important. 

Sample structure refers to the layout of the sample. For example, data may be sampled 

at random locations in space or may be specified on a grid. In the latter case, there are 

various possible grid densities. 

1.4 Thesis outline 

This thesis is structured as follows: 

1. Chapter 1 provides a generic introduction to remote sensing models and the concept 

of uncertainty. The thesis is also outlined. 
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2. Chapters 2 and 3 review the methodologies and techniques that will be used through­

out the thesis. Chapter 2 covers aspatial and spatial statistical techniques and 

chapter 3 covers remote sensing with particular attention being given to atmospheric 

effects and atmospheric correction. Within this, the ELM is given specific attention. 

3. Chapter 4 describes the field site, data collection, data pre-processing and experi­

mental design. Summaries of the field data and image data are also presented. 

4. Chapter 5 focuses on the approaches for pairing the remotely sensed and field data 

for input into the ELM. This begins with discussion and analysis of current standard 

practice. Approaches that explicitly seek to match the support of the remotely 

sensed and field data are then covered. The issue of sample size is also considered. 

5. Chapter 6 focuses on uncertainties in the field data. Particular attention is given to 

positional uncertainty of the field data although consideration is also given to the 

interaction with sample size and pixel size. 

6. Chapter 7 considers problems with the regression model. In particular, the regres­

sion model, as implemented in chapters 5 and 6, takes no account of heteroskedas­

ticity or spatial autocorrelation in the residuals - thus violating standard regression 

model assumptions. Heteroskedasticity is addressed in this chapter. 

7. Chapter 8 summarises the analysis and highlights the most significant findings, 

giving particular attention to advice for practitioners. 

8. Chapter 9 provides a brief conclusion and suggests avenues for future research. 



Chapter 2 

Statistical models for remote 

sensing and GIS 

Statistical models are used to model empirical relationships between variables. Such 

models are developed using statistical techniques and it should be recognised that where 

relations between variables are found this does not imply causal mechanisms. However, 

under well formulated experimental conditions statistical techniques may be used to in­

vestigate causal mechanisms (Neter et al. 1996). Furthermore, an understanding of causal 

mechanisms may be useful and important when developing predictive models. 

Statistical techniques can be used to explore the relation between two or more variables. 

For example Atkinson & Emery (1999) used geostatistical techniques to explore the re­

lation between spatial structure and reflectance at different wavelengths. They proposed 

using such analysis to inform the design of field sampling strategies. Statistical models, 

when combined with other theoretical and experimental work, may aid in the development 

of our understanding of causal mechanisms (Curran & Milton 1983, Neter et al. 1996). 

Statistical models may also be used for prediction. Thus the value of the variable of in­

terest can be predicted given one or more predictor variables and estimated values of the 

model parameters (as derived from an experimental data set). Of key importance here is 

the existence of a suite of graphical and statistical tests (Neter et al. 1996) that can be 

used to (i) determine the appropriateness of the statistical model, (ii) test the significance 

of the model parameters, (iii) determine confidence intervals about the estimated values 

of the parameters and (iv) determine prediction intervals about the predicted value. Fur­

thermore, descriptive statistics may be used to compare predicted and measured values 

(Neter et al. 1996, Atkinson 1999a), where the measured values are not used in building 

the regression model. Most of the techniques described in this section are implemented 

in a classical framework, although Bayesian approaches are discussed briefly. 

Much remote sensing research is based on developing reliable empirical statistical models 

that can be used to make predictions of the values of surface biophysical properties on 

13 
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the basis of remotely sensed data (Verstraete et al. 1996). The data sets used in this type 

of work typically comprise field-based measurements of vegetation and soil properties 

and field spectroscopy data or airborne or satellite remotely sensed data (Curran & Hay 

1986, Verstraete et al. 1996, Coops & Culvenor 2000). The remotely sensed data may 

be used as raw digital numbers (DN) (e.g., Trotter et al. 1997) or may be processed to 

radiance or reflectance (e.g. Salvador & Pons 1998). Often the remotely sensed data are 

processed further to form an index that is then used in the model instead of the original 

measurements. Examples include the Red Edge Position (REP) (e.g., Jago et al. 1999) and 

the Normalised Difference Vegetation Index (NDVI) (e.g., Larsson 1993). Note also that 

the field data are often processed prior to model development. For example, measurements 

of tree dimensions may be converted to a measure of bionmss using empirically derived 

models available in the ecological literature (Curran & Hay 1986). 

2.1 Regression models 

In remote sensing, empirical statistical models are generally based on regression, or some 

development of it, although correlation models are also used. In this section, simple linear 

regression will be introduced first and more complex models will then be introduced. In 

particular, mechanisms for accounting for correlation and heteroskedasticity in the resid­

uals will be considered. The discussion will then be expanded to include the incorporation 

of spatial data. 

2.1.1 Linear regression 

Regression analysis serve three major purposes: (i) description and exploration, (ii) con­

trol and (iii) prediction (Neter et al. 1996). Exploration and prediction were discussed 

above. In the case of control, an objective might be to determine whether a new mea­

surement lies within prescribed confidence limits, specified on the basis of a computed 

regression model (Neter et al. 1996). 

In the simple case where there is one predictor variable, the model can be written as 

(Neter et al. 1996): 

(2.1 ) 

where: 

i 1, ... , n, 

Yi is the value of the response variable in the ith trial, 

Xi is the predictor variable in the ith trial and is a known constant, 
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(30 and /31 are parameters (also known as coefficients). Note that, whilst (31 is the 

coefficient of x, /30 can be thought of as the coefficient of a dummy variable which 

always takes the value 1. These coefficients can be thought of as the "y-intercept" 

((30) and "slope" ((31), 

Ci is the error (also known as the residual) and is a random variable. The ciS are 

independent and identically distributed (iid) (i.e., the error terms are not correlated), 

with mean E[cil = 0 and variance Var[cil = (J"2 for all i. 

Furthermore, it can be shown that: 

(2.2) 

and that Var[Yl is the same for all levels of x. Note also that any two responses, Yi and 

Yj are uncorrelated. Detailed discussion and proof is provided by Neter et al. (1996: 

pl1). Note that this proof is predicated on the case that Xi is a known quantity (i.e., 

Var[xil = 0) and, therefore, (31 and Ci are independent. 

The model given in equation 2.1 is a simple, first-order model. It is simple because it 

contains only one predictor variable and is first-order because it is linear in the predictor 

variables and linear in the parameters. Mathematically, it is straightforward to extend 

this to cover multiple predictor variables, although choosing which variables to include is 

more challenging (Neter et al. 1996, Ver Hoef et al. 2001). Non-linear models are more 

complex, but can also be developed (Sen & Srivastava 1990, Neter et al. 1996). 

For a sample of (Xi, Yi) pairs, point estimators of (30 and fh may be derived using the 

method of least-squares (LS). The method of least squares proceeds by minimising the 

sum of square errors (SSE)' given as 

n 

SSE = 2.:)Yi - ((30 + (31 Xi))2 (2.3) 
i=l 

Hence, the process of LS estimation can be conceptualised as adjusting the values of (30 

and (31 to minimise the SSE' This calculation may be performed using numerical search 

procedures. However, for many models (including the model given in equation 2.1), an 

analytical solution is available, as: 

b _ L:(Xi - X)(Yi - y) 
1 - L:(Xi - x)2 

(2.4) 

bo = ~ C~= Yi - b1 LXi) = Y b1 X (2.5) 

where the LS estimators of (30 and fh are denoted bo and b1 respectively. Note that it is 

also commonplace to use the circumflex to indicate an estimator (e.g., /30 and /31), This 

notation is also used in this thesis. By reference to the Gauss-Markov theorem it follows 

that the least squares estimators are unbiased and have minimum variance among all 
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unbiased linear estimators (Neter et al. 1996, p20). Hence: 

E[bol = Po 

where Yi is the point estimator of Yi, and: 

16 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where ei is the residual. Using least squares, the variance (0- 2 ) given in equation (2.2) is 

estimated as: 
"'( A)2 L.J Yi Yi 

n-p 
(2.10) 

where 8 2 is the estimator of 0-
2 and p is the number of model coefficients (two in the 

simple, first order model). 

The model given by equation 2.1 is limited, since it is not possible to set up interval 

estimates or make tests on bo, b1 , Yi or ei. To achieve this, an assumption needs to be 

made about the distribution of Ei. \Vhen the form of the probability distribution of the 

error terms (0- 2
) is known, estimators of the parameters Po, /31 and 0-

2 can be obtained by 

the maximum-likelihood (ML) method. Maximum likelihood estimation is very important 

and is discussed in more detail in section 2.1.3. 

The standard assumption that is made is that the error terms, Ei, are normally distributed. 

This gives rise to the normal error model: 

(2.11) 

which is as equation 2.1 but with the condition that the Ei ~ N(O, 0-2 ) and all other terms 

are as defined for equation 2.1. It should also be noted that, since Var[Yil = Var[Eil = 0-
2 

(from equation 2.2), the Yi are also drawn from a normal distribution. Under the normal 

error model the estimators of Po and PI retain the properties that they are unbiased and 

have minimum variance amongst all unbiased linear estimators. 

In reality, data never strictly conform to a normal distribution. However, in practice, this 

is found to be useful (Box & Tiao 1992, Neter et al. 1996). There are a range of factors 

that contribute to the residual variance and these tend to combine to form a normal 

distribution. Furthermore, hypothesis testing procedures are based on the t-distribution 

and tend only to be sensitive to large departures from normality. 

The normal error model provides a framework for evaluation of the appropriateness of a 

model and for establishing uncertainty in the model. In this context, diagnostic plots are 

highly valuable. However, it is also possible to set up interval estimates or make tests 
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on bo, b1 , Yi or ei. This is important since it provides a mechanism for examining the 

appropriateness of the model and for evaluating uncertainty in the model parameters and 

predictions based on the model. 

The variance of the bo and h (Var[bol and Var[b1D are estimated as s;o and S;l respec­

tively (for formulation see Neter et al. 1996). This makes it possible to test whether the 

parameters are significantly different from 0 using the t~test, for a user-selected confidence 

level. It also allows confidence intervals to be set, using the t distribution, whereby it can 

be shown that: 

(2.12) 

where 1 - a is the user defined confidence level (e.g., at the 95% confidence level 1 - a 

0.95) and n - p specifies the degrees of freedom (p is the number of parameters). The 

same procedure may be followed for boo 

The confidence band for the entire regression line can also be calculated. Following frOIl1 

this, prediction intervals for Yh given a new value of Xh can be determined using: 

Yh [t(l - a/2; n - p)lSpred ~ Yh ~ Yh + [t(l - a/2; n - p)lSpred (2.13) 

(2.14) 

Note that Spred incorporates two components: 

1. Var[Yhl (i.e. (72), which is estimated as s2 (see equation (2.10)). This is the variance 

of the distribution of Y at x Xh. This can be thought of as variability arising from 

the spread of the residuals. 

2. Var[Yh], which is estimated as S~h' This is the variance in the sampling distribu­

tion of Yh. This arises owing to variability caused by uncertainty in the slope and 

intercept of the regression line. 

In addition to the above statistics the coefficient of determination (R2) is widely used. 

This is a descriptive measure of the association between x and Y in the regression model. 

It is defined as follows: 
R2 = S S R = 1 _ SSE 

SST SST 
(2.15) 

here, S S denotes sum of squares. SST is the total sum of squares, S S R is associated with 

the regression and SSE is associated with the residuals (error), they are related as follows: 

(2.16) 

(2.17) 
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SST L (Yi - Yi)2 

SSR + SSE 

L (fJi - y)2 + L (Yi - Yi)2 

18 

(2.18) 

Hence, R2 provides a measure of the reduction of the total variation gained by use of the 

predictor variable and reflects the proportion of SST which is partitioned into SSR. In 

the case of a perfect relation SSE = 0 and R2 = l. The coefficient of correlation (R) is 

given by VJi2. 

It should be noted that R2 is simply a descriptive measure. It is not a formal test for the 

regression model and does not allow assessment of confidence intervals. This descriptor 

should not be used in isolation, but may be used in conjunction with other techniques 

when assessing utility of a regression model. Neter et al. (1996) note that Rand R2 are 

widely used but are subject to misuse and poor interpretation. In particular, a large R2 

does not necessarily indicate that accurate predictions can be made or that the regression 

line is a good fit and a low R2 does not necessarily indicate that the variables are not 

related. 

2.1.2 Matrix notation 

The regression model can also be expressed using matrix notation. This style is widely 

used and preferred by some authors. Indeed, matrix notation is more succinct and often 

more straightforward to interpret. 

In matrix form, equation 2.1 may be expressed as: 

y = pX+s (2.19) 

where p = (po, pdT, S = (Sl, ... , Sn)T, Y = (YI, ... , Yn)T and X is an n x 2 matrix where 

the first column is a column of Is and the second column is (Xl, ... , Xn)T. 

2.1.2.1 Estimating the regression parameters 

Using matrix notation LS- and ML-estimated regression coefficients are given as: 

which is algebraically equivalent to calculating the results of equations 2.4 and 2.5. 

The covariance matrix of b is then given as: 

C(b) s2(XTX)-1 

[ 
Var(bo) 

Cov(bo, bl ) 

Cov(b l , bo) 1 
Var(bI) 

(2.20) 

(2.21) 
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2.1.3 Maximum-likelihood estimation 

Maximum-likelihood estimation (MLE) is of great importance in statistical inference. To 

understand this, it is useful to begin by considering a probability density function (pdf) 

such as the normal distribution, which is given as: 

(2.22) 

where fL and a 2 are the mean and variance parameters respectively and x is some variable 

of interest. If fL and a 2 are known, then the probability density p(.) can be obtained for 

any given value of x. However, if there are several realisations of x but fL and a 2 are 

unknown then some method of estimating these parameters is required. This is achieved 

by recasting p( x) as L (fL, a 2
1 x). Whereas p( x) can be thought of as a function of x 

where fL and a 2 are fixed, L(fL, a 2 lx) can be thought of as a function of fL and a 2 where 

x = (Xl, ... , xnf is fixed. The objective of MLE is to establish the parameter values 

that are most consistent with the sample data. This is done by maximising the likelihood 

function: 

(2.23) 

In the context of the normal error regression model fL is replaced with fJi = Po + Pl xi, 

where y is the response variable and x now denotes the predictor variable. The likelihood 

is written as: 

(2.24) 

which is expressed in matrix form as: 

x,8f (y - Xp) ) (2.25) 

This approach is conceptually similar to least squares in that both LS and MLE both 

work by optimising a function. ,,\Then adopting LS, the SSE is minimised whereas with 

MLE the likelihood function is maximised. However, an important difference is that NIL 

estimation requires making an explicit distributional assumption - in this case the normal 

error model. As with LS, the ML function can be maximised numerically although, in 

many cases, analytical solutions exist. Under the normal error model the ML estimators 

of ;80 and ,81 are the same as the LS estimators (see equations 2.4,2.5 and 2.21). However, 



Chapter 2 Statistical models for remote sensing and GIS 20 

the ML estimator of (J2 is given as: 

n 
(2.26) 

Note that the LS estimator (equation 2.10) compensated for the loss of degrees offreedon1 

associated with estimating the regression coefficients (po and pI) by using n - p in the 

denominator. The ML estimator does not make this compensation and is known to yield 

a biased estimate. However, for large samples, this bias should be small. Nevertheless, 

the LS estimator of the variance is often preferred for this reason. Alternatively, the ML 

estimator can be adjusted for the degrees of freedom (Harris & Johnson 1996) 

For the types of model discussed so far ML estimation offers no practical benefit over LS 

estimation. However, ML does offer greater flexibility in more complex circumstances. For 

example, it does not restrict the user to working with normal distributions. Importantly, 

it also allows relaxation of the assumption that Ci ~ N(O, (J2), such that Ci rv A1V N(O, ~), 
where ~ is a covariance matrix and Jl.;IVN refers to the multi-variate normal distribution. 

The likelihood is then given as: 

1 ( 1 T -1 ) L(p, elY) = (27T)n/21~11/2 exp - 2 (y - X,S) ~ (y - Xp) (2.27) 

where e is a vector of parameters that parameterise ~. This relaxation of the iid require­

ment is useful since the residuals from a regression model may exhibit heteroskedasticity 

(i.e., non-constant error variance) and/or a correlation structure. This is not straightfor­

ward and is discussed in detail in sections 2.1.4, 2.2.2.4 and 2.4. 

Finally, it is often more convenient to work with log-likelihoods since this may simplify the 

algebra. This applies particularly to numerical maximisation and is used in subsequent 

analysis sections. Hence, the log-likelihood of equation 2.27 is given as: 

n 
l(p,ely) = -2log27T (2.28) 

2.1.4 Developing the simple linear model 

In many cases the simple linear model may prove to be inadequate. Most commonly, it 

is necessary to include more than one covariate to model variability in y, such that 

Yi ,80 + ,Sl X i,l + ... + Pp-1 X i.p-1 + Ci 

p-1 

Po + I.: PkXi.k + Ci 

k=l 

(2.29) 

where p is the number of model coefficients and p - 1 is the number of predictor variables. 

Models with two or more predictor variables can be expressed in matrix form using the 

same format as for models with one parameter (equation 2.20). 
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Further modifications to the regression model may be made to account for non-linear 

relationships and non-normally distributed residuals. This lies outside of the scope of this 

thesis, although discussion can be found in Neter et al. (1996) and Dobson (1990). 

In the context of this thesis, the following three issues are of particular interest. 

1. The error terms do not have constant variance (i.e., Var[ci] # a2] for all i). Hence, 

the residuals are heteroskedastic; 

2. The error terms are not independent. 

3. There is error in x. 

A common approach to the first situation is to weight the observations according the 

residual variance (an for that observation (i). If the a'fs are known this is straight 

forward. In practice, these are rarely known. Nevertheless, if the a;s are known up to 

a constant of proportionality, the a; can be written as (Sen & Srivastava 1990, Neter 

et al. 1996, Gelman et al. 2004): 

(2.30) 

where the i denotes a particular observation and a; is the variance of the error term 

associated with the ith observation. The Wi are weights attached to each observation 

and a 2 is the constant of proportionality which needs estimating. The "weights" are so 

called because observations with a high variance are "down weighted' in the parameter 

estimation (Sen & Srivastava 1990, Neter et al. 1996, Gelman et al. 2004). If the rela­

tive magnitudes of the a; are known, these can be used to provide the weights (Wi) in 

equation 2.30. The weights then form the elements of a diagonal matrix: 

w (2.31 ) 

° ° 
This matrix allows generalisation from Ci ~ N(O, a 2

), such that Ci '" MV N(O, a 2W). 

The regression coefficients are then estimated as: 

(2.32) 

which is often known as weighted-least-squares (WLS) (Sen & Srivastava 1990, Neter 

et al. 1996, Upton & Cook 2002). Next, a 2 is estimated as: 

'" w.(y yA;)2 s2 = L. 7 i , (2.33) 
n-p 
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Finally, the covariance matrix of /3 is given as 

(2.34) 

If the Wi are not known, they need to be estimated. There are various possibilities available 

here: 

1. Neter et al. (1996) provide various suggestions for predicting the Wi by modelling 

the residuals, ei, as a function of predictor variables Xi. This is based on the fact 

that e[ is an estimator of 0-;: (and leil and estimator of (Ji). For example, one of the 

following strategies might be adopted: 

(2.35) 

(2.36) 

The weights are then given as the inverse of s[, i.e., Wi = 1/ S[ and (J2 is modelled 

as the s2. Note that the Xi above could be replaced by another variable, including 

Yi or a variable not included in the regression model. In order to obtain the ei, one 

might begin with the residuals obtained from OLS and then iterate to obtain the 

new set of residuals. 

2. Neter et al. (1996) also note that, where replicate measurements are made at different 

levels of the predictor variable, these replicates can be used to estimate the weights. 

If a sufficiently large number of replicates have been obtained, then the weights can 

be estimated directly. Alternatively, the sample variances or standard deviations 

can be regressed against the appropriate predictor variable, as described above. For 

experiments, replicates can be included in the experimental design although for 

observational studies, near replicates may be used. A similar approach is suggested 

by Gelman et al. (2004), who advocate dividing the data set into batches of similar 

variance. 

3. Finally, it could be assumed that the weights are directly related to a third variable 

and treated as if they are known. 

The WLS approach is straight forward to implement and is covered in many statistical 

texts (e.g., Sen & Srivastava 1990, Gelman et al. 1995, Neter et al. 1996). In practice, 

specification of the weights is a difficult task and is glossed over in such texts. This is 

addressed in chapter 7. 

The second case refers to non-independence in the error terms with respect to x. Such a 

situation may manifest itself in the form of non-constant error variance. Neter et al. (1996) 

discuss non- independence of the error term when the data are collected in a sequence (such 

as time or space). Therefore, they suggest plotting residuals against the sequence index 
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(e.g. time, time order, distance). This procedure may highlight correlation between 

the error terms and space or time. It should be realised that autocorrelation along x 

is strictly different to autocorrelation along space or time. It may be appropriate to 

view temporal (or spatial) dependency as a missing variable which could be incorporated 

into the regression via equation 2.29 (Augustin et al. 1996). A better solution may be 

to adopt a model which explicitly deals with temporal (Neter et al. 1996) or spatial 

autocorrelation (Oliver & Webster 1986, Atkinson 1999a, Atkinson 1999b, Fotheringham 

et al. 2000, Lark 2000). If the spatial structure amongst the residuals can be established, 

then it is possible to generalise Ci ~ N(0,0"2), such that Ci rv MVN(O, :E). Following 

from this, equations 2.32 and 2.34 can be generalised to 

(2.37) 

which is often known as generalised-least-squares (GLS) (Sen & Srivastava 1990, Neter 

et al. 1996, Upton & Cook 2002) and the covariance matrix of ~ is given as 

(2.38) 

The covariance matrix, :E looks like: 

0"2 
1 0"12 O"ln 

0"21 0"2 0"2n 
:E 

2 
(2.39) 

O"nl 0 0"2 n 

where each off-diagonal element describes the covariance between two specified data­

points. The challenge in this case is establishing the structure of :E. Modelling of spatial 

structure will be discussed in detail in section 2.2. 

In addition to the cases described above, there are two further cases which are likely to 

be of particular interest in remote sensing. First, the situation where there is error or 

uncertainty in the measurement of Xi presents an important barrier to applying regression 

models in remote sensing (Curran & Hay 1986). The problem arises owing to the basic 

requirement that the error terms be independent of the predictor variables (Sprent 1969, 

Kendall & Stuart 1967, Curran & Hay 1986, Webster 1989, Neter et al. 1996). If the error 

in Xi is denoted 1]i, we have: 

(2.40) 

where Xi is the measured value of the variable and xi the true value. Combining equa­

tions 2.40 and 2.41 yields: 

Xi /30 + f31X:; + Ci 

130 + ,B1(Xi -1]i) + Ci 

130 + f31 x i + (ci - f31 17i) (2.41) 
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and it is clear that xi is not independent of the error term 

(1996, p165) for proof) . 
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Dealing with the problem of measurement error in x is a large topic (Sprent 1969, Kendall 

& Stuart 1967, Curran & Hay 1986, Fuller 1987, Webster 1989, Neter et a1. 1996, Fernandes 

& Leblanc 2005) which is dealt with briefly here. Sprent (1969) and Kendall & Stuart 

(1967) begin by postulating a functional relationship between x and x 

where yi and xi are not observable, but the random variables Yi and Xi are: 

They then impose the following restrictions: 

Ci rv N(O, 0";) and 1]i rv N(O, O"~), for all i; 

COV(ci,Cj) = COV(1]i,1]j) 0, i oF j: 

COV(ci,1]j) = 0, for all i, j. 

If the ratio A = 0"[,;2/0"1]2 is known, then lh can be estimated using l\lL as: 

/31 = 'L.,y{ - A'L.,X[ + y'{('L.,y{ - A'L.,X[)2 + 4A('L.,xiYi)2} 
2 'L., XiYi 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

where A = O";/O"~. Note that this formulation is achieved by setting the origin to x,y (i.e., 

Po is set to zero). 

The unbiased estimator of 0";, is then given as 

(2.47) 

Furthermore, procedures similar to those outlined in section 2.1.1 can be used to test 

whether Po # ° and /31 # ° and to set confidence intervals and prediction intervals. 

Further details can be found in Kendall & Stuart (1967). 

If A = 1, this is equivalent to minimising the variance perpendicular to the regression line 

which may be termed the principal axis (Webster 1989). Note that this differs from the 

oft-cited reduced major axis (RMA) (Webster 1989) approach. Under the RMA approach 

/31 = O"y /0" X and the regression line always bisects the angle between the regression of y 

on x and x on Y (Kermack & Haldane 1950, Curran & Hay 1986). The RMA is dependent 

on the relative magnitudes of the standard deviations of x and y, whereas the principal 

axis is dependent on the relative magnitudes of the errors in x and y. 
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The above issue is important in remote sensing, since regression is often used under 

conditions where there is measurement error in x (Curran & Hay 1986). For example, 

a regression relation may be developed between reflectance and biomass. However, the 

process of deriving reflectance and biomass introduces uncertainty into these quantities. 

Some researchers (e.g. Curran & Hay 1986, Larsson 1993) have aimed to deal with this 

problem by using modified regression procedures taken from the statistical literature (e.g. 

Fuller 1987). Salvador (1999) adopted a novel procedure for dealing with cases where 

there is uncertainty in the position of the field measurements in relation to the remote 

sensing measurement. This approach is based on incorporating variance in biomass into 

the predictive model. 

Second, there may be situations when prediction of i; for a measured value of y is re­

quired (e.g., Curran & Hay 1986, Trotter et al. 1997). Neter et al. (1996) provide a method­

ology for predicting i; and deriving confidence limits. However they also note that, "the 

inverse prediction problem has aroused controversy amongst statisticians" (p169), with 

some suggesting that inverse regression should be perfornled (i.e. x should be regressed 

on y). 

2.2 Spatial analysis 

As with regression modelling, spatial analysis may be performed with the objective of 

(i) describing, exploring and understanding a data set or (ii) prediction a process 

that is often referred to as spatial interpolation. Indeed, it is usual to undertake (i) 

before (ii). Remote sensing provides spatially referenced data. However, the spatial 

component of the data is often not utilised. The spatial component may be of great use 

for enhancing the information content in remotely sensed data (e.g., Ni et al. 1999, Lewis 

et al. 1999, Llewellyn et al. 2000), especially where the objective is to understand how 

the scene structure affects the remotely sensed measurement. The spatial component 

has also been used for designing efficient strategies for field sampling (e.g., Atkinson & 

Emery 1999), where the objective is to characterise the spatial variation on the ground, 

both at the small scale (e.g., at the sub-pixel level) and gaining wide enough coverage 

at the larger scale (e.g., to ensure that enough pixels are sampled). Finally, the spatial 

component may be of value for predicting some variable, where a remotely sensed image 

(and possibly some field data) provides the predictor variables (Atkinson et al. 1992, 

Atkinson et al. 1994, Ashton 1998, Atkinson 2000). 

Spatial analysis is based on the notion that all places are similar, but nearby places are 

more similar than distant places. This notion is attributed to Waldo Tobler and assigned 

the status of Tobler's First Law of Geography (Longley et al. 2005). The term spatial 

structure is used to describe the form of spatial association and may be quantified by the 

degree of spatial autocorrelation. The term spatial autocorrelation refers to correlation 

amongst instances of the same variable (hence "auto") realised at different locations (hence 
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"spatial") (Ver Hoef et al. 2001). 

There are two basic factors that may give rise to spatial autocorrelation (Augustin et al. 

1998). First, there may be apparent autocorrelation, whereby predictor variables that 

are not included in the regression model (they may not even have been measured) co­

vary with space (or time). Second, there may be true spatial correlation. An example 

of the latter case might be created by a gregarious animal that is present at a particular 

location not only because of the suitable habitat, but because others of its species are 

also present (Augustin et al. 1998). In other circumstances, it may be convenient and 

appropriate to treat apparent spatial (or temporal) autocorrelation as true autocorrela­

tion. For example, in the study presented by Atkinson (2000) it is intuitively sensible 

to assume that flooded locations will occur adjacent to other flooded locations, so it is 

reasonable to argue that it demonstrates "true" spatial correlation. It may be possible to 

address the problem of autocorrelation by including a measure of location (e.g. Eastings 

and Northings) as a covariate (e.g., Buckland & Elston 1993), by adding further pre­

dictor variables, or by adopting a method that deals explicitly with temporal or spatial 

autocorrelation (Augustin et al. 1996, Neter et al. 1996). 

Procedures for spatial analysis may be divided along four general categories (Burrough & 

McDonnell 1998, Heywood et al. 2006): 

1. Local or global. Global methods of interpolation use all the data in the region of 

interest to derive a model and provide predictions for the whole area. Local methods 

operate in a small defined area around the point (or area) of interest. This notion 

is developed in more detail below. 

2. Exact or approximate. Exact interpolators honour the data (i.e., they predict the 

measured value at locations where a measurement has been taken. Approximate 

interpolators simply predict based on the chosen model and estimated parameters. 

This might be visualised as the difference between the measured value and the regres­

sion line. These different approaches are partly a characteristic of the model chosen 

and partly a function of purpose. For example, trend surfaces are approximate inter­

polators and tend to produce smooth surfaces, whereas kriging is typically an exact 

interpolator. Further discussion with respect to kriging is given in sections 2.2.2.3 

and 2.2.2.5. 

3. Gradual or abrupt. These approaches are distinguished by the continuity of the 

surface, although this should not be a binary classification. 

4. Deterministic or statistical. Deterministic models give a prediction that is a Inath­

ematical or geometrical manipulation of the input data. Statistical models incorpo­

rate an explicitly probabilistic framework and allow a measure of uncertainty to be 

attached to each prediction. Statistical models are of primary interest in this thesis. 
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There are a variety of local models for spatial analysis. One approach would be to conduct 

a series of local analyses and then examine how various diagnostic features vary across the 

area of interest. This allows local regression analyses to be performed, and variation in 

parameter estimates across the scene can subsequently be examined and used for predic­

tion. This forms the basis of geographically weighted regression (GWR) (Fotheringham 

et al. 2000, Fotheringham et al. 2002). Other local methods include inverse distance 

weighting (IDW) , splines and nearest neighbour methods (Burrough & McDonnell 1998). 

Nearest neighbour methods include Thiessen polygons and Delaunay triangulation. A key 

attraction of local methods is that they account explicitly for local variation and hence 

may be used to account for non-stationarity. The concept of stationarity is discussed in 

section 2.2.2.1. 

Global models include trend-surfaces (Burrough & McDonnell 1998) and spatially autore­

gressive models (Atkinson 2000). Trend surface models are, essentially, regression models 

that use the location (Eastings and Northings) as covariates. These may be augmented or 

replaced by further covariates or an auto covariate (producing a spatially autoregressive 

model). The term "autocovariate" refers to the predictor variable (or some transformation 

of it) that has been measured or predicted at another location. 

In geostatistics, the spatial covariance (one variable) or spatial cross~covariance (more 

than one variable) is modelled explicitly. Thus, it is possible to model spatial vana­

tion in a variable using the variogmm or covariance function and to predict the value 

of the variable of interest at points where it is not sampled, by interpolation using 

the technique of kriging (one variable) or co kriging (more than one variable) (Isaaks 

& Srivistava 1989, Webster & Oliver 2001). A typical application of cokriging would be 

the prediction of some variable of interest on the ground (such as biomass), where that 

variable is sparsely sampled but where some other variable is intensively sampled (e.g. an 

image covering the area of interest is available) (Atkinson et al. 1992, Atkinson et al. 1994). 

Geostatistics was originally developed in the mining industry (Matheron 1963, Journel & 

Huijbregts 1978, Armstrong 1998) although it has also found wide application in the en­

vironmental sciences (Cressie 1993, Soares et al. 1996, Webster & Oliver 2001) including 

remote sensing (Curran & Atkinson 1998, Lark 2000) and geographical information sci­

ence (Burrough & McDonnell 1998, Lark 2000, Longleyet al. 2005). Geostatistics offers 

an advantage over conventional regression techniques since it incorporates explicitly the 

spatial component. 

The basic form of geostatistical and spatially autoregressive models is limited, since it does 

not account for local variation in the autocorrelation structure. The local analysis methods 

(such as GWR) do deal with local variation in the parameter values. However, they do 

not deal explicitly with autocorrelation or with cross~correlation. Spatially autoregressive 

models and geostatistical models tend to assume stationarity across the region of interest 

and hence constant autocorrelation structure. 

There is some vagueness as to whether geostatistical models are local or global. Geosta-
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tistical models are estimated using the entire data set and nlake some form of stationarity 

assumption (see section 2.2.2) so are clearly global models in these respects. However, 

when it comes to prediction (kriging) (see section 2.2.2.3) the model is typically applied in 

a restricted area around the point or block of interest. Furthermore, although the entire 

data set is used for model estimation, the maximum lag is often restricted by the user, 

rather than being the maximum lag in the data. In these senses, kriging might be said to 

be a local interpolation technique. This issue is explored in more detail in sections 2.2.2.3 

and 2.2.2.5. 

2.2.1 Scale and spatial support 

Scale is an important issue in remote sensing as well as GIS and other areas of spatial 

modelling. It impacts on a broad range of application areas including basic remote sens­

ing analysis (Aman et al. 1992, Raffy 1994), ecology (Jelinski & Wu 1996, Van Gardingen 

et al. 1997, Dungan et al. 2002), hydrology (Stewart et al. 1996) and human geogra­

phy (Fotheringham & Wong 1991, Martin 1996, Cockings & Martin 2005). However, the 

meaning of scale is multifaceted and merits some brief discussion here. Montello (2001) 

notes that there are three domains of scale: spatial, temporal and thematic (or attribute). 

In this section, focus will be given to spatial scale, although it will be shown that these are 

related. Dungan et al. (2002) conceptualises scale along three axes: phenomenon scale, 

scale of sampling (also measurement or observation) and analysis scale. It is feasible that 

the measurements may be obtained at a different scale from those required for analysis 

and may also be different from the scale of the phenomenon under investigation. Under 

such scenarios, careful consideration needs to be given to matching the scales (Foody 

& Curran 1994a, Heuvelink & Pebesma 1999, Montello 2001, Dungan 2002, Dorren & 

Heuvelink 2004). 

The term scale may be ascribed several different meanings (Dungan et al. 2002). A 

geographer will often think of scale in terms of the cartographic ratio which describes ratio 

of a distance on a map to that distance in reality. Hence, small (cartographic )-scale maps 

cover large areas and large-scale maps cover small areas. However, this definition is at odds 

with the more commonly understood notion of the word which tends to associate small­

scale with small things and large-scale with large things (Foody & Curran 1994a, Longley 

et al. 2005) a notion that is, more precisely, ascribed to the word extent. The term grain 

is often used to describe some property of the phenomenon or observations (e.g., the 

minimal elementary sampling unit) (Dungan et al. 2002). However, Dungan et al. (2002) 

notes a lack of consensus over the precise meaning of the word grain and recommends 

that it be substituted for a less ambiguous term or, at least, be strictly defined in a 

given context. The term resolution refers to the minimum unit that can be resolved and 

applies to the observations and analysis, rather than phenomena (Dungan et al. 2002). 

Finally, Dungan et al. (2002) provides the terms lag and support. Lag refers to the spatial 
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separation between unit phenomena or neighbouring sampling or analysis units. Support 

refers to the size and shape of the measurement unit. In this thesis, the concept of the 

support is most relevant and is discussed in more detail below. 

The support refers to the volume of the measurement of the property of interest (Journel 

& Huijbregts 1978, Armstrong 1998). For optical remote sensing applications it is suffi­

cient to think of the support as referring to the area rather than the volume, since there 

is no depth component (Dungan 2002). If measurements are made over two different sup­

ports using identical measurement techniques (i.e., the support of the measurement is the 

only component that varies), then the statistical properties of the two measurements will 

differ (Journel & Huijbregts 1978, Armstrong 1998). Consider two sets of measurements, 

one with small support, v, and the other with large support, V, which are acquired within 

a region, R. The dispersion variance of v within R is written D2(v, R). It will be found 

that D2(V, R) < D2(v, R). Higher order moments (such as skewness and kurtosis) may 

also change (Journel &: Huijbregts 1978). Therefore, the histogram of measurements on 

support v will differ from that on support V, although the arithmetic mean will be the 

same. Note that, at the limits, the small support v might be a point and the large support 

V might be the region, R. 

The situation may arise where data are available on support v, but are required on support 

V. This is the so-called change-of-support problem (COSP) (Cressie 1996). Where v is ex­

haustive (i.e., a census) then the change-of-support problem is relatively straightforward, 

since the mean (or some other property, such as the median) can readily be calculated. 

However, although the calculations are straightforward the implications of both the level 

of aggregation (i.e., the size of support V) and the zonation (i.e., the placement of the 

boundaries) are important. This is the so-called modifiable areal unit problem (MAUP), 

which is discussed below. Where v is a sample, it is necessary to interpolate onto a surface 

in order to be able to aggregate to support V. This is discussed in section 2.2.1.1. 

This change of support from v to V is often referred to as scaling up or upscaling (e.g., 

Stewart et al. 1996, Van Gardingen et al. 1997, Bierkens et al. 2000). Similarly, the 

change of support from V to v is often termed downscaling. However, Heuvelink & 

Pebesma (1999) are careful to distinguish between the term upscaling and aggregation. 

They apply the term aggregation to data and the process of aggregation is independent 

of any model that may subsequently be used. In contrast, they use the term upscaling to 

refer to the case where processes (or parameters representing processes) are up scaled from 

support v to support V. They cite the example of hydraulic conductivity, which is often 

measured over small soil volumes, such as sediment cores. However, such measurements 

cannot straightforwardly be aggregated to V for use in regional groundwater models 

since the parameter takes on a different meaning in the context of such a model. In 

this context, the method for upscaling is defined in the context of the model that will 

be used (Heuvelink & Pebesma 1999), and may be substantially more complex than 

straightforward aggregation (Wen & Gomez-Hernandez 1996). In this thesis, the terms 

aggregation (disaggregation) and upscaling (downscaling) will be applied according to the 
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definition given by (Heuvelink & Pebesma 1999), rather than using them interchangeably. 

Consideration of the support is important when different variables are combined in a 

model (Heuvelink & Pebesma 1999, Bierkens et al. 2000, Dungan 2002, Heuvelink 2002, 

Dorren & Heuvelink 2004). This is because a model that is developed for variables that 

are defined on one support may not be valid when the variables are defined on a different 

support. A further issue arises when a model is developed and parameterised on support 

v but the user requires the model output (i.e., predictions based on the model) on support 

V. This point is discussed in detail by Heuvelink & Pebesma (1999) who propose two 

alternatives (figure 2.1 (a)). The first is to aggregate the input variables from support 

v to support V and then to run the model (1 -----+ 2 -----+ 4). The second is to run the 

model first and then to aggregate (1 -----+ 3 4). This choice is important, because it can, 

ultimately, lead to different model outcomes. For a deterministic, error-free, linear model 

both routes will produce the same outcome. However, the outcomes will be different 

for non-linear models. However, where there is uncertainty in the model (or the data) 

different outcomes may be observed for both linear and non-linear models. The choice of 

which route to take depends largely on the support on which the model was developed 

and calibrated. However, many process models are based on theory which applies at the 

point support. Hence, for such models, Heuvelink & Pebesnl.a (1999) recommend running 

the model before aggregating (1 -----+ 3 -----+ 4). However, it may be noted that this route 

may not always be possible. For example, data may not be available at the point support 

or running the model at this scale may be prohibitively expensive. In such cases, an 

assessment of the impact of this choice is required (Aman et al. 1992). Dungan (2002) 

notes that the support issue has received limited attention in remote sensing. 

It is important to recognise that the situation posed in figure 2.1 ( a) applies only to the case 

where exhaustive spatial data are available. However, where field (rather than remotely 

sensed) data are obtained, the data set will, almost always, not give exhaustive spatial 

coverage. Hence an interpolation step is required to move from a spatial sample to a 

surface. This can be conceptualised as a cube (figure 2.1(b)) and the objective is to 

progress from location 1 to 8 in this cube. Since it is not possible to aggregate before 

interpolating, it is not possible to move through (3) or (4). This leaves three possible 

routes: 1 -----+ 2 -----+ 6 -----+ 8, 1 -----+ 5 -----+ 6 -----+ 8 or 1 -----+ 5 7 -----+ 8. The key difference between 

the first two pathways is whether interpolation should be performed before or after running 

the model. Heuvelink & Pebesma (1999) advocate interpolating before running the model. 

Their rationale is that the model output is a function of the various input data sets. Hence, 

by interpolating the model output less information is being exploited than if the model 

inputs are interpolated. Furthermore, for a spatial model that uses neighbouring values, 

it will be necessary to interpolate before running the model. This leaves a choice between 

the second and third pathways. The choice here will be dependent on whether the model 

is defined at the point or block support. 

The above discussion draws attention to a closely related issue, known as the modifiable 

areal unit problem (MAUP). The MAUP relates to the aggregation and zonation mecha-
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FIGURE 2.1: Possible routes from point-support data to block-support model output. 
Figure 2.1(a) is for exhaustive spatial coverage, whereas figure 2.1(b) gives the options 
where spatial coverage is incomplete and interpolation is required. Source: Heuvelink & 
Pebesma (1999) 
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nism employed when changing from smaller to larger supports (Dungan et al. 2002, Lon­

gley et al. 2005). This is illustrated in figures 2.2(a), 2.2(b), 2.2(c), 2.2(d). As mentioned 

above aggregating the small blocks will not change the regional mean, but may change 

the median as well as the histograms and higher order lTlOments. It may also change 

the spatial patterns that are observed. A similar effect may be observed when different 

zonation structures are implemented. This is demonstrated by the summary statistics 

presented in table 2.1. 

As well as affecting the univariate properties, the MAUP also has implications for mul­

tivariate modelling. Notably, multivariate models that are defined at support v may not 

be valid at support V. Furthermore, significantly different empirical relationships may 

be observed for different levels of aggregation and for different zonations at the same 

level of aggregation (Fotheringham & Wong 1991, Jelinski & Wu 1996). Indeed, Fother­

ingham & \Vong (1991) find their results "rather depressing in that they provide strong 

evidence of the unreliability of any multivariate analysis undertaken with data from areal 

units" (p1025). Cressie (1996) demonstrates that, in theory, the MAUP can be addressed 

by modelling explicitly the "geography". However, he also notes that, in practice, the 

mechanism for modelling geography is not clear. A phenomenon that is related to the 

MAUP is the ecological fallacy which states that predictions made from models built with 

aggregated data may not be accurate for individuals (Martin 1996). Indeed, this concept 

applies more generally and has been termed the "cross-level fallacy" (Montello 2001). 

The MAUP is most often associated with GIS (Longleyet al. 2005) and particularly with 

socio-economic applications (e.g., Fotheringham & Wong 1991, Martin 1996, Cockings & 

Martin 2005). However, its relevance in environmental sciences is also recognised (Jelinski 

& Wu 1996, Journel 1996a, Dungan et al. 2002). Research on the MAUP dates back 

several decades (e.g., Gehlke & Biehl 1934, Openshaw & Taylor 1979), but continues to 

be an active and challenging research area (Cressie 1996, Dungan 2002, Baveye 2004), even 

though the term MAUP is not always used (e.g., Aman et al. 1992, Raffy 1994, Heuvelink & 
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Lower Upper Standard 
Figure Minimum Quartile Median Quartile Maximum Mean Deviation 
2.2(a) 2 79 150 260 735 201 166 
2.2(b) 44 102 163 265 505 201 129 
2.2(c) 75 107 186 256 476 201 111 
2.2( d) 49 109 216 297 363 201 107 
2.2(e) 2 93 195 253 735 194 171 
2.2(f) 2 93 195 253 735 194 171 

TABLE 2.1: Table showing the summary statistics for the different arrangements of a 
hypothetical mining area shown in figure 2.2. 
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Pebesma 1999, Best et al. 2001, Crawley & Harral 2001, Dorren & Heuvelink 2004, Jackson 

et al. 2006). 

Finally, consideration of the support is important when the objective is to validate a model 

output against field data. For example, the remotely sensed data products are defined on 

pixel-sized support. However, field data gathered to validate such models may be gathered 

on substantially smaller supports. For example Wang et al. (2003) expresses concern that 

their field data (measured on a 1 m 2 support) used to validate their MODIS albedo 

product (defined on a 1 km x 1 km support) are defined on different supports. They 

use data from the Airborne Multiangular Thermal-Infrared Imaging System (AMTIS) 

(1.36 m spatial resolution) to provide an intermediate step to aggregate from 1 m to 1 km 

supports. 

2.2.1.1 Aggregation 

As discussed above, where exhaustive coverage of the variable is available aggregation is 

straightforward. This is demonstrated in figures 2.2(a) to 2.2(d), where the arithmetic 

mean is taken. However, this can be replaced with other quantities, such as the median 

or geometric mean, if required. However, the procedure may not be so straightforward for 

upscaling (\Ven & Gomez-Hernandez 1996, Heuvelink & Pebesma 1999, Bierkens et al. 

2000). Furthermore, the simplicity of the aggregation operation does not mean that there 

is no MAUP. 

For most non-remotely sensed data sets coverage is not exhaustive. It is typical to have 

taken some type of spatial sample. This sample must then be used to predict the ag­

gregated values. This situation is demonstrated in figure 2.2. Figure 2.2(a) shows the 

census, whereas figure 2.2( e) shows a sample. The objective is to predict the values of the 

2 m x 2 m blocks, the true values of which are given in figure 2.2(b). There are various 

possibilities for predicting figure 2.2(b) from 2.2( e). The ITlOSt straightforward is simply 

to use the one sample to predict the value for the larger block, as shown in figure 2.2(f), 

a procedure known as the "nearest neighbour" approach (Armstrong 1998, Burrough & 
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735 325 45 140 125 175 167 485 

540 420 260 128 20 30 105 70 

450 200 337 190 95 260 245 279 

180 250 380 405 250 80 515 605 

124 120 430 175 230 120 460 260 

40 135 240 35 130 135 160 170 

75 95 20 35 32 95 20 450 

200 35 100 53 2 45 58 90 

(a) 1 m x 1 m blocks 

476 299 256 216 123 136 258 360 

110 96 198 75 99 99 175 243 

(c) 1 m x 4 m blocks (mean of 1 m x 1 m blocks) 

(e) Sampled values for 1 m x 1 m blocks 

505 143 88 207 

270 328 171 411 

102 220 154 263 

101 54 44 155 

(b) 2m x 2 m blocks (mean of 1 m x 1 m blocks) 

311 238 

337 56 

294 220 

304 363 

212 268 

113 149 

26 149 

97 49 

(d) 4 m x 1 m blocks (mean of 1 m x 1 m 
blocks) 

735 260 20 105 

200 190 250 279 

124 240 130 260 

200 53 2 58 

(f) Predicted value for 2 m x 2 m blocks 

FIGURE 2.2: Diagram showing the grades (unitless) in a mining area on 1 m x 1 m 
(2.2(a)) and 4 m 2 blocks (2.2(b), 2.2(c), 2.2(d)). The 4 m 2 blocks represent the mean 
value of different zonations of four 1 m2 blocks. Figure 2.2(f) shows the predicted value 
of the 2 m x 2 m block based on sampling one of the values for 1 m x 1 m block (2.2( e). 
Adapted from (Armstrong 1998). 
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McDonnell 1998, Sadahiro 2000a, l\'1artin & Atkinson 2001, Longley et al. 2005). However, 

comparison of figures 2.2(f) and 2.2(b) shows that this approach can be inaccurate. Fur­

thermore, as shown in table 2.1, although the estimate of the regional mean approximates 

the true value, the standard deviation is over-estimated compared to the case where the 

true block values are used. Depending on the application, this inaccuracy mayor may­

not be unacceptable (Armstrong 1998). However, it begs the question of whether more 

accurate predictions can be obtained. 

There are two broad classes of approaches for aggregating from support v to support V. 

The first are design-based methods and the second are techniques based on interpolation. 

Design-based approaches are based on taking a random smTlple. The block (V) value is 

predicted as a weighted average of the sample values within the block, where the weights 

are given by the probability of any individual sample being picked. If the probability of 

picking all samples is the same, this is simply the arithmetic average. This method re­

quires that there is at least one sample per block (Heuvelink & Pebesma 1999) although, 

if the sample is too small, predictions may be inaccurate, as previously discussed. For 

larger sample sizes, the standard deviation can be calculated and the standard error of 

the estimate of the mean can also be calculated. Hence, the larger the sample size, the 

more accurate the block predictions will be. Design-based approaches have the advantage 

that they are conceptually simple and they are objective, in that they do not require any 

assumptions to be made about the spatial structure (Brus & de Gruijter 1997, Bierkens 

et al. 2000). However, as has been demonstrated, design-based approaches may be in­

accurate for small samples. In many circumstances, it Inay also provide an inefficient 

sampling technique that does not exploit knowledge about the spatial structure. Fur­

thermore, strictly it requires a random sampling technique which may not be feasible in 

practice (Bierkens et al. 2000). 

The second class of approaches work by interpolation onto a surface and then taking 

an average of the predictions that lie within the block, V. As discussed in section 2.2 

there are numerous methods available for interpolation. Geostatistical approaches are a 

common choice here (Heuvelink & Pebesma 1999, Dungan 1999, Bierkens et al. 2000). 

Such models are appropriate for non-randomly located data and utilise explicitly a model 

of spatial structure (Brus & de Gruijter 1997). As discussed later, the geostatistical 

approach of block kriging allows prediction onto a block with support V given input data 

on support v directly - that is the interpolation and aggregation steps are performed in 

one pass. However, if it is necessary to run the model on support v before aggregating, 

then it may be necessary to separate the interpolation and aggregation steps (Heuvelink 

& Pebesma 1999). Despite the advantages of geostatistical approaches it should be noted 

that they require an appropriately spaced large sample if the parameters of the spatial 

correlation structure are to be estimated accurately. Furthermore, there may be more 

subtle reasons why such approaches are not desirable, as discussed in section 2.2.2.6 and 

chapters 5 and 7. 

Finally, Bierkens et al. (2000) present deterministic methods as a possibility for situa-
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tions where geostatistical approaches are inappropriate. This involves using deterministic 

interpolation methods to predict onto a surface and then aggregating the predicted val­

ues that lie within V. For example, inverse distance weighting squared (IDW) could be 

used to predict onto a fine grid and an arithmetic average of the predicted points used 

to calculate the block predictor. Alternatively, Thiessen polygons could be drawn around 

the sample points and the weighted average calculated. The block value would then be 

given as a weighted average of all the points lying within the block where the weight is 

given by the proportion of V that the Thiessen polygon occupies. This is analogous to the 

areal-weighting method often applied in GIS (Fisher & Langford 1995, Sadahiro 2000b). 

Deterministic methods are straightforward to implement and can be used under circum.­

stances where there are insufficient or inappropriate data available to justify a design-based 

or geostatistically based approach. However, unlike these approaches, they do not provide 

any quantitative assessment of uncertainty. 

2.2.2 Geostatistics 

The term geostatistics has received some attention in previous sections. The objective 

of this section is to provide an outline of the geostatistical concepts that are most rel­

evant for this thesis rather than to provide a detailed theoretical review. Geostatistics 

was originally developed in the mining industry (Matheron 1963, Journel & Huijbregts 

1978, Armstrong 1998) and much of the literature that arose there is still widely used and 

referenced. However, geostatistics has also found wide application in the environmen­

tal sciences (Cressie 1993, Soares et al. 1996, \Vebster & Oliver 2001) including remote 

sensing (Curran & Atkinson 1998, Pardo-Iguzquiza et al. 2006) and geographical infor­

mation science (Salvatori et al. 1999, Lark 2000, Lark & Cullis 2004, ESRI 2004). Much 

of the research into and practice of geostatistics has been conducted by applied scien­

tists (e.g., Matheron 1963, Matheron 1965, Matern 1986, Journel & Huijbregts 1978, Isaaks 

& Srivistava 1989, Goovaerts 1997, Armstrong 1998, \Vebster & Oliver 2001) rather than 

statisticians. However, statisticians have also had a role in the development of geostatis­

tics (e.g., Cressie 1993, Harris & Johnson 1996, Diggle et al. 1998, Stein 1999, Cressie &, 

Kornak 2003, Banerjee et al. 2004). 

2.2.2.1 Random functions 

Observed values at a set of points, z(x), at locations x are considered as a realisation of 

a random function (RF) (also known as a random field or stochastic process), Z(x). This 

is analogous to a random variable (RV). A realisation of a random function is termed the 
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regionalized variable (ReV). This extension from individual variables to fields is encapsu­

lated in the theory of the regionalized variable, generally attributed to Georges Matheron 

(1963) (Oliver et al. 1989, Cressie 1993, Armstrong 1998, Webster & Oliver 2001). The 

random function is characterised by the joint distribution of its RVs where the spatial 

mean is termed the drift and is represented by the structural component (Journel & 

Huijbregts 1978, Armstrong 1998, Webster & Oliver 2001). 

·When data are realised from a RV, it is usual to obtain several data to make up a sample. 

This sample is then used to make inferences about the mean and variance (as well as 

higher order moments) of the population. In contrast, it is usual to obtain one ReV. 

Hence, in order to proceed and make inferences about the mean and covariance, an ex­

plicit assumption of stationarity of the RF is required (Webster & Oliver 2001). Strictly 

a RF is stationary if all its moments are invariant under translation. This requirement 

may not be met and cannot be verified from limited experimental data (Armstrong 1998). 

Hence, models have been developed on the basis of second-order stationarity which re­

quires constancy of the covariance function and specifies that the covariance depends only 

on separation and not on absolute position. 

Under second-order stationarity, the expected value is constant for all locations, x: 

E[Z(x)] = fL (2.48) 

and the covariance between any two points Xi and Xj is 

(2.49) 

Since, under second-order stationarity, the covariance is dependent on the separation 

h = Xi - Xj, equation 2.49 becomes 

Cov[Z(X, Z(x + h)] E[(Z(x) - l.l), (Z(x + h) - fL)] 

E[Z(x), Z(x + h) fL2] 

C(h) (2.50) 

where C (h) is the covariance at lag h. The function C (.) is variously known as a co­

variogram or covariance function (Cressie 1993) or autocovariance function (Webster & 

Oliver 2001). The correlation (or autocorrelation) function is then given as 

p(h) C(h)/C(O) (2.51) 

where C(O) is the covariance at lag 0, i.e., the variance (j2 = E[Z(x) - fLF 

The condition of second-order stationarity may be weakened further to give the intrinsic 

hypothesis, which is attributed to Georges Matheron (Matheron 1963, Matheron 1965) (see 

also Armstrong 1998, ·Webster & Oliver 2001). This assumes stationarity of the increment, 
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such that: 

and 

E[Z(x) - Z(x + h)] = 0 

Var[Z(x) - Z(x + h)] E[{Z(x) - Z(x + h)}2] 

2i(h) 
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(2.52) 

(2.53) 

where ~((h) is the semi-variance at lag h which, when plotted for different values of h 

gives the semi-variogram (now usually termed the variogram). The "semi" arises because 

the variogram is half the expected squared difference between two data separated by the 

lag h. 

Intrinsic stationarity applies under a wider range of situations than second-order station­

arity. For example, it can be applied where the mean varies over the whole region but the 

difference is approximately zero over relatively short lags (Webster & Oliver 2001) and 

under conditions where a covariance function does not exist (Armstrong 1998). Note that 

second-order stationary RFs are a subset of intrinsically stationary RFs. 

2.2.2.2 The (semi-)variogram 

The (semi-)variogram is the fundamental tool for geostatistics (Cressie 1990, Oliver et al. 

1989, Armstrong 1998, Curran & Atkinson 1998, Webster & Oliver 2001). It provides a 

tool for examining spatial structure and provides the basis for kriging. Kriging is used 

for spatial interpolation and is reviewed in section 2.2.2.3. The variogram can be used 

under more general circumstances than the covariance function (i. e., intrinsic stationar­

ity) (Cressie 1993, Armstrong 1998, Webster & Oliver 2001). Cressie also notes that, even 

under conditions of second-order stationarity, the variogram may be preferred since it can 

be shown to be less biased than the covariance function, particularly under conditions 

where any trend has not been fully modelled (Cressie 1993). 

For a spatially referenced data set, the variogram shows how different the values are as 

the separation between them increases. The vector that defines the distance and direction 

of separation is termed the lag and denoted by the vector h. The variogram was given in 

equation 2.53. If the RF is second-order stationary then the variogram is related to the 

covariance function, as follows: 

~((h) = C(O) - C(h) (2.54) 

A typical variogram is shown in figure 2.3 illustrating the three key parameters. These 

are the range (¢), the sill (also known as the total sill) (T2 + (j2) and the nugget (T2). The 

partial sill ((j2) can be calculated if the sill and nugget are known. In theory, the stochastic 
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FIGURE 2.3: Example of a (spherical) variogram illustrating the three major parameters: 
the nugget, sill and the range. Reproduced from Webster & Oliver (2001), p. 56. 
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process giving rise to the variogram should be continuous everywhere, including where 

h O. However, in practice, there is often a discontinuity as h -+ O. This discontinuity 

is called the nugget and arises because of a combination of (i) structured variance over 

lags shorter than the minimum measurement interval and (ii) random error attributable 

to white noise or measurement error (Cressie 1993, Webster & Oliver 2001). It is usually 

not possible to distinguish between these two effects and it can be difficult to estimate 

the nugget accurately (Cressie 1993). 

It is usual to distinguish between the sample and theoretical variogram. The term "ex­

perimental variogram" is widely used instead of "sample variogram". The term "sam­

ple variogram" is used in this thesis to avoid any confusion with scientific experimenta­

tion (Atkinson 1996). The sample variogram simply provides a way to plot the data and 

is defined as (Matheron 1963): 

(2.55) 

where Z(Xi) is the value at location Xi and N(h) is the number of pairs separated by 

lag, h. ,,\Then implementing this in practice it is common to specify a tolerance around 

the lag (the "bin"), especially where the data are not acquired at regular intervals. For 

two dimensional data, where the variogram may be calculated in more than one direction, 

it is also usual to specify an angular tolerance. Estimation of the sample variogram is 

sensitive to outliers, skew, sample size and sample spacing (Diggle et al. 1998, Webster 

& Oliver 2001, Diggle et al. 2003). Data may be examined for outliers and it may be 

possible to transform the data to ameliorate the effect of skew (Webster & Oliver 2001). 

To gain an accurate estimate of the variogram for a two dimensional field Webster & 

Oliver (2001) recommend using at least 100 observations although they suggest that using 

approximately 150 or 250 observations will give a more accurate estimate for isotropic and 

non-isotropic data respectively. They propose that using a larger data set will, in general, 
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not offer a major advantage relative to the increased effort required. Regarding sample 

spacing, this must reflect the spatial structure of the surface in order to allow accurate 

estimation of the variogram at short lags, as well as accurate predictions based on kriging. 

In addition to the considerations of outliers, skew, sample size and sample spacing it should 

be noted that the choice of bin and angular tolerance can affect the appearance of the 

variogram (Diggle et al. 2003). 

The sample variogram provides a subjective tool for exan1.ination of spatial structure. 

However, in order to quantify the nature of this structure it is necessary to fit a model. 

The estimated values of the nugget (T2) the partial sill ((}2) and the range (1;) quantify 

the spatial variation. It is standard practice to fit a variogram model to the sample 

variogram (Journel & Huijbregts 1978, Armstrong 1998, Webster & Oliver 2001), although 

this approach is criticised by Diggle et al. (1998) and Diggle & Ribeiro Jr. (2002). The 

basis for that criticism is discussed in section 2.2.2.5. 

Valid variogram models which may be fitted are sotimes referred to as authorised or valid 

models. Authorised models must be conditional negative semi~definite (CNSD) in order 

to ensure that the variances are not negative. Commonly used authorised models include 

the pure nugget model, the spherical model and the exponential model. The nugget model 

handles the case where there is no spatial structure. The spherical model is defined as: 

for h ~ 1;, 

for h > 1;. 
(2.56) 

This gives rise to a bounded variogram, since the range is finite. The exponential model 

is defined as: 

(2.57) 

At first sight, the exponential model appears to give an unbounded variogram, since the 

semi-variance continues to rise until h approaches infinity. However, it is classified as a 

bounded variogram since, in the limit, it approaches C(h) and the covariance function 

exists. Because the variogram continues to rise, it is usual to define an "effective" range, 

which is typically taken as the distance at which I equals 95% of the sill variance and is 

approximately equal to 3<;). It is acceptable to combine (or nest) authorised models. Most 

commonly the nugget model is combined with another model. 

It is common practice to fit an authorised variogram model to the sample variogram. This 

can be achieved by fitting the model by eye or by statistical fitting (Webster & Oliver 

2001). Statistical fitting can be achieved using ordinary (OLS) or weighted least~squares 

(WLS) (Webster & Oliver 2001) and is implemented in commonly used geostatistical 

packages including gstat (Pebesma & Wesseling 1998, Pebesma 2003) and geoR (Ribeiro 

& Diggle 2001, Ribeiro Jr. et al. 2003). The weights are based on the number of data 

points that are used to estimate the variogram at each lag, although this may be further 

modified to give larger weight to the short lags. The fitted model should be checked 
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by visual comparison to the sample variogram. Furthermore, different variogram models 

may be compared using cross validation (see section 2.2.2.3) (Cressie 1993, Webster & 

Oliver 2001) and the Aikaike Information Criterion (AIC) (Akaike 1973) is often used 

to compare models (Webster & McBratney 1989, \Vebster & Oliver 2001). In common 

with other information criteria the AIC allows comparison between models with different 

numbers of parameters and, therefore, levels of complexity (Webster & McBratney 1989, 

Kuha 2004). The AIC has two terms, one which decreases as the prediction accuracy 

increases and the other that increases as number of parameters increases. Hence, the AIC 

compromises between accuracy and parsimony. 

2.2.2.3 Kriging 

Kriging refers to a suite of geostatistical techniques for interpolating between spatial 

sample points. Kriging is based on a continuous stochastic model that describes the 

form of the spatial variation and is applied to predict at a new location (xo) given data 

collected at neighbouring locations (Xi). The spatial variation is described using by the 

variogram. There are several variants of kriging including ordinary kriging (OK) (where 

the mean is unknown), simple kriging (SK) (where the mean is known and assumed to 

be stationary over the region of interest) and universal kriging. Universal kriging will 

be developed in more detail in section 2.2.2.4. These techniques are all linear, although 

non-linear approaches also exist (Webster & Oliver 2001). In this section OK is described 

to provide a foundation that can be built on subsequently. 

Kriging gives the best linear unbiased predictor (BLUP) (Cressie 1990). It is "best un­

biased" because it minimises the error variance to give a mean residual of zero. It is 

"linear" because predictions are made using weighted linear combinations of the data. 

In the geostatistics literature, it is common to use "estimation" and "prediction" in­

terchangeably (Webster & Oliver 2001), hence kriging is sometimes described as the 

best linear unbiased estimator (BLUE). However, in this thesis the statistical conven­

tion (Cressie 1990, Cressie 1993, Neter et al. 1996) of using estimation to describe pa­

rameter estimation and prediction to describe prediction of new values of a variable is 

applied. 

For punctual kriging on the same support as the data, the predicted value is given 

as (Cressie 1990, Curran & Atkinson 1998, Webster & Oliver 2001): 

N 

Z(xo) = L AiZ(Xi) (2.58) 
i=l 

such that E[Z(xo) - Z(xo)] = O. The Ai are the kriging weights and sum to 1 and N is 
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the number of data observations in the region. The prediction variance is given as (]"J;;: 

(]"J;; E[{Z(xo) - Z(XO)}2] 
N N N 

2 L AiI(Xi, xo) - L L AiAj'"Y(Xi' Xj) (2.59) 
i=l i=l j=l 

where i(Xi,Xj) is the semi-variance between Xi and Xj and i(Xi,XO) is the semi-variance 

between Xi and xo). This function is minimised by defining an auxiliary function con­

taining a Lagrange multiplier and then setting the partial derivatives, with respect to 

the weights, to zero. This approach is described clearly by Webster & Oliver (2001) and 

elsew here (Olea 1975). This yields a series of optimal weights (AiS) that can be used to 

predict using equation 2.58. The kriging variance is then given as: 

N 

(]"2(xO) = L AiI(Xi, xo) + 'ljJ(xo) 
i=l 

where 'lfJ is the Lagrange multiplier. 

(2.60) 

This method can be extended to predict on a larger support, or block. Under this scenario, 

the predicted value for the block (B) is given as: 

N 

Z(B) = L AiZ(Xi) (2.61) 
i=l 

and the prediction variance is given as: 

N N N 

2 L Aii(Xi, B) L L AiAj/(Xi, Xj) - i(B, B) (2.62) 
i=l i=l j=l 

where i(Xil B) is the average semi-variance between the ith point and the block B (see 

figure 2.4 (a)) and is given by: 

(2.63) 

and i(B, B) is the average semi-variance between points within the block (x and X') (see 

figure 2.4 (b)) and is given by: 

- 1 r r ' , 
i(B, B) = IBI2 JB JB i(X, x )dxdx (2.64) 

Equation 2.62 is minimised in the same way as equation 2.59. This allows calculation of 

the prediction (equation 2.61) and associated block kriging variance: 

N 

(]"2(B) = L Aii(Xi, B) + 'ljJ(B) + ;Y(B, B) (2.65) 
i=l 
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FIGURE 2.4: Integration of the variogram (a) between a sampling point and a block and 
(b) within the block. Reproduced from (Webster & Oliver 2001), p. 151. 

For both punctual and block kriging, the equations can then be expressed in matrix form 

as: 

A), b (2.66) 

where, A is a matrix containing each ~((Xi' Xj), ). is a vector containing the kriging weights 

and a Lagrange multiplier and b is a vector containing {(Xi, xo). The kriging weights are 

then derived by as: 

(2.67) 

It is important to note that, since the kriging weights are based on the variogram, the 

kriging variance depends only on the variogram and the spatial separation of the data. It 

may also be noted that kriging is an exact interpolator and if prediction is performed at 

the location of a datum, that location is assigned a weight equal to one. A further point 

to note is that data that are close to the target location have greater weight than those 

that are far away. This highlights the fact that kriging is local (Webster & Oliver 2001). 

This has additional practical implications. First, only the locations close to the target 

carry significant weight which means that data that are far away may be disregarded 

without reducing the accuracy of prediction. This is of benefit computationally, since it 

reduces the size of the matrices that need to be inverted and reduces the risk of numerical 

instability (Pebesma & Wesseling 1998). If this approach is taken, care must be taken to 

ensure that data with relatively large weights are not omitted from the kriging system. 

Second, it means that the variogram needs to be estimated and modelled accurately 

at short lags, but inaccuracy at large lags can be tolerated, since it will not affect the 

kriging system. Hence, the notion of quasi-stationarity, whereby short-range structure is 

modelled but long-range structure is disregarded may be acceptable (Webster & Oliver 

2001). Third, kriging within a local neighbourhood makes it possible to account for local 

variations in the mean. Hence, in many circumstances it can account for non-stationarity 

of the mean (Goovaerts 1997). The points raised in this paragraph are widely regarded 

as acceptable in the practice of geostatistics. However, they are not without controversy 

as is discussed in section 2.2.2.5. 
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The accuracy of prediction can be assessed through the process of cross validation. Under 

this approach a datum, Z(Xi), is left out of the kriging system and its value is predicted 

at that location, Z(Xi). This procedure is repeated for each datum allowing comparison of 

the predicted and measured values. By extension, this approach also assesses the accuracy 

of the modelled variogram. Webster & Oliver (2001) give three heuristics. These are the 

Mean Error (ME) and Mean Square Error (MSE), introduced in equations 1.8 and 1.9 

respectively, and the mean square deviation ratio (M S DR), given as 

(2.68) 

If the model is accurate then the !vISE will equal the kriging variance and hence the 

MSDR will tend to unity. 

Finally, the conditional bias effect of kriging should be noted. Kriging smoothes and tends 

to over estimate at values of Z that are low relative to the mean but under estimates at 

high values. Kriging gives the "best linear unbiased predictor" (BLUP) but does not 

maintain the variance that was present in the original data (Dungan 1999, Webster & 

Oliver 2001). Hence, a kriged surface is not a possible reality. Conditional simulation 

is an alternative to kriging that maintains the variance that was present in the original 

data. It is discussed in section 2.2.2.6. 

2.2.2.4 Geostatistics and regression 

Previous discussion has treated geostatistical techniques separately from regression mod­

elling. However, geostatistical approaches can also be fralned in terms of the linear regres­

sion model. The previous sections have also used the conventional geostatistical approach 

of writing the RF as Z(x) and the ReV as z(x). To maintain commonality with the 

regression model, I now switch notation and replace Z with Y, which was used to denote 

the response variable throughout section 2.1. The location x is replaced with u, allowing 

x to be used to denote a predictor variable, as it was in section 2.1. This form of notation 

will be used for the remainder of the thesis. 

Consider first the equation for the linear regression model (equation 2.1). This can be 

re-written to indicate the location of each data point: 

P 

Y(Ui) ,80 + L Xi (ui),8k + E(Ui) (2.69) 
k=l 

In sections 2.2.2.1,2.2.2.2 and 2.2.2.3 /30 was the stationary mean and the second term on 

the RHS in equation 2.69 vanished. However, the second term does allow incorporation of 

further information. This information might take the form of a trend surface, where the 

xs are replaced with u, or additional covariates. The third term represents the spatially 



Chapter 2 Statistical models for remote sensing and GIS 44 

referenced residuals, which are likely to be spatially correlated. Utilisation of this approach 

for prediction may be referred to as Universal Kriging (UK) (Webster & Oliver 2001). 

Having estimated the vector (3 = ((30, (31, ... ,f3p ) and the variogram (or covariance func­

tion) of the residuals the value at a new location, Y(uo), can be predicted as: 

(2.70) 

where x(uo) are the covariates at location uo, ~ is the covariance matrix for the residuals 

from equation 2.69 and, ~o = (Cov[y(uo), y(udL ... , Cov[y(uo), y(un)lf. Hence, the 

first term on the RHS is the prediction based solely on the regression model and the 

second term on the RHS modifies this value according to the values of the residuals at 

nearby data locations. The prediction error variance (kriging variance) is then given as: 

which was presented in equation 2.60 in a different form. Equation 2.71 can be thought of 

as having three components. The first term is simply the error variance. The second term 

has a negative sign because, having measurements at neighbouring points reduces uncer­

tainty in the prediction. However, the third term has a positive sign because uncertainty 

in the estimation of ,8 acts to increase the uncertainty of prediction. If the measured 

values are very far from Uo (beyond the variogram range), then the second term in equa­

tions 2.70 and 2.71 will approach zero. If (3 is known a priori (as in simple kriging) and 

do not need to be estimated, the third term in equation 2.71 will be zero. 

The prediction equations presented in equations 2.70 and 2.71 require that both (3 and 

variogram (or covariance function) have been estimated. However, the estimation of these 

parameters leaves a "chicken and egg" situation. This is because (3 is estimated as: 

(2.72) 

which requires ~. However, the variogram is required in order to calculate the elements 

of ~ and the residuals from equation 2.69 are required to estimate the variogram. One 

approach to dealing with this is to begin by estimating f3 using OLS (which does not 

require ~) and to use the OLS residuals to estimate the variogram and therefore ~. 

This can then be input into equation 2.72 and used to calculate the GLS estimate of 

,8. This can be iterated until convergence. Often the OLS estimators of /3 are used 

in place of the GLS estimators since, although they are sub-optimal, they are often not 

substantially different (Pebesma & Wesseling 1998, Pebesma 2003, Hengl et al. 2004, Lark 

& Webster 2006). Hence gstat by default works with the OLS estimators, although 

the user can calculate GLS estimators if required. However, the matrix C(/3) (see also 

equation 2.38) will differ for the OLS and GLS estimators. 

The implementation described above involves calculating either a global mean (i.e., the 

second term in equation 2.69 does not exist) or a global model for the trend based either 
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on location or on a covariate. This approach is advocated by some researchers (Pebesma 

& Wesseling 1998, Diggle et al. 1998, Diggle & Ribeiro Jr. 2002, Diggle et al. 2003, 

Pebesma 2003, Lark & eullis 2004, Hengl et al. 2004, Lark & Webster 2006) and is 

implemented in the widely used gstat and geoR software packages. It is sometimes 

referred to as Regression Kriging (RK) (Knotters et al. 1995, Odeh et al. 1995, Hengl et al. 

2003, Hengl et al. 2004, Lark & Webster 2006). However, this is not the only approach 

available. It is common to distinguish between a trend on location (commonly known 

simply as a trend) and a covariate (commonly known as an "external drift") (Journel & 

Huijbregts 1978, Goovaerts 1997, Goovaerts 1999). This leads to kriging with a trend 

(KT) and kriging with an external drift (KED) respectively. For both KT and KED, 

Goovaerts (Goovaerts 1997, Goovaerts 1999) advocates estimating the variogram from 

data, y(u) that are not strongly affected by the trend or the drift. This variogram 

(or the associated covariance function) is then used in a system of kriging equations 

(solved using the Lagrange multiplier approach). Goovaerts (1997) recommends defining 

a local neighbourhood for kriging. Hence the kriging equations for KT and KED lead to 

local, rather than global, estimates of 13. Depending on the situation, this may be more 

appropriate than a global estimate. Indeed, KED or KT will give the same predictions 

as RK if a global neighbourhood is used. Finally, it may be noted that implementing RK 

requires that 13 is calculated explicitly whereas, for KT or KED, they are calculated as 

part of the kriging system (although they can be obtained if required). 

It should be noted that a trend can also be accounted for using OK whereby kriging 

is implemented in a local neighbourhood using a variogram that has been estimated for 

Y(u) rather than c(u). This is because prediction is local and, hence, can handle longer 

range non-stationarity. Goovaerts (1997) and Webster & Oliver (2001) note that this may 

be sufficient to account for a trend and shows greater parsinlOny than resorting to KT. 

However, Goovaerts (1997) notes that KT may be preferred if there is a trend within the 

local neighbourhood. 

Finally, Goovaerts (1997) (see also: Goovaerts 1999) presents simple kriging with varying 

local means (SKIm) as an alternative to KED. SKIm can be implemented for categorical 

or continuous covariates. In the former case, the mean varies locally according to the 

class. In the second case, the mean is given as a function of the covariates. This function 

could be a physical model or, more usually, a regression rnodel of the type presented in 

equation 2.69. Where a regression model is adopted SKIm is analogous to RK where the 

OLS (rather than GLS) estimates of 13 are used. 

2.2.2.5 Model-based geostatistics 

The discussion of geostatistics has, so far, focused on "classical" or "conventional" geo­

statistics. which has developed largely in geology and environmental sciences. Model­

based geostatistics (MBG) represents an alternative, but related, approach to geostatis­

tics. The term "model-based" emphasises that the approach is based on explicitly de-
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clared stochastic models and associated formal methods of statistical inference (Diggle 

et a1. 1998). There is considerable cross-over with the classical approach, although there 

are epistemological differences and practical differences. The approach is outlined below 

and this incorporates a discussion of the major differences in principle and practice. This 

discussion is important, given that this thesis focuses on uncertainty. This section draws 

heavily on the work of Diggle and co-workers (Diggle et a1. 1998, Ribeiro & Diggle 2001, 

Christensen & Ribeiro 2002, Diggle & Ribeiro Jr. 2002, Diggle et a1. 2003, Ribeiro Jr. 

et a1. 2003). Their material is clearly presented and they have also undertaken pioneering 

work concerning Bayesian approaches and general linear lTlOdels. Several other authors 

have undertaken research in a similar framework. For example, maximum likelihood (e.g., 

Cressie 1993, Harris & Johnson 1996, Gotway & Stroup 1997, Lark 2000, Ver Hoef 

et a1. 2001, Lark & Cullis 2004) and Bayesian (e.g., Omre 1987, Banerjee et a1. 2004) 

approaches are presented elsewhere. 

The MBG approach is described in detail by Diggle et a1. (1998) and Diggle et a1. (2003). 

MBG can be implemented using the geaR package for the R statistical programming 

environment (Ribeiro & Diggle 2001, Ribeiro Jr. et a1. 2003). The underlying model is 

given by: 

(2.73) 

where the sampling design is given by {Ui : 1,2, ... , N} and {Y(u) : u E R} is the 

measurement process. An underlying stochastic process, termed the signal process {S ( u) : 

u E R} is assumed, where Y(Ui) is often a noisy version of S(Ui)' Hence Zi describes the 

uncorrelated error and is not dependent on u. It will be shown that this is the same as 

equation 2.69. 

Prediction is often the key objective. The random variable T is denoted as the target for 

prediction given y which is a realisation of Y. The minimum mean square error predictor 

for T is given as: 

T = E[TJy] (2.74) 

which minimises: 

MSE(T) = E[(T - T)2] = Ey[Var(TJy)] (2.75) 

The above description makes no distributional assumption. However, it is usual to model 

S(·) is as stationary Gaussian process with: 

E[S(u)] 

Var[S(u)] 

p(h) 

Cov[S(u), S( U')] 

Corr[S(u), S(u' )] 

(}2p(h) (2.76) 

Furthermore, the conditional distribution of Y( Ui) given S(·) is normally distributed with 
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mean S(Ui) and variance 7 2 , i.e.: 

(2.77) 

which can also be expressed as: 

(2.78) 

where E N(0.7 2 ). Hence, 7
2 can be thought of as the nugget variance. The joint 

distribution of Y is multivariate normal: 

(2.79) 

where R is an N x N matrix where the (i, j)th element is p(llui - Uj II). In equation 2.78, 

(/2R + 7 2I is equivalent to the covariance matrix, ~, presented in the previous section 

and C(O) = (/2 + 7 2 
. Note also that jL need not be constant and can be modelled as 

jL j3X, where X may be location (i.e., modelling a trend) or a covariate, as discussed in 

section 2.2.2.4. 

The correlation function describes the smoothness of the process, S(·). Particular atten­

tion is given to the Matern (1986) class of models (Diggle et al. 1998, Diggle et al. 2003): 

(2.80) 

which is valid for ¢ > 0 and I'D > 0 and where K,,(·) denotes a Bessel function of order I'D. 

The exponential model (given in equation 2.57) is a special case where I'D = 0.5. This model 

is preferred (Diggle et al. 1998, Diggle et al. 2003) because of its flexibility and because 

it is mean square continuous or mean square differentiable (depending on I'D), making the 

function amenable to computation when likelihood-based methods are used (Diggle & 

Ribeiro Jr. 2002). However, other models, such as the spherical model, may be chosen. 

If the correlation model and its parameters are known, prediction may be performed at a 

new location, Uo: 

(2.81) 

with prediction variance: 

(2.82) 

where r is vector with elements ri = p(llui - uoll). Note the similarity between this 

equation and equation 2.71. However, this equation assumes that the mean, jL, is known 

hence the third term in equation 2.71 tends to zero. As before, this system can be extended 

such that jL = Xj3. 

Diggle et al. (2003) are critical of the standard approach of estimating the model param-
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eters (y2, (J2 and 9) by fitting a model to the sample variogram. First, they emphasise 

that the sample variogram is unstable, particularly at large lags, and is sensitive to the 

choice of bins. Second, they describe the conventional approach of parameter estimation 

as "ad hoc" and favour methods based on the likelihood, since they allow recourse to es­

tablished theory and practice in likelihood-based estimation. Notably, for large samples, 

likelihood~based methods are optimal, in the sense that they are minimum variance un­

biased. However, they do note that the optimality properties may be difficult to interpret 

for spatially correlated data (Diggle & Ribeiro Jr. 2002) and may lack robustness (Diggle 

et al. 2003). Furthermore, they can be computationally den'landing. Noting equation 2.79, 

the log-likelihood is: 

l(y; /3, y2, (J2, 9, rc) ex ~ {log 1(J2R + y2I1 + (y i3X)T ((J2R + y2I)~1(y - ;3X)} 

~ 10g(J2 + ~ log IVI + 2~2 (y - ,6XfV-1(y - ;3X) (2.83) 

where V = ((J2R + y2I) / (J2. The model can also be extended to include additional 

parameters to account for anisotropy. Maximisation of this likelihood proceeds as follows 

1. Select initial values for y2, (J2 and e. 

2. Re-parameterise to 1/2 = y2 / (J2 and set V = R+ 1/21. This re-parameterisation is for 

computational reason and yields a modified correlation matrix. A similar approach 

is adopted elsewhere (Cook & Pocock 1983, Harris & Johnson 1996, Lark 2000). 

Lark & Cullis (2004) adopt a slightly different re-parameterisation such that 1/ = 
y2/(y2 + (J2). 

3. The parameters can be thought of as comprising two groups. First, /3 = (;30, ... ,;3p)T 

defines the trend (or the mean). Second, e = ((J2, 1/
2,9 f defines the covariance 

function. 

4. Calculate /3 = (XTV-1X)-lXTV-1y as in equation 2.72. 

5. Calculate 0-2 , the ML estimator of (J as: 

,2 1 ( (J = - y 
n 

(2.84) 

6. Substitute /3 and 0- 2 into the log-likelihood. However, since this is now maximised 

with respect to /3 and 0- 2 , the third term on the RHS of equation 2.83 depends only 

on n. Hence, equation 2.83 reduces to: 

(2.85) 

7. Record and store the value of l*(1/2 , 9, rc). 

8. Return to Step 4 until equation 2.85 is maximised. 
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This approach is implemented by a range of authors (e.g., Cook & Pocock 1983, Mardia 

& Marshall 1984, Harris & Johnson 1996, Lark 2000). It is possible to choose between 

models, such as those with different numbers of ;3 parameters and those with different 

correlation functions, by comparing the log-likelihoods as well as other measures such as 

the AIC and BIC. 

Maximum likelihood approaches are known to lead to biased estimates of the variance 

parameters, a 2
, as discussed in section 2.1.3. This bias arises because these parameters 

are dependent on ;3 (Cressie 1993, Diggle et al. 2003, Lark & Cullis 2004). Note that a 

correction can be applied to the ML estimator of a 2 such that (Harris & Johnson 1996. 

Ver Hoef et al. 2001): 
na2 

(j2 = __ 
n-p 

(2.86) 

where p is the length of the vector, ,8. However, in simulation experiments Harris & 

Johnson (1996) still find (j2 to be biased. 

Restricted maximum likelihood (REML) (also known as residual maximum likelihood) 

has been proposed as a technique for reducing the effect of bias (Cressie 1993, Gilmour 

et al. 1995, Stuart et al. 1999, Diggle et al. 2003, Lark & Cullis 2004). This works by 

defining a new likelihood which is conditional on the parameters in;3. Following sonle 

algebraic manipulation the REML log-likelihood is given as (Stuart et al. 1999): 

(2.87) 

where 

Use of REML over ML is advocated by several authors (Cressie 1993, Smyth & Verbyla 

1996, Lark & Cullis 2004). However, Diggle et al. (2003) note that this applies par­

ticularly to small samples and that, in their experience it is more sensitive than ML to 

mis-specification of the trend. This is given further consideration in the analysis chapters. 

Following estimation of the parameters (e = T2, a 2 and ¢), prediction may be performed 

using kriging, as described in section 2.2.2.3. This "plug-in-prediction" approach mirrors 

that used in conventional geostatistics and in regression modelling more generally. The 

expectation and kriging variance do quantify uncertainty, but this is based on fixed es­

timators for e. Hence, a criticism that can be levelled at "plug-in-prediction" is that it 

does not account for uncertainty in the estimation of e. However, this criticism can be 

interpreted more generally as a criticism of classical statistics, which treats parameters 

as fixed unknown values. In comparison, Bayesian statistics allows for uncertainty in the 

parameter estimates (Gelman et al. 1995, Gilks et al. 1996). Diggle et al. (2003) note 

that failure to account for parameter uncertainty tends to give accurate point predictions, 

but tends to underestimate the prediction variance and may give inaccurate predictions 

of other properties, such as thresholds. Hence, they advocate use of a Bayesian paradigm. 
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Moving to the Bayesian inferential paradigm is advantageous, since it provides a natu­

ral means of formally incorporating prior information about the model parameters and 

because uncertainty in the model is incorporated explicitly into prediction. Consider 

the parameter vector e = (;3,T 2,0-2,c/J,K) Under the Bayesian framework (e.g., Gelman 

et al. 1995, DeGroot & Schervish 2002) the posterior distribution is given as: 

n(eIY) ex p(yle)n(e) (2.88) 

Posterior ex Likelihood x Prior 

where n(e) is the prior distribution of e and p(yle) is the likelihood, which might also be 

expressed as L(Yi e). The joint posterior predictor for T is then given as: 

p(TIY) = fe p(TIY, e)n(ely)de (2.89) 

The distribution p(TIY) may have an analytical expression or may be found by simulation, 

allowing calculation of measures such as the mean, variance or 95% intervals. The choice 

of priors is recognised as a delicate issue in Bayesian inference. It is mathematically and 

computationally convenient to chose a conjugate prior, since this leads to a posterior in 

the same family of distributions (DeGroot & Schervish 2002). In the MBG case, Diggle 

& Ribeiro Jr. (2002) have developed a system that requires choosing from a limited set 

of conjugate priors for ;3 and 0-2, but uses a uniform, discrete joint prior for (c/J, T2). The 

implementation is described as follows, for the case where 7 2 = 0, and c/J and K are fixed. 

The posterior density of e = CB,0-2)T (;3 is the vector of regression coefficients) is given 

as: 

(2.90) 

Posterior ex Likelihood x Prior 

where the conjugate prior for nCB, 0-21c/J) is the Gaussian~Scaled-Inverse-x2 (N X~cI)' 

which specifies priors for ,B and 0-2 as: 

n(;310-2, c/J) 

n(0-21¢) 

N(rnb,0-2Vb) 

X~cI (n(T2 , 8;2) (2.91) 

where X~cI is the Scaled-Inverse-x2 distribution. These are then combined in a hierar­

chical framework to yield: 

(2.92) 

This is conjugate when combined with the Gaussian likelihood function, giving: 

(2.93) 

where /3, V Sand 8 2 have analytical solutions (see Diggle et a1. (2003) for details) and n 
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is the number of data points. The predictive distribution is then given as: 

(2.94) 

which gives a multivariate i-distribution: 

(2.95) 

A possible non~informative prior is 1r(j3, (}21¢) = 1/(}2, in which case Vb = 0, n a 2 = ° and 

na 2 + n is replaced by n p. 

This can be generalised to allow for uncertainty in ¢: 

(2.96) 

where: 

(2.97) 

where Va and S2 are found from equation 2.94. 1r(¢) is discretised on a user specified 

range, and this is used to compute p(¢ly). This is then sampled from and the value of ¢ 

is attached to equation 2.90. Repeated sampling builds up the sample, 1r(j3, (}2, ¢Iy). The 

posterior predictive distribution is then given as: 

f(TIY) / / / f(Tly, 13, (}2, ¢)1r(j3, (}2, ¢ly)dj3d(}2d¢ 

/ / / f(Tly, /3, (}2, ¢)1r(j3, (}2Iy, ¢)dj3d(}2 f(¢ly)d¢ 

/ f(Tly, ¢)f(¢ly)d¢ 

which combines the uncertainty in ¢ with equation 2.94. 

(2.98) 

The above scheme can be generalised for the situation where T2 also needs to be estimated. 

This is achieved by applying the discretisation to a joint prior 1r( ¢, v2), where v 2 = T2 / (}2. 

This results in the same procedure as that given above, but the computational load is 

increased. 

The above discussion has drawn out both similarities and differences with classical geo­

statistics. These differences are summarised below. 

1. The MBG framework formally and explicitly states the theoretical and epistemo­

logical framework for estimation and prediction in a geostatistical setting. 

2. The MBG framework rejects the conventional approach of fitting a model to the 

sample variogram in favour of likelihood based methods (including Bayesian meth­

ods). Strong mathematical and statistical reasons are provided for this. However, 

likelihood based methods are not without their problems. First, they may lack 

robustness to outliers. Second, the spatial correlation means that the effective sam-
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pIe size is smaller than the actual sample size, and this may affect the optimality 

properties. 

3. There is no formal requirement for kriging to honour the data a point that contra­

dicts conventional geostatistical implementation described previously. Note that 

this depends on whether T2 is interpreted as measurement error or as micro-scale 

variation (Cressie 1993, Diggle & Ribeiro Jr. 2002, Diggle & Ribeiro Jr. 2006). If 

T2 is taken to represent micro-scale variation, then predicted points will honour the 

data. 

4. Under the model-based approach, the practice of restricting the neighbourhood for 

prediction is not regarded as being theoretically desirable, although it may have 

computational benefits. 

5. The Bayesian approach can be considered to have both practical and epistemological 

benefits. A pure-bred Bayesian might argue that this approach is de facto superior to 

the classical ML or REML approach. The benefits of the Bayesian approach can also 

be seen from a practical perspective, since they allow for construction of hierarchical 

models that incorporate uncertainty in parameter estimation into prediction (krig­

ing). Classical approaches do allow the analyst to account for uncertainty through 

calculation of the variance as well as confidence and prediction intervals. However, 

these approaches can break down in the spatial context since they are sensitive to 

biased estimation of ¢ (Harris & Johnson 1996) leading to inaccurate estimates of 

the prediction variance (Diggle et al. 2003). By contrast the Bayesian approach does 

allow uncertainty in estimation of all the model paran1.eters. However, it should be 

noted that this may not always be of benefit. As discussed in section 2.2.2.3 the 

(conventional) kriging variance only depends on the separation of the data points 

and the variogram model. If the objective is to isolate the effect of the sampling 

strategy for a given variogram model, then plug-in prediction would be acceptable. 

It should be recognised that the practice of fitting a model to the sample variogram and 

of restricting the neighbourhood for prediction allows the "conventional" geostatistician 

flexibility, which can be used effectively by a person who understands the data and the 

methodology. This is because they can choose to restrict the neighbourhood for predic­

tion and maximise the precision of the model fit at short lags, thus ignoring long range 

structure. This notion of "quasi-stationarity" is acceptable in many situations (Webster 

& Oliver 2001). Such ad-hoc methods may be justified where they improve the accuracy 

of prediction (Journel & Huijbregts 1978, Goovaerts 1997, Goovaerts 1999, Webster & 

Oliver 2001). The model-based approach denies this flexibility to the practitioner, be­

cause it does not fit in with the formal statement of the model. Hence, they will have 

to find other ways to reach the desired outcome. In the Bayesian context, the choice 

of priors affects both parameter estimation and prediction. In the procedure described 

above, this is particularly noticeable for T2 and ¢. The choice of the range over which 

1r(v2 , ¢) is discretised can have a large effect on the estimation of (3, T2, (J2 and cp. The 
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user may have information on measurement error that can be used to inform the choice 

of the range for v 2 . However, Diggle & Ribeiro Jr. (2002) and Diggle et al. (2003) provide 

no clear guidance as to how to determine the range for cp. It should also be noted that 

there is a computational trade~off between the range over which the prior is discretised 

and the denseness of the discretisation. This is because increasing the number of points 

in the discrete sample has an associated computational cost. The implication here is that 

the user can spuriously affect the parameter estimates through choosing an inappropriate 

prior or because the density of the discretisation is insufficient. The correct choice of prior 

may be difficult to justify and the results difficult to visualise. The latter arises because a 

variogram that is estimated by likelihood methods may, quite correctly, not resemble the 

sample variogram (Diggle et al. 2003, Lark & Cullis 2004). 

In summary, MBG does make a valuable contribution to geostatistics. Notably, it for­

malises the use of the model, allows incorporation of the Bayesian paradigm and allows 

uncertainty in parameter estimation to be incorporated into prediction uncertainty. How­

ever, it also brings disadvantages. First, there is no clear guidance for selection of priors, 

particularly for 7 2 and cp. Choices made here affect both estimation and prediction. Sec­

ond, it denies the conventional geostatistician his or her ad hoc tools without providing a 

clear alternative. The model~based geostatistician may regard this as a good thing, since 

they deviate from the model. Subject matter knowledge may be incorporated through 

the choice of variogram model, choice of prior and choice of any "add ons" (such as 

models to deal with anisotropy or non~stationarity), although mechanisms for doing this 

are not always clear. It should also be noted that the conventional geostatistician also 

places stringent requirements on the application of these ad hoc techniques. Notably, they 

must be shown to "work" in practice including in scenarios where economic stakes are 

high (Journel & Huijbregts 1978, Armstrong 1998). Finally the computational burden of 

implementing MBG may be greater than for conventional geostatistics. 

2.2.2.6 Stochastic simulation 

As discussed in section 2.2.2.3 kriging yields the best linear unbiased predictor (BLUP). 

Hence, a surface that is predicted using kriging will be smooth relative to the real sur­

face (Journel1996b, Goovaerts 1997, Atkinson 1999b, Dungan 1999). This can be thought 

of by analogy to a linear regression line. A prediction made using the regression model 

will lie on the "best fit" regression line, whereas the data used in the parameter estimation 

stage will be scattered about that regression line. 

A consequence of this smoothing is that relatively large values will tend to be under­

predicted and small values over-predicted. Furthermore, this smoothing is not uniform 

since the level of smoothing will be lower close to data points than it will be far from data 

points (Goovaerts 1997). A kriged surface will tend to have different second-order statis­

tical properties from the real surface and the original data. In particular, the histogram 

of predicted values will show a narrower range of values, hence the variance will be lower. 
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These differences in statistical properties mean that, although the kriged surface is an 

optimal predictor, it does not yield a surface that is a "possible reality". Even when 

accompanied by the associated map of the kriging variance, the kriged surface may not 

be suitable in many situations. These differences are classified by Dungan (1999), as 

follows: 

1. It may be necessary to make statements about a group of pixels, rather than about 

individual pixel values or locations. For example, one might want to estimate the 

probability of a group of pixels exceeding a particular value (Deutsch & Journel 

1998). 

2. It may be necessary to combine the predicted surface with data in another GIS 

layer. For example, the objective may be necessary to combine layers in an empir­

ical statistical model. If the layers are from kriged maps then the smoothing will 

influence the correlation between the layers. Furtherrnore, where the surface is to 

be used as an input into a physically based model (such as a hydrological model), 

using a kriged surface may give an unrealistic assessment of the range of possible 

model outputs (Heuvelink 1998, Atkinson & Tate 2000). 

3. A more extensive examination of uncertainty than that provided by examination of 

the kriging variance may be required. 

Stochastic simulation (also known as stochastic imaging (JourneI1996b)) aims to produce 

a surface that, whilst it is sub-optimaL does represent a possible reality. This is achieved 

by generating a surface that maintains the properties of the variogram (or covariance 

function) used to create it. It is usual to generate multiple realisations of the surface to 

explore different scenarios in the above contexts. 

Conditional simulation is undertaken by conditioning on data, whereas unconditional sim­

ulation does not require conditioning on data (Heuvelink 1998, Dungan 1999). However, 

both forms of simulation should aim to maintain the variogram properties. 

Dungan (1999) provides three classes of conditional simulation algorithm that are broadly 

reflected by other authors (Journel 1996b, Heuvelink 1998, Atkinson 1999b). These are 

1. Strategies based on adding the missing spatial variability "back in". This approach is 

based on adding spatially correlated variability, generated by unconditional simula­

tion, back to the kriged estimate. Algorithms include the turning band method (Journel 

1973) and approaches based on the Cholesky (or LU) decomposition (Scheuer & 

Stoller 1962, Johnson 1987, Davis 1987b, Davis 1987a). The turning bands method 

has the advantage of computational efficiency, but offers little flexibility and the 

simulations may contain artifacts (Dungan 1999). The Cholesky decomposition ap­

proach is widely used to generate correlated variables (Carsel & Parrish 1988, Ferson 

et al. 2004) but can be problematic in the spatial context owing to the potentially 

very large matrices. 
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2. Sequential approaches. This approach is based on Bayesian principles whereby a 

realisation is drawn from a conditional cumulative density function (ccdf) at a ran­

domly determined location, where the conditioning is on the observed data. This 

realisation is then added to the pool of data and a new location is then visited and 

the process repeated until a realisation of the full surface is generated. Sequential 

Gaussian simulation (SGS) requires assuming a normal distribution for the ccdf 

and is most commonly implemented. Indicator Simulation (IS) is based on similar 

approaches to Indicator Kriging (IK) that discretises the ccdf, rather than making 

distributional assumptions. 

3. Strategies based on optimisation. These strategies begin with an initial image which 

is then modified until target statistics (such as the variance or variogram) are met. 

An optimisation approach, such as simulated annealing, is used for this (Atkinson 

1999b, Dungan 1999). 

Sequential approaches are now, perhaps, the most widely used strategies for simula­

tion (Deutsch & Journel 1998, Heuvelink 1998, Atkinson 1999b, Dungan 1999, Bert­

erretche et al. 2005), although methods based on optimisation are also gaining inter­

est (Atkinson 1999b). 

It is usual to simulate multiple realisations of a given surface. These can be used in 

the contexts described above (Journel 1996a, Journel 1996b, Heuvelink 1998, Deutsch & 

Journel 1998, Atkinson 1999b, Dungan 1999, Berterretche et al. 2005). One possible use 

of simulated surfaces advocated by Dungan (1999) (described above) was as an input to 

physically-based or empirical-statistical models. However, it should be noted that the 

error that is added back to the kriged prediction to create the simulated surface is or­

thogonal (i.e., unrelated) to the predicted variable (Curran & Atkinson 1998, Deutsch 

& Journel 1998, Atkinson 1999b). Hence, Atkinson (Curran & Atkinson 1998, Atkinson 

1999b) recommends that conditionally simulated surfaces should not be used in regres­

sion, since the estimated parameters will differ from those obtained for the original data. 

Instead they recommend applying an adjustment factor to the regression coefficients to 

adjust for the variability lost through smoothing (Atkinson & Kelly 1997, Atkinson & 

Tate 2000). However, whilst this approach was shown to increase the accuracy of param­

eter estimation it was not conclusive. Hence, conditionally simulated surfaces will still be 

examined in this thesis. 

Finally, it may be noted that simulation algorithms have traditionally worked with the 

residual component of equation 2.69 (Pebesma 2003) and hence can be seen as the sim­

ulation equivalents of SK (see also: Deutsch & Journel 1998, Dungan 1999). However, it 

is also desirable to account for uncertainty in (3, as shown in equation 2.14 and discussed 

in the surrounding text (Pebesma 2003). 
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2.3 Positional uncertainty 

All previous discussion has made the assumption that, when spatial analysis is performed, 

the location of those measurements is known without error. However, knowledge of loca­

tion is central to the implementation of geostatistical and other forms of spatial analysis. 

It is also central to the implementation of regression where remotely sensed data and field 

measurements are combined in empirical models, since the field data must be combined 

with their spatially coincident remotely sensed data. The latter class of models includes 

the empirical line model for atmospheric correction, whieh is examined in this thesis. 

There are numerous other examples in remote sensing and GIS. For example, the objective 

might be to predict vegetation properties, such as green leaf area index (GLAI) (Curran 

& Williamson 1985) or biomass (Gao 2006). The development of such models is con­

tingent on being able to position accurately the field measurements within the image. 

However, despite its obvious importance, the likely effect of positional uncertainty has 

received only limited mention in the literature (e.g., Justice & Townshend 1981, Prince 

& Astle 1986, Larsson 1993, Oudemans et al. 2002, Gao 2006). Furthermore, examples 

of attempts to formalise and quantify this are few (Chiles 1976, Atkinson 1996, Chiles 

& Delfiner 1999, Salvador 1999, Gabrosek 1999, Gabrosek & Cressie 2001, Gabrosek & 

Cressie 2002, Cressie & Kornak 2003) 

In both the geostatistical and regression case error in loeational information typically 

leads to error in attribute information which ultimately affects estimation and predic­

tion (Gabrosek & Cressie 2001, Gao 2006). It is essential to distinguish between attribute 

uncertainty which is due to positional uncertainty and that which is not (such as measure­

ment error). This is because the attribute error that arises due to positional uncertainty 

will be cross-correlated with the underlying variables rather than being orthogonal to 

it (Atkinson et al. 1996, Atkinson 1996, Cressie & Kornak 2003). This holds even when 

the positional errors themselves have no spatial structure (Cressie & Kornak 2003). 

Consider a variable of interest, y(u). If there is error in u then the observed value of y, 

y* will be 

y* = y + 6 (2.99) 

where 6 is the attribute error associated with the positional uncertainty. Alternatively, 

this might be expressed as: 

y(u*) = y(u + () (2.100) 

where ( is the positional error, Following on from equation 2.99 it can be shown that: 

(2.101) 

where O"~ indicates the variance of y and O"yb indicates the covariance between y and 6. 

However, since both y and y* are realisations of the Salne underlying population it is 
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(2.102) 

Hence there is a negative covariance between y and 6. This result is demonstrated inde­

pendently by Atkinson (1996) and Salvador (1999). Importantly, the fact that (T~ (T~* 

means that positional uncertainty should make no difference to the sample variance and, 

for bounded variograms, the variogram sill. The relationship shown in equation 2.101 can 

also be expressed in terms of variograms: 

(2.103) 

where Iy is the cross variogram between y and 6 and h is the lag. Hence, for h < cp (the 

range of spatial variation), Iy*(h) =1= Iy(h); indeed it is expected that Iy*(h) > ~fy(h). 
In other words, in the presence of positional uncertainty, it is to be expected that the 

variogram will be over-estimated for h < ¢. Hence, the apparent strength of the spatial 

structure will be reduced. This result is demonstrated for both simulated (Atkinson 

1996, Gabrosek & Cressie 2002) and real data (Chiles 1976). Furthermore, it has been 

demonstrated that this bias in the variogram leads to reduced accuracy when kriging is 

implemented. Specifically, it tends to lead to negative bias and an increase in the mean 

square prediction error (MSPE) for kriged predictions (Gabrosek & Cressie 2002). Indeed, 

in simulations, where the positional uncertainty is large, this bias was 15 to 50% and the 

MSPE 10 to 30% larger than the case where the positional uncertainty was explicitly 

modelled. The lowest accuracy was observed when (TJ was large relative to ¢ (Gabrosek 

& Cressie 2002). 

In the regression case, intuition suggests that positional uncertainty will lead to a decrease 

in the correlation between the remotely sensed and field variables and that this would be 

associated with a flattening of the regression line. This would be expected since, in effect, 

the field data are being paired with the "wrong" pixels. This expectation is demonstrated 

by (Salvador 1999), who models the relationship between tree coverage (TC) and simple 

ratio (SR Reflectance (NIR) / Reflectance (Red)) using simple linear regression. In 

the presence of positional uncertainty they find that /lo = 4.59, /h = 2.18 and R = 0.41, 

whereas after correction for positional uncertainty, 130 4.09, /h = 3.11 and R 0.59. In 

this case /30 and /31 are the regression coefficients and R is the correlation coefficient. 

Gabrosek & Cressie (2002) postulate two models for positional uncertainty, which can be 

illustrated with respect to figure 2.5. The first of these is the design model where the 

sampling strategy (represented by the open squares) is fixed in advance but is realised 

imperfectly. One possible realisation is represented by the filled squares. This imperfection 

might be due to the use of a positioning device (such as a GPS) that is not perfectly 

accurate or because of the difficulty of precisely positioning the measurement equipment. 

If it is assumed that the positional uncertainty is unbiased, then the relationship between 
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FIGURE 2.5: Plot showing intended locations (open squares) and actual realised loca­
tions (filled squares) of field-measurements. 

the realised sites, R, and the intended sites, S, might be given as : 

RIS rv N(S, I;) 
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whereby the error is assumed to be unbiased and the realised sites are distributed around 

the intended site according to a probability distribution with mean S and covariance I;. 

Hence the attribute is measured at R (which is unknown), but attributed to S (which is 

known). The emergent effect is that the value attributed to location S is given with error. 

The design model is referred to as the coordinate-positioning model (CP) by Cressie & 

Kornak (2003). The naming convention of Cressie & Karnak (2003) is adopted in this 

thesis to avoid confusion with design-based sampling. 

The second case is termed the resource model. In this situation, a particular resource 

(or set of resources) at location A is the object of investigation. An example might be 

the sampling of trees in a forest. The attributes of that resource are measured but the 

location is measured imperfectly and assigned to location B. Again, assuming that the 

error in location is unbiased, the model is given as: 

BIA rv N(A, r) 

Hence the reported positions are distributed around the actual positions with mean A 

and covariance r. In contrast to the design model, B is what is reported, whereas A 

is unknown. The resource model is referred to as the feature-positioning model (FP) 

by Cressie & Kornak (2003). 

An alternative representation of the CP and FP models is given as follows: 

x=u+d (2.104) 
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where u is the true value of x. If x is an intended location and u is the realised location 

then we have the CP model. If u is the actual location but x is the reported location, we 

have the FP model. 

Cressie & Kornak (2003) note that the CP and FP models seem very similar. However, 

they emphasise one important difference. As stated above, under the CP model the 

location error is centred around the known location. Under the FP model the location 

error distribution is centred around the unknown location. Hence, if the objective is to 

account for positional uncertainty, it is important to choose the correct model. However, 

where positional uncertainty is not accounted for, it is argued here that that the two forms 

of positional uncertainty are interchangable. 

Most studies of positional uncertainty adopt the CP model. However. for demonstrating 

the effects of positional uncertainty, these used simulated data (Atkinson 1996, Gabrosek 

& Cressie 2002), where it is straightforward to simulate such errors. Cressie and co­

workers (Gabrosek & Cressie 2001, Gabrosek & Cressie 2002, Cressie & Kornak 2003) 

incorporate the distribution of the (positional) errors into the estimation of the trend 

and covariance function, hence correcting for positional uncertainty both in estimation 

and prediction. They show that this increases the accuracy of estimation and prediction, 

relative to the case where positional uncertainty is ignored, although greater accuracy can 

still be achieved by reducing or eliminating positional uncertainty. It should be recognised 

that these studies were undertaken using simulated data or under conditions where the 

distribution of ( (the positional error in equation 2.100) was well understood. Hence it is 

unclear how their methods would perform in the absence of knowledge of the distribution 

of the positional error. 

2.4 Spatial regression 

The previous two sections have discussed regression and spatial analysis under different 

headings. However, in many cases models for spatial analysis can be considered as ex­

tensions of the linear regression models. In particular, section 2.2.2.4 illustrated how 

geostatistics could be used to solve the problem of correlated residuals that was presented 

in section 2.1.4. Indeed, statisticians generally consider geostatistics to be an extension 

of the linear model (Ver Hoef et al. 2001, Diggle et al. 2003, Hengl et al. 2003). 

Despite the clear connection between geostatistics and regression, there are often im­

portant differences in terms of outlook and application (e.g., Dungan 1998, Berterretche 

et al. 2005). It has already been mentioned that much geostatistical theory and practice 

was, at least in the early stages, developed separately to mainstream statistics. This point 

will not be further explored here. However, the differences in application are important. In 

particular, in geostatistics the focus is generally on understanding the nature of the spatial 

variation and in prediction, where prediction takes the form of spatial interpolation. In 
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regression the focus is generally on understanding the relationship of y with X and in pre­

diction, which might be considered as interpolation within the (spatial) sample space of X. 

For example, in the case of KT (as presented by Goovaerts 1997, Goovaerts 1999, Webster 

& Oliver 2001), the form of the trend is modelled within a local neighbourhood using a 

limited number of data (perhaps as few as 5). As will be shown in chapter 5, this may 

be unsatisfactory if the objective is to accurately model ,8. However, they may be appro­

priate in the context of accurate spatial prediction. In the regression context it has been 

demonstrated that it is necessary to account for spatial correlation in regression in order 

to identify appropriate and scientifically meaningful covariates and to provide an accu­

rate model of uncertainty for estimation and prediction (Cook & Pocock 1983, Harris & 

Johnson 1996, Lark 2000, Ver Hoef et al. 2001, Lark & Cullis 2004, Lark & Webster 2006). 

This final issue arises because estimation of {3 is dependent, in the most general case, on 

the covariance matrix. Hence: 

If the residuals are homoskedastic, but have a correlation structure, then 1: in equa­

tion 2.105 can be replaced with the correlation matrix, R, or a modified correlation matrix, 

as in equation 2.97. If the residuals are heteroskedastic, but there is no correlation struc­

ture, then 1: can be replaced with a diagonal weights matrix W, as in equation 2.32 for 

weighted least squares (\VLS). In many cases, the estimates of {3 will not be substantially 

different from those obtained from OLS (Pebesma & Wesseling 1998, Lark 2000, Hengl 

et al. 2004). However, the possibility of substantial and important differences cannot be 

ruled out (Harris & Johnson 1996, Ver Hoef et al. 2001, Lark & Cullis 2004). 

In addition to the point estimators of {3, the correlation and weighting structure also 

influences the estimation of (j2 as illustrated in equation 2.84 and equation 2.33. Further­

more, C(/3) , which describes uncertainty in the estimate of {3, is also dependent on the 

covariance structure, as illustrated below: 

(2.105) 

Hence, even if the GLS estimator of (3 is similar to the OLS estimator, C((3) will dif­

fer. That has implications for quantifying uncertainty in estimation and prediction, for 

specifying confidence and prediction intervals and for hypothesis testing. In particu­

lar, the OLS estimators tend to yield confidence intervals that are too narrow (Harris 

& Johnson 1996, Ver Hoef et al. 2001) and can affect the outcome of hypothesis test­

ing (Lark & Cullis 2004). If correlation is not accounted for then it can be conflated with 

a trend, leading to the inclusion of spurious covariates in a regression model (Ver Hoef 

et al. 2001, Hengl et al. 2004). Hence, even if sparseness of data makes spatial interpola­

tion impractical for prediction, it is still necessary to account for spatial autocorrelation 

at the parameter estimation stage. These issues are given further attention in chapter 7. 
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There are two further theoretical issues which merit discussion, although they will not be 

explored in detail in this thesis. First, it should be noted that, whilst proper accounting 

for the covariance structure should lead to an improved model with more accurate pa­

rameter estimates, there may still be problems when it comes to hypothesis testing. This 

is because the specification of critical values for the t-distribution is dependent on the 

degrees of freedom. In the presence of autocorrelation, it is not clear how the degrees of 

freedom should be specified (Harris & Johnson 1996) and this does not seem to be taken 

into account when calculating critical values (Ver Hoef et al. 2001, Lark & eullis 2004). 

Examination of the appropriate statistical tables (Neter et al. 1996) shows that the change 

in critical value as the degrees of freedom decrease is largest for small samples. Hence, for 

large samples, this issue is likely to be less significant. Second, Harris & Johnson (1996) 

note that, where ¢ needs to be estimated, this can lead to problems with the assumptions 

underlying GLS. In particular, the distributional assumptions for /3 and 0-2 may not be 

met. However, they do not provide guidance for dealing with this. The results presented 

in chapter 7 explore the relation between correlation structure and estimation of these 

parameters, although a general theoretical solution is not offered. It might be argued 

that the issues presented in this paragraph may be solved by moving to the Bayesian 

approach. This allows for full incorporation of uncertainty at all stages of the estimation 

and prediction process. Distributions can be constructed using simulation and confidence 

and prediction intervals similarly computed. However, such things are more difficult to 

implement in practice and this is deferred as a subject for future research. 

This section has emphasised the importance of properly accounting for spatial correla­

tion in the residuals when implementing a regression model. This is important even if 

prediction by spatial interpolation is not the ultimate goal. 

2.5 Summary 

This chapter has provided a detailed overview of the relevant statistical methods that 

will be applied in this thesis. In particular regression and geostatistical techniques were 

discussed as well as various other issues concerning the use of spatial data. In particular 

the following issues were raised: 

• When utilising regression models with spatial data it is unlikely that the regression 

requirement of independent and identically distributed (iid) residuals will be met. 

If the residuals are not identically distributed this needs to accounted for using a 

weighting structure. If they are correlated (and hence not independent), then the 

correlation structure needs to be accounted for. 

• It is generally assumed that there is no error in the predictor variable, x. However, 

this is not always the case. If information on the relative uncertainty in x and y 
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is available, then this can be incorporated using the approach of Kendall & Stuart 

(1967). This is applied in chapter 4. 

• The spatial support of the data and model output are important considerations. In 

particular it was emphasised that care should be taken to match the support when 

two or more measurements are combined in empirical or physical models. 

• It was shown that geostatistical approaches could be used to model the spatial cor­

relation of regression residuals. From a statistical perspective, this works as an 

extension of the linear model. However, there are practical differences and episte­

mological differences between applying regression and geostatistical models. Hence, 

the approach discussed provides a mechanism for accounting for spatial correlation 

in residuals in situations where geostatistical interpolation might be inappropriate. 

An extension of this to cover heteroskedastic residuals is discussed in chapter 7. 

• It is generally assumed implicitly that the location of spatial data is known without 

error. However, this is rarely the case. An overview of this problem was discussed 

in section 2.3 and is considered in chapter 6. 

Finally, it should be recognised that, whilst this thesis focuses on the empirical line method 

(ELM) for atmospheric correction, the issues raised in this chapter are of much more 

general importance in remote sensing and GIS. Hence the research presented in this thesis 

has wider implications than the ELM. This is discussed further in chapter 8. 



Chapter 3 

Remote sensing: theory and 

models 

The objective of this chapter is to provide an overview of remote sensing methods and 

models that are relevant to this thesis. Discussion of remote sensing is limited to the opti­

cal domain and particularly to reflective remote sensing rather than the thermal infrared 

region. Particular attention is given to atmospheric effects and atmospheric correction 

and specifically to the empirical line method for atmospheric correction. 

3.1 Physical basis of remote sensing 

The objective of this section is to provide a concise outline of the most relevant physical 

processes and terminology in optical remote sensing. This topic is widely covered in intro­

ductory text books (Curran 1985, Campbell 1996, Lillesand et al. 2004) as well as advanced 

text books (Schott 1997, Richards & Jia 1999, Liang 2004) and edited books (Swain & 

Davis 1978, Asrar 1989). Hence a complete exposition is not required and detailed deriva­

tions are not provided. 

Remote sensing is based on making measurements of electromagnetic (EM) radiation 

upwelling from the surface. It is well known (Silva 1978, Liang 2004) that the radiant 

exitance, l~J, from a surface is given by the Stefan-Boltzmann radiation law 

(3.1 ) 

which has units of Wm- 2 and where f is the emissivity of the surface, (j is the Stefan­

Boltzmann constant and T is the temperature of the surface in Kelvin. It can then be 

shown that the wavelength, Amax, at which M>. is at a maximum is 
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2898 

T 
(3.2) 



Chapter 3 Remote sensing: theory and models 

t 
f 
UI 

O.31lm 11lm 

Sun'. energy (at IJOOIt"K) 

10"m l00"m 
Wavelength _ 

1 mm 1m 

FIGURE 3.1: Diagram showing radiant energy as a function of surface temperature. 
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FIGURE 3.2: Diagram showing the different wavelength regions of the electromagnetic 
spectrum. Source: Lillesand & Kiefer (1994) (p. 11). 
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which has units of I-Lm. Hence, as the temperature increases, M).. moves to shorter wave­

lengths, as illustrated in figure 3.l. Hence, the Sun with a temperature of approximately 

6000 K has a peak M).. at visible wavelengths. However, the Earth, with a typical surface 

temperature of approximately 300 K has a peak M).. in the thermal infrared region of the 

EM spectrum. 

The electromagnetic spectrum is commonly split into different regions, as shown in fig­

ure 3.2. This partitioning is done by wavelength although there is an equivalence between 

wavelength (A, which has units of distance, m) and frequency (v, measured in Hertz, Hz): 

A=~ (3.3) 
v 

where c is the speed of light (which has units of speed, m S-l. 

The optical region can be further broken down into the reflective region (encompassing 

the visible, near and middle infrared regions) and the thermal infrared. In the reflective 

region the emitted radiant exitance is minimal and radiation upwelling from the surface 

will be that reflected from the surface. However, in the thermal infrared region the signal 

will be comprised of reflected and emitted radiation. 
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In the absence of atmospheric effects (discussed in section 3.1.1) radiation incident on the 

surface may be reflected (p), absorbed or transmitted. Radiation upwelling from the surface 

will be comprised of that reflected from the surface and, for longer wavelengths emitted 

from the surface. Natural surfaces are likely to be complex and the radiation pathway 

will be complicated by multiple scattering. For exarnple, radiation may be reflected from 

a leaf and then re-reflected from another leaf or it may be transmitted through a leaf and 

reflected off a trunk. However, with each scattering event, the radiant intensity will be 

decreased. 

The radiance upwelling from the surface is measured by the sensor. This might be a hand­

held (or mounted) radiometer (multispectral) or spectrometer (hyperspectral) . Note that 

the hand-held radiometer may also be mounted on a tripod or mast, but in both cases 

will, most likely, be directly operated by the user. An imaging radiometer or spectrometer 

is normally mounted on an airborne or spaceborne platform. It utilises a whiskbroom 

scanner or CCD array, combined with the forward motion of the platform to build up an 

image (Campbell 1996). 

The area imaged by the sensor is determined by the height of the sensor above the surface 

and the angular Field of View (FOV) of the sensor. The FOV can also be expressed 

as an area, which is height dependent. The intensity of the signal within the FOV is 

also dependent on the lens optics and sensor characteristics and can be represented by 

the point spread function (PSF) (Schott 1997). For imaging spectrometers, the situation 

is complicated because the measurements are typically resampled in order to construct 

an image with square pixels. Hence, the pixel is only an approximation of the areal 

FOV and will include some signal gathered from outside the geometric confines of the 

pixel (Schott 1997, Liang 2004) and may even be a convolution of several FOVs. For a 

hand-held radiometer the angular FOV is typically narrow and is often approximated as 

representing a point rather than an area. 

3.1.1 Atmospheric effects 

Under field conditions the atmosphere has highly significant effects, which are reviewed 

here. Indeed, the atmosphere can be conceptualised in much the same way as any other 

surface. For modelling purposes, transmission and emittance are generally assumed to be 

negligible (atmospheric constituents are assumed to be opaque). Hence the key processes 

are reflectance (scattering) and absorption (Kaufman 1989, Liang 2004). 

Figure 3.4 shows the components of upward radiance, L'. The prime indicates upwards 

radiance whereas L represents downward radiance. In mathematical terms, L' is given 

as (Kaufman 1989, p. 354): 

(3.4) 

where: 
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FIGURE 3.3: Schematic presentation of the components of upward radiance. Acronyms 
explained in text (below). Source: Kaufman (1989, p. 354). 
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L~ is the path radiance, which is scattered from the direct sunbeam by the atmosphere 

into the sensors field of view without ever reaching the surface. This component 

tends to uniformly brighten the image, resulting in a loss of contrast. 

L~ has been transmitted directly downwards through the atmosphere and reflected by 

the surface directly into the sensor. 

L~l is the diffuse irradiance that is reflected directly back to the sensor. This diffuse 

illumination arises due to scattering from the solar beam by the atmosphere. It may 

also arise if the incident beam reflects off other surfaces prior to being reflected into 

the sensor path. 

L~2 is the component that is reflected from neighbouring surfaces and then scattered by 

the atmosphere into the sensor path. This effect tends to be particularly significant 

for fine spatial resolution sensors that are imaging high contrast surfaces. 

The latter three effects are influenced by properties of the target as well as the atmospheric 

properties. Hence they will be affected by the spatial uniformity of the surface and by 

whether the surface exhibits Lambertian properties. 

As mentioned above, the two key atmospheric processes affecting the signal are absorption 

and scattering (Silva 1978, Kaufman 1989, Liang 2004). Absorption attenuates the signal 

by reducing the amount of energy available at any given wavelength. Scattering changes 

the direction of radiation and, hence, tends to reduce the contrast and cause blurring of 

the image. 
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Ultraviolet and visible 
Near infrared 
Mid infrared 

Thermal infrared 

Microwave 

0.30-0.75 Mm 
0.77-0.91 Mm 
1.55-1.75 Mm 
2.05-2.40 Mm 
8.00-9.20 Mm 
10.2-12.4 Mm 
7.5-11.5 lTlm 
20.0+ mm 

TABLE 3.1: Major atmospheric absorption windows. Source: Campbell (1996). 
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There are three key components of the atmosphere that cause absorption and scattering: 

gases, aerosols and clouds. The main components of atmospheric gases are nitrogen (N2 : 

78 %) and oxygen (02 : 21 %) although there are small alTlOunts of water vapour (H20), 

carbon dioxide (C0 2 ) and ozone (03 ), Carbon dioxide tends to be stable and well mixed 

in the atmosphere, although concentrations may be higher above large sources, such as 

cities. Ozone is concentrated in the stratosphere (20 - 50 km above the surface) and 

its distribution is well understood. Water vapour is found mainly in the boundary layer 

(1 - 2 km), but is highly variable both spatially and telTlporally (Kaufman 1989). The 

variability in water vapour poses a major challenge to quantifying its effects on scattering 

and absorption (Kaufman 1989, Liang 2004). 

Atmospheric gases have clearly defined absorption bands. It is these absorption bands 

that lead to atmospheric windows (See table 3.1) where remote sensing can be performed. 

Outside these atmospheric windows the signal is strongly attenuated. As discussed above, 

the distribution of most atmospheric gases is consistent and well understood. The major 

exception is water vapour, which needs to be measured or predicted. However, it is 

possible to make use of the absorption bands to estimate atmospheric constituents. In 

particular, the depth and width water absorption bands at 840 nm, 930 11111 and 1130 nm 

can be used to predict atmospheric water vapour (Gao & Goetz 1990, Goetz et al. 2003). 

For hyperspectral sensors, this approach can be used to predict water vapour on a pixel­

by-pixel basis. 

Scattering by gases is referred to as molecular scattering or Rayleigh scattering (attributed 

to the 19th century British physicist J.W. Strutt (1871)1 (Kaufman 1989)). Rayleigh 

scattering is caused by matter that is much smaller than the wavelength of energy being 

scattered. Its effect is most pronounced at short wavelengths particularly ultraviolet 

and visible wavelengths. Rayleigh scattering is the reason why the sky appears blue most 

of the day. The sky may also appear red at sunrise and sunset where the atmospheric path 

length is greater, since the sun is on the horizon. The principles of Rayleigh scattering are 

well understood. It is dependent on the Rayleigh optical depth (TR), which is modelled 

as a function of wavelength and pressure (Kaufman 1989, Liang 2004). 

IThe Honourable J. W. Strutt became the 3rd Baron (Lord) Rayleigh in following the death of his 
father in 1873. 
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Atmospheric aerosols are liquid or solid matter suspended in the air. Liquid particles 

greater than 1 p,m are usually referred to as cloud drops (Kaufman 1989). Aerosols may 

be formed through the weathering of solid surfaces and the removal of small particles by 

the wind, as a result of fire or due to the bursting of bubbles at the ocean surface. Aerosols 

may also form in the atmosphere due to the aggregation of gaseous particles and the 

condensation of gases onto existing particles. The aerosol composition of the atmosphere 

varies in time and space. Furthermore, the size distribution of atmospheric constituents 

also varies. However, "standard" atmospheres are available for different regions of the 

world which may serve as a reasonable approximation in any given situation. 

Scattering by aerosols may be by Mie scattering (attributed to the German physicist 

Gustav Mie (1908) (Kaufman 1989)) or non-selective scattering. Mie scattering is relevant 

where the aerosols are similar in size to the wavelength of the energy being scattered, 

whereas non-selective scattering is relevant where the aerosols are much larger. The 

optical effects of aerosols depend on the physical characteristics of the particles, specifically 

the size and shape distribution, the spatial variation in aerosol concentration and the 

refractive index of the particles (Kaufman 1989). Measuring these atmospheric properties 

is difficult, so it is common practice to use approximations based on geographic location, 

length of season and atmospheric humidity (Kaufman 1989) and databases are available to 

support this (Liang 2004). Mie code can then be used to yield the optical depth (T), single 

scattering albedo (w) and the scattering phase function( PC)) (Kaufman 1989, Liang 2004). 

Finally, clouds are an important atmospheric constituent. Large clouds that completely 

fill a pixel will be apparent in a remotely sensed image because, in the optical domain, they 

obscure the ground. They may also cast shadows on the ground. However, for smaller 

clouds the effects may be less obvious especially if they do not completely fill pixels. 

There are algorithms available to mask out cloud contaminated pixels (Campbell 1996). 

If known the optical characteristics of clouds can be described by the pixel cloud fraction, 

the cloud size distribution and the reflection and transmission properties (Kaufman 1989). 

Owing to the problems posed by clouds it is common practice to limit airborne and field 

campaigns to cloud-free conditions (Milton 1987). However, this is not always possible, 

particularly in temperate environments (such as southern England). Furthermore, Milton 

& Goetz (1997) find that the diffuse to global ratio can change over short time-scales due 

to changes in water vapour and high-altitude cirrus clouds that may not be apparent to 

the human observer. 

The optical characteristics of a small volume of atmosphere can be described by three key 

parameters (Kaufman 1989, p. 346): 

K e , the extinction coefficient (m- 1), which represents the attenuation of radiation prop­

agating through the atmosphere. The integral of Ke over altitude gives the more 

commonly quoted optical thickness (or optical depth), T. The aerosol optical thick­

ness depends on the aerosol characteristics and the total aerosol loading. 
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w, the single scattering albedo, which is the ratio between the scattering coefficient and 

the total extinction coefficient (absorption and scattering). It is important to note 

that this accounts for aerosol absorption (Kaufman 1989, Liang 2004). 

p(e), the scattering phase function which describes the angular distribution of scattered 

radiation. It is dependent on particle size and optical thickness. 

The optical depth, single scattering albedo and scattering phase function describe the 

characteristics of a small volume of atmosphere. However, this then needs to be integrated 

over the entire depth of the atmosphere. This is performed through the radiative-transfer 

(RT) equations, attributed to Chandrasekhar (1950) (Kaufman 1989, Liang 2004). 

The RT equation traces the change in radiance (L'(e')) through a thin vertical layer of 

atmosphere, where e' is the zenith angle of L'. The vertical component (z) is generally 

replaced with the optical thickness (T) (Kaufman 1989, Liang 2004). The RT equation is 

given as (Kaufman 1989): 

, , dT dT 
dL = - L -- + (J + Jo)--

cos e' cos e' (3.5) 

The first term on the RHS represents the attenuation of L' due to gaseous absorption in 

the atmospheric layer. This increases exponentially with optical thickness, according to 

Beer's law (Liang 2004). The second term on the right represents the increase in radiance 

due to scattering of direct sunlight and diffuse illumination. Here, Jo = f(w, T, P, Es) is 

a source term representing the scattering of direct sunlight and is a function of the w, T, 

P and Es (the extraterrestrial solar irradiance). The other source term, J = f(w, P, L') 

is integrated over all zenith and azimuth angles. It is due to diffuse skylight and multiple 

scattering between the atmosphere and the surface. Hence J is also dependent on the 

surface reflectance properties. The RT equations can be solved numerically or using faster 

(but less accurate) approximations (Vermote et al. 1997, Liang 2004). 

3.1.2 Nomenclature for reflectance 

The discussion in section 3.1 introduced the concept of reflectance in general terms. How­

ever, reflectance is not a straight forward concept since it is dependent on the viewing 

and illumination conditions. The objective of this section is to introduce the concept of 

directional reflectance and clarify the terminology that will be used in the remainder of 

the thesis. Table 3.2 provides a list of radiometric terms. 

The concept of directional reflectance is illustrated in figure 3.4. In the absence of at­

mospheric scattering, irradiance will come from a collimated beam (direct illumination). 

The broad downwards arrows represent illumination attributed to (i) radiation that has 

been reflected from or transmitted through other elements of the surface (consider the 

tree example given above) or (ii) diffuse illumination from the atmosphere (Martonchik 

et al. 2000). 



Symbol Descri ption 
Q Radiant energy 

<I> Radiant flux (power) 

M Radiant exitance 

E Irradiance 

L Radiance 

lIifA Spectral radiant exitance 

EA Spectral irradiance 

LA Spectral radiance 

Defining 
Expression 
Q 

dQ/dt 

d<I>/dA (out) 

d<I>/dA (in) 

d2 <I>/ cosOdw (out) 

dllif/dA 

dE/dA 

dL/dA 

Units 
Joule 

Watt 

Watts per square metre 

Watts per square metre 

Watts per square metre 
per steradian 
Watts per square metre 
per micrmnetre 

Units 
(Abbreviation) 
J 

W 

Wm- 2 

Wm-2 

W m- 2 sr- 1 

W m -2 lJ,In- 1 

Watts per square metre W m-2 Ilm- 1 

per micrometre 
Watts per square metre W m-2 sr- 1 IHn- 1 

per steradian per micrometre 

TABLE :3.2: Radiometric terms for remote sensing. Adapted from Silva (1978) and Nicodemus et al. (1£)77). 
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A B 

BRF,BRDF HDRF 

c D 

DHR BHR 

FIGURE 3.4: Diagrammatic summary of reflectance nomenclature. The broad arrow 
represents irradiance from a collimated beam. All other arrows represent reflected ra­
diation. A. BRF (bidirectional reflectance factor), BRDF (bidirectional reflectance dis­
tribution function). B. HDRF (hemispherical-directional reflectance factor). C. DHR 
(directional-hemispherical reflectance factor). D. BHR (bi-hemispherical reflectance fac­
tor). Source: Martonchik et al. (2000, p. 14). 
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Standards for directional reflectance nomenclature are generally traced back to (Nicodemus 

et al. 1977), although several more recent reviews are also useful (Milton 1987, Martonchik 

et al. 2000, Raffy & Blamont 2003, Schaepman-Strub et al. 2006). It is standard practice 

to quote the angular characteristics of the illumination first, followed by the reflected 

radiance. Hence "hemispherical directional" implies hemispherical illumination with re­

flectance measured in a specific direction (Martonchik et al. 2000). 

3.1.2.1 Bidirectional reflectance distribution function (BRDF) 

Consider a situation where there is no atmospheric scattering, as shown in figure 3.4. The 

energy from the Sun and the energy reflected to the sensor can be thought of as being 

confined to two slender elongated cones, each subtending a small angle at the target surface 

(the solid angle, measured in units of steradians (sr)) (Schott 1997). If these solid angles 

are sufficiently small, the reflectance is defined in terms of the bidirectional reflectance 

distribution function (BRDF) as (Nicodemus et al. 1977, Martonchik et al. 2000): 

(3.6) 

with units of steradians (SR-1 where: 

dL r is the reflected radiance per unit solid angle; 

dE is the irradiance 
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e and ¢ denote zenith and azimuth angles, respectively; 

i and r denote incident and reflected rays respectively. 

and where dependence on wavelength is suppressed. To fully characterise the BRDF it 

is necessary to measure dL and dE at all possible viewing and illumination positions. 

However, in experimental conditions it is not possible to Il1easure dE at the target sur­

face (Milton 1987). Furthermore it is defined over differential solid angles and is, hence, 

theoretically impossible to measure (although it may be approximated) (Martonchik 

et al. 2000). 

3.1.2.2 Bidirectional reflectance factor (BRF) 

The bidirectional reflectance factor (BRF) is provided to give a measurable alternative 

the BRDF (Milton 1987, Milton et al. 1995, Martonchik et al. 2000). In this context, 

the term "bidirectional" refers to the two angles involved (i.e., those defining the source 

and sensor positions). It is found by standardisation of reflected radiance by the reflected 

radiance of a panel which is specified to be perfectly diffuse and completely reflecting. It 

is viewed under the same viewing and illumination conditions as the target (Silva 1978). 

This measurement configuration is termed bi-conical since both the target and panel are 

sensed using instruments with a finite narrow, conical field of view (Milton 1987). The 

BRF is given as (Martonchik et al. 2000): 

(3.7) 

where: 

dL r is the radiance reflected from the surface; 

dLrp is the radiance reflected from a Lambertian panel; 

all other terms are as defined for equation 3.6. 

The BRF is directly related to the BRDF as (Milton 1987, Schott 1997, Liang 2004): 

(3.8) 

In practice, perfectly diffuse and completely reflecting reflectance panels are not available, 

so a correction factor, k, is applied (Milton 1987): 

(3.9) 
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The use of the BRF instead of the BRDF to represent the spectral reflectance of targets 

involves several assumptions, as follows (Milton 1987) 

1. the field-of- view of the sensor is small (less than approximately 20°); 

2. the reflectance panel must fill the field-of-view of the sensor: 

3. there should be no change in the irradiance magnitude or distribution between the 

measurement of dLr and dLrp; 

4. direct solar flux dominates the irradiance field (i.e. the Sun shines out of a "black" 

sky); 

5. the sensor responds in a linear fashion to changes in radiant flux; 

6. the reflectance properties of the standard panel are known and invariant over the 

course of the measurements. 

It is generally possible to ensure that most of these assumptions are met or the effects are 

limited. However, in field situations the Sun does not shine out of a black sky and the 

influence of skylight may be significant (Milton 1981a, Duggin & Philpson 1982, Milton 

et al. 1995). Hence, the BRF cannot, theoretically, be measured in field conditions, 

although it may be approximated. 

3.1.2.3 Hemispherical-directional reflectance factor (HDRF) 

The hemispherical-directional reflectance factor (HDRF) provides a definition of reflectance 

where illumination is from the entire upper hemisphere. It is given as (Martonchik 

et al. 2000): 

(3.10) 

Hence this formulation is similar to equation 3.7, except that dependence on (ei , cPi) 

has been eliminated. Furthermore, whereas the BRF and BRDF are intrinsic properties 

of the surface, the HDRF depends both on those properties and on the illumination 

conditions. As noted in equation 3.5 the illumination conditions are governed mainly by 

the atmospheric properties, but are also dependent on the surface properties owing to 

multiple scattering between the atmosphere and the surface (Kaufman 1989, Martonchik 

et al. 2000, Liang 2004). 

The HDRF is the property that is measured in the field or by a remote sensor, Predicting 

the BRDF from the HDRF requires knowledge of the irradiance distribution which may be 

obtained through RT modelling (Liang 2004). This modelling is complicated by imperfect 

knowledge of the atmospheric state and by the fact that the downwelling radiance is 

dependent on the (unknown) BRDF, owing to multiple scattering between the surface 

and the atmosphere (Martonchik et al. 2000). 
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Finally, it may be noted that some authors have used the term hemispherical-conical 

reflectance factor (HRF) , rather than the HRDF (Milton 1987). The term conical may 

be regarded as more appropriate than directional, since it recognises that the reflected 

radiance is measured over a finite solid angle. 

3.1.2.4 Hemispherical reflectance (albedo) 

The final terms of interest relate to the hemispherical reflectance (Martonchik et al. 2000), 

also known as albedo (Liang 2004). Previous terms have related to the directional re­

flectance, whereas the hemispherical reflectance is integrated over all viewing angles. 

There are two key hemispherical reflectance terms: directional-hemispherical reflectance 

(DHR) and bi-hemispherical reflectance (BHR). The DHR is the BRDF integrated over 

all possible viewing directions. As with the BRDF (and BRF) this is an inherent property 

of the surface and is not dependence on atmospheric conditions. Conversely, the BHR is 

the HDRF integrated over all viewing directions. As with the HDRF, this is dependent 

on diffuse illumination conditions as well as surface-atmosphere interactions. As with 

the BRDF, the DHR cannot be measured, although it can be predicted if the diffuse 

illumination conditions and surface-atmosphere interactions are accounted for. 

The DHR is sometimes referred to as the "black-sky" albedo. The term "white-sky" 

albedo is used to refer to the BHR where the sky irradiance is isotropic (Liang et al. 

1999, Martonchik et al. 2000). In particular, these terms are associated with MODIS 

products (Liang et al. 1999). 

3.1.2.5 Spectral dependence 

In the above discussion, dependence on wavelength (A) has been suppressed. However, it 

should be noted that all the quantities discussed are wavelength dependent. Hence, where 

there is any ambiguity the wavelength or waveband should be stated. 

3.2 Atmospheric correction 

The physical basis of remote sensing was outlined in section 3.1 with atmospheric effects 

being covered in section 3.1.1. Atmospheric correction is generally taken to mean the pre­

diction of surface reflectance from remotely sensed imagery ( Camp bell 1996, Liang 2004) 

and that is the sense that it is meant in this thesis. Schott (1997) calls this process at­

mospheric calibration. This term is not favoured in this thesis, since calibration implies 

reference to a standard (Collins Softback English Dictionary 1992) (Youden 1997, Ander­

son & Milton 2006). However, it will be shown that atmospheric correction can only be 

approximately performed and the level of approximation does not merit the term calibra­

tion. Finally, it may be noted that the term atmospheric correction may also be used in 
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other contexts where the atmospheric effects are accounted for, even though the ultimate 

objective may not be the prediction of at surface reflectance (Kaufman 1989, Martonchik 

et al. 2000). For example, relative correction may be performed where two or more im­

ages are corrected against a reference image, but results are not given in absolute units 

of reflectance. 

The radiance measured at the sensor can be given as (Chandrasekhar 1950, Tame et al. 

1979, Deschamps et al. 1983, Caselles & Lopez Garcia 1989): 

(3.11) 

where 

the subscripts i and r refer to incident and reflected radiation respectively; 

p' is the apparent reflectance at the sensor; 

L' is radiance measured at the sensor (at~sensor radiance); 

Es is exoatmospheric radiance onto the surface; 

Pa is the reflectance of the atmosphere: 

p is the surface reflectance; 

S is the spherical albedo of the atmosphere; 

T(e) is the total atmospheric transmittance (i.e., direct plus diffuse); 

A similar formulation is given elsewhere (Liang et al. 1997, Liang et al. 2001, Cooley 

et al. 2002, Liang 2004). Note that pS is typically a very small quantity, hence pS ~ O. 

Hence, equation 3.11 is often simplified (Moran et al. 1992, Chavez Jr. 1996, Schott 1997), 

as given in equation 3.12. Note the slightly different definition of T. 

(3.12) 

where: 

L' is radiance measured at the sensor (at~sensor radiance); 

p is the at-surface reflectance factor this is the quantity that we are interested in 

deriving; 

Lu is the upwelling irradiance along the target~sensor path, also known as the path~ 

radiance: 
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Es is exoatmospheric radiance onto the surface, perpendicular to the incident beam; 

Bi is the solar zenith angle relative to the surface; 

~ is the atmospheric transmission along the sun-target path; 

Ld is the downwelling irradiance (diffuse illumination) onto the target; 

Tr is as Ti but along the target-sensor path. 

In equation 3.13 dependence on viewing and illumination direction (and wavelength)was 

suppressed. However, this would, more fully, be given as: 

(3.13) 

which is conceptually similar to the HRDF. This angular dependence will be suppressed 

in subsequent discussion. 

In order to predict p, given L, it is necessary to measure or predict Lu, Ld , T i , Tr and 

Es. For spaceborne sensors Es is well known, but for airborne sensors this needs to 

be measured. Procedures for predicting the remaining terms will be discussed in sec­

tions 3.2.1, 3.2.2 and 3.2.3. 

Liang (2004) distinguishes between methods for correcting single viewing-angle and multi­

ple viewing-angle imagery. In this context, single viewing-angle imagery refers particularly 

to sensors which are centred at nadir (e.g., Landsat TM (Thematic Mapper), Airborne 

TM ), although most of the image swath is clearly off-nadir. For such imagery most 

schemes assume the surface is Lambertian, for the purposes of the atmospheric correc­

tion even if this assumption is not tenable for examination of the surface itself. In 

contrast, there are several sensors that observe simultaneously the surface from different 

directions. These include ASAS (Advanced Solid-State Array Spectroradiometer), I\lISR 

(Multi-Angle Imaging Spectroradiometer) and Air-MISR. For such sensors, a scheme that 

accounts explicitly for the BRDF properties of the surface is appropriate (Liang 2004). 

Single-viewing angle imagery is of primary interest for this thesis. 

Schott (1997) discusses only single-viewing angle approaches. He distinguishes three cat-

egones: 

• Physically based methods. These are based on radiative transfer schemes which 

model the interaction between radiation and the atmosphere. 

• Within image methods. These techniques are based on data contained within the 

image itself. 

• Methods based on ground truth: The empirical line method (ELM). This is based 

on empirical relationships between measurements of reflectance (made in the field) 

and measurements of radiance (recorded by the remote sensing instrument). 
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The distinction between these three categories is not crisp. In particular much research 

effort is directed at using the imagery itself to obtain the atmospheric variables required 

for implementation of physically based methods (Gao & Goetz 1990, Liang et al. 1997, 

Liang 2004). 

Physically based methods and within-image methods are discussed briefly below. Further 

detailed discussion is available in text books (Schott 1997, Liang 2004) and in numerous 

research papers. Detailed attention is then given to discussion of the ELM. 

3.2.1 Physically based methods 

Section 3.1.1 discussed the ways in which electromagnetic effects interact with the at­

mosphere and noted that the RT equations can be used to model those interactions. 

The theory for RT modelling is well established and numerous software implementa­

tions exist (Liang 2004, p. 64-65). However, there are considerable practical difficulties 

with the implementation concerned with (i) measuring or predicting the necessary at­

mospheric variables and parameters and (ii) the computational time required to predict 

reflectance (Liang et al. 1997, Liang 2004). 

As discussed in section 3.1.1, particular difficulties are associated with predicting at­

mospheric water vapour and aerosol loadings and their associated optical depths and 

scattering coefficients. Information on aerosols can be obtained from Sun photometer and 

radiosonde data (Shaw 1983, Schott 1997) and information on water vapour is available 

from a wide range of sources including surface meteorological data, LiDAR. GPS and ra­

diosonde data (Liang 2004). However, such measurements can be expensive to obtain and 

lack the spatial coverage required to accurately quantify spatial variability (Schott 1997). 

The difficulty in measuring the spatial distribution of atmospheric properties has prompted 

research on predicting these properties from image data. For hyperspectral data (or ap­

propriately positioned multispectral wavebands), the differential absorption technique can 

be used to predict the total water vapour content based on the depth and breadth of the 

water absorption bands (e.g., 0.94 fim) (Gao & Goetz 1990, Cooley et al. 2002, Goetz 

et al. 2002, Goetz et al. 2003, Liang 2004). This approach can be implemented on a 

pixel-by-pixel basis. Prediction of aerosol optical depth has focused on utilising the cor­

relation in reflectance between the visible and near-infrared (2.1 fLm) bands over dark 

surfaces (Kaufman et al. 1997, Liang et al. 1997). This approach is effective since aerosol 

scattering is minimal at 2.1 fLm but substantial in visible wavebands (Liang 2004). This 

approach is now operational for MODIS and MERIS sensors (Liang 2004). Information 

on the single scattering albedo and scattering phase function are available from aerosol 

climatology data (e.g., Hess et al. 1998) (Liang et al. 2001). 

Traditional computational approaches to solving the RT equations have focused on nu­

merical approaches or fast approximations (Liang 2004). Numerical approaches, whilst ac­

curate, can be prohibitively expensive computationally in an operational situation (Liang 
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et al. 1997, Liang et al. 2001). On the other hand, approximate approaches may prove 

inaccurate. This has prompted the development of the look-up table (LUT) approach, 

whereby the computations are performed once and the LUT is queried "off-line" in the 

operational situation (Liang et al. 2001). 

The adoption of physically based approaches is desirable since they may be regarded as 

the most elegant (Schott 1997) and general (Liang 2004) approaches. However, they are 

strongly reliant on the ability to measure or predict the relevant atmospheric properties. 

Substantial advances have been made in techniques to predict those properties - both 

from within the image and by fusion with other data-sources. However, such approaches 

may not be suitable in any given situation hence the scenarios in which they can be used 

remain limited (Schott 1997). 

3.2.2 Within image methods 

These approaches aim to perform atmospheric correction based primarily on data within 

the image or within a series of images of the same area. This is, according to Liang 

(2004) the oldest and most widely used form of atmospheric correction. Furthermore, as 

discussed in section 3.2.1 this approach is now used to provide inputs to physically based 

models. 

The basis for within-image methods goes back to the dark object subtraction (DOS) 

approach developed by Chavez in the 1970s and 1980s (Chavez Jr. 1988). Recall the 

equation given in equation 3.12: 

For a "dark object" it is postulated that the p = 0, hence at the sensor L = Lu. Hence, the 

basic DOS approach simply corrected for path radiance and did not provide an absolute 

measure of reflectance. This approach was refined by Chavez Jr. (1988) by using the DOS 

approach to broad classification of atmospheric conditions, ranging from "very clear" to 

"very hazy". This classification is then used to assign an appropriate relative scattering 

model, which is then applied across all bands. More recent developments (Chavez Jr. 1996) 

have combined the DOS model with an approximation of Ti (the transmittance on the 

sun-sensor path) by setting it equal to the cosine of the solar zenith angle (cos ei ) (the 

COST model). This is based on empirical evidence that cos e ;::::;; exp( T sec e), where T is the 

optical depth and T = exp( T sec e) is a commonly adopted model for the transmittance. 

The COST model does not account for Ld and sets T~ = 1, since cos er = 0 for nadir 

viewing sensors. Chavez Jr. (1996) notes that inaccuracies caused by these approximations 

are compensated for by inaccuracies caused by setting Ti = cos ei · 

Chavez Jr. (1996) evaluated the COST model against the results for physically based 

models presented by Moran et al. (1992). He found that the COST model delivers a 
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slightly lower, but acceptable level of accuracy to the physically based models - but does 

not require access to any field or atmospheric data. Whilst acknowledging the limitations 

of his evaluation, Chavez Jr. (1996) presents the COST model as an alternative for use 

in situations where appropriate field and atmospheric data are not available. 

The legacy of the DOS approach is very important in atmospheric correction (Liang 

2004). As demonstrated in section 3.2.1, developments of this approach have been used 

in conjunction with other data sets to form an input into physically based models. 

3.2.3 Empirical line method (ELM) 

The Empirical Line Method (ELM) is a conceptually sirnple system for converting from 

at-sensor radiance to at-surface reflectance. One or more ground targets (GTs) are se­

lected and the reflectance of the GT is characterised. That characterisation is based 

on field-sampling, using a radiometer or spectrometer (e.g., Kruse et al. 1990, Smith & 

Milton 1999, Karpouzli & Malthus 2003) or on laboratory-based measurements of field 

samples (e.g., Ben-Dor et al. 1994, Ben-Dor & Levin 2000) or some combination of the 

two (e.g., Farrand et al. 1994). If the mineralogy of the surface can be accurately char­

acterised, then spectral libraries may be used (Farrand et al. 1994). The ELM is based 

on a simple linear relationship between radiance and reflectance. This is illustrated in 

figure 3.5 and the physical basis for this relationship is discussed in section 3.2.3.1. The 

ELM corrects for atmospheric effects and residual instrument artifacts. The ELM can 

also be used to correct for viewing geometry effects (Kruse et al. 1990) and solar-zenith 

angle effects (van der Meer 1994). 

The ELM has been implemented with one bright GT (e.g., Freemantle et al. 1992, McArdle 

et al. 1992). This assumes that the darkest point in the inmge is a "zero reflectance" tar­

get (Smith & Milton 1999) and that the radiance measured over that target is attributable 

to the path radiance (Lu in equation 3.12) (see figure 3.5). The obvious weakness of this 

approach is that these assumptions may not be met at all or may not be met in all wave­

bands. Large errors of up to 15% to 20% reflectance (McArdle et al. 1992, Freemantle 

et al. 1992) have been found when using this approach. This approach has been further 

developed by Moran and co-workers (Moran et al. 200l, Moran et al. 2003). Theyadvo­

cate devoting substantial effort to accurately characterising the reflectance of a bright GT. 

The reflectance of a dark target is performed using a RT model using appropriate default 

atmospheric conditions. This yields an accuracy (mean absolute difference (MAD)) of 1 % 

reflectance for relatively bright targets (Moran et al. 2001). However, it should be noted 

that these studies have been undertaken at well instrumented, extensive, homogeneous 

sites in Arizona, USA. Such areas also tend to have stable, clear atmospheric conditions. 

Hence, their results may not translate well to smaller, less-homogeneous temperate areas 

of the world. Furthermore, it should be recognised that such results typically apply on a 

per-target rather than a per-pixel basis - whereas predictions are required on a per-pixel 

basis. Hence there is a mismatch between the support of the nlOdel and the support for 
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FIGCRE 3.5: Schematic representation of the empirical line method. 

which the model is required. Hence these statements of accuracy may not apply at the 

pixel-sized support. 

Combined empirical and radiative transfer (RT) schemes have also been implemented for 

AVIRIS data (Clark et al. 1993, Clark et al. 2000). These provide an empirical correction 

to the RT scheme and correct for inaccuracies in the RT scheme caused by imperfect 

models and data. They find this hybrid approach to yield the most accurate correction 

of AVIRIS data. However, the approach is time-consuming and costly and they estimate 

that it takes one-person month to accurately characterise a calibration target. 

Where the ELM is implemented with two targets, and there is one radiance-reflectance 

datum for each target, the model parameters (a and b in equation 3.14 may be derived 

by simply plotting a straight line through the two points on the graph (Farrand et al. 

1994, Smith & Milton 1999). This approach obviates the need to undertake regression 

analysis. However, such an approach is also likely to be sensitive to the characterisation 

of the bright- and dark-points. Indeed, the error may be as large as 10% (Schott et al. 

1988, Caselles & Lopez Garcia 1989). 

Where there are more than two targets, or where there is more than one measurement 

per target, the ELM is implemented using a regression model (Schott 1997, Smith & 

Milton 1999, Karpouzli & Malthus 2003). This is discussed in detail below. 

Finally, it should be noted that the ELM yields an apparent at-surface reflectance factor, 

since, strictly, reflectance is affected by surface properties (including morphology) (Farrand 

et al. 1994, Ferrier & Wadge 1996), Sun-target-sensor orientation and atmospheric condi-
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tions (Kaufman 1989, Farrand et al. 1994, Schott 1997). The strict definition ofreflectance 

is discussed in section 3.1.2. For this thesis, the term reflectance should be taken to mean 

the apparent at-surface reflectance factor, unless otherwise stated. 

3.2.3.1 Physical basis of the ELM 

The physical basis for the ELM was given in equation 3.12 (Schott 1997) and is repeated 

below: 

Note that the above formulation suppresses dependence on wavelength. This relationship 

will not be constant across all wavelengths or wavebands of a broad band sensor. Hence, 

the models below will need to be recalibrated for each waveband of the sensor of interest. 

The same formulation is given by Ferrier & Wadge (1996), although they omit the Ld 

term in equation 3.12. 

This representation of the system is convenient, since the equation gives the relationship 

between at-sensor radiance and at-surface reflectance in a linear form. This can be re­

written as: 

L = a + bp (3.14) 

where: 

Schott (1997) proposes that a and b are derived using regression and that equation 3.14 

is then rearranged for reflectance. This approach is problematic. Regression is based on 

minimising the variance in the predictor variable and aSSUIIles that the dependent variable 

is known without error (Neter et al. 1996, \Vebster 1989). Hence, rearranging a regression 

equation to predict the independent variable is controversial (see discussion at the end 

of section 2.1.4). Therefore, the following approach is adopted here. The remote sensing 

system gives an image of at-sensor radiance, hence L is known at all locations in the 

image. Since the objective is to predict p, equation 3.14 is rearranged as follows: 

p 
L-a 

b 

La, , 
---=a+bL 
b b 

(3.15) 

Rearranging equation 3.14 invokes no assumptions about the regression model. It is also 

interesting to note that this provides a mathematical explanation of why the y-intercept 

term is negative (see also figure 3.5). The physical interpretation of this is that, at the 

x-intercept where p = 0, L = Lu. 

If p can be determined at a series of representative locations throughout the image then 

this can be used as the basis for a regression model. In adopting the regression model, it 
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is assumed that the X variable is known without error. However, L is not, strictly, known 

without error, although it is sufficient to take the recorded value of L as a marker. The 

true value, denoted L *, can then be thought of as a random variable, where L = L * + r5, 
and where r5 is an error term. The fact that L * is a random variable does not matter, since 

it is L and not L * that is used in the regression model (see section 2.1.4 for discussion). 

The regression model is then invoked as: 

(3.16) 

where E is an error term and i refers to a specific measurement. The error term in­

corporates measurement error (in p), model uncertainty and natural variation which is 

not accounted for by the model. Natural variation might include spatial variation in re­

flectance and atmospheric variation. Model uncertainty includes uncertainty introduced 

by pairing reflectance and radiance measurements. Examination of spatial variation and 

methodologies for pairing reflectance and radiance measurements form important compo­

nents of this thesis. 

3.2.3.2 Assumptions of the ELM 

It is clear that the ELM, as described in sections 3.2.3 and 3.2.3.1, imposes several require­

ments if it is to be successfully implemented. These requirements are often manifested 

as assumptions, where the user is not certain whether the requirements have been met. 

Furthermore, several decisions need to be made regarding the way in which the method­

ology is implemented. This section reviews and critiques the requirements, assumptions 

and methodological issues. 

The first requirement is that the atmospheric and illumination conditions are spatially 

uniform over the image. This is because, in the estimation and prediction phases it is 

assumed that Ti , Tr and Lu (see equation 3.12) are constant over the entire image. This 

requirement is difficult to test, although it can be mitigated by conducting the airborne 

survey in stable atmospheric conditions and seeking field sites that are close to the study 

areas (Kaufman 1989). Nevertheless, atmospheric conditions are known to change over 

short time intervals and distances (Milton & Goetz 1997). Similarly, the path length will 

vary most for wide field-of-view sensors. In areas of variable terrain atmospheric and 

illumination conditions and path length may all vary (Schott 1997). 

The second requirement is that the atmospheric conditions and viewing and illumination 

conditions should not change between the over flight and the time that the field spectra 

are measured. Strictly, this is the case, since reflectance is a function of surface prop­

erties, viewing and illumination geometry and atmospheric conditions (see section 3.1). 

However, in terms of characterising the apparent reflectance of the GTs, it is argued 

here that this is an assumption about the GTs, rather than atmosphere or viewing and 

illumination conditions. Hence it is assumed that GTs are insensitive to viewing and illu-
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mination conditions and are temporally stable. Indeed, this requirement lies behind the 

establishment of pseudoinvariant features that are used for atmospheric correction (Schott 

et al. 1988, Anderson & Milton 2006). 

Further requirements are made about the properties of the GTs, the reflectance of which 

is measured in the field or laboratory (Smith & Milton 1999, Clark et al. 2000). These 

are listed and then discussed in detail below. 

1. the GTs are clearly identifiable and accessible in the image and in the field; 

2. the GTs are spatially extensive and substantially larger than the pixel size; 

3. there are no adjacent obscurations which may limit illumination of the surface; 

4. the reflectance of the GTs should bracket the range of reflectance values found in 

the image; 

5. the GTs are spatially homogeneous in the spectral domain; 

6. the GTs are spectrally "bland", i. e., they have similar reflectance at all wavelengths; 

7. the targets remain spectrally stable over time; 

8. the GTs are flat and all at the same altitude; 

9. the GTs exhibit Lambertian properties over all relevant viewing and illumination 

angles. 

First, it is essential that the GTs can be identified in the image and on the ground and are 

accessible, so samples can be taken. This is so that the user can match up the field mea­

surements with the spatially coincident remotely sensed measurements. This is a straight­

forward, but important point. However, few authors explicitly report formally recording 

the location of the GTs (Ben-Dor et al. 1994, Ferrier 1995, Ben-Dor & Levin 2000, Kar­

pouzli & Malthus 2003). Several authors imply that the target which is sampled can 

be located in the image, but do not state that the location of the target is formally 

recorded (Kruse et al. 1990, Farrand et al. 1994, van der Meer 1994, Dwyer et al. 1995, Fer­

rier & Wadge 1996, Smith & Milton 1999, Perry et al. 2000, Yang et al. 2000). Further­

more, none of these authors report explicitly and formally recording the location of each 

field sample. The impact of this is discussed in detail below. 

The requirement that the GTs are spatially extensive and substantially larger than the 

pixel size is made to reduce the possibility of adjacency effects (Smith & Milton 1999). 

This may occur because the point spread function of the airborne sensor is typically larger 

than the pixel size (Smith & Milton 1999) or because radiance upwelling from adjacent 

pixels is scattered into the target-sensor path (Kaufman 1989, Schott 1997) or because 

there are mixed pixels. These effects will be most significant where two or more surfaces 

with very different reflectance properties lie adjacent to each other (Kaufman 1989). Smith 
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& Milton (1999) recommend that GTs should be at least three times the size of the 

pixel (their investigation uses airborne data with a pixel size of the order of 1 to 10 111). 

Kaufman (1989) demonstrated that, for satellite data, adjacency effects may be significant 

at distances up to 2000 m, especially when the optical thickness is high. However, for 

airborne sensors Gu et al. (1992) did not find evidence of adjacency effects for images flown 

at less than 2500 m above ground surface. Nevertheless, if adequately sized GTs are not 

available, this will limit the possibility of applying this technique to a given image. This 

requirement may also be made to allow averaging over several pixels in order to reduce 

noise in the remotely sensed data (Clark et al. 2000). 

The third requirement, that there should be no adjacent obscuration that may limit the 

illumination of the surface, ensures that there is consistency between airborne and field 

measurements and between field measurements taken at different times. This is because 

there will be no shadow cast on the surfaces that are being sampled (Schott 1997). As 

before, if no appropriate GTs are available, this will limit the possibility of applying this 

technique to a given image. 

The fourth requirement is that the reflectance of the GTs should bracket the range of 

reflectance values found in the image. This is imposed so that it is not necessary to 

extrapolate to predict the value of reflectance at every location in the image (Smith & 

Milton 1999). If this requirement cannot be met, it may be proposed that the GTs should 

bracket the range of reflectances of surfaces that are of interest to the investigator. If no 

appropriate GTs are available, this will lead to an increase in the uncertainty of prediction 

where extrapolation takes place. 

The requirement for GTs to be spatially homogeneous in the spectral domain is given 

by many authors (Kruse et al. 1990, Ben-Dor et al. 1994, Farrand et al. 1994, Dwyer 

et al. 1995, Ferrier & Wadge 1996, Perry et al. 2000, Karpouzli & Malthus 2003). In 

principle, this should simplify sampling of the target and reduces the possibility of in­

cluding artifacts which may exist in surfaces of mixed composition (Clark et al. 2000). 

Furthermore, where targets are of mixed composition, failure to sample the various ma­

terials proportionally can lead to inaccurate aggregate averages of reflectance (Milton 

et al. 1997). This is discussed further in section 3.2.3.3. Where laboratory spectra are 

gained from field samples this requirement is extended to say that the composition of the 

targets should be uniform (Kruse et al. 1990, Ben-Dol' et al. 1994, Farrand et al. 1994). 

The authors tend to assume that the target is homogeneous (perhaps based on visual 

examination) rather than testing that this requirement is met. However, it has been 

shown that surfaces that appear to be spatially uniform may exhibit spatial structure and 

this may vary with wavelength (Atkinson & Emery 1999). There are occasional examples 

where the GTs have been examined and found not to be homogeneous (Ferrier 1995, Sal­

vatori et al. 2000). In particular,-Salvatori et al. (2000) used geostatistics to demonstrate 

the existence of spatial structure in concrete and asphalt GTs. 

The requirement for GTs to be spectrally bland is made because it reduces the possi-
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bility of artifacts caused by inaccurate spectral sampling (Smith & Milton 1999, Clark 

et al. 2000). If the targets have strong absorption or reflectance features then inaccurate 

characterisation of these can lead to artifacts in the atmospheric correction. This issue 

may be a particular problem for hyperspectral data and is less important for multispec­

tral data. Furthermore, it may be noted that it may not be possible to find a sufficient 

number of spectrally bland targets such that spectrally variable targets, such as grass, 

have to be used (Smith & Milton 1999). In such situations, it is worthwhile to check for 

artifacts when using hyperspectral data. Finally, note that artifacts due to absorption and 

reflectance features may also arise with other atmospheric correction approaches (Roberts 

et al. 1986, Perry et al. 2000, Clark et al. 2000). 

The requirement for GTs to remain spectrally stable over time is to reduce the impact of 

spectral instability where it is not possible to obtain field measurements at the same time 

as the flight or satellite overpass (Smith & Milton 1999, Milton et al. 2000, Anderson & 

Milton 2006). Indeed, this is generally not possible for logistic and operational reasons. 

Hence, the user needs to be confident that the reflectance will not change in the interim 

period which may last between a few hours and several days. Indeed, where targets remain 

stable over long time periods, the need to measure them for each flight or over-pass may 

be eliminated. This is the principle behind the use of pseudo-invariant features (Schott 

et al. 1988, Milton et al. 2000, Teillet et al. 2006). 

The requirement for the GTs to be at identical altitudes is set so that the path-length 

will not vary between GTs (Schott 1997). Ferrier (1995) notes that non-adherence to this 

requirement may have introduced errors into their implementation of the ELM, although 

they do not quantify how. If the surfaces are not level then this will lead to obscuring 

of incident direct and diffuse radiation. This can be corrected for if the surfaces are 

Lambertian (Schott 1997). 

Finally, the requirement that the targets are Lambertian is important since the reflectance 

of the targets may not be sampled under the same viewing and illumination geometry as 

the remotely sensed data. Furthermore, the viewing and illumination geometry may 

change between subsequent reflectance measurements. Specifying Lambertian surfaces 

limits any change in reflectance that occurs due to changes in viewing and illumination 

geometry or illumination conditions. It should be noted that apparently Lambertian sur­

faces may exhibit non-Lamberti an properties at extreme illumination geometries (Rollin 

et al. 2000). Hence, it is advisable to select surfaces that are "near" Lambertian (Smith & 

Milton 1999) and not to make measurements at extreme solar zenith angles or under very 

diffuse illumination conditions. Some authors have posed exceptions to this requirement. 

Farrand et al. (1994) measure reflectance under laboratory conditions and specifically con­

trol for viewing and illumination conditions. Moran et al. (2001) and Anderson & Milton 

(2005) adopt the model of Walthall et al. (1985), which is a simple empirical BRDF model 

which models reflectance as a function of the solar zenith angle (SZA). They find that 

this is sufficient, providing that the angular reflectance properties vary in a consistent and 

predictable way. 
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The requirement for Lambertian targets is also important since reflectance is a function 

of surface and atmospheric properties and viewing and illumination conditions. If the 

atmospheric conditions change between the time of the flight and the time of the field 

measurements, then near-Lambertian targets will be affected less than non-Lamberti an 

targets. 

As with the assumption about homogeneous surfaces, it is generally assumed that the 

selected targets are Lambertian. However, it is rare for this assumption to be tested 

specifically. 

The above discussion has covered the key requirements and assumptions that are made 

about the GTs and atmosphere. However, in any operational situation it may not be 

possible to meet or test these requirements in full. The following section discusses the 

implementation of the ELM. 

3.2.3.3 Selection of ground targets 

In the previous section, nine requirements, defining appropriate GTs, were set out. If 

requirements 2, 3, 4 and 8 are not met, then it might be concluded that the ELM may 

only be implemented with caution. However, it is proposed that measures can be taken 

in situations where requirements 1, 5, 6, 7 and 9 are not fully met. 

\Vhen the GTs cannot be precisely located within the image Ferrier (1995) and Ferrier & 

Wadge (1996) report reduced accuracy in the ELM. This may be due to lack of precision 

in locating the GTs or the field samples or to imprecise geometric registration of the 

image. These effects are considered in detail in this work. Modern GPS and surveying 

technologies mean that it ought to be possible to record the location of the GTs (Karpouzli 

& Malthus 2003) and even individual measurements. 

The issue of the homogeneity of the GTs requires careful consideration. It is proposed that 

it is unsatisfactory to assume that the targets are spatially homogeneous without testing 

this assumption. This is particularly important since it is known that surfaces that are 

visually homogeneous may exhibit spatial structure that varies with wavelength (Atkinson 

& Emery 1999, Salvatori et al. 2000). A detailed geostatistical examination may be 

conducted using field samples, providing the location of those samples is recorded. Where 

remotely sensed data from a previous campaign are available this assumption could be 

examined using those data. Such an examination is implemented in chapter 5. 

To ensure homogeneity of the GTs, some authors have used GTs that are specifically 

constructed for the purpose (e.g., Maracci et al. 1981, Schott 1997, Perryet al. 2000). 

This approach is not always feasible or appropriate. 

As discussed in the previous section, it may not be possible to find such surfaces that 

are spectrally bland. For example, bare rock or man-made surfaces (such as concrete and 
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asphalt) may have biological growth that is not clear to the naked eye (Clark et al. 2000, 

Anderson & Milton 2006). Indeed, grass is recommended as a candidate GT by Smith & 

Milton (1999) owing to its brightness in the near-infrared. 

It should be noted that the surface may change between the time of the flight and the 

time that it is sampled. This may lead to change in the reflectance properties. This 

concern is, perhaps, most acute for laboratory samples, although Ben-Dor & Levin (2000) 

are careful to limit the disturbance and suggest that it is not a major problem in their 

study. Surfaces may change over time becauase of physical damage, vegetation growth, 

or because of wetting of the surface (Milton et al. 1996, Lawless et al. 1998, Smith & 

Milton 1999, Karpouzli & Malthus 2003), so it is important to consider these issues 

when selecting GTs. Lawless et al. (1998) report on a study of the spectral stability of 

asphalt and concrete targets. They conducted repeat measurements of reflectance of these 

two targets five times over a period of six weeks, using a broad-band Milton Multiband 

Radiometer (MlVIR) (Milton 1982, Milton 1987). However, Anderson & Milton (2006) 

found seasonal patterns in the reflectance of concrete on longer (annual) time scales which 

they attribute to the growth of biological material on the surface. Anderson & Milton 

(2006) also found an intra-day variation in reflectance of concrete of up to 2% in visible 

and NIR wavelengths which is correlated with an increase in relative humidity and the 

onset of a sea-breeze. They attribute this primarily to an increase in biological activity 

associated with the increase in humidity. Temporal variation in reflectance of GTs IS 

recognised as an important issue, but lies outside the scope of this thesis. 

Finally, the assumption that the GTs should exhibit Lambertian properties may be eval­

uated by reference to the literature on the angular reflectance properties of similar targets 

or by making measurements over the specific GT. Whilst the latter may be regarded as 

preferable, it demands much time and many resources and may not be feasible. Some 

analysis of bidirectional effects of GTs exists in the literature. Staenz & Itten (1982) find 

that asphalt and concrete targets generally exhibit Lambertian properties, although an 

exception is found for strongly grooved surfaces. Anderson & Milton (2006) find that, for 

nadir measurements, reflectance decreases as solar zenith angle increases although this 

effect is largest when measurements are taken substantially before or after solar noon. 

Similarly, Clark et al. (2000) recommend that field measurements are taken as close to 

solar noon as possible. This area is given limited attention in this thesis. 

3.2.3.4 Sampling reflectance of the ground targets 

Given the discussion in the previous sections, it is clear that careful consideration needs 

to be given as to how the GTs are sampled. 

First, it is useful to consider how reflectance is being measured. The airborne or satellite~ 

borne instrument is likely to have a small instantaneous field of view. For example, the 

angular IFOV of the Airborne Thematic Mapper sensor used in this project is 0.14° (2.5 
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mrad). The NERC ITRES CASI-2 instrument has an IFOV of 0.115 0
• Spectrometers, 

such as those loaned by the NERC EPFS, typically have an IFOV of between 30 and 

100 depending on the lens that is fitted. Hence, the angular sampling of the field or 

laboratory and air- or satellite-borne sensors are very different. This difference in the 

angular sampling is an inevitable consequence of sensor design and purpose and while 

cannot be addressed, is noted here for completeness. 

Next, the viewing and illumination geometry need to be considered. Where field measure­

ments of reflectance are used most authors do not report on the illumination or viewing 

geometry, although some report using a nadir viewing radiometer or spectrometer (e.g., 

Milton et al. 1997, Karpouzli & Malthus 2003) report using a nadir viewing radiome­

ter. A nadir-viewing radiometer is used for the experimental work carried out for this 

thesis. Some authors recommend monitoring the atmospheric conditions and the diffuse 

to global (DC) ratio whilst undertaking field measurements (Milton et al. 2000, Clark 

et al. 2000, Anderson & :Milton 2006) so that changes in illumination conditions can be 

established. 

Some authors use laboratory, rather than field measurements of reflectance, allowing 

careful control of the material as well as the viewing and illumination conditions. Far­

rand et al. (1994) specifically controls for viewing and illumination conditions, although 

other authors do not report on this (e.g., Ben-Dor et al. 1994, Ben-Dol' & Levin 2000). 

Whilst laboratory measurements are undoubtedly valuable when seeking to quantify and 

understand the reflectance properties of different surfaces, this approach is questionable 

for two reasons. First, laboratory conditions cannot fully recreate atmospheric illumina­

tion (Milton 1987, Milton et al. 1995). Second, the laboratory samples may not accurately 

represent the field environment. Laboratory samples are not used in this thesis. 

The reflectance of CTs may change over seasonal and diurnal time-scales. Obvious 

changes may be due to wetting and drying or to substantial vegetation growth. However, 

changes may also occur due to biological activity that may not be obvious to the naked 

eye (Anderson & Milton 2006). This is an active and important research area (Milton 

et al. 1996, Anderson & Milton 2005, Anderson & Milton 2006) that has previously re­

ceived limited attention. It poses substantial challenges both for quantifying these changes 

and for modelling changes in reflectance. It is important for the selection and use of CTs 

both for the ELM and for vicarious calibration. The importance of this issue is recognised 

and, during fieldwork effort was taking to mitigate these effects by conducting fieldwork as 

close to solar noon as possible and by selecting stable atmospheric conditions. However, 

detailed analysis lies outside the scope of this thesis. 

When measuring the reflectance of the CTs using a spectrometer or radiometers the 

size of the areal IFOV will be much smaller than the ERE or pixel size measured by 

the remote sensor. For example, Salvatori et al. (2000) report using nadir viewing ASD 

FieldSpec FRTM fitted with a 80 foreoptic mounted 3.6 m above the surface, yielding a 0.5 

m diameter IFOV. Such information is typically not reported although this example does 
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demonstrate that the support of the field measurement is likely to be very different from 

the support of the remotely sensed measurement (the pixel size). This has two important 

effects. First, measurements made on different supports are known to have different 

statistical properties (Blalock 1964, Heuvelink & Pebesma 1999, Bierkens et al. 2000). 

The validity of combining measurements that are defined on different supports within a 

model without specifically addressing this issue has recently been questioned (Heuvelink 

& Pebesma 1999, Dungan 2002). Typically, the measurements are averaged over the 

GT, giving a per GT measure of reflectance. This issue receives substantial attention in 

this thesis. Second, it may not be possible to find surfaces that are comprised of only 

one cover type and the GT may have features which have different reflectance properties 

(such as road-markings, or vegetation). These may make a significant contribution to the 

reflectance of a pixel sized area (Milton et al. 1997). In such circumstances, this effect 

should be accounted for, either by (i) measuring reflectance over pixel sized supports 

(this may involve placing the radiometer or spectrometer on the top of a tall mast); (ii) 

intensively sampling within a pixel sized area; or (iii) sampling the reflectance of the 

different components and computing the weighted-average reflectance, where the weights 

are proportional to the area covered by each component. 

Finally, care needs to be given to determining both the number of field measurements 

that are required and the sampling regime. Smith & Milton (1999) take between 5 and 35 

measurement for each GT (approximately 9 m by 9 m in area) and Karpouzli & Malthus 

(2003) take between 15 and 60 measurements per target. Farrand et al. (1994) report 

measuring 100 spectra for one of their GTs, but do not report how many are taken over 

the second GT. These authors do not typically specify a sampling scheme. Clark et al. 

(2000) do not take point-support measurements but configure the spectrometer to aver­

age 60 O.l-second integrations over a 6 second period. The operator then traverses the 

site and the resultant measurement yields a spatial average over 4 to 8 m (depending 

on the speed the operator walks. This approach is used to sample large areas quickly. 

However, with such an approach it is not possible to give a location to individual mea­

surements. It is clearly important to take enough measurements to characterise each 

surface, although there is no indication of what constitutes "enough" measurements. Fur­

thermore, to account for spatial structure in the reflectance of each GT it is necessary 

to sample at a range of lags (Salvatori et al. 2000) and to record the location of each 

measurement. Furthermore, providing a full characterisation of GTs can be substantially 

time consuming. Clark et al. (2000) note that to achieve accurate atmospheric correction 

approximately one person-month was spent characterising the GTs. However, many other 

researchers spend substantially less time and effort characterising GTs. 

3.2.3.5 Implementation of the ELM 

As introduced in section 3.2.3 the ELM is based on a linear relationship between re­

flectance and radiance. To obtain the slope and intercept parameters of the linear model 
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it is necessary to establish radiance-reflectance data pairs that can be used to estimate 

the model parameters. At least two such data are required, in which case a line is simply 

drawn through them and the slope and intercept parameters calculated. If more than 

two data pairs are available the parameters are estimated using regression modelling, 

as discussed in section 2.1. \Vhen regression is used the model allows for assessment of 

uncertainty in estimation and prediction. 

A major issue here is the approach that is used for determining these data pairs. The 

approach that is typically adopted in the literature is to identify the GT in the image 

and to calculate the mean radiance (or DN) by averaging all the pixels in the GT. Field 

measurements of reflectance are then obtained and averaged to yield the mean reflectance 

value for the GT. In this thesis, this approach is referred to as the typical approach. 

Inspection of the reflectance data can aid the assessment of whether the GT is suitable 

for use in the ELM. Inspection of the histograms of reflectance measurements can give 

insight here. Outliers may be indicative of problems in the measurement system or of 

genuine bright or dark patches in the target. A bi-modal or multi-modal distribution may 

be indicative of a target of mixed composition. If the location of each measurement is 

known then the spatial structure in the data can be examined. If the time when each 

measurement is taken is known then the reflectance data can be examined for evdicence 

of directional effects. 

The above mentioned "typical approach" is used almost universally when implementing 

the ELM. However, it is problematic for various reasons, as follows: 

1. The support of the GTs are ambiguously defined. It is not made clear what size 

they are or where the boundaries lie. Indeed the support may vary between GTs -

or even between the image-based and field-based definitions of the same GT. This 

is problematic for two reasons: 

(a) It is not possible to state clearly the support of the data for estimation and 

prediction. 

(b) The data pairs obtained using this approach are typically used to estimate the 

parameters of the ELM. These are then applied to the remainder of the image. 

This approach is problematic unless the objective is to predict on GT sized 

supports (which is rarely the case). If the objective is to predict on pixel sized 

supports the approach is problematic, as discussed in section 2.2.1, since the 

supports used for estimation and prediction will be different. The parame­

ter estimates and predictions based on these estimates may be different from 

those based on estimates obtained from pixel-sized targets. For spatially ho­

mogeneous targets and the linear model, no significant change in the estimates 

of the slope and intercept parameters is expected (Heuvelink & Pebesma 1999) 

although the uncertainty estimates will differ. For inhomogeneous targets 
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MAUP effects may lead to different parameter estimates for pixel-sized and 

GT-sized supports. 

2. Averaging over GTs reduces the information content of the data. As mentioned 

above, this is problematic if the objective is to predict on pixel sized supports. This 

is because averaging reduces the variability and may lead to unrealistically low values 

of the variance and, hence, unrealistically tight confidence and prediction intervals. 

However, when the number of GTs used in the regression is small this effect may be 

dramatically reversed. This is because the t~values used in equations 2.12 and 2.13 

are dependent on the degrees of freedom (v) and increases sharply when v is small. 

This is particularly clear when v ~ 5 but persists until v ~ 202 . This sharp increase 

reflects the uncertainty in the parameter estimation owing to the small sample size 

and may work against the decrease in the variance caused by averaging. Note that 

v = n - 2 for the simple linear model adopted in equation 3.16 (n is the number of 

data). The ELM is generally implemented with a small number of GTs and the nine 

GTs used by Karpouzli &, Malthus (2003) is unusually large. Hence, for a more usual 

number of GTs (e.g., 3 or 4) the confidence intervals on the regression parameters 

may be wide and even lead to rejection of the regression model. The hypothesis 

tests on the regression parameters have never been reported for the ELM. 

3. When averaging over the GTs it is important to consider the field sample size and 

configuration necessary to yield a stable estimate for the mean. This is often not 

stated and it may range from less than ten measurements per target (e.g., Roberts 

et al. 1986) to several hundred (e.g., Gu et al. 1992, Clark et al. 2000). Hence there 

is a need for a quantitative assessment of the required sample size. 

These above issues are exacerbated where it is not possible to find spatially homogeneous 

targets. In such cases, it may be necessary to proceed using sub-optimal targets. 

These above issues are given detailed empirical attention in this thesis and form the bulk 

of the material presented in chapter 5. However, implementing the ELM on a per-pixel 

basis introduces two further important considerations: 

1. Positional accuracy of the field-measurements, both relative to themselves and rel­

ative to the image 

2. Limitations posed by the regression assumptions. Notably, the regression residuals 

tend to be heteroskedastic and spatially autocorrelated. 

These issues are addressed in chapters 6 and 7 respectively. 

This thesis is, therefore, concerned primarily with the spatial sampling and model imple­

mentation issues surrounding the ELM. It is recognised that the directional and temporal 

2Tables showing the percentiles of the t-distribution given in many text books (e.g., Neter et al. 1996). 
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stability of the GTs is of major importance. However, these issues lie beyond the scope 

of this thesis and are given only limited attention. 

3.3 Summary 

This chapter has provided an overview of the physical basis of remote sensing. It has then 

gone on to review methods for atmospheric correction of airborne and satellite optical 

data. In particular, the Empirical Line Method (ELM) received detailed attention. 



Chapter 4 

Field site and data procurement 

This chapter introduces the field site and instrumentation used. It then goes on to intro­

duce the fieldwork objectives and experimental design. 

4.1 Description of field site: Thorney Island 

Thomey Island (GR: 50° 48' 35" N, 0° 55' 19" VV) is located in Chichester Harbour, 

West Sussex on the south coast of the British mainland. The "island" has been joined to 

the mainland for approximately 125 years, following reclamation of tidal mud flats in the 

1970s. The site is owned by the UK Ministry of Defence (MOD). It was used by the Royal 

Air Force (RAF) from 1935 up until 1984, when it was taken over by the Army. Access to 

the site is controlled by the MOD hence, although there is some access to hobbyists and 

other scientists and engineers, much of the site is largely disused. This generally allows 

undisturbed access for scientific purposes. The site has been used by researchers in the 

School of Geography and NERC Equipment Pool for Field Spectroscopy (EPFS) (as was) 

over the last decade (Milton et al. 1996, Lawless et al. 1998, Smith & Milton 1999, Salvatori 

et al. 2000, Anderson 2005, Anderson & Milton 2005, Anderson & Milton 2006). 

Thorney Island's status as former air field means that it has a runway comprised of 

asphalt and concrete surfaces. These range between 50 nl and 100 m in width and hence 

are of suitable spatial extent for use with fine spatial resolution satellite (e.g., IKONOS, 

QuickBird) and airborne (e.g., ATM, CASI) sensors. The grass surrounding the runway 

is also kept cropped and has been used as a GT by Smith & Milton (1999). Hence, 

these three surfaces provide potential GTs with a range of reflectance values at optical 

wavelengths. For the research conducted in this thesis, fieldwork focused on the asphalt, 

concrete and grass surfaces at the southern end of the runway, the approximate location 

of which are shown in figure 4.1. 

Thomey Island exhibits only slight relief, meaning that all potential GTs are at approx­

imately the same attitude. The lack of relief also simplified geometric correction of the 
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FIGURE 4.1: Map of Chichester Harbour, including Thorney Island. Approximate loca­
tions of the concrete and asphalt (tarmac) GTs are shown. The grass GT is slightly to 
the east of the asphalt GT. 
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image, as discussed in section 4.2.5. Furthermore, the runway is characteristic of other 

WWII runways (e.g., Chilbolton, Hampshire), which might provide suitable sites for at­

mospheric correction and vicarious calibration elsewhere in the UK. Finally, Thorney 

Island is easily accessible from Southampton, thus simplifying the fieldwork logistics. 

4.2 Airborne imagery: NERC ARSF 

The UK NERC provides an Airborne Remote Sensing Facility (ARSF), primarily for use 

by the UK academic community. Groups of researchers can make a bid to have their sites 

over flown and the process is similar to that undergone when applying for a research grant. 

The application is graded according to its scientific merit and the team then liaise with 

the flight crew to establish the logistics of the mission. Some published information on the 

facility is available (Roy et al. 1997, Wilson 1997) however most technical and practical 

information about the facility is primarily available in the "grey" literature in the form 

of user manuals and documentation available from the ARSF via the Internet1
. Further 

useful information is often not formally documented and may be dispensed at local science 

meetings (such as the annual workshop organised by the ARSF and the meetings of the 

UK Remote Sensing and Photogrammetry Society) or via personal communications. 

The ARSF operates a Dornier 228- 101 D- CALM aircraft with an array of instruments 

mounted on it. The remote sensing instruments available are the Daedelus 1268 Airborne 

1 For further information on the NERC ARSF see: http: I I arsf . nerc . ac . ukl 
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Product 
Level 0 
Level 1a 

Level1b 

Level 
Raw "sensor format" data at original resolution. 
Level 0 data reformatted to image files with ancillary files 
appended. 
Level 1a data to which radiometric calibration algorithms 
have been applied, to produce radiance or irradiance, and 
to which location and navigational information has been 
appended. 

Level 2 Geophysical or environmental paral11.eters derived from 
Level 1a or 1 b data, may include atmospheric correction. 

Level 3a Level 1 b or 2 data mapped to a geographic co-ordinate 
system using on-board attitude and positional information 
only. 

Level 3b Level 1 b or 2 data mapped to a geographic co-ordinate 
system using on-board attitude and positional information 
with additional ground control points. 

Level 4 Multi-temporal/multi sensor gridded data products. 

TABLE 4.1: Table showing definition of the HDF product levels. Source: :'\ERC ARSF 
(http://arsf.nerc.ac.uk/data/). 
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Thematic Mapper (ATM) , the Itres Instruments Compact Airborne Imaging Spectrom­

eter 2 (CASI) and the Wild RC camera. The CASI is complemented by the Incident 

Light Source (ILS) instrument which measures downwelling radiation at the aircraft. The 

aircraft is fitted with an array of Global Positioning System (GPS) instruments and an 

inertial navigation system. This allows the position and trajectory (including variation in 

pitch, roll and yaw) of the aircraft to be recorded. This information is used for geocor­

rection and geocoding of the remotely sensed data. 

Together the instruments form the Integrated Data System (IDS) which has been devel­

oped to integrate the imagery with navigation and altitude data provided by onboard 

Global Positioning Systems (GPS) receiver. The data can subsequently be processed to 

yield a georeferenced digital data set without the need for ground control points, giving a 

level 3a product. 

ARSF data are supplied as a level 1 b hierarchical data format (HDF) product following 

the system defined by NASA 2 (table 4.1). ARSF provides software that allows the data to 

be processed to a level 3a or 3b product. Further processing of the data requires that the 

user defines their own methodology and processing technique. Definition of the various 

levels of data product are given in table 4.1. 

2For more information on HDF can be found from the KERC ARSF (http: I I arsf . nerc . ac . ukl datal) 
and from NASA (http://eosweb.larc.nasa.gov/HBDOCS/hdf.html). 
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IFOV 
Samples per scanline 
Digitised FOV 
Scan Rate 

2.5 mrad 
938 
7i /2 rad 
12.5, 25 or 50 Hz 
16 bit Radiometric Resolution 

Temperature Reference Two black~bodies for calibration of thermal 
channel 

TABLE 4.2: AZ-16(AT~1) specification. Source: ~ERC ARSF (http://arsf.nere.ae. 
uk/instruments/atm. asp. 

ATM ·Wavelength Landsat TM Wavelength 
band f.Lm band f.Lm 
1 0.42 ~ 0.45 
2 0.45 - 0.52 1 0.45 0.52 
3 0.52 - 0.60 2 0.52 ~ 0.60 
4 0.60 0.62 
5 0.63 - 0.69 3 0.63 0.69 
6 0.69 ~ 0.75 
7 0.76 0.90 4 0.76 0.90 
8 0.91 - 1.05 
9 1.55 1.75 5 1.55 1.75 
10 2.08 ~ 2.35 7 2.08 ~ 2.35 
11 8.50 ~ 13.0 6 10.4 12.5 

TABLE 4.3: Table showing ATM and Landsat TM wave bands. Source: ~ERC ARSF 
http://arsf .nere. ae. uk/instruments/atm. asp) and Campbell (1996). 

4.2.1 The Airborne Thematic Mapper (ATM) 
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The Airborne Thematic Mapper (ATM) instrument provided by the ARSF is based on 

the Daedalus AADS1268 instrument. This system was overhauled and upgraded during 

the 1990s to meet the AZ~16 specification (table 4.2). The ATM is a passive response 

sensor that quantifies the radiation upwelling from the Earth's surface in 11 spectral bands 

(table 4.3). The ATM wavebands cover the visible and the near-infrared (bands 1 to 8), 

the shortwave infrared (bands 9 and 10) and the thermal infrared (band 11). Several of 

these bands have been set to simulate the seven spectral bands of the Landsat Thematic 

Mapper (TM) (Wilson 1997). 

The ATM is a whisk-broom type instrument (Campbell 1996). The scan mirror has three 

synchronised speeds (12.5, 25 and 50 Hz), which allows the scan rate to be adjusted 

as appropriate for a given flight speed and altitude in order to ensure that there is not 

too much over- or under-sampling in the along track direction. The sensor has a fixed 

instantaneous field of view (IFOV) of 2.5 mrad (rv 0.14°), so the effective resolution 

element (ERE) of the sensor is dependant on the altitude and viewing angle. For each 

scanline 938 samples are taken and the digitised field of view (FOV) is 7i /2 (90°). This 
. 1 1" 1 f 1f /2 gIves an angu ar samp mg mterva 0 938 7i/1876 radians (rv 0.096°), which may lead to 
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IFOV: Across track 
IFOV: Along track 
Spectral range 
Spatial samples 
Spectral samples 
Dynamic range 

54.40 

0.1151 0 

405 - 950 nm 
512 spatial pixels (across track) 
288 at 1.8 nm intervals 
12 bit 

TABLE 4.4: l'\ERC CASI specification. Source: NERC ARSF (http://arsf.nerc.ac. 
uk/documents/casi2.pdf. 
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over sampling in the across track direction. A general specification is given in table 4.2. 

4.2.2 Compact Airborne Spectrographic Imager (CASI) 

The CASI provided by the ARSF is the Itres3 CASI-2 instrument4 ,5. It contains a two­

dimensional CCD array-based pushbroom imaging spectrometer, described in more detail 

in table 4.4. A full 512 pixel hyperspectral (288 bands) image cube can be obtained 

(full-frame). However, in practice the integration time is so high (1-2 s), that this is 

only feasible if the instrument is mounted on a tripod rather than an aircraft. Hence, for 

CASI flights there are two basic modes of operation which represent a trade-off between 

spectral and spatial resolution. In spatial mode up to 18 programmable spectral bands 

can be obtained for the full 512 pixel swath. Pixel resolutions vary from sub-metre to 

10 metres, dependent on the flying height. In spectral mode, the full 288 bands can be 

obtained but for more limited spatial sampling. For example, in enhanced spectral mode, 

a block of 101 adjacent pixels are recorded. 

The ARSF CASI is offered with a default 12 band vegetation or ocean-colour band set, 

although the configuration can be specified by the user if required. The vegetation band 

set, used in this thesis is shown in figure 4.5. 

4.2.3 Geometric correction of airborne imagery 

Users of airborne remotely sensed data are familiar with images that are defined using a 

grid of, typically square, pixels. However, the raw data require considerable processing to 

get to this stage. 

First, the pixel does not define the area on the ground that is imaged by the sensor. That 

area is known as the effective resolution element (ERE) and is typically larger than the 

basic pixel size. The proportion of the ERE that is represented by the pixel depends on 

the point spread function (PSF) of the sensor, the sensor configuration and the pixel size 

to which the data is processed (Richards & Jia 1999). 

3http://www.itres.com/ 
4http://arsf.nerc.ac.uk/instruments/casi.asp 
5http://arsf.nerc.ac.uk/documents/casi2.pdf 
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Channel Centre Width Start End Purpose 
(nm) ( nm) ( nm) ( nm) 

1 450 20 441.53 459.17 Vegetation response 
(blue) 

2 490 20 480.37 499.84 Vegetation response 
3 552 10 547.74 556.63 Vegetation response 

(green) 
4 670 10 665.57 674.74 Vegetation absorption 

maximum 
5 700 10 694.28 703.27 Red-edge 
6 710 10 705.07 711.06 Red-edge 
7 740 10 735.66 744.67 Red-edge 
8 750 7 746.47 753.68 Red-edge 
9 762 5 760.9 764.51 Oxygen absorption 
10 780 10 775.34 784.37 Vegetation reflectance 

maximum 
11 820 10 815.13 824.18 Water absorption 
12 865 10 860.46 869.54 NIR plateau 

TABLE 4.5: Table showing the )JERC ARSF CASI default vegetation wavebands. Source: 
NERC ARSF http://arsf .nere. ae. uk/doeuments/casi2 .pdf). 

Next, the image is subjected to several forms of geometric distortion (Mather 1999, 

Richards & Jia 1999). At the edges of the image swath, the area imaged on the ground will 

be larger than that imaged at nadir. Since the sensor records at fixed angular increments, 

the spacing of the nominal pixel centres increases towards the edges of the image swath. 

Furthermore, the juxtaposition of the forward motion of the aircraft and the across track 

motion of the sensor leads to an "S~bend" effect in ATM imagery.. These are termed 

panoramic distortions. 

ATM data are subject to further distortions, induced by the whiskbroom system. The 

scanner moves as the aircraft moves forward, leading to skewing of the scan lines in the 

along track direction (Richards & Jia 1999). Furthermore, as noted in section 4.2.1, the 

sensor generally over samples the image in the along and across track directions. 

Finally, variation in altitude and in pitch, roll and yaw lead to distortions for both whiskb­

room and pushbroom systems. 

For satellite based sensors, distortions are induced by the Earth's curvature and rotation. 

However, these are not generally considered to be important for airborne data of the type 

used in this study (Mather 1999, Richards & Jia 1999). 

By taking account of the above distortions it is possible to define the image on a grid. For 

many applications, it is necessary to geocode the image to a map co~ordinate system. In 

this situation, further distortions may be introduced by the topography of the landscape. 
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4.2.4 Preprocessing of the imagery 

NERC ARSF provide data as a HDF level1b product (see table 4.1). This was processed 

to yield a geometrically corrected HDF level3a product. The HDF file can then be further 

processed to yield a binary file suitable for input into image processing software (such as 

Research Systems' ENVI) or for processing using custom built programs (e.g., C or IDL 

programs). To process the data from the level 1 b product to level 3a, ARSF provide the 

azgcorr software. Further processing is conducted using azexhdf. azgcorr version 4.3.3 

and azexhdf version 2.0.0, the latest available at the time of processing, were used. 

Several options may be provided to azgcorr and azexhdf. Those options that actually 

alter the data content of the processed image are listed and discussed below. This is 

not intended to be an exhaustive list, since the specific configuration of options will 

vary according to the intended use. However, it does discuss those that affect the data 

processing conducted for this project. Options which alter the data format (rather than 

content) are not discussed. In particular, azexhdf is only used to convert data from HDF 

to some other user specified format (in this case the binary interleaved by line (BIL) 

format was used). The stated options are: 

1. Geodetic datum shift (vertical geodetic transformation); 

2. Map projection information (horizontal geodetic transformation); 

3. Incorporation of a Digital Elevation Model (DEM). 

4. Pixel size on the output image; 

5. Resampling the output image: 

As mentioned in section 4.2.1, the position of the aircraft is determined using a network 

of GPS. This position is given in three dimensions, relative to the European Terrestrial 

Reference System 1989 (ETRS89) (Ordnance Survey 1999). ETRS89 is defined by the 

World Geodetic System 1984 (WGS84) datum at 1989.0 (i.e. 00:00 hours on 1st January 

1989). ETRS89 is realised by the European Terrestrial Reference Frame 1989 (ETRF89). 

To convert from the GPS co~ordinate system to a map co~ordinate system it is necessary 

to apply a geodetic transformation (Robinson et al. 1995). In the UK, the Ordnance Sur­

vey provides the required algorithms, parameters and data files to convert from ETRF89 

to the UK National Grid, where the horizontal position is defined according to OSGB36 

and the vertical position is defined by the Ordnance Datum Newlyn (ODN). 

\iVithin azgcorr the default (UK95) vertical and horizontal geodetic transformation use 

the 'Ordnance Survey recommended National Grid/ETRF89 Transformation Parameters 

2 / 1995 version 1.2'. These use a grid contained within the software and has a stated 

accuracy of 2 m in the horizontal. This transformation has since been superseded (Colin 

Fane, Ordnance Survey, personal communication). The two transformations now provided 
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by the Ordnance Survey are the National Grid Transformation (OSTN97) to convert from 

ETRSS9 to OSGB36 and the National Geoid model (OSGM9l) to convert from ETRSS9 to 

Ordnance Datum Newlyn (ODN). Hence, OSTN97 provides the horizontal transformation 

and OSGM9l provides the vertical transformation. OSTN97 has a stated R1IS accuracy 

of 0.2 m and OSGM9l has a stated RMS accuracy of 0.1 m (95%) (Ordnance Survey 1999). 

These transformations may be applied by using the "UK99" option. 

The Ordnance Survey have recently (late 2002) updated OSTN97 and OSGNl91 to OSTN02 

and OSGM02 respectively. In addition to providing a new standard with increased accu­

racy, these transformations now define the UK National Grid (Ordnance Survey 2002a). 

OSTN02 has a stated RMS accuracy of 0.1 m (1 standard deviation) and OSGM02 has a 

stated RMS accuracy of 0.02 m (2 standard deviations) (Ordnance Survey 2002a). These 

transformations were not available with azgcorr at the time of processing. 

In order to gain an accurate geometric correction it is necessary to provide some infor­

mation on elevation, since the ellipsoid (used for ETRSS9) and the geoid (used for ODN) 

do not coincide. Hence, if elevation information is not provided, the software cannot 

calculate the distance between the scanner and the ground (the surface of ETRSS9 is 

approximately 40 m below ODN sea level). If the user is confident that there is no relief 

in the landscape then it may be acceptable to provide a constant offset. However, if an 

accurate geometric correction is required, then it is necessary to use a digital elevation 

model (DEM). For example, aIm change in ground-sensor distance will lead to aIm 

displacement at the edge of the ATM swath (FOV = 90°. It was stated that azgcorr 

would accept either a digital terrain model (DTM) or contour data although, in practice, 

the software could only cope with a DTM. 

When processing the level 1 b product to level 3 it is necessary to specify a pixel size for 

the output image. Given the IFOV of the instrument and the flying height, it is possible 

to calculate a nominal pixel size at nadir. This changes where the scanner images the 

surface at off-nadir view angles and if the flying height or surface topography changes. 

Furthermore, as stated in section 4.2.1, the ATM over samples the image in the along­

and across-track directions. Hence, the pixels in the output image cannot hold a direct 

relationship with the measurements that are actually made by the sensor. azgcorr pro­

vides three primary options for resampling the input image: a bi-cubic spline method, 

nearest neighbour interpolation and bilinear interpolation. It is commonly argued that 

using the nearest neighbour method is to be preferred, since this does not alter the input 

data (Mather 1999). However, at the most basic level, this is not correct, since azgcorr 

averages the input data before it resamples them (Andrew Wilson, NERC ARSF,personal 

communication). The bi-cubic spline method is the default option, since this aims to 

replicate the pixel value that would have been measured at any given map location. It 

also attempts explicitly to take account of the over sampling of the image. 



Chapter 4 Field site and data procurement 101 

4.2.5 Preprocessing the Thorney Island data 

The Thorney Island data was processed using azgcorr and azexhdf as discussed above. 

For the vertical and geodetic shifts both the default (UK95) and upgraded (UK99) options 

were both used and the results explored. The Thorney Island site exhibits low relief, and 

is clearly close to sea level (a 5 m contour passes through the south western corner of the 

island). The need for a DEM was emphasised in section 4.2.4, so one was included for the 

preprocessing of the Thomey Island data. 

Three DEMs were available for this work, as follows: 

• The Ordnance Survey Land-Form PANORAMA@TM DEM; 

• The Ordnance Survey Land-Form PROFILE@T) DEM; 

• The LandMap DEM. 

The PANORAMA@ DEM is described in detail by Ordnance Survey (200la). It is 

provided as 20 km by 20 km tiles and is available as contour data or as a DT11. The 

contour lines are digitised from the OS Landranger 1:50,000 scale map series where the 

contours are captured at 10 m vertical intervals. The contours have a stated global 

accuracy of ±3.0 m RMSE. This refers to the difference between the contour height 

recorded on the map and the measured height at the point on the ground represented by 

that contour. The DTM consists of height values at each intersection of a 50 m grid. The 

points are interpolated from the contour as well as tide line and spot height data using an 

unspecified interpolation technique. It is stated that DTM height accuracy is "typically 

better than one half of the vertical accuracy of the source data [i.e. 5 m]" (p 3.4), although 

the local accuracy is also dependent on the spacing and accuracy of the height data from 

which the DTM is interpolated. This is of particular concern since, according to the 

Landranger series, there are no contours on Thomey Island. The DTM of the whole of 

Thorney Island is at 3 m or below and the study area in the south of the island is at 2 

m or below. This contradicts what is shown in the 1:25,000 OS Explorer map. That map 

shows a 5 m contour in the south-west of the island. Land-Form PANORAMA@ data 

are available to the UK academic community for non-commercial research and study via 

the EDINA@ Digimap@ facility. 

The PROFILE@ DEM is described in detail by (Ordnance Survey 200lb). It is provided 

as 5 km by 5 km tiles and is available as contour data or as a DTM. The contour lines 

are digitised from the OS 1:10,000 scale map series where the contours are captured at 

5 m vertical or 10 m vertical intervals. For Thorney Island and the surrounding area, 

contours were captured at 5 m vertical intervals. The contours were originally surveyed 

from an aerial photography campaign that began in the early 1960s and ended in 1987. 

The contours have a stated global accuracy of ±1.0 m RMSE. This refers to the difference 

between the contour height recorded on the map and the measured height at the point 
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on the ground represented by that contour. The DTM consists of height values at each 

intersection of a 10 m grid. The points are interpolated from the contour as well as tide 

line and spot height data using an unspecified interpolation technique. It is stated that 

DTM height accuracy is "typically better than one half of the vertical accuracy of the 

source data [i.e. 2.5 m]" (p 3.4), although the local accuracy is also dependent on the 

spacing and accuracy of the height data from which the DTM is interpolated. This is 

of concern on Thomey Island, since there is only one contour and the area is known to 

exhibit low relief. However. it is reasonable to assume that the PROFILE@ contour and 

DTM data will be more accurate than the PANORAMA® data set, since it is a larger 

scale and more recent product. Ordnance Survey now dispense the PROFILE@ DEM as 

their standard product. 

The Landmap project was a joint project between University College London (UCL) and 

Manchester InforMation and Associated Services (MIMAS) (Kitmitto et al. 2000, Muller 

et al. 1999) . It has provided a DEM for the UK and Republic of Ireland together with 

a set of mosaiced remotely sensed imagery of the British Isles. The DEM was produced 

using Synthetic Aperture Radar (SAR) data from the European Space Agency's (ESA) 

ERS-1 and ERS-2 using interferometry (IfSAR). The practice of creating DEMs from 

SAR interferometry is widely documented (e.g., Rufino et al. 1998, Walker et al. 1999). 

The Landmap DEM has been created by combining four different ERS data sets (termed 

"[over]passes"), and consists of height values at each intersection of a 25 m grid. However, 

there is currently no accuracy assessment documented (either on the Internet or in the 

literature) for the 25 m DEM. Accuracy assessment was conducted on the "first pass" 30 

m DEM (a pilot product that only used the ERS data from the first overpass) (Muller 

et al. 1999, Cross et al. 2000). That exercise compared the first~pass DEM to LiDAR 

data and to height data obtained from a field survey using kinematic GPS. That showed 

that the DEM was biased by between 1 and 70 m. Some early and unpublished accuracy 

assessment for the 25 m DEM showed a bias of 2.2 m and a standard deviation of 22.4 m 

(Kamie Kitmitto, MIMAS, personal communication). The Landmap DEM seems to be a 

promising product and could be useful for the processing of airborne data. This is because 

it is higher resolution (both spatially and vertically) than the PANORAMA@ DEMs and 

is freely available (unlike the PROFILE@ DEMs). However. the product is limited by the 

bias and high standard deviation shown by the accuracy assessment. Furthermore there 

is only a limited amount of documentation comprising short conference papers (Kitmitto 

et al. 2000, Muller et al. 1999) and a website (http://www.landmap.ac.uk/). There 

are few examples in the peer-reviewed literature which either documents the production 

or use of the data CWilson & Atkinson 2005) and there are no technical manuals. In 

contrast the OS PANORAMA@ and PROFILE@ data sets have large user base and are 

produced by the national mapping agency. The objective of this project is not to conduct 

an exhaustive technical review of DEMs. 

The PROFILE@ DEM was chosen for use in this thesis because it is the finest resolution 

and most accurate DEM offered by the Ordnance Survey and the Landmap DEM was of 
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Date 
Time 
Julian day 
Flying height (GPS height) 
Ground speed 
Scan speed 
Basic pixel size 
Flight direction 
Flight line start 
Flight line end 

24th July 2001 
08:56 - 08:59 GMT 
205 
2800 feet (853 m) 
125 knots 
50 Hz 
2mx2m 
1800 (North - South) 
476440.1 108173.9 
476110.4 100157.0 

TABLE 4.6: Details of AT~ flight over Thorney Island flown on 24th July 2001. 
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lower accuracy. Other DEMs are available in the UK. However, these are either of a lower 

resolution than Landmap or PROFILE@ (Muller et al. 1999, Walker et al. 1999) or not 

available for the Thomey Island area. 

In the analysis, a range of pixel sizes were used to explore the effects of different spatial 

resolutions of the remotely sensed data. For the ATM data set used in this project, the base 

pixel size chosen was 2 m. Further details about the ATM data set are given in table 4.6. 

The CPS flying height given in the flight log is 2800 feet (853 m). For Thomey Island, this 

approximates above ground to 800 m, since Thomey Island is approximately 5 m above 

sea level and the ETRS89 ellipsoid lies approximately 46 m ODN at Thomey Island. 

This approximate geoid-spheroid separation is found by querying the OSGM02/0STN02 

transformations via an OS-provided software tool (Grid InQuest v. 6.0.7)6. This allows 

the user to enter National Grid Eastings and Northings and ODN height and calculate 

latitude, longitude and ellipsoid height. By entering an ODN height of 0 m, the ellipsoid­

geoid separation is found for a given point. This was conducted for 1200 points (on a 

100 m grid) on Thomey Island, giving a mean geoid-ellipsoid separation of 45.58 m with 

a standard deviation of 0.02 m. The approximate 5 m ODN height of Thomey Island 

was based on examination of the OS 1:25,000 (Explorer™ 120) map. It is not possible to 

select a base pixel size that exactly represents the nadir pixel size for all scan lines so an 

approximately correct and convenient pixel size was chosen. The ATM has an IFOV of 

2.5 mrad, giving a nadir pixel size of 2 m for a flying height of 800 m above the ground. 

For the resampling, the bi-cubic spline method was chosen, for the reasons specified in 

section 4.2.4. 

Independent data sets were used to assess the accuracy of the geometrically-corrected 

image that was output from azgcorr. At the first stage a visual comparison was made 

by overlaying OS Land-Line.Plus@ data within the MapInfo Geographic Information 

System (GIS). Land-Line.Plus was the largest scale map data available via the EDINA@ 

Digimap@ facility and was also the product that ARSF benchmarked its geometric cor­

rection system against (Andrew Wilson, NERC ARSF, personnel communication). Land-

6Further information and the software tool can be found at: http://www . gps . gOY . uk. 
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Line.Plus was available for Thomey Island at 1:2500 scale. Land~Line.Plus has a stated 

RMSE absolute accuracy of ±2.8 m (Ordnance Survey 2002b). This is a global statistic 

and may not strictly apply to the Thomey Island area. 

Figure 4.2 shows the ATM image from 24th July 2001 with Land~Line.Plus data overlain. 

The main figure shows the main part of Thomey Island and the inset shows the primary 

study area. The pilot used the main runway (running from North to South) as a marker 

for the centre of the flight line. Visually, the geometric correction seems to be accurate at 

the centre of the swath, but is less accurate away from the centre. If accurate geometric 

correction had been required over the whole flight line then it would have been necessary 

to conduct further geometric correction using ground control points (GCPs). However, 

for this project, accurate geometric correction was only required at locations where field 

data were measured. These were all collected in the area shown in the inset and were 

deliberately placed close to the centre of the image swath. To test the local accuracy 

of the geometric correction GCPs were collected and compared to the location of these 

points in the image. GCPs were collected using two methods. First, points were surveyed 

on the ground, using a total station. This gave ten GCPs close to the locations where field 

measurements were taken. Further GCPs could not be collected by surveying owing to 

the lack of points that were clearly locatable both in the field and in the image. Further 

points along the runway were determined from the Land~ Line data. It would have been 

preferable to determine the location of these points using surveying, since this would have 

been more consistent ~ however, this was not possible owing the limited line of site of the 

surveying instrument. Using the ten surveyed GCPs the RMSE was 0.84 pixels (1.67 nl) 

with a maximum difference of 1.41 pixels (2.83 m). If the map~located GCPs collected 

along the runway were added, sub~pixel accuracy was also found. In contrast, GCPs 

located towards the edge of the image swath were over 10 pixels (20 m) in error. On the 

basis of this information it was decided that further empirical geometric correction was 

not required, since sub~pixel accuracy was found in the vicinity of the field measurements. 

Note also that additional geometric correction would require resampling which would alter 

the remotely sensed data still further. 

Note that the geometric correction system is undergoing continual review (Andrew Wilson, 

NERC ARSF, personnel communication). Data obtained for a separate project in 2002 

was also geometrically corrected and assessed visually. The geometric correction appeared 

to be much more accurate across the whole of the image swath than the 2001 correction. 

This will be encouraging news for future users of ARSF data. 

4.3 Field spectroscopy 

The term field spectroscopy, as the name suggests, refers specifically to the practise of 

taking spectral measurements of surfaces in the field environment. Spectral measurements 

are also taken in the laboratory environment. Indeed large blocks of concrete or sections of 
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FIGURE 4.2: Figure showing an ATM false colour composite (Red: Band 7; Green: Band 
5, Blue: Band 2) image of Thorney Island (collected 24th July 2001). The insert shows 
the primary study area in greater detail. The image is overlain with OS Land- Line.Plus 
data. Validation GCPs are also shown. Validation GCPs are gathered either from the 
Land- Line.Plus map or via surveying. 
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grassland have been studied in the laboratory (e.g., Sandmeier et al. 1998). Such studies 

are valuable but pose two key limitations. First, the sample is disturbed, rather than being 

measured in situ. Second, it is not possible to fully recreate field illumination conditions in 

the laboratory (Milton 1987, Milton et al. 1995). There are, broadly, two types of instru­

ments: those designed to collect data over a range of wavelengths (spectroradiometers) 

and those providing data for a few broad wavebands (multiband radiometers). 

Field spectroscopy has a vital role in remote sensing research, serving various purposes (Milton 

1987, Milton et al. 1995, Sandmeier 2000), as outlined below: 

• It can be used to characterise the reflectance of GTs used for atmospheric correction 

(e.g., for the ELM) or vicarious calibration (Slater et al. 1987, Gu et al. 1992, Milton 

et al. 1995) and to validate the outcome of RT models. 

• It provides a tool to examine relationships between biophysical variables and re­

flectance factors (Milton 1987, Milton et al. 1995, Sandmeier 2000). 

• It acts as a bridge between laboratory measurements of reflectance and the field 

situation (Milton 1987). 

• It can be used to investigate the optimum spectral bands and viewing conditions 

for a remote sensing task (Milton 1987). Hence, it can provide a relatively low cost 

pilot study. 

• It can be used to validate airborne or satellite-inferred BRDF data (Sandmeier 2000). 

• It can be used to support the development of BRDF models (Milton et al. 1995, 

Sandmeier & Itten 1999, Sandmeier 2000). 

• It can be used to calibrate large and small reflectance reference panels (Sandmeier 

2000, Rollin et al. 2000). 

• It can be used as a remote sensing tool in its own right (Milton et al. 1995, Forster 

& Jesus 2006). 

For the purpose of this thesis the use of field spectroscopy for characterising GTs was of 

central importance. 

Overviews of field spectroscopy are provided by Milton and colleagues (Milton 1987, 

Milton et al. 1995) with more recent reviews focusing on BRDF measurements (e.g., 

Sandmeier 2000) and the use of low cost spectrometers (e.g., Forster & Jesus 2006). A 

detailed review is not provided here, although key issues are raised with respect to the use 

of the Milton Multiband Radiometer (MMR), which was used for the fieldwork conducted 

for this thesis. 
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4.3.1 The Milton Multiband Radiometer 

The Milton Multiband Radiometer was initially developed at Reading University, UK by 

Professor E.J. Milton in the late 1970s and has continued to be developed since then. The 

instrument was designed as a low cost radiometer for teaching and research. Descriptions 

and evaluations of early versions have been published (Milton 1980, Milton 1981 b) and 

subsequent revisions are documented in the grey literature (Milton 2001? Milton (2001) 

constitutes a user manual for the instrument. 

The radiometer is comprised of two key units: the sensor unit and the display unit or 

data logger. The sensor unit contains four separate silicon photodiode detectors and each 

detector has one or more gelatin filters, as required to produce the appropriate filter~ 

sensor spectral response. The sensor unit also contains four modular pre~amplifiers. The 

spectral response of the original MMR was selected on the basis of the first four waveband 

of the Landsat Multispectral Scanner (MSS). The hood in front of the MMR is used to set 

the sensor field of view (FOV). Note also that the gain of the instrument can be adapted. 

The sensor unit is connected to a custom~built data logger or digital display. The instru­

ment can be used in single beam or dual beam mode. If the instrument is operated in dual 

beam mode then the simultaneous measurements of the target and reflectance panel can 

be made. The unit gives an output in digital number (DN) proportional to the radiant 

intensity. The DNs are not calibrated to radiance, since the instrument was designed to 

be used with a calibrated reference panel. 

The spectral bandpass of the instrument used is shown in table 4.7, together with the 

corresponding ATM bands. The spectral response of the two sensor heads used is shown 

in figure 4.3. It is clear from this figure that the spectral response of the two sensor heads 

are closely matched and are appropriate for use in dual beam mode (Milton 1980, Milton 

1981a, Milton 1982, Duggin &; Philpson 1982, Milton 1987). 

Figure 4.4 shows the spectral response of the MMR and the most closely related ATM 

bands. It is clear that the MMR and ATM bands are not matched precisely. For im­

plementation of the ELM or for validation of atmospheric correction it would be ideal to 

use either a precisely matched radiometer or use a spectrometer and convolve the out­

put spectra with the spectral response of the airborne instrument. Neither option was 

available for this project. However, the MMR is useful because it is straightforward and 

fast to operate and was shown to give consistent results. Hence, it was appropriate for 

collecting a spatially referenced large sample and for tackling the key questions raised in 

this thesis. Band 2 of the ATM is similar to band 1 of the MMR, although the peak is 

slightly offset. The same conclusion is drawn for band 3 of the ATM and band 2 of the 

MMR. The spectral response of band 3 of the MMR lies between bands 4 and 5 of the 

ATM. It is more similar to band 4, but slightly ofIset froIn it. However, over the GTs, 

bands 4 and 5 are highly correlated (> 0.99). Hence band 3 of the MMR was linked to 

7See also Professor Milton's webpage: http://www.soton.ac . uk/-ejm/MMR/ 
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MMR Wavelength ATM Wavelength 
band f-Lm band f-Lm 
1 0.43 - 0.54 2 0.45 - 0.52 
2 0.51 - 0.61 3 0.52 - 0.60 
3 0.60 - 0.70 4&5 0.60 - 0.62 (4) & 0.63 - 0.69 (5) 
4 0.72 - 1.13 7&8 0.76 - 0.90 (7) & 0.91 - 1.05 (8) 

TABLE 4.7: Table showing the MMR wavebands for instruments SOT72 and SOT73 
(data provided by the EPFS technician). The closest ATM wavebands are also shown 
(Source: NERC ARSF). 
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band 5 of the ATM for the empirical line method. Band 4 of the MMR is much wider 

than the ATM bands. It spans band 8 of the ATM, but also encompasses some of band 

7, although ATM bands 7 and 8 are also highly correlated. In the analysis chapters band 

4 of the ATM was linked to band 7 of the ATM. 

o 

<Xl 
o 

C\J o 

1] 

" I , I I 

!i ": 
i i ,, ~, 

" 

" , 

"" I'" • i I ~ 

I i ' ~ 
,i " 

I , ' ~ 
" I f 

, t " 
; ; , ~ 
I j ~ , 

:: ',; 
" 

" ;, 
" 
" " 
" " 
" " 
,; ,; 

" " 
" " ,; 

" 
" 

" 

I'- :'~~ -' , 

1' '- " " 
I~ I' - \''''\. \ 

- Band1 
-- - Band2 

, '1 \. \ 
" \ \ 

I f \ \ 

" \ \ 
I I \ \ 

/ : \ \ 
, 1 \ \ 

f / \ \ 
I f \ \ 
I J \ \ 
1 / \ \ 

-- .- Band 3 
--- Band 4 
- 50T72 (Target) 
- S0T73 (Panel) 

I I \ \ 
1 / \ \ 
I , \ \ 
I I \ \ 
I I \ \ 
I / , \ 
I I \ \ 
I I , \ 
I I \ \ 
r I \ \ 
I / \ , 
I I \ \ 
r I \ \ 
I I \ , 
/ I \ \ 
r / \ \ 

: : \ .\ 
I I \ \ 

J I \ \ 
I I \ \ 
( I \ \ 
I I \. \ 

o : " '\\ ..... . 
o L,-----------,----------.----------.----------~ 

0.4 0.6 0.8 

Wavelength (!1m) 

1.0 1.2 

FIGURE 4.3: Figure showing the spectral response of the two MMR heads used for this 
project (data provided by the EPFS technician). SOT72 is designated for viewing the 
t arget and SOT73 is designated for viewing the panel. 

For this work, the instrument was operated in dual beam mode. The reflectance factor is 

given as: 

where: 

DNh = DNT>, - DCT>, 

DN'p>, = DNp>, - DCp>, 

( 4.1) 

(4.2) 

(4.3) 

P is the reflectance factor, given a as a fraction between 0 and 1 (alternatively expressed 

as a percentage) ; 
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FIGURE 4.4: Figure showing the spectral response of the MMR (SOT72) and the ATM 
bands that match most closely. 

DN is the digital number; 

DC is DN of the dark level offset; 

T refers to the MMR designated to measure the radiance reflected from the target; 

P refers to the MMR designated to measure the radiance reflected from the panel; 

k is the panel correction factor; 

C is the inter-calibration coefficient ; 

A refers to the waveband. 
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To derive p it is necessary to establish k and C. The latter is established by inter­

calibrating the two radiometers (Milton 1981a, Duggin & Philpson 1982, Milton 1987, 

Milton et al. 1995). The two radiometers used for this project are of the same specification, 

have the same filters fitted and have similar spectral responses. They are, therefore, well 

suited for use in dual beam mode. 

To collect the data required for the inter-calibration the panel was set up on a tripod 

and the two sensor heads were attached, so that both viewed the panel. The heads were 

attached to the data logger and set to record simultaneous dual beam measurements at 

short time intervals (up to 1 minute). The instruments were positioned in a wide open 

space that was free from shadow. Where possible, the instruments were placed away 

from tall buildings or trees, to minimise the obstruction of skylight. The inter-calibration 

exercise was repeated on several occasions either at Southampton University campus, on 

Southampton Common, at Thomey Island or in the New Forest. The inter-calibration 
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data sets were collected under a range of illumination conditions, including bright days 

with intermittent clouds, as suggested by Milton (2001). Collecting inter-calibration data 

sets on several dates is useful, since it also provides an indication of whether there is any 

drift in the relative spectral response of either instrument. 

If the data collected from each instrument are plotted against each other, then the coef­

ficient, C)" can be determined by the gradient of the line given by (Duggin & Philpson 

1982, Milton 1987, Milton 2001): 
DN' C PA 

,\ = DNh (4.4) 

However, equation 4.4 requires that all the data points lie on a straight line that passes 

through the origin. In reality, this is not the case and Duggin & Philpson (1982) and Mil­

ton (2001) use regression to calculate C. Hence C is obtained from the slope of the 

regression line (i.e., C = ;3d. 

Milton (2001) recommends that, for any given band, the correlation between the data set 

measured for each instrument should be very high (R2 ;::: 0.99) , to ensure a high quality 

inter-calibration. He then recommends that C is found by regressing DN'p on DN~ and 

taking C as the slope of the regression line (i.e., C ). 

Using regression to calculate C is useful, since it recognises that there the data points 

may deviate from a straight line, and provides a mechanisln for plotting a best fit line 

through the data. The data may deviate from a straight line for various reasons, including 

noise in either of the sensors or short~term spatial variation in illumination of the panel. 

However. as discussed in chapter 2 simple linear regression is predicated on the case that 

the independent variable, DN~, is known without error. This is not the case in this 

situation since both DN~ and DN'p are subject to error. This is illustrated as follows: 

DN'p = DNp'* + Ei 
" " 

(4.5) 

(4.6) 

where the * indicates the true value of DN' and i refers to a particular measurement. 

Dependence on waveband is suppressed. Hence, the regression equation: 

becomes: 

DN' Pi 

(4.7) 

(4.8) 

which violates the basis of simple linear regression (Sprent 1969, Curran & Hay 1986, 

Webster 1989, Neter et al. 1996). Further discussion is provided in chapter 2 and by Kendall 

& Stuart (1967). 

This issue can be addressed if it is assumed that E and 7] have the following simple 
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properties (Sprent 1969, Kendall & Stuart 1967): 

Si r-v N(O, (J";) and TJi r-v N(O, (J"~), for all i; 

COV(Si,Sj) = Cov(TJi,TJj) = 0, i =I- j: 

COV(Si' TJj) 0, for all i, j. 

From here the maximum likelihood estimator of PI (i.e., fir) is given as: 

,,£y;- A"£X; + yI{(,,£y;- A "£xl)2 + 4A("£XiYi)2} 

2 "£ XiYi 
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(4.9) 

(4.10) 

where A = (J";/(J"~. This formulation is achieved by setting the origin to (DNT,DNp) 

(hence ,80 = 0), so Xi = DNTi - DNT and Yi = DNpi - DNp . For this analysis it was 

assumed that A 1. This is equivalent to minmising the variance perpendicular to the 

regression line which may be termed the principal axis (Webster 1989) and is termed 

PAR (principal axis regression) for this discussion. Setting A 1 is well founded since the 

instruments are designed, built and tested to the same specification and the measurements 

from both instruments are made under the same conditions. 

An inter-calibration data set was collected on 20th July 2003 and information about this 

is given in table 4.8. The results shown in table 4.9 show the point estimates of ,80 , PI and 

(J"2 using OLS and PAR, as well as the value for the correlation coefficient, r. The result 

of i-tests show that, for both OLS and PAR /30 i- 0 and fir i- 0 at the 95% confidence 

level. The estimates of Po and PI, gained from the two regression methods are very 

similar. The estimate of (J"2 is much lower for PAR than for OLS, which also means that 

confidence intervals around the parameter estimates and new predictions (y) are lower. If 

a practitioner was to use OLS rather than PAR the practical consequence would, in this 

case, be limited, since the estimates of Po and PI are so sim.ilar. This is demonstrated if 

predictions based on /30 and fh gained using the two techniques (denoted YOLS and YPAR) 

are compared. For band 1, YOLS - YPAR < 0.003, for band 2 YOLS - YPAR < 0.007, for 

band 3 YOLS - YPAR < 0.003, for band 4 YOLS - YPAR < 0.008. This is several orders of 

magnitude lower than the value of y, which is in the region 10-1000. 

Having implemented the regression model and estimated the parameters it is clear that 

131 from equation 4.7 or 4.8 corresponds to C).. from equations 4.1 and 4.4. However, 

the method given in equation 4.1 does not incorporate Po. This implicitly assumes that 

po = 0, which is what would be expected for an instrument that has a stated linear 

response to the intensity of radiation. However, table 4.8 shows that 130 i- 0, which is a 

source of concern. This implies that there is some bias in the instrument response that is 

not corrected for by subtracting the dark current. There may also be some non-linearity in 

the instrument response at low irradiance values (i.e., below the minimum value collected 

for the inter-calibration). 

In view of the fact that /30 i- 0 it might be argued that equation 4.1 should be re-written 
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as: 

Date 20th July 2001 
Time 13:25 - 15:15 (GMT) 
Location Southampton Common 
Weather Clear blue skies with intermittent cloud 
Instruments SOT-72H (Target) and SOT-73H (Surface) 

Band No. of measurements Min Max 
Band 1 DNT (x) 631 42 538 

DNp (y) 631 46 473 
Band 2 DNT (x) 410 102 846 

DNp (y) 410 35 302 
Band 3 DNT (x) 631 33 491 

DNp (y) 631 31 466 
Band 4 DNT (x) 631 26 431 

DNp (y) 631 32 519 

TABLE 4.8: Information about the inter-calibration data set collected on 20th July 2001. 

OLS PAR 

MMR Band T Po /31 0-2 80 ,81 0-; = o-~ 
Band 1 T > 0.99 -1.2035 0.8815 0.7268 -1.2055 0.8816 0.4090 
Band 2 T > 0.99 -1.4185 0.3592 0.3660 -1.4204 0.3592 0.3242 
Band 3 T > 0.99 -1.0840 0.9517 0.7578 -1.0861 0.9517 0.3976 
Band 4 T > 0.99 0.7644 1.2112 1.5573 0.7596 1.2112 0.6312 

TABLE 4.9: The estimates of /30 , PI and (J"2 using ordinary least squares (OL8) and 
principal axis regression (PAR). The value of the correlation coefficient, T, is also shown. 
This data set was collected on 20th July 2001. 

P)" (4.11) 

The difference between adopting equations 4.1 and 4.11, was assessed by applying the two 

models to dual-beam measurements made over asphalt, concrete and grass. The results 

are shown in table 4.10. These are the data sets used for the analysis in chapters 5 and 7. 

Equation 4.11 is problematic, since routine data collection showed that DNh = 0 when 

DN'p>- = O. In view of this, and the fact that equation 4.1 is widely referred to in the 

literature (e.g., Duggin & Philpson 1982, Milton 1987, Peddle et al. 2001) and in the 

instruction manual (Milton 2001) it was decided to adopt equation 4.1. The issues raised 

above are noted with concern, but the following caveats are made 

1. The MMR is a low-cost instrument. Although it is reliable and has been widely 

used, the limitations of the instrument need to be accepted. 

2. The inter-calibration data set was gathered over a range of solar irradiance values. 

The solar irradiance varies, both in intensity and distribution. However, when 

the dual beam measurements are implemented the solar irradiance remains fixed 
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Band 1 0.2 < PIDNT 60+PIDNT < 0.6 ,DNp - DNp 

Band 2 0.2 < PIDNT ;30+PIDNT < 0.8 ,DNp - DJvp 

Band 3 0.2 < PIDNT ;3o+P1DNT < 0.7 DNp DNp 

Band 4 -0.5 < ihDNT ;3o+;31DNT < -0.1 ~- DN 

TABLE 4.10: Difference between adopting the inter-calibration model given in equa­
tion 4.1 or 4.11, for the data set collected on 20th July 2001. The units are reflectance 
(%). These upper and lower bounds apply to all three surfaces (asphalt, concrete and 
grass). 
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(between DTp and DTr) and the reflectance of the surface varies. Notwithstanding 

the bidirectional properties of the target, the inter-calibration procedure implicitly 

assumes that these induce the same effect, where in reality, they may not. Indeed, 

this is one argument for using a reflectance panel that has a similar reflectance value 

to the target of interest (Duggin & Philpson 1982, Philipson et al. 1989). 

The above discussion has demonstrated how the inter-calibration was carried out for one 

date. It should be noted that, if there is any drift in the instrument over time this may lead 

to a change in the inter-calibration parameters. Ideally, one would want to inter-calibrate 

the instrument each time it is used. However, an inter-calibration data set needs to be 

collected under a range of illumination conditions. Therefore, conditions on the day of use 

may not be suitable and, in any case, the priority will be to collect field data. In practice, 

it was not straightforward to find days where the weather was suitable and the facilities 

were available to make inter-calibration measurements. Hence, if field inter-calibration 

data sets could not be collected on the day of use every effort was made to ensure that 

measurements were taken the day before use and the day after use. 

For this project, MMR measurements were made in June, July, September, October and 

November. The key data set was collected on the 23rd, 24th and 25th July. Several inter­

calibration data sets were taken on various days from May to November. Examples are 

shown for six dates on 20th June, 20th July, 26th July, 5th October and 6th November 

2001 in table 4.11. This table demonstrates the importance of checking the validity of 

the inter-calibration for each set of measurements. It is important to note that the inter­

calibration data sets collected on 20th and 26th July give consistent estimates of the /31 

parameter. The key data set was collected on the 23rd, 24th and 25th of July. To test 

the impact of the variability in the inter-calibration parameter estimates (equation 4.1) 

reflectance from the asphalt, concrete and grass data sets was calculated using estimates 

given in table 4.11. The reflectance values predicted using /31 values calculated on 20th 

July were used as a benchmark and the reflectance predictions using /31 values from other 

dates were compared to these. The maximum differences were 0.1 % (reflectance units) for 

band 1; 0.12% for band 2; 1% for band 3 and 1% for band 4. Using the inter-calibration 

data sets collected on 20th June, 20th July and 26th July would lead to a difference in 

predicted reflectance of no more than 0.1 % in any band for any surface. 
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MMR Parameter 20/06/01 20/07/01 26/07/01 05/10/01 06/11/01 
Band Estimate 

Band 1 (30 -1.1863 -1.2055 -1.0897 -0.6504 -0.6711 

0.8815 0.8816 0.8811 0.8784 0.8773 

Band 2 /30 -1.2880 -1.4204 -1.2230 -1.8199 -1.1864 

lh 0.3585 0.3592 0.3585 0.3576 0.3579 

Band 3 lio -0.9285 -1.0861 -0.9285 -1.4838 -0.4294 

/31 0.9512 0.9517 0.9518 0.9380 0.9860 

Band 4 /30 0.8533 0.7596 0.8665 2.5790 0.3071 

(31 1.2108 1.2112 1.2113 1.1853 1.1973 

TABLE 4.11: Parameter estimates (PAR) for inter-calibration data sets collected on 20th 
June, 20th July, 26th July, 5th October and 6th November 2001. 
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Finally, it is reasonable to question why equation 4.1 should be adopted in preference to 

equation 4.12: 
DN' 

- T>. k 
P>. - (31 DN'p>. >. 

(4.12) 

or that equation 4.13 should be considered rather than equation 4.11 

DN' 
T>. k 

P>. = (3 + (3 DN' >. 
, 0 1 F>. 

(4.13) 

In both of these cases the regression parameters are dealt with in the denominator rather 

than following the convention of dealing with them in the numerator. There are good 

reasons for considering use of equation 4.12, as follows: 

1. When equation 4.1 is applied to dual beam measurements, the values of DNf,>. often 

lie outside the range of values that were used to estirI:late /31 in the inter-calibration 

process. This is very possible if the surface is dark. This amounts to extrapolation. 

This issue tends not to arise if equation 4.12 is adopted. However, although this 

issue is important from an theoretical perspective, it n1.akes no practical difference 

to the prediction of P>.. 

2. The difference between using equation 4.11 rather than equation 4.1 was discussed 

previously. However, if the choice between equations 4.12 and 4.13 is considered, 

the decision is relatively unimportant, since the inclusion of (30 makes a difference 

of less than 0.01 % in the prediction of P>.. This is simply due to the mathematics, 

and the effect can be demonstrated using a simple example: a = 10/100 = 0.1, 

b (10 + 1)/100 = 0.11 and c = 10/(100 + 1) = 0.0990099, la - cl « la - bl· 

3. 'Where (31 varies over time, the effect of variability in (31 on the prediction of P>. is 

the same whether equation 4.1 or equation 4.12 is used. This is can be established 

using algebra. 

The conclusion here is that, if the decision is made to omit the ,(30 parameter (i.e., use 
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Panel Serial Number srt7165 
MMR Head (P) SOT 973H 
MMR Head (T) SOT 972H 
Band k (SOT 973H) k (SOT 972H) 
Band 1 0.9995 0.9895 
Band 2 0.9900 0.9900 
Band 3 0.9895 0.9895 
Band 4 0.9900 0.9900 

TABLE 4.12: Panel correction factors for the MMR wavebands. 

equation 4.1 or 4.12 rather than equation 4.11 or 4.13), then equation 4.1 and equation 4.12 

can be used interchangeably. However, if the /30 parameter is included, then equation 4.13 

is preferable to equation 4.11. 

Having inter-calibrated the two MMR heads, it is necessary to establish k in equation 4.1. 

This is achieved by convolving the spectral response of the l'v1MR with the spectral re­

sponse of the panel. One panel, loaned from the NERC EPFS, was used throughout this 

project. The EPFS provide data on the spectral response of each panel. This is convolved 

with the spectral response of the sensor to determine k for each waveband. The values of 

k are shown in table 4.12. Having ascertained this, all the information was available for 

implementing equation 4.1. 

4.4 Field sampling 

The aims and objectives for the thesis together with the key issues for investigation were 

introduced in section 1.3. Detailed background to ELM was provided in chapter 3. 

To address those issues field sampling was focused on obtaining a dense spatial sample of 

the reflectance of the GTs. The GTs selected at Thomey Island were asphalt, concrete 

and cropped grass as adopted by Smith & Milton (1999). Targets were selected that were 

as free as possible from obvious discoloration or morphological features, such as grooves 

and bumps (Staenz & Itten 1982) and the ones chosen are illustrated in figure 4.2. It 

may be noted that the concrete sections of the site are laid in blocks of approximately 6 

m x 6 m. Previous research had demonstrated that spatial structure existed in the nadir 

reflectance (visible and NIR) of all three cover types (Salvatori et al. 2000) and advocated 

gathering a spatially structured sample to characterise such targets. 

Salvatori et al. (2000) utilised a transect, with measurements being taken at 1.5 m spacing. 

In reality, a 2-dimensional grid is needed to sample a GT. Hence nested grids were set up 

to cover a 32 m x 32 m area, with nadir reflectance measurements being taken at 1, 2 and 

4 m intervals with the location of every measurement being recorded. This strategy was 

adopted as a trade-off between obtaining a dense and spatially extensive sample within an 

approximately two hour time window. This was found to be feasible during pilot studies 
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undertaken in early summer 2001. The two hour time window can be chosen to span solar 

noon, hence reducing the impact of BRDF effects. 

As mentioned in section 4.2, the key ARSF flight undertaken for this thesis was under­

taken on 24 July 2001. Hence, the GTs were sampled around solar noon on 23rd july 

2001 (asphalt), 24 July 2001 (grass) and 25 July 2001 (concrete). Ideally, the targets 

should be sampled as close to the flight as possible (Smith & Milton 1999). However, 

an unfortunate consequence of undertaking a spatial sample is that it is time-consuming. 

Furthermore, it was not possible to sample the targets during the flight window. Hence 

the procedure adopted was the only one feasible. Furthermore, it may be noted that the 

weather remained stable over these time-periods and there were no obvious visual changes 

in the surfaces. 

Recent research (Anderson & Milton 2005, Anderson & Milton 2006) has demonstrated 

that the reflectance of targets can change over short time-scales. However, this is not an 

issue that can be addressed in this thesis. Linking spatial and temporal sampling and 

modelling remains an avenue for future research. 

The two MMR instruments were set up on a mast with one instrument (SOT72) pointing 

towards the ground surface with the second instrument (SOT73) oriented over a spectralon 

panel. When the mast is held vertically, both instruments are at nadir and SOT72 is 1.9 m 

above the ground. A spirit level on the mast assists the user in accurately positioning the 

mast vertically. Since the instrument has a FOV of approxirnately 15°, the MMR images 

an area on the ground of 0.50 m in diameter. However, given the point-spread function 

(PSF) (unpublished data provided by the EPFS technician) of the MMR, it is expected 

that most of the signal should result from the a central area of approximately 0.25~ 

0.30 m in diameter. The instruments were connected to a data-logger which controlled 

both instruments simultaneously and recorded the DN from both instruments in each 

waveband. These DNs were then processed to reflectance using the method established 

in section 4.3.1. The grids, together with summary statistics are presented in section 4.5. 

It is essential to note that the location of every field measurement was marked and later 

surveyed using a total station. The location of other key points such as corners, land-marks 

and OS benchmarks were also surveyed. It is these points that were used in section 4.2.3 

to assess the accuracy of the geometric correction. Because of the care taken to mark 

and survey the field measurements it was possible to determine accurately the location of 

every field measurement. Hence the location of the field measurements within the image 

was determined primarily by the geometric correction. 

Having sampled the reflectance of the GTs, the next stage in implementation of the ELM 

was to combine these measurements with the remotely sensed radiance measurements. 

These issues were discussed in sections 3.2.3.4 and 3.2.3.5 and are addressed empirically 

in chapters 5 and 6. 

Finally, note that the MMR wavebands better approximate the ATM than the CASI. 
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Hence, most of the analysis undertaken for this thesis was undertaken using the ATIVI 

data. However, chapter 6 draws heavily on CASI data. This is because this research was 

undertaken before the ATM data became available. 

4.5 Data summaries 

This section provides a general overview of the field and image data. The objective 

is to provide a clearer picture of the sampling approach and to provide a reference for 

subsequent analysis. 

4.5.1 Field data 

Summary statistics for the reflectance data gathered over the three surfaces are shown in 

tables 4.13 (asphalt), 4.14 (concrete) and 4.15 (grass). Summary plots for the reflectance 

data gathered using the MMR are shown in figures 4.5 (asphalt), 4.6 (concrete) and 4.7 

(grass). For each surface (asphalt, concrete, and grass), the summary plots are grouped 

by waveband (blue, green, red, NIR). For each waveband the histograms and QQ plots 

(quantile-quantile plots) provide information about the aspatial characteristics of the 

data. The QQ plot is a simple visual tool that allows an informal assessment of whether 

the data are drawn from a given distribution (Chambers et al. 1983). For a sample drawn 

from a normal distribution, the data should lie along the 1: 1 diagonal line. The histograms 

and QQ plots do not represent formal tests. Even data that are simulated from a normal 

distribution will not yield perfect histograms or QQ plots (Chambers et al. 1983). For 

each waveband, spatial summary plots are also shown. These show the magnitude of the 

data values in plan view (where the size of the point is proportional to the magnitude 

of the measurement), as well as two dimensional plots showing the data values against 

eastings and northings. The omnidirectional variogram is also shown. 

For the asphalt surface, figure 4.5 shows that the data appear to be normally distributed 

in all bands. This is supported by the skewness and kurtosis statistics provided in ta­

ble 4.13 (Webster & Oliver 2001). Where the data points are above the theoretical line on 

the right hand side and below it on the left hand side, this is indicative of long tails. The 

opposite is indicative of short tails (Chambers et al. 1983). There is some slight indication 

of long tails for bands 1 (blue) and 3 (red) and some slight indication of short tails for 

band 4 (NIR). 

For the concrete surface, figure 4.6 shows that the data are not normally distributed in any 

of the bands. This is supported by the statistics provided in table 4.14, where the values 

for skewness and kurtosis suggest that the data are skewed from a normal distribution. 

This is particularly clear for bands 1 to 3. Analysis of the spatial distribution of the data 

values suggests that the concrete target can be split into two distinct sub-targets. 
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Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 
Band 1 7.91 8.57 8.57 9.40 0.27 0.24 0.44 
Band 2 8.77 9.67 9.66 10.57 0.32 0.02 0.01 
Band 3 9.26 10.37 10.37 11.59 0.37 -0.05 0.43 
Band 4 12.3 13.53 13.51 14.90 0.57 -0.01 -0.62 

TABLE 4.13: Summary statistics for the MMR data gathered over the asphalt surface. 
Units are reflectance expressed as a percentage. 

Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 
Band 1 11.65 14.19 14.72 19.78 1.89 0.97 0.06 
Band 2 16.27 19.61 19.95 25.26 1.92 0.68 -0.09 
Band 3 18.09 22.14 22.53 28.49 2.18 0.56 -0.18 
Band 4 22.86 27.64 27.92 33.37 1.95 0.32 -0.33 

TABLE 4.14: Summary statistics for the MMR data gathered over the concrete surface. 
Units are reflectance expressed as a percentage. 

For the grass surface (figure 4.7) the data are approximately normally distributed. This 

is supported by the skewness and kurtosis statistics provided in table 4.15. There is some 

indication of asymmetry in bands 2, 3 and 4. 

The spatial summary plots give a visual indication of the presence of spatial structure. 

For the asphalt surface (figure 4.5) the plots also show that points with similar values tend 

to be located close together. There is also a general indication of a decrease in the value 

of reflectance in all four bands moving from west to east. The variograms also provide 

evidence of spatial structure in all wavebands. 

For the concrete surface (figure 4.6) the plots show that points with similar values tend 

to be located close together. There is no clear indication of a trend in the west-east or 

south-north direction. However, the north east quadrant appears to contain a cluster of 

higher values. This may account for the bimodal distribution in band 1 (figure 4.6(a)) 

and negatively skewed distributions for bands 2 to 4 (figures 4.6). 

For the grass surface (figure 4.7) the plots show that points with similar values tend to 

be located close together. There is a clear indication of a trend, increasing from south to 

north. There also seems to be a strip of larger values on the north west edge in all four 

bands. 

Figures 4.5, 4.6 and 4.7 show that ensembles of reflectance measurements that are made 

at the same location but in different wavebands can exhibit different distributions and 

different forms of spatial structure. A similar point is noted by Atkinson & Emery (1999) 

who observe different forms of spatial structure at different wavelengths for reflectance 

measurements made over heathland. 
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Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 
Band 1 2.53 3.69 3.70 5.00 0.44 0.19 -0.10 
Band 2 5.39 7.46 7.47 9.18 0.34 -0.26 0.14 
Band 3 4.76 6.14 6.65 9.08 0.81 0.32 -0.14 
Band 4 26.09 34.4 34.40 39.74 2.26 -0.35 0.44 

TABLE 4.15: Summary statistics for the M~VIR data gathered over the grass surface. 
Units are reflectance expressed as a percentage. 



Chapter 4 Field site and data procurement 

0 
~ 
m 
0 

! ~ 

~ z 

" ~ z 

I 
476110 476120 476130 

NG Easting 

.. .. .. - ... 
"L .. .. 

·~~~t:../ w 

~ 
~ ai .~ .:.':..,. a: .. .... : - :.~: 

:",. 
0 
00 

4761'0 476120 476130 

NG Easting 

(a) ~{\i[R Band 1 

0 

S; 

0 

m 

i" § 
~ z 

" 0 
Z m 

0 0 

0 

;J; 
0 

476110 476120 476130 

NG Eastlng 

~ 

~ 

.... ... 
0 ":;':;;:.:: . 0 ... 

~ 
w . :.1 .:-. e. .. ~.:- ... ;; .. .. 
~ 

~ 
·~.r." .. j.. 

jjj .. : :~ .. ~ a: ...... .. 
0 
m 

.. 

476110 476120 476130 

NG Easting 

(b) MMR Band 2 

0 

S; 

" 
0 
w 

~ 0 

~ z 

" 0 z ~ 

0 

~ 
476140 80 

00 
0 
0 

w 
0 
0 

" . 
8 ... 
c5 

0 
0 

476140 

0 
~ 

0 ;g 
i" 0 

~ 
z 

" 0 
Z m 

0 

0 

m 
0 

476140 90 

;" 

0 

0 

:g 

0 
0 

'. 
,. . . v 

0 

8 
0 

0 
0 
0 

476140 

.. ... .. .. . 

.. 

8.5 

Reflectance (%) 

, , ' 

10 

Lag (m) 

... 
.. .. 

9.0 

15 

;* .. ::: .•.. ~. "/- .• ' •. 

~. : .~~:.~:.;..,~:.:: .* 
•••• * -.1-""\":· 
* ....... 

.. 
.. .. 

95 10.0 

Reflectance (%) 

, , 

, , , 

10 

Lag (m) 

15 

" 

20 

105 

20 

i 
u: 

'L 
w 

" ~ 
a: 

L 

" 1il 
£ 

'" 
0 
N 

'" 
'" 

0 
m 

~ 

ro 

0 
ro 

o 
N 

0 

~ 

1M 
I 

8.0 

" 
-3 _2 

9.0 

-3 -2 

f 
I 

nJl 
I I 

8.5 9.0 

Reflectance (%) 

" , 

-1 

Quanliies of Standard Normal 

95 100 105 

-1 

Quantiles of Standard Normal 

FIGURE 4.5: Spatial summary plots for the M~1R reflectance measurements taken over 
the asphalt surface. In the top left plot (in each sub-figure), the size of the circles is 
proportional to the magnitude of the reflectance value. The top middle (bottom left) 
plots show reflectance against easting (northing). The top right shows the histogram 
of data values and the bottom right the QQ plot. The bottom middle plot shows the 
omnidirectional sample variogram. 

120 



Chapter 4 Field site and data procurement 

0 

~ 
0 

m 
m 0 

~ 
Z 
(') 0 
Z m 

0 

0 
v 

0 

476110 476120 476130 

NG Eastmg 

;: 

. 
;: ... 

":ot· o
• 

L ... :.;~:.~~~: .. ~ 
0 :.~'\: .. ",: ro 

] . ;"-:t". :.,: 
0; .. . ...... ~ 
a: 0 ~"I • • :. 
" .". # .. .. 
w 
m 

476110 476120 476130 

NG Easting 

(e) M~1R Band 3 

~ 
m 
0 

0 
m 

m 0 

~ z 
(') 0 z :li 

§ 

0 

m 
0 

476110 476120 476130 

NG Easting 

... 
w . 

.. 
0 

.•. _ ... ....... 
L 

:;::~~~~~: , .: I ;:' . '.k a 
M .:~ .r. 

.~ .... " . 
w ':, .. 
N 

476110 476120 476130 

NG Easting 

(d) M~1R Band 4 

476140 

, ."" .. . 

476140 

476140 

". 

.. .. 

.. 

476140 

m 

~ 
z 
(') 
Z 

~ 

" ~ 

~ 

0 
m 
m 
0 

~ 
~ 
§ 

:" 

" 0 

w 
0 

g 
a 

o 
<;; 
o 

o 
m 

m a 

~ 
Z 
(') 0 
Z m 

o 

N 
o 

o 
o 

95 

: 
.. 

.... 

::~/~ ~~.:~::: .. 

: .... · ... t-.,: .. 
~ •• l1li' • t"" • •• 

100 

o 0 0 0 

,. 

105 

o 0 0 

10 

Lag (m} 

110 

15 

... 

12_5 13.0 135 140 145 

Reflectance {"I,,) 

o 0 

10 

Lag(rn) 

15 

11.5 

20 

20 

FIGURE 4.5: continued 

121 

?:l 

0 
N 

f :" 

I 
" 

9.5 10.0 10.5 110 11.5 

RefJectance{%) 

;: 

1::-

~ 
w 
0 

~ 
a: 0 

0 

-3 -2 -1 

Quantiles of Standard Normal 

12.5 130 13.5 14.0 14.5 150 

Reflectance (%) 

-3 -2 -1 

Quantiles of Standard Normal 



Chapter 4 Field site and data procurement 

0 
0 0 

i" 
0 0 0 0 

0 
0 

0 
0 0 0 0 

0 0 0 0 
0 0 0 0 0 0 

~ § 
~ 0 0 

z 
0 
Z 

~ 

0 

i': 

476100 476110 476120 476130 

NG Eastlng 

0 
N 

;" 

~ 
,": ~. .'. 

~ :" 

~ 
a: 

;': 
.... 

'. 

S" 

476100 476110 476120 476130 

NG Easting 

(a) MMR Band 1 

0 

~ 

rn ~ 
~ 
('J 
z 

R 
;; 

0 

~ 

0 

" 
i!.-

N 
N . 

~ 
~ 0 
jjj N 

n: 

;" 

476100 

'. 

476100 

o • 0 

476110 

• 0 0 

• 0 0 0 " 0 " 

o 0 0 a " " <:I 

• 0 0 0 " 0 " 
" 0 0 0 0 

476120 476130 

NG Easting 

: 

476110 476120 476130 

NG Eastmg 

(b) ~1MR Band 2 

0 

~ 

0 

~ ~ 
~ 0 

z 
0 z 

'" 0 

0 

i': 
0 

0 

i" 
0 

0 
rn ~ 

E 0 

z 
0 z 

0 :e 
0 

i': 
0 

16 

12 

.' .' 
, ., 

.' 
" . .' 

'. .... 
" '. -;:. 

; ~,,::::.: .... : " .~ 

" ". 
~?oaI.~': . 

.. '~'i:.~ ". 
• : '#' •. . ' . -. 

;. '. 
14 16 

Reflectance (%) 

, 0 
0 

10 

Lag (m) 

. '. 

, 
0 

,,". : .. : .. .... 

18 

15 

: .f;:~if.i?< ,: .: .:" 
1. 

. '. " 
18 20 22 24 

Reflectance (o/"j 

10 15 

Lag(m) 

'" 
iii . f -. ! 0 
N 

" 

20 12 14 16 18 20 

Reflectance (%) 
g 

,0 ( 
I 

20 -3 -2 -1 

Quanliles of Standard Normal 

iii 

~ 
N 

0 
N 

I :" 
J' 

" 

16 18 20 22 24 

Reflectance (%) 

,,,,0 
~ ./ ,. 

£ gj 

~ 
~ g jjj 
n: 

;" 

:" 
20 -3 -2 -1 

Quantiies of Standard Normal 

FIGURE 4.6: Spatial summary plots for the MMR reflectance measurements taken over 
the concrete surface. Details are given in figure 4.5. 
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FIGURE 4.7: Spatial summary plots for the MYIR reflectance measurements taken over 
the grass surface. Details are given in figure 4.5. 
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4.5.2 Image data 

In this section, summary statistics for the image data are presented. Summary plots 

for the radiance data gathered using the ATM are shown in figures 4.8, 4.9 and 4.10. 

Summary statistics are given in tables 4.16, 4.17 and 4.18. The format is the same as for 

the MMR data (section 4.5.1). 

It should be recognised that, although these airborne measurements were made over the 

same GTs as the field targets it should not, necessarily, be expected that they will show the 

same histograms and QQ plots as the field data. Notably, the measurements are defined 

on different supports and it is known that measurements of the same phenomenon that are 

defined on different supports may exhibit different histograms (Armstrong 1998, Bierkens 

et al. 2000) (see section 2.2.1 for discussion). Furthermore, the measurements were made in 

different ways. The ATM and MMR have slightly different spectral responses and the two 

instruments have quite different IFOVs (see section 4.3.1). Note also that the atmosphere 

affects the remotely sensed measurements. As well as attenuating the signal, as the optical 

depth and view angle increase, so the amount of radiation reflected from the surroundings 

surface and atmosphere into the sensor path increases (see section 3.1.1). This has the 

effect of "blurring" the image and, effectively, reducing the spatial resolution (Kaufman 

1989). 

For the asphalt surface, figure 4.8 and table 4.16 suggest that the data are normally 

distributed in each band. However, there is some slight indication of skewness in bands 

3, 5 and 7. Skewness is indicated by the concave shape of the data points on the QQ 

plot (Chambers et al. 1983) and by the skewness index in table 4.16. This effect is most 

pronounced for band 7. Overall, the shape of the histograms and QQ plots for the ATM 

bands are slightly different to their comparable MMR bands. 

For the concrete surface, figure 4.9 and table 4.17 show that the data are not normally 

distributed. This is most apparent in bands 2, 3 and 5 but less apparent in band 7. 

For band 2 there is a noticeable jump towards the right hand side of the QQ plot and 

the histogram suggests that the distribution is bimodal. For bands 3 and 5 the QQ plots 

show a concave shape. Together with the histogram this may suggest a skewed, or possibly 

bimodal, distribution. For band 7 the QQ plot and histogram suggest short tails to the 

distribution. Overall, the histograms and QQ plots for the concrete surface display similar 

trends to the comparable bands from the MMR data. 

For the grass surface (figure 4.10 and table 4.18) bands 2 and 3 are approximately normally 

distributed. There is some indication of short tails in bands 3 and 7 and of asymmetry 

(skewness) in band 5. This is comparable to MMR bands 1 and 3, but quite different to 

MMR bands 2 and 4. The QQ plots for MMR bands 2 (ATM band 3) and 4 (ATM band 

7) show evidence of a skewed distribution. However, the QQ plots and histograms for the 

comparable ATM bands (3 and 7) clearly indicate short tails. 

For the asphalt surface (figure 4.8) the plots show evidence of spatial structure. Pixels 
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Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 
Band 2 3405 3607 3609 3840 74.63 0.18 0.24 
Band 3 3481 3631 3635 3837 61.26 0.34 0.01 
Band 5 3295 3451 3453 3613 55.19 0.32 0.22 
Band 7 3033 3191 3194 3372 57.60 0.36 0.25 

TABLE 4.16: Summary statistics for the ATM data gathered over the asphalt surface. 
Units are radiance (\V m-2 ). 

(represented as points) that are close together appear to have similar values. For bands 

2, 3 and 5 there is evidence of a trend increasing from west to east. This is curious, since 

the trend increases from east to west for the MMR measurements for the comparable 

MMR bands (Bands 1, 2 and 3). For ATM Band 7 there is no clear trend. The sample 

variograms for the image data show clear evidence of spatial structure. The broad patterns 

are similar to the comparable MMR bands although the variogram shapes differ. This 

can be attributed to three factors: (i) the data are measured on different supports, (ii) 

the data are obtained in different ways and (iii) sample variograms can be unstable and 

can be affected by sample size, sample structure, the presence of outliers and the chosen 

bin and tolerance. These issues are addressed in sections 2.2.1 and 2.2.2. 

For the concrete surface (figure 4.9) the plots show evidence of spatial structure. There 

is evidence of a patch of brighter values in the north-east corner in all bands. Aside 

from this, there is no evidence of a trend in bands 2 and 3, although there is evidence 

of a trend (decreasing from west to east) in bands 4, 5 and 7. These broad patterns are 

similar to those observed for the MMR measurements. The sample variograms show clear 

evidence of spatial structure. The broad patterns are similar to the comparable MMR 

bands, although the ATM bands tend to exhibit longer range variation. 

For the grass surface (figure 4.10) the plots show evidence of spatial structure. There 

is evidence of a trend decreasing from west to east in bands 2, 3 and 5. In band 7 

there is evidence of a trend decreasing from north to south. These broad patterns are 

comparable to those observed for the MMR measurements. The sample variograms show 

clear evidence of spatial structure. For ATM bands 2 and 5 this is more pronounced than 

the comparable MMR bands (1 and 3). 

Overall, the above discussion shows that the airborne ATM data show the same general 

patterns as the MMR data. However, the details differ and the distribution of (pixel­

based) radiance measurements made using an air borne sensor (the ATM in this case) 

cannot be assumed to exhibit the same distributional properties or spatial structure as 

reflectance measurements made using a field-based radiorneter. 
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Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 

Band 2 4671 5516 5598 7069 404.54 1.42 2.45 
Band 3 5784 6858 6915 8360 452.34 0.61 0.35 
Band 5 5832 6836 6890 8150 459.78 0.42 -0.17 
Band 7 5259 5997 6017 6995 330.35 0.21 -0.53 

TABLE 4.17: Summary statistics for the ATM data gathered over the concrete surface. 
Units are radiance CW m- 2). 

Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 

Band 2 1772 2045 2061 2414 128.81 0.33 -0.33 
Band 3 2219 2650 2661 3098 179.77 0.19 -0.49 
Band 5 1919 2398 2427 3009 227.73 0.43 -0.38 
Band 7 6295 6900 6936 7642 291.70 0.26 -0.79 

TABLE 4.18: Summary statistics for the ATM data gathered over the grass surface. 
Units are radiance (W m- 2 ). 
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FIGURE 4.9: Spatial summary plots for the ATM radiance measurements taken over the 
concrete surface. Details are given in figure 4.5. 
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FIGURE 4.10: Spatial summary plots for the ATM radiance measurements taken over 
the grass surface. Details are given in figure 4.5. 
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4.6 Summary 

This chapter began by describing the field site at Thorney Island. It then went on to 

describe the ARSF instruments and MMR together with the pre-processing that was 

undertaken for this thesis. The field sample for the experimental analysis undertaken in 

chapters 5, 6 and 7 was outlined. Finally, summaries of the relevant field and remotely 

sensed data were presented and discussed. 



Chapter 5 

Analysis I: data pairing 

This chapter addresses the issue of data-pairing and gives detailed attention to the mech­

anisms for combining remotely sensed and field data. This is the first of the key issue for 

investigation that was outlined in section 1.3. The impact of sample size on the pairing 

mechanism is also considered. The pairing mechanisms considered are as follows: 

• Section 5.1 considers the "typical" approach to implenl.entation of the ELM. Essen­

tially pairing is undertaken on a per target basis. 

• Section 5.3 considers the "point~pixel" approach. In this case, each field measure­

ment was paired with the co~located pixel. 

• Section 5.4 considers the I(block~pixel" approach. In this case, the field data were 

aggregated to pixel-sized support and then paired. 

Analysis in this and subsequent chapters was mainly undertaken using the S-Plus1 and 

R2 statistical programming environments. S-Plus and R provide implementations of the S 

statistical programming language which was initially developed at Bell Laboratories in the 

1970s. S-Plus is a commercial implementation, whereas R is a free version available under 

the GNU public licence. S-Plus has been widely used by statisticians and scientists for 

several decades owing to its advanced statistical functionality. R grew in popularity over 

the course of this PhD project and was particularly useful owing to the availability of well­

documented third-party libraries, such as gstat (Pebesma & Wesseling 1998, Pebesma 

2003) and geoR (Ribeiro & Diggle 2001, Ribeiro Jr. et al. 2003) for geostatistical analysis. 

Where greater computational speed was necessary functions were written in C and linked 

to S-Plus. 

I For S-Plus see www.splus.com 
2For R see www.r-project.org 
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5.1 The typical approach 

The typical approach is used here to refer to the typical method of combining the field and 

remotely sensed data in order to estimate the parameters of the regression model. This is 

the approach most commonly found in the literature (section 3.2.3). The ground targets 

(GTs) are selected and several field measurements of reflectance are made. The mean 

and variance of those measurements are then estimated (see tables 4.13, 4.14 and 4.15). 

The GT is then located in the image and the mean and variance of those pixel-based 

measurements of radiance is estimated. The mean values of radiance and reflectance are 

combined and used to estimate the parameters of the regression model. The regression 

model is given in equation 2.1 (section 2.1), and is repeated below: 

(5.1) 

where Yi is the reflectance measurement, Xi is the radiance measurement and Ci rv N(O, 0-
2 ) 

(0- 2 is the variance). 

The typical approach was implemented for the Thomey Island data set. The reflectance in 

each MMR band was used as the dependent variable and the radiance in the appropriate 

ATM band was used as the predictor variable. Since there are three GTs (asphalt, concrete 

and grass) this gave three points for calculating the parameters C130, (31 and 0-
2

) of the 

regression model for each waveband. The results of the parameter estimation are given 

in table 5.1. Plots showing the fitted regression line and 95% confidence and prediction 

intervals are shown in figure 5.1. Note that the confidence interval reflects uncertainty in 

the location of the regression line whereas the prediction interval reflects the uncertainty in 

prediction. The prediction interval will always be wider than the confidence interval and 

may be substantially wider, depending on the magnitude of 0-
2

. The regression parameters 

were calculated using ordinary least squares (OLS). If a Bayesian framework is applied 

and non-informative priors adopted, the same results are found. 

The p values given in table 5.1 were used to test the null hypothesis that ,130 = 0 or 

(31 = 0 by applying at-test (Neter et al. 1996). This showed that, for many cases, the 

estimated parameters were not significantly different to zero. Clearly, the decision to 

choose the 95% or 99% confidence level is important here. However, given the importance 

of atmospheric correction in remote sensing applications, it is reasonable to suggest that 

the user would be demanding and choose a high confidence level (99% or higher). Given 

these results it might be argued that there is no valid regression and, therefore, no basis 

on which to apply the ELM. This interpretation would be reasonable if there was no 

further information available. However, in this case, it is misleading because there is prior 

knowledge about the form of the relationship. It was demonstrated in section 3.2.3 that 

there is a physical basis for this relationship. Notably it is expected that (31 > 0 and 

(30 < O. The regressions shown in figure 5.1, together with 95% confidence and prediction 

intervals, all indicate a trend that, broadly, conforms to expectation. However, these plots 
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also emphasise that, on the basis of the data used, there is a great deal of uncertainty 

about exactly where the regression line should lie. 

In all cases, the R2 value was very large (R2 > 0.99). Hence, this analysis demonstrated 

why the R2 should not be used as the basis for assessing the accuracy of a regression 

model. It is tempting to take this large R2 as an indication that the model is "good", 

although, in this case, that interpretation would be incorrect. 

The plots (figure 5.1) show the best fit regression line and the 95% prediction interval. 

The 95% prediction interval should be interpreted as the 95% prediction interval for any 

given level of x. It is not the simultaneous prediction interval for all possible x levels. 

Recall from section 2.1 that the prediction error for a new observation Xnew is: 

(5.2) 

where Var(c) = (J2 and Var(Ynew) is the variance of the sampling distribution of Ynew' 

Hence, it is clear that the variance of the new prediction is strongly dependent on: 

1. the estimated value of (J2; 

2. the number of data points, n; 

3. Xnew X. 

Under OLS, the estimate of (J2 is given by the MSE (mean square error) as: 

&2 = Lbl (Yi - y)2 
n-2 

SSE 
n-2 

(5.3) 

where Y is the dependent variable, n is the number of samples and SSE is the sum of 

square error. Note that n - 2 gives the degrees of freedom, which is reduced by 2 owing 

to the need to estimate Po and Pl. Hence, for three GTs (n 3), there is only one degree 

of freedom. This leads to uncertainty in the estimation of (J2, an issue which is also 

reflected in the associated t-value. The t-value is important since it is used for hypothesis 

testing on the parameter estimates and for assigning confidence and prediction intervals 

(see section 2.1). Tables of the percentiles of the t-distribution (e.g., Neter et al. 1996) 

show that, for low degrees of freedom, the t-value increases sharply. 

It is clear that, apart from MMR bands 1 and 3 (figures 5.1(a) and 5.1(c)), the 95% 

confidence and prediction intervals were very wide. Even for bands 1 and 3, the confidence 

interval of the regression line was at least 2% reflectance. This is attributed to the 

magnitude of &2 and the number of data points (i.e., n = 3). This means that if the 

points deviate only slightly from a straight line then the prediction interval increases 

greatly. This problem is inherent where regression is conducted with such small samples. 
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MMR B1 on MMR B2 on MMR B3 on MMR B4 on 
ATMB2 ATMB3 ATMB5 ATM B7 

,80 -2.7061 -0.7807 -1.9450 -4.1020 
s.e.(/3o) 0.0661 0.7683 0.0029 2.0472 
p 0.0156 0.4949 0.0251 0.2947 
p < 0.05 Yes No Yes No 
p < 0.01 No No No No 

/31 0.3116 0.2985 0.3553 0.5453 

s.e. (/31) 0.0016 0.0161 0.0016 0.0365 
p 0.0034 0.0344 0.0029 0.0425 
p < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes No Yes No 
0-'1. 0.0017 0.2583 0.0029 1.0115 
R2 > 0.99 > 0.99 > 0.99 > 0.99 

TABLE 5.1: Table showing the result of parameter estimation using of the ELM regression 
model using the "typical approach". The parameters were estimated using classical least 
squares and implemented in S-Plus. 
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The above analysis has revealed two key problems with the typical implementation of the 

ELM. as follows: 

• By averaging over GTs the within-target variability is lost. This is acceptable if the 

objective is to then apply the ELM over GT sized supports. However, the objective 

is to apply the ELM over pixel sized supports. Hence, the typical approach is likely 

to underestimate 0-
2 . 

• Averaging over GTs also has the effect of reducing the number of data pairs in 

the regression model such that n equals the number of GTs (three in this case). 

This means that there are very few degrees of freedom leading to uncertainty 

in the estimate of 0-
2 and inflation of the i-value. This potentially leads to very 

wide confidence and prediction intervals and even to the situation where the null 

hypothesis (i.e., that 130 = 0 and 131 = 0) cannot be rejected. Clearly, this latter 

conclusion is incorrect because it is known from theory that 130 < 0 and 81 > O. 

This is interpreted as evidence of large uncertainty in the estimation of the regression 

parameters and, hence, the location of the regression line. 

It might be argued that the objective of averaging over targets is to provide an accurate 

and stable characterisation of the target as a whole and that reducing variability is sensible 

because the objective is to determine accurately the empirical line rather than to deter­

mine accurately prediction intervals (Milton et al. 2000). From one perspective, this is 

reasonable since the ELM constitutes a form of calibration hence the primary interest lies 

in the location of the regression line and the confidence bands around it (Webster 1989). 

Hence, in order to explore the impact of uncertainty in the ELM we might vary the loca­

tion of the regression line within the confidence intervals. However, if the objective was to 

predict a biophysical variable then primary interest would be in the prediction intervals. 
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FIGURE 5.1: ELM regressions for at-surface reflectance (::\1MR) against at-sensor ra­
diance (ATM). For each graph the regression line and 95% confidence and prediction 
intervals are shown. 
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It might be further argued that the uncertainty in the location of the regression line, given 

by the confidence intervals in figure 5.1, is over estimated. The basis for this argument 

is that the value of each data point has been accurately fixed by averaging over a large 

number of measurements for each CT. Since there is a high degree of confidence in each 

CT it might be argued that the uncertainty in the regression line should be low. Hence, it 

might be argued that we should look for a mechanism for "adding back" the information 

lost by averaging- perhaps by weighting each point according to the variability of the 

target. 

The problem with the above arguments is that accurate determination of both the re­

gression line (and its associated confidence intervals) and the prediction intervals are 

contingent on a 2 and the number of degrees of freedom. Hence, if the third data point 
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departs from a straight line the confidence and prediction intervals are, quite rightly, in­

flated. This recognises uncertainty in the location of the regression line. Indeed, in the 

scatter plots presented by Karpouzli & Malthus (2003), nlOst of the nine GTs used do not 

lie on the ELM regression line. This illustrates that the ability to accurately determine 

reflectance of a GT does not mean that uncertainty in the location of the regression line 

should be low, particularly when n is small. Furthermore, applying weighted least squares 

(WLS) may even lead to a further increase in the width of the confidence interval, since 

the concrete target is downweighted owing to its relatively large variability. Hence, it is 

argued here that the confidence intervals in figure 5.1 quite rightly illustrate uncertainty 

in the ELM caused by using a small number of GTs. Hence, rather than trying adjust 

the confidence intervals, sections 5.3 and 5.4 address this by implementing the regression 

using points and pixels respectively. These allow the data to be fully used in the ELM. 

Finally, note that the above implementation of the typical approach utilised a large data 

set (approximately 200 field-measurements per target). Typically far few measurements 

are taken. The next section (section 5.1.1) considers the implication of sample size. 

5.1.1 The implications of sample size 

The analysis reported above (section 5.1) demonstrated the implementation of the typ­

ical approach for the full data set collected for this project. This comprised more than 

190 field measurements per GT. In practice, far fewer measurements are taken (see sec­

tion 3.2.3.4 for further discussion). Smith & Milton (1999) take between 5 and 35 samples 

per GT and Karpouzli & Malthus (2003) take between 15 and 60 measurements per tar­

get, although Clark et al. (2000) and Moran et al. (2001) invest very substantial time in 

characterising GTs. Therefore, it is important to consider the implications of reducing the 

sample size on the implementation of the typical approach. In particular, the following 

issues are considered: 

1. To what extent does reducing the sample size increase the width of the confidence 

interval on the parameter estimates and on the regression line? In the extreme case, 

this will be exemplified when the t-test shows that the estimated parameter is not 

significantly different to zero. As noted above, this should not lead to the conclusion 

that there is no relationship be radiance and reflectance but can be interpreted as 

evidence of large uncertainty in the location of the regression line. 

2. To what extent does reducing the sample size increase the variability of the param­

eter estimates? 

3. To what extent does reducing the sample size increase the size of (j2? 

All of these issues are important since they lead to uncertainty when parameterising and 

implementing the ELM. They are also particularly important for the GTs used in this 
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Sample size Sample mean Sample variance 
1 -2.48050 NA 
3 -0.48655 0.38355 
5 -0.43504 0.51722 
10 -0.04142 1.58996 
20 0.56835 1.01793 
30 0.01672 0.62516 
50 0.20761 0.92002 
100 0.14061 1.27643 
200 0.04638 1.04430 
1000 0.00168 0.97527 

TABLE 5.2: Table illustrating the estimated parameters (mean and variance) for samples 
drawn from a standard normal distribution (N(O,l)). One realisation of a data set is 
taken per sample size. 
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thesis since it was shown that all targets exhibit spatial structure. Furthermore, the 

reflectance measurements obtained over the concrete (and to a lesser extent the grass) 

showed evidence of being skewed. 

The sources of uncertainty described above arise because the Yi in equation 5.1 are cal­

culated as an average of a sample. This sample average is an estimate of the population 

average and may deviate from it, particularly for small sarnples. This has implications 

for the ELM, where the Yi are based on the average of a small sample. This effect is 

illustrated in table 5.2 which shows one realisation of a sample from a standard normal 

distribution (i.e. N(O, 1)) and the associated sample mean and variance. 

To address the above issues, an experiment was designed in which sub-samples of the 

measurements for each GT were taken. The sample sizes were the full data set and then 

100, 50, 30, 20, 10, 5, 3 and 1 measurements per GT. These were labelled nFull, nlOO, 

n50, n30, n20, n10, n5, n3 and n1 and the sample was set up such that n1 C n3 C 

n5 C n10 C n20 C n30 C n50 C n100 C nFull. Each subset was drawn at random from 

the next largest subset in the chain, allowing comparison from one sample size to the 

next. One thousand such samples were drawn, obtaining ndOO, n21OO, ... ,n lOoo 100 and 

n150, n250, . .. , n lOo0 50 and so on. 

Table 5.3 shows the proportions of the simulations where Po =I 0 or {31 =I 0 for both the 

95% and 99% confidence level. For MMR band 1 (table 5.7(a)), it was clear that, as the 

sample size decreases, the proportion of cases where the parameter does not equal zero 

also decreased. This was least apparent for {31 at p = 0.05 where for n10 and above over 

99% of the realisations found that {31 =I O. However, as mentioned above, the user is likely 

to require a high degree of confidence in the parameter estimation. For {31 at p = 0.01 

the proportion of cases where {31 was not significantly different to zero falls off at n100. 

It is interesting to note that for {30 at p = 0.01, Po was not significantly different to zero 

for the full data set, whereas instances where {30 =I 0 were found for n1 through to n100. 

This was, most likely, due to the effect illustrated in table 5.2 and that chance provides a 
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sample for each GT, whose means lie closer to a straight line than the mean for the full 

data set. A similar effect was observed in other cases. As with the previous section, these 

results are noteworthy because they reflect uncertainty in the estimation of the regression 

parameters and not just because they lead to rejection of the form of the relationship. 

For MMR band 2 (table 5. 7(b)) the proportion of cases where /30 was significantly different 

to zero was never greater than 8% (for p = 0.05 and p 0.01). For PI at p 0.05 the 

proportion of cases where i'h was significantly different to zero tailed off below n30 and 

was never more than 15% at p 0.01. 

For MMR band 3 (table 5.3(c) the proportion of cases where Po was significantly different 

to zero tailed off from nlOO for p = 0.05 and was never greater than 19% for p 0.01. 

The proportion of cases where PI was significantly different to zero tailed off below n3 at 

p = 0.05 and from nlOO for p = 0.01. 

For MMR band 4 (table 5.7(d) the proportion of cases where Po was significantly different 

to zero was never greater than 9% (for p = 0.05 and p = 0.01). For at p 0.05 the 

proportion tailed off below nlOO. For PI at p = 0.01, the proportion of cases where i'h 
was significantly different to zero was never more than 12%. 

The conclusion to the above analysis is that reducing the sample size increases the uncer­

tainty with which one can estimate ,Bo i- 0 at both p 0.05 and p = 0.01. If p = 0.05 is 

used as the criterion for determining whether PI i- 0 then 30 measurements are required 

per target in order to ensure that more than 99% of the realisations give PI i- O. However, 

this will only apply for MMR bands 1 to 3 and not to MMR band 4. If the more stringent 

criteria of p = 0.01 is used for determining whether PI i- 0 then none of the sub samples 

will suffice in any of the MMR bands. 
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(a) Parameter estimation for y = :vI:vIR Band 1 and x AT~1 Band 2. 

p < 0.05 p < 0.01 
% of samples % of samples % of samples % of samples 

Sample size where Po i- 0 where PI i- 0 where 130 i- 0 where PI i- 0 
nFull 100 100 0 100 
n100 91.9 100 28.1 90.8 
n50 78.2 100 19.1 74.9 
n30 64.4 100 14.7 61.5 
n20 57.6 100 12.5 53.0 
nlO 39.2 99.3 8.9 37.2 
n5 29.2 94.9 5.6 26.9 
n3 22.9 83.6 4.4 20.5 
n1 11.6 55.9 2.8 11.5 

(b) Parameter estimation for y = MMR Band 2 and x = ATM Band 3. 

p < 0.05 p < 0.01 
% of samples % of samples % of samples % of samples 

Sample size where Po i- 0 w here PI i- 0 where 130 i- 0 where PI i- 0 
nFull 0 100 0 0 
n100 0 100 0 0 
n50 0 100 0 0 
n30 0 99.5 0 0 
n20 0 98.4 0 0.1 
n10 0.5 88.9 0.1 2.1 
n5 1.1 78.8 0.1 4.4 
n3 2.5 67.0 0.4 7.1 
n1 7.4 61.2 1.5 14.1 

TABLE 5.3: Table showing the proportion of the parameter estimates that are signif­
icantly different to zero for each sample size (1000 realisations per sample size). The 
t-tests are evaluated at the 95% (p=0.05) and 99% (p=O.Ol) confidence levels. 
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(e) Parameter estimation for y = MMR Band 3 and x = ATM Band 5. 

p < 0.05 p < 0.01 
% of samples % of samples % of samples % of samples 

Sample size where Po i- 0 where PI i- 0 where ,Bo i- 0 where PI i- 0 
nFull 100 100 0 100 
nlOO 83.2 100 17.1 99.1 
n50 69.2 100 18.1 92.3 
n30 57.2 100 12.6 84.3 
n20 48.1 100 12.1 75.5 
n10 36.4 100 7.0 59.8 
n5 24.8 99.6 5.3 43.4 
n3 23.1 97.2 5.3 36.4 
n1 15.4 81.7 3.2 22.6 

(d) Parameter estimation for y MMR Band 4 and x = ATM Band 7. 

p < 0.05 p < 0.01 
% of samples % of samples % of samples % of samples 

Sample size where Po i- 0 where PI i- 0 where Po i- 0 where PI i- 0 
nFull 0 100 0 0 
nlOO 0 84.6 0 0 
n50 0.1 73.1 0 0.3 
n30 0.4 62.1 0.1 0.6 
n20 2.2 59.7 0.2 3.3 
n10 5.2 57.1 1.1 8.1 
n5 8.2 53.7 1.9 11.5 
n3 7.1 53.0 1.2 11.1 
n1 3.8 33.6 0.7 7.2 

TABLE 5.3: continued 
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The above analysis illustrated that decreasing the sample size further reduces the con­

fidence in the estimation of the regression parameters. The impact of this variability is 

explored further below. 

The range of variability in the parameter estimates of /30 and /h, gained from drawing 

1000 realisations for a given sample size, are illustrated using histograms in figures 5.2 

and 5.3 respectively. This analysis was conducted for MMR band 1 (paired with AT.!'v1 

band 2). It is clear that the variablity in the parameter estimates increased as the number 

of measurements per target decreased. The effect of this is illustrated in figure 5.4 . This 

shows the regression line for the full data set (red line) and the regression line calculated 

on the basis of ten realisations (black line). The maximum and minimum predicted 

values at x = 40 and x = 50 (typical of urban surfaces) are shown in table 5.4. It is 

clear that the range of variability increases as the sample size increases and the distance 

from x increases. Hence, if the user could tolerate a range of 1% (reflectance), then 

they would require a sample size of 20 measurements per target at x = 40 and 100 

measurements per target at x = 50. It should be emphasised that this range of values 

is for the predicted regression line - it does not include the uncertainty given by these 

confidence and prediction intervals. Hence, although this provides a straight forward 

visualisation of how variability increases as sample size decreases, the actual uncertainty 

in estimation and prediction will be larger. This interpretation is predicated on the user 

accepting p = 0.05 for accepting the validity of the regression line. If they set the more 

stringent criteria of p 0.01, then 100 measurements would be required at both x-levels. 

Finally, figure 5.5 shows the histograms of the predicted values of 0"2 for the different 

sample sizes (n100 to n1). It should be recognised that ;;-2 rv X;-2 (a chi-square distri­

bution with n - 2 degrees of freedom) for all sample sizes (Casella & Berger 1990, Neter 

et al. 1996). Hence, for n 3 targets 0- 2 
rv xi. The shape of the histograms were similar 

at all sample sizes, as expected. However the range of the estimated values of 0"2 increased 

as the sample size decreased. For n100 60% of the estimates are greater than 0.0017 (i.e. 

0- 2 for nFull), this increases to 90% for n5 and 95% for nl. 

The magnitude of 0-2 is important since this parameter is used to calculate the confidence 

intervals on the parameters and prediction intervals for predicting a new value or set of 

values. It is also required to calculate the i-statistics which shows whether a parameter 

is significantly different to zero. Hence the increase in the estimate of 0"2 with decreasing 

sample size will lead to a widening of the confidence and prediction intervals. 

5.1.2 The typical approach: conclusions and recommendations 

The above analysis and discussion began by examining the regression models for all four 

MMR bands for the full data set. It was illustrated that, in all cases, the confidence 

intervals on the regression line were broad. This is illustrative of uncertainty in location 

of the regression line. For all bands, this led to the situation where a i-test showed that 
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Sample Size Predicted Value (x = 40) Predicted Value (x = 50) 
Minimum Maximum Minimum Maximum 

n100 9.6 10.0 12.5 13.2 
n50 9.4 10.1 12.3 13.5 
n30 9.4 10.2 12.2 13.6 
n20 9.3 10.3 12.1 13.8 
n10 9.1 10.6 11.8 14.3 
n5 9.0 1l.1 11.7 15.2 
n3 8.7 11.4 11.3 15.8 
n1 8.4 12.0 10.9 16.5 

TABLE 5.4: Table showing the range of predicted regression values for x 
x = 50 x 1O-2Wm- 2sr- 2 . 
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40 and 

one or both of the parameters was not significantly different from zero at p = 0.01. It was 

argued that this should not lead to rejection of the form of the relationship but that the 

data cannot be used for accurate parameter estimation. 

It was noted that the number of samples collected for this study was large (at least 190 

per target) and that far fewer measurements would typically be taken. It might be argued 

that this analysis is spurious, since it was already shown that the model is not adequate 

for the full data set. However, the analysis was useful because it illustrated the potential 

traps that may arise if a user was to use three targets and a relatively small sample size. 

The key message here is that, as the sample size decreases the confidence in the regression 

further decreases. This may also mean that the user finds that the t-tests show that 

the parameters are not significantly different to zero. The analysis also demonstrated 

that, as the sample size decreased the variability in the parameter estimates, and hence 

the location of the regression line increased. For MMR Band 1, regressed on ATM band 

2, this is particularly noticeable for less than 50 measurements per target. This was 

illustrated for MMR band 1 by the variation in the estimated regression line. 

The above analysis strongly suggests that the typical approach is likely to be problematic 

when implemented within a conventional regression framework. This is because of the low 

confidence in the parameter estimates, even for the full sample. Furthermore, the vari­

ability in the parameter estimates and hence the variability in ELM prediction increases 

as the sample size decreases. However, the form of the relationship is known a priori 

hence the implication is that the conventional regression approach has underestimated 

confidence in the ELM regression. 

It might be argued that concerns over whether /31 # 0 and over the magnitude of 0- 2 and 

the uncertainty in new variable prediction arise partly because the number of GTs (and 

hence the number of degrees of freedom) is small. Sampling additional targets would 

increase n in equations 5.2 and 5.3 and decrease the critical value for the t-test. This 

latter approach may be regarded as desirable by some users. For example, Karpouzli 

& Malthus (2003) use up to nine GTs for an implementation of the ELM. Nevertheless, 
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if the percentiles of the t-distribution are examined it will be noted that even for seven 

degrees of freedom (n - 2 for nine GTs), the critical value is still relatively large and this 

does not approach an asymptote until the degrees of freedom exceed 100 (tables are given 

in statistical text books, such as Neter et al. (1996)). Furthermore, the ELM is typically 

implemented with a smaller number of targets, so that situation needs to be considered 

when conducting an uncertainty analysis. 

Alternative approaches are adopted in sections 5.3 and 5.4, which is to implement the 

regression on a per-pixel basis. It is argued that these approaches should be preferred to 

the typical approach since they utilise all the data which is collected in the field. There 

also further issues that merit consideration: 

1. To implement the typical approach an average is taken over all the measurements 

within the target. Hence the variation in the reflectance and radiance values within 

the targets is lost. Strictly this means that the regression cannot then be applied 

to pixels that are smaller than the size of the target since a regression that is 

parameterised at one support may not be valid at a different support. In particular, 

the estimate of (}2 is likely to decrease for models parameterised on larger supports. 

The magnitude of (}2 affects the width of the confidence and prediction intervals. 

Generally, the user will want to conduct their atmospheric correction on pixel~sized 

supports. 

2. The data summaries for the field- measurements of reflectance, given in section 4.5.1, 

raise concerns over the use of the concrete target. This histogram for band 1 shows a 

bimodal distribution with the remaining bands being skewed. The spatial summary 

plots further suggest that the concrete target can be split into two distinct sub­

targets. The discussion given in section 3.2.3.2 outlines the requirement for targets 

to be spatially homogeneous and to be of uniform composition. The histograms and 

spatial summary plots show that this is not the case. This feature of the concrete 

target needs to be dealt with. There is a lack of accessible bright targets in this 

image and in the UK more generally. Hence, the user is faced with the choice of 

using the concrete target or being unable to implement the ELM. The methods that 

are presented in subsequent sections address this issue. 

The second point is partially addressed in the next section by implementing a modified­

typical approach. Subsequent sections consider how the data set can be used differently 

to provide a fuller assessment of uncertainty in the ELM and to increase the accuracy and 

certainty with which predictions can be made. 
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5.2 The modified-typical approach 

The discussion at the end of the previous section highlighted the problems with the 

concrete target. As a result, it might be argued that the analysis given above does not 

reflect the usual situation for implementation of the typical approach. The analysis in this 

section addresses that issue by splitting the concrete target into two geographically distinct 

segments which better meet the related requirements of spatial homogeneity and uniform 

composition This better represents the typical approach that would be implemented with 

more appropriate targets. It is termed the modified-typical approach because it requires 

that the location of the field measurements is approximately known. Under the typical 

approach, the location of individual field measurements is not recorded. It is emphasised 

that the only reason why it is possible to implement this approach because the location 

of the field measurements were recorded. 

Examination of figure 4.5 showed that the north-east quadrant of the concrete target 

is distinctly brighter than the rest of the target. Therefore, the concrete target was 

segmented on this basis to produce a "bright" and "dark" concrete target. Detailed 

examination of the spatial structure of the GTs is given in section 5.4. The ELM was 

then implemented using four GTs rather than three. 

The results of implementing the ELM for the four targets are gIVen m table 5.5 and 

illustrated in figure 5.6. If everything else remains the saIne, increasing the number of 

data pairs will reduce the width of the confidence intervals for the parameters and for 

the regression line. It will also decrease the critical values for the t-test used to test 

whether the estimated parameters are significantly different from zero. However, unless 

the additional datum lies on the regression line, it will also increase (j2 and this may offset 

the effect of increasing the number of data pairs. For all four bands the t-tests showed 

that fh was significantly different to zero at p 0.01 although this was not the case for 

/30. Figure 5.6 showed that the 95% confidence intervals around the regression line were 

still wide. 

Use of the modified-typical approach led to a decrease in the width of the confidence and 

prediction intervals for bands 2 and 4, but an increase for bands 1 and 3. For all four bands, 

the width of the confidence interval around the regression line was substantial. Hence, 

although measures have been taken to address the problem with the concrete target, the 

issues are the same as they were for the typical approach, although the emergent effect 

are less extreme. Furthemore, this approach did not address the issue that the support 

of the ground targets are not all the same and that they are different to the (pixel-sized) 

support that is required for prediction. 
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MMR B1 on MMR B2 on MMR B3 on MMR B4 on 
ATMB2 ATMB3 ATM B5 ATM B7 

Po -2.8247 -0.9687 -2.1162 -4.0784 
s.e.(;3o) 0.5758 0.7954 0.6399 1.5584 

P 0.0394 0.3475 0.0805 0.1202 
P < 0.05 Yes No No No 
p < 0.01 No No No No 

PI 0.3150 0.3042 0.3611 0.5433 

s.e·CBr) 0.0127 0.0147 0.012 0.023 
p 0.0016 0.0023 0.0011 0.0025 
P < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 
0-2 0.1527 0.3243 0.2353 0.5871 
R2 > 0.99 > 0.99 > 0.99 > 0.99 

TABLE 5.5: Table showing the result of parameter estimation using of the ELM regression 
model using the modified-typical approach. The parameters are estimated using classical 
least squares and implemented in S-Plus. 
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5.3 The point-pixel approach 

In this section, an alternative form of the ELM is proposed and investigated. Under this 

approach field measurements are paired directly with the spatially coincident pixel. It 

should be noted that this is only possible because the location of the field measurements 

have been recorded. This is not something that is found in the literature. The objective 

is to address the following weaknesses in the typical approach: 

1. Averaging the reflectance and radiance measurements for each target effectively 

reduces the information content by eliminating the natural variation within each 

target. However, if the objective is to quantify the accuracy in estimation and pre­

diction then averaging over the targets will give a misleading result for the accuracy 

of the model. Furthermore, averaging over the GTs means that the number of data 

points for input into the regression model equals the number of GTs. Hence the 

degrees offreedom in the regression will be small and the t-values will be large. This 

is likely to lead to low confidence in the regression n1.odel. 

2. When conducting regression with three or four data points then the mathemat­

ics involved mean that, if the points do not lie very close to a straight line then 

the confidence intervals and prediction intervals widen considerably. This leads to 

high uncertainty regarding the position of the regression line. Furthermore, it may 

also mean that hypothesis tests determine erroneously that (31 is not significantly 

different to zero. 

3. Various requirements for the properties of the GTs were made in section 3.2.3.2. 

However, finding large, spatially homogeneous GTs of uniform composition is not 

always feasible. These requirements are less restrictive for the point~pixel approach 

since the reflectance and radiance measurements are paired directly. Hence the 

requirements are made at the scale of the pixel rather than of the GT. For the 

normal error regression model, all that is required is that the Yi IXi are normally 

distributed. 

The first two factors interact with each other. Removing the variation led to a small value 

for a 2 and a large value for R2. However, the fact that there were only three data points 

led to wide confidence intervals and prediction intervals. This is illustrated in the analysis 

presented below. 

A further problem with the typical approach is that it ignores the support issue. Under 

the typical approach the support is not precisely specified, but it is considerably larger 

than the pixel size. In the typical approach implemented in section 5.1 the radiance and 

reflectance values were averaged over an area of approximately 35 m x 35 m, whereas the 

pixel size is only 2 m. Theoretically, a model that is parameterised on one support may 

not be applicable on another support (Blalock 1964, Heuvelink & Pebesma 1999, Bierkens 
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et al. 2000). However, the practical implication of this for the ELl\I is unclear. Adopting 

the point-pixel approach does not solve the support problem - since the reflectance and 

radiance data are now defined on different supports. The radiance data are defined on 

pixel sized supports, which are 2 m x 2 m in size. The support of the reflectance mea­

surements is defined by the angular FOV of the instrument and the height from which the 

measurement was taken, and is approximately 0.3 m in diameter. However, the supports 

are closer in magnitude than with the typical approach so it is argued that the model is 

more realistic. A further assumption is that this approach assumes that the 0.3 m point 

is an unbiased sample of the 2 m pixel area. The support issue is addressed explicitly in 

section 5.4. It should be emphasised that this approach requires that the locations of the 

field measurements are recorded accurately. 

The results for the full data set are presented in the same format as they were for the 

typical approach (section 5.1). Table 5.6 shows the estimated parameter values. Plots 

showing the fitted regression line and 95% confidence and prediction intervals are shown 

in figure 5.7. By comparison to the typical approach, the estimated values of Po and fh 
are similar. The estimated values for ;30 differ by no more than 0.5% reflectance, and 

the estimated values of PI differ by no more than 0.01. However, there are important 

differences between the two sets of results, as follows: 

1. In all cases, the t-tests showed that the estimated values of Po and PI were signifi­

cantly different to zero at p = 0.01. This is in contrast to the results found for the 

typical approach. 

2. The confidence intervals on the parameter estimates and on the regression line were 

much narrower than for the typical and modified-typical approaches. This was 

clearly illustrated in figure 5.7, where the 95% confidence bands lie very close to the 

regression line. 

3. The estimated value of (72 (i.e., the residual variance from the regression model) 

is larger for the point-pixel approach than for the typical and modified-typical ap­

proaches. This is to be expected, since the variation was not being lost in the 

averagmg process. 

4. The R2 values were lower for the point-pixel approach than for the typical approach. 

For the point-pixel approach, they ranged between 0.955 and 0.974, whereas for the 

typical and modified-typical approaches they were all greater than 0.99. This was 

also due to the fact that variation was not being lost through the averaging process. 

5. The confidence intervals (shown in figure 5.7) were much narrower than those found 

for the typical or modified-typical approaches. This may be attributed to two fac­

tors. First, because of the large number of data points, the degrees of freedom are 

no longer an issue, as they were with the typical approach. Second, despite the 

larger value of 0-2 , the data clearly support the trend indicated by the regression 

line. Hence the confidence intervals around the regression line are narrow. 
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MMR B1 on MNIR B2 on MMR B3 on MMR B4 on 
ATMB2 ATMB3 ATM B5 ATMB7 

,60 -2.4164 -0.5644 -1.7760 -3.8002 
s.e. (80 ) 0.0880 0.1037 0.1045 0.2241 
p < 0.0001 < 0.0001 < 0.0001 < 0.0001 
P < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 

/31 0.3008 0.2931 0.3515 0.5410 

s.e·(t3d 0.0021 0.0021 0.0022 0.0039 
p < 0.0001 < 0.0001 < 0.0001 < 0.0001 
p < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 
(j'l. 0.7814 1.1545 1.3363 2.5693 
R2 0.9663 0.9647 0.9737 0.9652 

TABLE 5.6: Table showing the result of parameter estimation using of the ELM regression 
model using the point-pixel approach. The parameters are estimated using classical least 
squares and implemented in S-Plus. 
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6. The prediction intervals (shown in figure 5.7) were quite different to those found for 

the typical or modified-typical approaches. For MMR bands 1 and 3 the prediction 

intervals are wider than they were in the typical approach. The opposite was found 

for MMR bands 2 and 4. In all cases, the prediction intervals were narrower than 

they were for the modified-typical approach. As with the confidence intervals, the 

large number of data points means that the degrees of freedom are no longer an 

issue. Hence the prediction intervals are primarily affected by 0"2. 

7. Despite the merits of this point-pixel approach it should be noted that vanous 

potential problems have been introduced. 

(a) As previously stated, the point-pixel approach makes no effort to match the 

supports of the reflectance and radiance data. This is addressed in section 5.4. 

(b) Implementation of this approach is dependent on accurately determining the 

location of each field measurement. In this section, it is assumed that the 

determination of location is error free. However, in reality this may not be the 

case. This issue is addressed in chapter 6. 

(c) The residuals are clearly heteroskedastic. This is addressed in chapter 7. 

(d) Within each target there is spatial structure. Hence, within each target it is 

likely that the residuals from the regression will be autocorrelated. This is 

addressed in chapter 7. 

\Vhilst it is important to address these problems, they represent subsequent stages 

of the model-building process and are not addressed in this section. 
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5.3.1 The implications of sample size 
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The implications of reducing the sample SIze were investigated by adopting the same 

procedure as was adopted for the typical approach. The sanle questions were addressed, 

as follows: 

1. To what extent does reducing the sample size increase the width of the confidence 

interval on the parameter estimates and on the regression line? In the extreme 

case, this will be exemplified when the t~test shows that the estimated parameter 

is not significantly different to zero. As noted previously, this should not lead to 

the conclusion that there is no relationship be radiance and reflectance but can be 
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interpreted as evidence of large uncertainty in the location of the regression line. 

2. To what extent does reducing the sample size increase the variability of the param­

eter estimates? 

3. To what extent does reducing the sample size increase the size of (j2? 

Table 5.7 shows the proportions of the simulations where /30 i- 0 and lh i- 0 for the 

different sample sizes. In all cases except for nl it was found that /31 i- 0 at p = 0.01. 

However, the situation was quite different for Bo. For MMR bands 1, 3 and 4 at least 20 

measurements per target were required to ensure that> 99% of realisations led to Po i- 0 

at p = 0.01. For MMR band 2, the full data set was required, although 80 = -0.56 for 

nFull. This is much closer to zero than the values of /30 for the other wavebands. If 

this magnitude of bias is acceptable to the user then they could collect 20 measurements 

per target in order to cover estimation of /30 in the other wavebands, and disregard the 

estimation of po for MMR band 2. 

The above analysis was useful because it indicated the approximate sample size required 

to obtain a regression that was consistently statistically significant. However, consider­

ing only statistical significance can lead to misleading conclusions (Cox 2001, Sterne & 

Davey Smith 2001). In this case, the t~test indicated that the estimated parameters were 

significantly different from zero but says little about the uncertainty attached to parame­

ter estimates. Sterne & Davey Smith (2001) emphasised the need to consider significance 

tests in context and to also consider the confidence limits or credible regions around the 

estimated parameter, 

The issue of variability in the parameter estimates and regression line was investigated for 

MMR band l. The range of variability in /30 and /31, gained from drawing 1000 realisations 

for a given sample size, are illustrated using histograms in figures 5.8 and 5.9 respectively. 

It is clear that the variability in the parameter estimates increased as the number of 

measurements per target decreased. 

The effect of sample variability on estimation of the regression line is shown in figure 5.10. 

This shows the regression line for the full data set (red line) and the regression line cal­

culated on the basis of ten realisations (black lines). Subjectively, the range of variability 

does not seem to be as large as it was for the typical approach. This is borne out by ta­

ble 5.8 which shows the maximum and minimum predicted values at x = 40 and x = 50. 

If the user could tolerate a range of 1 % (reflectance), then they would require a sample 

size of 20 measurements per target at x = 40 and 50 measurements per target at x = 50. 

It is emphasised that this discussion applies only to the estimated regression line. It is also 

important to consider the uncertainty around the regression line. This can be illustrated 

by the confidence interval around the regression line. This is shown, for one realisation, 

in figure 5.11 for nl00, n50, n30 and n20. These figures show that the confidence inter­

val on the regression tended to increase as the sample size decreased and it was visually 

substantially narrower for n 2:: 50. 
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The above discussion was useful for emphasising that variability in the regression increases 

as sample size decreases. However, to gain a fuller picture it is also necessary to consider 

the variability of (j2. This was illustrated in figure 5.12. It should be recognised that 

0- 2 
rv X;-2 (where n is the sample size) for all sample sizes (Casella & Berger 1990, Neter 

et al. 1996). For large sample sizes (e.g., nFull and nlOO) this will approximate a normal 

distribution. However, for smaller sample sizes, the distribution is clearly non-normal. 

For smaller sample sizes, the sample mean value of 0-2 approximated that obtained for 

n100 or the full data set. However, the shape of the distribution means that there is 

a high probability of underestimating (j2. This means that the confidence intervals and 

prediction intervals may actually be underestimated for smaller samples. Furthermore, as 

the sample size decreases, the probability of estimating extremely large values increases. 

The above discussion on the variability of 0-2 suggests caution when interpreting the results 

from figures 5.8, 5.9 and table 5.8. In particular, it suggests that, to maintain a relatively 

low range in the estimated values of (j2 a relatively large sample size is required. Hence, 

the recommendation is that at least 50 (and preferably 100) measurements should be 

obtained per data set. 

5.3.2 The point-pixel approach: conclusions and recommendations 

The above discussion showed that 20 measurements per target were required in order to 

ensure that Po and /31 were significantly different to zero at p = 0.01 for all wavebands 

except MMR band 2. Furthermore, it was demonstrated that the information contained 

in the simulations could be used to specify a sample size to satisfy a given tolerance for 

the regression line. However, the necessity to consider the confidence intervals around 

the parameter estimates and regression line was also emphasised and illustrated in fig­

ure 5.11. However, in addressing this, the stability of the estimate of (j2 also needs to 

considered. The variability in the estimate of (j2 increases substantially where less than 

50 measurements per target are taken. 

The above results suggested that 20 measurements per target (i.e., a total of sixty mea­

surements) is the minimum that is viable. However, given the importance of accurate 

atmospheric correction for remote sensing, more measurements will be required to ensure 

that ~o, and 0-2 are not sensitive to sample variability and to ensure narrow confi­

dence bands around the regression. Hence, a minimum of 50 measurements per target is 

recommended and at least 100 would be preferable. 

In addition to the support issue there are two problems with the regression model that has 

been implemented here. First, the residuals are clearly heteroskedastic (see figure 5.7). 

Second, the Yi and Xi are not independent within each target. These two issues are 

addressed in chapter 7. The next section will address the support issue by aggregating 

the reflectance data to pixel size supports. 



Chapter 5 Analysis I: data pairing 162 
--~------~------~~--~------------------------------------

(a) nlOO (b) n50 

-

-
f 
f 

5l 

-3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 ~3.5 -3.0 -2.5 -2.0 

(c) n30 (d) n20 

I) 
-

g 
i ~ 
! 

5l 

oj 

-3.0 -1.5 -1.0 -5 -2 

(e) nlO (f) n5 

l' ~-; 

~ 
5l 

55 

I~ 
~ 

~ !g 
~ 

5l 

~ 

n 
-5 -4 -3 -2 -8 -8 -4 -2 

(g) n3 (h) nl 
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(a) Parameter estimation for y = MMR band 1 and x = ATM band 2. 

p < 0.05 p < 0.01 
% of samples % of samples % of samples % of samples 

Sample size where Po i- a where PI i- a where Po i- a where fh i- a 
nFull 100 100 100 100 
n100 100 100 100 100 
n50 100 100 100 100 
n30 100 100 100 100 
n20 100 100 100 100 
n10 100 100 99.2 100 
n5 96.2 100 82.9 100 
n3 86.3 100 65.9 100 
n1 21.7 79.5 4.0 20.8 

(b) Parameter estimation for y = MMR band 2 and x = ATM band 3. 

p < 0.05 p < 0.01 
% of samples % of samples % of samples % of samples 

Sample size w here Po i- a where ,81 i- a where Po i- a where PI i- a 
nFull 100 100 100 100 
n100 99.9 100 98.6 100 
n50 88.5 100 67.3 100 
n30 65.1 100 37.1 100 
n20 50.4 100 22.2 100 
nlO 25.9 100 8.5 100 
n5 15.5 100 3.9 100 
n3 13.9 100 2.6 100 
n1 3.3 55.3 0.5 7.9 

TABLE 5.7: Tables showing the proportion of the parameter estimates that are signifi­
cantly different to zero for each sample size (1000 realisations per sample size, point~pixel 
approach). The t-tests are evaluated at the 95% (p=0.05) and 99% (p=O.Ol) confidence 
levels. 
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(e) Parameter estimation for y MMR band 3 and x ATM band 5. 

p < 0.05 p < 0.01 
% of samples % of samples % of san1ples % of samples 

Sample size where (30 #- 0 where (31 #- 0 where (30 #- 0 where .81 #- 0 

nFull 100 100 100 100 
n100 100 100 100 100 
n50 100 100 100 100 
n30 100 100 100 100 
n20 100 100 99.5 100 
n10 95.3 100 83.2 100 
n5 74.0 100 50.3 100 
n3 59.3 100 33.1 100 
n1 15.2 88.0 2.6 23.5 

(d) Parameter estimation for y MMR band 4 and x ATM band 7. 

p < 0.05 p < 0.01 
% of samples % of samples % of samples % of samples 

Sample size where (30 #- 0 where (31 #- 0 where (30 #- 0 where (31 #- 0 
nFull 100 100 100 100 
n100 100 100 100 100 
n50 100 100 100 100 
n30 100 100 100 100 
n20 100 100 100 100 
n10 99.8 100 96.6 100 
n5 83.9 100 47.5 100 
n3 52.4 100 17.6 100 
n1 8.5 52.1 1.9 12.5 

TABLE 5.7: continued 

Sample Size Predicted Value (X = 40) Predicted Value (X = 50) 
Minimum Maximum Minimum Maximum 

n100 9.4 9.8 12.4 12.9 
n50 9.4 9.9 12.3 13.1 
n30 9.3 10.0 12.1 13.2 
n20 9.2 10.1 12.0 13.5 
n10 9.0 10.1 11.8 13.5 
n5 8.9 10.9 11.4 15.1 
n3 8.6 10.8 11.1 14.8 
n1 8.3 12.0 10.4 16.8 

TABLE 5.8: Table showing the range of predicted regression values for x = 40 and x = 
50 x 1O-2Wm-2sr-2 for MMR band 1 regressed on ATM band 2 (point-pixel approach) 
and different sample sizes. 
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5.4 The block-pixel approach 

In this section, the approaches used to aggregate the field data to the same support as 

the remotely sensed data are discussed and the analysis is presented. A more general 

discussion of scale and the spatial support, together with some background on aggrega­

tion is given in section 2.2.1. An approach based on simple averaging is first considered 

(section 5.4.1), followed by geostatistical approaches (section 5.4.2). 

5.4.1 Simple averaging 

For the analysis in this section, a simple approach to aggregation was adopted. This was 

achieved by averaging all the field measurements that were made within anyone pixel. 

This is analogous to the design-based methods described by Bierkens et al. (2000). A 

potential criticism of this approach is that design-based methods are generally based on 

random sampling (Brus & de Gruijter 1997, Bierkens et al. 2000), whereas a gridded 

sampling scheme was used. A further criticism might be that the number of field mea­

surements per pixel was low (less than four for a 2 m x 2 m pixel). Addressing both these 

issues would not be feasible logistically in the ELM context. This is because a random 

sample design would take longer and be more cumbersolTl.e to implement. This would be 

exacerbated if a larger sample were taken. However, obtaining a large random sample 

may be feasible for other empirical models. 

Despite the limitations outlined above this approach was straight forward to implement 

and addressed the support issue by averaging out within-pixel variation. The procedure 

was executed as follows: 

1. Match each field measurement with its spatially coincident pixel measurement. 

2. Take the average of all field measurements taken within each pixel and pair this 

with the remotely sensed radiance measurement for that pixel. 

3. Exclude all pixels with zero or one measurement of reflectance. This leaves a total 

of 36 data pairs for asphalt and concrete and 39 for grass (Ill data pairs in total). 

4. Compute the regression using the remaining data pairs. 

The results for the implementation of the regressIOn line are shown in table 5.9 and 

figure 5.13. It is useful to note that the estimated value of (j2 was lower than it was for 

the point-pixel approach. This was attributed to the fact that variability was lost in the 

averaging process. This was desirable, since reflectance was averaged on a per-pixel basis 

- which is consistent with desired support size for prediction. If n remains constant, a 

reduction in 3-2 leads to a reduction in the width of the confidence and prediction intervals. 

This effect is largest when the degrees of freedom are very small (10 or less) and reduces 
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for larger degrees of freedom. For n = 111, the width of the confidence and prediction 

intervals was controlled by the size of (}2 rather than n. Hence, the reduction in fy2 relative 

to the point-pixel approach led to a reduction in the uncertainty in parameter estimation 

and new variable prediction. 

\¥hen this approach is considered relative to the typical approach it will be noted that 

(}2 is larger, but the confidence intervals around the regression line are narrower. 

It might be argued that step 3 in the above procedure could be omitted. The assumption 

(as with the point-pixel approach) is that an individual measurement represents an un­

biased sample of the entire pixel. The results for this approach are shown in table 5.10. 

This approach yields a total of 436 data pairs to support the regression model. However, 

of these 436 pixels, 325 contain one field measurement so there is no averaging across 

multiple data points. Hence, fy2 was larger; however, the estimates of 130 and 8 1 are 

similar. 

OveralL it is preferable to include only those pixels which contain two or more field­

measurements. This explicitly addresses the support issue and hence reduces the sen­

sitivity of the ELM to sub-pixel variation in reflectance. Furthermore, as discussed in 

chapter 6, it reduces the sensitivity of the ELM to positional uncertainty in the field mea­

surements. However, in this case, because of the sample structure, it leads to substantial 

redundancy. A sampling strategy designed specifically for the simple averaging approach 

could limit this. Hence, the results from both approaches are presented here. 

Adopting the simple averaging approach explicitly addressed the support issue. The 

advantages of this approach were, firstly, its simplicity and, second, it is not based on any 

assumption about the underlying spatial variability. The disadvantage, was that sampling 

was not conducted at random. Hence this approach cannot be considered design-based. 

This method was, also, limited by uncertainty in the location of the field measurements. 

Furthermore, if this approach was to be applied operationally it is recommended that a 

sampling design be constructed that would minimise the number of pixels with only one 

measurement in them. 

5.4.2 Block kriging 

In this section, the geostatistical approach of block-kriging is used to aggregate from the 

field measurements (approximated by a point) to pixel-sized blocks. A detailed discussion 

of the approach for MMR band 1 (paired with ATM band 2) is given. Each target is dealt 

with in turn and the ELM regression model is then applied. 

The notation used in the geostatistical analysis is listed as follows: 

• T~ refers to the nugget 
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NIMR B1 on MMR B2 on MMR B3 on MMR B4 on 

ATMB2 ATMB3 ATMB5 ATMB7 

,80 -2.3367 -0.4216 -l.6934 -3.8556 
s.e.(J3o) 0.1742 0.2067 0.1907 0.4238 
p < 0.00001 0.0438 < 0.00001 < 0.00001 
p < 0.05 Yes Yes Yes Yes 

p < 0.01 Yes No Yes Yes 

(31 0.2997 0.2903 0.3505 0.5454 
s.e.(J3r) 0.0043 0.0043 0.0041 0.0075 
p < 0.00001 < 0.00001 < 0.00001 < 0.00001 
p < 0.05 Yes Yes Yes Yes 

p < 0.01 Yes Yes Yes Yes 

0- 2 0.4981 0.7412 0.7218 1.6496 
R2 0.9785 0.9764 0.9853 0.9799 

TABLE 5.9: Table showing the result of parameter estimation of the EL:-v1 regression 
model using the simple averaging approach. All pixels containing two or more measure­
ments are included. The parameters were estimated using classical least squares and 
implemented in S-Plus. 

J\1MR B1 on MMR B2 on MMR B3 on MMR B4 on 

ATMB2 ATMB3 ATMB5 ATMB7 

(30 -2.483 -0.6142 -1.8526 -3.8777 

s.e.(J3o) 0.0987 0.1208 0.1212 0.2778 
p < 0.00001 < 0.001 < 0.00001 < 0.00001 
p < 0.05 Yes Yes Yes Yes 

p < 0.01 Yes Yes Yes Yes 

(31 0.3021 0.2949 0.3529 0.5415 

s .e. (J31) 0.0024 0.0025 0.0025 0.0048 
p < 0.00001 < 0.00001 < 0.00001 < 0.00001 
p < 0.05 Yes Yes Yes Yes 

p < 0.01 Yes Yes Yes Yes 

0- 2 0.6121 0.9721 1.1128 2.262 
(]" 0.7824 0.9859 1.055 1.504 
R2 0.9738 0.9709 0.9785 0.9671 

TABLE 5.10: Table showing the result of parameter estimation of the ELM regression 
model using the simple averaging approach. All pixels containing one or more field 
measurement are included. The parameters were estimated using classical least squares 
and implemented in S-Plus. 
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FIGURE 5.13: ELM regressions for at-surface reflectance (MMR) against at-sensor ra­
diance (ATM) for the simple averaging approach (two or more measurements per pixel). 
For each graph the regression line and 95% confidence and prediction bands are shown. 
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• T; refers to the partial sill. Hence (52 = T~ + T;. This differs from its use in the 

rest of the chapter, where it refers to the residual variance in the regression model. 

The sill is therefore T~ + T;' From section 5.4.2.5 usage is returned to meaning the 

residual variance (from the regression model). 

• ¢ is the variogram range. 

• ME refers to the mean error. It is a measure of bias. 

• MSE refers to the mean square error. It is a measure of accuracy. 

• MSDR is the mean square deviation ratio. A value close to one indicates that the 

kriging variance is consistent with the cross-validation variance. 
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• SS refers to to the sum of square errors . 

• AlC refers to t he Aikaike information criterion (AlC) . 

5.4.2.1 MMR band 1: asphalt GT 

173 

As discussed in section 4.5.1 , t he spatial summary plot given in figure 4.5(a) demonstrated 

the presence of spatial structure. Geostatistics can be used to model this variation and 

to predict a surface using point or block supports. 

Under the conventional geostatistical approach it is usual to model the variogram up 

to half the maximum lag (32 m in this case) . Given this restriction it was sensible to 

perform kriging using a neighbourhood that was no larger than 16 m. Directional and 

omnidirectional variograms are shown in figure 5.14. The directional variogram showed 

that the nature of the spatial variation was consistent in all but one direction . Hence 

although there is some suggestion of anisotropy the evidence is not strong and this was not 

explored further. Furthermore, t he spatial summary plot (figure 4.5(a)) showed evidence 

for a trend, although evidence for t his is not manifested in the sample variograms. This 

left several choices about how best to model the variogram. The variogram was , therefore, 

modelled with and without a trend and the resulting cross-validation statistics compared . 

The first stage was to model the variogram without accounting for the trend. The shape 

of the variogram showed that the semi- variance increased sharply and then levelled off. 

Given this shape, the circular, spherical and exponential models were fitted. The ex­

ponential model was least accurate. Descriptive statistics for the circular and spherical 

models are shown in table 5.11. These showed that t her e was no strong evidence to 
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Variogram Cross~validation 

Model TL 
n 

TL 
s CfJ SS ME MSE MSDR Slope R'2 

Spherical 0.02 0.05 3.98 0.30 -0.006 0.05 1.02 0.29 0.29 
Circular 0.0 0.05 3.62 0.30 -0.006 0.05 0.99 0.30 0.30 

TABLE 5.11: Comparison of different variogram models fitted to ylylR band lover the 
asphalt surface. The variogram model was fitted to the sample variogram and cross­
validation prediction conducted using OK. 

Variogram Cross~validation 

Model T'2 
n 

T'2 
s rp SS ME MSE MSDR Slope RL 

Spherical 0.015 0.049 3.16 0.15 0.001 0.05 1.14 0.30 0.26 
Circular 0.018 0.046 2.91 0.15 0.001 0.05 1.15 0.30 0.26 

TABLE 5.12: Comparison of different variogram models fitted to MMR band lover the 
asphalt surface. The variogram model is fitted to the sample variogram after first fitting 
a first-order trend on location. Cross-validation prediction was conducted using KT. 
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choose between the circular and spherical model. Note that the slope and R2 for the 

cross~validation were small. This may partly reflect the lack of data at short lags. 

Table 5.12 illustrates the situation when a first order trend on the location was included. 

The results from the cross~validation showed that, although spatial data summaries 

showed evidence for a trend, including the trend did not increase the accuracy of the 

model. Hence, the circular model without the trend was adopted. 

The MBG maximum likelihood approach was also considered. The results are shown in 

tables 5.13 and 5.14 for the fitting of models with and without a trend, respectively. These 

results suggested that fitting the trend increased the accuracy of the model. The AIC 

showed that the increased accuracy justified the decrease in parsimony. The spherical 

and circular model were more accurate than the exponential model. The AIC suggested 

that the circular model provided a more accurate fit to the data than the spherical model, 

although the cross-validation showed that adopting the spherical model would not greatly 

decrease the accuracy of prediction. The circular model was adopted. It should be noted 

that when the maximum likelihood approach is used the model is fitted to all the data, 

whereas with the conventional approach the model was not fitted at the long lags. Hence, 

under the MBG~ML approach it was necessary to account explicitly for the trend when 

fitting the model. 

5.4.2.2 MMR band 1: concrete GT 

An initial assessment of the spatial summary plots (section 4.5.1) suggested that the 

concrete target was composed of two sub targets. The concrete is actually laid in regular 

6 m x 6 m slabs. Figure 5.15 shows a spatial summary plot of the concrete surface. 

The size of the symbol is proportional to the magnitude of the reflectance measurement. 
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Variogram Cross-validation 
Model T~ T'2 

s ¢ AlC ME MSE IvISDR Slope R'2 

Spherical 0.02 0.05 3.92 0.9 -0.003 0.05 1.03 0.27 0.25 
Circular 0.02 0.05 3.66 -1.3 -0.003 0.05 1.03 0.28 0.27 
Exponential 0.02 0.50 2.86 -4.07 -0.0004 0.05 0.92 0.23 0.20 

TABLE 5.13: Comparison of different variogram models fitted to MMR band lover the 
asphalt surface. The model was fitted using ::\l1L without a trend and cross-validation 
prediction conducted using OK. 

Variogram Cross-validation 
Model T"L 

n 
T"L 

s rp AlC ME MSE MSDR Slope R~ 

Spherical 0.02 0.04 3.79 -15.8 -0.0008 0.05 1.04 0.30 0.30 
Circular 0.02 0.04 3.57 -17.3 -0.0006 0.05 1.01 0.30 0.30 
Exponential 0.01 0.05 1.23 -13.1 0.01 0.06 0.97 0.12 0.17 

TABLE 5.14: Comparison of different variogram models fitted to MMR band lover the 
asphalt surface. The model was fitted using ML and a first order trend on location. 
Cross-validation prediction was conducted using KT. 
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Figure 5.15(b) shows the slabs, which are labelled according to the author's co-ordinate 

system. This suggests that slabs A2, A3, A4, B2, B3, B4, C2, C3 and C4 represent 

a clearly separable surface. The measurements taken over these slabs were segmented 

and labelled "BC" (bright concrete, 87 measurements), the remaining slabs were labelled 

"DC" (dark concrete, 175 measurements). When the concrete GT was segmented on this 

basis, the distribution of reflectance values of each sub-target showed strong evidence 

for being normally distributed. Evidence for this is provided in table 5.15 (for BC) and 

table 5.16 (for DC). These tables show the summary statistics for the two sub-targets. 

Once the concrete target was segmented the sample variograms for the two sub-targets 

were computed. Directional and omni-directional variograms for DC are shown in fig­

ure 5.16. The directional variograms showed weak evidence for a directional component, 

hence this was ignored. For BC (figure 5.16) there were only 87 measurements, providing 

insufficient data to test for a directional component, which was, therefore, ignored. 

For DC, given the shape of the sample variogram, the circular, spherical and exponential 

models were fitted. Descriptive statistics are shown in table 5.17. Two procedures were 

Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 
Band 1 12.36 16.73 16.55 19.77 1.85 -0.24 -0.91 
Band 2 17.08 21.09 21.33 25.26 2.01 0.05 -1.00 
Band 3 19.21 23.54 23.86 28.50 2.30 0.15 -1.07 
Band 4 24.18 28.10 28.50 32.64 2.10 0.27 -1.04 

TABLE 5.15: Summary statistics for the MMR data gathered over the bright section of 
the concrete surface (BC). 
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(a) Concrete surface (unlabelled slabs). (b) Concrete surface (labelled slabs). 

FIGURE 5. 15: Figure showing the reflectance measurements made over the concrete 
surface, together with the boundaries and labels for the slabs. The size of the point is 
proportional to the magnitude of the reflectance measurement. 

Waveband Minimum Median Mean Maximum St. Dev Skewness Kurtosis 

Band 1 11.65 13.76 13.71 15.46 0.83 -0.11 -0.40 
Band 2 16.27 19.08 19.18 22.32 1.32 0.23 -0.53 
Band 3 18.09 21.70 21.78 25.28 1.81 0.20 -0.04 

B and 4 22.86 27.43 27.57 31.81 1.72 0.003 -0.44 

TABLE 5.16: Summary statistics for the MMR data gathered over the dark section of 
t he concrete surface (DC). 
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used for OK. In the first case, kriging was conducted using the global neighbourhood 

(GN). In the second, it was conducted using a local neighbourhood defined by the points 

contained in the spatially coincident slab (SN). The cross-validation diagnostics showed 

that defining the local neighbourhood on this basis increased the accuracy of prediction 

for all three models. There was little basis on which to choose between the three models 

and all gave a low value for the slope and R2 value. The exponential model was chosen and 

kriging conducted in the local "slab" neighbourhood (SN). In conducting this, however, it 

should be noted that the "slope" and "R2ll shows that the variance explained by kriging 

was low (approximately 10%). 

The results for the parameter estimation under the MBG-ML approach are shown in 

table 5.18. The results from the cross validation were similar to when the conventional 

approach was adopted. Using the exponential model resulted in the lowest value for the 

AIC and the highest value for the slope and R2. On this basis, the exponential model 

was chosen and kriging conducted in the local "slab" neighbourhood. In conducting this, 

however, it should be noted that the "slope" and "R2" shows that the variation explained 

by kriging was low (approximately 10%). 

For BC, given the shape of the sample variogram, the circular, spherical and exponential 

models were fitted. The exponential model was rejected because it led to a substantially 

less accurate fit. Descriptive statistics are shown in table 5.19. Two procedures were used 

for OK. In the first case, kriging was conducted using the global neighbourhood. In the 

second, it was conducted using a local neighbourhood defined by the points contained in 

the spatially coincident slab. The cross-validation diagnostics showed that defining the 

local neighbourhood on this basis increased the accuracy of prediction for both models. 

However, the reduction in the MSDR when kriging was conducted in the local "slab" 

neighbourhood implied that the MSE underestimated accuracy, relative to the kriging 

variance. There was little basis on which to choose between the spherical and circu-
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Variogram Cross-validation 
Model T'L 

n 
T'L 

s ¢ SS ME MSE MSDR Slope R~ 

Circular (G N) 0.44 0.28 12.20 7.33 0.002 0.63 1.16 0.09 0.07 
Circular (SN) -0.002 0.56 1.02 0.13 0.08 
Spherical (GN) 0.43 0.29 12.90 7.88 0.003 0.63 1.17 0.09 0.07 
Spherical (SN) -0.002 0.56 1.03 0.13 0.08 
Exponential (GN) 0.40 0.38 7.28 8.95 0.002 0.62 1.15 0.10 0.09 
Exponential (SN) -0.002 0.56 1.03 0.14 0.09 

TABLE 5.17: Comparison of different variogram models fitted to MMR band lover 
the concrete surface (DC). The variogram model was fitted to the sample variogram 
and cross-validation prediction conducted using OK. GN refers to conducting OK in 
the global neighbourhood and SI\ refers to conducting OK in the local neighbourhood 
defined by the slab. 

Variogram Cross-validation 
Model T'L 

n 
T'L 

s ¢ AlC ME MSE MSDR Slope R2 

Circular (G N) 0.53 0.25 1l.7 403 0.002 0.63 1.01 0.07 0.07 
Circular (SN) -0.001 0.57 0.88 0.12 0.08 
Spherical (GN) 0.52 0.27 12.8 403 0.003 0.63 1.01 0.08 0.07 
Spherical (SN) -0.002 0.57 0.88 0.12 0.08 
Exponential (GN) 0.22 0.54 1.77 399 0.006 0.61 1.01 0.10 0.10 
Exponential (SN) -0.001 0.55 0.94 0.16 0.11 

TABLE 5.18: Comparison of different variogram models fitted to yI:V1R band lover the 
concrete surface (DC). The models were fitted using ML and cross~validation prediction 
conducted using OK. GN refers to conducting OK in the global neighbourhood and SN 
refers to conducting OK in the local neighbourhood defined by the slab. 

lar models. The spherical model was chosen and kriging conducted in the local "slab" 

neighbourhood. 

The results for the parameter estimation under the MBG-ML approach are shown in 

table 5.20. The results from the cross validation are similar to when the conventional 

approach was adopted. There is little basis on which to choose between the three models 

since the difference in the AlC and cross-validation diagnostics for the different models 

is small. The spherical model was chosen and kriging conducted in the local "slab" 

neighbourhood. 

5.4.2.3 MMR band 1: grass GT 

Directional and omnidirectional variograms are shown in figure 5.18. Together with the 

spatial summary plot given in figure 4.7(a), these demonstrated the presence of spatial 

structure. The omnidirectional variogram shows that the nature of the spatial variation 

was broadly consistent in all directions, although there is some indication of structural 

anisotropy. However: estimating an anisotropy parameter within the conventional geosta­

tistical framework is not straightforward and is generally performed by "trial and error" , 
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Variogram Cross~validation 

Model TL: _L: ¢ SS ME MSE MSDR Slope R'2 
n Ts 

Circular (GN) 0.24 2.62 4.45 54 -0.03 1.33 1.01 0.55 0.56 
Circular (SN) -0.02 0.80 0.60 0.75 0.74 
Spherical (GN) 0.10 2.76 4.88 55 -0.03 1.26 0.96 0.56 0.56 
Spherical (SN) -0.02 0.80 0.63 0.76 0.74 

TABLE 5.19: Comparison of different variogram models fitted to 11MR band lover 
the concrete surface (BC). The variogram model was fitted to the sample variogram 
and cross~validation prediction conducted using OK. G~ refers to conducting OK in 
the global neighbourhood and S::\ refers to conducting OK in the local neighbourhood 
defined by the slab. 

Variogram Cross~validation 

Model T'2 
n 

T'2 
s ¢ AlC ME MSE MSDR Slope RL: 

Circular (GN) 0 3.89 5.49 290 -0.02 1.24 1.04 0.61 0.59 
Circular (SN) -0.02 0.75 0.65 0.77 0.75 
Spherical (GN) 0 3.58 5.93 292 -0.02 1.23 0.99 0.60 0.60 
Spherical (SN) -0.02 0.76 0.66 0.77 0.75 
Exponential (GN) 0 3.99 3.88 294 -0.01 1.21 0.93 0.58 0.60 
Exponential (SN) -0.02 0.78 0.64 0.75 0.75 

TABLE 5.20: Comparison of different variogram models fitted to ylMR band lover the 
concrete surface (BC). The parameters were estimated using ML and cross~validation 
prediction conducted using OK. G:"J refers to conducting OK in the global neighbourhood 
and S::\ refers to conducting OK in the local neighbourhood defined by the slab. 
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rather than formal estimation (Goovaerts 1997, Pebesma & \Vesseling 1998, Pebesma 

2003). Hence, other approaches were considered. The MBG~ML approach is sufficiently 

flexible to allow the anisotropy parameters to be added to the likelihood function and 

estimated by maximum likelihood. A further possible approach is to fit a nested model to 

the omnidirectional sample variogram. Under the conventional approach, this is straight­

forward to do and can be implemented in gstat. Under the MBG~ML approach, the 

likelihood function can, theoretically, be extended in this way (Diggle et al. 2003), al­

though they also suggest that the data are unlikely to support such models. It may also 

be noted that, in this case, under MBG~ML including anisotropy parameters may be used 

to increase the accuracy of estimation and prediction. 

Under the conventional approach four options were considered. These were to: (i) fit 

a non~nested model and ignore the trend (table 5.21); (ii) fit a non~nested model and 

include the trend (table 5.22); (iii) fit a nested model and ignore the trend (table 5.23); 

and (iv) to fit a nested model with a trend (table 5.24). The cross~validation diagnostics 

suggested that the nested model was most accurate. However, they also suggested that, 

when a nested model was fitted, no increase in accuracy was gained by modelling the 

trend. On this basis, the nested model without a trend was chosen. Using the double 

exponential model led to numerical instability in the fitting procedure, leaving a choice 

between the double circular and double spherical models. There was little evidence to 
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FIGURE 5.18: Omnidirectional and directional sample variograms for MMR band l over 
the grass surface. 

Variogram Cross- validation 
Model 7'2 

n T" s ¢ SS ME MSE MSDR Slope R" 
Spherical 0.13 0.07 11.48 0.43 0.005 0.15 0.99 0.21 0.21 
Circular 0.12 0.07 13.26 0.41 0.005 0.15 0.98 0.21 0.21 
Exponential 0.11 0.09 6.05 0.42 0.003 0.14 0.96 0.22 0.22 

TABLE 5.21: Comparison of different variogram models fitted to MMR band lover 
the grass surface. The variogram model was fitted to the sample variogram and cross­
validation prediction conducted using OK. 
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choose between the double- spherical and double-circular models. The double- spherical 

model was chosen. 

When t he MBG- ML approach was adopted it was necessary to take account of the trend 

when estimating the variogram. This is because the MBG- ML approach fit s the model 

to all the data, as one does not restrict the maximum lag. Note t hat, if the anisotropy 

parameters are estimated , this will alter the nature of the trend. Table 5.25 shows the 

results for the most simple case (no trend and no anisotropy parameters) . Tables 5.26 

Variogram Cross- validation 
Model T~ T; ¢ SS ME MSE MSDR Slope R'2 
Circular 0.13 0.05 9.86 0.51 -0.01 0.14 0.97 0.21 0.21 
Spherical 0.13 0.06 10.79 0.51 -0.05 0.14 0.97 0.21 0.21 
Exponential 0.10 0.08 3.61 0.55 -0.01 0.14 0.96 0.23 0.24 

TABLE 5.22: Comparison of different variogram models fitted to MMR band lover the 
grass surface. The variogram model is fitted to the sample variogram after first fitting a 
first- order t rend on location. Cross- validation prediction was conducted using KT. 
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Variogram Cross-validation 
Model T"L _"L 

¢1 T"L ¢2 SS ME MSE MSDR n T81 82 

Double Circular 0.05 0.09 1.99 0.06 12.53 0.22 0.005 0.13 0.94 
Double Spherical 0.03 0.1 2.03 0.07 13.96 0.22 -0.007 0.11 0.91 

TABLE 5.23: Comparison of different nested variogram models fitted to M\1R band 1 
over the grass surface. The variogram model was fitted to the sample variogram and 
cross-validation prediction conducted using OK. 

Slope 
0.30 
0.30 

Variogram Cross-validation 
Model T"L 

n T; (PI T;2 ¢2 SS ME MSE MSDR 
Double Circular 0.05 0.09 2.00 0.05 10.42 0.30 -0.01 0.12 0.92 
Double Spherical 0.03 0.1 2.07 0.05 11.67 0.33 -0.01 0.12 0.91 

TABLE 5.24: Comparison of different nested variogram models fitted to l\1\1R band 1 
over the grass surface. The variogram model is fitted to the sample variogram after first 
fitting a first-order trend on location. Cross-validation prediction was conducted using 
KT. 

Slope 
0.30 
0.30 

and 5.27 show the cases when the trend or when the anisotropy parameters were estimated, 

respectively. Both of these models had a lower AlC and more accurate cross-validation 

accuracy than the simple case. The models that included the anisotropy parameters had 

a slightly higher AlC than those that only included the trend (suggesting a less accurate 

fit). However, the cross-validation diagnostics suggested that the models including the 

anisotropy parameters were more accurate. When the trend and the anisotropy parame­

ters were both estimated (table 5.28), the AlC decreased further. This suggested that this 

model fitted the data most accurately. However, the cross-validation diagnostics suggest 

that this model was no more accurate than the model that only included the anisotropy 

parameters. 

The above discussion emphasised that the choice of models under the MBG-ML approach 

was not clear cut. The most complicated model (i.e., the circular covariance structure 

incorporating the trend and anisotropy parameters) resulted in the lowest AlC and highest 

values for the slope and R2. This model was adopted. 

Variogram Cross-validation 
Model T"L 

n 
T"L 

8 ¢ AlC ME MSE MSDR Slope R"L 

Spherical 0.11 0.12 16 249.7 -0.01 0.14 0.99 0.23 0.23 
Circular 0.12 0.09 10.66 253.6 -0.01 0.14 0.98 0.22 0.21 
Exponential 0 0.23 1.83 248.6 -0.01 0.12 0.96 0.31 0.34 

TABLE 5.25: Comparison of different variogram models fitted to MMR band lover the 
grass surface. The model was fitted using M1. Cross-validation prediction was conducted 
using OK. 

R"L 

0.33 
0.34 

R"L 

0.32 
0.33 
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Variogram Cross~validation 

Model TL 
n 

TL 
s ¢ AlC ME MSE MSDR Slope R"L 

Spherical 0 0.17 2.3 236.6 -0.03 0.12 0.96 0.30 0.32 
Circular 0.04 0.14 2.5 238.1 -0.03 0.12 0.97 0.29 0.31 
Exponential 0 0.18 1.23 234.7 -0.02 0.12 0.94 0.30 0.35 

TABLE 5.26: Comparison of different variogram models fitted to :\1MR band lover the 
grass surface. The model was fitted using ML, including a first order trend on location. 
Cross-validation prediction was conducted using KT. 

Variogram Cross-validation 
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Model T"L 
n T; ¢ 'l/JA 'l/JR AlC ME MSE MSDR Slope 

Spherical 0.07 0.12 2.88 0.04 4.86 240.5 -0.01 0.11 1.09 0.35 
Circular 0.06 0.19 5.68 0.09 2.48 238.2 -0.01 0.11 1.06 0.37 
Exponential 0.06 0.15 2.43 3.23 3.09 241.9 -0.12 0.12 1.12 0.33 

TABLE 5.27: Comparison of different variogram models fitted to :\1:\1R band lover 
the grass surface. The model was fitted using ML, including the anisotropy parameters. 
Cross-validation prediction was conducted using KT. 

5.4.2.4 Summary of the geostatistical analysis 

The geostatistical analysis clearly illustrated spatial dependence in the reflectance fields 

for the three surfaces. However, the cross validation results were quite disappointing, 

particularly for the low-reflectance concrete surface (DC). 

Conventional geostatistical and MBG-ML approaches were adopted. The differing ap­

proaches have developed from different schools of thought. "Conventional" geostatistics 

was developed, primarily, by quantitative geologists and soils scientists. Those scientists 

and engineers needed to solve practical problems and needed workable solutions and have 

a well documented history of success. The MBG approach has been developed mainly 

by statisticians who have emphasised theoretical considerations. However, it should be 

noted this development has been considerably reinforced by practical considerations. 

Given the different implementations, it is reassuring to note that the two approaches give 

comparable results, as illustrated by the accuracy assessment. This is the case, even if the 

estimated parameters of the variogram differ. The conventional approach requires pre-

Variogram Cross-validation 
Model T"L 

n 
TL 

s rP 1/JA 'l/JR AlC ME MSE MSDR Slope 

R"L 

0.36 
0.39 
0.35 

R"L 

Spherical 0.07 0.09 2.51 3.2 5.02 224.2 -0.02 0.11 1.06 0.35 0.37 
Circular 0.07 0.09 2.18 3.2 5.12 223.4 -0.02 0.11 1.06 0.36 
Exponential 0.06 0.09 0.82 0.05 5.46 230.6 -0.02 0.12 1.06 0.33 

TABLE 5.28: Comparison of different variogram models fitted to MMR band lover the 
grass surface. The model was fitted using ML, including a first order trend on location 
and the anisotropy parameters. Cross-validation prediction was conducted using KT. 

0.37 
0.34 
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processing to calculated the sample variogram as well as expert judgement when deciding 

what model to fit. The MBG-ML approach is attractive in this respect since there is less 

pre-processing and the method favours automation. Exploratory data analysis is valuable 

to the user to assess the problem. However, the subjective judgement that would have 

taken place in the pre-processing and variography is explicitly accounted for in the model 

formulation. Choices between models can be made on the basis of model accuracy and 

the AlC. 

\Vhen adopting the conventional approach the following models were used: 

• Asphalt: Circular model with no trend. 16 m neighbourhood. 

• Concrete (DC): Exponential model, no trend. Local neighbourhood defined by slab. 

• Concrete (BC): Spherical modeL no trend. Local neighbourhood defined by slab. 

• Grass: Double spherical model, no trend. 16 m neighbourhood. 

When adopting the MBG-ML approach the following models were used: 

• Asphalt: Circular model with a first order trend on location. Global neighbourhood. 

• Concrete (DC): Exponential model, no trend. Local neighbourhood defined by slab. 

• Concrete (BC): Spherical model, no trend. Local neighbourhood defined by slab. 

• Grass: Circular model, incorporating anisotropy and trend. Global neighbourhood. 

5.4.2.5 Implementing the regression model 

The variogram models were selected for each surface, as discussed in the previous section. 

The locations of pixels lying within the targets were identified and block kriging was used 

to predict the value of reflectance for spatially coincident blocks, defined on the same 

support and at the same locations as the pixels. Prediction was conducted first using 

block-kriging and then using block-conditional-simulation. The results presented here 

are for the 2 m pixels. Kriging and conditional simulation were conducted using the 

variogram parameters calculated using "conventional" geostatistics. Comparable results 

were obtained when the MBG-ML estimated variogram parameters were used hence the 

results are not presented here. 

For each target, the pixels that overlapped, or bordered on the edge of the target were 

omitted (to limit edge effects). The remaining remotely sensed pixel values and predicted 

(block-kriged) reflectance values were combined and used to estimate the parameters of 

the regression modeL This resulted in 368 data pairs being available for the regression 

modeL 



Chapter .5 Analysis I: data pairing 

Parameter Estimate Std. Error p value 
;30 -2.3882 0.0711 < 0.01 
;31 0.3005 0.0019 < 0.01 
(j2 0.2592 
R'2 0.98 

TABLE 5.29: Table showing the results of the parameter estimation for the ELM regres­
sion model after the reflectance measurements have been aggregated using block-kriging. 
The estimates are for MMR band 1 regressed on AT11 band 2. 
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The resulting parameter estimates for the kriged blocks are shown in table 5.29 and the 

resulting regression is illustrated in figure 5.19(a). It is clear from figure 5.19(a) that the 

between-target variance was much greater than the within-target variance. This effect 

was also observed for the point-pixel approach. This is for two reasons. First, the kriging 

cross-validation outlined in the previous sections showed that, for all targets the accuracy 

of prediction was low. Second, kriging smoothes. 

By comparison to the typical approach it was observed that the estimate of ,Bo was 0.4% 

(reflectance) lower and the estimate of;31 was slightly lower (0.3005 vs 0.3118). However, 

the results imply substantially more confidence in this regression since p < 0.01 for both 

parameter estimates, which was not the case under the typical approach. Of particular 

interest, from the perspective of uncertainty analysis, was that the estimate of (j2 is two 

orders of magnitude larger (0.26 vs 0.0017). This reflected the fact that the data are 

defined on different supports between the two approaches. Under the typical approach 

the field and remotely sensed data were averaged for each target (approximately 32 m 

x 32 m). For the block-pixel approach the support of the reflectance and radiance data 

reflected the size of the pixels in the image that required atmospheric correction. 

By comparison to the point-pixel approach, it was observed that the estimates of;3o (-2.39 

vs -2.42) and ;31 (0.3008 vs 0.3005) were similar. However, the estimate of (j2 was smaller 

(0.26 vs 0.78). This reflects, in part, the fact the reflectance data were defined on different 

supports between the two approaches. Part of this reduction was also attributed to the 

smoothing effect of kriging, which is discussed below. Under the point-pixel approach, 

the data were defined on pseudo-point supports, although the radiance data were defined 

on pixel-sized supports. By aggregating from the point to block support, the variance 

in the reflectance data (the Yi) was reduced. This had implications for the calculation of 

confidence and prediction intervals, which tend to be narrower than for the point-pixel 

approach. 

Recall from section 2.2.2.6 that kriging is the Best Linear Unbiased Predictor (BLUP). 

Hence, kriging smoothes with the result that variation is reduced and a kriged surface is 

not a possible reality. This has important implications for uncertainty analysis. In order to 

generate possible realities, block conditional simulation (sequential Gaussian simulation 

(SGS)) was used to produce 1000 simulations for each target. Each of these possible 

realities was regressed against the spatially coincident radiance data. The variation in the 
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(a) Regression for the kriged blocks. (b) Regression for one realisation (Sim516). 

FIGURE 5.19: Plots showing regressions of (a) the kriged blocks against the remotely 
sensed pixels and (b) conditionally simulated blocks against the remotely sensed pixels 
for MMR band 1 and ATM band 2. 

Parameter Mean Median Std. Dev. Skewness Kurtosis 

(30 -2.383 -2.381 0.0841 0.10 -0.14 

(31 0.3005 0.3005 0.0028 -0.14 -0.11 
() 0.6167 0.6208 0.0505 0.79 l.02 

TABLE 5.30: Table showing the summary statistics for the estimated parameter values 
obtained from the simulated surfaces. The estimates are for MMR band 1 regressed on 
ATM band 2. 
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estimates of (30, /31 and (}2 are illustrated in table 5.30 and figure 5.20. The estimates of /30 

and .Bl for the conditionally simulated surfaces varied about a mean which corresponded 

to the the estimate obtained from the kriged surfaces. However, the estimates of (}2 were 

all larger than the estimate gained for the kriged surface. This reflected the smoothing 

in the kriged surface and the result was that the confidence and prediction intervals were 

increased. This is clearly illustrated by comparing figures 5.19(a) and 5.19(b) 

The implications of this for prediction are illustrated at two x-values, x = 40 and x = 50. 

This is shown in tables 5.31 and 5.32. This clearly demonstrates that using the kriged 

surface for prediction led to a narrowing of the prediction interval by 1 % reflectance 

at x = 40, by comparison to the largest estimated value of (}2 (at Sim516) from the 

conditionally simulated surfaces. This example illustrated that using the block kriged 

surface underestimates (}2 leading to an underestimation of the confidence and prediction 

intervals. Hence, if geostatistics are used to conduct the aggregation it is necessary to 

analyse the results from the conditional simulation in order to ensure realistic assessment 

of the uncertainty in estimation and prediction. 

The above analysis demonstrated the problem with using kriged surfaces in regression. 
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FIGURE 5.20: Histograms showing the distribution of the parameter estimates for the 
1000 realisations of the simulated surfaces. The red line shows the estimated parameter 
value for the kriged surfaces (note that this lies outside t he range for 0- 2 ). 

Simulation 0.05% 2.5% mean 97.5% 99.5% 
Kriged (o-~ = 0.26) 8.31 8.63 9.63 10.63 10.95 
SimI (0- 2 = 0.37) 8.04 8.42 9.63 10.83 11.21 
Sim516 (0- 2 = 0.60) 7. 58 8.06 9.59 11.12 11.60 

TABLE 5.31: Table showing the predicted value of reflectance together with the 95% and 
99% prediction intervals for a radiance value of x = 40 X 102 W m- 2 sr- 1. The reflectance 
data are provided by the kriged blocks (first row) and two realisations of conditionally 
simulated blocks (second and third rows). 
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Kriging produced a smoothed surface. Hence t he surface had a lower overall variance 

t han a realisation of a conditionally simulated surface. If the kriged surface is then used in 

regression this may lead to biased estimates in /30 and /31, alt hough in the case of the ELM 

this effect is mitigated since the between- GT variance is much larger than the within- GT 

variance. However, ut ilising the smoothed GTs does lead to bias (underestimation) of 

the residual variance, (]'2. Hence, the objective was to address this through conditional 

simulation, since conditionally simulated surfaces exhibit variance properties that better 

approximate reality. Nevertheless, (]'2 was generally lower than it was for the simple 

averaging approach (0- 2 = 0.4981). 

Simulation 0.05% 2.5% mean 97.5% 99.5% 
Kriged (o-~ = 0.26) 11.31 11.63 12.63 13.64 13.96 
SimI (0- 2 = 0.37) 12.61 11.41 12.61 13.82 14.20 
Sim516 (0- 2 = 0.60) 10.53 11.01 12.54 14.07 14.55 

TABLE 5.32: Table showing the predicted value of reflectance together with the 95% and 
99% prediction intervals for a radiance value of x = 50 X 102 W m- 2 sr- 1

. The reflectance 
data are provided by the kriged blocks (first row) and two realisations of conditionally 
simulated blocks (second and third rows). 
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5.4.3 The block-pixel approach: summary and conclusions 

The analysis conducted in this section sought to aggregate the field based measurements 

of reflectance to pixel-sized supports. The objective of this was to provide the two vari­

ables on equivalent spatial supports for input into the regression model. As discussed in 

section 2.2.1, this is more rigorous theoretically than combining data sets that are defined 

on different (and even unknown) spatial supports. 

At the outset it was considered that geostatistics offered the optimal and most elegant 

solution to aggregation from point to block supports. This is because geostatistics makes 

explicit use of a spatial model and is well suited to use with a spatially structured sam­

ple (Brus & de Gruijter 1997, Bierkens et al. 2000). In contrast design-based approaches 

are based on a random sample and tend to require a larger sample size (i.e., less efficient), 

since understanding of the spatial structure is not incorporated into the sampling strategy. 

However, upon implementation it was found that the results of the geostatistical analysis 

were disappointing. Despite the clear evidence of spatial structure demonstrated in this 

and previous studies (Salvatori et al. 2000), the accuracy of the kriged predictions was 

low. Block kriging was not fully presented for the other MMR wavebands, although 

more accurate results were obtained for the grass and concrete targets in MMR band 4. 

Furthermore, preliminary results on a transect of measurements suggested that accuracy 

can be increased if the minimum sampling interval is reduced from 1 m to 0.5 m. However, 

increasing the density of the sampling grid to 0.5 m intervals increases the sample size by 

a factor of four, thus increasing the length of time required to sample a target. 

There are further theoretical and practical problems with using the geostatistical ap­

proach. Since kriging smoothes the kriged surfaces are not well suited for subsequent 

use in the regression model. It was also noted in section 2.2.2.6 that conditionally sinl.­

ulated surfaces are not ideal either since the simulation "adds back" variation that is 

orthogonal to the primary variable. Hence, it has been recommended that conditionally 

simulated results should not be used in regression (Curran & Atkinson 1998, Atkinson 

& Kelly 1997, Atkinson 1999b). Atkinson & Kelly (1997) and Atkinson & Tate (2000) 

suggest using an adjustment factor, but their results are not conclusive. In addition to 

these issues it is not clear how the multiple outcomes of the regression (associated with 

multiple realisations of conditionally simulated) should be interpreted. 

Further to these theoretical issues, there is a practical problem with implementation of 

a geostatistical approach to aggregation. Implementation requires some training in, and 

understanding of, geostatistics. Furthermore, the implementation can be time-consuming. 

It is likely, therefore, that many users of remotely sensed data will not wish to devote time 

and effort to this unless the motivation is compelling (Atkinson 2005). 

Despite the above mentioned problems, it should be recognised that geostatistics does 

provide a theoretically well recognised approach to aggregation from point to block sup­

ports. Hence, it does address the problem that the field and remotely sensed data were 



Chapter 5 Analysis I: data pairing 188 

defined on different spatial supports, albeit with the above caveats. Furthermore, it will 

be demonstrated in chapter 6 that this approach is not sensitive to reasonable positional 

uncertainty in the location of the field measurements. 

In contrast to the geostatistical approach the simple averaging approach was straight for­

ward to implement. It yielded point estimates for Po and PI that were consistent with 

those obtained for block-kriging and the point-pixel approach. However, the estimate of 

0"2 is more appropriate since it lies between that obtained for kriging (too smooth) and 

that obtained for the point-pixel approach (too rough). The process of block kriging in­

corporates observations from outside the block (see figure 2.4) that are weighted by the 

kriging weights. This effectively increases the support of the block beyond its notional 

boundaries. This effect does not exist for simple averaging. Hence it is expected that 

kriged blocks will be smoother than simple-averaged blocks. As with the geostatistical 

approach this approach could be improved by obtaining a denser sample. However, ob­

taining a random sample would increase the complexity and time taken to sample each 

CT. Nevertheless, if the user is prepared to accept the drawbacks of applying the simple 

averaging approach then this approach bears considerable merit. 

5.5 Summary and advice for the practitioner 

This chapter began with a detailed analysis of the typical approach to implementation 

of the ELM. It was demonstrated that implementing the typical approach is problematic 

since averaging over blocks reduces the number of degrees of freedom in the regression to 

a minimum. Furthermore, averaging over CTs leads to a reduction in variance, leading 

to an unexpectedly low and unstable estimate of 0"2. These factors combine to give wide 

confidence intervals on the parameter estimates of Po and (31 and on the regression line as 

a whole. In some cases, it also leads to the conclusion that the parameter estimates are 

not statistically different from zero. This latter conclusion is incorrect, since it is known 

from theory that ,Bo < 0 and PI > O. However, this result is correctly indicative of high 

uncertainty in the location of the regression line. 

A further problem with the typical approach became clear when the sample size was re­

duced. This led to substantial variability in the parameter estimates. This is exacerbated 

by the fact that the field-based reflectance measurements suggest that there are two "sub­

targets" within the concrete CT. It might be argued that this is a limitation of the CT 

rather than the typical approach and such a target would, ideally, not be used. However, 

this would leave the user without a bright target in visible wavebands. It should be recog­

nised that the UK is not well endowed with "ideal" CTs. Hence a legitimate question is 

whether the ELM can be adapted to work with the type of targets available. 

The modified-typical approach was adopted as a solution to the above issue. This split 

the concrete CT into two sub-targets. It should be recognised that this approach is only 

possible because the location of the field measurements were recorded. 
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Since the location of the field measurements was recorded, it was argued that better use 

could be made of the field- based measurements of reflectance. Two categories of approach 

were proposed: point-pixel and block-pixel. 

For the point-pixel approach, the field-measurements ofreflectance were combined directly 

with the pixel-based measurements ofradiance. This gave substantially greater confidence 

in the ELM regression as demonstrated by the narrow confidence intervals on the param­

eters and the regression line. However, the prediction intervals were wide, as expected 

given the variance of the residuals. At least 50 (and ideally 100) measurements should be 

taken per-target to ensure accurate estimation of a 2 and the associated confidence and 

prediction intervals. 

The point-pixel approach makes better use of the data than the typical approach. It 

does not "lose the knowledge" contained in the field-data or lead to a dramatic reduction 

in the degrees of freedom. dramatic reduction in the degrees of freedom. It also allows 

greater freedom in the choice of GTs since the requirements apply at the pixel- rather 

than GT-scale. However, the point-pixel approach does not attempt to match the support 

of the field and remotely sensed data. Hence the estimated value of a 2 will be too large. 

To address the support issue two methods were investigated for aggregating from point to 

block supports. These were the simple averaging approach of averaging over all measure­

ments in the pixel and the geostatistical approach of block kriging. It was expected that 

the block kriging should be the most suitable approach. However, it provided disappoint­

ing results since the kriged predictions were less accurate than hoped. Furthermore, there 

are theoretical and practical problems with using kriged or conditionally simulated data 

in a regression model. Finally, the geostatistical approach requires substantial expertise 

and may receive low take-up for this reason. Hence the sin1.ple averaging approach is likely 

to be preferable, if the user accepts the drawback that true design-based models should, 

theoretically, be implemented using randomly located data. 

In terms of the estimation of Po and PI, the point estimates were similar for the typical 

and modified-typical approaches. The estimates were also similar for the point-pixel and 

block-pixel approaches. However, for the latter approaches the estimates of /30 were higher 

and estimates of PI lower than for the typical approach. As expected, the estimates of 

a 2 were largest for the point-pixel approach and smallest for the typical approach - with 

the simple averaging block-pixel approach giving the most reliable estimates. 

It is useful to give the confidence and prediction intervals further consideration. Con­

fidence intervals quantify uncertainty in parameter estimates (or the position of the re­

gression line), whereas prediction intervals quantify uncertainty in prediction of a "new" 

value of y. If the data show clear evidence for a trend, then it would be expected that 

the confidence intervals would be narrow. However, the prediction intervals are primarily 

determined by the residual variance. Hence, if the evidence for a trend is high but the 

residuals are also large then the confidence intervals may be narrow but the prediction 

intervals wide. This is shown in the point-pixel and block-pixel approaches. It is argued 
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that the ELM is a form of calibration hence, to explore variability in a predicted image of 

reflectance the regression line should be varied (within the confidence intervals). It does 

not make sense to draw individual pixels from within the prediction intervals since it is to 

be expected that the input image (radiance) should look the same as the predicted image 

of reflectance. However, this does not apply to all applications of empirical regression 

models. For example, if the objective was to predict biomass within a field (together 

with uncertainty estimates) then it would be appropriate to draw realisations from the 

predictive distribution. Indeed, in such a situation it would not be appropriate to draw 

each pixel within the field independently and, instead, conditional simulation should be 

used to model the field. This issue is returned to in chapter 7. 

Given the wide availability of modern surveying and GPS equipment, recording the loca­

tion of each field measurement is realistic for remote sensing research. The cost of such 

equipment is low by comparison to the overall cost of a remote sensing campaign, although 

it is recognised that additional trained personnel may be required if this is to be done 

simultaneously with measurement of reflectance. Chapter 6 addresses the possibility of 

uncertainty in location of the field measurements. 

Finally it will be noted that, for the point-pixel and block-pixel approaches the regression 

residuals were shown to be heteroskedastic. Furthermore, since the targets are known to 

be characterised by spatial structure it is expected that the residuals from the regression 

may be auto-correlated. These two issues are addressed in chapter 7. 



Chapter 6 

Analysis II: positional uncertainty 

In chapter 5 it was recommended that the accuracy and confidence in the ELM could 

be increased through utilisation of the knowledge of location of the field measurements. 

In the simplest case, this allowed splitting the sUb-optimal concrete target into two more 

appropriate sub-targets. Further developments allowed iIl1.plementation of the point-pixel 

(where field measurements are paired with their co-located pixel) and block-pixel (where 

the field-measurements are aggregated to pixel-sized blocks) approaches. Both these ap­

proaches allowed the development of more accurate regression models and allowed greater 

flexibility in the choice of GTs. The latter approach explicitly aims to estimate the ELM 

parameters on pixel-sized supports, which is the support required for prediction. 

With the exception of the typical approach all subsequent analysis was contingent on 

knowing the location of the field measurements. Throughout the field work exceptional 

care was taken to record and subsequently survey the location of each field measurement. 

Hence the location of the field measurements was considered to be known with a high 

degree of confidence. 

Modern surveying and differential GPS (DGPS) equipment allow the location of points 

on the Earth's surface to be recorded with a high degree of accuracy « 0.01 m) (Letham 

2003). However, it is recognised that it may not always be feasible for users to record 

location with such a high degree of accuracy. They may not have the necessary equipment 

or may be restricted by logistical or environmental considerations. However, even with 

an inexpensive hand-held GPS receiver (such as the Garmin eTrex1 ) horizontal location 

is recorded with a typical accuracy of less than 15 m (95% RMSE). This accuracy can 

be increased substantially through the use of DGPS, which is available even for these 

low cost instruments. For example, Garmin sell DGPS beacons for their receivers which 

enable the accuracy to be increased to 1-5 m (95% RMSE) in the horizontal domain. 

Furthermore the recently developed Satellite Based Augmentation System (SBAS) yields 

an accuracy of 3 m (95% RMSE) in the horizontal domain. SBAS is a recently developed 

system that relies on a network of ground-receiving stations. This uses a network of 

1 See: www.garmin.com/etrex 
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ground stations and designated satellites to gather and broadcast the required differential 

correction information. This can be interpreted by most recent hand held receivers, such 

as the Garmin eTrex. SBAS is known as the 'Vide Area Augmentation System (WAAS) 

in North America. The equivalent system in Europe is the European Geostationary 

Navigation Overlay Service (EGNOS) (Letham 2003). 

The objective of the research undertaken for this chapter was to investigate the impact of 

uncertainty in the location of the field measurements on the output of the ELM. This anal­

ysis has broader significance in the application of empirical regression models in remote 

sensing. Section 6.3 is also relevant to the understanding of the impact of positional un­

certainty on geostatistical modelling - a subject that has only been given limited attention 

in the literature. A general discussion of positional uncertainty is given in section 2.3. 

For this section, analysis and discussion focuses on deriving broad-band reflectance for 

band 1 of the MMR (420-530 nm) using band 2 from the ATM (450-520 nm). As 

discussed in section 4.4 the location of each measurement was surveyed and recorded 

relative to UK Ordnance Survey (OS) trigonometric points. The ATM data were also 

geometrically corrected to the OS National Grid (RMSE < 1 pixel). This allowed each 

field measurement to be located within the image. Careful attention was given to ensuring 

that the locations of the field measurements were recorded rigorously and accurately, both 

relative to each other and to the OS National Grid. In an operational situation, it might 

not be possible to record location with such rigour and precision and this research seeks 

to examine the implication of that. However, the analysis assumes that the geometric 

correction of the imagery is perfect. 

In examining the effect of positional uncertainty it was hypothesised that: 

1. Introducing positional uncertainty will affect the estimate of /30 and /31, leading to 

a "flattening" of the regression line. Hence, the parameter estimates will be biased 

relative to the estimates made in the absence of positional uncertainty. 

2. Introducing positional uncertainty will lead to a reduction in the accuracy of the pa­

rameter estimates and new variable prediction. This will be manifested by a positive 

bias in the estimate of (]"2 following the introduction of positional uncertainty. 

3. Introducing positional uncertainty will lead to uncertainty in the parameter esti­

mates, as manifested by variability in the parameter estimates between different 

realisations of positional uncertainty. 

4. Decreasing the sample size will increase the effects of positional uncertainty - i. e., 

the items listed in the first three hypotheses. 

5. Increasing the pixel size will reduce the effect of positional uncertainty - z. e., the 

items listed in the first three hypotheses. 
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6.1 Simulating positional uncertainty 

In order to simulate positional uncertainty, a random error term, c, was added to the 

Easting and Northing of each field location, as follows: 

Ei Easting + cXi 

Northing + cYi (6.1) 

where i refers to each individual field location. It was judged reasonable to model c as 

being drawn from a Normal distribution, c '" N(O, .). Taking c '" N(O, 0.25) reflects the 

case where the operator has a high degree of confidence in positional accuracy of the field 

measurements. If the user had not been able to give such attention to recording location, 

c '" N(O, 4) is likely to be more realistic. This latter case is illustrated in figure 6.1. \Vith 

these assumptions, different realisations of the sampling scheme for each surface can be 

simulated and used to explore the effect of positional uncertainty. These are termed 

the "perturbed" data sets and an example is given in figure 6.1. The original attribute 

was then assigned to the perturbed location. The effect of positional uncertainty was 

then analysed by reference to the resulting modelled variograms and the effect on the 

implementation of the ELl\/l for both the point-pixel and block-pixel approaches. 

Adopting this approach tackles the situation where a measurement is performed at the 

intended location but attributed to an incorrect location. This is the FP (resource) 

model (Gabrosek & Cressie 2002, Cressie & Kornak 2003) and discussed in section 2.3. 

It might be argued that the CP (design) model is more appropriate for this investigation. 

The basis for that argument would be that the locations were specified in advance and 

then realised imperfectly. Under the CP approach the attribute for the perturbed location 

would be assigned to the original location. However, the problem with this approach is 

that the attribute (reflectance) is unknown at the perturbed locations. Although this 

value could be simulated, the resulting attribute value would be uncertain and subsequent 

analysis would be several steps removed from the original data. It is recognised that the 

distinction between the CP and FP models is important when the objective is to correct 

for the effect of positional uncertainty (Cressie & Kornak 2003). However, the objective 

of the analysis undertaken in this chapter is to assess the impact of positional uncertainty, 

rather than to correct for it. Given this aim, it is argued that adopting the FP model is 

reasonable and is preferred to working within the CP framework and simulated attribute 

values. 

6.2 Point-pixel 

Each field measurement was linked with its spatially coincident pixel value, yielding a set 

of data pairs. These were used for parameter estimation in the ELM regression model. The 

full data set (nFull) comprised 696 measurements ('" 230 per site). This was sub-sampled 
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FIGURE 6.1: Plots showing the unperturbed and a realisation of the perturbed data set 
for c rv N(O, 4). 
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to examine the impact of sample size on parameter estimation in the presence of positional 

uncertainty. Sub-samples of 100 (n100), 50 (n50), 30 (n30), 20 (n20), 10 (n10), 5 (n5), 3 

(n3) and 1 (n1) measurements per site were created. Note that n1 C n3 C ... C n100. 

To examine the impact of pixel size, the image was degraded from 2 m pixels and the 

experiment repeated for 4 m, 6 m and 8 m pixel sizes. 

In summary, the following approach was adopted: 

1. For the full data set generate 1000 realisations of the field data, where each realisa­

tion differs only in that the location has been perturbed (see section 6.1). 

2. Generate the sub-samples (see above). 

3. Apply the same sub-samples to each realisation. Hence, for each realisation, the 

location will differ but the attribute will remain unchanged. This is done to isolate 

positional uncertainty from sampling variability (see section 6.2.2). 

4. For each realisation, link the field measurement with its spatially coincident pixel 

measurement. 

5. Apply the regression for each realisation and each sub-sample. 

6. Repeat from step 1 for each pixel size. 

6.2.1 Full data set 

The first stage was to examine the impact of positional uncertainty on parameter estima­

tion using the full data set and 2 m pixels. The result of estimating the parameters of 

the regression model for 1000 samples in the perturbed data set are shown in figure 6.2. 

This shows clearly that /30 and 0"2 are overestimated relative to the estimate made in the 

absence of positional uncertainty. However, /31 is underestimated. The increase in the 
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FIGURE 6.2: Plots showing how estimated parameters vary with the introduction of 
positional uncertainty, E rv N(O, 4). The vertical line indicates the estimated parameter 
value in the absence of positional uncertainty. 

0- 2 Prediction interval (%) 
Unperturbed 0.77 3.4 
2.5 percentile 0.99 3.9 
Mean 1.19 4.3 
Median 1.19 4.3 
97.5 percentile 1.40 4.6 

TABLE 6.1: Table showing how the introduction of positional uncertainty affects estima­
tion of 0- 2 and the associated prediction intervals. Note that the width of the prediction 
intervals is approximately uniform ac cross the full range of the x-axis. 
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value of 0-2 is indicative of the increase in uncertainty, both in parameter estimation and 

for prediction. It should be noted that the magnitude of the variability in /30 and /31 is 

small. 

The results have an intuitive interpretation. It is reasonable to hypothesise that introduc­

ing positional uncertainty will decrease the correlation between the two variables. This 

will naturally lead to a "flattening" of the regression line. 

The increase in 0-2 is important to note because of its role in determining the confidence 

intervals and prediction intervals for predicting a new value. Summary results are shown in 

table 6.1 and in figure 6.3. For the unperturbed data set 6 2 = 0.77 leading to a prediction 

interval of 3.4% reflectance. However, for the perturbed data set the prediction intervals 

are widened by between 0.5% and 1.2% reflectance (95th percentile). Note that the 

sample of 0- 2 obtained from the perturbed data set is approximately normally distributed 

(skewness = 0.23; kurtosis 0.25) hence the median and mean value are approximately 

equal (two decimal places). Note also that strictly, the prediction intervals widen either 

side of the mean value on the x-axis. However, this is not observable to one decimal place 

hence a single value is quoted for the prediction interval for all values of x. 
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6.2.2 Reduced sample SIze 
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The next stage was to examine the impact of positional uncertainty for the sub-sampled 

data sets. This is illustrated in figure 6.4 for the 2 m pixels. It is clear that the variation 

in the parameter estimates, in the presence of positional uncertainty, increases as the 

sample size decreases. This is particularly apparent where less than 20 measurements are 

made per target. This figure of 20 measurements per target is suggested as an absolute 

minimum sample size in the absence of positional uncertainty (see section 5.3.2), although 

a sample size of 50 or more measurements per GT is recommended. Indeed, figure 6.4 

shows that for n50 or larger the estimates of all three parameters were substantially less 

variable than for smaller sample sizes. Hence 50 is recommended as the minimum sample 

size under conditions of positional uncertainty. However, the user may need to further 

revise this number as discussed in section 6.2.4. 

The data sets for the above analyses were generated from one realisation for each sub­

sample. This means that for each of the 1000 perturbations, the same n100 samples 

were used. The experiment was designed in this way to isolate the effect of positional 

uncertainty from sample variability. The effect of sample variability for samples smaller 

than nFull was discussed in section 5.3.1. It is unclear what the emergent effect of 

combining positional uncertainty and sample variability would be. It is postulated that 

for each sample size the position of the box-plot may be attributed to sample variability, 

although the shape of the box-plot is the result of uncertainty in the location of the field 

measurements. Hence, if sample variability and positional uncertainty were combined, the 

uncertainty in parameter estimation and prediction would be increased further. However, 

it may also be that positional uncertainty effectively smoothes the sample variability. The 

combined effects of positional uncertainty and sample size have not been studied for this 
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FIGURE 6.4: Plots showing how estimated parameters vary with t he introduction of 
positional uncertainty, E rv N(O , 4) , for different sample sizes (point-pixel approach). The 
red circle indicates the estimated parameter value in t he absen ce of posit ional uncertainty. 

thesis and remain an avenue for future research. The implication is t hat a sample size 

larger than 50 per target may be advisable. 

6.2.3 Pixel size 

The next stage was to examine the impact of increasing the pixel size whilst holding 

the sample sized fixed. The effect is illustrated in Figures 6.5 to 6.7 for ~o , ~1 and 0-2 

respectively. It will be noted that the estimate of (30 and /31, in the absence of positional 

uncertainty, changes slightly for different pixel sizes. This is a MAUP effect and was 

discussed in section 2.2.1. 

There are two clear effects on uncertainty of increasing the pixel size. The first is to reduce 

the bias in the parameter estimate that is induced by positional uncertainty. For (30 and 
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,31 this may lead to the bias occurring in the opposite direction to that observed for the 

2 m pixels. However, unless the sample size is very small (10 or fewer measurements per 

target), the magnitude of this bias is much smaller than it was for the 2 m pixels. The 

second effect is to reduce the magnitude of the variation, as measured by the variance and 

interquartile range, in the parameter estimates that is induced by positional uncertainty. 

These effects are most pronounced when moving from the 2 m to 4 m pixels. However, 

the effect is much less clear when considering the 4, 6 and 8 m pixels, where the bias and 

magnitude of variation are similar. 

It is obvious that the variation introduced by positional uncertainty arises because field 

measurements are paired with different pixels. The positional uncertainty that was intro­

duced was distributed N(O, 4). Hence, when the measurement location is perturbed, for 

the 2 m pixel, there is a high probability that it will be repositioned within an adjacent 

pixel. However, when a larger pixel size is considered, the probability that the field mea­

surement is repositioned within the same pixel increases. A tentative conclusion is that 

this is similar for the 4, 6, and 8 m pixels. Hence, if the user wishes to choose the smallest 

pixel size that is commensurate with the greatest reduction in variation attributed to 

positional uncertainty, the implication is that they should choose a pixel size on the same 

scale as the positional uncertainty. In this case, one would choose a pixel size of 4 m. 

This argument may also be phrased in reverse. If the user wants to maximise accuracy 

for a given pixel size, will need to adjust the accuracy of their surveying accordingly. 

The 4 m pixel is comparable in size to the positional uncertainty that was introduced (i. e., 

N(O, 4)). The rationale for this statement is that a variance of 4 equates to a standard 

deviation of 2. Since, from the normal distribution we know that approximately 68% of 

samples lie within 1 sd and 95% lie within 2 sd. Hence, if a point is located at the centre 

of a 4 m x 4 m pixel and its location is then perturbed, most perturbations would remain 

within the pixel. This would tail off for larger pixels. However, if the user requires aIm 

pixel size, then a positional uncertainty of N (0, 1) might be optimal. This assertion needs 

to be backed up by further experimentation and lies outside the scope of this thesis. This 

is highlighted as an area for future research. 

In the absence of positional uncertainty, increasing the pixel size does lead to a change 

in the estimated parameter values. Hence, as with sample variability, the position of the 

boxplot is affected by the change in pixel size, but the shape is affected by positional 

uncertainty. 

6.2.4 Summary and advice for the practitioner 

In summarising, it is useful to consider the hypotheses given in the opening section of this 

chapter. These are discussed below. 
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1. It was hypothesised that positional uncertainty would lead to a bias in the estimate 

of f30 (positive bias) and f31 (negative bias), relative to the situation where there 

was no positional uncertainty. This was found to be the case for the 2 m pixels, 

except for very small sample sizes (less than 20 measurements per target) , where the 

parameter estimates were highly unstable. When the larger pixels were examined, 

the bias was reduced considerably and, in some cases was reversed. However, this 

reversal was small in magnitude. 

2. It was hypothesised that positional uncertainty would lead to a positive bias in the 

estimate of (J'2 , relative to the situation where there was no positional uncertainty. 
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This was found to be the case for all sample sizes and pixel sizes. The implication 

of this is a reduction in the accuracy in parameter estimation and prediction. 

3. It was hypothesised that positional uncertainty would lead to uncertainty in the pa­

rameter estimates, as manifested by variability in the parameter estimates between 

different realisations of positional uncertainty. This was found to be the case for all 

sample sizes and pixel sizes. The implications are discussed below. 

4. It was hypothesised that decreasing the sample size would enhance the previous 

three effects of positional uncertainty. However, there is no clear pattern to the bias 

in the estimation of /30, /31 and (J"2 with decreasing sample size that can be attributed 
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to positional uncertainty. For sample sizes less than 20, the estimates were unstable . 

The variability in the parameter estimates for different realisations of the posit ional 

uncertainty (hypothesis 3) clearly increases with decreasing sample size. This is the 

case for (30, (31 and 0"2. The implication is discussed below. 

5. It was hypothesised that increasing the pixel size would reduce the effect of positional 

uncertainty. This was clearly the case when increasing the pixel size from 2 m to 4 

m. However, this was less apparent for the transition from the 4 m to 6 m and 8 ill 

pixels. 

These results are of consequence, because they lead to variability in the parameter esti-
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Pixel Size 
Parameter 2m 4 nl 6m Sm 
(30 bias ±0.25 20 5 5 5 

precision ±0.50 20 10 10 10 
(31 bias ±0.01O 30 5 20 10 

precision ±0.005 50 30 30 30 

TABLE 6.2: Table showing the minimum sample size (per target) required to meet the 
uncertainty criteria (point-pixel approach). 
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mates. The value of 0-2 is informative because it allows quantification of uncertainty in 

estimation and prediction. However, variability in ;30 and fh will concern the practitioner, 

since they affect the position of the regression line and, therefore, the prediction of re­

flectance. This is illustrated in figure 6.S. This shows the regression line for the full data 

set and 2 m pixels (;30 -2.4164, = 0.3007) together with the line for 81 ±0.0l. For 

a pixel value of 30 (grass) this gives a range from 6.31 to 6.91%, but for a pixel value of 

60 (urban surfaces), this gives a range from 15.01 to 16.23%. 

Moving on from this, it is possible to establish uncertainty criteria that can be used to 

establish the minimum sample size for a given pixel size, given the expected positional 

uncertainty. For (31 one might set a bias of::; 0.005 and a precision of mean(flr) ± 0.01. 

Hence, the mean and standard deviation (sd(-)) of the 1000 simulations is calculated. The 

mean(i-Jr) ± 2 x sd(i-h) was used to establish the precision. The bias was established by 

computing difference between the mean and (;1 as calculated in the absence of positional 

uncertainty. A similar procedure was used for Po, with the bias was set at 0.25 and 

the precision at ±0.5. This process is illustrated in table 6.2. From this table it can 

be established that, according to these uncertainty criteria, 50 measurements per target 

are required for the 2 m pixels and 30 measurements per target for the 4 m pixels. No 

advantage is obtained by going for a 6 m or S m pixel. Indeed, this may confuse the issue 

because the difference in support size between the pixel and field measurements is very 

large. 

The above discussion has focused on the estimation of /30 and (31. However, to quantify 

the accuracy of prediction it is necessary to consider the uncertainty in the estimate of 

()2. The effect of this was illustrated in section 6.2.1. For the 2 m pixels a sample size of 

n50 per target results in a bias of 0.4 and an imprecision2 of 0.9. However, increasing the 

sample size to nl00 reduces the imprecision to 0.6, whilst increasing it to nFull further 

reduces the imprecision to 0.4. For the 4 m pixels, n30 gives an imprecision of O.S, whilst 

increasing the sample size gives an imprecision of 0.7,0.5 and 0.3 for n50, nl00 and nFull 

respectively. Because of the importance of accurate estimation of ()2, a mininmm sample 

size of 50 or preferably 100 measurements per target is recommended. 

2Note that, in this case, imprecision refers to mean(&2) ± 2 x sd( &2) whereas, in statistics the precision 
is taken to be the inverse of the variance. 
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6.2.5 Conclusions 
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The analysis discussed in this section has covered the potential impact of uncertainty 

in the location of field measurements on the outcome of the ELM when implemented 

using the point-pixel approach. It has been demonstrated that introducing positional 

uncertainty introduces uncertainty into the parameter estimates in the form of both bias 

and imprecision. This is exacerbated by reducing the sample size, but can be ameliorated 

by increasing the pixel size. Overall, the impact on the estimates of /30 and (31 were small 

for large sample sizes (50 or larger) although they could be substantial for smaller sample 

sizes. However, the bias in the estimate of 0-
2 was substantial for all sample sizes and this 

leads to widening of the confidence and prediction intervals on the regression line. The 

only way to reduce this bias was to increase the pixel size. 

OveralL this analysis emphasises the importance of accurately recording the location of 

field measurements that are to be paired with remotely sensed data. If that is not feasible, 

then a large sample is required to produce accurate estimates of (30 and (31 and the user will 

have to accept the large values for 0-
2 . It is recommended that at least 50 and preferably 

100 measurements per target are taken. This coincides with the recommendation for 

the point-pixel approach in the absence of positional uncertainty. However, it should be 

recognised that the value of 0-2 is larger than it could be. Hence, this recommendation 

should not be taken as a reason not to implement an accurate surveying strategy. 

Finally, it should be noted that the degree of perturbation for the analysis presented in 

this section was large (N(0,4)). In reality it would be hoped that positioning could be 

carried out more accurately than in figure 6.1. 
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6.3 Block-pixel 

This section considers the implication of positional uncertainty when the ELM is imple­

mented using the block-pixel approach. In this section, the aggregation was perfornled 

using block kriging. In addition to evaluating the implication for the ELM, this section 

is interesting since "en route" it evaluates the impact of positional uncertainty in a geo­

statistical context. This has received only limited attention in the literature (Gabrosek & 

Cressie 2002). 

The analysis discussed here was presented at the Fourth International Conference on 

Geostatistics for Environmental Applications (geoENV IV). It was subsequently pub­

lished (Hamm et al. 2004) in an edited collection (Sanchez-Vila et al. 2004). It actually 

represents an earlier stage than much of the other analysis presented in this thesis. It uses 

a different airborne data set to that used elsewhere in the thesis and adopts a slightly dif­

ferent methodology. In particular, the Bayesian, rather than maximum likelihood (ML) 

approach to model-based geostatistics (MBG) was adopted. Hence, in one sense, this 

section stands apart from the rest of the thesis and is rather less refined. However, the 

analysis and results are highly relevant in the context of the rest of the thesis and it is 

presented as published. 

This analysis was conducted before the ATM data were made available. Hence, unlike 

other analysis presented in this thesis, it was undertaken using CASI data. Hence, MMR 

band 1 (approximately 420 nm - 530 nm) is paired with CASI band 1 (450 nm with a 

width of 20 nm). This pairing is not ideal since the match between the spectral band­

passes is less accurate than it is for the ATM data. However, it is sufficient for exploring 

the impact of positional uncertainty on the outcome of the ELM. 

The process of aggregation using block kriging was discussed for the individual targets 

in section 5.4.2. The analysis conducted in this section differed for the concrete target 

in that the concrete target was not split in two. Rather, it was treated as a single 

target and several outliers were omitted, yielding a histogram that approximated a normal 

distribution. The sample variogram of the single concrete surface is given in figure 6.9. 

The sample variograms for the asphalt and grass GTs are as presented in section 5.4.2. 

As in section 6.2, perturbed data sets were created using the approach outlined in sec­

tion 6.1. However, analysis was performed for two sets of perturbations, E rv N(0,0.25) 

and E rv N(0,4). Hence, two sets of 1000 perturbations were produced. However, un­

like the previous section the analysis was not conducted for a reduced data set. This is 

because a large data set is required for geostatistical analysis. 

The variogram modelling and block kriging presented in section 5.4.2 demonstrated the 

utility of both classical geostatistics and MBG. Although the two approaches might lead 

to the utilisation of different models, the cross-validation showed the accuracy of both 

approaches to be similar. In this section the MBG approach was adopted exclusively. 
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The MBG approach estimates the variogram parameters without having to first compute a 

sample variogram (Diggle et al. 1998). The analysis conducted required that the variogram 

be modelled for each of the 1000 perturbations. Hence an automated approach was 

required and this could be performed more straightforwardly using MBG. 

In this section, the Bayesian implementation of MBG was utilised rather than the ML 

implementation (see section 2.2.2.5). Given the absence of prior information, estimation 

and prediction were undertaken with non-informative priors for the variogram parame­

ters (Diggle & Ribeiro J1'. 2002, Diggle et al. 2003). An exponential model with a first 

order trend on location was adopted. The analysis presented in section 5.4.2 does not 

always return the exponential model as the most accurate model. However, it is not sub­

stantially sub-optimal in any of those cases and its smooth properties aided computation. 

The spherical model is actually comprised of two model one up to, and the other after, 

the range. The non-differentiability at h = ¢ can lead to computational problems with 

maximisation (Diggle et al. 2003). This was led to computational failure when automating 

the variogram modelling. 

The Bayesian MBG implementation was not pursued after this section for various rea­

sons. First, it was found to give comparable results to the ML approach. Second, it is 

both conceptually and computationally less straightforward to implement than MBG-ML. 

Third, the application does not exploit the full power of the Bayesian implementation and 

hence adopting a simpler approach was deemed sufficient. Examples of the full power of 

the Bayesian implementation come when prior information is available or the objective 

is to predict statistical properties of a surface (such as exceedence probabilities) (Diggle 

et al. 1998, Diggle et al. 2003). Furthermore, the Bayesian approach offers the flexibility 

to develop hierarchical models (Diggle et al. 2003, Wikle 2003), a topic that is given some 

consideration in chapter 8. 
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6.3.1 The effect of positional uncertainty on the variogram 
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The modelled variograms for the original (i.e. unperturbed) data set and for the perturbed 

(c: rv N(O, 4)) data set are shown in figure 6.10. From theory, it is expected that the sill 

of the variogram will not change in the presence of positional uncertainty. However, the 

range may increase and the variogram will increase at short lags (Atkinson 1996, Gabrosek 

& Cressie 2002) (see also section 2.3). This theoretical argument supports intuition, 

which would suggest less clear evidence for spatial structure in the presence of positional 

uncertainty. The expected effects are borne out for the asphalt and concrete surfaces, 

but not for the grass surface, where there is a decrease in the sill. Although unexpected, 

the latter result is not inconsistent with other experimental results (Atkinson 1996). The 

reason for this result is unclear, although it may be noted from section 5.4.2.3 that the 

grass surface showed evidence of anisotropy. This was not taken into account in the 

variogram modelling conducted for the analysis presented in this section. 

It is expected that the increase in the variogram at short lags will lead to decreased 

accuracy in point-kriged predictions. This will be exacerbated since the data points that 

are used for kriging will be incorrectly located. The effect on block-kriged predictions is 

likely to be less significant. However, this impact cannot be evaluated in an absolute sense, 

since there are no measurements of reflectance available for the blocks. In the context of 

this investigation, it is the eventual impact of the positional uncertainty on the output of 

the ELM that is important, not the absolute effect on the block-kriged surface. Finally, 

it is unclear what the impact of these results would be on the outcome of conditional 

simulation. 

6.3.2 The effect of positional uncertainty on the ELM regression 

The regression was performed using the co-located kriged blocks and pixels. The estimated 

parameters for the original (unperturbed data set) are given in table 6.3, together with 
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E=O E rv N(O, 0.25) E r--J N(O, 4) 
Orig P.1 P.2 P.3 P.1 P.2 P.3 

f30 -0.76 -0.76 -0.75 -0.74 -0.75 -0.68 -0.71 
f31 0.29 0.29 0.29 0.29 0.29 0.29 0.29 
(j 0.53 0.53 0.53 0.53 0.53 0.53 0.52 
R2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

TABLE 6.3: Estimated parameters for the ELM, implemented by pairing blocks and 
pixels. Orig. indicates the results for the unperturbed data sets. P.L P.2 and P.3 indicate 
different realisations of the perturbed surface for c '" N(O, 0.25) and c rv N(O, 4). 
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examples of estimated parameters for the perturbed data sets (for both E rv N(O, 0.25) 

and E ("V N(0,4)). The examples given are for illustration and are consistent with other 

results. 

The results presented in table 6.3 suggest that the introduction of positional uncertainty 

has a negligible effect on the estimate of f31 and (j. However, where E is large (E ("V N (0,4)), 

this may have a small effect on the estimate of f3o. For many remote sensing applications 

this change in f30 may be unimportant, since it introduces a small bias of less than 0.1 % 
(for 95% of cases) (Smith & Milton 1999). Overall the lack of sensitivity of the parameter 

estimates to substantial positional uncertainty is encouraging. 

It should be realised that the blocks are derived from a kriged surface. Using blocks that 

are derived from conditionally simulated surfaces are likely to lead to a larger and more 

realistic estimate of the variance in the regression model (see section 5.4.2). This remains 

as a potential avenue for further research. 

6.3.3 Summary and advice for the practitioner 

The lack of sensitivity of the parameter estimates to substantial positional uncertainty 

was unexpected. The implication of this is that the user can opt for a cheap and fast 

mechanism for recording location and that this will not substantially affect parameter 

estimation for the ELM. However, it must be recognised that the geostatistical approach 

to block prediction has already been shown to be problematic, as follows: 

1. The results of the geostatistical analysis were disappointing for all three surfaces. 

This was because of the low accuracy of prediction, as evidenced by the cross­

validation diagnostics, despite the clear evidence for spatial structure. The estimates 

of the ELM parameters were, hence, primarily determined by the between-target 

variability rather than the within-target variability. By decreasing the accuracy of 

the geostatistical implementation an inaccurate prediction has merely been made 

slightly less accurate. However, the parameter estimation is still governed by the 

between-target variability. If there was a more accurate mechanism for predicting 

the reflectance of blocks, the effect might be more substantial. 
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2. In section 5.4.2 substantial reservations were raised regarding the use of kriged, or 

indeed conditionally-simulated, blocks for the ELM and empirical regression models 

more generally. 

6.4 Summary and conclusions 

This chapter evaluated the impact of positional uncertainty on parameter estimation and 

prediction for the ELM. The FP model of positional uncertainty was adopted whereby 

the attribute is correct, but the location is recorded with error (Gabrosek & Cressie 2002) 

(see also section 2.3). The rationale for choosing the FP model over the CP model was 

discussed in section 6.l. However, whichever framework is considered appropriate it is 

argued that the emergent effect will be the same although an assessment of this could 

be the subject of future investigations using simulated data or densely sampled field data. 

For the point-pixel approach it leads to the possibility of a measurement being paired 

with the wrong pixel. For the geostatistical block-pixel approach it will be manifested as 

measurement error and lead to an increase in the variogram at short lags (Atkinson 1996) 

with implications for the accuracy of kriged predictions. The distinction between the 

CP and FP models becomes important when it is corrected using a specific model (e.g., 

Gabrosek & Cressie 2002) or when the interest lies in the location of specific items, such 

as the vertices of polygons (Brown & Heuvelink 2007). 

Overall, the analysis demonstrated that, for substantial positional uncertainty (c rv N(O, 4), 

the point-pixel approach is sensitive to positional uncertainty at all sample sizes. For sam­

ple sizes larger than 50 this is most clearly manifested by an increase in the estimate of 

(J2, with consequent impacts on the confidence intervals. In order to minimise the effects 

of bias and imprecision in the estimates of the regression parameters it was recommended 

that at least 50 and preferably 100 measurements should be taken per target. This is 

comparable to the number recommended in the absence of positional uncertainty. How­

ever, importantly, this does not incorporate any sample variability. Furthermore, the user 

will still have to tolerate an increase in uncertainty associated with the increase in (J2. 

For the geostatistical block-pixel approach the modelled variograms for asphalt and con­

crete supported the changes that are expected from theory and intuition. However, the 

changes in the variogram do not lead to sufficient changes in the kriged surfaces to be 

manifested in changes to the estimated ELM parameters. This result applies for both a 

low (N(O, 0.25)) and high (N(O, 4)) level of positional uncertainty. This is an encouraging 

result. However, it needs to be set in the context of wider concerns about the use of 

geostatistical block-kriging and needs further examination. 

Finally, it should be noted that the point-pixel and block-pixel approaches have different 

manifestations in the ELM. When the point-pixel approach is implemented positional 

uncertainty leads to a change in the x-value associated with a given y value. For the 

block-pixel approach any change in the kriged blocks will lead to a change in y. 



Chapter 6 Analysis II: positional uncertainty 209 

Overall, it should be recognised that the impact of positional uncertainty on geostatistical 

analysis and empirical regression models for remote sensing is a complex topic that has 

received limited attention in the literature. In the context of the research conducted for 

this thesis the following areas are worthy of investigation and provide possible avenues for 

future research: 

1. For the point-pixel approach the sample size was held fixed and the location per­

turbed. It would be interesting to explore the interaction between positional uncer­

tainty and sample variability. 

2. For the point-pixel approach only a large perturbation was investigated (c rv N(O, 4)). 

It would be interesting to investigate the impact of both less and more extreme po­

sitional uncertainty. Furthermore, this would allow examination of the hypothesis 

that the impact of positional uncertainty does not decrease for pixels that are larger 

(in size) than the scale of positional uncertainty. 

3. From a geostatistical perspective, this area would benefit from a more complete 

analysis of the impact of positional uncertainty for prediction and simulation. To 

date, most research has focused on the impact on the variogram (Atkinson 1996, 

Gabrosek & Cressie 2002) with the impacts on kriging being assessed using simulated 

or well understood data sets (Gabrosek & Cressie 2002, Cressie & Kornak 2003). 

The impact on prediction and simulation was not, in itself, addressed in this chapter, 

since interest focused on the impact on the ELM. 

4. Chapter 5 recommended the simple averaging approach to aggregation from points 

to blocks. However, the effect of positional uncertainty on that approach was not 

investigated. It is expected that the results will be less extreme than those found 

for the point-pixel approach. 



Chapter 7 

Analysis III: modelling • Issues 

In chapter 5, two alternative methods for implementing the ELM were proposed. These 

were the point-pixel and block~pixel approaches. There were two problems with the 

implementation of the regression for the ELM which, although highlighted, have not yet 

been dealt with. These are: 

1. The residuals from the regression model were clearly heteroskedastic ~ that is to say 

the magnitude of the residuals clearly varied among GTs. 

2. It was demonstrated that there was spatial structure across the GTs for both the 

MMR reflectance data and ATM radiance data (section 4.5.1 and section 4.5.2). 

Hence, it is likely that the residuals from the regression model are also autocorre­

lated. 

Both of these issues present problems because they contravene fundamental assumptions 

of the regression model that the residuals are independent and identically distributed. 

Hence, they need to be addressed and their impact evaluated. Addressing these issues 

should be seen in a much broader context than the ELM. Regression models are very 

widely used in remote sensing and GIS. Yet the above issues are rarely dealt with. An 

oft~cited alternative to regression is geostatistics. However, as discussed in section 2.4, 

this, in itself, may not be a useful alternative. 

In addition to theoretical concerns about the validity of the regression model, the above 

two issues are important since, if they are not addressed, they may lead to (i) inaccurate 

estimators of the regression coefficients, (ii) inaccurate estimation of the uncertainty in es­

timation and (iii) inaccurate estimation of the uncertainty in prediction. This is discussed 

in section 2.4. 

The regression plots presented in chapter 5 illustrated uncertainty in estimation through 

confidence intervals and uncertainty in prediction through prediction intervals. Derivation 

of these was discussed in chapter 2.1. Examples of estimation and prediction uncertainty 
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focused on a single pixel. It did not show how this might be extended to images. Predicting 

over an image is more complex, because realisations cannot be drawn from individual 

pixels because they are not independent. Hence, although it is relatively straightforward 

to predict the expected or mean image, it is not clear what individual realisations of the 

random function or, for example, the 95% prediction bands should look like. 

This chapter begins by recapping the issue of heteroskedasticity and discusses means for 

addressing this. It then moves on to applying and testing these in the context of the 

ELM. The results of that analysis are then evaluated. Section 7.4 considers mechanisms 

for accounting for spatial autocorrelation in the residuals. These were introduced in 

section 2.2.2.4 and section 2.4. This section works with simulated data to develop and 

test the mechanism. Section 7.5 follows on from this, but extends the model to cope with 

heteroskedasticity. The model was developed and tested with simulated data, since this 

allows a controlled environment to test the accuracy of the Inodel. Although such models 

have appeared in the literature, there has been only limited evaluation on simulated 

data (e.g., Lark 2000). Similarly no examples of it being applied to heteroskedastic data 

have been found in the remote sensing and GIS literature, although there are some early 

examples of it being applied in epidemiology (Cook & Pocock 1983). Hence, this analysis 

on simulated data is valuable in its own right. Finally, the combined heteroskedastic­

correlated error model is applied to the ELM (section 7.6.1). 

7 .1 Non heteroskedastic residuals 

The case where the regresslOn residuals are not identically distributed is called het­

eroskedasticity. In extreme cases this is manifested in the regression plots (e.g., figure 5.7). 

However, it is better illustrated using standard S-Plus regression diagnostic plots, as pre­

sented in figure 7.1. This shows the residuals plotted against the fitted (predicted) values 

(top left), the square-root of the standardised residuals against the fitted values and the 

QQ plot (top right). If the residuals are identically distributed they should show a similar 

distribution around zero for all fitted values. If they are normally distributed the QQ plot 

should approximate to a straight line. The standardised residuals are standardised by the 

standard-deviation (bottom left). Hence, if weighted least squares (WLS) is successfully 

applied (as discussed below), this plot will show constant variance, even if the residuals 

vs fitted values plot does not. Finally, the Cook's distance plot (bottom right) gives an 

indication of whether specific data points exert undue influence on the regression and 

might be considered outliers. Figure 7.1 gives clear evidence of heteroskedasticity and is 

discussed further below. 

A common approach for dealing with heteroskedastic residuals is to adopt the approach 

of "weighted linear regression" which may be performed using weighted least squares 

(WLS) (Sen & Srivastava 1990, Neter et al. 1996, Gelman et al. 2004). In such cases, the 
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variance may be described as: 

(7.1) 

where the i denotes a particular observation and aT is the variance of the error term 

associated with that observation. The Wi are weights attached to each observation and 

a 2 is a constant term. The "weights" are so called because observations with a high 

variance are "downweighted" in the parameter estimation (Sen & Srivastava 1990). If the 

relative magnitudes of the aT are known, these can be used directly and a2 will approach 

1. Hence, a 2 acts as a constant of proportionality. If the Wi are not known, they need to 

be estimated. 

If the Wi are known (or can be estimated) they can be used to populate a n x n (n is the 

number of data points) diagonal weights matrix, W, as follows: This matrix is then used 

to "weight" the estimation of the regression coefficients ,8 = (/30, /31f), as follows: 

The mean square error (]'I/[ S Ew) is then estimated as: 

MSEw 

where Iv[SEw is an estimator of a 2. 

L Wi(Yi - Yi)2 
n-2 

(7.2) 

(7.3) 

The confidence interval for a new values of x, Xo = (1, xo)T is given as (Sen & Srivastava 

1990): 

(7.4) 

where 1 a is the desired confidence level (e.g., 95%) and the prediction interval as: 

(7.5) 

Neter et al. (1996) provide various suggestions for predicting the Wi by modelling the 

residuals, ei, as a function of predictor variables Xi. This is based on the fact that e[ is 

an estimator of aT (and leil and estimator of ai). Hence, we set e[ = CiT and leil = Cii . 

For example, one of the following strategies might be adopted: 

(7.6) 

or 

(7.7) 

The weights are then given as the inverse of aT, i.e., Wi = 1/ aT and a2 is modelled as 

the ]'vl S E. It is expected that 111 S Ew ~ 1. The Xi above could be replaced by another 

variable, including Yi' In order to obtain the ei, one might begin with the residuals 

obtained from OLS and then iterate to obtain a new set of residuals. 
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Neter et al. (1996) also note that, where replicate measurements are made at different 

levels of the predictor variable, these replicates can be used to estimate the weights. 

If a sufficiently large number of replicates have been obtained, then the weights can 

be estimated directly. Alternatively, the sample variances or standard deviations can be 

regressed against the appropriate predictor variable, as described above. For experiments, 

replicates can be included in the experimental design although for observational studies, 

near replicates may be used. A similar approach is suggested by Gelman et al. (2004), who 

advocate dividing the data set into batches of similar variance. In the situation reviewed 

in this study, the batches might correspond to different land cover types. 

Finally, it could be assumed that the weights are directly related to a third variable, and 

treated as if they are known (Sen & Srivastava 1990, Neter et al. 1996). 

For the problem illustrated with the ELM the residuals do not tend to vary as a function 

of x (i. e., radiance). However, the magnitude of the residuals appears to be related to 

the variability of the target in question. On this basis, three solutions for estimating the 

weights are proposed: 

1. Split the data up into batches determined by the target cover type, following the 

procedure of Gelman et al. (2004). 

2. Model the weights as a continuous function, similar to the procedures suggested in 

equations 7.6 and 7.7, but substituting another measure for x. Appropriate measures 

might be the standard deviation or coefficient of variation of the pixels surrounding 

the pixel of interest. For example, a 3 x 3 window might be defined, where the pixel 

of interest is the centre pixel. 

3. Some hybrid of the above two. 

The first approach is appropriate for parameter estimation. However, it is important to 

note that it is only of limited use for prediction. This is because it is not possible to 

model how 0-[ will look for targets that were not included in the model building data set. 

Hence, for prediction it is necessary to know Wo for a "new" x-value where prediction 

is required (see equation 7.5). Because the weights are estimated using the data, rather 

than being known a priori or estimated separately this remains unknown. In order to 

calculate the prediction variance it is necessary to assume a value for Wo or estimate it 

using some method (such as the second approach). The second approach requires only 

the measure determined by the surrounding pixels, hence it is possible to estimate the 

weight at any point in the image. It can, therefore, be used for prediction. Nevertheless, 

the first approach is appropriate where the primary objective is to accurately estimate 

the regression line and associated confidence limits. Furthermore, this provides a useful 

benchmark against which other methods can be evaluated. 

Following from the above discussion, three approaches for estimating the weights were 

considered. 
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FIGURE 7.1: Diagnostic plots of the residuals for MMR band 1 (block-kriged prediction) 
regressed on ATM band 2. 
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1. The weights were estimated using the variance of the OLS residuals for each target. 

As described above, this approach is useful for estimation but not for prediction. 

2. The residuals were modelled as a function of the variance in a 3 x 3 window sur­

rounding the pixel of interest. 

3. The residuals were modelled as a function of the variance in a 3 x 3 window sur­

rounding the pixel of interest. They were then averaged for individual GTs and 

cover types. 

When the simple averaging approach to aggregation from field measurements to pixel sized 

blocks is adopted (figures 7.2 and 7.3) the same conclusions are reached. For figure 7.2 

all pixels containing one aT mOTe field measurements are included, whereas all pixels 

containing two aT mOTe field measurements are included for figure 7.3. This was discussed 

in section 5.4.1. For the analysis conducted in this chapter, the former data set is used, 

since it provides a larger sample size. However, the implications of this are discussed and 

given further consideration in section 8.1. 

Subsequent analysis presented is for MMR band 1 regressed on ATM band 2. 
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7.2 Calculating the weights: A strategy for estimation 
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This section implements the first weighting strategy that was listed above. This follows 

the approach of Gelman et al. (2004) and splits the data into appropriate "batches". For 

the ELM the batches correspond to GTs. To calculate the per-GT weight, the variance of 

the OLS residuals is calculated on a per-GT basis. The reciprocal of the per-GT residual 

variance gives the weight for that GT. 

7.2.1 Kriged blocks 

Kriging and then conditional simulation were used to aggregate from points to pixel-sized 

support. The OLS regression for the kriged blocks is given in figure 7.1. As previously dis­

cussed, this shows clear evidence for heteroskedasticity. The OLS residuals were then used 

to calculate the weights and weighted least squares (WLS) was applied. The diagnostic 

plots are shown in figure 7.4 and the estimated parameter values are shown in table 7.1. 

It can be seen the standardised residuals are now approximately normally distributed and 

homoskedastic. The estimated values of 0-; for each target are also shown and can be 

seen to differ substantially from the estimated value of (72 for OLS. Note that the rela­

tive weights (wi/max( w)) are also provided, since these allow straightforward comparison 

between different methods for specifying the weights. 

The confidence and prediction bands for Xo (20,40, 60)T are shown in tables 7.2 and 7.3 
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Parameter Estimate Std. Error p value 
f30 -2.4634 0.0488 < 0.01 
f31 0.3033 0.0016 < 0.01 
0- 2 1.0 
R'2 0.99 

Asphalt Concrete Grass 
Wi 20.38 1.01 16.47 
wi/max(w) 1.0 0.0494 0.8079 
0-; = 0-

2
/Wi 0.0500 1.0130 0.0620 

O-i 0.2237 1.0065 0.2489 

TABLE 7.1: Table showing the results of the parameter estimation for the ELM regression 
model after the reflectance measurements have been aggregated using block kriging. The 
estimates are for MMR band 1 regressed on ATM band 2. 

xo Yo Lower CI Upper CI Lower PI Upper PI 
20 3.62 3.58 3.66 2.62 4.62 
40 9.63 9.60 9.66 8.63 10.63 
60 15.64 15.58 15.70 14.64 16.64 

TABLE 7.2: Table showing the predicted value of Yo and the lower and upper 95% 
confidence (CI) and prediction (PI) intervals. The values of Xo correspond to grass, 
asphalt and concrete respectively for M~1R band 1 (aggregated using block kriging) 
regressed on ATM band 2 using OLS. 
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for OLS and WLS respectively. This corresponds to grass, asphalt and concrete respec­

tively. The confidence interval quantifies the uncertainty in the position of the regression 

line and the prediction interval the uncertainty in making a new prediction. By properly 

accounting for the heteroskedasticity these can be estimated more accurately. Under WLS 

the confidence intervals are narrower. Hence there is less uncertainty in the position of the 

regression line. However. it may be noted that, in absolute terms, the confidence intervals 

are narrow in both cases. As is evident from equation 7.5 the prediction intervals vary 

from GT to GT as a function of the weight. For asphalt, the interval is narrower, whereas 

for concrete it is wider than for the OLS. Hence, if heteroskedasticity is not accounted for 

the level of uncertainty in a predicted result may be over- or under-estimated. It should 

be emphasised that the prediction intervals cannot be calculated for other surfaces, since 

the weights are unknown. This is addressed in section 7.3. 

Xo Yo Lower CI Upper CI Lower PI Upper PI 
20 3.59 3.56 3.64 3.11 4.09 
40 9.68 9.64 9.72 9.24 10.12 
60 15.76 15.66 15.86 13.78 17.75 

TABLE 7.3: Table showing the predicted value of Yo and the lower and upper 95% 
confidence (CI) and prediction (PI) intervals. The values of Xo correspond to grass, 
asphalt and concrete respectively for MMR band 1 (aggregated using block kriging) 
regressed on ATM band 2 using WLS. 
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I 

8 

The results presented above were for the kriged target reflectance. The kriged surfaces 

show lower variance than the true surface (or possible reality). Therefore, the y value used 

in the regression will display lower variability than would be expected. This will lead to 

an underestimate for 0-
2 and, possibly, a flatter regression line. However, the magnitude of 

this latter effect will depend on relative influence of within and between target variability. 

As discussed in section 2.2.2.6 and section 5.4.2, conditional simulation can be used to 

predict a possible reality. Hence, conditional simulation was used to create 1000 reali­

sations of reflectance for each target. These were then paired with the image data and 

used in the regression model. The results are represented as histograms. Figure 7.5 shows 

histograms of the estimates of the parameters, as estimated using OLS. The variance of 

the residuals for each of the targets was then calculated and the inverse of this value taken 

as the weight for each target. Histograms of the weights are shown in figure 7.6 and the 

relative weights are shown in figure 7.7. The relative weights are given as wi/max(w) and 

are useful because they allow direct comparison between different methods of estimating 

the weights. Note that if the relative weights are used in WLS, the resulting inference 

will be the same, although the estimated value of 0-2 will differ. 
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For the conditionally simulated surfaces, there is a clear decrease in the weights by COl11.­

parison to the kriged surface. This reflects the increase in the variance associated with a 

conditionally simulated surface. However, the story for the relative weights is different. 

The asphalt surface was always assigned the greatest weight (it has residuals with the 

lowest variance), hence it has a relative weight of 1. The relative weight for the concrete 

surface is approximately normally distributed, centred on 0.05 - the same relative weight 

as that obtained for the kriged surface. However, the relative weight for the conditionally­

simulated grass surface is always lower than that for the kriged surface. 

The estimated parameters, as estimated using WLS, are shown in figure 7.8. The esti­

mates of ,Bo and Pl are similar to those obtained for OLS, but show lower variance. The 

estimate of (Y2 is approximately 1 in all cases, as expected. The histograms for (Y[ = (Y2 jWi 

(figure 7.9) show that the values are consistently larger than those obtained for the kriged 

surface (see table 7.1). 

The above analysis emphasises the need to consider the conditionally simulated surface, 

if an accurate estimate of the variance is required. 
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Parameter Estimate Std. Error p value 

(30 -2.5454 0.0651 < 0.01 
(31 0.3043 0.0020 < 0.01 
a 1.08 
a 2 1.02 
R'2 0.98 

Asphalt Concrete Grass 
Wi 11.81 0.85 6.94 
w;jmax(w) 1.0 0.07 0.59 
a 2 

2 a 2 j wi 0.0861 1.2041 0.1464 
ai 0.2934 1.0961 0.3826 

TABLE 7.4: Table showing the results of the parameter estimation for the ELM regres­
sion model after the reflectance measurements have been aggregated using the simple 
averaging approach. The estimates are for M::VIR band 1 regressed on ATYI band 2. 

7.2.2 Simple averaged blocks 
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I 

0.26 

In the above analysis (section 7.2.1), the field measurements were aggregated using block 

kriging and block conditional simulation. However, as discussed in sections 2.2.2.6 and 5.4 

there are theoretical and practical problems with using kriged or conditionally simulated 

surfaces in regression. Hence, the above analysis is repeated for pixel-sized blocks that 

have been aggregated using the simple averaging approach (section 5.4.1). 

The diagnostic regression plots and regression summary statistics are presented in fig­

ure 7.10 and table 7.4. It is clear that the weighting has effectively counteracted the 

heteroskedasticity and the residuals appear normally distributed. The weighting struc­

ture differs from the block kriging approach, although that is to be expected. 

The confidence and prediction bands for Xo = (20,40,60) T are shown in tables 7.5 and 7.6 

for OLS and \VLS respectively. This corresponds to grass, asphalt and concrete respec­

tively. The confidence interval quantifies the uncertainty in the position of the regression 

line and the prediction interval the uncertainty in making a new prediction. By properly 

accounting for the heteroskedasticity these can be estimated more accurately. Under \iVLS 
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FIGURE 7.10: Diagnostic plots of the residuals for MMR band 1 (simple-averaged blocks) 
regressed on ATM band 2. The regression is implemented using \VLS, where the weights 
are given as the variance of the OL8 residuals for each of three cover types (asphalt, 
concrete and grass). 

Xo Yo Lower CI Upper CI Lower PI Upper PI 
20 3.57 3.49 3.64 2.14 5.00 
40 9.58 9.53 9.63 8.15 11.01 
60 15.59 15.51 15.68 14.16 17.02 

TABLE 7.5: Table showing the predicted value of Yo and the lower and upper 95% 
confidence (CI) and prediction (PI) intervals. The values of Xo correspond to grass, 
asphalt and concrete respectively for MMR band 1 (aggregated using the simple averaging 
approach) regressed on AT'vI band 2 using OL8. 
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the confidence intervals are narrower. Hence there is less uncertainty in the position of 

the regression line. However, in absolute terms, the confidence intervals are narrow in 

both cases. As is evident from equation 7.5 the prediction intervals vary from GT to GT, 

as a function of the weight. For asphalt, the interval is narrower, whereas for concrete it is 

wider than for the OLS. Hence, if heteroskedasticity is not accounted for the uncertainty 

in a predicted result may be over- or under-estimated. It should be emphasised that the 

prediction intervals cannot be calculated for other targets, since the weights are unknown. 

This is addressed in section 7.3. 

This approach was also examined for the other MMR bands (2, 3 and 4) and found to be 

effective at addressing the effect of heteroskedasticity in the residuals. These results are 

discussed further in section 7.6.1 and presented in table 7.15. 
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Xo Yo Lower CI Upper CI Lower PI Upper PI 
20 3.55 3.49 3.60 2.79 4.30 
40 9.63 9.58 9.69 9.05 10.21 
60 15.72 15.59 15.84 13.56 17.88 

TABLE 7.6: Table showing the predicted value of Yo and the lower and upper 95% 
confidence (CI) and prediction (PI) intervals. The values of Xo correspond to grass, 
asphalt and concrete respectively for M::vlR band 1 (aggregated using the simple averaging 
approach) regressed on ATM band 2 using WLS. 

7.3 Calculating the weights: Strategies for prediction 
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In section 7.2, tables 7.3 and 7.6 showed the confidence and prediction intervals for the 

three GTs (asphalt, concrete and grass). However, since the weights were calculated 

on a per-GT basis, this presented a problem for establishing the weights and associated 

prediction intervals for a landcover that is not in the estimation data set. Stated simply, 

it is not known what the weight over such a surface should be. Hence the challenge is to 

develop an alternative strategy to specify the weights on the basis of a third variable. 

7.3.1 Alternative strategies 

The magnitude of the residuals, and hence 0-;, for a given target may be related to the 

variance in the image for that target. The first approach was to calculate the variance 

in the radiance in the 3 x 3 window surrounding the pixel of interest. This provides 

the local variance (LV), or local standard deviation (LSD), for each pixel. Alternatively, 

consideration could be given to using the local maximum difference (LMD) in the 3 x 3 

window surrounding the pixel of interest. The rationale for this approach is that the 

larger residuals will tend to be associated with pixels that have a larger LV (or LSD or 

LMD). This relationship is illustrated in figure 7.11, which shows the absolute residuals 

from kriged surfaces plotted against the LSD for the same pixel. Similar plots are shown 

in figures 7.12 and 7.13 for the simple-averaged blocks. 

Use of the LV opens up three possibilities: calculating the weight on a (i) per-pixel, (ii) 

per-GT or (iii) per-Iandcover basis. Calculating the weight on a per pixel basis may lead 

to unrealistic variation in the weights and subsequent estimate of 0"[. This affect will be 

reduced by calculating the weight on a per target basis. However, in order to extend this 

method to calculate uncertainty in prediction it is necessary to classify the image by land 

cover type. This will allow a weight to be tied to a specific land cover type. Hence, the 

weights that are applied to land cover types will be affected by the classification adopted 

and decisions made in the classification process. 

A further decision needs to be made. Should the weights be established simply by using 

the LV or average LV (ALV)? Should they be calculated by regressing the OLS residuals 

against the LV, LSD or LMD? For example, Neter et al. (1996) suggests regressing the 
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kriging. 
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simple averaging approach and all pixels containing one or more field measurements are 
included. 
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absolute OLS residuals or squared OLS residuals against an additional variable? This 

approach is demonstrated in figures 7.11, 7.12 and 7.13 which show the absolute OLS 

residuals (for block-kriging and the simple averaging approach) against the LSD for that 

pixel (see also equations 7.6 and 7.7). 

Hence, there are four candidate approaches: 

1. Strategy 1: adopt Wi = 1/ LVi on a per-pixel basis. 

2. Strategy 2: adopt We l/average(LVi) on a per-GT (or per-class) basis. 

3. Strategy 3: adopt Wi = 1/ f(LVi) on a per-pixel basis. 

4. Strategy 4: adopt We = l/average(J(LVi) on a per-GT (or per-class) basis. 

where f(LVi) is taken as IresidoLsJ = ao + a1LSDi , following equation 7.6. 

The analysis presented in this section evaluates the above listed four strategies for estab­

lishing a weighting scheme that can be used for prediction. The analysis is performed for 

MMR band 1 regressed on ATM band 2. Aggregation was performed using the design­

based approach. To maintain a large sample size all pixels were retained, even if they 

only contained one reflectance measurement (see section 5.4.1). The implications of this 

choice are further discussed later in the chapter. 
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7.3.2 Image classification 

The approaches outlined above discuss calculating the weights on a per-pixel or per­

target basis. To implement the latter approach, it was necessary to classify the image 

into general land cover types which can have a single weight attached to them. This is 

not straightforward, since it is not clear what such classes should look like. Hence, the 

decision was made to use broad classes based on maximum-likelihood supervised classifi­

cation (Campbell 1996, Mather 1999, Richards & Jia 1999, Lillesand et al. 2004), using 

the ENVI image processing package. The Jeffries-Matusita and Transformed Divergence 

separability measures (Richards & Jia 1999) were used to test for class separability and 

seven general classes were established. These were cropped grass, long grass, asphalt, 

water, trees and scrub, mudflat and concrete. There are areas of low density housing and 

other buildings in the image. These did not form a separable spectral class, but tended to 

be subsumed into the other classes. For example, residential areas included components 

of vegetation, road and concrete. Other areas of the military base tended to be covered 

by asphalt and concrete (e.g., car parks) and the roofs of large sheds tended to be made 

from corrugated metal or plastic and were not separable from the concrete class. 

It is recognised that, with considerably more effort, a more refined classification might be 

established which would more accurately represent land cover classes. However, accurate 

classification of land cover classes was not the objective here. Furthermore, it is not 

clear whether a more refined classification based on spectral separability would yield more 

appropriate weights. 

7.3.3 Strategy 1 

The first approach was simply to adopt Wi = 1/ L Vi on a per pixel basis. Hence, rather 

than having a single weight and resulting C5T for each target there are as many of these as 

there are pixels in the target. The results are shown in table 7.7. The diagnostic plot for 

the regression is shown in figure 7.14. Figures showing the histograms for the per-pixel 

relative weights (figure 7.15) and resulting per-pixel variances (figure 7.16) are provided 

for each GT. 

The diagnostic plot for the regression (figure 7.14) suggests that adopting these weights 

has substantially reduced the problem of heteroskedasticity. However, a consequence of 

this approach is that the results are more difficult to interpret since there are many per 

pixel weights and variances per target. This also leads to wide variability in the per-pixel 

variance, (iT (figure 7.15). Hence, it is difficult to draw direct comparisons between these 

results and the benchmark (table 7.4), although most of the per-pixel relative weights for 

all three GTs are less than for the benchmark. Finally, figure 7.12 suggests that there 

is not a direct one-to-one relationship between LV or LSD and the OLS residuals. This 

latter issue is addressed in strategy 3. 
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Parameter Estimate Std. Error p value 

;30 -2.5159 0.0578 < 0.001 
beta 0.3031 0.0018 < 0.001 
(j2 0.0.2745 
R2 0.99 

TABLE 7.7: Table showing the results of the parameter estimation for the ELM regres­
sion model after the reflectance measurements have been aggregated using the simple 
averaging approach. The estimates are for :'-vlMR band 1 regressed on AT::-'1 band 2. 
The regression was conducted using WLS, with per-pixel weights given as Wi = 1/ L~ 
(strategy 1). 
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FIGURE 7.14: Diagnostic plots of the residuals for YIMR band 1 (simple-averaged blocks) 
regressed on ATM band 2. The regression is conducted using WLS, with per-pixel weights 
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c-

I--

>-

" c: 
<D 
:> 
cr 
i!' 
LL 

J-

Ih , , , , , 

o 
~ 

0 
CD 

0 
CD 

0 .,-

0 
N 

0 , 

>­
u 
c: 
~ 0 
crN 
Q) 

u: 

- f­
f-

o I~, ~, ===::::, =~~, ~, = 
0,0 0,2 0.4 0,6 0,8 1,0 0,00 

, 
0,02 

, 
0,04 

, 
0,06 0,00 0,05 0,10 0,15 0,20 

Relative w (asphalt) Relative w (concrete) Relative w (grass) 

FIGURE 7.15: Histograms showing the per pixel relative weights, given as wi/max(w) 
(simple-averaged blocks, strategy 1). 



Chapter 7 Analysis III: modelling issues 

o 
.". 

o 

0 0 
;:> r--

0 
co - 0 

ro 
0 

"' .--
(;'0 

>, 

" 0 c co C .". g; '" ::J 
0- 0- 0 l" 0 '" (') 

LL .". LL 
I--

0 

'" 0 

'" !" 

0 0 
~ 

i j ! iii 1 I I I I I I I I I 

0<00 0<05 0< 1 0 0< 15 0<20 0<25 0<30 0 2 10 12 14 0<0 0<2 OA 0<6 

{J2 (asphalt) {J2 (concrete) {J2 (grass) 

FIGURE 7.16: Histograms showing the per pixel variances, given as (5; = (52/Wi (simple­
averaged blocks, strategy 1). 

Parameter Estimate Std. Error p value 

;30 -2.5837 0.0643 < 0.001 

Sl 0.3060 0.0020 < 0.001 
0-2 0.2140 
R2 0.98 

Asphalt Concrete Grass 
We 3.42 0.0971 1.78 
wc/max(w) 1 0.0283 0.5189 
o-~ = (l2 / Wi 0.0624 2.2036 0.1203 
(le 0.2499 1.4844 0.3469 

TABLE 7.8: Table showing the results of the parameter estimation for the ELM regres­
sion model after the reflectance measurements have been aggregated using the simple 
averaging approach. The estimates are for MMR band 1 regressed on ATM band 2. The 
regression is conducted using WLS, with per-GT weights given as We = l/average(LV;) 
(strategy 2). 

7.3.4 Strategy 2 

227 

I 

0<8 

The second strategy was to use the target ALV (we = l/average(LI/i)) to calculate the 

average (mean) weight for each target. The results are shown in table 7.8. Table 7.8 also 

shows the per target weights, relative weights and resultant values for (le' The diagnostic 

plots for the regression are shown in figure 7.17. 

The diagnostic plot for the regression (figure 7.17) suggests that adopting these weights 

has substantially reduced the problem of heteroskedasticity. However, table 7.8 shows 

that, by comparison to the benchmark for the simple-averaged blocks (table 7.4), the 

relative weights for concrete and grass are under estimated. A further consequence is 

that, by comparison to table 7.4, the estimated value of (l; is slightly under estimated for 

asphalt and grass and substantially over estimated for concrete. 

The above analysis was conducted by averaging over the GTs. For this approach to 

be of value, it is necessary to be able to predict the class weight for places that were 

not used as calibration targets. Hence it is necessary to generalise from targets to land-
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FIGURE 7.17: Diagnostic plots ofthe residuals for MMR band 1 (simple-averaged blocks) 
regressed on ATM band 2. The regression is conducted using \VLS, with per-GT weights 
given as Wi IlLV', (strategy 2). 
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cover classes. To achieve this the image was classified into eight broad classes, including 

asphalt, concrete and cropped grass. 

The per-class weights were calculated and the regression results are shown in table 7.9 

and the diagnostic plots in figure 7.18. This approach is clearly less successful at reducing 

heteroskedasticity than when the weights are calculated on a per-pixel or per-target basis. 

It is clear that the relative weights are substantially different to the case where they are 

calculated for targets, particularly for concrete and grass. By comparison to the reference 

table 7.4, the estimated value of (J~ is similar for asphalt, slightly underestimated for grass 

and substantially overestimated for concrete. 

These results suggest caution when applying the approach on a per-class basis. In partic­

ular, it seems that the within-class variability is large by comparison to the within-target 

variability. This leads to per-class average LV values that are quite different to the per­

target average LV values, with direct consequences for the per-class weights and estimated 

values for (J~ (see tables 7.8 and 7.9). Furthermore, this suggests that this approach is 

likely to be sensitive to choices made in image classification. 

7.3.5 Strategy 3 

The third strategy was to compute the weights as a function of the local variance. This 

follows the approach adopted by Neter et al. (1996). When following this approach, the 

OLS residuals were regressed against the LSD (LSD = vi LV) for the same pixel (see 



Chapter 7 Analysis III: modelling issues 

Parameter Estimate Std. Error p value 

(30 -2.6175 0.0605 < 0.001 
/31 0.3069 0.0021 < 0.001 
0-2 0.0405 
R2 0.98 

Asphalt Concrete Grass 

We 0.5438 0.0088 0.4684 
wc/rnax(w) 1.0 0.0161 0.8614 
o-~ = 0-

2
/We 0.0745 4.6292 0.0865 

O-e 0.2729 2.1515 0.2941 

TABLE 7.9: Table showing the results of the parameter estimation for the ELM regres­
sion model after the reflectance measurements have been aggregated using the simple 
averaging approach. The estimates are for MMR band 1 regressed on ATM band 2. The 
regression is conducted using WLS, with per-class weights given as We l/average(LV;) 
(strategy 2). 

o 
o 

'0 
oc:efro 

I 

Residuals vs Fitted 

10 15 

Fitted values 

Scale-Location plot 

~ 

f o 0 B 

°f~~ o 00 

o 0 !j:J:a:b~ 

CO o ~ 0 

10 15 

Fitted values 

Normal Q-Q plot 

-3 -2 -1 

Theoretical Quantlles 

Cook's distance plot 

'" 0 

g 
" iii 0 

'5 
w 

t i3 0 
() 0 

0 
0 
0 

100 200 300 400 

Obs. number 

FIGURE 7.18: Diagnostic plots of the residuals for MMR band 1 (simple-averaged blocks) 
regressed on ATM band 2. The regression is conducted using WLS, with per-class weights 
given as Wi = 1/ LV; (strategy 2). 
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Parameter Estimate Std. Error p value 

/30 -2.4698 0.0604 < 0.001 
0.3012 0.0018 < 0.001 

0- 2 1.5199 
R2 0.99 

TABLE 7.10: Table showing the results of the parameter estimation for the ELM regres­
sion model after the reflectance measurements have been aggregated using the simple 
averaging approach. The estimates are for :vIMR band 1 regressed on ATM band 2. 
The regression is conducted using WLS, with per-pixel weights given as Wi = 1/ f(LVi) 
(strategy 3). 
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figure 7.12). The per-pixel weight was then given as Wi = II f(L~) = l/(exo + exlLSDi)2. 

The results for the simple-averaged blocks are shown in table 7.10. Diagnostic plots for 

the regression are shown in figure 7.19. Figures showing histograms for the per-pixel 

relative weights (figure 7.15) and resulting per-pixel variances (figure 7.16) are provided. 

The diagnostic plot for the regression (figure 7.19) suggests that adopting these weights 

substantially reduced the problem of heteroskedasticity. Regressing the residuals on the 

LSD ensured that the weights reflect the variability in the residuals, rather than simply 

the variability in LV. Hence, adopting the regression smoothes some of the variability 

in the LSD. These combined factors lead to an overall increase in the relative weights 

compared to strategy 1. The per-pixel variances (o-n show lower variability than they 

did for strategy 1. Overall, by comparison to the benchmark shown in table 7.4, the 

estimated values of al were more accurate than those for strategy 1. The standard errors 

on the estimated regression coefficients were similar to, but slightly lower than, those for 

the benchmark. 

As with strategy 1, a consequence of strategy 3 is that the results are more difficult to 

interpret since there are many per-pixel weights and variances per target. 

7.3.6 Strategy 4 

The final strategy was to average (mean) over the per-pixel weights in strategy 3 on a 

per-target basis (i.e., Wc 1Iaverage(f(LVc))). The results are shown in table 7.1l. 

Table 7.11 also shows the per-GT weights, relative weights and resultant values for o-c· 
The diagnostic plots for the regression are shown in figure 7.22. 

The diagnostic plot for the regression (figure 7.22) suggests that adopting these weights 

has substantially reduced the problem of heteroskedasticity. By comparison to strategy 

2, table 7.8 shows that the relative weights accurately reflect those for the benchmark 

(table 7.4). This accuracy is also reflected in the estimated values of a~ for each target. 

Previous analysis for strategy 4 was conducted by averaging over the GTs. However, for 

this approach to be of value, it is necessary to be able to predict the class weight for places 
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FIGURE 7.19: Diagnostic plots ofthe residuals for l\!L\1R band 1 (simple-averaged blocks) 
regressed on ATM band 2. The regression is conducted using vVLS, with per-pixel weights 
given as Wi = II f(L~) (strategy 3). 
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Parameter Estimate Std. Error p value 

Po -2.5159 0.0642 < 0.001 

131 0.3034 0.0020 < 0.001 
(j2 1.3554 
(j 1.1642 
R2 0.98 

Asphalt Concrete Grass 

We 12.3862 1.3583 9.1603 
wc/max(w) 1.0 0.1091 0.7396 
(j~ = (j2jwe 0.1094 1.0026 0.1480 
(}e 0.3308 1.0013 0.3847 

TABLE 7.11: Table showing the results of the parameter estimation for the ELM regres­
sion model after the reflectance measurements have been aggregated using the simple av­
eraging approach. The estimates are for MMR band 1 regressed on ATM band 2. The re­
gression is conducted using WLS, with per-GT weights given as We l/average(J(L~)) 
(strategy 4). 
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FIGURE 7.22: Diagnostic plots of the residuals for MMR band 1 (simple-averaged blocks) 
regressed on ATM band 2. The regression is conducted using \VLS, with per-GT weights 
given as We = l/average(J(L~)) (strategy 4). 
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Parameter Estimate Std. Error p value 

flo -2.5918 0.0603 < 0.001 

181 0.3060 0.0021 < 0.001 
0- 2 0.4311 
(Y 0.6566 
R'2 0.98 

Asphalt Concrete Grass 
We 5.3393 0.1615 4.7659 
wc/max(w) 1.0 0.0302 0.8926 
O-Z = (Y2/Wi 0.0807 2.6754 0.0905 
o-c 0.2842 1.6357 0.3008 

TABLE 7.12: Table showing the results of the parameter estimation for the ELM 
regression model after the reflectance measurements have been aggregated using the 
simple averaging approach. The estimates are for MMR band 1 regressed on ATM 
band 2. The regression is conducted using \VLS, with per-class weights given as 
We = l/average(j(L~)). 
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that were not used as calibration targets. Hence, as with strategy 2 it was necessary to 

generalise from GTs to land-cover classes. 

The per-class weights were calculated and applied for simple-averaged blocks. The diag­

nostic plots are shown in figure 7.23 and the regression results in table 7.12. The approach 

has not been effective at removing the effects of heteroskedasticity. Furthermore, this ap­

proach only gives a small increase in accuracy compared to the case when strategy 2 is 

applied on a per-class basis (table 7.9) and is inaccurate compared to the benchmark 

(table 7.4). As with strategy 2, these results suggest caution when applying the approach 

on a per-class rather than per-target basis. 

7.3.7 Summary 

The above analysis showed that using the LV reflects the general ordering of the weights 

- i.e., asphalt should be more highly weighted than grass, which should be more highly 

weighted than concrete. Strategies 1 and 2 substitute the LV for the weight directly, 

whereas Strategies 3 and 4 predict the weight as a function of the LV. Hence, the first 

two strategies assume a direct relationship between the weight and the LV, whereas the 

latter two model this relationship. 

For strategies 1 and 2 the order of the weights was correct, but the actual values of the 

relative weights (and consequent estimates of (Y[ or (YZ) were inaccurate relative to the 

benchmark data set. However, the results were more accurate for strategies 3 and 4. This 

additional accuracy may be attributed to the explicit modelling of the weights, rather 

than simply substituting the LV. 

The analysis raised some debate as to whether the weights and consequent values of (Y[ 

should be calculated on a per-pixel, per-GT or per-class basis. The per-GT or per-class 
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FIGURE 7.23: Diagnostic plots of the residuals for MMR band 1 (simple-averaged blocks) 
regressed on ATM band 2. The regression is conducted using \VLS, with per-class weights 
given as We = l/aveTage(f(L~)) (strategy 4). 

234 

approach should mitigate against large random variations in the weights of individual 

pixels. However, this needs to be balanced against the fact that it smoothes out within­

GT or within-class variability. Indeed, it might be argued that averaging over a GT 

or class effectively increases the support of the weight. This might be considered to be 

undesirable, given that prediction on a per-pixel basis is required. 

A serious concern when calculating weights on a per-class basis arose when transferring 

from per-GT to per-(land cover} class weights. The resulting per-class relative weights 

(and consequent estimates of per-class ()~) were substantially different from the per-GT 

relative weights and ()~ estimates. These implied that the within-class variability led to the 

prediction of weights that were substantially different from the associated per-GT weights. 

Furthermore, the per-class approach is likely to be sensitive to the classification scheme 

adopted. On the basis of this evidence, it is not possible to provide generalised weights 

for landcover classes. Hence, it is recommended that the weights should be predicted on 

a per-pixel basis using strategy 3. 

The weighting schemes discussed above were also investigated for MMR bands 2, 3 and 4. 

Broadly, strategies 2 and 4 presented the same problems when calculating the weights on 

a per-class basis. For strategies 1 and 3 and the other visible wavebands (MMR bands 2 

and 3), similar results were obtained to band 1. Hence, strategy 1 did reduce the impact 

of heteroskedasticity, whereas strategy 3 practically eliminated the effect. 

Despite the success for the visible wavebands, strategies 1 and 3 were less effective at 

reducing the effect of heteroskedasticity for the NIR band (MMR band 4). Figure 7.24 
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FIGURE 7.24: Diagnostic plots of the residuals for MMR band 4 (simple-averaged blocks) 
regressed on ATM band 7. The regression is conducted using WLS, with per-pixel weights 
given as Wi 1/ L Vi (strategy 1). 
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shows the diagnostic plots for strategy 1, whereas figure 7.25 shows the diagnostic plots 

for strategy 3. The standardised residuals in figure 7.25 show strategy 1 was effective 

at reducing heteroskedasticity, although the QQ plot shows that these residuals depart 

from normality. Strategy 3 (figure 7.25) was more effective in this latter respect, but not 

effective at reducing the effects of heteroskedasticity. Alternative regression models were 

examined as alternative implementations of strategy 3, although none was substantially 

more effective. 

In conclusion, strategy 3 emerged as the preferred approach for the visible wavebands. 

However, there was no effective strategy for the NIR waveband. 

7.4 Dealing with correlation amongst the residuals 

In the introductory section of this chapter it was emphasised that ordinary least squares 

(OLS) regression modelling assumes that the model residuals are independent and identi­

cally distributed (iid). Sections 7.1, 7.2 and 7.3 addressed the issue of heteroskedasticity. 

This section addresses spatial correlation in the residuals. This was addressed in chapter 2 

and particularly in sections 2.1.4, 2.2.2.4, 2.2.2.5 and 2.4. The methodology presented in 

this section builds on the maximum likelihood approach to regression modelling. Anal­

ysis is performed first using simulated data, before using the methodology on real data 

gathered for implementing the ELM. Simulated data are used initially since they allow 

evaluation of the accuracy of the methodology when the results are known. 
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FIGURE 7.25: Diagnostic plots of the residuals for MMR band 4 (simple-averaged blocks) 
regressed on ATM band 7. The regression is conducted using WLS, with per-pixel weights 
given as Wi = l/f(LV,) (strategy 3). 

As noted previously, where the covariance matrix of the residuals, ~ IS known P 
(po, Pl)T is estimated using generalised least squares (GLS) as: 
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(7.8) 

If the residuals are homoskedastic, ~ can be replaced by R, a correlation matrix such 

that ~ = a 2 R. Alternatively, if there is heteroskedasticity but no correlation, R can be 

replaced by the weights matrix W. The covariance matrix of /J is then given as 

(7.9) 

The presence of correlation amongst the residuals can have various related effects on the 

regression model. First, as shown in equation 7.8 the correlation structure can directly 

influence the estimate of /3. Second, the correlation structure can affect the estimate of 

a 2
, estimated with ML as (Harris & Johnson 1996, Lark 2000): 

(7.10) 

Since the correlation structure affects the estimate of Cov(/J) (equation 7.9), even if the 

GLS estimator of P is similar to the OLS estimator, Cov(/J) will differ. That has im­

plications for quantifying uncertainty in estimation and prediction, for specifying con­

fidence and prediction intervals and for hypothesis testing. In particular, the OLS es­

timators tend to underestimate a 2 and yield inaccurate confidence intervals (Harris & 
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Johnson 1996, Ver Hoef et al. 2001, Lark & Cullis 2004). This can affect the outcome 

of hypothesis testing as well as choices as to which covariates should be included in the 

model. If correlation is not accounted for then it can be conflated with a trend, leading 

to the inclusion of spurious covariates in a regression model (Ver Hoef et al. 2001, Hengl 

et al. 2004). Finally, not accounting for correlation can lead to inaccurate estimation of 

the confidence and prediction intervals. 

The above discussion assumed that :E is known. In practice this is rarely the case and it 

is necessary to estimate the elements of :E. This can be achieved through embedding a 

geostatistical variogram model to account for the spatial correlation which is then used 

to predict the elements of :E. A framework is adopted that iterates between calculation 

of /3 and :E to maximise the log-likelihood function for the Gaussian model: 

(7.11) 

'Within the Gaussian ML framework, instead of assuming that the regression residuals are 

Ci ~ N(O, (j2) the residuals are modelled as being multivariate-Gaussian, c rv 1VIVN(0, :E). 

Mathematically, this approach has the same setup as the ML implementation of model­

based geostatistics, discussed in section 2.2.2.5. However, as stated in section 2.4 the 

emphasis is on regression rather than interpolation. 

Previous developments of this ML approach (Cook & Pocock 1983, Mardia & Marshall 

1984, Lark 2000) proceeded by setting :E = (j2R. R is a correlation matrix, with the off 

diagonal elements by rij f (rjJ, h ij ), where h ij is the lag between i and j and f (., .) is 

an authorised correlation (or variogram) function. Typically the exponential or spherical 

covariance function is adopted, requiring the estimation of the range parameter, 9. The 

regression parameters, for a given value of 9, are given as: 

/3 = (XTR-1X)-lR-1y 

1 
3- 2 = -(y - X$fR-1(y XP) 

n 

and the log-likelihood reduces to: 

- log IRI - n log (j2 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

This approach was initially proposed in the mid-1980s (Cook & Pocock 1983, Mardia & 

Marshall 1984), and has been widely cited in the statistical and epidemiological literature. 

However, there has only been limited uptake in remote sensing and other environmental 

fields. Lark (2000) demonstrated the above approach for simulated imagery and found that 

it gave more accurate estimates of (j2 than OLS, with OLS tending to underestimate (j2. 

This had important consequences for uncertainty analysis and for tests on the regression 
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parameters. However, Lark did not examine the accuracy of the estimates of ¢, which 

is clearly important since it affects the elements of ~. Furthermore, this model does not 

specify a nugget component. 

The above approach was revised by Lark & Cullis (2004), who specified: 

~ij (j 2v f(¢,hij ),i#j 

(j2,i=j (7.16) 

The parameter v is defined as 

v=---
Tn + Ts 

which allows incorporation of a nugget effect, since Ts is the partial sill and Tn is the 

nugget component. Hence (j2 = Ts + Tn. The estimates and covariance function of (3 are 

then given as in equations 7.8 and 7.9. The variogram parameters can then be estimated 

by interactively maximising the likelihood. 

As discussed in section 2.2.2.5, ML is known to yield biased estimates of (j2. This arises 

since, although equation 7.13 takes account of the correlation structure, the denominator 

is n. This is known to be a biased estimator since it does not take into account the loss of 

degrees of freedom caused by estimating (3 (Neter et al. 1996). Hence, Harris & Johnson 

(1996) recommend adjusting for the degrees of freedom, as follows: 

(7.17) 

where n is the number of data points used in the regression model and p is the number 

of model coefficients. However, a more widely cited approach is that of residual (or 

restricted) maximum likelihood (REML) (Cressie 1993, Diggle et al. 2003) as advocated 

by Lark & Cullis (2004). REML proceeds by maximising the conditional likelihood: 

2 A 

l((j ,v,¢IP,P) ex 
lIT 1 IT 1 --log I~I - -log IX ~- XI - - y ~- (I - Q)y 
2 2 2 

(7.18) 

where 

As noted previously, although REML is widely used in geostatistics (Cressie 1993), there 

is not a consensus that it should be preferred to ML (Diggle et al. 2003). Furthermore, 

the fact that the residuals are correlated effectively leads to a further decrease in the 

number of degrees of freedom (Ver Hoef et al. 2001). Indeed, this loss of information 

presents a problem for estimation (it reduces the information content) but an advantage 

for prediction (since the predicted location will be correlated with the surrounding data 

points) (Ver Hoef et al. 2001). 

Lark & Cullis (2004) demonstrated the use of the REML approach for data gathered 

in the Swiss Jura, but do not provide an empirical evaluation against simulated data in 
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a remote sensing context. Furthermore despite their recommendations, neither Lark & 

Cullis (2004) or Diggle et al. (2003) provide an empirical evaluation of ML vs. REML. 

This section evaluates the ML and REML approaches using simulated data. This extended 

the approach of Lark (2000) since it examined the accuracy of the estimation of ¢ and v 

as well as conducting a comparison of the ML and REML approaches. 

7.4.1 Experiments with simulated imagery 

The utility of the ML and REML approaches was investigated using simulated imagery, 

following the approach of Lark (2000). The images were created on a uniform square grid 

of 249 rows by 249 columns. First, a random standard normal variable X was created on 

the square grid, as illustrated in figure 7.26. Next, an image of errors (c) were created, 

with variance, (J2 = 1, partitioned into a nugget term, Tn = 0.5 and a partial sill, Ts = 0.5, 

i.e., v = 0.5. Finally, the dependent variable, y, was generated where, f3 = (1, 1.2)T, 

hence: 

(7.19) 

This is the same set-up as that used by Lark (2000). although he set l/ 0.95, but omitted 

the nugget effect from his model. 

The errors were simulated using a spherical variogram model. \\Then estimating the model 

parameters (whether by ML or REML), it is necessary to choose an authorised model for 

f(c/J, hij ) (equation 7.16). The smooth, differentiable nature of the exponential model 

makes it well suited to ML techniques (Diggle et al. 2003, Lark & Cullis 2004). However, 

the spherical model is so widely used in geostatistics that it is reasonable to examine it 

in this context. A choice between the spherical and exponential model can then be made 

on the basis of the maximized likelihood and the Akaike Information Criterion (Ale) . It 

may be noted that, in any given application, the spherical or exponential model may not 

reflect the underlying data. In such cases, other variogram models could be investigated. 

However, it is also useful to consider the implication of choosing the wrong variogram 

model and whether this has implications for parameter estimation. 

Six images of X, c and the corresponding images of y were created for ¢ = 1,2, ... ,6. The 

image of c was created using unconditional simulation (Sequential Gaussian Simulation). 

The images are shown in figures 7.27 and 7.28. For each image two sub-samples of 100 

data were obtained. The first sub-sample was gathered using simple random sampling 

(SRS) and second using spatially structured sampling (SS) on a 10 x 10 grid with 1 pixel 

spacing, as shown in figure 7.29. This was repeated 100 times, without replacement, as 

shown in figure 7.30. These repeat samples allowed investigation of the accuracy of the 

parameter estimates. 

Having simulated the images and drawn samples from them, as described above, the 

model parameters were estimated using OLS, ML and REML. The results are discussed 
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7.4. 1.1 Results 

Figure 7.31 shows the estimated value of (J plotted against the range, ¢, of the error 

variable, c . Recall that six different images of c were simulated for ¢ = 1, 2, .. , , 6. These 

show the average estimate of (J (for the 100 samples), together with 95% confidence 

intervals on the mean as well as the firs t and third quartiles . Figure 7.31 (a, c, e) shows 

the estimated value of (J obtained using random sampling. It is clear that, under simple 

random sampling ML or REML offer no advantage over OLS for providing unbiased 

estimates of (J. 

Under systematic sampling figure 7.31 (b) shows the estimates of (J are negatively biased 

when estimated using OLS . This is part icularly clear when the range of the underlying 

error variable was large (¢ = 4,5, 6) , compared to the size of area sampled (10 x 10). 

When ¢ is small relative to the size of the area sampled , many of the residuals will 

be uncorrelated . However , when ¢ is large a greater proportion of the residuals will 

be correlated. Hence, when ¢ is relatively large, the effect of the spatial correlation is 

greater (Lark 2000). 

The ML and REML models were then implemented by adopting a spherical model for 

equation 7.16. The resulting estimates of (J are shown in figure 7.31 (d and f) . It is 

interesting to note that ML (d) does not seem to offer a substantial improvement over 

OLS. However, REML (f) does substantially reduce the bias. This differs from the result 

found by (Lark 2000), who found that adopting the ML approach eliminated bias in 

(J although he set 1/ = 0.95, rather than 0.5. Lark's results were replicated when t he 

algorithms were implemented for this analysis. Hence, the magnitude of 1/ may affect the 
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accuracy of the ML approach. Finally, when the spatial covariance is modelled using an 

exponential model figure 7.31 (g and h) a similar pattern is observed to t hat found for the 

spherical model. This shows that t he estimation of a 2 was robust to choice of variogram 

model. 

Boxplots showing the estimates of cP are shown in figures 7.32 and 7.33 for the random and 

structured samples respectively. Under random sampling (figure 7.32), the estimates were 

highly variable and inaccurate. The results for t he structured sample (figure 7.33) are now 

considered in more detail. First t he spherical model was considered (figure 7.33 (a and 

b)). Both ML and REML gave unbiased estimates; however , t he REML estimates tended 
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to be less precise than the ML estimates, in that they show greater variability. Indeed, 

practical experience found numerical instability in the REML estimates, contributing to 

variability in those estimates. The extent of that variability is masked in these boxplots. 

Greater variability in the REML estimates was also found for (J (figure 7.31). 

The results for the exponential model are shown in figure 7.33 (c and d). The range 

given is the effective range (¢/3) and should not be expected to correspond exactly with 

the range of the error variable for the underlying surface (which was modelled using a 

spherical variogram). For both ML and REML the estimates of the range approximate 

the range of the underlying variogram. However, the precision of the estimated values 

was lower than where the spherical model was adopted. As before, greater instability was 

found when implementing the REML procedure. 

Boxplots showing the estimates of v are shown in figures 7.34 and 7.35 for the random 

and structured samples respectively. As with ¢, the estimates under random sampling 

(figure 7.34) were highly variable and inaccurate. For the structured sample and the 

spherical model (figure 7.35 (a)) the estimates were highly variable and were inaccurate 

for 9 = 1 and 2. However, for large values of ¢ the accuracy of estimation increased. A 

similar pattern was observed for the REML estimates (figure 7.35 (b)) and the spherical 

model. However, as with the estimates of 9, the boxplots do not show the instability and 

variability of the REML estimates. 

The results for the exponential model are shown in figure 7.35 (a and b). As with the 
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spherical modeL the estimates were highly variable and inaccurate for ¢ = 1 and 2. At 

larger values of cb the estimates are biased and tend to strongly overestimate v. A similar 

pattern is observed for the ML and REML estimates. 

The above analysis demonstrated that the ML and REML approaches can be used to 

estimate the parameters required to calculate the elements of the covariance matrix. For 

estimating (j2 it was shown that REML provided less biased results than the ML approach. 

This result was expected from theory. However, REML was not found to yield more 

accurate estimates of ¢ or v. Indeed, in practice the REML estimates were found to 

be more variable and the numerical maximisation was less stable. The bias in the ML 

estimate of (j2 (figure 7.31 (d)) can be partly compensated for by applying the adjustment 

given in equation 7.17, as recommended by Harris & Johnson (1996). Although this might 

be regarded as a less elegant and less accurate approach, it compensates for the bias in 

(j2 without the other problems associated with REML. 

If applying the above regression procedure on a small number of samples in an operational 

circumstance, the recommendation must be to apply all three approaches (ML, adjusted 

ML and REML). The user can then query each result in detail (for example, they can ex­

amine the shape of the likelihood surface to check the numerical maximisation). However, 

such detailed examination is not possible when working with several hundred simulations. 

The regression and covariance model parameters were estimated using both the spherical 

and exponential models. The exponential model returned approximate values of the 



Chapter 7 Analysis III: modelling issues 

(a) Random Sample, ML (Spherical) (b) Random Sample , REML (Spherical) 

" " 
'" 

7~~DOO 
~ ci 

<0 <0 

BB~BBD ci ci 

~ " ci 

'" '" ci ci 

a 
~ ci 

Range of error variable Range of error variable 

(e) Random Sample, ML (Exponential) (d) Random Sample, REML (Exponential) 

a a 

'" '" 

00;000 007000 
ci ci 

<0 '" ci a 

" " ci ci 

'" '" ci ci 

a a 
ci ci 

6 

Range of error variable Range of error variable 

FIGURE 7.34: Boxplots showing the estimated value of 1/ for a given range of the error 
variable, c. For t he exponential model the effective range is shown. The results are shown 
for simple random sampling. 

(a) Structured Sample, ML (Spherical) (b) Structured Sample, REML (Spherical) 

C> a 
,-' 

'" · B' ~, '" ci ci 

<0 t $868 <0 

iBS3~e~ ci ci 

v " ci EJ ' , ' , , ci .l -~-~~~~ 
, • ....L. • -'-

'" -'- -1._ --'- '" ci ci 

a a 
ci ci 

4 

Range of error variable Range of error variable 

(e) Structured Sample, Ml (Exponentia l) (d) Structured Sample, REMl (Exponential) 

a C> 

'" :. TOoEl .,. '" :- TOEJB ,_. ci ci 

<0 D' + , B 
<0 

, 0, 8 ci ci o ~ ~ : : , v ~ I ..:.. : : " '1j....1... ' , 
ci . ' ~ ci . ' ~ 

• 0 ~ 8 9 ~ 

'" • 0 '" ! 0 ci ci 

a C> 
ci a 

3 

Range of error variable Range of error variable 

FIGURE 7.35: Boxplots showing the estimated value of 1/ for a given range of the error 
variable, c. For the exponential model the effective range is shown. The results are shown 
for structured sampling on a 10 x 10 grid. 

246 



Chapter 7 Analysis III: modelling issues 

/30 (31 
¢ OLS ML OLS ML 
1 -0.0007 -0.0005 -0.0014 -0.0009 
2 0.0025 0.0014 -0.0065 -0.0025 

ME 3 -0.0244 -0.0296 -0.0076 -0.0045 
4 0.0089 0.0096 0.0166 0.0128 
5 0.0278 0.0168 0.0117 0.0071 
6 -0.0282 -0.0156 0.0119 0.0080 
1 0.0981 0.0979 0.1053 0.1052 
2 0.1265 0.0159 0.1027 0.1014 

RMSE 3 0.1663 0.1652 0.1010 0.0894 
4 0.2086 0.2073 0.0976 0.0917 
5 0.2666 0.2550 0.1017 0.0890 
6 0.2987 0.2632 0.1050 0.0852 

TABLE 7.13: Table showing the ME and R~I8E for the estimates of /3 = c(f3o,,6dT for 
the 018 and M1 approaches. 
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estimated parameters, although these were less accurate than when the spherical model 

was applied. However, a choice between the spherical and exponential models could be 

made on the basis of the likelihood or the AIC. 

Recall from equations 7.8 and 7.9 that j3 and Cov(/3) both depend on the covariance 

matrix, :E. The mean error (ME) and root mean square error (RMSE) for the estimates 

of /3 = ((30, /31)T are shown in table 7.13. This shows sn1.all reductions in the bias and 

an increase in precision of the point estimates of the model coefficients. Overall, the ML 

gives more accurate estimates of the model coefficients. This increase in accuracy is larger 

for larger values of the range, ¢. 

The standard errors of the coefficients require examination. These are obtained from the 

diagonal of Cov(j3). These are shown in figure 7.36 for the structured sample, where the 

parameters have been estimated using OLS and ML. For (30 the standard error tended 

to increase whereas for /31 it tended to decrease. This diagram provides a useful demon­

stration of the impact of :E on Cov(j3). Such analysis is not presented in the literature, 

which tends to focus on the impact of the correlation structure on the estimate of (Y2 (e.g., 

Cook & Pocock 1983, Harris & Johnson 1996, Lark 2000). An increase (decrease) in the 

standard error leads to decrease (increase) in the associated t value. If this decrease is 

sufficiently large then it may lead to the situation where the null hypothesis that the co­

efficient is not significantly different to zero is accepted. In the example presented in this 

analysis there is no change in the outcome of this hypothesis test. However, it is important 

to realise that this may not always be the case and that there are examples where incor­

porating the correlation structure leads to fundamental changes in the model structure 

and conclusions drawn from an analysis (Ver Hoef et al. 2001, Lark & Cullis 2004, Lark & 

Webster 2006). Furthermore, the emergent effect on Cov((3) of introducing the correlation 

structure is not straightforward to predict a priori. This is further illustrated when the 
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results for the real data are presented. 
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There are two final points that merit consideration. First, the above discussion noted that 

changes in Cov(i3) affect the associated t-values and can hence affect the results of hy­

pothesis tests. Establishing the critical value for hypothesis testing requires specification 

of the degrees of freedom. However, where the residuals are correlated, it is not clear how 

many degrees of freedom there are. This point is acknowledged in the literature (Harris & 

Johnson 1996, Ver Hoef et al. 2001) but not fully addressed. Indeed, some authors simply 

calculate it in the same way as the uncorrelated case (Harris & Johnson 1996, Lark & 

Cullis 2004, Lark & Webster 2006). This issue will have a greater effect for small samples. 

This issue is not considered further in this thesis and is left as an area for future research. 

Second, the above analysis discussed parameter estimation but not prediction. This issue 

is given further consideration below. 

In section 2.1.1 the difference between confidence and prediction intervals was discussed. 

The confidence interval gives an interval for Yo, where Yo is a new point predicted using the 

regression line. The confidence interval is dependent on Cov(/-J) and the t value associated 

with the specified p value (e.g., p=0.05 for the 95% confidence interval). Hence, the 

confidence interval quantifies the uncertainty in Yo due to uncertainty in the location of 

the regression line. The prediction interval also incorporates the residual variance, &2. 
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Hence the prediction intervals will always be wider than the confidence intervals. Indeed, 

the data may show substantial scatter, leading to a large value for (j2 and wide prediction 

intervals, but, if the trend is clearly identifiable the confidence intervals may be narrow. 

When there is no spatial autocorrelation in the residuals, prediction intervals are given 

for a single location (or block) (N eter et al. 1996). Hence, although the BL UP (best linear 

unbiased predictor) is Yo, the true value of Yo could lie anywhere within the prediction 

interval. However, for the case where there is spatial autocorrelation this approach makes 

no sense. This is because both the BLUP and a possible realisation will be affected by 

the neighbouring values of y and y. Hence prediction and the prediction variance are as 

given in section 2.2.2.4 for kriging. These are recapped below: 

(7.20) 

where x( uo) are the covariates at location Uo, ~ is the covariance matrix for the residuals 

and, ~o = (Cov[y(uo). y(Ul)], ... , Cov(y(uo), y(un)])T. Hence, the first term on the RHS 

is the prediction based solely on the regression model and the second term on the RHS 

modifies this value according to the values of the residuals at nearby data. The prediction 

error variance (kriging variance) is then given as: 

which is the kriging variance. The RHS can be thought of as having three components. 

The first term is simply the residual variance (and variogram sill). The second term has a 

negative sign because, having measurements at neighbouring points reduces uncertainty 

in the prediction. However, the third term has a positive sign because uncertainty in the 

estimation of f3 acts to increase the uncertainty of prediction. If the measured values are 

very far from Uo (beyond the variogram range), then the second term on the RHS of both 

equations will approach zero. 

If the objective is spatial prediction, equation 7.20 will give the BLUP image and equa­

tion 7.21 will give the prediction variance. This will apply both for interpolating spatially 

between measurements and for extrapolating spatially. In the latter case, the predic­

tion will be dominated by ~ and will not be modified by neighbouring measurements. 

If a realisation from the surface is required, then this can be simulated using sequential 

simulation. 

For many empirical models used in remote sensing the objective is to predict some bio­

physical property of the surface, such as biomass or green leaf area index (G LAI) (Curran 

& \Villiamson 1985, Dungan 1998). In such situations aspatial regression models or geo­

statistical models might be used to (i) model the relationship between field and remotely 

sensed data and (ii) predict the variable of interest across the image. In such cases, it is 

appropriate to predict the variable of interest using equations 7.20 and 7.21. Conditional 

simulation could then be used if it is necessary to simulate a "possible reality" for the 
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surface. However, in the case of the ELM, the situation is different. In this context, the 

ELM is a form of calibration and it is expected that the predicted image should resemble 

the input image. If conditional simulation was undertaken, this would yield an image 

that differed in spatial structure from the original image. Hence, realisations of the image 

should be limited to varying the regression line. This will require a modified version of 

equation 7.21. Additionally, this will be constrained by what is going on in neighbouring 

wavebands, as discussed in section 8.3. 

7.5 Correlation and heteroskedasticity 

Section 7.4 focused on estimating the regression parameters in the situation where there 

is spatial autocorrelation in the residuals. This assumed that (j2 was uniform and, hence, 

the residuals were homoskedastic. This section relaxes the homoskedastic condition to 

deal with heteroskedastic residuals. This situation is likely to be widespread in reality 

and it was demonstrated in the case of the ELM in the first part of this chapter. However, 

to date, the problems of spatial autocorrelation and heteroskedasticity have been dealt 

with separately in both the GIS and remote sensing literature, although there are some 

examples in the epidemiological literature (e.g., Cook & Pocock 1983). Hence, the analysis 

presented in this section is novel in the context of remote sensing and GIS. 

Under conditions of heteroskedasticity, the variance, (j; will vary across the image. Hence, 

as in equation 7.1, (j; = (j2 / Wi. Hence: 

(7.22) 

where Pij is the correlation. Equation 7.16 can then be adapted to populate the elements 

of L: 

(7.23) 

The analysis proceeds first with simulated data where known weights are applied. This 

allowed testing and examination of the accuracy of the approach, without the potentially 

confounding effects of estimating the weights. Hence the covariance parameters ((j2, v and 

¢) were estimated using ML and REML but equation 7.23 was adopted rather than 7.16. 

As discussed in section 7.4 it is unusual for the weights to be known a priori. Hence, it is 

likely that the weights will need to be estimated using one of the procedures discussed in 

section 7.4. When the approach was applied to real data, estimated weights were used, 

since the true weights were unknown. 



Chapter 7 Analysis III: modelling issues 251 

;=3 

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 

;=4 ;=5 ;=6 

:&1-
g 

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 

FIGURE 7.37: Unconditionally simulated images (one realisation) for the error term, c. 
They have been modelled using a spherical model with a 2 = 1, l/ = 0.5 and ¢ = 1, 2, ... , 6. 

7.5.1 Developing the approach for simulated data 

For the case where a 2 was allowed to vary across the image, the grid was divided into 

three strips, each 83 columns wide. Each strip in the image had an error variance, err, of 

1, 2 and 4 respectively. Hence, since err = er2/wi, for err = 1, 2,4, Wi = 1,0.5, 0.25 and 

er2 = 1 as illust rated in figure 7.37. These six images were created using unconditional 

simulation for ¢ = 1, 2, ... ,6. The image of X shown in figure 7.26 was used again and 

the image of y was again simulated using equation 7.19. 

As before, 100 replicate samples were obtained (see section 7.4.1). However , this time the 

sample consisted of 300 data, with one 10 x 10 sample grid (or 100 random data points) 

lying in each strip. Hence, for each level of err, the sample size was the same as that used 

previously. However , since there were three levels of err, the overall sample size was larger. 

Having obtained t he simulated images of y and X parameter estimation was performed 

on each sample using WLS , ML and REML. This was repeated 100 times to establish the 

accuracy of the parameter estimation. Note that, in this case, WLS was used instead of 

OLS. 

7.5.1.1 Results 

Results in this section are presented in the same format as section 7.4.1.1. 
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Figure 7.38 shows the estimated value of a for WLS, ML and REML when the spherical 

model is adopted. This showed that, under \VLS, estimates of 0'2 were biased. How­

ever, both ML and REML led to unbiased estimators of a. Unlike the case presented 

in section 7.4.1.1 ML does not provide more accurate estimates than REML. However, 

it should be recalled that the sample comprised of three sets of 100 data points (one for 

each "strip"), giving a total sample size of 300. The analysis presented in section 7.4.1.1 

was based on a sample size of 100 for the entire 249 x 249 image. Hence, it is important 

not to confound the effect of increasing the sample size with heteroskedasticity. Indeed, 

when the sample size was increased to 3 x 100, but with 0'1: = 1 for all three strips both 

ML and REML were found to give unbiased estimates of 0'2. Hence this is attributed to 

the sample size, rather than the presence of heteroskedasticity. 

Figure 7.39 shows the estimated value of ¢. It is interesting to note that under random 

sampling both ML and REML yield approximate estimates for ¢. The same pattern 

was observed under homoskedastic conditions for a sample size of 3 x 100. This was an 

important result since it implied that the larger sample size provided a sufficiently large 

sample of nearby data to allow an approximate estimate of ¢. Importantly, this also 

showed that the model residuals were correlated and the fact that random sampling was 

employed does not mean that independence can be assumed. For ML and REML, the 

estimates of ¢ were unbiased and precise by comparison to figures 7.32 and 7.33 

The estimates of v for the random and structured sample and the spherical model are 

shown in figure 7.40. As for 0'2 and ¢, the large sample size yielded accurate estimates of 

v for the structured sample, particularly for ¢ 2: 3. For the random sample the estimates 

were highly inaccurate for ¢ :s; 3. For ¢ > 3, the estimates, although still highly variable, 

were more accurate than for those for the smaller sample presented in figure 7.34. 

The analysis presented above reveals two clear conclusions: 

1. The larger sample size allows more accurate estimation of all three parameters for the 

structured sample. There is no substantial difference between the estimates obtained 

using ML and REML, a result also found by Diggle et al. (2003). Importantly, the 

large sample size also allows "detection" of the spatial correlation in the random 

sample. This is most clearly shown for J (figure 7.39), but can also be observed for 

f) (figure 7.40). This is an important result since, even if a random sample is used, 

independence cannot be assumed (see also Lark 2000). Hence it is necessary to test 

whether the residuals are correlated. 

2. These results show that the extension to the heteroskedastic case, given in equa­

tion 7.23, allowed accurate estimation of the covariance parameters. On a practical 

note, the algorithm was found to yield stable results. However, in this analysis, the 

weights used were those that were known a priori. In reality, the weights would 

need to be estimated, as discussed previously. This analysis was not conducted for 

the simulated images, but is presented for real data in section 7.6.1. 
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Finally, as in section 7.4.1.1 , adoption of ML or REML led to an increase in the st andard 

error of {30 but a decrease in t he standard error of {31. 
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FIGURE 7.39: Boxplots showing ¢ - ¢ for a given range of the error variable, c . The 
results are shown for the case where t he spherical model is adopted for both random and 
structured sampling. 
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FIGURE 7.41: Plots showing the residuals from the OL8 regression model for MMR 
band 1 regressed on ATM band 2. The MMR data were aggregated using the simple 
averaging approach. The variograms for all three surfaces (a) were calculated for the 
standardised residuals. The variograms for the individual GTs were calculated using the 
non-standardised residuals. 

7.6 Applying the approach for real data 
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Having investigated the ML and REML approaches to regression with correlated residu­

als, the approach was applied to real data - the data used for parameter estimation and 

implementation of the ELM. Throughout this section, the y (reflectance) data used were 

those aggregated using the simple averaging approach and all pixels containing one or 

more field measurements were retained. The aggregation was performed using the sim.­

pIe averaging approach, owing to the previously discussed limitations of using kriged or 

conditionally simulated blocks. 

Figures 7.41 to 7.44 show the variograms of the OLS residuals for the four MMR bands. 

The variogram of the standardised residuals for all surfaces are also shown. These vari­

ograms show clear evidence of spatial structure for the asphalt and concrete surfaces in 

all three wavebands. It is interesting to note that the form. of this spatial structure varies 

between bands 1 to 3 (visible wavebands) and band 4 (near-infrared waveband). Similar 

results were observed by Atkinson & Emery (1999), who found that the spatial struc­

ture of the reflectance of vegetation varies between visible and near-infrared wavelengths. 

Further evidence for spatial structure in the residuals was found when a variogram was 

estimated for the OLS residuals using the ML approach. Comparison of the variogram 

and non-spatial model showed strong evidence for spatial structure for all targets and all 

wavebands, although the evidence is weaker for the grass target in visible wavebands. 
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FIGURE 7.42: Plots showing the residuals from the OLS regression model for MMR band 
2 regressed on ATM band 3. Other details are as for figure 7.41 

(a) All three surfaces (b) Asphalt 

';2 

o. 00· 
o· 

00 • 
o· • 0 • 

ro ;0: . .. • 0 0 
0° 

• .. m 0 0 
0 

0 0 

0 is 
0 0 

10 15 20 10 15 20 

lag 1m) lag 1m) 

(C) Concrete (d) Grass 

"' N 
~ 

0 • 0 o ••••• 0 • 
N ... 0 ..... • m . o. 0 

~ ~ 
0 

"" 0 . c 0 • ,fg " 
~ 0 :~ 
E ~ ~ N 

0 

"' 0 

0 0 
0 0 

10 15 20 10 15 20 

lag 1m) lag(m) 

FIGURE 7.43: Plots showing the residuals from the OLS regression model for MMR band 
3 regressed on ATM band 5. Other details are as for figure 7.41 
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FIGURE 7.44: Plots showing the residuals from the OLS regression model for MMR band 
4 regressed on ATM band 7. Other details are as for figure 7.41 
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The fact that there is evidence for spatial structure in the residuals means that this should 

be accounted for in the regression model. However, implementing the spatial regression 

model does present a challenge. It will be recalled that the covariance matrix, :E had 

three parameters: (J2, v and cp. However, the shape and magnitude of the variogram 

varies between targets. The model presented in previous sections used a single model, 

although it accounted for variation in (J2 through the weighting structure. The estimation 

of appropriate weights was discussed in detail in section 7.1. However, the ML and REML 

models do not allow provision for varying the form of the variogram, given by cp and v. 

Hence, the model will only give an approximate and general estimation of the correlation 

structure. 

It is not clear how the ML model can be adapted to allow the form of the variogram 

to vary across the image. Within the regression kriging framework, discussed in section 

2.2.2.4, this could be addressed in an ad hoc manner. The residuals from the OLS or 

WLS model could be used to estimate the variogram parameters which could then be 

used to construct the correlation matrix. However, such an approach would not have 

the optimal properties of the ML approach (Hengl et al. 2004, Lark & Cullis 2004, Lark 

& \Vebster 2006). Furthermore, although this approach would account for the effect of 

correlation on estimation, it is less useful for prediction since the interpolation component 

could not be applied for surfaces that do not lie within the training data set used to build 

the models. It might be argued that, since the ELM is a form of calibration, primary 

interest should lie in accurate estimation of f3 and its associated confidence intervals (as 

discussed previously). However, for more general purposes the prediction interval will be 

required. Indeed, this ability to use the model at locations not included in the training set 
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MMR Bl on MMR B2 on MMR B3 on MMR B4 on 
ATMB2 ATM B3 ATM B5 ATMB7 

Po -2.483 -0.6142 -1.8526 -3.8777 
s.e.(!3o) 0.0987 0.1208 0.1212 0.2778 
p < 0.01 < 0.01 < 0.01 < 0.01 
p < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 

PI 0.3021 0.2949 0.3529 0.5415 

s.e.(!3I) 0.0024 0.0025 0.0025 0.0048 
p < 0.01 < 0.01 < 0.01 < 0.01 
p < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 
0-'2 0.6121 0.9721 1.1128 2.262 
()" 0.7824 0.9859 1.055 1.504 
R2 0.9738 0.9709 0.9785 0.9671 

TABLE 7.14: Table showing the result of parameter estimation of the ELYI regression 
model using the simple averaging approach and OLS. All pixels containing one or more 
field measurement are included. 
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is one of the advantages of regression over cokriging (Dungan 1998, Lark 2000). Despite its 

disadvantage, this ad hoc RK approach is given some consideration in the results section. 

7.6.1 Results 

In order to evaluate the performance of the combined correlated and heteroskedastic 

residuals the results of three model implementations for the simple averaging approach 

are evaluated. These include the OLS case, presented in table 5.10, section 5.1 and is 

replicated below (table 7.14). Next is the WLS case, where the weights are computed as 

the inverse of the variance of the OLS residuals for each GT (see section 7.2.2). The WLS 

results are presented in table 7.15. Finally the results of the combined correlated and 

heteroskedastic residuals model (WML) are presented in table 7.17. For the WML model, 

the model was fitted using both the ML and REML approach and the results compared. 

Both the spherical and exponential correlation models were considered and evaluated. 

The difference between the OLS and WLS parameter estimates varied depending on the 

waveband examined. For MMR band 1 and MMR band 3 the difference in the estimates 

of the model coefficients and their associated standard errors is small. Explanation for 

this can be found in figure 5.13, which shows that the OLS regression line passes through 

the centre of the cloud of points associated with each GT. Hence, when differential weights 

are applied to each GT, substantial change in the location of the regression line would not 

be expected. However, the confidence intervals on the coefficients and on the regression 

line may change. For MMR band 2, the situation was more complex; in this case the 

GTs do not lie on a straight line, and applying different weightings to each GT caused a 

small but substantial change in the estimates of the regression coefficients. Furthermore, 
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MMR B1 on MMR B2 on MMR B3 on MMR B4 on 
ATMB2 ATMB3 ATMB5 ATMB7 

Po -2.5476 -0.487 -1.8468 -3.5301 

s.e·CBo) 0.0653 0.1089 0.0978 0.1272 

P < 0.01 < 0.01 < 0.01 < 0.01 
p < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 

PI 0.3046 0.2835 0.351 0.5345 

s.e·(,Bd 0.0020 0.0030 0.0027 0.0032 
p < 0.01 < 0.01 < 0.01 < 0.01 
P < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 
0-2 1.009 1.4256 1.0016 1.093 
0" 1.0173 1.1941 1.001 1.045 
R2 0.9812 0.9541 0.9743 0.9849 

Wasphalt 11.834 10.0761 8.1795 4.8504 

Wconcrete 0.8288 0.5911 0.5022 0.4522 

Wgrass 6.9545 3.5011 1.9885 0.3329 
wreLative 1.0000 1.0000 1.0000 1.0000 aSEhalt 
wre ative 0.0700 0.0587 0.0614 0.0932 concrete 
wrelative 

J grass 0.5877 0.3475 0.2431 0.0686 

TABLE 7.15: Table showing the result of parameter estimation of the ELM regression 
model using the simple averaging approach and WLS. All pixels containing one or more 
field measurement are included. 
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the standard error on fh was widened, whilst the standard error on Po was reduced. The 

effect of these changes is illustrated in table 7.16. This shows that the location of the 

regression line and the confidence intervals around that regression line differ for the OLS 

and WLS case - although the impact of that change is greatest for large radiance values. 

Finally, for MMR band 4 small changes were observed in the estimates of Po and Pl. 
Their associated standard errors were also narrower for the WLS approach. Note that 

the ordering of the reflectance values between the targets differs for the visible and near­

infrared bands. For the NIR, grass is the brightest GT, whereas it is the darkest target in 

the visible bands. It also shows larger variance, relative to the other targets in the NIR. 

As a result, the asphalt target, which shows the lowest variance (and the highest weight) 

in all three bands, is not bracketed by grass and concrete. Hence, when the weighting is 

applied, it is more likely to exert control over the regression parameter estimates. 

Notwithstanding any change in the parameter estimates, applying the weighting scheme 

will lead to a change in the value of 0"[ associated with each target. In all cases, this is 

important for prediction. 

The results from the combined heteroskedastic and correlated residual model are shown in 

table 7.17. For MMR band 4 the spherical model was chosen, since the exponential model 

fails to converge numerically. The spherical model was also a reasonable choice based on 

the variograms presented in figure 7.44. Both ML and REML yield identical results to two 
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Radiance YOLS 95% CI YWLS 95% CI YWLS - YOLS Example Landcover 
0 -0.61 0.45 -0.49 0.43 0.13 -

10 0.234 0.37 2.35 0.32 0.01 Dense vegetation 
20 5.28 0.29 5.19 0.21 -0.1 Grass 
30 8.23 0.22 8.02 0.13 -0.22 Grass 
40 11.18 0.18 10.85 0.13 -0.33 Urban surfaces (e.g., asphalt) 
50 14.13 0.18 13.69 0.21 -0.44 Urban surfaces 
60 17.08 0.22 16.52 0.31 -0.56 Urban surfaces 
70 20.03 0.29 19.36 0.42 -0.67 Concrete 
80 22.98 0.36 22.19 0.54 -0.79 Concrete 
90 25.93 0.44 25.03 0.65 -0.9 Sand 
100 28.88 0.53 27.86 0.77 -1.02 Metallic surfaces (e.g., sheds) 

TABLE 7.16: Table showing the predicted values of reflectance for M~1R band 2 (re­
gressed on ATM band 3) for a range of radiance values. Results are shown for the OLS 
and WLS regression models (using the simple averaging blocks). The 95% confidence 
intervals on the regression line are also shown. 

decimal places, which was judged to be reasonable given that the likelihood is maximised 

numerically. The estimate of (j2 was slightly larger than that obtained using WLS. This 

was expected given that, as discussed previously, failure to account for correlation tends 

to lead to an underestimate of (j2. Furthermore, the correlation structure leads to an 

increase in the standard errors on the estimates of the regression coefficients relative to the 

WLS case. Hence, incorporating the correlation structure has important implications for 

quantifying the uncertainty in estimation and prediction. This is illustrated in table 7.18. 

These are important results, since they show that modelling the correlation leads to an 

increase in the confidence interval on the regression line, particularly for large radiance 

values. Importantly, for the NIR waveband, these correspond to vegetated surfaces which 

are often of considerable interest to users of remotely sensed data. 

Finally, the results for the visible wavebands (MMR bands 1, 2 and 3) are now considered. 

Both the spherical and exponential models estimated very long range variation for both 

the ML and REML approaches. Associated with this were estimates of (j2 that seem 

unrealistically high by comparison to the WLS approach. The simulation experiments do 

not suggest that the increase should be so large. Hence, these results are attributed to the 

inability of the combined heteroskedastic and correlated regression model to cope with the 

complicated spatial structure shown in Figures 7.41, 7.42 and 7.43. One interpretation 

might be that, for the visible wavebands, the spatial correlation structure is substantially 

different between targets and cannot be modelled using a single value for v and cp. For the 

NIR waveband the spatial structure appears (visually) to be much more similar between 

GTs. Furthermore, the long range variation in the visible wavebands, particularly for the 

asphalt surface, may be indicative of some unexplained variation (Webster & Oliver 2001, 

Ver Hoef et al. 2001) that might be attributed to a trend (on location) or another covariate. 

However, incorporating a trend on location is impractical given that a regression model 

based on attribute (radiance) is required. The possibility of including further covariates 
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MMR B1 on MMR B2 on MMR B3 on l\;fMR B4 on 
ATMB2 ATMB3 ATMB5 ATM B7 

Po -0.5717 0.7191 -0.4813 -3.377 
s.e.(;3o) 0.5054 0.5702 0.5784 0.1981 
p > 0.1 < 0.1 > 0.1 < 0.01 
p < 0.05 No No No Yes 
p < 0.01 No No No Yes 

PI 0.2421 0.246 0.3079 0.5294 

s.e·(;3d 0.0134 0.0147 0.0155 0.0052 
p < 0.01 < 0.01 < 0.01 < 0.01 
p < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 
Correlation model Spherical Spherical Spherical Spherical 
0- 2 2.2622 1.7662 1.5304 1.107 
() 1.5041 1.329 1.2371 1.0521 
f) 0.6674 0.6274 0.5055 0.8146 

A 

c/J 179.9448 95.2479 96.6057 6.1848 
R2 0.6377 0.7039 0.7584 0.9261 

Wasphalt 11.834 10.0761 8.1795 4.8504 
Wconcrete 0.8288 0.5911 0.5022 0.4522 
Wgrass 6.9545 3.5011 1.9885 0.3329 
wrelatwe 1.0000 1.0000 1.0000 1.0000 aSEhalt 
wre ative 0.0700 0.0587 0.0614 0.0932 concrete 
wrelative 

'.Qrass 0.5877 0.3475 0.2431 0.0686 

TABLE 7.17: Table showing the result of parameter estimation of the ELM regression 
model using the simple averaging approach and the combined heteroskedastic and cor­
related residuals (WML) approach. All pixels containing one or more field measurement 
are included. The parameters were estimated using the maximum likelihood approach 
with a variogram embedded to account for the spatial correlation. 

was not explored, although this subject is discussed in chapter 8. 
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In order to address the correlation in the residuals the ad hoc RK type approach was 

adopted. This is presented in table 7.19. The correlation structure was estimated from 

the OLS residuals for each GT using the MBG-ML approach. This was used to populate 

the correlation matrix which was then "plugged-in" to obtain the GLS estimator of p. 
The resulting parameter estimates are presented in table 7.19. For the visible wavebands 

the variogram range is large for the asphalt surface, but shorter for the concrete and grass 

surfaces. The predicted values of Y (YRK) together with the associated confidence intervals 

are presented in tables 7.20 to 7.23. For bands 1 and 3 YRK (table 7.20 and 7.22) is similar 

to YOLS and YWLS, although the confidence intervals are wider. For band 2 (table 7.21), 

the results are interesting, since Y obtained for RK is further modified relative to the OLS 

and WLS cases. The confidence intervals are also wider. This demonstrates that failure 

to account for spatial correlation can affect both the predicted value and the uncertainty 

estimate. Finally, the RK predictions and confidence intervals for band 4 (table 7.23) 

were similar to those obtained for the WML approach. 
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Radiance f)OLS CI YWLS CI f)WlvlL CI Example Landcover 

0 -3.89 1.08 -3.53 0.50 -3.38 0.77 -

10 1.53 0.90 1.81 0.38 1.92 0.58 \Vater 

20 6.94 0.73 7.16 0.27 7.21 0.41 Shallow water 

30 12.35 0.56 12.50 0.19 12.50 0.27 Urban surfaces 

40 17.77 0.41 17.85 0.16 17.80 0.24 Urban surfaces 

50 23.18 0.30 23.19 0.22 23.09 0.36 Concrete 

60 28.59 0.29 28.54 0.32 28.39 0.52 Concrete 

70 34.01 0.38 33.88 0.43 33.68 0.71 Grass 

80 39.42 0.53 39.23 0.55 38.98 0.90 Grass 

90 44.84 0.69 44.57 0.67 44.27 1.10 Dense vegetation 

100 50.25 0.87 49.92 0.79 49.57 1.30 Dense vegetation 

TABLE 7.18: Table showing the predicted values of reflectance for MMR band 4 (re­
gressed on ATM band 7) for a range of radiance values. Results are shown for the 018, 
W18 and combined heteroskedastic and correlated residuals (WM1) regression models 
(using the simple-averaged blocks). The 95% confidence intervals on the regression line 
are also shown. 
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MMR Bl on MMR B2 on MMR B3 on MMR B4 on 

ATMB2 ATMB3 ATMB5 ATM B7 

(30 -2.4748 -0.7205 -1.909 -3.2242 

s.e.(;3o) 0.0756 0.2275 0.1652 0.2286 
p < 0.01 < 0.01 < 0.01 < 0.01 
p < 0.05 Yes Yes Yes Yes 

p < 0.01 Yes Yes Yes Yes 

(31 0.2996 0.2949 0.3527 0.5249 

s.e·CB1) 0.029 0.0044 0.0034 0.0052 
p < 0.01 < 0.01 < 0.01 < 0.01 
p < 0.05 Yes Yes Yes Yes 

p < 0.01 Yes Yes Yes Yes 
(J2 1.013 1.0549 1.0104 1.027 
(J 1.0065 1.0271 1.0052 1.0134 
Correlation model Spherical Spherical Spherical Spherical 

9asphalt 48.12 54.11 40.38 11.41 

Vasphalt 0.5828 0.7195 0.6214 0.6941 
Correlation model Spherical Spherical None Spherical 

9concrete 3.418 3.472 - 4.213 

vconcrete 1 1 0 1 
Correlation model None Spherical Spherical Exponential 

9grass - 29.81 16.44 7.333 

Vgrass 0 0.333 0.1657 0.712 
R"2 0.9676 0.9816 0.9865 0.9109 

Wasphalt 11.834 10.0761 8.1795 4.8504 

Wconcrete 0.8288 0.5911 0.5022 0.4522 

Wgrass 6.9545 3.5011 1.9885 0.3329 
wrelative 1.0000 1.0000 1.0000 1.0000 aSfrhalt 
wre ative 0.0700 0.0587 0.0614 0.0932 concrete 
wrelative 

jqrass 0.5877 0.3475 0.2431 0.0686 

TABLE 7.19: Table showing the result of parameter estimation of the ELM regression 
model using the simple averaging approach and the combined heteroskedastic and cor­
related residuals RK approach. All pixels containing one or more field measurement are 
included. The parameters were estimated using the regression kriging (RK) type ap­
proach where the spatial correlation structure is estimated from the OL8 residuals for 
each GT. 
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Radiance YOLS CI YWLS CI YRK CI Example Landcover 
0 -2.46 0.36 -2.55 0.26 -2.47 0.30 -

10 0.55 0.29 0.50 0.18 0.52 0.20 Dense vegetation 
20 3.56 0.21 3.54 0.12 3.52 0.12 Grass 
30 6.57 0.16 6.59 0.08 6.51 0.13 Grass 
40 9.58 0.14 9.63 0.11 9.51 0.22 Urban surfaces (e.g., asphalt) 
50 12.59 0.17 12.68 0.17 12.50 0.32 Urban surfaces 
60 15.60 0.24 15.73 0.25 15.50 0.43 Concrete 
70 18.61 0.31 18.77 0.32 18.50 0.54 Concrete 
80 21.62 0.39 21.82 0.40 21.49 0.66 Metallic surfaces (e.g., sheds) 
90 24.63 0.48 24.86 0.48 24.49 0.77 Metallic surfaces (e.g., sheds) 
100 27.64 0.56 27.91 0.56 27.48 0.89 Sand 

TABLE 7.20: Table showing the predicted values of reflectance for :-AMR band 1 (re­
gressed on ATM band 2) for a range of radiance values. Results are shown for the OLS, 
WLS and the RK type regression model. Field measurements are aggregated to pixel­
sized supports using the simple averaging approach where every pixel containing one or 
more field measurement is retained. The 95 % confidence intervals on the regression line 
are also shown. 

Radiance YOLS CI YWLS CI YRK CI Example Landcover 

0 -0.61 0.45 -0.49 0.43 -0.72 0.89 -

10 2.32 0.37 2.35 0.32 2.23 0.74 Dense vegetation 
20 5.26 0.29 5.18 0.21 5.18 0.59 Grass 
30 8.20 0.22 8.02 0.13 8.13 0.46 Grass 
40 11.14 0.18 10.85 0.13 11.08 0.36 Urban surfaces (e.g., asphalt) 
50 14.07 0.18 13.69 0.21 14.03 0.34 Urban surfaces 
60 17.01 0.22 16.52 0.31 16.97 0.40 Urban surfaces 
70 19.95 0.28 19.36 0.43 19.92 0.51 Concrete 
80 22.89 0.36 22.19 0.54 22.87 0.65 Concrete 
90 25.82 0.44 25.03 0.65 25.82 0.80 Sand 
100 28.76 0.53 27.86 0.77 28.77 0.96 Metallic surfaces (e.g., sheds) 

TABLE 7.21: Table showing the predicted values of reflectance for :VIMR band 2 (re­
gressed on AT:-A band 3) for a range of radiance values. Details are as given in table 7.20. 

Radiance YOLS CI YWLS CI YRK CI Example Landcover 

0 -1.82 0.45 -1.85 0.38 -1.91 0.65 -

10 1.69 0.36 1.66 0.28 1.62 0.53 Dense vegetation 
20 5.21 0.29 5.17 0.19 5.14 0.42 Grass 
30 8.73 0.23 8.68 0.12 8.67 0.33 Asphalt 
40 12.24 0.19 12.19 0.13 12.20 0.28 Urban surfaces (e.g., asphalt) 
50 15.76 0.20 15.70 0.20 15.73 0.29 Urban surfaces 
60 19.28 0.24 19.21 0.30 19.25 0.35 Concrete 
70 22.79 0.31 22.72 0.40 22.78 0.44 Concrete 
80 26.31 0.38 26.23 0.50 26.31 0.55 Sand 
90 29.83 0.47 29.74 0.61 29.83 0.67 Metallic surfaces (e.g., sheds) 
100 33.35 0.55 33.25 0.72 33.36 0.79 Metallic surfaces (e.g.) sheds) 

TABLE 7.22: Table showing the predicted values of reflectance for MMR band 3 (re­
gressed on ATYI band 5) for a range of radiance values. Details are as given in table 7.20. 
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Radiance YOLS CI YWLS CI YRK CI Example Landcover 

0 -3.89 1.08 -3.53 0.50 -3.22 0.90 -

10 1.53 0.90 1.81 0.38 2.02 0.71 Water 
20 6.94 0.73 7.16 0.27 7.27 0.53 Shallow water 
30 12.35 0.56 12.50 0.19 12.52 0.38 Urban surfaces 
40 17.77 0.41 17.85 0.16 17.77 0.30 Urban surfaces 
50 23.18 0.30 23.19 0.22 23.02 0.34 Concrete 
60 28.59 0.29 28.54 0.32 28.27 0.48 Concrete 
70 34.01 0.38 33.88 0.43 33.52 0.65 Grass 
80 39.42 0.53 39.23 0.55 38.77 0.84 Grass 
90 44.84 0.69 44.57 0.67 44.01 1.03 Dense vegetation 
100 50.25 0.87 49.92 0.79 49.26 1.23 Dense vegetation 

TABLE 7.23: Table showing the predicted values of reflectance for ::vIMR band 4 (re­
gressed on ATM band 7) for a range of radiance values. Details are as given in table 7.20. 
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7.6.2 Additional results 

The results presented in section 7.6.1 utilised simple-averaged aggregations of reflectance 

for each pixel. Importantly, all pixels containing one or more field measurements were 

included in the analysis. However, the decision might be made to include only those pixel 

which contain more than a certain number of field measurements ~ a point that is given 

further discussion in section 8.1. Clearly, for the data set used in this thesis, it is not 

possible to set a threshold higher than two. 

In section 5.4.1, OLS results were presented where only pixels containing two or more field 

measurements were included in the analysis. The decision to include pixels containing one 

or more (denoted GO) or two or more (denoted G 1) pixels made only a small difference 

to the estimates of the OLS coefficients. However, the estimates of (J2 were lower for the 

G 1 case, although the confidence intervals on the regression line tended to be wider. This 

increased width in the confidence interval arose because this is dependent on CoV({3) , 

rather than just (J2. It was suggested that it would be preferable to use the G 1 data set 

in preference to GO since, by averaging over a greater number of field measurements a 

more accurate prediction of the per-pixel value is obtained (Curran & Williamson 1985). 

However, it was also noted that there are only 111 Gl pixels whereas there are 436 GO 

pixels. For the analysis undertaken in the current chapter the GO pixels were used, in 

order to give a larger number of pixels for the geostatistical analysis. Nevertheless, it is 

important to give some consideration to the likely impact of choosing Gl. 

The results for Gl are discussed briefly here. First, the relative weights, obtained from the 

variance of the OLS residuals were quite different for G 1 vs. GO. This is clear if tables 7.17 

and 7.24 are compared. In particular, the relative weight of concrete is lower for the Gl 

case. It is proposed that this difference is due to the fact that the spatial structure 

differs between GTs and specifically due to the relative magnitude of the within pixel and 

between pixel variability. The different weighting for GO and G 1 has consequences for the 

confidence intervals on the regression line and for prediction intervals. 

Second, the variograms presented in figures 7.45 to 7.48 show that the OLS residuals have 

a different correlation structure to the OLS residuals for GO (presented in section 7.6.1). 

This result needs to be interpreted with some caution, since the number of pixels used to 

compute the variogram is substantially smaller for GO ~ particularly when the variogram 

is calculated on a per-GT basis. This smaller sample size may lead to less stable vari­

ograms. Nevertheless, the variograms have a different form. In particular, the long range 

spatial structure evident for GO for the visible wavebands is much less apparent for G 1. 

Furthermore, the variogram for the concrete surface is steeper. 

A consequence of the different spatial structure for G 1, combined with the different weight­

ing structure, was that the WML approach yielded a plausible numerical solution for all 

four wavebands with a variogram range of between 3 and 6 m. Combined with the dif­

ferent weighting structure, this led to much wider confidence intervals on the regression 
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line (see tables 7.28 to 7.28). These exceeded 2% (reflectance) for MMR bands 2 and 4 

and were greater than 1 % for bands 1 and 3. Indeed, for band 2 f) differences in excess of 

2.5% arose between OLS, WLS and WML. This is indicative of substantial uncertainty 

in the ELM for this waveband. 

The results discussed above present a potentially confusing message. By only including 

pixels that contain two or more field measurements, it is intended that the accuracy of the 

per-pixel reflectance values should be increased (Curran & Williamson 1985). However, 

when these values are carried through into the ELM regression and the weighting and 

correlation structure modelled, the uncertainty actually increases. This situation was 

discussed in section 1.2 and arises when an increase in understanding leads to an increase in 

uncertainty. In this particular case "understanding" can be taken to mean more accurate 

input data and the use of a more appropriate model (i.e., one that includes weighting 

and correlation). An unfortunate consequence of this is that it is not possible to make 

clear recommendations for the practitioner in terms of specifying a sample size or sample 

structure that will reduce uncertainty. Whilst it is possible to decrease uncertainty in the 

regression by using GO rather than G 1 it is now known that this may not be the right 

thing to do. Hence, the high levels of uncertainty associated with Gl are something that 

the user must accept. Nevertheless, this does open two key areas for future research. 

First, it might be argued that the total number of data points in Gl (111) is low for 

geostatistical analysis and the estimate of the correlation and weighting structure may be 

inaccurate. Future research could adopt a sampling strategy that would yield more pixels 

containing two or more field samples. This would allow investigation of the implications 

of sample size. 

Second, if figure 4.4 is referred to, it is clear that the spectral response of MMR band 1 

closely matches to ATM band 2. However, the matches between the other MMR bands 

and ATM bands is approximate. In particular, MMR band 4 is much wider than ATM 

band 7. It is possible that this may affect the regression model. This is most likely to 

be manifested through the grass surface, owing to the distinct spectral signature of veg­

etation by comparison to the relatively bland asphalt and concrete surfaces. In practice, 

addressing this problem is not straightforward. A spectroradiometer could be used in 

preference to the MMR and the spectra convolved with the ATM or CASI spectral re­

sponse functions. However, such instruments are substantially more complex and more 

cumbersome than the MMR and it was not possible to obtain such a large sample. There 

are serious practical and technical difficulties to be addressed if a fine resolution spectral 

and spatial sample are to be obtained. 
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MMR B1 on MMR B2 on MMR B3 on MMR B4 on 
ATMB2 ATMB3 ATMB5 ATM B7 

130 -2.5749 0.5676 -1.7292 -3.9062 

s.e.(!3o) 0.1306 0.3561 0.2159 0.3758 
p < 0.01 > 0.1 < 0.01 < 0.01 
p < 0.05 Yes No Yes Yes 
p < 0.01 Yes No Yes Yes 

/31 0.3079 0.2547 0.35 0.5508 

s.e.(Bd 0.0041 0.0104 0.0063 0.0097 
p < 0.01 < 0.01 < 0.01 < 0.01 
p < 0.05 Yes Yes Yes Yes 
p < 0.01 Yes Yes Yes Yes 
[yL 1.0174 1.5791 0.9691 1.1158 
[y 1.0087 1.2566 0.9844 1.0563 
Correlation model Spherical Spherical Spherical Spherical 

¢ 4.3304 6.2444 3.3253 6.1526 
f) 0.3746 0.8742 1 0.925 
R2 0.9553 0.9417 0.9796 0.9856 

Wasphalt 24.0837 21.5765 17.8257 6.6392 

Wconcrete 0.7152 0.5626 0.524 0.4645 

Wgrass 12.0368 8.5076 4.0467 0.5777 
wrelative 1.0000 1.0000 1.0000 1.0000 aSf,halt 
wre ative 0.0297 0.0261 0.0294 0.0700 concrete 
wrelative 

".qrass 0.4998 0.3943 0.2270 0.0870 

TABLE 7.24: Table showing the result of parameter estimation of the ELM regression 
model using the simple averaging approach and the combined heteroskedastic and corre­
lated residuals (\VML) approach. Only pixels containing two or more (Gl) field measure­
ment were included in the regression model. The parameters were estimated estimated 
using the maximum likelihood approach with a variogram embedded to account for the 
spatial correlation. 

Radiance YOLS CI f)WLS CI f)W1vlL CI Example Landcover 
0 -2.34 0.69 -2.58 0.42 -2.57 0.52 -

10 0.66 0.54 0.50 0.30 0.50 0.36 Dense vegetation 
20 3.66 0.40 3.58 0.18 3.58 0.22 Grass 
30 6.65 0.30 6.66 0.11 6.66 0.14 Grass 
40 9.65 0.27 9.74 0.16 9.74 0.20 Urban surfaces (e.g., asphalt) 
50 12.65 0.34 12.82 0.27 12.82 0.33 Urban surfaces 
60 15.65 0.46 15.90 0.39 15.90 0.49 Concrete 
70 18.64 0.61 18.98 0.52 18.98 0.64 Concrete 
80 21.64 0.76 22.06 0.65 22.06 0.80 Metallic surfaces (e.g., sheds) 
90 24.64 0.92 25.14 0.78 25.14 0.96 Metallic surfaces (e.g., sheds) 
100 27.63 1.08 28.22 0.91 28.22 1.12 Sand 

TABLE 7.25: Table showing the predicted values of reflectance for MMR band 1 (re­
gressed on ATM band 2) for a range of radiance values. Results are shown for the OLS, 
WLS and the WML type regression model. The reflectance data were aggregated using 
the simple averaging approach and only pixels containing two or more (G 1) field mea­
surement were included. The 95% confidence interval about the predicted values are also 
shown. 



Chapter 7 Analysis III: modelling issues 
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FIGCRE 7.45: Plots showing the residuals from the OLS regression model for MMR 
band 1 regressed on ATM band 2. The rv[\I{R data were aggregated using the simple 
averaging approach, where only pixels containing two or more (G 1) field measurements 
were retained. The variogram for all three surfaces (a) were calculated for the stan­
dardardised residuals. The variograms for the individual GTs were calculated using the 
non-standardised residuals. 
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FIGURE 7.46: Plots showing the residuals from the OLS regression model for M~I{R band 
2 regressed on ATM band 3. Other details are as for figure 7.45 
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FIGURE 7.47: Plots showing the residuals from the OL8 regression model for MMR band 
3 regressed on ATM band 5. Other details are as for figure 7.45 
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FIGURE 7.48: Plots showing the residuals from the OL8 regression model for MMR band 
4 regressed on ATM band 7. Other details are as for figure 7.45 
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Radiance YOLS CI YWLS CI YWlvIL CI Example Landcover 
0 -0.42 0.82 0.36 0.83 0.57 1.41 -

10 2.48 0.67 2.97 0.60 3.11 1.01 Dense vegetation 
20 5.39 0.52 5.57 0.37 5.66 0.63 Grass 
30 8.29 0.40 8.17 0.19 8.21 0.31 Grass 
40 11.19 0.33 10.77 0.21 10.75 0.38 Urban surfaces (e.g., asphalt) 
50 14.10 0.34 13.37 0.41 13.30 0.72 Urban surfaces 
60 17.00 0.43 15.97 0.63 15.85 1.11 Urban surfaces 
70 19.90 0.55 18.57 0.87 18.39 1.51 Concrete 
80 22.81 0.70 21.17 1.10 20.94 1.92 Concrete 
90 25.71 0.85 23.77 1.34 23.49 2.33 Sand 
100 28.61 1.01 26.38 1.57 26.03 2.73 Metallic surfaces (e.g., sheds) 

TABLE 7.26: Table showing the predicted values of reflectance for MMR band 2 (re­
gressed on ATM band 3) for a range of radiance values. Details are given in table 7.25. 

Radiance YOLS CI YWLS CI YWlvIL CI Example Landcover 
0 -1.69 0.76 -1.72 0.67 -1.73 0.86 -

10 1.81 0.61 1.78 0.48 1.77 0.61 Dense vegetation 
20 5.32 0.48 5.28 0.30 5.27 0.38 Grass 
30 8.82 0.38 8.77 0.15 8.77 0.20 Urban surfaces (e.g., asphalt) 
40 12.33 0.32 12.27 0.19 12.27 0.25 Urban surfaces 
50 15.83 0.34 15.77 0.35 15.77 0.46 Urban surfaces 
60 19.34 0.43 19.26 0.54 19.27 0.70 Concrete 
70 22.84 0.55 22.76 0.73 22.77 0.94 Concrete 
80 26.35 0.69 26.26 0.92 26.27 1.19 Sand 
90 29.85 0.84 29.75 1.12 29.77 1.44 Metallic surfaces (e.g., sheds) 
100 33.36 0.99 33.25 1.31 33.28 1.69 Metallic surfaces (e.g., sheds) 

TABLE 7.27: Table showing the predicted values of reflectance for MMR band 3 (re­
gressed on ATM band 5) for a range of radiance values. Details are given in table 7.25. 

Radiance YOLS CI YWLS CI YWML CI Example Landcover 
0 -3.86 1.68 -3.82 0.82 -3.91 1.49 -

10 1.60 1.40 1.64 0.62 1.60 1.13 Water 
20 7.05 1.12 7.10 0.43 7.11 0.80 Shallow water 
30 12.50 0.87 12.56 0.29 12.62 0.54 Urban surfaces (e.g., asphalt) 
40 17.96 0.64 18.02 0.26 18.12 0.49 Urban surfaces 
50 23.41 0.50 23.48 0.38 23.63 0.69 Concrete 
60 28.87 0.51 28.94 0.56 29.14 1.01 Concrete 
70 34.32 0.67 34.40 0.76 34.65 1.36 Grass 
80 39.77 0.90 39.86 0.96 40.16 1.72 Grass 
90 45.23 1.17 45.32 1.17 45.66 2.10 Dense vegetation 
100 50.68 1.44 50.78 1.37 51.17 2.47 Dense vegetation 

TABLE 7.28: Table showing the predicted values of reflectance for MMR band 4 (re­
gressed on AT:\1 band 7) for a range of radiance values. Details are given in table 7.25. 
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7.7 Summary and advice for the practitioner 

This chapter began by discussing the problem of heteroskedasticity and introduced the 

\VLS approach to tackling it. The WLS approach is straightforward and introduced in 

most statistics textbooks (Sen & Srivastava 1990, Neter et al. 1996, Gelman et al. 2004). 

However, the difficulty in applying \VLS lies in accurately specifying the weights. This 

seems to be universally understated in textbooks. The approach taken in section 7.2 was 

to divide the OLS residuals into batches according to their GT. The per-GT weight was 

then given as the inverse of the variance of the OLS residuals. This follows the approach 

suggested by Neter et al. (1996) and Gelman et al. (2004). This approach was effective 

for all four MMR wavebands. 

The primary drawback of the above approach comes when predicting reflectance over a 

surface that is not included in the training data. This is because the above approach does 

not provide a weight for such surfaces. Hence four alternative strategies for predicting the 

weight were examined. Of the four strategies investigated, strategy 3 was most effective 

for the visible wavebands. However, it is necessary to recognise the caveat that this does 

not guarantee success for unmeasured surfaces. An effective strategy was not found for 

the NIR waveband (MMR band 4). 

Previous discussion has advanced the argument that the ELM could be considered a form. 

of calibration. Hence, primary interest should lie in the regression coefficients and the 

confidence intervals surrounding the regression line rather than in the specification of 

prediction intervals. For the purpose of the ELM, it might be argued that weights based 

on the inverse of the variance of the OLS residuals are sufficient. However, part of the aim 

of this chapter was to examine methodologies that would be more generally applicable. 

In other GIS and remote sensing applications of regression, it would be necessary to 

calculate prediction intervals hence predicting the Wi over an unmeasured surface would 

be necessary. However, the analysis presented in section 7.3 demonstrated the difficulty 

of specifying a model to predict the weights. In particular, an appropriate model was not 

found for the NIR waveband and the strategy (3) adopted for the visible wavebands was 

less accurate than simply dividing the OLS residuals into batches. The difficulty attached 

to specifying and predicting weights appears to be universally ignored in textbooks and in 

remote sensing and GIS journal papers. However, this analysis does emphasise that, where 

prediction is the goal, the user should establish a mechanism for empirically calculating 

the weights over surfaces of interest. 

The second part of the chapter examined a geostatistical method for conducting regression 

where the residuals are spatially correlated. Mathematically this is identical to the ML 

and REML approaches for model-based geostatistics (MBG). However, it was argued in 

sections 2.2.2.4 and 2.4 that the emphasis of geostatistics is interpolation rather than 

prediction on the basis of covariates (Dungan 1998, Lark 2000). Hence, applications of 

geostatistics tend to give limited attention to the estimation of the regression coefficients. 
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Nevertheless, some examination of the ML approach is given in the literature in the 

context of regression (Harris & Johnson 1996, Lark 2000, Ver Hoef et al. 2001, Lark 

& Cullis 2004). These authors emphasise the importance of modelling the correlation 

function, both for accurate parameter estimation and for hypothesis testing. In particular, 

ignoring the correlation structure can lead to incorrectly incorporating covariates into 

regression models (Harris & Johnson 1996, Ver Hoef et al. 2001, Lark & Cullis 2004). 

Lark (2000) is unique in the use of a simulation study to investigate the effectiveness of the 

ML geostatistical regression model. However, Lark focused primarily on the estimation of 

()"2 rather than on parameter estimation more generally. Furthermore, the simulated data 

were set up with very strong spatial structure and his model did not include a nugget 

component. The simulation used in this thesis had a weaker spatial structure and the 

model incorporated a nugget component. The ML and REML models were investigated. 

REML was found to give slightly less biased estimates of ()"2 and was larger than the 

OLS estimate, as expected from theory. Both approaches gave unbiased estimates of cp. 
Estimates of v were both biased and imprecise. The effect of the correlation structure 

on the confidence intervals on /3 was also shown. It was demonstrated that confidence 

in the estimation of /30 decreased, whilst confidence in the estimation of /31 increased. 

Hence, there is not a straightforward relationship between the value of ()"2 and the width 

of a confidence interval. This is not explored by Lark, although some limited attention is 

given by Harris & Johnson (1996). 

\\Then the sample size was increased (3 x 100) both ML and REML gave accurate estimates 

of ()"2, v and ¢ for the structured sample. However, it is important and interesting to note 

that, for the randomly located samples, the model was able to yield approximate estimates 

of cp and v. This shows that the model is still "detecting" evidence of spatial structure in 

a random sample. Hence, simply by virtue of sampling randomly, independence cannot 

be assumed. 

Finally, the model was implemented with variable values of ()"2 within a combined weighted­

ML model. For known weights, this was found to be effective for simulated data. 

Overall, the research conducted using the simulated data showed that the ML and weighted­

ML model could be effectively applied to regression with spatially correlated residuals. 

However, the true test of the approach has to lie with its application to real data. This 

was undertaken for the ELM and the "GO" sample in section 7.6.1, The variograms ofthe 

OLS residuals showed clear evidence of spatial structure in all four wavebands. However, 

the pattern of this spatial structure was not straightforward particularly for the visible 

wavebands. Furthermore, the nature of the spatial structure showed evidence of varying 

between GTs. This raises the question of whether a single value of v and ¢ can be applied 

across all GTs. The combined weighted-ML model was not successful for the visible wave­

bands, although it was for the NIR waveband (MMR band 4). Importantly, incorporation 

of the correlation structure led to an increase in the width of the confidence interval on the 

regression line relative to the OLS and WLS cases. This is an important result, because 
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it shows that failure to account for heteroskedasticity leads to an underestimation in the 

uncertainty in the ELM regression line. 

As noted above, the WML approach failed for the visible wavebands. Hence, an ad hoc 

implementation of the RK approach was adopted where the correlation structure Was 

modelled from the OL8 residuals for each waveband. This was used to estimate the 

GL8 parameters for both the visible and NIR wavebands. For the visible wavebands, the 

confidence intervals were wider than for the OL8 or WL8 cases. In particular for MMR 

band 2, this led to a change in predicted values of y of approximately 1% reflectance. 

These results emphasise the importance of accounting for the correlation and weighting 

structure. However, the RK approach was not examined in detail in this thesis. A further 

examination of the RK approach, using simulated data, is a potential avenue for future 

research. 

Finally, section 7.6.2 discussed the implications of using the G 1 sample rather than the GO 

sample. When the GO sample was used the uncertainty in the parameter estimates and the 

regression line increased. This was particularly apparent for MMR bands 2 and 4 and led 

to a change of up to 2% reflectance in iJ as well as a widening of the confidence intervals. 

This is attributed to a change in Cov(/3) , a change in the weighting structure and a change 

in the correlation structure between GO and G 1. Future research will consider the sample 

size as well as the spectral response of the MMR and ATM instruments. 

In summary, the results presented in this chapter have demonstrated the importance of 

accounting for heteroskedasticity and spatial correlation when implementing the regres­

sion model. For the ELM, failure to account for these can lead to inaccurate estimations 

of the regression coefficients as well as uncertainty in the location of the regression line, as 

manifested by the confidence intervals. In the more general setting both heteroskedastic­

ity and spatial correlation would be highly important for prediction and for quantifying 

uncertainty in prediction. However, the analysis conducted for this chapter highlighted 

the difficulty of using "real world" data to perform complex statistical inference (Diggle 

et al. 1998). This was clearly demonstrated for the NIR waveband (MMR band 4), 

for which no satisfactory approach was found for predicting the weights for unsampled 

surfaces. It was also demonstrated for the visible wavebands, where the weighted-ML 

approach failed for the GO sample. 



Chapter 8 

Discussion 

The key issues that were investigated in this thesis were stated in the aims and objectives 

given in section 1.3. These were the subject of the analysis in chapters 5, 6 and 7. The 

objective of this chapter to summarise and discuss the major findings. Where appropriate 

a more general discussion of the implications for empirical modelling in remote sensing 

and GIS is provided. The discussion is grouped under three headings: 

1. Data pairing. This section discusses the mechanisms for combining remotely sensed 

and field data, as discussed in chapter 5. 

2. Positional uncertainty. This section develops the discussion of positional uncer­

tainty, which was presented in chapter 6. 

3. Spatial modelling. The issues of spatial modelling, raised in chapter 7, are consid­

ered. 

8.1 Data pairing 

Chapter 5 began by examining the typical approach to implementation of the ELM. This 

approach was shown to be problematic for various reasons: 

1. The number of data pairs used for regression modelling is reduced to the number 

of targets. In chapter 5 this meant that three data pairs were used (four for the 

modified-typical approach). This led to a low number of degrees of freedom for 

estimating the regression parameters and low confidence in the estimates of the 

regression parameters. Furthermore, the approach was sensitive to sample size. 

2. The typical approach made inefficient use of the field data. Substantial effort was 

expended to spatially sample each GT. However, much of this information was then 

"thrown away" . 

275 
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3. The field-based reflectance measurements showed a bimodal distribution for the 

concrete target. Spatial summary plots showed a clear patch of relatively bright 

measurements. This is indicative of a target of mixed composition. 

4. The reflectance and radiance measurements were defined on ambiguous spatial sup­

ports of approximately 30 m x 30 m. However, prediction was required on pixel­

sized supports. The base pixel size for this imagery is 2 m. It is well known that 

relationships defined on one support may not be valid at another support (see sec­

tion 2.2.1). Furthermore, even if the relationship holds the variance tends to decrease 

as the variables defined on point supports are aggregated to larger ones. 

These limitations were addressed by defining the data pairs on a per-pixel rather than 

per-target basis. This addresses the first two issues by making full use of the data set 

and by increasing the number of data pairs used to estimate the parameters of the regres­

sion model. The third issue is partly addressed since within-pixel variability rather than 

within-target variability is now important. Defining the data pairs on a per-pixel, rather 

than per-GT basis gives the user greater flexibility in his or her choice of GT. The user 

should still take care when choosing ground targets. It would clearly be unwise to choose 

a small bright target adjacent to a much darker surface owing to the adjacency effects 

described in sections 3.1.1 and 3.2.3.2. The contrast with the concrete GT is clearly far 

less extreme, although the potential impacts of this were not examined. 

Defining the data pairs on pixel-sized supports also allowed the fourth issue to be ad­

dressed since the model is parameterised on the same support as that required for predic­

tion. This relates to the modifiable areal unit problem (MAUP), where the relationship 

between variables may change according to the level of aggregation and to the zonation 

employed (Fotheringham & \i\Tong 1991, Gotway & Young 2002) (see also section 2.2.1). 

In principle, zonation effects could be examined by aggregating the 2 m pixels in different 

ways. For example, if a 2 x 2 aggregation is performed, there are four different starting 

points for aggregating from 2 m to 4 m square pixels. This effect was not examined 

in this thesis, although it is expected that it would be less important for GTs than for 

highly heterogeneous surfaces. Hence only aggregation, or change-of-support, effects were 

considered. 

For the full sample size, the point-pixel and block-pixel approaches presented in chap­

ter 5 all yielded similar estimates for the regression coefficients, although the uncertainty 

about the estimates and predictions did vary. The estimated coefficients for the typical 

and modified-typical approaches indicated a slightly steeper regression line. This slight 

steepening of the regression line was also observed for the point-pixel approach, when 

the 2 m pixels were aggregated to 4 m and 6 m pixels in section 6.2.3 (see figures 6.5(a) 

and 6.6(a)), although this phenomenon was not observed for 8 m pixels. When the sam­

ple size was reduced the sample-to-sample variability was greater for the typical approach 

than for the point-pixel approach. For the typical approach, the effect of the change-of­

support was conflated with sample size and the bimodality of the concrete surface. \i\Then 
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the sample size was reduced this led to greatly increased uncertainty in the estimate of the 

mean of the concrete target. When inference was undertaken at pixel-sized supports the 

problem of within GT variability was eliminated and replaced with the necessity to have 

an unbiased estimate of reflectance on a per-pixel basis. However, it was still necessary 

to sample a sufficiently large number of pixels to minimise sample-to-sample variability. 

Chapter 7 modelled the heteroskedasticity and spatial correlation among the residuals. 

The incorporation of these affects both the regression parameters and the uncertainty in 

estimation and prediction. It is well established that increasing the size of the support of a 

variable leads to a decrease in the variance (see section 2.2.1). If this effect differs between 

GTs then it will affect the relative weights used in the regression model. Furthermore, 

increasing the size of support leads to a decrease in the variogram (Atkinson & Curran 

1995, Webster & Oliver 2001). Hence the spatial structure in the residuals will vary 

between different pixel sizes. As a result the pixel size rnay affect both parameter and 

uncertainty estimates for WLS and WML approaches. This effect was not examined in 

this thesis so the extent of any changes cannot be evaluated. 

There were two broad alternatives offered to the typical approach. The first was the 

point-pixel approach and the second was the block-pixel approach. The first did not fully 

address the support issue, since the predictor variable is defined on a pixel support and the 

reflectance measurements are defined over small areas. However, the support mismatch 

was lower than for the typical approach. Furthermore, this approach was straightforward 

to implement, given information on the position of each field measurement. It also meant 

that all the information content in the data was retained. Utilisation of this approach 

yielded regression models with tight confidence intervals. It was recommended that at 

least 50 samples be collected per target, with a minimum of 100 being the preferred 

number. 

The next step was to implement the block-pixel approach, whereby the field measurements 

were aggregated to pixel-sized blocks and then paired with the co-located pixels. Two ap­

proaches for aggregation were utilised ~ geostatistical block kriging and simple averaging. 

Kriging provides an optimal interpolation of a spatial sample and is a widely implemented 

mechanism for aggregation (Heuvelink & Pebesma 1999, Bierkens et al. 2000, Gotway & 

Young 2002, Banerjee et al. 2004). However, it was problematic for the implementation of 

the ELM for two reasons. First, although the variography showed clear evidence for spa­

tial structure, the kriged predictions were inaccurate. The accuracy could be increased 

by taking a denser sample although logistic constraints mitigate against this. Second, 

there are theoretical problems associated with combining kriged or conditionally simu­

lated surfaces in regression (Atkinson & Kelly 1997, Atkinson & Tate 2000), as discussed 

in sections 2.2.2.6 and 5.4.3. Finally, the geostatistical block kriging approach is complex. 

Many users of remotely sensed data are unlikely to want to implement it (Atkinson 2005). 

The alternative to block kriging was the simple averaging approach to aggregation. This 

is of comparable simplicity to the point-pixel approach, except all field measurements 
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contained within a given pixel are averaged rather than being treated individually. Under 

this framework it is assumed that the average for each pixel is an unbiased estimate 

of the true value, regardless of the number of points that it is averaged over. Relative 

to the point-pixel approach, this method provides a more accurate estimate of the true 

reflectance for each pixel (Curran & Williamson 1985). If pixels containing two or more 

reflectance measurements were retained, this gave a total of 111 data pairs (36 or 39 for 

each GT) for the ELM regression. This delivered regression models with tight confidence 

intervals for OLS. However, this sample size was considered small for parameter estimation 

of subsequent spatial regression models (chapter 7). Hence, the additional pixels that 

contained only one field measurement were also utilised for analysis. 

It is recommended that the simple averaging approach be used to characterise pixels within 

GTs for operational use ofthe ELM. However, the sample size and strategy requires further 

consideration. This should be designed in such a way that sufficient measurements are 

obtained to accurately characterise each pixel (bearing in mind that the pixel boundaries 

are not known a priori) while also being of sufficient spatial extent to cover several pixels. 

The importance of the number of field measurements required to adequately characterise a 

pixel became clear when there was heteroskedasticity and correlation amongst the regres­

sion residuals. This was demonstrated in section 7.6.2 when the results of implementing 

the simple averaging approach with one-or-more or two-or-more field measurements per 

pixel were compared. Averaging over different numbers of measurements per-pixel had 

consequences for calculation of the relative weights and altered the form of the spatial 

structure amongst the residuals. This impacted both on the estimates of the regression 

coefficients and on the uncertainty, as quantified by the confidence intervals around the 

regression line. Both of these, ultimately, affected prediction. The implication of the re­

sults presented in section 7.6.2 is that at least two reflectance measurements are required 

for each pixel. Further research is required to test whether obtaining more than two 

measurements per-pixel leads to substantial changes in estimation and prediction. 

8.2 Positional uncertainty 

The alternatives to the typical implementation of the ELM, summarised in the previous 

section, were contingent on knowing the location of the field measurements both relative 

to each other and within the image. 

\Vhere remotely sensed and field data are combined in empirical models it seems self 

evident that the variables should be co-located, since positional uncertainty may lead 

to field data being combined with the "wrong" pixel (Gao 2006). However, although 

this issue has received some comment in the literature (Curran & Hay 1986, Prince & 

Astle 1986, Larsson 1993, Dungan 2002, Oudemans et al. 2002, Zha et al. 2003, Gao 2006), 

these papers do not quantify the impact or present solutions to the problem. Some 

authors have sought to limit the effects of positional uncertainty by averaging over several 
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pixels (e.g., Justice & Townshend 1981, Li et al. 1998, Smith & Milton 1999). However. 

this approach does not quantify the issue or provide a model based solution. This also 

raises concern that the support of the two sets of measurements will not be matched, as 

discussed by Dungan (2002) and in the previous section. 

For the block-pixel approach, field data were aggregated to the pixel-sized support prior to 

combining them with the remotely sensed data. In this case positional uncertainty in the 

field measurements may affect the accuracy with which the per-pixel value of reflectance 

is estimated. More generally, positional uncertainty affects the accuracy of geostatistical 

estimation and prediction, as discussed in sections 2.3 and 6.3. 

For the block-pixel approach, introducing substantial positional uncertainty (( = 1\1 (0, 4), 

led to small, but clear, bias in the estimate of the regression coefficients. However, the 

estimate of the residual variance, 0"2, increased from 0.77 to approximately 1.2 for the 

full data set. This led to a widening of the confidence and prediction intervals around 

the regression line. The bias in the regression coefficients was small when greater than 

50 measurements were taken per target although the bias in the estimate of 0"2 remained. 

It was recommended that at least 50 measurements be taken for the 2 m pixels and 30 

measurements for pixels that are 4 m or larger. However, to limit the effect of bias in 0"2, 

100 measurements per target are preferable for all pixel sizes. These are the same sample 

sizes that were recommended in the absence of positional uncertainty in order to reduce 

sample-to-sample variability (see section 5.3.1). 

For the geostatistical block-pixel approach the introduction of positional uncertainty led 

to an increase in the variogram at short lags, as expected from theory (Atkinson 1996) 

and from simulations (Atkinson 1996, Gabrosek & Cressie 2002). The exception was 

the grass surface, where the variogram was reduced at all lags. The reason for this is 

unclear, although it was proposed that this may be due to inaccurate modelling of the 

spatial structure. Importantly, introducing positional uncertainty did not, ultimately, 

affect substantially parameter estimation for the ELM. Whilst this is an encouraging 

result, it needs to be interpreted in the context of other problems associated with using 

block kriged estimates in regression models. Further discussion is given in section 6.4. 

Overall the results of the analysis should be encouraging for users of the ELM since, even 

when the positional uncertainty is large relative to the pixel size, the impact on parameter 

estimation is low providing a large sample is used. However, this should not be taken as 

reason to take little care about recording location information, since the estimate of the 

residual variance still increases for all sample sizes for the block-pixel approach. 

Section 6.4 gave several general suggestions for future research on positional uncertainty. 

Two of these are highlighted here. First, for the point-pixel approach, the analysis isolated 

positional uncertainty from sample variability. It is not clear how these two factors will 

interact and this remains a subject for future investigation. Second, the effect of positional 

uncertainty on the simple averaging approach was not examined. This approach, by 

definition, yields an average value of reflectance for each pixel. Hence, it is expected 



Chapter 8 Discussion 280 

that the effect of positional uncertainty will not be worse than it was for the point-pixel 

approach. This assertion requires further empirical evaluation. 

The extent to which these results are generalis able to other applications of empirical 

models is unclear. In particular, the impact of positional uncertainty depends on the 

strength of correlation between the variables, the heterogeneity of the surface and the 

magnitude of the attribute uncertainty attributable to positional uncertainty relative to 

the overall variability of the same variable (Salvador 1999). When utilising the ELM, 

explicit attention is given to selecting GTs that are relatively homogeneous. This may 

not be the case for other applications of empirical models. Hence the impact of positional 

uncertainty may, potentially, be larger (e.g., Salvador 1999). 

8.3 Spatial modelling 

Examination of the diagnostic plots for the point-pixel and block-pixel approaches showed 

that the residuals were clearly heteroskedastic. This situation was addressed by using 

weighted least squares (\VLS) regression (Sen & Srivastava 1990, Neter et al. 1996), where 

the weights were given as the inverse of the residual variance for each GT. This approach 

was satisfactory for addressing the problem of heteroskedasticity. The \VLS approach was 

satisfactory for parameter estimation and for calculating accurate confidence intervals. 

However, if the prediction uncertainty is required it is unsatisfactory. This is because it 

provides weights only for the GTs that are used in the parameter estimation stage but 

not at locations that are not used for estimation. Alternative approaches were examined 

that could be used to predict the weights given the local variance (LV) for a 3 x 3 window 

surrounding the pixel of interest. To do this, the OLS residual was regressed on LV 

and the possibility of specifying weights on a per-pixel, per-GT and per-(landcover) class 

were examined. The diagnostic plots showed that the per-pixel and per-GT approaches 

were effective at reducing heteroskedasticity for the visible MMR wavebands, but not 

for the NIR MMR waveband. The per-class approach was not successful due to within­

class variability. Overall. this analysis emphasised the difficulty in predicting appropriate 

weights for unsampled targets. This was possible for the visible wavebands (although this 

is no guarantee that these will be accurate for unsampled targets), but not for the NIR 

waveband. The user should proceed with caution when predicting weights for unsampled 

targets. It would be preferable to obtain empirical evidence for the weights over particular 

targets of interest. 

In addition to the problem of heteroskedasticity, variograms of the OLS residuals showed 

them to be spatially correlated. The geostatistical approach to handling spatially cor­

related residuals in regression has received some attention in the literature (Cook & 

Pocock 1983, Harris & Johnson 1996, Lark 2000, Ver Hoef et al. 2001, Lark & Cullis 2004). 

However, the presentation is largely theoretical and tests on simulated data have been lim­

ited (e.g., Lark 2000). Furthermore, it has not been extended to deal with heteroskedastic 
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residuals. Hence, the approach was tested first with simulations and was shown to pro­

vide accurate estimates of the variance parameter ((72) and variogram range (¢) but less 

accurate estimates of the proportion of spatially structured variance (v) for a 100 x 100 

grid. However, the accuracy of the estimation of all three parameters increased for a large 

sample of 3 x 100 x 100 grids. An interesting and important result was observed for this 

large sample since the ML approach "detected" spatial structure even when a random 

sample was used. The implication of this is that choosing a random sampling design will 

not, necessarily, lead to a model with independent errors and the user should address 

this. Finally, the approach was shown to work for regression models with heteroskedastic 

residuals when appropriate weights were provided. 

The weighted-ML (WML) model for spatially correlated heteroskedastic residuals was 

then applied to the ELM data, where the pixel-based radiance data were paired with 

simple-averaged blocks. The three regression models: OLS (ordinary least squares), \VLS 

(weighted least squares) and the WML (weighted maximum likelihood), were then com­

pared. \VML models explicitly both the spatial correlation and the heteroskedasticity that 

are known to occur. By applying this model the structural uncertainty (see section 1.2) 

is reduced relative to OLS and WLS. Hence, in the absence of further mitigating factors, 

the parameter estimates and associated confidence intervals are most appropriate. 

The simple-averaged blocks were constructed either by retaining all blocks that contained 

one or more field measurements (the GO sample) or by omitting all blocks containing 

fewer than two field measurements (the G1 sample). Although the G1 sample gives more 

accurate per-block estimates of reflectance, the analysis was performed first using the GO 

sample owing to its relatively large size (436 VS. 111). 

For the NIR waveband (MMR band 4 regressed on ATM band 7), the WML approach 

yielded reflectance predictions that were up to 0.7% different, by comparison to OLS. By 

comparison to WLS, the WML model yielded wider confidence intervals around the regres­

sion line. By comparison to OLS, the confidence intervals were wider for brighter pixels 

but narrower for darker ones. For vegetated surfaces, which often interest practitioners, 

the 95% confidence intervals varied between 0.7 and 1.3% reflectance. 

\iVhen the WML model was applied to the visible wavebands, implementation of the model 

was unsatisfactory. A limitation of the WML approach was that, although it accounts for 

variability in (72 between GTs, the nugget and range are fixed for all GTs. Assessment of 

the residual variograms for each target showed that this was not the case. Nevertheless, 

the objective was to provide a general approach that could also be used for estimation and 

prediction across a range of GTs and landcover types, although it might be suboptimal 

for given cover type. Ultimately, this was not tenable and, although the WML model was 

applied successfully for simulated data and for the NIR waveband, it was not appropriate 

for the visible wavebands where the surfaces exhibited a more complex spatial structure. 

It is unclear whether an elegant solution can be found to this problem. However, an 

ad hoc regression kriging (RK) approach was applied, where the correlation matrix was 
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estimated using the OLS residual variogram for each GT. For MMR bands 1 and 3 the 

predicted values of y were comparable to those obtained using OLS and WLS, although 

substantial differences were found for MMR band 2. The 95% confidence intervals were 

up to 0.5% reflectance wider than those obtained from OLS. This RK approach did allow 

incorporation of the correlation structure. However, it is ad hoc by comparison to the 

WML approach and this requires more detailed consideration. Furthermore, although 

this approach works for estimating the regression parameters, it could not be used for 

prediction since it would give no information about the spatial structure of targets that 

that were not used for parameter estimation. 

Finally, the results obtained for the GO sample were compared to those obtained for the 

G1 sample. This led to comparable parameter estimates and prediction of fj for OLS, 

although the confidence intervals were wider. However, the situation was more complex 

for the WLS and WML approaches. In particular, for WML, this led to a steepening 

of the regression line for MMR bands 1 and 4. This led to increases in fj of up to 0.7% 

reflectance for band 1 and 1.6% reflectance relative to the GO case. Predictions obtained 

for MMR band 2 were comparable to those obtained using the GO sample. For WML 

the 95% confidence intervals were wider than the GO case for these three wavebands, 

being up to 0.2% wider for band 1, 0.7% for band 3 and 1.2% for band 4. The greatest 

difference was observed for MMR band 2, which showed differences in excess of 2% in fj 

and confidence intervals up to 1.8% wider. 

Discussion of the relative merits of using the GO and G 1 sample was given in section 7.6.2. 

In particular, whilst it is possible to decrease the width of the confidence intervals by using 

GO rather than G1, it is now known that this may not be the correct thing to do. The 

user must accept this uncertainty. Furthermore, the width of the confidence interval varies 

according to reflectance of the surface, which is linked to landcover type, and waveband. 

Hence the impact of uncertainty will depend on the application. If the user finds that this 

is too great then they can either change the data or change the model. However, neither 

of these is guaranteed to lead to greater certainty in the nlOdel output. 



Chapter 9 

Conclusions 

This chapter highlights the key findings and recommendations of the research and empha­

sises their significance for application of the ELM and for empirical modelling in remote 

sensing more generally. A venues for future research are then discussed. Finally, a con­

cluding statement is offered. 

Section 1.3 outlined the aims and objectives for the research. It was stated that, although 

conceptually straightforward, problems with the ELM arise owing to uncertainties in 

(i) standard practice (the typical approach), (ii) the data and (iii) the model. Typical 

implementation of the ELM led to wide confidence intervals on the regression line, even 

when the sample size was very high (approximately 200 m.easurements per GT). This was 

exacerbated when the sample size was reduced. The typical approach to the ELM is very 

widely used. It is important for users to be aware of these limitations and to understand 

that the uncertainty in this implementation of the ELM is very large. 

The problems with the ELM led to the formulation of three key issues that were examined 

in this thesis: 

• Pairing the remotely sensed and field data. 

• The effect of positional uncertainty in field data on the ELM. 

• Modelling heteroskedasticity and spatial autocorrelation in the residuals. 

9.1 Data pairing 

Alternatives to the ELM were investigated whereby the field-based measurements of re­

flectance were (i) directly paired with their co-located pixels (the point-pixel approach) 

and (ii) aggregated to pixel-sized blocks (the block-pixel approach). Both these approaches 

made more effective use of the data and were improvements on the typical approach since 

they reduced uncertainty in the estimation of the regression line. 
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The point-pixel approach should be implemented with a minimum 50 field measurements 

per target, although at least 100 were recommended. This number is towards the high 

end of what is reported in the literature (Farrand et al. (1994): 100; Smith & I\1ilton 

(1999): 5-35; Karpouzli & Malthus (2003): 15-60). The user should expect to obtain 

at least this number of field samples and they should record the location of these field 

measurements and document the number of measurements taken. This is not a trivial 

task, but is manageable given the availability of modern surveying and GPS equipment. 

The block-pixel approach sought to reduce uncertainty over support by explicitly matching 

the support of the remotely sensed and field data and was preferred over the point-pixel 

approach for this reason. The simple averaging approach is recommended over the block 

kriging approach (see sections 2.2.2.6 and 5.4.3 for details). Implementation requires no 

more information than is required for the typical approach. Where pixels containing two 

or more field measurements are retained for the ELM the total number of measurements 

(111 blocks formed from 371 field measurements) is comparable to that recommended for 

the point-pixel approach. 

9.2 Positional uncertainty 

The point-pixel and block-pixel approaches were contingent on knowing the location of 

the field measurements. For the point-pixel approach, the effect of substantial positional 

uncertainty (standard deviation of 2 m, equal to the pixel size) was minimal for estimating 

the regression coefficients, although the estimated residual variance increased. The effect 

of positional uncertainty on the simple averaging approach should not be worse than for 

the point-pixel approach. 

The level of positional uncertainty introduced is comparable to that obtained when using 

an inexpensive hand-held GPS operating in differential mode (Letham 2003). Given 

careful fieldwork and the use of scientific surveying or GPS equipment more accurate 

results can be expected. However, although the impact of positional uncertainty was 

limited, it is recommended that users should still give careful attention to the recording 

the location of field measurements. There are several unanswered questions relating to (i) 

the impact of positional uncertainty on the simple averaging approach and (ii) the extent 

to which positional uncertainty interacts with other factors such as sample-to-sample 

variability as well as the spatial modelling undertaken in chapter 7. 

9.3 Modelling issues 

Implementation of the block-pixel approach led to heteroskedasticity and spatial autocor­

relation in the residuals from the regression model. Note that spatial autocorrelation is 
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distinguished from serial autocorrelation. Heteroskedasticity is modelled by applying ap­

propriate weights. Specifying the weights is straightforward for parameter estimation and 

calculation of confidence intervals as required by the ELM. In more general applications 

of empirical models, it would also be necessary to calculate the weights at unsampled 

locations. However, it was not possible to develop a general model to predict the weights 

at unsampled locations. If these are required the user must determine them empirically. 

A geostatistical model was combined with the weighting structure to model the COIn­

bined effects of heteroskedasticity and correlation (the WML model). It was applied 

first for simulated data and then for the ELM. This extended previous research (Cook & 

Pocock 1983, Harris & Johnson 1996, Lark 2000) that focused on 3-2 by (i) introducing the 

correlation structure and (ii) examining the accuracy of all parameter estimates. It was 

clearly demonstrated that spatial structure has wider implications than the estimation of 

(}2. In particular it also affects C ov(j3) that in turn affects hypothesis testing and the 

calculation of confidence and prediction intervals although the precise nature of this 

effect is not clear a priori. Furthermore, spatial structure was shown to affect parameter 

estimation even when the samples were gathered at random locations. Hence the effect 

of spatial structure cannot be eliminated by applying a specific sampling strategy. This 

effect would not be shown if only 3-2 was examined. 

Finally, the \A/ML model was applied to the ELM where the reflectance measurements 

were aggregated using the simple averaging approach. These results were presented in 

sections 7.6.1 and 7.6.2 and are preferred over those presented in section 5.4.1. This is 

because, by modelling heteroskedasticity and spatial correlation, structural uncertainty in 

the model has been reduced. Hence the associated parameter estimates and confidence 

intervals are most legitimate. Confidence intervals indicate the likely range of estimated 

values, so wide parameter estimates are indicative of large uncertainty. This does not 

mean that the model with narrower confidence intervals should automatically be chosen 

since, as in this case, the more appropriate model may yield wider confidence intervals. 

There was some debate as to whether simple-averaged blocks that included one-or-more 

(GO) or two-or-more (G1) field measurements should be included. The GO sample is larger, 

which is desirable for geostatistical analysis. However, the G1 sample gives more accurate 

per-block estimates of reflectance and, for that reason, is considered most appropriate. 

The extent to which a larger G 1 sample may lead to changes in the parameter estimates 

and confidence intervals remains a subject for future research. 

9.4 Future research 

This thesis advocates using the simple averaging approach for aggregating from field mea­

surements to pixel sized blocks. However, the sampling scheme employed was inefficient 

since it led to several blocks that contained only one pixel. Future research should identify 

and test a sampling strategy that makes more effective use of the field measurements to 
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accurately estimate per-block reflectance. This could also be used to examine whether, 

given a larger sample size, uncertainty in the results presented section 7.6.2 can be re­

duced. 

The problem of combining data that are defined on different spatial supports is widespread 

in remote sensing (Dungan 2002). The simple averaging approach may not be appropri­

ate in situations when the support mismatch between field or remotely sensed data is 

very large or where it is not possible to obtain large numbers of field measurements. A 

more general approach would be to combine change-of-support and regression into one 

model (Gotway & Young 2002). 

Surfaces have characteristic spectra, such that the reflectance in one band is not indepen­

dent of reflectance in neighbouring bands. Indeed, the objective of atmospheric correction 

is to "correct" the whole spectrum as a whole (Clark et al. 2000). The research in this 

thesis modelled reflectance on a band-by-band basis and ignored the information in other 

bands. In principle, this information could be used to constrain the ELM regression. 

However, this is not straightforward because spectral profiles are surface dependent. 

The research undertaken in this thesis focused on the spatial domain. However, reflectance 

of targets can vary over temporal scales ranging from hours to years due to wetting and 

drying, biophysical activity, changes in atmospheric conditions and BRDF effects (Moran 

et al. 2001, Anderson 2005, Anderson & Milton 2006). Future research could investigate 

how such changes are manifested in space. Furthermore, if temporal variability can be 

modelled it widens the time window over which field measurements can be taken (Moran 

et al. 2001) offering the opportunity to gather a larger data set. 

Combined radiative transfer and ELM approaches have been advocated in the litera­

ture (Clark et al. 2000, l\loran et al. 2001, Moran et al. 2003). Such models present an 

interesting topic for future research because it is not clear what the support of the RT 

model is and how uncertainty in it should be combined with uncertainty in the ELM. 

Finally, the analysis in this thesis treated the pixel-based values of radiance as truth. In 

reality these are a product of the ATM sensor and the azgcorr software. They are subject 

to the limitations of engineering, varying environmental conditions and uncertainties asso­

ciated with geometric correction and resampling (Curran & Hay 1986, Cracknell 1998, An­

derson & Milton 2006). Future research should assess the likely impact of these consider­

ations on the ELM. 

9.5 Concluding statement 

The research presented in this thesis began by investigating the typical approach to imple­

menting the ELM. This was found to be problematic for reasons presented in section 5.l. 

The first part of the analysis sought to reduce uncertainty in the data input to the re­

gression model and implemented the model on a per-pixel basis. By applying the simple 
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averaging block-pixel approach more effective use was made of the data and the uncer­

tainty in the support was reduced by matching the supports of the reflectance and radiance 

data. This method was contingent on accurate positioning of the field data. 

The regression model used in chapter 5 was inadequate because it yielded residuals that 

were heteroskedastic and spatially autocorrelated. By accounting for these, structural un­

certainty in the model was reduced. This gave an improved understanding of uncertainty 

in the parameter estimates and model outputs. 
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