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Current control methods for Tuberculosis (TB) disease have failed to keep pace
with the TB epidemics which have been particularly affected by the Human Im-
munodeficiency Virus (HIV) epidemic. There is still relatively little known about
the interactions between HIV and TB and therefore TB control strategies that are
effective in high HIV prevalent settings still need to be identified. The current pol-
icy is that active case-finding for adults living in endemic TB settings is ineffective,
because transmission events between casual contacts greatly outnumber household
transmission events. This policy was developed in an era of low HIV prevalence
and the impact of the HIV epidemic on the relative importance of household versus
community transmission has not been fully assessed.

The majority of mathematical models used to describe the epidemiology of TB
and investigate methods of control have been deterministic compartmental mod-
els that have considered only homogeneous mixing. This thesis describes a dis-
crete event simulation model that includes the effect of household structure on the
transmission dynamics of TB. It is used to evaluate the effectiveness of targeted
case-finding interventions in controlling TB in HIV prevalent populations.
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Chapter 1

Introduction

Tuberculosis (TB) is the leading cause of death among people with a Human Im-
munodeficiency Virus (HIV) infection, accounting for up to a third of Acquired
Immune Deficiency Syndrome (AIDS) deaths worldwide. The epidemic of HIV
has led to a dramatic resurgence of TB in sub-Saharan Africa, especially in east
and southern Africa where TB notification rates have increased by over three times
in the last 20 years [133]. It is increasingly clear that controlling TB in much of
Africa depends on the extent to which HIV is brought under control and that to
ensure improvements in the care of HIV-positive people, it is essential that they
are examined for TB and treated appropriately.

- The risk of developing TB disease increases as people progress from HIV in-
fection to AIDS and although there have been studies carried out to determine the
extent to which HIV-infection affects transmission of TB [46], there is still rela-
tively little known about the interactions between these two diseases. Therefore
TB control strategies that are effective in high HIV prevalent settings still need to
be identified. The current policy of active case-finding for adults living in endemic
TB settings is ineffective, because transmission events between casual contacts
greatly outnumber household transmission events [143]. This policy was devel-
oped in an era of low HIV prevalence and the impact of the HIV epidemic on
the relative importance of household versus community transmission has not been
fully assessed.

The ultimate aim of this research is to develop a discrete event simulation
(DES) model of TB transmission in Harare, Zimbabwe, which will allow a full
assessment of the effectiveness of contact-tracing and case-finding strategies in
high HIV prevalent populations. The model will make use of information regard-
ing household size and structure and therefore the relative importance of household
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versus community transmission will be fully assessed. The research is being done
in collaboration with DETECTB, an organisation currently carrying out a large
population-based trial in Harare, Zimbabwe. The data from this trial will be used
to aid the development of the model.

1.1 Research Objectives

This thesis concerns using mathematical modelling to study the role of household
versus community transmission of TB to understand the relative effectiveness of
household interventions in controlling TB in HIV prevalent populations. The ob-
jectives are:

1. To develop a mathematical model of TB transmission and disease in Harare,
Zimbabwe, in order to enable accurate simulation of possible active case-
finding strategies for TB control in HIV prevalent populations;

2. To enable comparative projections of the likely impact of possible strate-
gies relative to one another to allow a full assessment of the effectiveness of
different contact-tracing and case-finding strategies in HIV prevalent popu-
lations;

3. To predict how variable population attributes are likely to affect the relative
success of different interventions;

4. To determine the relative effectiveness of household interventions in con-
trolling TB in HIV prevalent populations.

1.2 Modelling Approach and Methodology

The method chosen to solve the model is discrete event simulation. This will take
individuals through time and incorporate the heterogeneity which leads to the vari-
ability observed in each individual’s TB disease evolution. An individual’s risk of
infection, risk of disease progression, infectious period, and infectivity will all be
affected by attributes such as the individual’s age, sex, HIV status and the number
of people in the individual’s household. The model will provide recommendations
for reducing TB incidence in HIV prevalent areas.
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1.3 Summary of Findings

This research answers many questions regarding the interactions that exist between
TB and HIV, the way in which household interventions for infectious diseases can
be modelled and the relative effectiveness of household interventions in controlling
TB in HIV prevalent populations. In summary, we conclude:

e The interactions between TB and HIV can be quantified such that it is pos-
sible to accurately estimate HIV prevalence from TB notification rates, as
demonstrated with district level data in Kenya.

e Stochastic individual-based modelling is a natural methodology to use to
precisely specify household or community transmission of disease, and to
model the impact of local interventions.

e Targeting TB-diseased households has a relatively small effect on the TB
epidemic due to the small proportion of households that are visited as part
of this intervention.

e The clustering of TB disease and HIV infection in households means that
targeting HIV-infected households is the most effective active-case finding
strategy.

e A much larger proportion of the population needs to be reached in a untar-
geted or community-wide intervention in order for it to have the same benefit
as targeting HIV-infected households.

¢ Interventions in which TB-diseased or HIV-infected households are targeted
are more effective than community-wide interventions, suggesting that house-
hold transmission of TB (especially within HIV-infected households) is im-
portant.

1.4 Overview of Thesis Structure

The main body of this thesis is divided into 10 chapters which are organised to
follow the logical development of how household interventions for TB control
in Zimbabwe were investigated through developing a discrete event simulation
model. This thesis can be divided into three parts: Chapters 2 to 5 set the back-
ground context for this work; Chapters 6 and 7 describe the research development



CHAPTER 1: INTRODUCTION 4

itself; and Chapters 8, 9 and 10 consist of the discussion of the findings, conclu-
sions and recommendations for further work.

This first chapter gives an introduction to the problem, the problem solving
approaches used, a summary of the findings and sets the scene for what follows.
Chapter 2 gives the epidemiological background of TB and HIV, discusses cur-
rent TB control strategies and explains the data being collected by DETECTB in
Harare. A comprehensive literature review has been carried out to better under-
stand previous models of infectious diseases (specifically TB), and to appreciate
the modelling and epidemiological issues which still need to be addressed. This
is given in Chapter 3. Chapter 4 describes a simple parametric model which has
been developed to help understand and quantify the relationships and interactions
between HIV and TB. This was followed by the investigation of different model
configurations in order to establish a possible representation of the natural history
of TB to be used by the discrete event simulation (DES) model. This is described
in Chapter 5.

The DES model that differentiates between within-household transmission and
random transmission of TB is discussed in Chapters 6 and 7.

Finally we discuss its results, undertake a sensitivity analysis and various sce-
nario analyses in Chapters 8 and 9, and then draw some conclusions and make
some suggestions for future work in Chapter 10. A glossary has been included to
explain the epidemiological terms used throughout the report.



Chapter 2

Background

This Chapter aims to provide an epidemiological background of both TB and HIV
and explains the dual epidemic. This Chapter will also discuss current TB control
strategies and explain the data being collected by our collaborators, DETECTB, in
Harare.

2.1 HIV

HIV (Human Immunodeficiency Virus) is the virus that leads to AIDS (Acquired
Immune Deficiency Syndrome). AIDS was first reported in the USA in 1981
and since then more than 20 million people with HIV/AIDS have died [73]. It
has become a major worldwide epidemic. A total of 3.1 million people died of
HIV/AIDS related causes in 2005 alone [80] and 40.3 million people worldwide
were estimated to be living with HIV/AIDS at the end of 2005 [80] with approx-
imately two-thirds of these people living in Sub-Saharan Africa. Over time, the
HIV virus weakens the body’s ability to fight infections and cancers by progres-
sively destroying cells of the body’s immune system. It is only after the immune
system is significantly weakened (which can take many years) that people with
HIV will get “opportunistic” infections which are caused by microbes such as
viruses or bacteria. These infections would not usually cause a healthy person
to become sick. However, for someone with advanced HIV the diseases are life
threatening. Once somebody begins to get these infections, they are said to have
AIDS [3].

HIV is transmitted by blood, semen, preseminal fluid, vaginal fluid or breast
milk of an HIV-infected person. The American Social Health Association [165]
explains: a person can get HIV when one of these fluids enters the body by way of

5
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the soft skin found in any opening of the body (mucous membranes) or the blood
stream. The most common way of spreading HIV is by having unprotected sex
with an HIV-infected partner where the virus enters the body through the lining
of the vagina, vulva, penis, rectum or mouth. Other ways include contact with
infected blood; through blood transfusion for example (in developing countries
blood is not routinely screened) or from injecting drugs using shared needles or
syringes. HIV infected women can also transmit HIV to their babies during preg-
nancy, birth or breast feeding.

2.2 Tuberculosis

Tuberculosis (TB) is the most common major infectious disease today [201] and
causes more adult deaths worldwide that any other infectious disease [31]. It pro-
duces nine million new cases of active disease annually [201] and infects one third
of the world’s population [202]. “Tuberculosis (TB) is an infectious disease caused
by either mycobacterium tuberculosis or mycobacterium bovis. Because these or-
ganisms are so similar, the infections they cause are given the one name - tubercu-
losis.” [115]

A person can be infected with mycobacterium tuberculosis but not have active
TB disease. This means that the TB mycobacterium are present in the body but
that they are not actively causing damage to body tissues because the immune
system has “walled them off””. The infection can lie dormant for years and often
only develops into “active” TB when the immune system is weakened.

When a person develops active disease, the TB organisms are growing and
causing damage within the body. TB disease most commonly affects the lungs
where it is called pulmonary TB. Seventy-five percent or more of infected people
have pulmonary TB. Symptoms of the disease include a prolonged cough of more
than three weeks duration, chest pain, fever, chills, appetite loss, weight loss and
fatigue. Extra-pulmonary sites include the central nervous system, bones, joints
and the lymphatic system. TB skin sores can develop when an infected lymph
gland bursts, but this is very uncommon. TB is only infectious if the disease is in
the lungs or if a TB skin sore is left uncovered.

TB is an airborne infection and so it is transmitted by the infected person ex-
pelling TB mycobacterium into the air by coughing, sneezing, talking or spitting
and another person can then inhale these organisms and become infected. How-
ever, it usually takes many hours (or even days) of exposure for a previously non-
infected person to become infected and so the transmission probability is low.
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Investigations into the transmission of TB on aeroplanes in the United States has
concluded that less than 1% of all those exposed to tuberculosis would become in-
fected [96]. Furthermore, only about 10% of infected persons with normal immune
systems will develop “active” TB in their lifetime [202].

2.3 The Natural History of Tuberculosis

Individuals who are not infected with tuberculosis are said to be susceptible. When
they become infected, they are said to become latent. Individuals will then fol-
low one of two routes: develop active disease quickly (usually defined as within
five years) or retain a latent TB infection that may possibly reactivate years later.
Which route a person will take depends on the effectiveness of their immune sys-
tem and therefore factors such as age and poverty play a large role, and immuno-
compromised individuals such as those who are HIV-positive are likely to develop
active disease more quickly than immunocompetent individuals.

When a person is latently infected, they can progress to active disease in two
ways: reactivation or reinfection. Reactivation occurs when the immune system is
weakened and the defence against the TB infection becomes inadequate and so the
TB mycobacterium are able to cause damage (active disease). Reinfection occurs
when someone with latent TB is infected again but they do not invoke a success-
ful immune response and therefore progress to active disease quickly. Previous
infection with TB does confer some immunity to developing active disease and
therefore those that have already been infected with TB have a greater immunity
to reinfection. The only exception to this is if the latent individual is also HIV
positive, in which case reinfection is more likely.

Active TB disease can be infectious or non infectious, with 46% of individuals
(27% of late-stage HIV-positives) developing infectious disease [197]. Therefore,
HIV-positive individuals are more likely to have non infectious TB. Once a per-
son has active disease then they may self cure, die or be diagnosed and treated.
For those with infectious disease, the time until their cure, death or treatment de-
termines an individual’s duration of infectiousness, which in turn determines how
many people the individual is likely to infect. It is thought that an infectious person
will infect from 10 to 15 people every year [202] [160].

A person receiving treatment will either fail or successfully complete the treat-
ment course. Those that successfully complete treatment still retain a TB infection
but the TB mycobacterium are no longer actively causing damage. They therefore
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have a latent infection, which as previously discussed, means that they are sus-
ceptible to reinfection from an infectious person, although they have an increased
immunity compared to the uninfected population.

When individuals are said to fail treatment this indicates that they failed to cor-
rectly complete the course of drugs and therefore the TB lesions were not steril-
ized. Failed treatment means that the individuals have active disease. Inconsistent
or partial treatment of TB can be very dangerous because it can cause the strain of
TB to become drug resistant. The emergence of drug resistant TB throughout the
world has caused many complications and is impeding the control of tuberculosis
worldwide. A particularly dangerous form of drug resistant TB is multi drug re-
sistant (MDR) TB, which is the disease caused by TB bacilli that are resistant to
the two most powerful anti-TB drugs. Although drug resistant TB is treatable, it
requires extensive chemotherapy (up to two years of treatment) and is often pro-
hibitively expensive [202].

The natural history of tuberculosis is further complicated by its propensity to
be age dependent. As previously mentioned, age is a particularly important vari-
able in determining the risk of developing disease after initial infection with TB
and in determining the type of disease developed. Older people are more likely
to develop pulmonary TB [122]. Children under the age of 15 show a markedly
different reaction to adults. There is a very high risk of developing the disease if in-
fected whilst in the period of infancy which then tails off into a low risk phase from
5 to 10 years old, increasing again in adolescence and adulthood. This implies that
although children between 5 and 15 can be infected with TB, they will rarely de-
velop active TB disease but will just maintain a latent infection. A separate point
is that children tend to have non infectious TB and even if they have infectious TB
they are too small to generate enough of a cough to effectively aerosolise the bac-
teria. For these reasons, children are very poor onward transmitters and therefore
play a small role in the transmission of TB.

2.4 HIV and TB: A Dual Epidemic

As HIV progressively destroys the immune system, there is a greater chance of
a person infected with HIV developing TB [126]. This overlap between the epi-
demics is particularly important and it is increasingly being recognised that in
order to successfully fight AIDS, it means fighting TB.

TB is one of the leading causes of illness and death amongst AIDS sufferers in
developing countries. Up to 50% of people with HIV develop TB in Sub-Saharan
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Africa and one in three die from it. Estimates for 2003 put the number of incident
TB cases at 8.8 million, up from an estimated 8.3 million in 2000, with HIV being
the main driving force [134]. Adult HIV prevalence rates are now 20% or higher in
six southern African countries. In these countries TB case notification rates have
increased 2 to 5 fold since 1990 and now between 460 and 720 people develop
active TB disease per 100,000 members of the population per year [131]. It has
been estimated that approximately 31% of new TB cases in adults in the Africa
region can be directly attributed to HIV [47]. It is clear that the spread of the HIV
epidemic has significantly impacted the TB epidemic and it is thought that one-
third of the increase in TB cases over the last five years can be attributed to the
HIV epidemic [39].

HIV and TB fuel each other very effectively: TB accelerates the progression of
HIV to full blown AIDS; and HIV increases the risk of progression from latent TB
to active TB disease. In fact, in an HIV infected person with a TB infection, the
risk of progression to TB disease increases from 10% over a life time to 10% each
year [4]. As a result, an HIV positive individual who develops active TB disease
can expect to survive an average of just 5 to 6 weeks [194].

2.5 TB Control Strategies

The international standard for TB control is the World Health Organization’s Di-
rectly Observed Treatment Short-course (DOTS) strategy [131], which aims to
reduce the transmission of tuberculosis infection through prompt diagnosis and
effective treatment of symptomatic TB patients who present at health care facili-
ties, termed passive case-finding. Considerable progress was made during the last
decade using this strategy in countries with small HIV epidemics but the effect of
HIV on the African TB epidemic outweighs the gains being made in other regions.

In this study we describe a discrete event simulation model that has been de-
veloped to evaluate the effects of more intensive case-finding strategies (so-called
active case-finding) for TB control in a high HIV prevalence setting. In essence,
active case-finding involves targeted testing of the population for active disease
with one commonly used strategy being to target household members of TB pa-
tients. Those found to have active disease can be treated promptly, reducing the
time spent with infectious TB and so cutting transmission rates. The current policy
of active case-finding for adults living in endemic TB settings is ineffective, be-
cause transmission events between casual contacts greatly outnumber household
transmission events [143]. This policy was developed in an era of low HIV preva-
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lence and the impact of the HIV epidemic on the relative importance of household
versus community transmission has not been fully assessed.

2.6 Data

This study uses data from a large population-based trial in Harare, Zimbabwe
which provides data on the size and location of every household in the study area,
as well as the number of inhabitants, their ages and their TB and HIV status (Sec-
tion 2.6.1). The model is fit to country-wide TB incidence and HIV prevalence
statistics for Zimbabwe, available from the 2007 WHO Report [134] and the UN-
AIDS Epidemiological Factsheets [176] respectively.

2.6.1 The Harare Data and DETECTB

CREATE (The Consortium to Respond Effectively to the AIDS-TB Epidemic)
[167] are funded by the Bill and Melinda Gates Foundation and are, along with The
Bloomsbury Wellcome Trust Centre [166], currently supporting a group led by Dr
Liz Corbett of the London School of Hygiene and Tropical Medicine (LSHTM)),
called DETECTB. The group, who are based in Harare, Zimbabwe, have been
generating data that is informative for making baseline assumptions about the dis-
tribution of HIV and TB infection in populations.

Since 2005, DETECTB have been administrating periodic (6-monthly) inter-
ventions to 46 neighbourhoods (41,263 households) with a total of 107,430 adults.
They have been using either door-to-door enquiry for chronic coughers, or a mo-
bile TB clinic, and diagnosis is based on sputum microscopy. Sputum microscopy
is when a sputum specimen is taken from a patient and cultured for Mycobacterium
tuberculosis organisms. Communities are randomised to one of these two inter-
ventions and the main outcome measures are the cumulative yield over 6 rounds
of intervention and a comparison of the point prevalence of TB disease before and
after the 6 rounds of intervention.

All the households in the study neighbourhoods are demarcated and identified
with GPS and then an interview with the household head is done to collect infor-
mation on the household structure to a) identify previous TB disease events and b)
to allocate a poverty score to the household.

A baseline survey of over 40,000 households has been completed and its results
have been used throughout this study to inform the simulation of the appropriate
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46 clusters

Figure 2.1: A map of Harare, Zimbabwe showing the location of the 46 high den-
sity suburbs in which DETECTB are conducting randomised trials of two active
case-finding interventions and from which the baseline survey has been carried
out. The photograph shows a satellite map of one of the neighbourhoods (Warren
Park)
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household structure and population dynamics. A copy of the questionnaire used to
conduct the surveys can be seen in Appendix A.

For the study area, the survey provides data on the number of dwellings and the
number of households living within one dwelling. For each household, the survey
provides data on the number of adults and children residing in it, their relationships
to one another, their age and their gender. It also contains information on each
household’s standard of living, including information on the number of rooms in
each household and the number of household members typically sleeping in each.
Finally, it contains information on a household’s TB history, with information re-
garding the number of members presently on TB treatment and those that have
been on treatment within the last two years.

2.6.2 HIV Data

The HIV data for Zimbabwe is in the form of prevalence levels amongst all adults
aged 15 to0 49, i.e. the proportion of the 15-49 year old population who are infected
with HIV. The data is available from 1984 onwards and was provided by UNAIDS
[176]. It was collected from women attending antenatal clinics.

The antenatal clinic (ANC) data provides an estimate of the prevalence of
HIV in the general adult population, however there are concerns as to whether
the ANC data is a reliable representation of the population. The concerns include
whether the prevalence rates in ANCs represent the prevalence rates of women,
and whether the prevalence rates among women accurately represent the preva-
lence rates amongst men. The data may over-estimate the prevalence of HIV
amongst young women because it is biased toward those that are sexually active,
but it may under-estimate the prevalence of HIV amongst older women who may
have become infertile due to being sexually active for longer and contracting other
sexually transmitted diseases. It may also over-estimate the prevalence of HIV
amongst men because there is evidence to suggest that there is higher HIV preva-
lence amongst women. Despite this, the ANC data is the only data available and
the Antenatal Clinic Surveillance Report for Kenya [170] concluds that the over
and under estimation made within each gender and age group, actually cancel each
other out and as a result, ANC prevalence is a reasonable estimate of total preva-
lence amongst males and females aged 15-49.
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2.6.3 TB Data

The TB data for Zimbabwe is in the form of incidence of active TB disease per
100,000 members of the population. The data is available from 1984 onwards and
was provided by the 2007 WHO Report [134].

The incidence of TB is calculated by dividing the notification rates of TB by
the rate at which cases are detected. The standard reporting system in place for
countries such as Zimbabwe include recording the number of sputum smear posi-
tive, sputum smear negative and extrapulmonary patients that are treated for TB in
the public sector each year.



Chapter 3

A Review of Previous Infectious
Disease and Tuberculosis Modelling
Literature

This chapter gives an introduction to infectious disease modelling and a discussion
of other models that have looked at the role of household transmission in interven-
tion design. It then goes on to discuss in detail the previous mathematical models
that have been built to give a better understanding of tuberculosis epidemiology
and effective control measures. The chapter ends with a discussion of the issues
raised from previous modelling methodology and concludes that, in line with other
infectious disease models, the development of a discrete event simulation model is
needed to allow the more intricate details of transmission to be understood and to
enable interventions at the household level to be investigated.

3.1 An Introduction to Infectious Disease Modelling

Mathematical models have been used to help understand epidemics since the eigh-
teenth century [26]. The simple mathematical assumptions introduced by Hamer
(1906) [86] and developed by Ross (1911) [145] to model malaria provide the ba-
sis for modern disease models. These epidemic models have been used to describe
for example, the progression of an infection through an individual, to investigate
a person’s role in transmitting infection, and to describe the spread of the disease
through a community.

Kermack and McKendrick (1927) [97] made a significant contribution to the
understanding of epidemics and developed some of the earlier modern disease

14
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models. They were the first to put forward the threshold theory, which states that
if an infectious case is introduced into a population, the density of susceptibles in
that population must be above a threshold value for the epidemic to occur. As the
density of the susceptibles increases above the threshold, the size of the epidemic
increases rapidly. In later papers, Kermack and McKendrick removed some of their
more restrictive early assumptions, first including the effect of a continuous intro-
duction of new susceptible individuals [98] and then adding in a constant death
rate, in addition to the disease-induced death rate [99]. Another major contribu-
tion to the field came from Soper (1929) [156] who investigated the periodicity of
measles outbreaks. These early models were all deterministic, as fitted the scarcity
of data at this time. As data became more detailed, the desire to model smaller
numbers of people increased, resulting in a move towards stochastic models. Bai-
ley [18] reports that McKendrick was the first to publish a stochastic model of
diseases in 1926. This assumes “continuous infection”, i.e. the probability of a
new case is proportional to the number of susceptibles and the number of infec-
tives in a population, with all infectives being considered to be equally infectious.
Work on the continuous infection model was continued in the 1940s and 1950s by
authors such as Bartlett [21] [22], who used a stochastic model to attempt to mimic
the oscillations in the measles epidemic observed in practice. Bailey [16] [17] and
Whittle [193] obtained more general results for stochastic epidemics.

In later decades, ideas from control theory became prevalent in mathematical
epidemiology and the focus shifted from stochastic to deterministic models [7].
Deterministic models provide a good description of large-scale epidemics, where
the number of people in each of the disease states is large enough to make random
effects unimportant. Much progress was made in describing the dynamics of a
wide range of diseases and modelling control measures.

In recent years, there has been a move towards more individual-based models
as they allow for additional complexity to be incorporated and therefore a more
realistic representation of disease epidemiology. In models of sexually transmit-
ted diseases for instance, the effect of the social or contact structure of infectives is
crucial. Therefore stochastic simulation models are a natural methodology to adopt
and have been used to investigate the transmission dynamics of sexually transmit-
ted diseases such as HIV [137], Gonorrhea and Chlamydia [101]. The structure
of a community can also play a role in determining the transmission of other dis-
eases and therefore microsimulation has been used to further explore vaccination
strategies for diseases such as measles [60] and influenza [67] [85] [191].

To increase the efficacy of intervention design, some modellers have explored
the structure of a community further by modelling individuals within specific
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households. The model developed by Elveback et al. [67], and further devel-
oped by Halloran et al. [85] and Weycker et al. [191], is a good example of how
microsimulation has been successfully used to model individuals within defined
households. Weycker et al. [191] divides the population into communities, fol-
lowed by neighbourhoods and then households, with each individual belonging
to one of these households. Children and adults may then be assigned to various
social groups (playgroup, school, workplace etc.) depending on their age and the
composition of their households, and the mix within these various groups. Using
a stochastic individual-based model allowed it to be an accurate reflection of the
real world. It meant a detailed and complex depiction of social mixing could be
incorporated along with variability in susceptibility, infectiousness and the length
of latency and infectivity. This made it ideal for investigating child vaccination
strategies against influenza in the USA as approximates of the age distribution,
household structure and population size could be included and the transmission
dynamics correctly captured. Other studies which realised the importance of mod-
elling both within household and community transmission to accurately under-
stand and identify effective interventions for an infectious disease include those
investigating influenza [38] [110], SARS [14] [200]), Hepatitis A [151] and the
common cold [110] [14]. As households are generally small in size, these stud-
ies have focused on stochastic models of transmission, but there have been a few
exceptions, where clever model designs have allowed a deterministic treatment of
household models [11] [19].

An appreciation of how infectious diseases have previously been modelled has
revealed that using a stochastic individual-based approach has become the pre-
ferred method. This is due to its ability to capture the reality of transmission and
mixing patterns in populations, something that many studies have highlighted as
vital to obtaining the correct infection dynamics [2]. Because of this, as Levin
[105] suggests, the trend towards more individual-based models is likely to con-
tinue, with more account being taken of genetic variation in infectivity and trans-
missibility of diseases. Previous models have also highlighted the benefit of dif-
ferentiating between household and community transmission when estimating the
main characteristics of transmission.

The following Section looks at the historical development of TB disease mod-
els and provides a concise description of the assumptions and methods used for
modelling different aspects of TB disease. Along with its accompanying summary
table (Appendix B), it contains details of previous mathematical models that have
been built to give a better understanding of tuberculosis epidemiology and effec-
tive control measures.
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3.2 The Historical Development of TB Disease Mod-
els

The majority of the TB models previously developed can be divided into two
model types: deterministic, compartmental models or (static) mathematical mod-
els.

Deterministic Compartmental Model:

In a deterministic compartmental model, the population is divided into differ-
ent epidemiological groups according to their TB (and HIV) disease status. Differ-
ential equations are then used to move proportions of the population through the
various groups at specified time steps.

Mathematical/Epidemiological Model:

A mathematical/epidemiological/statistical model is when the model is static
and fitted to particular data to establish various parameter values and epidemiolog-
ical relationships.

The previous models of TB are summarised and explained in the corresponding
table (Appendix B) and discussed in more detail in the following Section. Initially,
it will discuss the historical development of TB models and then talk about the
more recent models which have incorporated the effect of HIV.

3.2.1 TB Models

Simple mathematical models have been used to understand tuberculosis (TB) epi-
demiology since the late 1950’s when Alling (1958) [6] built a Markov chain
model to predict the likely course of TB disease for individual patients in America.
The model comprised of six states each representing different clinical conditions
of the disease, and had transition probabilities and a small number of other param-
eters. Alling showed that by finding just six of the parameters using maximum
likelihood estimation to fit the model to the empirical data, the disease course that
patients would take could be predicted. The model included those with advanced
TB by incorporating an additional state and the importance of age on disease pro-
gression by dividing the patients into two age-dependent groups.

The success of this study is largely unnoticed by other modellers and is sig-
nificantly overshadowed by Waaler er al. [186] who published a deterministic
compartmental model in 1962 and went on to develop sophisticated models of TB
transmission dynamics [182] [183] [187] [188] [184].
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3.2.1.1 Early Models of TB

Waaler [186] was seen to be the first to bring epidemiologists and statisticians
together and explicitly apply mathematical statistical methods in modelling the
disease. Despite previous studies prior to this paper implying the use of a mod-
elling approach for TB epidemiology [75] [162] [74], and studies such as Alling
[6], there can be no doubt that the ingenuity of the approach used by Waaler was an
inspiration to many other models and perhaps why pre-Waaler models are largely
ignored.

Waaler divided the population into three epidemiological classes and advanced
the model in time steps of one year by the use of difference equations. The
model was fitted using data obtained by Frimodt-Moller’s survey in South India
[74], which collected detailed longitudinal data of a population of 60,000 people
and noted the effects of introducing BCG vaccination and treatment for infectious
cases. Waaler did not intend the results to be taken literally, but rather wanted to
show how the epidemiological trend of tuberculosis in a country could be predicted
using epidemiological models such as this, and more significantly, that they could
be used to evaluate the effect of specific control programs. Waaler’s enthusiasm
for using a mathematical approach to epidemiology stimulated other epidemiolo-
gists to refine his approach. For example, Brogger [36] was amongst the first to
improve Waaler’s three category model by using systems analysis to form a rel-
atively complex model for TB control based on data from Thailand. The model
introduced heterogeneity by classifying subjects with respect to their age as well
as their TB state. Persons were therefore transferred through time from one age
category to the next and through six classes of TB.

ReVelle [140] used Waaler and Brogger’s models as a template but was the first
to introduce nonlinear differential equations to model TB dynamics. His main ob-
jective was to improve the economic allocation of TB control measures in develop-
ing countries. He ignored heterogeneity and just moved homogeneous individuals
amongst nine classes of TB using differential equations, to project the course of
TB with and without different control policies. This enabled him to evaluate the
efficacy and cost of different forms of control.

Other epidemiologists developed new approaches to modelling, such as Fere-
bee [71], who built a simplistic epidemiological model to project the course of TB
in the United States for fifteen years. Ferebee used exact estimates for the number
of people acquiring TB, getting infected by each active case, and progressing to
clinical disease. Using approximations of the efficacy of various control measures
(although sources for these numbers are not provided) she was able to compare the
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current control program’s effect on TB cases with two other possible scenarios.
The results clearly showed that the control program in place at that time in the
United States was not going to decrease the number of TB cases to an acceptable
level and was less effective than other possible measures.

3.2.1.2 Development of the Earlier TB Models

After these initial studies, it was Waaler who really expanded and improved the
modelling methodology. Waaler embraced some of the characteristics of the mod-
els developed by Brogger [36] and ReVelle [140], such as age dependency and
the incorporation of a vaccinated class, to formulate an extension to his previous
model [186]. Waaler [182] developed a model that could be used to generate pro-
jections of epidemiological trends in TB given various anti tuberculosis programs.
The deterministic compartmental model used difference equations to move people
between eight epidemiological classes, which were also specified by five-year age
groups. The model was the first to differentiate (by additional classes) between
those who have been infected with TB for less or more than five years, and was
also the first to separate active cases into those with infectious and non-infectious
TB. Waaler then used this model to look at the effect of different BCG vaccination
scenarios mainly in low prevalence countries such as Northern Europe and North
America [183]. »

Waaler and Piot [187] continued the investigation of TB control by using the
model previously developed [182] to measure the epidemiological effectiveness of
BCG vaccinations in terms of “problem” reduction. The “problem” is defined as
being the total sum of the individuals suffering and the related social costs caused
by the disease. The simulation model used many parameters to represent, for ex-
ample, measures of a) demographic, b) epidemiological, ¢) eligibility, d) economic
and e) coverage factors. This enabled them to ascertain how to most efficiently im-
plement say, BCG vaccinations (by finding the optimal level of coverage and age
of eligibility). By investigating the sensitivity of control methods to the differ-
ent parameters, the study also revealed the importance of epidemiological issues
such as effective contact rates and spontaneous healing rate. This helped develop
a clearer understanding of TB dynamics and the factors most likely to affect the
efficacy of control measures. This study was extended by Waaler and Piot [188]
to include a utility function, which measures the value of a case occurring now as
compared with that for one occurring later. The paper discusses the importance of
this social-time-preference parameter to the efficacy of control measures. It con-
cludes that the parameter is strongly influential to a control measure’s effectiveness



CHAPTER 3: LITERATURE REVIEW 20

and therefore needs to be appreciated by policy makers. Another paper by Waaler
[184], demonstrated the way a decision maker could use their original model [182]
to answer various questions necessary for designing a control policy.

3.2.1.3 A Period of Quiet

After these initial investigations in the 1960s, relatively few theoretical studies on
TB dynamics were carried out over the next twenty years. ReVelle and Male [141],
Chorba and Sanders [43], Horwitz [91] and Azuma [15], were some of the few that
did continue the work into the 1970s.

ReVelle and Male [141] used a decision tree to analyse the most cost effective
way of testing a population to minimise the cost per active case treated. Chorba
[43] developed a simulation of the TB process and applied it to the data from the
United States in order to predict future TB prevalence and to provide a cost-benefit
analysis of control programs. Horwitz [91] designed a mathematical model to
show the dynamic interplay between the disease parameters using data from Den-
mark, and Azuma [15] developed a simple simulation model to calculate annual
trends in TB prevalence and incidence in Japan.

In the 1980s, Goh and Fam [83] simulated the TB problem in Singapore be-
tween 1975 and 2025 to establish which control measure to introduce using the
epidemiological model developed by Azuma [15]. Trefny and Hejdova [172] also
used Azuma’s model to do the same analysis of control measures but for the Czech
Republic, and Schulzer et al. [152] developed a model using a Markov process
which assessed which epidemiological parameters were most important to the on-
going spread of the disease in Taiwan and Korea. This was one of the first stud-
ies which included an analysis of the importance of drug resistant TB. Finally,
Joesoef et al. [94] built a deterministic compartmental model to assess the cost-
effectiveness of three control methods in Indonesia.

There is speculation that the lack of activity in this area was due to the con-
tining decline of TB in the developed nations which implied active TB was under
control [113]. Interest resumed in the early 1990s, however, when countries such
as the USA and the UK started to witness outbreaks of multi drug resistant TB.

3.2.1.4 A Resurgence in TB Modelling

From 1985, the USA observed a progressive rise of TB with a total increase of
about 9% per year. Likewise since 1991, an increase of 5% was being reported



CHAPTER 3: LITERATURE REVIEW 21

in the UK with other Western European countries experiencing similar behaviour
[173]. In 1993, the World Health Organisation (WHO) declared TB a global emer-
gency and since this time, a large number of TB studies have been started with
many TB models being developed.

The models vary from simple parametric models [147] to simulation [122],
cluster [11] [155] and Bayesian models [78], but the majority of them [30] [31]
[37] [138] [28] [107] [206] [181] [69] [68] [12] [77] [84] extend Waaler’s deter-
ministic compartmental model by incorporating various improvements and intri-
cacies to consider more advanced epidemiological issues such as exogenous rein-
fection [181] [69] [84] age dependency [181], multi drug resistance [31] [37] [68]
and self cure [30].

Amongst those that developed deterministic compartmental models is Blower
et al. [30]. Their intention was to gain a better understanding of the intrinsic
transmission dynamics of untreated TB epidemics and the historical epidemiology
of tuberculosis. The model was meant for immunocompetent populations and at-
tempts to reflect more biological complexities than previous models by including
a spontaneous cure rate (those cured without treatment), by having only a fraction
of TB cases as infectious, and by including a recovered class where individuals
are able to either die of other causes or develop TB again. This model success-
fully gave quantitative answers which identified the mechanisms that drive TB
epidemics.

Understanding these dynamics meant that Blower’s results could be used to
design and understand how to control the disease. In their next paper, Blower et
al. [31] extended their model to include the population level effect of treatment
and thereby “developed a theoretical framework for designing effective tubercu-
losis control strategies” It was felt that control strategies could not be considered
efficiently without also considering treatment failure and the subsequent evolution
of drug resistance (a significant challenge to control programs). Blower therefore
extended the model to include two strains of TB, and thus developed a transmis-
sion model that included the dynamics of both drug sensitive and drug resistant
TB. The theoretical framework allowed the counterproductive control programs to
be identified and successful control programs to be improved upon.

Most other compartmental models developed after this time were intended to
evaluate control strategies. These are discussed in the next Section.

DCMs for Evaluating Control Strategies

Castillo-Chavez and Feng’s [37] four stage model was modified to include re-
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sistant strains of TB. They incorporated two additional classes specifically to rep-
resent the development of resistant strains, with the purpose of determining the
role that the lack of treatment compliance plays on the maintenance of resistant
TB strains.

Porco and Blower [138] produced a time dependent uncertainty and sensitiv-
ity analysis of their previous models [30] [31] to identify which input parameters
significantly affected the severity of a TB epidemic, and which contributed to the
variability in the epidemiological outcomes. This type of understanding of an epi-
demic is invaluable, especially when considering the role of control strategies. For
example, Blower and Gerberding [28] incorporated this information into the com-
partmental model they developed, which could be used as a health policy tool, to
predict the epidemiological outcome of specified approaches to control.

In 2000, Lietman and Blower [107] developed this tool to predict the epidemi-
ological effect of both preexposure and postexposure vaccines. The model was
based on the compartmental models they had already built [30] [31] [138] [28]
[148] [108] [27] [29]. The model divides the susceptible and latent classes into
vaccinated and unvaccinated subclasses and the authors applied the model to both
developing and developed countries. The results showed that using both vaccines
in developing countries will help to eliminate TB by preventing reactivation, re-
infection and new infection at the same time. In developed countries, the results
showed it would only be necessary to prevent new infections from occurring (pre-
exposure vaccine), as a small percentage of the population are latently infected.
These conclusions are developed further by Ziv et al. [206] who evaluated the
effect of targeting therapy specifically to persons with recently acquired latent TB
compared to those who have been latently infected over a long period. The model
was similar to Blower er al. [31] and concluded that fewer early cases need to be
treated to eliminate TB than if you were to treat those of a large scale population
with evidence of a latent infection. These were amongst the first models to stress
the importance of treating individuals with latent TB.

DCMs not for Evaluating Control Strategies

Other models, that were not intended to explore the effects of different inter-
ventions, were also developed. Sutherland et al. [164] and Vynnycky and Fine
[181] developed models solely to help understand the role of exogenous reinfec-
tion on TB dynamics. Whilst Sutherland had already used a mathematical model
to quantify exogenous reinfection and its relative risk compared to that of primary
infection and endogenous reactivation, Vynnycky and Fine were the first to model
reinfection, by means of a deterministic compartmental model. The model was de-
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veloped because few of the previous models had included age structure and none
of them (apart from Sutherland’s) until this time had considered the importance of
reinfection. For example, Blower er al. [30] explicitly ignored exogenous rein-
fection in their model and acknowledged that the model is therefore unsuitable for
immunocompromised populations. Vynnycky and Fine’s analysis showed that the
epidemiology of TB has changed considerably since the end of the 19th century
due to HIV; and that age and reinfection are important factors of TB transmission
dynamics.

Recognising that exogenous reinfection cannot be ignored in populations hav-
ing high HIV prevalence, Feng et al. [69] also developed a model to understand
the effect of reinfection on TB dynamics in developing countries and the inner
cities of developed countries. The basic TB model from a previous paper [37] was
extended to incorporate exogenous reinfection by introducing a new term into the
differential equation that effects the dynamics of the ‘infectious’ epidemiological
class and includes a new parameter which measures the level of reinfection. The
results showed that the dynamics of TB would change with the consideration of ex-
ogenous reinfection. Biologically it implied that exogenous reinfection increases
the number of individuals at risk of becoming infectious.

Feng er al. [68] later did a study to investigate the effects of variable periods
of latency on TB disease dynamics. Using previous models [37] [70], they devel-
oped another compartmental two-strain model with the intention of determining
whether the conclusions change when both multiple strain TB and distributed de-
lays of latency are considered. Unlike the previous study the results showed that
the introduction of host heterogeneity in latency did not change the basic conclu-
sions and therefore the dynamics of the disease remain unchanged from the earlier
model [37].

Aparicio et al. [12] developed a model to understand the possible reasons for
the reductions in active TB incidence in the United States. The roles of demo-
graphic, epidemiological and social components were explored by use of a deter-
ministic compartmental model similar to those being published at the time, but
with time dependent parameters. Particular importance was placed on the effect
of urbanisation and an increase in the standard of living on the disease evolution,
and these were incorporated into the model, which provided evidence to suggest
the decrease in incidence of active TB was due to a reduction of progression from
latent to active disease.

Other compartmental models were developed simply to estimate the possible
evolution and trajectories of the disease. Garcia et al. [77] present a model where
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individuals are vaccinated at birth and only those not protected by the vaccine
can become infected with TB. The natural history of the disease is represented
by seven epidemiological classes and the transfer rates between the groups are
obtained from the literature of TB situations in developed countries. Gomes et al.
[84] developed the same model but with adjustments to incorporate the effect of
exogenous reinfection.

Other Types of Models

Although the majority of models seem to be deterministic compartment mod-
els, other types of models have been developed. Salpeter and Salpeter [147] de-
veloped a purely mathematical model and applied epidemiological data to it to
ascertain estimates of the parameters of TB epidemiology in the United States.
The model’s results were validated using other published results, and estimates
were established for case rates in different age groups and the time delay between
the initial infection and active disease.

Aparicio et al. [11] proposed a new dynamic model which incorporated the
effects of clusters on TB transmission. The model enabled the authors to focus on
the effect of long and systematic exposure of infectious individuals on suscepti-
ble individuals, which previous models had failed to address. The cluster model
is essentially still a deterministic compartmental model but the population is split
into two - those individuals belonging to an epidemiologically active cluster (N1)
and those that do not (N2). An epidemiological cluster (of size n) is a generalised
household with at least one actively infected individual. Therefore if an individ-
ual is newly infected, they activate a new cluster and increase the risk of TB for
all those susceptibles in their cluster. The cluster model therefore differs from
the usual compartment model because instead of moving individuals through the
various stages, it moves clusters of individuals. For example, when an individual
becomes infectious, this creates an epidemiologically active cluster which means
n individuals are moved from population N2 to N1. This model was extended by
Song et al. [155] who further explored the role of close and casual infections on
TB dynamics. The cluster model allows two levels of mixing to occur, with trans-
mission processes occurring at both the population level and the individual level.
This allows individuals to acquire TB through membership of an epidemiologi-
cally active cluster (close contacts) as well as from random (casual) contacts in the
population.

Murray [122] also looked at the clustering of TB cases and defined a cluster
by using molecular techniques to identify identical TB isolates in communities.
She used a discrete event simulation model to track the chain of disease trans-
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mission through different clusters, enabling her to see the effect of variability of
strain behaviour and the transmission dynamics of TB in determining cluster size.
The study was not intended to obtain specific cluster distributions and TB inci-
dences but to help to interpret empirical studies. Murray concludes by endorsing
the microsimulation approach to be used in the study of epidemiology of infectious
diseases.

Another method, used by Getoor er al. [78] is to create a Bayesian model. They
used data collected in San Francisco to create a Bayesian network which was ex-
tended using statistical relational models. This allowed the rich and complex data
to be explored and TB disease transmission to be better understood. The study
revealed the potential of this type of analysis in answering fundamental questions
about tuberculosis biology, addressing issues such as heterogeneity of susceptibil-
ity and the virulence of different strains.

The models discussed so far have solely been for modelling TB disease. How-
ever, there is a significant relationship between the HIV and TB epidemics, as
described in Chapter 2, Section 2.4. The following Section will discuss models
which have tried to incorporate the intricate relationship between the two diseases.

3.2.2 TB and HIV Models

TB and HIV fuel each other very effectively. TB accelerates the progression of
HIV to full blown AIDS; and HIV increases the risk of progression from latent TB
to the active TB disease. In fact, in an HIV infected person with a TB infection, the
risk of progression to TB disease increases from 10% over a life time to 10% each
year [4]. As aresult, with both diseases active the average survival time is just 5 or
6 weeks [194]. Models that try to capture the dynamics between the two diseases,
and their impact on each other are therefore important, particularly in regions with
a high HIV prevalence such as Sub-Saharan Africa.

Schulzer had previously developed a mathematical model to predict TB infec-
tion in Taiwan (Schulzer et al. [152]) but recognised the urgent need to develop a
model which addressed the interaction between TB and HIV. Schulzer was among
the first to incorporate the effects of HIV in a TB model and in 1992, Schulzer er al.
[153] and Bermejo et al. [25] published simple parametric models which looked at
the impact that HIV was having on TB incidence in developing countries. Bermejo
et al. [25] developed a static model which investigated the relationship between
the two epidemics to show what percentage of new TB cases will be HIV-positive
and what TB incidence levels can be expected under various situations of HIV
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prevalence. The study formed general conclusions about the dramatic increase of
TB incidence that can be expected in developing countries due to the HIV epi-
demic. Similarly, Schulzer et al. [153] developed a model which predicted the
likely extra numbers of TB cases due to HIV infection in Sub-Saharan Africa. Un-
like Bermejo, Schulzer looked at four different scenarios so that a range of risks
of infections could be investigated. This study similarly highlighted the dramatic
increase in the number of TB cases that can be expected due to HIV infection.
This model was extended to allow it to be applied to other countries and regions
effected by the dual epidemic. Schulzer et al. [154] discuss the use of the math-
ematical model in Sub-Saharan populations and the Canadian needle exchange
sub-population and predict the expected progression of TB disease in these pop-
ulations, given the acceleration from the impact of HIV. All three of these early
studies emphasise the potential of their models to be used to design appropriate
control programmes.

These studies discuss simple mathematical models that were only able to gen-
erate general results and conclusions about the impact of HIV on TB. Other more
sophisticated models were also developed. Massad [113] for example, developed a
deterministic compartmental model which allowed a more comprehensive analysis
to be done and the complexities resulting from the interaction of the two infections
to be investigated. The actual structure of the model is based on the TB model pre-
viously discussed by ReVelle [140] and an HIV model already developed by the
author [64]. The model separated individuals into two susceptible classes - those
who are susceptible to both infections, and those who are susceptible to both infec-
tions but who have previously suffered from active TB. The population is able to
progress through the 16 compartments, which represent various stages of the two
diseases, and the parameters control the transitions through the model depending
on HIV status. The model was meant as a theoretical study and enabled specific
relationships between the diseases to be explored and quantified. Firstly, the sim-
ulations showed that the pathogenicity of HIV is greatly enhanced by the presence
of TB, secondly that the prevalence of AIDS almost doubles in the presence of TB,
and vice versa, and thirdly, there is a stronger influence of AIDS on TB than there
is of TB on AIDS. These findings increased the understanding of the epidemiolog-
ical interaction between the two diseases at that time, and were also suggested to
be useful for the designing of control strategies.

Heymann [89] developed a 10-stage Markov model to analyse how the in-
teraction between HIV and TB affects both the HIV-positive and HIV-negative
population in Africa. The model was implemented using a computer simulation
of one million adults over ten years. As well as the effect of HIV prevalence on
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TB infection rates, the impact of expanding chemoprophylaxis programs was also
evaluated. Data and parameter values derived from the literature were used to
determine transition rates. The complex mechanisms behind the increase in TB
deaths due to the HIV epidemic were identified and the importance of chemo-
prophylaxis in decreasing the prevalence of TB in HIV-infected and non-infected
individuals by reducing the spread of TB was clearly ascertained. It concludes
that providing chemoprophylaxis to HIV-positive individuals is more cost effective
than treatment but whether the same is true for HIV-negative individuals depends
on various conditions, some of which are identified in the paper.

Heymann was also involved in a similar model which simulated the USA’s
general population for ten years using available epidemiological data. In the pa-
per by Brewer er al. [33] they discuss the development of a semi-Markov model,
where, unlike in a Markov model, the probabilities of moving between states can
vary over time. There are 18 states defined in the model, which are dependent on
TB status (both drug sensitive and drug resistant) and HIV status, and the popu-
lation is split into three different age groups. Three different prevention strategies
and two treatment strategies are introduced singly and in various combinations to
assess their impact as TB interventions. The study concluded that on their own,
the treatment and prevention strategies would not be sufficient to eliminate TB in
the USA and that a combination of control strategies is needed.

Another type of model that was used to investigate and quantify the potential
impact of the HIV virus on TB was discrete event simulation. Porco et al. [139]
extended their previous deterministic models [30] [31] [138] [28] [107] [206] of tu-
berculosis by including stochastic effects and the effect of HIV on both the patho-
genesis and transmission of TB. The model had six states to represent the disease
progression of TB in HIV negative individuals and a further six states for each of
the four WHO defined stages of HIV. The stochastic model simulated, under vari-
ous HIV and treatment rate scenarios, the average outbreak size from introducing
one infectious case of tuberculosis. The results showed that in areas with very
high treatment rates for TB, HIV epidemics are unlikely to substantially increase
the number of TB cases but that in areas where treatment rates are moderate or
less, “HIV is likely to significantly amplify the TB epidemic”. The study high-
lighted that WHO target levels for tuberculosis treatment are well below what they
need to be and that in developing countries, decreasing the prevalence of HIV will
decrease the incidence of TB.

After 1998, a series of deterministic compartmental models were developed
specifically to investigate the efficacy of directly observed treatment, short course
(DOTS), the World Health Organisation’s recommended strategy for TB control.
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Murray and Salomon [120] elaborated on a previously discussed model which was
developed by Blower ef al. [30] [31]. The finite difference model describes the
progression through a possible 19 states of TB and was applied to populations from
five regions of the world !. This was one of the most complicated compartment
models developed so far and incorporated features such as superinfection, fast or
slow breakdown to TB disease, fast or slow diagnosis rates and three clinical cat-
egories of TB. The profound effect of HIV on the development of TB is also cap-
tured by creating two sub models to represent the HIV-negative and HIV-positive
populations. The paper concludes that using DOTS alone will be inadequate and
that extensions need to be implemented. In a subsequent paper [121], they go on
to advocate the use of active case finding in high HIV prevalent populations as a
cost-effective extension to DOTS, by incorporating costs into the original analysis.

A very similar model was developed by Dye et al. [61] to quantify the world-
wide effect of the DOTS strategy and hopefully justify it. The model is a deter-
ministic compartmental model with two sub models to incorporate the effect of
HIV; however it also includes age structure. The model was applied to the six
WHO regions of the world and showed that improvements in case finding and cure
rates are vital, as even if WHO targets were met by 2010, “three-quarters of the
worldwide TB burden would still not have been averted in the next 23 years.”

This model became a popular foundation for other models and studies. An
adaptation of it was used by Currie et al. [55] to compare and investigate preven-
tative methods of TB control with case detection and cure. The study was moti-
vated by the observation that DOTS was failing to prevent increases in TB cases
in high HIV prevalent populations. The Dye [61] model was adjusted so that age
structure was removed but that options for TB control were extended to include
three preventative methods (one of which was to reduce HIV transmission) as well
as case detection and cure. The model was applied to data from South Africa,
Kenya and Uganda; all countries where the TB epidemics are driven by HIV. The
results showed that reducing the burden of HIV is an effective way of reducing
TB, but that the effect is delayed and less dramatic than finding and curing active
TB. The authors concluded that both HIV and TB control would be needed to give
a long-term decline in TB incidence.

Currie et al. [56] then used the DCM approach to develop a different model to
look at the effect that the duration of TB infectiousness amongst late-stage HIV-
positives has on the dual epidemics of TB and HIV. A dynamic TB transmission
model is split into two sub models to represent HIV-negative and late-stage HIV

"The world was divided into five regions based on patterns of TB epidemiology
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individuals, as in the earlier model, but the TB states are more complex with the
latent TB infection state split into a state to represent latently infected individuals
who progress quickly to active disease, and a state for individuals with a long-term
TB infection. The model was applied to data from Kenya and showed, using var-
ious scenarios for duration of infectiousness, death and diagnosis rates, that when
the duration of infectiousness is short, the HIV epidemic has relatively little effect
on TB prevalence. This is due to the fact that the majority of transmission events
are attributable to HIV-negative individuals, because the HIV-positive individuals
are infectious for such a small amount of time. This could have important implica-
tions for TB intervention design, especially when studies in South Africa showed
that the duration of infectiousness could be as little as 2 months in late-stage HIV
individuals, rather than the 6 months assumed by the WHO.

Dye and Williams [63] also adjusted their previous model [61], to investigate
multi drug resistant (MDR) TB and how best to eliminate it. The model allows
both drug resistant and drug sensitive TB to be modelled and was one of the first,
along with Vynnycky et al. [181], to incorporate a disease state for those with
fast progression to active TB, which, as already discussed was later used by Currie
[56]. The results were obtained by applying the model to data from 6 countries to
represent the current variations in cure rates. The study allowed general conclu-
sions about the control of MDR TB to be made, mainly that current treatment and
cure rates are inadequate if an MDR-TB epidemic is to be prevented.

In another study, Dye and Williams adjust their previous models [61] [63] and
discuss a new model for HIV and TB. Williams et al. [197] discuss a model to in-
vestigate the capability of India’s Revised National TB Control Program (RNTCP)
DOTS program, to reach the United Nations Millennium Development Goals of
halving TB prevalence and death rates by 2015. This time the model was repli-
cated 5 times to represent each possible HIV stage (negative and stages 1 through
to 4), as the impact of HIV on TB and the RNTCP’s ability to control the TB epi-
demic was the primary goal. The model’s other modifications, were the removal
of age dependency [120] and the lack of a ‘fast latent’ stage [63]. The model re-
sults showed that HIV should have little impact on India’s RNTCP and its ability
to reverse the increase in TB incidence but that more treatment is needed to halve
TB mortality by 2015.

As the review shows, the majority of previous studies have used determinis-
tic compartmental models which have focused on modelling TB at the population
level. These studies concentrated on the effect of interventions at a large scale
and although many of them addressed the implications of reducing transmission,
none of them were able to look at the actual mechanics behind it. These studies
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have been vital in understanding and quantifying TB disease progression in popu-
lations. However it is felt that a discrete event simulation is more appropriate for
investigating interventions at the household level and enables the more intricate
details of transmission to be understood. There is also a need to further investigate
TB control strategies in areas of high HIV prevalence; in particular with relation
to active case-finding.

3.3 Issues from the Literature

When designing the discrete event simulation model it is useful to appreciate the
issues uncovered by the literature regarding TB modelling, some of which remain
unresolved or continue to be inadequately addressed. The rest of this Section dis-
cusses some of these issues and considers which of them will be important to the
study.

3.3.1 HIV

The majority of previous models have not incorporated the effect of HIV on TB
disease evolution and the effectiveness of control strategies, however it is now
widely accepted, as reflected in the most recent literature, that it is essential to
simultaneously control both epidemics, especially in developing countries [139].
This means that TB models must include HIV and that better data is needed to
resolve the uncertainties surrounding the parameters connecting the two epidemics
[197].

3.3.2 Homogeneity

The majority of the studies divided the population into homogeneous groups based
on the natural history of TB disease and presumed homogeneous mixing of the
population.

Age Dependency:

Age structure is particularly important in TB epidemiology as a lot of the dis-
ease parameters are dependent on it. Age affects the mortality rate and life ex-
pectancy and also determines both the risk of developing disease after infection
[11] [155] and the type of disease developed (pulmonary /extrapulmonary). Also,
the behaviour of children versus adults in disease evolution can be very different
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as children are less likely to infect others or progress to active disease. Some stud-
ies explicitly ignored children because they are not a priority group for TB control
programs in developing countries [25]; however it is unclear how important they
are when considering the disease dynamics within households.

A few studies recognised the importance of age on the epidemiology of TB and
tried to incorporate age dependency [6] [36] [182] [181] [61]; but all these studies
failed to include the effects of either gender or non homogeneous mixing.

Gender:

Gender differences are important and have been observed in TB epidemiology;
for example Sutherland er al. [164] found that the differences between the sexes
were statistically significant and that there are genuine differences between male
and female rates of mortality, incidence and disease progression. However, none
of the models discussed in this review incorporated this phenomenon into their
models.

Homogeneous Mixing:

The only models that address non homogeneous mixing are those by Aparicio
et al. [11] and Song et al. [155]. These models are still deterministic compart-
mental models with no age or gender structure; however they do try to model two
different levels of mixing with transmission processes occurring at both the pop-
ulation level and the individual level. Although this provided some insight on TB
dynamics between close and casual contacts, the groups were still homogeneous
as the population structure was ignored and therefore the modelling was unrealis-
tic. Previous models have therefore only been able to look at the effect of large
scale interventions and have been unable to look at the actual mechanics behind
transmission. It is felt that discrete event simulation is more appropriate for in-
vestigating the intricate details of transmission and the effect of household level
interventions, because different mixing patterns and heterogeneous contact rates
can be incorporated into the model.

3.3.3 Endogenous Reinfection

Although reinfection has been incorporated by many studies, its importance in
immunocompetent populations is still debated within the literature [68]. However,
most studies agree that exogenous reinfection plays an important role in disease
progression in developing countries where high incidence rates are observed.
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3.3.4 Lengths of Latency and Infectiousness

One of the criticisms of all the previous models is that they do not take into account
the long and variable periods of latency which is an important feature of TB. Only
Feng et al. [70] recognised this and tried to incorporate it into one of their basic
TB models however it was unable to capture the effect sufficiently. They found
that the disease either died out or remained endemic regardless of the shape of the
length of latency distribution.

The length of infectiousness is also variable and influenced by an individual’s
age, sex and disease characteristics. The varying lengths of infectiousness are
particularly important when considering the effect of HIV on the TB epidemic.
HIV-positive individuals are infectious for a relatively short amount of time - re-
cent studies in South Africa suggest it could be as little as two months [49] [48].
When the duration of infectiousness is short the HIV epidemic has relatively little
effect on TB prevalence because the majority of transmission events are not com-
ing from HIV-positive individuals. This effect has only been specifically modelled
by Currie et al. [56] and they concluded that it has important implications for the
design of control strategies and is therefore an important feature to incorporate into
a model of TB and HIV.

3.3.5 Multi Drug Resistance

Multi drug resistant (MDR) TB is generated by inadequate treatment and is a grow-
ing impediment to the effective design and success of control strategies. A handful
of studies have incorporated multi drug resistance into their models ([152] [31]
[37] [68] [33] [63]), as it was felt that control strategies could not be considered
efficiently without also considering treatment failure and the subsequent evolution
of drug resistance. Many of the studies were successful in identifying how current
control strategies could be improved in light of MDR TB and also in determining
the role that the lack of treatment compliance plays on the maintenance of resistant
TB strains. The models conclude that the prevalence of MDR TB is an essential
consideration when designing TB control strategies and therefore its incorporation
into the design of a TB model needs to be evaluated.

3.3.6 Immigration

Immigration is an important element to understand when modelling tuberculosis
in a population because of the flux of infectious individuals that it can introduce
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into the population. Studies in developed countries such as America have shown
that foreign-born persons composed 60% of the increase of TB cases between
1986 and 1992 and in Auckland, 63% of new cases were found among immigrants
from Asia and the Pacific Islands during 1992 [69]. This implies that foreign-
born individuals with TB may be responsible for much of the transmission of TB
in Auckland and that TB incidence rates in developed countries are affected by
immigration. Some models, such as Feng er al. [69], appreciate the importance
of immigration and its impact on TB control, but all fail to actually model it. The
importance of immigration on TB disease dynamics in developing countries is still
uncertain.

3.3.7 Poverty

Tuberculosis has long been a disease of poverty for several reasons. The risk of
being infected with TB is higher among poor people because there are higher con-
tact rates in overcrowded homes and areas, the risk of developing active disease
is higher amongst people with poor immune systems due to below average nutri-
tion and working conditions, and the chance of being successfully diagnosed and
treated depends on good infrastructure and the availability of health services [185].

Previous models have been unable to capture the effect of poverty because of
the complications and ambiguity surrounding modelling it. Some have acknowl-
edged the strong evidence which suggests that “a correlation exists between TB
progression rates and the corresponding average standard of living” [12]. How-
ever, it has only led to hypothesising over the effects on TB control interventions
and not the modelling of it. It is currently thought that the clustering of TB in-
fection and HIV infection in the poorest of households may be exacerbating the
biological interaction between these two diseases. How this may reduce the suc-
cess of TB control interventions (since the poorest households may also tend to
have the least access to health care) still needs to be determined.

3.4 Summary and Conclusions from the Review

The use of mathematical modelling in the study of TB has helped to illuminate
the general epidemiology of the disease as well as to optimise the effectiveness
of control measures. As such, it has evolved over time to answer questions such
as those about exogeneous reinfection in the 1990s moving onto questions about
the interaction with HIV in the late 1990s and early 2000s. Following shortly
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behind advances in vaccinations, TB treatment and prophylaxis, and occasionally
anticipating what these advances might be, it has been used to compare differ-
ent interventions and to find the optimal strategies for their delivery in terms of
effectiveness and cost.

Moving to the future, there are still a number of unanswered questions about
the effects of HIV on TB and the impact this has on control. Answering some of
these questions, in particular those concerning HIV, where the effect of the contact
network is needed to understand transmission, may require different modelling
methods from the deterministic compartmental models that have traditionally been
used to model TB. For example, there is undoubtedly a place for more stochastic,
individual-based microsimulation models.

The purpose of this study is to evaluate the effects of more intensive case-
finding strategies for TB control in a high HIV prevalent setting. As active case-
finding can involve targeting household members of TB patients, a clearer under-
standing of the role of household versus community transmission of TB is needed.
A review of both TB and other infectious disease modelling literature points to
discrete event simulation as the most appropriate method for investigating inter-
ventions at the household level, as it enables the population dynamics to be more
accurately represented and therefore the more intricate details of transmission to
be understood.

The importance of incorporating various epidemiological issues into a TB
model have been identified. Which issues are addressed by a model are depen-
dent on the questions needing to be answered. For our discrete event simulation
model, which is looking to determine the relative importance of household inter-
ventions in controlling TB in HIV settings, all of the issues could be considered
as important. In our model we only aim to address HIV, age dependence, non-
homogeneous mixing, reinfection, and varying lengths of latency and infectious-
ness. It would be ideal to also incorporate MDR TB, gender and immigration,
however more comprehensive data on their impact is required. It would also be
valuable to explore the impact of poverty on the likely success of interventions,
and cross-sectional data on this is being collected by DETECTB in Harare. The
work involved in using this data to quantify poverty is time-consuming and has not
been done for this model. It is considered feasible however, and would be a very
interesting and useful extension to this research (see Chapter 10, Section 10.3).



Chapter 4

Examining the Dynamic
Relationship between HIV and TB

4.1 Introduction

In an initial study of the interactions between the HIV and TB epidemics a simple
parametric model was developed at the population level. This was done in collab-
oration with Dr Brian Williams of the World Health Organisation and much of the
following discussion is taken from the currently unpublished paper entitled “The
impact of HIV on TB at a district level in Kenya” [116]. Using district level data
from Kenya on TB notification rates and HIV prevalence among women attending
ante-natal clinics, the dynamic relationship between TB and HIV was explored.
Kenya was an appropriate study area because of the availability of comprehensive
TB data and because TB notification rates have risen by up to ten times in some
of its districts over the last ten years, almost certainly as a result of the HIV epi-
demic. The presence of an HIV led TB epidemic allowed the relationship between
the epidemics to be investigated at the population level. An understanding of how
HIV impacts on TB epidemiology is important, not only for Kenya, but for TB
modelling in all other countries with substantial HIV epidemics.

The model developed is a simple parametric model which was fitted to, where
available, district level data of both infections. The model predicts the likely course
of the HIV and TB epidemics. It is particularly useful for those districts where
TB data, but not HIV data, are available as it is capable of estimating the HIV
prevalence from just the TB notification rates. This is useful because in some
countries such as Kenya, TB notification data is considerably more reliable than
the HIV prevalence data both in quantity and quality. The results from the initial

35
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modelling work described in this Chapter are not used as a direct input into the
DES model.

4.2 Background

The risk of developing TB disease increases as people progress from HIV infection
to AIDS and studies have been carried out to determine the odds ratio for TB in
HIV-positive and HIV-negative people [132], changes in the risk of TB as people
progress toward AIDS [196], the relative infectiousness for TB of HIV-positive
and HIV-negative people [58] [79], and the extent to which HIV-infection affects
transmission of TB [46]. Attempts to model the population level impact of the TB
epidemic have relied heavily on these and other studies to estimate the necessary
parameters, assuming that both the parameter estimates and the model structure
adequately capture the dynamics of the two epidemics.

As already discussed in Chapter 3, a number of attempts have been made to
model the impact of HIV on TB using dynamical compartmental models [89] [33]
[120] [121] [61] [63] [139] [53] [123] [55] [47] [199]. However, without good
population level data for both diseases it is difficult to be confident about the va-
lidity of these results and the confidence limits in population level estimates are
wide [196]. The problem is that where TB notification rates are high and HIV is
prevalent, some countries, such as South Africa, have good data on the prevalence
of HIV but poor data on the incidence of TB, while other countries, such as Kenya,
have good data on TB but less certain data on the prevalence of HIV.

TB notification rates are available from all of the 41 districts in Kenya since
1985. The number of districts changes over time as district boundaries are redrawn
and districts merged or split. The district level data for HIV is less complete and
only 10 districts have reliable and consistent data for more than 10 years. However,
this is the most comprehensive set of sub-national data on both diseases for any
developing country in the world and allows us to develop preliminary estimates of
the relationship between TB and HIV in Kenya.

Because of the limited extent and coverage of the HIV data, even in Kenya,
we use a parametric model to describe the interaction between the two diseases.
The data cannot support detailed parameter estimation for a full compartmental
model and we seek the simplest possible model that is biologically plausible and
is sufficiently flexible to fit the data. This simpler model enables us to identify
important relationships between the two epidemics.
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The results of the model show that using the TB incidence data to predict the
HIV prevalence curve in Kenya’s districts is a realistically precise method. This
work is our own contribution toward the evidence of a strong link between the
HIV and TB epidemics, a key fact underpinning the need to develop a discrete
event simulation (DES) model of TB transmission (Chapter 1).

4.3 Data

In addition to information on the changes in district boundaries over the last 18
years, we use three sets of data: TB data from the routine surveillance system of the
Kenyan National Leprosy and TB Control Programme (NLTCP), HIV data from
the sentinel surveillance system of the Kenyan National AIDS and STD Control
Programme (NASCOP) [10], and data from the Kenyan National Census for the
years 1979, 1989 and 1999 [8].

4.3.1 District Boundaries

Over the 18 years for which TB data are available for this study there have been
a number of changes to the district boundaries in Kenya (Appendix C). In 1990,
for example, Kericho was divided into Bomet and Kericho. These two districts
were again divided in 2000 with part of Bomet and part of Kericho combining to
form a new district, Buret. In this study we use the district names as given for the
period 1985 to 1991, which gives a total of 41 districts, and combine data from
the present districts where necessary. Figure 4.1 is a map of the Kenya districts as
referred to in this study.

4.3.2 TB Data

The TB data are part of the standard reporting system in which the number of spu-
tum smear positive (SS+), sputum smear negative (SS-), and extrapulmonary (EP),
patients that are treated for TB in the public sector each year is recorded. Ideally
one would use the incidence of TB rather than notification rates. Multiplying the
notification rate by the case detection rate (CDR) gives the incidence but the CDR
is difficult to estimate precisely. However, the World Health Organization esti-
mates that the case detection rate has remained fairly constant, between 47% and
49%, for the last ten years [133]. Provided the case detection rate has not varied
over time this will only introduce a scaling factor into the model fitting.
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Figure 4.1: The provinces and districts of Kenya
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4.3.3 HIV Data

HIV data are only available for some districts for some years. Visual inspection
allows us to classify the districts broadly into three groups: a) those that have con-
sistently smooth trends in time (within the binomial confidence limits) for at least
11 years; b) those that have some data but for which the variability substantially
exceeds the binomial errors or for which data have only been measured at a few
points in time; and c) those for which no data are available. We refer to these as
Type I, IT and III districts, respectively. The HIV data are for women attending
ante-natal clinics (ANC). It is assumed that the ANC prevalence is close to the
prevalence in all adults [10] but as discussed in Chapter 2, Section 2.6.2, there are
concerns over whether the ANC data is a reliable representation of the population.
However, the only long term trend data are from ante-natal clinics and we assume
that these data accurately reflect trends in the adult prevalence so that they too
differ, at most, by a scaling factor.

4.3.4 Census Data

The national census data for the years 1979, 1989 and 1999 were taken from the
Central Bureau of Statistics, Ministry of Economic Planning and Development,
Nairobi, Kenya. Data are available by sex in five year age bands. We determined
the numbers in the intervening years using an exponential interpolation. These
data were then used to determine TB notification rates per 100k people for each
district.

4.4 Methods

In most African countries the variation of the prevalence of HIV with time can be
fitted by a logistic curve or, if there is evidence that the epidemic has peaked and
is declining, by a double logistic curve [55]. For the Kenyan data we use a logistic
curve to fit the HIV-prevalence curve for each district so that the prevalence P(t)

1S

aea(t—f)

14 ealt=0 "
where a is the asymptotic prevalence, « is the rate at which the HIV prevalence
increases at the start of the epidemic, and ¢ determines the timing of the epidemic.

P(t) = (4.1)
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In particular we assume that the TB notification rate does not affect the prevalence
of HIV.

TB incidence can also be fitted using a logistic curve but the initial value of
the notification rate is not zero and so we include a non-zero asymptote as an
additional parameter. Furthermore, we are interested in exploring the impact of
the HIV epidemic on the rates of TB in both HIV-positive and HIV-negative people
and we include these separately in the model.

Several studies have shown that even if TB notification rates increase dramat-
ically as a result of the HIV epidemic, the annual risk of infection and the preva-
lence of TB disease in HIV-negative people may increase only slightly, if at all,
because the increase in the individual risk of developing TB is balanced by the
lower infectivity and the higher mortality and rate of disease progression of HIV-
positive TB patients [46] [81] [45] [142] [117]. We therefore assume that I~ (t),
the TB notification rate in HIV-negative people, is constant and equal to /~(0), the
TB incidence observed before the HIV epidemic began to have an impact on TB,
and therefore

(&) = I(0) (4.2)

The incidence of TB in HIV-positive people depends on both the rate at which
HIV-positive people acquire new infections and the rate at which latent TB in-
fections break down. The latter depends on the historical rates of TB infection
which will determine the proportion of people that have a latent TB infection, but
is otherwise independent of current rates of infection; the former depends only on
the current risk of TB infection. The median life expectancy after infection with
HIV is about 10 years [196] and HIV-positive people present on average about 8
years after infection with HIV, and so we anticipate a delay between the rise of the
HIV epidemic and the resulting rise in the TB epidemic. We therefore model the
incidence of TB in HIV-positive people as v

YOy =IO {1+ 3Pt —0)} +vP(t — ) (4.3)

The first term on the right hand side, which represents reinfection, is proportional
to the incidence of TB in HIV-negative people increased by a factor that is propor-
tional to the prevalence of HIV infection t years earlier; the second term, which
represents the activation of latent infection, is independent of the current incidence
of TB but is proportional to the prevalence of HIV infection f years earlier. The
overall incidence of TB is given by

I)=1"®){1—- PO} +IT@)P() (4.4)
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The model therefore involves three parameters that depend on the course of the
HIV-epidemic (the timing, t, the rate of increase, «, and the asymptote, a), one
parameter that determines the TB incidence prior to the advent of HIV, I~(0) , and
two parameters that determine the contribution of reinfection and the breakdown
of latent infection to the incidence in HIV-positive people, and # that determines
the delay between the onset of the TB and HIV epidemics.

We first fit the model simultaneously to the districts with the best HIV data.
In doing this we use the same four ‘global’ parameter values for all the districts.
The parameters are chosen to be ‘global’ as it is considered that « the initial rate
of increase of the prevalence of HIV; 3 and +, that link the TB epidemic to the
HIV epidemic; and £, the parameter that determines the relative timing of the two
epidemics should be the same regardless of geographical location. The remaining
three ‘local’ parameters are allowed to vary among the districts. These parameters .
are considered ‘local’ as the timing of the HIV epidemic, ; the asymptotic HIV
prevalence, a; and the initial value of the TB notification rate, 1~(0) will vary
depending on the region.

The Nelder-Mead optimization routine [55] is used to find the maximum like-
lihood [195] estimates for the model parameters (see Appendix D for details of
the Nelder-Mead and maximum likelihood estimation methods). We estimate the
covariance matrix by finding the negative inverse of the Hessian (matrix of dou-
ble derivatives) at the maximum likelihood parameters values. We use bootstrap
resampling methods to obtain confidence intervals for the fitted curves. This is a
well established and convenient (although computer intensive) way of calculating
the distributional properties of the statistics of interest [66] [42] [S7] [177]. Ap-
pendix E gives a summary of the bootstrap methodology that was employed. We
use the districts with less good data as a check on the fitted parameter values and
then apply the model to those districts for which no HIV data are available in order
to estimate the trends in HIV in those places.

4.5 Results

We first fitted the full model to the data from the Type I districts (listed in Table
4.2 and shown in Figure 4.2) including both of the parameters that determine the
relationship between the two epidemics (3 and ) and then examining the effect
of dropping each in turn. Including v did not significantly improve the fit over
that obtained with 3 only. We therefore kept the simpler optimisation by including
only the parameter [ in the following analysis. Statistically acceptable fits were
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Covariance matrix

Parameter  Estimate 95% C.I.  a(yrl) t (yr) B

a (yr 1) 0.458 0.034 0.00031 -0.00138 -0.09848
tyn) 7.65 0.23 000138 0.0132 0.71702
B 325 13 -0.09848 0.71702 47.22267

Table 4.1: Estimates of the global parameters obtained by fitting the model to Type
I districts

District a(%) 95%CL Ty  95%CL Ij (/100k)  95%CL

Busia 0.207 0.171-0.244 87.56 86.73-88.33 14.82 10.66-21.09
Kakamega 0.141 0.129-0.155 91.22 90.48-91.94 20.24 17.09-24.02
Kisumu 0.276 0.258-0.294 89.38 88.86-89.88 24.28 121.07-27.58
Kitui 0.094 0.087-0.103 88.71 87.95-89.50 67.16 58.66- 74.98
Meru 0.147 0.138-0.157 92.01 91.48-92.52 37.99 33.63-42.18 -
Mombassa 0.127 0.114-0.141 88.26 87.43-89.07 141.87 117.04-169.15
Nairobi 0.167 0.156-0.179 89.21 88.94-89.49 69.86 61.71-78.67
Nakuru 0.180 0.155-0.208 89.47 88.82-90.16 24.21 18.28-31.88
Nyeri 0.168 0.148-0.193 89.47 88.85-90.03 2442 18.44-30.94
Trans-Nzoia 0.104 0.096-0.113 89.48 88.84-90.17 33.27 29.15-37.51

Table 4.2: Estimates of the local parameters for the Type I districts with their
confidence intervals. Years are relative to 1900

obtained for all the Type I districts, giving the global parameters (with confidence
intervals and covariance) in Table 4.1, and the local parameters listed in Table 4.2.

The three parameters retained in the model are all significant (p < 0.001) and
results show that the confidence intervals on the global parameters are small and
we are therefore reasonably certain about the values obtained. The fitted curves
are shown in Figure 4.2. The model fits for the TB notification rates are gener-
ally good. The data for HIV are more variable and in several districts the model
estimates are outside the binomial confidence limits on some of the data points.
We suggest that this maybe the result of errors in data reporting rather than the
inadequacy of the model as the HIV data can be unreliable. For example it would
seem infeasible that in Nakuru the number of HIV-positive individuals reduced by
60% in 1996 compared to the previous year with HIV prevalence reducing from
26.2% to 10.0% in just one year.
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Figure 4.2: TB incidence (blue) and HIV prevalence (red) for the Type I districts.
The graphs show, for each district, the TB incidence data and HIV prevalence
data (with binomial confidence limits), and the TB incidence and HIV prevalence
curves produced by the model with their 95% confidence intervals
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District a(%) 95%CL t(yr)  95%CL Iy (/100k)  95%CL

Baringo  0.106 0.089-0.130 91.58 90.16-93.38  38.18 29.81-45.66
Bungoma  0.152 0.129-0.197 89.79 88.96-90.75  17.29 11.13-23.21
Embu 0.118 0.103-0.140 90.92 89.71-92.31 21445  161.29-260.62
Garissa 0.058 0.045-0.076 82.27 77.90-88.16  146.93  104.10-202.01
Kajiado ~ 0.070 0.062-0.082 89.77 87.18-92.58  62.09 51.86-71.62

Kericho 0.078 0.072-0.086 90.08 89.10-91.11 80.31 72.53-87.61
Kilifi 0.090 0.061-0.201 95.20 92.13-99.10 65.04 59.70- 69.76

Kwale 0.100 0.063-0.270 9520 91.38-100.00  75.16 65.11-83.25
Machakos 0.135 0.123-0.154 88.99 88.37-89.60 30.07 23.97-35.16
Muranga  0.156 0.139-0.180 91.80 90.93-92 71 29.19 22.61-35.05
Samburu  0.050 0.032-0.197 93.11 86.72-100.00 165.95 141.76-181.38
Taita Taveta 0.074 0.065-0.083 88.85 87.36-90.21 81.04 69.99-91.76
Turkana 0.040 0.000-0.202 95.16 83.14-148.67 248.99  193.42-279.92
Uasin Gishu 0.225 0.195-0.269 93.29 92.39-94.28 31.67 22.88-40.26

Table 4.3: Estimates of the local parameters for the Type II districts with their
confidence intervals. Years are relative to 1900

Having calibrated the model using the Type I districts we apply it to the Type II
districts to see how well it predicts the measured HIV prevalence in those districts.
The global parameters were kept fixed while the local parameters, including the
two that determine the HIV epidemic, are varied to fit the TB data so that this
gives the model prediction for HIV without reference to the available HIV data.
The fitted curves with 95% confidence limits are shown in Figure 4.3 and the
values of the local parameters are given in Table 4.3.

While the model produced good fits for most of the districts, there were some
exceptions. Muranga and Uasin Gishu have TB epidemics that would suggest
much higher levels of HIV as compared to the reported data. Conversely Samburu
and Turkana have TB epidemics that would suggest lower levels of HIV as com-
pared to the reported data but for these districts the confidence limits on the model
fits for HIV are very wide and the HIV data are very limited.

The confidence intervals on the estimated local parameters (Table 4.3) are, on
average, more than two times wider than those obtained for the Type I districts (Ta-
ble 4.2). This is to be expected as the parameters were obtained by fitting the model
using only the TB data and ignoring the HIV data available; one would therefore
expect the estimates to be less precise. Similarly, the confidence limits on the HIV
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Figure 4.3: TB incidence (blue) and HIV prevalence (red) for the Type II districts.
The graphs show, for each district, the TB incidence data and HIV prevalence
data (with binomial confidence limits), and the TB incidence and HIV prevalence
curves produced by the model with their 95% confidence intervals
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District a{%) 95%CL t(yr) 95% CL Iy (/100k) 95% CL
Isiolo 0.102 0.082-0.146  87.66 85.52-89.59 135.21 72.06-187.01
Kiambu 0.189 0.146-0.335 86.82 86.05-87.61 13.47 4.36-21.56
Kisii 0.124 0.107-0.152  89.26 88.30-90.24 30.09 21.16-38.70
Kirinyaga 0.149 0.134-0.167 90.89 90.28-91.50 20.56 16.49-24.41
Laikipia 0.093 0.083-0.105 89.60 88.33-90.70 26.04 21.74-30.61
Lamu 0.052 0.038-0.087 88.23 83.12-93.55 87.74 57.31-109.27
Mandera 0.060 0.044-0.104 85.00 81.45-89.07 196.27 86.29-258.26
Marsabit 0.065 0.045-0.290 85.85 79.59-91.36 159.36 10.85-223.48
Nandi 0.145 0.119-0.177 91.21 89.89-92.38 17.64 12.03-23.12
Narok 0.082 0.057-0.198  91.97 86.28-97.73 46.39 26.74-58.73
Nyandarua 0214 0.158-0.446 87.74 86.97-88.59 7.79 1.80-13.64
Siaya 0.231 0.178-0.410 92.02 90.87-93.44 18.68 5.71-31.19
South Nyanza 0.227 0.192-0.296  89.88 89.39-90.38 20.50 12.19-28.38

West Pokot 0.031 0.014-0.176  86.93  76.33-100.00 203.04 25.06-229.54

Table 4.4: Estimates of the local parameters for the Type III districts with their
confidence intervals. Years are relative to 1900

curve are wider for the Type II districts than those achieved for the Type I districts.
With the exception of those districts discussed above, the confidence limits are still
reasonably narrow however, which implies that using TB incidence to predict the
HIV prevalence curve is an acceptably precise method. Incidentally, results of the
HIV prevalence curves produced by the model when the HIV data is not ignored in
the fitting procedure were also compiled, and serve to strengthen our confidence.
When comparing the two results (Appendix F) they are almost identical in most
districts apart from Kilifi and Kwale, whose HIV curves are significantly lower
when the HIV data is used in the fitting procedure. We can therefore be reason-
ably confident that using the model and the TB incidence curve to predict the HIV
prevalence in a district with no HIV data is a justifiable technique.

Finally, we apply the method to the districts for which no HIV data are avail-
able. The fitted curves with their 95% confidence limits are shown in Figure 4.4
and the local parameter estimates for these districts are given in Table 4.4.

The model predicts significant HIV epidemics in all except three districts: Tana
River, Wajir and Elgeyo Marakwet. The TB data in these three districts is very
uncertain and does not show clear trends. It is possible that the TB data are not
sufficiently good to be able to draw any conclusions for these three districts.

The TB data suggest that the prevalence of HIV in South Nyanza is very high
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Figure 4.4: TB incidence (blue) and HIV prevalence (red) for the Type III districts.
The graphs show, for each district, the TB incidence data and HIV prevalence
data (with binomial confidence limits), and the TB incidence and HIV prevalence
curves produced by the model with their 95% confidence intervals
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(23%; 19%-28%) which is very likely due to its proximity to Kisumu and Uganda.
Mandera on the other hand is a rural district close to Ethiopia and Somalia where
the prevalence is relatively low. The model predicts an HIV prevalence of 6.0%
(4.6%-9.1%).

The confidence intervals on the estimated local parameters (Table 4.4) are typi-
cally more than four times wider than those obtained for the Type I districts (Table
4.2). As with the Type II districts this is to be expected as the parameters were
obtained by fitting the model using only the TB data, which also happen to be less
consistent in these districts. Similarly, the confidence limits on the HIV curve are
wider for the Type III districts than those achieved for the Type I districts.

The estimated prevalence of HIV and incidence of TB per 100,000 population
for 2005 are plotted by district in Figure 4.5 a and b. In Figure 4.5 c and d the data
have been multiplied by the population density of each district [8] to obtain a map
of the density of HIV infections and of notified TB cases. We can see that there is
a noticeable correlation between the distribution of HIV and TB infected people,
with the majority clustering in the central and western areas of Kenya. HIV is
highly clustered in the Western and Nyanza provinces due to the large population
in these districts and their proximity to Uganda and Lake Victoria, known areas for
high HIV prevalence. A large number of TB cases occur in the districts of Nairobi
and Mombasa, which have the highest population density. These districts are home
to Kenya’s largest and most important cities and because TB is associated with
overcrowding, the high notification rates in these two cities might be expected.

Finally, we tried combining the estimates for HIV and TB, weighting the data
for each district by the adult population to provide national estimates of the trends -
in both diseases, as shown in Figure 4.6. These results suggest that on average
across Kenya, the HIV epidemic started in 1989, the pre HIV epidemic rate of TB
was 73/100k/year, the HIV prevalence in 2007 is 14%, and the TB incidence in
2007 is 313 per 100,000 population.

4.6 Discussion

In Kenya, TB notification rates have risen by up to ten times in some of its dis-
tricts over the last ten years as a result of the HIV epidemic. Because of this
phenomenon and due to the rich TB data available from the country’s surveillance
program, building a simple parametric model to investigate the interactions be-
tween HIV and TB gave some understanding of the link between the epidemics.
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Figure 4.5: Estimated (a) adult prevalence of HIV and (b) TB incidence for each
district of Kenya 2005. Estimated (c) number of prevalent cases of HIV among
adults and (d) number of notified TB cases per square kilometre in 2005.
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Figure 4.6: (a) Estimated prevalence of HIV and (b) estimated incidence of TB
(per 100,000 members of the population) for Kenya

An understanding of how HIV impacts on TB epidemiology is important, not only
for Kenya, but for modelling TB in all other countries with substantial HIV epi-
demics.

Understanding the strength of interaction between HIV and TB disease at the
population level was the main concern of this Chapter, which has enabled us to
make sensible estimates of the trends of HIV using TB data.

The model suggests that in people with HIV, reinfection is more important than
the breakdown of a latent infection because including the parameter which repre-
sents reactivation did not significantly improve the fit of the model. This result
should not be taken too literally, as it could be due to the data being deficient and
not informative enough to allow for the two effects to be reflected independently.

The estimates from the model of HIV prevalence in districts where HIV data
are weak or absent seem reliable. We were able to compare the resulting preva-
lence curves by allowing the model to obtain predictions for HIV prevalence both
by using the available HIV data and by ignoring it. The results (Appendix F) show
that the curves were very similar, which indicates that using only the TB data to
predict the HIV prevalence curve is an acceptable and accurate method. This in-
creases confidence in the model and its predictions, which could be tested further
against field data. The confidence limits obtained for the estimated curves of each
of the districts were very encouraging. The limits are relatively narrow which im-
plies that using the TB incidence to predict the HIV prevalence curve in a district
1s a realistically precise method.

The fact that the results were generally so consistent and the predictions so
reliable gives us evidence that there is justification for thinking that the force of
infection of HIV, the time delay between the two epidemics (7.65 years; 7.43-
7.88 years) and the effect of reinfection on HIV associated TB should not vary
depending on district.
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The model has been useful in quantifying the relationships between the HIV
and TB epidemics and being able to calculate HIV prevalence given just the TB
data. It suggests that for every 1% increase in HIV prevalence, TB notification
rate has increased on average by 62/100k/year over the past 10 years. The model
can also be used to predict the likely course of the epidemics over the next ten
years. Figure 4.7 shows that whilst HIV prevalence is expected to start decreasing
from 2004, TB incidence levels will continue to increase but at a slower rate than
has previously been experienced. Currently in some countries in Africa, a very
sharp decrease in HIV prevalence has been observed. By making the scenario
assumption that the future course of the HIV epidemic will follow this dramatic
reduction and reduce by 10% each year until it settles at half its current level,
we can use the model to estimate the effect that this will have on TB. Figure 4.8
shows that as HIV prevalence is reduced, TB incidence is also expected to fall by
on average 15/100k/year for every 1% decrease in HIV prevalence.

The key assumptions that we have made in this model are that:- the TB notifica-
tion rate in HIV-negative people is constant, TB incidence is linearly dependent on
HIV prevalence, TB incidence is proportional to TB notification, and adult HIV-
prevalence is proportional to ANC prevalence. The importance of these assump-
tions is still unclear and until better data sets will allow a close analysis of these
issues, they will remain unresolved. However, the assumptions that the model use
are widely accepted throughout current HIV and TB literature.

It was initially thought that the work would have been useful in quantifying
the two processes responsible for HIV-associated TB, and could supply the DES
model with the value of the parameters which measure the relative contribution of
reinfection and reactivation. The data did not allow these effects to be reflected
independently however, and the parameter which represented reactivation ended
up being removed. The results of this initial modelling work could not be used as
a direct input into the DES model, however, this work does contribute toward the
evidence of a strong link between the HIV and TB epidemics. This link is a key
justification behind the development of the DES model of TB transmission which
will allow the impact of the HIV epidemic on the relative efficacy of household
interventions for TB control to be fully assessed. '
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Predictions for HIV Prevalence and TB Incidence: Kenya
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Figure 4.7: The model predictions of the likely course of the HIV and TB epi-
demics in Kenya over the next ten years
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Chapter 5

Possible Representations of the
Natural History of TB

5.1 Introduction

The literature review (Chapter 3) showed that the majority of previous TB models
had been deterministic compartmental models (DCMs) !. It concluded that despite
all of the studies there is still a need to identify TB control strategies that are ef-
fective in high HIV prevalent settings. The review discussed why DCMs are an
unsuitable method for investigating interventions at the household level and high-
lighted how a discrete event simulation (DES) would allow for the more intricate
details of transmission to be understood and therefore would be more appropriate.

We need to determine a possible schematic of the natural history of TB which
can be adopted by the DES model. In order to determine a possible representation
we consider the structures of previous studies and how they have represented TB.
This Chapter briefly describes some of the structures adopted by previously devel-
oped DCMs and then goes on to describe SEEINITR, the schematic that has been
chosen to represent TB epidemiology in the DES. Explanations of the majority of
the terms used in this Chapter are given in Table 5.1 and the Glossary.

'A DCM divides the population into different epidemiological groups according to their TB
disease status and uses differential equations to move proportions of the population through the
various groups/states at specified time steps

53
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Term Abbreviation | Description

Susceptible S Those that are uninfected and therefore susceptible
to infection

Latent E Those that have TB infection. An infection means
that the TB mycobacterium are present in the body
but that they are not actively causing damage to
body tissues

Fast Latent Ef Those that have a TB infection and will progress
quickly to active disease (A).

Fast Latent En Those that have a TB infection and will progress

- Infectious quickly to infectious (I) active disease.

Fast Latent Eeni Those that have a TB infection and will progress

- Non quickly to non infectious (NI) active disease.

Infectious

Active A Those that have TB disease. The disease means the

Disease TB organisms are growing and causing damage
within the body. Within this compartment you can be
infectious (I) or non infectious (NI).

Infectious I Those that have active TB disease and are able to
transmit the infection. I= f A.

Non NI Those that have active TB disease but are unable to

Infectious transmit the infection.

Treatment T Those that are having treatment for active disease
(A).

Treatment - | T, Those that are having treatment for infectious (I)

Infectious active disease.

Treatment - | Ty Those that are having treatment for non infectious

Non (NI) active disease.

Infectious

Recovered R Those that have successfully completely treatment
(T) for active disease (A).

Self Cure N1, Nnr Those that have self cured from either infectious (Ny)
or non infectious (Ny;) active disease.

Table 5.1: An explanation of the terms used
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5.2 The Structures of Previous Models

The majority of previous TB models have been deterministic compartmental mod-
els. This Section briefly describes some of the structures adopted by these previ-
ously developed DCMS.

5.2.1 SEA Model

The SEA model has a similar structure to that used by Blower er al. [31] [28], Ziv
et al. [206] and Song et al. [155] where the population is divided into Suscepti-
ble (5), Latent (F) and Active Disease (A) states. It is thought that this structure
would perhaps be appropriate for investigating the effect of a very basic vaccina-
tion programme in a homogeneous population.

5.2.2 SEAR Model

The SEAR model has a similar structure to that used by Blower et al. [30], Gar-
cia et al. [77] and Porco and Blower [138] where the population is divided into
Susceptible (.5), Latent (F), Active Disease (A) and Recovered (R) states. This
structure would perhaps be appropriate for investigating the effects of a very basic
treatment programme in a homogeneous population. The structure was used in this
way by Garcia.

5.2.3 SEAT Model

The SEAT model has a similar structure to that used by Castillo-Chavez and Feng
[37] and Gomes et al. [84] which divided the population into Susceptible (5,
Latent (F), Active Disease (A) and Treatment (1') states. This structure would
perhaps be appropriate for investigating drug resistant TB. The structure was used
in this way by Castillo-Chavez and Feng.

5.2.4 SEATR Model

The SEATR model is a similar but simpler version of that used by Debanne ez al.
[59]. This model has five states: Susceptible (.5), Latent (F), Active Disease (A),
Treatment (1) and Recovered (R). Debanne used it to look at projections of TB
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incidence in different sociodemographic groups where multi drug resistant TB was
an issue.

5.2.5 SEEATR Model

The SEEATR model is the same as the SEATR model but it introduces the concept
of having two ‘latent’ compartments. One compartment (Latent, E) represents
those that have effective immune responses to TB infection and will therefore have
a latent infection for many years until either they die or it is reactivated by the im-
mune system being weakened; or they are reinfected and do not have an effective
immune response. The other compartment (Fast Latent, F¢) represents those that
do not have an effective immune response to the TB infection and will therefore
progress quickly to ‘active disease’ (A). In all the previous models this has been
represented by a flow directly from ‘susceptibles’ to ‘active disease’, however this
implies that the progression to active disease is instantaneous which is not realistic. .
The introduction of a ‘fast latent’ compartment is to enable the time frame of de-
veloping active disease, which can be as long as five years, to be modelled. A few
models, which include the division of the latent compartment to reflect fast and
slow progression to active disease, have been developed [181] [120] [197] [56].
This structure is appropriate for investigating exogenous reinfection and endoge-
nous reactivation and the role they play on TB morbidity. The structure was used
in this way by Vynnycky and Fine [181].

5.2.6 SEEINITR Model

This model builds on the SEEATR model but introduces the concept of dividing
the active disease state into those that are infectious and those that are non infec-
tious. It also includes states to represent those that self cure. This model is largely
inspired by the model developed by Williams et al. [197]. This structure is appro-
priate for investigating the impact of HIV and heterogeneity on TB control. The
structure was used in this way by Williams.

5.3 Choosing a Structure

We have considered the structures of the main deterministic compartmental mod-
els from literature. It has been shown that the models with simple configurations
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have been useful for addressing questions surrounding vaccination and treatment
of homogeneous populations [206] [77]. As the questions have become more in-
volved however, the structures of the DCMs have become more complicated. For
example, questions regarding the impact of multi drug resistance and exogenous
reinfection have required the structures to incorporate additional states so that spe-
cific questions regarding their role on TB morbidity, for example can be explored.

If the questions require many aspects of TB to be considered, it is not possible
to keep the model simple and instead a detailed structure is required. Williams
et al. [197] for example, needed to capture spatial and temporal variation of TB
amongst the different risk groups in India to allow them to explore the impact of
HIV on TB control in different areas, and used the detailed SEEINITR structure
(Section 5.2.6).

In Chapter 3, Section 3.3 we discussed the epidemiological aspects of TB iden-
tified in the literature, and determined which of these aspects would be included in
our study. In order to determine the relative importance of household interventions
in controlling TB in HIV prevalent settings, we identified HIV, age dependence,
non-homogeneous mixing, reinfection, and varying lengths of latency and infec-
tiousness to be necessary to the model.

Due to the number of aspects we expect to incorporate into the model to capture
the epidemiology of TB in HIV prevalent settings, it is clear that a simple structure
will not be sufficient. As many aspects need to be addressed, it is felt that a model
which enables all these issues to be incorporated and their effects to be seen, would
need to be a comprehensive model which allows the epidemiology of TB to be
fully represented. This would mean using a configuration similar to SEEINITR
(Section 5.2.6). The schematic of this model is given in Figure 5.1.

This structure was suggested to the collaborators, DETECTB, and was pre-
sented to subject matter experts such as epidemiologists, mathematical disease
modellers and clinicians. The consensus from these meetings was both that we
have correctly identified the aspects important to the epidemiology of TB in HIV
prevalent settings, and that the structure proposed is sufficient to model these as-
pects. They were also satisfied because the model allows all of the possible path-
ways an individual infected with TB might experience, to be represented.

All of the aspects of TB we highlighted for accurately modelling an HIV-
associated epidemic were considered important by the subject matter experts and
therefore none were removed. There was some discussion over the importance of
adding multi drug resistant (MDR) TB, however the consensus was that although
this is important due to its potential impact on the efficacy of control methods, the
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questions it raises are different to those being considered by this research and it
would require a slightly different model (where TB ‘hotspots’ such as hospitals
are represented). Currently unavailable data on the prevalence and virulence of
MDR TB in Harare would also be required.

We have chosen to implement the SEEINITR structure in the DES model. It is
thought that it gives an appropriate schematic representation of the natural history
of TB for the purposes of our research. The structure allows issues such as reinfec-
tion, conversion of non infectious TB and the self curing of TB, which were raised
in the literature and by the subject matter experts, to be captured. These issues
could not be addressed by simpler structures.

Basing the structure of the discrete event simulation model on the SEEINITR
model implies that individuals within the DES model will belong to seven epi-
demiological groups according to TB status: Susceptible, Latent (with fast and
slow progression), Infectious, Non Infectious, Self Cured, Treated and Recovered.

In the next Section we describe how a deterministic compartmental model was
built using the SEEINITR structure, in order to ascertain the spread of the popu-
lation amongst the epidemiological groups once the model has reached a steady
state. This distribution will be an input into the DES model and will inform it
of the likely TB status of the individuals when they are created at the start of the
simulation.

5.4 Building a DCM of the SEEINITR Structure

We use Berkeley Madonna [24] to develop a DCM using the SEEINITR structure.
Berkeley Madonna is a general purpose differential equation solver. It allows you
to assemble a graphical flow chart of the “system” meaning we can construct a
visual representation of TB disease progression whilst the program generates the
differential equations. The DCM can be developed very quickly and conveniently
and the use of graphics makes the structure easy to evaluate. Berkeley Madonna
also allows parameter exploration by using parameter sliders, plots and sensitivity
analysis which means the role of various parameters can easily be ascertained.

Because the majority of models developed for Africa in the past have been
DCMs, the relevant parameter values have already been established and can there-
fore be found in the literature already reviewed. Descriptions and details of the
parameters and the values used can be seen in Table G.1 in Appendix G.
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5.4.1 General Notes

The infection of an individual:

The risk that an individual becomes infected with TB during a given time step
depends on two factors:

1. The number of infectious individuals in the population (I)

2. The probability that the individual comes into effective contact with an in-
fectious individual ()

An ‘effective’ contact is a contact that will lead to an infection. If one knows
the effective contact rate (ecr), which represents the number of individuals each
person effectively contacts per time step, and the total population size (V), then 3
can be estimated as

ecr

8= 5.1)
which is the probability that two specific people will come into effective contact
per time step. The number of susceptibles infected per time step can therefore
be given by 315, where IS gives the total number of possible contacts between
a susceptible and an infectious individual and 3 gives the probability of each of
those contacts being ‘effective’.

Births and Deaths:

Although not specifically mentioned in the analysis, people can leave all of the
states discussed by dying at the death rate (y) given in Table G.1. When people
are in any of the states involving active disease their death rate is increased by the
disease induced death rates (d) in Table G.1.

People are also recruited into the susceptibles class at the birth rate. This cor-
responds with babies not inheriting any special immunity from their mothers. The
birth rate in these models is equal to the death rate and so the number of births per
time step (A) is given by the total number of deaths in that time step. This enables
the total population size (V) to stay constant.

We keep the population size stable as this is something seen in the majority
of previous DCM studies. Stationary populations are useful as they allow the
equilibrium states of the models to be characterised analytically. This can lead to
a better understanding of the relationships between fundamental epidemiological
parameters. A stable environment also means that when the model is simulated,
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for instance to investigate the consequences of different interventions for control,
we can have confidence that demographic factors are controlled, and the different
outcomes can therefore be explained by purely epidemiological factors.

Fast and Slow Latent Individuals:

When a person has been infected with TB, their immune system may invoke
a successful response which “walls off” the infection stopping it from causing
damage. This is called a latent (F) TB infection. Alternatively, the immune system
may fail to respond successfully and the infected person will then quickly progress
to active TB disease, usually within months.

To represent these two possibilities, when susceptibles have been infected they
can follow one of two routes. The first represents an effective immune response,
where people become latently infected (F), and the second represents fast progres-
sion to active TB disease (Ey). The proportion of those infected that will develop
primary active disease is given by the parameter p. Therefore, using the expression
315, the number of susceptibles that will be infected and will develop primary TB
disease is equal to 31 Sp, and the number of susceptibles that will have a long-term
latent infection is given by 315(1 — p).

Reinfection and Reactivation:

Persons with a latent infection can progress to active disease in two ways: reac-
tivation of their TB infection at a rate v or through reinfection. An individual with
a latent infection has some immunity to a new infection, with only a proportion
x being susceptible to active disease. Therefore vE + 3I Epz individuals with a
latent infection move to active disease in each time step.

Failed Treatment:

When individuals are said to fail treatment this indicates that they failed to
correctly complete the course of drugs (usually a 6 month course of Isoniazid) and
therefore the TB lesions were not sterilized. Failed treatment therefore means that
individuals have active disease.

5.4.2 The Model

The following section gives a description of the model and shows how the system
of differential equations were derived. The schematic of the model can been seen
in Figure 5.1 and a summary of the parameters and their values is provided in
Appendix G.
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When a susceptible is infected they will have either a ‘latent’ or ‘fast latent’
status (1S(1 — p) or B1Sp respectively). Those moving to a ‘fast latent’ status
are divided dependent on whether they will eventually develop infectious or non
infectious active disease. A proportion (f) will get infectious active disease and
will therefore progress to the ‘fast latent infectious’ (Eyr) class where they will
progress to infectious active disease within five years. The remainder of those
developing active disease (1 — f) will develop non infectious active disease. The
number moving from ‘susceptibles’ to E'¢r and Eyxy in each time step is therefore
expressed as 31Spf and SISp(1 — f) respectively and the rate of change of the
susceptible population is given by

L5 < A~ IS~ p) ~ BISpf — GISPL~ )~ pS. (5

Latent (F) individuals can only progress straight to active disease by reactiva-
tion (v) of their existing infection. When their infection has been reactivated, it is
then decided whether the disease will be infectious or non infectious. A proportion
(f) will get infectious TB and the others (1 — f) will get non infectious TB. Latent
(and recovered) individuals can also be reinfected although they have an increased
immunity (z) compared to the susceptible population. They move to a “fast latent’
class if they do not have an effective immune response (31 Ezp). Again, which
‘fast latent’ class they move to is dictated by the parameter f, with a proportion f
eventually developing infectious active disease and so moving to the ‘fast latent -
infectious’ class and (1 — f) moving to the ‘fast latent - non infectious’ class, where
they will eventually develop non infectious active disease. The time it takes for a
‘fast latent’ individual to progress to active disease is given by the progression rate
r. The entire latent population is therefore described by

%E = p3IS(1—-p)—Ev—-BIEzpf—3IExp(1— f)+SIRx(1—p)—pE. (5.3)
d
EEfI = ﬁISpf — T‘Ef[ +ﬁ[Ezpf + ﬁ[Rxpf — ‘U,Ef[ (54)
d .

EEfNI = BISp(1=f)—rEinr+BIExp(1—f)+BIRep(1—f)—pEsnr. (5.5)

When an individual has active disease, the model allows them to be diagnosed
at rate ¢ and move out of the class to receive treatment. It also allows them to
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self cure at the natural cure rate scr and to die at the disease induced death rate
d. All of these rates are dependent on whether the individual is infectious or non
infectious.

After diagnosis an individual will move to the treatment state. Individuals
receive treatment for a duration of time (¢d) and a percentage of them are cured
cr. Cured individuals are said to be recovered however those individuals that fail
treatment (1 — cr) will return to the active disease state.

When in the ‘self cured’ state individuals are able to relapse into whichever
active disease state they previously occupied at the relapse rate s.

The population with active disease can be represented by

d

—I =vEf+7Es —¢:1 = seril + tdCTTI+sN1+nNI—(u+dI)I (5.6)
d

EN[ = UE(l — f) + T‘EfN[ - ¢NIN[ — SCT‘N[N[

1l—cr
td

Tnr+ sNyr—nNI — (;L + dN[)N[. 5.7

The relapse rate s of the self cured individuals does not depend on whether they
were previously infectious or non infectious. We can describe the rate of change
of the self cured population as \

d

ENI = seryl — sNp — uNy (5.8)
d
ENNI = SCT‘N[N[ — SNN[ - NNNI- (59)

There are two treatment states to represent those being treated for infectious
and those being treated for non infectious TB. When individuals fail treatment they
automatically return to their previous type of active disease. These arrangements
assume that treatment outcomes occur at the end of treatment and that those on
treatment are not infectious. The rate of change of those on treatment for TB is
given by

d
ETI (b[[ — —T[ — NT[ (510)
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Figure 5.2: The distribution of the population amongst the various epidemiologi-
cal groups once the SEEINITR model has reached a steady state. This is used to
establish the initial distribution of the DES model’s population amongst the epi-
demiological classes.
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Finally then, the recovered population is described by the following equation,

d cr
ER = (T] + TNI)a — ,3]R”L‘ — ,UR (512)

A useful output of the model is TB incidence. The equation used to obtain TB
incidence consists of those latent individuals whose infection reactivates (v£) and
those fast latent individuals who progress to active disease (r(Ef; + Efnr)),

TB Incidence = vE + r(Efr + Efny). (5.13)

In order to determine the spread of the population amongst the various epi-
demiological groups at a steady state, we solved the deterministic compartmental
model using Berkeley Madonna. Figure 5.2 shows the distribution of the popula-
tion which will be used to inform the DES model of the likely TB status of the
individuals when they are created at the start of the simulation.



Chapter 6

Development of the Discrete Event
Simulation Model

In this Section we describe the development of a discrete event simulation model
which will be used to evaluate the effects of more intensive case-finding strategies
for TB control in a high HIV prevalent setting.

As previously discussed, the end goal of the modelling is a discrete event sim-
ulation (DES) model of TB transmission in Harare, Zimbabwe which will allow an
assessment of the effectiveness of contact-tracing and case-finding strategies. The
first stage, which we describe in this Chapter, is designing the simulation and its
processes for generating and maintaining the population, warming up the model,
incorporating HIV and managing its inputs and outputs. The second stage is dis-
cussed in the next Chapter which will look at how the various aspects of the natural
history of TB are incorporated into the model and how it is parameterised so that
it corresponds with earlier deterministic models of TB and HIV. It will also dis-
cuss how the model was validated using country-wide statistics for Zimbabwe and
findings from previous studies of the distribution of TB amongst populations.

6.1 An Overview of the Simulation

The simulation follows the structure of the population, the TB disease character-
istics of individuals, the HIV epidemic, the intervention scenarios and the model
outcomes. The user defines the number of years that the simulation will run for, the
underlying population structure, the available prevalence and incidence data on the
HIV and TB epidemics and the number of replications required. The model then
warms-up the initial population and runs for a predefined length of time in order

65
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to eliminate transients and to establish a population which correctly reflects that
of 1980 in both its characteristics and TB incidence. We have chosen to start the
simulation from 1980, warming the population up to this point, as TB incidence
data becomes available from this point onwards (discussed in Section 6.4).

Activities associated with the dynamics of the population (discussed in Section
6.3), TB infection events leading to the formation of various disease, transmission
and treatment events (discussed in Chapter 7), and HIV transmission events (dis-
cussed in Section 6.5) are all evaluated throughout each year using a next event
method as shown in Figure 6.1. At the end of each year various outputs regarding
the model’s population, such as its TB incidence and HIV prevalence are recorded
(discussed in Section 6.6).

The user can define various interventions which take effect in 2008, and aim to
adjust an individual’s disease pathway by reducing the individual’s risk of getting
active disease and of reactivating, and by decreasing their period of infectiousness
and thus the number of likely transmission events produced.

6.2 The Simulation Design

The model was implemented using Object-Orientated Programming (OOP) tech-
niques with the C++ programming language and the .Net framework. The main
development of the model has been done using a console interface, which outputs
comma separated value files for analysis using Excel. The maximum population
size is limited by computer memory and constraints on run time, otherwise popula-
tions of any size can be represented and evaluated. The model has been designed to
allow easy maintenance for further development in order to incorporate improved
data and understanding of parameter values, disease processes and epidemiologi-
cal complexities such as contact networks. Full documentation of the simulation
model is given in Appendix H.

The population is first established by creating a house, which is an object or
instance of the household class. “The term object refers to an instance of a class
and thus a class defines the behaviour of possibly many objects (instances).” [129]
A class will define the attributes or members that all of its instances will possess
and therefore each instance of the class will have a copy of the class members.
A comprehensive and detailed documentation of the simulation’s classes and their
members is given in Appendix H.3. The household class (Table H.5) defines three
main attributes: its unique identification number (itsID), a list of its occupants (it-
sOccupants) and the number of occupants (itsHouseholdSize). As well as each
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household having this member data, many member functions are also defined.
These functions enable each house to answer questions such as whether it con-
tains an adult and who an individual lives with, which is useful when considering
household transmission of disease.

When a house is created, it is assigned a unique identification number and
itsHouseholdSize is determined (see Section 6.3.1). The house’s size determines
the number of individuals that then need to be created and assigned to the house.
This is done by creating an individual, which is an instance of the person class.
The person class (Table H.3) defines two different types of attributes; its personal
details and its disease details. Personal details include features such as its age
and its gender; its disease details include aspects such as its HIV or TB infection
status and its scheduled time of death. Details of how an individual’s attributes are
determined when it is created are in Section 6.3.3.

As individuals are created they generate events. An event is an action upon
a person. Examples of an event would be an individual dying from TB, an indi-
vidual transmitting TB or an HIV infection. So for example, when person z is
born into the simulation, their time of natural death, tnd, is established (Section
6.3.3.3); this generates a “Natural Death” event. An event (Table H.4) is an ob-
ject whose attributes inform the simulation which event is to take place, who the
event involves and what time the event will occur. In the example therefore, an
event with name “Natural Death”, person ID number x and time ¢nd is created.
As these events are generated they are scheduled onto an activity list. The ac-
tivity list is therefore a chronologically ordered list of events that the simulation
works through. Full details of all the possible events in the simulation are given in
Appendix H.2.

The simulation searches the events which are scheduled and finds the next
event that is due (the first event on the activity list); it then moves the simulation
clock forward to this point in time and executes the event. Executing the event
will generate other events. For example, a death event will cause a birth event
to occur; a person getting infectious TB disease may cause various transmission
events; and a TB transmission event will cause an infection or reinfection event. As
the simulation executes events therefore, other events are generated and scheduled
onto the activity list.

Once the simulation has completed all of the events scheduled within a certain
year, various details and disease indicators for that year are recorded before mov-
ing onto the following event or year. At the end of each year, for instance, TB
incidence and HIV prevalence are calculated and recorded.
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6.3 Modelling the Population

From the data available on the age distribution of the population, life expectancy,
distribution of household size and ratio of adults to children within households, we
are able to define a model population which has the characteristics and captures the.
appropriate dynamics of the study population in Harare, Zimbabwe. The following
Section discusses in detail the data and methods used to generate the population.

The model population is achieved by first generating a household and then
creating its occupants. This process is done iteratively until the user-defined pop-
ulation size (V) is reached. In our model we have a population of size 10,000 in
which each individual belongs to a defined household, of which there are on aver-
age 2500. A discussion of why a population of size 10,000 was chosen is given in
Chapter 7, Section 7.6.

6.3.1 Distribution of Household Size

The baseline data from Harare (Chapter 2, Section 2.6.1) contains information on
the number of individuals within each household. Using maximum likelihood es-
timation (Appendix D) we fitted various statistical distributions to the data using
Microsoft Excel but incorporated Akaike’s information criterion in order to mea-
sure their goodness of fit whilst taking into consideration the number of estimated
parameters required. This enabled us to establish a distribution which could be
used to represent the data on household size in Harare, with a minimum of es-
timated parameters. Analysis showed that this was accomplished by using the
Poisson distribution with mean 3.99, which is given in Figure 6.2.

Each time a household is created, we sample from this Poisson distribution to
give us its household size which determines how many occupants to generate and
assign to it.

6.3.2 Adult to Child Ratio

Once the number of occupants in a household is established, we use the baseline
data from Harare, which gives us information on the number of adults and children
within each of the survey households, to generate a distribution of the proportion
of the household’s occupants that should be children. The data showed that nearly
30% of households were childless and that on average the proportion of children
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Figure 6.2: A Poisson distribution (mean 3.99) fitted to the Harare baseline data of
the distribution of household size
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Figure 6.3: The distribution of the proportion of children in households according
to the Harare baseline survey data

within a household is 0.34, which indicates that in a typical household with 4 occu-
pants, there would be 1 child. The data also showed that a very small percentage of
households (0.01%) were adultless and contained only individuals under 16 years
old. The distribution generated from the data is shown in Figure 6.3 and gives us
the likely proportion of children within a household.

Sampling from this distribution when generating a household meant that we
knew the number of adults and children to assign to the household to make up its
occupants.
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Figure 6.4: The distribution of each gender within each of the population’s age
groups. Source: 2000 WHO life tables for Zimbabwe [203]

6.3.3 Creating an Individual

Whether creating an adult or a child, generating an individual involves determining
various attributes. Table H.3 gives a summary of the attributes an individual car-
ries which were selected because of their ability to impact the individual’s pathway
through the model. This Section describes how each of the attributes were estab-
lished. The 2000 WHO life tables for Zimbabwe [203] informed much of the
following analysis, a copy of which can be seen in Appendix I.

6.3.3.1 Gender

A person’s sex is decided by allowing half the individuals to be male and half to be
female. This reflects the fact that when a baby is born there is nearly equal chance
that the baby will be a boy or a girl. It also reflects the gender distribution seen in
the 2000 WHO life tables for Zimbabwe [203] and shown in Figure 6.4. Figure
6.4 shows that the older a person in the simulation is, the more likely it is that they
are a woman. An explanation of how this phenomenon is captured is discussed in
the following Section.

6332 Age

Once it has been decided whether to create an adult or a child and what gender
this person will be, we use the life tables to calculate the likely age of the person.
Figure 6.4 shows the distribution of the population amongst the various age groups
according to gender. In Figure 6.5 we can see that the likelihood of a person being
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Figure 6.5: The proportion of each gender within each of the population’s age
groups. Source: 2000 WHO life tables for Zimbabwe [203]

female after age 50 is higher than males and therefore by using these distributions
to generate a person’s age when initialising the population we ensured this was the
case.

6.3.3.3 Time of Natural Death

The time that a person is due to die from natural causes is calculated immediately
when a person is created in the model, either when the population is being gener-
ated at the start of the simulation or when a person is born once the simulation is
running.

When the population is being generated, we know the age of the individual
and therefore to calculate the person’s time of natural death, we can use the life
expectancy data from the life tables. This data is given for both sexes and shows the
likely number of years a person has left to live given that they have already survived
to a certain age. The life expectancy data is abridged, so we used the Heligman-
Pollard method [87] from actuarial science to complete the tables thus enabling us
to work with individual ages as opposed to five-year age groups. This made esti-
mates more precise, for example it meant that rather than all males aged between
5 and 9 living for another 38.4 years, they would live for a further 38.7, 37.8, 37.0,
36.0 and 35.1 years respectively. A detailed account of how the Heligman-Pollard
method was used to generate complete life tables for both genders is given in Ap-
pendix J. Both the abridged and complete life expectancy estimates for males and
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Figure 6.6: Abridged and complete life expectancy estimates for males and fe-
males in Zimbabwe. Source: 2000 WHO life tables for Zimbabwe [203]
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Figure 6.7: Abridged and complete survival distribution for males and females in
Zimbabwe. Source: 2000 WHO life tables for Zimbabwe [203]

females in Zimbabwe are shown in Figure 6.6.

When a person is born, their time of natural death is calculated and assigned to
the individual as an attribute. In this situation, we use a survival function calculated
using the life tables. The abridged life tables for both sexes provide us with the
number of deaths in age group z, which we used to determine the probability of
death within each age group x. Taking the cumulative probabilities we create a
distribution which we can sample from to determine in which age group the baby
will die. To be more precise about the age that the baby will die, we again use
the completed life tables generated using the Heligman-Pollard method [87] to
generate a distribution which can be sampled from to provide an actual age of
death, rather than age-group. Both the abridged and complete survival distribution
for males and females in Zimbabwe are shown in Figure 6.7.

Each time a baby is created, we sample from the complete survival distribu-
tions given in Figure 6.7 to determine, given the baby’s gender, at what age this
individual will die from natural causes. This person’s time of death may be brought
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forward during the course of the simulation due to infection with TB and/or HIV.

6.3.3.4 Disease Status

An individual’s TB and HIV disease status are the final attributes to be established.
TB incidence in Zimbabwe was at a steady level prior to the introduction of HIV
into the population (Figure 6.10). We warm up the model and recreate this steady
state of TB incidence within the model population before starting the simulation in
1980. As we warm up the model during a time in which HIV is not present, when
generating the population, an individual’s HIV status is negative. To establish a
person’s TB status, we use the output from the previously developed SEEINITR
DCM model (Chapter 5, Section 5.2.6), which is a deterministic representation
of our model. Using this model we were able to look at the distribution of the
population throughout the TB-defined epidemiological classes when the model
reached a pre-HIV steady state. This is discussed in Chapter 5, Section 5.4.2,
and the distribution is given in Figure 5.2. This gave us an indication of how the
TB status of the population in our DES model should be distributed. We sample
from this distribution when generating the population to determine the TB status
of individuals.

Having determined all of a person’s attributes, this person can be created and as-
signed to the current household being assembled. Given that all of the attributes
have been ascertained using data from the 2000 WHO life tables for Zimbabwe
[203] and from the baseline survey data from Harare (Chapter 2, Section 2.6.1),
we have some confidence that the model population correctly captures the charac-
teristics of the study population in Harare. Section 6.3.5 discusses the verification
of this.

6.3.4 Births and Deaths

To be in line with the deterministic compartmental models already developed both
by us (Chapter 5), and in the literature (Chapter 3), the population size remains
stable throughout the simulation. Using a steady environment in epidemiological
modelling is useful as it implies a steady influence of the environment on dis-
ease dynamics. Thus, when the model is simulated, for instance to investigate the
consequences of different interventions for control, we can have confidence that
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demographic factors are controlled, and the different outcomes can therefore be
explained by purely epidemiological factors [112].

To maintain a stable model population the birth rate in the model is equal to
the death rate. To achieve this, each time a person dies, a baby is born into the
model’s population.

Given that we have a household structure present in the model, the problem
arises of which household to assign the new baby to. We want to maintain the
distribution of household size in the population as this has been sampled from the
Harare baseline data (Section 6.3.1), so the obvious solution is to assign the baby
to the household in which the person has just died. This means that a household’s
size will remain constant throughout the simulation and therefore the distribution
of household size is maintained. This method was tried however it raised two
concerns. The first was that it created a large number of orphaned or adultless
households, which in reality is improbable, as orphaned children would move into
care or have family move in with them. The second was that there were a high
number of births in households with a high disease burden. This seemed unlikely
but more importantly meant that the interaction between TB diseased adults ex-
posing children to infection may not have been captured by the model.

Another method that we tried involved households each having a probability
of accepting a baby given their current household size and the household size as-
signed to them on creation. This method meant that undersized households are
more likely to be assigned a baby than households which are oversized. This
method was computationally intensive, and ascertaining the appropriate probabil-
ities in order to keep the household structure stable was not possible.

To counteract these issues we assign births in the following way. Given that
an individual has just died, its former household has just been reduced in size,
meaning that a household of size x has now become size x — 1. If we assign
the birth to a different household of size 2 — 1, this household now becomes size
x. This ensures that the number of households of size x and x — 1 remain the
same and therefore the distribution of household size is maintained throughout
the simulation. So for example, if a person dies in a household of size 4, that
household becomes size 3; we therefore assign a baby to a household of size 3, so
that it increases its size to 4.

We ensure that a baby is assigned only to a household with adults present and
if we are assigning to a house of size zero, then we instruct the simulation to create
and assign an adult rather than assigning a birth.

Babies born into the model are assumed to have a “Susceptible” TB status and
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a negative HIV status. This assumes that there is no inherited immunity to TB and
that there is no mother-to-child transmission of HIV in the model. New adults are
also assumed to have a susceptible and negative TB and HIV status because we are
not attempting to incorporate the effect of immigration on the disease dynamics
of the population. This, however, is an epidemiological complexity that could
easily be incorporated into the model by using appropriate data to inform the likely
disease status of immigrants.

6.3.5 Validating the Population

Given that the population has been initialised using data from the 2000 WHO life
tables for Zimbabwe [203] and from the baseline survey data from Harare (Chapter
2, Section 2.6.1), we can be reasonably confident that the model population cor-
rectly captures the attributes and dynamics of the study population in Harare. As a
check, we output and investigate various characteristics of the model’s population
and compare it with the population data for Zimbabwe.

Using the model population, we output the probability distribution of dying at
a certain age and considered it alongside the WHO survival distribution given in
Figure 6.7. The output displayed in Figure 6.8 is produced by taking 10 runs of
the model and examining its population at time point 2000, the year that the WHO
survival distribution is taken from. Figure 6.8 compares the average distribution
from these runs with the survival distribution and shows that the model, although
not exact, is definitely displaying the correct pattern of survival likelihoods. The
probability of dying decreases rapidly as a person gets past infancy and then in-
creases again dramatically in the teenage years until the 20s or 30s when it starts
to decrease again. This decrease continues into the 50s where it then stays level
before dipping after the 80s implying an extremely low probability of surviving to
greater than 90 years old. This behaviour is qualitatively similar to that seen in the
WHO data for Zimbabwe in 2000, although there seems to be a clear systematic
difference from ages 20 to 30. This difference could affect the age distribution of
the population and result in a slightly younger model population than is observed
in Zimbabwe.

The age distribution of the model’s population was also output. We looked
at the population once it had been warmed up and during the simulation. When
the population is generated at the beginning of the simulation we sample from
the age distribution given in the 2000 WHO life tables for Zimbabwe [203] to
ensure the model population exhibits the same age distribution (Section 6.3.3.2).
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Figure 6.8: The probability that a person will die at age x. The average distribution
(blue) from 10 runs (all in grey) of the model’s population at year 2000 is compared
with the 2000 WHO survival distribution for Zimbabwe

As the model runs however, individuals age, die and are born, and various disease
processes act upon them, so we need to ascertain that the age distribution of the
model population is still an acceptable representation of the study population in
Harare, both once the model has warmed up and during the simulation.

Ideally, as we start the simulation in 1980, when generating the population we
would want to sample from an age distribution equivalent to the year 1980, yet the
2000 WHO life table data were the earliest data available. Reassuringly however
Figure 6.9a shows that once the model is warmed up, the age distribution of the
population exhibits the behaviour we might anticipate for 1980. One of the effects
of the HIV epidemic on populations is that it creates a younger population struc-
ture, with life expectancies reducing and less people reaching old age. One would
therefore expect to see a less positively-skewed age distribution in 1980, than after
the HIV epidemic was present. Figure 6.9a shows that the age distribution of the
model population in 1980 is less positively-skewed than the 2000 data, meaning
that the model population is generally older in 1980 than the Zimbabwean popu-
lation in 2000. This is an encouraging result and assures us that using 2000 data
to initialise the population, but allowing it to warm up for 150 years without HIV
present, allows the population time to adjust to a situation more likely for 1980.

We see in Figure 6.9b that the age distribution of the model population in 2000
gives a comparable representation of the Zimbabwean population in 2000. This
implies that the processes controlling and maintaining the population within the
model are sufficiently accurate and more importantly that we have some confi-
dence that any experiments and conclusions made by the model, are made using a
population concurrent to Harare, Zimbabwe.
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Figure 6.9: The age distribution of the model population at (a) 1980 and (b) 2000.
The graphs show the average age distribution (blue) from 10 runs (all in grey)
of the model’s population once its has been warmed up (1980) and during the
simulation (2000). These are compared with the 2000 WHO survival distribution
for Zimbabwe

Given the analysis of the model population we can be sure that the methods
being used both to generate the population and to progress the population through
the simulation give an acceptable result, with the model population accurately re-
flecting the population in Harare, Zimbabwe.

6.4 Warm Up

The objective of the warm-up process is to obtain the initial population and estab-
lish the correct dynamics and disease levels before the start of the simulation. TB
incidence data is available for Zimbabwe from 1980 onwards [134] and therefore
we want to start the simulation at this time point. Figure 6.10 shows that TB in-
cidence in Zimbabwe is shown to be at a consistently low and steady level prior
to the introduction of HIV. This is consistent with the model of TB developed in
Chapter 4 which used the observation that even if TB notification rates increase
dramatically as a result of the HIV epidemic, the annual risk of infection and the
prevalence of TB disease in HIV-negative people may increase only slightly, if
at all. This led to us assume that [~ (t), the TB notification rate in HIV-negative
people, is constant and equal to 7~ (0), the TB incidence observed before the HIV-
epidemic began to have an impact on TB. We therefore want to warm the popula-
tion up to a state where there is no HIV present and the population’s TB incidence
is steady and consistent with the disease levels implied by the TB incidence data
for Zimbabwe.

To establish the length of warm up, initial runs of 200 years were first used to
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Figure 6.11: Average TB incidence produced by 100 runs of the model over 200
years. HIV is not yet present in the model

observe the TB incidence levels in an HIV-negative population over an extended
period. Figure 6.11 shows the average TB incidence per 100,000 members of the
population produced by 100 runs of the model. We can see that there is an initial
epidemic of TB within the population which dissipates after 40 years. For the
next 85 years we see a slow and steady increase of TB until after 125 years of
warming up the population, the TB incidence levels off, continuing at that level
for the next 75 years. We therefore use a warm up time of 150 years, as this means
the population has been in a steady state for 25 years.

We are interested in the behaviour of the epidemic between the years 1980 and
2030 and will only output data for those 50 years. It seems inefficient therefore to
run the model for 150 years prior to each simulation run. We developed a “save
state” process which meant that the model’s state (its population and schedule)
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Figure 6.12: Average TB incidence produced in the last 20 years of the 100 ac-
cepted warm up runs compared with TB incidence data for Zimbabwe. Warm up
runs were only accepted if they were within 30% of the average suggested by the
pre-HIV TB incidence data for Zimbabwe

could be saved after it had been warmed up. This state could be read into the
model at the beginning of each simulation, thus removing the need to warm up the
model each time.

To ensure the simulation is not biased by using a particular warmed up pop-
ulation and schedule, it was important to generate a large number that could be
sampled from. We collected 100 warm up runs and saved each set of population
and schedules produced by each run. This created an output file with 100 sets of
warmed up population and activity lists. This file is read into the model at the
beginning of the simulation and each time a run is started, the simulation samples
from these sets to decide the particular population and schedule to use.

The average TB incidence produced by the warm ups we collect does relate
to the TB incidence data for Zimbabwe, but the variability around the average is
currently quite large (Figure 6.11). Although we want a certain amount of variabil-
ity to ensure there is no bias in the model, saving states with TB incidence over
twice that suggested by the data or with no TB present at all would be inefficient
as we can be confident that these are not scenarios that were present in 1980. To
optimise the scenarios used, we therefore only accept runs if their steady state TB
incidence is within 30% of the average suggested by the pre-HIV TB incidence
data for Zimbabwe. The results in Figure 6.12 show that the average TB incidence
from the scenarios is equal to the pre-HIV TB incidence levels for Zimbabwe, and
that the variability is significantly reduced when compared to the variability found
in Figure 6.4. We chose 30% because it was felt this allowed a large enough level
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of variability around the average pre-HIV TB incidence level to prevent biased
results. We looked at what effect reducing the criteria to 15% would have on the
variability and found that although it causes a very slight reduction, no significant
benefit comes from reducing the criteria. '

We have seen that the populations we collect when warming up the model
for 150 years reproduce the required steady state level of TB incidence. When
verifying the population (Section 6.3.5), we also saw that the population’s charac-
teristics reflect that of our study population in Harare, Zimbabwe. We have some
confidence therefore that the warm up time is adequate and that sampling from 100
warmed up scenarios at each simulation run both prevents the need to warm up the
model each time, whilst reducing bias by keeping the sample size large.

6.5 HIV

Infection with HIV is governed by a static model of HIV, which generates the
number of HIV infections to be made each year. The model relates available data
on the prevalence of HIV infection to the incidence of HIV infection, a much more
difficult quantity to measure.

HIV prevalence data for Zimbabwe is available between 1984 and 2000 [176].
We fit a double logistic equation to this data to describe its behaviour, and obtain
complete estimates for HIV prevalence. A double logistic curve was chosen as it
is recommended by WHO/UNAIDS [175] and is an established approach to mak-
ing epidemiological estimates of HIV prevalence in countries with a concentrated
epidemic and where there is evidence of a decline in prevalence [111]. A complete
description of the double logistic equation and an explanation of the fitting pro-
cess is given in Appendix K. A double logistic equation is chosen as it allows the
initial rate of increase, the peak prevalence, the final steady-state prevalence and
the rate of convergence to the steady state, implied by the data to be defined. The
double logistic curve obtained can be seen in Figure 6.13 and provides estimates
of HIV prevalence for Zimbabwe between 1980 and 2030 which are read into the
simulation.

By matching the HIV prevalence within the model with the HIV prevalence
estimates, we can ascertain the annual HIV incidence, I(t), as

I(t) = (H(t) = N(t) — d(t))(1 +p). (6.1)
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Figure 6.13: HIV prevalence estimates obtained by fitting a double logistic equa-
tion to the HIV prevalence data for Zimbabwe. Source: UNAIDS/WHO [176]

This says that the HIV incidence for year ¢ is the number of individuals that
need to be HIV-positive in year ¢ in order for the model’s HIV prevalence to match
the estimates (H (t)), minus the current number of HIV-positive individuals in the
model (N(t)), minus the number of those HIV-positive individuals due to die in
year t (d(t)). This provides us with the number of individuals that need to be
infected with HIV during year ¢ in order for the model’s HIV prevalence to match
the estimates. We scale this number by the probability that a newly infected person
will die within a year, p, to give the final annual HIV incidence, I (t).

HIV incidence is calculated before the beginning of each simulation year. The
annual HIV incidence instructs the model how many individuals to infect with HIV
throughout that year. This number of HIV transmission events are then generated
and scheduled throughout the year according to a uniform distribution.

It is assumed that HIV transmission events can only occur in adults and there-
fore only individuals over 15 years old are chosen to be infected. It is also assumed
that there is no mother-to-child transmission of HIV present, therefore children can
not have an HIV infection in the model.

HIV transmission is age-dependent and so a transmission event contains in-
structions as to which age group the infection should occur. An individual is
then chosen randomly from that particular age group to be infected. How age-
dependency is incorporated and how the distribution of infection amongst the age
groups is determined is discussed further in the following Section.
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6.5.1 Age-Dependent HIV

The age distribution of new HIV infections in a community is closely related to the
age distribution of sexual activity. In order to accurately model the age dependence
of HIV, we assign new HIV infections so that the proportion of new infections in
an age group is proportional to the sexual activity of that age group, based on data
from the UK [95] and the proportion of the age group who are HIV-negative and
therefore susceptible to infection. Thus, age groups which have a high proportion
of HIV-negatives and in which the individuals have high levels of sexual activity
will receive more of the new HIV infections than age groups with lower numbers
of HIV-negatives and lower levels of sexual activity.

The UK sexual behaviour survey [95] contains data on the occasions of hetero-
sexual sex in the past 4 weeks and the number of new sexual partners in the past
year, specified according to age group. Such detailed data is not available for Zim-
babwe and so we have to make the assumption that the sexual behaviour of British
individuals can be used to predict the sexual behaviour of Zimbabweans. This may
be an unreasonable assumption however it is made because such detailed sexual
behaviour surveys have not been carried out in sub-Saharan Africa. Given that we
know the number of times that a person has sex in a 4 week period we know how
many contact events there are in a year for one person (a;, where 7 represents each
age group). We also know how many partners that person is likely to have had in
the past year (b;). We use these figures to work out the relative number of contact
events within each age group. Multiplying these figures together gives us a rela-
tive contact rate for each age group which reflects each of their risk behaviours,
and therefore we can assume that the contact rate ¢; is proportional to a;b; with
the same constant of proportionality (a) applied to each age group. The relative
contact rate for each age group i is given by

¢; = aa;b;. (6.2)

We assume that those infected with HIV are as likely to have sex as those who
are HIV-negative. Thus, at time ¢, p;(t) of the sexually active population in age
group ¢ will already be HIV-positive, and so could not be infected. The remaining
(1 — p;(t)) are susceptible to infection, where p;(¢) is the proportion of age group
© who are HIV-positive.

As infection can only take place within the susceptible population, the contact
rate is only effective for a certain proportion of the population. We multiply the
contact rate, ¢;, by the proportion of the age group that are susceptible, 1 —p;(t), to
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give us the effective contact rate amongst susceptibles, 3;(t), for each age group,
at time ¢. Therefore the effective contact rate amongst susceptibles is given by

Given that we now know the relative effective contact rates in each age group
we can work out the proportion of transmissions, 7;(t), that should occur within
each age group, at time ¢t. We assume that this is given by dividing the number
of effective contacts for an age group by the total number of effective contacts
for that year. We assume that this provides us with a distribution describing the
spread of transmission events amongst the age groups. Therefore the proportion
of transmissions that will occur within each age group is given by

) = 20 _ 0 -pab
P Zi ﬂl(t) Zl((l _pl(t))albz) .

At time t, therefore, the HIV incidence or number of new HIV infections that
occur in age group ¢ ([;(t)) is given by

(6.4)

Li(t) = r:(0)1(1), (6.5)

where the overall HIV incidence, [(t), is multiplied by the age group distribution
of transmission, 7;(¢) and where

I(t)= Z L(t). ' (6.6)

6.5.2 Validation

In order to justify this approach, we can compare the age-specific HIV prevalence
of the model population with data from a similar setting. It has been observed by
Williams et al. [198] that the shape of the age-specific prevalence of HIV curves
remains constant for different scales of the HIV epidemic. It is possible to output
from the model the proportion of HIV infections across the age groups and so
compare the model output with the age-dependent HIV prevalence data provided
by UNAIDS for South Africa [174] to see whether this pattern is observed.

Figure 6.14 shows the distribution of HIV infection across the age groups for
the model population in 2005 and the data for South Africa. Comparison with the
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Figure 6.14: Comparison of the distribution of HIV through out the age groups of
the model’s population and South Africa (Williams 2000 [198])

model data shows that it is slightly overestimating the proportion of HIV infection
amongst the 25-30 age group and underestimating amongst the 40+ age group.
However, the overall distribution of HIV throughout the age groups is acceptable,
especially when considering that the observations of Williams et al. [198] came
from data from 1998 when the HIV epidemic was still thriving. The authors ac-
knowledged that, as the HIV epidemic saturates and starts to decline (as is the case
with the data we are observing in 2005), the conclusions about a stable pattern of
infection will be less valid, as the pattern of infection is likely to change.

6.6 Inputs and Outputs

The following Section is a summary of the inputs and outputs of the model and
collects together the data sets that have been discussed in this Chapter.

6.6.1 Inputs

The simulation uses various data to inform the model processes. Much of this
data and how the simulation uses it to generate the population, for example, has
already been discussed in this Chapter. The model reads in the comma separated
files and stores them in structures such as vectors which are kept and maintained
by the DataFile class (Appendix H.1). Table 6.1 gives a brief description of the
input data files, how they are used in the simulation and their source.
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Input File Name Description
MaleLE Complete life expectancy estimates for
FemaleLE males/females in Zimbabwe
Used to determine the time of natural death of
males/females (Section 6.3.3.3)
Source: 2000 Abridged WHO life tables for Zimbabwe

MaleSurvivalDistribution
FemaleSurvivalDistribution

Source:

HIVPrevalence

Source:

TBIncidence

Source:

[203], completed using the Heligman-Pollard
method

Complete survival distribution estimates for
males/females in Zimbabwe

Used to determine the time of natural death
of a male/female born into the model (Section
6.3.3.3) :
2000 Abridged WHO life tables for Zimbabwe
[203], completed using the Heligman-Pollard
method

HIV prevalence estimates for Zimbabwe be-
tween 1980 and 2030

Used to determine the HIV incidence in each
year (Section 6.5)

Established by fitting a double logistic equation
to UNAIDS HIV prevalence data for Zimbabwe
[176]

TB incidence data for Zimbabwe between 1980
and 2002

Used to evaluate the fit of the model’s TB inci-
dence

WHO Global Report [134]

Table 6.1: Simulation Input Files
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6.6.2 Outputs

The model provides thorough information on a wide range of simulation details
regarding individuals and households in the population, disease statistics and inter-
vention efficacy. This information is output into comma separated files which can
be analysed using standard statistical methods to quantify the dynamics of house-
hold transmission of TB, to examine the implications of co-infection with HIV
and to evaluate a particular intervention, or to provide guidance on the importance
of household transmission of TB in preventing the spread of the disease. Data is
collected and output for each simulation run. Table 6.2 gives a brief description of
the output files generated by the model.

Output File Name Information Output

Ages A list of the ages of all the individuals in the
population

CasesAvertedX The total number of TB cases averted each year
over the period intervention z was being imple-
mented

CasesFoundX The total number of TB cases found each year
over the period intervention z was being imple-
mented

ClusterCoefﬁcients The HIV and TB coefficients for each house-

hold. A disease coefficient is a value between 0
and 1 which gives a measure of the proportion
of the household infected.

HIVAges A Tlist of the ages of all the HIV infected indi-
viduals in the population

HIVIncidence The yearly incidence of HIV in the population
HIVPrevalence The yearly prevalence of HIV in the population
HouseholdDetails For each household, each of its occupants with

details of their age, gender, HIV and TB status
HouseholdSize The size of each of the households
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Output File Name

Information Output

HouseholdSizeList

InterventionX

People

PreHIVTBLevel

PrevInfUnder5

SaveState

TBEpiStart

TBIncidence

TBIncPeak

TBModelFit

TBPrevalence

For each household size, a list of the households
of this size

The total number of households visited, TB
cases found, TB deaths and TB transmissions
in the model when intervention x was being im-
plemented

For each of the individuals, its ID, age, gender,
householdID, HIV and TB status

The average TB incidence for the 10 warm up
years prior to 1980

The prevalence of TB infection in children un-
der 5 years olds living in households with and

without confirmed cases of TB

Two files containing the complete details of the
population and schedule at a certain time point

The 