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Current control methods for Tuberculosis (TB) disease have failed to keep pace 
with the TB epidemics which have been particularly affected by the Human Im­
munodeficiency Virus (HIV) epidemic. There is still relatively little known about 
the interactions between HIV and TB and therefore TB control strategies that are 
effective in high HIV prevalent settings still need to be identified. The current pol­
icy is that active case-finding for adults living in endemic TB settings is ineffective, 
because transmission events between casual contacts greatly outnumber household 
transmission events. This policy was developed in an era of low HIV prevalence 
and the impact of the HIV epidemic on the relative importance of household versus 
community transmission has not been fully assessed. 

The majority of mathematical models used to describe the epidemiology of TB 
and investigate methods of control have been deterministic compartmental mod­
els that have considered only homogeneous mixing. This thesis describes a dis­
crete event simulation model that includes the effect of household structure on the 
transmission dynamics of TB. It is used to evaluate the effectiveness of targeted 
case-finding interventions in controlling TB in HIV prevalent populations. 
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Chapter 1 

Introduction 

Tuberculosis (TB) is the leading cause of death among people with a Human Im­

munodeficiency Virus (HIV) infection, accounting for up to a third of Acquired 
Immune Deficiency Syndrome (AIDS) deaths worldwide. The epidemic of HIV 

has led to a dramatic resurgence of TB in sub-Saharan Africa, especially in east 
and southern Africa where TB notification rates have increased by over three times 

in the last 20 years [133]. It is increasingly clear that controlling TB in much of 
Africa depends on the extent to which HIV is brought under control and that to 

ensure improvements in the care of HIV-positive people, it is essential that they 
are examined for TB and treated appropriately. 

The risk of developing TB disease increases as people progress from HIV in­
fection to AIDS and although there have been studies carried out to determine the 
extent to which HIV-infection affects transmission of TB [46], there is still rela­

tively little known about the interactions between these two diseases. Therefore 
TB control strategies that are effective in high HIV prevalent settings still need to 

be identified. The current policy of active case-finding for adults living in endemic 

TB settings is ineffective, because transmission events between casual contacts 
greatly outnumber household transmission events [143]. This policy was devel­

oped in an era of low HIV prevalence and the impact of the HIV epidemic on 

the relative importance of household versus community transmission has not been 

fully assessed. 

The ultimate aim of this research is to develop a discrete event simulation 
(DES) model of TB transmission in Harare, Zimbabwe, which will allow a full 

assessment of the effectiveness of contact-tracing and case-finding strategies in 
high HIV prevalent populations. The model will make use of information regard­

ing household size and structure and therefore the relative importance of household 
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versus community transmission will be fully assessed. The research is being done 
in collaboration with DETECTB, an organisation currently carrying out a large 
population-based trial in Harare, Zimbabwe. The data from this trial will be used 
to aid the development of the model. 

1.1 Research Objectives 

This thesis concerns using mathematical modelling to study the role of household 
versus community transmission of TB to understand the relative effectiveness of 
household interventions in controlling TB in HIV prevalent populations. The ob­
jectives are: 

1. To develop a mathematical model of TB transmission and disease in Harare, 
Zimbabwe, in order to enable accurate simulation of possible active case­
finding strategies for TB control in HIV prevalent populations; 

2. To enable comparative projections of the likely impact of possible strate­
gies relative to one another to allow a full assessment of the effectiveness of 
different contact-tracing and case-finding strategies in HIV prevalent popu­
lations; 

3. To predict how variable population attributes are likely to affect the relative 
success of different interventions; 

4. To determine the relative effectiveness of household interventions in con­
trolling TB in HIV prevalent populations. 

1.2 Modelling Approach and Methodology 

The method chosen to solve the model is discrete event simulation. This will take 
individuals through time and incorporate the heterogeneity which leads to the vari­
ability observed in each individual's TB disease evolution. An individual's risk of 
infection, risk of disease progression, infectious period, and infectivity will all be 
affected by attributes such as the individual's age, sex, HIV status and the number 
of people in the individual's household. The model will provide recommendations 
for reducing TB incidence in HIV prevalent areas. 
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1.3 Summary of Findings 

This research answers many questions regarding the interactions that exist between 
TB and HIV, the way in which household interventions for infectious diseases can 

be modelled and the relative effectiveness of household interventions in controlling 

TB in HIV prevalent populations. In summary, we conclude: 

• The interactions between TB and HIV can be quantified such that it is pos­
sible to accurately estimate HIV prevalence from TB notification rates, as 
demonstrated with district level data in Kenya. 

• Stochastic individual-based modelling is a natural methodology to use to 
precisely specify household or community transmission of disease, and to 
model the impact of local interventions. 

• Targeting TB-diseased households has a relatively small effect on the TB 
epidemic due to the small proportion of households that are visited as part 

of this intervention. 

• The clustering of TB disease and HIV infection in households means that 
targeting HIV-infected households is the most effective active-case finding 

strategy. 

• A much larger proportion of the population needs to be reached in a untar­
geted or community-wide intervention in order for it to have the same benefit 
as targeting HIV-infected households. 

• Interventions in which TB-diseased or HIV-infected households are targeted 
are more effective than community-wide interventions, suggesting that house­
hold transmission of TB (especially within HIV-infected households) is im­

portant. 

1.4 Overview of Thesis Structure 

The main body of this thesis is divided into lO chapters which are organised to 
follow the logical development of how household interventions for TB control 

in Zimbabwe were investigated through developing a discrete event simulation 

model. This thesis can be divided into three parts: Chapters 2 to 5 set the back­
ground context for this work; Chapters 6 and 7 describe the research development 
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itself; and Chapters 8, 9 and 10 consist of the discussion of the findings, conclu­
sions and recommendations for further work. 

This first chapter gives an introduction to the problem, the problem solving 
approaches used, a summary of the findings and sets the scene for what follows. 
Chapter 2 gives the epidemiological background of TB and HIV, discusses cur­
rent TB control strategies and explains the data being collected by DETECTB in 
Harare. A comprehensive literature review has been carried out to better under­
stand previous models of infectious diseases (specifically TB), and to appreciate 
the modelling and epidemiological issues which still need to be addressed. This 
is given in Chapter 3. Chapter 4 describes a simple parametric model which has 
been developed to help understand and quantify the relationships and interactions 
between HIV and TB. This was followed by the investigation of different model 
configurations in order to establish a possible representation of the natural history 
of TB to be used by the discrete event simulation (DES) model. This is described 
in Chapter 5. 

The DES model that differentiates between within-household transmission and 
random transmission of TB is discussed in Chapters 6 and 7. 

Finally we discuss its results, undertake a sensitivity analysis and various sce­
nario analyses in Chapters 8 and 9, and then draw some conclusions and make 
some suggestions for future work in Chapter 10. A glossary has been included to 
explain the epidemiological terms used throughout the report. 



Chapter 2 

Background 

This Chapter aims to provide an epidemiological background of both TB and HIV 

and explains the dual epidemic. This Chapter will also discuss current TB control 
strategies and explain the data being collected by our collaborators, DETECTB, in 

Harare. 

2.1 HIV 

HIV (Human Immunodeficiency Virus) is the virus that leads to AIDS (Acquired 

Immune Deficiency Syndrome). AIDS was first reported in the USA in 1981 
and since then more than 20 million people with HIV/AIDS have died [73]. It 
has become a major worldwide epidemic. A total of 3.1 million people died of 

HIV/AIDS related causes in 2005 alone [80] and 40.3 million people worldwide· 
were estimated to be living with HIV/AIDS at the end of 2005 [80] with approx­

imately two-thirds of these people living in Sub-Saharan Africa. Over time, the 
HIV virus weakens the body's ability to fight infections and cancers by progres­
sively destroying cells of the body's immune system. It is only after the immune 

system is significantly weakened (which can take many years) that people with 

HIV will get "opportunistic" infections which are caused by microbes such as 

viruses or bacteria. These infections would not usually cause a healthy person 
to become sick. However, for someone with advanced HIV the diseases are life 

threatening. Once somebody begins to get these infections, they are said to have 
AIDS [3]. 

HIV is transmitted by blood, semen, preseminal fluid, vaginal fluid or breast 

milk of an HIV-infected person. The American Social Health Association [165] 

explains: a person can get HIV when one of these fluids enters the body by way of 

5 



CHAPTER 2: BACKGROUND 6 

the soft skin found in any opening of the body (mucous membranes) or the blood 

stream. The most common way of spreading HIV is by having unprotected sex 

with an HIV-infected partner where the virus enters the body through the lining 
of the vagina, vulva, penis, rectum or mouth. Other ways include contact with 

infected blood; through blood transfusion for example (in developing countries 

blood is not routinely screened) or from injecting drugs using shared needles or 

syringes. HIV infected women can also transmit HIV to their babies during preg­
nancy, birth or breast feeding. 

2.2 Tuberculosis 

Tuberculosis (TB) is the most common major infectious disease today [201] and 

causes more adult deaths worldwide that any other infectious disease [31]. It pro­
duces nine million new cases of active disease annually [201] and infects one third 
of the world's population [202]. "Tuberculosis (TB) is an infectious disease caused 

by either mycobacterium tuberculosis or mycobacterium bovis. Because these or­
ganisms are so similar, the infections they cause are given the one name - tubercu­
losis." [115] 

A person can be infected with mycobacterium tuberculosis but not have active 

TB disease. This means that the TB mycobacterium are present in the body but 
that they are not actively causing damage to body tissues because the immune 
system has "walled them off'. The infection can lie dormant for years and often 

only develops into "active" TB when the immune system is weakened. 

When a person develops active disease, the TB organisms are growing and 
causing damage within the body. TB disease most commonly affects the lungs 
where it is called pulmonary TB. Seventy-five percent or more of infected people 

have pulmonary TB. Symptoms of the disease include a prolonged cough of more 
than three weeks duration, chest pain, fever, chills, appetite loss, weight loss and 

fatigue. Extra-pulmonary sites include the central nervous system, bones, joints 

and the lymphatic system. TB skin sores can develop when an infected lymph 
gland bursts, but this is very uncommon. TB is only infectious if the disease is in 

the lungs or if a TB skin sore is left uncovered. 

TB is an airborne infection and so it is transmitted by the infected person ex­

pelling TB mycobacterium into the air by coughing, sneezing, talking or spitting 

and another person can then inhale these organisms and become infected. How­

ever, it usually takes many hours (or even days) of exposure for a previously non­

infected person to become infected and so the transmission probability is low. 



CHAPTER 2: BACKGROUND 7 

Investigations into the transmission of TB on aeroplanes in the United States has 
concluded that less than 1 % of all those exposed to tuberculosis would become in­
fected [96]. Furthermore, only about 10% of infected persons with normal immune 
systems will develop "active" TB in their lifetime [202]. 

2.3 The Natural History of Tuberculosis 

Individuals who are not infected with tuberculosis are said to be susceptible. When 
they become infected, they are said to become latent. Individuals will then fol­
low one of two routes: develop active disease quickly (usually defined as within 
five years) or retain a latent TB infection that may possibly reactivate years later. 
Which route a person will take depends on the effectiveness of their immune sys­
tem and therefore factors such as age and poverty playa large role, and immuno­
compromised individuals such as those who are HIV-positive are likely to develop 

active disease more quickly than immunocompetent individuals. 

When a person is latently infected, they can progress to active disease in two 
ways: reactivation or reinfection. Reactivation occurs when the immune system is 
weakened and the defence against the TB infection becomes inadequate and so the 
TB mycobacterium are able to cause damage (active disease). Reinfection occurs 
when someone with latent TB is infected again but they do not invoke a success­
ful immune response and therefore progress to active disease quickly. Previous 
infection with TB does confer some immunity to developing active disease and 
therefore those that have already been infected with TB have a greater immunity 
to reinfection. The only exception to this is if the latent individual is also HIV 
positive, in which case reinfection is more likely. 

Active TB disease can be infectious or non infectious, with 46% of individuals 
(27% of late-stage HIV-positives) developing infectious disease [197]. Therefore, 
HIV-positive individuals are more likely to have non infectious TB. Once a per­
son has active disease then they may self cure, die or be diagnosed and treated. 
For those with infectious disease, the time until their cure, death or treatment de­
termines an individual's duration of infectiousness, which in turn determines how 
many people the individual is likely to infect. It is thought that an infectious person 
will infect from 10 to 15 people every year [202] [160]. 

A person receiving treatment will either fail or successfully complete the treat­

ment course. Those that successfully complete treatment still retain a TB infection 
but the TB mycobacterium are no longer actively causing damage. They therefore 
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have a latent infection, which as previously discussed, means that they are sus­

ceptible to reinfection from an infectious person, although they have an increased 

immunity compared to the uninfected population. 

When individuals are said to fail treatment this indicates that they failed to cor­

rectly complete the course of drugs and therefore the TB lesions were not steril­

ized. Failed treatment means that the individuals have active disease. Inconsistent 
or partial treatment of TB can be very dangerous because it can cause the strain of 

TB to become drug resistant. The emergence of drug resistant TB throughout the 
world has caused many complications and is impeding the control of tuberculosis 
worldwide. A particularly dangerous form of drug resistant TB is multi drug re­

sistant (MDR) TB, which is the disease caused by TB bacilli that are resistant to 
the two most powerful anti-TB drugs. Although drug resistant TB is treatable, it 

requires extensive chemotherapy (up to two years of treatment) and is often pro­

hibitively expensive [202]. 

The natural history of tuberculosis is further complicated by its propensity to 
be age dependent. As previously mentioned, age is a particularly important vari­
able in determining the risk of developing disease after initial infection with TB 

and in determining the type of disease developed. Older people are more likely 

to develop pulmonary TB [122]. Children under the age of 15 show a markedly 
different reaction to adults. There is a very high risk of developing the disease if in­
fected whilst in the period of infancy which then tails off into a low risk phase from 

5 to 10 years old, increasing again in adolescence and adulthood. This implies that 
although children between 5 and 15 can be infected with TB, they will rarely de­

velop active TB disease but will just maintain a latent infection. A separate point 
is that children tend to have non infectious TB and even if they have infectious TB 
they are too small to generate enough of a cough to effectively aerosolise the bac­

teria. For these reasons, children are very poor onward transmitters and therefore 

playa small role in the transmission of TB. 

2.4 HIV and TB: A Dual Epidemic 

As HIV progressively destroys the immune system, there is a greater chance of 

a person infected with HIV developing TB [126]. This overlap between the epi­

demics is particularly important and it is increasingly being recognised that in 
order to successfully fight AIDS, it means fighting TB. 

TB is one of the leading causes of illness and death amongst AIDS sufferers in 

developing countries. Up to 50% of people with HIV develop TB in Sub-Saharan 
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Africa and one in three die from it. Estimates for 2003 put the number of incident 
TB cases at 8.8 million, up from an estimated 8.3 million in 2000, with HIV being 
the main driving force [134]. Adult HIV prevalence rates are now 20% or higher in 
six southern African countries. In these countries TB case notification rates have 
increased 2 to 5 fold since 1990 and now between 460 and 720 people develop 
active TB disease per 100,000 members of the population per year [131]. It has 
been estimated that approximately 31 % of new TB cases in adults in the Africa 
region can be directly attributed to HIV [47]. It is clear that the spread of the HIV 
epidemic has significantly impacted the TB epidemic and it is thought that one­
third of the increase in TB cases over the last five years can be attributed to the 
HIV epidemic [39]. 

HIV and TB fuel each other very effectively: TB accelerates the progression of 
HIV to full blown AIDS; and HIV increases the risk of progression from latent TB 
to active TB disease. In fact, in an HIV infected person with a TB infection, the 
risk of progression to TB disease increases from 10% over a life time to 10% each 
year [4]. As a result, an HIV positive individual who develops active TB disease 
can expect to survive an average of just 5 to 6 weeks [194]. 

2.5 TB Control Strategies 

The international standard for TB control is the World Health Organization's Di­
rectly Observed Treatment Short-course (DOTS) strategy [131], which aims to 
reduce the transmission of tuberculosis infection through prompt diagnosis and 
effective treatment of symptomatic TB patients who present at health care facili­
ties, termed passive case-finding. Considerable progress was made during the last 
decade using this strategy in countries with small HIV epidemics but the effect of 
HIV on the African TB epidemic outweighs the gains being made in other regions. 

In this study we describe a discrete event simulation model that has been de­
veloped to evaluate the effects of more intensive case-finding strategies (so-called 
active case-finding) for TB control in a high HIV prevalence setting. In essence, 
active case-finding involves targeted testing of the population for active disease 
with one commonly used strategy being to target household members of TB pa­
tients. Those found to have active disease can be treated promptly, reducing the 
time spent with infectious TB and so cutting transmission rates. The current policy 
of active case-finding for adults living in endemic TB settings is ineffective, be­
cause transmission events between casual contacts greatly outnumber household 
transmission events [143]. This policy was developed in an era of low HIV preva-
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lence and the impact of the HIV epidemic on the relative importance of household 

versus community transmission has not been fully assessed. 

2.6 Data 

This study uses data from a large population-based trial in Harare, Zimbabwe 

which provides data on the size and location of every household in the study area, 

as well as the number of inhabitants, their ages and their TB and HIV status (Sec­
tion 2.6.1). The model is fit to country-wide TB incidence and HIV prevalence 

statistics for Zimbabwe, available from the 2007 WHO Report [134] and the UN­
AIDS Epidemiological Factsheets [176] respectively. 

2.6.1 The Harare Data and DETECTB 

CREATE (The Consortium to Respond Effectively to the AIDS-TB Epidemic) 
[167] are funded by the Bill and Melinda Gates Foundation and are, along with The 

Bloomsbury Well come Trust Centre [166], currently supporting a group led by Dr 
Liz Corbett of the London School of Hygiene and Tropical Medicine (LSHTM), 
called DETECTB. The group, who are based in Harare, Zimbabwe, have been 

generating data that is informative for making baseline assumptions about the dis­
tribution of HIV and TB infection in populations. 

Since 2005, DETECTB have been administrating periodic (6-monthly) inter­

ventions to 46 neighbourhoods (41,263 households) with a total of 107,430 adults. 
They have been using either door-to-door enquiry for chronic coughers, or a mo­

bile TB clinic, and diagnosis is based on sputum microscopy. Sputum microscopy 
is when a sputum specimen is taken from a patient and cultured for Mycobacterium 

tuberculosis organisms. Communities are randomised to one of these two inter­

ventions and the main outcome measures are the cumulative yield over 6 rounds 
of intervention and a comparison of the point prevalence of TB disease before and 

after the 6 rounds of intervention. 

All the households in the study neighbourhoods are demarcated and identified 

with GPS and then an interview with the household head is done to collect infor­
mation on the household structure to a) identify previous TB disease events and b) 

to allocate a poverty score to the household. 

A baseline survey of over 40,000 households has been completed and its results 

have been used throughout this study to inform the simulation of the appropriate 
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46 clusters 

Figure 2.1: A map of Harare, Zimbabwe showing the location of the 46 high den­

sity suburbs in which DETECTB are conducting randorrused trials of two active 

case-finding interventions and from which the baseline survey has been carried 

out. The photograph shows a satellite map of one of the neighbourhoods (Warren 

Park) 
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household structure and population dynamics. A copy of the questionnaire used to 

conduct the surveys can be seen in Appendix A. 

For the study area, the survey provides data on the number of dwellings and the 

number of households living within one dwelling. For each household, the survey 

provides data on the number of adults and children residing in it, their relationships 
to one another, their age and their gender. It also contains information on each 

household's standard of living, including information on the number of rooms in 

each household and the number of household members typically sleeping in each. 
Finally, it contains information on a household's TB history, with information re­

garding the number of members presently on TB treatment and those that have 
been on treatment within the last two years. 

2.6.2 HIV Data 

The HIV data for Zimbabwe is in the form of prevalence levels amongst all adults 
aged 15 to 49, i.e. the proportion of the 15-49 year old popUlation who are infected 

with HIV The data is available from 1984 onwards and was provided by UNAIDS 
[176]. It was collected from women attending antenatal clinics. 

The antenatal clinic CANC) data provides an estimate of the prevalence of 
HIV in the general adult population, however there are concerns as to whether 
the ANC data is a reliable representation of the population. The concerns include 
whether the prevalence rates in ANCs represent the prevalence rates of women, 

and whether the prevalence rates among women accurately represent the preva­
lence rates amongst men. The data may over-estimate the prevalence of HIV 

amongst young women because it is biased toward those that are sexually active, 

but it may under-estimate the prevalence of HIV amongst older women who may 
have become infertile due to being sexually active for longer and contracting other 

sexually transmitted diseases. It may also over-estimate the prevalence of HIV 

amongst men because there is evidence to suggest that there is higher HIV preva­
lence amongst women. Despite this, the ANC data is the only data available and 

the Antenatal Clinic Surveillance Report for Kenya [170] concluds that the over 

and under estimation made within each gender and age group, actually cancel each 
other out and as a result, ANC prevalence is a reasonable estimate of total preva­

lence amongst males and females aged 15-49. 
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2.6.3 TB Data 

The TB data for Zimbabwe is in the form of incidence of active TB disease per 
100,000 members of the population. The data is available from 1984 onwards and 
was provided by the 2007 WHO Report [134]. 

The incidence of TB is calculated by dividing the notification rates of TB by 
the rate at which cases are detected. The standard reporting system in place for 
countries such as Zimbabwe include recording the number of sputum smear posi­
tive, sputum smear negative and extrapulmonary patients that are treated for TB in 
the public sector each year. 



Chapter 3 

A Review of Previous Infectious 
Disease and Tuberculosis Modelling 
Literature 

This chapter gives an introduction to infectious disease modelling and a discussion 
of other models that have looked at the role of household transmission in interven­
tion design. It then goes on to discuss in detail the previous mathematical models 
that have been built to give a better understanding of tuberculosis epidemiology 
and effective control measures. The chapter ends with a discussion of the issues 
raised from previous modelling methodology and concludes that, in line with other 
infectious disease models, the development of a discrete event simulation model is 
needed to allow the more intricate details of transmission to be understood and to 
enable interventions at the household level to be investigated. 

3.1 An Introduction to Infectious Disease Modelling 

Mathematical models have been used to help understand epidemics since the eigh­
teenth century [26]. The simple mathematical assumptions introduced by Hamer 
(1906) [86] and developed by Ross (1911) [145] to model malaria provide the ba­

sis for modern disease models. These epidemic models have been used to describe 
for example, the progression of an infection through an individual, to investigate 
a person's role in transmitting infection, and to describe the spread of the disease 
through a community. 

Kermack and McKendrick (1927) [97] made a significant contribution to the 
understanding of epidemics and developed some of the earlier modern disease 

14 
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models. They were the first to put forward the threshold theory, which states that 
if an infectious case is introduced into a population, the density of susceptibles in 
that population must be above a threshold value for the epidemic to occur. As the 
density of the susceptibles increases above the threshold, the size of the epidemic 
increases rapidly. In later papers, Kermack and McKendrick removed some of their 
more restrictive early assumptions, first including the effect of a continuous intro­
duction of new susceptible individuals [98] and then adding in a constant death 
rate, in addition to the disease-induced death rate [99]. Another major contribu­
tion to the field came from Soper (1929) [156] who investigated the periodicity of 
measles outbreaks. These early models were all deterministic, as fitted the scarcity 
of data at this time. As data became more detailed, the desire to model smaller 
numbers of people increased, resulting in a move towards stochastic models. Bai­
ley [18] reports that McKendrick was the first to publish a stochastic model of 
diseases in 1926. This assumes "continuous infection", i.e. the probability of a 
new case is proportional to the number of susceptibles and the number of infec­
tives in a population, with all infectives being considered to be equally infectious. 
Work on the continuous infection model was continued in the 1940s and 1950s by 
authors such as Bartlett [21] [22], who used a stochastic model to attempt to mimic 
the oscillations in the measles epidemic observed in practice. Bailey [16] [17] and 
Whittle [193] obtained more general results for stochastic epidemics. 

In later decades, ideas from control theory became prevalent in mathematical 
epidemiology and the focus shifted from stochastic to deterministic models [7]. 
Deterministic models provide a good description of large-scale epidemics, where 
the number of people in each of the disease states is large enough to make random 
effects unimportant. Much progress was made in describing the dynamics of a 
wide range of diseases and modelling control measures. 

In recent years, there has been a move towards more individual-based models 
as they allow for additional complexity to be incorporated and therefore a more 
realistic representation of disease epidemiology. In models of sexually transmit­
ted diseases for instance, the effect of the social or contact structure of infectives is 
crucial. Therefore stochastic simulation models are a natural methodology to adopt 
and have been used to investigate the transmission dynamics of sexually transmit­
ted diseases such as HIV [137], Gonorrhea and Chlamydia [101]. The structure 
of a community can also playa role in determining the transmission of other dis­
eases and therefore microsimulation has been used to further explore vaccination 
strategies for diseases such as measles [60] and influenza [67] [85] [191]. 

To increase the efficacy of intervention design, some modellers have explored 
the structure of a community further by modelling individuals within specific 
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households. The model developed by Elveback et al. [67], and further devel­
oped by Halloran et al. [85] and Weycker et al. [191], is a good example of how 
microsimulation has been successfully used to model individuals within defined 
households. Weycker et al. [191] divides the population into communities, fol­
lowed by neighbourhoods and then households, with each individual belonging 
to one of these households. Children and adults may then be assigned to various 
social groups (playgroup, school, workplace etc.) depending on their age and the 
composition of their households, and the mix within these various groups. Using 
a stochastic individual-based model allowed it to be an accurate reflection of the 
real world. It meant a detailed and complex depiction of social mixing could be 
incorporated along with variability in susceptibility, infectiousness and the length 
of latency and infectivity. This made it ideal for investigating child vaccination 
strategies against influenza in the USA as approximates of the age distribution, 
household structure and population size could be included and the transmission 
dynamics correctly captured. Other studies which realised the importance of mod­
elling both within household and community transmission to accurately under­
stand and identify effective interventions for an infectious disease include those 
investigating influenza [38] [110], SARS [14] [200]), Hepatitis A [151] and the 
common cold [110] [14]. As households are generally small in size, these stud­
ies have focused on stochastic models of transmission, but there have been a few 
exceptions, where clever model designs have allowed a deterministic treatment of 
household models [11] [19]. 

An appreciation of how infectious diseases have previously been modelled has 
revealed that using a stochastic individual-based approach has become the pre­
ferred method. This is due to its ability to capture the reality of transmission and 
mixing patterns in populations, something that many studies have highlighted as 
vital to obtaining the correct infection dynamics [2]. Because of this, as Levin 
[105] suggests, the trend towards more individual-based models is likely to con­
tinue, with more account being taken of genetic variation in infectivity and trans­
missibility of diseases. Previous models have also highlighted the benefit of dif­
ferentiating between household and community transmission when estimating the 
main characteristics of transmission. 

The following Section looks at the historical development of TB disease mod­
els and provides a concise description of the assumptions and methods used for 
modelling different aspects of TB disease. Along with its accompanying summary 
table (Appendix B), it contains details of previous mathematical models that have 
been built to give a better understanding of tuberculosis epidemiology and effec­
tive control measures. 
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3.2 The Historical Development of TB Disease Mod­
els 

The majority of the TB models previously developed can be divided into two 
model types: deterministic, compartmental models or (static) mathematical mod­
els. 

Deterministic Compartmental Model: 

In a deterministic compartmental model, the population is divided into differ­
ent epidemiological groups according to their TB (and HIV) disease status. Differ­
ential equations are then used to move proportions of the population through the 
various groups at specified time steps. 

MathematicallEpidemiological Model: 

A mathematical/epidemiological/statistical model is when the model is static 
and fitted to particular data to establish various parameter values and epidemiolog­
ical relationships. 

The previous models ofTB are summarised and explained in the corresponding 
table (Appendix B) and discussed in more detail in the following Section. Initially, 
it will discuss the historical development of TB models and then talk about the 
more recent models which have incorporated the effect of HIY. 

3.2.1 TB Models 

Simple mathematical models have been used to understand tuberculosis (TB) epi­
demiology since the late 1950's when Alling (1958) [6] built a Markov chain 
model to predict the likely course ofTB disease for individual patients in America. 
The model comprised of six states each representing different clinical conditions 
of the disease, and had transition probabilities and a small number of other param­
eters. Alling showed that by finding just six of the parameters using maximum 
likelihood estimation to fit the model to the empirical data, the disease course that 
patients would take could be predicted. The model included those with advanced 
TB by incorporating an additional state and the importance of age on disease pro­
gression by dividing the patients into two age-dependent groups. 

The success of this study is largely unnoticed by other modellers and is sig­
nificantly overshadowed by Waaler et al. [186] who published a deterministic 
compartmental model in 1962 and went on to develop sophisticated models of TB 
transmission dynamics [182] [183] [187] [188] [184]. 
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3.2.1.1 Early Models of TB 

Waaler [186] was seen to be the first to bring epidemiologists and statisticians 
together and explicitly apply mathematical statistical methods in modelling the 
disease. Despite previous studies prior to this paper implying the use of a mod­
elling approach for TB epidemiology [75] [162] [74], and studies such as Alling 
[6], there can be no doubt that the ingenuity ofthe approach used by Waaler was an 
inspiration to many other models and perhaps why pre-Waaler models are largely 
ignored. 

Waaler divided the population into three epidemiological classes and advanced 
the model in time steps of one year by the use of difference equations. The 
model was fitted using data obtained by Frimodt-Moller's survey in South India 
[74], which collected detailed longitudinal data of a population of 60,000 people 
and noted the effects of introducing BCG vaccination and treatment for infectious 
cases. Waaler did not intend the results to be taken literally, but rather wanted to 
show how the epidemiological trend of tuberculosis in a country could be predicted 
using epidemiological models such as this, and more significantly, that they could 
be used to evaluate the effect of specific control programs. Waaler's enthusiasm 
for using a mathematical approach to epidemiology stimulated other epidemiolo­
gists to refine his approach. For example, Brogger [36] was amongst the first to 
improve Waaler's three category model by using systems analysis to form a rel­
atively complex model for TB control based on data from Thailand. The model 
introduced heterogeneity by classifying subjects with respect to their age as well 
as their TB state. Persons were therefore transferred through time from one age 
category to the next and through six classes of TB. 

ReVelle [140] used Waaler and Brogger's models as a template but was the first 
to introduce nonlinear differential equations to model TB dynamics. His main ob­
jective was to improve the economic allocation ofTB control measures in develop­
ing countries. He ignored heterogeneity and just moved homogeneous individuals 
amongst nine classes of TB using differential equations, to project the course of 
TB with and without different control policies. This enabled him to evaluate the 
efficacy and cost of different forms of control. 

Other epidemiologists developed new approaches to modelling, such as Fere­
bee [71], who built a simplistic epidemiological model to project the course of TB 
in the United States for fifteen years. Ferebee used exact estimates for the number 
of people acquiring TB, getting infected by each active case, and progressing to 
clinical disease. Using approximations of the efficacy of various control measures 
(although sources for these numbers are not provided) she was able to compare the 
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current control program's effect on TB cases with two other possible scenarios. 

The results clearly showed that the control program in place at that time in the 
United States was not going to decrease the number of TB cases to an acceptable 
level and was less effective than other possible measures. 

3.2.1.2 Development of the Earlier TB Models 

After these initial studies, it was Waaler who really expanded and improved the 
modelling methodology. Waaler embraced some of the characteristics of the mod­
els developed by Brogger [36] and ReVelle [140], such as age dependency and 
the incorporation of a vaccinated class, to formulate an extension to his previous 
model [186]. Waaler [182] developed a model that could be used to generate pro­
jections of epidemiological trends in TB given various anti tuberculosis programs. 
The deterministic compartmental model used difference equations to move people 
between eight epidemiological classes, which were also specified by five-year age 
groups. The model was the first to differentiate (by additional classes) between 
those who have been infected with TB for less or more than five years, and was 
also the first to separate active cases into those with infectious and non-infectious 
TB. Waaler then used this model to look at the effect of different BCG vaccination 
scenarios mainly in low prevalence countries such as Northern Europe and North 
America [183]. 

Waaler and Piot [187] continued the investigation of TB control by using the 
model previously developed [182] to measure the epidemiological effectiveness of 
BCG vaccinations in terms of "problem" reduction. The "problem" is defined as 
being the total sum of the individuals suffering and the related social costs caused 
by the disease. The simulation model used many parameters to represent, for ex­
ample, measures of a) demographic, b) epidemiological, c) eligibility, d) economic 
and e) coverage factors. This enabled them to ascertain how to most efficiently im­
plement say, BCG vaccinations (by finding the optimal level of coverage and age 
of eligibility). By investigating the sensitivity of control methods to the differ­
ent parameters, the study also revealed the importance of epidemiological issues 
such as effective contact rates and spontaneous healing rate. This helped develop 
a clearer understanding of TB dynamics and the factors most likely to affect the 
efficacy of control measures. This study was extended by Waaler and Piot [188] 
to include a utility function, which measures the value of a case occurring now as 
compared with that for one occurring later. The paper discusses the importance of 
this social-time-preference parameter to the efficacy of control measures. It con­
cludes that the parameter is strongly influential to a control measure's effectiveness 
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and therefore needs to be appreciated by policy makers. Another paper by Waaler 
[184], demonstrated the way a decision maker could use their original model [182] 
to answer various questions necessary for designing a control policy. 

3.2.1.3 A Period of Quiet 

After these initial investigations in the 1960s, relatively few theoretical studies on 
TB dynamics were carried out over the next twenty years. ReVelle and Male [141], 
Chorba and Sanders [43], Horwitz [91] and Azuma [15], were some of the few that 
did continue the work into the 1970s. 

ReVelle and Male [141] used a decision tree to analyse the most cost effective 
way of testing a population to minimise the cost per active case treated. Chorba 
[43] developed a simulation of the TB process and applied it to the data from the 
United States in order to predict future TB prevalence and to provide a cost-benefit 
analysis of control programs. Horwitz [91] designed a mathematical model to 
show the dynamic interplay between the disease parameters using data from Den­
mark, and Azuma [15] developed a simple simulation model to calculate annual 
trends in TB prevalence and incidence in Japan. 

In the 1980s, Goh and Fam [83] simulated the TB problem in Singapore be­
tween 1975 and 2025 to establish which control measure to introduce using the 
epidemiological model developed by Azuma [15]. Trefny and Hejdova [172] also 
used Azuma's model to do the same analysis of control measures but for the Czech 
Republic, and Schulzer et al. [152] developed a model using a Markov process 
which assessed which epidemiological parameters were most important to the on­
going spread of the disease in Taiwan and Korea. This was one of the first stud­
ies which included an analysis of the importance of drug resistant TB. Finally, 
Joesoef et al. [94] built a deterministic compartmental model to assess the cost­
effectiveness of three control methods in Indonesia. 

There is speculation that the lack of activity in this area was due to the con­
tining decline of TB in the developed nations which implied active TB was under 
control [113]. Interest resumed in the early 1990s, however, when countries such 
as the USA and the UK started to witness outbreaks of multi drug resistant TB. 

3.2.1.4 A Resurgence in TB Modelling 

From 1985, the USA observed a progressive rise of TB with a total increase of 
about 9% per year. Likewise since 1991, an increase of 5% was being reported 
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in the UK with other Western European countries experiencing similar behaviour 
[173]. In 1993, the World Health Organisation (WHO) declared TB a global emer­
gency and since this time, a large number of TB studies have been started with 
many TB models being developed. 

The models vary from simple parametric models [147] to simulation [122], 
cluster [11] [155] and Bayesian models [78], but the majority of them [30] [31] 
[37] [138] [28] [107] [206] [181] [69] [68] [12] [77] [84] extend Waaler's deter­
ministic compartmental model by incorporating various improvements and intri­
cacies to consider more advanced epidemiological issues such as exogenous rein­
fection [181] [69] [84] age dependency [181], multi drug resistance [31] [37] [68] 
and self cure [30]. 

Amongst those that developed deterministic compartmental models is Blower 
et al. [30]. Their intention was to gain a better understanding of the intrinsic 
transmission dynamics of untreated TB epidemics and the historical epidemiology 
of tuberculosis. The model was meant for immunocompetent populations and at­
tempts to reflect more biological complexities than previous models by including 
a spontaneous cure rate (those cured without treatment), by having only a fraction 
of TB cases as infectious, and by including a recovered class where individuals 
are able to either die of other causes or develop TB again. This model success­
fully gave quantitative answers which identified the mechanisms that drive TB 
epidemics. 

Understanding these dynamics meant that Blower's results could be used to 
design and understand how to control the disease. In their next paper, Blower et 

al. [31] extended their model to include the population level effect of treatment 
and thereby "developed a theoretical framework for designing effective tubercu­
losis control strategies" It was felt that control strategies could not be considered 
efficiently without also considering treatment failure and the subsequent evolution 
of drug resistance (a significant challenge to control programs). Blower therefore 
extended the model to include two strains of TB, and thus developed a transmis­
sion model that included the dynamics of both drug sensitive and drug resistant 
TB. The theoretical framework allowed the counterproductive control programs to 
be identified and successful control programs to be improved upon. 

Most other compartmental models developed after this time were intended to 
evaluate control strategies. These are discussed in the next Section. 

DCMs for Evaluating Control Strategies 

Castillo-Chavez and Feng's [37] four stage model was modified to include re-
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sistant strains of TB. They incorporated two additional classes specifically to rep­
resent the development of resistant strains, with the purpose of determining the 
role that the lack of treatment compliance plays on the maintenance of resistant 
TB strains. 

Porco and Blower [138] produced a time dependent uncertainty and sensitiv­
ity analysis of their previous models [30] [31] to identify which input parameters 
significantly affected the severity of a TB epidemic, and which contributed to the 
variability in the epidemiological outcomes. This type of understanding of an epi­
demic is invaluable, especially when considering the role of control strategies. For 
example, Blower and Gerberding [28] incorporated this information into the com­
partmental model they developed, which could be used as a health policy tool, to 

predict the epidemiological outcome of specified approaches to control. 

In 2000, Lietman and Blower [107] developed this tool to predict the epidemi­
ological effect of both preexposure and postexposure vaccines. The model was 
based on the compartmental models they had already built [30] [31] [138] [28] 
[148] [108] [27] [29]. The model divides the susceptible and latent classes into 
vaccinated and unvaccinated subclasses and the authors applied the model to both 
developing and developed countries. The results showed that using both vaccines 
in developing countries will help to eliminate TB by preventing reactivation, re­
infection and new infection at the same time. In developed countries, the results 
showed it would only be necessary to prevent new infections from occurring (pre­
exposure vaccine), as a small percentage of the population are latently infected. 
These conclusions are developed further by Ziv et al. [206] who evaluated the 
effect of targeting therapy specifically to persons with recently acquired latent TB 
compared to those who have been latently infected over a long period. The model 
was similar to Blower et al. [31] and concluded that fewer early cases need to be 
treated to eliminate TB than if you were to treat those of a large scale population 
with evidence of a latent infection. These were amongst the first models to stress 
the importance of treating individuals with latent TB. 

DCMs not for Evaluating Control Strategies 

Other models, that were not intended to explore the effects of different inter­
ventions, were also developed. Sutherland et al. [164] and Vynnycky and Fine 
[181] developed models solely to help understand the role of exogenous reinfec­
tion on TB dynamics. Whilst Sutherland had already used a mathematical model 
to quantify exogenous reinfection and its relative risk compared to that of primary 
infection and endogenous reactivation, Vynnycky and Fine were the first to model 
reinfection, by means of a deterministic compartmental model. The model was de-
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veloped because few of the previous models had included age structure and none 
of them (apart from Sutherland's) until this time had considered the importance of 
reinfection. For example, Blower et al. [30] explicitly ignored exogenous rein­
fection in their model and acknowledged that the model is therefore unsuitable for 
immunocompromised populations. Vynnycky and Fine's analysis showed that the 
epidemiology of TB has changed considerably since the end of the 19th century 
due to HIV; and that age and reinfection are important factors of TB transmission 
dynamics. 

Recognising that exogenous reinfection cannot be ignored in populations hav­
ing high HIV prevalence, Feng et al. [69] also developed a model to understand 
the effect of reinfection on TB dynamics in developing countries and the inner 
cities of developed countries. The basic TB model from a previous paper [37] was 
extended to incorporate exogenous reinfection by introducing a new term into the 
differential equation that effects the dynamics of the 'infectious' epidemiological 
class and includes a new parameter which measures the level of reinfection. The 
results showed that the dynamics ofTB would change with the consideration of ex­
ogenous reinfection. Biologically it implied that exogenous reinfection increases 
the number of individuals at risk of becoming infectious. 

Feng et al. [68] later did a study to investigate the effects of variable periods 
of latency on TB disease dynamics. Using previous models [37] [70], they devel­
oped another compartmental two-strain model with the intention of determining 
whether the conclusions change when both multiple strain TB and distributed de­
lays of latency are considered. Unlike the previous study the results showed that 
the introduction of host heterogeneity in latency did not change the basic conclu­
sions and therefore the dynamics of the disease remain unchanged from the earlier 
model [37]. 

Aparicio et al. [12] developed a model to understand the possible reasons for 
the reductions in active TB incidence in the United States. The roles of demo­
graphic, epidemiological and social components were explored by use of a deter­
ministic compartmental model similar to those being published at the time, but 
with time dependent parameters. Particular importance was placed on the effect 
of urbanisation and an increase in the standard of living on the disease evolution, 
and these were incorporated into the model, which provided evidence to suggest 
the decrease in incidence of active TB was due to a reduction of progression from 
latent to active disease. 

Other compartmental models were developed simply to estimate the possible 
evolution and trajectories of the disease. Garcia et al. [77] present a model where 
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individuals are vaccinated at birth and only those not protected by the vaccine 
can become infected with TB. The natural history of the disease is represented 
by seven epidemiological classes and the transfer rates between the groups are 
obtained from the literature of TB situations in developed countries. Gomes et al. 

[84] developed the same model but with adjustments to incorporate the effect of 
exogenous reinfection. 

Other Types of Models 

Although the majority of models seem to be deterministic compartment mod­
els, other types of models have been developed. Salpeter and Salpeter [147] de­
veloped a purely mathematical model and applied epidemiological data to it to 
ascertain estimates of the parameters of TB epidemiology in the United States. 
The model's results were validated using other published results, and estimates 
were established for case rates in different age groups and the time delay between 
the initial infection and active disease. 

Aparicio et al. [11] proposed a new dynamic model which incorporated the 
effects of clusters on TB transmission. The model enabled the authors to focus on 
the effect of long and systematic exposure of infectious individuals on suscepti­
ble individuals, which previous models had failed to address. The cluster model 
is essentially still a deterministic compartmental model but the population is split 
into two - those individuals belonging to an epidemiologically active cluster (NI) 
and those that do not (N2). An epidemiological cluster (of size n) is a generalised 
household with at least one actively infected individual. Therefore if an individ­
ual is newly infected, they activate a new cluster and increase the risk of TB for 
all those susceptibles in their cluster. The cluster model therefore differs from 
the usual compartment model because instead of moving individuals through the 
various stages, it moves clusters of individuals. For example, when an individual 
becomes infectious, this creates an epidemiologically active cluster which means 
n individuals are moved from popUlation N2 to Nl. This model was extended by 
Song et al. [155] who further explored the role of close and casual infections on 
TB dynamics. The cluster model allows two levels of mixing to occur, with trans­
mission processes occurring at both the population level and the individual level. 
This allows individuals to acquire TB through membership of an epidemiologi­
cally active cluster (close contacts) as well as from random (casual) contacts in the 
population. 

Murray [122] also looked at the clustering of TB cases and defined a cluster 
by using molecular techniques to identify identical TB isolates in communities. 
She used a discrete event simulation model to track the chain of disease trans-
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mission through different clusters, enabling her to see the effect of variability of 
strain behaviour and the transmission dynamics of TB in determining cluster size. 
The study was not intended to obtain specific cluster distributions and TB inci­
dences but to help to interpret empirical studies. Murray concludes by endorsing 
the microsimulation approach to be used in the study of epidemiology of infectious 
diseases. 

Another method, used by Getoor et al. [78] is to create a Bayesian model. They 
used data collected in San Francisco to create a Bayesian network which was ex­
tended using statistical relational models. This allowed the rich and complex data 
to be explored and TB disease transmission to be better understood. The study 
revealed the potential of this type of analysis in answering fundamental questions 
about tuberculosis biology, addressing issues such as heterogeneity of susceptibil­
ity and the virulence of different strains. 

The models discussed so far have solely been for modelling TB disease. How­
ever, there is a significant relationship between the HIV and TB epidemics, as 
described in Chapter 2, Section 2.4. The following Section will discuss models 
which have tried to incorporate the intricate relationship between the two diseases. 

3.2.2 TB and HIV Models 

TB and HIV fuel each other very effectively. TB accelerates the progression of 
HIV to full blown AIDS; and HIV increases the risk of progression from latent TB 
to the active TB disease. In fact, in an HIV infected person with a TB infection, the 
risk of progression to TB disease increases from 10% over a lifetime to 10% each 
year [4]. As a result, with both diseases active the average survival time is just 5 or 
6 weeks [194]. Models that try to capture the dynamics between the two diseases, 
and their impact on each other are therefore important, particularly in regions with 
a high HIV prevalence such as Sub-Saharan Africa. 

Schulzer had previously developed a mathematical model to predict TB infec­
tion in Taiwan (Schulzer et al. [152]) but recognised the urgent need to develop a 
model which addressed the interaction between TB and HIY. Schulzer was among 
the first to incorporate the effects of HIV in a TB model and in 1992, Schulzer et al. 

[153] and Bermejo et al. [25] published simple parametric models which looked at 
the impact that HIV was having on TB incidence in developing countries. Bermejo 
et al. [25] developed a static model which investigated the relationship between 
the two epidemics to show what percentage of new TB cases will be HIV-positive 
and what TB incidence levels can be expected under various situations of HIV 
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prevalence. The study formed general conclusions about the dramatic increase of 

TB incidence that can be expected in developing countries due to the HIV epi­

demic. Similarly, Schulzer et al. [153] developed a model which predicted the 

likely extra numbers ofTB cases due to HIV infection in Sub-Saharan Africa. Un­

like Bermejo, Schulzer looked at four different scenarios so that a range of risks 

of infections could be investigated. This study similarly highlighted the dramatic 
increase in the number of TB cases that can be expected due to HIV infection. 

This model was extended to allow it to be applied to other countries and regions 

effected by the dual epidemic. Schulzer et al. [154] discuss the use of the math­
ematical model in Sub-Saharan populations and the Canadian needle exchange 

sUb-population and predict the expected progression of TB disease in these pop­

ulations, given the acceleration from the impact of HIY. All three of these early 
studies emphasise the potential of their models to be used to design appropriate 

control programmes. 

These studies discuss simple mathematical models that were only able to gen­

erate general results and conclusions about the impact of HIV on TB. Other more 
sophisticated models were also developed. Massad [113] for example, developed a 

deterministic compartmental model which allowed a more comprehensive analysis 

to be done and the complexities resulting from the interaction of the two infections 
to be investigated. The actual structure of the model is based on the TB model pre­

viously discussed by ReVelle [140] and an HIV model already developed by the 

author [64]. The model separated individuals into two susceptible classes - those 
who are susceptible to both infections, and those who are susceptible to both infec­

tions but who have previously suffered from active TB. The population is able to 

progress through the 16 compartments, which represent various stages of the two 
diseases, and the parameters control the transitions through the model depending 

on HIV status. The model was meant as a theoretical study and enabled specific 

relationships between the diseases to be explored and quantified. Firstly, the sim­

ulations showed that the pathogenicity of HIV is greatly enhanced by the presence 
ofTB, secondly that the prevalence of AIDS almost doubles in the presence ofTB, 

and vice versa, and thirdly, there is a stronger influence of AIDS on TB than there 

is of TB on AIDS. These findings increased the understanding of the epidemiolog­

ical interaction between the two diseases at that time, and were also suggested to 

be useful for the designing of control strategies. 

Heymann [89] developed a 10-stage Markov model to analyse how the in­

teraction between HIV and TB affects both the HIV-positive and HIV-negative 

population in Africa. The model was implemented using a computer simulation 

of one million adults over ten years. As well as the effect of HIV prevalence on 
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TB infection rates, the impact of expanding chemoprophylaxis programs was also 

evaluated. Data and parameter values derived from the literature were used to 

determine transition rates. The complex mechanisms behind the increase in TB 

deaths due to the HIV epidemic were identified and the importance of chemo­

prophylaxis in decreasing the prevalence of TB in HIV-infected and non-infected 

individuals by reducing the spread of TB was clearly ascertained. It concludes 

that providing chemoprophylaxis to HIV-positive individuals is more cost effective 

than treatment but whether the same is true for HIV-negative individuals depends 

on various conditions, some of which are identified in the paper. 

Heymann was also involved in a similar model which simulated the USA's 

general popUlation for ten years using available epidemiological data. In the pa­
per by Brewer et al. [33] they discuss the development of a semi-Markov model, 

where, unlike in a Markov model, the probabilities of moving between states can 

vary over time. There are 18 states defined in the model, which are dependent on 
TB status (both drug sensitive and drug resistant) and HIV status, and the popu­

lation is split into three different age groups. Three different prevention strategies 

and two treatment strategies are introduced singly and in various combinations to 

assess their impact as TB interventions. The study concluded that on their own, 
the treatment and prevention strategies would not be sufficient to eliminate TB in 

the USA and that a combination of control strategies is needed. 

Another type of model that was used to investigate and quantify the potential 
impact of the HIV virus on TB was discrete event simulation. Porco et al. [139] 

extended their previous deterministic models [30] [31] [138] [28] [107] [206] oftu­

berculosis by including stochastic effects and the effect of HIV on both the patho­

genesis and transmission of TB. The model had six states to represent the disease 
progression of TB in HIV negative individuals and a further six states for each of 

the four WHO defined stages of HIY. The stochastic model simulated, under vari­

ous HIV and treatment rate scenarios, the average outbreak size from introducing 
one infectious case of tuberculosis. The results showed that in areas with very 

high treatment rates for TB, HIV epidemics are unlikely to substantially increase 

the number of TB cases but that in areas where treatment rates are moderate or 

less, "HIV is likely to significantly amplify the TB epidemic". The study high­

lighted that WHO target levels for tuberculosis treatment are well below what they 

need to be and that in developing countries, decreasing the prevalence of HIV will 

decrease the incidence of TB. 

After 1998, a series of deterministic compartmental models were developed 

specifically to investigate the efficacy of directly observed treatment, short course 

(DOTS), the World Health Organisation's recommended strategy for TB control. 
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Murray and Salomon [120] elaborated on a previously discussed model which was 

developed by Blower et al. [30] [31]. The finite difference model describes the 

progression through a possible 19 states ofTB and was applied to populations from 
five regions of the world 1. This was one of the most complicated compartment 

models developed so far and incorporated features such as superinfection, fast or 
slow breakdown to TB disease, fast or slow diagnosis rates and three clinical cat­

egories of TB. The profound effect of HIV on the development of TB is also cap­

tured by creating two sub models to represent the HIV-negative and HIV-positive 

populations. The paper concludes that using DOTS alone will be inadequate and 
that extensions need to be implemented. In a subsequent paper [121], they go on 

to advocate the use of active case finding in high HIV prevalent populations as a 

cost-effective extension to DOTS, by incorporating costs into the original analysis. 

A very similar model was developed by Dye et al. [61] to quantify the world­

wide effect of the DOTS strategy and hopefully justify it. The model is a deter­

ministic compartmental model with two sub models to incorporate the effect of 

HIV; however it also includes age structure. The model was applied to the six 
WHO regions of the world and showed that improvements in case finding and cure 
rates are vital, as even if WHO targets were met by 2010, "three-quarters of the 

worldwide TB burden would still not have been averted in the next 23 years." 

This model became a popular foundation for other models and studies. An 

adaptation of it was used by Currie et al. [55] to compare and investigate preven­
tative methods of TB control with case detection and cure. The study was moti­

vated by the observation that DOTS was failing to prevent increases in TB cases 

in high HIV prevalent populations. The Dye [61] model was adjusted so that age 
structure was removed but that options for TB control were extended to include 

three preventative methods (one of which was to reduce HIV transmission) as well 

as case detection and cure. The model was applied to data from South Africa, 

Kenya and Uganda; all countries where the TB epidemics are driven by HIV. The 

results showed that reducing the burden of HIV is an effective way of reducing 
TB, but that the effect is delayed and less dramatic than finding and curing active 

TB. The authors concluded that both HIV and TB control would be needed to give 

a long-term decline in TB incidence. 

Currie et al. [56] then used the DCM approach to develop a different model to 

look at the effect that the duration of TB infectiousness amongst late-stage HIV­

positives has on the dual epidemics of TB and HIY. A dynamic TB transmission 

model is split into two sub models to represent HIV-negative and late-stage HIV 

'The world was divided into five regions based on patterns ofTB epidemiology 



CHAPTER 3: LITERATURE REVIEW 29 

individuals, as in the earlier model, but the TB states are more complex with the 

latent TB infection state split into a state to represent latently infected individuals 

who progress quickly to active disease, and a state for individuals with a long-term 

TB infection. The model was applied to data from Kenya and showed, using var­

ious scenarios for duration of infectiousness, death and diagnosis rates, that when 

the duration of infectiousness is short, the HIV epidemic has relatively little effect 

on TB prevalence. This is due to the fact that the majority of transmission events 
are attributable to HIV-negative individuals, because the HIV-positive individuals 

are infectious for such a small amount of time. This could have important implica­
tions for TB intervention design, especially when studies in South Africa showed 

that the duration of infectiousness could be as little as 2 months in late-stage HIV 

individuals, rather than the 6 months assumed by the WHO. 

Dye and Williams [63] also adjusted their previous model [61], to investigate 

multi drug resistant (MDR) TB and how best to eliminate it. The model allows 
both drug resistant and drug sensitive TB to be modelled and was one of the first, 

along with Vynnycky et al. [181], to incorporate a disease state for those with 

fast progression to active TB, which, as already discussed was later used by Currie 
[56]. The results were obtained by applying the model to data from 6 countries to 

represent the current variations in cure rates. The study allowed general conclu­
sions about the control of MDR TB to be made, mainly that current treatment and 

cure rates are inadequate if an MDR-TB epidemic is to be prevented. 

In another study, Dye and Williams adjust their previous models [61] [63] and 
discuss a new model for HIV and TB. Williams et al. [197] discuss a model to in­

vestigate the capability ofIndia's Revised National TB Control Program (RNTCP) 

DOTS program, to reach the United Nations Millennium Development Goals of 
halving TB prevalence and death rates by 2015. This time the model was repli­

cated 5 times to represent each possible HIV stage (negative and stages 1 through 

to 4), as the impact of HIV on TB and the RNTCP's ability to control the TB epi­
demic was the primary goal. The model's other modifications, were the removal 

of age dependency [120] and the lack of a 'fast latent' stage [63]. The model re­

sults showed that HIV should have little impact on India's RNTCP and its ability 
to reverse the increase in TB incidence but that more treatment is needed to halve 

TB mortality by 2015. 

As the review shows, the majority of previous studies have used determinis­

tic compartmental models which have focused on modelling TB at the population 

level. These studies concentrated on the effect of interventions at a large scale 

and although many of them addressed the implications of reducing transmission, 

none of them were able to look at the actual mechanics behind it. These studies 
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have been vital in understanding and quantifying TB disease progression in popu­

lations. However it is felt that a discrete event simulation is more appropriate for 
investigating interventions at the household level and enables the more intricate 

details of transmission to be understood. There is also a need to further investigate 

TB control strategies in areas of high HIV prevalence; in particular with relation 

to active case-finding. 

3.3 Issues from the Literature 

When designing the discrete event simulation model it is useful to appreciate the 

issues uncovered by the literature regarding TB modelling, some of which remain 
unresolved or continue to be inadequately addressed. The rest of this Section dis­

cusses some of these issues and considers which of them will be important to the 

study. 

3.3.1 HIV 

The majority of previous models have not incorporated the effect of HIV on TB 

disease evolution and the effectiveness of control strategies, however it is now 

widely accepted, as reflected in the most recent literature, that it is essential to 
simultaneously control both epidemics, especially in developing countries [139]. 

This means that TB models must include HIV and that better data is needed to 

resolve the uncertainties surrounding the parameters connecting the two epidemics 
[ 197]. 

3.3.2 Homogeneity 

The majority of the studies divided the population into homogeneous groups based 
on the natural history of TB disease and presumed homogeneous mixing of the 

population. 

Age Dependency: 

Age structure is particularly important in TB epidemiology as a lot of the dis­

ease parameters are dependent on it. Age affects the mortality rate and life ex­
pectancy and also determines both the risk of developing disease after infection 

[11] [155] and the type of disease developed (pulmonary /extrapulmonary). Also, 
the behaviour of children versus adults in disease evolution can be very different 
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as children are less likely to infect others or progress to active disease. Some stud­

ies explicitly ignored children because they are not a priority group for TB control 

programs in developing countries [25]; however it is unclear how important they 

are when considering the disease dynamics within households. 

A few studies recognised the importance of age on the epidemiology ofTB and 
tried to incorporate age dependency [6] [36] [182] [181] [61]; but all these studies 

failed to include the effects of either gender or non homogeneous mixing. 

Gender: 

Gender differences are important and have been observed in TB epidemiology; 

for example Sutherland et al. [164] found that the differences between the sexes 

were statistically significant and that there are genuine differences between male 

and female rates of mortality, incidence and disease progression. However, none 
of the models discussed in this review incorporated this phenomenon into their 

models. 

Homogeneous Mixing: 

The only models that address non homogeneous mixing are those by Aparicio 

et at. [11] and Song et al. [155]. These models are still deterministic compart­
mental models with no age or gender structure; however they do try to model two 

different levels of mixing with transmission processes occurring at both the pop­

ulation level and the individual level. Although this provided some insight on TB 
dynamics between close and casual contacts, the groups were still homogeneous 

as the population structure was ignored and therefore the modelling was unrealis­

tic. Previous models have therefore only been able to look at the effect of large 
scale interventions and have been unable to look at the actual mechanics behind 

transmission. It is felt that discrete event simulation is more appropriate for in­

vestigating the intricate details of transmission and the effect of household level 
interventions, because different mixing patterns and heterogeneous contact rates 

can be incorporated into the model. 

3.3.3 Endogenous Reinfection 

Although reinfection has been incorporated by many studies, its importance in 
immunocompetent populations is still debated within the literature [68]. However, 

most studies agree that exogenous reinfection plays an important role in disease 

progression in developing countries where high incidence rates are observed. 
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3.3.4 Lengths of Latency and Infectiousness 

One of the criticisms of all the previous models is that they do not take into account 

the long and variable periods of latency which is an important feature of TB. Only 
Feng et al. [70] recognised this and tried to incorporate it into one of their basic 

TB models however it was unable to capture the effect sufficiently. They found 

that the disease either died out or remained endemic regardless of the shape of the 
length of latency distribution. 

The length of infectiousness is also variable and influenced by an individual's 

age, sex and disease characteristics. The varying lengths of infectiousness are 
particularly important when considering the effect of HIV on the TB epidemic. 

HIV-positive individuals are infectious for a relatively short amount of time - re­

cent studies in South Africa suggest it could be as little as two months [49] [48]. 
When the duration of infectiousness is short the HIV epidemic has relatively little 

effect on TB prevalence because the majority of transmission events are not com­
ing from HIV-positive individuals. This effect has only been specifically modelled 
by Currie et al. [56] and they concluded that it has important implications for the 

design of control strategies and is therefore an important feature to incorporate into 

a model of TB and HIY. 

3.3.5 Multi Drug Resistance 

Multi drug resistant (MDR) TB is generated by inadequate treatment and is a grow­
ing impediment to the effective design and success of control strategies. A handful 

of studies have incorporated multi drug resistance into their models ([ 152] [31] 
[37] [68] [33] [63]), as it was felt that control strategies could not be considered 

efficiently without also considering treatment failure and the subsequent evolution 

of drug resistance. Many of the studies were successful in identifying how current 

control strategies could be improved in light of MDR TB and also in ,determining 
the role that the lack of treatment compliance plays on the maintenance of resistant 

TB strains. The models conclude that the prevalence of MDR TB is an essential 

consideration when designing TB control strategies and therefore its incorporation 

into the design of a TB model needs to be evaluated. 

3.3.6 Immigration 

Immigration is an important element to understand when modelling tuberculosis 

in a population because of the flux of infectious individuals that it can introduce 
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into the population. Studies in developed countries such as America have shown 

that foreign-born persons composed 60% of the increase of TB cases between 

1986 and 1992 and in Auckland, 63% of new cases were found among immigrants 

from Asia and the Pacific Islands during 1992 [69]. This implies that foreign­

born individuals with TB may be responsible for much of the transmission of TB 

in Auckland and that TB incidence rates in developed countries are affected by 

immigration. Some models, such as Feng et al. [69], appreciate the importance 

of immigration and its impact on TB control, but all fail to actually model it. The 

importance of immigration on TB disease dynamics in developing countries is still 

uncertain. 

3.3.7 Poverty 

Tuberculosis has long been a disease of poverty for several reasons. The risk of 

being infected with TB is higher among poor people because there are higher con­
tact rates in overcrowded homes and areas, the risk of developing active ,disease 

is higher amongst people with poor immune systems due to below average nutri­
tion and working conditions, and the chance of being successfully diagnosed and 

treated depends on good infrastructure and the availability of health services [185]. 

Previous models have been unable to capture the effect of poverty because of 
the complications and ambiguity surrounding modelling it. Some have acknowl­

edged the strong evidence which suggests that "a correlation exists between TB 
progression rates and the corresponding average standard of living" [12]. How­

ever, it has only led to hypothesising over the effects on TB control interventions 

and not the modelling of it. It is currently thought that the clustering of TB in­
fection and HIV infection in the poorest of households may be exacerbating the 

biological interaction between these two diseases. How this may reduce the suc­

cess of TB control interventions (since the poorest households may also tend to 
have the least access to health care) still needs to be determined. 

3.4 Summary and Conclusions from the Review 

The use of mathematical modelling in the study of TB has helped to illuminate 

the general epidemiology of the disease as well as to optimise the effectiveness 
of control measures. As such, it has evolved over time to answer questions such 

as those about exogeneous reinfection in the 1990s moving onto questions about 

the interaction with HIV in the late 1990s and early 2000s. Following shortly 
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behind advances in vaccinations, TB treatment and prophylaxis, and occasionally 

anticipating what these advances might be, it has been used to compare differ­

ent interventions and to find the optimal strategies for their delivery in terms of 

effectiveness and cost. 

Moving to the future, there are still a number of unanswered questions about 

the effects of HIV on TB and the impact this has on control. Answering some of 

these questions, in particular those concerning HIV, where the effect of the contact 

network is needed to understand transmission, may require different modelling 
methods from the deterministic compartmental models that have traditionally been 

used to model TB. For example, there is undoubtedly a place for more stochastic, 

individual-based microsimulation models. 

The purpose of this study is to evaluate the effects of more intensive case­
finding strategies for TB control in a high HIV prevalent setting. As active case­

finding can involve targeting household members of TB patients, a clearer under­

standing of the role of household versus community transmission of TB is needed. 
A review of both TB and other infectious disease modelling literature points to 

discrete event simulation as the most appropriate method for investigating inter­
ventions at the household level, as it enables the population dynamics to be more 

accurately represented and therefore the more intricate details of transmission to 

be understood. 

The importance of incorporating various epidemiological issues into a TB 

model have been identified. Which issues are addressed by a model are depen­

dent on the questions needing to be answered. For our discrete event simulation 
model, which is looking to determine the relative importance of household inter­

ventions in controlling TB in HIV settings, all of the issues could be considered 

as important. In our model we only aim to address HIV, age dependence, non­
homogeneous mixing, reinfection, and varying lengths of latency and infectious­

ness. It would be ideal to also incorporate MDR TB, gender and immigration, 

however more comprehensive data on their impact is required. It would also be 
valuable to explore the impact of poverty on the likely success of interventions, 

and cross-sectional data on this is being collected by DETECTB in Harare. The 
work involved in using this data to quantify poverty is time-consuming and has not 

been done for this model. It is considered feasible however, and would be a very 

interesting and useful extension to this research (see Chapter 10, Section 10.3). 



Chapter 4 

Examining the Dynamic 
Relationship between HIV and TB 

4.1 Introduction 

In an initial study of the interactions between the HIV and TB epidemics a simple 
parametric model was developed at the population level. This was done in collab­
oration with Dr Brian Williams of the World Health Organisation and much of the 

following discussion is taken from the currently unpublished paper entitled "The 
impact of HIV on TB at a district level in Kenya" [116]. Using district level data 

from Kenya on TB notification rates and HIV prevalence among women attending 
ante-natal clinics, the dynamic relationship between TB and HIV was explored. 

Kenya was an appropriate study area because of the availability of comprehensive 
TB data and because TB notification rates have risen by up to ten times in some 

of its districts over the last ten years, almost certainly as a result of the HIV epi­

demic. The presence of an HIV led TB epidemic allowed the relationship between 
the epidemics to be investigated at the population level. An understanding of how 

HIV impacts on TB epidemiology is important, not only for Kenya, but for TB 
modelling in all other countries with substantial HIV epidemics. 

The model developed is a simple parametric model which was fitted to, where 

available, district level data of both infections. The model predicts the likely course 
of the HIV and TB epidemics. It is particularly useful for those districts where 

TB data, but not HIV data, are available as it is capable of estimating the HIV 
prevalence from just the TB notification rates. This is useful because in some 

countries such as Kenya, TB notification data is considerably more reliable than 

the HIV prevalence data both in quantity and quality. The results from the initial 

35 
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modelling work described in this Chapter are not used as a direct input into the 
DES model. 

4.2 Background 

The risk of developing TB disease increases as people progress from HIV infection 
to AIDS and studies have been carried out to determine the odds ratio for TB in 
HIV-positive and HIV-negative people [132], changes in the risk of TB as people 
progress toward AIDS [196], the relative infectiousness for TB of HIV-positive 
and HIV-negative people [58] [79], and the extent to which HIV-infection affects 
transmission of TB [46]. Attempts to model the population level impact of the TB 
epidemic have relied heavily on these and other studies to estimate the necessary 
parameters, assuming that both the parameter estimates and the model structure 
adequately capture the dynamics of the two epidemics. 

As already discussed in Chapter 3, a number of attempts have been made to 
model the impact of HIV on TB using dynamical compartmental models [89] [33] 
[120] [121] [61] [63] [139] [53] [123] [55] [47] [199]. However, without good 
population level data for both diseases it is difficult to be confident about the va­
lidity of these results and the confidence limits in population level estimates are 
wide [196]. The problem is that where TB notification rates are high and HIV is 
prevalent, some countries, such as South Africa, have good data on the prevalence 
of HIV but poor data on the incidence of TB, while other countries, such as Kenya, 
have good data on TB but less certain data on the prevalence of HIV. 

TB notification rates are available from all of the 41 districts in Kenya since 
1985. The number of districts changes over time as district boundaries are redrawn 
and districts merged or split. The district level data for HIV is less complete and 

only 10 districts have reliable and consistent data for more than 10 years. However, 
this is the most comprehensive set of sub-national data on both diseases for any 
developing country in the world and allows us to develop preliminary estimates of 
the relationship between TB and HIV in Kenya. 

Because of the limited extent and coverage of the HIV data, even in Kenya, 

we use a parametric model to describe the interaction between the two diseases. 
The data cannot support detailed parameter estimation for a full compartmental 
model and we seek the simplest possible model that is biologically plausible and 
is sufficiently flexible to fit the data. This simpler model enables us to identify 
important relationships between the two epidemics. 



CHAPTER 4: EXPLORING THE DYNAMIC RELATIONSHIP 37 

The results of the model show that using the TB incidence data to predict the 

HIV prevalence curve in Kenya's districts is a realistically precise method. This 

work is our own contribution toward the evidence of a strong link between the 

HIV and TB epidemics, a key fact underpinning the need to develop a discrete 
event simulation (DES) model of TB transmission (Chapter 1). 

4.3 Data 

In addition to information on the changes in district boundaries over the last 18 

years, we use three sets of data: TB data from the routine surveillance system of the 
Kenyan National Leprosy and TB Control Programme (NLTCP), HIV data from 

the sentinel surveillance system of the Kenyan National AIDS and STD Control 

Programme (NASCOP) [10], and data from the Kenyan National Census for the 
years 1979, 1989 and 1999 [8]. 

4.3.1 District Boundaries 

Over the 18 years for which TB data are available for this study there have been 
a number of changes to the district boundaries in Kenya (Appendix C). In 1990, 

for example, Kericho was divided into Bomet and Kericho. These two districts 
were again divided in 2000 with part of Bomet and part of Kericho combining to 

form a new district, Buret. In this study we use the district names as given for the 
period 1985 to 1991, which gives a total of 41 districts, and combine data from 
the present districts where necessary. Figure 4.1 is a map of the Kenya districts as 

referred to in this study. 

4.3.2 TB Data 

The TB data are part of the standard reporting system in which the number of spu­
tum smear positive (SS+), sputum smear negative (SS-), and extrapulmonary (EP), 

patients that are treated for TB in the public sector each year is recorded. Ideally 

one would use the incidence of TB rather than notification rates. Multiplying the 
notification rate by the case detection rate (CDR) gives the incidence but the CDR 

is difficult to estimate precisely. However, the World Health Organization esti­

mates that the case detection rate has remained fairly constant, between 47% and 

49%, for the last ten years [133]. Provided the case detection rate has not varied 

over time this will only introduce a scaling factor into the model fitting. 



C HAPTER 4: EXPLORING THE D YNAMIC RELATIONSHIP 

Turkana 

Pro vinces of Kenya 

_ Centra l 

c=J Coast 

" Easte rn 

CJ Narobi 

Nor1h Eastern 

.. Nyanz3 

Rifl VaUe y 

_ Western 

~jr 

lSolo 
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4.3.3 HIV Data 

HIV data are only available for some districts for some years. Visual inspection 
allows us to classify the districts broadly into three groups: a) those that have con­
sistently smooth trends in time (within the binomial confidence limits) for at least 
II years; b) those that have some data but for which the variability substantially 
exceeds the binomial errors or for which data have only been measured at a few 
points in time; and c) those for which no data are available. We refer to these as 
Type I, II and III districts, respectively. The HIV data are for women attending 
ante-natal clinics (ANC). It is assumed that the ANC prevalence is close to the 
prevalence in all adults [10] but as discussed in Chapter 2, Section 2.6.2, there are 
concerns over whether the ANC data is a reliable representation of the population. 
However, the only long term trend data are from ante-natal clinics and we assume 
that these data accurately reflect trends in the adult prevalence so that they too 
differ, at most, by a scaling factor. 

4.3.4 Census Data 

The national census data for the years 1979, 1989 and 1999 were taken from the 
Central Bureau of Statistics, Ministry of Economic Planning and Development, 
Nairobi, Kenya. Data are available by sex in five year age bands. We determined 
the numbers in the intervening years using an exponential interpolation. These 
data were then used to determine TB notification rates per lOOk people for each 
district. 

4.4 Methods 

In most African countries the variation of the prevalence of HIV with time can be 
fitted by a logistic curve or, if there is evidence that the epidemic has peaked and 
is declining, by a double logistic curve [55]. For the Kenyan data we use a logistic 
curve to fit the HIV-prevalence curve for each district so that the prevalence P(t) 
IS 

aea(t-i) 
P(t)=--~ 

1 + ea(t-i) ) 
(4.1) 

where a is the asymptotic prevalence, a is the rate at which the HIV prevalence 
increases at the start of the epidemic, and i determines the timing of the epidemic. 
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In particular we assume that the TB notification rate does not affect the prevalence 

ofHIY. 

TB incidence can also be fitted using a logistic curve but the initial value of 

the notification rate is not zero and so we include a non-zero asymptote as an 

additional parameter. Furthermore, we are interested in exploring the impact of 
the HIV epidemic on the rates of TB in both HIV-positive and HIV-negative people 

and we include these separately in the model. 

Several studies have shown that even if TB notification rates increase dramat­

ically as a result of the HIV epidemic, the annual risk of infection and the preva­
lence of TB disease in HIV-negative people may increase only slightly, if at all, 

because the increase in the individual risk of developing TB is balanced by the 

lower infectivity and the higher mortality and rate of disease progression of HIV­
positive TB patients [46] [81] [45] [142] [117]. We therefore assume that J-(t), 
the TB notification rate in HIV-negative people, is constant and equal to J- (0), the 

TB incidence observed before the HIV epidemic began to have an impact on TB, 
and therefore 

(4.2) 

The incidence of TB in HIV-positive people depends on both the rate at which 

HIV-positive people acquire new infections and the rate at which latent TB in­
fections break down. The latter depends on the historical rates of TB infection 

which will determine the proportion of people that have a latent TB infection, but 
is otherwise independent of current rates of infection; the former depends only on 
the current risk of TB infection. The median life expectancy after infection with 

HIV is about 10 years [196] and HIV-positive people present on average about 8 

years after infection with HI V, and so we anticipate a delay between the rise of the 

HIV epidemic and the resulting rise in the TB epidemic. We therefore model the 
incidence of TB in HIV-positive people as 

J+(t) = J-(t) {I + ,3P(t - tj} + ,P(t - i) (4.3) 

The first term on the right hand side, which represents reinfection, is proportional 

to the incidence ofTB in HIV-negative people increased by a factor that is propor­

tional to the prevalence of HIV infection i years earlier; the second term, which 
represents the activation of latent infection, is independent of the current incidence 

of TB but is proportional to the prevalence of HIV infection i years earlier. The 

overall incidence of TB is given by 

J(t) = J- (t) {I - P(t)} + J+(t)P(t) (4.4) 
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The model therefore involves three parameters that depend on the course of the 

HIV-epidemic (the timing, t, the rate of increase, G, and the asymptote, a), one 

parameter that determines the TB incidence prior to the advent ofHIV, 1- (0) , and 

two parameters that determine the contribution of reinfection and the breakdown 

of latent infection to the incidence in HIV-positive people, and t that determines 

the delay between the onset of the TB and HIV epidemics. 

We first fit the model simultaneously to the districts with the best HIV data. 
In doing this we use the same four 'global' parameter values for all the districts. 

The parameters are chosen to be 'global' as it is considered that G the initial rate 

of increase of the prevalence of HIV; (3 and " that link the TB epidemic to the 
HIV epidemic; and t, the parameter that determines the relative timing of the two 

epidemics should be the same regardless of geographical location. The remaining 

three 'local' parameters are allowed to vary among the districts. These parameters 
are considered 'local' as the timing of the HIV epidemic, t; the asymptotic HIV 

prevalence, a; and the initial value of the TB notification rate, 1-(0) will vary 

depending on the region. 

The NeIder-Mead optimization routine [55] is used to find the maximum like­

lihood [195] estimates for the model parameters (see Appendix D for details of 
the NeIder-Mead and maximum likelihood estimation methods). We estimate the 

covariance matrix by finding the negative inverse of the Hessian (matrix of dou­

ble derivatives) at the maximum likelihood parameters values. We use bootstrap 
resampling methods to obtain confidence intervals for the fitted curves. This is a 
well established and convenient (although computer intensive) way of calculating 

the distributional properties of the statistics of interest [66] [42] [57] [177]. Ap­
pendix E gives a summary of the bootstrap methodology that was employed. We 

use the districts with less good data as a check on the fitted parameter values and 

then apply the model to those districts for which no HIV data are available in order 

to estimate the trends in HIV in those places. 

4.5 Results 

We first fitted the full model to the data from the Type I districts (listed in Table 
4.2 and shown in Figure 4.2) including both of the parameters that determine the 

relationship between the two epidemics (;3 and ,) and then examining the effect 

of dropping each in turn. Including, did not significantly improve the fit over 

that obtained with (3 only. We therefore kept the simpler optimisation by including 

only the parameter (3 in the following analysis. Statistically acceptable fits were 
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Covariance matrix 

Parameter Estimate 95% c.l. a (yrl) 
A 

~ t {~r} 
a (yrl) 0.458 0.034 0.00031 -0.00138 -0.09848 
A 

t (yr) 7.65 0.23 -0.00138 0.0132 0.71702 

~ 325 13 -0.09848 0.71702 47.22267 

Table 4.1: Estimates of the global parameters obtained by fitting the model to Type 

I districts 

District a (%) 95%CL t(yr) 95%CL 10 (!lOOk) 95%CL 

Busia 0.207 0.171-0.244 87.56 86.73- 88.33 14.82 10.66- 21.09 

Kakamega 0.141 0.129- 0.155 91.22 90.48- 91.94 20.24 17.09- 24.02 

Kisumu 0.276 0.258- 0.294 89.38 88.86- 89.88 24.28 ·21.07- 27.58 

Kitui 0.094 0.087- 0.103 88.71 87.95- 89.50 67.16 58.66- 74.98 

Meru 0.147 0.138-0.157 92.01 91.48- 92.52 37.99 33.63-42.18 

Mombassa 0.127 0.114- 0.141 88.26 87.43- 89.07 141.87 117.04- 169.15 

Nairobi 0.167 0.156-0.179 89.21 88.94- 89.49 69.86 61.71-78.67 

Nakuru 0.180 0.155- 0.208 89.47 88.82- 90.16 24.21 18.28- 31.88 

Nyeri 0.168 0.148- 0.193 89.47 88.85- 90.03 24.42 18.44- 30.94 

Trans-Nzoia 0.104 0.096- 0.113 89.48 88.84- 90.17 33.27 29.15- 37.51 

Table 4.2: Estimates of the local parameters for the Type I districts with their 

confidence intervals. Years are relative to 1900 

obtained for all the Type I districts, giving the global parameters (with confidence 

intervals and covariance) in Table 4.1, and the local parameters listed in Table 4.2. 

The three parameters retained in the model are all significant (p < 0.001) and 

results show that the confidence intervals on the global parameters are small and 

we are therefore reasonably certain about the values obtained. The fitted curves 

are shown in Figure 4.2. The model fits for the TB notification rates are gener­

ally good. The data for HIV are more variable and in several districts the model 

estimates are outside the binomial confidence limits on some of the data points. 

We suggest that this maybe the result of errors in data reporting rather than the 

inadequacy of the model as the HIV data can be unreliable. For example it would 

seem infeasible that in Nakuru the number of HIV-positive individuals reduced by 

60% in 1996 compared to the previous year with HIV prevalence reducing from 

26.2% to 10.0% in just one year. 
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Figure 4.2: TB incidence (blue) and HIV prevalence (red) for the Type I districts. 

The graphs show, for each district, the TB incidence data and HIV prevalence 

data (with binomial confidence limits), and the TB incidence and HIV prevalence 

curves produced by the model with their 95% confidence intervals 
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District a (%) 95%CL f (yr) 95%CL 10 (/100k) 95%CL 

Baringo 0.106 0.089- 0.130 91.58 90.16- 93.38 38.18 29.81-45.66 

Bungoma 0.152 0.129-0.197 89.79 88.96- 90.75 17.29 11.13- 23.21 

Embu 0.118 0.103- 0.140 90.92 89.71- 92.31 214.45 161.29- 260.62 

Garissa 0.058 0.045- 0.076 82.27 77.90- 88.16 146.93 104.10- 202.01 

Kajiado 0.070 0.062- 0.082 89.77 87.18- 92.58 62.09 51.86- 71.62 

Kericho 0.078 0.072- 0.086 90.08 89.10- 91.11 80.31 72.53- 87.61 
Kilifi 0.090 0.061- 0.201 95.20 92.13- 99.10 65.04 59.70- 69.76 

Kwale 0.100 0.063- 0.270 95.20 91.38-100.00 75.16 65.11- 83.25 

Machakos 0.135 0.123-0.154 88.99 88.37- 89.60 30.07 23.97- 35.16 

Muranga 0.156 0.139- 0.180 91.80 90.93- 92 71 29.19 22.61- 35.05 

Samburu 0.050 0.032- 0.197 93.11 86.72-100.00 165.95 141.76-181.38 

Taita Taveta 0.074 0.065- 0.083 88.85 87.36- 90.21 81.04 69.99- 91.76 

Turkana 0.040 0.000- 0.202 95.16 83.14-148.67 248.99 193.42- 279.92 

Uasin Gishu 0.225 0.195- 0.269 93.29 92.39- 94.28 31.67 22.88- 40.26 

Table 4.3: Estimates of the local parameters for the Type II districts with their 

confidence intervals. Years are relative to 1900 

Having calibrated the model using the Type I districts we apply it to the Type II 

districts to see how well it predicts the measured HIV prevalence in those districts. 

The global parameters were kept fixed while the local parameters, including the 

two that determine the HIV epidemic, are varied to fit the TB data so that this 

gives the model prediction for HIV without reference to the available HIV data. 

The fitted curves with 95% confidence limits are shown in Figure 4.3 and the 

values of the local parameters are given in Table 4.3. 

While the model produced good fits for most of the districts, there were some 

exceptions. Muranga and Uasin Gishu have TB epidemics that would suggest 

much higher levels of HIV as compared to the reported data. Conversely Samburu 

and Turkana have TB epidemics that would suggest lower levels of HIV as com­

pared to the reported data but for these districts the confidence limits on the model 

fits for HIV are very wide and the HIV data are very limited. 

The confidence intervals on the estimated local parameters (Table 4.3) are, on 

average, more than two times wider than those obtained for the Type I districts (Ta­

ble 4.2). This is to be expected as the parameters were obtained by fitting the model 

using only the TB data and ignoring the HIV data available; one would therefore 

expect the estimates to be less precise. Similarly, the confidence limits on the HIV 
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Figure 4.3: TB incidence (blue) and HIV prevalence (red) for the Type II districts . 

The graphs show, for each district, the TB incidence data and HIV prevalence 

data (with binomial confidence limits) , and the TB incidence and HIV prevalence 

curves produced by the model with their 95 % confidence intervals 



CHAPTER 4: EXPLORING THE DYNAMIC RELATIONSHIP 46 

District a (%) 95%CL f (yr) 95%CL 10 (l100k) 95%CL 

Isiolo 0.102 0.082-0.146 87.66 85.52-89.59 135.21 72.06-187.01 

Kiambu 0.189 0.146-0.335 86.82 86.05-87.61 13.47 4.36-21.56 

Kisii 0.124 0.107-0.152 89.26 88.30-90.24 30.09 21.16-38.70 

Kirinyaga 0.149 0.134-0.167 90.89 90.28-91.50 20.56 16.49-24.41 

Laikipia 0.093 0.083-0.105 89.60 88.33-90.70 26.04 21. 74-30.61 

Lamu 0.052 0.038-0.087 88.23 83.12-93.55 87.74 57.31-109.27 

Mandera 0.060 0.044-0.104 85.00 81.45-89.07 196.27 86.29-258.26 

Marsabit 0.065 0.045-0.290 85.85 79.59-91.36 159.36 10.85-223.48 

Nandi 0.145 0.119-0.177 91.21 89.89-92.38 17.64 12.03-23.12 

Narok 0.082 0.057-0.198 91.97 86.28-97.73 46.39 26.74-58.73 

Nyandarua 0.214 0.158-0.446 87.74 86.97-88.59 7.79 1.80-13.64 

Siaya 0.231 0.178-0.410 92.02 90.87-93.44 18.68 5.71-31.19 

South Nyanza 0.227 0.192-0.296 89.88 89.39-90.38 20.50 12.19-28.38 

West Pokot 0.031 0.014-0.176 86.93 76.33-100.00 203.04 25.06-229.54 

Table 4.4: Estimates of the local parameters for the Type III districts with their 
confidence intervals. Years are relative to 1900 

curve are wider for the Type II districts than those achieved for the Type I districts. 
With the exception of those districts discussed above, the confidence limits are still 
reasonably narrow however, which implies that using TB incidence to predict the 
HIV prevalence curve is an acceptably precise method. Incidentally, results of the 
HIV prevalence curves produced by the model when the HIV data is not ignored in 
the fitting procedure were also compiled, and serve to strengthen our confidence. 
When comparing the two results (Appendix F) they are almost identical in most 
districts apart from Kilifi and Kwale, whose HIV curves are significantly lower 
when the HIV data is used in the fitting procedure. We can therefore be reason­
ably confident that using the model and the TB incidence curve to predict the HIV 
prevalence in a district with no HIV data is a justifiable technique. 

Finally, we apply the method to the districts for which no HIV data are avail­
able. The fitted curves with their 95% confidence limits are shown in Figure 4.4 
and the local parameter estimates for these districts are given in Table 4.4. 

The model predicts significant HIV epidemics in all except three districts: Tana 
River, Wajir and Elgeyo Marakwet. The TB data in these three districts is very 
uncertain and does not show clear trends. It is possible that the TB data are not 
sufficiently good to be able to draw any conclusions for these three districts. 

The TB data suggest that the prevalence of HIV in South Nyanza is very high 
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Figure 4.4: TB incidence (blue) and HIV prevalence (red) for the Type III districts. 

The graphs show, for each di strict, the TB incidence data and HIV prevalence 

data (with binomial confidence limits), and the TB incidence and HIV prevalence 

curves produced by the model with their 95 % confidence intervals 
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(23%; 19%-28%) which is very likely due to its proximity to Kisumu and Uganda. 

Mandera on the other hand is a rural district close to Ethiopia and Somalia where 

the prevalence is relatively low. The model predicts an HIV prevalence of 6.0% 
(4.6%-9.1 %). 

The confidence intervals on the estimated local parameters (Table 4.4) are typi­
cally more than four times wider than those obtained for the Type I districts (Table 

4.2). As with the Type II districts this is to be expected as the parameters were 

obtained by fitting the model using only the TB data, which also happen to be less 
consistent in these districts. Similarly, the confidence limits on the HIV curve are 

wider for the Type III districts than those achieved for the Type I districts. 

The estimated prevalence of HIV and incidence of TB per 100,000 population 

for 2005 are plotted by district in Figure 4.5 a and b. In Figure 4.5 c and d the data 
have been multiplied by the population density of each district [8] to obtain a map 

of the density of HIV infections and of notified TB cases. We can see that there is 
a noticeable correlation between the distribution of HIV and TB infected people, 
with the majority clustering in the central and western areas of Kenya. HIV is 

highly clustered in the Western and Nyanza provinces due to the large population 

in these districts and their proximity to Uganda and Lake Victoria, known areas for 
high HIV prevalence. A large number of TB cases occur in the districts of Nairobi 

and Mombasa, which have the highest population density. These districts are home 

to Kenya's largest and most important cities and because TB is associated with 
overcrowding, the high notification rates in these two cities might be expected. 

Finally, we tried combining the estimates for HIV and TB, weighting the data 

for each district by the adult population to provide national estimates of the trends 
in both diseases, as shown in Figure 4.6. These results suggest that on average 

across Kenya, the HIV epidemic started in 1989, the pre HIV epidemic rate of TB 
was 73/l00k/year, the HIV prevalence in 2007 is 14%, and the TB incidence in 

2007 is 313 per 100,000 population. 

4.6 Discussion 

In Kenya, TB notification rates have risen by up to ten times in some of its dis­
tricts over the last ten years as a result of the HIV epidemic. Because of this 

phenomenon and due to the rich TB data available from the country's surveillance 

program, building a simple parametric model to investigate the interactions be­

tween HIV and TB gave some understanding of the link between the epidemics. 
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Figure 4.5: Estimated (a) adult prevalence of HIV and (b) TB incidence for each 

district of Kenya 2005. Estimated (c) number of prevalent cases of HIV among 

adults and (d) number of notified TB cases per square kilometre in 2005. 
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HIV Prevalenco for Konya TB Incidence for Kenya 
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Figure 4.6: (a) Estimated prevalence of HIV and (b) estimated incidence of TB 

(per 100,000 members of the population) for Kenya 

An understanding of how HIV impacts on TB epidemiology is important, not only 

for Kenya, but for modelling TB in all other countries with substantial HIV epi­

demics. 

Understanding the strength of interaction between HIV and TB disease at the 

population level was the main concern of this Chapter, which has enabled us to 

make sensible estimates of the trends of HIV using TB data. 

The model suggests that in people with HIV, reinfection is more important than 

the breakdown of a latent infection because including the parameter which repre­

sents reactivation did not significantly improve the fit of the model. This result 

should not be taken too literally, as it could be due to the data being deficient and 

not informative enough to allow for the two effects to be reflected independently. 

The estimates from the model of HIV prevalence in districts where HIV data 

are weak or absent seem reliable. We were able to compare the resulting preva­

lence curves by allowing the model to obtain predictions for HIV prevalence both 

by using the available HIV data and by ignoring it. The results (Appendix F) show 

that the curves were very similar, which indicates that using only the TB data to 

predict the HIV prevalence curve is an acceptable and accurate method. This in­

creases confidence in the model and its predictions, which could be tested further 

against field data. The confidence limits obtained for the estimated curves of each 

of the districts were very encouraging. The limits are relatively narrow which im­

plies that using the TB incidence to predict the HIV prevalence curve in a district 

is a realistically precise method. 

The fact that the results were generally so consistent and the predictions so 

reliable gives us evidence that there is justification for thinking that the force of 

infection of HIV, the time delay between the two epidemics (7 .65 years; 7.43-

7.88 years) and the effect of reinfection on HIV associated TB should not vary 

depending on district. 
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The model has been useful in quantifying the relationships between the HIV 

and TB epidemics and being able to calculate HIV prevalence given just the TB 

data. It suggests that for every 1 % increase in HIV prevalence, TB notification 

rate has increased on average by 62/1 OOk/year over the past 10 years. The model 

can also be used to predict the likely course of the epidemics over the next ten 

years. Figure 4.7 shows that whilst HIV prevalence is expected to start decreasing 

from 2004, TB incidence levels will continue to increase but at a slower rate than 

has previously been experienced. Currently in some countries in Africa, a very 

sharp decrease in HIV prevalence has been observed. By making the scenario 

assumption that the future course of the HIV epidemic will follow this dramatic 

reduction and reduce by 10% each year until it settles at half its current level, 

we can use the model to estimate the effect that this will have on TB. Figure 4.8 
shows that as HIV prevalence is reduced, TB incidence is also expected to fall by 

on average 15/1 OOk/year for every 1 % decrease in HIV prevalence. 

The key assumptions that we have made in this model are that:- the TB notifica­

tion rate in HIV-negative people is constant, TB incidence is linearly dependent on 
HIV prevalence, TB incidence is proportional to TB notification, and adult HIV­

prevalence is proportional to ANC prevalence. The importance of these assump­

tions is still unclear and until better data sets will allow a close analysis of these 
issues, they will remain unresolved. However, the assumptions that the model use 

are widely accepted throughout current HIV and TB literature. 

It was initially thought that the work would have been useful in quantifying 
the two processes responsible for HIV-associated TB, and could supply the DES 

model with the value of the parameters which measure the relative contribution of 

reinfection and reactivation. The data did not allow these effects to be reflected 

independently however, and the parameter which represented reactivation ended 

up being removed. The results of this initial modelling work could not be used as 
a direct input into the DES model, however, this work does contribute toward the 

evidence of a strong link between the HIV and TB epidemics. This link is a key 

justification behind the development of the DES model of TB transmission which 

will allow the impact of the HIV epidemic on the relative efficacy of household 

interventions for TB control to be fully assessed. 
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Predictions for HIV Prevalence and TB Incidence: Kenya 
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Figure 4.7: The model predictions of the likely course of the HIV and TB epi­

demics in Kenya over the next ten years 
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Chapter 5 

Possible Representations of the 
Natural History of TB 

5.1 Introduction 

The literature review (Chapter 3) showed that the majority of previous TB models 
had been deterministic compartmental models (DCMs) 1. It concluded that despite 
all of the studies there is still a need to identify TB control strategies that are ef­

fective in high HIV prevalent settings. The review discussed why DCMs are an 
unsuitable method for investigating interventions at the household level and high­
lighted how a discrete event simulation (DES) would allow for the more intricate 
details of transmission to be understood and therefore would be more appropriate. 

We need to determine a possible schematic of the natural history of TB which 
can be adopted by the DES model. In order to determine a possible representation 
we consider the structures of previous studies and how they have represented TB. 

This Chapter briefly describes some of the structures adopted by previously devel­
oped DCMs and then goes on to describe SEEINITR, the schematic that has been 
chosen to represent TB epidemiology in the DES. Explanations of the majority of 
the terms used in this Chapter are given in Table 5.1 and the Glossary. 

I A DCM divides the population into different epidemiological groups according to their TB 
disease status and uses differential equations to move proportions of the population through the 
various groups/states at specified time steps 

53 
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Term Abbreviation Description 

Susceptible S Those that are uninfected and therefore susceptible 
to infection 

Latent E Those that have TB infection. An infection means 
that the TB mycobacterium are present in the body 
but that they are not actively causing damage to 
body tissues 

Fast Latent Ef Those that have a TB infection and will progress 
quickly to active disease (A). 

Fast Latent Efl Those that have a TB infection and will progress 
- Infectious quickly to infectious (I) active disease. 
Fast Latent EfNI Those that have a TB infection and will progress 
- Non quickly to non infectious (NI) active disease. 
Infectious 
Active A Those that have TB disease. The disease means the 
Disease TB organisms are growing and causing damage 

within the body. Within this compartment you can be 
infectious (I) or non infectious (N!). 

Infectious I Those that have active TB disease and are able to 
transmit the infection. 1= fA. 

Non NI Those that have active TB disease but are unable to 
Infectious transmit the infection. 
Treatment T Those that are having treatment for active disease 

(A). 
Treatment - TI Those that are having treatment for infectious (I) 
Infectious active disease. 
Treatment - TNI Those that are having treatment for non infectious 
Non (NI) active disease. 
Infectious 
Recovered R Those that have successfully completely treatment 

(T) for active disease (A). 
Self Cure NIl NNI Those that have self cured from either infectious (NI) 

or non infectious (NNI) active disease. 

Table 5.1: An explanation of the terms used 



CHAPTER 5: REPRESENTING THE NATURAL HISTORY OF TB 55 

5.2 The Structures of Previous Models 

The majority of previous TB models have been deterministic compartmental mod­
els. This Section briefly describes some of the structures adopted by these previ­
ously developed DCMS. 

5.2.1 SEA Model 

The SEA model has a similar structure to that used by Blower et al. [31] [28], Ziv 
et al. [206] and Song et al. [155] where the population is divided into Suscepti­
ble (S), Latent (E) and Active Disease (A) states. It is thought that this structure 
would perhaps be appropriate for investigating the effect of a very basic vaccina­
tion programme in a homogeneous population. 

5.2.2 SEAR Model 

The SEAR model has a similar structure to that used by Blower et al. [30], Gar­
cia et al. [77] and Porco and Blower [138] where the population is divided into 
Susceptible (S), Latent (E), Active Disease (A) and Recovered (R) states. This 

structure would perhaps be appropriate for investigating the effects of a very basic 
treatment programme in a homogeneous population. The structure was used in this 
way by Garcia. 

5.2.3 SEAT Model 

The SEAT model has a similar structure to that used by Castillo-Chavez and Feng 
[37] and Gomes et al. [84] which divided the population into Susceptible (S), 

Latent (E), Active Disease (A) and Treatment (T) states. This structure would 
perhaps be appropriate for investigating drug resistant TB. The structure was used 
in this way by Castillo-Chavez and Feng. 

5.2.4 SEATR Model 

The SEATR model is a similar but simpler version of that used by Debanne et ai. 

[59]. This model has five states: Susceptible (S), Latent (E), Active Disease (A), 

Treatment (T) and Recovered (R). Debanne used it to look at projections of TB 
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incidence in different sociodemographic groups where multi drug resistant TB was 

an Issue. 

5.2.5 SEEATR Model 

The SEEATR model is the same as the SEATR model but it introduces the concept 

of having two 'latent' compartments. One compartment (Latent, E) represents 

those that have effective immune responses to TB infection and will therefore have 

a latent infection for many years until either they die or it is reactivated by the im­
mune system being weakened; or they are reinfected and do not have an effective 

immune response. The other compartment (Fast Latent, E f) represents those that 

do not have an effective immune response to the TB infection and will therefore 

progress quickly to 'active disease' (A). In all the previous models this has been 

represented by a flow directly from 'susceptibles' to 'active disease', however this 
implies that the progression to active disease is instantaneous which is not realistic .. 

The introduction of a 'fast latent' compartment is to enable the time frame of de­

veloping active disease, which can be as long as five years, to be modelled. A few 
models, which include the division of the latent compartment to reflect fast and 

slow progression to active disease, have been developed [181] [120] [197] [56]. 

This structure is appropriate for investigating exogenous reinfection and endoge­
nous reactivation and the role they play on TB morbidity. The structure was used 

in this way by Vynnycky and Fine [181]. 

5.2.6 SEEINITR Model 

This model builds on the SEEATR model but introduces the concept of dividing 

the active disease state into those that are infectious and those that are non infec­
tious. It also includes states to represent those that self cure. This model is largely 

inspired by the model developed by Williams et al. [197]. This structure is appro­

priate for investigating the impact of HIV and heterogeneity on TB control. The 

structure was used in this way by Williams. 

5.3 Choosing a Structure 

We have considered the structures of the main deterministic compartmental mod­

els from literature. It has been shown that the models with simple configurations 



CHAPTER 5: REPRESENTING THE NATURAL HISTORY OF TB 57 

have been useful for addressing questions surrounding vaccination and treatment 

of homogeneous populations [206] [77]. As the questions have become more in­

vol ved however, the structures of the DCMs have become more complicated. For 

example, questions regarding the impact of multi drug resistance and exogenous 
reinfection have required the structures to incorporate additional states so that spe­

cific questions regarding their role on TB morbidity, for example can be explored. 

If the questions require many aspects of TB to be considered, it is not possible 
to keep the model simple and instead a detailed structure is required. Williams 

et al. [197] for example, needed to capture spatial and temporal variation of TB 

amongst the different risk groups in India to allow them to explore the impact of 
HIV on TB control in different areas, and used the detailed SEEINITR structure 

(Section 5.2.6). 

In Chapter 3, Section 3.3 we discussed the epidemiological aspects ofTB iden­

tified in the literature, and determined which of these aspects would be included in 

our study. In order to determine the relative importance of household interventions 
in controlling TB in HIV prevalent settings, we identified HIV, age dependence, 

non-homogeneous mixing, reinfection, and varying lengths of latency and infec­

tiousness to be necessary to the model. 

Due to the number of aspects we expect to incorporate into the model to capture 

the epidemiology ofTB in HIV prevalent settings, it is clear that a simple structure 
will not be sufficient. As many aspects need to be addressed, it is felt that a model 

which enables all these issues to be incorporated and their effects to be seen, would 

need to be a comprehensive model which allows the epidemiology of TB to be 

fully represented. This would mean using a configuration similar to SEEINITR 
(Section 5.2.6). The schematic of this model is given in Figure 5.1. 

This structure was suggested to the collaborators, DETECTB, and was pre­

sented to subject matter experts such as epidemiologists, mathematical disease 
modellers and clinicians. The consensus from these meetings was both that we 

have correctly identified the aspects important to the epidemiology of TB in HIV 

prevalent settings, and that the structure proposed is sufficient to model these as­

pects. They were also satisfied because the model allows all of the possible path­

ways an individual infected with TB might experience, to be represented. 

All of the aspects of TB we highlighted for accurately modelling an HIV­

associated epidemic were considered important by the subject matter experts and 

therefore none were removed. There was some discussion over the importance of 
adding multi drug resistant (MDR) TB, however the consensus was that although 

this is important due to its potential impact on the efficacy of control methods, the 
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questions it raises are different to those being considered by this research and it 

would require a slightly different model (where TB 'hotspots' such as hospitals 

are represented). Currently unavailable data on the prevalence and virulence of 
MDR TB in Harare would also be required. 

We have chosen to implement the SEEINITR structure in the DES model. It is 
thought that it gives an appropriate schematic representation of the natural history 

of TB for the purposes of our research. The structure allows issues such as reinfec­
tion, conversion of non infectious TB and the self curing of TB, which were raised 

in the literature and by the subject matter experts, to be captured. These issues 

could not be addressed by simpler structures. 

Basing the structure of the discrete event simulation model on the SEEINITR 

model implies that individuals within the DES model will belong to seven epi­
demiological groups according to TB status: Susceptible, Latent (with fast and 

slow progression), Infectious, Non Infectious, Self Cured, Treated and Recovered. 

In the next Section we describe how a deterministic compartmental model was 

built using the SEEINITR structure, in order to ascertain the spread of the popu­

lation amongst the epidemiological groups once the model has reached a steady 
state. This distribution will be an input into the DES model and will inform it 

of the likely TB status of the individuals when they are created at the start of the 

simulation. 

5.4 Building a DCM of the SEEINITR Structure 

We use Berkeley Madonna [24] to develop a DCM using the SEEINITR structure. 

Berkeley Madonna is a general purpose differential equation solver. It allows you 

to assemble a graphical flow chart of the "system" meaning we can construct a 
visual representation of TB disease progression whilst the program generates the 

differential equations. The DCM can be developed very quickly and conveniently 

and the use of graphics makes the structure easy to evaluate. Berkeley Madonna 

also allows parameter exploration by using parameter sliders, plots and sensitivity 

analysis which means the role of various parameters can easily be ascertained. 

Because the majority of models developed for Africa in the past have been 

DCMs, the relevant parameter values have already been established and can there­

fore be found in the literature already reviewed. Descriptions and details of the 

parameters and the values used can be seen in Table G.1 in Appendix G. 
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5.4.1 General Notes 

The infection of an individual: 

The risk that an individual becomes infected with TB during a given time step 

depends on two factors: 

1. The number of infectious individuals in the population (1) 

2. The probability that the individual comes into effective contact with an in­

fectious individual ((3) 

An 'effective' contact is a contact that will lead to an infection. If one knows 

the effective contact rate (ecr), which represents the number of individuals each 

person effectively contacts per time step, and the total population size (N), then (3 
can be estimated as 

(5.1) 

which is the probability that two specific people will come into effective contact 

per time step. The number of susceptibles infected per time step can therefore 

be given by (31 S, where IS gives the total number of possible contacts between 

a susceptible and an infectious individual and ,3 gives the probability of each of 

those contacts being 'effective'. 

Births and Deaths: 

Although not specifically mentioned in the analysis, people can leave all of the 

states discussed by dying at the death rate (f-L) given in Table G.1. When people 

are in any of the states involving active disease their death rate is increased by the 

disease induced death rates (d) in Table G.l. 

People are also recruited into the susceptibles class at the birth rate. This cor­

responds with babies not inheriting any special immunity from their mothers. The 

birth rate in these models is equal to the death rate and so the number of births per 

time step (A) is given by the total number of deaths in that time step. This enables 

the total population size (N) to stay constant. 

We keep the population size stable as this is something seen in the majority 

of previous DCM studies. Stationary populations are useful as they allow the 

equilibrium states of the models to be characterised analytically. This can lead to 

a better understanding of the relationships between fundamental epidemiological 

parameters. A stable environment also means that when the model is simulated, 
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for instance to investigate the consequences of different interventions for control, 

we can have confidence that demographic factors are controlled, and the different 

outcomes can therefore be explained by purely epidemiological factors. 

Fast and Slow Latent Individuals: 

When a person has been infected with TB, their immune system may invoke 
a successful response which "walls off" the infection stopping it from causing 

damage. This is called a latent (E) TB infection. Alternatively, the immune system 

may fail to respond successfully and the infected person will then quickly progress 

to active TB disease, usually within months. 

To represent these two possibilities, when susceptibles have been infected they 

can follow one of two routes. The first represents an effective immune response, 
where people become latently infected (E), and the second represents fast progres­

sion to active TB disease (E f). The proportion of those infected that will develop 

primary active disease is given by the parameter p. Therefore, using the expression 
;31 S, the number of susceptibles that will be infected and will develop primary TB 

disease is equal to ;31 Sp, and the number of susceptibles that will have a long-term 
latent infection is given by (31S(1 - p). 

Reinfection and Reactivation: 

Persons with a latent infection can progress to active disease in two ways: reac­

tivation of their TB infection at a rate v or through reinfection. An individual with 

a latent infection has some immunity to a new infection, with only a proportion 

x being susceptible to active disease. Therefore vE + ,31 Epx individuals with a 
latent infection move to active disease in each time step. 

Failed Treatment: 

When individuals are said to fail treatment this indicates that they failed to 

correctly complete the course of drugs (usually a 6 month course of Isoniazid) and 

therefore the TB lesions were not sterilized. Failed treatment therefore means that 
individuals have active disease. 

5.4.2 The Model 

The following section gives a description of the model and shows how the system 
of differential equations were derived. The schematic of the model can been seen 

in Figure 5.1 and a summary of the parameters and their values is provided in 

Appendix G. 
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When a susceptible is infected they will have either a 'latent' or 'fast latent' 

status ((31S(1 - p) or (31Sp respectively). Those moving to a 'fast latent' status 
are divided dependent on whether they will eventually develop infectious or non 
infectious active disease. A proportion (f) will get infectious active disease and 
will therefore progress to the 'fast latent infectious' (EfI ) class where they will 
progress to infectious active disease within five years. The remainder of those 
developing active disease (1 - j) will develop non infectious active disease. The 
number moving from 'susceptibles' to EfI and EfNI in each time step is therefore 
expressed as (31 Spj and (31 Sp(l - I) respectively and the rate of change of the 
susceptible population is given by 

d 
dtS = A - (31S(1- p) - (31Spj - (31Sp(1- I) - p,S. (5.2) 

Latent (E) individuals can only progress straight to active disease by reactiva­
tion (v) of their existing infection. When their infection has been reactivated, it is 
then decided whether the disease will be infectious or non infectious. A proportion 
(f) will get infectious TB and the others (1 - j) will get non infectious TB. Latent 
(and recovered) individuals can also be reinfected although they have an increased 
immunity (x) compared to the susceptible population. They move to a 'fast latent' 
class if they do not have an effective immune response ((31 Exp). Again, which 
'fast latent' class they move to is dictated by the parameter j, with a proportion j 
eventually developing infectious active disease and so moving to the 'fast latent -
infectious' class and (1- j) moving to the 'fast latent - non infectious' class, where 
they will eventually develop non infectious active disease. The time it takes for a 
'fast latent' individual to progress to active disease is given by the progression rate 

r. The entire latent population is therefore described by 

d 
-E = (31S(1-p) -Ev-(31Expj - (31 Exp(l- I) +(31 Rx(l-p) - p,E. (5.3) 
dt 

d 
dtEfI = (31Spj - rEf I + (31Expj + (31Rxpj - p,EfI (5.4) 

d 
dtEfNI = (31Sp(1- l)-rEfNI +(31Exp(1-1)+(31Rxp(1-1)-p,EfNI . (5.5) 

When an individual has active disease, the model allows them to be diagnosed 
at rate ¢ and move out of the class to receive treatment. It also allows them to 
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self cure at the natural cure rate scr and to die at the disease induced death rate 
d. All of these rates are dependent on whether the individual is infectious or non 

infectious. 

After diagnosis an individual will move to the treatment state. Individuals 
receive treatment for a duration of time (td) and a percentage of them are cured 
cr. Cured individuals are said to be recovered however those individuals that fail 
treatment (1 - cr) will return to the active disease state. 

When in the 'self cured' state individuals are able to relapse into whichever 
active disease state they previously occupied at the relapse rate s. 

The population with active disease can be represented by 

d 
dt NI = vE(l- f) + rEfNI - ¢NINI - scrNINI 

1- cr + -----w:-TNI + SNNI - nNI - (J-L + dNI)NI. (5.7) 

The relapse rate s of the self cured individuals does not depend on whether they 
were previously infectious or non infectious. We can describe the rate of change 
of the self cured population as ' 

(5.8) 

(5.9) 

There are two treatment states to represent those being treated for infectious 
and those being treated for non infectious TB. When individuals fail treatment they 
automatically return to their previous type of active disease. These arrangements 
assume that treatment outcomes occur at the end of treatment and that those on 
treatment are not infectious. The rate of change of those on treatment for TB is 
given by 

(5.10) 
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Figure S.2: The distribution of the population amongst the various epidemiologi­

cal groups once the SEEINITR model has reached a steady state. This is used to 

establish the injtial distribution of the DES model's population amongst the epi­

demjo\ogical classes. 

(S.ll) 

Finally then, the recovered population is described by the following equation, 

d cr 
-R = (TI + TNI)- - (31 Rx - pR. 
dt td 

(S .12) 

A useful output of the model is TB incidence. The equation used to obtain TB 
incidence consists of those latent individuals whose infection reactivates (vE) and 

those fast latent individuals who progress to active disease (r (E fI + E f NI )), 

TB Incidence = vE + r(E fI + E fNI )' (S.13) 

In order to determine the spread of the population amongst the various epi­

demiological groups at a steady state, we solved the determinjstic compartmental 

model using Berkeley Madonna. Figure S.2 shows the distribution of the popula­

tion which will be used to inform the DES model of the likely TB status of the 

individuals when they are created at the start of the simulation. 



Chapter 6 

Development of the Discrete Event 
Simulation Model 

In this Section we describe the development of a discrete event simulation model 

which will be used to evaluate the effects of more intensive case-finding strategies 

for TB control in a high HIV prevalent setting. 

As previously discussed, the end goal of the modelling is a discrete event sim­

ulation (DES) model ofTB transmission in Harare, Zimbabwe which will allow an 

assessment of the effectiveness of contact-tracing and case-finding strategies. The 

first stage, which we describe in this Chapter, is designing the simulation and its 

processes for generating and maintaining the population, warming up the model, 

incorporating HIV and managing its inputs and outputs. The second stage is dis­

cussed in the next Chapter which will look at how the various aspects of the natural 

history of TB are incorporated into the model and how it is parameterised so that 

it corresponds with earlier deterministic models of TB and HIV. It will also dis­

cuss how the model was validated using country-wide statistics for Zimbabwe and 

findings from previous studies of the distribution of TB amongst populations. 

6.1 An Overview of the Simulation 

The simulation follows the structure of the popUlation, the TB disease character­

istics of individuals, the HIV epidemic, the intervention scenarios and the model 

outcomes. The user defines the number of years that the simulation will run for, the 

underlying population structure, the available prevalence and incidence data on the 

HIV and TB epidemics and the number of replications required. The model then 

warms-up the initial population and runs for a predefined length of time in order 

65 
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to eliminate transients and to establish a population which correctly reflects that 

of 1980 in both its characteristics and TB incidence. We have chosen to start the 

simulation from 1980, warming the population up to this point, as TB incidence 

data becomes available from this point onwards (discussed in Section 6.4). 

Activities associated with the dynamics of the population (discussed in Section 

6.3), TB infection events leading to the formation of various disease, transmission 

and treatment events (discussed in Chapter 7), and HIV transmission events (dis­

cussed in Section 6.5) are all evaluated throughout each year using a next event 

method as shown in Figure 6.1. At the end of each year various outputs regarding 
the model's population, such as its TB incidence and HIV prevalence are recorded 

(discussed in Section 6.6). 

The user can define various interventions which take effect in 2008, and aim to 

adjust an individual's disease pathway by reducing the individual's risk of getting 
active disease and of reactivating, and by decreasing their period of infectiousness 

and thus the number of likely transmission events produced. 

6.2 The Simulation Design 

The model was implemented using Object-Orientated Programming (OOP) tech­

niques with the C++ programming language and the .Net framework. The main 
development of the model has been done using a console interface, which outputs 

comma separated value files for analysis using Excel. The maximum population 
size is limited by computer memory and constraints on run time, otherwise popula­

tions of any size can be represented and evaluated. The model has been designed to 
allow easy maintenance for further development in order to incorporate improved 

data and understanding of parameter values, disease processes and epidemiologi­

cal complexities such as contact networks. Full documentation of the simulation 
model is given in Appendix H. 

The population is first established by creating a house, which is an object or 

instance of the household class. "The term object refers to an instance of a class 

and thus a class defines the behaviour of possibly many objects (instances)." [129] 

A class will define the attributes or members that all of its instances will possess 
and therefore each instance of the class will have a copy of the class members. 

A comprehensive and detailed documentation of the simulation's classes and their 

members is given in Appendix H.3. The household class (Table H.S) defines three 

main attributes: its unique identification number (its/D), a list of its occupants (it­

sOccupants) and the number of occupants (itsHoliseholdSize). As well as each 
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household having this member data, many member functions are also defined. 

These functions enable each house to answer questions such as whether it con­

tains an adult and who an individual lives with, which is useful when considering 
household transmission of disease. 

When a house is created, it is assigned a unique identification number and 
itsHouseholdSize is determined (see Section 6.3.1). The house's size determines 

the number of individuals that then need to be created and assigned to the house. 

This is done by creating an individual, which is an instance of the person class. 

The person class (Table H.3) defines two different types of attributes; its personal 

details and its disease details. Personal details include features such as its age 
and its gender; its disease details include aspects such as its HIV or TB infection 

status and its scheduled time of death. Details of how an individual's attributes are 
determined when it is created are in Section 6.3.3. 

As individuals are created they generate events. An event is an action upon 

a person. Examples of an event would be an individual dying from TB, an indi­
vidual transmitting TB or an HIV infection. So for example, when person x is 

born into the simulation, their time of natural death, ind, is established (Section 
6.3.3.3); this generates a "Natural Death" event. An event (Table H.4) is an ob­

ject whose attributes inform the simulation which event is to take place, who the 
event involves and what time the event will occur. In the example therefore, an 

event with name "Natural Death", person ID number 1: and time ind is created. 

As these events are generated they are scheduled onto an activity list. The ac­
tivity list is therefore a chronologically ordered list of events that the simulation 

works through. Full details of all the possible events in the simulation are given in 
Appendix H.2. 

The simulation searches the events which are scheduled and finds the next 

event that is due (the first event on the activity list); it then moves the simulation 
clock forward to this point in time and executes the event. Executing the event 

will generate other events. For example, a death event will cause a birth event 

to occur; a person getting infectious TB disease may cause various transmission 

events; and a TB transmission event will cause an infection or reinfection event. As 

the simulation executes events therefore, other events are generated and scheduled 

onto the activity list. 

Once the simulation has completed all of the events scheduled within a certain 

year, various details and disease indicators for that year are recorded before mov­

ing onto the following event or year. At the end of each year, for instance, TB 

incidence and HIV prevalence are calculated and recorded. 
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6.3 Modelling the Population 

From the data available on the age distribution of the population, life expectancy, 

distribution of household size and ratio of adults to children within households, we 

are able to define a model population which has the characteristics and captures the. 

appropriate dynamics of the study population in Harare, Zimbabwe. The following 

Section discusses in detail the data and methods used to generate the population. 

The model population is achieved by first generating a household and then 
creating its occupants. This process is done iteratively until the user-defined pop­

ulation size (N) is reached. In our model we have a population of size 10,000 in 

which each individual belongs to a defined household, of which there are on aver­
age 2500. A discussion of why a population of size 10,000 was chosen is given in 

Chapter 7, Section 7.6. 

6.3.1 Distribution of Household Size 

The baseline data from Harare (Chapter 2, Section 2.6.1) contains information on 

the number of individuals within each household. Using maximum likelihood es­
timation (Appendix D) we fitted various statistical distributions to the data using 

Microsoft Excel but incorporated Akaike's information criterion in order to mea­

sure their goodness of fit whilst taking into consideration the number of estimated 
parameters required. This enabled us to establish a distribution which could be 

used to represent the data on household size in Harare, with a minimum of es­
timated parameters. Analysis showed that this was accomplished by using the 

Poisson distribution with mean 3.99, which is given in Figure 6.2. 

Each time a household is created, we sample from this Poisson distribution to 
give us its household size which determines how many occupants to generate and 

assign to it. 

6.3.2 Adult to Child Ratio 

Once the number of occupants in a household is established, we use the baseline 

data from Harare, which gives us information on the number of adults and children 

within each of the survey households, to generate a distribution of the proportion 

of the household's occupants that should be children. The data showed that nearly 

30% of households were childless and that on average the proportion of children 
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Figure 6.2: A Poisson distribution (mean 3.99) fitted to the Harare baseline data of 

the di stribution of household size 
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Figure 6.3 : The di stribution of the proportion of children in households according 

to the Harare baseline survey data 

within a household is 0.34, which indicates that in a typical household with 4 occu­

pants, there would be 1 child. The data also showed that a very small percentage of 

households (0.01 %) were adultless and contained only individuals under 16 years 

old. The distribution generated from the data is shown in Figure 6.3 and gives us 

the likely proportion of children within a household. 

Sampling from this distribution when generating a household meant that we 

knew the number of adults and children to assign to the household to make up its 

occupants. 



CHAPTER 6: DEVELOPMENT OF THE DES MODEL 

Distribution of 
Gender within 
each Age Group 

• Males 

• Females 

1 00% rr:r-l::;-O:;-=-<:7'"TI-n-iCl""CJ.........,"'"""'~:c--.;""i:7"07"i""O-n-~'""" 

90% 

80% 

70% 

60% 

50% 

40% 

30% 

20% 

10% 

Age Group 

71 

Figure 6.4: The distribution of each gender within each of the population's age 

groups. Source: 2000 WHO life tables for Zimbabwe [203] 

6.3.3 Creating an Individual 

Whether creating an adult or a child, generating an individual involves determining 

various attributes. Table H.3 gives a summary of the attributes an individual car­

ries which were selected because of their ability to impact the individual 's pathway 

through the model. This Section describes how each of the attributes were estab­

lished. The 2000 WHO life tables for Zimbabwe [203] informed much of the 

following analysis, a copy of which can be seen in Appendix I. 

6.3.3.1 Gender 

A person's sex is decided by allowing half the individuals to be male and half to be 

female. This reflects the fact that when a baby is born there is nearly equal chance 

that the baby will be a boy or a girl. It also reflects the gender distribution seen in 

the 2000 WHO life tables for Zimbabwe [203] and shown in Figure 6.4. Figure 

6.4 shows that the older a person in the simulation is, the more likely it is that they 

are a woman. An explanation of how this phenomenon is captured is discussed in 

the following Section. 

6.3.3.2 Age 

Once it has been decided whether to create an adult or a child and what gender 

this person will be, we use the life tables to calculate the likely age of the person. 

Figure 6.4 shows the distribution of the population amongst the various age groups 

according to gender. In Figure 6.5 we can see that the likelihood of a person being 



CHAPTER 6: DEVELOPMENT OF THE DES MODEL 72 

Proportion of population 0.025 
in each of the age groups 

0.02 

0.015 

0.01 

0.005 

o ...l..-------~--
- Male Population 

- Female Population 

Age Group 

Figure 6.5: The proportion of each gender within each of the population 's age 

groups. Source: 2000 WHO life tables for Zimbabwe [203] 

female after age 50 is higher than males and therefore by using these distributions 

to generate a person 's age when initialising the population we ensured this was the 

case. 

6.3.3.3 Time of Natural Death 

The time that a person is due to die from natural causes is calculated immediately 

when a person is created in the model, either when the population is being gener­

ated at the start of the simulation or when a person is born once the simulation is 

runmng. 

When the population is being generated, we know the age of the individual 

and therefore to calculate the person's time of natural death, we can use the life 

expectancy data from the life tables. This data is given for both sexes and shows the 

likely number of years a person has left to live given that they have already survived 

to a certain age. The life expectancy data is abridged, so we used the Heligman­

Pollard method [87] from actuarial science to complete the tables thus enabling us 

to work with individual ages as opposed to five-year age groups. This made esti­

mates more precise, for example it meant that rather than alI males aged between 

5 and 9 living for another 38.4 years, they would live for a further 38.7, 37.8, 37.0, 

36.0 and 35.1 years respectively. A detailed account of how the Heligman-Pollard 

method was used to generate complete life tables for both genders is given in Ap­

pendix J. Both the abridged and complete life expectancy estimates for males and 
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Figure 6.6: Abridged and complete life expectancy estimates for males and fe­
males in Zimbabwe. Source: 2000 WHO life tables for Zimbabwe [203] 
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Figure 6.7: Abridged and complete survival distribution for males imd females in 

Zimbabwe. Source: 2000 WHO life tables for Zimbabwe [203] 

females in Zimbabwe are shown in Figure 6.6. 

When a person is born, their time of natural death is calculated and assigned to 

the individual as an attribute. In this situation, we use a survival function calculated 

using the life tables. The abridged life tables for both sexes provide us with the 

number of deaths in age group x , which we used to determine the probability of 

death within each age group x. Taking the cumulative probabilities we create a 

distribution which we can sample from to determine in which age group the baby 

will die. To be more precise about the age that the baby will die, we again use 

the completed life tables generated using the Heligman-Pollard method [87] to 

generate a distribution which can be sampled from to provide an actual age of 

death, rather than age-group. Both the abridged and complete survival distribution 

for males and females in Zimbabwe are shown in Figure 6.7. 

Each time a baby is created, we sample from the complete survival distribu­

tions given in Figure 6.7 to determine, given the baby 's gender, at what age thi s 

individual will die from natural causes. This person 's time of death may be brought 
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forward during the course of the simulation due to infection with TB and/or HIV. 

6.3.3.4 Disease Status 

An individual's TB and HIV disease status are the final attributes to be established. 
TB incidence in Zimbabwe was at a steady level prior to the introduction of HIV 

into the population (Figure 6.10). We warm up the model and recreate this steady 

state of TB incidence within the model population before starting the simulation in 

1980. As we warm up the model during a time in which HIV is not present, when 
generating the population, an individual's HIV status is negative. To establish a 

person's TB status, we use the output from the previously developed SEEINITR 
DCM model (Chapter 5, Section 5.2.6), which is a deterministic representation 

of our model. Using this model we were able to look at the distribution of the 

population throughout the TB-defined epidemiological classes when the model 
reached a pre-HIV steady state. This is discussed in Chapter 5, Section 5.4.2, 

and the distribution is given in Figure 5.2. This gave us an indication of how the 

TB status of the population in our DES model should be distributed. We sample 
from this distribution when generating the population to determine the TB status 
of individuals. 

Having determined all of a person's attributes, this person can be created and as­

signed to the current household being assembled. Given that all of the attributes 
have been ascertained using data from the 2000 WHO life tables for Zimbabwe 

[203] and from the baseline survey data from Harare (Chapter 2, Section 2.6.1), 

we have some confidence that the model population correctly captures the charac­
teristics of the study population in Harare. Section 6.3.5 discusses the verification 
of this. 

6.3.4 Births and Deaths 

To be in line with the deterministic compartmental models already developed both 

by us (Chapter 5), and in the literature (Chapter 3), the population size remains 
stable throughout the simulation. Using a steady environment in epidemiological 

modelling is useful as it implies a steady influence of the environment on dis­

ease dynamics. Thus, when the model is simulated, for instance to investigate the 

consequences of different interventions for control, we can have confidence that 
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demographic factors are controlled, and the different outcomes can therefore be 

explained by purely epidemiological factors [112]. 

To maintain a stable model population the birth rate in the model is equal to 

the death rate. To achieve this, each time a person dies, a baby is born into the 

model's population. 

Given that we have a household structure present in the model, the problem 

arises of which household to assign the new baby to. We want to maintain the 
distribution of household size in the population as this has been sampled from the 

Harare baseline data (Section 6.3.1), so the obvious solution is to assign the baby 

to the household in which the person has just died. This means that a household's 
size will remain constant throughout the simulation and therefore the distribution 

of household size is maintained. This method was tried however it raised two 

concerns. The first was that it created a large number of orphaned or adultless 
households, which in reality is improbable, as orphaned children would move into 
care or have family move in with them. The second was that there were a high 

number of births in households with a high disease burden. This seemed unlikely 
but more importantly meant that the interaction between TB diseased adults ex­

posing children to infection may not have been captured by the model. 

Another method that we tried involved households each having a probability 

of accepting a baby given their current household size and the household size as­

signed to them on creation. This method meant that undersized households are 
more likely to be assigned a baby than households which are oversized. This 

method was computationally intensive, and ascertaining the appropriate probabil­
ities in order to keep the household structure stable was not possible. 

To counteract these issues we assign births in the following way. Given that 
an individual has just died, its former household has just been reduced in size, 

meaning that a household of size x has now become size x-I. If we assign 
the birth to a different household of size 1: - 1, this household now becomes size 

x. This ensures that the number of households of size x and x-I remain the 

same and therefore the distribution of household size is maintained throughout 
the simulation. So for example, if a person dies in a household of size 4, that 

household becomes size 3; we therefore assign a baby to a household of size 3, so 

that it increases its size to 4. 

We ensure that a baby is assigned only to a household with adults present and 

if we are assigning to a house of size zero, then we instruct the simulation to create 

and assign an adult rather than assigning a birth. 

Babies born into the model are assumed to have a "Susceptible" TB status and 
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a negative HIV status. This assumes that there is no inherited immunity to TB and 

that there is no mother-to-child transmission of HIV in the model. New adults are 

also assumed to have a susceptible and negative TB and HIV status because we are 

not attempting to incorporate the effect of immigration on the disease dynamics 

of the population. This, however, is an epidemiological complexity that could 
easily be incorporated into the model by using appropriate data to inform the likely 

disease status of immigrants. 

6.3.5 Validating the PopUlation 

Given that the population has been initialised using data from the 2000 WHO life 
tables for Zimbabwe [203] and from the baseline survey data from Harare (Chapter 
2, Section 2.6.1), we can be reasonably confident that the model population cor­

rectly captures the attributes and dynamics of the study popUlation in Harare. As a 
check, we output and investigate various characteristics of the model's population 

and compare it with the population data for Zimbabwe. 

Using the model population, we output the probability distribution of dying at 

a certain age and considered it alongside the WHO survival distribution given in 

Figure 6.7. The output displayed in Figure 6.8 is produced by taking 10 runs of 
the model and examining its popUlation at time point 2000, the year that the WHO 
survival distribution is taken from. Figure 6.8 compares the average distribution 

from these runs with the survival distribution and shows that the model, although 
not exact, is definitely displaying the correct pattern of survival likelihoods. The 

probability of dying decreases rapidly as a person gets past infancy and then in­
creases again dramatically in the teenage years until the 20s or 30s when it starts 
to decrease again. This decrease continues into the 50s where it then stays level 

before dipping after the 80s implying an extremely low probability of surviving to 

greater than 90 years old. This behaviour is qualitatively similar to that seen in the 
WHO data for Zimbabwe in 2000, although there seems to be a clear systematic 

difference from ages 20 to 30. This difference could affect the age distribution of 

the population and result in a slightly younger model population than is observed 
in Zimbabwe. 

The age distribution of the model's population was also output. We looked 
at the population once it had been warmed up and during the simulation. When 

the population is generated at the beginning of the simulation we sample from 

the age distribution given in the 2000 WHO life tables for Zimbabwe [203] to 
ensure the model population exhibits the same age distribution (Section 6.3.3.2). 
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Figure 6.8: The probability that a person will die at age x. The average distribution 

(blue) from 10 runs (all in grey) of the model's population at year 2000 is compared 

with the 2000 WHO survival distribution for Zimbabwe 

As the model runs however, individuals age, die and are born, and various disease 

processes act upon them, so we need to ascertain that the age distribution of the 

model population is still an acceptable representation of the study population in 

Harare, both once the model has warmed up and during the simulation. 

Ideally, as we start the simulation in 1980, when generating the population we 

would want to sample from an age distribution equivalent to the year 1980, yet the 

2000 WHO life table data were the earliest data available. Reassuringly however 

Figure 6.9a shows that once the model is warmed up, the age distribution of the 

population exhibits the behaviour we might anticipate for 1980. One of the effects 

of the HIV epidemic on populations is that it creates a younger population struc­

ture, with life expectancies reducing and less people reaching old age. One would 

therefore expect to see a less positively-skewed age distribution in 1980, than after 

the HIV epidemic was present. Figure 6.9a shows that the age distribution of the 

model population in 1980 is less positively-skewed than the 2000 data, meaning 

that the model population is generally older in 1980 than the Zimbabwean popu­

lation in 2000. This is an encouraging result and assures us that using 2000 data 

to initialise the population, but allowing it to warm up for 150 years without HIV 

present, allows the population time to adjust to a situation more likely for 1980. 

We see in Figure 6.9b that the age distribution of the model population in 2000 

gives a comparable representation of the Zimbabwean population in 2000. This 

implies that the processes controlling and maintaining the population within the 

model are sufficiently accurate and more importantly that we have some confi­

dence that any experiments and conclusions made by the model , are made using a 

population concurrent to Harare, Zimbabwe. 
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Figure 6.9: The age distribution of the model population at (a) 1980 and (b) 2000. 

The graphs show the average age distribution (blue) from 10 runs (all in grey) 

of the model's population once its has been warmed up (1980) and during the 

simulation (2000). These are compared with the 2000 WHO survival distribution 

for Zi mbabwe 

Given the analysis of the model population we can be sure that the methods 

being used both to generate the population and to progress the population through 

the simulation give an acceptable result, with the model population accurately re­

flecting the population in Harare, Zimbabwe. 

6.4 Warm Up 

The objective of the warm-up process is to obtain the initial popUlation and estab­

lish the correct dynamics and disease levels before the start of the simulation. TB 

incidence data is available for Zimbabwe from 1980 onwards [134] and therefore 

we want to start the simulation at this time point. Figure 6.10 shows that TB in­

cidence in Zimbabwe is shown to be at a consistently low and steady level prior 

to the introduction of HIY. This is consistent with the model of TB developed in 

Chapter 4 which used the observation that even if TB notification rates increase 
dramatically as a result of the HIV epidemic, the annual risk of infection and the 

prevalence of TB disease in HIV-negative people may increase only slightly, if 

at all. This led to us assume that I- (t), the TB notification rate in HIV-negative 

people, is constant and equal to 1- (0), the TB incidence observed before the HIV­

epidemic began to have an impact on TB. We therefore want to warm the popula­

tion up to a state where there is no HIV present and the population 's TB incidence 

is steady and consistent with the disease levels implied by the TB incidence data 

for Zimbabwe. 

To establish the length of warm up, initial runs of 200 years were first used to 
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Figure 6.11 : Average TB incidence produced by 100 runs of the model over 200 

years. HIV is not yet present in the model 

observe the TB incidence levels in an HIV-negative population over an extended 

period. Figure 6.11 shows the average TB incidence per 100,000 members of the 

population produced by 100 runs of the model. We can see that there is an initial 

epidemic of TB within the population which dissipates after 40 years. For the 

next 85 years we see a slow and steady increase of TB until after 125 years of 

warming up the population, the TB incidence levels off, continuing at that level 

for the next 75 years . We therefore use a warm up time of 150 years, as this means 
the population has been in a steady state for 25 years. 

We are interested in the behaviour of the epidemic between the years 1980 and 

2030 and will only output data for those 50 years . It seems inefficient therefore to 

run the model for 150 years prior to each simulation run. We developed a "save 

state" process which meant that the model's state (its population and schedule) 
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Figure 6.12: Average TB incidence produced in the last 20 years of the 100 ac­
cepted warm up runs compared with TB incidence data for Zimbabwe. Warm up 

runs were only accepted if they were within 30% of the average suggested by the 
pre-HIV TB incidence data for Zimbabwe 

could be saved after it had been warmed up. This state could be read into the 
model at the beginning of each simulation, thus removing the need to warm up the 
model each time. 

To ensure the simulation is not biased by using a particular warmed up pop­
ulation and schedule, it was important to generate a large number that could be 

sampled from. We collected 100 warm up runs and saved each set of population 
and schedules produced by each run. This created an output file with 100 sets of 
warmed up population and activity lists. This file is read into the model at the 

beginning of the simulation and each time a run is started, the simulation samples 

from these sets to decide the particular population and schedule to use. 

The average TB incidence produced by the warm ups we collect does relate 
to the TB incidence data for Zimbabwe, but the variability around the average is 
currently quite large (Figure 6.11). Although we want a certain amount of variabil­

ity to ensure there is no bias in the model , saving states with TB incidence over 

twice that suggested by the data or with no TB present at all would be inefficient 
as we can be confident that these are not scenarios that were present in 1980. To 

optimise the scenarios used, we therefore only accept runs if their steady state TB 
incidence is within 30% of the average suggested by the pre-HIV TB incidence 

data for Zimbabwe. The results in Figure 6.12 show that the average TB incidence 

from the scenarios is equal to the pre-HIV TB incidence levels for Zimbabwe, and 
that the variability is significantly reduced when compared to the variability found 

in Figure 6.4. We chose 30% because it was felt this allowed a large enough level 
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of variability around the average pre-HIV TB incidence level to prevent biased 

results. We looked at what effect reducing the criteria to 15% would have on the 
variability and found that although it causes a very slight reduction, no significant 
benefit comes from reducing the criteria. 

We have seen that the populations we collect when warming up the model 
for 150 years reproduce the required steady state level of TB incidence. When 
verifying the population (Section 6.3.5), we also saw that the population's charac­
teristics reflect that of our study population in Harare, Zimbabwe. We have some 
confidence therefore that the warm up time is adequate and that sampling from 100 
warmed up scenarios at each simulation run both prevents the need to warm up the 
model each time, whilst reducing bias by keeping the sample size large. 

6.5 HIV 

Infection with HIV is governed by a static model of HIV, which generates the 
number of HIV infections to be made each year. The model relates available data 
on the prevalence of HI V infection to the incidence of HI V infection, a much more 
difficult quantity to measure. 

HIV prevalence data for Zimbabwe is available between 1984 and 2000 [176]. 
We fit a double logistic equation to this data to describe its behaviour, and obtain 
complete estimates for HIV prevalence. A double logistic curve was chosen as it 
is recommended by WHOIUNAIDS [175] and is an established approach to mak­
ing epidemiological estimates of HIV prevalence in countries with a concentrated 
epidemic and where there is evidence of a decline in prevalence [111]. A complete 
description of the double logistic equation and an explanation of the fitting pro­
cess is given in Appendix K. A double logistic equation is chosen as it allows the 
initial rate of increase, the peak prevalence, the final steady-state prevalence and 
the rate of convergence to the steady state, implied by the data to be defined. The 
double logistic curve obtained can be seen in Figure 6.13 and provides estimates 
of HIV prevalence for Zimbabwe between 1980 and 2030 which are read into the 
simulation. 

By matching the HIV prevalence within the model with the HIV prevalence 
estimates, we can ascertain the annual HIV incidence, I(t), as 

I(t) = (H(t) - N(t) - d(t))(l + p). (6.1) 
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Figure 6.13: HIV prevalence estimates obtained by fitting a double logistic equa­

tion to the HIV prevalence data for Zimbabwe. Source: UNAIDSfWHO [176] 

This says that the HIV incidence for year t is the number of individuals that 

need to be HIV-positive in year t in order for the model's HIV prevalence to match 

the estimates (H(t)), minus the current number of HIV-positive individuals in the 

model (N(t)), minus the number of those HIV-positive individuals due to die in 

year t (d(t)). This provides us with the number of individuals that need to be 

infected with HIV during year t in order for the model's HIV prevalence to match 

the estimates. We scale this number by the probability that a newly infected person 

will die within a year, p, to give the final annual HIV incidence, I(t) . 

HIV incidence is calculated before the beginning of each simulation year. The 

annual HIV incidence instructs the model how many individuals to infect with HIV 

throughout that year. This number of HIV transmission events are then generated 

and scheduled throughout the year according to a uniform distribution. 

It is assumed that HIV transmission events can only occur in adults and there­

fore only individuals over 15 years old are chosen to be infected. It is also assumed 

that there is no mother-to-child transmission of HIV present, therefore children can 

not have an HIV infection in the model. 

HIV transmission is age-dependent and so a transmission event contains in­

structions as to which age group the infection should occur. An individual is 

then chosen randomly from that particular age group to be infected. How age­

dependency is incorporated and how the distribution of infection amongst the age 

groups is determined is discussed further in the following Section. 
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6.5.1 Age-Dependent HIV 

The age distribution of new HIV infections in a community is closely related to the 

age distribution of sexual activity. In order to accurately model the age dependence 
of HIV, we assign new HIV infections so that the proportion of new infections in 
an age group is proportional to the sexual activity of that age group, based on data 
from the UK [95] and the proportion of the age group who are HIV-negative and 
therefore susceptible to infection. Thus, age groups which have a high proportion 
of HIV-negatives and in which the individuals have high levels of sexual activity 
will receive more of the new HIV infections than age groups with lower numbers 
of HIV-negatives and lower levels of sexual activity. 

The UK sexual behaviour survey [95] contains data on the occasions of hetero­
sexual sex in the past 4 weeks and the number of new sexual partners in the past 
year, specified according to age group. Such detailed data is not available for Zim­
babwe and so we have to make the assumption that the sexual behaviour of British 
individuals can be used to predict the sexual behaviour of Zimbabweans. This may 
be an unreasonable assumption however it is made because such detailed sexual 
behaviour surveys have not been carried out in sub-Saharan Africa. Given that we 
know the number of times that a person has sex in a 4 week period we know how 
many contact events there are in a year for one person (ai, where i represents each 
age group). We also know how many partners that person is likely to have had in 
the past year (bi ). We use these figures to work out the relative number of contact 
events within each age group. Multiplying these figures together gives us a rela­
tive contact rate for each age group which reflects each of their risk behaviours, 
and therefore we can assume that the contact rate Ci is proportional to aibi with 
the same constant of proportionality (0:) applied to each age group. The relative 
contact rate for each age group i is given by 

(6.2) 

We assume that those infected with HIV are as likely to have sex as those who 
are HIV-negative. Thus, at time t, Pi(t) of the sexually active population in age 
group i will already be HIV-positive, and so could not be infected. The remaining 
(1 - Pi (t) are susceptible to infection, where Pi (t) is the proportion of age group 
i who are HIV-positive. 

As infection can only take place within the susceptible popUlation, the contact 
rate is only effective for a certain proportion of the popUlation. We multiply the 
contact rate, Ci, by the proportion of the age group that are susceptible, 1-Pi (t), to 
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give us the effective contact rate amongst susceptibles, (3i (t), for each age group, 

at time t. Therefore the effective contact rate amongst susceptibles is given by 

(6.3) 

Given that we now know the relative effective contact rates in each age group 

we can work out the proportion of transmissions, ri(t), that should occur within 
each age group, at time t. We assume that this is given by dividing the number 

of effective contacts for an age group by the total number of effective contacts 
for that year. We assume that this provides us with a distribution describing the 

spread of transmission events amongst the age groups. Therefore the proportion 
of transmissions that will occur within each age group is given by 

(6.4) 

At time t, therefore, the HIV incidence or number of new HIV infections that 

occur in age group i (Ii (t)) is given by 

(6.5) 

where the overall HIV incidence, I(t), is multiplied by the age group distribution 
of transmission, ri (t) and where 

(6.6) 

6.5.2 Validation 

In order to justify this approach, we can compare the age-specific HIV prevalence 
of the model population with data from a similar setting. It has been observed by 

Williams et al. [198] that the shape of the age-specific prevalence of HIV curves 
remains constant for different scales of the HIV epidemic. It is possible to output 

from the model the proportion of HIV infections across the age groups and so 
compare the model output with the age-dependent HIV prevalence data provided 

by UNAIDS for South Africa [174] to see whether this pattern is observed. 

Figure 6.14 shows the distribution of HIV infection across the age groups for 
the model population in 2005 and the data for South Africa. Comparison with the 
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Figure 6.14: Comparison of the distribution of HIV through out the age groups of 

the model's population and South Africa (Williams 2000 [198]) 

model data shows that it is slightly overestimating the proportion of HIV infection 

amongst the 25-30 age group and underestimating amongst the 40+ age group. 

However, the overall distribution of HIV throughout the age groups is acceptable, 

especially when considering that the observations of Williams et al. [198] came 

from data from 1998 when the HIV epidemic was still thriving. The authors ac­

knowledged that, as the HIV epidemic saturates and starts to decline (as is the case 

with the data we are observing in 2005), the conclusions about a stable pattern of 

infection will be less valid, as the pattern of infection is likely to change. 

6.6 Inputs and Outputs 

The following Section is a summary of the inputs and outputs of the model and 

collects together the data sets that have been discussed in this Chapter. 

6.6.1 Inputs 

The simulation uses various data to inform the model processes. Much of this 

data and how the simulation uses it to generate the popUlation, for example, has 

already been discussed in this Chapter. The model reads in the comma separated 

files and stores them in structures such as vectors which are kept and maintained 

by the DataFile class (Appendix H.l). Table 6.1 gives a brief description of the 

input data files, how they are used in the simulation and their source. 
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Input File Name 

MaleLE 
FemaleLE 

Source: 

Description 

Complete life expectancy estimates for 
males/females in Zimbabwe 
Used to determine the time of natural death of 
males/females (Section 6.3.3.3) 
2000 Abridged WHO life tables for Zimbabwe 
[203], completed using the Heligman-Pollard 
method 

MaleSurvivalDistribution Complete survival distribution estimates for 
FemaleSurvivalDistribution males/females in Zimbabwe 

Source: 

HIVPrevalence 

Source: 

TBlncidence 

Source: 

Used to determine the time of natural death 
of a male/female born into the model (Section 
6.3.3.3) 
2000 Abridged WHO life tables for Zimbabwe 
[203], completed using the Heligman-Pollard 
method 

HIV prevalence estimates for Zimbabwe be­
tween 1980 and 2030 
U sed to determine the HIV incidence in each 
year (Section 6.5) 
Established by fitting a double logistic equation 
to UNAIDS HIV prevalence data for Zimbabwe 
[176] 

TB incidence data for Zimbabwe between 1980 

and 2002 
Used to evaluate the fit of the model's TB inci­
dence 
WHO Global Report [134] 

Table 6.1: Simulation Input Files 
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6.6.2 Outputs 

The model provides thorough information on a wide range of simulation details 
regarding individuals and households in the population, disease statistics and inter­
vention efficacy. This information is output into comma separated files which can 
be analysed using standard statistical methods to quantify the dynamics of house­
hold transmission of TB, to examine the implications of co-infection with HIV 
and to evaluate a particular intervention, or to provide guidance on the importance 
of household transmission of TB in preventing the spread of the disease. Data is 
collected and output for each simulation run. Table 6.2 gives a brief description of 
the output files generated by the model. 

Output File Name 

Ages 

CasesA vertedX 

CasesFoundX 

ClusterCoefficients 

HIVAges 

HIVIncidence 

HIVPrevalence 

HouseholdDetails 

HouseholdSize 

Information Output 

A list of the ages of all the individuals in the 
population 

The total number of TB cases averted each year 
over the period intervention x was being imple­
mented 

The total number of TB cases found each year 
over the period intervention x was being imple­
mented 

The HIV and TB coefficients for each house­
hold. A disease coefficient is a value between 0 
and 1 which gives a measure of the proportion 
of the household infected. 

A list of the ages of all the HIV infected indi­
viduals in the population 

The yearly incidence of HIV in the population 

The yearly prevalence of HIV in the population 

For each household, each of its occupants with 
details of their age, gender, HIV and TB status 
The size of each of the households 
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Output File Name 

HouseholdSizeList 

InterventionX 

People 

PreHIVTBLevel 

Prev InfO nder5 

SaveState 

TBEpiStart 

TBIncidence 

TBIncPeak 

TBModelFit 

TBPrevalence 

Information Output 

For each household size, a list of the households 
of this size 

The total number of households visited, TB 
cases found, TB deaths and TB transmissions 
in the model when intervention x was being im­
plemented 

For each of the individuals, its ID, age, gender, 
householdID, HIV and TB status 

The average TB incidence for the 10 warm up 
years prior to 1980 

The prevalence of TB infection in children un­
der 5 years aIds living in households with and 
without confirmed cases of TB 

Two files containing the complete details of the 
population and schedule at a certain time point 

The year that the TB epidemic begins 

The yearly incidence of active TB per 100,000 
population 

The peak TB incidence value 

A sum of squares value for the fit of the model's 
TB incidence to the TB incidence data for Zim­
babwe between 1980 and 2002 [134] 

The yearly prevalence of active TB in the pop­
ulation 

Table 6.2: Simulation Output Files 
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6.7 The Random Number Generator 

To generate the random numbers used throughout the simulation to incorporate 
stochasticity into the model, two random number generators are used. The Mersenne 
Twister (Matsumoto and Nishimura (1998) [114]) and RANROT (Fog (2001) [40]) 
are considered by experts to be excellent random number generators and a com­
bination of the two methods was used in our simulation. The RANROT generator 
is similar to the additive or lagged Fibonacci generators, but with extra rotation or 
swapping of bits. The Mersenne Twister is a pseudorandom number generating 
algorithm which considers the flaws of various existing generators, and has a far 
longer period and far higher order of equidistribution than any other implemented 
generator. It is also fast and makes efficient use of memory. A combination of 
the two random number generators was used as this generally performs better than 
either of the two alone. 



Chapter 7 

The Model Parameters 

In this Section we describe the parameterisationof the discrete event simulation 
(DES) model designed in Chapter 6, which will be used to evaluate the effects 
of more intensive case-finding strategies for TB control in a high HIV prevalent 
setting. 

The first stage in developing the DES model of TB transmission in Harare 
was to design the simulation itself, which was discussed in the previous Chapter. 
The second stage, which we describe in this Chapter, is to incorporate the vari­
ous aspects of the natural history of TB into the model and to parameterise it so 
that it corresponds with earlier deterministic models of TB and HIV. This Section 
will also discuss how the model was validated using country-wide statistics for 
Zimbabwe and findings from previous studies of the distribution of TB amongst 

populations. 

7.1 An Overview of the Model Structure 

The model of TB has the same structure as the deterministic SEEINITR model 
discussed in Chapter 5, Section 5.4 but is a discrete event simulation model which 
allows the population to belong to seven epidemiological classes, dependent on 
TB status. A schematic of the model's structure can be seen in Figure 7.1. The 
structure was chosen because it allows the various aspects which are considered 
important in the epidemiology of TB in HIV prevalent settings, to be incorporated 
and because it allows for all of the different epidemiological routes experienced by 
individuals infected with TB to be recognised. A more detailed discussion on why 
this structure was selected is given in Chapter 5, Section 5.3. 
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Figure 7.1: Schematic of progression through the TB disease states in the Discrete 
Event Simulation Tuberculosis model. Death may occur from any state, but death 
rates are higher from the active disease states. 
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Movements through the pathways of the model are determined by an individ­
ual's attributes (age, gender, HIV status), with the distributions used to describe 
progression currently based on the literature (Chapters 3), and data from the Harare 
survey (Chapter 2, Section 2.6.1). 

Death can occur from any state of the model, and death rates are higher for in­
dividuals with active disease. We assume that the TB disease progression param­
eters for HIV-positive individuals only change when the individuals enter either 
early-stage HIV or late-stage HIY. Early-stage HIV or acute HIV refers to the first 
few months after a patient is infected with HIY. During this time we assume the 
patient has a period of immunosuppression and will therefore have an increased 
susceptibility to developing active disease after initial infection with TB (Section 
7.2. Late-stage HIV is defined to be the World Health Organization's HIV Disease 
Stage 3 and above, approximately 6 years after infection [118] [130]. In these 
stages, individuals are assumed to be more susceptible to reactivation of their TB 
infection and exhibit higher progression and death rates from TB. 

Susceptible individuals are not infected with TB. When they become infected, 
they enter the latent infection class. Individuals will then follow one of two routes: 
a) develop active disease within 5 years, termed fast progression to active disease 
(often referred to as "fast latent"); or b) retain a latent TB infection, only progress­
ing to active disease if their immune system is significantly weakened. 

Active TB disease can be infectious or non infectious. When an individual 
develops active disease they will either be treated, and move to the "Treatment" 
class, or they will die. For those with infectious TB disease, the time until death, 
self cure or treatment determines an individual's duration of infectiousness, which 
in turn determines how many people the individual is likely to infect. Transmis­
sion is currently modelled under the assumption that the majority of transmissions 
will occur outside of the household. When a transmission event is generated, an 
individual will be selected at random to become infected. If transmission is within 
household, the individual to be infected will be selected from within the household, 
and if the transmission is outside the household, any member of the model popu­
lation could become infected. Persons who have previously recovered from TB, 
or already have a latent infection, can be reinfected. Persons with active disease 
or undergoing treatment cannot be reinfected and we assume that no transmission 
will take place if one of these individuals is chosen. To ensure a transmission event 
still occurs, different individuals are selected until a transmission is successful. If 
it is not possible to infect anyone within a household the transmission will be made 
outside of the household. 
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An individual will either fail or successfully complete treatment. Those that 
successfully complete the treatment course enter the "Recovered" class and those 
that fail will return to active disease. When a person has recovered they are again 
susceptible to reinfection from an infectious person, although they have an in­
creased immunity compared to the "Susceptible" population. 

This brief overview of the model's structure demonstrates how accurately the 
model captures all of the available pathways and various characteristics of the 
natural history of TB, which was given in full in Chapter 2, Section 2.3. The 
rest of this Section will give a description and justification of the parameters and 
distributions used throughout the model. 

7.2 Risk Factors in TB Epidemiology 

The main factors affecting an individual's pathway through the model are its house­
hold size, its age, its previous TB history and its HIV status. These will determine 
the likelihood of being infected with TB and if infected, will affect a person's 
length of latency, the type of active disease developed, their period of infectious­
ness, the number of transmissions they are likely to generate and their susceptibil­
ity to reinfection. 

In order to fully understand how an HIV infection affects an individual's dis­
ease characteristics, we firstly need to explain how we propose to model an indi­
vidual's HIV infection. 

Patients can be HIV-negative or HIV-positive. HIV-positive individuals can 
be in the early, middle or late stages of the disease. Early-stage or acute HIV 
refers to the first few months after a patient is infected with HIY. During this time 
the patient has transient but sometimes quite profound immunosuppression and 
we therefore assume that those with acute HIV have an increased susceptibility 
to developing active disease after initial infection with TB. Because the window 
of immunosuppression is so brief, there is insufficient time for a previous latent 
infection to reactivate and therefore we assume that persons with acute HIV have 
no increased risk of reactivation. The middle stage of HIV refers to the time after 
recovery from acute HIV until a patient reaches the late-stage (WHO stages 3 and 
above [130]). We assume that during the middle stage there is no increased risk 
of reactivation of a TB infection. Patients with late-stage HIV are assumed to be 
more susceptible to activation of their TB infection and exhibit higher progression 
and death rates from TB [118]. 
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Figure 7.2: How an individual's HIV timeline is generated. ti , time individual is 

infected with HIV; L, HIV survival time generated using a Weibull distribution 

with mean length 10 years; t d, time individual will die of HIV; t m , time individual 

becomes middle-stage HIV; tl, time individual becomes late-stage HIV 

In order to generate an individual's HIV timeline which means to establish 

the different stages of an individual's HIV infection, we determine the length of 

infection (L) and then assign each stage according to a proportion of the time 

they are infected. The process of generating the HIV timeline is illustrated in 

Figure 7.2. In order to ascertain an individual's length of HIV infection, their 

survival time is calculated at the point of infection, k This means that when an 

individual is infected, we sample from a distribution of survival times for HIV 

infected individuals to give the number of years the individual is likely to survive 

and therefore the time the individual will die from HIV, td . The HIV survival 

distribution is represented by a Weibull distribution with a and f3 values of 1.6 and 

11.185 respectively; m~aning HIV individuals live on average for 10 years . This 

distribution was used by Salomon in 2001 [146] and has been widely accepted and 

used by other TB and HIV modellers. The length of time this individual will be 

infected with HIV is therefore given as the difference between the time of their 

infection and the time of their death, L = td - t i . 

Having determined an individual's infection period, we then need to allocate 

the proportion of time that the individual will be in the various stages. Expert 

opinion suggests that an individual will be early-stage and late-stage HIV for a 

period of3 months and 4 years respectively [118] [130]. As the individual will be 

HIV-positive for an average of 10 years, this corresponds to being early-stage for 

the first 2.5 % of their infection and late-stage for the last 40% of their infection. We 
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therefore schedule the individual to become middle stage HIV at time tm = 0.025L 

and late-stage HIV at time t{ = td - O.4L. It is important to note that a person may 
die of non-HIV related causes at any point on this HIV timeline. 

Section 7.3 discusses the distributions used to describe disease progression and 
it will also explain how the various risk factors are incorporated into the model. 

7.3 The Distributions and Parameters Used 

To describe the progression of individuals through the pathways of the model, the 
literature was used to inform us of the parameters and distributions to use (Chapter 

3 and Appendix G). Sampling from various statistical distributions enables the 
model to capture the stochastic nature of individual disease evolution. 

7.3.1 TB Infection 

When an individual is infected with TB they enter the latent infection class. The 
length of time an individual spends in this class depends on their immune response 

to the infection. An effective immune response means the individual will retain a 
latent infection, usually for the rest of their lives. An ineffective immune response 

means the individual will progress to active disease within 5 years, which we call 
"fast latent". The response the individual will have, depends on their age, HIV 
status and previous TB history. 

Figure 7.3 shows how an individual's attributes affect the likelihood of an in­

dividual progressing to active disease within 5 years, p. A P value is established 
for each individual by asking questions about its age, HIV status and previous TB 
history. To decide which immune response this individual will have, we generate a 

random number which if less than the individual's p value indicates an ineffective 
Immune response. 

Using parameter values from previous modelling literature we assume that 
67% [56] of those with an early- or late-stage HIV infection will progress to active 

disease, otherwise their p value is determined according to their age. 

7.3.1.1 Age Dependency 

We incorporate age dependency using the approach developed by Vynnycky and 
Fine [181]. We calculate the likelihood of an individual progressing to active dis-
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Figure 7.3: Determining an individual's likelihood of progressing to active disease 

within 5 years, p 
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ease within 5 years by calculating Pi (an individual's P value at age i). Given that 

PlO = 0.0406 and P20 = 0.138 [181], we work out the individual's P value using 
equation 7.1. 

. (P20 - PlO) 
Pi = ~ 10 + 2plO - P20 (7.1) 

Under these assumptions, children under ten years of age are unlikely to de­
velop active disease when infected; and as a person becomes older the risk of 
activation of a latent TB infection increases. 

7.3.1.2 Reinfection and Reactivation 

We saw when we developed a simple parametric model of TB and HIV in Chapter 
4, that incidence ofTB depends on both the rate at which people acquire new infec­
tions and the rate at which latent TB infections break down. There were therefore 
two expressions in the parametric model to incorporate the effect of reinfection 
and reactivation. 

In our DES model we incorporate reinfection by ensuring that all individuals 
have an equal chance of being infected but that those who have had a previous in­
fection with TB are more likely to have a stronger immune response to reinfection. 
We assume that 16% of children [181], 75% of early- or late-stage HIV adults and 
35% of all other adults [56] are still susceptible to developing active disease when 
reinfected. 

The time spent in the fast progression state is sampled from an exponential 
distribution with parameter A. The choice of the exponential distribution follows 
Vynnycky and Fine's analysis of reactivation data from England and Wales [181]. 
The parameter A was set to be 0.872, which relates to a mean length of 1.15 years. 

We incorporate reactivation of a latent infection by allowing those that had 
an effective immune response the opportunity to progress to active disease in the 
future. The exponential distribution was also used to calculate this time of active 
disease. In most cases these individuals will retain a latent infection for the rest 
of their lives and it will fail to reactivate. For this situation the parameter A was 
found to be 0.001 [164] [92] [20] [161] [180] [181] and 0.6 for individuals with 
late-stage HIV (Section 7.4), which corresponds to an average of 1000 years and 
1.7 years respectively. 
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7.3.2 TB Disease 

When a person infected with TB progresses to active disease, we determine which 

type of disease the person is likely to develop. We assume that 73% of individ­
uals with early- or late-stage HIV, and 54% of those without, will develop non 

infectious disease [197]. 

Once suffering from active disease we calculate when the individual is likely 
to die from TB, when they are likely to be diagnosed, when they are likely to self 
cure, and if non infectious, when they are likely to convert to infectious TB. The 
times of these events can then be compared to determine which event is most likely 
to occur first, therefore establishing the time spent in the active disease class and 
the method of leaving it (by receiving treatment, by self curing etc). 

7.3.2.1 Time ofTB Disease Induced Death 

Once suffering from active disease we calculate when the individual is likely to die 
from TB using a Weibull distribution with mean survival time of 3.3 and 5.0 years 
for infectious and non infectious TB respectively, and 3.1 and 2.1 years for indi­
viduals with early- or late-stage HIV and infectious or non infectious TB (Table 
7.1). 

Disease a (3 Mean 
(years) 

Infectious TB 2.999 3.696 3.3 
Infectious TB (early/late-stage HIV) 0.298 0.033 0.32 
Non Infectious TB 2.499 5.635 5.0 
Non Infectious TB (earlyllate-stage HIV) 0.291 0.046 0.49 

Table 7.1: Table showing the parameters of the Wei bull dis­
tributions used to sample an individual's time of TB disease 
induced death 

7.3.2.2 Time of Treatment 

Reference 

[55] 
[197] 
[55] 
[197] 

The mean time until an individual receives treatment is 2 years. This value is taken 
from current TB literature [56] but a suitable distribution to describe the times is 
unknown due to a lack of data. We use a normal distribution with mean and vari-
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ance 2 years, to incorporate some stochasticity into the rate at which individuals 

are diagnosed and the diagnosis rate we use takes into consideration that not all 

people will be diagnosed correctly, as diagnosis of TB is quite often difficult and 
prone to human error. The duration of treatment is deterministic, taking 6 months. 

This is the minimum duration of a TB treatment regimen as recommended for 
administration by the WHO. 

7.3.2.3 Time of Self Cure 

Using parameter values from literature [197], we model the time it takes for an 

individual to self cure from infectious or non infectious TB using an exponential 
distribution with mean 2.5 and 5 years respectively. We assume that HIV-positive 
individuals cannot self cure. 

Individuals relapse to active disease at a rate of 0.21 [197]. We model this using 
an exponential distribution with mean 4.8 years. We assume that if individuals do 
not relapse within 7 years, they will not relapse [93] and will only progress to active 

disease if they are reinfected, their infection is reactivated at the usual background 
rate of 0.001, or their infection is reactivated due to infection with HIV (Section 
7.3.1.2). 

7.3.2.4 Time of Conversion 

If an individual has non infectious TB, there is a risk that the disease will become 
infectious. The rate at which non infectious disease converts to infectious disease 

has been estimated by previous modellers to be 0.015 [197], which is equivalent 
to 67 years. We model this using an exponential distribution. 

7.3.3 TB Transmission 

As previously discussed, the end goal of the modelling is a discrete event simula­

tion (DES) model of TB transmission in Harare, Zimbabwe which will allow a full 
assessment of the role of household versus community transmission of TB. Dif­

ferentiating between these two modes of transmission is important, as household 
transmission of TB has long been recognised as having very different dynamics 

from that in the wider community. Household exposure to infectious TB carries a 

high risk of infection (25 to 50% per year) [143] while random transmission occurs 
at a lower background rate of approximately 0,5 to 1 % per year [62]. 
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As we have seen, when a person becomes infectious, the time that they will 
leave the active disease class by either death, self curing or getting treatment is 
generated. This generates the individual's duration of infectiousness. This is then 
used to determine how many effective transmissions the individual will make. 

Individuals will transmit to an average of 10 people per infectious year [56] 
with the majority of transmissions occurring outside of the household. We deter­
mine the number of transmissions a person will make using a Poisson distribution 
and the length of time the individual is infectious. We allocate the 10 transmission 
events according to whether they will infect household or casual contacts using 
a ratio of 9: 1. This means that the number of household or random transmission 
events caused by an infectious person per year are generated with Poisson distri­
butions with means AH = 9 and AR = 1 respectively. Justification of the ratio is 
discussed in Section 7.4. 

Equation 7.2 shows the Poisson distribution used to generate a random vari­
ate which defines the number of household transmissions, nH and the number of 
random transmissions nR an individual will generate during their length of infec­

tiousness, d. 

i=H,R (7.2) 

We assume that the contact rates are the same even when a person has early- or 
late-stage HIY. Although this is unlikely, the effect of advanced HIV infection on 
the number of household or random TB transmission events a person might create 
is not understood and data is not available in order to make sensible estimates. 

When the number of transmissions an individual will make during their infec­
tious period has been determined, the times of these events are established using 
the uniform distribution. We sample from the uniform distribution to distribute the 
nH + nR transmission events throughout the individual's period of infectiousness. 

7.4 Determining Unknown Parameters 

The previous Section showed how the literature was used to derive the parame­
ters and distributions to use to describe the progression of individuals through the 
pathways of the model (Chapter 3 and Appendix G). There are however two pa­
rameter values that have either not been estimated before, or estimated but less 
widely accepted or validated. These two parameters are the transmission ratio, r, 
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which determines how the transmission events are allocated between household 
or casual contacts, and the HIV reactivation rate, v H IV, which determines the rate 
at which those with both a late-stage HIV infection and a latent TB infection will 
progress to active TB disease. 

As no previous studies have modelled household versus random transmission 
of TB using discrete event simulation, there is no estimate present in the literature 

of the ratio of household to random contact events. Similarly, for the rate at which 
latent infections in late-stage HIV individuals become TB cases by endogenous 
reactivation, there is only one study which suggests a value for the parameter. 
Schulzer et al. [153] suggest the rate of endogenous breakdown is 0.17 in late­
stage HIV individuals which corresponds to individuals taking a mean of 5.88 
years to reactivate. However, using this parameter value in the model meant that 
the TB incidence was barely affected by the HIV epidemic, which meant that the 
effect of HIV on the TB epidemic was not amplified enough. 

To obtain suitable estimates of both these parameter values we create a matrix 
to investigate the fit of the model as both parameter values vary. 

We assume that the HIV reactivation rate, v H IV, can take the values of 0.0 to 
1.0, with 0.0 suggesting late-stage individuals with a latent TB infection are at no 
increased risk of reactivating, in which case HIV will have no effect on the TB 
epidemic; and 1.0 suggesting that they reactivate within a year of becoming late­
stage HIV, which would indicate the unlikely case that all late-stage individuals 
with a latent TB infection would progress to active TB disease. We would expect 
the correct value to lie somewhere in between these two extremes. 

We know that individuals will transmit to an average of 10 people per infectious 
year [56] and we assume that the transmission ratio, T, or the split of random and 
household transmissions will be either 8:2, 9:1 or 10:0; with 10:0 representing a 
random contact rate of 10 per infectious person, per year, and a household contact 
rate of zero. Research in low HIV prevalent settings suggest that transmission 
events between casual contacts greatly outnumber household transmission events 
[143] hence the choice of transmission ratios which are biased toward allocating 

random transmission events. 

Applying the range of values for both parameters to the model, we investigate 
their effect on the fit of the model by comparing the TB incidence output with 
country-wide statistics for Zimbabwe. We use least squares analysis 1 to provide 

IThis method simply calculates the difference between the model"s average predicted values 
and the values observed in the data. The sum of the residuals squared gives our 'sum of squares' 
value, which allows the fit of different models to be compared. 
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r / VHIV 8:2 9:1 10:0 

0.0 2085604 1817977 1763994 

0.1 1363930 1026468 928116 
0.2 894658 559317 543072 

0.3 649361 349288 346162 

0.4 473650 253986 270717 

0.5 397803 250095 257280 

0.6 424352 226252 304397 

0.7 344547 229447 392820 

0.8 346427 345545 437681 
0.9 300743 279225 410879 

1.0 325325 369340 444247 

Table 7.2: Table showing the matrix of the sum of squares value the model pro­
duces for each pair of possible parameter values for the transmission ratio and the 
HIV reactivation rate. The combination which produces the best fit is shown in 
bold 

a 'sum of squares' value which gives an indication of how accurate a fit the model 
is. By exploring all possible pairs of parameter values over the full range for each 
parameter we generate a matrix of sum of squares values which can be exam­
ined to find the combination of parameter values which produce the best fit. The 
combination of transmission ratio and HIV reactivation rate which minimises the 
sum of the residuals (the difference between the predicted and observed values) 
squared thus produces a model which most accurately reproduces the observed 
TB epidemic. 

Table 7.2 and Figure 7.4 show the sum of squares values produced by the model 
under each pair of possible parameter values for r andvH IV. It shows that using a 
transmission ratio of 9: 1 and an HIV reactivation rate of 0.6 produces the smallest 
sum of squares value and therefore the most accurately fitting model. 

In order to get a more precise estimate of VHFI' we effectively zoom in on 
the minimum of the curve produced by investigating the HIV reactivation rate 

at a transmission ratio of 9: 1. The minimum is found when VHIV = 0.6 and so 
we investigate the curve more closely by increasing the precision of VHFIl and 
investigate the model as the parameter ranges between the values of 0.55-0.70. 

Analysis of the curve produced by investigating the HIV reactivation rate at 

a transmission ratio of 10:0 shows that the minimum is found when V HIV = 0.5. 
The minimum of the 10:0 curve produces similar sum of squares values to the 
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Figure 7.4: Graphical representation of the matrix in Table 7.2 which shows the 

sum of squares values produced by the model under each pair of possible parameter 

values for the transmission ratio and the HIV reactivation rate 

rrlinimum of the 9:1 curve as can be seen in Figure 7.4. Tills indicates that the 

model produced when r = 9: 1 and VHIV = 0.6, is sirrlilar in accuracy to when r 
= 10:0 and VHIV = 0.5. In order to ensure the overall rrunimum doesn't lie on 

the 10:0 curve, we also investigate the rrunimum of the 10:0 curve more closely 

by increasing the precision of VHIV and investigating the model as the parameter 

ranges between the values of 0.35-0.55. 

Figure 7.5 shows the rrlinimum of the 9: 1 and 10:0 curves, with the HIV reacti­

vation rate investigated with more precision. We can see that the overall rrunimum 

still remains at r = 9: 1 and VHI V = 0.6 and therefore we apply these parameter 
values to the model as they produce a model which most accurately reproduces 

the observed TB epiderrlic. The final fit of the model to the TB incidence data 

for Zimbabwe can be seen in Figure 7.11. Concluding that these are the values 

the parameters should take implies that the number of transrrussions an infectious 

individual will cause in a year is modelled using a Poisson distribution with mean 

9 for random contacts and 1 for household contacts; and that when an individual 

with a latent TB infection moves into late-stage HIV, they will reactivate within 

on average 1.67 years. These values have been corroborated as realistic by expert 

opinion and they also concur with conclusions implied by previous studies that 

random transmission events will outnumber household transmission events [143], 

and that individuals with late-stage HIV and a latent TB infection are at a high risk 

of endogenous reactivation. 

Although we have found a combination of the two parameter values that give a 

model which outperforms models which use any other combination of parameter 
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Figure 7.5: Graph showing the minimum of the 9: 1 and 10:0 curves from Figure 

7.4, with their 90% confidence intervals. The graph also shows the sum of squares 

values produced by the model under each transmission ratio when using more pre­

cise HIV reactivation rate values around the minimums of 0.6 and 0.5 respectively 

values, there is some argument to suggest that this could be due to variability. 

As discussed, and can be seen in Figure 7.5 , the minimum of both the 9:1 and 

10:0 curves, produce similar model fits. In other words, when the model uses 

r = 9:1 and VHIV = 0.6, it produces a better but similarly optimal fit to when 

r = 10:0 and VHIV = 0.45. In order to understand the reliability of our chosen 

parameter values and to appreciate how variability is likely to be influencing our 

conclusions, we produced 100 runs of the model at each transmission ratio where 

the sum of squares was minimised. This means that for each transmission ratio we 

take the HIV reactivation rate which produced the best fitting model and compare 

their performance, therefore when r = 8:2, 9: 1 and 10:0, VHIV = 0.9, 0.6 and 0.45 

respectively. Figure 7.6 shows the resulting average sum of squares value and 

90% confidence intervals obtained from 100 runs of the model. We can see that 

our initial conclusion that r = 9:1 and V HIV = 0.6 still holds as this produced the 

lowest sum of squares value and therefore the best fitting model, but because of the 

wide 90% confidence intervals, it would be valuable to assess the effect of setting 

r = 10:0 and V Hn! = 0.45, which produce a close to optimal model. This will be 

done in Chapter 8, Section 8.4.1, which will look at analysing how sensitive the 

model is to using alternative values for r and VI HV. 
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Figure 7.6: The sum of squares values obtained at the mimimum of each of the 

three curves from Figure 7.4 with their 90% confidence intervals. For each trans­

mission ratio we take the HIV reactivation rate which produced the best fitting 

model and compare their performance 

7.5 Uncertainty Analysis 

Given that all of the other parameters have been taken from the Harare baseline 

data, previous modelling literature and expert opinion, we can have some confi­

dence in their values. We have however, considered the impact of changing some 

of the more uncertain parameters such as the length of early- and late-stage HIV, 

the HIV survival rate and the average household size. 

Understanding the effect of changing these parameter values gives us insight 

into how the various aspects .influence the model and the TB epidemic it can pro­

duce. Appendix L gives full details of the analysis, and documents the conclusions 

regarding the sensitivity of the model to 3 particular parameters. It concludes that 

changing the duration of late-stage HIV, and the survival distribution of HIV indi­

viduals, affects the timing of the TB epidemic and the amplifying effect of HIV on 

the average TB epidemic produced by the model. It also concludes that changing 

the average household size from 3.99, which was implied by the Harare baseline 

data, to 5.5, as suggested by literature, does not affect the TB epidemic produced. 
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7.6 Determining the Population Size 

As discussed in Chapter 6, Section 6.3, the size of the model population is 10,000. 
We established the best size to use by analysing the model when different popula­
tion sizes were used. We looked at using population sizes of 5000, 10000, 15000, 
20000 and 25000 and looked at the average TB epidemic produced by the models 
between 1980 and 2007. We compared the fit of the models to TB incidence data 
for Zimbabwe. 

It was found that regardless of the population size used, the models all pro­
duced similar TB epidemics, however there was a significant difference in the 
variability of the estimates with a reduction in variability seen as the population 
size got larger. Figure 7.7 shows the fit of the model to the TB incidence data for 
Zimbabwe as the population size varied. It shows that the 90% confidence intervals 
around the average TB epidemic produced by the model are wider if the population 
size is smaller, but that the fit of the model looks unchanged. Figure 7.8a shows 
the average fit of the model to the TB incidence data for Zimbabwe, with its 90% 
confidence intervals, by means of a sum of squares value. This is the sum of the 
residuals (the difference between the model's predicted values and the observed 
data) squared. Figure 7.8b shows the width of the 90% confidence intervals from 
Figure 7.8a which illustrates how much variability exists in each model's estimates 
of the TB epidemic. We can see that the fit is significantly improved and the vari­
ability significantly reduced as we move from using a population of size 5000 to 
size 10000, however, as one moves upwards from 10000, the improvement in the 
accuracy of the model and the reduction in the variability of the model's estimates 
is less significant. 

As we increase the size of the population there is a pronounced increase in 
the cost of running the model, as the time taken to obtain 100 runs of the model 
increases considerably. We have seen that there is clear justification for using 
a population of size 10000 over one of size 5000 as the improvement in the fit 
and variability of the model is significant, therefore the increase in cost justified. 
Figures 7.7 and 7.8 give little justification for using a population of size 20000 or 
25000 over 15000 as the fit and variability of the model estimates are only slightly 
improved, compared to the cost, which would be dramatically increased. 

It is unclear whether the estimates of TB incidence and the variability of these 
estimates produced by a model with a population size of 15000 as opposed to 
10000 would warrant the increase in cost. We investigated this further by record­
ing the time taken to collect 100 runs from both a model with a population of size 
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Figure 7.8 : (a) The fit of the model to the TB incidence data for Zimbabwe as the 

population size of the model varies . The 90% confidence intervals are also shown. 

(b) The width of the confidence intervals on the model's fit, for each population 

size. 

10000 and a model with population size 15000. The first model, with a population 

of size 10000, took 1491 seconds to run, and the second model took 4274.17 sec­

onds. This implies that moving from a population of size 10000 to 15000 reduces 

the variability of the model's estimates by 16% but increases the running cost by 

287%, which is almost three time more costly, making this move uneconomical. 

We conclude that to minimise the cost involved in increasing the population 

size of the model, whilst also minimising the variability and the loss in the accu­

racy of the model estimates, we should use a population of size 10000. Interest­

ingly, this population size was also used in a similar stochastic simulation model 

of influenza [191]. We are satisfied that this sized population produces estimates 

with an acceptable level of variability, which are an accurate representation of the 

TB epidemic in Harare, Zimbabwe and which can not be justifiably improved upon 

given the cost involved. 

Analysing different population sizes has also given us some assurance that if 

the model were applied to a larger population, the results would not be significantly 

changed which infers that increasing the population to a real size will not change 

the conclusions of the study. 

7.7 Verification and Validation of the Model 

We have followed the seven step approach for conducting a successful simulation 

study as set out by Law and McGomas (2001) [104] and shown in Figure 7.9. 
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Figure 7.9: A seven-step approach for conducting a successful simulation study. 

Source: Law and McComas (2001) [104] 

7.7.1 Step 1: Formulating The Problem 

At the beginning of the project we attended a meeting in Zimbabwe which involved 

the collaborators, DETECTB, and many subject matter experts such as epidemi­

ologists, mathematical disease modellers and clinicians. The overall objectives of 

the study were established along with the specific questions to be answered. These 

were discussed in Chapter 1, Section 1.1. Which type of model to develop was 

also discussed, as were issues surrounding questionnaire design. This ensured that 

the data collected would provide maximum assistance in allowing the model to 

address the specific study objectives. The time frame of the study was also consid­

ered and it was agreed that the development of the model and initial conclusions 

would be addressed by a three year PhD and a further 3 year post-doctorate post 

would incorporate further complexities such as geospatial aspects, poverty and 

cost effectiveness analysis . Information on the planned extensions to this study are 

given in Chapter 10, Section 10.3. 
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7.7.2 Step. 2: Collecting Information/Data and Constructing a 

Conceptual Model 

Chapters 2, 3 and 4 looked into the natural history of TB, the present TB control 

strategies, previous infectious disease and tuberculosis modelling literature and 

development of a model which explored the dynamic relationship between HIV 
and TB. These Chapters form part of step 2, as we were collecting information 

on TB epidemiology, the interaction between TB and HIV, and the way in which 

models have represented these epidemiological systems in the past in order to fully 
understand the 'system' to be modelled. Having a comprehensive appreciation of 

the processes involved enabled us to develop a deterministic compartmental model 

in Chapter 5 and to identify literature in Chapter 3 to help us specify model pa­

rameters and probability distributions. Finally we were able to create a conceptual 

model which specified the design of a discrete event simulation model with its 

assumptions, algorithms and schematic (Figure 7.1) defined. 

7.7.3 Step 3: Is the Conceptual Model Valid? 

To determine whether the conceptual model was valid, a structured walk-through 

of the model to audiences including DETECTB and experienced infectious dis­

ease modellers was performed and errors in epidemiological understanding and 

omissions in epidemiological complexities were corrected and updated. 

This process of conceptual model validation is discussed by Sargent (1991) 

[149] and involves "determining that the theories and assumptions underlying the 

conceptual model are correct and that the model representation of the problem 

entity is reasonable for the intended purpose of the model" [150]. 

The modelled theory of the natural history of TB was put together after consid­

eration of the literature on infectious disease and TB modelling, and the structure 

of this simulation model is comparable to many of the previous studies with the 

schematic being almost identical to a recent study by the WHO which looked at 

the impact of HIV on the control of TB in India [197]. Additionally, the face va­

lidity of the theories and assumptions of the model were confirmed by experts in 

the field. 

It was established that the simulation model described in this thesis simulates 

t~e effects of household versus random transmission ofTB accurately enough such 

that the relative effectiveness of household interventions in controlling TB and the 

effect of different active case-finding methods may be compared. 
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7.7.4 Step 4: Programming and Verifying the Model 

The fourth step of conducting a successful simulation study involves programming 

the model and carrying out a comprehensive verification. Validation and verifica­

tion can easily be confused, however validation is ensuring you built the right 

model and verification is ensuring you built the model right. 

As discussed in Chapter 6, Section 6.2, the model was implemented using 

Object-Orientated Programming techniques with the C++ programming language 

and the .Net framework. In order to adequately verify the simulation code and 

ensure it accurately and reliably represents the conceptual design, the following 

methods were employed. 

We used program design and development procedures from software engineer­

ing to ensure the correct computer program is derived. In particular we used an 

object orientated design with structured programming and program modularity. 

For example, a separate program module and/or object was used for each simu­

lation function (e.g. random number and random variate generators, scheduling 
transmission events, and implementing intervention routines). 

To test the program for correctness and accuracy, firstly the simulation func­

tions were tested. This was done by examining classes as standalone modules 

outside of the main simulation. Many outputs from the processes within these 

functions were produced and read into Excel worksheets in order to compare them 

with expected distributions and results. This was done for each of the functions 

which establish the time an individual takes to progress through the various epi­

demiological stages, as well as to test assumptions about mortality, TB transmis­

sion, the distribution of household size, the age distribution of the population, and 

age dependent HIV incidence. 

Secondly, we used both static and dynamic testing of the model and its sub­

models to ensure they were correct. Static testing involved explaining the com­

puter code statement-by-statement to other members of the development team. 

Dynamic testing involved executing the model under different conditions to deter­

mine whether the implementation of the computer program was correct. We ran the 

code under simplified conditions (for example, with all individuals HIV-positive, 

or with very low and/or high TB case detection rates) and stopped the code when 

specific simulation functions were called to ensure the algorithms were correct, the 

modules interacted correctly and that events were being correctly managed. 

Finally, we used tracing throughout the development of the model. This in­

volved stepping through the code one step at a time and noting down the values 
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assigned and details of the events scheduled to ensure consistency within the code. 
Tracing also allowed individuals to be followed through the simulation to ensure 
that their disease progression was correct and happened at appropriately sampled 
times. It also enabled us to see whether other factors acting upon them, such as 
their HIV status, were acting correctly. 

7.7.5 Step 5: Is the Programmed Model Valid? 

Validating a simulation model involves ensuring that it is sufficiently accurate to 
answer the questions that it has been designed to address [150]. The focus of 
our simulation study is an investigation of different modes of transmission of TB 
in a high HIV setting, leading to an evaluation of different strategies for active 
case finding for TB. Therefore, the most important aspects of the model are the 

transmission of TB and the effect of HIV on TB. In order to have credibility in the 
medical area, it is also important that the model is able to reproduce historical data 
of TB incidence and HIV prevalence. 

Operational validity is concerned with whether the outputs of the simulation 
model have the required accuracy for the purpose of the analysis [150]. We have 
used graphical comparison of the data from the model and available observed data 
as an approach to operational validation. Graphs enable us to make a subjective 

judgment on whether a model possesses sufficient accuracy and also enable subject 
matter experts such as DETECTB and the team of infectious disease modellers, to 
make subjective judgments on whether the model is sufficiently accurate for its 
intended purpose. 

We have historical data for the prevalence of HIV infection among pregnant 
women attending antenatal clinics across Zimbabwe between 1984 and 1999, and 
the TB incidence per 100,000 members of the population for active TB disease be­
tween 1980 and 2002, also for Zimbabwe. More information regarding the data is 
given in Chapter 2, Section 2.6. Figure 7.10 shows the observed TB incidence and 
HIV prevalence in Zimbabwe from 1980 onwards. HIV prevalence is increasing in 

Zimbabwe from 1984 and the number of TB cases shows a corresponding increase 
after a time lag of about 6 years, the time from initial HIV infection to developing 
late-stage HIY. 
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Figure 7.10: TB incidence and HIV prevalence in Zimbabwe. Source: 2007 WHO 

Report [134] and UNAIDS [176] 

7.7.5.1 TB Incidence Model Output 

The graphical comparison of the historical data with the model output of TB inci­

dence is given in Figure 7.11. It shows the average model output for TB incidence 

with 90% confidence intervals, along with the output from 100 runs. It suggests 

that the model is able to reproduce TB incidence rates in the absence of HIV dis­

ease and shows a similar increase in TB cases following the start of the HIV epi­

demic. This suggests that the model provides a good description of HIV-negative 

TB and has captured most of the interactions between TB and my. However, the 

model does not produce as sustained an increase in TB cases as the historical data, 

perhaps suggesting that the model may be underestimating the effect of HIV on 

TB disease as the HIV epidemic matures. 

Data which became available very late in the research on TB case-notification 

rates in Harare (Appendix M) were not able to clarify whether the TB epidemic 
is still growing. Our model predictions suggest that the TB epidemic is slowing, 

which is what we would expect given that HIV prevalence is now declining, and is 

in line with the opinion of experts [50]. Furthermore, despite experimentation with 

the model's various parameters it was still not possible for the model to create a TB 

epidemic which both imitated the observed TB incidence between 1980 and 2000 

and continued to grow after 2001. We can be less concerned therefore, about the 

rnodel's underestimation of TB disease in 2001 and 2002 as these two data points 

suggest that the TB epidemic is still increasing dramatically which seems unlikely 

[50]. However, we still address this possibility by investigating the implications 

of introducing interventions into a growing epidemic as opposed to one which is 
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Figure 7.11: Model estimates of TB incidence in Zimbabwe. The graph shows the 

observed TB incidence data from Zimbabwe and the output from 100 runs of the 

model, along with the average result and 90% confidence intervals 

maturing. This analysis is given in the sensitivity analysis in Chapter 8, Section 

8.4.3 . 

7.7.5.2 TB Transmission Dynamics 

Validating the modelling of TB transmission is more difficult as there are few data 

available. Most important to our investigation is having the correct balance be­

tween transmission occurring within the household and that occurring within the 

wider community. Due to the lack of data available on the proportion of transmis­

sions in these different settings, we used findings from an old study in India [124] 

which investigated the distribution of persons infected with TB in households with 

and without confirmed cases. The study found that in children aged under 5 years, 

there was a prevalence of infection of 12% in households with bacteriologically 

confirmed cases as compared to 2% in households with no confirmed cases, giving 

an "infection intensity" (i .e. the ratio of percentage of contacts aged under 5 years 

infected among members of households without a case to the percentage of con­

tacts in the same group infected among members of households with a case) [88] 

of 6. The average output from 100 runs of the model suggested that the "infection 



CHAPTER 7: THE MODEL PARAMETERS 115 

HIV Prevalence 30% .,..--------------, 

25% 

20% 

15% 

10% 

5% 

O% ~~ __ ~-__ - __ -~-__ ~ 

1975 1980 1985 1990 1995 2000 2005 2010 

Year 

• HIV Prevalence Data 

- AModelRun 

- Average HIV Prevalence Model Output 

Figure 7.12: Model estimates of HIV prevalence in Zimbabwe. The graph shows 

the observed HIV prevalence data from Zimbabwe and the output from 100 runs 

of the model, along with the average result. Source of HIV Data: UNAIDS/WHO 

[176] 

intensity" within children under 5 years in our model population was 5.2. This 

implies that transmission dynamics .are being adequately captured by the model 

however, having further data on the balance between household and random trans­

mission would allow a more rigorous validation. 

7.7.5.3 The HIV Model 

The graphical comparison of the historical data with the model output of HIV 

prevalence is given in Figure 7.12. It shows the average model output for HIV 

prevalence, along with the output from 100 runs, and the HIV prevalence data for 

Zimbabwe [176]. The output suggests that the model is accurately representing 

the HIV epidemic with little variability between runs. 

In Chapter 6, Section 6.5 we discussed the design of the simple age-specific 

HIV model and how it was implemented into the main simulation model. This 

particular aspect of the modelling could be questioned and therefore we used other 

data to validate it and increase its credibility in the medical area. To justify the 

approach, we compared the age-specific HIV prevalence of the model population 

with data from a similar setting. Chapter 6, Section 6.5.2 discusses the validation 
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process which compared the distribution of HIV infection across the age groups 

from the model population and data for South Africa (Figure 6.14), it concluded 

that the overall distribution of HIV throughout the age groups is acceptable. 

7.7.5.4 Other Validation Techniques Used 

Throughout this thesis we have discussed how, as the discrete event simulation 

model has been developed, the methods and processes have been constantly val­

idated. For example, in Chapter 6, Section 6.3.5 we discussed validation of the 

population modelling methods and in Chapter 7, Section 7.5 we discussed how we 

used parameter variability-sensitivity analysis to change input parameter values to 

determine the effect on the model's behaviour. 

In this Section we have discussed the various methods used to verify the model's 

code and the techniques used to validate the output behaviour of the model. We 

have explored the operational validity of the model which has allowed experts to 

determine that the model is sufficiently accurate to enable the effect of different ac­

tive case-finding methods to be compared. The model almost perfectly imitates the 

observed TB epidemic with the TB incidence produced by the model accurately 

capturing both the pre-HIV situation and the appropriately timed and amplified 

impact of HIV Comparison with a household survey in India has allowed us to 

ascertain that the transmission dynamics are being accurately captured and finally, 

we have seen that the simple age dependent HIV model implemented, allows the 

model to reproduce the correct HIV prevalence levels with infection appropriately 

distributed throughout the age groups. 

Although we have mostly relied upon validation techniques such as face valid­

ity and historical data validation, we have also applied other methods such as those 

described by Sargent (1998) [150] as degenerate and extreme condition testing, 

and operational graphics. We experimented with parameter values (for example, a 

zero TB case detection rate) to test the degeneracy of the model's behaviour and 

similarly applied unlikely combinations of factors into the model to test that the 

outcomes were plausible. We also displayed performance measures such as TB in­

cidence and the number of individuals in each epidemiological state, as the model 

progressed, which enabled us to study the dynamic behaviour of the model and its 

performance measures as it moved through time. 

Given that we have conducted a process of verification and validation we now 

have some confidence in the theories and assumptions of the model. We know that 

the simulation is an acceptable representation of the 'system' being modelled and 
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that the model's output behaviour is sufficiently accurate to allow it to address the 

questions being raised in the study. We are now in a position to use the model to 
investigate various intervention scenarios and therefore we need to design and ex­
ecute various simulation experiments (step 6) and collect and assimilate the results 
(step 7). 

7.7.6 Steps 6-7: Designing, Making and Analysing Simulation 
Experiments and Presenting the Results 

This Chapter has described a discrete event simulation model of TB and HIV that 
will be used to assess the effectiveness of different control strategies for TB. The 
provisional results output by the model are encouraging and show t4at the model 
is accurately reproducing the HIV and TB epidemics and the interactions between 
them. Experimentation within the model will focus on determining strategies for 
reducing TB transmission by targeting case-finding for TB disease. The following 
Chapter (Chapter 8) will discuss how the simulation experiments were designed 
and applied and will give a thorough analysis of the results. Chapter 9 will investi­
gate further model scenarios and in both cases the results will be clearly shown us­
ing graphical methods. The final step in conducting a successful simulation study, 
step 7, involves documenting and presenting the simulation model results, which 
is the purpose of this final PhD thesis which documents the model, describes the 
computer program, and discusses the study results along with the validation pro­
cess to promote model credibility. 



Chapter 8 

Results 

We have described the design and development of a discrete event simulation 
model of TB and HIV that will be used to assess the effectiveness of different 
control strategies for TB. We have implemented a simple method for transmission, 
differentiating between transmission inside the household and transmission in the 
general community. This will allow us to determine the significance of household 
versus community transmission and to analyse interventions targeted at household 
contacts of TB patients. 

In this Chapter we describe the design and the results of the simulation ex­
periments aimed to investigate the effect of various intervention scenarios. This 
Section will also discuss a sensitivity analysis of the output and conclusions of the 

simulation experiments. 

8.1 Experimental Design 

The discrete event simulation model of TB transmission in Harare, Zimbabwe al­
lows us to consider various TB case-finding strategies and examine their impact. 
A few carefully selected case-finding scenarios were chosen as these represented 
extensions to the current TB control methods which allowed the relative effective­
ness of household interventions to be compared. 

The current policy of TB control in Zimbabwe is that of passive case-finding, 
where the rate at which individuals present themselves with TB is captured in the 
model by the diagnosis rate (see Chapter 7, Section 7.3.2.2). The intervention 
scenarios that we define assume that this background diagnosis rate continues, in 
other words the active case-finding policies applied to the model are seen as a 

118 
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supplement to the passive case-finding methods already in place in the population. 
We assume that no improvements are made to the current passive case-finding 
control policy in order to create a baseline simulation scenario to which all other 
policies can be compared. 

We are interested in the impact of different strategies for active case-finding 
on the magnitude of the TB epidemic, where this is measured by the number of 
TB cases found and the number of TB deaths and TB cases averted between the 
start of the interventions in 2008, and 2028. The active case-finding strategies we 
consider are: 

1. Investigating each member of a household in which there is a newly detected 
TB case or a death from TB, to see if there are any other undetected TB cases 
or members with a TB infection in the household 

2. Investigating all members of the same number of households, where the 
households are selected at random 

3. Investigating all members of the same number of households, where the 
households contain at least one HIV-positive person 

4. Investigating each member of the household of all persons entering late­
stage HIV to see if there are any undetected TB cases or members with a 
TB infection in the household (we assume that it is around this time that an 
HIV-positive individual will approach the health services) 

5. Investigating the same number of random households as in strategy 4 

Strategies 1, 2 and 3 can be compared directly with each other as they require 
the same level of effort in terms of the number of households that need to be 
visited (Table 8.1 gives details of the number of households visited as part of each 
intervention). Strategies 4 and 5 can be compared with each other and will provide 
an insight into whether TB disease is clustered in HIV-positive households. We 
assume that interventions 2 and 5, in which random households are visited, can 
be used to approximate an untargeted or community-wide intervention, as these 
interventions involve individuals being randomly selected from the population to 
be tested. 

We also consider a sixth strategy which investigates the effect of doubling the 
rate at which people with TB present for treatment. This strategy is not an active 
case-finding strategy and relies on patients coming forward for treatment earlier. 
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We have no suggested mechanism for doing this, however it acts as a comparison 
to the other scenarios and shows the effect of doubling the diagnosis rate. 

With the exception of the 6th strategy, the interventions involve a particular 
household being visited either because a member has presented themselves for TB 
treatment, a member has died from TB, a member is HIV-positive, a member is 
late-stage HIV or the house has been selected at random. Visiting the household 
involves testing each member for TB infection and disease. 

Detection is assumed to be done using tuberculin skin testing (TST) and spu­
tum microscopy. If an individual is found to have TB disease they will receive 
treatment and if found to have a TB infection, they will receive isoniazid pre­
ventive therapy (IPT). Preventive therapy is given to a person with a latent TB 

infection to prevent it developing into active disease and only provides protection 
against progression whilst the individual is on therapy. On the recommendation 
of medical professionals in CREATE and TB epidemiology experts belonging to 
the WHO [52], we assume that IPT is administered for the standard 6 months and 
is only effective in 50% of cases to account for the incomplete protection that has 
been observed in trials, and the combined effects of isoniazid resistant TB strains 
and imperfect compliance. 

We run 100 iterations of the simulation model to compare the strategies, finding 
the difference between the average number of TB deaths averted between the base 
case and the six strategies for each iteration. Other performance measures recorded 
include the average number of TB cases found and the average number of cases 
prevented through IPT. These performance measures are collected as a time series 
in order to see how efficacy changes over the course of the intervention. Finally, 
we output the TB incidence expected under each scenario in order to understand 
the impact of the interventions on the TB epidemic. 

8.1.1 Variance Reduction 

To minimise the variability, we use the same start point in 2008 for each scenario. 
This means that at the start of the trial period the simulation will have the same set 
of events scheduled and identical individuals with identical household structures 
for each strategy. 

We use the same "save state" method developed in Chapter 6, Section 6.4 in 
order to save each iteration's population and schedule set at the end of 2007. These 
sets are then read in systematically to form a starting point for each iteration of 
each trial enabling each trial to be directly compared. 
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8.2 Results 

Figure 8.1 shows the model estimates of the TB incidence in Zimbabwe expected 
from 2008 onwards under the baseline and intervention scenarios. It shows that 
strategies 1,2 and 3 have a relatively small effect on the TB epidemic which is due 
to the small number of houses that are visited as part of this intervention. This is 
in line with conclusions from a study in Nepal which found contact investigations 
can be an inefficient activity [189]. In this respect, strategies 4 and 5 perform much 
better. Table 8.1 shows the number of households visited per 10,000 households 
as part of each 20 year active case-finding intervention. It shows that 2972 house­
holds are visited over 20 years in interventions 1-3 but that over 6.5 times more 
households are visited through interventions 4 and 5. Despite strategies 4 and 5 
performing better than interventions 1-3, more than six times more households 
must be visited to complete these strategies and they would be much more costly. 

The relative benefits of employing strategy 1 (visiting households in which a 
person has been diagnosed with TB disease) versus strategies 2 (visiting the same 
number of random households) and 3 (visiting the same number of households 
with at least one HIV-positive) depend on the level of clustering ofTB cases within 
households and how this is affected by the presence of an HIV-positive member. 

Figures 8.2, 8.3 and 8.4 show that visiting households which contain at least 
one HIV-positive member mean more TB cases are found and more TB cases and 
deaths are averted than visiting the same number ofTB-diseased or random house­
holds. The results also suggest that not targeting TB-diseased or HIV-infected 
households and just visiting households randomly would be the least effective 
strategy. 

The analysis shows that although none of the first 3 interventions significantly 
impact the TB epidemic, strategy 3 (visiting households which contain at least one 
HIV-positive member) is the most effective intervention for finding cases, suggest-

. ing that there is some clustering of TB cases and HIV infection. The probability of 
a household with a member about to commence TB treatment having a second per­
son suffering from active TB disease is 0.010, whilst for a household with at least 
one HIV-positive member, the probability is 0.013 and for a general household the 
probability is 0.008. This explains why strategy 3 appears to perform better than 
the other two strategies, although the variability in the results is very high because 

of the small number of households being visited. 
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Figure 8.2: The average number of additional TB cases found, per 100,000 mem­

bers of the population, by each of the household interventions when compared 

with the base case; 90% confidence intervals are included 
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Figure 8.3: The average number of TB deaths averted, per 100,000 members of 

the population, by each of the interventions when compared with the base case; 

90% confidence intervals are included 
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Figure 8.4: The average number of TB cases averted, per 100,000 members of the 

population, by using IPT in each of the household interventions when compared 

with the base case; 90% confidence intervals are included 
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Intervention Number of Households (per 

10,000 households) 

1-3 
4-5 

2972 
19300 (x 6.5) 

Table 8.1: Table showing the number of households visited 

per 10,000 households as part of each 20 year active case­

finding intervention 
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The relative benefit of employing strategy 4 over strategy 5 is clear. Figures 8.2 

and 8.3 show that visiting late-stage HIV households (households with a member 

with late-stage HIV) means that more cases are found and more TB deaths averted 
compared to visiting households randomly. Additionally, Figure 8.1 shows the 

dramatic reduction in TB incidence expected if late-stage HIV households rather 
than random households are visited. This can be explained by the clustering of 

HIV and TB infections that occurs within households. 

8.2.1 The Clustering of HIV and TB within Households 

We have examined the model for the clustering of HIV and TB which has shown 

that the large majority of households containing one or more TB cases, contain 

HIV-infected individuals. 

We assign each household an HIV and TB coefficient. An HIV coefficient is a 
number between 0 and 1 which informs us what proportion of the household are 

currently infected with HIY. A TB coefficient is a number between 0 and 1 which 
informs us what proportion of the household currently have active TB disease. For 

example, if a household has the pair of coefficients (0,0), this implies no-one in 
the household has HIV or TB; if a household has the pair of coefficients (1,0.5), 

this implies that all of the household members have HIV and half of the members 

have active TB. 

We look at the distribution of the households amongst each of the possible 
combinations of coefficients and concentrate on only those with non-zero TB co­

efficients. Figure 8.5 shows the extent of HIV infection within TB diseased house­

holds. The diagram shows the disease coefficient of each household that has TB. 
If there was a perfect correlation between TB and HIV in which everyone with TB 
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Figure 8.5: The TB coefficient (proportion of the household with TB disease) and 

the HIV coefficient (proportion of the household infected with HIV) of each house­

hold. The diameter of each circle represents the proportion of households within 

the model, with that particular combination of coefficients. Only households with 

non-zero TB coefficients are shown 

has HIV and vice versa, you would expect all the points to lie on a straight positive 

diagonal line. The size of each point shows the proportion of households with that 

particular set of disease coefficients, for example the largest point is at (0.25,0.25) 

which means that the majority of TB diseased households have a quarter of their 

household infected with HIV, whilst a quarter of its members have active TB. The 

diagram shows that the majority of households have 10 to 40% of its members with 

active TB disease and 15 to 55% of its members HIV positive. Most significantly, 

the diagram shows that the majority (86%) of households containing a TB case, 

contain HIV-infected individuals. This relationship between the number of HIV 

and TB infections within a household suggests that if TB is present in a household 

it is likely that HIV is too. It therefore follows that in order to find TB cases, it is 

more efficient to look in households with HIV infections than visiting households 

randomly. 
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8.3 Questions Important to the Design of TB Con­
trol Strategies 

Presentation of these initial conclusions to medical experts and those interested in 
designing effective TB control strategies, led to two main questions being raised. 

1. Is the TB disease found in HIV-positive individuals due to reinfection or 
reactivation? 

2. Are the TB cases being found via applying case-finding strategy 4, mostly 
being found in the HIV late-stage individuals themselves and therefore do 
we need to visit their households at all? 

It was felt that addressing these questions would both contribute to our under­
standing of HIV-related TB and further explore the efficiency of the intervention 

which the model suggests would be most effective in reducing TB incidence in 
Zimbabwe; that of visiting households with individuals entering late-stage HIY. 

8.3.1 Is the TB disease found in HIV-positive individuals due to 
reinfection or reactivation? 

The epidemic of HIV has led to a dramatic resurgence of TB and although it is 

accepted that the increase in TB incidence is due to HIV-associated TB, it is not 
clear what the relative contribution of reinfection or reactivation is. Using the 
model we were able to output whether an HIV-positive individual gets active TB 

disease though primary infection, reinfection or reactivation. 

Figure 8.6 shows the percentage of TB disease in HIV-positive individuals at­
tributable to either primary infection, reinfection or reactivation for 40 years after 

the beginning of the HIV associated TB epidemic. It shows that on average 87% 
of HIV-associated TB is due to endogenous reactivation of a latent infection, with 
only 2% being attributable to reinfection and 11 % to primary infection. This im­

plies that the majority of HIV-associated TB is due to reactivation rather than the 

HIV-positive individual's inability to evoke an effective immune response to a new 
TB infection. 

This insightful result helps to explain why administering IPT to HIV-positive 
households (households with HIV-positive members) in interventions 3 and 4, 

means more cases are averted when compared to visiting the same number of 
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random or TB infected households. These interventions ensure HIV-positive indi­

viduals, who are at an increased risk of a latent infection reactivating, receive IPT 
and therefore more cases are averted than if IPT were administered to other indi­
viduals. Visiting HIV-positive households has a larger effect on the TB epidemic 
(Figure 8.1) because treatment is being targeted at the cause of HIV-associated TB. 

8.3.2 Do we need to visit the households of late-stage HIV indi­
viduals? 

Intervention 4 investigates each member of the household of all persons entering 
late-stage HIV to see if there are any undetected TB cases or members with a TB 
infection in the household. We assume that it is around this time that an HIV­
positive individual will approach the health services. The results have shown that 
this case-finding strategy performs the best as it averts the most TB cases and TB 
death events. The question is, could this be because the TB disease and infection 
we are finding is within the individuals entering late-stage HIV themselves, in 
which case we don't need to visit their households and could be carrying out TB 
detection and treatment within the HIV clinics. 

Using the model we were able to output whether TB disease and infection are 
being found in the late-stage individuals themselves or their household members. 

Figure 8.7 firstly shows whether those found to need treatment for TB disease 
or infection were the late-stage individuals, the late-stage individuals and at least 
one other household member, or at least one member of the late-stage individual's 
household but not the individual itself. Figure 8.7 secondly shows whether the 
cases of TB found through intervention 4 were found in the late-stage individuals, 
or one of their household members. 

The graphs show that out of all the households visited, treatment was adminis­
tered to just the late-stage individual in 10% of cases, however other household 
members required treatment in a further 5% of cases, and 23% of households 
required treatment of the late-stage individual's household members but not the 
late-stage individual itself. Further to that, 69% of the TB cases found in interven­
tion 4, were found to be in the members of the late-stage individuals' household. 
This shows clearly that a large proportion of the benefit of intervention 4 comes 
from visiting the households of the late-stage individuals and that if we just treated 
late-stage individuals in HIV clinics, we could only expect to find 30% of the in­
dividuals with TB disease and infection that would be found if their household 
members were also investigated. 
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8.4 Sensitivity Analysis 

The results of the modelling suggest that contact-tracing is relatively ineffective 
when the contacts are restricted to the household members of a person with active 
TB disease, but very effective when contacts of individuals entering late-stage HIV 
are considered. We are interested in how sensitive these results are to changes in 
key variables and assumptions of the models. In this Section, we aim to build 
confidence in the model's conclusions by exploring the results produced by the 
model when a few main assumptions are adjusted. 

8.4.1 Alternative Values for the Transmission Ratio and HIV 
Reactivation Rate 

Firstly we will look at the effect of changing the transmission ratio, r, which de­
termines how the transmission events are allocated between household or casual 
contacts; and the HIV reactivation rate, VHIV, which determines the rate at which 
those with both a late-stage HIV infection and a latent TB infection will progress 
to active TB disease. In Chapter 7, Section 7.4 we described how values for these 
parameter values were obtained and it was discussed that although the analysis 
clearly suggested that r = 9:1 and VHIV = 0.6, it would be valuable to assess the 
effect of setting r = 10:0 and VHIV = 0.45, which were values which produced a 
close to optimal model fit. 

As already discussed, the two scenarios behave similarly but the original values 
of rand VHIV produce a model which fits better than the alternative values as 
shown in Figure 8.8. Figure 8.9 shows the model estimates of the TB incidence 
in Zimbabwe expected from 2008 onwards under the baseline and intervention 
scenarios, when the alternative values of rand VHIV are used. It shows that the 
relative performance of each of the interventions remains the same, with case­
finding strategy 4 still having the largest effect on the TB epidemic. 

Figure 8.10 shows that when the performance of the interventions are com­
pared to their performance in the original model, less TB cases are found and less 
cases averted via IPT. This result is expected, as using household interventions for 
controlling TB when the transmission ratio is 10:0 and there is therefore no house­
hold transmission of TB, will be a less effective method than when household 
transmission is present. 

The important result from this analysis is that although household interven­
tions become less effective in this alternative model, we can be confident that if 
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Figure 8.9: Using a model with alternative transmission ratio and HIV reactivation 

rate values: Model estimates of the TB incidence in Zimbabwe under six interven­

tion scenarios. The graph shows the observed TB incidence data from Zimbabwe 

and the average TB incidence produced by the model from 100 runs of the baseline 

scenario and 100 runs of each intervention scenario when implemented in 2008 
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Figure 8.10: (a) The average number of additional TB cases found and (b) the 

average number of TB cases averted per 100,000 members of the population, by 

using IPT in each of the household interventions when compared with the base 

case. Results are shown for the original model when the transmission ratio and 

HIV reactivation rate are equal to 9: 1 and 0.60 respectively, and the model using 

the alternative values of 10:0 and 0.45 respectively; 90% confidence intervals are 

included 

the values for r and V HIV were to change, targeting HIV-infected households is 

still the most effective strategy. Scenario 3, visiting households with at least one 

HIV-positive individual, still performs best when compared to visiting random or 
TB-diseased households ; and scenario 4, visiting households with a member just 

entering late-stage HIV, means that more cases are found and more TB deaths 

averted compared to visiting households randomly. However, the results also show 

that when all TB transmission is assumed to be random, visiting households ran­

domly becomes more effective than contact-tracing TB patients. Finally, if there 

is no household transmission of TB then doubling the diagnosis rate, whilst not re­
ducing TB as significantly in the short term and therefore averting less TB deaths, 

would eventually produce a lower TB incidence in the long term (Figure 8.9). 

8.4.2 Alternative Long Term Behaviour of HIV Prevalence 

The second part of the sensitivity analysis looks at changing the assumptions re­

garding the expected future behaviour of the HIV epidemic . . Currently we fit a 

double logistic equation to the HIV prevalence data for Zimbabwe to provide esti­

mates of the HIV prevalence for Zimbabwe between 1980 and 2030 (Figure 6.13). 

The set of HIV prevalence estimates are used to inform the model of the prevalence 

in a particular year. The estimates obtained for the parameters of the double logis-



CHAPTER 8: RESULTS 133 

Average 3000 

Number ofT8 
Deaths Averted 2500 

(per lOOk popn) 
2000 

1500 

1000 

500 

-500 

. 9:1/0.60 -1000 

. 10:0/0.45 
-1500 

Intervention 

Figure 8.11 : The average number ofTB deaths averted per 100,000 members of the 

population, by each of the household interventions when compared with the base 
case. Results are shown for the original model when the transmission ratio and 
HIV reactivation rate are equal to 9: 1 and 0.60 respectively, and the model using 
the alternative values of 10:0 and 0.45 respectively; 90% confidence intervals are 
included 

tic equation imply that the HIV epidemic started during 1990, the peak prevalence 
of the epidemic is 28 .2% and that the long-term HIV prevalence will be 13.3% 
(see Section 6.5). 

We look at the effect on the TB epidemic produced by the model and the per­
formance of the interventions, of two different scenarios regarding long-term HIV 
prevalence. Firstly, we investigate the effect of using a double logistic equation 

which suggests a higher long-term HIV prevalence, and secondly, a prevalence 
whkh is lower, reduces more rapidly and eventually dies out. These two HIV 
prevalence scenarios can be seen in Figure 8.12 and are compared with the HIV 

prevalence estimates currently used by the model. 

Introducing a higher than predicted long-term HIV prevalence into the model 

does not have a large impact on the TB epidemic produced, as can be seen in 
Figure 8.13a. In the scenario where HIV prevalence is higher than predicted, we 
see that at around 2016, TB incidence becomes higher than expected when the 

original estimates of HIV prevalence are used. At this same time, approximately 

8 years after the interventions are implemented in the model, interventions 1, 2 
and 3 show a slight improvement in TB incidence when compared to the baseline 
scenario (Figure 8.15a). Figure 8.14 compares the number of TB cases found and 

averted under the different HIV scenarios for the various case-finding strategies. It 
shows that if long-term HIV prevalence is higher than expected, the performance 
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Figure 8.12: Graphs showing the original HIV prevalence estimates used by the 

model with the alternative lower and higher long-term HIV prevalence scenarios. 

The graphs show (a) the long-term behaviour of HIV for each scenario and (b) the 

behaviour during the time being considered by the DES TB model (1980-2028) 

of the interventions remains similar with approximately the same number of TB 

cases being found and averted by the various interventions. 

Introducing a lower than predicted long-term HIV prevalence into the model 

does have an impact on the TB epidemic produced, as can be seen in Figure 8.13b. 

In the scenario where HIV prevalence is lower than predicted, we see that TB 
incidence is signi'ficantly less than expected when the original estimates of HIV 

prevalence are used. Figure 8.14 compares the number of TB cases found and 

averted under the different HIV scenarios for the various case-finding strategies. It 

shows that if long-term HIV prevalence is lower than expected, the performance of 

the interventions is less good, with fewer TB cases being found and averted due to 

the overall lower levels of HIV and TB . The graph also shows that the conclusions 

regarding the relative impact of the interventions on the expected TB epidemic 

remains the same regardless of which HIV scenario is used. This is supported by 

Figure 8.15 which shows the model estimates of the TB incidence in Zimbabwe 

expected from 2008 onwards under the baseline and intervention scenarios when 

(a) long-term HIV prevalence is high, and (b) long-term HIV prevalence is low. 

The graphs clearly show the benefit of employing case-finding strategy 4 due to 

the relative reduction in TB incidence that can be expected regardless of which 

long-term HIV prevalence is being considered. 

Overall, the analysis shows that if the long-term prevalence of HIV is higher 

than predicted, we can expect a small impact on the TB epidemic and on the per­

formance of the interventions; and if the long-term prevalence of HIV is lower than 

predicted, the TB epidemic will be smaller and therefore the performance of the in­

terventions less good. The analysis shows, however, that the relative performance 
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of the interventions remains the same regardless of the long-term HIV prevalence 

scenario being considered, concluding that case-finding strategy 4 would always 

have the largest impact on reducing TB incidence. 

8.4.3 Increasing Confidence in the Conclusions 

In Chapter 7, Section 7.5 we did an uncertainty analysis which included investigat­

ing the effect of increasing the average household size. It concluded that changing 

the average household size from 3.99, which was implied by the Harare baseline 

data, to 5.5, as suggested by literature, does not effect the TB epidemic produced 

by the model. During the sensitivity analysis we also investigated whether it would 

affect the efficacy of the various case-finding strategies and found that the conclu­

sions and performance of the interventions were the same. 

The final analysis to test the sensitivity of the model's conclusions was to con­

sider the effect of introducing the interventions earlier. The reason for this analysis 

is two-fold. Firstly, the average TB incidence produced by the model fits ideally 

to all but the last two data points. As the interventions occur after the last two data 

points and when TB incidence data is not available, it would be useful to introduce 

the interventions at a time when we know the model fits accurately. Secondly, the 

final two data points suggest the unlikely case that TB incidence is still increasing 

in Zimbabwe and therefore it would be useful to introduce the interventions at a 

time when the TB epidemic is rising, to see how the interventions perform in this 
scenario. We therefore introduce the interventions at time 1996, when the TB epi­

demic is still increasing and the model's average TB incidence output fits well to 

the available TB incidence data for Zimbabwe. 

Figure 8.16 shows the model's estimates of TB incidence under the six in­

tervention scenarios, when they are introduced in 1996. Figure 8.17 shows the 

number of additional TB cases found and averted by each of the household inter­

ventions when compared with the base case. The results show that although the 
behaviour of the TB epidemic and the number of cases found and averted by the 

interventions is very different (because we are interfering with the TB epidemic at 

a different stage), the relative performance of the interventions follows the original 

conclusions. 

Figure 8.17 shows that case-finding strategy 3 is the most effective intervention 

for finding and averting TB cases when compared to I and 2; this suggests a clus­

tering of TB and HIV in households and again suggests that visiting households 

which contain at least one HIV-positive member is a more effective strategy than 
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Figure 8.16: Model estimates of the TB incidence in Zimbabwe under six interven­

tion scenarios. The graph shows the observed TB incidence data from Zimbabwe 

and the average TB incidence produced by the model from 100 runs of the baseline 

scenario and 100 runs of each intervention scenario when implemented in 1996 
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average number of TB cases averted by using IPT (per 100,000 members of the 

population), in each of the household interventions when implemented in 1996 

(when compared with the base case); 90% confidence intervals are included 
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contact-tracing individuals infected with TB or visiting households randomly. Fig­
ures 8.16 and 8.17 clearly show the relative benefit of employing strategy 4 over 
strategy 5 and again suggests that visiting households with a member entering 
late-stage HIV will mean that TB incidence will reduce more significantly, more 
TB cases will be found and more TB cases averted, when compared to visiting 

households randomly. 

The sensitivity analysis we have undertaken has shown that despite changing 
many of the model's key variables and assumptions, although changing the TB 
epidemic produced by the model in the expected ways, the overall conclusion re­
garding which case-finding strategy is most effective remain unchanged. 



Chapter 9 

Scenario Analysis 

We have described the design and development of a discrete event simulation 
model of TB and HIV which allows us to investigate the significance of household 
versus community transmission and to analyse interventions targeted at household 
contacts of TB patients. The results of the modelling and sensitivity analysis sug­
gest that contact-tracing of TB patients is relatively ineffective but that investigat­
ing the contacts of persons entering late-stage HIV performs very well and averts 
more TB deaths and TB cases than any of the other active case-finding strategies. 

In this Chapter we explore 8 variations of the original experiment described 
in Chapter 8. The purpose of the 8 scenarios is to explore the effect of possible 
changes to the underlying assumptions and design of the case-finding strategies. 

9.1 Scenario Design 

The original experiment is described in Chapter 8, Section 8.1 and compares the 
impact of 5 active case-finding strategies, along with a 6th strategy which looks 
at the effect of doubling the diagnosis rate, on the magnitude of the TB epidemic. 
The design of these intervention strategies assumes that isoniazid preventive ther­
apy (lPT) is administered to all those household members with a latent infection 
(diagnosed by a positive tuberculin skin test result) for a duration of 6 months, and 
that IPT has an efficacy of 50% [52] to account for incomplete protection due to 
non-compliance or drug resistance. 

These assumptions are based on what is widely accepted and used by medical 
professionals belonging to CREATE (The Consortium to Respond Effectively to 
the AIDS-TB Epidemic) [167] and involved in intervention trials in Africa. There 

140 
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is much discussion in the medical community however, over the ideal duration of 
IPT, to whom IPT should be administered and the level of protection that it offers. 

The first set of scenarios that we investigate explore the effect of changing the 
duration of IPT treatment. Firstly, we look at the effect of administering treatment 
for a duration of 9 months as recommended by the American Thoracic Society and 
the United States' Centers for Disease Control [204]; and secondly, a lifetime of 
IPT is administered on diagnosis of TB infection. This is currently being tried in 
adults in Botswana [32] and explored in children in Cape Town and Stellenbosch, 
South Africa [205]. 

The second set of scenarios that we investigate explore the effect of altering 
the level of protection gained from IPT. We have modelled IPT as giving 50% 
protection from TB, to account for the incomplete protection observed in trials, and 
the combined effects of isoniazid resistant TB strains plus imperfect compliance. 
As discussed, this assumption regarding the level of protection IPT provides was 
supplied by medical professionals in CREATE and TB epidemiologists belonging 
to the WHO [52], it is however useful to look at the sensitivity of the results to 
changes in this level and we therefore investigate the effect of a 25%, 75% and 
100% efficacy. 

The final set of scenarios that we investigate involve adjusting the proportion 
of households visited in case-finding strategy 4 (and therefore 5). The current 
experiment looks at visiting all of the households of those individuals entering 
late-stage HIY. This last set of scenarios looks at the effect of visiting only 25%, 
50% and 75% of the individuals' households to account for the fact that not all 
individuals entering late-stage HIV will seek medical attention and/or diagnosis of 
their HIV infection. 

The rest of this Chapter considers the results and implications of the 8 different 
scenarios. We divide the discussion into three sections to examine the effect of 
changing the duration of IPT treatment; the effect of altering the level of protection 
gained from IPT; and the impact of changing the proportion of households visited 
in interventions 4 and 5. 

9.2 Scenario Results: Adjusting IPT Duration 

The original experiment assumes the interventions administer IPT to all household 
members with a latent infection for a duration of 6 months (see Chapter 8, Section 
8.1). 
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Figure 9.1: Model estimates of the TB incidence in Zimbabwe under six interven­

tion scenarios with IPT being administered for 9 months. The graph shows the 

observed TB incidence data from Zimbabwe and the average TB incidence pro­

duced by the model from 100 runs of the baseline scenario and 100 runs of each 

intervention scenario when implemented in 2008 
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Figure 9.2: Model estimates of the TB incidence in Zimbabwe under six interven­

tion scenarios with IPT being administered for life. The graph shows the observed 

TB incidence data from Zimbabwe and the average TB incidence produced by the 

model from 100 runs of the baseline scenario and 100 runs of each intervention 

scenario when implemented in 2008 
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9.2.1 Administering IPT for 9 months 

Figure 9.1 shows the model estimates of the TB incidence in Zimbabwe expected 
from 2008 onwards under the baseline and intervention scenarios when IPT is 
administered for 9 months. This graph can be directly compared to Figure 8.1 
which shows the original model estimates when IPT is administered for 6 months. 
Figure 9.3b shows that increasing the duration of IPT increases the number of TB 
cases averted for all interventions, but that the increase is only substantial when 
intervention 4 is implemented. In this case, an average of 36% more cases are 
averted when IPT is administered for 9 months rather than 6 months. 

Comparing Figures 9.1 and 8.1 shows that increasing the duration of IPT does 
not impact the TB epidemic apart from when case-finding strategy 4 is imple­
mented. This indicates that for all other interventions, the slight increase in the 
number of TB cases averted by increasing the duration of IPT, is not significant 
enough to reduce TB incidence. During case-finding strategy 4 however, the im­
pact on the TB epidemic is considerable as can be seen in Figure 9.3a. 

Case-finding strategy 4 involves investigating each member of the household 
of all persons entering late-stage HIV to see if there are any undetected TB cases 
or members with a TB infection in the household. If an individual is found to 
have TB disease they will receive treatment and if found to have a TB infection, 
they will receive IPT. Increasing the duration of IPT during this intervention has 
a significant impact on both the number of TB cases averted and the overall TB 
epidemic. The fact that this effect is only seen when case-finding strategy 4 is im­
plemented implies firstly a clustering of HIV and TB in households, and secondly, 
the potential of targeted mass preventive therapy (discussed in Section 9.2.2). 

The success of increasing the duration of IPT being administered in late-stage 
households (households with at least one member with late-stage HIV) is further 
proof of the clustering of HIV and TB that occurs within households which makes 
looking in HIV-infected households an efficient way of finding TB infection and, 
further to that, makes looking in households with late-stage HIV members even 
more efficient as it means preventing the progression of TB disease in the most 
vulnerable group. 

9.2.2 Administering IPT for life 

Figure 9.2 shows the model estimates of the TB incidence in Zimbabwe expected 
from 2008 onwards under the baseline and intervention scenarios when IPT is 
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administered for the rest of an individua1's lifetime once their infection has been 

detected. This graph can be directly compared to Figure 8.1 which shows the 

original model estimates when IPT is administered for 6 months. Figure 9.3b 

shows that administering IPT for life significantly increases the number of TB 

cases averted for all interventions. 

Comparing Figures 9.2 and 8.1 shows that administering IPT for the rest of 

an individual's lifetime impacts the TB epidemic in all interventions. For the first 
time we even see a reduction in TB incidence in case-finding strategies 1 to 3. This 

implies that contact-tracing of TB patients will only reduce TB incidence if IPT 

is administered for life. Strategies 4 and 5 are still by far the best interventions 
and are now clearly better than doubling the rate at which TB patients present 

for treatment. The impact of case-finding strategy 4 when a lifetime of IPT is 

administered on diagnosis of infection, is even more substantial than in previous 

experiments, with TB incidence expected to halve in just 3 years and return to 

pre-HIV levels within 13 years. 

As previously discussed in Section 9.2.1, the success of increasing the duration 

of IPT being administered in late-stage households is due to TB being prevented in 

the groups most vulnerable to disease progression. The success also highlights the 

potential impact of targeted mass preventive therapy (where IPT is given to a large 

proportion of a specific population). The effect of treating a large proportion of 

the population on the TB epidemic is apparent, but what is interesting is the obvi­
ous benefit of targeting the late-stage households versus the population in general 

(intervention 4 versus intervention 5 in Figures 9.1 and 9.2); and when late-stage 

households are targeted, the difference between administering a 6 month, 9 month 

or lifetime course (Figure 9.3a). This implies that although mass preventive ther­

apy has the potential to rapidly reduce TB incidence in populations, this effect is 

significantly reduced by a short treatment duration and by not targeting a specific 

population. 

9.3 Scenario Results: Adjusting IPT Efficacy 

The original experiment assumes that the IPT administered during the interven­

tions has an efficacy of 50%. The set of scenarios discussed in this Section investi­

gate the sensitivity of the conclusions regarding intervention design to changes in 

the assumption regarding IPT efficacy. Although we expect to see an improvement 

in each intervention's performance as the efficacy increases, we are specifically in­

terested in whether the relative performance of each intervention changes if the 



CHAPTER 9: SCENARIO ANALYSIS 146 

efficacy assumption is altered, to ascertain whether the same case-finding strategy 

would be recommended regardless of actual IPT efficacy. 

9.3.1 Administering IPT with an Efficacy of 25% 

Figure 9 Aa shows the model estimates of the TB incidence in Zimbabwe expected 

from 2008 onwards under the baseline and intervention scenarios when IPT is 

administered with an efficacy of 25%. This graph can be directly compared to 
Figure 9Ab which shows the original model estimates when IPT has an efficacy of 
50%. 

The graph shows that interventions 1 to 3 still have no impact on the TB epi­
demic and that if IPT only has an efficacy of 25%, intervention 5 would also have 

little impact on TB incidence. Intervention 4 still performs the best at preventing 
TB cases and reducing TB incidence, although the average reduction in TB inci­
dence is less than half that of when the efficacy was 50%. Figure 9.5 shows the 
average number of TB cases prevented per 100,000 members of the population 
for each intervention under the different IPT efficacy assumptions, and shows that 
reducing the efficacy of IPT from 50% to 25% would mean an average decrease of 

44% in the number of TB cases prevented by each of the interventions. 

9.3.2 Administering IPT with an Efficacy of 75% 

Figure 9 Ac shows the model estimates of the TB incidence in Zimbabwe expected 

from 2008 onwards under the baseline and intervention scenarios when IPT is 
administered with an efficacy of 75%. This graph can be directly compared to 

Figure 9Ab which shows the original model estimates when IPT has an efficacy of 
50%. 

The graph shows that interventions 1 to 3 still have very little impact on the 

TB epidemic and that if IPT efficacy is increased from 50% to 75% there is little 
improvement in the impact of intervention 5 on the TB epidemic. Intervention 

4 still performs the best at reducing TB incidence and preventing TB cases with 

a 50% increase in efficacy causing just less than a 50% increase in the average 
reduction of TB incidence. Figure 9.5 shows the average number of TB cases 

prevented per 100,000 members of the population for each intervention under the 

different IPT efficacy assumptions, and shows that increasing the efficacy of IPT 
from 50% to 75% would mean an average increase of 52% in the number of TB 

cases prevented by each of the interventions. 
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Figure 9.5: The average number of TB cases averted per 100,000 members of the 

population when IPT has an efficacy of 25 %, 50%, 75% and 100% in each of 

the household interventions when compared with the base case; 90% confidence 

intervals are included 

9.3.3 Administering IPT with an Efficacy of 100% 

Figure 9 Ad shows the model estimates of the TB incidence in Zimbabwe expected 
from 2008 onwards under the baseline and intervention scenarios when IPT is 

administered with an efficacy of 100%. This graph can be directly compared to 

. Figure 9Ab which shows the original model estimates when IPT has an efficacy of 

50%. 

The graph shows that interventions 1 to 3 still have very little impact on the 

TB epidemic even if IPT is 100% effective. If IPT efficacy is increased from 50% 

to 100% there is still little improvement in the impact of intervention 5 on the 

TB epidemic. Intervention 4 still performs the best at reducing TB incidence and 

preventing TB cases with a 100% increase in efficacy causing a 72% increase in 

the average reduction of TB incidence. Figure 9.5 shows the average number of 

TB cases prevented per 100,000 members of the population for each intervention 

under the different IPT efficacy assumptions, and shows that increasing the efficacy 

ofIPT from 50% to 100% would mean an average increase of 73% in the number 

of TB cases prevented by each of the interventions. 

9.3.4 The Impact of Adjusting IPT Efficacy 

In summary, even increasing the efficacy of IPT to 100% means that interventions 

1 to 3 do not impact on the TB epidemic. These interventions rely on TB patients 
dying or presenting for treatment, causing either a TB , HIV or random household 
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to be visited, tested for TB and appropriately treated . Increasing the efficacy of 

IPT administered to individuals with a TB infection does increase the number of 

TB cases averted (Figure 9.5) and the number of TB deaths averted (Figure 9.6) 

however, the number is not significant enough to visibly impact the TB epidemic 

and cause a reduction in TB incidence. 

Regardless of the efficacy of IPT, we find that the original results and con­

clusions regarding case-finding strategies 1 to 3 (discussed in Chapter 8) hold, 

suggesting that contact-tracing of TB patients is not the most effective strategy. 

The fact that regardless of the efficacy of IPT, visiting households with at least 

one HIV-positive member means more TB cases are found, and more TB deaths 

and cases are averted, indicates that the clustering of TB in HIV-positive house­

holds is so important that even if IPT has a low efficacy, it is still more effective 

to concentrate interventions in HIV households rather than random households or 

households with at least one TB diseased member. 

When considering the impact of IPT efficacy on the performance of interven­

tion 5 we see that its impact on reducing TB incidence does not change as efficacy 

increases, but that there is an increase in the average number of TB cases and TB 

deaths averted (Figures 9.5 & 9.6) . Increasing the efficacy from 25% to 50%, for 

example, means an average of 250 extra TB deaths per 100,000 members of the 

population would be averted. This indicates that increasing the efficacy of IPT in 

intervention 5 has a large benefit, but that this benefit will not be seen in the annual 

TB incidence figures. 

Finally, the analysis shows that intervention 4 still out performs the other in-
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terventions even when IPT efficacy is varied. When considering the impact of IPT 
efficacy on the performance of intervention 4 (visiting late-stage households), we 
see that its impact on the TB epidemic is greatly improved as efficacy is increased. 
Figure 9.4 shows that as efficacy increases, the reduction in TB incidence produced 
by intervention 4 becomes more pronounced. Figures 9.5 & 9.6 also show that the 
number of TB cases and TB deaths averted increases as efficacy improves. 

In conclusion, as expected, increasing IPT efficacy will increase the benefit 
of the interventions by increasing the number of TB cases and TB deaths averted 
by each of them. The biggest improvement comes from increasing the efficacy 
from 25% to 50% where doubling the efficacy almost doubles the average ben­
efit in terms of the average number of TB deaths and cases averted per 100,000 
members of the population. Improving the efficacy from 25% to 75% or 100% 
(a 200% and 300% increase) means an average increase in benefit of 165% and 
214% making the increases less economic. Although this increase in benefit is 
seen in all the interventions, the only intervention in which a noticeable change in 
TB incidence will occur as efficacy is varied, is intervention 4 (visiting late-stage 
households). Most importantly, the analysis shows that the relative performance of 
each intervention does not change as the efficacy assumption is altered and there­
fore the same conclusions are made regarding which case-finding strategy is most 
efficient, regardless of actual IPT efficacy. 

9.4 Scenario Results: Adjusting the Proportion of 
Late-Stage Households Visited 

The original experiment assumes that in case-finding strategy 4, we investigate 
each member of the household of all persons entering late-stage HIV to see if there 
are any undetected TB cases or members with a TB infection in the household (we 
assume that it is around this time that an HIV-positive individual will approach 
the health services). In reality, not 100% of HIV-positive individuals will seek 
medical attention when becoming sick and therefore this set of scenarios explores 
the relative performance of intervention 4 (and therefore 5) when the assumption 
regarding the proportion of late-stage ho~seholds that are visited is varied. A late­
stage household is a household of an HIV-positive individual who has just entered 
late-stage HIY. We look at the impact of only 25%, 50% and 75% of these indi­
viduals presenting themselves for medical attention, causing their household to be 
investigated for TB. Graphs showing the average number of additional TB cases 
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found, TB deaths averted and TB cases averted, per 100,000 members of the popu­

lation, by each of the household interventions in each of the scenarios can be seen 

in Appendix O. Appendix N gives details of the number of households visited in 

each of the scenarios. 

9.4.1 Visiting 25 % of Late-Stage Households 

Figure 9.7 a shows the model estimates of the TB incidence in Zimbabwe expected 

from 2008 onwards under the baseline and intervention scenarios when 25% of 

late-stage households are investigated. This graph can be directly compared to 

Figure 9.7d which shows the original model estimates when 100% of late-stage 

households are visited. 

The graph shows that intervention 6 (doubling the rate at which people with TB 

present for treatment) is the only intervention which causes a noticeable reduction 

in TB incidence. All of the case-finding strategies have little impact on the TB 

epidemic and when the other performance measures are examined we see that 

intervention 4 still performs best at finding the most TB cases and averting the most 

TB deaths and TB cases (Figure 0.1). If only 25% of late-stage individuals present 

themselves for medical attention, intervention 4 would still be recommended as the 

most effective case-finding strategy. Intervention 6 would be recommended overall 

as if a mechanism for encouraging twice as many individuals with TB to present 

for treatment was established, this would reduce TB incidence and TB deaths more 

than any active case-finding strategy (Figure 0.1). 

9.4.2 Visiting 50% of Late-Stage Households 

Figure 9.7b shows the model estimates of the TB incidence in Zimbabwe expected 

from 2008 onwards under the baseline and intervention scenarios when 50% of 

late-stage households are investigated. This graph can be directly compared to 

Figure 9.7d which shows the original model estimates when 100% of late-stage 

households are visited. 

The graph shows that interventions 4 (visiting late-stage households) and 6 

(doubling the rate at which people with TB present for treatment) are the only 

interventions which cause a noticeable reduction in TB incidence. All of the other 

case-finding strategies have little impact on the TB epidemic. When the other 

performance measures are examined we see that intervention 4 is the case-finding 

method which finds the most TB cases and averts the most TB deaths and TB 
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cases (Figure 0.2). If only 50% of late-stage individuals present themselves for 

medical attention, intervention 4 would still be recommended as the most effective 
case-finding strategy. 

If the aim were to achieve the largest reduction in TB deaths and TB incidence 
over 20 years, intervention 6 would be recommended as it reduces TB more than 
any of the active case-finding strategies. If the aim were to achieve the largest im­
mediate reduction in TB incidence (perhaps with a view to introducing a different 
strategy after a few years), intervention 4 would be recommended. Although visit­
ing late-stage households does not perform best when considered over the 20 year 
intervention period, it does perform best in the first 5 years as it elicits the biggest 
reduction in TB incidence. 

9.4.3 Visiting 75% of Late-Stage Households 

Figure 9.7 c shows the model estimates of the TB incidence in Zimbabwe expected 
from 2008 onwards under the baseline and intervention scenarios when 75% of 
late-stage households are investigated. This graph can be directly compared to 
Figure 9.7d which shows the original model estimates when 100% of late-stage 
households are visited. 

The graph shows that interventions 4 (visiting late-stage households), 5 (visit­
ing random households) and 6 (doubling the rate at which people with TB present 
for treatment) now cause a noticeable reduction in TB incidence, with all of the 
other case-finding strategies having little impact on the TB epidemic. Interven­
tion 4 is the case-finding method which finds the most TB cases and averts the 
most TB deaths and TB cases (Figure 0.3), therefore, if only 75% of late-stage 
individuals present themselves for medical attention, intervention 4 would still be 
recommended as the most effective case-finding strategy. 

If the aim were to achieve the largest reduction in TB incidence over 20 years, 
intervention 6 would be recommended as it reduces TB in the long term more than 
any active case-finding strategy. If the aim were to achieve the largest immediate 

reduction in TB incidence (perhaps with a view to introducing a different strat­
egy after a few years), intervention 4 would be recommended. Visiting late-stage 
households elicits the biggest reduction in TB incidence for the first 12 years of 
the intervention and although it does not produce the biggest reduction in the long 
term, it does avert the largest number of TB deaths per lOO,OOO members of the 
population (Figure 0.3). 
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9.4.4 The Impact of Adjusting the Proportion of Late-Stage 
Households Visited 

In summary, the analysis shows that when the assumption regarding the proportion 
oflate-stage individuals that will seek medical attention (and therefore the propor­
tion of late-stage households that are visited) is varied, the conclusions regarding 
which intervention should be selected will change. 

If only 25% oflate-stage individuals present themselves to the medical services 
causing their household to be visited and examined, establishing a way to double 
the rate at which individuals with TB present themselves (intervention 6) is the 
most effective intervention for reducing TB. 

If the proportion is 50% or 75%, the recommended strategy would depend on 
the overall aim of the intervention. If the aim of the intervention were to achieve 
the biggest possible reduction in TB incidence in the long term (over the 20 years), 
establishing a way to double the rate at which individuals with TB present them­
selves (intervention 6) would again be recommended. If the aim were to achieve 
the biggest possible immediate reduction in TB incidence (in the first 5-10 years of 
the intervention), visiting late-stage households (intervention 4) would be recom­
mended. If the aim were to reduce the number of TB deaths per 100,000 members 
of the population, intervention 6 would be suggested if 25% or 50% of late-stage 
households could be visited, and intervention 4 would be suggested if 75% or 
100% of late-stage households could be visited. 

In conclusion, assuming the aim of an intervention is to reduce TB incidence 
as quickly as possible and to reduce the number of TB deaths, at least 50% of 
late-stage households would need to be visited in order for intervention 4 to be 
recommended, otherwise intervention 6 would be recommended. If intervention 6 
were not possible, in other words, a method for doubling the rate at which individ­
uals with TB present themselves could not be established, a case-finding strategy 
would have to be considered. Interestingly, intervention 4 always performs the 
best out of the case-finding strategies and therefore if a case-finding strategy were 
to be recommended, visiting late-stage households would always be suggested as­
suming between 25% and 100% of late-stage households could be identified. 

9.5 Conclusions 

This Chapter has explored 8 scenarios, which are variations of the original ex­
periment described in Chapter 8, to explore the effect of possible changes to the 
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underlying assumptions and design of the case-finding strategies. 

The first set of scenarios investigated the effect of changing the duration of IPT 
treatment. The analysis highlighted the potential impact of targeted mass preven­
tive therapy. It firstly showed the benefit of administering IPT for the rest of an 
individual's lifetime once their infection has been detected, and secondly showed 
the benefit of targeting late-stage households versus the population in general. 

The second set of scenarios investigated the effect of altering the level of pro­
tection gained from IPT. The analysis showed that increasing IPT efficacy will 
increase the benefit of the interventions by increasing the number of TB cases and 
TB deaths averted by each of them. Although this increase in benefit is seen in 
all the interventions, the only intervention in which a noticeable change in TB in­
cidence will occur is intervention 4 (visiting late-stage households). The analysis 
also showed that the relative performance of each intervention does not change 
as the efficacy assumption is altered and therefore the same conclusions are made 
regarding which case-finding strategy is most efficient, regardless of actual IPT 
efficacy. 

The final set of scenarios investigated the effect of adjusting the proportion 
of households visited in case-finding strategy 4 (and therefore 5). The analysis 
showed that which intervention should be selected will depend on the expected 
proportion of late-stage individuals that will seek medical attention, therefore en­
abling their household to be visited and examined. It also showed that if less than 
100% of late-stage individuals present themselves to the medical services, that the 
choice of intervention will depend on the aim of the intervention, whether that be 
to achieve the largest reduction in TB incidence in the short term or the long term. 

An interesting result that can be seen throughout all of the scenarios is the rel­
ative performance of interventions which target households of people with TB or 
HIV compared with untargeted or community-wide interventions. We make the 
assumption that visiting households randomly can represent the effect of an un­
targeted or community-wide intervention where individuals volunteer themselves 
to attend a mobile TB clinic in their village, for example. We assume therefore, 
that interventions 2 and 5, in which random households are visited, can be used 
to approximate an untargeted or community-wide intervention, as these interven­
tions involve individuals being randomly selected from the population to be tested. 
When interventions 1 to 3 are compared, we find that if HIV or TB households 
are targeted, the intervention performs better than if a community-wide interven­
tion were used (represented by intervention 2). More TB cases are found, more 
TB deaths averted and more TB cases averted in the targeted household inter-
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ventions. Similarly, when interventions 4 and 5 are compared, we find that the 

targeted household intervention (intervention 4) performs significantly better than 

the community-wide intervention (represented by intervention 5) at reducing TB 
incidence, finding TB cases, averting TB deaths and averting TB cases. These 

conclusions are not sensitive to changes in the various assumptions explored in 

this Chapter meaning we are confident that targeted household interventions may 

be more effective than untargeted or community-wide interventions. 



Chapter 10 

Discussion 

It is believed that this thesis describes one of the first attempts at an individual­

based microsimulation model of TB. The aim of the research is to examine the ef­

fect of active case-finding strategies for TB control in high HIV prevalent settings, 

specifically Harare, Zimbabwe. The active case-finding strategies we investigate 

involve targeting members of random versus TB or HIV infected households, in 

order to get a clearer understanding of the role of household versus community 

transmission ofTB. 

The research objectives for the work reported in this thesis are provided in 

Chapter 1, Section 1.1. The next Section summarises the work done under these 

objectives. 

10.1 Summary of Research 

1. To develop a mathematical model of TB transmission and disease in Harare, 
Zimbabwe, in order to enable accurate simulation of possible active case­
finding strategies for TB control in HIV prevalent populations. 

To answer this research question we began with an examination of the liter­

ature to obtain an understanding of TB epidemiology (Chapter 3), we explored 

the dynamic relationship between TB and HIV using a simple parametric model 

(Chapter 4), and we considered the structure of previous models to investigate 

possible representations of the natural history of TB (Chapter 5). 

Having looked into the natural history of TB, the interaction between TB and 

HIV, and previous infectious disease and tuberculosis modelling literature we had 

157 



CHAPTER 10: DISCUSSION 158 

a comprehensive appreciation of which processes would need to be captured and 
how. This enabled us to develop a DES model of TB transmission and disease 
(Chapters 6 & 7). 

The model describes the movement of individuals through seven possible stages 
of TB disease. The movements through the pathways of the model are determined 
by an individual's attributes (age, gender, HIV status), with the distributions used 

to describe progression currently based on information gathered during the liter­
ature review (Chapter 3), development of the simple DCM (Chapter 5), and data 
from the Harare survey conducted by DETECTB (Chapter 2, Section 2.6.1). 

Tuberculosis is usually transmitted by an infectious person coughing; therefore 
close contact is required for transmission, making transmission within the house­
hold particularly important. Hence we modelled transmission within the house­
hold separately from transmission within the general community. A further reason 
for separating household and community transmission was to allow us to evaluate 
household strategies for active case-finding of persons with active TB disease. 

A validation and verification of the model was undertaken (Chapter 7, Section 
7.7). This included frequent discussion of the model with DETECTB and expert 
medical and infectious disease modelling audiences where the assumptions, algo­
rithms and various modelling aspects were discussed. This ensured that any errors 
in epidemiological understanding were reduced and the necessary epidemiologi­
cal complexities were identified and satisfactorily represented in the model as it 
evolved. It also meant that other more general modelling issues such as the way in 
which the population is initially generated or the way in which births and deaths 
are managed, could be discussed. Expert suggestion was used throughout the de­
velopment of the model to improve the accuracy of these and other processes. Ar­

eas in which the processes could still be improved upon were highlighted through 
these discussions and are considered in Sections 10.2 and 10.3 which discuss the 
limitations of the research and what further work will be done. 

Various graphical comparisons of model output to available data were also 
considered to see whether the outputs of the simulation model have the required 
accuracy for the purpose of the analysis. This included a comparison of histori­
cal TB incidence data with the model output of TB incidence (Chapter 7, Figure 
7.11) which suggested that the model is able to reproduce TB incidence rates in 
Zimbabwe both before and after the onset of the HIV epidemic. The model pro­
vides a good description of HIV-negative TB but as the model does not produce 
as sustained an increase in TB cases as the historical data, it could suggest that 
the model may be underestimating the effect of HIV on TB disease as the HIV 
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epidemic matures. 

Consideration of this model output and the opinion of various subject matter 
expects, suggests the simulation model described in this thesis imitates the HIV 

prevalent population of Harare and the effects of household versus random trans­

mission of TB. The model is regarded as accurate enough to compare the relative 
effectiveness of household interventions in controlling TB and the outcomes of 

different active case-finding methods. 

This study uses data from a large population-based trial in Harare, Zimbabwe. 

However only TB incidence and HIV prevalence data for Zimbabwe were available 
to compare with the model's output. It would have been beneficial to have had lon­

gitudinal TB incidence and HIV prevalence data so that the model's output could 

have been compared with an urban setting rather than country-wide statistics. The 
model would have also benefited from having data on the sexual behaviour in Zim­

babwe, so that the age distribution of new HIV infections in the model could be 
related to the age distribution of sexual activity in Zimbabwe rather than the UK 
(Chapter 6, Section 6.5.1). Finally, to improve the distributions used to describe 

disease progression, it would have been useful to have had data on the time it 
takes for an individual to become diagnosed with TB, and the time it takes for an 

individual to default from treatment. 

2. To enable comparative projections of the likely impact of possible strategies 
relative to one another to allow a full assessment of the effectiveness of differ­
ent contact-tracing and case-finding strategies in HIV prevalent populations. 

We considered some active case-finding strategies to test on the model which 
are described in Chapter 8, Section 8.1. Three were: contact-tracing TB patients, 

contact-tracing HIV-positive individuals and contact-tracing late-stage HIV indi­
viduals (HIV-positive individuals entering late-stage HIV are assumed to seek 

medical attention at this time). These strategies involve visiting the household 

members of a person being put on TB treatment or dying of TB; or of a person 
with a particular HIV status. Those found to have active TB disease are treated 

promptly with the aim of reducing the time spent with infectious TB and so cut­
ting transmission rates, and those found to have a TB infection are given a course 

of isoniazid preventive therapy (IPT) with the aim of preventing the infection from 

progressing to active TB. These three case-finding strategies are compared with 
visiting the same number of households randomly allowing a direct comparison 

and full assessment of the effectiveness of the different strategies to be made. An 
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additional intervention which looked at the effect of doubling the rate at which TB 
patients present themselves for treatment was also tested. 

We ran the simulation model to compare the strategies and output projections 

of the TB incidence expected under each scenario. We also output the difference 
between the average number of TB deaths averted, TB cases found and TB cases 
averted per 100,000 members of the population between the base case and the 

six strategies. This allowed us to assess the impact of the different interventions 
relative to each other and to examine their effectiveness as TB control methods in 
HIV prevalent settings. 

The results are explored in Chapter 8, Section 8.2 and showed that contact­
tracing of TB patients had a relatively small effect on the TB epidemic due to 
the small number of households that were visited as part of this intervention. We 
found that similar TB incidence levels could be expected if we visited the same 
number of households, but where the households were selected at random or the 
households had at least one HIV-positive member, and therefore none of the inter­
ventions reduced the expected TB incidence levels. When the other performance 
measures were considered, visiting HIV-infected households performed better than 
contact-tracing TB patients and contact-tracing TB patients was more effective 
than visiting households randomly, in terms of the number of TB cases found and 
averted. 

The results showed that visiting households in which a member has recently 
progressed to late-stage HIV, was clearly the most effective intervention, although 
this involved visiting six times the number of households and no attempt was made 
to examine the efficiency or cost-effectiveness of this method. 

The scenario analysis carried out in Chapter 9 explored the effect of possible 
changes to the underlying assumptions and design of the case-finding strategies. 
It allowed the relative performance of the interventions to be compared as the du­
ration and efficacy of IPT, and the proportion of late-stage households visited was 
varied. It showed the potential of targeted mass preventive therapy and the benefit 
of administering IPT for an individual's lifetime once their infection was detected, 
versus shorter durations. The analysis concluded that the relative performance of 
the case-finding strategies was not altered by changes to various assumptions. 

We have some confidence therefore, that the active case-finding method of 

contact-tracing TB patients will not significantly impact the TB epidemic; visit­
ing households randomly is the least effective case-finding strategy; and contact­
tracing HIV patients always performs better at finding the most TB cases and avert­
ing the most TB deaths and TB cases per 100,000 members of the population and 
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is therefore the most effective case-finding strategy. 

3. To predict how variable population attributes are likely to effect the relative 
success of different interventions. 

The results showed that contact-tracing HIV patients would be the most ef­

fective active-case finding strategy, compared to contact-tracing TB patients or 

visiting households randomly. 

This is explained by the clustering of HIV and TB infections observed within 

households. The model was able to examine this effect more closely and found 

that the large majority of households containing one or more TB cases, contained 

HIV individuals (Chapter 8, Section 8.2.1). This relationship suggests that if TB 

is present in a household it is likely that HIV is too. 

Analysis also showed that the majority of HIV-associated TB is due to endoge­

nous reactivation (Chapter 8, Section 8.3.1) explaining why administering IPT to 

households with HIV-positive members means more cases are averted when com­

pared to visiting the same number of random or TB-infected households. These 

interventions ensure HIV-positive individuals, who are at an increased risk of a 

latent infection reactivating, receive IPT, and therefore more cases are averted than 

if IPT were administered to other individuals. 

Clearly, visiting households with HIV-infected members is an effective inter­

vention for TB control firstly because this is an efficient way to find TB cases and 

secondly because preventive treatment is targeted at those susceptible to reactiva­

tion of a latent infection; the main cause of the HIV-associated TB epidemic. 

The research suggests that the HIV status of members of a household will effect 

the relative success of a household intervention. 

This research does not consider the realities of implementing interventions in 

which diagnosis of an individual with HIV leads to their household being inspected 

for TB disease and infection. The HIV status of an individual is a sensitive issue 

and many individuals with HIV would not want members of their household to 

know their status. Therefore, the moral and social implications of such an inter­

vention would need to be carefully considered when it was being designed. Treat­

ing TB disease and infection at HIV clinics is the obvious substitute however, the 

analysis (Chapter 8, Section 8.3.2) showed that only a third of the individuals with 

TB disease would be found compared to if their households were also visited, and 

that in the majority of cases in which preventive treatment is needed, it is required 

by members of late-stage individual's household. 
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4. To determine the relative effectiveness of household interventions in con­
trolling TB in HIV prevalent populations. 

We designed the case-finding strategies so that interventions which targeted 

households of people with TB or HIV could be compared with an untargeted or 

community-wide intervention, therefore enabling the benefit of household inter­

ventions to be evaluated (Chapter 8). We made the assumption that visiting house­
holds randomly represented the effect of an untargeted or community-wide inter­

vention where individuals volunteer themselves to attend a mobile TB clinic in 

their village, for example. 

The analysis has shown that targeting households of TB patients (intervention 

1) and HIV-positive individuals (intervention 3 & 4) is more effective than an un­

targeted intervention (intervention 2 & 5). More TB cases were found and more 

TB cases and TB deaths were averted when a targeted household intervention was 

used than when a community-wide intervention was explored. Targeted household 

interventions are therefore more effective than untargeted or community-wide in­

terventions, assuming the same number of participants would be recruited into 

each. 

Two results which support this conclusion can be highlighted. In Chapter 8, 

Figure 8.1 shows that when targeting households with at least one member with 

late-stage HI V, there is a significant reduction in TB incidence when compared to 

the untargeted intervention, despite the same number of individuals being reached. 

This implies that when individuals are being found at random, a much larger pro­

portion of the popUlation needs to be reached in order to obtain the same benefit 

as a targeted household intervention. Similarly, in Chapter 9, Section 9.4.1 we in­

vestigated targeting less than half the number of individuals through membership 

to a TB diseased or HIV-infected household, than individuals recruited randomly 

(Appendix N gives details of the number of households visited as part of each in­

tervention). We find that the targeted household interventions perform the same or 

better, despite less than half the number of individuals being reached. This indi­

cates that in order to observe the same benefit in a community-wide intervention as 

a targeted household intervention you would have to recruit more than double the 

number of participants. These results suggest that interventions based on finding 

individuals at random in the community are ineffective compared to interventions 

targeted at TB-diseased or HIV-infected households. 

These conclusions are not sensitive to various changes to the model's assump­

tions and the intervention design (explored in the sensitivity analysis in Chapter 

8, Section 8.4 and the scenario analysis in Chapter 9), meaning we have more as-
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surance that targeted household interventions are more effective than community­

wide interventions. The only exception to this is when the transmission ratio, 

which determines how the transmission events are allocated between household 

or casual contacts, was changed so that there was no household transmission of 
TB. The results (Chapter 8, Section 8.4.1) showed that although the household 

interventions became less effective if all TB transmission is assumed to be ran­

dom, targeting HIV-infected households was still more efficient than a community­
wide intervention yet a community-wide intervention becomes more effective than 

contact-tracing TB patients. 

This research has relied upon the assumption that the interventions in which 
random households are visited can be used to approximate a community-wide in­

tervention. This assumption is not ideal, however, to accurately reproduce the 

effect of a mobile TB clinic visiting villages, for example, geospatial modelling 
would be required. It was felt that for the purposes of this research, which investi­

gates the relative effectiveness of household interventions and was not concerned 
with community interventions as such, visiting random households is a good ap­
proximation of a community intervention for TB control, but there is clearly room 

for improvement and further modelling will address this issue (discussed in Sec­

tion 10.3). 

We have ascertained that targeted household interventions are more effective 
than community-wide interventions, however the efficacy of a household interven­
tion depends on recruiting a large number of participants (although less than would 

be needed if a community-wide intervention were being used). In this respect, 

contact-tracing TB patients is relatively ineffective because of the small number of 
individuals reached through this intervention. In an HIV prevalent population, a 

household intervention such as visiting the households of late-stage HIV members 

is most effective both because a larger proportion of households will be visited 
(due to the high prevalence of HIV) and because of the clustering of HIV and TB 

that occurs within households, as discussed in the evaluation of Objective 3. 

In conclusion, the analysis shows that household transmission of TB is im­

portant to the design of interventions for TB control, but not as important as the 

clustering of TB in HIV-infected households. It is clear that designing a household 
intervention in which contact-tracing of HIV patients is attempted would have the 

biggest impact on the TB epidemic. 
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10.2 Limitations of the Research 

This is not a cost-effectiveness analysis and we have not attempted to attach finan­
cial costs to each of the interventions. We can not draw any conclusions about the 
real-life applicability of our results since we would need to take into account the 
relative costs of the different case-finding strategies to evaluate the cost per life 
year saved. 

Data for the validation of the model output was limited to TB incidence per 
100,000 members of the population of Zimbabwe. We were not able to compare 
the model's output with TB incidence for the city of Harare. Data for informing 
the model of the yearly HIV prevalence was also for the population of Zimbabwe, 
as data for Harare were unavailable. 

Infection with HIV is governed by a static model of HIV, which generates the 
number of HI V infections to be made each year and assigns the transmission events 
to particular age groups according to its HIV prevalence and the age distribution 
of sexual activity. No attempt is made to model HIV transmission so that HIV 
infection events are assigned to particular households (for instance, infecting the 
wife of a household with an HIV-positive husband), instead, HIV transmission 
and infection is randomly distributed throughout the households. However, due 
the large number of HIV transmissions occurring, household transmission of HIV 
does happen regularly, and so this may be more of an issue in models in which 
HIV prevalence and transmission is low, in which case being specific about where 
the transmissions occur becomes more important. 

The model assumes there is no mother-to-child transmission (MTCT) of HIV. 
In the model, children under 10 years old are unlikely to develop TB (Section 
7.3.1.1) and all children are unable to transmit TB which means that whether they 
are infected with HIV or not will have no impact on TB transmission. The HIV 
status of children is therefore irrelevant for the purposes of this model, although 
omitting MTCT may have important implications for the age distribution of the 
population. MTCT of HIV may mean that children being born infected would die 
before becoming adults therefore causing the age of the population to shift toward 
a younger distribution. If the actual population is younger than assumed by the 
model it would mean the model's predictions of TB incidence are an overestimate. 

When modelling the interventions we assume that active case-finding is 100% 
effective and do not allow for imperfections in screening. We also do not address 
the issues surrounding possible false-negative results found when skin testing; a 
complication especially found in HIV-positive individuals. 
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During the intervention that contact-traces TB patients, households in the model 

are visited every time one of its members is diagnosed with TB or dies of TB. Dur­

ing the intervention which contact-traces individuals with late-stage HIV, house­
holds are visited each time a member advances to late-stage HIV. This means that 

households can be visited more than once during the intervention period and indi­

viduals found to be infected with TB may find themselves on repeated courses of 
IPT, a practice that does not occur in reality. 

Ways in which to implement the various case-finding strategies are not given 
by the research, therefore we do not attempt to suggest ways in which the rate of 

TB patients coming forward for treatment could be doubled, nor do we suggest a 
viable way in which contact-tracing HIV patients could be realised. 

In order to make a judgment about whether household interventions are more 
effective than community-wide interventions, this analysis relies on the assump­

tion that the interventions in which random households are visited can be used to 
approximate a community-wide intervention. This assumption is not ideal, how­
ever, to accurately reproduce the effect of a mobile TB clinic visiting villages, for 

example, geospatial modelling would be required. 

Further to these issues, the model does not consider: 

• A contact rate for TB transmission which is dependent on an individual's 

HIV status. 

Currently we assume that the same contact rate applies to each individual 
and therefore an individual with late-stage HIV will have the same probabil­

ity of infecting the same number of people with TB as an early-stage HIV 
or HIV-negative individual. This may be an oversimplification as you would 

expect those with advanced HIV and TB disease to be less mobile . 

• The declining population in Zimbabwe. 

Zimbabwe has recently seen a downward spiral of the economy. Reports 

suggest that this is mainly attributable to the mismanagement and corruption 
of President Robert Mugabe's regime [179] [44] [171]. As a result, the 

current rate of inflation is thought to be over 66000% [34] and there is a 
formal unemployment rate of 80% [168]. There have also been widespread 

reports of starvation and the abuse of various civil and political human rights 

throughout Zimbabwe, particularly against those opposing the government 
[35]. The repressive political situation in Zimbabwe has led to a flood of 

refugees into neighbouring countries. 
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Currently we assume that the size of the population stays stable, however 
events that have occurred since the research began, have meant the popu­
lation is declining. Operation Murambatsvina (translated as "getting rid of 
the filth") was initiated in May 2005 which saw homes destroyed all over 
the country and has left thousands homeless. It is currently estimated that 
25% of the Zimbabwean population has fled abroad [169]. The impact of 
this population change on the efficacy of TB control methods has not been 
considered by this research. 

10.3 Further Work 

This research fits into a six-year project with funding available for a further 3 years 
of post-doctoral research. 

Future research, being undertaken by the London School of Hygiene and Trop­
ical Medicine, will extend the model to include geographic space, using the base­
line data from Harare on geospatial position to define the structure. Transmis­
sion between households will be explored using a spatial kernel in which con­
tact between neighbouring households is greater than between distant households. 
Various forms for this kernel will be explored following analysis of the baseline 
geospatial distribution of households and will be updated through fieldwork [51]. 

Geospatial modelling will also allow community-wide interventions to be ex­
plored so that strategies such as mobile TB clinics which visit certain communities, 
sputum collection points at schools, or door-to-door enquiry of households can 
themselves be evaluated and compared to household contact-tracing interventions. 

The research will also incorporate a more comprehensive stratification of an 
individual's HIV status so that an individual can be susceptible; have a primary 
infection; be in incubation; be pre-AIDS; or have AIDS. The HIV status of an 
individual will then not only affect their TB disease progression parameters, but 
will also impact the number of TB transmissions they are likely to make, so that 
their contact rate decreases as their HIV infection advances. 

The population size will not be stable and instead will incorporate birth and/or 
fertility rates to obtain more realistic population dynamics. 

Finally, costs will be attached to the various interventions in order to carry out 
a full cost-effectiveness analysis and compare household case-finding strategies in 

terms of cost per life year saved. 
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Apart from using the model to investigate household interventions in HIV 
prevalent populations, the model could be used to address questions regarding: 

• Mass Preventive Therapy 

The aim of mass preventive therapy CPT) is to administer preventive treat­
ment to a large proportion of the population in order to rapidly reduce trans­
mission. Questions exist as to the proportion of the population that would 
need to be reached to reduce transmission to below a certain threshold, and 
what that threshold would be. It would also be interesting to determine how 
long it takes for the effect of PT to wane. 

• Poverty 

TB has long been a disease of poverty [185], and there is also evidence of 
an emerging socioeconomic gradient in HIV prevalence in Harare. Cross­
sectional data on poverty is being collected through the surveys being con­
ducted by DETECTB in Harare. The hypothesis is that clustering of TB 
infection and HIV infection in the poorest households may be exacerbating 
the biological interaction between these two infections, and may reduce the 
success of TB control interventions, since the poorest households may also 
tend to have the least access to health care. Incorporating poverty at the 
household level would enable us to explore what effect poverty has upon the 
clustering of HIV and TB at the household level, how it affects the interac­
tion of TB and HIV, and how it affects the likely success of interventions. 

• Imperfections in tuberculin skin testing CTST) 

Results from Harare show that approximately 25% of infected individuals 
will be anergic to TST and therefore a large number of false-negatives result 
from skin testing. The model could investigate the effect of administering 
preventive therapy to all household members regardless of their TB infection 
status, in order to assess whether this would be an efficient way to reach 
those infected individuals in need of IPT but with negative TST results. 

• The duration of infectiousness 

The model could be used to examine the differences in the duration of HIV­
negative and HIV-associated smear-positive TB disease; what the likely im­
pact of the short duration of infectiousness observed in HIV-associated TB 
is; and how the interventions will impact the average duration of infectious­
ness. 
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• The complicating effects of smoking and alcohol consumption 

There is evidence to suggest that smoking and alcohol consumption are risk 

factors for TB [106] [90]. Research has shown that smokers are more likely 
to get infected with TB and are more likely to develop active disease [23] 

[109]. This may be due to it decreasing the body's immune response or 
damaging the protective effect of cilia in the airways [13]. The research on 
the risk of alcohol consumption on developing TB is less clear but there has 

been some research which suggests it makes individuals more vulnerable to 
TB, perhaps due to it weakening the body's immune system [82]. These 

risk factors could be considered by the model to examine whether a strat­

egy such as tobacco control could be considered as an effective preventive 
intervention. 

10.4 Conclusion 

This is the first attempt to use individual-based modelling techniques to look at 
household transmission of TB. It has involved significant modelling effort and it 
remains unclear from this study whether the benefits of modelling in such detail 

will outweigh the cost of this effort. TB clinics have gone so far with case detection 
but can only get rates up to a certain level before they need some assistance, with 
HIV making it even more important that they do so. This research has shown that 
under some circumstances, reinforcing existing passive case-finding methods with 

active case-finding interventions could be an effective way to reduce TB morbidity. 
The research suggests that targeting households with HIV-infected members is 

an effective intervention for TB control due to its efficiency at finding TB cases 
(because of the clustering of TB disease and HIV infection in households), and 
because preventive treatment is targeted at those susceptible to reactivation of a 

latent infection; the main cause of the HIV-associated TB epidemic. 



GLOSSARY 

Glossary 

Active Case Finding 

Active Disease 

Active TB Disease 

Anergy 

Antenatal Clinic 

Bacilli 

BCG 

Casual Contact(s) 

Chemoprophylaxis 

Cilia 

Close Contact(s) 

When those with active TB are sought out. 

Active TB Disease. 

Those that have TB disease. 

A lack of reaction by the body's defence mech­
anisms to foreign substances. 

A clinic specifically for pregnant woman. 

Rod shaped bacteria. 

Bacillus of Calmette and Gurin is a vaccme 
against tuberculosis. 

The individual(s) that an infected person does 
not share a household with. 

The use of a chemical agent to prevent the de­
velopment of a disease. 

Small hairlike structures lining the upper respi­
ratory tract 

The individual(s) that an infected person shares 
a household with. 
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GLOSSARY 

Contact Tracing 

Cross Sectional Data 

Cultured 

The identification and diagnosis of individuals 

that may have come into contact with an in­

fected person. 

Data collected by observing many subjects 

without regard for time so that the differences 

between the subjects can be studied. 

The growing of microorganisms in a specially 

prepared nutrient medium. 

Deterministic When there is no uncertainty involved. 

Deterministic Compart- The system is divided into different states ac­

mental Model cording to its attributes. Differential equations 
are then used to create flows through the var­

ious states at specified time steps. The mod­

els are deterministic and therefore each run of 

the model will behave identically as there are 

no stochastic elements to the model. 

Developed Country 

Developing Country 

A country with a very high Human Develop­

ment Index (HDI) and high standard of living 

due to an industrialised economy. 

A country with a low to moderate Human De­

velopment Index (HDI) and relatively low stan­

dard of living due to an underdeveloped econ­

omy. 

Discrete Event Simula- A simulation made up of entities and logic state­

tion ments. Entities are the tangible elements found 

in the real world, such as people. Logical rela­

tionships link the different entities together and 

these logical relationships are what define the 

structure of the model. 
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GLOSSARY 

Drug Resistant TB 

Endemic 

Endogenous 

Epidemic 

When the drugs used to cure TB have a reduced 
effect. 

When an infection is prevalent in or restricted 

to a population. 

Originating from within the organism. 

An outbreak of a contagious disease that 
spreads at a rate that substantially exceeds what 
is expected. 

Epidemiological Model Mathematical Model. 

Exogenous Originating from outside of the organism. 

Extrapulmonary TB When TB is affecting areas other than the lungs, 
ego the central nervous system, lymphatic sys­
tem, bones and joints. 

Fast Latent Those that have a TB infection and will 
progress quickly to active disease. 

Fast Latent - Infectious Those that have a TB infection and will 
progress quickly to infectious active disease. 

Fast Latent - Non Infec- Those that have a TB infection and will 
tious 

HAART 

HIV 

progress quickly to non infectious active dis­

ease. 

Highly Active Antiretroviral Therapy. A treat­
ment consisting of a cocktail of drugs given to 
suppress the growth of HIY. 

Human Immunodeficiency Virus - A retrovirus 

that leads to AIDS by infecting helper T cells of 
the immune system. 
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HIV-Negative 

HIV-Positive 

Those that are HIV-Negative do not have the hu­
man immunodeficiency virus HIV. 

Those that are HIV-Positive have the human im­

munodeficiency virus HIY. 

Household Transmis- An individual with active TB infects someone 
sion that they live with. 

Immune System 

Immunocompetent 

Immunocompromised 

Immunodeficiency 

Incidence 

Induration 

Infectious Disease 

Intervention 

The immune system is the system of organs, tis­
sues, cells, and cell products such as antibodies 
that protect the body against bacteria and viral 
infections. If the immune system is weakened 
the body is more likely to allow viruses to grow 
as it is less able to defend against pathogens. 

A person who is able to produce a normal im­
mune response. 

A person who has an immunodeficiency. 

When a person's immune system and ability to 
fight infectious disease is suppressed or entirely 
absent. 

The number of new cases of a disease in a spe­
cific time interval. 

The hardening of the skin, because of inflam­
mation. 

Those that have active TB disease and are able 
to transmit the infection. Individuals with in­
fectious TB usually suffer from pulmonary TB. 

A way to interfere with the disease situation so 
as to reduce morbidity. 
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GLOSSARY 

Isoniazid 

Therapy 

Preventive Isoniazid is a drug given to patients with a TB 
infection to prevent it developing into active 
disease. 

Late Stage HIV 

Latent TB 

Longitudinal Data 

Mathematical Model 

The World Health Organisation defines the pro­
gression of HIV by four distinct stages. Late 
stage HIV implies the individual is in stages 3 
or above. 

Those that have TB infection. 

Data collected by observing subjects over time 
so that a subject's changes can be followed. 

A static model that is fitted to data to reveal and 
quantify relationships and processes that would 
have caused the observations in the data. 

Morbidity The degree or severity of a disease. 

Multidrug Resistant TB When TB has drug resistance to more than one 
of the drugs used to cure TB. 

Natural Cure See Self Cure. 

Non-Infectious Disease Those that have active TB disease but are not 
able to transmit the infection, therefore non­
infectious TB is not transmissible; for exam­
ple extrapulmonary TB is usually contained and 
therefore cannot be expelled or spread to others. 

Passive Case Finding 

Prevalence 

When those with active TB present themselves 
for diagnosis and treatment. 

The ratio of the number of occurrences of a dis­
ease in a population to the number of individu­
als in the population at a specified time. 
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Preventive therapy See Isoniazid Preventive Therapy. 

Pulmonary TB Tuberculosis that affects the lungs. 

Random Transmission An individual with active TB infects someone 
that they do not live with. 

Reactivation When a person has a latent infection and their 
immune system is weakened so that the defence 
against the TB infection becomes inadequate 
and the TB mycobacterium are able to cause 
damage. The latent infection becomes active 
TB disease. 

Reinfection 

Self Cure 

Sputum Microscopy 

When a person with a latent infection is infected 
again, but they do not produce an effective im­
mune response and therefore get active disease. 

When the body naturally cures itself from infec­
tious or non infectious active disease. 

A sputum specimen which has been taken from 
a patient, cultured, and examined for Mycobac­
terium tuberculosis organisms. 

Sputum Smear Positive Those that are able to produce TB bacilli that 
can be cultured. 

Sputum Smear Nega- Those that are unable to produce TB bacilli that 
tive can be cultured. 

Statistical Model Mathematical Model. 

Stochastic When uncertainty and chance are involved. 

Susceptible Those individuals that are uninfected and there­
fore susceptible to infection. 



GLOSSARY 

TB Disease 

TB Infection 

The TB mycobacterium are present in the body 
and they are actively causing damage to body 
tissues. 

The TB mycobacterium are present in the body 
but they are not actively causing damage to 
body tissues because the immune system has 
"walled them off". The infection can lie dor­
mant for years and often only develops into "ac­
tive" TB when the immune system is weakened. 

TB Lesion The localized change in a bodily organ or tissue 
due to TB. 

Tuberculin Skin Test- A standard method of determining whether a 
mg person is infected with TB. The TST is per­

formed by injecting a small amount of tuber­
culin purified protein derivative into the fore­
arm. The skin test reaction is measured in mil­
limeters of the induration. DETECTB consider 
an induration of 5 or more millimeters to indi­
cate a positive result. 

Vaccination 

Virulence 

Virus 

Something administered to patients with the in­
tent of conferring immunity against developing 
a disease. 

The degree of pathogenicity of a microbe, or the 
relative ability of a microbe to cause disease. 

A virus is a submicroscopic parasite that often 
causes disease. It infects cells in biological or­
ganisms as it is unable to replicate without a 
host cell. 
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Appendix A 

DETECTB Data Collection 

In Chapter 2, Section 2.6.1 we discuss the household data being collected by DE­
TECTB in Harare, Zimbabwe. The following Figures show a copy of the ques­
tionnaire used to conduct the baseline survey. 
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Figure A.l: DETECTB Dwelling Baseline Form 

001 BAR Dwelling Bar Code Place Dwelling Bar Code sticker here 

002 ADD Address 

003 CLUS Cluster Location- Cluster No. 1; DZIVARASEKWA 4; HIGHFIED 7; MUFAKOSE 
2;GLENORAH 5; KAMBUZUMA 8; RUGARE • 
3; GLENVIEW 6; KUWADZANA 9; WARREN PARK 

004 GPSE Household GPSE East Reading 02 
005 GPSS Household GPS South Reading 80 
006 VRES Visit Result 1 = COMPLETED 

2= RefUSED 
3= OWEWNG VACANT 

007 DATE Date of interview 

0 0 M M Y Y Y Y 

008 HHDS In total, how many households reside at this dwelling? 
(Pane mhuri ngani dzinogara panD, kusanganisa muridzi wemba nema lodger?) 

009 HTYP .1 What section of the dwelling does each of these households reside in (I.e. Description)? 
(Mhuri imwe neimwe inDgara mupanda upi weimba (edza kutsanagudza mhuri nemhuri)?) 

HH Resides In Code Household 10 Surname of Head of Household or an Tolal Number TOIa! 
No. 01= FULL MAIN HOUSE Identifying Name (e.g. Baba va Edson) afAdults Numberaf 

02= PART OF MAIN HOUSE (16 yrs +) Minors 
03= COTIAGE/OUT BUILDING «16 yrs) 
04= PART OF COTIAGE/OUT BUD.DING 

Place Household Bar Code 
1 sticker here 

2 Place Household Bar Code 
sticker here 

3 Place Household Bar Code 
sticker here 

4 Place Household Bar Code 
sticker here 

5 Place Household Bar Code 
sticker here 

6 Place Household Bar Code 
sticker here 

7 Place Household Bar Code 
sticker here 

8 Place Household Bar Code 
sticker here 

010 INF Name of Informant: 
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Figure A.2: DETECTB Household Baselin,e Form 
HOUSEHOLD IDENTIFICATION 

A household is defined as a person living alone or a group of persons living together who share meals or other essentials for 
living; and may be related or unrelated 
(Mhuri inosanganisa munhu anogara ega kana kuti vanhu vanogara pamwechete, vachidya pamwechete zvisina basa kuti vane ukama kana 
kuti havana) 

H01 BAR Household 10. Place Household Bar Code 
sticker here 

H02 eLUST Cluster Location-Cluster No 1= DZIVARASEKWA 4= HIGH FlED 7= MUFAKOSE 
2=GLENORAH 5= KAMBUZUMA 8=RUGARE 
3= GLENVIEW 6= KUWADZANA 9 = WARREN PARK 

H03 ADD Address: 

H04 GPSE Household GPS East Reading Longitude 02 
H05 GPSS Household GPS South Reading Latitude 80 
H06 DATE Date of interview: 

0 0 M M Y Y Y Y 

The head of the household should supply the following information OR in hislher absence, a representative 
with sufficient knowledge about the household and permission to answer in place of the head of household. 

H07 VRES Household Visit Result 1 = COMPLETED BY HEAD OF HOUSEHOLD 
2 = COMPLETED BY REPRESENTATIVE 
3 = CHILD HEADED HOUSEHOLD 
4 = HOUSEHOLD REFUSED TO ANSWER 
5 = FAILED TO INTERVIEW AFTER 3" VISIT 

H08 INTF Name of interviewee ............................. '" ......................................................... . 

HOg HSURN Surname of Head of Household Or Identifying Name ...................................................... .. 

H10 REL Relationship to Head 1 = SELF 5= SIBLING 
2 = SPOUSE/PARTNER 
3 = CHILD 

6 = OTHER RELATIVE 
7= EMPLOYEE 

4= PARENT 8 = NON RELATIVE 

H11 PART Is the household willing to be considered for Prevalence Study? 
(Mungade kupinda muchirongwa chewongororo yeTB here?) 

1=YES 
2= NOT SURE 
3=No 

HOUSEHOLD STANDARD OF LIVING 

H12 OWN Does the household own the dwelling? 
(Mhuri yenyu ndiyo muridzi wenzvimbo ina here?) 

H13 TYP What section of the dwelling does the household reside 
in? 
(Mhuri yenyu inogara mumupanda upi weimba?) 

H14 STue What is the structure the household dwells in made of? 
(Imba yamunogara yakavakwa nei?) 

1 = OWN THE DWELLING 
2= RENT THE MAIN DWELLING 
3= RENT P ART OF THE DWELLING/LODGER 
4= USE THE DWELLING WITHOUT PAYING RENT 

1 = FULL MAIN HOUSE 
2= PART OF MAIN HOUSE 
3= COTTAGE/Our BUILDING 
4= PART OF COTTAGE/OUT BUILDING 

1 = BRICK UNDER TILE 
2= BRICK UNDER AsBESTOS 
3= BRICK UNDER CORRUGATED IRON 
4= WOOD CABIN 
5= OTHER ................................. (SPECIFY) 
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H15 FOOD How often last year did you have problems satisfying the food needs of the 
household? 
(Semhuri makatambudzika kakawanda zvakadii kuti muve nechikafu 
chinokukwanirai mugore rakapera?) 

H16 ROOM How many rooms is the household using? 
(Mhuri yenyu inoshandisa mipanda mingani paimba ino?) 

H17 SLEEP How many rooms does the household use for sleeping in? 
(Mhuri yenyu inoshandisa mipanda mingani yekurara?) 

H18 CROW How many people usually sleep in each of these sleeping rooms? 
(Vanhu vangani vanowanzorara mumupanda wega wega?) 

179 

1= NEVER 
2= SELDOM 
3= SOMETIMES 
4= OFTEN 
5= ALWAYS 

Fill in total number of people per room used for sleeping 
1 Room 1 Room 3 1 Room 41 Room 5 Room 2 

H19 HEAL 

H20 COPE 

H21 CTB 

H22 CTBT 

H23 TBC 

H24 TBH 

If someone in the household needed medical care, how 
soon can the household raise clinic fees? 

1 = IMMEDIATELY 
2= Wf>JT FOR PAYDAY 
3 = HAVE TO BORROW 
4 = HAVE TO BEG (Zvinokutorera nguva yakadii kuti muwane mari yekurapisa 

mumwe anenge arwara mumhuri menyu? 5 = RELIGIOUS OBJECTION TO CLINIC USE 

Some households cope better than others do. Compared to others with a 
similar income, how would you rate your household's ability to stay in control? 
(Ozimwe mhuri dzinokwanisa kupfura dzimwe. Muchitarisawo dzimwe mhuri 
dzinowana zvakafanana nemi, munofunga kuti murikukwanisa here?) 

1 = EXCELLENT 
2=GOOD 
3=Ff>JR 
4=POOR 

TB HISTORY 

Is anyone in your household currently being treated for TB that you can confirm or 
suspect? 
(Pane munhu here wamunogara naye mumba menyu, ari kurapwa chirwere cheTB 
zvamunonyatsoziva kana kufungidzira?) 

How many household members are currently on TB treatment? 
(Vanhu vangani varikurapwa chirwere cheTB mumhuri yenyu? 

What have you seen to confirm that these people are on TB treatment? 
(Pane chamakaona here chino ratidza kuti vanhu ava varikurapwa chirwere cheTB?) 

1 = YES 
2=No 

Person 1 Person 2 Person 3 
TB Card Y N Y Circle either Y or N for each 

person on TB treatment 
----

TB Tablets Y N 
---- -",-- -_._---

Going for TB Treatment Y N 

Saw the Diagnosis Y N 
"'---' 

I am the one sick Y N 

None of the above Y N 

None on TB Treabnent Y ! N 

Has anyone else in your household had TB within the past two years (even if 
deceased)? (Probe and do not include those in H21) 
(Mumakore maviri apfuura, pane munhu wemhuri ino akamborwara nechirwere 
cheTB here chero akashaya?) 

Y 

Y 

Y 

Y 

Y 

Y 

, 

i 

i 

N Y 

N Y 

N Y 
. ---

N 

N 

N 
-

N 

1 = YES 
2=No 

Y 

Y 

Y 

Y 

N 

I N 

N 

N 

N 
j 

N 
I 
i N 



H27 MEMB 

Line I Initials 

Prioritise 1st 

Degree 
I Relationship 

01 Head 

~ 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

"Information about persons who sleep in the household regularly starting with the Head of the family" 
(lye zvino ndinoda kubvunza zvinechekuita nevanhu vese vanomborara mumba menyu nguva zhinji) 

Relationship Codes 
01 = SpouselPartner 05 = Parent 09 = Grandchitd 13 = Cousin 
02 = Child (biotogical) 06 = FatherlMother in taw 10 = Grandparent 14 = Servants 
03 = Child (step/adopted) 07 = Sibling 11 = Unclelaunt 15 = Other Relative 
04 = SonlDaughterin law 08 = BrotherlSister in law 12 = NephewlNiece 16 = Non-Retative 

M =1 
F =2 

Sex I Age Membership Status I Relationship 
1 = Usual Member to the Head of 

7'::':;-'-';;--'-'i~=T7-'r-;:---,--;;--I 2 = Regular Visitor Household 
3 = Missing 

Self 

Definitions 
Usual Member - Sleeps in household at least once a week 
Regular Visitor - Spends at least 2 nights in household per month 
Missing -Away in rural area, on business or at school 
First Degree Relationship - Spouse, Child, Parent or sibling 

Other Relationships 
Spouse of Line. Child of line ... & line ... 
(Enter 991f deceased or does not live 
there or is not applicable) 

~ouseof Child Of 

.. & 

.. & .... 

.. & ...... . 

.. & ... 

.. & ... 

&. 

.. & ...... . 

...... & ...... . 

.. & ...... . 

... & ... 

.. & ... 

&. 

.. & ...... . 

....... & ...... . 

....... & ..... .. 

....... & ...... . 

....... & ..... . 

....... & ...... . 

....... & ...... . 

Comments 
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AppendixB 

Table for Tuberculosis Modelling 
Literature Review 

Chapter 3, Section 3.2 looks at the historical development of TB disease models 
and provides a concise description of the previous mathematical models which 
have been built to give a better understanding of tuberculosis epidemiology and 
effective control measures. The Table in this Appendix is a summary of these 
models and accompanies the discussion in Chapter 3, Section 3.2. 

Key for modelling method used in the following table 

Tuberculosis Modelling definition: 

A mathematical model describes the behaviour of a system using mathematical 
language. It is the general characterization of the process, in terms of mathematics, 
which enables the relatively simple manipulation of variables to be accomplished 
in order to determine how the process would behave in different situations [178]. 
There are various different approaches to modelling disease and tuberculosis in 
particular. 

The numbers/letters below are used in the Table to describe the method used 
in each study: 

1. Deterministic Compartmental Model: In a deterministic compartmental model, 
the population is divided into different epidemiological groups according to 
their TB (and HIV) disease status. Differential equations are then used to 
move proportions of the population through the various groups at specified 
time steps. 

2. MathematicallEpidemiological Model: A mathematical, epidemiological or 
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statistical model is when the model is static and fitted to particular data to 
establish various parameter values and epidemiological relationships. 

3. Other: 

a) Markov Process: 

A Markov process is when the population is divided into different epidemio­
logical states according to their TB (and HIV) disease status. It is a stochas­
tic process because individuals can belong to one of several states and can 
pass from one state to another at each time step according to fixed proba­
bilities. A semi-Markov process implies that these probabilities of moving 
between states are allowed to vary over time. 

b) Decision Tree: 

A decision tree, graphs all of the possible decisions and their possible conse­
quences, including costs, and is used to help make decisions with a specific 
goal in mind (usually to minimize cost). 

c) Discrete Event Simulation: 

Discrete Event Simulation is a way of building a mathematical model using 
computer software. The simulation holds all the concepts of the "system" 
and the entities themselves. The entities are the parts that move through 
the model, such as individuals. Logical relationships then link the different 
entities together and define the overall behaviour of the model. Discrete 
Event Simulation is stochastic as it uses random number generators to move 

entities through the system according to appropriate random distributions. 



EARLY MODELS 

Reference Author 
(Year) 

Population 

[6] Alling D USA 

[186] 

[36] 

(1958) 

Waaler H, South India 
Geser A, 
Anderson S 
(1962) 

Brogger S Thailand 
(1965) 

Method Model Details 
(Number of States: State Details) 

3a Six: Active TB that will remain active in­
definitely, arrested TB that will remain ar­
rested indefinitely, TB that has proved fa­
tal, Arrested TB that is certain sometime 
to become active, Active TB that is cer­
tain sometime to become arrested, Active 
TB that is certain sometime to be fatal 
without ever becoming. arrested. The pa­
tients are divided into two age-dependent 
sub-groups. 

1 

Three: Susceptible, Infected, Infectious 

Six: Uninfected, Infected, Pulmonary le­
sions, Cases, Vaccinated, Failures. 

Objective 

To predict the likely progression of 
TB disease. 

To project different time trends 
given epidemiological situations 
and to show the effect of control 
programs, specifically BCG pro­
grams. 

Heterogeneity incorporated by clas­
sifying patients by age. To model 
the expected effect of various con­
trol programs. 
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Reference Author Population 
(Year) 

[140] ReVelle C, Developing 

[71 ] 

[182] 

[183] 

Lynn W, Nations 
Feldmann 
F (1967) 

Ferebee S United 
(1967) States 

Waaler HT Non Spe­
(1968a) cific (eg. 

Norway) 

Waaler HT . United 
(1968b) States, 

Norway 

Method Model Details 
(Number of States: State Details) 

1 Nine: Main states include - Susceptible, 
Vaccinated, Infected, Non-Active Cases, 
Active, Treated, Natural Recovery 

2 To project the likely course of TB un­
der current control programs and under 2 
"what if" scenarios; (1) Vaccinating Un­
infected with BCG, (2) Administrating 
Infected with Isoniazid prophylaxis. 

Objective 

To improve the economic allocation 
of TB control measures in develop­
ing nations. 

Eight: Non-Infected, Infected::; 5 years, To provide a tool that generates fu­
Infected > 5 years, BCG Protected, Ac- ture epidemiological trends in TB 
tive Non-infectious Cases, Active In- given various anti tuberculosis pro­
fectious Cases, Inactive Previously non- grams. 
Infectious Case, Inactive Previously In-
fectious Case 

1 Waaler (1968a) [182] To use a previously developed 
model (Waaler 1968a) [182] to look 
at the effect of different BCG vac­
cination scenarios mainly in low 
prevalence countries. 

> 
"0 
"0 
tTl 
Z 
o 
X 
t;d 

-00 
~ 



Reference Author Population Method Model Details Objective > 
"1:1 

(Year) (Number of States: State Details) "1:1 
tTl 

[187] Waaler H, Europe Waaler (1968a) [182] To develop a clearer understand- z 
t:l -Piot M ing of TB dynamics and the factors >< 

(1969) most likely to affect the efficacy of to 

control methods. 

[188] Waaler HT, Non Spe- 1 Waaler (1968a) [182] Introduces a utility Part II of Waaler and Piot (1969). 
Piot MA cific function with a social time preference pa- Continues to discuss the factors 
(1970a) rameter. most likely to affect the efficacy of 

control methods. 

[184] Waaler HT Non Spe- Waaler (1968a) [182] To use the model previously de-
(I 970b) cific vel oped to illustrate how to an-

swer typical questions policy mak-
ers might ask when designing a 
control policy. 

[141 ] ReVelle Non Spe- 3b Five: Susceptible, Inactive Disease, Pul- To determine the best pattern of 
C, Male J cific monary Lesions, Culture Active, Mi- testing a population whilst minimis-
(1970) croscopy Active Cases ing the cost per active case treated. 

The aim was to maximise the num-
ber of active cases treated given the 
financial limitation. 
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Reference Author Population Method Model Details Objective > 
'"0 

(Year) (Number of States: State Details) '"0 
trl 

[43] Chorba W, United Eight: Susceptible, New Infections, To predict the prevalence of TB and z 
t1 ...... 

Sanders JL States Dormant Infections- low risk, Dormant predict future trends in new active ~ 

(1971) Infections- high risk, Active Cases, Natu- cases and deaths. ttl 

ral Recoveries, Active Cases Under Treat-
ment, Treated Recoveries. Discrete-state, 
discrete-time model with a cost-benefit 
analysis of four different prevalence sit-
uations. 

[91 ] Horwitz 0 Denmark Four: Non-Infected, Active Cases, Previ- To show the dynamic interplay be-
(1973) ous Cases, Death tween the disease parameters and to 

assess treatment regimens. 

[15] Azuma Y Japan Three: Non-Infected, BCG Vaccinated, To calculate annual trends in TB 
(1975) TB-Infected prevalence and incidence. 

[83] Goh EH, Singapore Azuma (1975) [15] To identify the most cost effective 
Fam KL control measure to introduce. 
(1981) 

[172] Trefny J, Czech 1 Azuma (1975) [15] To identify the most effective con-
Hejdova E Socialist trol measure to introduce. 
(1982) Republic 
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Reference Author Population Method Model Details Objective 
(Year) (Number of States: State Details) 

[152] Schulzer Taiwan, 3a Five: New Sensitive, New Resistant, Old To assess the major epidemiologi-
M, Enarson Korea Chronic Sensitive, Old Chronic Resistant, cal parameters in Taiwan and Korea 
D, Grzy- Susceptible. Time-homogeneous Markov under a given treatment program. 
bowski S, process, with five-yearly intervals. 
Hong Y, 
Kim S, Lin 
T (1987) 

[94] Joesoef M, Indonesia Seven: Non-Infected, Infected, BCG Vac- To estimate the cost-effectiveness 
Remington cinated, Active Radiological Legions, TB of three control strategies. 
P, Jipto- positive, Healed, Death by TB 
herijanto P 
(1989) 

DETERMINISTIC COMPARTMENTAL MODELS FOR EVALUATING CONTROL STRATEGIES 

Reference Author 
(Year) 

[31 ] Blower S, 
Small P, 
Hopwell P 
(1996) 

Population Method Model Details 

Non 
cific 

Spe-
(Number of States: State Details) 
Five: Susceptible, Latent (Drug Sen­
sitive/Drug Resistant), Active Disease 
(Drug Sensitive/Drug Resistant) 

Objective 

To develop a theoretical framework 
for designing an effective tubercu­
losis control program. 
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Reference Author Population Method Model Details Objective >-
"0 

(Year) (Number of States: State Details) "0 
trl 

[37] Castillo- Non Spe- Five: Susceptible, Latent (Drug Sen- To determine the role that a lack z 
0 -Chavez C, cific sitive/Drug Resistant), Active Disease of compliance plays on the mainte- ~ 

Feng ZL (Drug Sensitive/Drug Resistant) nance of resistant TB strains. to 

(1997) 

[138] Porco TC, Non Spe- Five: Susceptible, Latent, Infectious TB, To identify which input parameters 
Blower SM cific (Pop- Non Infectious TB, Recovered from their previous models ([30], 
(1998) ulations [31]) significantly affect the sever-

where ity of a TB epidemic. 
there is no 
treatment) 

[28] Blower Non Spe- Five: Susceptible, Latent (Drug Sen- To use the theoretical framework 
SM, Ger- cific sitive/Drug Resistant), Active Disease developed ([30], [31]) to predict the 
berding JL (Drug Sensitive/Drug Resistant) epidemiological outcome of actual 
(1998) specified approaches to control. 

[107] Lietman T, Non Spe- Preexposure (5 states): Susceptible (Vac- To predict the epidemiological ef-
Blower SM cific cinatedlU nvaccinated), Latent (Vacci- fect of both preexposure and post-
(2000) natedlUnvaccinated), Active TB Disease; exposure vaccines. 

Postexposure (5 states): Susceptible, La-
tent (VaccinatedlUnvaccinated/Waned), 
Active TB Disease. 

...... 
00 
00 



Reference Author 
(Year) 

[206] Ziv E, 
Daley CL, 
Blower SM 
(2001) 

[63] Dye C, 
Williams 
BG (2000) 

Population 

Non Spe­
cific 

Russia, 
Dominican 
Repub-
lic, Italy, 
Korea, Peru 

Method Model Details 
(Number of States: State Details) 
Four: Susceptible, Latent (Early), Latent 
(Long Term), Active Disease 

Objective 

To evaluate the effect of targeting 
therapy specifically to persons with 
recently acquired latent TB. 

Nine: Uninfected, Infected, Fast La- To establish a set of epidemiologi­
tent, Slow Latent, Active Disease (Infec- cal criteria to eliminate MDR-TB. 
tious/Non Infectious), Treatment Failure, 
Self-Cured, Recovered 

DETERMINISTIC COMPARTMENTAL MODELS NOT FOR EVALUATING CONTROL STRATEGIES 

Reference Author 
(Year) 

[30] Blower S, 
Mclean A, 
Porco T, 
Small P, 
Hopwell 
P, Sanchez 
M, Moss A 
(1995) 

Population 

Non Spe­
cific 

Method Model Details Objective 
(Number of States: State Details) 
Three: Susceptible, Latent, Active Dis- To gain a better understanding of 
ease the intrinsic transmission dynamics 

of untreated TB. 
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Reference Author 
(Year) 

[181] Vynnycky 

[69] 

[68] 

[12] 

E, Fine 
PEM 
(1997) 

Feng ZL, 
Castillo-
Chavez C, 
Capurro 
AF (2000) 

Feng Z, 
Iannelli M, 
Milner FA 
(2002) 

Aparicio 
JP, Ca-
purro AF, 
Castillo-
Chavez C 
(2002) 

Population 

England, 
Wales 

Individuals 
with high 
contact 
rates 

Non Spe-
cific 

United 
States 

Method Model Details 
(Number of States: State Details) 
Eight: Uninfected, Immune, Latent (jS 
years), Latent, First Primary Episode, Re­
infected, Exogenous Disease, Endoge­
nous Disease 

Objective 

To consider the importance of de­
veloping TB through initial infec­
tion, reactivation or reinfection. 

Four: Susceptible, Latent, Infectious, Re- To understand the effect of reinfec­
covered tion on TB dynamics in developing 

countries and inner cities of devel­
oped countries. 

Four: Susceptible, Infected - Drug Sensi- To investigate the effect of variable 
tive (Latent/Active), Infected - Drug Re- periods of latency on TB disease 
sistant dynamics. 

Four: Susceptible, Latent 
risk/permanent), Active Disease 

(high To provide evidence that the reduc­
tions in active TB incidence are due 
primarily to slower rates of disease 
progressIon. 

~ 
'"0 
'"0 
trl 
Z 
tl 
~ 
t:C 

-\CJ o 



Reference Author Population Method Model Details 
(Year) (Number of States: State Details) 

[77] Garcia A, Developed 1 Seven: Susceptible, Protected (by BCG), 
Maccario J, Countries Latent, Infectious, Non Infectious, Re-
Richardson covered, Failed Treatment 
S (1997) 

[84] Gomes M, Developed 1 Seven: Unprotected (SusceptiblelLatent), 
Margheri Countries Protected (SusceptiblelLatent), Infec-
A, Rebelo tious, Recovered, Failed Treatment. 
C (2000) Improved upon Garcia et al. (1997) [77] 

by including the effect of reinfection. 

OTHER TYPES OF MODEL 

Reference Author 
(Year) 

Population Method Model Details 
(Number of States: State Details) 

[164] Sutherland Netherlands 2 
I, Svandova 
E, Rad-
hakrishna S 
(1982) 

Objective 

To estimate possible evolutions and 
trajectories of the disease. 

To estimate possible evolutions and 
trajectories of the disease. 

Objective 

To estimate the risks of developing 
primary TB, exogenous TB and en­
dogenous TB. 
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Reference Author Population Method Model Details Objective >-
'"0 

(Year) (Number of States: State Details) '"0 
tTl 

[147] Salpeter United 2 To investigate the time delay be- z 
0 ...... 

EE, States tween initial infection and active :><: 

Salpeter SR disease. tP 

(1998) 

[II] Aparicio Non Spe- 1 A Cluster Model - Four States: Non In- To 'focus on the effect of long and 
JP, Ca- cific fectious (SusceptiblelLatent), Non Infec- systematic exposure of infectious 
purro AF, tious but within an epidemiological active individuals on susceptible individ-
Castillo- cluster (SusceptiblelLatent) uals, the effect of clusters (groups 
Chavez C of individuals who come into regu-
(2000) lar and close contacts with an active 

case). 

[ISS] Song BJ, Non Spe- A Cluster Model- Five States: Non In- To help understand the role of close 
Castillo- cific fectious (Susceptible/Latent), Non Infec- and casual contacts in TB transmis-
Chavez C, tious but within an epidemiological active slon. 
Aparicio JP cluster (SusceptiblelLatent), Infectious 
(2002) 

[122] Murray M Sudan, 3c Modelled individuals with various dis- To explore the impact of different 
(2002) Algeria, ease characteristics and social and physi- TB transmission dynamics on the 

Nether- cal space to identify the chain ofTB trans- population structure of isolates of 
lands mission using clusters of cases sharing the TB. 

same strain. ...... 
\.0 
N 



Reference Author 
(Year) 

[78] Getoor 
Rhee 
Koller 
Small 
(2004) 

L, 
JT, 
D, 
P 

Population Method Model Details Objective 

San Fran- 2 
cisco 

(Number of States: State Details) 
Extended on Bayesian Networks by using To reveal relationships within richly 
statistical relational models. structured data to aid understanding 

of TB transmission. 

MODELS WHICH INCLUDE HIV 

Reference Author 
(Year) 

[153] Schulzer 
M, Enarson 
D, Gry-
bowski S 
(1992) 

[25] Bermejo 
A, Vee ken 
H, Berra A 
(1992) 

Population 

Sub Saha-
ran Africa 

Developing 
Countries 

Method Model Details 
(Number of States: State Details) 

2 

2 

Objective 

To quantify the interaction between 
HIV and TB and predict the rates of 
TB disease incidence expected, un­
der 4 different risk scenarios. 

To estimate the impact of HIV on 
TB incidence in developing coun­
tries. 
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Reference Author Population Method Model Details Objective >-
'"0 

(Year) (Number of States: State Details) '"0 
tIl 

[154] Schulzer Sub Saha- 2 Further developed and generalised the To study the accelerating impact of z 
0 ...... 

M, Rad- ran Africa, Schulzer et al. (1992) [153] model to per- HIV infection on the incidence rates :><: 

hamani M, Canada mit application to other countries. of tuberculosis disease. .ttJ 

Grybowski 
S, Mak E, 
Fitzgerald J 
(1994) 

[ 113] Massad Non Spe- Sixteen: Main states include - Suscepti- To provide a theoretical framework 
E, Burat- cific ble, Latent, Active Disease, HIV Positive for the study of the interaction be-
tini MN, (Healthy/PositivelLatent/ Active Disease), tween, and the dynamics of, AIDS 
Coutinho AIDS (AIDSlLatentiActive Disease) and TB co-infection. 
FAB, 
Yang HM, 
Raimundo 
SM (1993) 

[89] Heymann S Africa 3a Ten: (HIV N egati ve/HIV Posi- To understand the effect of the in-
(1993) tive )(SusceptiblelRecently Infected teraction of TB and HIV; the impact 

with TB/Carrying an old asymptomatic of expanding TB programs; and the 
TB infection/Active DiseaselDead) impact of expanding chemoprophy-

laxis programs on TB incidence and 
mortality. 
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\0 
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Reference Author Population 
(Year) 

[33] Brewer T, United 
Heymann States 
S, Colditz 
G, Wilson 
M, Auer-
bach K, 
Kane D, 
Fineberg H 
(1996) 

[139] Porco TC, United 
Small PM, States 
Blower SM 
(2001) 

Method Model Details 
(Number of States: State Details) 

3a 3 age groups each with 18 clinical states: 
(HIV Negative/HIV Positive/AIDS)(No 
InfectionILow Risk for Active Dis-
easelIntermediate Risk for Active Dis-
ease/High Risk for Active Disease/Active 
Drug-Sensitive Disease/Active Drug-
Resistant Disease) 

3c Thirty: Main states include -
(Susceptible/Infected/Active Dis-
ease)(HIV Negative/HIV Stage 
I1StageIIlStageIII/StageIV) 

Objective 

To examine the effects of TB con-
trol strategies on projected US cases 
and deaths. 

To quantify the potential impact of 
HIV on TB incidence and the impli-
cations on global TB control. 
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Reference Author 
(Year) 

Population 

[120] Murray Five World 
CJL, Sa- Regions 
lomon JA (according 
(1998a) to patterns 

of TB epi­
demiology) 

Method Model Details 
(Number of States: State Details) 

1 HIV NegativelPositive Population, each 
with 19 States: Main states inc1ude- Un­
infected, Infected (Slow BreakdownlFast 
Breakdown), Superinfected, Active 
Disease (UntreatedlTreated)(Smear 
Positive Pulmonary/Smear Negative 
PulmonarylExtra Pulmonary)(Fast Diag­
nosis/Slow Diagnosis), Recovered (Fast 
Relapse/Slow Relapse). Elaborated on 
Blower et al. (1995) and Blower et al. 
(1996) ([30] [31]) to capture other aspects 
of the TB epidemic like the impact of 
HIV on TB's development. 

[121] Murray Five World 1 Murray and Salomon (1998a) [120] 
CJL, Sa- Regions 
lomon JA (according 
(I 998b) to patterns 

of TB epi­
demiology) 

Objective 

To assess the efficacy of using the 
WHO recommended DOTS strat­
egy alone to control TB. 

To incorporate a cost-benefit anal­
ysis into the previously discussed 
model (Murray and Salomon 
(1998a) [120]). 

>-
'"0 
'"0 
tTl 
Z 
o 
>< 
to 

...... 
\0 
0\ 



Reference Author Population Method Model Details Objective > 
'"0 

(Year) (Number of States: State Details) '"0 
trl 

[61] Dye C, Six WHO Similar to Murray and Salomon (1998a) To assess the potential impact of z 
'=' ...... 

Garnett GP, Regions [120] but incorporates age structure. DOTS on TB control. >:: 

Sleeman A, t:C 

Williams 
BG (1998) 

[55] Currie Kenya, Ten: HIV Negative, Stage I and Stage Due to the observation that even 
CSM, Uganda, II individualslHIV Late Stage individ- good DOTS programs were failing 
Williams South uals: Uninfected, Latent, Active Dis- to check the rapid increase in TB 
BG, Cheng Africa ease, Failed Treatment, Preventive Ther- cases in countries with a high HIV 
RCH, Dye apy. The model from Dye et al. (1998) prevalence; this model was stimu-
C (2003) [61] was reduced to a single age class but lated by the need to search for new 

the options for TB control were extended ways to manage TB epidemics. 
by including three preventative methods 
as well as case detection and cure. 

[56] Currie Kenya Fourteen: HIV Negative, Stage I and To investigate the effect on the HIV-
CSM, Stage II individuals/HIV Late Stage indi- associated TB epidemic of rapid 
Williams viduals: Susceptible, Fast Progression to progression and high mortality due 
BG, Cor- Active Infectious Disease, Latent, Infec- to the duration of infectiousness for 
bett EL tious, Failed Treatment, Treatment, Re- TB of HIV-positives with active TB 
(2005) covered disease. 
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Reference Author 
(Year) 

[197] Williams 
BG, 
Granich 
R, Chauhan 
LS, 
Dharmshaktu 
NS, Dye C 
(2005) 

Population Method Model Details Objective 

India 
(Number of States: State Details) 
Forty: (HIV NegativelHIV Stage IIHIV 
Stage IIIHIV Stage IIIIHIV Stage 
IV):Susceptible, Latent, Infectious (In­
fectiouslFailed Treatment/Self Cured), 
Non Infectious (Non InfectiouslFailed 
Treatment/Self Cured) 

To determine whether the HIV epi­
demic will stop India's Revised 
National TB Control Program of 
DOTS from achieving its millen­
nium goals. 

Table B.5: Summary of tuberculosis models featured in the 
literature review (Chapter 3) 
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Appendix C 

The Districts of Kenya 

In Chapter 4, we describe a simple parametric model which was fitted to district 
level data from Kenya on TB notification rates and HIV prevalence among women 
attending ante-natal clinics. Over the 18 years for which TB data are available for 
this study there have been a number of changes to the district boundaries in Kenya 
as discussed in Section 4.3.1. This Table outlines those changes and shows the 
provinces of Kenya (column I) and the district names between 1985 and 1990. In 
1990, for example, Kericho split into Bomet and Kericho. The two districts were 
again divided in 2000 with part of Bomet and part of Kericho combining to form 
a new district, Buret. Districts marked in red began reporting on TB separately in 
1991, those marked in green in 1993, and those marked in blue in 1995. 

199 



ApPENDIX C 200 

1985-1990 1991-2000 2000+ 1985-1990 1991-2000 2000+ 

Mandera Mandera Mandera 
:E .... 

...<:: t:: Garissa 0 
lNairobi Nairobi Nairobi ~~ Garissa Garissa .... 

'@ 
Z Z~ Ijara 

Wajir Wajir Wajir 

Kiambu 
Kiambu Kiambu Kisumu 
Thika Thika Kisumu Kisumu 

lNyando 
Maragua "@ Muranga Muranga Nyamira lNyamira E Muranga 

Kisii Gucha <l.) 

U Kirinyaga Kirinyaga Kirinyaga Kisii 
lNyeri lNyeri Nyeri Kisii 

~ 

lNyandurua lNyandurua Nyandurua 
N Bondo :::: Siaya Siaya ~ 

Malindi >-. Siaya 
Kilifi Kilifi Z 

Kilifi Suba 

] Kwale Kwale Kwale Roma Bay Rachhuonyo 
Ul Lamu Lamu Lamu South Nyanza RomaBay ~ 
0 

U Mombassa Mombassa Mombasa Kuria 
Taita Taveta Taita Taveta Taita Taveta Migori 

Migori 
Tana River Tana River Tana River 

Nakuru lNakuru lNakuru 
Mbeere 

Embu Embu Kajaido Kajaido 
Embu 

Kajaido 

Isiolo Isiolo Isiolo Bomet 

Mwingi Mwingi 
Bomet 

Kitui 
Kitui Kitui Kericho Buret 

Machakos 
Makueni Makueni Kericho E 

E Machakos Machakos Kericho 
Ul 

Marsabit ~ Laikpia Laikpia Laikpia w Marsabit Marsabit I!) 

M02'aie u 
Samburu Samburu Samburu :::: 

Nyambene Meru North 
.;;: 
0 Transmara .... 

Narok lNarok Meru 
Meru Central 

p.. 
lNarok Meru Central >-. 

2 
Tharaka Meru South "@ Koibatek 

> Baringo Baringo 
Nithi Tharaka c: Baringo 

Mt. Elgon i:l2 lKeiyo 
Bungoma Bungoma 

Bungoma 
Elgeyo Eigeyo 

Eigeyo Marakwet Marakwet 
Busia Marakwet 

Busia Busia 
Nandi lNandi lNandi E Teso 

E Vihiga Vihiga Trans Nzoia Trans Nzoia Trans Nzoia Ul 
<l.) 

~ Lugari Turkana Turkana Turkana 
Kakamega 

Kakamega 
Butere Uasin Gishu tuasin Gishu tuasin Gishu 
Mumias 
Kakamega West Pokot West Pokot West Pokot 



AppendixD 

Maximum Likelihood Estimation 

Throughout the simulation's development, there was a need to fit various simple 
models to observed data. Mathematical models were proposed, so that they could 
be used to describe and represent the data in the simulation. To obtain the best 
estimates of the parameters of these models, we used maximum likelihood estima­
tion. 

D.I The Likelihood Function 

The likelihood function is used to generate estimates of the parameter values of a 
proposed model. 

The likelihood function is described well in Kendall's Advanced Theory of 
Statistics [158]. 

Let X = (Xl, ... , Xn) be a random vector and {fx(xIB) : e E 8} a statistical 
model parameterised by B = (el , ... ek ), the parameter vector in the parameter 
space 8. The Likelihood function is a map L : 8 ~ R given by L(8Ix) = 
fx(xI8). In other words, the likelihood function is functionally the same in form 
as a probability density function (PDF). However, the emphasis is changed from 
the x to the e: 

• The PDF is a function of the x's while holding the parameters (e) constant. 
For example, the input parameters for the proposed model are known and 
the observed data are unknown . 

• The Likelihood is a function of the parameters (e), while holding the x's 
constant. For example, the observed data is known but the input parameters 
for the proposed model are unknown. 
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D.2 Maximum Likelihood Estimation 

By finding its maximum, the likelihood function L(e)* can be used to estimate 
the value of the unknown input parameters. Planet Math [136] explain that the 
parameter vector e, such that L(e) = L(e) for all e E 8, is called the maximum 
likelihood estimator (MLE) of e. Often the density function is the product of inde­
pendent components. It is then usually easier to compute the MLE of a likelihood 
function by taking logs first and computing the maximum of the (natural) log of L. 

D.3 An Example 

As an example, we describe how this method was used to find estimates of the 
input parameters when fitting a double logistic equation to HIV prevalence data 
for Zimbabwe (Chapter 6, Section 6.S and Appendix K). This was done in order 
to obtain HIV prevalence estimates for the simulation between 1980 and 2030. 
The expression for a double logistic equation is 

ea(t-i) 

p(t) = 1 + ea(t-t) 
ae b 

( 

-f3(t-i) ) 

1 + e-·6 (t-i) + (D.l) 

The output from this proposed HIV prevalence model can be considered as 
a function of its parameters e = (a, b, ex, ,3, t). The HIV data observations are 
treated as fixed and the HIV parameters (e) are treated as unknown as per the 
MLE method. 

The observed HIV data can be described by the equation 

i = 1, ... n (D.2) 

where P is the double logistic function, n is the number of HIV observations 
and Ei are the HIV errors - the difference between the model output and the ob­
served data point at i. It is assumed that the errors are normally distributed with 
means of 0 and standard deviation (Y. Therefore 

(D.3) 

whereEi rv N(O,(y2) andEi ~ [Pi -P(ti la,b,ex,,6,t)]. The likelihood function 
is the product of the density of the errors. 
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(DA) 

In order to find the maximum of this function it is sufficient to find these val­
ues at the maximum of the log likelihood function. Taking natural logarithms of 
equation DA gives the log likelihood function. 

-n 1 ~ -
loglik(e) = -10g(21f) - nlogo- -- -2 L.)Pi - P(tila, b, ex, {3, t)]2 

2 20-
(D.5) 

i=l 

In order to find the values of the unknown parameters that produced the max­
imum value of the log likelihood function, the NeIder-Mead algorithm was used. 
The NeIder-Mead algorithm [125] can be described as a simplex based direct 
search method used to find the minimum (equivalent to the negative of the max­
imum) of an n-dimensional function. It is based on evaluating a function at the 
vertices of a simplex, then iteratively modifying the simplex to find better points. 
This method was selected as it is robust and needs only function evaluations with­
out need for derivatives, and due to its success in previous studies [55]. For more 
trivial models, such as a Poisson distribution proposed to describe the distribution 
of household size in Harare (Chapter 6, Section 6.3.1), the maximum of the log 
likelihood function was found using Solver, the optimisation software found in 
Microsoft Office Excel. 



AppendixE 

Bootstrap Resampling Methods 

Bootstrap resampling is a simple and effective way of studying the distributional 
properties of statistical data [41]. 

The basic process of constructing a statistic is to draw a sample Y = (Yi, }2, 
... , Yn ) of size n from a distribution F (y), and then calculate the statistic of interest 
T from Y. The problem is then to find the distribution of T, which bootstrapping 
allows us to do. 

The bootstrap method is based on the idea that as we do not know the distri­
bution F (y) we use the best available estimate, which is the empirical distribution 
function (ED F) of our sample Y. Instead of sampling from F (y), we sample from 
the EDF of Y, i.e. we sample with replacement from Y, and carry out this process 
B times to get B bootstrap samples Yt, Y2*, ... , Y~. From each of these bootstrap 
samples we can calculate the statistic of interest Tk = T(Yk*)' If we order these 
statistics it will give us an estimate of the distribution of T. 

We generate bootstrap samples by resampling with replacement from the orig­
inal sample and calculating the bootstrap T for each of the samples. The pseu­
docode taken from Cheng [41] is as follows: 

II y = (y(l), y(2), ... , y(n)) is the original sample 
II T = T(y) is the calculation that produced T from y 
For k = 1 to B 
{ 

For i = 1 to n 
{ 

j = Int(l + n x Unif()) 

y*(i) = y(j) 
} 
T*(k) = T(y*) 

IIUnifO returns a uniformly distributed 
IIU(O, 1) variate each time it is called 
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} 

Now suppose we have fitted a parametric model to data. If this parametric 
model is correct and accurately describes the form of the data, then the fitted para­
metric model will be a close representation of the unknown true parametric model. 
We can therefore generate bootstrap samples not by resampling from the original 
data, but by sampling from the fitted parametric model [41]. This process is called 
the parametric bootstrap. 

E.I Applying the Bootstrapping Method 

The bootstrapping method discussed here which we apply in Chapter 4 to obtain 
confidence intervals on the fitted HIV prevalence and TB incidence curves, is the 
parametric bootstrapping process. 

Suppose 1](t, e) represents the incidence of TB per 100,000 members of the 
population in year t. We assume that there is no information on e, but there are 
observations Yi of the TB incidence at given time points ti i = 1,2, .'" n. These 
are subject to errors and thus 

i = 1,2, ... ,n. (E.l) 

We fit e to the observations Yi using maximum likelihood estimation and gen­
erate bootstrap samples (Y*). The bootstrap samples are obtained by using equa­
tion E.l to construct the sample Y*, only with the unknown 1]( t, e) replaced by 
1](t, e) and with E sampled from the (fitted) error distribution, N(O, ;2), assuming 
normally distributed error. 

In our model therefore, instead of the original sample coming from F(y), it 
comes from a parametric representation of the distr~bution F (y, e) and the statistic 
of interest T is the maximum likelihood estimates e. 

As each bootstrap sample y* is generated, maximum likelihood estimation 
A* 

is used to ascertain e . Therefore, generating bootstrap samples from the para-
metric model enables us to evaluate the distribution of e, and therefore to obtain 
confidence intervals on each parameter. 

Confidence intervals on the TB incidence curve are obtained by using each 
A* A 

bootstrap ek to generate B approximations of the TB incidence curve Y k using 

k = 1,2, ... , B. (E.2) 
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These approximations give a distribution of the possible TB incidence at each 
time point t, and therefore we can obtain confidence intervals for the entire series 
of time points, providing us with confidence intervals on the TB incidence curve. 

These methods were implemented using Microsoft Visual Basic in Excel and 
were applied to each district of Kenya in order to obtain confidence intervals for 
both the TB incidence and HIV prevalence curve. The equation for T/(t, ()) used to 
evaluate TB incidence is given by Equation 4.4 in Chapter 4 and the equation for 
T/(t, ()) used to evaluate HIV prevalence is given by Equation 4.1 in Chapter 4. 

The confidence intervals on the TB incidence and HIV prevalence predictions 
for each district of Kenya are given in Chapter 4, Figures 4.2, 4.3 & 4.4 and the 
confidence intervals on each of the parameters are given in Chapter 4, Tables 4.1, 
4.2,4.3 & 4.4). 



AppendixF 

Comparing Results for all Type II 
Districts 

In Chapter 4, we describe a simple parametric model which was fitted to district 
level data from Kenya on TB notification rates and HIV prevalence among women 
attending ante-natal clinics. The model predicts the HIV prevalence in districts us­
ing just TB incidence data. Figure F shows the model's predictions of HIV preva­
lence in the Type II districts of Kenya (Type II districts are those districts where 
HIV data have only been measured at a few points in time). The Figure compares 
the model's predictions when the fitting procedure uses just the TB incidence data 
and then both the TB data and the available HIV data. 
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Appendix G 

An Explanation of the Parameters 
used to Populate the DCM Model in 
Chapter 5, Section 5.4 

Parameter Abbreviation Description Value References 
Proportion f The proportion of those with 0.46 [197] 
Infectious active disease (A) that will 

be infectious (I). 

Probability f3 The probability that two spe- ecr/N 
of an Ef- cific individuals will come 
fective into effective contact. 
Contact 

Effective ecr The number of individuals 10 [160] 
Contact each infectious person effec-
Rate (per tively contacts. 
year) 

Total N The total number of people in 
. Popula- the population. 
tion 

Death J-L The background death rate in 0.018 [9] 
Rate (per the population. 
year) 
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Parameter Abbreviation Description Value 
Disease d The death rate from active 0.3 
Induced disease. 
Death 
Rate (per 
year) 

Disease 
Induced 
Death 
Rate 
Infectious 
(per year) 

Disease 
Induced 
Death 
Rate 
-Non 
Infectious 
(per year) 

Number A 
of Births 
(per year) 

Proportion p 
Develop 
Primary 
Active 
TB 

Proportion x 
of Rein­
fections 
Suscepti-
ble 

The death rate from infec- 0.3 
tious active disease. 

The death rate from non in- 0.2 
fectious active disease. 

The total number of births Chapter 
into the population. 5, Sec­

tion 
5.4.1 

The proportion of those in- 0.14 
fected that will develop ac-
tive disease (A). 

The proportion of reinfec- 0.35 
tions that are susceptible to 
developing active disease 
(A). 
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Parameter Abbreviation Description Value References 
Reactivationv The rate at which individual's 0.001 [92] [20] 
Rate (per latent (E) infection becomes [163] 
year) active. [161] 

[180] 
[181] 

Diagnosis ¢ The rate at which those with 0.5 [56] 
Rate (per active disease (A) will be di-
year) agnosed. 

Diagnosis ¢f The rate at which those with 0.5 
Rate (per infectious (1) active disease 
year) (A) will be diagnosed. 

Diagnosis ¢Nf The rate at which those with 0.5 
Rate (per non infectious (1) active dis-
year) ease (A) will be diagnosed. 

Cure Rate er The proportion of treated in- 0.7 [56] 
dividuals who are success-
fully treated. 

Treatment td The length of treatment (T) 0.5 [56] 
Duration for active disease (A). How 
(years) long individuals stay in the 

treatment (T) class. 

Progression r The rate at which individuals 0.62 [181] 
Rate (per develop active disease (A) 
year) from the time of infection. 

Natural serf The rate at which infectious 0.4 [197] 
Cure (1) individuals self cure. 
Rate 
Infectious 
(per year) 
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Parameter Abbreviation Description Value References 
Natural 
Cure Rate 

Non 
Infectious 
(per year) 

BerNI The rate at which non in­
fectious (N J) individuals self 
cure. 

0.2 [197] 

Relapse B 

Rate (per 
year) 

Conversion n 
Rate (per 
year) 

The rate at which individuals 0.21 
that self cured, revert to ac-
tive disease (A). 

The rate at which non infec- 0.015 
tious (N 1) individuals con-
vert to being infectious (1). 

Table G.1: An Explanation of the Parameters used to Popu­
late the DCM Model in Chapter 5, Section 5.4 

[197] 

[197] 



AppendixH 

Detailed Simulation Documentation 

In Chapter 6, Section 6.2 we discuss the design of the discrete event simulation. 
This Appendix provides full documentation of the simulation model. 

H.t Class 

This Section provides a description of the classes and structures implemented 
within the DES model. 

Class Name 

Baby 

CreateIndividual 

DataFile 

Death 

Description 

Makes an instruction (H.3.4) for the sim­
ulation on the allocation of a new individ­
ual into the appropriate household. 

Creates a new individual given an instruc­
tion from the simulation and ascertains its 
attributes. 

Reads in the various input data at the 
beginning of the simulation. Holds the 
structures containing the input data and 
the warmed up populations and schedules 
(Chapter 6, Section 6.4). 

Kills the individual and updates the asso­
ciated structures in the simulation. 
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Class Name 

EventFunctions 

Factor 

Generate 

HIV 

Household 

HouseholdList 

Instructions 

Intervention 

MiscFunctions 

Person 
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Description 

Contains all the functions which execute 
the events, listed in Section H.2. 

Sets and adjusts all the parameters in the 
model for use in the sensitivity analysis. 

Generates the population and households 
at the beginning of the simulation. Gener­
ates the household and random transmis­
sion events during the simulation. 

Calculates yearly age specific HIV inci­
dence figures; schedules the correct num­
ber of HIV transmission events through­
out the age groups; and executes the HIV 
transmission events during the simula­
tion. Records the model's HIV incidence 
and prevalence figures and holds them in 
its structures. 

Defines a house (Section H.3.3). 

Holds and manages the structures con­
taining the houses and the houses accord­
ing to size. Adds and removes individuals 
from households. 

Defines an instruction (Section H.3.4). 

Holds all the functions to apply different 
interventions to the simulation and con­
tains structures to keep track of interven­
tion details and efficacy. 

Contains different simple functions used 
throughout the simulation. 

Defines an individual (Section H.3.1). 
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Class Name 
Population 

RandomNumber 

ReadlnData 

mgNonUniform 

mgUniform 

Schedule 

ScheduledEvent 

Simulation 

StateDetails 

StatisticalDistributions 

TB 
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Description 
Manages and holds structures which con­
tain a list of the population, individuals 
who are HIV-positive and individuals ac­
cording to age group. 

Generates random numbers using a com­
bination of the Mersenne Twister and 
RanRot generators. 

Reads in comma separated files of in­
put data and warmed up population and 
schedule sets for use in the simulation. 

Implements random number generators 
from lO standard probability distribu­
tions. 

Defines a number of uniform ran­
dom number generators including the 
Mersenne Twister and RanRot. 

Contains, manages and schedules the 
events on the activity list. 

Defines an event (Section H.3.2). 

Contains the main simulation function 
used to work through the activity list, ex­
ecute events and record simulation data. 
Also contains the simulation clock. 

Contains and manages the structure 
which records the number of people in 
each TB state. 

Contains the Beta, Poisson, Normal and 
Gamma distributions. 

Contains and manages the structure hold­
ing the model's TB incidence and the in­
put TB incidence data. 



ApPENDIX H 

Class Name 

TimeOf 

Transmission 

Treatment 

WriteOutData 
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Description 

Uses statistical distributions, parameter 
values and data to calculate the time of 
various events. 

Chooses a person to infect with TB or 
HIV and calls the transmission process. 

Function to decide whether a person will 
fail or succeed treatment. 

Writes out simulation information to 
comma separated files. 

Table H.I: Descriptions of classes implemented within the 
model 

H.2 Events 

An event is an action upon an individual within the simulation. The following 
Section lists all the events that are active in the simulation and explains what effect 
they have. 

Event Name 

BecomeLateStage 

BecomePositiveStage 

Description Event(s) it Generates 

Progresses an individual StartActiveDisease 
from an HIV-positive sta-
tus to a late stage HIV sta-
tus. If the individual has 
latent TB, their time of re-
activation is recalculated. 

Progresses an individual 
from an early-stage HIV 
status to an HIV-positive 
status. 
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Event Name 
Conversion 

DeathFromHIV 

DiseaselnducedDeath 

FinishPT 

HIVTransmission 

HTransmission 

N aturalDeath 

RTransmission 

Self Cure 
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Description Event(s) it Generates 
Converts a person with StartlnfectiousDisease 
non infectious TB disease 
to infectious TB disease. 

Kills the individual and 
creates a new individual in 
the simulation. 

Kills the individual and 
creates a new individual in 
the simulation. 

Changes an individual's 
TB status from being on 
treatment to having a la­
tent TB infection. 

Randomly chooses an in­
dividual from a given age 
group to infect with HIY. 

Transmits TB to some- RTransrnission 
one within the individual's 
household (or randomly 
if no household members 
can be infected. 

Kills the individual and 
creates a new individual in 
the simulation. 

Transmits TB to someone StartLatent 
randomly in the popula-
tion. 

Changes an individual's 
TB status from an ac-

StartlnfectiousDisease 
StartNonlnfectiousDis-

tive disease status to self- ease 
cured. Determines if and 
when the individual will 
relapse to active disease. 
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Event Name 

StartActiveDisease 

S tartInfecti ousDisease 

StartLatent 

StartNonInfectious 
Disease 
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Description Event(s) it Generates 

Decides whether an indi­
vidual will get infectious 
or non infectious disease. 

StartInfectiousDisease 
StartN onInfectiousDis­
ease 

Changes an individual's 
TB status to an infectious 

StartTreatment 
Self Cure 

disease status. Calculates HTransrnission 
when and how the individ- RTransrnission 
ual will leave the state (re- DiseaseInducedDeath 
ceives treatment, self cures 
or ~ies) and therefore de-
termines their length of in-
fectiousness. Generates 
and schedules the individ-
ual's household and ran-
dom transmission events. 

Infects or reinfects an in- StartActiveDisease 
dividual with TB and sets 
their TB status to latent. 
Calculates if and when the 
individual will progress to 
acti ve disease. 

Changes an individual's 
TB status to a non infec­
tious disease status. Cal-

Conversion 
StartTreatment 
Self Cure 

culates when and how DiseaseInducedDeath 
the individual will leave 
the state (converts to in-
fectious disease, receives 
treatment, self cures or 
dies). 
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Event Name 
StartPT 

S tartRecovered 

StartTreatment 

Description 
Changes an individual's 
TB status to being on treat­
ment. Administerspreven­
tative therapy to the indi­
vidual and schedules when 
the person will finish pre­
ventative therapy. 

Changes an individual's 
TB status from being on 
treatment to being recov­
ered. 

Event(s) it Generates 
FinishPT 

Changes an individual's StartRecovered 
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TB status to being on treat- StartInfectiousDisease 
ment. Decides if and StartNonInfectiousDisease 
when the individual will StartActiveDisease 
fail or succeed treatment 
and schedules the event. 

Table H.2: Events acting on individuals in the simulation 

H.3 Objects 

The simulation contains four main objects which each have their own member data 
and functions. This Section details the objects and documents their purpose and 
members. 

H.3.1 An Individual 

Individuals make up the model's population and are the entities of the model. The 
processes associated with the model therefore act upon these individuals. Individ­
ual's hold details about both their personal and disease charactenstics. 

Person Class: Individual 

Member Data 
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Person Class: Individual 
itsID 

itsGender 

itsAge 

itsHousehold 

itsTBStatus 

itsHIVStatus 

itsTimeOfDeath 

itsTimeOfActi veDisease 

i tsTimeOfGettingHIV 

itsAlive 

Member Functions 

Set/Get ID 

Set/Get Gender 
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Holds an individual's unique identifica­
tion number 

Holds the gender of the individual 

Holds the age of the individual 

Holds the unique identification number of 
the house it lives in 

Holds the TB infection status of the indi­
vidual 

Holds the HIV infection status of the in­
dividual 

Holds the time that the individual is due 
to die. When a person is first created, this 
will be the time of natural death but dis­
ease processes may bring this forward and 
therefore a person can also die from TB or 
HIY. 

Holds the time that an individual with la­
tent TB is due to get active disease 

Holds the time that an individual was in­
fected with HIV 

Keeps track of whether the person is alive 
or has died 

Assigns and retrieves an individual's 
unique identification number 

Assigns and retrieves an individual's gen­
der 
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Person Class: Individual 
Set/GetJIncrease Age 

Set/Get Household 

Set/Get/Change TBStatus 

Set/Get HIVStatus 

Set/Get TimeOfDeath 

Set/Get TimeOfActiveDisease 

Set/Get TimeOfHIVInfection 

Kill 

IsAlive 
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Assigns, retrieves and increments an indi­
vidual's age 

Assigns and retrieves the ID of the indi­
vidual's house 

Assigns, retrieves and updates an individ­
ual's TB infection status 

Assigns and retrieves an individual's HIV 
infection status 

Assigns and retrieves the time an individ­
ual is due to die 

Assigns and retrieves the time a latent in­
dividual is due to get active disease 

Assigns and retrieves the time an individ­
ual is infected with HIV 

Kills the individual and removes it from 
its house. The object itself is not de­
stroyed but recycled 

Returns true if the person is alive and false 
if the person has died 

Table H.3: Details of an individual object from the person 
class 

H.3.2 An Event 

An event is an action upon an individual in the simulation. A full list of the events 
active within the model is given in Section H.2. An event holds information about 
which event function to execute, the name of the event, the ID of the individual the 
event involves and the time of the event. 

ScheduledEvent Class: Event 
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ScheduledEvent Class: Event 
Member Data 

itsEvent 

i tsIDofPerson 

itsTimeofEvent 

itsN ameofEvent 

Member Functions 

Set/Get Event 

Set/Get IDofPerson 

Set/Get TimeofEvent 

Set/Get NameofEvent 
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Holds a pointer to the function which ex­
ecutes the actual event 

Holds the identification number of the in­
dividual the event acts on 

Holds the time the event is due to be exe­
cuted 

Holds the name of the event 

Assigns and retrieves the pointer to the 
event function 

Assigns and retrieves the identification 
number of the individual that the event 
acts on 

Assigns and retrieves the time of the event 

Assigns and retrieves the name of the 
event 

Table H.4: Details of an event object from the schedulede­
vent class 

H.3.3 A House 

A house is an object to which a number of individuals belong. Each individual 
will belong to a defined house so that transmission of TB can work at both the 
community and household level. A household contains information about its ID, 
its size and which individuals live in it. 

Household Class: House 

Member Data 
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Household Class: House 

itsID 

itsHouseholdSize 

itsOccupants 

Member Functions 

Set/Get ID 

GetHouseholdSize 

AddOccupant 

DeleteOccupant 

GetOccupants 

GetFellowOccupants 

ContainsAdult 
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Holds a household's unique identification num­
ber 

Holds the number of occupants within the 
household 

Holds a list containing the identification num­
bers of each of the individuals within the house­
hold 

Assigns a given identification (ID) number to 
the household and retrieves it 

Retrieves the number of occupants within the 
household 

Adds an individual to the household: Adds an 
individual's identification (ID) number to the 
"itsOccupants" list 

Removes an individual from the household: 
Deletes the individual's ID number from the "it­
sOccupants" list 

Returns the "itsOccupants" list: Returns a list 
containing the ID numbers of each of the indi­
viduals with the household 

Returns, given the ID number of an occupant, a 
list containing the ID numbers of the individu­
als the occupant lives with 

Returns true if the household contains an adult 
and false if all the occupants are children 

Table H.5: Details of a house object from the household class 
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H.3.4 An Instruction 

An instruction is an object containing information for the simulation on creating a 
new individual. Each instruction tells the simulation the ID of the new individual, 
the ID of the new individual's household and whether the individual is to be a baby 
or an adult. For full details of how the attributes of each instruction are determined, 
see Chapter 6, Section 6.3.4. 

Instructions Class: 
Instruction 

Member Data 

itsPersonID 

itsHouseholdID 

itsKind 

Member Functions 

Set/Get PersonID 

Instructs the simulation the ID of the new indi­
vidual 

Instructs the simulation of the household ID the 
new individual will be assigned to 

Instructs the simulation whether to create an 
adult or a child 

Assigns and retrieves the ID of the individual to 
be created 

Set/Get 
dID 

Househol- Assigns and retrieves the ID of the house the 
indi vidual is to be assigned to 

Set/Get Kind Assigns and retrieves whether the new individ­
ual is to be an adult or a child 

Table H.6: Details of an instruction object from the instruc­
tions Class 
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2000 WHO Life Tables for 
Zimbabwe 

In Chapter 6, Section 6.3.3 we describe how the 2000 WHO life tables for Zim­
babwe were used to help determine the attributes of an individual when created in 
the simulation. The life tables are given in this Appendix. The definitions of the 
life table's column headings are as follows: 

Column 
Heading 

nMx 

nqx 

lx 

ndx 

nLx 

Tx 

ex 

Definition 

Age-specific death rate 

The probabilities (or risks) of dying 
between ages x and x + n 

The number of people surviving to 
the beginning of age interval 

The number of people dying during 
the age interval 

The number of years lived between 
ages x and x + n 

The total number of years lived af­
ter exact age x 

The average number of years of life 
remaining at exact age x 
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Life table : Zimbabwe 2000 

Sex Age range Actual population Actual dealhs nMx nqx Ix ndx nLx Tx ex 
both '<1' 417800 33257 0.0796 0.0754 100000 7540 94722 3771400 37.7 
both '1-4' 1633560 20702 0.01267 0.0492 92460 4549 358924 3676678 39.8 
both '5-9' 1920810 4218 0.0022 0.01092 87911 960 437157 3317754 37.7 
both '10-14' . 1736780 2833 0.00163 0.00812 86951 706 432992 2880597 33.1 
both '15-1g 1509400 9750 0.00646 0.03179 86245 2741 424373 2447805 28.4 
both '20-24' 1243080 23063 0.01855 0.08865 83504 7403 399012 2023232 24.2 
both '25-2g 952270 35383 0.03716 0.16999 76101 12936 348164 1624220 21 .3 
both '30-34' 710540 37139 0.05227 023114 63165 14800 279323 1276056 20.2 
both '35-3g 570470 28608 0.05015 022281 48565 10821 215772 996732 20.5 
both '40-44' 474940 21650 0.04558 0.2046 37744 7723 169414 780960 20.7 
both '45-4g 372090 14746 0.03963 0.18029 30022 5413 136576 611545 20.4 
both '50-54' 255280 8862 0.03471 0.15971 24609 3930 113219 474969 19.3 
both '55-5g 237180 7197 0.03035 0 .14103 20679 2916 96103 361750 17.5 
both '60-64' 189230 6449 0.03408 0.15703 17762 2789 81839 265648 15 
both '65-6g 150970 6717 0.04449 020019 14973 2997 67372 183809 12.3 
both '70-74' 117070 7561 0.06458 027803 11976 3330 51555 116436 9.7 
both '75-7g 74400 7114 0.09562 0 .36585 8646 3336 34891 64882 7.5 
both '80-84' 43200 6242 0.14449 0.53073 5310 2818 19505 29991 5.6 
both '85-8g 13870 2949 0.21264 0 .69417 2492 1730 8135 10486 4.2 
both '90-94' . 3010 914 0.30362 0.79446 762 605 1994 2351 3.1 
both '95-9g 361 152 0.42138 0 .85133 157 133 316 357 2.3 
both '100+' 28 16 0.57091 1 23 23 41 41 1.8 

Sex Age range Actual populati on Actual dealhs nMx nqx Ix ndx nLx Tx ex 
males '<1' 210160 18144 0.08633 0 .08141 100000 8141 94301 3806200 38.1 
males '1-4' 820220 10151 0.01238 0 .04808 91859 4416356835 3711899 40.4 
males '5-9' 962390 2097 0.00218 0 .01064 87442 948 434842 3355063 38.4 
males '10-14' 869040 1375 0.00158 0.00788 86495 682 430769 2920221 33.8 
males '15-W 754370 3373 0.00447 0.02211 85813 1897 424321 2489452 29 
males '20-24' 623730 7456 0.01195 0.05804 83916 4870 407403 206513 1 24.6 
males '25-2 g 486050 14183 0.02918 0.13598 79045 10749 368355 1657728 21 
males '30-34' 367470 18009 0.04901 0.2183 68297 14909 304211 1289373 18.9 
males '35-3g 291990 15531 0.05319 023474 53388 12532 235608 985162 18.5 
males '40-44' 238080 12381 0.05201 023011 40856 9401 180775 749554 18.3 
males '45-4g 182320 9022 0.04948 022018 31454 6926 139958 568779 18.1 
males '50-54' 122970 5329 0.04333 0.19549 24529 4795 110656 428821 17.5 
males '55-5g 112900 4081 0.03614 0 .16574 19734 3271 90492 318164 16.1 
males '60-64' 89050 3624 0.0407 0.1847 16463 3041 74713 227672 13.8 
males '65-6 g 69870 3632 0.05198 0.23 13422 3087 59394 152959 11.4 
males '70-74' 53690 3951 0.07359 0.31078 10335 3212 43646 93565 9.1 
males '75-7g 33810 3615 0.10691 0.42181 7123 3005 28105 49919 7 
males '80-84' 19120 3031 0.15854 0.56769 4119 2338 14748 21814 5.3 
males '85-8g 5830 1339 0.22967 0.72948 1781 1299 5655 7066 4 
males '90-94' 1140 369 0.32339 0.82072 482 395 1222 1411 2.9 
males '95-9g 111 49 0.44352 0.86885 86 75 169 188 2.2 
males '100+' 8 5 0.591 11 1 11 11 19 19 1.7 

Sex Age range Actual population Actual dealhs nMx nqx Ix ndx nLx Tx ex 
fema les '<1' 207640 15113 0.07278 0.06926 100000 6926 95152 3740183 37.4 
fema les '1-4' 813340 10551 0.01297 0.05032 93074 4684 361057 3645031 39.2 
females '5-9' 958420 2120 0.00221 0.011 88391 972 439522 3283974 37.2 
females '10-14' 867740 1458 0.00168 0.00836 87418 731 435263 2844452 32.5 
females '15-1g 755030 6377 0.00845 0 .04136 86687 3585 424472 2409189 27.8 
females '20-24' 619350 15607 0.0252 0.11852 83102 9850 390885 1984716 23.9 
females '25-2g 466220 21200 0.04547 020415 73252 14954 328875 1593831 21 .8 
females '30-34' 343070 191 29 0.05576 024469 58298 14265 255827 1264956 21 .7 
fema les '35-3g 278480 13077 0.04696 02 1013 44033 9253 197034 1009129 22.9 
females '40-44' 236860 9268 0.03913 0.17821 34780 6198 158406 812095 23.3 
females . '45-4g 189770 5725 0.03017 0.14026 28582 4009 132889 653689 22.9 
females '50-54' 132310 3533 0 .0267 0.12516 24573 3076 115178 520800 21 .2 
females '55-5g 124280 3117 0.02508 0.11799 21498 2537101147 405623 18.9 
females '60-64' 100180 2825 0 .0282 0.13171 18961 2497 88562 304475 16.1 
females '65-6g 81100 3085 0.03804 0.17369 16464 2860 75170 215913 13.1 
females '70-74' 63380 3610 0.05695 024927 13604 3391 59543 140743 10.3 
females '75-7g 40590 3499 0.08621 0.35462 10213 3622 42011 81200 8 
females '80-84' 24080 3211 0.13333 0.49999 6591 3296 24717 39190 5.9 
females '85-8g 8040 1610 0.20029 0.6673 3296 2199 10980 14472 4.4 
females '90-94' 1870 545 0.29156 0.77763 1096 853 2924 3492 3.2 
females '95-9g 250 103 0.41155 0.84319 244 206 500 567 2.3 
females '100+' 20 11 0.56283 38 38 68 68 1.8 

Figure L 1: Source: World Health Organisation [203] 
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Heligman-Pollard Method 

The Heligman-Pollard (HP) method can be used as a tool for expanding an abridged 
life table. It is used to graduate a set of age-specific statistics for a standard set of 
age groups, into a set of single-year statistics. This graduation is accomplished us­
ing the following eight-parameter formula known as the Heligman-Pollard model 
mortality schedule 

qx = A(x+B)c + Dexp [-E(ln(x/F))2] + GHx 
Px 

(J.l) 

where qx is the probability of an individual at exact age x dying before reaching 
exact age x + 1; Px = 1 - qx; and C = A, B, C, D, E, F, G, H. 

Using the same argument and notation as Kostaki [100], if we define the HP 
equation as F(x, C), then 

qx = F(x, C) 
Px 

which can be rearranged to give 

qx(1 + F(x, C)) = F(x, C) 

F(x, C) 
qx = 1 + F(x, C) 

(J.2) 

(J.3) 

(1.4) 

(1.5) 

which we call G(x, C). This is the approximation to qx, where qx are the one 
year probabilities of dying. 
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Probability 

individual survives 

next n years = 

7 I 7 

GJ~ ... 

Probability 

individual 

survives from 

age x to x+l 

Figure 1.1: Illustration of the definition of nPx 
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The probability that an individual aged x will die in the next n years is repre­
sented by nqx, which can be defined as nqx = 1-n px, where nPx is the probability 
that an individual will survive an age group. The probability that an individual will 
survive an age group is the same as multiplying together the incremental probabili­
ties of surviving each year within the age group (Px, Px+l , Px+2 .. . ) as demonstrated 
by Figure 1.1. Therefore nPx can be defined as follows , 

which means that 

nPx = PxPx+l· · ·Px+n-l , 

n-l 

nqx = 1 - II Px+i 
i=O 

n - l 

nqx = 1 - II (1 - qx+i ). 
i=O 

(1.6) 

(1.7) 

(1.8) 

We can now substitute our approximation for qx (G(x, C)) into equation 1.8 to give 
us an approximation of nqx which we caIl nG(x, C) and is given by 

n - l 

nG(x, C) ~ nqx = 1 - II (1 - G(x + i , C)). (1.9) 
i=O 

Because the abridged life. tables provide us with the nqx values, we can now ap­
proximate C by minimising the sum of squares 

(1.10) 
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So, for example, to work out the probability of someone dying between the ages 1 
and 4, we calculate 3ql as follows: 

2 

3ql=1- II(1-G(X+i,C)) (J.ll) 
i=O 

3ql = 1- (1- G(1, C))(1 - G(2, C))(1- G(3, C)) (J.12) 

where, for instance PI = (1- G(1, C)) and ifl = G(1, C). Given that we know the 
value of 3ql from the life tables, we can find estimates for C which minimise the 
error between the observed and approximated value. 

Given that all of the nqx values are known, and that we have equations, involv­
ing the set of parameters C, to approximate each nqx; we can use Solver, optimi­
sation software in Microsoft Office Excel, to find estimates of C which minimise 
the sum of squared errors between the observed and approximated values. 

We used this method to obtain a set of qx values for both males and females, 
using the nqx values from the 2000 WHO life tables for Zimbabwe [203]. The 
starting values for the set of HP equation parameters C were taken from an avail­
able state mortality schedule for Connecticut, USA and are given in Table J.1. 

HP Parameter Starting Value 

A 0.00068 

B 0.01003 

C 0.10752 

D 0.00079 

E 9.71352 

F 21.10103 

G 0.000047 

H 1.09600 

Table J.1: Starting values for the parameters ofHP equation. 
Source: Connecticut Mortality Schedule [144] 
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Using Solver to minimise expression 1.10 we obtained the following HP pa­
rameter values (Table 1.2). 

HP Parameter Male: Female: 
Fitted Value Fitted Value 

A 0.023065687 0.027125667 

B 0.00001E-05 0.00001E-05 

C 0.253089397 0.282582935 

D 0.049452797 0.052293262 

E 4.517829352 4.823913966 

F 37.9363389 32.18790048 

G 0.000103685 6.92359E-05 

H 1.094210892 1.097515398 

Table 1.2: HP parameter values obtained for the male and 
female population of Zimbabwe, using the 2000 WHO life 
tables for Zimbabwe [203] 

Once the qx values for both the male and female population were obtained, 
these were used to construct a complete life table for each gender. The statistics 
and how they were calculated can be seen in Table 1.3 and the resulting distribu­
tions oflife expectancy and survival are given in Chapter 6, Figures 6.6 and 6.7. 

Life Table Statis- Definition 
tic 

Method 

The probability of an Heligman-Pollard 
individual at exact age 
x dying before reaching 
exact age x + 1 

The number of persons lx = lx-l (1 - qx-l) 
surviving to exact age x 
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Life Table Statis- Definition 
tic 

Method 

Number of deaths at dx = lxqx 
age x 

The number of person Lx = lx - O.5dx 
years lived between ex-
act age x and x + 1 

The number of person Tx = Lx + Lx+l + 
years lived after exact Lx+2 + '" 
age x 

The average number of ex = Tx/lx 
years of life remaining 
at exact age x 

Table 1.3: A definition of the statistics used to construct com­
plete life tables for the male and female population in Zim­
babwe 
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Obtaining HIV Prevalence Estimates 
using a Double Logistic Equation 

HIV prevalence data for Zimbabwe is available between 1984 and 2000 [176]. In 
Chapter 6, Section 6.5 we mention that we fit a double logistic equation to this 
data to describe its behaviour, and obtain complete estimates for HIV prevalence. 
This Appendix gives a description of the fitting process. 

A double logistic curve was chosen as it is recommended by WHOIUNAIDS 
[175] and is an established approach to making epidemiological estimates of HIV 
prevalence in countries with a concentrated epidemic and where there is evidence 
of a decline in prevalence [111]. 

Equation K.l gives the expression for a double logistic. The double logistic 
equation has been used by previous modellers to estimate HIV prevalence [55] 
[54]. A double logistic equation is chosen as it allows the initial rate of increase, 0:, 

the peak prevalence, a, the final steady-state prevalence, b, the rate of convergence 
to the steady state, (3, and the timing of the epidemic, t, to be defined given the 
HIV prevalence data. 

ea(t-i) 

p(t) = 1 + ea(t-i) 
ae b 

( 

-(3(t-i) ) 

1 + e-{3(t-i) + (K.l) 

We fit the equation to the HIV data using maximum likelihood estimation 
(MLE). This method is explained fully in Appendix D. The method defines a 
likelihood function which is maximised by estimating the value of the unknown 
parameters, a, b, 0:, (3 and t. 

The result of the fitting process is the double logistic curve shown in Chapter 6, 
Figure 6.13. The estimates obtained for the parameters of the equation are shown 
in Table K.l. They imply that the HIV epidemic started during 1990, the peak 
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prevalence of the epidemic is 28.2% and that long term HIV prevalence will be 
13.3%. 

Parameter Estimated Value 
a 0.2815 
b 0.1327 

f3 0.0323 
t 1990.6 
ex 0.6427 

Table K.l: Parameter estimates of the double logistic equa­
tion fit to the HIV prevalance data for Zimbabwe using MLE 



AppendixL 

Uncertainty Analysis 

As part of the model validation process described in Chapter 7, we use a technique 
called parameter variability-sensitivity analysis, [150] which involves changing 
input parameter values to determine the effect on the model's behaviour. This 
Appendix describes the analysis that was done. 

Most of the parameter values for the DES model have been taken from the 
Harare baseline data, previous modelling literature and expert opinion and there­
fore we have some confidence in their values. We have however, considered the 
impact of changing some of the more uncertain parameters such as the length of 
early- and late-stage HIV, the HIV survival rate and the average household size. 
Understanding the effect of changing these parameter values gives us insight into 
how the various aspects influence the model and the TB epidemic it can produce. 

L.t Length of Early- and Late-Stage HIV 

Expert opinion suggests that the average duration of early-stage HIV is 3 months. 
This means that individuals have an increased susceptibility to developing active 
disease after initial infection with TB for 3 months after infection with HIY. We 
investigated the effect of changing this duration to see whether reducing or increas­
ing the duration has a significant influence on the average TB epidemic produced 
by the model. We looked at scenarios where the average duration of early-stage 
HIV were 0, 1.5, 3, 6 and 9 months, which meant an individual would be early­
stage for the first 0%, 1.25%,2.5%,5.0% and 7.5% of their HIV infection. 

Figure L.1 shows the fit of the model to the TB incidence data for Zimbabwe 
using the above scenarios. We found that changing the duration of early-stage 
HIV does not noticeably change the average fit of the model. Using least squares 
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Figure L.l: Model estimates of TB incidence in Zimbabwe with the average dura­
tion of early-stage HIV at (a) 0 (b) 1.5 (c) 3 (d) 6 and (e) 9 months. Each graph 
shows the observed TB incidence data from Zimbabwe and the output from 100 
runs of the model, along with the average result and 90% confidence intervals for 
each scenario 

analysis' to measure the fit of the average TB incidence curves to the TB data 
suggests that using a duration of 3 months is optimal as it produces the lowest sum 
of squares value. 

Changing an individual's average duration for early-stage HIV does_ not sig­
nificantly effect the TB epidemic produced by the model. This implies that the 
duration is too short for the temporary increase in susceptibility to TB disease 
progression to have a considerable impact on the TB epidemic. There is some 
argument to suggest, therefore, that modelling early-stage HIV is unnecessary. 

Expert opinion suggests that the average duration of late-stage HIV is 4 years, 
occurring on average 6 years after initial infection with HIV. This means that in­
dividuals have an increased susceptibility to developing active disease after initial 
infection with TB and that they are at an increased risk of endogenous reactivation 
after 6 years of being infected with HIV. We investigated the effect of changing 
this duration to see whether reducing or increasing the duration has a significant 
influence on the average TB epidemic produced by the model. We looked at sce­
narios where the average duration of late-stage HIV were 2, 4 or 6 years, which 
meant an individual would be late-stage for the last 20%, 40% or 60% of their HIV 

'This method simply calculates the difference between the model's average predicted values 
and the values observed in the data. The sum of the residuals squared gives our 'sum of squares ' 
value, wh ich allows the fit of different models to be compared . 
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Figure L.2: Model estimates of TB incidence in Zimbabwe with the average dura­
tion oflate-stage HIV at (a) 2 (b) 4 and (c) 6 years. Each graph shows the observed 
TB incidence data from Zimbabwe and the output from 100 runs of the model, 
along with the average result and 90% confidence intervals for each scenario 

infection. 

Figure L.2 shows the fit of the model to the TB incidence data for Zimbabwe 
using the above scenarios. We found that changing the duration of late-stage HIV 
does cause a very noticeable change in the average fit of the model and that the 
duration of late-stage seems to effect the timing of the epidemic and the amplifying 
effect of HIY. Using an average duration of 4 years gives the best model fit, with 
2 years causing a'TB epidemic which is too small and occurs too late, and 6 years 
causing a TB epidemic which is too large and occurs too early. 

L.2 HIV Survival Rate 

In our model we assume that the survival time of a newly infected HIV individual 
can be modelled using a Weibull distribution with a mean of 10 years as per Sa­
lomon and Murray [146]. Although this is acceptable and has been used frequently 
there is some uncertainty surrounding the time from infection to death. We inves­
tigated the effect of changing this survival function to see whether reducing or 
increasing the length of survival has a significant influence on the average TB epi­
demic produced by the model. We looked at an individual's survival time being on 
average 8 years, 10 years and 12 years after infection by adjusting the a parameter 
value of the Weibull distribution but maintaining the same shape parameter. 

Figure L.3 shows the fit of the model to the TB incidence data for Zimbabwe 
using the various survival distributions. We found that changing the average sur­
vival time of an HIV individual effects the timing of the epidemic. The aver~ge 
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Figure L.3: Model estimates of TB incidence in Zimbabwe with the average du­
ration of survival after infection with HIV at (a) 8 (b) 10 and (c) 12 years. Each 
graph shows the observed TB incidence data from Zimbabwe and the output from 
100 runs of the model, along with the average result and 90% confidence intervals 
for each scenario 

length of early- and late-stage HIV were kept the same. This meant that individu­
als became late-stage earlier if they were alive for 8 years, than if they were alive 
12 years. This is reflected in the resulting model fits that show that using a survival 
time of 8 years causes the TB epidemic to occur too early and too late when 12 
years is used. 

L.3 Size of Household 

To describe the distribution of household size in Harare, we use a Poisson distribu­
tion with mean 3.99, which was obtained by using observed data from Harare on 
the number of individuals within each household . We are confident that this gives 
us an accurate representation of the distribution of household size in our study 
area, but literature suggests that for Zimbabwe as a whole, the average household 
size would be higher [1] [65] [157] [190] and therefore it would be interesting to 
see what effect it would have if we introduced a higher household size into the 
model. We looked at using a Poisson distribution with mean household size 5.5 
which is the average of the estimates found in the literature. 

Figure L.4 shows the fit of the model to the TB incidence data for Zimbabwe 
using an average household size of 5.5. We found that changing the distribution of 
household size does not notably change the average fit of the model. This suggests 
that changing the average size of households from 3.99 to 5.5 does not effect the 
TB epidemic produced. 
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Figure L.4: Model estimates ofTB incidence in Zimbabwe with the average house­
hold size at (a) 3.99 and (b) 5.5. Each graph shows the observed TB incidence data 
from Zimbabwe and the output from 100 runs of the model, along with the average 
result and 90% confidence intervals for each scenario 



AppendixM 

TB Case-Notification Rate for 
Harare, Zimbabwe 

In Chapter 7, Section 7.7 we discuss the validation of the DES model. In Section 
7.7.5 .1 we compare the historical data with the model output of TB incidence and 
discuss the likely behaviour of the TB epidemic as it matures. This discussion 
involves di scussing the behaviour of TB case-notification rates in Harare; the data 
given in this Appendix. 

Data on the case-notification rates for Harare, Zimbabwe were provided in the · 
last month of the research by Dr Liz Corbett of DETECTB and were extracted 
from reports by the Harare City Health Department, Zimbabwe. 

TB Case· 

Notification 
(per lOOk 

popn) 

800 

1980 1984 1988 1992 1996 2000 2004 

Vear 

Figure M.l: TB case-notification rates (per 100,000 members of the population) 
for Harare, Zimbabwe 
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Number of Households Visited in 
Each of the Active Case-Finding 
Interventions 

Table N.I shows the number of households visited per 10,000 households as part 
of each 20 year active case-finding intervention defined in Chapter 8. It shows that 
2972 households are visited over 20 years in interventions 1-3 but that over 6.S 
more households are visited through interventions 4 and S. 

Table N.2 shows the number of households visited per 10,000 households as 
part of each 20 year active case-finding intervention when other scenarios were 
investigated during the sensitivity analysis and scenario analysis in Chapters 8 
and 9. Only scenarios which changed the number of households being visited 
are shown. The other scenarios explored in the sensitivity analysis and scenario 
analysis and not specifically mentioned here visit the same number of households 
as the original experiment (Table N.l). 

Given that we know 2972 households are visited over 20 years in interventions 
1-3, the figure in brackets tells us how many more households are visited under the 
other interventions and scenarios. 
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Intervention Number of 
Households 
(per 10,000 
households) 

1-3 2972 
4-S 19300 (x 6.S) 

Table N.l: Table showing the number of households visited 
per 10,000 households as part of each 20 year active case­
finding intervention 

Intervention Number of Introducing Inter- Visiting 2S% Visiting SO% 

1-3 
4-S 

Households ventions in 1996 of Late-Stage of Late-Stage 
(per 10,000 (Section 8.4.3) Individual's Individual's 
households) Households Households 

(Section 9.4.1) (Section 9.4.2) 

3849 (x 1.3) 2972 (x 1) 2972 (x 1) 
21844 (x 7.3) 4822 (x 1.6) 9666 (x 3.3) 

Table N.2: Table showing the number of households visited 
per 10,000 households as part of each 20 year active case­
finding intervention 

Visiting 7S% 
of Late-Stage 
Individual's 
Households 
(Section 9.4.3) 

2972 (x 1) 
14320 (x 4.8) 

>-
"C 
"C 
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Scenario Analysis Results 

In Chapter 8 we define the original experiment which assumes that in case-finding 
strategy 4, we investigate each member of the household of all persons entering 
late-stage HIV to see if there are any undetected TB cases or members with a 
TB infection in the household (we assume that it is around this time that an HIV­
positive individual will approach the health services). In reality, not 100% of HIV­
positive individuals will seek medical attention when becoming sick and therefore 
Chapter 9, Section 9.4 explores the relative performance of intervention 4 when 
the assumption regarding the proportion of late-stage households that are visited 
is varied. A late-stage household is a household of an HIV-positive individual 
who has just entered late-stage HIY. We look at the impact of only 25%, 50% and 
75% ofthese individuals presenting themselves for medical attention, causing their 
household to be investigated for TB. This Appendix shows graphs of the average 
number of additional TB cases found, TB deaths averted and TB cases averted, 
per 100,000 members of the population, by each of the household interventions in 
each of the scenarios. 
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Figure 0.1: Visiting 25% of Late-Stage Households: The average number of 
additional (a) TB cases found (b) TB deaths averted and (c) TB cases averted, per 
100,000 population, by each of the household interventions when compared with 
the base case; 90% confidence intervals are included 
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Figure 0.2: Visiting 50% of Late-Stage Households: The average number of 
additional (a) TB cases found (b) TB deaths averted and (c) TB cases averted, per 
100,000 population, by each of the household interventions when compared with 
the base case; 90% confidence intervals are included 
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Figure 0 .3: Visiting 75% of Late-Stage Households: The average number of 
additional (a) TB cases found (b) TB deaths averted and (c) TB cases averted, per 
100,000 population, by each of the household interventions when compared with 
the base case; 90% confidence intervals are included 
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