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THE CONSTRUCTION OF LINKAGE DISEQUILIBRIUM MAPS AND THEIR

APPLICATION TO ASSOCIATION MAPPING OF DISEASE GENES

by Tai-Yue Kuo

Success in association mapping of disease genes depends on knowledge of Linkage

Disequilibrium (LD) structure in candidate regions. An LD map characterising

such structures is constructed by making use of the Malecot model which

describes the decline of LD with physical distance based on pairwise measures of

association between SNPs. The HapMap project provides a valuable resource that

can be used to construct genome-wide LD maps. However, the millions of SNPs in

the HapMap data pose a heavy computational challenge. This difficulty can be

resolved by excluding the very distant SNP pairs without losing map quality.

Modern computational technology with parallel processing can be used to speed

up the process of map construction. A composite likelihood approach employing

LD maps for association mapping has successfully localised several causal

variants. An application to Rheumatoid Arthritis (RA) is described here. This

approach, utilising the genome-wide LD map, is very suitable for genome-wide

association studies.
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Chapter 1 Literature review

1.1 Introduction

Human Genetics is a study of DNA, genes, gene expression, and their applications

to human health. It is particularly concerned with human diseases that are

caused by genetic variants. DNA is comprised of four nucleotide bases: Adenine

(A), Thymine (T), Cytosine (C), and Guanine (G). The order of these nucleotide

bases along a DNA strand, which is known as DNA sequence, encodes the genetic

information in a precise order of base pairs. Genes are the DNA sequences that

contain the genetic information necessary for building proteins. The information

that is used to make proteins has to pass through a two-stage process known as

transcription and translation. This process is also called gene expression.

Any change in DNA sequence is called mutation. Mutations may be large or small

scale. A large scale mutation includes gain or loss of a region of a chromosome and

a small scale mutation may be only a small change in a nucleotide base, such as a

substitution, deletion, or insertion. In evolutionary terms, mutation provides

genetic diversity but, in human health, mutation may affect the expression of

genes, resulting in different types of diseases. If a mutation is present at

relatively high frequency (>1%) in a population, it is called a polymorphism. The

most common polymorphisms in the human genome are single nucleotide

polymorphisms (SNPs). However, SNPs with known locations in the genome can

be used as genetic markers to localise disease genes. Approximately 10 million

SNPs existing in the human genome can be used for disease mapping.

13
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Mendelian diseases, such as Cystic Fibrosis (CF), are single gene disorders, which

are rare but with large phenotypic effects. Complex diseases, such as diabetes,

heart diseases, and rheumatoid arthritis, do not follow Mendelian inheritance

patterns but also exhibit familial aggregation. This may be due to sharing the

same genes or environment. Such diseases are common but complex in nature

because they are influenced by multiple genes and environmental risk factors.

Therefore, each gene has only a modest effect. This is the main reason that few

genes involved in common complex diseases have been identified to date.

Association mapping is a strategy that identifies the location of disease genes

from the human genome. It has an advantage of requiring no prior knowledge

about disease mechanism. The process of localising a disease gene is from several

megabase regions previously identified by linkage to eventually identifying the

location of the disease gene.

For mapping disease genes in the human genome, the analysis of genetic

recombination is an essential method. Recombination is the process of exchanging

genetic material between maternal and paternal chromosomes by crossing over

during meiosis (the process of cell division to form gametes). This is an important

process as it is the basis of genetic diversity. Analysing the recombination

frequency between two loci allows the estimation of the genetic distance between

them. This is the basic principal of linkage analyses and identification of disease

genes. Genetic distance between two particular loci on a chromosome is measured

by the number of recombination events divided by the total number of meioses. If

the distance between two loci is very small, recombination is rare and the loci are

tightly linked.

14
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Linkage analyses can narrow down the candidate regions from the entire human

genome to regions of several megabases (Mb). These regions, however, are still too

large for fine mapping and hence for the localisation of most disease genes.

Another approach is so called linkage disequilibrium (LD) analysis, also known as

association mapping, which can further refine the candidate region. This

approach employs LD, also called allelic association (described in the next section),

which has much higher resolution than linkage analysis, because it exploits the

information from historical recombination events over many generations. These

recombination events break up large shared regions into smaller segments (See

Figure l.l)>" therefore, this approach can further narrow down the candidate

region.
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Figure 1.1 Linkage mapping (left) and association mapping (right)

M is a marker allele and D is a disease allele. This figure shows that after many

generations with many historical recombination events, the region with both marker

and disease alleles has been narrowed (right figure), compared to only one

generation (left figure)
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This chapter describes how LD can be used to localise disease genes. It also

includes recent findings about LD patterns in the genome and in different

populations. These findings motivated the international HapMap project and the

development of a LD map for the entire genome. The last section introduces

different methods using LD for mapping disease genes and the challenges of

dealing with common complex diseases.

1.2 Linkage Disequilibrium

1.2.1 Introduction

Linkage disequilibrium (LD) is the non-random association of alleles at adjacent

loci. It is present when two alleles at adjacent loci are found together more often

than would be expected under random segregation. That is to say, the strong

association between two alleles at small distance is retained after many

generations. This is because recombination events occur infrequently at small

distances. However LD is not only influenced by recombination; other historical

events such as population admixture, genetic drift, natural selection and

mutation may obscure the relationship between LD and distance between two

alleles. This chapter reviews the literature on LD measures and approaches to

model LD patterns in the genome.

1.2.2 The measures of LD

A variety of measures of LD have been proposed (Table l.l), differing in the use of

marginal allele frequencies (Devlin and Risch 1995). However; only three

measures have been commonly used by the scientific community.

The D' measure is one of the commonly-used measures of LD. it is derived from

the covariance D, which is calculated as D = (P11P22 - P12P21), where P11, P22, P12,

16
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P21 are the frequencies of four haplotypes respectively in a 2X2 table (see Table

1.2). A standardization method is applied that divides D by the minimum value of

[QR, (1-QXl-R)] when D is negative or by the minimum value of [Q(l-R),R(l-Q)]

when D is positive (Lewontin 1964). This method to normalise D is less dependent

upon allele frequencies (Hedrick 1987), although some dependency remains.

Another common measure is the r2 measure, which is presented as

r2=- D2

(Hill and "Robertson 1968). It can be used to test the

statistical significance of LD with the total number of haplotypes. At equilibrium,

D equals 0; thus D' and r2 equal 0 too. However, in some cases, these two measures

may not be consistent with each other (Pritchard and Przeworski 2001).

The p measure, proposed by Collins and Morton 1998 , is based on population

D
, where D is the covariance.' Q isgenetics theory. It is calculated as p =

the frequency of the putative youngest allele and (l-R) is the frequency of one of

the marker alleles at a particular locus (See Table 1.2). An interchange process of

the frequencies of four haplotypes is performed in order to ensure that Q < (l-Q),

R, (l-R) and that D>0. The measure p is equivalent to the absolute maximum

value of D' in a random sample, but accommodates case enrichment in

case/control samples. When modelling the decline of LD with distance, p yields the

smallest error variance compared to other metrics (Morton et al. 2001). This

model will be described in the next section.

17
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Table 1.1 A variety of measures of LD

Definition

Covariance

Association

Correlation

Regression

Frequency difference

Delta

Yule

Symbol

D

P

r

b

f

S

y

Estimate y=DIC

D=\nn7t22-7ty^2l

D/Qll-R)

DljQf\-QR&-B)

DIRiy-K)

D/QQ-Q)

D/Qfl-R-Q+RQ+D)

D/[2Q(l-Q)R(l-R)+D(\-2Q)(l-2R)+2D1]

Table 1.2 Haplotype frequencies for a 2X2 table

Locus A .

Locus B 1

2

Observed

Expected

Observed

Expected

1

"P11

QR+D

P21

(1-Q)R-D

R

=Pii+P2i

2

P12

Q(1-R)-D

P22

(1-Q)(1-R)+D

1-R

= P-I2+P22

Q=Pi1 + Pi2

1-Q=P21 + P22

N

=1

The actual haplotype frequencies and the expected haplotype frequencies for

two alleles at each of two loci. The expected haplotype frequencies are given at

equilibrium ( D=0). The marginal frequencies Q, 1-Q, R, and 1-R, represent the

allele frequencies.
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1.2.3 Modelling LD

The covariance D can be modelled by Dt = D0(l-6)' (Falconer and Mackay

I960), where Do is the disequilibrium in generation 0, 9 is the recombination

rate per generation and t is the number of generations since a mutation took place

at t = 0. When 9 is small and t is large, the equation can be simplified

as Dt = D^e'61 , which describes the exponential decline of LD with recombination

and generations. In addition, the equation assumes the constant recombination

rate and constant population size in every generation (Jorde 2000). In fact, most

populations have undergone rapid population growth.

The expected value of r2 can be written as E(r2) = (Ota and Kimura
1 + 4NQe

1971; Pritchard and Przeworski 2001), where 9 is the recombination rate per

generation and Ne is the effective population size. The equation considers the

population size during each generation, which is proportional to the time since a

mutation occurred (Hill and Robertson 1968; Kaplan et al. 1995; Jorde 2000). Ne is

the harmonic mean of the population size of each generation (Gillespie 1998), so a

dramatic decrease in the population size over one generation would have much

impact on the extent of LD. This is a "population bottleneck" (Wright 1969). This

formula has also been used frequently with coalescence theory to estimate the

population recombination rate (Fearnhead and Donnelly 2001; Li and Stephens

2003; McVean et al. 2004).

The Malecot model (Malecot 1948) was first applied by Collins and Morton

1998 to describe the relationship between LD and distance (See Figure 1.2),

which is written as p = (l - Z)Me"£d + L . In the equation, d is the distance
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between two loci; L is the residual LD at large distance, referring to the bias; M is

the association at 0 distance. M is 1 if the youngest allele is monophyletic and less

than 1 if it is polyphyletic. e is proportional to the product of recombination and

time. The parameter M is affected by the population size and mutation rate

(Morton et al. 2001). This formula estimates ed « 9t which is more appropriate

for modelling LD (Collins and Morton 1998).

200 300 400 500 600

Distance between SNPs (kb)
700 800 900 1000

Figure 1.2 An example of the Malecot model where M=0.75, L=0.05, and a

range of values for e

1.2.4 Linkage Disequilibrium maps (LD maps)

The term of "LD map" is commonly used to describe LD patterns for a particular

region or a whole chromosome. The most frequent approach is the use of D' or r2,

which plots average values in a sliding window against the corresponding

physical locations in kilobase (kb) (Dawson et al. 2002; Taillon-Miller et al. 2004."

Miretti et al. 2005). However this approach does not provide the relative location

for each locus and smooths the LD patterns. The construction of LD maps has

20
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been proposed by Maniatis et al. 2002 . Such LD maps have additive distances

and locations in Linkage disequilibrium units (LDUs) for all markers, which make

LD maps unique compared to other alternative maps (Maniatis et al. 2002; Zhang

et al. 2002a).

This method estimates the parameter e of the Malecot model (See 1.2.2) for each

interval by fitting the model to all marker-bymarker measures informative for

that interval. The length of the ith interval is computed as eid; in LDUs, where eiis

the Malecot parameter and diis the length of the interval on the physical map in

kb. The total map length for a region is £eidi, which is the sum of the length of all

intervals in this region (See Figure 1.3). An LD map (See Figure 1.4) exhibits

block-step structures, in which blocks (i.e., si=0) represent the regions of high LD

and steps (i.e., ei>0) represent the regions of low LD (Maniatis et al. 2002; Zhang

et al. 2002a). A value of £idi>2.5 indicates "a hole" in the map. The mean of e for a

region is computed as ' ^ ' . The swept radius is defined as 1/e, reflecting the
2-4

extent of useful LD.

An LD map is a very useful tool for association studies. It can also be used to

determine suitable marker densities, compare populations and detect selective

sweeps and other phenomena of evolutionary interest (Ennis et al. 2001).
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1.3 LD patterns in the human genome

1.3.1 Introduction

The success of association studies for disease gene mapping depends on

knowledge of the LD structure. However, the extent of LD varies across the

genome and in different populations. The international HapMap project

(Consortium 2003) that genotyped more than five,million SNPs in four different

populations has provided useful data to understand haplotype, recombination

hotspots and LD between different individuals and different populations. These

data are also very suitable for the construction of a genome-wide LD map.

1.3.2 The patterns of LD in the genome

A simulation study by Kruglyak (1999) suggested that the extent of "useful" LD is

less than 3 kb. However, this study did not take into account the effects of natural

selection and demographic history in populations (Thompson and Neel 1997;

Collins et al. 1999). Several empirical studies have found genomic regions of

long-range LD in many populations (Collins et al. 1999,' Huttley et al. 1999; Reich

et al. 2001; Abecasis et al. 2001b). A block-like LD structure with limited

haplotype diversity was first described on chromosome 5q31 (Daly et al. 2001). A

study of chromosome 21 also found few haplotypes in each LD block (Patil et al.

2001). One study of the Major Histocompatibility Complex (MHC) on 6p21.3,

using sperm typing techniques, showed that the areas of LD breakdown

correspond precisely to recombination hotspots (Jeffreys et al. 2001). This

suggests that recombination plays an important role in determining LD patterns.

Dawson et al. 2002 studying chromosome 22, also reported a correlation between

the intensity of LD and recombination. Maps constructed from the same data in

the two published papers (Daly et al. 2001; Jeffreys et al. 2001), illustrate
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block-step structures that match perfectly with their results (Zhang et al. 2002)

(See Figure 1.5).
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Figure 1.5 Remarkable agreement between LD maps and other results

The blocks in the LD map of 5q31 agree remarkably well with the 11 haplotype

blocks inferred by Daly et al. 2001 (the upper figure). The positions of the steps in

the LD map of 6p21.3 correspond to the sites of the recombination hotspots

reported by Jeffreys et al. 2001 (the lower figure). The source is Zhang et al.

2002a
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1.3.3 The patterns of LD in different populations

To understand more about LD patterns, researchers have investigated more

regions and different populations. Several studies have found that the extent of

LD is greater in non-African populations than in African populations (Gabriel et

al. 2002; Altshuler et al. 2005; De La Vega et al. 2005). A study of the Finnish

population found that the extensive LD blocks in the young sub-isolates are much

longer than in the general Finnish population (Varilo and Peltonen 2004). This

study confirmed the previous finding of population isolates exhibiting more

extensive LD (Service et al. 2001). An explanation is that non-African populations

and population isolates have experienced more intense population bottlenecks,

through processes such as migration, which reduced their population size

dramatically in the past (Lonjou et al. 2003). Other environmental and

demographic changes such as famine, war and epidemic diseases can also

generate new population bottlenecks (Slatkin and Veuille 2002; Morton 2005).

Despite the variations in the LD patterns between different populations, there is

a remarkable agreement in the locations of the common recombination hotspots in

different populations (De La Vega et al. 2005). Although the same recombination

hotspots exist in most populations, Kauppi et al. 2003 have found that haplotype

composition in the same blocks can be different between populations. This result

has been confirmed by several studies (Crawford et al. 2004; Liu et al. 2004). In

addition, long-range haplotypes may not always break at recombination hotspots

(Altshuler et al. 2005).
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1.3.4 The HapMap project

Initially, the patterns of LD were studied in small regions of the genome or in a

single population using low marker densities. These studies provided an

important contribution to our initial understanding of the structure of LD. Most

importantly, they motivated the international collaboration of the HapMap project

(Consortium 2003), which aimed to develop a map describing common haplotypes

in the human genome. The entire human genome contains approximately 10

million common SNPs that constitute 90% of the variation in populations

(Kruglyak and Nickerson 2001," Reich et al. 2003). The Phase I data in the

HapMap Project contains at least one million SNPs (one SNP per 5 kb) across the

whole genome. The latest released Phase II data includes an additional 4.6

million SNPs, giving a density of one SNP per 1 kb. These SNPs are genotyped in

the 269 DNA samples: 30 trios (two parents and a child) from a US Utah

population with Northern and Western European ancestry; 30 trios from Yoruba

people in Ibadan, Nigeria; 44 unrelated Japanese in Tokyo, Japan; and 45

unrelated Han Chinese in Beijing, China. These four populations are abbreviated

as CEU, YRI, JPT and CHB respectively. The HapMap data is very valuable

resource that will enable understanding of the genetic variation, LD structure and

recombination hotspots across the human genome and in different populations.

These data can also be used to construct genome-wide or population-specific LD

maps.
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1.4 Association studies for identifying causal variants

1.4.1 Introduction

The principle of association studies is to detect genetic markers that are

associated with disease phenotype. It compares the difference in allele frequencies

of genetic markers between affected individuals (cases) and healthy individuals

(controls). Therefore, a case-control study design is commonly used for association

studies. If a marker exhibits a significant difference in allele frequency between

cases and controls, this marker may be close to a causal allele. However, there

may be a spurious association caused by genotyping or sampling errors. This

chapter introduces several common approaches for mapping disease genes,

including single SNP tests, haplotype analyses, and composite likelihood methods.

Their advantages and challenges are also described. All of these approaches have

been successful in localising several major genes. However, the effectiveness of

these approaches is still unknown when applied to common diseases.

1.4.2 Single SNP tests

A chrsquared test between affection status and every SNP in the data is the

simplest and the most common method used in association studies. SNPs are

often chosen from the coding regions under the assumption that any change in

sequence of amino acid would lead to a change in protein function, which is likely

to cause diseases (Cargill et al. 1999; Botstein and Risch 2003). However, several

studies have shown that some SNPs in non-coding regions may also be associated

with disease (Duan et al. 2003; Lin et al. 2003; Tokuhiro et al. 2003). The use of a

single SNP test has several disadvantages. The main drawback is that it does not

take into account the LD between SNPs. Marker SNPs that are close together, are

correlated with one another and therefore, it is difficult to determine which SNP
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has an effect on the disease phenotype. A false positive association can also arise

from population stratification, improper case-control matching, or chance due to

multiple testing (Zondervan et al. 2002; Cardon and Palmer 2003). It is generally

believed that analysing multiple SNPs simultaneously is more efficient and

appropriate than a single-SNP test.

1.4.3 Haplotype analyses

Haplotype analyses have received a great deal of attention. A review of the

literature by Salem et al. 2005 has reported more than 40 haplotype methods for

association mapping between cases and controls. A haplotype can be estimated

either molecularly or probabilistically (Yan et al. 2000; Douglas et al. 2001; Niu

2002). However, molecular methods are expensive and labour-intensive.

Probabilistic methods, statistical inference, such as Bayesian methods (Stephens

and Donnelly 2003) and Expectation-Maximisation (EM) algorithm methods

(Hawley and Kidd 1995) have been suggested but using pedigree analyses can

obtain haplotypes with greater accuracy than random SNPs (Tishkoff et al. 2000;

Zhang et al. 2001; Schaid 2002; Thomas et al. 2004).

Since SNPs in the same LD block are highly correlated, many have redundant

information and can be eliminated. However, the highest power in Haplotype

analyses is achieved when the disease SNP itself is typed. In addition, most

studies infer block structure and boundaries by their own definitions. Some

studies have used pairwise measures to determine blocks, whereby all pairwise

coefficients exceed a predefined threshold (Daly et al. 2001; Reich et al. 2001;

Gabriel et al. 2002). Other studies have defined blocks by using a small number of

haplotypes that account for a high proportion of observations (75~90%) (Johnson
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et al. 2001; Patil et al. 2001; Zhang et al. 2002b). However, block definitions vary

depending on the threshold used, and hence are subjective and arbitrary (Cardon

and Abecasis 2003; Tapper et al. 2003).

1.4.4 Composite likelihood methods

An alternative approach that uses a composite likelihood approach and the

Malecot model under different hypotheses has also been proposed (Maniatis et al.

2004; Maniatis et al. 2005). This approach utilises LD information from an LD

map and estimates a maximum-likelihood location of a causal polymorphism. This

method was firstly applied in the CYP2D6 region which is associated with the

poor drug metabolizing activity. It was shown that an LD map is more powerful

compared to a physical map, which yields an error of only 15 kb away from the

real causal variant (Maniatis et al. 2005).

1.4.5 Alternative approaches

There are other alternative approaches for association mapping such as

meta-analysis and admixture mapping. Meta-analysis (Hirschhorn et al. 2002;

Lohmueller et al. 2003; Hirschhorn 2005) is a common method that utilises the

results from published studies in order to validate findings and significance. This

method requires detailed information on the sample and methodology that are

used for each study (Craddock et al. 2001). However, the main drawback of this

approach is that the sample size and statistic metrics vary substantially among

studies and investigators often fail to report the negative results. Another

approach is admixture mapping, which is also known as mapping by admixture

linkage disequilibrium (MALD) (Patterson et al. 2004). This approach localises

disease-causing variants that are different in the frequency between two
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historically separated populations. It is expected that affected populations derived

from the recent mixture of two or more ethnic populations should have higher

frequency of the alleles near the disease gene, which are co-inherited with the

disease genes from the ancestral population that carries more

disease-susceptibility alleles. The advantage of this approach is that it greatly

reduces the number of markers required for genome-wide scans. However, a dense

map that identifies SNPs with significant difference in allele frequency between

two populations is required (Smith et al. 2004).

1.5 Genome-wide association studies for Common diseases

1.5.1 Introduction

Linkage studies for single gene Mendelian disorders have been,very successful

but mapping genes for common diseases is extremely challenging (Altmuller et al.

2001). Recent advances in high-throughput genotyping techniques (Syvanen 2005)

and the abundance of SNP resources, such as dbSNP. have made genome-wide

association (GWA) studies feasible. The advantage of GWAis that investigators do

not need to determine possible candidate regions ahead of the genome-wide screen.

Such studies examine thousands of SNPs across the whole genome in order to

identify short regions that harbour susceptibility loci for common diseases. GWA

scans are potentially powerful so the development of analytical tools is necessary

in order to ensure success in disease gene mapping.
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1.5.2 Common diseases

Unlike single gene disorders showing Mendelian inheritance patterns, common

diseases are more complex. Such diseases are influenced by a mixture of multiple

genetic variants and environmental risk factors (Figure 1.6); therefore, the

contribution of each genetic variant is relatively small. For example, more than

150 rare high-risk alleles have been identified for Alzheimer's disease, but all of

these alleles contribute to less than 5% of the disease cases,' the remaining 95% of

the disease cases arise from complex interactions between environmental and

genetic factors of each individual (Rocchi et al. 2003). Recent studies have

suggested that common genetic variants account for a proportion of common

diseases, which is the common disease/common variant (GD/CV) hypothesis

(Reich and Lander 2001). It is still debatable whether most of complex disease is

caused by variants that are common or rare (Risch and Merikangas 1996;

Pritchard 2001; Pritchard and Cox 2002; Smith and Lusis 2002). However, recent

studies(Consortium 2007) have revealed a number of common causal variants.

Several studies have suggested multivariant approaches, such as logistic

regression (Hosmer and Lemeshow 2000) and multi-factorial methods (Ritchie et

al. 2001) can be applied for the identification of gene x gene and gene x

environment interactions. These approaches have been used in several studies of

common diseases such as hypertension (Clark et al. 2000) and breast cancer

(Ritchie et al. 2001). However a large sample sizes are still needed when there are

many independent variables (Moore and Williams 2002). Furthermore, the

environmental variance may be minimised by matching cases and controls. The

selection of extreme phenotypes has been suggested in order to reduce the

confounding effects with environmental risk factors (Long and Langley 1999).
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Nevertheless, the study of gene x environment interaction can only be meaningful

when the genes of the phenotype in question are well, established (Figure 1.6).

Intermediate
[ Environment 1) ; -' ... ^Phenotype 1

^ - V
Intermediate

Locus 2

Disease
phenotype

Souce: Carlson et al. 2004

Figure 1.6 The complex interplay of genetic and environmental factors.

1.5.3 Genome-wide association studies

Studies of common diseases using a small number of markers genotyped in few

candidate regions have reported several significant associations with diseases.

Although some results could explain a proportion of the effects of disease

phenotype, many of them have been difficult to replicate (Hirschhorn et al. 2002;

Page et al. 2003). This is perhaps due to the existence of other common variants

with modest phenotypic effects that lie outside these candidate regions

(Lohmueller et al. 2003); therefore, analysis of the entire genome could provide

robust results. Therefore GWA studies are potentially powerful.
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GWA involves multiple tests across the genome and hence the inflation of the

number of false positives is inevitable. Investigators need to adjust the

significance thresholds to control the false positive rate. The most popular method

for p value correction is the Bonferroni correction. However, this method is very

conservative because of the very large number of SNPs that are involved (e.g. at

least 500,000 SNPs across the genome)

The false discovery rate (FDR) has been proposed to control for multiple testing

(Morton 1955; Benjamini et al. 2001). The FDR is described as the proportion of

false positives in all significant results (See Figure 1.7). It has been frequently

applied to microarray analyses. The success of employing FDR depends mainly on

knowing the distribution of true significant results among all tests, but this is

usually unknown. FDR methods operate under the assumption that nominal p

values under the null hypothesis are uniformly distributed (Storey and Tibshirani

2003). However, a uniform distribution is not achieved in most cases due to

stochastic variation," therefore, failure to take this into account will inflate the

nominal significance (Yang 2004). Several programs, such as Q value (Storey and

Tibshirani 2003), BUM (Pounds and Morris 2003), SPLOSH (Pounds and Cheng

2004) and LBE (Dalmasso et al. 2005), have been proposed to estimate FDR. They

are different in their ways of modelling the distribution of p values. For example,

Q value assumes a uniform distribution of p values! BUM uses a beta-uniform

function for the distribution of p values! and LBE is based on the expectation of

the transformed p value.
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Figure 1.7 The Estimation of False Positive Rate (P value) and False Discovery

Rate (FDR).

The areas of true positives (TP), false positives (FP), true negatives (TN) and false

negatives (FN) give the estimation of the false positive rates (p value) and the false

discovery rate (FDR), T is the threshold for determining significant results, n is

the proportion of true null results among all tests.

Localising causal genetic variants for common diseases is very challenging. There

are several methods that can be employed for association mapping. In order to

ensure the success in disease gene mapping, the LD pattern needs to be taken into

account. A variety of methods using LD for mapping common disease have been

proposed, but the effectiveness of these methods needs to be examined in a large

data set in GWA scan. GWA studies with the use of genome-wide LD maps offer

the greatest prospect to unravel the cause of common diseases.
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Chapter 2 Strategies to construct a whole genome LD map

2.1 Introduction

A map describing the patterns of LD in the human genome is a powerful tool for

LD mapping and population genetics. LD maps identify regions with

recombination hotspots where higher SNP density may be required for localizing

causal polymorphisms. Differences in the map lengths between populations

reflect different population histories, in which populations experienced one or

multiple different population bottlenecks. Most importantly, an LD map plays an

equivalent role to a linkage map; a linkage map provides the genetic location for

each SNP in centimorgans (cM) whereas an LD map provides that for each SNP in

LDUs. The genetic location, in either cM or LDUs for each SNP, can be used to

predict possible locations of causal polymorphisms by linkage and association

respectively, but the location on the LDU scale has much higher resolution than

that on the cM scale.

The data for LD map construction can be phase-known haplotype data or

phase-unknown genotype data from a sample of unrelated individuals. In the

HapMap project (Consortium 2003), the phase I data contains at least 1 million

SNPs and the phase II data contains an additional 4.6 million SNPs. These SNPs

were genotyped in 269 individuals from four different populations from Utah

(CEU), Japanese (JPT), Chinese (CHB), and Yoruban (YRI) residents (See

Chapter l). The abundant SNPs and population-specific data sets make the

HapMap data very suitable for constructing an LD map for the whole genome and

for different populations.
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An LD map is constructed from multiple pairwise data from any pair of SNPs. A

gap between any two adjacent SNPs is defined as "an interval". If there are n

SNPs in a region, there are n-1 intervals. The.total number of possible pairs

between any two SNPs in the region is . For estimating the LDU length

for an interval, any pairs of SNPs that span and include this interval contain part

of the LD information for this interval, but the information declines with

increasing distance. Pairs within a certain distance are defined as "the

informative pairs" related to the interval (See Figure 2.1).

SNP 1 2 3 4 5
Interval . A . B , C , D

I I I I I Number of informative pairs

4 for Interval A

6 for Interval B

6 for Interval C

4 for Interval D

Figure 2.1 The number of Informative Pairs in different intervals
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A challenge for the construction of LD maps is the management of the

computational load posed by the volume of pairwise data, which leads to a poor

computer performance and an insufficient memory failure. Therefore it is

necessary to optimise the numbers of SNP pairs used in analyses of a large data

set.

There are three methods to remove redundant SNP pairs during the preparation

of a data set.

1) Separating a large data set into smaller sub-sets

A large data set with a large number of SNPs could be separated into several

sub-sets each containing fewer SNP pairs.

2) Reducing the SNP density

The SNP density is calculated by the number of SNPs over the physical

distance (kb) within specific genomic region. When the SNP density is reduced,

the total possible pairs are reduced sharply.

3) Excluding uninformative pairs

In practice, all possible pairs could be used in a data set. However,

uninformative SNP pairs may be removed in order to reduce the

computational load. At a very large distance (kb), SNP pairs may contain

negligible information about the LD structure of a given interval and are thus

uninformative, and can be removed from the data set (See Figure 2.2).

These three methods can be used separately or together to reduce the number of

pairs within a data set. However reducing a number of pairs runs the risk of

reducing the quality of an LD map. Even though we use the same raw data, LD

maps will not be identical if the data sets are made under different methods and
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limitations, and differences might indicate significant losses of information.

In this study, I have evaluated the impact of these three methods on LD map

construction. I also have compared the impact on two regions with very different

LD patterns. Some useful criteria to evaluate the quality of an LD map are

described and an optimal strategy to construct an LD map is suggested in the

chapter.
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Figure 2.2 Uninformative pairs for the interval

Any pairs that are at very large distance beyond the extent of LD are defined as

uninformative pairs. For instance, there are two uninformative pairs at the

bottom because the physical distance between two SNPs in kb is very large (>

2500 kb). The average extent of LD in the human genome is - 50 kb.
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2.2 Materials and Methods

2.2.1 The LDMAP program

I used the LDMAP program (httpV/cedar.genetics.soton.ac.uk/pub/ Program

/LDMAP ; Maniatis et al. 2002) to construct LD maps based on pairwise SNP

data. The LDMAP program estimates the parameter e from each interval by

fitting the Malecot model, p = (l-Z)Me~£d +L, to pairwise measures that are

informative for each interval (Fig 2.2). The length of the ith interval is computed as

eidi in LDUs and the total map length for a region is £sidi (See 1.2.4).

2.2.2 The study samples

The study chromosome

Firstly, I constructed an LD map using the genotype data for chromosome 22 from

the CEU samples in the HapMap data (Phase II), which was released in October

2005. This data set included 30 trios (parents and a child), but only the 60

unrelated parental samples were used. SNPs with minor allele frequencies (MAF)

less than 5% and any with significant deviations from HardyWeinberg

equilibrium (HWE) (X2 > 10), were removed from the data (Gomes et al. 1999). A

total of 27060 SNPs were genotyped in the sample. The physical. length of

chromosome 22 is -35 Mb (34,924 kb). The total map length of the LD map for this

chromosome is 1137 LDUs. The LDU/Mb is approximately 32.

The study regions

The LD map of chromosome 22 was used to indicate the regions of interest for this

study. I selected two regions with the same physical length (5 Mb) with very

different magnitudes of LD (See Figure 2.3 and Table 2.1).In this chapter, "the low

LD region" and "the high LD region" refer to these two regions. Only the genotype
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data in these two regions were used on the samples in this study.

1) The low LD region has a step-like structure with 244 LDUs. It is located

between 21.5 Mb and 26.5 Mb. This region was genotyped with 4499 SNPs at

an average density of one SNP every 1.1 kb. The LDU/Mb is approximately

48.8.

2) In contrast, the high LD region is a block-like structure with only 76 LDUs. It

is located from 26.5 Mb to 31.5 Mb almost adjacent to the low LD region. This

region was genotyped with 3124 SNPs at an average density of one SNP every

1.6 kb. The LDU/Mb is approximately 15.2.
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Figure 2.3 The study regions chosen from an LD map of chromosome 22

A low LD region with 244 LDU and a high LD region with 76 LDU were selected for

the study regions. These two regions have the same physical length of 5 Mb.
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Table 2.1 The descriptions for the study regions

Description

Physical range

Map Length

Number of SNPs

e(kb)

Swept radius (1/E)

Low LD region

5Mb

244 LDU

4499

0.03

32.8 kb

High LD region

5Mb

76 LDU

3124

0.003

335.8 kb

Although two regions are close together with the same physical length, they

exhibit very different patterns of LD, which is reflected in their LDU map length,

the parameter e and the swept radius. The swept radius, 1/e, is the distance at

which LD declines to e"1~0.37 of its original value. It is usually described as the

average extent of useful LD.

2.2.3 LD maps based on different data sets

Making Different data sets

By taking the two contrasting 5 Mb regions shown in Figure 2.3, the properties of

LD maps using their respective data sets under alternative approaches can be

examined. Here are the detailed descriptions about how these data sets were

made. l

1) The SNP density:

Data sets for the low and high LD regions were modified by gradually

reducing their SNP densities from the sample data. In all cases, the first and

the last SNP were chosen so that each data set maintained constant length in

physical distance (kb) for the region. Other SNPs were then chosen to satisfy

alternative SNP density requirements. For example, to achieve a 1 SNP per 2

kb density, the second SNP was chosen precisely at a location 2 kb away from

, the first SNP. If there was no SNP at precisely 2 kb distal to the first SNP, the

SNP which is the closest to the location was chosen. The new chosen SNP was
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then used to select another SNP 2 kb away from the chosen SNP. This process

was repeated along the region until the last SNP was selected. The data sets

were made from the two samples using the SNP density at 2kb, 3kb, 4kb, 6kb,

8kb, 10kb and 12kb per SNP.

2) Limiting the informative pairs

There are two constraints in the LDMAP program for removing uninformative

pairs from all possible pairs. The first one is the maximum distance in kb

between any pair of SNPs (max_dist) and the other is the maximum number

of intervals between any pair of SNPs (max_intv). The default values are 500

kb for the max_dist and 100 for the max_intv. Using the max_dist at 500 kb

means that if the distance between a pair of SNPs is over 500 kb, this pair will

be removed from the data set. Using the max_intv at 100 means that if a pair

of SNPs is separated by more than 100 intervals, this pair will be removed. If

both constraints are applied, any pairs that contravene either two will be

removed. For simplicity, I only used the max_intv to constrain the informative

pairs in the study. The data sets were made from the two samples using the

max_intv at 25, 50, 75, 100, 125, and 150. The max_dist remained at 500 kb in

all data sets.

3) The number of segments

If an original data set contains a large number of SNPs, it can be separated

into several sub-data sets with approximately the same number of SNPs. The

LD maps based on different sub-data sets can be constructed separately and

then connected together to form an integrated LD map. For example, if there

are 1000 SNPs in a region, each segment contains 500 SNPs by dividing two

segments, but 250 SNPs by dividing four segments. In this study, my two

selected regions contain 4499 SNPs and 3124 SNPs respectively. The data sets
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were made from each of the two samples using 2, 3, 4, 6, 8, 10, and 12

segments. The number of SNPs per segment in these data is 375 ~ 2250 and

260-1562 for the low LD and high LD regions respectively. In addition, each

segment includes additional SNPs from its two neighboring segments. The

region where additional SNPs are from is defined as an overlapping region.

Each segment contains two overlapping regions except the first and the last

segment which has only one overlapping region. The overlapping region is

used for the connection of two segmental LD maps of two neighbouring

segments. The number of additional SNPs in the overlapping region is set to a

default of 25 SNPs. In this study, I used the same default overlap value for all

the data sets that were made using the assembly method. When connecting

all overlapping sections of segmental LD maps to form an integrated LD map,

the length in LDU of each interval within the overlapping regions were

replaced by the mean of the length of that interval from the two neighbouring

segments (See Figure 2.4).

SNP 1
Overlapping Interval

Segmeni (LD map) ;

Segmen2 (LD map)

(0+0.6)/ 2
=0.25

! (1.0+0.5)/2

(0.5+0.5)/2 I = 0 - 7 5

=0.5 i

Integrated LD map
(Segmenti + Segment2)

10LDU ! 0.25LDU | 0.5LDU | 0.75LDU 20LDU

Figure 2.4 The mean of the LDU length of each interval within

overlapping sections from two neighbouring segments.
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Constructing LD maps from these data sets

22 LD maps for each of the two selected regions (high and low LD regions) were

constructed using the LDMAP program. The data sets for the 22 LD maps were

created under the criteria for. reducing number of pairs, including 8 by reducing

the SNP density, 6 by limiting the informative pairs and 8 by separating segments.

For a given region, all LD maps had the same number of SNPs except the LD

maps that were constructed using reduced SNP density. Therefore, inserting into

the LD maps the SNPs removed when making a data set was necessary for the

comparison of these LD maps. Linear interpolation was applied to give a relative

LDU location from an LD map for these SNPs according to their kb location (See

Figure 2.5). For example, if a given SNP being inserted is between SNPi and SNP2,

given two locations, kbi, LDUi and kb2, LDU2 respectively for each SNP, the LDU

location for this SNP, given kbi for its kb location, is calculated as the equation,

By this interpolation method, all SNP removed during map construction were

positioned back into the maps, but the length and the shape of the LD maps were

not changed.

LDU2

SNP,, SNPS

Physical distance

Figure 2.5 Linear interpolation method provides SNPs LDU locations based

on their kb location
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2.2.4 Comparisons between LD maps

Standard data sets and a default LD map

The quality of an LD map is considered to depend on how well it fits the pairwise

data in a data set (Maniatis et al. 2002). If a particular LD map has a reduced

error variance relative to other LD maps, this LD map is taken to have higher

accuracy for the data set. To measure how well an LD map fits a data set, we can

use the residual error variance, V = , where -2lnlk is the composite log
(n - m)

likelihood computed as - 2\nlk = ̂  kp (p - p)2 I n is the number of pairwise data

points in the data set; and m is the degrees of freedom referring to the number of

parameters estimated. In the -2\nlk , p is the association probability

estimated from the 2x2 haplotype table; p is the predicted association

probability given from the LD map using the Malecot model; and kp is the

information about p , computed as (See Table 1.2).
( 1 0 *

To compare alternative LD maps, its is important that all are evaluated against

the same pairwise data set. In this study, five standard datasets were made; each

of them including all SNPs but with different max_intv at 100, 200, 300, 400, and

500 respectively, yielding five residual error variances for different standard data

sets

The LD map constructed from the data set using the default value of 100

max__intv was defined as "the default LD map". For simplicity, all LD maps were

compared with the default LD map. The map length, the residual error variances

and the block proportions were used in the comparison between these LD maps.
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These three elements related to the quality of an LD map are described in detail

in the following section.

The criteria for the comparison

Here I define three criteria in order to compare the difference between these LD

maps.

1) The relative length:

The map length of all LD maps was compared individually with that of the

default LD map. The relative length is defined as the map length of each LD

map divided by the map length of the default map.

2) The relative efficiency:

This criterion is used for comparing the residual error variance of each LD

map individually with that of the default LD map. The ratio (VD/VE) between

the residual error variance of the default LD map (Vb) and each LD map (VE)

is defined as the relative efficiency. Five different standard data sets were

used so that each LD map has five different values of the relative efficiency.

3) The block ratio:

An interval in which 8i =0 is defined as a block here. The proportion of LD
it

blocks is defined as the sum of all intervals in kb where ei=0 divided by the

entire length of the region. The block ratio is defined as the proportion of LD

blocks in each of the alternative LD maps divided by the proportion of LD

blocks of the default LD map.
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2.3 Results

2.3.1 The impact on the relative map length

1) SNP density

For the low LD region, while reducing the SNP density from 1 SNP per 2 kb to

10 kb, the relative map length is between 0.91-1.03, but drops to 0.78 when

the density is reduced to 1 SNP per 12 kb. However, for the high LD region,

the relative map length tends to reduce gradually as the SNP density is

decreased. The relative map length reduces to 0.82 when the density is

reduced to 1 SNP per 12 kb (Figure 2.6 a). For the high LD region, using

higher SNP density will break up large blocks into several smaller blocks.

However, for the low LD region, the map length is limited by the fewer

intervals in the region due to low SNP density.

2) Maximum interval between pairs of SNPs

When the max_intv is reduced, the relative map length tends to increase for

the both regions, although this is more apparent for the low LD region. For

the high LD region, the relative map length is 1.13 and 1.11 at the max_intv of

25 and 50 respectively, whereas it is 1.26 and 1.15 respectively for the low LD

region. In other words, there is at least, a 10% increase in the map length

compared to the default map when using the max_intv as <50. The relative

map length reduces gradually while the max_intv increases for the low LD

region, but remains more stable while the max_intv is over 75 for the high LD

region (Figure 2.6 b). A possible reason is that the estimation of the parameter

e may not be accurate if the max_intv is not large enough to cover the mean

extent of LD.
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3) Number of segments

The assembly method using different numbers of segments to construct the

LD maps increases marginally the map length for the both regions, but this is

less than 4%, compared to the default LD map (Figure 2.6 c). The reason that

causes the map length slightly longer perhaps may be the same as using an

insufficient max_intv. When we divide a larger segment into several smaller

segments, the number of pairs used to estimate the parameter 8 for the

intervals at the end parts of each smaller segment is fewer than the

requirement of the max_intv due to the truncated side of those intervals.

Therefore, we may expect the map length to be longer when more segments

used.

2.3.2 The impact on the relative efficiency

1) SNP density .

The relative efficiency decreases gradually for the both regions when the SNP

density is reduced, but the decline is more rapid for the low LD region. When

the density is reduced to 1SNP per 12 kb, the relative efficiency for the low LD

and high LD regions is 0.73 and 0.79 respectively (Figure 2.7 a). This trend of

declining relative efficiency with the reducing SNP density is not different

when using different standard data sets. Once again, reducing SNP density

over the range examined decreases the relative efficiency by up to 20%.
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Figure 2.6 The impact on the relative map length

LD maps constructed based on alternative methods to reduce the pairwise data from the high

LD region (solid line) and the low LD region (dashed line). The results are shown for a) SNP

density; b) Maximum interval constraints; c) Number of segments. ,
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2) Maximum interval between pair of SNPs

Fitting alternative maps to the standard data set using the 100 max_intv, the

relative efficiency increases while the max_intv increases from 25 to 50, and is

maximal at 75 intervals and declines slightly when the max_intv is over 100.

Similar results are found for both regions (Figure 2.7 b). When fitting them to

other standard data sets, for the high LD region, the relative efficiency

increases dramatically between 25 and 75 intervals, but improves only

slightly when the max_intv is over 100 (Figure 2.8 a). However, for the low LD

region, the highest relative efficiency is evident at the 75 max_intv but it.

decreases slightly while the max_intv increases above 75 (Figure 2.8 b). The

results also shows that using fewer intervals (the max_intv =25), the relative

efficiency falls more rapidly for the high LD region than for the low LD region.

The decline in relative efficiency when using large number of pairs may reflect

the dependency between pairs which is reduced by using a smaller sub-set.

3) Number of segments

The assembly method has a very little impact on the relative efficiency for the

both regions when divided by up to 6 segments, which is about 500-750 SNP

per segment. However, only when the region is divided into 8 or more

segments, there is an evident reduction in the relative efficiency and this is

more apparent for the high LD region than the low LD region. The relative

efficiency remains between 0.95-1 for all LD maps constructed (Figure 2.7 c).
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Figure 2.7 The impact on the relative efficiency

LD maps constructed based on alternative methods to reduce the pairwise data

from the high LD region (solid line) and the low LD region (dashed line). The

results are shown for a) SNP density; b) Maximum interval constraints; c) Number

of segments. These LD maps fitted the standard data set which includes all SNPs

with the max_intv, 100.
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Figure 2.8 The impact on the relative efficiency

Each LD map for the high LD region (the upper figure) and the low LD region (the

lower figure) fitted to another standard datasets which includes all SNPs with the

maxjntv at 200, 300, 400, and 500 respectively.
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2.3.3 The impact on block ratio

1) SNP density

The LD block proportion in the default map for the low and high LD region is

approximately 69% and 81% respectively. Results show that while reducing

the SNP density to 1 SNP per 12 kb, the block ratio for the low LD region

decreases very rapidly to 0.59 whereas it only decreases to 0.74 for the high

LD region (Figure 2.9 a). This shows that using lower SNP density has less

ability to delimit LD blocks for both regions.

2) Maximum interval between pair of SNPs

As seen in Figure 2.9 b, when the max_intv is 25, the block ratio is 0.95 and

0.92 for the high and low LD regions respectively. This increases with the

increasing the max_intv, but tends to stabilise when the max_intv is over 100.

3) Number of segments

The block ratio slightly decreases while the number of segments increases for

the high LD region. It reduces only 5% even dividing by 12 segments in the

assembly method. However, the trend of the block ratio is more unpredictable

for the low LD region ranging between 0.9~l for the various number of

segments used (Figure 2.9 c).

These results above agree with the results in Figure 2.6, in which the longer map

length is correlated with a smaller proportion of LD blocks. The results here give

an evidence for the presumption that the longer map length reflects a poor

characterisation of LD blocks.

53



The Construction of LD maps and their Application to Association mapping of disease genes

1.05

a 1.00

0.95

0.90

0.85
o

1 0.80

I 0.75

0.70

0.65

0.60

0.55

0.50
4 6 . 8

SNP Density ( kb per SNP)

12

1.05

1.00

0.90

1.05

1.00

0.95 .

0.90

25

0.85

75 100

Maxmm Interval Constraints

150

4 6

Nimber of Segnerts

10 12

Figure 2.9 The impact on the block ratio

LD maps constructed based on alternative methods to reduce the pairwise data

from the high LD region (solid line) and the low LD region (dashed line). The results

are shown for a) SNP density; b) Maximum interval constraints; c) Number of

segments.
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2.3.4 Processing time

In this study, I attempted to estimate the time it took when different LD maps

were constructed. The actual time was difficult to estimate because it was

influenced not only by the procedures used but also by how busy the server was

during the map construction. Generally speaking, it took about 3-6 hrs to

complete an LD map when a data set included 1000 SNPs with the use of the

default value (100 max_intv and 500 max_dist), but only took 30 mins to 1 hr to

complete it when a data set included only 500 SNPs with only 50 max_intv.

2.4 Discussion

Using a high SNP density for a data set enables the construction of an LD map

with a very high resolution. A large number of pairs generated from the data set

leads to a heavy computational challenge. This difficulty does not exist for a small

region or a region with a very low SNP density. However, investigators have to

deal with the computational burden imposed by large data sets when studies

target whole chromosomes or the entire human genome. The problem has had an

impact on investigations into the LD pattern for the whole genome, and will

increase when more genome-wide association studies are conducted. In this study,

I proposed three approaches to reduce the volume of the pairwise data: reducing

the SNP density, constraining the max_intv for pairs, and dividing a large

chromosome into smaller segments. It is encouraging to know that LD maps are

very robust to the approaches that are suggested to reduce the max_intv and toi

use segments, but are not robust to reductions in SNP density. Results show that

there is a large impact on the map length, the relative efficiency and the block

ratio when the SNP density is reduced. A great deal of information is lost even
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when the SNP density is reduced only from 1 SNP per kb to 1 per 2 kb. Therefore,

using all the SNPs available-in a data set is suggested to achieve high resolution

LD maps. Using the max_intv at 100 is sufficient to obtain informative pairs for

the high and low LD regions. Although increasing the max_intv for the high LD

region may continue to increase the relative efficiency, this is modest compared to

the map using the max_intv at 100 only. However, using a large max_intv would

increase the processing time dramatically and perhaps would decrease the

relative efficiency for the low LD region. Therefore, these should be included in

the consideration for cost-benefits when constructing an LD map. The results also

show that using segments for constructing an LD map has an even smaller impact

on the quality of an LD map. However, it is uncertain that the tiny effect is from

many overlapping regions or from insufficient SNPs used in a segment. These two

factors are correlated, because there are fewer SNPs in a segment as more

segments are used. Remarkably, the relative efficiency remains at more than 70%,

even for the worst LD map that was constructed at 1 SNP per 12 kb. This relative

efficiency is much higher than the 41% on average in the kb map that was

constructed from a data set including all SNPs.

In this study, I have measured the map length, the residual error variance, and

the block proportion for each LD map to evaluate the quality of these maps.

According to the Figures 2.6 and 2.9, it is apparent that the increase in the map

length is correlated with the decline of the block proportion, except for those LD

maps that were constructed using different SNP densities. These maps have

different numbers of intervals, making the map length variable. If the number of

informative pairs is constrained stringently, the block structure may not be

characterised properly. For example, the map length is much longer but the block
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ratio is much less for the low and high LD regions when the max_intv is at 25.

This may also explain why the map length increases with the increase in the

number of segments. The reason is that the informative pairs needed to estimate

the length of each interval at the end regions on two sides of any segment are

limited. Although extending 25 SNPs in an overlapping region was applied, it was

still not enough for these intervals according to the results. The inaccurate

estimation for the map length in these intervals can be improved by extending the

overlapping regions to 100 SNPs. Therefore, each interval in any segment will use

the same number of pairwise data for the estimation of its length. This tiny

revision in the process ensures using enough information pairs for each interval

and it would further improve the quality of an LD map.

In addition to reducing the number of pairs in a data set, using the segment

method to construct LD maps has another advantage. It allows several LD maps

for these segments to be constructed simultaneously because each segmental map

construction can be considered as an independent job. It would decrease the

processing time markedly, because many jobs can be processed in parallel. For

example, given 100 computers, if a long chromosome is divided into 100 segments

and they are processed on these 100 computers simultaneously, it only takes the

time which is required for constructing one segmental LD map. GRID computing

technology (Rowe et al. 2003; Sulakhe et al. 2005) coordinates and shares network

resources by utilizing many servers and is perfectly suitable for the assembly

method. We will implement this technology with the LDMAP program when

constructing LD maps for the human genome.

In summary, the computational difficulty for constructing a genome-wide LD map
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can be resolved by limiting the size of a data set without losing the quality of the

map. New technologies and powerful computers can also accelerate the process.

This study guides the choice of optimal strategies in the LDMAP program when

constructing an LD map for a large data set and also reveals the reasons for

differences between LD maps.
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Chapter 3 The Construction and analysis of whole

Genome LD Maps from the HapMap data.

3.1 Introduction

LD maps are useful tools that describe the structure and magnitude of LD in

genomic regions. They are applicable to different fields in genetics, most

importantly to association mapping. LD maps guide' the design and analysis of

association studies, and also identify regions that may have been subject to

natural selection during human history. In the past few years, the construction of

LD maps was limited to a small number of genomic regions. The first LD map of a

whole human chromosome was constructed in 2003 (Tapper et al. 2003) using a

dataset of chromosome 22 from a published paper (Dawson et al. 2002). This LD

map consists of approximately one thousand SNPs across the entire chromosome.

However, constructing a genome-wide LD map for the whole human genome

seemed inconceivable until the HapMap project was launched (Consortium 2003).

With advancement in high-throughput genotyping techniques and reduced cost,

the International HapMap Project combined effort to provide a public database of

common variation in the form of numerous SNPs across the human genome.

These data provide the best source for genome-wide LD map construction at

present.

Our research group made the first whole genome LD map from the HapMap data

release #16 in 2005 (Tapper et al. 2005). The dataset included 0.7 million SNPs

genotyped in each of 269 DNA sample at the density of one SNP per 5 kb in four

different populations. The first construction of the entire genome LD map gave
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experience in dealing with the computational difficulty resulting from such large

datasets. The construction of an LD map is time-consuming and computationally

intensive. The problem of handling such large datasets can be addressed by

several strategies, for example, excluding pairs at large distance which have

reduced information and creating LD maps in segments which are then rejoined

to make a complete LD map (See chapter 2). The first genome-wide LD map was

made by these strategies (50 max_intv, 500 max_dist, 1000 SNPs per segment and

25- SNP overlap), which increased the speed in map construction with little loss of

information.

In January 2006 the HapMap project provided a new release #20, which increased

SNP density from 1 SNP per 5 kb to 1 SNP per 1 kb. This release required more

computational load and processing time to construct the whole genome LD map..It-

would be a huge task to construct the map using the same strategies with the

same criteria as the previous work. Therefore, new strategies were developed with

the latest computational technologies to aid map construction.

In this chapter, I describe how the genome-wide LD map was constructed

efficiently using parallel processing in a GRID-based computational system.

Furthermore, I compare the differences in LD maps between chromosomes and

between populations. I also compare the difference between the release #20 and

the release #16 LD maps.
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3.2 Materials and Methods

3.2.1 Source of genotype data

The genotype datasets for constructing the whole genome LD maps were

downloaded from the HapMap public release #20 (January 2006) at

http://www.hapmap.org/genotypes/latest_ncbi_build35/non-redundant/. This

release contains a remapping of the previous release #19 on NCBI Build 35

coordinates and has excluded SNPs inconsistent in mapping between Builds 34

and 35. These datasets are classified by chromosome and population

(Chromosome: 1 to 22, X and Yl Population: CEU, CHB, JPT and YRI).

Approximately 3.7 million SNPs were genotyped across the whole genome of the

four population samples that comprises 90 CEU individuals (30 parent-offspring

trios), 90 YRI individuals (30 trios), 45 CHB and 44 JPT unrelated individuals.

However, only parental DNA samples and unrelated individuals were used in map

construction (60 CEU, 60 YRI, 45 CHB and 44 JPT). Genotype data from all

chromosomes, except chromosome Y, for each of the four population samples were

then used to construct the whole genome population-specific LD maps. To

construct an LD map of chromosome X, only female DNA samples were used. (30

CEU, 30 YRI, 23 JPT and 23 CHB female individuals).

3.2.2 SNP screen procedure

For quality control (QC) in genotype data, each SNP had to pass a screening

procedure that discarded SNPs showing strong deviation from Hardy-Weinberg

equilibrium with ^2>10 (Gomes et al. 1999) and rare SNPs with minor allele

frequency (MAF) less than 0.05 including monomorphic SNPs.
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3.2.3 Strategies with specific criteria for the map construction

The previous whole genome LD maps (Tapper et al. 2005) had been constructed in

segments with the removal of uninformative SNP pairs. The criteria used in the

map construction were 50 max_intv, 500 kb max_dist, 1000 SNPs per segment

with 25-SNP overlap, and overlap distance being averaged. In the new dataset of

the release #20, the SNP density was approximately 1 SNP per 1-1.5 kb in

different population samples. Therefore, I increased the max_intv to 100 in order

to sufficiently cover the average physical distance of useful LD (the swept radius),

approximately 50 kb in the genome. Other criteria in map construction were 500

kb max_dist, 2000 SNPs per segment with 100-SNP overlap and overlap distance

not being averaged. Increasing the size of overlap for every segment ensures that

the LDU .length for each interval was estimated from sufficient informative pairs,

including the first and the last intervals. The number of SNPs per segment

increased from 1000 to 2000 SNPs, determined according to computational

performance (Lau et al. 2007). Any segment with less than 1000 SNPs was

combined with the preceding segment to ensure sufficient SNPs in every segment.

Overlapping regions were only used to enable better estimations for the intervals

at the two distal regions of every segment. This is a difference from the previous

construction where averaging of the overlap region was used. After segmental LD

maps had been constructed, overlap regions were removed entirely. For some

large chromosomes, with the number of SNPs greater than 70,000, and to avoid

memory problems in computing, datasets were divided into 2 or 3 smaller

sub-datasets each one containing 1000- SNP overlap.
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3.2.4 The software program: LDMAP-Cluster

In the previous map construction, the whole genome LD map was assembled from

segmental LD maps constructed independently by the LDMAP program. This

program only constructed one map a time in a sequential process, so the entire

process was extremely slow, especially when there were many segments. In

contrast, the new version named LDMAP-Cluster (Lau et al. 2007) is able to

perform map construction in a parallel process (See Figure3.l). This program is

based on the original LDMAP program but manages the submission of multiple

datasets to a computing cluster of numerous dual-processor servers under a Linux

environment. Therefore, each dataset is processed independently to make a

segmental LD map. This feature greatly speeds up map construction for the whole

genome. LDMAP-Cluster also provides a useful function to merge segmental

maps into a complete map. Further information can be found on the website

(httpyAvww.som.sotoaac.uk/ research/ geneticsdiv/epidemblogy/LDMAP/defeulthtm).

LDMAP LDMAP-Cluster

T=T B ( i fT e >T A andT c )

T=TA+TB+TC

Figure 3.1 Sequential and parallel computation for map construction

TA ,TBand Tc are required time for processing segments A, B and C respectively.

T is the total required time.
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3.2.5 Special terms and their descriptions

Several special terms are used in the study for characterisation of the LD patterns

in these LD maps and also for comparison between populations. These terms and

their descriptions are listed in this section.

1. LDU/Mb rattolt is a measure for the intensity of LD in a particular region,

calculated as the total LDU length divided by the physical length in megabases.

2. Ablock^A region with consecutive intervals which have an LDU length of zero.

3. Ahole^An interval with LDU length greater than 2.5.

4. Mean block size^Calculated as the total kb length of intervals in which LDU

length equals zero divided by the total number of blocks.

5. Block coverage^Calculated as the total kb length of intervals in which LDU

length equals zero divided by the total kb length of all intervals.

6. Specific block proportion^Calculated as the number of specific blocks divided by

the total number of blocks.

7. Hole coverage^Calculated as the total kb length of intervals in which LDU

length greater than 2.5 LDUs divided by the total kb length of all intervals:

8. Hole contribution^Calculated as the total LDU length of intervals in which LDU

length greater than 2.5 LDUs divided by the entire LDU length.
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3.3 Results

3.3.1 The removal of SNPs

Initially, each downloaded dataset of the four population samples contained

approximately 3.7 million SNPs genotyped across the whole genome. The YRI

dataset had slightly fewer SNPs. After the SNP screening procedure, 23%-40% of

these SNPs were monomorphic and excluded from the datasets. Other potentially

problematic SNPs (less than 1% with HWE x2>10 a n d roughly 10 % with

MAF<0.05) were also excluded. More than a half of the SNPs (1.9-2.3 million)

remaining in the post-screened datasets were then used for the LD map

construction (See Table 3.1). Although the YRI dataset had the smallest number

of SNPs initially, it contained the highest number of SNPs after screening. The

CHB and JPT post-screened datasets both have very similar numbers of SNPs (l

SNP per 1.55 kb) but hundreds of thousands fewer SNPs compared to the YEI and

CEU samples (l SNP per 1.26-1.39 kb). Approximately 1.3 million common SNPs

(55%-68%) are shared in four population post-screened datasets, but the

proportion (55%) in the YRI dataset is much less due to more population specific

SNPs in its total. More than 81% of intervals between two adjacent SNPs are less

than 2 kb and over 93% are less than 4 kb.

During the screen procedure, many problematic SNPs in the download datasets

were found. Some of them have two different reference IDs in UCSC genome

browser databases. For instance, one SNP at 51,575,414 base pair (bp) of

chromosome 2 has two IDs, rsl7868116 and rslO184263; another SNP at

118,641,217 bp of chromosome 4 also has two IDs, rsl7861176 and rsll729803. A

total of 228 SNPs with this problem were identified. Another type of problematic
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SNPs were those SNPs that are monomorphic in all parental chromosomes but

not in children's. This type of problem indicates genotyping error. The total of

12,730 SNPs in the CEU dataset and 11,539 SNPs in the YKI dataset with this

problem were identified and all problematic SNPs were removed from the

datasets.

Table 3-1 The SNPs removed in the datasets of the four population samples

after the SNP screen procedure

~~. Download Monomorphic *Rare HWE r 2 >10 Post-Dataset
p O p u l a t l O n SNPs SNPs SNPs SNPs SNPs

CEU

CHB

JPT

YRI

3,720,803

100%

3,715,927 ,

100%

3,715,927

100%

3,641,870

100%

1,224,673

32.92%

1,447,862

38.96%

1,489,758

40,09%

851,075

23.37%

376,657

10.13%

365,703

9.84%

337,557

9.08%

441,914

12.13%

20,122

0.54%

19,533

0.53%

19,704

0.53%

29,091

0.80%

2,110,581

56.74%

1,894,783

50.99%

1,880,578

50.61%

2,336,706

64.16%

* Rare means SNPs with minor allele frequencies (MAF) less than 5% but greater

than 0 in the sample. Some rare SNPs with MAF less than 5 % could also have

significant deviation from HWE, so these SNPs were counted in both columns.
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3.3.2 The completion of the whole genome LD maps

The human genome comprises of 23 chromosomes, 1-22 and X or Y covering 2933

Mb of the euchromatin. In the map construction, the whole genome was analysed

in approximately 1000 segments with 2000 SNPs each. In general, map

construction in a segment of 2000 SNPs required 5 -10 hrs of computation time.

It could have taken at least 5000 hours equivalent to approximately 200 days to

construct the whole map on a sequential process. However, it only took

approximately 20 days in a parallel process with at least 10 servers available to

us.

Currently, all information on these LD maps were stored in a collection of flat files

arranged by populations and chromosomes. Each flat file includes SNPs with

their rs-ID, kb locations and LDU locations. Our research group has been

developing an online Linkage Disequilibrium Database (LDDB) which integrates

these LD maps with useful information from other genetic maps. This web^based

database is available at httpV/cedar.genetics.soton.ac.uk/ public_html/ .
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3.3.3 Comparison between populations

Table 3.2 shows that the YRI LD map has the longest map among four

population-specific genome-wide LD maps, resulting in an LDU/Mb ratio much

greater than the other population's. The map lengths in the other three sample

LD maps are more similar, but the CHB LD map is slightly longer.

The total block coverage reflecting high LD regions, accounts for up to

67.74%-71.26% of the entire genome sequence with a mean block size ranging

from 6.2-9.1 kb in the four population samples (See Table 3.3). The majority of

blocks are less than 30 kb long and very few blocks (less than 1%) are over 100 kb.

The YRI LD map contains the highest number of blocks and the shortest block

size among the four population samples reflecting accumulated recombination

events over the long history of this population. Although the YRI LD map has

100,000 blocks more than the JPT and CHB maps, the difference in block

coverage is very small (<2%). The CEU LD map has slightly higher block coverage,

but only 3.52% higher than the YRI map. In other words, the large difference in

the map length among populations is not influenced by the composition of blocks,

but, mainly by the intensity of recombination in inter-block regions.
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Table 3.2 The general information of the whole genome LD maps for the four

population samples

population
Number Physical SNP Density

of SNP Length (kb) (per kb)

LDU

length

Ratio

(LDU/Mb)

CEU 2,110,581 2,932,892

CHB 1,894,783 2,932,921

JPT 1,880,578 2,932,911

YRI 2,336,706 2,932,878

1.3896

1.5479

1.5596

1.2551

57,820

64,931

58,731

81,346

19.71

22.14

20.02

27.74

Table 3.3 The block information of the genome-wide LD maps for the four

population samples

chromosome
Number Mean block Block Specific block proportion

of blocks sizes (kb) coverage < 2 k b < 5 k b < 1 Q k b < 3 Q Rb < 100 kb

CEU 223,918 8.55

CHB 207,158 8.82

YRI

71.26% 32.37% 55.18% 73.58% 93.65% 99.47%

68.84% 31.67% 54.30% 72.76% 93.17% 99.36%

JPT 201,343 9.07 69.55% 31.14% 53.47% 71.91% 92.74% 99.28%

303,018 6.20 . 67.74% 38.58% 63.85% 81.85% 96.97% 99.76%
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Holes are defined here as intervals that exceed 2.5 LDUs. They are likely to

reflect both uneven marker coverage and particularly recombination intense

regions. They account for less than 1% of the genome sequence but contribute to

4.41-17.54% of map length among populations. In general, the number of holes

can be reduced by increasing the SNP density at the regions with extremely low

LD (Tapper et al. 2003). For this reason, the YRI LD map with the highest SNP

density has fewer holes than the other LD maps. By contrast, the CHB and JPT

LD maps have many more holes. Because the maximum LDU value for a hole is

constrained to 3, adding more SNPs into a hole may contribute to increase or

decrease in map length. Therefore, map length is less reliable in a region with

many holes. However, locations of holes tend to be different between populations.

The result (Table 3.5) shows that very few of them (1-2%) are shared by all

populations and many more (8-23%) are shared in at least one populations.

Table 3.4 The hole information for the genome-wide LD maps for the four

populations

Number *Hole
population *Hole contribution

of Hole coverage

CEU 2,033 0.53% 10.38%

CHB 3,838 0.94% 17.54%

JPT 2,900 0.81% ^ 14.64%

YRI 1,216 0.37% 4.41%
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Table 3.5 The proportion of holes shared between populations

The proportion of population-specific holes shared

P F I I PHR IPT YRI non-Africa All
. C E U C H B J P T Y R I populations populations

CEU 1.00 0.23 0.18 0.12 0.07 0.02

CHB 0.13 1.00 0.18 0.08 0.04 0.01

JPT 0.13 0.23 1.00 0.09 0.05 0.01

YRI 0.16 0.18 0.17 1.00 0.02 0.02

To compare the local variations in patterns of LD between populations, each map

was divided into non-overlapping segments and the number of LDU per megabase

for each segment calculated (LD intensity). The correlation coefficient between LD

intensities of any two maps was calculated. This was repeated by using 1000, 500,

100, 50, and 10 kb respectively for each segment. The results show that local

patterns of LD between any two of populations are highly correlated (see Table

3.6). The correlation coefficient decreases with the length of segment, reflecting

local variation in patterns of LD between populations. However, the coefficient

remains very high even when 10 kb per segment is used (0.55-0.64).

71



The Construction of LD maps and their Application to Association mapping of disease genes

Table 3.6 The correlation coefficients of LD intensities between any two

populations ,

1000 kb 500 kb 100 kb ; 50 kb 10 kb

CEU-YRI 0.923 0.894 0.777 0.717 0.584

CEU-CHB 0.926 0.890 0.771 . 0.719 0.609

CEU-JPT 0.919 0.882 0.762 0.706 0.597

CHB-JPT 0.929 0.892 0.777 0.730 . 0.637

CHB-YRI 0.922 0.885 0.761 0.698 0.559

YRI-JPT 0.913 0.877 0.756 0.695 0.554

3.3.4 Comparison between chromosomes

Although the SNP density in the release #20 dataset has reached approximately

one SNP per i kb, these SNPs are not distributed evenly across the whole genome

(Figure 3.2). Some genomic regions have a SNP density of less than 1 SNP per 0.5

kb, but others with intervals greater than 100 kb between two adjacent SNPs. The

size and the number of regions with extremely low SNP density varies between

chromosomes.

Figure 3.3 shows the map length of each chromosome in four population samples.

Obviously, physical length in kb is strongly correlated with map length in LDU.

All chromosomes in the YRI sample always present the longest map length

compared to the other three population samples. It also shows that the CEU and

the JPT LD maps reveal high similarity in the map length of all chromosomes, but

they are much shorter than the YRI map. The CHB map length is intermediate,

and slightly longer than the JPT and CEU LD maps.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

Figure 3.2 The SNP densities in the datasets of all chromosomes among the

four population samples

7,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

Figure 3.3 The total map length of all chromosomes among the four

population samples
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Figure 3.4 presents the LDU/Mb ratio in all chromosomes among the four

population samples. Every chromosome in the YRI sample has the highest

LDU/Mb ratio compared to the other populations. The JPT and CEU samples

have very similar LDU/Mb ratios in their corresponding chromosomes but fewer

than both the CHB and the YEI samples. The average difference in LDU/Mb ratio

between the YRI and the CHB for corresponding chromosomes is 5.61. The-YRI

sample has an unusually low LDU/Mb ratio on chromosome 19, reflecting more

extensive LD in this chromosome than on average. In addition, shorter

chromosomes, such as chromosome 17-22, have slightly higher LDU/Mb ratio

than other large chromosomes. This is because the small chromosomes have

.higher recombination rates (Kaback et al. 1992). Not surprisingly, chromosome X

has extraordinarily low LDU/Mb ratio, reflecting extremely high LD in this

chromosome, because of the peculiar recombination pattern and effects of

selection (Tapper et al. 2005)

Figure 3.5 shows that the block coverage in the majority of chromosomes among

the four population is between 65%-75% with the exception of chromosomes 1, 9

and 16 which have extraordinarily low values. This is because these three

chromosomes contain regions of heterochromatin with extremely low SNP density,

resulting in poor characterisation of block structures. However, the corresponding

chromosomes among these population samples have shown very consistent values

in their block coverage, implying that the same chromosomes have very similar

block distributions.
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1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

Figure 3.4 The LDU/Mb ratio of all chromosomes among the four population

samples

1 2 3 4 5 6 7 8. 9 10 11 12.13 14 15 16 17 18 19 20 21 22 X

Chromosome

Figure 3.5 The block coverage of all chromosomes among the four

population samples
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3.3.5 Comparison between release #16 and #20 LD maps

Release #20 has 2.8 times more SNPs than the release #16 dataset. The physical

location of these SNPs in the release #20 were remapped on NCBI 35 coordinates

and inconsistent SNPs between Build 34 and 35 were removed (See

http7/genome.ucsc.edu). This revision made the whole genome sequences 2-3

megabases shorter in the release #20 than in the release #16. Although they

might have some impacts on the total map length, the results (See Table 3.7 and

Figure 3.6) show very little difference in the map length between these two

releases (2.3-3.7% only).

Despite the consistent map length between the release #16 and #20 LD maps, the

increase in the SNP density in the release #20 dataset improved the LD map with

clearer resolution of blocks and steps. In the maps created using more densely

typed SNPs, large block regions have been separated into many smaller discrete

blocks. The number of blocks has doubled in the new maps, but the block coverage

has increased only 11%. Table 3.8 shows that the proportion of smaller blocks in

the genome has increased in the new maps. For instance, in the CEU map, the

proportion of blocks that are less than 2 kb has increased from 11.94% to 32.37%,

and those that are less than 5 kb has increased from 31.80 % to 55.18 %.

Furthermore, high SNP density filled many of the holes resulting from large gaps

or recombination hot spots in the previous map. Table 3.7 shows that the number

of holes in the new maps has reduced in all four population samples.
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Table 3.7 The comparison between the release #16 and #20 LD maps

Populations CEU CHB JPT YRI mean

Number of SNPs

Release #16 761,968 673,232 667,370 783,366 721,484

Release #20 2,110,581 1,894,783 1,880,578 2,336,706 2,055,662

Physical map (kb)

Release #16 2,935,830 2,935,112 2,935,075 2,935,396 2,935,353

Release #20 2,932,892' 2,932,921 2,932,911 2,932,878 2,932,901

LD map (LD Units)

Release #16 56,250 62,686 56,656 79,499 63,773

Release #20 57,820 64,931 58,731 81,346 65,707

*Block coveraae (%)

Release #16

Release #20

62%

71%

58%

69%

59%

70%

57%

68%

59%

70%

Number of Blocks

Release#16 119,300 107,298 104,212 141,714 118,131

Release #20 , 223,918 207,158 201,343 303,018 233,859

Number of Holes

Release #16

Release #20

2,911

2,033

4,879

3,838

3,731

2,900

2,979

1,216

3,625

2,497
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Figure 3.6 The LD maps of chromosome 21 for the CEU sample constructed from

the releases #16 and #20 datasets.

The two lines on the figure are almost overlapped and difficult to distinguish, indicating

that the two LD maps have very similar LDU length and patterns.

Table 3.8 The comparison of the block structure between the release #16 and #20

LD maps

Dense SNP coverage enhances resolution by increasing the number of small blocks in the

map. For example, the block proportion less than 2 kb has increased from 11.94%

(release #16) to 32.37%(re|ease #20) in the CEU LD map.
1

release #16

CEU

CHB

JPT

YRI

release #20

CEU

CHB

JPT

YRI

<2kb

11.94%

11.61%

11.05%

15.44%

<2kb

32.37%

31.67%

31.14%

38.58%

<5kb

31.80%

30.80%

29.68%

38.45%

<5kb

55.18%

54.30%

53.47%

63.85%

Specific block

<10kb

55.23%

53.94%

, 52.53%

63.64%

<10kb

73.58%

72.76%

71.91%

81.85%

proportion

<30 kb

87.49%/

86.50%

85.67%

92.29%

<30kb

93.65%

93.17%

92.74%

96.97%

<50kb

94.93%

94.39%

93.91%

97.21%

<50kb

97.52%

97.23%

97.05%

98.92%

<100kb

98.91%

98.74%

98.55%

99.43%

<100kb

99.47%

- 99.36%

99.28%

99.76%
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3.4 Discussion

To construct higher resolution LD maps, more informative pairs, more SNPs per

segment, and much longer overlapping regions were used in the new map

construction. This generated more pairwise data points in the datasets and

consequently increased the time required for computation. The previous study

(chapter 2) has shown that using pairs with insufficient numbers of flanking

intervals (max_intv <50) increases map length but using too many pairs at very

large distance increases the error variance. The appropriate value of the max_intv

depends on the SNP density in a dataset. In general, the limitation should not be

less than the averaged swept radius of approximately 50 kb in the Human genome.

The segmental method enabled efficient map construction by processing several

segments simultaneously and overlapping regions were used to manage discrete

segments. In the previous map construction, the LDU ratio in overlapping regions

were calculated by averaging the LDU value in each interval within overlapping

regions from two adjacent segments. This method was simple but the averaged

values might not represent reliably the real values in these intervals. Instead of

using averaged values, the length of overlapping regions was extended in the new

map construction, and these regions were only used to assist the estimation of the

LDU values in the main segments. I tested this method in several smaller

chromosomes and found that this resulted in a slightly smaller error variance.

Although a great number of pairwise data were generated by using these criteria

in the new map construction, the computational load was no longer an issue

because using the parallel process was considerably faster than the sequential

process.
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The segmental method not only provides an efficient way to construct an LD map

but also has the advantage of permitting efficient update. If new SNPs are added

in a segment, this segment can be updated independently and inserted back into

the current LD map. Furthermore, according to the comparison between the

release #16 and #20 LD maps that shows the map length and LD patterns are

highly consistent even though they have different SNP density, this implies that

these genome-wide LD maps are highly robust and do not require frequent

reconstruction unless there is another dataset with much higher SNP density

than the release #20 dataset.

The ratio of LDU/Mb is a good indicator to measure the magnitude of LD in a

region. A high LDU/Mb ratio indicates that LD erodes more rapidly in that region.

The present study has shown that this value is quite different between the YRI

population and the other populations. The YRI population always has the highest

LDU/Mb ratio in its LD maps compared to CEU, JPT and CHB populations. These

latter populations are "out-of-Africa" populations, and are likely to have

experienced several population bottlenecks in their histories. The most intense

bottleneck was the migration of ancestors from Africa, which took place roughly

100,000 years ago (Lonjou et al. 2003). Other subsequent bottlenecks such as

famine, wars and pandemic diseases, contribute to different effective bottleneck

times among these populations (Zhang et al. 2004a; Morton 2005). On the other

hand, the average LDU/Mb ratio is more consistent among chromosomes, except

in some shorter chromosomes. The reason for higher values in shorter

chromosomes, such as chromosome 21 and 22, is due to the higher recombination

rate on smaller chromosomes (Kaback et al. 1992). Although many chromosomes

in the same population have very similar LDU/Mb ratio, some of them display

80



The Construction of LD maps and their Application to Association mapping of disease genes

remarkably extensive block structures in particular genomic regions. These

regions could be caused by extremely low SNP density, low recombination rates

and natural selection. For example, centromeric regions always have extensive

LD, which can extend several megabases across the centromeres with very few

SNPs. In addition, chromosome X in all populations has an extraordinary low

LDU/Mb ratio resulting from multiple regions with very high LD. Such high LD

regions are believed to be the results of several influences. Firstly, unlike a female

with a pair of X chromosomes, a male has one X and one Y, so recombination only

occurs in 2/3 of the X chromosomes every generation. Second, there is evidence for

more intense selection against deleterious mutations when X chromosome is

monosomic in males (Giannelli and Green 2000).

Although LD patterns of the same chromosomes are very similar between

populations, local variations are found in different genomic regions.

Recombination events dominate LD patterns, accounting for 95% of the variation

(Tapper et al. 2005). Other factors specific in one or few particular populations,

such as demographic history and nature selection, would generate diversity and

divergence in LD patterns between populations. However, demographic history

affects the entire genome whereas nature selection affects specific genomic

regions causing local variations (Akey et al. 2004; Stajich and Hahn 2005).

Therefore, selection, either being beneficial or deleterious, results in local

reduction of variation in genomic regions, which can reduce haplotype diversity

and hence increase local intensity of LD (Kim and Nielsen 2004,' Nielsen et al.

2005). The identification of the signals of excess LD attributable to selection is

very important, because it indicates functional importance of DNA sequences. In

fact, it is challenging to identify such signals, because many regions where
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selection takes place may not be identified by comparing two populations. For

signals to be detectable, differences in genetic and environment backgrounds

between populations are required, and signals should be strong enough to

withstand the disruption of recurrent recombination. In addition, excess LD may

also caused by other unpredictable factors, such as random genetic drift, density

of SNPs and genotyping error.

The construction of the whole genome LD maps with extremely high resolution for

the four human populations has been completed. These maps with unique LDU

locations have great value in the study of genetic epidemiology and human

evolution. Each population-specific LD map described recurrent recombination,

selection and demographic evolution in its history. In order to identify selection, a

large-scale comparison between these LD maps can be performed to search for

substantial difference in the strength and distribution of LD between populations,

which could be the signal of local selection taking place over history. For example,

if there is a substantial difference in the map length of a corresponding region

between any two populations, this region might have biological interpretation or

evolution interests in one of their population histories.

The new genome-wide LD maps have an extremely high SNP density that

characterises block and step structures more clearly. The number of LD blocks in

these maps has increased and the averaged block size is shorter because large

blocks have been broken up into several smaller blocks. The increase in the

proportion of small blocks is advantageous to disease mapping. It means that

candidate regions can be further refined. However, in some genomic regions with

very low SNP density, the LD structure is difficult to characterise and the overall
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block coverage could be underestimated. On the other hand, the majority of steps

is limited to small inter-block regions as the proportion of blocks increase. Steps

with indeterminable LDUs, known as holes, might be the regions of intense

recombination. Such regions could be limited to only 0.5-5 kb width (Jeffreys et al.

2001). However, there are other factors which may cause holes, such as

insufficient SNP density, the criteria to declare a hole and errors in estimating

LDU values. In the present study, I only looked at the intervals which are over 2.5

LDUs and ignored the regions with many small steps that could be recombination

hotspots as well. So, in order to identify recombination hotspots across the whole

genome, using more flexible declaration for holes or recombination hotspots is

necessary for further studies . ;

The present study provides a general view of the whole genome LD maps. The

comparison between these LD maps is only at chromosome level. Further studies

focusing on particular genomic regions are underway. Despite individual variations

in particularly local regions, these population-specific LD maps reveal very similar

LD patterns in corresponding chromosomes. Therefore, to extend the applications of

LD maps to other populations, a standard cosmopolitan LD map can be made by

averaging the LDU length from these four LD maps (Gibson et al. 2005). This map

would be a convenient and useful tool for any population.
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Chapter 4 Association Mapping for Rheumatoid Arthritis

in the MHC candidate region

4.1 Introduction

Rheumatoid Arthritis (RA) is an autoimmune disease that affects people of all

ages, although women are more frequently affected than men. The prevalence

rate of RA remains relatively constant at 0.5~1.0% in many populations

(Alamanos and Drosos 2005). This disease not only results in pain, swelling, and

loss of function in the joints, but also attacks other organs including lung, heart -

and kidney (Rodevand et al. 1999). The causes of RA are related to multiple

genetic and environmental factors, but genetic factors account for approximately

60% of the variation in the disease (MacGregor et al. 2000). So far, researchers

have found several regions that appear to be significantly associated with RA on

different chromosomes including lp, 6, 8p, 12, 16 and 18q by genome-wide linkage

studies (Jawaheer et al. 2003; Yamamoto and Yamada 2005; Choi et al. 2006). In

this and the next chapters, I investigated two of these RA candidate regions

respectively with the application of genome-wide LD maps for localisation of

causal variants.

The major Histocompatibility complex (MHC) region located on chromosome

6p21.3 ( See figure 4.1) has been investigated frequently because it involves many

diseases including RA (Deighton et al. 1989; Ioannidis et al. 2002; Gorman et al.

2004). This region has strong LD (Jeffreys et al. 2001; Kauppi et al. 2005; Miretti

et al. 2005) and contains more than 280 genes (Consortium 1999), making it

extremely difficult to precisely localise disease susceptibility genes. The DRB1
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gene in the MHC region has been found to be strongly associated with RA

(Gregersen et al. 1987; Dizier et al. 1993). However, recent studies have suggested

there might be an additional causal variant which is independent of the DRB1

gene (Brintnell et al. 2004; Kochi et al. 2004). A study using a transmission

disequilibrium test (TDT) suggested that this causal variant is likely to be located

near the junction of the MHC class I and class III region (Kilding et al. 2004). A

susceptibility locus near the tumor necrosis factor (TNF) gene at the telomeric end

of the class III region has been reported in different studies (Hajeer et al. 2000;

Martinez et al. 2000; Castro et al. 2001; Ota et al. 2001). Therefore, using

association approaches with SNP markers to refine the candidate region and

identify another causal variant is necessary.

CD CO OQ CD
eel al O S

r— - < CO - ^

Telomere Centromere

CUSS1 CLASS 3 CLASS 2

Figure 4.1 The major Histocompatibility complex (MHC) region on 6p21.3

Single SNP testing and haplotype analysis are two common association

approaches for mapping susceptibility variants of common diseases in a candidate

region. Single SNP testing applies a %2 statistic test for each SNP individually. It

relies on a Bonferroni correction to reduce false positive rate when number of

SNPs is large. On the other hand, haplotype analysis identifies haplotypes which

are significantly over or under-represented in patients in comparison to healthy

individuals. The separation of phase-unknown genotypes into haplotypes in
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population-based studies is labor-intensive and very expensive in lab, It is

possible to use statistical methods for haplotype inference from genotype data, but

this relies on correct haplotype estimation. The present study used a composite

likelihood method avoiding these two restrictions. This method considers all SNPs

in a candidate region simultaneously and applies the Malecot model which

estimates the location of a causal variant (Maniatis et al. 2004).

Under the composite likelihood method, each SNP must have a relative location

reflecting the correlation between this SNP and other SNPs. This location can be

provided from a physical map, a linkage map or an LD map. However, using an

LD map as a reference map is more appropriate because it represents allelic

association estimated using observed pairwise SNP data from a real population.

An LD map can be constructed from a study sample or obtained from the

genome-wide LD maps constructed using the HapMap data (See Chapter 3). It is

preferable to use the latter map because the HapMap data usually has much

higher SNP density than any other study samples at present. In addition, the

genome-wide LD maps can also be used if an LD map cannot be constructed from

a study sample.

This study used two case/control samples by genotyping for a number of SNPs in

the MHC candidate region to identify the causal variant associated with RA. The

first sample was from a British Caucasian population and the other was from a

Japanese population. The two samples have different sample size and SNP

coverage. These two factors are important for study design in association

approaches because smaller sample size and insufficient SNP coverage cause

unreliable results. In this study, I compared the results between the single SNP
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test and the composite likelihood method. Furthermore, I investigated the

difference in the results when using different maps for SNP locations in the

composite likelihood analyses.

4.2 Materials and Methods

4.2.1 Case/Control samples

Two case/control samples from population data of unrelated individuals were used

to search for RA causal variant at the MHC region in the present study. The first

sample was from British Caucasian population and the other was from a

Japanese population.

The British Caucasian sample

This sample consists of 316 RA patients and 210 healthy Individuals from a

British Caucasian population. All of the patients were recruited from the Arthritis

Research Campaign national repository. 20 SNPs located in an 1850 kb wide

candidate region covering the class I and the class III of the MHC region were

genotyped in both patients and healthy controls. The physical locations on the kb

scale for these SNPs were obtained by matching the DNA forward and reverse

primer sequences (See Table 4.1) with the Human Genome sequence assembly

(NCBI build 35, UCSC May 2004) using the BLAST program

(http:/Avww.ncbLnlm.nm.gov/Education/BLASTinfo/informa tion3.html).
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Table 4.1 The forward and reverse primer sequences for each SNP in the British

Caucasian sample

Name of SNP Forward Primer Reverse Primer

PCR7 TGCTCAAAGGACTGCAGGAA

PG82271 GCTGTTTGTCAAGGAGACAACCT

PG8436 TTGGTGCAGCCTCTGAACCT

MICA2 GAAGACAACAGCACCAGGAGCT

MICA1 GAGCTCCCAGCATTTCTACTACGA

BAT1991 GCCCTCCGCAAATACCAA

NFKBL AACGCCCCTCACAGTTCACTT

TN Fbeta CAGTCTCATTGTCTCTGTCACACATT

TNF308 GGCCACTGACTGATTTGTGTGT

LST1 AGTCATGAGCTGCATACA

IC7 GGCCTCCTAGAGACCCTGACAT

PCR4A CCTCCTCAGCCTCCCAAAGT

AIF1 TCTCCTCCACCTAGCAGTTGGT

BAT3 CCTGTGGTGGTGCATGGA

G6D1 CCTCACTGCCCCAGAAGGA

G6C2 CCCCAAAGACCTGGTTTGC

G6C1 GCATGCTGGTGGAAATTGG

HSP70 CTTGGTAGAGTTTTGTGATG •

N4EX5 AGCCCATCCTGpCAAGTG

N4EX3 , ACCCAGCTTCTTGTGCACTTG

GAACTTGGGCTGCAAATACA

CTCCAACTGTCAGCTGCTTA

CCTGCGTGCTGCTTTGG

CTGACGTTCATGGCCAAGGT

GGCATCTTCCTTCAAGAAATTCCT

TTCCAATGGGTTCTTCTCATA

TCCAGGCTGGAGGAAATGG

ATCGACAGAGAAGGGGACAAGAT

CAAAAGAAATGGAGGCAATAGGTT

TAATGTTATCGCGGAATGATG

CAGGGACCTCGAGCATCAAA

GTGCAGCAGCGACAGAAAAGT

TCCATTAAGGTCAAACTCCATGTATTT

ACCGGCGCCCTGCT*

ATCTGCAAGGGCTGCAGATG

GTCATAGGGAAGCCTGGTCTTG

GGCATCACAGAAGCCATCAGT

TCGTGGCTGGAGGTCAA

TGTGAGGTGAATCCAGACAA

CGGCC'CCTTTTGGAACA
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The Japanese sample

The second sample came from a report published by Okamoto et al. 2003 . It

consists of 116 RA patients and 100 unaffected controls from a Japanese

population. The RA patients were diagnosed according to the American

Rheumatism Association's criteria (Arnett et al. 1988). All individuals were

genotyped with 35 SNPs in a 44 kb region including TNF, ATP6G and BATl genes.

The physical locations for these SNPs were obtained through a Genome browser

according to their rs-identifier, which were based on the same Genome sequence

assembly as used for the British Caucasian sample. The report provides the allele

frequencies of those SNPs in the case and control groups without detailed

genotype information for each individual.

4.2.2 Obtaining LD maps for the candidate region

An LD map for the British Caucasian sample was constructed by the LDMAP

program using the healthy control data in the sample. For quality control, each

SNP had been tested for Hardy-Weinberg equilibrium (HWE) using a likelihood

ratio test before the map construction. The same procedure could not be applied

for the Japanese sample because the limited information from the report (only

allele frequencies for each SNP were presented) was not enough to construct an

LD map. Therefore, I also used the two HapMap LD maps (CEU and JPT) for

the LDU locations of those SNPs in the British Caucasian and the Japanese

samples respectively. If SNPs were not included in the HapMap LD maps, the

LDU locations for them were linearly interpolated (See chapter 2, Figure 2.5).
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4.2.3 Statistic analysis

Single SNP test using Pearson's %2

Pearson's %2 from a two by two contingency table between affection status and

a diallelic SNP (see Table 4.2) were calculated to test non-random allelic

association between cases and controls. The values of a, b, c and d represent the

allele counts of a SNP in the case and control groups. The^2 value for each

n(ad-bcf
SNP was calculated as %x = with one degree of

freedom. The allele counts in the British Caucasian sample were obtained by

pooling SNP genotype data together from individuals. In the Japanese sample,

they were calculated from their allele frequencies provided in the paper

(Okamoto et al. 2003).

Table 4.2 Four counts, a, b, c and d in a 2*2 table between disease status and a

diallelic marker

Marker

Affection
status

Case

Control

+

a

c

a+c

-

b

d

b+d

a+b

c+d

n=a+b+c+d
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Multiple SNPs test using the Composite likelihood method

First, the observed Z, and expected Z( associations between a disease and

any SNP i are estimated respectively. The observed Z, is estimated as

(ad — be)
Z, = where a, b, c and d are allele counts in case/control groups

' (a + bXb + d)

(See Table 4.2) and the expected association Z, is obtained from the Malecot

equation Z, =(l~L)Me~Ed' +L. Kzi is the corresponding information for Z,,

n(a + b)(b + d)
calculated as Kzi = . In this study, a composite likelihood

(a + c)(c + d)

method was used to test whether there was significant evidence in the

candidate region and to estimate the location of the causal variant. The

composite likelihood method is based on the Malecot equation, but the distance

di is replaced with (St — S), where St is the location of the ith SNP in either kb

or LDU, and S is the location of the causal polymorphism. The composite log
Likelihood is calculated as -2\nlk = 2_JKzi{Zi -Zt) .

To test significance of a region, two sub-hypotheses (models A and B) are

contrasted. Model A is the null hypothesis Ho of no association between the

disease phenotype and SNPs in this region. It assumes the parameter M is 0

and L is fixed to the predicted Lp (Morton et al. 2001). However, model B

replaces the predicted Lp with the estimated L. The %2 for the A-B contrast is

, 1 1 2 [(-21n/Jfc). -(-21n/£)J , . T . , \. .
calculated as %df=x = — —, where VB IS the residual error

of model B, calculated as VK = (m is the number of SNPs
(m-k)

V 3 . n 9 . I l C G U l XXXKJUA>-L J_», VsCU.VU.J.GlU^U. CIO V n

and k is the degree of freedom. If the A-B contrast shows nominal significance,

there is significant evidence for causal polymorphisms within the region. If a
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region is significantly associated with disease, additional contrasts (the A-C ,

A-D, A-C and A-D' contrasts) are used to test for a causal polymorphism at

location S depending on the number of Malecot parameters estimated. Model C

estimates both parameters M and S but uses the predicted Lp. The %2 value for

, » „ • , , , 2 [(-21n/*),-(-21n/Jt)r] . l o l

the A-C contrast is calculated as Xdf=1 = with 2 degrees
Vc

of freedom, where Vc is the residual error variance of model C. Model D

further replaces Lp with the estimated L, giving 3 degrees of freedom in the A-D

, 2 \(-2lnlk),-(-2lnlk)D] TP ,
contrast and Xdf=3 = — • " t n e A"C and A-D contrasts show

nominal significance, the parameter S could be the best-predicted location of the

causal polymorphism. For convenience and simplicity, the parameter e is

usually fixed to 1 for an LD map, because LD maps are constructed such that

e~l (Maniatis et al. 2002). However, for physical maps, the e is obtained by

fitting observed pairwise data to the model. If the parameter e is also estimated,

one more degree of freedom is added for the %2 and C and D' are used to

distinguish them from the former models. The contrasts between null and

alternative hypotheses with the number of degree of freedom are shown in

Figure 4.2.

Furthermore, for region with small number of SNPs, an F-test is more reliable

than a %2 test (Maniatis et al. 2006). An F-value is estimated as the mean

variance between models divided by the mean variance within model. The latter

is the residual error variance. For instance, the F-value for the A"C contrast is

F%m_2=—: -— — . For simplicity, any p value from either %2 -test or

F-test can be converted into %2 with one degree of freedom by using the
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Hastings approximation (Abramowitz and Stegun 1965). The variance (Vs) for

A

the causal location (S) is the inverse of the information that is estimated in an

information matrix with simultaneous estimates of M, S and L. The standard

error for S isSe = Jv\ , and 95% confidence interval (95% CI) is S ± 1.96Se.

Z i = (l - L )Me -s(St-S) + L

M,S,Lp,s

= 0,L

M,S,L,s

Figure 4.2 Sub-hypothesis under the Malecot model

Different hypotheses use different estimated parameters (with a circumflex) and

predicted parameters (with a small p). The number of degrees of freedom are

shown between models, indicating the difference in the number of the estimated

parameters between models. For example, there are 2 degrees of freedom in the

A-C contrast ( M and S are estimated) and 3 degrees in the A-D contrast (M,S

and L are estimated).
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4.2.4 The LOCATE program

The LOCATE program implements the algorithms described in the last section.

This program generates two output files of results. The intermediate output

contains the association and its corresponding information between affection

status and each SNP, which are necessary for the composite likelihood method.

The results of the single SNP tests are also shown in this output. The final output

shows the results of the composite likelihood method including the optimal

estimations of the Malecot parameters for each Model. Significant tests for the

contrasts between null hypothesis and each of the alternative hypotheses are

shown in the final output. This program using .association approaches is useful for

refining a candidate region.

4.3 Results

4.3.1 LD maps for the RA candidate region

The results of the HWE tests for the 20 SNPs in the British Caucasian sample are

shown in Table 4.3. Only N4Ex3 shows significant deviation from HWE (p value =

0.013). However, after correction for multiple tests, this is not significant (p valued

0.013x20=0.26, p value >0.05). Therefore, all SNPs were used to construct an LD

map termed as the sample LD map (Figure 4.3a).

Figure 4.3b shows the HapMap LD maps of the candidate region for the two

samples, which were obtained from the genome-wide LD maps described in

Chapter 3. The two HapMap LD maps are much longer than the sample LD

map. This must reflect the much dense SNP coverage and higher resolution and

suggested that the sample map is poorly characterised. Despite different
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lengths in those maps, the three maps have very similar block-step structures.

In the Caucasian sample, 20 SNPs are located in the near 2 Megabase (Mb)

region, but the majority of SNPs are clustered in the TNF gene. Several large

gaps with the distance between two adjacent SNPs greater than 200 kb or 2.5

LDUs on the map due to insufficient SNP density are not ideal for association

mapping. On the other hand, In the Japanese sample, 35 SNPs are clustered in

a 44 kb wide region with only 0.224 LDUs at the TNF gene.

Table 4.3 The HWE tests for the 20 SNPs in the British Caucasian sample

Physical HWE Uncorrected
location(kb) %2 test Pvalue

PCR7

Pg82271

Pg8436

MICA-2

MICA-1

BAT1991

NFKBL

TNFbeta

TNF-308

LST1

IC7

PCR4a

AIF1

BAT3

G6D-1

G6C-2

G6C-1

HSP70

N4Ex5

N4Ex3

30,455.298

31,218.370

31,230.307

31,486.936

31,486.954

31,617.417

31,623.321

31,648.318

31,651.018

31,663.111

31,668.682

31,680.864

31,691.823

31,719.754

31,783.708

31,797.299

31,797.974

N 31,885.940

32,296.583

32,298.372

0.155

. 0.336

0.474

0.250

0.136

0.281

0.326

0.338

0.189

0.405

0.152

0.355

0.350

0.171

0.160

0.162

0.195

0.308

0.288

0.381

0.000

1.288

0.100

0.612

1.208

0.039

0.042

0.379

2.359

0.209

0.361

2.820 .

1.682

2.076

0.479

3.160

0.874

0.010

0.668

6.152

0.987

0.256

0.752

0.434

0.272

0.844

0.837

0.538

0.125

0.648

0.548

0.093

0.195

0.150

0.489

0.075

0.350

0.920

0.414

0.013*

* <0.05
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Figure 4.3 The HapMap and the control LD maps of the RA candidate region

for the two samples

The dots indicate the locations of the SNPs used in both samples.

96



The Construction of LD maps and their Application to Association mapping of disease genes

4.3.2 Results from the single SNP test

For the Caucasian sample

Table 4.4 shows the results from the single SNP test for, the 20 SNPs in the

Caucasian sample. A total of 7 SNPs show significant differences in allelic

frequency between the cases and controls (p value <0.05) but only 3 SNPs

(NFKBL, TNF-8 and HSP70) remain significant after Bonferroni correction.

The most significant SNP is HSP70 (p value = 0.00055). The other two

significant SNPs are close to the TNF gene.

For the Japanese sample

Table 4.5 shows the results for the 35 SNPs in the Japanese sample. Before

Bonferroni correction, 7 SNPs show significant associations with the RA (p

value<0.05). The most significant one is rsl799724 with %2 =7.853 (p value=

0.005). However, after Bonferroni correction, none show significant association.
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Table 4.4 Single SNP tests for the 20 SNPs in the British Caucasian sample

SNP

PCR7

Pg82271

Pg8436

MICA2

MICA1

BAT1991

NFKBL

TNFbeta

TNF308

LST1

IC7

PCR4a

AIF1

BAT3

G6D1

G6C2

G6C1

HSP70

" j N4Ex5

N4Ex3

Kb Map

30455.298

31218.370

31230.307

31486.936

31486.954

31617.417

31623.321

31648.318

31651.018

31663.111

31668.682

31680.864

31691.823

31719.754

31783.708

31797.299

31797.974

31885.940

32296.583

32298.372

x2

1173

0.450

0.014

1.122

4.615

1.111

9.513

10.685

0.625

5.317

0.033

1.893

5.001

4.966

0.530

0.012

0.805

17.582

0.419

0.010

Uncorrected
p value

0.278840

0.502191

0.905186

0.289592

0.031696

0.291928

0.002040

0.001080

0.429053

0.021120

0.855052

0.168920

0.025340

0.025851

0.466702

0.913933

0.369521

0.000028

0.517367

0.921962

Corrected
p value

0.633927

0.040798

0.021598

0.422409

0.506798

0.517013

0.000550

p values <0.05 are underlined.
1Bonferroni correction for the p values.
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Table 4.5 Single SNP tests for the 35 SNPs in the Japanese sample

SNP

rs3219189
rs2516478
rs929138

rs1129640
rs933208
rs2071596

rs2516393
rs2523512

rs2523511
rs2071595

' rs2239527
rs2523506
rs2239528
rs2071594
rs2071593

rs2239705
rs2523503
rs2523502

rs3219186
rs3219185
rs3219184
rs2071592

rs2239708
rs2071591
rs3219183
rs3219182

rs3219180
rs2857605
rs2857604

rs3093949
rs2239707
rs2230365
rs1799964
rs1800630
rs1799724

Kb Map

31606.025
31606.717
31611.678
31614.604
31614.627

31614.670
31614.723
31614.779
31614.832
31615.041 ,

31617.758
31617.945
31618.084

31620.699
31620.777

31621.381
31621.537
31621.844
31622.961
31623.057

31623.119
31623.318
31623.742
31623.777
31624.342 .
31625.094
31625.152
31632.830 '
31633.084
31633.162
31633.299'
31633.428
31650.287

31650.455
31650.461

x2

0.370
0.542
6.493
0.592

0.293
1.311
0.070
0.367
0.875

0.000
3.683
0.558
0.001
4.409
0.077

6.823
0.542 .
0.215
1.202
3.684
1.470
7.480

0.060
3.971

0.060
0.265
0.000
0.011
5.856
3.161
0.407
0.703
0.592
0.542
7.853

Uncorrected
p value

0.5432
0.4617
0.0108
0.4417

0.5883
0.2522
0.7907

0.5448
0.3496
0.9883
0.0550
0.4549
0.9695
0.0357

•i 0.7810

0.0090
0.4617

0.6425
0.2728
0.0549
0.2254
0.0062

0.8065
0.0463
0.8065
0.6067
0.9961
0.9178
0.0155
0.0754
0.5236-
0.4016
0.4415
0.4617
0.0051

Corrected
p value

0.3791

1.2511

0.3151

0.2184

1.6198

0.5433

0.1775

p values <0.05 are underlined.
1 Bonferroni correction for the p values.
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4.3.3 Results from the composite likelihood method

Tables 4.6 and 4.7 list the SNP information in the two samples necessary to the

composite likelihood method, including the association Z and the

corresponding information Kz from each SNP data, and the SNP locations

provided from the kb, the sample LD and the HapMap LD maps.

Table 4.6 The association information of the 20 SNPs in the British

Caucasian sample

SNP

PCR7

Pg82271

Pg8436

MICA2

MICA1

BAT1991

NFKBL

TNFbeta

TNF308

LST1

IC7

PCR4a

AIF1

BAT3

G6D1

G6C2

G6C1

;HSP70

N4Ex5

N4Ex3

Kb Map

30455.298

3121.8:370

31230.307

31486.936

31486.954

31617.417

31623.321

31648.318

31651.018

31663.111

31668.682

31680.864

31691.823

31719.754

31783.708

31797.299

31797.974

31885.940

32296.583

32298.372

Sample

0.000

3.000

3.329

3.365

3.365

3.837

3.837

3.837

3.837

3.875

4.044

4.440

4.465

4.465

4.775

4.775

4.775

4.775

5.357

5.357

HapMap

0.000

8.601

8.796

13.351

13.351

15.718

15.718

15.775

15.775

15.775

15.775

16.842

16.970

16.970

17.087

17.230

17.230

17.324

19.803

19.816

Z

0.030

0.059

0.007

0.113

0.311

0.104

0.139

0.152

0.025

0.171

0.005

0.065

0.105

0.288

0.020

0.016

0.112

0.186

0.063

0.008

Kz

1295.432

129.661

282.858

88.591

47.863

103.233

490.544

464.747

1017.063

180.818

1400.543

451.627

452.524

60.008

1279.638

44.909

63.845

506.262

105.887

154.391

x2

1.173

0.450

0.014

1.122

4.615

1.11.1

9.513

10.685

0.625

5.317

0.033

1.893

5.001

4.966

0.530

0.012

0.805

17.582

0.419

0.010
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Table 4.7 The association information of the 35 SNPs in the Japanese sample

SNP

rs3219189
rs2516478

rs929138
rs1129640
rs933208
rs2071596
rs2516393
rs2523512

rs2523511
rs2071595

rs2239527
rs2523506
rs2239528

rs2071594
rs2071593
rs2239705
rs2523503
rs2523502

rs3219186
rs3219185
rs3219184
rs2071592

rs2239708
rs2071591
rs3219183
rs3219182
rs3219180
rs2857605
rs2857604

rs3093949
rs2239707
rs2230365
rs1799964
rs1800630
rs 1799724

Sample
Kb Map

LD Map*
31606.025
31606.717

31611.678
31614.604
31614.627
31614.670
31614.723
31614.779
31614.832
31615.041

31617.758
31617.945
31618.084

31620.699
31620.777
31621.381
31621.537
31621.844

31622.961
31623.057

31623.119
31623.318
31623.742
31623.777
31624.342
31625.094
31625.152
31632.830
31633.084

31633.162
31633.299
31633.428
31650.287
31650.455
31650.461

HapMap

LDMap
0.000
0.000
0.024

0.065
0.065
0.065
0.065
0.065

0.065
0.074

0.102
0.102

0.102
0.102
0.102
0.102
0.102
0.102

0.162
0.167

0.167
0.167
0.167
0,167
0.167
0.167
0.167

0.167
0.198
0.207
0.224
0.224
0.224
0.224
0.224

Z

0.069
0.069

0.218
0.151

0.048
0.076
0.047
0.057
0.181
0.001

0.120
0.069
0.003

0.135
0.028
0.239

0.069
0.084

0.208
0.379

0.158
0.171

0.026
0.129
0.026
0.055
0.001

0.010
0.215
0.117

0.036
0.055
0.069
0.069
0.253

Kz

77.714
113.891
136.709

25.811
128.194
227.782
31.814

112.149
26.799
95.254
255.817

117.405
148.982

240.263
95.254
119.582
113.891

< 30.801
27.792

25.605
58.907
255.817

88.754
237.733
88.754

88.754
68.361
106.404

127.222
232.724
318.895
230.244
124.556
113.891
122.610

x2

0.370
0.542
6.493
0.592

0.293
1.311
0.070
0.367

0.875
0.000
3.683

. 0.558
0.001

4.409
0.077
6.823
0.542
0.215
1.202
3.684

1.470
7.480

0.060
3.971
0.060

0.265
0.000

0.011
5.856
3.161
0.407
0.703
0.592
0.542
7.853

* The sample LD map cannot be constructed from the study sample due to lack of

genotype information for each individual.
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For the British Caucasian sample

Table 4.8 shows the results from the composite likelihood method for the British

Caucasian samples. Models A and B do not take SNP locations into account, so the

values of the Malecot parameters and the likelihood in the two models are not

affected by the choice of the three maps. Because of this reason, the % values

for the A-B contrast in all analyses with different maps are the same. In the

British Caucasian sample, the %2 value for the A-B contrast is 4.522 (p

value=0.034) implying that this candidate region is significantly associated with

RA. However, models C, D, C and D' estimate S and other parameters, resulting

in different estimations if the reference map is changed. The same location S at

31675-31676 kb was estimated in these models whether the sample LD map or

the HapMap LD map was used. However, the latter map results in higher %2

value with smaller 95% CI. Differently, the S is at 31886 kb when the kb map

was used. The 95% CI in the analysis using the kb map is much wider than that

using LD maps.
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Table 4.8 The analysis of the British Caucasian sample by the composite

likelihood method

SNP locations based on the kb map

model

A
B
C

D
C
D'

Contrast

A-B
A-C
A-D

A-C
A-D'

df

20

19

18

17

17

16 .

xl
4.522

6.261

6.481

6.853

, 5.400

- 2 In 7*

35.169

27.552

21.585

18.566

18.092

17.662

P

0

0

0.

0.

0

V

1 759

1.450

1.199

1.092

1.064

1.104

value

.034*

.012*

010**

009**

.020*

L

0.0371

0.0670

0.0371

0.0000

0.0371

0.0155

Se

167.9

95.1

106.7

54.2

M E

0.0732 0.0022

0.1315 0.0022

0.1362 0.0057

0.1490 0.0039

95%CI
in kb

31533-32239

31685-32087

31661-32111

31771-32001

S

31886

31886

.31886

31886

(706)

(402)

(450)

(230)

*<0.05 **<0.01

SNP locations based on the sample LD map

model df - 2 In/A: V M

A
B'

C
D
C
D'

20
19

18

17

17

16

35.169
27.552

22.475

20.759

2.1.520

20.745

1.759
1.450

1.249

1.221

1.266

1.297

0.0371
0.0670

0.0371

0.0009

0.0371

0.0054

0.0784

0.1406

0.1168 •

0.1399

1.256

1.256

2.220

1.377

31675

31675

31675

31675

Contrast Xx p value Se
95%CI
in kb

A-B
A-C
A-D

A-C1-
A-D'

4.522
5.620

4.915

4.427

3.465

0.034*
0.018*

0.027*

0.035*

0.063

77.8

16.7

17.5

16.7

31590-31895

31666-31731

31665-31734

31666-31731

(305)

(65)

(69)

(65)

<0.05
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SNP locations based on the HapMap LD map

model df - 2 In/* V M

A
B

C
D

C
D'

20
19

18

17

17

. 16

35.169
27.552

19.621

19.405

19.484

18.814

1.759
1.450

1.090

1.142

1.146

1.176

0.0371
0.0670

0.0371

0.0292

0.0371

0.0171

0.1121

0.1272

0.0952

0.1074

1

1

0.743

0.480

31676

31676

31676

31676

Contrast X\ p value Se
95%CI
in kb

A-B
A-C
A-D
A- C
A-D1

4.522
7.798

5^854

5.796

4.618

0.034*
0.005**

0.016*

0.016*

0.032*

15.6

4.6

46.0

69.4

31670-31731

31670-31688

31615-31795

31606-31878

(61)

(18)

(180)

(272)

* <0.05 **<0.01
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For the Japanese sample

The A-B contrast for the Japanese sample also shows significant association

(%2 =5.66, p value=0.017) in this region (See Table 4.9). When the SNP

locations are based on the kb map , the S is 31650 kb in models C and D

whereas 31623 kb in models C and D'. Models C and- D' that estimate an

additional s may be less reliable than models C and D. This is because the

parameter s is greatly over-estimated and has a very large error in models C

and D' when a region is in strong LD (Maniatis et al. 2004). In this study, the

parameter s in C and D' models are 1.58 and 2.12 for the kb map and 6.43 and

171.86 for the LD map respectively.

Although the A-B contrast indicates the association with EA in this candidate

region, further contrasts of A-C and A-D do not support this association. The

two contrasts both indicate the same location at 31633 kb, but the j£2 values

for them "do not indicate such significant association. It is possible that the

causal variant is near but not within the region. It is also possible that the

sample size in the Japanese sample is too small to replicate this association.
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Table 4.9 The analysis of the Japanese sample by the composite likelihood

method

SNP locations based on the.kb map

model df -2\nlk V M

A

B

C

D

C

D'

35

34

33

32

32

31

26.232

22.156

22.127

22.079

19.409

18.526

0.750

0.652

0.671

0.690

0.607

0.598

0.0676

0.0980

0.0676

0.0000

0.0676

0.0846

0.0346

0.1037

0.3556

0.4085

0.0022

0.0022

1.5816

2.1163

31650

31650

31623

31623

Contrast Xi p value Se
95%CI
in kb

A-B
A-C
A-D

• A-C1.

A-D'

5.660
3.530

2.260

5.372

5.005

0.017*
0.060

0.133

0.020*

0.025*

818.9

830.6

0.23

0.27

31606-31650

31606-31650

31622-31623

31622-31623

(44)

(44)

(1)

(1)
* <0.05

SNP locations based on the HapMap LD map

model

A
B
C
D
C
D'

Contrast

A-B
A-C
A-D

A-C1

A-D'

df

35

34

33

32

32

31

5.660

3.564

2.305

2.359

3.027

-21n/A

26.232

22.156

22.100

22.034

21.979

20.24.7

V

0.750

0.652

0.670

0.689

0.689

0.653

p value

0.017*

0.059

0.129

0.125

0.082

L

0.0676

0.0980

0.0676

0.0000

0.0676

0.0922

Se

11.3

11.3

9.5

11.3

M e

0.0351 1

0.1041 1

0.0465 6.43

0.2728 171.86

95%CI
in kb

31606-31650

31606-31650 .

31613-31650

31606-31650

S

31633

31632

31633

31633

(44)

(44)

(37)

(44)

*><0.05
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4.4 Discussion

In addition to the DRB1 gene playing an important role in RA (Gregersen et al.

1987! Dizier et al. 1993), many studies indicated a range of possible locations for

additional variants in the MHC candidate region (Singal et al. 1999; Ota et al.

2001; Newton et al. 2003; Kilding et al. 2004). The study of the British Caucasian

sample has confirmed the evidence of association in this region and suggested a

possible location near the TNF gene. The study of the Japanese sample also shows

a weak evidence of association in this region and supports the suspected location

within NFKBL1 gene. The function of the NFKBL1 has not been determined, but

it produces NF-kappaB like protein. Asahara et al. 1995 found high activity of

NF-kappa B in the chronic inflammation of the joint in RA patients. Bondeson et

al. 1999 reported that blocking NF-kappaB reduces the inflammatory response in

the rheumatoid joint.

Failure to replicate the previous findings could be due to low SNP density and

small sample size in a study design (Zondervan and Cardon 2004). In the British

Caucasian sample, the total of 20 SNPs were genotyped in a 2 Mb wide candidate

region (near 20 LDUs on the HapMap LD map), which is equivalent to the density

of approximately 1 SNP per 100 kb or per 1 LDU. However, those SNPs were not

equally distributed across the region in which 4 large intervals between two

adjacent SNPs are greater than 200 kb or 2.5 LDUs. Such large gaps are not ideal

for association mapping. It is important to use optimal SNP density based on the

LDU scale to ensure coverage of a region. Several SNPs per LDU spanning a

range of frequencies would provide better localisation of causal variants (Tapper

et al. 2003). By contrast, the study region in the Japanese sample is only 44 kb

(0.224 LDUs), but the region was genotyped for 35 SNPs, which is equivalent to
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156 SNPs per LDU. Genotyping many SNPs in a small region with high LD is not

efficient in disease mapping unless causality in a region is strongly suspected. In

this case, large sample sizes might be more useful rather than genotyping more

SNPs. • •

The composite likelihood method for association mapping requires a reference
i

map to provide genetic locations for all SNPs in a candidate region. This study

shows that the choice of maps influences the estimates of the Malecot parameters

even though the association and the corresponding information between the

affection status and SNPs remain the same. In general, the estimated S is

robust whether the sample or the HapMap LD maps is used, but using the latter

map usually has smaller 95% CI with higher %2 value in comparison with other

map. The best reference map at present is the genome-wide LD map constructed

from the HapMap data because of the high SNP density and resolution. Therefore,

it is unnecessary for researchers to construct an LD map based on a low resolution

SNP sample unless its density is higher than the HapMap data.

Results from the composite likelihood method and the single SNP test are

generally consistent. In general, the possible location of a causal variant

estimated from the composite likelihood method is highly correlated with a cluster

of significant SNPs, but may not be the SNP with the highest %2 value. For

instance, the analysis of the British Caucasian sample indicates the possible

location at 31676 kb, surrounded by 5 SNPs with %2 value, between 4.9 and 10.7.

However, the SNP with the highest %2 is 200 kb away from .the estimated

location. The composite likelihood method considers association between affection

status and all SNPs in the sample. Therefore, the localisation of causal variants
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would improve with increases in SNP density. By contrast, higher SNP density

may create many false positive results, which is a major problem for single SNP

tests.
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Chapter 5 Association mapping for Rheumatoid Arthritis
at chromosome 18q

5.1 Introduction

Genome-wide association (GWA) studies have recently become feasible in the field

of association mapping since recent advances in DNA technologies with high

throughput and low cost (Klein et al. 2005; Maraganore et al. 2005; Syvanen 2005).

Such studies using a large number of SNPs that are genotyped across the whole

human genome give better resolution for disease mapping. However, the

development of appropriate tools for analysing those SNP genotype data lags

behind the development of GWA studies.

It is challenging to analyse a large number of SNP genotypes from GWA studies.

Such studies may involve thousands of SNP tests and thus false positive results

will inevitably occur by chance. For haplotype analysis, reconstruction of

haplotypes is difficult and unreliable when a region involves many SNPs.

Therefore, it is important to apply a two-stage design for disease gene mapping

(Zhang et al. 2004a). The first stage is to perform a rapid screen in order to

identify candidate regions from the whole genome. The second stage is to further

localise any putative causal polymorphisms in these candidate regions.

The composite likelihood method (Maniatis et al. 2004) that considers all SNPs

simultaneously and estimates a possible location of a causal variant in a region

can be used in GWA studies. However, for this method, the issue is not the number

of SNPs but the size of a candidate region. Locations estimated by this method
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may be less reliable if a region is very large and other causal variants in the

region may be missed. One feasible solution for the composite likelihood method is

to analyse a large region using segments (non-overlapping windows). A large

region can be seen as an assembly of many separated segments and each segment

can be studied independently.

A program called CHROMSCAN has been developed for genome-wide association

studies of complex disease (Morton et al. 2007). This program is a development of

the LOCATE program that uses a composite likelihood under the Malecot model

for disease mapping (See Chapter 4). The application of this approach has been

extended to manage multiple segments from a large region rather than a single

region. I used here a 10 Megabase (Mb) wide Rheumatoid Arthritis (RA) candidate

region on chromosome 18q that has shown strong evidence of linkage in the US

genome-wide linkage studies (Jawaheer et al. 2003). This region was genotyped

for 2300 SNPs in 460 cases and 460 controls. The analysis of this sample can be

used to evaluate the performance of the CHROMSCAN program.

5.2 Materials and Methods

5.2.1 Study sample and SNPs

The study sample, provided by the Genetic Analysis Workshop (GAW) in 2006,

consists of 460 RA patients and 460 unaffected controls. All patients were

provided by the North American Rheumatoid Arthritis Consortium (NARAC) and

the controls were recruited from a New York City population. All individuals were

genotyped for 2300 SNPs across an approximately 10 Mb candidate region
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(48,896-58415 kb on the physical map of UCSC May 2004) of chromosome 18q.

This region has shown strong evidence of linkage in the US genome-wide linkage

studies (Jawaheer et al. 2003).

5.2.2 LD maps for the candidate region

Two LD maps for the candidate region were used to assign LDU locations to each of

these SNPs (See Figure 5.1). The first map, termed the GAW LD map, was

constructed from the study sample of the unaffected controls after the removal of

seven SNPs showing significant departure from Hardy-Weinberg equilibrium (#2>

10) and 81 SNPs with minor allele frequencies (MAF) less than 5 percent. This LD

map contains the remaining 2212 SNPs and generated 151 LDUs. The second LD

map was extracted directly from the CEU genome-wide LD map that was

constructed using the HapMap data (See chapter 3), and termed the HapMap LD

map. This map contains 8086 SNPs within the same 10 Mb region and generated 202

LDUs. Despite its higher SNP density, 185 out of the 2300 study SNPs were missing

and therefore their LDU locations were linearly interpolated (See chapter 2).

Physical locations for these SNP were based on build 35 (UCSC May 2004) of the

human genome sequence.
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Figure 5.1 The GAW and the HapMap LD maps for the candidate region of

chromosome 18q

The two maps have very similar LD patterns but different map lengths. This is due to

different SNP densities in the datasets from which they were constructed. The

higher density of markers in the HapMap resolved some of the poorly characterised

regions in the GAW sample, particularly " holes" where an upper limit on LDUs is

applied.

5.2.3 Subdivision of the candidate region

The entire 10 Mb region was divided into contiguous but non-overlapping

segments, each with a minimum of 10 LDUs without breaking a block and no less

than 30 SNPs. The size of segment is constrained to 10 LDUs and the restriction

of 30 SNPs ensures sufficient SNPs in each segment for better estimation. In

addition, I also evaluated the effect of using 5 LDUs per segment, while other

restrictions remained the same in comparison to the former analyses. Table 5.1

describes the four analyses, each of which uses 5 or 10 LDUs on the scale of one of
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the two LD maps respectively for each segment. The analyses 1 and 2 are based

on the GAW LD map whereas the analyses 3 and 4 are based on the HapMap LD

map. Despite a fixed minimal length on LDU scale for each segment, more

segments results in fewer SNPs per segment with shorter physical length. More

segments were expected in the HapMap LD map than the GAW LD map because

the LDU length in the HapMap LD map is longer. Each segment in these analyses

was considered as an independent study of a small candidate region. Tables

5.2-5.5 show the detailed information for each of segments in the four analyses

including the number of SNPs, the physical and the LDU distances.

Table 5.1 The general description of the four analyses'in this study.

# analyses
LD map Minimal Number of Mean of Mean of Mean of
, used Length segments SNP number kb length LDU length

GAW 10LDUS 14 164 673 Kb 10.35 LDUs

GAW 5 LDUs 27 85 349 Kb 5.54 LDUs

HapMap 10 LDUs 18

HapMap 5 LDUs 31

127 523 Kb 11.02 LDUs

74 302 Kb 6.37 LDUs
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Table 5.2 The detailed description of each segment in analyses #1

Analysis #1 (10 LDUs minimal and the GAW LD map)

Number
#Segment Physical Length (kb) LDU Length (LDUs)

ofSNPs

1 342 48896-50159 (.1262) 0.00-10,04(10.04)

2 262 50159-51575(1417) 10.04-20.06 (-10.02)

3 146 51575-52100(525) 20.06-30.09(10.03)

4 312 52102-53241(1139) 30.21-40.34(10.13)

5 124 53242-53613(371) 40.91-51.14(10.23)

6 92 53615-53966(352) 52.07-62.08(10.01)

7 117 53967-54410(443) 62.08-72.40(10.32)

8 53 54436-55002(566) 72.97-83.45(10.48)

9 128 55017-55381(364) 84.35-94.60(10.25)

10 92 55382-55678(296) 95.25-107.24(11.99)

11 94 55721-56245(524) 108.65-119.06(10.41)

12 275 . 56246-57248(1001) 119.24-130.06(10.82)

13 59 57253-57555(302) 130.90-141.05(10.15)

14 197 57556-58415(859) 141.05-151.11(10.06)
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Table 5.3 The detailed description of each segment in analyses #2

Analysis #2 (5 LDUs minimal and the GAW LD map)

Number
#Segment Physical Length (kb) LDU Length (LDUs)

of SNPs

48896-49443(547) . 0.00-5.25(5.25)

49446 - 50231 ( 785 ) 5.25 - 10.54 ( 5.29 )

50233-50981(748) 10.54-16.07(5.53)

50984 - 51687 ( 703 ) 16.07 - 21.12 ( 5.05 )

51713-51947(234) 21.12-26.23,(5.11 )

51947-52341 (393) 26.23-31.53(5.30)

52351 - 52912 ( 560 ) 31.56 - 36.92 ( 5.36 )

52915-53271 (357) 36.92-42.17(5.25)

53274 - 53496 ( 222 ) 42.41 - 47.79 ( 5.38 )

53500 - 53668 ( 168 ) 47.79 - 54.50 ( 6.71 )

53669 - 53919 (250 ) 54.50 - 59.52 ( 5.02 )

53920-54006(86) 59.53-64.92(5.39)

54008 - 54312 ( 304 ) 65.00 - 70.48 ( 5.48 )

54315 - 54799 ( 484 ) 70.48 - 76.15 ( 5.67 )

54799 - 54968 ( 169 ) 76.24 - 82.04 ( 5.80 )

54970 - 55102 ( 132 ) 82.04 - 87.72 ( 5.68 )

55114-55355(241) 87.72-92.84(5.12)

55356 - 55520 ( 164 ) 92.84 - 98.37 ( 5.53 )

55521 - 55620 ( 100 ) 98.37 -103.78 ( 5.41 )

55623 - 55837 ( 214 ) 103.78 -112.98 (9.20 )

55838 - 56245 ( 408 ) 112.98 =• 119.06 ( 6.08 )

56246-57034(788) 119.24-124.50(5.26)

57035 - 57248 ( 213 ) 124.50 - 130.06 ( 5.56 )

57253 - 57410 ( 157 ) 130.90 - 138.30 ( 7.40 )

57417 - 57636 ( 219 ) 138.30 -143.36 ( 5.06 )

57636 - 58178 ( 542 ) 143.36 -148.67 ( 5.31 )

58183-58415(233) 148.74-151.11(2.37)

1
2

-3

4

5

6.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

99
274

117

137

73

109

159

101

92

46

47

40

84

34

30

30

90

66

35

30

69

222

53

30

34

138

54

116



The Construction of LD maps and their Application to Association mapping of disease genes

Table 5.4 The detailed description of each segment in analyses #3

Analysis #3 (10 LDUs minimal and the HapMap LD map)

#Segmerit
Number

ofSNPs
Physical Length (kb) LDU Length (LDUs)

255

238

3

4

5 '

6

7

8

9

10

11

12

13

14

15

16

17

18

198

134

241

113

75

40

103

49

70

60

89

30

134

208

55

201

48896-49928(1032)

49935-51009(1073)

51010-51919(908)

51926-52398(472)

52399 - 53262 ( 863 )

53262-53596(333)

53599-53919(319)

53920 - 54006 ( 86 )

54008 - 54448 ( 440 )

54496 - 54974 ( 478 )

54977 - 55285 ( 308 )

55286 - 55381 ( 95 )

55382-55634(252)

55641 -55838(196)

55839 - 56399 ( 560 )

56408 - 57248 ( 840 )

57253 - 57545 ( 293 )

57548-58415(867)

0.00-10.01 (10.01 )

10.02-20.29(10.27)

20.30-33.67(13.37)

33.67-48.58(14.91 )

48.79-59.20(10.41 )

59.25-69.56(10.31 )

69.56-79.64(10.08)

79.64-89.92(10.28)

89.95-99.98(10.03)

101.27-111.40 (10.13 )

111.40-125.97(14.57)

126.33-136.43(10.10)

137.27-147.28(10.01 )

147.35-157.38(10.03)

157.38-168.39(11.01 )

168.39-179.99(11.60)

180.67-190.67(10.00)

190.67-201.94 ( 1 i.27 )•
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, Table 5.5 The detailed description of each segment in analyses #4

Analysis #4 (5 LDUs minimal and the HapMap LD map)

Number
#Segment Physical Length (kb) LDU Length (LDUs)

ofSNPs

0.00 - 6.37 ( 6.37 )

6.37-11.47(5.10)

11.61-18.43(6.82)

18.43-24.02(5.59)

24.29-29.31 (5.02)

29.31 -34.69(5.38)

34.74-39.91 (5.17)

39.97-48.58(8.61)

48.79 - 54.49 ( 5.70 )

54.49-59.55(5.06)

59.55-65.57(6.02)

65.65-71.25(5.60)

71.25-76.34(5.09)

76.36-81.49-.(5.13)

81.51 -89.95(8.44)

89.95 - 95.27 ( 5.32 )

95.27-102.37(7.10)

102.37-111.06(8.69)

111.06-116.52(5.46)

116.83-125.97(9.14)

126.33-135.68(9.35)

135.68-143.68(8.00)

" . 144.90-152.74(7.84)

153.62-159.51(5.89)

159.74-164.74(5.00)

164.74-169.76(5.02)

169.87-175.06(5.19)

175.28-186.67(11.39)

186.67-193.57(6.90)

193.57-198.59(5.02)

198.76-201.94(3.18)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 .

99

172

199

99

104

34

43

75

159

86

82

35

47

36

30

74

30

30

31

51

51

65

36

44

69

147

102

30

41

140

52

48896 - 49443 ( 547 )

49446-50028(582)

50029 - 50869 ( 839 )

50885-51334(449)

51337-51884(547)

51885-51962(77)

51963-52100(137)

52102-52398(296)

52399 - 52984 ( 586 )

52993 - 53274 ( 281 )

53274-53456(183)

53468-53615(146)

53618-53807(190)

53818-53938(120)

53938-54017(79)

54020-54300(281 )

54301 - 54606 ( 305 )

54607 - 54947 ( 340 )

54949-55095(145)

55095-55285(190)

55286 - 55370 ( 84 )

55371-55528(157)

55530 - 55678 ( 148 )

55721-55880(159)

55884-56287(403)

56288 - 56895 ( 607 )

56903-57177(274)

57197-57397(200)

57397 - 57636 ( 239 )

57636 - 58206 ( 570 )

58210-58415(205)
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5.2.4 The composite likelihood method

The previous chapter has described the composite likelihood method that

estimates the Malecot parameters (M, S, L and e) for association mapping of

causal variants. Significance tests for this method are based on contrasts between

null and alternative models. The null hypothesis of model A assumes no

association between SNPs and disease status, which does not estimate any

Malecot parameters. On the other hand, the alternative hypothesis assumes

association with disease and estimates partial or all Malecot parameters,

depending on which model is used (See chapter 4). In this study, I used model D

because its absolute deviation of estimated S from the true location is relatively

small in the simulation test (Morton et al. 2007). This model estimates

parameters M, S and L and takes the parameter e as 1. The parameter e is taken

as 1 because it is always ~1 when an LD map is used to indicate SNP locations.

%2 with 3 degree of freedom for the A-D contrast is estimated as X IV , where

X = [(-2\nlk)A-(-2lnlk)D] and V is error variance. However, when SNP

density is very high, the estimation is distorted by autocorrelation due to

non-independent SNPs in high LD, resulting in an inaccurate error variance (V).

This problem can be solved by a permutation method that randomly shuffles

case/controls status under the assumption of no association without any changes

in SNP genotype to create many replicates (i.e. 1,000-10,000). Here I used 1000

replicates and each replicate j was estimated for Xj . All Xj of 1000 replicates

were then ranked according to their values, p value (p.) for each replicate was

determined by the fraction of its rank in the 1000 replicates. For each

corresponding replicate, Pj was converted into;^ with 3 degrees of freedom
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(Abramowitz and Stegun 1965) and its error variance Vj for this replicate was

estimated as Xj I x] • To estimate the error variance V from the real data (Hi),

a regression: lnFy = a + b\r\Xj was applied by fitting 20 replicates (Vj and X\)

on both sides centered on X to calculate a and b. If X is an outlier, the 20

closest replicates are taken. Therefore, V is calculated as exp(a + blnX). By

estimating V from this method, the autocorrelation effect is avoided.

All segments in the four analyses were analysed in the same way as described

above. A segment with nominally significant association with RA was identified

where p value < 0.05. For each segment, a location (S) and its corresponding

information (K) for S were estimated. The information K is estimated as

/(y i-i\> where Kss is an information matrix with simultaneous estimates of M,

S and L. The standard error (Se) was calculated as VIIK and the 95%

confidence interval (CI) was calculated as S ± 1.96Se . The 95% confidence

interval (95% CI) on LDU scale were then converted to more standardised scale in

kb. The model is implemented in the CHROMSCAN program.

5.2.5 Haplotype analysis for significant segments

Haplotype analyses were performed on segments if they were nominally

significant in the analyses using the composite likelihood method. Common

haplotypes (>1%) and their frequencies were estimated for cases and controls. The

analyses were performed by the PHASE program (version 2), which implements

Gibbs sampling, a form of Markov chain Monte Carlo (MCMC) algorithm, for

reconstructing haplotypes from population data (Stephens et al. 2001; Stephens
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and Donnelly 2003). This program also assigns a pair of the maximum likelihood

haplotypes for each individual.

A simple %2 test was performed to identify significant haplotypes between

cases and controls by testing each haplotype in turn against the rest of others.

The x2 value for each suspected haplotype was calculated as

X = w i t h one degree of freedom, where p and q are theXi
(p + q)(2-p-q)

haplotype frequencies in case and control groups respectively and N is the total

number of haplotypes in the sample. This study collected genotype data in 460

cases and 460 controls, so N is 1840 (920x2=1840).

5.2.6 Evaluation for the performance in the CHROMSCAN program

The CHROMSCAN program is a development from the LOCATE program for

genome-wide association studies. It manages multiple segments of a large region

and performs a permutation test with many replicates under null hypothesis for

estimation of the error variance in a significance test. However, size of segment,

breakpoints of segment and number of replicates are set as optional in this

program. It remains unclear how robust the findings are to varying these limits.

Therefore, this study performs a test to evaluate the effects of these variables.

Three point estimates were chosen, including a high significant, a moderately

significant and a non-significant locus in the candidate region. Then, I performed

the test by changing these variables in which three loci were located in order to

evaluate their influences on the results.
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5.3 Results

5.3.1 The significant segments indicated by the composite likelihood

method

Tables 5.6-5.9 shows all of the results from the composite likelihood method

performed by the CHROMSCAN program, including %2 values of the significance

A

test, point estimates (S) and 95% CI for all segments. Two segments showing

significant association with RA were identified. The point estimate for the first

and the most significant segment (Si) is at 53306 or 53308 kb, indicated by all

tables. The second one (S2) at 51584 or 51585 kb is less significant and only

detectable in the analyses using 5 LDUs per segment (Tables 5.7 and 5.9). The

results show that the point estimates are highly consistent in the four analyses.

However, %2 values are higher and 95% CI are smaller in the analyses using 5

LDUs per segment. In addition, using the HapMap LD map as the reference map

in the analyses seems to show smaller 95% CI in kb.
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Table 5.6 Results of Analysis #1 from the composite likelihood method

Analysis #1 (10 LDUs minimal and the GAW map)

y2

#Segment XA.D V A~D p value Se S (LDU) 95%CI(LDU) S(kb) 95%CI(kb)
(df=3)

1 6.30 12.95 0.49 0.9220 0.70 8.97 7.59-10.35 50020 49807-50158

2 12.97 7.95 1.63 0.6521 11.42 20.04 -2.35-42.42 51574 50159-51575

3 ' 20.31 3.18 6.38 0.0943 0.49 20.06 19.09-21.03 51575 51577-51680

4 10.78 12.25 0.88 0.8303 0.60 35.22 34.05-36.40 526,83 52398-52898

5* 85 36 6.43 '13.27 0.0041 0 18 42 70 42.35 43.05 " 53305 53273 53342

6 18.40 3.25 5.66 0.1294 0.29 56.50 55.93-57.06 53752 53732-53781

7 25.95 4.80 5.41 0.1440 0.24 68.62 68.15-69.09 54230 54215-54277

8 3.20 1.52 2.10 0.5510 0.40 75.65 74.87-76.43 54742 54636-54804

9 2.95 4.28 0.69 0.8755 0.69 85.21 83.85-86.56 55071 55027-55095

10 5.05 3.24 1.56 0.6687 0.55 96.50 95.43-97,57 55491 55384-55517

11 16.62 3.91 4.25 0.23610.90 110.45 108.68-112.22 55782 55723-55805

12 3.89 41.11 0.09 0.9925 2.67 125.64 120.41-130.86 57158 56371-57248

13 9.44 2.23 4.24 0.2366 0.22 139.18 138.75-139.6157498 57466-57518

14 21.86 4.99 4.38 0.2235 0.53 150.90 149.86-151.95 5840158264-58415

A segment showing significant association with RA is marked in grey colour.
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Table 5.7 Results of Analysis #2 from the composite likelihood method

Analysis #2 (5 LDUs minimal and the GAW map)

#Segment XA.D V XA-D

(df=3)
p value Se S (LDU) 95%CI(LDU) S(kb) 95%CI(kb)

1
2

3

M*

5 '

6

7

8

1.9**

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

4.75

8.93

9.71

•':44!66"

9.71

8.53

3.13

5.98

•86.94

1.00

20.88

6.82

21.67

1.63

2.30

4.71

2.34

4.22

2.87

1.50

15.02

3.98

0.14

0.32

10.25

14.72

5.50

3.21

8.68

3.76

5.28

1.88

3.94

6.32

3.94

5.98

1.72

3.09

2.12

4.36

0.92

1.13

1.10

2.37

2.73

1.42

1.05

3.55

13.24

3.34

2.65

1.76

4.05

1.82

1.48

1.03

2.58

8.46

5.18

2.17

0.50

1.52

14.55

0.58

6.77

3.22

4.97

1.77

2.04

4.29

0.98

1.54

2.02

1,43

4.23

0.30

0.04

0.12

5.81

3.64

3.03

0.6874 0.50 2.80 1.82-3.78

0.7942 0.37 8.64 7.91 - 9.37

0.4607 0.71 10.54 9.14-11.93

0.0373 0.18 20.06 19.71-20.41

0.1592 0.31 24.07 23.47-24.67

0.5389 0.42 27.77 26.95-28.6

0.9198 0.44 35.22 34.36.-36.08

0.6780 0.21 38.97 38.57-39.38

0.0022 0.13 42.70 42.44-42.96

0.9015 0.00 54.50 54.5-54.5

0.0797 0.43 56.52 55.68 - 57.35

0.3590 0.94 59.53 57.69-61.38

0.1739 0.22 68.59 68.16-69.01

0.6208 1.69 76.15 72.85-79.45

0.5644 0.00 77.27 77.27-77.27

0.2315 0.17 85.24 84.9-85.58

0.8052 0.62 92.66 91.44-93.87

0.67210.33 96.45 95.79-97.1

0.5680 0.89 103.61 101.86-105.36

0.6991 1.48 108.06 105.17-110.96

0.2375 0.61 114.03 112.82-115.23

0.9599 0.86 122.72 121.04-124.4

0.9976 1.49 125.75 122.84-128.66

0.9895 2.12 138.06 133.89-142.22

0.1213 0.15 139.18 138.89-139.47

0.3034 8.62 145.24 128.35-162.14

0.38710.29 150.88 150.31-151.46

49369 49341

50018 49918

50233 50235

51585 V51539

51915 51913

52005 51975

52682 52418

53113 53108

53306 '53295

53668' 53668

53753

53920

54229

54799

54827

55086

55351

55483

55615

55703

55875

56966

57159

57398

57498

57734

58400

53722

53922

54215

54430

54827

55054

55285

55454

55583

55657

55838

56395

57035

57305

57466

57644

58344

- 49439

- 50023

- 50648

-£1628
-51916

- 52040

- 52864

-53125

- 53330

- 53668

- 53845

- 53960

- 54265

- 54799

- 54827

- 55094

- 55355

- 55503

- 55620

- 55786

- 56064

- 57034 '

-57241

-57410

-57514

-58178

-58415

*Segments showing significant association with RA are marked in grey colour.
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Table 5.8 Results of Analysis #3 from the composite likelihood method

Analysis #3 (10 LDUs minimal and the HapMap map)

72

#Segment XA.D V ~D p value Se S (LDU) 95%CI(LDU) S(kb) 95%CI(kb)
(df=3)

1 5.27 20.75 0.25 0.9684 1.26 3.41 0.94-5.88 49391 49313-49442

2 4.68 9.53 0.49 0.9209 4.41 10.02 1.37-18.67 49935 49936-50901

' 3 37.32 5.33 7.00 0.0719 0.19 25.45 25.07 - 25.82 51584 51535-51614

4 6.01 4.95 1.21 0.7498 0.73 35.97 34.55-37.39 52005 51961-52057

5 2.59 17.74 0.15 0.9858 1.29 50.22 47.69-52.75 5268352401-52916

•46* ••••88.10': 7.04 12.51 0.0058 0.18 59.92 < 59.57 - 60.26 53308 53296 53332'

7 20.04 3.00 6.68 0.0827 0.31 75.64 75.03 - 76.25 53777 53734 - 53803

8 7.06 2.13 3.32 0.3451 0.49 79.91 78.95-80.87 53932 53922-53934

9 19.77 3.88 5.10 0.1649 0.27 93.74 93.21-94.26 54232 54215-54279

10 4.40 1.64 2.69 0.4423 0.40 103.98 103.19-104.77.54703 54653-54807

11 3.94 1.79 2.21 0.5302 0.87 115.14 113.43-116.85 55088 55012-55095

12 0.51 3.60 0.14 0.9865 0.94 126.94 125.09-128.78 55336 55288-55352

13 4.60 2.67 1.73 0.6313 0.00 137.90 137.9-137.9 55488 55488-55488

14 1.33 1.13 1.18 0.7580 1.09 150.25 148.11-152.39 55664 55651-55676

15 22.73 5.10 4.46 0.2162 0.31 165.07 164.45-165.68 56306 56254-56320

16 5.04 10.89 0.46 0.9269 0.66 170.59 169.29-171.88 56969 56725-57032

17 10.10 2.10 4.82 0.1855 0.29 189.68 189.11-190.24 57537 57519-57542

18 23.16 4.97 4.66 0.1983 0.35 201:70 201.01-202.39 58387 58313-58415

*A segment showing significant association with RA is marked in grey colour.

125



The Construction of LD maps and their Application to Association mapping of disease genes

Table 5.9 Results of Analysis #4 from the composite likelihood method

Analysis #4 (5 LDUs minimal and the HapMap map)

V2

#Segment XA.D V >' A'D p value Se S (LDU) 95%CI(LDU) S(kb) 95%CI(kb)
(df=3) :

0.6976 1.30 4.81 2,26-7.35 49440 49330-49443

0.9104 1.89 10.02 6.31-13.72 49954 49446-50028

0.8424 0.29 12.70 12.13-13.27 50299 50157 - 50425

0.59060.76 19.16 17.67-20.64 50937 50886-51042

10.42 0.0153 0.13 25.44 25.19-25.7 -51584 51564-51604

0.0777 4.30 30.63 22.2-39.07 51912 51886-51962

0.9180 0.35 36.00 35.31-36.69 52006 51981-52048

0.5654 0.61 45.65 44.47 - 46.84 52396 52396 - 52397

0.6966 0.29 50.18 49.61-50.75 52660 52637-52765

0.8254 2.04 59.55 55.56-63.55 53274 53109-53274

13.86 0.00310.14 59.92 59.64-60.2 53308 53296 - 5™3330

0.9491 1.34 67.51 64.88-70.14 53569 53472-53613

0.1013 0.60 75.51 74.33-76.69 53771 53704-53807

0.4473 0.32 76.96 76.35-77.58 53837 53818-53848

0.3796 1.82 81.51 77.94-85.08 53938 53943-53996

0.1234 0.22 93.68 93.25 - 94.1 54230 54216 - 54269

0.8947 1.03 99.98 97.96 -102 54448 54365 - 54606

0.85290.55 104.04 102.97-105.11 54706 54624-54811

0.24660.42 115.14 114.31-115.98 55088 55024-55094

0.7107 1.64 118.83 115.61-122.05 55269 55097 - 55282

0.9833 0.35 126.91 126.23-127.6 55311 55288-55347

0.7871 O'.OO 137.90 137.9-137.9 55488 55488-55488

0.5485 0.49 146.88 145.92-147.84 55613 55591-55650

0.31110.43 155.18 154.34-156.03 55785 55772-55802

0.3122 1.63 164.69 161.49-167.88 56274 56166-56287

0.8637 0.81 164.92 163.33-166.52 56297 56289-56378

0.9965 3.57 169.89 162.9-176.89 56915 56908-57177

0.99313.86 177.34 169.77-184.91 57220 57200-57329

0.2013 0.22 188.63 188.2-189.06 57475 57469-57503

0.2994 1.79 195.58 192.08-199.08 57730 57644-58206

0.4275 0.23 201.71 201.25-202.17 58387 58363-58415
. .

*Segments showing significant association with RA are marked in grey colour.
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1

2

3

4

5*

6

7

8

9

10

11*

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

. 4.61

3.99

6.00

5.76

-• 41.22

8.50

1.23

6.78

7.38

3.63

86.24

0.52

16.92

4.91

5.16

22.39

0.95

1.02

5.27

2.08

0.47

2.79

, 3.00

6.41

11.48

5.89

0.57

0.39

8.44

15.46

4.97

3.22

7.42

7.24.

3.01

3.95

1.24

2.44

3.33

5.13

4.03

6.22

1.46

2.72

1.85

1.68

3.88

1.56

1.30

1.27

1.51

2.86

2.64

1.42

1.79

3.22

7.96

10.07

4.38

1.83

4.21

1.79

1.43

0.54

0.83

1.91

10.42

6.83

0.50

2.03

1.44

0.90

13.8C

0.36

6.22

2.66

3.08

5.77

0.61

0J9

4.14

1.38

0.16

1.06

2.12

3.58

3.57

0.74

0.06

0.09

4.63

3.67

2.78
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5.3.2 Haplotype analyses for the significant segments

Figure 5.2 presents the HapMap LD maps for the two significant segments

including the point estimates, Si and S2, and their 95% confidence intervals. The

black dots on the maps are those SNPs showing significant association with RA in

the single SNP test (p value < 0.05).

Haplotype analyses were performed on each of the two significant segments,

focusing on the area within a small LDU distance that contains the putative

caused locus and the majority of significant SNPs (See table 5.10). The first area

(Si) is between 53297 and 53312 kb with 0.043 LDUs. This area contains 16 SNPs

in which 14 SNPs are highly significant. Another area (S2) is between 51555 and

51616 kb with 0.368 LDUs. This area contains 21 SNPs in which 12 SNPs show

significant association.
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1196.0

1195.8

1195.6

1195.4

1195.2

1195.0

1194.8

1194.6

1194.4

1194.2

53280 53290

95%CI

S,=53308 kb

53300 - 53310

Kb location

53320 53330 53340

1162.0

1161.5

1161.0

1160.5

1160.0

1159.5

95% Cl

S2=51584 kb

51550 51560 51570 51580 51590 51600 51610 - 51620 51630 51640

kb location

Figure 5.2 LD maps for the significant regions S1 and S2

The black dots on the maps are those SNPs showing significant association with RA

in the single SNP test (p value < 0.05).
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Table 5.10 Selected SNPs from the two significant segments with their

locations for haplotype analyses

The selected SNPs in the Si area

No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

rs-number

rs660936
rs674849
rs615030
rs629737
rs519596
rs660626
rs3745070
rs3745064
rs3848516
rs608017
rs608823
rs552396
rs2279096
rs1217583
rs3899444

. rs4940796

kb location

53297.068
53297.884
53300.352
53301.269
53302.863
53303.627
53303.942
53305.064
53306.378
53306.709
53306.868
53308.810
53308.956
53310.272
53310.926
53311.675

LDU distance

0
0.032
0.032
0.032
0.032
0.032 '
0.032
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043

xl
5.22234
9.97169
9.79587
11.61718
11.95221
10.54578
1.54977
12.24676
10.65911
10.69989
10.69989
11.0443 .
10.65911
8.07478
11.00203
0.29391

The selected SNPs in the S2 area

No.

1
2
3
4
5
6

- 7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

rs-number

rs813043
rs784254
rs711745
rs784251
rs4800995
rs784237
rs796743
rs784235
rs784233
rs4800996
rs3745044
rs784232
rs1642295
rs784240
rs1362781
rs2306163
rs931040
rs4996482
rs899101
rs899102
rs1031830

kb location

51555.692
51556.380
51558.095
51563.901
' 51566.375
51567.112
51568.637 ,
51574.142
51575.244
51575.356
51576.668
51578.479
51580.697
51585.120
51590.034
51593.047
51594.427
51605.367
51606.229
51606.327
51615.765

LDU location

0
0.008"
0.011
0.018
0.018
0.018
0.018
0.09
0.098
0.099
0.099
0.099
0.099
0.309
0.368
0.368
0.368
0.368
0.368
0.368
0.368

• xl
2.51912
2.51912
2.82461
2.66863
8.06634
8.89857
8.67925
8.50657
0.05456
9.16822
10.24285
10.51579
0.33626
0.33626
3.56218
'6.49247
9.42302
6.26716
5.9369
2.7005
10.82539
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There are 22 haplotypes in the Si region, but four common haplotypes (Hi, H2, H3

and H4) represent 95% of individuals in the sample, shown in table 5.11.

Haplotypes Hi and H3, appear to have very significant difference in haplotype

frequencies between cases and controls. The S2 area contains more SNPs and is

not in a well-characterised block. Therefore, the total number of haplotypes is 58.

It requires at least 9 haplotypes to represent 95% of individuals in the sample

(Table 5.12). The results show that only haplotype H5 is significantly associated

with the disease. Haplotype Hi in the Si area and haplotype H5 in the S2 area

have similar properties (protective effect against the disease), but there is no

association between the two haplotypes in the control group, examined by a

simple^2 test {%2 =0.396).

Table 5.11 Haplotypes and haplotype frequencies in the significant area of Si

Frequency

Haplotype

number

Haplotype

Total Case Control p value*

Hi 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0.661 0.628 0.695 9.22 0.0024 (0.0096)

H2 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0.169 0.180 0.158 1.59 0.2073

H3 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0.101 0.120 0.082 7.32 0.0068 (0.0272)

H4 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0.019 0.013 0.025 3.55 0.0595

+: SNP being significant; -: SNP being non-significant

*: p values O.05 are underlined; p values with brackets are corrected by Bonferroni correction.
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Table 5.12 Haplotypes and haplotype frequencies in the significant area of S2

Frequency

Haplotype

number

Haplotype

Total Case Control # 2 p value*

H r 010110000110110110111 . 0.339 0.343 0.336 0.10 0.7518

H2 101010000110111011001 0.256 0.274 0.238 3.13 0.0769

H3 101010000110110110100 0.100 0.089 0.110 2.26 0.1328

H4 101001110001110100110 0.079 0.074 0.084 0.63 0.4274

H5 010101110001110100110 0.075 0.056 0.094 9.57 0.0020(0.018)

H6 101010000110110011001 0.048 0.056 0.039 2.94 0.0864

H7 010100001000000110110 0.040 0.036 0.043 0.59 0.4424

H8 101000000110110110100 0.012 0.014 0.011 0.34 0.5598

H9 010111110001110100110 0.012 0.010 0.014 0.62 0.431

+: SNP being significant; -: SNP being non-significant

*: p values O.05 are underlined; p values with brackets are corrected by Bonferroni correction.

5.3.3 Effects on the performance in the program

To evaluate effects from the options used in the program, a test was performed

and three point estimates were chosen, including the most significant Si locus at

53,308 kb, the moderately significant S2 locus at 51,584 kb and a non-significant

locus at 54,231 kb. Table 5.13 shows that point estimates and 95 % CI are highly

robust to size of segment; only a slight increase in 95% CI as size of segment

increases. Although enlarged length of segment would include many irrelevant

SNPs and therefore decrease %2 value, the association of the Si locus is still

detectable when the length increases to 40 LDUs (near 2 Mb of the physical
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distance). If a segment includes both the Si and the S2 loci, only the Si locus with

stronger association is indicated. Table 5.14 shows the effects of number of

replicates on the results for the Si locus. The %2 value remains very stable as the

number of replicates is more than 250, but less reliable as it below 100. In

addition, if the Si locus is on the edge of a segment, the effect is very little even

though the Si locus is not in the segment (See table 5.15).

Table 5.13 The effects of size of segment on the results for three loci with

different intensities of association

segment

highly

significant (SO

moderately

significant (S2)

Non-significant

Segment

Size(LDUs)

2

5

10

. 20

40

80

2

5

TO

20

40

80

2

5

10

20

40

80

Physical

Size(kb)

102

139

351

971

1,834

3,463

297

503

934

1,318

2,959

4,560

98

251

416

715

1,359

2,405

SNP

Number

57

72

146

303

517

906

51

89

200

262

728

1,152

33

60

103

118

244

585

Z 2A-D

(df=3)

12.782

15.218

9.782

9.755

7.989

6.955

10.901

9.473

6.305

6.506

2.481

5.086

5.758

5.075

5.303

4.874

3.768

9.795

p value

0.0051

0.0016

0.0205

.0.0208

0.0462

0.0733

0.0123

0.0236

0.0977

0.0894

0.4787

0.1656

0.1240

0.1664

0.1509

0.1813

0.2876

0.0204

Point

estimate

53,308

53,308

53,308

53,308

53,308

53,308

51,586

51,583

51,584

51,584

51,584

53,308*

54,236

54,235

54,231

54,233

53,777

53,308*

95%CI

30

32

60

60

62

67

28

48

89

92

218

71

63

90

59

69

70

62

The point estimates with * indicate the S

so large that the Si locus is included.

locus because the size of those segments is
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Table 5.14 The effects of number of replicates on the results for the most

significant locus

Number of

replicates

Segment SNP r A-D Point
p value 95%CI

Size(LDUs) Number (df=3) estimate

50

100

250

500

1000

2500

10

10

10

10

10

10

146 8.474 0.0372 53,308

146 12.670 0.0054 53,308

146 10.334 0.0159 53,308

146 10.280 0.0163 53,308

146 9.782 0.0205 53,308

146 10.524 0.0146 53,308

61

36

59

59

60

59

Table 5.15 The effects of breakpoints in segment on the results for the most

significant locus

LDUs between Segment SNP X2
A.D Point

p value 95%CI
and the nearby breakpoint* Size(LDUs) Number (df=3) estimate

-0.3

0.5

2.5

10 91 14.874 0.0019 53,305 40

10 96 14.204 0.0026 53,301 35

10 230 8.783 0.0323 53,308 56

10 115 12.502 0.0058 53,308 35

10 118 12.625 0.0055 53,308 35

10 192 10.286 0.0163 53,308 37

A value of zero indicates that the ST locus (53308 kb) is on one of the breakpoints in a

segment. If a value is minus, it means that the ST locus is not in the segment.
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5.4 Discussion

Since many genome-wide association studies for different common diseases are

being carried out, developing powerful analytical approaches for identification of

genetic susceptibility variants from a large region is increasingly important. It is

a challenge for almost all association approaches to analyse a large dataset

including thousands of SNPs. An effective solution, at the initial stage of disease

mapping, is to screen a large region in segments with fewer SNPs, in order to

identify segments that are significantly associated with disease, followed by more

detailed analyses of significant segments and replication along with

meta-analysis (Morton et al. 2007). Since the majority of segments are not

expected to be associated with disease, excluding non-significant segments after

the initial screen could save lots of time and resource.

The composite likelihood method, which evaluates whether a segment is

associated with disease of interest by considering association information from all

SNPs in a segment simultaneously, is capable of screening a large region for

signals of association. This study is a good illustration of this powerful method. In

this study, I identified two significant segments that contain a group of SNPs and

one or two particular haplotypes with significant differences in frequencies

between cases and controls. This suggests that this method can facilitate single

SNP testing and haplotype analysis for characterisation of significant regions. An

important haplotype in the significant segment at 53297-53312 kb is strongly

associated with RA. This haplotype exists in the majority of individuals,

accounting for 66.1% of DNA samples, and has protective effect against RA.

Currently, no gene has been reported in this area, but it contains 4 human
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mRNAs (CR590917, AK021717, AK124558 and BC013134) and highly conserved

DNA sequences in different species, implying some functional importance. In the

other significant segment, a gene named AK127787 is located at 51595-51600 kb.

The knowledge of this gene is very limited. DNA sequences in this area also show

potential importance of functional mechanism. Further analyses using functional

tests or DNA sequencing are necessary to confirm these findings.

The composite likelihood method provides point estimates and 95% CI on the

LDU scale, which are variable between populations. The locations can be

transformed by interpolation into locations on the kb scale. This study shows that

point estimates and 95% CI are very robust to size of segment and choice of

reference map. There are some limitations to this approach. If a segment includes

multiple causal variants with strong effects at different loci, the point estimate for

this segment could be distorted by the interference of these variants and p value

increased. This will happen more frequently if a segment is very large. Secondly, if

a causal variant is very close to one of the breakpoints in a segment, parts of SNPs

surrounding the causal variant will be truncated in analyses, resulting in loss of

information. This could happen in any segmentation of a large region, but it is

more likely to happen as smaller segments are examined. However, this study

also shows that the effect is very small from these two cases if association is very

strong. In addition, using smaller segments in analyses tends to generate higher

X2 values and smaller confidence intervals, but this does not support using fewer

than 5 LDUs per segment, at the initial screen, due to more tests and fewer SNPs

in a segment. On the other hand, enlarged length of segment decreases the x2

value, which could be due to noise from distant and irrelevant SNPs, and other

sites with independent and confounding effects on the trait.
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This study with a moderate-size region provides a good opportunity to evaluate

the performance of the CHROMSCAN program. The required computing time to

analyse one segment depends on the number of replicates and the number of

SNPs in the segment. More replicates and more SNPs per segment require more

time. To use the program efficiently for a large data, it is suggested to run 100-250

replicates for each segment at the beginning to identify significant regions. Then,

further investigation on significant regions uses 1,000 or more replicates to

increase accuracy of %2 and 95% CI. In fact, this study shows that the results

are highly stable even when the number of replicates is only 250.

The increase in false positive rates by chance in multiple testing on SNPs,

haplotypes and segments is a common problem in genome-wide disease mapping.

A simple way to reduce the error rate is Bonferroni correction using strict

statistical criteria for significance level. However, as the number of tests increases,

many putatively positive results do not satisfy the criteria after the correction. In

the case of this study, the nominal p value for the most significant SNP among

2293 SNPs is 4.66x 10'4, which is not significant after correction as it would need

to be 2.18xlO'5 (0.05/2293) using Bonferroni. Although the composite likelihood

method based on a multi-markers approach reduces 2293 tests to 18 tests, the p

value for the most significant Si locus, 5.8xl0'3, is close to the corrected

significance level of 2.8* 10'3 (0.05/18). Because the Bonferroni criterion is thought

to be too conservative, many significant results are omitted in multiple-hypothesis

tests including the true ones. Controlling the false positive rate without missing

causal polymorphisms is essential. One possible route to the management of this

problem is through the development of the false discovery rate (FDR). Another

feasible solution is to stratify the same samples into different groups according to
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some common variables, such as age and sex, and re-analyse, test a second or

another samples and combine evidence across samples using meta-analysis

(Morton 2007). Confirmation of evidence is best achieved by replication studies for

any putatively significant region using additional samples if budget and time are

feasible. i
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Chapter 6 Summary

Linkage Disequilibrium (LD) is a measure of the degree of association between

alleles in a population. Previous studies have shown that the pattern of LD is

highly variable in different chromosome regions and different populations.

Therefore, it is useful to construct a genome-wide LD map at high resolution

throughout the human genome. Association between pairs of SNPs can be

modeled using the Malecot equation that describes the decline in LD with

distance under the composite likelihood method. The magnitude of the s

parameter of the Malecot equation indicates the region of the genome with

extensive and less extensive LD.

The construction of a genome-wide LD map encounters computational difficulties

induced by the volume of SNP pairwise data generated from a large genotype

sample. This can be solved by separating a large dataset into smaller sub-datasets

and excluding the uninformative distant pairs. The estimation of a distance in

LDU between any of two adjacent SNPs is highly robust at sufficient marker

densities. Powerful computers with parallel computing technology can also

facilitate the map construction more efficiently.

In the thesis, these strategies were used to construct genome-wide LD maps for

four major populations (Caucasian, Chinese, Japanese and African) from the

phase II data of the HapMap project. The LDMAP-Cluster program exploiting

parallel computation process was used for rapid map construction. A comparison

of patterns of LD across the four populations are also presented. The results show
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"out of African" populations exhibit more extensive LD than African for all

chromosomes, highlighting the importance of population demography in shaping

the pattern of LD. Despite those differences, the general view of LD patterns is

similar across the populations, indicating recombination dominates these

patterns.

The application of LD to map genes of complex disease using high density maps of

SNPs in candidate region is currently an active research area in human genetics.

I describe an association approach that utilises LD maps for reliable localisation

of disease-causing variants. This method uses composite likelihood estimate of

location for a causal variant by combining association information from all SNPs.

I also examine the performance of this mapping approach using three case/control

studies of Rheumatoid Arthritis (RA). The results of these studies demonstrate

the great potential of the genome-wide LD maps for high-resolution mapping of

disease genes, and practical implications for appropriate design and selection of

SNPs for disease association studies.

Genome-wide association studies (GWAS) involving hundreds of thousands of

SNPs in cases and controls are getting common today. Recently, a joint GWA study

of several common diseases using 500,000 SNPs has identified association signals

at many loci across the genome (Consortium 2007). A challenge for these studies is

the analyses of a huge number of SNP, contributing to many false positive results.

A two-stage design for disease gene mapping is therefore suggested. The first

stage identifies significant regions associated with disease of interest from the

whole genome followed by the second stage that further localise the causal

polymorphisms in these regions. The CHROMSCAN program analysis by
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segments is very suitable for genome-wide association studies. The results of this

study demonstrate the efficiency and robustness in this approach for the

localisation of variants which contribute to human diseases.

Several novel methods and extensions of existing methods, using multiple SNP

analysis, are proposed for candidate regions and genome-wide association studies.

These methods are believed to have greater power than single SNP analysis

because they combine more information from multiple SNPs. Despite different

strategies, methodologies, algorithms and statistical measures in these methods,

they all require heavy computation (permutation, simulation and iteration) and

suitable software. Unlike CHROMSCAN which combines information across

several SNPs simultaneously and takes into account LD information, many other

methods derive haplotypes or "optimal" sets of markers based on unique

algorithms and then perform chi-square tests. These methods include the

localised haplotype cluster algorithm (Browning and Browning 2007), sequential

haplotype scan (Yu and Schaid 2007b), pattern-based data mining (Li et al. 2007)

and backward search algorithm (Lo and Zheng 2002). Although methods for

inferring haplotypes or optimal sets of SNPs for analyses are not the same, and

results are often inconsistent, one common feature of these methods is that they

can detect association through a combination of SNPs that is not detectable for

individual SNPs. In the case of rheumatoid arthritis association studies of GAW

15, the sequential haplotype scan approach (Yu and Schaid 2007a) indicated a set

of SNPs between 53,716-53,747 kb containing only 1 significant SNP (uncorrected

P=0.015) amongst five SNPs. The localised haplotype cluster algorithm (Browning

and Thomas 2007) indicated that the most significant haplotype contains two

SNPs at 555,158 and 555,159 kb respectively, but none of those and their
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neighboring SNPs show significant association in single SNP analysis. Among

these methods, only the pattern-based mining strategy (Li et al. 2007) indicated

the significant region (51566-51594 kb) agreeing with the CHROMSCAN results.

Thomas and Camp (2004) developed a graphic model to describe allelic association

between SNPs. It can be used to detect allele-phenotype association by fitting the

model. Another approach that takes into account the shared ancestry of sampled

chromosomes is based on a coalescent model for fine mapping (Morris et al. 2002).

However, the two approaches are computationally intensive and may not be

suitable for large-scale genome-wide association studies. Instead, clustering

hapldtypes through similarity, without an explicit model, could be a much faster

approach (Molitor et al. 2003). An efficient analysis using the CHROMSCAN

program has been performed on several large-scale genome-wide association

datasets using a segmental method and parallel processing. There are other

advantages of CHROMSCAN for association mapping. Large samples containing

thousands of individuals do not pose a computational issue for CHROMSCAN, but

severely limit methods that require haplotype reconstruction. Although

CHROMSCAN employs EM algorithm for haplotype frequencies from unphased

genotype data, this error is Likely to be minimal in 2-SNP haplotypes. However,

estimating haplotypes over large distances with many SNPs and individuals may

increase error. Therefore, investigators should be always aware of potential biases

in multiple SNP analysis.
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Appendix A: General information for population-specific
genome-wide LD maps

A-1: The CEU genome-wide LD map
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A-2: The CHB qenome-wide LD map
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A-3: The JPT genome-wide LD map
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A-4: The YRI genome-wide LD map
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43

19

27

103

1,216
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Appendix B: Block structure information for population-specific
genome-wide LD maps

B-1: The CEU genome-wide LD map

Chromosome B l°5* .M e ! ! " <2 kb <5 kb <10 kb <30 kb <1OOkb
number size (kb)

30.80% 54.11% 72.39% 93.16% 99.39%

30.91% 53.64% 72.28% 93.34% 99.40%

30.54% 52.89% 71.39% 92.96% 99.45%

29.10% 51.33% 69.59% 92.33% 99.62%

32.33% 54.59% 73.22% 93.45% 99.54%

32.65% 55.42% 74.21% 93.93% 99.62%

31.77% 53.72% 71.86% 93.08% 99.47%

34.23% 56.32% 74.33% 94.43% 99.61%

34.89% 59.17% 77.29% 95.09% 99.59%

34.35% 57.25% 75.59% 94.82% 99.55%

32.97% 55.72% 73.77% 94.05% 99.46%

32.66% 56.04% 74,26% 93.48% 99.51%

34.45% 56.61% 74.56% 94.46% 99.71%

33.12% 56.10% 74.23% 94.23% 99.53%

34.23% 58.09% 75.86% 94.74% 99.41%

37.38% 61.92% 79.41% 95.26% 99.55%

32.14% 55.86% 75.50% 94.22% 99.28%

33.65% 57.08% 75.81% 94.81% 99.69%

29.01% 52.68% 73.52% 94.84% 99.55%

36.53% 60.11% . 78.97% 95.80% 99.76%

33.65% 58.40% 77.71% 95.98% 99.85%

39.40% 62.88% 80.44% 95.30% 99.47%

19.76% 37.60% 56.18% 81.80% 96.99%

Total 223,918 8.55 32.37% 55.18% 73.58% 93.65% 99.47%

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

16,590

18,518

14,835

13,764

. 14,329-

14,491

11,871

12,396

10,435

11,530

10,936

10,708

8,569

7,264

6,583

6,857

5,809

6,763

4,030

5,853

3,257

3,190

5.340

8.89

8.88

9.12

9.65

8.69

8.41

8.90

8.18

7.44

7.86

8.36

8.44

8.18

8.27

7.79

7.07

8.17

7.82

8.43

7.08

7.28

6.84

15.10
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B-2: The CHB genome-wide LD map

Chromosome u . „ UN <2 kb <5 kb <10kb <30 kb <100kb
number size (kb)

30.08% 52.40% 71.29% 92.48% 99.19%

29.97% 52.08% 70.57% 92.44% 99.42%

29.37% 52.10% 70.91% 92.44% 99.17%

28.08% 50.09% 68.83% 92.04% 99.48%

31.58% 53.29% 71.71% 92.91% 99.39%

32.57% 55.44% 73.42% 93.32% 99.49%

30.97% 53.50% 71.77% 92.78% 99.39%

33.29% 55.85% 73.94% 93.67% 99.52%

34.76% 58.25% 76.48% 94.68% 99.69%

34.27% 56.76% 74.75% 94.32% 99.51%

32.27% 54.76% 72.77% 93.20% 99.28%

31.05% 53.82% 73.00% 93.38% 99.44%

32.08% 54.92% 73.61% 93.83% 99.51%

33.25% 55.72% 73.38% 93.49% 99.61%

33.50% 57.13% 76.25% 94.87% . 99.30%

36.10% 60.19% 78.30% 95.25% 99.51%

32.11% 55.23% 74.89% 93.51% 99.16%

33.60% 56.53% 75.61% 94.71% 99.70%

28.84% 53.76% 73.77% 94.19% 99.41%

35.53% 59.41% 77.75% 95.58% 99.62%

33.55% 58.33% 76.52% 96.07% 99.84%

38.16% 62.11% 79.69% 95.36% 99.43%

, 20.13% 37.79% 54.91% 80.83% 96.35%

Total 207,158 8.82 31.67% 54.30% 72.76% 93.17% 99.36%

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

15,256

16,712

13,650

12,788

13,029

13,502

11,065

11,523

9,733

10,833

9,939

9,889

7,931

6,969

6,392

6,318

5,329

6,429 .

3,752

5,289

3,177

2,974

4,679 .

9.26

9.44

9.30

9.95

9.11

8.67

9.12

8.41

7.81

8.15

8.73

8.73

8.41

8.55

7.67

7.24

8.38

7.91

8.60

7.39

7.37

, 6.91

15.27
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B-3: The JPT genome-wide LD map

_, Block Mean _ , , . _ , , . , „ , , „„ ., *nn , •_
Chromosome <2 kb <5 kb <1Okb <30 kb <1OOkb

number size (kb)

30.12% 52.31% 71.24% 92.46% 99.13%

29.79% 51.61%. 69.61% 91.89% 99.30%

30.26% 51.96% 70.51% 91.94% 99.18%

27.95% 48.68% 66.99%' 90.80% 99.44%

30.29% 51.65% 70.27% 92.48% 99.27%

30.86% 52.69% 71.88% 92.88% 99.39%

30.69% 52.33% 70.46% .91.95% 99.26%

33.02% 55.54% 72.99% 93.10% 99.51%

33.30% 57.28% 76.00% 94.97% 99.55%

33.82% , 56.84% 74.70% 94.01% 99.48%

31.63% 54.02% 72.20% 92.85% 99.46%

30.08% 52.41% 71.47% 93.02% 99.32%

31.68% 54.55% 73.47% 93.76% 99.48%

32.36% 55.13% 73.14% 93.59% 99.48%

33.70% 57.32% 74.96% 93.93% 99.20%

36.09% 60.11% 78.07% 95.17% 99.42%

31.76% 54.96% 74.37% 93,00% 99.18%

31.69% 54.59% 73.83% 94.05% 99.55%

29.50% 53.66% 73.20% 93.65% 99.33%

33.94% 58.22% 76.46% 94.97% 99.53%

32.51% 56.11% 75.88% 95.74% 99.68%

35.95%' 59.65% 78.33% 94.83% 99.37%

20.04% 37.45% 54.19% 79.92% 95.59%.

Total 201,343 9.07 . 31.14% 53.47% 71.91% 92.74% 99.28%

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

X

15,221

16,246

: 13,363

12,299

' 12,632

13,027

10,517

11,105

9,644

10,594

9,852

9,426

7,927

6,784

6,125

6,237

5,255

6,014

3,604

5,153

3,076

2,865

4.377

9.27

9.72

9.55

10.52

9.45

9.02

9.52

8.75

7.80

8.22

9.01

9.22

8.42

8.62

8.02

7.24

8.68

8.44

8.74

7.68

7.53

7.32

15.40
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B-4: The YRI genome-wide LD map

Block Mean _ . . _ , . . . . . • _ „ . . „ „ „ , , _
Chromosome , <2 kb <5 kb <10 kb <30 kb <1OOkb

number size (kb)

1 , 22,807. 6.33 37.83% 63.04% 81.12% 96.84% 99.72%

2 25,598 6.33 37.57% 62.72% 80.91% 96.91% 99.76%

3 19,879 6.71 35.95% 61.32% 79.90% 96.49%^ 99.74%

4 18,891 6.77 35.41% 59.88% 78.90% 96.79% 99.78%

5 18,992 6.37 38.20% 63.11% 81.07% 96.80% 99.80%

6 19,536 6.10 38.71% 63.83% 82.24% 97.16% 99.84%

7 15,854 6.39 37.37% 62.86% 80.91% 96.90% 99.76%-

8 16,973 5.88 ' 40.54% 65.17% 82.77% 97.42% 99.85%

9 13,799 5.49 40.97% 67.14% 84.59% 97.86% 99.83%

10 15,668 5.58 40.84% 66.39% 83.94% 97.58% 99.76%

11 14,285 6.28 38.42% 63.82% 81.39% 96.89% 99.76%

12 14,151 6.23 38.44% 63.64% 81.97% 96.83% 99.77%

13 12,081 5.64 40.19% 65.93% 83.90% 97.77% 99.86%

14 9,695 6.14 38.49% 64.35% 82.07% 97.08% 99.78%

15 8,862 5.77 41.13% 66.28% 84.09% 97.17% 99.72%

16 8,852 5:18 44.22% 69.66% 86.00% 97.80% 99.71%

17 7,508 6.19 38.11% 63.95% 82.78% 96.67% 99.60%

18 9,658 5.32 42! 18% 68.05% 85.20% 97.95% 99.89%

19' 4,953 6.61 35.11% 61.20% 81.00% 96.73% 99.84%

20 7,822 5.10 43.81% 69.75% 86.62% 97.92% 99.86%

21 4,462 4.97 41.04% 68.62% 86.69% 98.57% 99.87%

22 4,361 4.87 46.89% 73.19% 87.92% 97.78% 99.79%

X 8,331 10.75 25.20% 47.07% 66.34% 90.61% 98.91%

Total 303,018 6.20 38.58% 63.85% 81.85% 96.97% 99.76%
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ABSTRACT
Summary: Linkage disequilibrium (LD) maps increase power and

• precision in association mapping, define optimal marker spacing and
identify recombination hot-spots and regions influenced by natural

> selection. Phase II of HapMap provides ~2.8-fold more single nucleo-
tide polymorphisms (SNPs) than phase I for constructing higher res-
olution maps. LDMAP-cluster, is a parallel program for rapid map
construction in a Linux environment used here to construct genome-
wide LD maps with >8.2 million SNPs from the phase II data.
Availability: The LD maps, LDMAP-cluster and documentation are
available from: http://www.som.soton.ac.uk/research/geneticsdiv/
epidemiology/LDMAP
Contact: arc@soton.ac.uk

Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Linkage disequilibrium (LD) describes the tendency of alleles at
markers in close proximity to be inherited together more frequently
than expected under random segregation. Precise characterization
of LD structure underpins efficient mapping of disease genes by
association. Maniatis et al. (2002) developed an analogue to linkage •
maps in centimorgans with maps expressed in LD units (LDUs),
which have ~1500-fold higher resolution (Tapper et al., 2005), and
lengths reflecting the number of generations since an 'effective'
bottleneck (Zhang et al., 2004). Improved localization and substan-
tial increases in power are found when disease mapping with LDU
maps (Maniatis et al., 2005).

The LDMAP program constructs LD maps from single nucleotide
polymorphism (SNP) data in population samples using the 'interval'
algorithm (Maniatis et al., 2002). The program constructs LD maps
from either phase unknown (genotypic) data or phase-known (hap-
lotypic) data. Further details of the core methodology are given in
Supplementary material. Map construction is computationally
intensive employing composite likelihood to estimate a parameter,
epsilon (s), describing the decline of association in each interval
between adjacent SNPs.

Phase II of HapMap (International HapMap Consortium, 2005),
provides ~2.8-fold more SNPs than phase I. The huge volume of

*To whom correspondence should be addressed.
^The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

data imposes a considerable computational burden addressed here
through the implementation of a parallel algorithm, in the program
LDMAP-cluster, deployed on a Linux Beowulf cluster. We have
used this program to construct genome-wide LDU maps from phase
II data for the four HapMap populations. A detailed description of
the data are given in the Supplementary materials.

2 IMPLEMENTATION
LDMAP-cluster is written in C, as a wrapper program that encap-
sulates LDMAP. We deployed the program on a Linux Beowulf
cluster of over 900 processors. The batch queuing and job manage-
ment is administrated by Open-PBS (Portable Batch System), http://
www.openpbs.org/.

The segment-based parallel approach is illustrated in Figure 1.
We established that assembly of maps in segments of ~2000 SNPs
loses minimal information and provides substantial reductions in

. computing time (Supplementary Figure 1). We also examined the
effect on map quality of varying the number of pairwise obser-
vations used to estimate epsilon in each map interval. An optimum
'interval window' of informative SNP pairs separated by no more
than ~100 intervals was identified (Supplementary Figure 2). Map
segments are submitted and constructed as individual jobs on the
cluster. The parallel processing is accomplished by the concurrent
submission of all segments.

LDMAP-cluster is a 64 bit program, enabling access to more
memory than conventional 32 bit platforms. The program features
synchronous processing supporting multiple SNP dataset submis-
sions. To efficiently utilize dual-processor machines in the cluster,
segments are assigned as two jobs per submission. In addition to
job monitoring commands (i.e. 'showq' and 'qstat') supplied by
Open-PBS, a custom-made program, 'checkSeg', tracks the status of
the submitted jobs grouped by SNP dataset.

A segment of 2000 SNPs requires 5-10 h of computation
(AMD Opteron 2 GHz with 2 GB RAM), corresponding to the
minimum time for construction of the whole map given complete
parallelization. '

LDMAP-cluster is compatible with a Linux Beowulf cluster with
Open-PBS installed as the batch scheduler. Recompilation of the
program is essential for linking to the platform specific libraries.
Minor modification of the code responsible for job submission is
required for porting onto a Linux cluster with a different
batch scheduler. Compatibility across all platforms is difficult to

© The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 517
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Fig. 1. A chromosome is divided into segments of ~2000 SNPs. A 'buffer zone' of 100 SNPs extends from the ends of each segment to minimize loss of
information. Buffer zones are eliminated in map assembly and segments are connected end to end to form the complete map.

guarantee given different hardware (e.g. 32 or 64 bit), software
(e.g. PBS or Condor) and administrative environments (e.g.
versions of glibc and Tcl/Tk libraries), but modification for local
systems should be straightforward as the software is written in
standard C. Further technical issues are discussed in detail in the"
Supplementary materials and supporting website.

3 RESULTS
Tapper et al. (2005) describe a genome-wide LD map constructed
from ~490 k SNPs (post-screening) from HapMap phase I public
release #16 for the CEU population. We describe here maps from all
four HapMap populations with 1.9-2.3 million SNPs per popula-
tion. These data were analyzed in 4195 segments of ~2000 SNPs.
Approximately 8.2 million SNPs were processed in ~25 170 com-
puting hours achieved over about one month real-time. The phase II
LD maps resolve ~31% of the 'holes' (intervals constrained to the
upper limit of three LDUs, Service et al., 2006) in the phase I maps
where the LD structure is not fully characterized. Such regions are
more frequent in large outbred populations, such as those repre-
sented in HapMap, where recombination events have accumulated
in narrow regions over many generations creating locally high-
haplotype diversity. Considering the hugely increased marker
density the relatively small proportion of resolved holes suggests
that many holes correspond to particularly intense recombination
hot-spots. Disease gene mapping by association is expected to be
particularly difficult in these areas (Service et al., 2006).

Although the broad pattern of LD is consistent between the two
HapMap phases (Fig. 2), the fine scale structure of steps and blocks
differs in many regions. Increasing SNP density recovers structural
details from regions with lower marker coverage in phase I but
differences also reflect changes in the sequence build and the reso-
lution of some holes, (which may locally increase or decrease map
length).

Overall the phase II maps are 3.1% longer (Table 1), a modest
increase consistent with the essentially additive property of the
LDU map distances noted previously (Ke et al., 2004).

4 DISCUSSION
Genome-wide LDU maps constructed using LDMAP-cluster have
substantially higher marker density than maps published for the
CEU population (Tapper et al., 2005). The maps should guide
marker selection, empower genome-wide association studies and
facilitate other genomic studies. The LD pattern at fine scale is
described by these maps, and applications to disease association
mapping are expected to increase power and precision for localiza-
tion of disease, genes, consistent with existing evidence (Maniatis
et al., 2005). The LD pattern is highly consistent between the high-
resolution (HapMap release #20) and low-resolution (release #16)
maps, despite small differences in overall map length attributable to
changes in the sequence and the better characterized LD structure.

Efforts are now underway to generate large case-control and other
phenotype samples for association studies with many thousands of
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Fig. 2. LD maps of chromosome 22 (CEU) constructed from HapMap #16(13959 SNPs) and #20 (26 721 SNPs). The LD pattern is highly consistent between the
two HapMap phases.

Table 1. Characteristics of the LDU maps

Populations

No. of holes in LD map
Phase I release #16

. Phase II release #20
Diff.

Overall LD map length (in LDUs)
Phase I release #16
Phase II release #20
Diff.

CEU

2911
2033

-30%

56250
57 819
+2.8%

CHB

4879
3838

- 2 1 %

62686
64930
+3.6%

JPT

3731
2900

-22%

56655
58 730
+3.7%

YRI

2979
1216

-59%

79499
81345
+2.3%

I

14500
9987

(avg.) - 31%

255091
262826
(avg.)+3.1%

SNPs. The complexities of processing and analyzing such huge

bodies of data are an area of rapid research. We anticipate that

the genome-wide LDU maps and software tools developed will

facilitate association mapping in these samples and contribute to

studies of recombination, selection and population history. Appli-

cations to data from other organisms, including a recent application

to the Bovine genome (Khatkar et al., 2006), demonstrate the wide-

applicability and utility of this form of genetic map for describing

and analyzing LD structure with high-resolution.
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Abstract
We analyzed a case-control data set for chromosome 18q from the Genetic Analysis Workshop
15 to detect susceptibility loci for rheumatoid arthritis (RA). A total number of 460 cases and 460
unaffected controls were genotyped on 2300 single-nucleotide polymorphisms (SNPs) by the
North American Rheumatoid Arthritis Consortium. Using a multimarker approach for association
mapping under the framework of the Malecot model and composite likelihood, we identified a
region showing significant association with RA (p < 0.002) and the predicted disease locus was at
a genomic location of 53,306 kb with a 95% confidence interval (Cl) of 53,295-53,331 kb. A
common haplotype in this region was protective against RA (p = 0.002). In another region showing
nominal significant association (51,585 kb, 95% Cl: 51,541-51,628 kb, p = 0.037), a haplotype was
also protective (p = 0.002). We further demonstrated that reducing SNP density decreased power
and accuracy of association mapping. SNP selection based on equal linkage disequilibrium (LD)
distance generally produced higher accuracy than that based on equal kilobase distance or tagging.
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Background
Rheumatoid arthritis (RA) is a common chronic disease,
with a moderately strong genetic component. Chromo-
some 18q has shown evidence for linkage in the U.S. and
French linkage scans [1]. The North American Rheuma-
toid Arthritis Consortium (NARAC) performed fine map-
ping on a 10-Mb region on 18q with a dense single-
nudeotide polymorphism (SNP) map and the data were
collected by the Genetic Association Workshop (GAW) 15
for Problem 2. Here we applied a novel association map-
ping approach based on the Malecot model and compos-
ite likelihood to identify disease associated regions and
predict the locations of possible disease loci [2]. Haplo-
type analysis on the candidate regions was performed. We
also studied the effect of region length and SNP density on
the accuracy of association mapping in comparison with
our analysis of the simulated data in Problem 3 of GAW15
[3].

Methods
Data
Atotal of 2300 SNPs in a 9,519.224 kb region of 18q were
genotyped by NARAC in 460 cases of RA and 460 con-
trols. Controls were recruited from a New York City pop-
ulation. Seven SNPs showing significant departure from
Hardy-Weinberg equilibrium (HWE) in the control sam-
ples using a likelihood ratio chi-square test (x2> 10) were
removed, resulting in a total of 2293 SNPs [4]. Further
removal of 81 SNPs with a minor allele frequency (MAF)
of less than 5% resulted in a total of 2212 SNPs for our
main data analysis.

LD map
Physical locations of these SNPs were determined from
build 35 (UCSC May 2004) of the human genome
sequence. An LD map expressed in linkage disequilibrium
(LD) units (LDUs) was created using the control samples
with the LDMAP-duster program, a parallel version of
LDMAP program that rapidly constructed the map
http:www.sorn.soton.ar.iik/rpsp3rrh/geneticsdiepide.rrii-
ology/ldmap/[5]. LDU is determined by the product of
the E and distances in kilobases for an interval of two adja-
cent SNPs and is additive, where s represents the exponen-
tial dedine of LD with distance for that interval. The LD
map length was 151.115 LDUs, which is essentially the
same as the 2293 SNPs containing rare SNPs.

We also used the LD map built from the CEU samples of
the HapMap Phase II data http://www.som.soton.ac.uk/
resparrh/genpticsdiv/epidemiology/LDMAP/
map?.ritm[5]. The same region on the CEU LD map con-
tains 8086 SNPs with a length of 202 LDUs. Despite its
higher SNP density, 185 SNPs were missing and therefore
their LDU locations were linearly interpolated. However,
alternative LD maps did not seem to exert a significant

effect on the results (data not shown), and we hereby only
report the results using the LD map constructed from the
GAWlSdata.

Association mapping

The 10-Mb segment of 18q was divided into 14 non-over-
lapping consecutive regions. Each region had a minimum
of 10 LDUs and 30 SNPs by default without breaking LD
blocks and was analyzed individually. We also used a 5-
LDU region length, resulting in a total of 26 regions for
assodation analysis. In the Malecot model, assodation is
a function of several parameters, the most important of
which is S, the predicted location of the disease variant
[2]. Composite likelihood combines information of all
pairwise marker-disease associations in each region. S and
its 95% confidence interval (CI) are estimated by fitting
the model to the data and maximizing the composite like-
lihood. Significance tests are carried out by contrasting
two hierarchical models. Model A assumes no assodation
and no parameters are estimated. Model D assumes an
assodation and S and two other parameters are estimated
with e spedfied. The difference in the -2 natural log com-
posite likelihood (denoted as A) between the two models
(denoted as AA - AD) is a statistic monotonic to a chi-
square with 3 degrees of freedom (%f). A permutation
test was performed for each region with hundreds of rep-
licates under the null hypothesis of no assodation by
shuffling case-control status to obtain an empirical p-
value [2]. The specified value for e of 1.0543 was obtained
by fitting the LD map to the genotype data for the control
samples. However, similar values for E did not seem to
have an appreciable effect on the results (data not shown).

This approach has been implemented in the CHROM-
SCAN program and a parallel version, CHROMSCAN-
duster, based on cluster computing was used for permuta-
tions with 1000 replicates http://www.som..soton.ac.uk/
research/gpneticsdiv/epidemiology/chromscan/. Pear-
son's x2s were obtained for allelic assodations between

' single SNPs and RA.

Haplotype analysis for candidate regions
Haplotype analysis using the PHASE program version 2
[6] was performed for candidate regions showing nomi-
nal significant association. The five most common haplo-
types and their frequencies were compared between cases
and controls. A chi-square test was applied to identify sig-
nificant associations by testing each haplotype in turn
against all others, induding rare ones.
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SNP density and region length
To generate different SNP density, we used Tagger in Hap-
loview software to select tagging SNPs based on pairwise
LD (r2) using.the control samples with rare SNPs included
[7]. For comparison, we selected the same number of
SNPs as Tagger but by equidistance in LDU or kilobases.
To do this, SNPs with the same LDU were reassigned LDU
locations by linear interpolation (tilting) so that every
SNP would have a unique location. By centering at the
"disease locus", we also studied the effect of LDU region
length on the results.

Results and discussion
Association mapping of disease locus
We found a nominally significant association between
region 5 and RA. The estimated location of the disease
locus Sj was at 53,306 kb near a SNP of global maximal
chi-square (rs3745064, %2= 12.25, p = 0.00047) using the
LD map with a 10-LDU region length (p = 0.002). After
Bonferroni correction for 14 regions the results were still
statistically significant (pc = 0.02). Removing this SNP did
not change the results. However, inclusion of SNPs with
MAF < 5% resulted in a wider 95% CI (53,274-53,342 kb,
point location at 53,307 kb). Figure 1 shows that the esti-
mated location for the disease variant was in a 10-kb LD
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Figure I
An LD map in relation to the putative disease loci S,and S2. The details of the SNPs and LD patterns for the regions
around S\ and S2 are enlarged in the upper diagrams. The vertical black solid line indicates the location of the point estimate
within the 95% Cl. The black dots on the map represent SNPs showing nominal significant association with RA (p < 0.05) and
the gray dots represent SNPs showing no association.
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Table 1:

Loci

Association

LDU length

10.2

5.1

mapping of RA susceptibility loci

No. of regions

14

26

Region (no. of SNP)

5^(112)

4'h(l32)

Length (kb)

371

703

Location S (kb)

53,306

51,585

95% Cl (kb)

53,295-53,331

51,541-51,628

xl

IS

8

P

0.0017

0.0370

block where a duster of SNPs showed modest association
with RA. At such a significance level, none of the SNPs
were statistically significant after correction for multiple
comparisons. This is in contrast to multimarker
approaches, in which one duster of SNPs is considered at
a time in light of LD among nearby SNPs, markedly reduc-
ing the number of tests.

At 5-LDU region length with a total of 26 regions, we
found a locus (S2) at 51,585 kb showing nominal signifi-
cant assodation (p = 0.04, Table 1 and Figure 1). Similar
results were obtained using the data with rare SNPs (MAF .
< 5%) induded. In this region there was also a cluster of
SNPs assodated with RA. However, consideration of mul-
tiple testing this region would not be statistically signifi-
cant.

Haplotype analysis for candidate regions

Haplotype analysis was performed on sub-regions con-
taining Sj and S2 with the majority of nominally assod-
ated SNPs induded. Sj sub-region (53,297-53,312 kb,
0.043 LDUs) contained 16 SNPs (Table 2) and S2 sub-
region (51,556-51,616 kb, 0.368 LDUs) contained 21
SNPs (Table 3). Haplotypes Hl and H3 at Sx and H5 at S2

appeared to be significantly assodated with RA, with the
first two haplotypes being almost complementary. Both
H1 at S, and H5 at S2 showed protective effects against RA.

Further analyses of Sj categorized all individuals into
three groups, HJHV HJH- and H-/H-, where H- is a hap-
lotype other than Hj. There was a significant association

between haplotype pairs and disease status (%2 = 10.3, p
= 0.006). An individual carrying tixIHx had a lower risk of
RA than those carrying HJH- or H-/H-. The odds ratios
(ORs) were 0.58 (95% CI: 0.37-0.92) and 0.85 (0.54-
1.34) for an individual carrying HJH^ or HJH- compared
to H-/H- haplotypes, respectively. We performed analyses
conditional on whether an individual carried HJHV .
Interestingly, H5 appeared to be significant only in HJH-
or H-/H- carriers (x2 = 7.647, p < 0.05), but not in HJH^ .

carriers (x2 ,= 1.509), indicating a possible interaction
between the two haplotypes.

Genes and mRNA at the candidate regions

The UCSC genome browser (May 2004) was used to find
genes and mRNAs within the 95% CI of lod Sj and S2. No
known genes have been found nearby Sv but the area of
the 95% CI for locus S, contains four human mRNA
(CR590917, AK021717, AK124558, and BC013134), two .
of which span the point estimate of Si. Therefore, this
region might contain genes not yet identified. In addition,
this area is highly conserved across spedes, implying func-
tional importance of the genomic sequence. A known

Table 2: Common haplotype analysis of the S, candidate region

Code

H,

S| Haplotype3"

+ + + + + + . + + + . + + + + + .

2 I I 2 I 2 I I I 2 I I 2 I I I

I 2 2 I 2 I I 2 2 I 2 2 I I 2 I

1 2 2 1 2 1 I 2 2 I 2 2 I 2 2 I

M I 2 I 2 I I I 2 I I 2 I I I

1 I 2 I 2 2 2 2 2 I 2 2 I 2 2 2

Total

0.661

0.169

0.101

0.019

6.017

Frequency

Case

0.628

0.180

0.120

0.013

0.017

Control

0.695

0.158

0.082

0.025

0.017

X2

9.22

1.59

7.32

3.S5

0.00

• P

0.002

0.2

0.007

0.06

1

»SNPs from left to right rs660936, rs674849, rs615030, rs629737, rs519596, rs660626, rs3745070, rs3745064, rs3848S 16, rs608017, rs608823,
rs552396, rs2279096, rs 1217583, rs3899444, rs4940796,'+','-' denote a SNP with nominal association (+) or no association (-) with RA.' I', '2'
denote the alleles of a SNP.
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Table 3: Common haplotype analysis of the S2 candidate region

Code S2Haplotypea Frequency

Total

0.339

0.256

O.I 00

0.079

0.075

Case

0.343

0.274

0.089

0.074

0.056

Control

0.336

0.238

O.I tO

0.084

0.094

0.I0

3.I3

2.26

: 0.63

9.57

0.8

0.08

O.I

0.4

0.002

H,

I 2 I 2 2 I I I I 2 2 I 2 2 I 2 2 I 2 2 2

2 I 2 I 2 I M I 2 2 I 2 2 2 I 2 2 I I 2

2 I 2 I 2 I I I I 2 2 I 2 2 I 2 2 I 2 I I

2 I 2 I I 2 2 2 I I I 2 2 2 I 2 I I 2 2 I

I 2 I 2 I 2 2 2 I I I 2 2 2 I 2 I I 2 2 I

»SNPs from left to right; rs813043, rs784254, rs711745, rs784251, rs4800995, rs784237, rs796743, rs784235, rs784233, rs4800996, rs374S044,
rs784232, rs 1642295, rs784240, rs 1362781, rs2306163, rs931040, rs4996482, rs899101, rs899102, rs 1031830,'+','-' denote a SNP with nominal
association (+) or no association (-) with RA.' I', '2' denote the alleles of a SNP. •

gene (AK127787) is within the 95% CI of S2, but is 10 kb
away from its point estimate.

Region length and SNP density
Point estimates of S were identical for all region lengths
centred at Sv The 95% CI was also relatively stable, with a
slow increase with region length (Table 4). Enlarged
region length compromised the significance levels, per-
haps due to noise from distant SNPs, given that the
informative SNPs were clustered in a rather small region.
Computing time prolonged with increasing number of
SNPs. Small region lengths, however, resulted in a heavy
penalty for multiple testing. Four LDUs provided the most
significant result for S^ = 30 x 0.0008 = 0.02, Table 4).

Our analysis of simulated data indicated that reduced SNP
density decreased mapping accuracy, and SNP selection
based on equal LD distance produced smaller location
errors than that based on equal kilobase distance or tag-
ging [3]. Interestingly, among the three selection
approaches for Sj region, Tagger selected the most number
of SNPs while equal kilobase distance, the least number.

Table 4: The impact of region length on association mapping

SNPs selected by equal LDU distance generally provided
the highest location accuracy (Table 5). Power was
reduced with decreasing density, as indicated by the val-
ues of AA- AD (Table 5). Using the kilobase map resulted
in higher location errors in most cases and lower AA - AD

values, indicating reduced power in all circumstances
compared with using the LD map (data not shown).

i

Conclusion
We reported a significant association between a region of
18q and RA. The estimated genomic location of the dis-
ease variant was at 53,306 kb. The Malecot model and
composite likelihood approach has narrowed the possible
disease locus to a 36-kb candidate region. A haplotype sig-
nificantly associated with reduced risk of RA was identi-
fied in this region. DNA sequences between 53,295-
53,331 kb of this region are highly conserved in verte-
brates. A haplotype around 51,585 kb was also identified
as reducing the risk of RA. Further sequencing or func-
tional studies may be helpful to identify the disease vari-
ants. Reducing SNP density decreases power and location
accuracy. We also conclude that SNP selection based on

Region

LDUa

1

4

10

20

60

length

kb

75

122

578

1262

3732

No. of regions

58

30

14

7

2

No.

All

49

66

191

382

946

of SNPs in the region

p < 0.05 (%)

22 (45)

27(41)

34(18)

37(10)

84 (9)

14.02

16.83

10.44

6.75

7.58

P

0.0029

0.0008

0.0152

0.0802

0.0554

Length of 95% CI (kb)

34

40

73

76

76

'LDUs centering S, at 53,306 kb to which all S estimates were equal.
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Table 5: SNP density and accuracy - selection by tagging or equidistance

rz/LDU/kb (kb/SNP)

Full (4)

1.0/0.002/1 (S)

0.8/0.036/5(11)

0.6/0.071/9(15)

0.4/0.134/14(21)

0.2/0.300/26 (33)

No. of SNPs»

189/189/189

160/163/150

78/74/64

59/55/48

43/39/33

28/21/20

Tagger

0

1

. -14

-26

-27

-35

Location errorb

E_LD

0

0

4

-37

25

33

E_kb

0

-2

-5

-3

-5

-180

Tagger

79

• 62

21

10

12

7

AA -AD

E_LD

79

69

18

I I

I I

9

E_kb

79

68

20

10

8

1

"For the studied region for Tagger, Equal LD (E_LD) and kb (E_kb) distance, respectively.
bAssuming S, is the "disease locus," the region was fixed at 10 LDUs centering at S, and the location error was calculated as S-53,306 kb.

equal LD distance can maximally retain the prediction
accuracy of the disease loci than that based on equal phys-

/ __ _ _ __
ical distance or SNP tagging

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
T-YK, Wl_ and CH were supported by the Ph.D. studentships funded by
the Taiwan Ministry of Education, University of Southampton, and Shanghai
Jiaotong University, respectively. W Z was supported by the Institute of
Cancer Research, Sutton, Surrey, UK.

This article has been published as part of BMC Proceedings Volume I Sup-
plement 1,2007: Genetic Analysis Workshop 15: Gene Expression Analysis
and Approaches to Detecting Multiple Functional Loci. The full contents of
the supplement are available online at http://www.biomedcentral.gom/
l753-656l/l?issue=SI.

References
1. Choi SJ, Rho YH, j i JD, Song GG, Lee YH: Genome scan meta-

analysis of rheumatoid arthritis. Rheumatology (Oxford) 2006,
45:166-170.

2. Morton NE, Maniatis N, Zhang W, Ennis S, Collins A: Genome scan-
ning by composite likelihood. Am] Hum Genet 2007, 80:19-28.

3. Zhang W, Lau W, Hu C, Kuo T-Y: Impact of marker density on
the accuracy of association mapping. BMC Proc l(Suppl
I):SI66.

4. Gomes I, Collins A, Lonjou C, Thomas NS, Wilkinson J, Watson M,
Morton N: Hardy-Weinberg quality control. Ann Hum Genet
1999,3:535-538.

5. Lau W, Kuo TY, Tapper W, Cox S, Collins A: Exploiting large
scale computing to construct high resolution linkage disequi-
librium maps of the human genome. Bioinformatics 2007,
23:517-519.

6. Stephens M, Smith NJ, Donnelly P: A new statistical method for
haptotype reconstruction from population data. Am J Hum

: Genet 2001, 68:978-989.
7. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA:

Selecting a maximally informative set of single-nucleotide
polymorphisms for association analyses using linkage dise-
quilibrium. AmJHum Genet 2004, 74:106-120.

Page 6 of 6
(page number not for citation purposes)



BMC Proceedings ^^

Open AccessProceedings

Impact of marker density on the accuracy of association mapping
Weihua Zhang* ti-,4, Winston Laut2, Cheng Hu3 and Tai-Yue Kuo2

Address: 'Section of Cancer Genetics, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK, 2Human
Genetics Division, Duthie Building (Mailpoint 808), Southampton General Hospital, University of Southampton, School of Medicine, Tremona
Road, Southampton, SO16 6YD, UK, Shanghai Diabetes Institute, Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, People's
Republic of China and "Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UB1 3HW, UK

Email: Weihua Zhang* - weihua.zhang@eht.nhs.uk; Winston Lau - wwsl@soton.ac.uk; Cheng Hu - alfredhc@sjtu.edu.cn; Tai-
Yue Kuo - kuotaiyu@soton.ac.uk
* Corresponding author tEqual contributors

from Genetic Analysis Workshop 15
St Pete Beach, Florida, USA. I l - l5 November 2006

Published: 18 December 2007

8/HC Proceedings 2007, l(Suppl I ):S 166

This article is available from: http://www.biomedcentral.com/1753-6561/1/SI/S166

© 2007 Zhang et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativerommons.Org/lic:gnses/by/2.0V
which permits unrestricted use, distribution,-and reproduction in any medium, provided the original work is properly cited.

Abstract
We studied the impact of marker density on the accuracy of association mapping using Genetic
Analysis Workshop IS simulated dense single-nudeotide polymorphism (SNP) data on
chromosome 6. A total of 1500 cases and 2000 unaffected controls genotyped for 17,820 SNPs
were analyzed. We applied the approach that combines information from multiple SNPs under the
framework of the Malecot model and composite likelihood to non-overlapping regions of the
chromosome. We successfully detected the associations with disease Loci C and D and predicted
their locations as small as zero distance to Locus C when it was "typed" and 112 kb from the
untyped rare Locus D. Reducing marker density decreased the accuracy of location estimates.
However, the predicted locations were robust to variations in the number of SNPs. Generally, the
linkage disequilibrium (LD) map reflecting distances between markers in relation to LD produced
higher accuracy than the physical map. We also demonstrated that SNP selection based on equal
LD distance outperforms that based on equal physical distance or SNP tagging. Furthermore,
ignoring rare SNPs diminished the ability to detect rare causal variants.
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Background
As the cost of genotyping decreases, genome-wide associ-
ation (GWA) mapping of the predisposition genes for
complex diseases is becoming a common study design in
genetic epidemiology. As the huge number of single-
nudeotide polymorphisms (SNPs) in the human genome
is still prohibitive for exhaustive investigation, subsets of
SNPs have often been selected for large scale studies. Mor-
ton et al. developed a novel GWA mapping approach
based on the Malecot model and composite likelihood
combining multiple marker information from non-over-
lapping genomic regions to predict the locations of dis-
ease variants [1]. We applied this approach to the Genetic
Analysis Workshop (GAW) 15 Problem 3 simulated dense
chromosome 6 data with the knowledge of the answers
and we studied the effect of SNP density on the accuracy
of association mapping.

Methods
Data
The simulated data set contained 1500 families with a sib
pair affected with rheumatoid arthritis (RA) and a random
sample of 2000 unrelated and unaffected individuals. To
form a case-control study, we selected the first sibling per
family as a case. A total of 1500 cases and 2000 controls
from Replicate 1 were analyzed. There are three simulated
disease loci. HLA-DR is at the same location of 32484.648
kb as Locus C, where a SNP denseSNP6_3437 lies, so we
considered this SNP the disease variant C. Locus D is at
37233.784 kb, in very weak linkage disequilibrium (LD)
with Locus C. The minor allele frequency (MAF) for the C
allele was 0.4055 in control samples. The D allele has a
population frequency of 0.0083, but the variant was not
typed.

Genotype data were composed of 17,820 SNPs on chro-
mosome 6, mimicking a 300 K GWA scan with no missing
values. Fifty-eight SNPs showing departure from Hardy-
Weinberg equilibrium (HWE) in control samples (x2] ^
10 for either Pearson's or likelihood ratio chi-square tests)
were discarded [2]. Following convention, 2061 rare SNPs
with MAF < 5% were further removed except when other-
wise indicated. The main data set (1) was thus composed
of a total number of 15,701 SNPs. In another experiment
we retained all SNPs but removed 26 SNPs showing
departure from HWE by the likelihood-ratio test and this
generated 17,794 SNPs (data set 2).

LD map
The physical map length was 170,813 kb. LD maps
expressed in LD units (LDUs) were constructed based on
pair-wise LD for multiple markers in control samples [3].
LDU is the product of e and kb distance for an interval of
two adjacent SNPs and is additive, where e represents the
exponential decline of LD with distance for that interval.

We used the LDMAP-duster, a parallel version of LDMAP
program that rapidly constructs the maps of equally
divided chromosome segments
http:www.som .soton. ar.uk/resparrh/geneticsdiv/
epidpmiol ogy/ldmap/[3]. For each segment, an overall e
value was also estimated. The LD map length was
1311.225 LDUs forthe main data set and 1237.923 LDUs
for data set 2: SNPs can have the same LDU if they are in
an LD block. Therefore, we also made tilted LD maps by
reassigning LDU locations for the SNPs with the same
LDU by linear interpolation.

Association mapping
A chromosome is divided into non-overlapping consecu-
tive regions of a minimum number of 30 SNPs and a min-
imum length of 10 LDUs by default without breaking LD
blocks. Each genomic region was then analyzed sepa-
rately. Association between SNP alleles and disease status
in the Malecot model is a function of several parameters.
Composite likelihood combines information of all
marker-disease assodation in a genomic region. The
parameters were estimated through fitting the model to
the data with a map in LDU or kilobases and by minimiz-
ing -2 natural log composite likelihood (denoted as A)
[1]. The estimated location S of the disease locus is con-
verted to a kilobase scale. The significance test is per-
formed by contrasting two hierarchical models. Model A
assumes no assodation with the disease, therefore S is not
estimated. Model D assumes an association with the dis-
ease and S and two other parameters are estimated and E
is spedfied. The difference in A between models A and D
(AA - AD) is monotonic to the magnitude of chi-square
with three degrees of freedom (x23)- Permutation by shuf-
fling case-control status for each region was performed to
obtain empirical p-values [1]. The algorithms were imple-
mented in the CHROMSCAN program. A parallel version,
CHROMSCAN-duster, deployed on a local Beowulf clus-
ter http://www.som.soton.ar.uk/researrh/gpnetirsdiv/epi
demiology/chromscan/ was used for computing 1000
replicates.

The values of e were obtained by averaging over eight seg-
ments in LD map construction, which were 1.14472 and
0.00568 for LD and kilobase maps, respectively, for the
main data set, and 1.14386 and 0.00544 over nine seg-
ments for data set 2. Theoretically, a more accurate s may
be obtained by fitting the maps to the whole chromosome
data, but the extensive computing power required for the
task is impractical to implement and beyond the current
computing resource. Also, slightly altered s values did not
appear to have an appredable effect (data not shown).

t •

For comparison, a single SNP x2i was obtained by the 2 x.
2 allelic count table and the most significant SNP
(msSNP) showing maximal x2i in each region was identi-
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fied. Location error (in kilobases) was defined as the dif-
ference between S or the location of the msSNP and the
true location of disease variant. Accuracy refers to the pre-
cision of the predicted location S. The smaller the error,
the higher the accuracy.

SNP density
To generate different SNP density, we selected every ith

SNP (i = 2, 3, ..., 20, 25, 30) in the order of their physical
locations from the full data set, representing 1/z the
number of SNPs in the original set. For a candidate region
spanning Loci C and D with rare SNPs included, we used
Tagger implemented in the Haploview software to select
tagging SNPs that optimally capture allelic variation
among SNPs at a given r2 threshold based on pairwise LD
in control samples [4]. For comparison, we selected the
same number of SNPs as Tagger but in equal LDU or kilo-
base distance. To do this we used the tilted LD map in
which every SNP had a unique LDU location. We also
studied the impact of region length and sample size.

Results and discussion
Association mapping of disease loci in full data set
Fourteen out of 126 regions showed nominal significant
association with RA (p < 0.05), among which eight con-
secutive regions spanned Loci C and D (Table 1). Five
regions remained significant after Bonferroni correction,
among which four surrounded or spanned Locus C, and
one covered Locus D (Table 1). Locus C was inside the
most significant region 29. Therefore, the three regions
surrounding Locus C with less significance levels must be
the result of LD between variant C and other SNPs. The
discontinuity of significance surrounding region 32 indi-
cated that this region harbored another disease locus and
indeed, this was where Locus D lies. Therefore, we success-
fully detected Loci C and D in the initial analysis. The low-
est p for the rest of the regions was 0.0064. Given that
there were no other disease loci, the approach had a right
type I error rate (6/118 = 0.05). A lesson learned was that
when there was long-range LD, consecutive regions show-

ing association may reflect one instead of several disease
loci. As an alternative to merging regions, we studied the
impact of region length on accuracy (see below).

S for Locus C was reasonably accurate (55 kb apart from
true location using LD map). However, the location error
was 542 kb for Locus D and the 95% confidence interval
did not include Locus D. Removing 10 SNPs showing sig-
nificant LD with variant C did not change the results. We
then divided region 32 into two or three sub-regions.
Again, we did not detect significant association in the
middle part where Locus D lies, although we detected the
associations in the first and third sub-regions where two
dusters of highly significant SNPs lay. Because Locus D is
rare, the removal of rare SNPs may have had an effect. We
then added rare SNPs and used the corresponding LD
map and s values, and the location accuracy was markedly
improved for Locus D (Table 2). Among the added rare
SNPs, three were highly associated with the disease:
denseSNP6_3931,_3933, andSNP6_162(x2

1 = 118, 116,
and 116, respectively). It is therefore a mistake to remove
rare SNPs (MAF < 0.05) in association analysis. This was
in contrast to the HapMap project in which the focus was
on common SNPs. However, inclusion of rare SNPs
resulted in higher location error for common disease
Locus C (Table 2).

Occasionally or under high'marker density, the kilobase
map performed better than the LD map, presumably
because every SNP has a unique physical location,
whereas several SNPs could have the same LDU location
in LD blocks. The tilted LD map improved the location
accuracy for Locus C, although not for Locus D (Table 2).

In practice, the phenomenon in this simulated data set
may be too extreme. On the other hand, it is possible that
several disease loci can be closely located. To distinguish
such loci is a challenge to genetic epidemiologists. Under
this circumstance, single SNP association plus a gene
functional study may be useful.

Table I: Association mapping of disease Loci C and D on chromosome 6

Region3

26
27
28
29
30
31
32
33

No. SNPs-

128
-239
348
176
153
134
127
147

S(kb)

24882
26121
31299
32540
33962
35638
37776
39432

AA"AD

68
793
5176
33058
295,
103
141
50

Z23

14
40
128
322
25
15
27
13

P

0.002471
<io-7

<io-'2

<io-u
0.000017
0.001929
0.000007
0.005554

0.311346
0.000001
<0.00000l
<0.00000l
0.002129
0.243096
0.000926
0.699754

aA segment of consecutive regions of 10 LDUs showing nominal significant association with RA (p < 0.05). See Methods for the meaning of other
symbols. Loci C and D were in regions 29 and 32 at locations of 32485 and 37234 kb, respectively.
bPc is Bonferroni corrected p-value for multiple tests of 126 regions (f> x 126).
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Table 2: Candidate regions of disease Loci C and D with rare SNPs included

Locus

C

D

Map

LD
LD, tilt
kb
LD
LD, tilt
kb

S(kb)

32557
32518
32506
37358
37368
37368

A A - A D

30693
30799
28632

154
156
148

X\

360
197
496
22
28
17

P

<io-'2

<IO-i2
<IO"'2

0.000017
0.000003
0.000666

Location error with

Included

72
34
22
124
130
130

rare SNPs

Removed

55
21
14

542
546
954

SNP density based on the order
As density decreases, location error increases whether
using single or multi-SNP approaches when the disease
variant was not "typed" (Table 3). There was an improve-
ment in accuracy when the disease variant was included.
In most cases, using the LD map resulted in greater accu-
racy than using the kilobase map, especially when the
marker density was low. We also selected SNPs on the
scale of one to the hundredth or even the thousandth. As
long as there was one SNP highly associated with the dis-
ease (e.g., x2i = 27), the association was detectable, but
much compromised by precision as a result of low SNP
density. These data are unusual in that the association of
Locus C is extremely significant and probably would not
be observed in the real data.

Although mapping accuracy decreases with marker den-
sity, even with 1/30 the number of SNPs, corresponding
to a 10 K GWA scan, we could still detect Locus C.(Table
3). Single SNP tests depend heavily on whether the dis-
ease variant is typed. It has less predictive value for accu-
racy because the SNP with maximal %2 is not necessarily
the closest SNP to the disease variant. In contrast, meth-

Table 3: Density and accuracy for Locus C - SNP selection by order

ods that combine information from multiple markers pre-
dict the location of the disease variant better than single
SNP tests because the location is less influenced by any
single SNP effects. A multi-marker approach may there-
fore be more robust to genotyping errors.

We expect that the mapping accuracy will be improved
further in maps with higher marker density than that
assessed in this paper, such as the commercially available
500 K or more genotyping platforms for GWA studies.

SNP density based on tagging or equidistance
For the 15,805.710 kb candidate region spanning both
Loci C and D, we compared location accuracy using SNPs
selected with Tagger or by equidistance of LDU or kilo-
bases (Table 4). SNPs based on equal LDU provided
higher location accuracy than those based on equal kilo-
base distance. Equidistance generally provided higher
accuracy than tagging SNP selection. Again, reducing SNP
density decreases the prediction accuracy of disease Loci C
and D, but this was minimally affected by selection based
on equal LD distance (Table 4).

SNP density (kb/SNP)

Full (11)
1/2(22)
1/3(33)
1/4(44)
1/5 (54)
1/6(65)
1/8 (87)
1/10(109)
1/15(163)
1/20(217)
1/25 (272)
1/30(326)

No. SNPs

15701
7850
5233
3925
3140
2616
1962
1570
1046
785
628
523

No. regions

126
125
118
106
94
82
64
52
34
26
20
17

X2,

2324
1762
2324
1762
2274
1285
1601
726
486
726
348
229

msSNP

Location error

153
-2
153
-2
42
20
65

-106
-887
-106
-9
188

Location error by the composite likelihood approach

Causal

LD

57
5

153
-65
-24
20
-58
-55
294
-97
69

362

SNP out

kb

13
-19
40
-56
-35
20
-64
-59
26

-160
-120
-25

Causal SNP in

LD

55
5
6

-57
-15
10

-47
-24
0

-26
60
0

kb

14
-20
40
-53
-36
15

-58
-46
3

-43
-79
-25

Disease variant C (x2i = 1916) was not present except in the full data set or specified.
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Table 4: Density and accuracy - SNP selection by tagging or equidistance*

R 2(LDU, kb)

Full
0.8(0.013,7)
0.6(0.025,10)
0.4(0.047,15)
0.2 (0.099,27)

No. SNPs (kb/SNP)

1658(10)
IO8Ob(l5)
874(18)
657 (24)
421 (38)

Tagger

20
35
56
106
125

Locus C

E_LD

20
20
-16
42
14

E_kb

20
30
27
63
-23

Tagger

130
130
545
124
537

Locus D

E_LD

130
124
124
123
112

E_kb

130
130
551
117
231

'Location error for SNPs selected by Tagger or equal LDU (E_LD) or kb (E_kb) distance in a candidate region of 15805.710 kb with rare SNPs
included. Regions were fixed at 10 LDUs for Loci C (30997-33398 kb) and D (36784-37792 kb). Disease variant C was not present except in the
full data set Tilted LD map.
M079forE_LD.

Sample size and region length
We analyzed different sample sizes based on the combina-
tion of 500, 1000, 1500, and 2000 cases or controls.
Despite variations in location errors for Locus C, there was
no dear trend to draw any meaningful conclusion. For
Locus D, however, a high degree of accuracy appeared to
be maintained when the data sets had over 1000 cases and
1500 controls. Therefore, large samples are needed for
detecting rare disease loci.'

With Locus C being centred, we studied region lengths
from 0.2 up to 30 LDUs, with the latter starting in region
27 and ending in region 30. The location error was rela-
tively stable but extremely small or large LDU lengths
resulted in increased error. The region lengths in LDUs
(location errors inkilobases) were 0.2 (107), 1 (5), 2 (82),
4 (5), 6 (5), 8 (5), 10 (5), 12 (-10), 14 (-10), 16 (-13), 18
(-14), 20 (-14), and 30 (-68). We therefore recommend
10-LDU for the maximal length while maintaining mini-
mal error. Increasing the number of SNPs also linearly
increases the computing load [3].

Fixing region length had no appreciable impact on loca-
tion accuracy at high density, but the errors were greater
than let-the-program-decide regions at low density (data
not shown).

Conclusion
We successfully detected disease Loci C and D in the sim-
ulated dense chromosome 6 data using the Malecot
model and composite likelihood approach. Decreasing
SNP density compromises accuracy of association map-
ping. This multi-marker approach has many advantages.
Firstly, it markedly decreases the number of tests in GWA
studies, avoiding heavy penalty for multiple testing. Sec-
ondly, it predicts the disease loci more accurately than sin-
gle SNP association tests. We also demonstrated that SNP
selection by equal LD distance outperforms that by tag-
ging or equal kilobase distance in the accuracy of associa-
tion mapping. Finally, we conclude that excluding rare

SNPs significantly decreases the power and accuracy in
mapping rare disease loci.

Competing interests
The author(s) declare that they have no competing inter-
ests. .

Acknowledgements
W Z was supported by the Institute of Cancer Research, Sutton, Surrey,
UK. WL, CH, and T-YK were supported by Ph.D. studentships funded by
the University of Southampton, Shanghai Jiaotong University, and the Tai-
wan Ministry of Education, respectively.

This article has been published as part of BMC Proceedings Volume I Sup-
plement 1,2007: Genetic Analysis Workshop 15: Gene Expression Analysis
and Approaches to Detecting Multiple Functional Loci. The full contents of
the supplement are available online at http://www.biQmedcentral.com/
1753-6S61 /1 ?issue=S I.

References
1. Morton NE, Maniatis N, Zhang W, Ennis S, Collins A: Genome scan-

ning by composite likelihood. Am J Hum Genet 2007, 80:19-28.
2. Gomes I, Collins A, Lonjou C, Thomas NS, Wilkinson J, Watson M,

Morton N: Hardy-Weinberg quality control. Ann Hum Genet
1999,3:535-538.

3. Lau W, Kuo TY, Tapper W, Cox S, Collins A: Exploiting large
scale computing to construct high resolution linkage disequi-
librium maps of the human genome. Bioinformatics 2007,
23:517-519.

4. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA:
Selecting a maximally informative set of single-nucleotide
polymorphisms for association analyses using linkage dise-
quilibrium. Am J Hum Genet 2004, 74:106-120.

Page 5 of 5
(page number not for citation purposes)



.LDMAP: The construction of high-resolution linkage disequilibrium

maps of the human genome.

Kuo T-Y, Gibson J, Lau W, Morton NE, Collins A*.

Human Genetics

School of Medicine

University of Southampton

Southampton SOI6 6YD

UK

Tel: 44 (0)23 80 796939 .

Fax: 44 (0)23 80 794264

Email: arc@soton.ac.uk

*To whom correspondence should be addressed.

Keywords: linkage disequilibrium maps, human genome, computational load, relative

efficiency, segmental assembly



Summary
The precise characterisation of the linkage disequilibrium (LD) landscape from high
density single nucleotide polymorphism data underpins the association mapping of
diseases and other studies. We describe the algorithm and implementation of a
powerful approach for constructing LD genetic maps with meaningful map
distances. The computational problems posed by the enormous number of SNPs
typed in the HapMap data are addressed by developing segmental map construction
with the potential for parallelization which we are developing. There is remarkably
little loss of information (1-2%) through this approach but the computation times
are dramatically reduced (more than 4 fold). These developments bring the
construction of very high density LD maps using the 3 million SNP HapMap sample
within reach. We anticipate that a whole-genome LD map will have substantial
impact on disease gene mapping, genomic research and population genetics.

Introduction.
Linkage disequilibrium (LD, or allelic association), describes the statistical
association between polymorphisms, such as single nucleotide polymorphisms
(SNPs), and between markers and genes contributing to disease. The existence of LD
reflects transmission over many generations of short segments of ancestral
haplotypes comprising closely linked markers. Allelic association is evident because
haplotype frequencies are not simply the products of the appropriate allele
frequencies, hence 'disequilibrium'. LD is present because recombination, which
destroys LD, is infrequent over small distances while other processes, such as
genetic drift and population bottlenecks, act to create LD over a number of
generations. A thorough understanding of the extent and structure of LD is essential
for association mapping of the polymorphisms that contribute to human diseases.
Given the availability of substantial bodies of high resolution SNP data (for example
from the International HapMap project, http V/www.hapmap.org/ , International
HapMap Consortium, 2003) it is now possible to characterise LD patterns genome-
wide. Once the structure is characterised there are likely to be substantial payoffs
from increased resolution and power for localisation of disease genes (Maniatis et al,
2005), and for identifying genomic regions subject to selection (Sabeti et al, 2002).

It is known that LD extends for tens of kilobases, on average, in the human genome.
This is true even for large heterogeneous human populations and not just isolates
(Lonjou et al, 2003), suggesting that the genome might be screened with reduced
numbers of SNPs because close association implies some redundancy. This is the
main motivation behind the HapMap project, which aims to identify 'tag' SNPs to
represent a particular haplotype with little loss of power, a strategy relying on
recognition that some parts of the genome contain regions (blocks) of low haplotype
diversity (Daly et al, 2001). However, much of the genome is more complex,
reflecting the combined effects of intense recombination hot spots, more randomly
distributed recombination events and other phenomena. Furthermore the definition
of block boundaries and the instability of blocks defined with different marker
densities poses difficulties (Tapper et al, 2003, Ke et al, 2004). It is also evident that
a 'haplotype map' (Dawson et al, 2002), while providing annotation, is not a genetic
map with meaningful distances which describe LD structure. It is also unclear how
the annotation of haplotypes is directly useful for disease mapping.



A successful alternative strategy is to represent LD patterns in the form of a metric
map with additive 'linkage disequilibrium unit' (LDU) distances (Maniatis et al,
2002). The low resolution features of LD maps resemble the linkage map in pattern
but there are important differences which reflect population history. A whole
chromosome LD map of chromosome 22 (Tapper et al, 2003) shows a close
correspondence between areas of extensive LD with low recombination and areas of
low LD with intense recombination. LD maps have already been used for multrlocus
disease gene mapping using locations on the LDU scale as the association mapping
analogue of the linkage map for localising major genes (Maniatis et al, 2004, 2005).
LD units are analogous to centimorgans (cM) in that locations increase
monotonically with physical distance but, whilst linkage map length is related to
recombination in one generation, the LDU map length reflects accumulated
recombination over many generations. The ratio of the LDU map length to the
linkage map in Morgans estimates the effective number of generations over which
recombination has occurred (the 'effective bottleneck time', Zhang et al, 2004), with
some distortion in the LD map due to selection and because of systematic errors in
estimating interference in the linkage map.

Algorithms to construct LD maps have been developed and evaluated by Maniatis et
al (2002), Zhang et al (2002) and Lonjou et al (2003). The LDMAP program
(httpV/cedar.genetics.soton.ac.uk/public html/ ) described here implements and
extends these algorithms. We describe here an approach for the construction of a
genome-wide LD map at very high density by addressing the particular
computational difficulties posed by the analysis of huge numbers of markers.

Overview of the basic algorithm.
The population genetics theory behind LD map construction is described by Morton
et al (2001). The decline of LD, modelled as association p as a function of distance d,
in Kb, is p = (l-L)MeEd + L, in which the L parameter reflects residual association at
large distance not due to linkage, M is the intercept, the association at zero distance,
and s is the exponential decline of LD as the product of recombination 9 and number
of generations t. The model has the same form as that developed by Malecot (1948)
to describe genetic isolation by distance but has different parameters.
LD map construction estimates e in each map interval between adjacent SNPs. For
any pair of SNPs the association probability p and the information Kp form the data
for LD map construction. Pairs that span a given interval contain information about
association in that interval, but pairs at large distance are uninformative. The
estimation of the e vector requires the iterative substitution of distance d in the
Malecot equation with distances in linkage disequilibrium units (LDUs). These are
defined, for the ith interval between adjacent SNPs, as eidi with locations by
summation over preceding intervals (Maniatis et al , 2002). The LDU locations,
when plotted against Kb, typically show a pattern of steps where LD is breaking
down and plateaus or blocks of high LD.

Model implementation and methods.
The raw data comprise SNP genotypes (diplotypes) from unrelated individuals with
alleles coded 0 (missing), 1 and 2. Alternatively, where known with a high degree of



reliability, SNP haplotypes are used. The physical location, in kilobases from an
origin closest to the p telomere for each SNP is obtained from the latest human
genome sequence release.
The genotypic data are reduced to pairwise association and the corresponding
information (Collins and Morton, 1998, Collins et al 1999). Informative SNP pairs
are selected subject to two constraints, of which the minimal set is used in the
analysis. The first is the maximum distance in kilobases between any pair of SNPs,
defaulted to 500 Kb. This eliminates pairs separated by a distance which greatly
exceeds the range of LD in most human populations, although for isolated
populations, certain genomic regions and for building LDU maps of other organisms
this constraint may not be appropriate. For sub-Saharan African populations, and
genomic regions with a high recombination rate, the 500 Kb distance is excessive but
inclusion of these pairs only impacts on computation time. However, at the SNP
densities available in the HapMap data this constraint is much less important than
the second constraint which restricts the number of map intervals between any pair
of SNPs. To compute e for a given interval between adjacent SNPs, a pair that spans
that interval is potentially informative but the information approaches zero if the
number of intervals between the pair is large. To reduce the computational load the
default maximum number of intervals, s, between a pair of SNPs informative for a
given interval is 100. Therefore, for the computation of s, there is a sliding window
which encompasses all the informative pairs that span the interval. When the
maximum number of intervals constraint is operating (and no pairs are eliminated
by the maximum distance constraint) the total number of pairs used (N) in a map of
n SNPs is:
.N_n(n-l) {n-s-\){n-s-2)

To compute p for SNP pairs from diplotype data we apply the E.M. algorithm of Hill
(1974) which iteratively reduces a 3x3 table of genotypic counts to four haplotype
frequencies. These are converted to counts and a file which specifies the SNP pair
and the sequence locations in kilobases, together with the four counts, is produced.
Because no re-arrangement of the 2x2 table has taken place at this point the four
counts correspond to the 11, 12, 21 and 22 haplotypes from the marker pair. This file
can be concatenated with corresponding files from other populations and counts
summed for shared marker pairs, assuming alleles are labelled consistently. The
summed counts have been used to compute p for construction of 'cosmopolitan' maps
(Lonjou et al, 2003, Gibson et al, 2005). '

Rare SNPs with minor allele frequencies less than 0.05 are eliminated, as are any
that show strong deviation from Hardy-Weinberg equilibrium (Gomes et al, 1999).
The association probability p is obtained by re-arranging the 2x2 table (Table l) to
ensure that Q is the minimal allele frequency (Q < R, 1-R and 1-Q) and that products
of haplotype frequencies give ad > be. Conforming to this re-arrangement requires
the re-labelling of SNPs (SNPi becoming SNP2 and vice versa) and/or re-labelling of
the SNP alleles. To achieve Q < R, markers are interchanged by switching b and c,
which has the effect of exchanging Q with R and 1-Q with 1-R; for Q < 1-R markers
are interchanged by switching a and d, which has the effect of exchanging Q with 1-
R and 1-Q with R; for Q< 1-Q alleles are interchanged (a with c and b with d) which



switches Q with 1-Q. Finally, to conform to ad > be, alleles are interchanged, a with
b and c with d which switches R with 1-R. Columns are also interchanged in the
special case that disequilibrium D is zero, where b > a. The 'intermediate' file used
by the program specifies the SNP pair, sequence locations (Kb), p, Kp, %

2, sample size
m, Q, R, D and the pair selection criteria (maximum number of intervals, maximum
window size in Kb).
Fitting data to the kilobase map
From the intermediate file the fit of the pairwise data to the Kb map under the
Malecot model is established. Pairwise data enter composite log likelihood as^
lnlk= 'ZKp(p "' p)2/2, where the summation is over informative pairs ( i = 1, N), p is
the observed association between the ith pair (Table l) and p are the fitted values.
Function minimisation is achieved using the variable metric method implemented in
the subroutine dfpmin (Press et al, 1994, page 428). Parameter estimation for s, L
and M is controlled through a script (a 'job' file), which allows testing of hypotheses
such as deviations from L=0 or M=l. In general two models (A and B) can be
compared as x2 n = (-21nlkA - -21nlkB )/ VB, where model B has one or more additional
parameters estimated than the simpler model A. VB is the error variance of model B
defined as VB= -21nlkB / (N-g), where N is the number of pairs and g is the number of
parameters estimated.

Morton et al (2001) defined a predicted value for the L parameter (Lp) which is
equal to the Kp -weighted mean of -yJ2/' vKp where Kp, the information about p per
marker pair, is proportional to sample size. Lp depends only on the mean value of p
for markers at large distances such that the expected value of disequilibrium D is
zero.

Construction of an LD map.
The Malecot parameters from the kilobase map provide starting values for
construction of the LD map. The iterative process implemented in LDMAP estimates
e, for intervals between adjacent SNPs, following the 'interval' method described by
Maniatis et al (2002). Briefly, let Shk - 'Lsidi where i is an interval between adjacent
SNPs and summation is over all intervals contained between SNPs h and k and
phk=(l-L)Me ~Sl* +L , using trial values for M, L and Si as described above. The
estimate of si, at iteration t, is given by:

8i(t)= 8i(t-i)+(Ui/Ki)(t-i), where £/,. = V ( ^ 2 * l f e - 1 and Kt = Y K J ^ A •
{ dphk A dsi J { d£i J

At convergence each revised estimate ei contributes towards a 'global' iteration
which is a complete update of the s vector and the computation of the global
composite likelihood, which is maximized iteratively. The M parameter is assumed
constant for all intervals and is updated periodically at global iterations 25, 50, 100,
200, 400, 800, 1600 and so on. At these points the composite log likelihood for the LD
map (-21nlk) is obtained. This updating procedure accelerates convergence. The L
parameter is optionally updated at the same points, but usually the predicted value
(Lp) is used. Experience with LD map construction has shown that the estimated L
may exceed Lp in small samples. This might be attributed to the local effect of block
structure which can distort L (Lonjou et al, 2003). Compared to Lp, the estimation of



L typically creates more intervals where sidi exceeds 3, termed 'holes' (Tapper et al,
2003). In high density maps most holes are associated with a locally high
recombination rate (Tapper et al, 2003) and segments requiring local increases in
marker density can thus be identified (Gibson et al, 2005).

When an estimate 8i bounds at zero (consistent with 'complete' LD), that estimate is
fixed at zero and no further iteration takes place, with a consequent reduction in
computation time. We have found that removing these intervals from further
iteration has very little effect on the final map, suggesting that most estimates
remain at the zero limit once reached. The same applies to holes, and these intervals
are also dropped from further iteration. However, the constraints are not applied
until a "burn-in' period corresponding to 50 global iterations has taken place.
Convergence is declared when a difference in global composite likelihood between
two consecutive iterations is less than 0.01.

Towards a genome-wide LD map.
In a map of n loci there are n-1 estimates of e, achieved through maximizing the
composite likelihood, for which the computation time may be substantial. The
computation time depends on a number of factors, but particularly the number of
pairs used in map construction. Exclusion of pairs which contain no significant
information about a given interval is one approach to reducing computation time.
However in maps with many 10s of thousands of loci the exclusion of these pairs is
inadequate for constructing maps within an acceptable time frame. We have
examined a number of alternatives to reduce computation time, including the
construction of maps at adaptively increasing densities. However, this was found to
offer only modest speed enhancements. The assembly of maps in overlapping
sections, with distances averaged in the overlap region, is much more promising and
we here examine the impact of this approach on the quality of the map. For this
evaluation the September 2004 release of the HapMap data for chromosome 22 was
used. The CEPH sample comprises 9,658 loci from 60 unrelated individuals of
Western-European ancestry. We constructed 9 LD maps of chromosome 22 for a
range of numbers of segments between 1 (the complete map constructed in one
piece) and 200 pieces (Table 2). We computed the error variance for each map by
testing the fit of a 'standard' set of pairwise data for each chromosome (with default
settings of 500 Kb as maximum window size and 100 as number of intervals). This
enabled direct comparison of the relative efficiency of alternative numbers of map
segments and the relationship to computing time. - For each map the error
variance.V, was computed and the efficiency of each map was computed relative to
the map constructed in one piece. We also looked at the relative computation time
and relative resulting map lengths in the same way.

Results
The LDU map length (Table 2) is rather stable showing a maximum increase in
length of-7% over the range of tests (maps constructed in 1 to 200 segments). The
error variances are similarly stable varying over the range 0.841-0.886. The relative
efficiency (Figure l) is therefore high across the range with a maximum loss of
information of only ~5% when the map is constructed in 200 segments and much
reduced losses for maps built in fewer segments (for example the loss of information



is less than 1% for maps built from segments of 698 loci). Figure 2 plots the contour
of the LDU maps constructed as one piece in contrast to the LDU map constructed
from 200 segments. Both contours show details of the LD structure of chromosome
22 including two large regions (plateaus) of at least 5 Mb at around 30 and 40 Mb
along the chromosome where there is extensive LD. There are also 3-4 regions of
rather intense recombination, the most striking of which is around 26 Mb along ,the
chromosome. The contour for the two maps is strikingly similar and the small
difference in map length appears to be spread over the whole length of the map. This
suggests that the segment approach slightly exaggerates map length because of the
loss of information at the ends of segments where there are no flanking SNPs. It is
•important to balance computational feasibility and number of segments for map
construction. Although the LDU maps are stable and the loss of information is
minimal the computation times of a SUN V440 server vary enormously over the
range. The computing time for the map when constructed in one piece is 14 fold
greater than for the map constructed from 200 segments. It is evident that a good
compromise between optimal computational times and minimising information loss
in the map is achieved in the 100-1000 loci per segment range. The use of ~500 loci
per segment seems justified for map construction generally and the construction of
maps of the largest chromosomes becomes feasible, even at the higher SNP densities
of the later HapMap releases.

Discussion
The results of the analysis show that LD maps are robust to segmental assembly of
LD maps with very little loss of information even for the smallest segment sizes.
This justifies the construction of a genome-wide LD map using selected pairs and
through segmental map assembly. The results demonstrate that genome-wide LD
maps are achievable even at.the highest marker densities which, on completion of
the HapMap project, will include >3 million SNP genotypes, for a range of
populations. The mean extent of LD in the CEPH sample is approximately 50 Kb,
implying a mean spacing of ~3Kb in a one million SNP map. A pair of SNPs
separated by 100 intervals will span -300 kilobases and therefore imposing this
limit will result in little or no loss of information at HapMap densities. However,
when applied to a map of 50,000 SNPs, which will be exceeded for the larger
chromosomes, there will still be more than 2.5 million pairs for analysis. Because of
the computational load, and the modest loss of information we have demonstrated,
map assembly using overlapping segments is the most practical approach. As an
illustration we constructed LDU maps of chromosome 1 using the September 2004
release of HapMap (28,685 SNPs) and the February 2005 release (53,401 SNPs),
Table 4. Reducing Num_intervals to 50 for the higher density data generates
somewhat fewer total pairs and, even with map assembly in larger segments of 1000
loci, the computation time is much reduced. Interestingly the use of 86% more SNPs
in the February 2005 sample only reduces the number of holes by 28%. Further SNP
typing focussing on regions, with holes would be much more efficient than the
general addition of SNPs randomly over the whole map. The higher density LDU
map is 4.8% longer, a proportion of the increase in length presumably reflecting the
resolution of holes which are concentrated in recombination high areas (Tapper et al,
2003). Overall the limit of 3 LDUs imposed in these intervals may be conservative.
The effective bottleneck time (the effective number of generations over which
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recombination has taken place, Zhang et al, 2004) for chromosome 1, which spans
2.865 Morgans (Kong et al, 2004), is 4212.2 / 2.865 = 1470 (-36,750 years at 25 years
per generation). The large number of accumulated meioses provides the dramatically
higher resolution of the LDU map relative to the linkage map, which is critical for
disease gene mapping.

Graphically (Figure 3) there is little differentiation between the LDU map and the
much lower resolution linkage map (Kong et al, 2004). When map lengths are
compared in 2 Mb sliding windows (Figure 4), LDU and linkage maps show similar
broad recombination intense regions in which there is a high density of much
narrower recombination hot-spots.
Map assembly in overlapping segments is ideally suited to GRID computing (for
example using the Condor program, http://www.cs.wisc.edu/condor/ ) and might be
profitably achieved through a WWW based tool. We are currently considering this
possibility.
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Table 1 Haplotype frequencies (a, b, c and d) for a pair of SNPs

SNP2 alleles
1 2

SNPi alleles
a

c

R

b Q

d l-Q

l-R

The table is ordered such that-
Q, l-Q are allele frequencies at SNPi, where Q < (l-Q, R, l-R) and R, l-R are allele
frequencies at SNP2 and ad > be.
D = ad-bc
p = D/Q(l-R)
Kp= mQ (l-R)/R(l-Q), where m is the sample size for the pair of SNPs.

Table 2. Maps of chromosome 22 constructed using different numbers of segments.

Number of
segments
1
2
6
14
20
40
60
100
200

Loci per
segment
13959
6980
2327
997
698
349 -
233
140
70

Map length
LDU
1017
1017
1022
1024
1037
1040
1055
1054
1089

Error variance

0.841
0.842
0.842
0.843
0.847
0.853
0.851 /
0.870
0.886

Computation
time, minutes
2471
2348
859
760
733
509
409
408
177



Figure 1.

Relative efficiencies, computation times and map lengths for LDU maps constructed in segments
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