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In large multi-agent systems, individual agents often have conflicting goals, but are

dependent on each other for the achievement of these objectives. In such situations,

negotiation between the agents is a key means of resolving conflicts and reaching a

compromise. Hence it is imperative to develop good automated negotiation techniques

to enable effective interactions. However this problem is made harder by the fact that

such environments are invariably dynamic (e.g. the bandwidth available for commu-

nications can fluctuate, the availability of computation resources can change, and the

time available for negotiations can change). Moreover, these changes can have a direct

effect on the negotiation process. Thus an agent has to adapt its negotiation behaviour

in response to changes in the environment and its opponent's behaviour if it is to be

effective. Given this, this research has developed negotiation mechanisms that enable

an agent to perform effectively in a particular class of negotiation encounters; namely,

bilateral negotiation in which a service provider and a service consumer interact to fix

the price of the service.

In more detail, we use both reinforcement and Bayesian learning methods to derive an

optimal agent strategy for bilateral negotiations in dynamic environments with incom-

plete information. Specifically, an agent models the change in its opponent's behaviour

using Markov Chains and determines an optimal policy to use in response to changes in

the environment. Also using the Markov chain framework, the agent updates its prior

knowledge of the opponent by observing successive offers using Bayesian inference
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and hence strategically responds to its opponent. This framework for adaptive nego-

tiation in non-stationary environments incorporates two novel learning algorithms that

use reinforcement and Bayesian learning techniques to respond to the various forms of

dynamism. Having devised the algorithms, we analytically show that the former learns

an optimal policy for negotiating in a non-stationary environment and the latter con-

verges over repeated encounters to the opponent's true strategic model. These empirical

results show that the reinforcement learning algorithm successfully concludes 83% of

the negotiations in dynamic scenarios and that when using the Bayesian algorithm the

opponent learns the true model of an adaptive opponent's behaviour in 95% of the en-

counters. Both of these results compare very favourably with the previous state of art.

We have also done a comparison of the these two algorithms. The empirical results

show that using reinforcement learning a very high percentage (90%) of dynamic ne-

gotiation encounters end in agreement, whereas using Bayesian learning techniques the

agent earns a large share of the profits (89%) in the negotiation process.
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Chapter 1

Introduction

Many large systems, in diverse fields like mobile communications, defence logistics,

and medical systems, are being implemented as multi-agent systems [Jennings et al.,

1995; Luck et al., 2003]. Now, in most of these cases, the individual agents in these

systems need to interact with one another in order to achieve their aims. Moreover, in

many cases, these goals may conflict with one another. Given all of this, the agents

need to negotiate with each other in order to reach an agreement that is acceptable to

all the parties [Rosenschein and Zlotkin, 1994]. However, as these systems are being

situated in ever more complex environments, it is becoming increasingly harder to build

agents with sufficient sophistication to handle all the demands being made on them.

In particular, one of the most important such demands is for the agents to sense and

adapt their negotiation behaviour to changes in the environment (e.g. when the resource

available for negotiations change or the time available for the negotiation changes).

With this objective in mind, we have focussed our efforts on building an automated

negotiation model that can adapt to changes in the environment and in the behaviour of

the negotiation opponents.

By means of an illustration, consider a typical business-to-consumer e-commerce sce-

nario in which an agent (which forms a part of a large multi-agent system), acting on

1
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behalf of a retailer, negotiates online with a specific consumer for the price of a certain

product [He et al., 2003]. Consider the case in which the retailer is negotiating for many

products simultaneously and, therefore, has many such agents acting on his behalf. The

agents may well share resources like bandwidth for communication and computational

power and they are likely to reside in the same computational space. Now, in such situ-

ations, an agent might suddenly find that its messages take considerably longer to reach

its opponent because of increased network activity or that it has to wait longer for CPU

time since one of the other agents is using a large number of cycles. In either case, the

resources available to carry out the negotiation change, either increasing or decreasing,

depending on the nature of the changes. In yet other cases, an agent's allocated budget

for acquiring the desired service might be cut. For instance, in a large supply chain

(implemented as a multi-agent system), where several agents pursue independent goals

[Christopher, 2005], the budget spent in one part of the supply chain may well impact

the budget further down the line (because the agent is suddenly given more money as a

result of savings or because it is given a lower budget as a result of overspending). In

this case, in negotiation terms, the agent's reservation price (RP) ' changes. Finally,

in view of the goal of the entire supply chain system, the agents may need to shorten

or lengthen the time available for them to complete their negotiation because earlier

activities take a shorter or longer time to procure than was initially expected. In this

case the agent's negotiation deadline changes. Now in all these cases, the agents need

to adapt their negotiation strategies if they are to be effective in their changed environ-

ment. Failure to adapt may lead to poor outcomes (such as no agreement reached before

the deadline, an agreement that is disadvantageous to one agent or the inability of an

agent to meet its existing commitments) and may leave the owner dissatisfied because

he has not been able to exploit the negotiation process for his benefit.

From the above examples, it is clear that in such complex systems the agents have to

adapt to changes in the environment in order to bargain effectively. Now, having de-

1 The reservation price is the threshold price beyond which the agent is not authorised to spend.
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scribed the general characteristics of multi-agent domains and the need for adaptation

in such systems, we move on to describing a number of real-life systems. To ground

this discussion, we focus, in particular, on the domain of mobile communications, in

which automated negotiation technology has been identified as playing a central role

(see section 1.2 for more details). We focus on mobile communications here because

as the use of mobile phones, Personal Digital Assistants (PDAs) and other wireless de-

vices become increasingly widespread, there is an urgent need, dictated by prevailing

market conditions, to develop advanced and robust software solutions in these domains

[MVCE, 2004]. However, although we use this domain for illustrating how our learn-

ing techniques can be applied, our model is not restricted to this domain. Moreover, it

has been argued that automated negotiation will form an important part of these appli-

cation contexts as distinct stakeholders bargain for services like television, broadband,

bluetooth and resources like bandwidth [Kraus, 2001].

In particular, it is our aim to provide practical solutions for automated negotiation in this

domain and to develop a strong theoretical foundation for our negotiation strategies.

This foundation is important as it helps to establish a concrete relationship between

the conditions prevailing in the domain in which the agents negotiate and the possible

outcomes of the negotiation process (for instance, the maximum benefit that can be ob-

tained by engaging in negotiations, the time at which the negotiation will conclude or

the best strategy to use given that the opponent is using a particular strategy). This, in

turn, enables the agents, given the current conditions, to decide whether to enter into ne-

gotiations, to decide what their final offer should be, and to ascertain when to make this

offer. The practical aspect of the domain is important in this context because typically

here the deadlines of the agents would be very short and, therefore, the computation of

a suitable negotiation strategy should also be done quickly. Hence our solution should

also be designed in a manner keeping this aspect of the mobile communication domain

in mind.

This uncertainty and dynamism requires an agent to continuously update its knowledge
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during its negotiations if it is to bargain effectively. Thus we believe that learning about

the other agents in the system and about their common environment is essential for

negotiating in this domain [Narayanan and Jennings, 2005]. To this end, we develop a

novel method, based on learning for adapting to different situations and verify that our

method can indeed improve an agent's negotiation performance.

Being more specific still, we consider negotiation between a pair of agents over a single

issue (price). We then use the Markov chain theory [Howard, 1960] to model how

the negotiation process changes. From this point of departure, we use reinforcement

learning (RL) techniques to develop an algorithm that deals with changes in the agent's

negotiation parameters (see Chapter 3) and use Bayesian Learning (BL) techniques to

show how the agent can adapt to changes in its opponent's behaviour (see Chapter 4).

We have also empirically evaluated these techniques and compared their performance

under a range of different conditions (see Chapter 5).

The rest of this chapter is organized as follows: in Section 1.1 we describe the main

components of a negotiation model in order to show how our model incorporates these

elements in its structure. Then in Section 1.2 we describe some scenarios that motivate

the requirements of our model, following which, in Section 1.3, we spell out the main

requirements of our model. In Section 1.4 we state our research contributions and,

finally, in Section 1.5 we describe the thesis structure.

1.1 Components of a Negotiation Model

Having highlighted the importance of automated negotiation, we now describe in more

detail the main components of an automated negotiation model [Jennings et al., 2001]:

• The Negotiation Protocol: Formally specifies the rules of the negotiation process

— who can participate, the states of the negotiation process, and the events that



Chapter 1 Introduction

change the state of the process. Now, there are literally millions of protocols

including auctions that are in used in agent negotiations [Wurman et al., 1998].

These cover one-to-one, one-to-many and many-to-many encounters. However

in this work we focus on the bilateral case. Specifically, we consider the case in

which a buyer and a seller agent negotiate over the price of a service. Like most

work in the field, we adopt the alternating offers protocol [Rubinstein, 1982] in

which one of the agents makes an offer in one time step and then waits for the

opponent's response in the next step before making another offer. Thus the agents

alternate in making offers.

• The Negotiation Objects: Represents the issues over which the agents are negoti-

ating. The agents could negotiate over a single issue, say the price of a commodity

or the quality of a service, or they could negotiate over multiple issues. The work

in this thesis considers negotiations only over a single issue. However future work

may remove this assumption.

• The Negotiation Parameters: Represents factors like the negotiation deadlines

and the reservation prices that play an important part in deciding the strategies of

the agents.

• The Participants' Negotiation Preferences: These represent the objectives of the

agents participating in the negotiation process. One of the most common ways of

representing such preferences is through the medium of utility functions [Kannai,

1977; Keeney and Raiffa, 1976]. Intuitively, these can be described as mathemat-

ical entities that represent the stake that the agents have in the negotiation process.

By using these functions, we can formally study how the actions of the agent af-

fect its utility during the negotiation process. However, in our case, we do not

want to have a single utility function that the agents attempt to maximize (since

this is not fixed and could change with the environment in our work). Given this,

we want to be able to maximize a numerical signal that the agents receive from

the environment as a reward for choosing a specific action from a specific state.
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This formulation gives us maximum flexibility in dealing with evolving agent

preferences (e.g. cost over quality or time over cost).

• The Participants' Negotiation Strategies: A strategy specifies how an agent should

respond to a given situation. Good strategies will guide an agent towards achiev-

ing its objectives which in our case are typically to maximize its reward signal

and to respond effectively to changes in its opponent's strategies.

Having detailed the components of a general negotiation model, we now move on to

describing scenarios from the mobile communications environment which illustrate the

dynamism inherent to this domain and which our solution must be capable of coping

with.

1.2 Motivating Scenarios

In order to ground this work still further, we consider two scenarios from the mobile

communications domain [MVCE, 2004]. We have chosen these two scenarios because

they specifically illustrate how the different negotiation components (as noted above)

can change during the course of the negotiation process. Together these two scenarios

highlight the key characteristics of environmental change and opponent adaptability in

a generic multi-agent system. In more detail, Scenario 1 principally talks about how

changes in the environment can affect negotiation parameters like deadlines and reserve

prices. Whereas, Scenario 2 describes a situation in which the agent's opponent is

adaptive and illustrates the need to develop strategies to counter the opponent's play.

1.2.1 Scenario 1

A salesman needs to travel to another city for a meeting. He has a number of devices

at home to perform certain tasks while he is away. Among these is an agent that func-
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tions as a set-top box (STB) to record his favourite TV programs, an agent that forwards

his important mails to him, and an agent that transmits the phone messages of certain

important callers to him. These are connected with wireless devices and form a Per-

sonal Area Network (PAN). These agents share a common environment and compete

for computational resources (see figure 1.1). The salesman has requested his STB agent

to record and transmit an episode of his favourite program to him. This episode is avail-

able on two separate TV networks: a large terrestrial broadcaster (pay per view, but no

advertisements) and a satellite network specializing in old TV shows (less expensive,

but with advertisements). The STB would therefore have to negotiate with the broad-

casters to obtain the telecast of the episode. The STB would have to take into account

the preferences of the salesman (like the time he would like to watch the program, the

amount he is willing to spend for viewing the program) while negotiating on his behalf..

Based on the salesman's initial preferences, the STB agent begins negotiations with

broadcasters. Initially, it begins negotiating with the terrestrial broadcaster because the

salesman doesn't want to spend too much time on watching the program and is willing

to spend a little more for watching the program without advertisements. Both the STB

agent and the terrestrial broadcaster are initially unwilling to concede on price and while

the negotiation is in progress, the mail agent indicates to the STB agent that it has some

important emails to transmit to the salesman and needs to use some of the bandwidth

that the STB agent has been using for its negotiations. Now the STB agent cannot con-

tinue to be stubborn in its dealings with the broadcaster because it would soon have to

give up some its communication space to the email agent. The STB agent now has two

options, either to adopt a more conceding approach with the broadcaster in the hope of

concluding the negotiations quickly or switch to the satellite broadcaster from whom it

can get the program for a much lower price. Thus the STB agent has to adapt to changes

in resource availability and depending on the current state of the environment it has to

choose an appropriate action in order to satisfy the demands of its owner.

Now assume that the agent decides to be conceding with the terrestrial broadcaster,
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meanwhile the salesman at the meeting receives the news that there will be a cut in his

bonus due to some bad investments by his company. He decides therefore that he cannot

afford to spend as much money on watching the program as he previously thought.

Accordingly he sends this new reduced price to the STB agent. For the STB agent

its RP has changed and therefore it has to adjust to this new situation. Specifically, the

agent has to deal with the satellite broadcaster and also adopt a stubborn approach so that

it can get the program at a lower price. Again at the meeting the salesman is requested

to go to another city before he returns to his base. The salesman sends his updated

schedule to the STB agent. The agent realizes that the salesman will be able to watch

the program only on the next day and therefore that it has plenty of time to conduct the

negotiations. In this case, the deadline of the agent has changed and therefore it has to

decide how it can use this information to secure a better deal for its owner. Specifically,

it can decide whether to conclude the negotiations at this point and resume after the mail

agent has finished its operations, or to switch back to using a stubborn approach with

the satellite broadcaster or even resume negotiations with the terrestrial broadcaster in

the hope of getting the broadcaster to concede over a prolonged period of time.

In this scenario we have seen that the environmental conditions are dynamic and that the

agent has to adapt its negotiation strategies to these changes in order bargain effectively.

Specifically, the agent in this scenario has to adapt to changes in resource availability,

reservation price and deadlines.

1.2.2 Scenario 2

Here we consider a scenario in which the opponent's strategies change (see figure 1.2).

A regional manager for a large electrical retail group needs to travel to attend a meeting

in Edinburgh. Again located within her Personal Area Network are various devices

for communication and work. They include a PDA, a laptop, an electronic wallet, and

a cellular phone. The various devices are interconnected via wireless links. She has
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Needs tb.effecf tradeoff
between price and quality.

Terrestrial broadcaster
Expensive but good quality

Set Top 9kw needs to
negotiate with Terrestrial
Broadcaster arid Satellite

caster for transmis

FIGURE 1.1: Scenario 1: Trade-off between price and quality

to negotiate with a local network operator in the area for guaranteed delivery of some

services. The agent initially knows nothing about the operator and also the operator

can change its behaviour during the course of the negotiations. In order to strategically

bargain with this unknown opponent, the agent has to learn the pattern of behaviour of

the operator. This type of strategic play is quite common in game theory [Nash, 1950]

and several researchers have addressed this issue. However it is important to note here

that the agents are also continuously changing their behaviour in response to changes

in the environment. Both agents are thus functioning in a dynamic environment, where,

as described in Scenario 1, their reservation prices and deadlines can change during the

course of the negotiation encounter. This can be compared to a situation in a game

where not only does the agent have to deal with a strategic opponent, but also has to

deal with changes in the rules of the game. It is this aspect of adapting both to changes

in the environment and the opponent's behaviour that separates our research from other

work in the literature in this area.
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Regional Manager
needs to negotiate with

network provider for
connecting her devices

Network pfpvider
changes his
strategies.

FIGURE 1.2: Scenario 2: Adapting to changes in strategy

1.2.3 Scenario Commonalities and Differences

In both scenarios it can be seen that the state of the system changes dynamically (e.g.,

in Scenario 1 the negotiation parameters like deadlines, budget constraints and resource

availability change and in Scenario 2 the opponent's strategies change in response to

changes in the environment). These type of conditions are not restricted to the mobile

communications domain, but, they are also prevalent in many other multi-agent systems.

Thus the agents have to develop strategies in the absence of complete information about

the opponents and the state of the system. Also, as can be seen in both scenarios,

since the agent cannot predict all the situations that it might encounter, it will have to

learn through experience to map appropriate actions to situations (e.g. in Scenario 1

the agent does not know the salesman's schedule in advance or when another agent

would need its communication space). Also, in Scenario 1 the agent is unaware of the

salesman's preferences which change because of budget constraints, while in Scenario

2 the agent is unaware of how the network operator will change its strategies. Now,

since the opponent's strategy can change the agent will have to develop a model of

the opponent's behaviour and evolve counter strategies in order to be effective in the

negotiations.

When taken together, these conditions motivate the requirements of our model and in

the next section we detail them more formally.
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1.3 Requirements for our Negotiation Model

In our work we wish to build a bilateral negotiation model for environments whose

characteristics evolve over time as a result of the interactions between its individual

components in general and for the future multi-agent systems like the mobile communi-

cation domain in particular. From the scenarios described in Section 1.2, we can extract

a number of general characteristics of agents in such systems, as a motivation for the

requirements of the negotiation model. In general, agents working in the multi-agent

domain have to be [Jennings et al., 1995]:

1. responsive to their environment, i.e., they must sense changes in the environment

. and effectively respond to them,

2. proactive, i.e., they must be able to take the initiative in accomplishing their tasks

and

3. social, i.e., they must be capable of interacting with their environment and other

agents in it.

Thus in the multi-agent domain one of the key defining characteristics is that of dy-

namism. Moreover, such dynamism means it is impossible to predict in advance all

the situations that an agent might encounter. Thus it is not possible to specify effec-

tive strategies for negotiation at the start of the negotiation process. Also, if an agent

is negotiating with another adaptive agent, then in order to achieve a better bargaining

result and to avoid being exploited by an intelligent opponent it becomes necessary to

be able to predict and adapt to changes in the opponent's behaviour. Given all of this,

our negotiation model must:

1. Allow an agent to negotiate autonomously, meaning that it should have the capa-

bility to make appropriate decisions on its own.
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2. Allow an agent to negotiate in the absence of complete information about the

opponent and the environment.

3. Cope effectively when the agent's own negotiation preferences are subject to

change due to changes in the state of the environment (for instance resource avail-

ability changes or the time available for negotiations changes) during the course

of the encounter. This implies that the strategies are non-stationary and need to

evolve with time and the state of the environment.

4. Cope effectively when negotiation parameters like deadlines and reservation prices

change during the course of the encounter.

5. Cope effectively when the opponent's negotiation behaviour changes during the

course of the encounter.

6. Allow an agent to reach a suitable agreement before the resources and time avail-

able for negotiations are exhausted.

Having now listed our requirements in detail, we proceed to detail our research contri-

butions.

1.4 Research Contributions

We have developed an automated negotiation model that adapts to dynamic environ-

ments and adaptive opponents by using machine learning techniques. Specifically, by

developing learning based algorithms for non-stationary scenarios we significantly ex-

tend the state of art in the area of adaptive negotiation theory. We also contribute to the

domain of multi-agent systems by developing this automated negotiation mechanism.

In more detail we have used, game theoretic ideas to provide a well established math-

ematical framework to study negotiations. This was chosen as the conceptual basis for
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this work because it provides us with several formal methods to study interactions be-

tween agents. Also adaptation in multi-agent systems has been studied extensively using

the game theoretic format (see Chapter 2 for more details). Therefore in our negotiation

model we use a combination of game theoretic ideas and machine learning concepts to

describe the negotiation process. Specifically the agents in our model sense changes

in the environment, learn to classify the opponent's behaviour and learn a strategy that

maximizes a reward signal for a specific state of the environment and an opponent's

perceived strategy. In particular, we use Reinforcement Learning (RL) techniques to

learn an optimal mapping between states and actions by estimating the value of the fu-

ture reward that they would obtain by choosing a specific action from a given state and

Bayesian Learning (BL) techniques that use the history of the negotiation process to

model an opponent's behaviour and thus develop counter-strategies.

In more detail, the RL algorithm does not specify the best policy to use for a given

situation, but rather allows the agent to learn this state-action mapping autonomously

(thus satisfying our requirement 1). The changes in the negotiation preferences are

captured in the state definition and the agent learns to adapt to these changes. Also

the utility function of the agent is represented by a reward signal which can change with

time and thus the agent learns to cope with non-stationariry (thus satisfying requirement

3). Using our algorithm the agent also adapts to changes in negotiation parameters like

deadlines and reserve prices thus satisfying requirement 4). Finally the agent learns

these strategies by assuming only a probabilistic knowledge of the system and therefore

it copes with absence of complete information about the environment and its opponents

(thus addressing requirement 2). Using this algorithm, the negotiation allows an agent

to reach an agreement before its deadline is up (thus satisfying requirement 6). Then

using the BL algorithm the agent learns to model its opponent's behaviour and develops

strategies in response (thus satisfying requirement 5).

In so doing, this work extends the state of the art in the following ways:
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• We develop and empirically evaluate the first algorithm to apply learning tech-

niques to non-stationary negotiation scenarios in order to adapt to changes in

negotiation preferences, parameters and environmental changes in the absence of

complete information about the environment.

• We develop and empirically evaluate the first algorithm to apply learning tech-

niques to develop strategies in response to non-stationary opponents.

• We theoretically prove that these algorithms converge to the optimal solution over

repeated negotiations.

• We provide the first detailed comparison between RL and BL techniques as they

relate to the automated negotiation in multi-agent domains. Our comparison iden-

tifies that RL techniques are more suitable for situations in which the environment

is very dynamic and that BL techniques are more suitable for developing strate-

gies against adaptive opponents.

To summarize, we develop two efficient adaptive algorithms (one using reinforcement

learning and the other using Bayesian learning) to adapt to changes in the environment

and to changes in opponent's behaviour.

The following papers have been published based on this work:

• V. Narayanan and N. R. Jennings (2005) "An adaptive bilateral negotiation model

for e-commerce settings" Proc. 7th Int. IEEE Conf on E-Commerce Technology,

Munich, Germany 34-39.

• V. Narayanan and N. R. Jennings (2006) "Learning to negotiate optimally in non-

stationary environments" Proc. 10th Int. Workshop on Cooperative Information

Agents, Edinburgh, UK, 288-300. Winner of Best Paper Award
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1.5 Thesis Structure

The remainder of this thesis is organized in the following manner.

• In Chapter 2 we present an in-depth review of the main negotiation models in the

literature that are relevant to our work and machine learning techniques used in

game theory and for negotiations.

• In Chapter 3 we describe the main elements of our negotiation model and cast our

problem as a RL problem. We also present our adaptive algorithm for negotiations

and our empirical results.

• In Chapter 4 we describe how we use BL techniques to adapt to changes in the

opponent's behaviour. We also present our adaptive algorithm and our empirical

results.

• In Chapter 5 we present an in depth comparison of RL and BL techniques as they

relate to the automated negotiation context.

• In Chapter 6 we conclude and outline the directions for further avenues of re-

search.



Chapter 2

Literature Review

Negotiation is the key to resolving conflicts among self-interested individuals who share

a common environment and have personal goals to achieve. This is especially the case in

trading scenarios as explained in Chapter 1. As such, it has been studied in a number of

different contexts in the past (including [Nash, 1950], [Rosenschein and Zlotkin, 1994]).

However the study of negotiations among software agents is relatively new. Specifically,

the study of agent negotiation has become increasingly popular after the recent advent

of digital marketplaces and other trading agent systems [Chavez et al., 1997]. Now, we

are specifically interested in studying how trading agents can evolve strategies to buy

and sell commodities in dynamic multi-agent systems like the mobile communications

domain and in digital marketplaces (see Chapter 1). In order to do this we need to study

previous models of negotiation among agents in non-stationary environments. Here,

by non-stationary we mean that negotiation parameters like deadlines and prices and

also the negotiation strategies used in the negotiation process can change during the

course of the negotiations. Thus in this chapter we present a detailed survey of the main

negotiation models discussed in the literature in order to provide a formal background

for our work.

In more detail, section 2.1 provides the essential background for this work, then par-

16
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ticular details of traditional bilateral negotiation models are discussed in section 2.2.

We then consider the machine learning background in section 2.3 and we give an over-

all assessment of the key learning techniques used in developing these algorithms and

highlight what components can be re-used in this research and which components need

to be developed anew. In Section 2.4 we describe some specific adaptive negotiation

models and in Section 2.5 we summarize.

2.1 Negotiation Background

Given the importance of negotiation techniques in trading environments, there has been

a considerable body of work in this area and the aim here is to give a brief description

of the evolution of negotiation theory, before starting to look at the models that are of

greatest relevance to our work.

Negotiation was regarded as the classical bargaining problem in economic theory and

was first treated mathematically in [Neumann and Morgenstern, 1944]. In this work,

negotiation was formally described as a zero-sum game in which one player's gain is the

other player's loss. Following this, John Nash presented a new treatment of this problem

of bargaining between individuals and proposed an alternative solution, based on the

intuition that the players in this game are not adversaries and that during the negotiations

they try to find a common ground where both their goals would be satisfied (see [Nash,

1950]). In particular he argued that the solution should satisfy certain properties:

1. Players are rational: They wish to maximise their utility and have prefect infor-

mation about the game which means that they know their own utility functions,

as well as the utility functions of their opponents.

2. Efficiency: No player can deviate from this solution without loss of utility.
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Following this conceptualisation of a game, he envisaged an agreement to the problem

as being one from which neither player will have any incentive to deviate. These types

of games are called cooperative games in which the agents' interests are neither com-

pletely opposed, nor completely coincident [Nash, 1953]. Then [Nash, 1951] extended

this work to describe other games in which he assumed that each player acted indepen-

dently and without collaboration and termed them non-cooperative games. These first

models, however, assume that the players have complete information about the game

which implies that they know each other's payoff functions. In more detail, these are

the functions that define the monetary gain that the agents could get from the negoti-

ation process. In any negotiation encounter the agents aim to maximise their payoff

functions. However, as detailed in our requirements, in most multi-agent settings the

assumption of complete information is clearly invalid [Kraus, 2001]. Also an important

facet of our work, related to the conditions prevailing in many multi-agent domains, is

the ability to adapt to changes in the environment. Again this is not considered in these

earlier models. Nevertheless, the ideas described in Nash's models form the foundation

of all later work in this field (see Section 2.2 for further details) and so our work falls

under the broad range of non-cooperative games.

Recent research in negotiation among agents within a multi-agent system has focussed l

on addressing some of the aforementioned shortcomings. Amongst them [Sycara, 1988;

Zlotkin and Rosenschein, 1989] were the first to apply formal game theoretic notions

of negotiation to the artificial intelligence and multi-agent domain. In [Sycara, 1988] a

case based reasoning method is used to resolve conflicts among agents. This reasoning

process is called a "Persuader" method and uses an iterative argumentation process to

persuade the agents to change their intentions in order to come to an agreement. Zlotkin

and Rosenschein [1989] formally modelled the negotiation process among agents and

considered how strategies could be developed for situations when the agents have com-

plete information about the negotiation process and also for encounters when some

information (like negotiation parameters or utility functions) is unknown to the negoti-
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ating agents. These types of encounters are classified as negotiations with incomplete

information.

By this time, several researchers had discovered the rich potential of applying game

theory to solve research problems in multi-agent systems. Shoham et al. [2007] provide

a good review of the main work in this area. Littman [1994] pioneered much of this

work in his paper where he explicitly cast interactions between agents as a zero-sum

Markov game and obtained Nash equilibrium solutions using Reinforcement Learn-

ing (RL) techniques. Then Hu and Wellman [1998] extended this idea to general-sum

games '. Although their work does not talk about negotiation explicitly, they have

demonstrated how game theory and machine learning can be used in conjunction to

study agent interactions and thus their work is closely allied to our own.

The above two models assume that the agents jointly learn an equilibrium solution.

However in their work no reference is made to changes in the environment which is one

of our key requirements. Following from this, [Claus and Boutilier, 1998] in their work

presented an algorithm in which agents individually learn an equilibrium for general

sum games and in [Weinberg and Rosenschein, .2004] the agents learn a best response

strategy against adaptive opponents in non-stationary environments. However these

models assume that the agents have complete information about each other's payoff

functions which does not meet our requirement 2. Next, in order to model opponent's

behaviour and thus negotiate strategically in multi-agent environments Binmore and

Vulcan [1997] used Bayesian Learning techniques (BL). Zeng and Sycara [1998] also

used BL techniques to develop an adaptive agent negotiation system called BAZAAR.

However both these models are descriptive in nature and do not consider adaptive op-

ponents. By this, we mean that, although the agents are assumed not to know the dis-

tribution of players' strategies and their negotiation parameters, it is assumed that this

distribution does not change over time. Now, this is a serious shortcoming in the types

of open environment in which multi-agent systems are often deployed and is something

1 Games in which the agents share in the profits
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that we wish to rectify in this work.

More sophisticated models, like [Kaelbling et al., 1998] developed a new concept of

Partially Observable Markov Decision Processes or POMDPs in which the agents can

only see part of the state space in order to address the issue of incomplete information

available to agents. They then developed algorithms for solving them. In the same

vein, Emery-Montemerlo et al. [2004] extended this concept to Partially Observable

Stochastic Games (POSGs) and outlined a solution procedure using Bayesian learning

techniques. However these models make a number of assumptions about the stationarity

of the environment and are, therefore, of limited use in our work.

Finally, other models like [Bui et al., 1999] and [Oliver, 1996] have used other forms

of learning like Radial Basis functions and Bayesian classifiers. But again these models

are geared more towards working in incomplete information settings and learning the

opponent's preferences than looking at adapting to dynamic changes in the environment

and opponent's strategies (all of which are central to our requirements 2, 3 and 4).

Given this background, in order to satisfy our requirements we adopt ideas from two

main branches of machine learning (RL and BL), but crucially we will assume that both

the negotiation parameters and the opponent's behaviour are subject to change during

the course of the negotiation process. That is, the negotiation process is non-stationary.

From this standpoint, we will attempt to learn the patterns of variation, while dealing

with an adaptive opponent and a dynamic environment.

For the sake of completeness, we also introduce here some of the main heuristic mod-

els in this field. Here, by a heuristic model we mean a negotiation model which uses

heuristic search techniques like evolutionary algorithms (see [Holland, 1992]) to iden-

tify good strategies. In this context, [Kraus, 2001] is an important work that specifically

considers strategic negotiation among agents. It recognises the need for adaptive nego-

tiation within an agent context and gives a broad overview of the possible solutions. In

this work she argues that heuristic methods are more suitable for developing adaptive
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negotiation strategies in multi-agent systems than pure game theoretic techniques. This

is because in game theory, essentially, the negotiation problem is formulated as a sys-

tem of linear equations and the solution to the negotiation problem is the solution to this

system. But, as we introduce the complications of dynamism and incomplete informa-

tion settings into the problem, it becomes non-linear and therefore increasingly harder

to obtain an analytical solution. In contrast, heuristic methods are iterative search meth-

ods, where at each step, the heuristic algorithm searches through a number of possible

solutions and selects a good solution according to certain criteria and is therefore not

restricted by the linearity of the problem.

In this vein, we find in [Matos et al., 1998] a heuristic evolutionary technique for devel-

oping negotiation strategies that adapts to changes in the environment and the opponent.

Binmore and Samuelson [2001] also talk about integrating heuristic evolutionary meth-

ods with formal game theoretic concepts. However, generally speaking, these heuristic

approaches assume that the agents have complete information about their own utility

functions and further that these utility functions do not change with the state of the sys-

tem or with time (i.e., they are stationary). Because of these assumptions the strategy

selection process is also fixed and does not change with time. This is against require-

ment 3 of our model. However for future research it might be useful to examine if in

the evolutionary approach, the criteria for selecting strategies can be made dynamic in

order to satisfy our requirements. Therefore for now, we need a different approach in

which the agents ascertain the current state of the system and learn to evolve appropriate

strategies.

Finally, we examine work which looks at agent negotiation from the perspective of de-

veloping a mechanism for generating offers [Faratin et al., 1998]. In this body of work,

the authors are not attempting any kind of learning or adaptation. Rather, the focus is

on formally defining negotiation parameters, developing functions for generating of-

fers and determining the possible ways in which an agreement can be reached. We use

these definitions and the form of the offer generating function in our work, therefore
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we review this work in Section 2.2. Fatima et al. [2004] then extended this to develop

Nash equilibrium strategies for multi-agent negotiation in incomplete information set-

tings. Since incomplete information scenarios are of interest to us we describe this work

briefly also in Section 2.2.

Having completed this introduction to the fundamental concepts of negotiation theory,

we now move onto looking at these models in more detail. The rest of this chapter is

structured in the following manner. First in section 2.2, we look at traditional game

theoretic models of bargaining and negotiation in the literature. In section 2.3, we

consider work in machine learning with special reference to RL and BL techniques and

explain why we think these techniques are suitable for meeting our requirements. In

section 2.4 we look at some models that have used adaptive negotiation methods and

finally, in section 2.5, we summarize.

2.2 Bilateral Negotiation Models

In this subsection, we give a detailed review of game theoretic bilateral negotiation

models for multi-agent settings.

As discussed in section 1.1, while designing any negotiation model there are five main

issues to be addressed:

• What negotiation protocol to use?

• What are the issues or objects that are being negotiated?

• What are the negotiation parameters?

• What are the agents' negotiation preferences?

• What reasoning process the agents employ to make decisions? [Faratin et al.,

1998].
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There are many protocols that have been used for trading. These include the alternat-

ing offers protocol (see section 1.1), single-sided auction mechanisms like English and

Dutch variations [Milgrom, 1982], and, more recently, double auctions [Wurman et al.,

1998]. However since we wish specifically to model bilateral negotiation (see Chap-

ter 1) and since auctions are mainly used for trading between multiple agents, we will

use the alternating offers protocol (see section 1.1). Moreover, since we are looking

at trading agents negotiating over the price of a commodity, we focus only on single

issue negotiation. However, both single issue negotiation and negotiation with multi-

ple agendas have been studied extensively in the literature [Fatima et al., 1997, 2002;

Faratin et al., 1998]. Thus we will cover these models in more detail when we discuss

the strategies that are used in agent negotiation. Now, however, we will proceed to give

an overview of the development of negotiation theory and describe in detail some of the

key work in this area.

As discussed in section 2.1, one of the earliest works that considered strategies in bar-

gaining was due to Nash. Here, the notion of a strategy, Sj, was defined as the action

alternatives that an agent has in the game and the payoff/unction, pi} as the reward that i

would get at the end of the game. Nash then went on to define the important notion of an

equilibrium point as a strategy profile (a collection of strategies in which each agent is

represented by a single strategy) of the agents in which each strategy is a best response

of one agent to the strategies of the others. Thus he proposed that no agent would have

any incentive (as defined by the payoff function) to deviate from the equilibrium point.

Formally a strategic game can be defined as [Fudenberg and Tirole, 1991]:

1. The set of players, i £ I where / is the finite set 1, 2..., / .

2. The.strategy space 5 = (si, S2,..., Sj) for each player i.

3. The utility or payoff functions u( S) for each profile or set of strategies (si, S2, •••, si)

where each Sj € S
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In this definition of a strategic game the strategy space is called a pure-strategy space.

Fudenberg and Tirole [1991] have also described an alternate strategy space called the

mixed-strategy space. The mixed-strategy space is a probability distribution over the

space of pure-strategies and for mathematical ease of analysis it is often more conve-

nient to deal with the mixed-strategy space. In our model (see section 4.1) we will

use a mixed-strategy space to describe the agent's strategy space. Many later models,

like [Faratin et al., 1998; Kraus, 2001; Fatima et al., 2004], use this notion of strategic

games to build negotiation models for multi-agent systems. In more detail, [Faratin

et al., 1998] study strategic negotiation on multiple issues between two agents. Specifi-

cally, this model is a bilateral negotiation model and uses the alternating offers protocol

for conducting negotiations. The agent (a) has a deadline (Ta) before which it should

complete the negotiations and has a reservation price (RPa) which represents the price

below which the agent is not allowed to concede. The key contribution of this work

is the development of parameterized functions called Negotiation Decision Functions

(NDFs) to generate offers. The NDF for agent a can be represented as:

p{t) = ka + (1 - ka){min{t)T
a)/Ta)lH (2.1)

Here ka is a pre-defined constant which determines the initial offer of agent a and Ta

represents its negotiation deadline. As can be seen, equation 2.1 actually corresponds to

a family of NDFs defined by the parameter tp. Thus by varying ijj, the agent can exhibit

a variety of behaviour patterns. These are given by:

1. Conceder. When tp > 1: The agent quickly reaches its reservation value.

2. Boulware: When ip < 1: The agent maintains its initial offer until the deadline

is almost reached and then concedes quickly.

3. Linear: When tp — 1: The agent increases its price in a steady fashion.

These three patterns only represent a broad classification of the agent's behaviour. By
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assigning specific values to ip we can do a much more fine grained analysis of the

agent's behaviour, although the behaviour pattern would still belong to one of the three

main prototypes. In short, ip determines whether the agent will linearly or non-linearly

approach its reservation price. The agent thus generates offers using this NDF. In this

case, the offer from agent a to its opponent agent a is represented as p^_6 and is given

by:

pLa = Ipb + fb{t){RPb - IPb)for buyer b

= RPS + (1 - fs(t))(IPs -RPS) for sellers.

Here IPb, RPb, IPS and RPS are the initial and reservation prices of the buyer and

seller respectively and fa(t) represents the NDF of agent a. Now, the value function or

utility function associated with each agent, a, is given by:

Va>: {Offers x Times) -+ 3? (2.2)

Here the set Offers is the set of all prices and the set Times is the set of positive integers.

Now the agents use the utility function to evaluate the offers that they receive. The agent

b rates the offer using this utility function and if the utility from this offer is greater than

the utility from the counter-offer that b proposes to make at the next time instant, b ac-

cepts a's offer. This process of evaluating an offer and responding with a counter offer

is called an action, A. This action, taken at time t', where t' > t, is represented for the

agent, a, as Aa(t', p[^a) and is defined as:
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Aa(t', p£_J = Quit if t' > Ta where Ta is agent a's deadline

= Accept if Va from p\_a > Va from p^b

— Pa—>t otherwise.

The process of making offers and counter-offers continues until either the agent's dead-

line passes or an agreement is reached. If the deadline is reached before an agreement

on all the issues is made then the negotiation ends in a conflict. Overall then, the NDF

governs the process of generating offers and counter-offers.

This model thus gives us a concise mathematical function which generates a non-

decreasing (or non-increasing in case of the seller) sequence of offers and the ability

to control the speed of convergence of this sequence to the RP. This feature has made

the NDF approach very popular among researchers in the field. For example, [Fatima

et al., 2004; Jennings et al.,,2001; Kraus, 2001; Paurobally et al., 2003] have all used

different forms of the NDF to analyse various negotiation scenarios. Also, in this work,

the authors have suggested ways of using NDFs to generate offers that adapt to changes

in time and resource availability by controlling the value of the parameter I/J. Thus using

the NDF appropriately, the agent can exhibit responsive, adaptive behaviour by varying

the values of ip. This provides us with the motivation to use the NDF to generate of-

fers in our model. But this model does not implement these strategies or examine ways

of choosing appropriate strategies to suit the situation. Thus these strategies are static.

Nevertheless, this work is still very significant because it develops the important notion

of an offer generating function, even though it does not satisfy any of our requirements.

We next consider the model developed by [Fatima et al., 2004]. They were the first

to extend Faratin et al. [1998]'s model to study negotiation in incomplete information

scenarios. The main concept introduced here is the notion of an agent's information
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state, which is denoted as / , and describes the information that the agent has about its

opponent. Here it is assumed that each agent in the negotiation process has a reservation

limit and a deadline. Together, these define the agent's negotiation parameters. It is

also assumed that the agent is aware of its own negotiation parameters, but is unaware

of the parameters of its opponents. The information' state is formally represented as

/ = < Fa, Va >, where Fa represents the agent's own parameters and Va represents

the information the agent has about its opponent's parameters. Optimal strategies are

determined for the buyer and the seller on the basis of the information state of the agents.

Specifically, a strategy is defined by the 4-tuple < IPa, RPa, ta, NDFa > where IPa

is the initial price of agent a, RPa is the reservation price of agent a, ta is the deadline

and NDFa is the negotiation decision function of agent a. This strategy is optimal if

the agent derives maximum utility from it. Using the basic framework of this model,

the authors have analyzed bilateral negotiations for different incomplete information

scenarios. These scenarios can be classified into two categories:

• Symmetric information scenarios in which the agent has the same information

about the parameters of its opponent, as the opponent has about the agent's pa-

rameters.

• Asymmetric information scenarios in which the agent and its opponent have in-

formation about different parameters of one another.

The authors have solved a non-linear mathematical program involving the negotiation

parameters (where some parameters are unknown) and the payoff functions to deter-

mine a Nash equilibrium in the different scenarios. Thus they determine the value of

parameter ijj and therefore the strategy — Conceder, Boulware, Linear — that yields

a Nash equilibrium. This work is important in this context because it deals with the

issues of incomplete information in negotiation and motivates our research to the next

level where we build models for both incomplete and dynamic negotiation scenarios.
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Next, we review some of the preliminary models that first looked at dynamic negotia-

tion within multi-agent systems. Among these, the work of [Kraus, 2001] is probably

the most significant. In this context, we present the important aspects of the discussion

in this work to deal with negotiation in multi-agent environments. Here a detailed dis-

cussion of various strategic negotiation models for multi-agent systems can be found.

The author adopts a formal game theoretic approach to formulate negotiation problems

in different systems. Then, having demonstrated the difficulty of obtaining analytical

solutions to these problems within this framework in this domain, suggests heuristic

techniques for developing negotiation strategies. The negotiation strategies developed

in this work have been applied to a number of problems including data allocation, re-

source allocation and task distribution in computer systems. This work, by formally

casting these problems in multi-agent systems as negotiation problems, highlights the

need to develop negotiation strategies that adapt to changes in the environment and also

to changes in the opponent's behaviour. The work therefore serves as an important

point of reference for us for further development of negotiation in multi-agent systems.

In the same vein, as a first step towards developing models that adapt to changes in the

environment [Faratin et al., 1998] have suggested ways in which the NDF can be modi-

fied to deal with important changes in the environment such as resource availability and

changes in the behaviour of the agent when the deadline is approaching. In more detail,

the various different types of NDFs can be classified as:

1. Time-Dependent: where agents concede more rapidly as the deadline approaches.

There are two families of time dependent negotiation decision functions.

• Polynomial: a<*(t) = «J + (1 - / c «)( m i w ^"-))g which defines the family

of functions used in [Fatima et al., 2004].

• Exponential: aj(t) = exp{(l - min^"))0 * Zrwc?)

where K" is an arbitrary constant and tmax represents the agent's deadline. De-

pending on the value of (3, these functions can be classified as Boulware, Con-
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ceder and Linear functions (as described earlier in this section).

2. Resource-Dependent: where agents change their negotiation strategies based on

resource availability. Here the availability of resources, like bandwidth for com-

munication, computational power and time for communications [Paurobally et al.,

2003], varies dynamically. This can be modelled in two ways:

• By making the deadline dynamic (i.e., ^ a ; c is not fixed, but is a function of

time.)

• Estimate the available resource and make the negotiation decision function

depend on this estimated value. Here the negotiation decision function is

represented as: a^(t) = K<j + (l — K<j)*exp(—resource(t)).1lereresource(t)

defines how the resource varies with time.

3. Imitative: where agents imitate their opponents' behaviour. These tactics are

adopted by the agents when sufficient resources are available for negotiation.

Three types of imitative behaviour are discussed:

• Relative Tit-For-Tat where the agent imitates the action taken by its oppo-

nent 6 > 1 steps ago.

• Random Absolute Tit-For-Tat where the agent implicitly imitates the oppo-

nent's behaviour.

• Averaged Tit-For-Tat where the agent computes the average of percentage

of changes of its opponent's negotiation history in a specified time window.

This model addresses the issue of dynamism in the negotiation environment by sug-

gesting different NDFs for generating offers depending on the availability of time and

resource. It also suggests ways in which the agent can adapt to changes in its opponent's

behaviour. But, this model assumes that the pattern of resource availability is known to

the agent and, therefore, it does not meet our requirement of functioning in the absence
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of information. Moreover, the authors have only suggested a method of adapting to the

environment and have left the implementation of this model to future work.

In summary, in this section we have reviewed the work which has shaped the devel-

opment of the theory of automated negotiation in multi-agent systems. These mod-

els explain the fundamental principles involved in designing negotiation strategies for

multi-agent systems. However they do not consider adaptivity. Therefore, in the next

section we consider RL and BL techniques and examine how they can be used to address

this issue.

2.3 Machine Learning Background

We now move onto describing the mathematical underpinnings of RL and BL tech-

niques, before we detail the most important work done using game theory and machine

learning to analyse interactions between agents in multi-agent settings in the next sub-

section.

2.3.1 Reinforcement Learning in Multi-Agent Systems

The reinforcement learning methodology is an unsupervised machine learning tech-

nique in which an agent learns to achieve its goals by interacting with its environment.

The main principle of this technique is to guide the agent through a progression of states

in a manner that maximizes its utility. The negotiation process, with its protocol of alter-

nating offers, can naturally be broken down into episodes in which agents either make

or respond to offers. It is therefore easy to describe the negotiation process in terms of

discrete states and define actions for the agents that would enable them to move from

one state to another. This problem thus lends itself in a straightforward manner to be-

ing formulated in the reinforcement learning framework. In [Sutton and Barto, 1998],
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[Kaelbling et al., 1996] we can finda detailed analysis of the reinforcement learning

(RL) technique and its applications. However, here, we just present the features of this

learning mechanism that are necessary to meet our requirements.

Generally speaking, amongst learning techniques, reinforcement learning, and in partic-

ular Q-learning, is often used to study agent interactions in multi-agent systems, since
r

it does not need a model of the domain for learning and can be used online [Hu and

Wellman, 1998; Sutton and Barto, 1998]. In this case, the agent learns an optimal

policy of mapping actions to states by maximizing a series of numerical reward sig-

nals. Adopting these learning methods, several researchers have used the stochastic

game framework for multi-agent reinforcement learning and have developed solution

techniques like Nash Equilibrium [Hu and Wellman, 1998; Littman, 1994] and best

response strategies [Weinberg and Rosenschein, 2004]. Others, like [Fudenberg and

Tirole, 1991], have used fictitious ploy techniques to analyse learning in games. How-

ever, in our case, we are not trying to model learning in multi-agent systems using

game theory, but more specifically, we are trying to develop negotiation techniques for

multi-agent systems for which learning is necessary. Also, these approaches work well

when the objective of the learning process can easily be described as a state-action map-

ping policy. However the desired outcome in a negotiation process can be defined in

a number of ways, such as reaching an agreement within the deadline, concluding the

deal at a favourable price and so on. In such situations, the gains that can be obtained

by participating in the process, cannot readily be translated into numerical reward sig-

nals and, therefore, we have to modify the existing reinforcement learning algorithms.

Moreover, these (at least for proving convergence) rely on the assumption that the un-

derlying environment is stationary (i.e., the strategies of the opponent do not change

over time, they are simply unknown). Now, this is clearly not the case in many realistic

negotiation encounters, so we need to significantly extend these algorithms for our type

of negotiations. Specifically, for this context we need an approach that in conjunction

with learning about the environment also allows the agents to continuously update their
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knowledge of the negotiation process so that their decisions are in tune with the current

state of the system.

Specifically, in RL the decision-maker is called an agent and everything else that it

interacts with, including its opponent, is termed the environment. The agent in any RL

problem has a goal to achieve. The agent interacts with its environment in discrete

time steps t = 0,1,2,... in order to do this. At each time step the agent receives some

information about the state of the system, st 6 S where S represents the set of all

possible states. At each state the agent has some actions available to it. This set of

available actions from state st is denoted by A(st). In the next time step the agent

receives a reward, rt € 3?, as a consequence of its action and finds itself in a new state

s t+1. A return function is defined as the sum of rewards received by a single agent at

each time step and is denoted by Rt •= ri+i + rt+2 + ... + TT where T is defined as

the final time step of the negotiation process. This return function is represented as a

probability distribution. The objective of the agents is to maximize the expected return.

At each time-step the agent maps a state to an action using a Policy (denoted by 7rt).

The Policy defines a mapping between a state-action pair (s, a) and the probability of

selecting action a from state s. The probability of selecting an action a from a state

s is defined as nt(s,a) = Pr(at = a\st = s). Now in order to use this formulation

for decision making in a RL problem we need the Markov property. We now formally

define the Markov property and give a detailed description of the Markov Decision

Process [Howard, I960].

Intuitively, a process is Markovian if and only if the state transitions depend only on the

current state of the system and are independent of all preceding states. Formally, the

sequence of random variables {Xn, n — 0,1, 2,...} is defined to be a Markov process

iff their conditional probability density function, P, satisfies the following relationship

[Howard, I960]:

P{Xn\XuX2,...,Xn^} = F{Xn|Xn_!} (2.3)
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Then a process that uses this property of the state space to implement all decisions,

based on a reward scheme, that need to be made within this space is called a Markov

Decision Process. Now, although in real-world scenarios state transitions are rarely

purely Markovian, several of them approximately satisfy the property and therefore it

is reasonable to make this assumption for such situations [Sutton and Barto, 1998].

For our model we will assume the state transitions to be Markovian in nature. Having

defined the Markov property, we are now ready to describe the process, that uses this

property for decision making.

Reinforcement Learning tasks that satisfy the Markov property are called Markov De-

cision Processes or MDPs [Kaelbling et al., 1996]. An MDP is formally defined as:

• a discrete state space S

• a set of discrete actions A

• a reward function R : S x A —> 5ft

• a probabilistic state transition function, T : S x A -». [0,1], T(s, a, s') is defined

as the probability of making a transition from state s to state 5' using action a.

If the state and action spaces are finite then the MDP is termed a finite MDP. In more

detail, a finite MDP is defined by the state and the action spaces, the probability of tran-

sition from one state to another and the reward function associated with every transition.

The probability of transition from state s to state s' by choosing action, a, is called the

transition probability and is given by:

(2.4)

In the RL context, as stated earlier in this section, there is a reward associated with ev-

ery state transition. This reward is determined by a probability distribution and hence
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we define the expected value of reward associated with the state transition s —> s' by

choosing action a as:

Ra
ss, = E(rt+i\st = s,at = a,st+i = s') (2.5)

When taken together, equations (2.4) and (2.5) completely describe the Markov Deci-

sion Process and hence the RL problem.

Having defined the transition probabilities and the expected reward associated with each

transition, we are now ready to define functions that will evaluate the value of a state

s under a policy IT, in terms of the expected return (sum of rewards obtained in t time

steps) function. This can intuitively be defined as the return obtained by starting in state

s and following a policy n thereafter. The state-value function for policy n is formally

defined as:

V*(s) = E^Rtlst = s) = Ew(Er=ort+i+k\st = s) (2.6)

Next we define the value of adopting action, a, from state, s, and thereafter following a

policy 7r. This is termed the action-value function and is formally defined as:

Q*(s,a) = Ev(Rt\st = s,Of=a) = £?T(E^=g°rt+i+fc|.st = s,a t = a) (2.7)

For our problem we will use these two value functions to provide the agents with an

evaluation mechanism that will guide them towards achieving their objectives. Hence,

we will principally concern ourselves with estimating these value functions using the

RL theory. This theory also provides us with a method of evaluating the value of possi-

ble successor states of state s, under the policy n, from the value of state 5 [Sutton and

Barto, 1998]. This relationship is encapsulated in the following equation:
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, a) J2T?s,(Rass- + V*(J)) (2.8)

This equation is called the Bellman equation and this relationship will enable us to

predict the value of successor states from a given state. This equation therefore gives us

a powerful method of looking ahead in the negotiation process.

Using equations 2.6 and 2.7 we can define a partial ordering of policies. Here a policy

n is defined to be better than policy n' iff Vn(s) > Vn> (s)Vs G S. An optimal policy is

one that is better than or equal to all other policies. The optimal policy is denoted by n*

and the value function associated with this optimal policy is termed the Optimal Value

Function and is given by:

V*(s) = maxnV
ir(s)\/seS (2.9)

Q*(s,a) = maxw(37r(s,a)Vse Sandae A(s) (2.10)

The aim of any RL algorithm is to obtain optimal state and action value functions and

hence the optimal policy n*. In the literature, Dynamic Programming [Puterman, 1994]

and Monte Carlo estimation techniques [Gilks et al., 1995] have been used extensively

to determine the value functions. Here we will use Dynamic Programming (DP) tech-

niques because Monte Carlo methods assume that rewards can be obtained only at the

end of the negotiation process which is not suitable for our problem. DP however takes

in account rewards that are given at all stages of the process. Therefore this is more

suitable in our problem.

Now we briefly describe the procedure used to determine an optimal policy using a

RL algorithm. There are three basic steps to learning the optimal policy in any RL

algorithm. These are:
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1. Policy Evaluation: Here we are concerned with determining V^s) for an arbi-

trary policy 7T. We consider a sequence of successive approximations of the value

function, Vn(s), Vo, VX)..., each function mapping every state s e S to 5ft. The

initial approximation Vo is chosen arbitrarily and each successive approximation

is obtained by using equation 2.8 as an update rule:

Vk+l = E«[rt+l + 7Vk(st+1)\st = s] = ^
a si

(2.11)

The sequence has been shown to converge to Vn.s

2. Policy Improvement: The main reason to determine Vn(s) is to find better poli-

cies. Considering that we have determined V*(s) for an arbitrary deterministic

policy 7T, we would next like to know if there are other state-action mappings that

yield a higher reward than the current policy. To determine this, we choose an

action a ^ n(s) from state s and then follow the current policy. The value of tak-

ing such an action is given by Qn(s, a). In order to effect a policy improvement

we simply choose from each state the action that appears best according Qn(s, a).

The new policy n' is given by:

•K' = argrn-aXaQ^is, a) (2.12)

3. Policy Iteration: Using this new policy we determine the new value function cor-

responding to this policy V"'. Using this Vn' we then compute an improved

policy n". This process converges to the optimal value function and therefore an

optimal policy in a finite number of steps in a finite MDP.

This process can schematically be represented as:

V*.
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where E represents policy evaluation and / represents policy improvement.

Thus in any reinforcement learning problem these steps are followed to obtain an opti-

mal policy. One of the most significant breakthroughs in the field of RL has been the

development of the Q-learaing algorithm (see [Watkins and Dayan, 2004] for more de-

tails) in which the optimal policy is learned using immediate rewards doing away with

the necessity of knowing Ts
a
s/ and R"s/ and thus enabling model-free learning. In Q-

learning we consider transitions from one state-action pair to another state-action pair

and learn the combined state-action value function as opposed to learning the state-value

or action-value functions separately. In this case the update rule is given by:

Q(su at) <- Q(st, at + a[rt+i + jmaxaQ(st+1,at+1) - Q(st, at)])

This update rule uses only the immediate reward obtained and thus can be used in sit-

uations where the dynamics of the environment are not known. This property of the

algorithm makes it ideal for use in multi-agent environments as is satisfies the require-

ment of developing strategies in the absence of information about the environment or

opponent. This is, therefore, the approach taken in this work to model changes in the

environment.

Having described the general techniques used in RL to learn an optimal policy, we now

move on to present a similar description of BL techniques.

2.3.2 Bayesian Learning in Multi-Agent Systems

Bayesian Learning, like reinforcement learning, is also an unsupervised machine learn-

ing methodology. However in contrast to RL which is model free, Bayesian Learning

uses the history of a process in order to learn about it. In more detail, Bayesian analy-

sis is often used to estimate the most probable underlying model for a random process,

based on some observed data or inference [Bernardo and Smith, 1994]. We choose it
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here because it enables us to develop a model of the opponent's behaviour by learn-

ing from repeated interactions. This is different from the RL approach because using

this method we do not explicitly model the changes in the environment. This method

therefore will enable us to address requirement 5 (see section 1.4).

More formally, let Ax, A2,..., An, represent n random events. Then, we let Xn, t =

0,1,. . . be the stochastic process we are trying to estimate. Each of these n events can

be thought of as representing the hypothesis that the parameters of {Xn, t — 0,1,...}

belong to sets T1,T2,...,Tn. Finally, we let the event B represent the set of observed

data. Now, Bayes rule can be stated as:

(2.13)

where Pr{Ai] is the prior probability of model Ai in the absence of any information,

Pr{ B\Ai} is the likelihood that observation B was produced given that the model

was Ai, and Pr{Ai\B} is the posterior probability of the model being At given the

observation is B. In the BL process by repeatedly applying equation 2.13, we refine the

estimation of the stochastic process. This rule is at the core the BL methodology and

we use for learning the opponent's strategy. Having highlighted the main aspect of the

Bayesian learning technique we proceed to describe models in the literature that have

used both these methods for agent negotiation.

2.4 Adaptive Bilateral Negotiation Models

Among the first models to specifically consider learning in the negotiation context were

[Kalai and Lehrer, 1993; Kraus and Subrahmanian, 1995]. However, while their work

discusses the concept of reasoning based on experience among negotiating agents, they

do not explicitly develop a learning model. In [Zeng and Sycara, 1998] this notion is for-
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mally modelled, as a sequential learning mechanism based on a Bayesian belief update

process. Here, a very general framework is adopted for the negotiation in which multi-

ple agents bargain for multiple items. Moreover, the a priori model that the agents have

of their opponents is constantly updated using current information which is received

as a signal from the environment. In particular, given the prior domain knowledge of

an agent and the newly incoming information, the posterior distribution of the domain

knowledge of the agents is computed using Bayes rule. Now this is similar to what we

wish to do, because we wish to build a model of the opponent's behaviour by observing

its offers. However, Zeng and Sycara's model is developed for negotiations in station-

ary environments. By this, we mean that, although the agents are assumed not to know

the distribution of players' strategies and their negotiation parameters, it is assumed

that this distribution does not change over time. Unfortunately, we believe that this is

a serious shortcoming for describing negotiation in the types of environments in which

multi-agent systems are often deployed. To address this issue, in this work we have con-

sidered negotiation in non-stationary environments. We have used both Reinforcement

Learning (RL) and Bayesian Learning (BL) to develop adaptive negotiation algorithms

for non-stationary algorithms. Henceforth in this work, by dynamic or non-stationary

environments we mean that both the agent's own parameters (time deadlines and budget

constraints) and its opponent's behaviour can change with time during the course of the

negotiation process.

In more detail, their model considers the case where two agents negotiate on behalf of

their users in a supply chain management scenario. A typical supply chain extends from

the procurement of raw material to the delivery of finished products to the customers.

Several decisions regarding the purchase of raw materials, quantity of goods to be pro-

duced, transportation of goods, and the price of the finished product, need to be made

within the supply chain. In this scenario an agreement is expected to be reached on the

delivery date, product mix and price of the desired product. Again the dynamics of this

environment are subject to constant change, forcing the agents negotiating on behalf of
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their users to adopt some form of learning in order to bargain effectively. In this model,

an agent, when it receives an offer from its opponent, first updates its knowledge about

its opponent and then evaluates this offer in the light of this new knowledge. We list

below the main components of this model:

• Each element of the history set H is a sequence of actions (a>k=i,...,K) performed

by the agents during the negotiation process.

• A function Q maps each member of H to a numerical value, This function defines

an ordering of the agent's responses. Q is termed the player function.

• The set 0 contains information about the parameters of the environment which are

subject to change. These include beliefs about the opponents' decision making

process and reservation prices.

• For every h e H, and each player i, a probability distribution, i \ j , is defined

which represents all the information that the player has about the negotiation pro-

cess.

• For each player i, history h and action a an implementation cost CiA,h is defined.

This cost can be interpreted as the cost of communication between agents or the

cost incurred due to delaying the agreement.

Given these components, we can now list some of the main assumptions of this learning

model:

• When player i makes an offer at the k + Ith step in the negotiation process it

is assumed that the player has information about all the actions taken by all the

players up to that point in the negotiation.

• The set of probability distributions over f2, pHi<k_lti is known to i.

Under these assumptions, the main steps of the solution procedure are:
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• The main concept used in this method is to update the information of the agent,

i, using the prior distribution of histories, PHiik_lti, and the incoming signal from

the environment, Hitk, to determine the posterior distribution PHi<k,u using Bayes

rule of conditional probabilities:

Select the best action based on recursive evaluation criteria:

(2.15)/
Jx

Here CiAth represents the implementation cost for each agent, i, history, h, and action,

a, which has been deducted from the expected payoff.

In this learning model an agent's knowledge about its opponent is updated based on

signals that it receives from the environment. But it is assumed that the pattern of

the opponent's behaviour does not change. Therefore this model also develops only

stationary strategies. Nevertheless this model motivates our work by showing how BL

techniques can be used to model opponent behaviour and how the prior distribution

can be updated by the incoming information. As can be seen, BL techniques form an

important part of the general theory of machine learning and have been used in the

literature for modelling agent behaviour in a negotiation context. Therefore, to satisfy

our requirement 5 of reading patterns of change in the opponent's behaviour, we will

explore the possibility of using these techniques, along with those from RL, to adapt to

both a changing environment and adaptive opponents.

For the sake of completeness, we will briefly examine how adaptive techniques have

also been used offline to develop negotiation strategies in multi-agent environments.

Here, specifically, genetic algorithms (GAs) are used for developing negotiation strate-
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gies [Matos et al., 1998]. Specifically, GAs are search algorithms using which it is

possible to generate sequences of 'ever improving populations' [Holland, 1992]. In

this vein, Matos et al. [1998] encode the negotiation strategies from Section 2.2 (time-

dependent, resource dependent, imitative) as genes. The strategies are then assigned

fitness scores. Such a score for the agents determines how well a given agent performs

amongst others in the same population. This score also determines the agent's probabil-

ity of surviving to the next generation. In particular this work uses Tournament Selection

[Blickle and Thiele, 1995] to evolve populations. The overall aim of this technique is to

generate at each iteration a population that is more fit than its predecessor. The search

algorithm terminates when the population is stable and when most of the individuals in

the population have the same fitness scores.

The main challenge, therefore, is to assign fitness scores to strategies in such a manner

that those strategies that are termed fit, also maximize the agents' utility functions. The

agents using the GA approach develop negotiation strategies offline, but rather than ex-

ploring the space of all possible negotiation strategies, they search for the best strategy

from among a combination of finite predefined alternatives. Thus this technique does

not guarantee that the best negotiation strategy will actually be employed consistently

through the negotiation process. Also the scoring process does not take into account

possible changes in the environment that could render a strategy undesirable, for the

current state of the system, that was awarded a high fitness score earlier in the negotia-

tion process.

Using this technique, the agents can develop strategies that adapt to changes in the

environment, but it is assumed that the agents know their own utility functions and

also that this function does not evolve with time. Also this approach relies heavily on

developing fitness scores. Again through multiple iterations the same fitness scores are

used to determine the population of fit strategies. However, this is clearly not what we

want to model because, according to our requirement of non-stationarity, we want a

technique by which the fitness scores also evolve over time. Therefore while this model



Chapter 2 Literature Review 43

satisfies requirements 1 and 5, it fails to satisfy the requirements 2 and 3.

2.5 Summary

In this chapter we have presented a review of the existing work in adaptive models for

negotiation in multi-agent systems. Our twin objectives are to develop a model that

adapts to both environmental changes and to changes in the opponent's behaviour (see

Chapter 1). To this end, we have examined RL and BL techniques in detail and have de-

scribed the main models that used these techniques for adaptive negotiation. In general,

although many of these models have discussed the need for adaptation in multi-agent

systems they have developed only static algorithms. We have also seen the complemen-

tary nature of these two approaches and have decided that they both have features that

are desirable in our solution. Specifically, we need to use RL methods because a priori

model of the environment is not required for learning. Thus this method enables agents

to learn in new and unfamiliar circumstances. We use BL methods because the agent,

by repeatedly interacting with its opponent,, can use its knowledge of the history of the

process to build a model of its opponent's behaviour.

In more detail, this chapter has described the core of the body of work on negotiation

models and we have seen how these models fail to fully meet our requirements. Nev-

ertheless, we have reviewed the techniques that we believe are most suitable for coping

with our specific requirements and presented a justification for selecting them. Specif-

ically, we will use the NDF approach to generate offers and in order to easily change

the behaviour of the agents (to satisfy requirement 4). In order for the agent to develop

strategies in the absence of information in an unsupervised manner, we will adopt a

RL approach to learning the optimal state-action mapping (thus satisfying requirements

1 and 2). Using this approach, agents will also be able to respond to changes in the

environment and negotiation parameters (satisfying requirement 4). We will then use

Bayesian learning techniques to model the behaviour of the agent so that it can adapt to
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changes in the opponent's behaviour (satisfying requirement 5).

In short, we will use both these learning techniques to negotiate effectively when the

transition function and the reward signal change with time, thus satisfying our require-

ment of non-stationarity. Given this background, in Chapter 3 we will describe in detail

how we use RL techniques to develop an adaptive negotiation model ands in Chapter 4

we will use BL techniques to adapt to changes in the opponent's strategies.



Chapter 3

Adapting to Environmental Dynamics

using Reinforcement Learning

Given the requirements of our model detailed in Chapter 1, it is clear that the negotiating

agents need to adopt some form of unsupervised machine learning in order to be able to

bargain effectively. Here we, for the first time, cast the dynamic negotiation model as

a Reinforcement Learning (RL) problem (as motivated in Chapter 2) and then present

the adaptive algorithm that we have developed for addressing some of the requirements

of our model. In doing so, we show that our algorithm adapts to changes in negotiation

parameters and consistently outperforms other standard negotiation techniques.

In more detail in the first section we cast our negotiation problem as a RL problem.

Specifically, we define the concept of non-stationary Markov Decision Processes, present

the main ideas used in the development of the adaptive algorithm, explain the structure

of our modei and present the new adaptive negotiation algorithm that we have developed

for dynamic negotiation. In the second section, we describe how the algorithm can be

used in the mobile communications domain, since the dynamic conditions that exist

here and in other multi-agent systems have specified the requirements of our model.

After this, we present our empirical evaluation of the performance of our algorithm and

45
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finally, we present a discussion of the results and state our conclusions.

t

3.1 Dynamic Negotiation as a Reinforcement Learning

Problem

Following our analysis of the literature, we are now ready to cast our negotiation prob-

lem as a RL problem. Keeping in mind that we essentially wish to model the negotiation

process in various trading scenarios in distributed multi-agent systems, we make the fol-

lowing assumptions:

1. Two agents, designated as a buyer and seller, negotiate over the price of a service.

2. The two agents do not have complete information about their opponents' negoti-

ation parameters and have to learn them from signals received from the environ-

ment (as per requirement 2).

3. The dynamics of the system are only probabilistically known (i.e., T5
a
s/, the tran-

sition probability function, is not exactly known, but it is specified by another

probability function). This addresses our requirement that the dynamics of the

system are unknown.

4. The negotiations are conducted over a network and depending on the quality of

the network, defined by the bandwidth available for communication and the num-

ber of users, the negotiation preferences of the agents can change [Paurobally

et al., 2003]. Thus a strategy that is optimal at a time instant in the negotiation

process may not be optimal at a different time instant, even if all other states

are the same. Thus, as specified in requirements 3 and 4, the negotiation strate-

gies need to adapt to these changes in the environment (see Section 1.3 for more

details).
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5. The two agents have deadlines and they must complete the negotiation process

before their time is up (as per requirement 6).

6. The two agents have an initial price and a reservation price.

7. The agents are rational and, as such, attempt to maximize their utility functions.

In our setting of incomplete information and variable parameters, the agents have to

devise strategies for reaching an agreement. As argued previously, the agent has to

decide on the best course of action given the current state of the system and we believe

the RL framework is well suited for this type of decision making. Therefore we cast the

negotiation as a MDP and, in this framework, we develop a value iteration algorithm

for determining a strategy for dynamic negotiations. Hence, the specific problem that

we wish to consider is set in a non-stationary environment where the dynamics of the

system vary with time (as argued in Chapter 1). Thus the associated decision process

is also non-stationary and we are in the realm of non-stationary MDPs. Given this, we

first present in this section the corresponding notion of non-stationary MDPs and their

associated state and action value functions.

3.1.1 Non-Stationary MDPs

In Section 2.3.1 we have defined and described the concept of MDPs and the process

of obtaining an optimal policy by defining state and action value functions. In this

section, therefore, we explicitly define these concepts for the non-stationary case. A

non-stationary MDP for each time-step, n, is defined as [Garcia and Ndiaye, 1998]:

• a discrete state space Sn

• a set of discrete actions An .

• a reward function i?^ : Sn x An —> R
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• a probabilistic state transition function, Tn : Sn x An —> [0, l],Tn(sn , a, sn+i) is

defined as the probability of making a transition from state sn to state sn+i using

action an.

In a standard MDP, an agent tries to find a policy n : S —> A that maps an action, a, to

a state, s, and maximizes its expected sum of discounted rewards over an infinite period

of time (as discussed in Chapter 2). However, in our negotiation context, the agents

have finite deadlines and, therefore, we define the corresponding notion of maximizing

expected rewards for a finite time horizon. In this case, the policy TT can be decomposed

into a set TTI, TT2, ..., 7TAT where 7rn : Sn —* An. As the first step towards determining

the optimal policy, we introduce the notion of the value of a state. Formally, a value of

a state s € Sn, under a policy nn, during the nth time-step, is defined as:

N

St, 7T((St))|sn = s) • (3.1)
t=n

where sn is the state of the system at time-step n, Rn is the reward obtained at time step

n, and E(Rt(st, 7rt(st))|sn = s) is the expected value of the reward under policy nn and

state sn = s. The optimal policy is denoted by n* and the associated value function is

given by:

= maxa[Rn(s,a)+ £ Tn(s',a,s)x V;+1(s')] (3.2)
S'e Sn+l

for all s e Sn, n € 1,..., N and V^+1 = 0. The optimal policy is specified by

TT^(S) = a where a is the action at which a maximum is attained in equation 3.2. Now,

when the dynamics of the system are known, the optimal value function can be solved
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by standard dynamic programming techniques [Sutton and Barto, 1998]. However, in

our negotiation problem, the probability of state transitions (changes in the dynamics

of the system) are not known exactly. Rather they are themselves specified by another

non-stationary probability function, Pn, called the estimate function. We define this

function as:

Pn(s,a,s'):Tn(s,a,s')^ [0,1] (3.3)

Since the transition probabilities are not exactly known, it is not possible to compute

the value functions based on these values. Instead, we use the expected values of the

transition probabilities to compute the value functions and have developed a value iter-

ation algorithm based on the average or expected Tn(s, a, s') values given by:

En(Tn(s, a, s')) = J2(pn& a> s')) x (Tn(s, a, s')) (3.4)

Having defined the concept of a non-stationary MDP and having introduced the notion

of an estimate function, we are now ready to describe the details of our iteration method

for determining an optimal policy.

3.1.2 Average Value Iteration

Here we describe the key notions used in developing an adaptive negotiation RL al-

gorithm. Our algorithm is based on the value iteration method as this is one of the

most effective ways of solving RL problems for situations in which we have incomplete

knowledge of the system [Sutton and Barto, 1998]. Specifically, this method is used in
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several key techniques for solving standard reinforcement learning problems including

dynamic programming and Monte Carlo methods. In order to use the value iteration

method in our problem, we use estimated values of the probability transition function

Tn(s, a, s') because in our environment it is not reasonable to assume that the dynam-

ics of the system that are specified by the transition probabilities are exactly known.

As in other iteration algorithms (detailed in Chapter 2), here also the agents use state

and action value functions for determining the optimal policy. The value function is

iteratively estimated using the update rule given in equation 3.5 and an arbitrary policy

initially. Using these values, the policy is improved upon by choosing that action from

each state which maximises the action value function. Using this new policy, the value

function is again estimated and this process continues until both the value functions and

the policy converge (as explained in Chapter 2). We now formally describe our average

value iteration method for finding an optimal policy.

We first redefine the state and action value functions in terms of the average values:

V*(s) = maxa[Rn(s,a)+ £ En(Tn(s',a, s)) x V ^ s ' ) ] (3.5)
S'e Sn+l

a) = {.Rn(9,a) + J2 En(Tn(S,a,s'))xV:+1(s')} (3.6)
s' e 5 n + 1

The corresponding optimal Q-function is given by:

En(Tn(sla,s')) x V^s')} (3.7)
S' 6 Sn+l

for all s € Sn and a e An.

Now from equations (3.5) and (3.7) we have:
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V:(s) = maxa[Q*(s,a)} (3.8)

Then once the Q-value for each state, s, is determined using the average value iteration

algorithm, the agent will deterministically choose the action, a, that maximizes the Q-

value. That is, it will assign n*(s, a) = 1.

3.1.3 The Structure of the Dynamic Negotiation Model

For the reasons outlined in Section 2.3, we base our negotiation model on MDPs. Here,

we formally define the Markov negotiation set as composed of two Markov decision

processes: (S\, Al
n, Pl,R\) and {S*, A2

n, P%, R2
n) where S* is the non-stationary dis-

crete finite state space for agent a, A% is the discrete finite action space for agent a, P*

is the estimate function for agent a, and i?£ is the reward function for agent a, at time

instant n. Having defined the concept of Markov negotiation, we now elaborate on the

process of generating offers in our model.

In more detail, the agents use negotiation decision functions (NDFs) (see Section 2.2) to

generate offers (since these have been developed specifically for negotiations in incom-

plete and time constrained environments). Formally, these are mathematical functions

that generate offers between the initial offer and the RP of the agent. Since in our ne-

gotiation process we wish the agent to generate offers between these two values (initial

and RP) in a systematic fashion which we can control, we have used these functions to

generate offers. Again using these functions we can control the rate at which the agent's

offers approach its RP depending on the currently available resources, the current reser-

vation price and the other identified factors, by choosing the parameter tp (see section

2.2 for more details on generating offers). The behaviour of an agent in a negotiation

process is characterized by the speed with which it approaches its RP. By control-

ling the value ip, we can make the agent exhibit a range of behaviour patterns that can
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broadly be classified as stubborn (approaches the RP slowly), linear (approaches the

RP linearly) and conceding (approaches the RP relatively quickly). We use these three

types of behaviour because they are sufficient to describe all possible ways in which the

RP can be approached (as discussed in section 2.2). In this context, the key strategic

decision then becomes which of them has to be adopted and at what time.

Using our algorithm (detailed in section 3.1.4), the agent will endeavour to appropri-

ately map its negotiation actions to situations so that an agreement is reached before the

deadline and before the resources available for negotiation are exhausted. Intuitively,

this is achieved by rewarding the agent when it adopts a stubborn approach when there

are adequate resources for the negotiation process and, correspondingly, rewarding the

agent for adopting a conceding approach when the available resources are low. The

selection of the appropriate action is based not simply on the immediate reward that the

agent will obtain, but takes into consideration all possible future rewards during the en-

tire course of the negotiation. Thus using our algorithm, the agent at each stage chooses

an action that would earn it an optimal reward rather than having a set of strategies

specified at the start of the negotiation encounter. We now move on to describing the

adaptive negotiation algorithm itself.

3.1.4 The Adaptive Negotiation Algorithm

In this section we outline the steps of the average value based iteration algorithm based

on observations of the state space, actions of the agents and the reward signals (see Al-

gorithm 1). In more detail, the agent must determine the best policy to adopt for a given

state of the system. In order to learn this mapping using our algorithm, the agent first

initializes the value of the states Vn(s) = 0 for all states s G S. It then uses, initially, an

arbitrary policy TT (random policy or equiprobable policy where all actions are equally

likely for instance or a deterministic policy) to generate the next set of V""(s). Then,

using this value function, it improves the current policy n, by choosing the action a that
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maximizes equation 3.8. This process continues until both the value function and the

policy converge. The agent learns this policy n offline and then uses this learned policy

in its negotiations with its opponent. The policy specifies the value of the parameter

ip. The agent uses this value of I/J in equation 2.1 and generates offers. Therefore the

algorithm consists of two parts. First, the determination of the optimal policy, re*, us-

ing the average value iteration method (function AVERAGE VALUE ITERATION) and

then using this policy to determine an offer (function OFFER DETERMINATION). The

process terminates when an agreement is reached or when either deadline is reached.

3.2 Application to Scenario 1

The negotiation scenarios described in Chapter 1 have been motivated by the likely con-

ditions that will become prevalent in the mobile communication domains. To ground

our model further into this context, this section will demonstrate exactly how our algo-

rithm addresses the negotiation issues raised by scenario 1.

In Scenario 1, the agent representing the salesman needs to negotiate with one service

provider for either a terrestrial or a satellite broadcast of his favourite programs. As

explained in Chapter 1, the agent has to adapt to resource availability changes and also

to changes in negotiation parameters like deadlines and reservation prices. Here we for-

mally cast this scenario as RL model and examine how the agents can use our algorithm

to develop effective negotiation strategies. Towards this end we define:

• State Space:,? = {Resource Availability (RA), Time Availability (TA), Reserva-

tion Price (RP) }. To represent the fluctuations in resource availability we assume

that it is described by two states: High and Low. Similarly, to represent the

changes in the time available for negotiations we assume that Time Availability

can be in two states: High and Low. Again in order to represent the fact that the

reservation price can also change, we assume that it can have two values during
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Algorithm 1 Adaptive Negotiation Algorithm
function AVERAGE VALUE ITERATION (p£_a, sn, Pn{Tn(s', a,s)), R^(s, a)) re-
turns TT*

inputs:

1. Pa—a ( t n e offer of the opponent at time instant n).

2. sn (the state of the system at time instant n).

3. Pn(Tn(s', a, s)) (the current estimation function based on the partial knowledge
of the system at time instant n).

4. Rn(s,a) for each (s,a), s £ Sn and a € An (the reward function at time
instant n).

initialize V£(s) = 0 V s 6 S for an arbitrary policy TT.

for each s G S do

Vn
w(s) = rn,axa[Em(s,a) + Zs'esn+1

En(Tn(s',a,s)) x VJ+1(s')]

Set7r(s) = a

return Policy TT*

function OFFER DETERMINATION (a) returns value of iff.
inputs: action a determined by it*.
if a = Boulware then

Set parameter 0 < 'tp < 1
else {a = Conceder}

Set parameter 1 < ip < oo
else {a = Linear}

Set parameter ip = 1
end if
return ^
Use parameter t/> in the NDF fs(n) and use this fs(n) to generate offer p(n).

the negotiation H P 1 and RP2. Thus we have a total of 2 x 2 x 2 = 8 states

and 8 x 8 = 6 4 state transitions. In this fashion we capture the changes in the

environment in the definition of the state space.

• Action Space: A={switch between terrestrial broadcaster (TB) and satellite broad-

caster (SB) (a\), switch between SB and TB (a2), stubborn with TB (a3), stubborn

with SB (a^), conceding with TB (a5), conceding with SB (a,6)}. Thus the agent
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has a total of six actions to choose from. Now the RL problem is to find a mapping

between the states and the actions that maximise the reward of the agent.

• Rewards: The reward signal guides the agent in selecting an appropriate action

from a state. We define the rewards as Rn = +1 when the agent chooses 05 when

TA = Less, Rn = — 1 when the agent chooses 03 when T = More, Rn = +1

when the agent chooses a5 when RA = Less, Rn = — 1 when the agent chooses

a3 when RA — More, Rn = +1 when the agent chooses ax when RA = Less

and T = Less, Rn = — 2 when the agent chooses any other action from this

state, and Rn = 0 for all other state-action pairs. This reward scheme has been

chosen with the general idea of rewarding the agent for conceding when resources

are low so that the negotiation can be completed before the deadlines are up (as

per our requirement 6), to be stubborn when the resources are high so that the

agent can strike a good bargain and to switch between the expensive terrestrial

broadcaster and the cheaper satellite broadcaster when the funds for securing the

service have been reduced.

• Estimation function: Pn is generated arbitrarily for this problem. We do this

because this is the most general form of the estimation function and therefore

can be used to represent the dynamics of a wide range of multi-agent systems.

Clearly, if more specific information was used, the performance of the algorithm

would improve.

Given this framework, we are ready to present our solution procedure for this scenario.

We first train the agent offline to determine the policy that maximises its expected re-

ward using algorithm 1. The main steps involved in this are:

• The agent evaluates equation 3.8 for every s 6 S by using the update rule spec-

ified in algorithm 1. Here Rn is as specified earlier, Pn is generated arbitrarily
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and follows an equiprobable policy n initially (which specifies that all actions are

equally likely from every state).

• Having obtained V(s) for every s E S, we now improve the policy n. This is

done by deterministically choosing action as from each state s that maximises 3.8

and setting TT'(S) = as for every s 6 S.

• Using this new policy n'(s) the agent then again evaluates equation 3.8.

• This process continues until both V(s) and the policy n converge to their optimal

values.

Once the agent has learned the optimal policy mapping by maximising the expected

reward in the RL problem, it is ready to apply this policy. Thus, using our algorithm the

agent learns to choose actions that are best suited to the current situation. For instance,

when the agent is in state s = {R = less, T = high , RP1} it will evaluate equation

3.8 and because of our reward scheme which gives a positive value for choosing a

conceding strategy, the agent is encouraged to select this action from this state. Using

RL techniques, each time the agent encounters this state it would choose the action

that yields the maximum reward with higher probability, until it chooses this action

every time it is in this state, deterministically. Thus our learning algorithm builds an

intuition within the agent that guides its decision making process. Now, agents that

are non-adaptive would simply determine one strategy to use depending on the initial

negotiation parameters and the initial strategy profile of the opponents. This would be a

naive approach in a real-world scenario where parameters and the strategy profiles are

subject to change. Our adaptive algorithm therefore gives the agents the intelligence to

develop multiple strategies depending on the circumstances and thus makes them better

negotiators in realistic conditions.

In Chapter 4 we show how BL techniques can be used in order to model and analyse

the opponent's behaviour. Again, in Chapter 5 we examine the comparative benefits
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and drawbacks of using these two learning techniques to adapt to both environmental

changes and to changes in the opponent's strategy. However for now our adaptive agent

is only able to respond to changes in the environment. In the next section we present

our empirical results.

3.3 Empirical Evaluation

In this section we describe the implementation details of our algorithm and present a

detailed analysis of our empirical results. We begin by describing how the RL prob-

lem is solved for a specific negotiation scenario and then present our results using the

adaptive negotiation algorithm in a wide range of negotiation encounters.

3.3.1 Solving the Negotiation

In this section we will illustrate this algorithm using an example negotiation encounter

(based on that detailed in section 3.2). In this specific negotiation we simulate the

following changes in the environment:

1. Deadline changes

2. Reservation price changes

3. Resource availability changes

We have chosen these factors because these play a critical role in the domains and sce-

narios outlined in Chapter 1. Although this is a simplified version of the scenarios

presented in Chapter 1, it captures the important feature of variable environmental con-

ditions which is the key characteristic of these environments and to which we wish our

negotiation model to adapt. In order to explain how the environmental changes are rep-

resented in the state space definition and to list the action choices that are available to
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the agent from these states, we first need to describe the design of the state and action

spaces in detail.

3.3.2 State and Action Spaces

The key endeavour in designing state spaces in an MDP is to represent most of the fea-

tures in the environment in as few states as possible (since the computational expense

of running the algorithm grows exponentially with the number of states [Sutton and

Barto, 1998]). Hence we have to effect a trade-off between detailing the environment

and restricting the size of the state space. Hence in the model described here we have

assumed that the resource availability, deadlines and reservations prices can have only

two values. We have then studied how the agents adapt to these changes. Thus our rep-

resentation captures the changes in the environment, while ensuring that the state space

is compact. Formally, the finite discrete state space of each agent in the negotiation

process is defined by:

1. Resource Availability: This denotes the computational resources that are available

for the negotiation. Here we assume this can take two values (high and low).

These two states broadly capture the pattern of resource availability changes.

2. Deadlines: The agent has a finite discrete set of deadlines. This represents the fact

that its deadline can change. For our example negotiation problem, we assume

that state space consists of two deadlines: T1 and T2 time units.

3. Reservation Price: The agent has a discrete, finite set of reservation prices. This

again means that the reservation prices of an agent can vary. In the example

problem we will assume that the agent has two reservation prices: R1 and R2.

Now, depending on the state of the system and the input (offer) that the agent receives

from its opponent, the agent chooses between a stubborn, a conceding strategy and a



Chapter 3 Adapting to Environmental Dynamics using Reinforcement Learning 59

linear strategy. It also has the option of doing nothing (i.e., making no response) since

the negotiation is a process of alternating offers, at alternate time-steps when it is the

opponent's turn to make an offer the agent does nothing. Having detailed the state

and action spaces, we now move on to describe the functions that govern the decision

making process (namely the estimation and reward functions).

3.3.3 Estimation and Reward Functions

Intuitively, as argued for in section 3.3.1, the agent should be rewarded for choosing a

stubborn strategy when the resources are high and when the agent has sufficient time to

continue with the negotiation process. Similarly, it should be rewarded when it adopts

a conceding approach when the resources for negotiation are low. The agent should

also sense when the RP changes and accordingly choose a strategy. When the RP

increases it means that the agent has more money at its disposal than at the beginning

of the encounter and therefore the agent could adopt a conceding approach. While

conversely, when the RP decreases the agent has less money than it had initially and

therefore it needs to adopt a stubborn approach. Thus these functions should enable

the agent to exploit the current conditions in order to bargain effectively. In our model

specifically, the agent adapts to changes in resource availability, time constraints and

budget considerations.

Given this set up, there are a total of 8 (2 Deadlines x 2 Reservation Prices x 2 states

of Resource Availability) states and 64 possible state transitions. There, is an estimation

function P(s', a, s,) (see equation 3.3) and a reward function R%s, (see equation 3.1)

associated with every state transition and action. We have shown the correspondence

between the state-action pairs and their estimation and reward functions in table 3.1

(these are defined for other state-action pairs in a similar manner). In our problem we

have used an arbitrary probability distribution to represent the estimation function and

the reward function. These distributions also change in our problem and this reflects the
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non-stationarity in the domain.
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TABLE 3.1: Reward Scheme.

With the estimation function denned and the reward scheme in place, we now move on

to the details of the evaluation of our algorithm.

To do this, for a set of negotiation parameters (T°, RPa, IPa) we allowed a buyer and

a seller to negotiate and measured the value at which an agreement was reached and the

time taken to get there. We repeated the experiment for a number of different negoti-

ation parameter sets. Using the adaptive algorithm detailed in section 3.1.4, the agent

learned an optimal mapping between state and action pairs offline and then used this

policy online against its opponent during the actual negotiations. During the actual run,

we used parameter sets different from those used in the training of the agent. Specifi-
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cally, we found that in the actual negotiation encounters the agent learned to choose an

appropriate value of ip and hence an appropriate strategy given the current state of the

system.

To provide a benchmark for our algorithm, we compared it against an agent that uses

NDFs to determine the negotiation strategy, but that does not adapt its strategy in re-

sponse to changing resource availability, deadlines or reservation prices during the

course of the encounter and also compared it with another agent that uses an evolu-

tionary algorithm to read changes in the environment. In the NDF approach, the agent

adopts either a Boulware or a Conceder strategy throughout the negotiation process, ir-

respective of changes in the simulated environment. In the heuristic method, the agent

uses the tournament selection technique to pick a strategy in response to changes in the

environment. Here we picked an arbitrary number of strategies from the total popula-

tion. Now to each strategy we assigned a probability p as being the best, p * (p — 1)

as being second best and so on. Now we allowed the strategies to play a 'tournament'

where their probailities are exchanged or get 'mixed'. We then applied the strategy

which had the highest probability of being the best.

We defined the performance metrics as the number of times an agreement was reached

within the deadline T under adaptive conditions, compared to a non-adaptive algorithm

(based on [Fatima et al., 2004]) and a heuristic algorithm (based on [Matos et al., 1998]).

Although this was chosen as the metric, the reward structure used in the RL process also

reflected the profit that the agent could earn from the negotiation. Therefore the strategy

was chosen as a trade-off between profit share and number of agreements reached. In the

first instance, we trained the agents using a specific reward scheme. During the training

the agents learn an optimal policy that maximises the total reward. Multiple negotiation

runs were then used until the agent learnt the optimal policy to adopt from each state

of the system. Now during the actual negotiations the agent applies this policy to adapt

to the negotiations. Here it is important to note that it is not necessary to use the same

negotiation parameters as in the training, we only need to use a reward scheme that
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rewards and penalises the agent in accordance with the training reward scheme. During

the training we ran extensive experiments with a number of different combinations of

Ta, RPa, RA and reward schemes. These parameters are generated in the program by

random functions. The agent checks the value of each of the three randomly generated

parameters before making an offer and sets its own value of each of them to either high

or low. Thus, based on these values, it determines the state of the system. Then using the

reward scheme it determines an optimal policy according to algorithm 1. We computed

the actual optimal policy by solving the standard Markov Decision Processes problem

in which the agents have complete information about the underlying environment using

MATLAB7.1.

In more detail, Figure 3.1 shows the number of iterations it took for the trained agent

to converge in each negotiation encounter 200 negotiations. For each of these negotia-

tion encounters we used a different reward scheme. Table 3.2 gives the mean (^i) and

standard deviation (ax) of the distribution of the number of iterations to converge to the

optimal solution. As can be seen, it takes an average of 23 iterations to converge to the

optimal solution. Here, it must be stressed that the agent does not learn over 23 negoti-

ation encounters, but rather that, within a negotiation, our recursive algorithm takes 23

iterations to converge to the optimal solution. Further, 98% of the population is within

2cr distance from the mean.

Figure 3.2 shows the average time taken for each iteration over the 200 negotiations and

table 3.3 shows the mean (/i2) and standard deviation (cr2) for this distribution. Given

that each iteration takes 51 seconds to be completed, the total time to find an optimal

solution is 23 x 51 = 1173 seconds (or 19.5 minutes). This short time to convergence

is a further strength of our algorithm and makes it especially suited for multi-agent

systems, like digital marketplaces, where negotiation deadlines are typically short.

Finally, figure 3.3 shows our comparison results over these 200 negotiations. We have

compared the number of agreements that were reached in the different negotiations us-
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ing our algorithm, the heuristic algorithm and the non-adaptive algorithm. In conditions

where the negotiation parameters change, using our adaptive algorithm nearly 90% of

the negotiations end in agreements. This is a direct of result of judging the conditions

correctly and developing appropriate strategies. The heuristic algorithm, on the other

hand, develops strategies for a fixed set of conditions and does not adapt very well to

new situations. Therefore the number of agreements it reaches is much lower (56%)

than the number obtained using our adaptive RL algorithm. Nevertheless it still out-

performs the non-adaptive algorithm which simply applies pre-determined strategies

without taking into consideration any of the changes in the negotiation process.
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FIGURE 3.1: Iterations to convergence to optimal solution

Negotiations
200

Mean
23.39

Std Dev
3.73

TABLE 3.2: Iterations for convergence to optimal solution

Negotiations
200

Mean
51.125

Std Dev
7.55

TABLE 3.3: Time for each algorithm iteration
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Average Time Taken for each Iteration of the Algorithm
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FIGURE 3.2: Average time for each algorithm iteration
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FIGURE 3.3: Comparison of the number of agreements reached using different algo-
rithms.

3.4 Summary

In this chapter we have modelled a bilateral negotiation problem in the mobile com-

munications environment as a RL problem and have developed a novel average value

iteration algorithm for determining an optimal policy. Using our algorithm, the agent

autonomously adapts to dynamic changes in the environment, specifically reservation

prices, deadlines and resource availability. The strategies are not specified at the start

of the negotiation process, but rather the agents using our algorithm learn to map ap-

propriate actions to the states that they encounter as they progress with the negotiation.
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This satisfies our requirements 1 and 4. Also in our model the reward scheme is given

by a probability function and hence is non-deterministic. This corresponds to the nego-

tiation preferences of the agents changing during the negotiation encounter and hence

addresses our requirement 3. The algorithm also functions in the absence of complete

information about the environment which addresses our requirement 2. Also the algo-

rithm, by appropriately specifying rewards, ensures that the negotiation finishes before

the deadlines and before the resources are exhausted (thus satisfying requirement 6).

Requirement 5, that of adapting to changes in the opponent's behaviour, will be ad-

dressed in Chapter 4.

To empirically evaluate the performance of our algorithm we have compared the number

of negotiations that end in agreements using our adaptive agent against other standard

negotiation techniques. We have used this metric to compare the algorithms because the

main aim of the negotiation process is to reach an agreement within the deadline. It is

also important to note here that none of the other algorithms are attempting to adapt to

changes in the environment. Therefore it is meaningless to compare other metrics like

the time taken by the algorithms to complete the negotiation. As can be seen from figure

3.3 using the standard algorithm only 49% of the negotiations end in an agreement and

only 56% of the negotiations using heuristic methods end in an agreement.

In summary, we have developed an algorithm for negotiations that satisfies 4 of our

requirements. We also shown that it outperforms other algorithms in the literature. The

most important contribution of this part of the work is that our algorithm adapts to non-

stationary changes in the environment. Ours is the first algorithm that has been able to

respond to changes simultaneously in different negotiation parameters and preferences.

We have also shown how our algorithm can be applied to the scenario 1 introduced in

Chapter 1. From our results we would argue that RL is a very promising methodology

to deal with decision making in uncertain, multi-agent environments.



Chapter 4

Adapting to Changes in the Opponent's

Strategy using Bayesian Learning

In the previous chapter we discussed how RL techniques can be used in agent negotia-

tion to adapt to changes in the environment. However as stated in our requirements in

Chapter 1, in addition to responding to changes in the environment, we also wish the

agents to respond to changes in the opponent's strategies. Thus in Chapter 3 we dis-

cussed how RL techniques could be used for such adaptive agent behaviour in negotia-

tions in dynamic environments. Now, in order to determine machine learning techniques

that can be used to adapt to changes in the opponent's behaviour in the negotiation pro-

cess we turn our attention to Bayesian learning techniques.

As before, we consider negotiation between a pair of agents over a single issue (price).

We use the non-stationary Markov chain framework to model the negotiation process

and prove, for the first time, an important estimation property for these processes (namely

that the future distribution of the states can be obtained given their initial distribution

and the probabilities of state change during the process). Within this framework, at each

stage in the negotiation process, the agent uses Bayesian updating to learn the strategy

that its opponent is most likely to use and, based on this, determines what it should

66



Chapter 4 Adapting to Changes in the Opponent's Strategy using Bayesian Learning61

adopt to maximise its payoff at that stage of the negotiation process. In so doing, we

analytically prove that in repeated negotiations our algorithm converges to the actual

optimal strategy at every stage of the negotiation process. We verify this experimentally

and examine the number of negotiations needed for convergence and the average time

for each negotiation. We also show that the share in the profits that the adaptive agent

earns is 83% compared to only 54% of the share in the profits earned by its non-adaptive

counterpart.

The rest of the chapter is organized as follows: Section 4.1 describes how to cast the

negotiation as a bayesian learning problem, Section 4.2 gives our empirical results and

finally, Section 4.3 concludes.

4.1 Dynamic Negotiation as a Bayesian Learning Prob-

lem

In this section we describe a new negotiation model that uses Bayesian learning tech-

niques to adapt to changes in the opponent's behaviour. To do this we first describe the

concept of mixed strategy profiles in the context of classical game theory which we will

use as a framework to describe the strategies that our negotiating agents will use.

Now, in classical game theory, a Strategic-Form game has three elements (see section

2.2):

1. the set of players i e / , where / = 1,2, ...,n

2. the pure-strategy space Si, for each player i, and

3. payoff functions Ui that give player i's utility •Uj(s) for each profile, s = (sx,s2,..., sn),

of strategies
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Therefore in game theory a strategy is perceived as an action choice of a player that has

a utility associated with it. Often the objective in games is to determine a strategy s*

that will maximise player i's payoff given the strategy set, s_j, that the other players

use. Also, notice that the w, that player % receives depends on the strategies of all the

players in the game and is not related to an isolated strategy that i may use. Thus in our

problem also the payoff that the agent earns will depend on its response to its opponent's

play. Therefore the agent learns the mixed-strategy profile of its opponent and evolve a

strategy in response to that strategy that earns it maximum payoff (see section 2.2). In

this sense, our negotiation problem can be considered as a two-player strategic game.

We are now ready to describe the learning component and outline the solution procedure

we have developed. The main objective of our agent is to learn the mixed-strategy

profile of its opponent and determine a strategy in response to this profile that maximises

its payoff at each stage of the negotiation process. This learning problem is complicated

by the fact that the agent has no information about its opponent and that the strategy that

the opponent uses may well change during the course of the negotiation. Now, to model

this process of change in the strategies of the opponent, we use a non-stationary Markov

chain. Formally, a non-stationary Markov chain is a Markov process (see Section 2.3.1)

whose one-step transition probability function, P(t) = Pr{Xn+i = x\Xn = xn}, varies

with time [Kulkarni, 1996]. If we define the state space, S, associated with this non-

stationary Markov chain to be the space of all possible strategies that the opponent can

employ, and the corresponding time dependent transition probability function, P n ( t ) , to

represent the probability that the strategy of the opponent changes at each step n of the

game and that this probability function itself is a function of time, then this framework

gives us a powerful tool to describe and analyse the non-stationary negotiation process

that we are trying to model. Therefore, we adopt this mathematical formulation in this

work.

Now, if P n ( t ) were specified as a function of time, then we could obtain the strategy

profile of the opponent at each stage of the negotiation process using standard stochas-
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tic process analysis [Karlin and Taylor, 1974] and then obtain a strategy that maximises

our own payoff using maximization algorithms [Filar and Vrieze, 1996]. But since this

function is unknown in our problem, the agent has to learn it from interactions with

the opponent and the environment. Therefore, in our learning problem we are trying

to learn the form of P n ( t ) . Now, in Bayesian learning; as explained in section 2.3.2,

the probability of a hypothesis being true is continuously updated by signals that are

received from the environment and, as such, is well suited to modelling uncertainty in

the environment. In our problem, in order to learn the function, P n ( t ) , we propose that

the learning agent initially has a finite number of hypotheses ' of the possible distri-

butions of P n ( t ) which it updates using Bayesian inference rules. This means that in

successive negotiations, by updating the different hypotheses, the agent comes closer to

estimating the true value of P n ( t ) and, therefore, to estimating the true optimal strategy

in response to its opponent's play.

Formally, we consider two agents, say buyer X and seller Y, negotiating over price.

We assume that the buyer is learning to respond to the strategy of the seller. Now, we

assume that there is a payoff function, u™x(t), associated with X, which depends on the

strategy s that X uses in response to Y at each step, n, of the negotiation. X's objective

in the negotiation is to find a strategy profile that maximises u"x (t) which we assume

is known to X. Therefore, X must learn the strategy profile of Y in order to determine

an optimal response strategy. To describe how X learns this strategy within the Markov

chain, we need to first define some of its properties.

In stationary Markov chains, the probability of moving from state % to state j in n time

steps is represented as Pfi and is given by [Karlin and Taylor, 1974]:

fc=0

, 'This assumption reduces the search space, while still allowing us to represent the uncertainty in the
problem.
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where m is the total number of states, k is some intermediate state and r + s = n. Intu-

itively, this means that the probability of moving from one state to another in a certain

number of steps, n, is equivalent to the probability of moving from the first state to an

intermediate state, k, in r steps together with the probability of moving from k to the

final state in the remaining number of steps. Now, from matrix algebra, we recognise

equation 4.1 as the formula for matrix multiplication, so the n-step transition matrix,

represented by Pn, is equal to F ( n ) or that the entries P£ in Pn are equal to the en-

tries in the matrix P^n\ which is the nth power of the one-step transition matrix P.

It follows that if the probability of the process initially being in state j is pj, (that is,

Pr{ Xo = j} ), then the probability of the process being in state k, at time n is:

( 4 - 2 )

This equation is the classic Chapman-Kolmogorov equation for Markov Chains [Pa-

poulis, 1984]. Thus, if we know the initial distribution of the opponent's strategies, we

can calculate the probability that the opponent uses a certain strategy after n time steps,

because the negotiation process is modelled as a Markov chain. This is one of the chief

benefits of using the Markov chain framework to model the negotiation process. How-

ever, our process is non-stationary and, therefore, we need to use an equivalent result

for the non-stationary case. Now, the main difference between the two processes is that

in the non-stationary case, P n ( t ) is a function of time and therefore at each step of

the process we have a different transition probability matrix. Here, we propose that to

obtain pi as a function of time, we need to multiply n different transition matrices. We

now formally state and prove this result.

Theorem 4.1. In non-stationary Markov chains, the probability of moving from state i

to state j in n time steps, during time instant t, is represented as P%{t) 2 and is given by:

2Here n represents the number of time steps and t represents the fact that the transition probability
Pij(t) is a function of time.
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where m is the total number of states, k is some intermediate state, r + s = n and u

and v are the time instants at which the transitions occur.

Proof. We prove the result when n = 2. The event of moving from state i to state j

can happen in the mutually exclusive ways; of going to some intermediate state k €

{0,1,2..., m} in the first transition and then moving from state k to state j in the next

transition. Now, because of the Markovian assumption that the transition probability

is independent of the history of the process, the probability of the second transition

is simply Pkj(v) and, by definition, the probability of the first is Pik(u). Therefore,

by the law of total probability:. fg(O = ELo^/fcW x Pkj(v)- I n t h e general case,

by breaking up the first r steps and then the next s steps into a series of single step

transitions and again by using the law of total probability for each transition the proof

is obtained. " •

Thus, in the non-stationary case also, given the probability that initially the process was

in, say state j (that is, p°(0) = Pr{X0(0) = j}), then the probability that it is in state k

after n time steps and at time t is represented as p^(t) = Pr{ Xn(t) = k} and is given

by:

S(°) x Q]k(t) (4.3)

where Q]k(t) = P°(0) x Px(l). . . x P71'1^ - 1).

Therefore, we now have a means of obtaining the probability distribution of the process

and, thereby, the probability distribution of strategies at any stage in the negotiation

process given an initial distribution of strategies and the transition probability matrices.
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Now, we come to the main issue of learning the transition probability matrices. As al-

ready stated, we propose to do this using Bayesian inference rules (see section 2.3.2).

However, to do this we must assume that the learning agent, in our case the buyer

X, has some knowledge about the negotiation process. Specifically, in order to up-

date its hypothesis about the strategy distribution of Y from the offers that it receives,

it has to know the relationship between the offer generation process and the strategy

selection process. To this end, let us assume that S, the set of all possible strategies

that Y can use, and as such constitutes the state space of our Markov chain, is given

by S = {SQ,S°, . . . , s ^} . Therefore, Y switches between the strategies in S accord-

ing to the transition probability matrix P n ( t ) , which varies with time. We let On(t)

represent a sequence of offers made by Y and 0£(£) represent the event that the offer

at the nth step of the process at time t is p. We also let Hn(t) represent a sequence

of finite sets of hypotheses about P n ( t ) during the negotiation process. Therefore

Hn(t) = {Hn(i),...., Hn(t)}, where k is some finite positive integer. We assume that the

hypothesis representing the true value of the transition probability function also belongs

to Hn(t). Then the objective of our learning algorithm is to update each of these hy-

potheses {H^(t)'E Hn(t)} at every step n of the negotiation. The steps of the algorithm

are detailed in Algorithm 2.

In more detail, applying Bayes rule (see equation 2.13) we have for each hypothesis, at

step n, of the process that:

Pr{Hj(t)} x Pr{QP

We call Pr{i/£(t)|O£(£)} the likelihood function L. Thus each Wn(t) is updated

in the light of the incoming offer O*(t). Now, B uses the hypothesis H™w(t) =

£}.=O{-P'"{#i(*)|0P(*)} x H%
n(t)} to find the strategy used by the opponent. There-

fore the learning agent weights the different hypotheses by the probabilities of their

occurring in order to form a new hypothesis about P n ( t ) . Because of this construction
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of the new hypothesis we can show that, as t —> T where T is sufficiently large, H%ew(t)

approaches the true value of P n ( t ) (see Theorem 4.2 for details). Then, according to

u™x(t), the agent determines the strategy s^ax(£) that maximises v%x(i) at each step

of the negotiation process. We denote this maximum value of the payoff function by

u"mM (t). This completes the solution procedure for determining the best response strat-

egy to the opponent's play and consequently the maximum payoff at each step of the

negotiation process.

Algorithm 2 The Adaptive Negotiation Algorithm

1. for(t = 0, l , 2 , . . . ,T )

2. initialize H^(i) E Hn(t) as an arbitrary distribution.

3. for (n = 0,1,2, ...,tterminal)

4. input opponent offer p G Domain{On(t)}

5. Pr{Wn(t + 1)} «- Pr{Hl
n(t)\O*(t)} using equation 4.4

6. assign H™(t) = TL0{Pr{Hi(t)\O^t)} x H*n(t)}

7. assign [Pn(t)] = H™(t)

8. compute [(s°,S2, ...,s°m)]n{t) using equation 4.3

9. compute s^ax(t} = max [(s!,s2, ...,sm)]n(f) x u%(t) x

[(s?, s°2,..,, s°J}n(t)}T s.t XXo s> = 1 and Sl > 0 Vz

10. compute «^ (i)

11. next n

12. nextt

Having detailed the steps of the algorithm we now show how it can be applied in the

context of Scenario 2. In subsection 4.1.1 we describe how this algorithm can be ap-
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plied to scenario 2. Then in subsection 4.1.2 we describe the conditions under which

this algorithm converges. In subsection 4.1.3 we detail how the strategy space can be

represented in a concise manner. Then in subsection 4.1.4 we describe how such a strat-

egy space can be used to achieve a better estimation of the opponent's offer generating

model. Finally in subsection 4.1.5 we describe an adaptive algorithm for negotiations

based on this estimation method.

4.1.1 Application to Scenario 2

Here we consider specifically, how this algorithm can be applied to the situation de-

scribed in Scenario 2 (see Chapter 1). We do this in order to detail the steps involved

and how they can be instantiated in a specific situation. As already discussed, this

regional manager needs to negotiate with an unknown network operator for some ser-

vices. Now, in order for her to get a good deal she must model her network operator's

behaviour and adapt her negotiation strategies to changes in the operator's negotiation

pattern. To illustrate how she could achieve this using our algorithm, we make the

following assumptions:

1. The strategy space S of the operator consists of two strategies, S = {si, s2} (this

can easily be expanded to many strategies).

2. At each time step n of the negotiation, the manager has a set of three hypothe-

ses about the possible value of P n ( t ) which here governs the manager's offer

generating pattern.

We now describe the solution procedure in our problem.

• Here, as specified in Step 3 of algorithm 2, the manager initializes, HQ(0) €
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^11

^22

2/12

2/22

^21 -̂ 22

Now since the manager is unaware of the true value of P n ( t ) , it assigns arbitrary

probabilities to each of these hypotheses about P n ( t ) . Specifically let,

. {Pr(/T0
1(0)) = pl

00},{Pr(H2
0(0)) = p2

0}, {Pr(H*(0)) = p3
0} and the offer of

the operator Oo(0) = Ooo-

• Then according to Step 4 in algorithm 2, her agent observes the offer of the oppo-

nent and makes this assumption: Pr{O0(0)|//0
1(0)} = ql0, Pr{O0(0)|#0

2(0)} =

<?2
0 and Pr{O0(Q)\H$(Q)} = q$Q (here we assume arbitrary values for Pr{O\H},

but in section 4.1.4 we formalize this relationship).

• Using Step 5, her agent updates its knowledge about the operator. In other words,

using the algorithm it updates the probabilities as Pr{//o(0)|Oo(0)} = ujo,

Pr{//2(0)|O0(0)} - u2
0Q and Pr{if3(0)|O0(0)} = u3

00.

• Based on these updated probabilities, the agent then determines a new hypothesis

for the operator's behaviour. Formally, from Step 6, it determines HQSW(0) =

x x

Now Step 7 determines the strategy profile of the operator. Here we assume that

the operator's initial profile is known to the agent and is represented as [s°, sQ
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and the payoff function of the agent is:

«21 "22

• From Step 8, to determine its strategy profile, [si, S2] that maximises its payoff,

the agent solves the linear program:

max [si,s2] x u°(0) x [s°, sl]T s.t sx + s2 = 1 andsx,s2 > 0.

The strategy profile thus obtained is denoted as s^,az(0) and the maximum payoff

function is < a x ( 0 ) .

• The agent repeats steps (1 — 7) for every time step n of the negotiation process and

obtains the .sequences {s°max(0), 4^ (0 ) , . . , } and « a x ( 0 ) , u^ax(0), u2
max(0),...}

1

• The agent then repeatedly negotiates with the network operator negotiation during

time instants t = 0,1,2,3,... and obtains the sequences (s^ a x(0) ,s^ a x( l) , s°max{2),...},

(smax(0), 4ax( ! ) ' sl
max{2),...}, {s3

max{0), 5^ (1 ) , . . . } and the corresponding pay-

off sequences.

Here, it is important to note that using this algorithm, the agent learns across successive

negotiations and not within a single negotiation encounter. Therefore, the agent builds a

model of operator's negotiation pattern over repeated negotiations and thus learns how

it varies its strategies over time. Therefore this algorithm enables agents to develop

a model of the operator's behaviour in this type of scenario. Now we move onto to

examining the convergence properties of our algorithm.

4.1.2 Proof of Convergence

We claim that in repeated negotiations using our algorithm, the agent will learn to use

the optimal strategy and earn maximum payoff at each stage of the negotiation process.
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Now, we seek to prove this fact. In order to do so, however we need the following

lemma.

Lemma 1: After a sufficiently large time T, the real probability distribution over the fu-

ture rational play of a game is e-close to what player i believes the distribution is [Kalai

and Lehrer, 1993].

Here, e-close implies that we can approach arbitrarily close to the actual distribution

and rational play means that at each stage of the negotiation the players take the action

that maximises their pay-offs. Having stated Lemma 1, we are now ready to prove our

main result.

Theorem 4.2. In the non-stationary negotiation process, the sequence of the nth step

strategies {s^ax(0),..., s^ax(t), s^ax(t + 1),..., } and the corresponding sequence of

nih step payoff functions, {Knax{0), ...,<**(*)> * d i ( * + 1),.... }, after a sufficiently

large time T, are e-close to the true optimal strategy and the corresponding maximum

payoff function at the nth step of the negotiation process.

Proof. According to Lemma 1, in a systematic belief update process, the learner even-

tually comes arbitrarily close to the true distribution after a sufficiently large time T.

Since the process by which our learning agent estimates the strategy of the oppo-

nent is constructed as a Bayesian belief process, the sequence of updated probabil-

ities, {Pr{H°n(t)\OUt)},..., Pr{Wn(t)\O^t)},..., Pr{Hk
n{t)\Oi(t)}} comes arbitrar-

ily close to {0,..., 1,..., 0} for some i e {0,1, 2,..., k} as t —> T. This implies that

Hl
n(t) is the true hypothesis. Therefore, H™w(t) = E r ° { ^ r { # n ( * ) l < W ) } x #n(*)}»

by construction, and, therefore, H%ew(t) —> H%
n(t) as t —> T. Since the opponent deter-

mines its strategy at each step using H"ew(t) and since our agent determines its optimal

strategy and the maximum payoff at each step in response to this updated opponent

strategy, the result is proved. •
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Thus analytically we have proved that our algorithm converges. Now, we move on de-

scribing formally the representation of P n ( t ) in terms of matrices and analyse how to

obtain a good representation of the space of possible opponent offers with the minimum

number of matrices. By such an analysis we can constrain the search space of the adap-

tive algorithm and make it efficient even in environments where very little information

is available about the opponent.

4.1.3 Representation of the Strategy Space

In order to do achieve such a representation, we define the opponent's Offer Generating

Function as OGF. Now in order to estimate the opponent's OGF, we propose that the

learning agent first models the range of this function formally as a vector space [Hal-

mos, 1974]. Each element in this space can then be represented as a linear combination

of independent basis vectors 3. Then we construct a special set of matrices that are

formed by combinations of these basis vectors M = Mx, M2,..., Mn, each of which

is a possible form of P n ( t ) . Thus by appropriately selecting different linear combina-

tions of these matrices, we cover the entire space of possible distributions of P n ( t ) . A

specific linear combination of matrices, therefore, specifies one possible distribution of

P n ( t ) and the agent needs to find the specific linear combination which is the closest

approximation to the opponent's OGF. The degree of closeness of the two distribu-

tions (Pn( t) and the OGF) is determined by the similarity of the offers generated by

them. This method of estimating a distribution is described as the Likelihood Estima-

tion method. Therefore our agent, in successive negotiations, tries to build a model

of P n ( t ) , using learning, that would generate the same offers as the opponent would

using its own OGF. This knowledge enables the agent to strategically respond to its

opponent's play.

In more detail, we consider two agents, say buyer X and seller Y, negotiating over

3 This approximation reduces the search space, while still allowing us to represent the uncertainty in
the problem.
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price. The objective of the learning is to enable X (for instance) to estimate the OGF

of Y and respond appropriately. Therefore the agent needs to use the incoming offers to

form a model of the opponent's behaviour. To this end, we describe the procedure we

have derived for this in detail in the next section.

4.1.4 Likelihood Estimation using Markov Chains

We describe the negotiation process from the point of view of the buyer. So X models

the offer generating process of the seller Y. Now, X knows that Y may change its

strategy during the course of the negotiation process. So, X models this process of

change as a Markov chain, by defining the state space S as the set of strategies given

by S = {SQ,S°, . . . ,s£j and by representing the strategy change process by P n ( t ) .

Therefore, Y switches between the strategies in S according to the transition probability

matrix P n ( t ) , which varies with time. Given this, X has to determine a representation

for P n ( t ) that closely approximates the strategy profile of Y. To do this, initially, X

randomly selects a sample probability distribution, a n ( t ) (n and t as usual represent

the fact that this distribution changes at each step of the process and over time), over a

finite set of matrices M. a n ( t ) is the prior for our learning model. The objective is to

update this prior and obtain the posterior distribution by observing the offers of Y. X

calculates the probable strategy profile of Y using c*n(t) as:

(4.5)

where c^ G a n ( t ) and Mi e M. Once it has this profile, which is a row vector, in terms

of the a-s, X randomly chooses one strategy from the profile. We denote this strategy

determined by the a[s as /(a*). X now generates an offer, An, by using ip = f(oti)

in equation 2.1. Therefore, An, is a function of the a^s. Now we want this offer to

match On, the offer of Y, as closely as possible. To this end, if we assume that the

basis matrices, M i } are predetermined to represent the entire set of hypotheses about
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the opponent's model, we must then find the appropriate distribution of a* that yields

an An which best approximates the OGF of Y. Using Bayesian inference, this is done

in the following manner.

In general, if M is the model that we wish to learn from the data D, then from section

2.3.2 we have:

P{M}D)=m^iiMi (4.6)

where P(M\D) represents the posterior, P(D\M) represents the likelihood and P(M)

the prior. Here, M is the opponent's model specified in terms of the a-s and D repre-

sents the offers that the agent receives. For ease of mathematical analysis, we rewrite

the above equation by dropping the denominator as:

P(M\D) oc P{D\M) x P{M) (4.7)

Now we want the updated distribution to be a good estimate of the model. This is

achieved by maximising the posterior (that is, Max{P(M\D)}). Again, for convenient

analysis, we rewrite the above equation in terms of their logarithmic functions. The log-

arithmic function is monotonic so we can write arg(Max{P{M\D)}) as arg(Max{log(P(M\D))}

Applying the logarithmic function to both sides of equation 4.7, we have:

Max{log(P(M\D)} = k,Max{logP(D\M) x P(M)} (4.8)

where k is some constant of proportionality. This equivalent to (removing k)\

M i n - l o g { ( P ( M \ D ) ) } = M i n { - l o g { P ( D \ M ) x { ) } }
(4.9)

= Min{-logP{D\M) - logP(M)}
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Then, if we assume that the a-s follow a Gaussian distribution initially, we can rewrite

the RHS of the above equation in terms of An and On as [Tikhonov, 1963]:

- logP(D\M) - logP(M) = - * exp{-\On - An\} * exp{ V -^}} (4.10)

where z is some constant. This implies that:

- logP(M\D) = - * exp{-\On - An\} * ezp{]T ~f}} (4.11)
zp

where zp = k x z. Therefore in order to maximise the posterior P(M\D) we need to

minimise — P(M\D), which from the above equation is obtained as:

min | (\On - An\) - {A} x ^ a ? 1 (4.12)

Here, the term |On — ^nl is called the empirical risk, £ \ a? is called the prior regu-

larisation term and A is a constant. From equation 4.12 we see that when A —> oo the

regularisation term dominates and, therefore, the solution to the problem approaches

the prior distribution (that is, the unlearned initial distribution of the opponent's model)

and when A —> 6 the solution tends to the posterior distribution (that is, the true learned

distribution of the opponent's model). Therefore A controls the learning process in

equation 4.12. Now, since the agent is learning within a Markov chain framework, the

a-s have to satisfy an additional constraint called the partition of unity constraint. This

is simply the condition that the a^s must sum to 1. This constraint also ensures that the

a'vs represent a true probability distribution. Incorporating this constraint in equation

4.12 we have the optimisation problem:

min < \On — Ar,\ — {A} > a, > , s.t Hat = 1 (4.13)
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In general Bayesian inference methods, the regularisation term is used to represent any

prior information we have about the strategy distribution. For instance in equation 4.12,

by using this form of the prior, for instance, we are saying that we know that some of

the a-s are zero and that the others are close to 1 (because the maximum value of ^ a?

can only be 1 and this can be achieved only if a few a[s are close to 1). Therefore, by

correctly choosing this term, we can make the solution move closer to the actual OGF

of Y and it also gives us the flexibility of representing many different types of Y's be-

haviour. Given this flexibility, this method of learning therefore becomes a powerful

tool for studying a wide range of adaptive negotiation processes. Therefore this method

has been developed as a generalisation of algorithm 2 to formalize the relationship be-

tween the prior distribution of the opponent's OGF and the actual observations of the

opponent's offers. Therefore although we develop an algorithm based on the likelihood

estimation method and prove its convergence, we do not implement it in this work. We

now formally describe the algorithm based on this method.

4.1.5 Adaptive Negotiation using the Likelihood Estimation Method

We now present our algorithm for adaptive negotiations and describe its properties. To

start with, we break up the entire negotiation process into a series of discrete steps, each

of which corresponds to the event of receiving an offer from the opponent. To build

the model of Y's OGF, X, at the first time step n, of the process observes Y's offer

On. X then calculates P n ( t ) using a sample a n ( t ) and randomly picks /(a*). X then

computes An using /(«i) and equation 2.1 (see algorithm 3). X then solves equation

4.12 to determine the optimised a[s: It uses these a\s to determine the updated P n ( t ) .

It then moves on to the next step and repeats the above steps till the deadline T of Y

is reached. It repeats this encounter with Y and reoptimises a[s using new data. By

using the updated a n ( t ) at each stage within a negotiation encounter, it learns within

the encounter and by using new offers to reoptimise the a'ts by repeatedly negotiating

with the opponent it learns across encounters as well. This dual learning makes the
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algorithm very effective in learning the opponent's OGF both quickly and correctly.

Moving on to discuss some of the properties of the negotiation process, we claim that

the process is non-stationary because Y can change its strategy during the course of

the negotiations. Also the OGF of Y can change during the negotiation because the

parameters T and RP can change. This algorithm assumes that T and RP, though

changing, are known at each stage of the process. However, the parameter ip in equation

2.1 both changes and is unknown. Another important assumption of the model is that

in repeated negotiations we assume that Y uses the same OGF to generate offers 4.

However, as the process of generating offers is probabilistic, we obtain new offers from

the OGF and therefore more data for our model.

Now, using this algorithm we claim that the learning agent X eventually learns the true

OGF of Y. In order to prove our claim we need to first state the Weak Law of Large

Numbers from probability theory [Feller, 1968]:

The Weak Law of Large Numbers 1. Let X\, X2,.., Xn be a sequence of n independently

and identically distributed random variables. Each Xi has the same mean /i and standard

deviation a. Now define a new variable:

„ X1+X2 + .:.
A =

n

Then as n —> oo, the sample mean < x > of X equals the population mean \i of each

of the variables X{.

Intuitively this theorem states that the mean of the means of randomly selected samples

from a population, converge to the actual mean of the larger population as the number

of samples increases. The convergence of our algorithm can be shown as a corollary to

this theorem.
4 When this is not the case the learning is less effective because it takes longer to learn more variations

in the pattern of offer generation. However it is reasonable to assume that there is some common pattern
of behaviour across negotiations.



Chapter 4 Adapting to Changes in the Opponent's Strategy using Bayesian LearningS4

Corollary 1. In the non-stationary negotiation process, if a n ( t ) represents the true dis-

tribution of strategy profiles of the opponent Y, and if in each negotiation encounter

we use a randomly selected sample from a n ( t ) for learning in algorithm (3), then over

repeated negotiations the mean of the sample distributions converges to the mean of

a n ( t ) and therefore converges to the true OGF of its opponent.

Proof. We start with a sample of the true distribution an(t) with which we generate

the strategy profiles of the opponent Y. Then let each sample of this distribution be

denoted by a\(t). Now, in repeated encounters during the learning process, we use

different samples from the same distribution a n ( t ) for estimating the strategy profile of

Y. Let the mean for each a\(t) be denoted by Hi(t) and the sample mean be denoted

by fJ-sampie(t)- Also let the mean of a n ( t ) be denoted by \x. Then, by the Weak Law of

Large Numbers, (J,sampie{t) —» £t as the £ —» oo. This implies that the model converges

to the true an (t) and to the true OGF of its opponent. •

Having described a formal method of estimating the opponent's strategy profile, we now

proceed to give our empirical analysis in the next section.
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Algorithm 3 The Adaptive Negotiation Algorithm using the Likelihood Estimation

2. for (n = 0,1,2,..., deadline)

3. input opponent offer p e Domain{On(t)}

4. initialize an(t)

5. compute Pn(t)

6. compute strategy set Sn(t) from equation(4.3)

7. select random strategy /(a*) from Sn(t)

8. compute An(t) from /(c^) and equation (2.1)

9. compute optimised a°s using equation (4.12)

10. substitute a°s for QjS

11. compute P n ( t ) from equation (4.5)

12. next n

13. next£

4.2 Empirical Evaluation

The aim of the algorithms detailed in this chapter is to find the correct representation of

the opponent's strategy profile. Here the opponent is non-stationary in that its strategies

are changing with time but it is not explicitly modelling and adapting to our agent's

strategic play. Specifically, using algorithm 2 we do this by initially assuming a proba-

bility distribution over the set of possible matrices that represent the opponent's strategy

profile and then by constantly updating this distribution until we are left with only one
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matrix (that is, all other matrices are multiplied by a zero probability). For this we start

with an initial set of matrices and a random arbitrary distribution over this set of matri-

ces. We consider a large number of possible representations of the opponent's behaviour

and, therefore, a correspondingly large number of matrices to increase the probability

that the true representation or the actual matrix that specifies the opponent's strategy

profile is a part of this set. This is a crucial assumption of our algorithm, however it is

not limiting because it is reasonable to assume that our agent has sufficient knowledge

of its opponent and the environment to include the true strategy profile as one among

many possibilities. Now we can measure the number of iterations in which the agent

learns the true strategy profile of its opponent. To this end in our experiments we have

varied: ,

• The number of matrices that are used to represent the strategy profile of the op-

ponent.

• The initial probability distribution over the matrices. In BL terms this corresponds

to the prior distribution (see section 2.3.2).

• The conditional probability distribution used to calculate the posterior distribution

(see section 2.3.2).

• The utility function of the agent.

Also, here, we do not train the agent but directly deploy it in the negotiations. It however

learns the true model of the opponent's behaviour over repeated negotiations. So we

measure the number of negotiations it takes for the agent to learn the true model of

the its opponent's behaviour. We have also compared the share in the profits (which

is calculated as a percentage of the total utility it could have gained if the agent had

known the strategy profile of its opponent at each stage of the negotiation process), that

the agent earns using our algorithm with the profit-share earned by an agent using a
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standard BL algorithm from the literature (specifically it uses the model of Zeng and

Sycara — see section 2.4).

In more detail, figure 4.1 shows the number of negotiations in which the agent learned

the true model of the opponent's behaviour in over 200 experiments. Figure 4.2 shows

the average time each negotiation took. Table 4.1 shows the mean iix and standard

deviation d of the number of negotiations. On an average it can be seen that it takes an

average of 60 encounters for the agent to learn the true model of opponent's behaviour.

Here ux = 6 encounters and 98% of this population is within 2cr distance from the

mean. We would expect, that during the lifetime of a complex multi-agent system,

the agents interact with each other hundreds of times. In this context an average of

60 encounters to learn the true model of opponent behaviour is, we believe, a good

performance. Table 4.2 shows the mean //2 and standard deviation o<i for the time taken

for each negotiation. Here, 97.5% of the population is within 2a distance from the

mean. It takes on average 23 seconds to conclude each negotiation encounter. This

is again a very good performance. Naturally the time to conclude a negotiation can •

increase depending on the deadlines of the agents, however we believe that typically in

the types of domain that we are interested in the time of interaction would be short.

Having examined the time taken to learn the opponent's model we now turn our atten-

tion to the profits earned by the adaptive agent using algorithm 2. Figure 4.3 shows the

adaptive agent's share of the profits compared to that of a non-adaptive agent and table

4.3 shows the mean and standard deviation of the profits. As can be seen, using our al-

gorithm the agent achieves nearly 83% of the profits while negotiating with an adaptive

opponent as compared to the stationary one that earns only 54%. This a direct result of

using a non-stationary algorithm that captures the change in the opponent's behaviour

pattern as a function of time. Our algorithm therefore develops a more accurate model

of the opponent's behaviour than the stationary algorithm and hence gains a larger share

of the profits. This is a clear advantage of using our algorithm and corresponds well with

our expectations.
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Now, in order to show how much more effective than random search our algorithm is we

present the following analysis. If we assume that there are k hypotheses for P n ( t ) , then

in the random case the probability of finding the true hypothesis is always \/k (i.e., this

probability does not improve with time). However, the convergence of our algorithm is

guaranteed by theorem 2 and therefore our estimation of the true P n ( t ) improves with

each iteration and it will eventually converge. Taking this, and the fact that the algo-

rithm converges on an average within 1380 seconds (see tables 4.1 and 4.2) by varying

different parameters, we claim that our algorithm is k times more effective than random

estimation. Therefore, even in the case when there are only 2 hypotheses at each step

n for P n ( t ) our algorithm is 200% more effective than random estimation. Obviously,

as we increase the number of hypotheses, which allows for a more general representa-

tion of P n ( t ) and therefore of the uncertainty in the problem, the effectiveness of our

algorithm over random estimation increases proportionally.

Iterations to Convergence

80

<-> 5 0

2 4 0 -

5 30 -

50 100 150 200

Nuinliei of Negotiations v. i ly i iuj P.ii.imeters

250

FIGURE 4.1: Convergence to the true opponent model over repeated negotiations.

Negotiations
200

Mean
60.32

Std Dev
5.69

TABLE 4.1: Time taken for convergence to the true opponent model.

Negotiations
200

Mean
23.73

Std Dev
2.12

TABLE 4.2: Time for Negotiation.
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FIGURE 4.2: Time taken for each negotiation.
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Algoithms
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FIGURE 4.3: Comparison between non-stationary and stationary Algorithms: Share in
profits.

4.3 Summary

In this chapter we describe a new framework that we have developed, using Markov

chains, for studying negotiation in non-stationary environments. This is a rigorous the-

oretical model for learning in negotiations in non-stationary environments which can be

used to study decision making in many stochastic systems. Within this framework, we



Chapter 4 Adapting to Changes in the Opponent's Strategy using Bayesian Learning90

Negotiations
200

Mean
82.97

Std Dev
5.23

TABLE 4.3: Share in the Profits.

have derived, for the first time, an important result for. non-stationary Markov chains

that computes the distribution of the random variable, which defines it, at any future

step of the process given its initial probability distribution and the transition probability

matrices at each step of the process. Then, using this framework, we have developed

an algorithm to learn a strategy in response to a non-stationary opponent's play and

proved that it converges to the optimal strategy in repeated negotiations. By so doing,

we have satisfied requirement 6. Unlike previous work in this area, our algorithm does

not assume knowledge of the opponent's strategy profile and, as such, is a powerful tool

to analyse negotiations in real world environments where such uncertainty is common.

Our algorithm is also explicitly designed to deal with cases in which the strategy profile

is not only unknown, but changes with time during the course of the negotiation process

itself. The only assumptions that we make are:

• The agent has sufficient knowledge of its opponent to consider its true strategy

profile amongst many possibilities at each step of the negotiation process.

• The agent knows its own utility function, although this may change during the

course of the encounter.

This significantly extends the state of the art in the field of automated negotiations in

non-stationary, real world environments. For such cases, we have proved, analytically,

that our algorithm converges. Our empirical results prove that the algorithm converges

within reasonable timeframes to the true hypothesis under varying conditions including

changes in the utility function (thus satisfying bur requirement 3). Also, in our algo-

rithm, the states of the Markov chain represent the strategies that are available to the

opponent and the actual uncertainty in the problem is represented by the number of

hypotheses. Therefore we need not increase the number of states to represent greater
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uncertainty in the domain. The algorithm is also vastly more accurate than random

estimation.

We have also presented a formal model for the likelihood function in the Bayesian belief

update process, using the structure of the Markov chain, which helps us to reduce the

computation effort involved in updating the agent's knowledge even in complicated real

world scenarios. Thus algorithm 3 to scales well because it uses a linear combination of

a small set of matrices to cover the entire strategy space of the opponent. As such, we

only need as many vectors to span the entire space as there are degrees of freedom in the

optimisation problem described by equation 4.13. Therefore, even if there are a large

number of strategic choices for the opponent, because of the constraints imposed on the

problem by the Markov chain framework (the rows of the matrices should sum to 1),

using these vectors, this would translate to a small number of matrices. By doing this,

we have converted the problem of determining an unknown opponent's strategy from

an infinite space of possibilities to a low dimensional optimisation problem. This is a

significant step towards solving more general and complicated negotiation problems in

dynamic scenarios.

Now using algorithm 2 the agent can respond well to the opponent, however this al-

gorithm is not explicitly designed to adapt to changes in the environment. Given this,

and in order to satisfy all our requirements, we need to use both the RL algorithm of

Chapter 3 and the BL algorithms of this chapter in conjunction. In the next chapter we

examine in detail how this can be achieved.



Chapter 5

Comparison between Reinforcement

and Bayesian Learning Methods

So far in this work so far we have described how RL and BL techniques can be used for

automated negotiation in dynamic environments and against adaptive opponents respec-

tively. Specifically, we have proposed an algorithm based on RL techniques that can be

used for adapting to changes like deadlines and resource availability, whereas the BL

algorithm is best suited for modelling opponent behaviour. Against this background,

in this chapter we seek to compare these two learning methods by using them together

in an archetypal dynamic negotiation test setting. In more detail, we have simulated

a dynamic negotiation environment where the negotiation parameters change and have

simultaneously allowed the agent to interact with its strategic opponent. Our aim in

so doing is to determine the conditions under which the algorithms perform well and

also to examine their limitations. Thus our analysis in this chapter enables the agents to

choose the correct algorithm for different dynamic negotiations scenarios.

In more detail, the chapter is structured as follows: in section 5.1 we describe the test

environment, in section 5.2 we analyse the performance of the methods and in section

5.3 we conclude.

92
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5.1 Test Environment

In this section we describe in detail the test environment that we have used to evaluate

our algorithms. In the negotiation environment we have two agents negotiating with one

another on the price of an item. To represent the environmental changes we assume:

• The bandwidth or network resources available (RA) for the negotiations is subject

to change.

• The time available for the negotiation, represented by the deadlines (Ta) of the

agents, are subject to change.

• The financial resources available for the bargaining, represented by the reserve

price (RPa) of the agents, is subject to change.

We also assume that the other agent in the negotiation process is adapting to these envi-

ronmental conditions. Because the two agents are negotiating in the same environment,

we assume that the RA is common to both the agents although the other parameters

can vary. Therefore we now have a total of 5 parameters RA, Ta, RPa, Tb and RPb.

We also need to determine how the agent's opponent changes its strategies during the

course of the negotiation process. As before, our agent does not know its opponent's

parameters and does not try explicitly to learn them. Instead, it learns from repeated

interactions to build a profile of its opponent's play. Therefore in this setting the agent

is simultaneously adapting both to changes in the environment and to changes in its

opponent's behaviour.

To place this in context, we explicitly relate this setting back to those of the previous

two chapters. In Chapter 3, we experimented by simulating the same environmental

changes as those described above. However, we did not assume that the opponent was

also adapting to these changes. Thus the agent was only adapting to the dynamism in

the environment and not to an adaptive opponent. Again, in Chapter 4, the opponent
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was changing its strategy, however this was not in response to the changes that were

occurring in the environment. Therefore we did not change these parameters while ob-

serving the agent's behaviour. To sum up, then, in chapter 3, the agent specifically used

the reinforcement learning algorithm (algorithm 1), to adapt to dynamic changes with-

out considering the play of its opponent and in chapter 4 the agent adapted its strategies

in response to its opponent. However, these changes were not explicitly modelled as

being in response to environmental changes. Therefore, in these cases the agent's ne-

gotiation parameters did not change, although its utility function changed during the

encounter. Thus, the agent used the Bayesian learning algorithm (algorithm 2) to model

its opponent's behaviour and develop best response strategies. In this chapter, however,

the agent adapts to both the dynamism in the environment and to its adaptive opponent.

In more detail, the value of RA is generated by a random function before every offer

is made. The agents check this value and accordingly set their internal value of RA to

(high, low). For instance, the RA can be represented as a sinusoidal function which

ensures that resource availability fluctuates during the course of the encounters1. Simi-

larly, we also have a random function which tells the agent its current T value. However

this random function operated between a specific range of T values. We believe this is

reasonable because the deadline is not expected to change in a completely arbitrary man-

ner. Based on the current T value, the agent then calculates how much time it has left to

complete the negotiation process and accordingly sets the state to (high, low). Finally,

we have a random function that generates the RP for the agent. Like the deadlines,

the random function chooses this value from a specific range of values. The agent then

checks the amount of money it has at its disposal and sets its RP value to (high, low).

As the negotiation progresses, the agent moves between these states. These state tran-

sitions are governed by P£ and each action is rewarded according to R% (see chapter

3). These conditions are. similar to those described in chapter 3 however now, both the

' We could have used any periodic function. In particular, the results are independent of the type of
RA, we only need a function whose values are fluctuating.
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agents adapt to these changes. In contrast, in chapter 4, we assumed that the opponent

changes its strategies, however in that case the change was not due to changes in the

environment. In this case, the agents have to adapt to these conditions and reach an

agreement. Also they have to obtain a good share of the profits as represented by the

utility function. As before, the utility function is specified at each stage of the negotia-

tion process and represents the utility that the agent would gain in adopting a particular

strategy profile in response to that of its opponent's strategy profile.

We ran 200 simulations by varying these conditions to obtain an accurate performance

analysis of our algorithm. In particular, we wish to examine the performance of our

algorithms when changes in the environment contribute to changes in the negotiation

parameters and also when the opponent's strategies are changing. Thus for algorithm 1,

the input parameters are RA, T and RP. Algorithm 1 then recommends a value of ip to

use based on solving the RL problem. Now the agent is also given a set of possible strat-

egy profiles of opponent, its own utility function and the initial prior distribution over

the strategy profile of the opponent. Then using algorithm 2, the agent computes the

strategy profile that maximises its utility function. Therefore algorithm 2 recommends

a strategy profile for the agent in response to the opponent's strategy profile. Now in

order to compare the performance of the two algorithms we run both of them together

in these conditions and examine their performance.

5.2 Performance Analysis

In this section we compare the performance of two agents, one using algorithm 1 and the

other using algorithm 2. Specifically, we compare the number of agreements reached

using these two algorithms and the utility share they obtain. Based on these two met-

rics we make recommendations for using these techniques appropriately and also make

suggestions for integrating the reward schemes of both techniques in order to develop a

single integrated algorithm that would adapt to both environmental conditions and adap-
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tive opponents. First, however, we consider the number of agreements that are achieved

using our RL and BL algorithms (see figure 5.1).
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FIGURE 5.1: Comparison between RL and BL algorithms in terms of the number of
Agreements.

For these experiments we varied the resource availability RA, the reservation price RP

and the deadline T of the agent. Both the agents adapt to these conditions using algo-

rithm 1. As stated previously, this algorithm recommends a strategy based on changes

in resource, finance and time availability and hence the agents are able to adapt their

strategies to reach an agreement before these resources are exhausted. This results in

a high percentage of the negotiations ending in an agreement using algorithm 1. Algo-

rithm 2 recommends a strategy profile based on the model it forms of its opponent. In

more detail, the strategy profile that algorithm 2 recommends depends on the current

strategy profile of its opponent and the current utility function. This utility function is

designed to reward the agent for choosing a strategy that is a best response to the op-

ponent's strategy and not a response to the environmental conditions. Therefore using

algorithm 1 the percentage of negotiations that end in agreement is high (90.5%) (see

table 5.1). Whereas using algorithm 2 this percentage is only 59.5%. However this

figure still compares favourably with other non-adaptive algorithms (see chapter 3). So

when the changes in the negotiation parameters are very dynamic we recommend using
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the RL algorithm. This is because using the Bayesian algorithm, the agent is modelling

changes in its opponent's behaviour. Now, when this change is due to environmental

conditions, the agent is implicitly adapting to them. Therefore algorithm 2 is able to

react better than other non-adaptive algorithms to these changes.

Next, we compare the share in the utility that is obtained by the agents using the two

algorithms (see figure 5.2). This is computed as a percentage of the total utility that

could have been earned if the agent knew the opponent's strategy profile at each stage

of the negotiations. For the agent using the BL algorithm, the strategy itself is chosen to

maximise the utility function. For the agent using RL, the share is calculated based on

the same utility function, however it uses a strategy that is recommended as a response

to changes in the environment.

In terms of results, the BL algorithm enables the agents to earn a very high profit share

of 88.7% and using the RL algorithm the agent earns a profit share of 66.3% (see table

5.2). This because using algorithm 2 the agent is actually developing a strategy, based on

its model of opponent behaviour, that gives it maximum utility. Therefore it is expected

that the agent obtains a larger share of the profits than its opponent using this algorithm.

However even this figure compares favourably with the share of profits obtained by

the stationary algorithm we examined in chapter 4. This is because the agent is still

adaptive using algorithm 1 and recognises changes in the environment correctly. This

guarantees the agent a reasonable payoff during the negotiations. Therefore when we

wish the agent to bargain aggressively and gain a larger share of the profits we would

recommend using the BL algorithm.

Algorithm
RL
BL

Negotiations
, 300

300

% of Agreements Reached
90

59.5

TABLE 5.1: Comparison Table between RL and BL algorithms in terms of agreements
Reached.
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FIGURE 5.2: Comparison between RL and BL algorithms in terms of profits earned.

Algorithm
RL
BL

Negotiations
200
200

Mean
66.3
88.7

Std Dev
5.7

7.03

TABLE 5.2: Comparison Table between RL and BL algorithms in terms of Profits
earned.

5.3 Summary

Having tested the our algorithms under different conditions, we now detail their main

strengths and also discuss some of their limitations. To recap, we have tested the al-

gorithms when both environmental conditions change and when the opponent is also

adapting to changes in the environment. We have compared the number of agreements

that have been reached using both the algorithms and the percentage of profits earned

by the algorithms. We have chosen these two metrics because they represent the key

success factors in many negotiation encounters [Rosenschein and Zlotkin, 1994]. In

particular, we are actually measuring how the agent adapts to changes in its negotiation

parameters when these can change dynamically and how the agent models the strategies

of a non-stationary opponent.

We have seen that the agent using the RL algorithm achieves a very high percentage of
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successful agreements (90%). Thus by using the RL algorithm the agent is able recog-

nise sudden changes in deadlines, resource availability and reserve prices. This makes

the agent a smart negotiator in many types of dynamic multi-agent scenarios. However

in these circumstances the agent using the BL algorithm performs less well. Specifi-

cally, only 60% of the negotiations end in an agreement in such cases. Nevertheless, it

should be borne in mind that this still compares favourably with other non-adaptive and

heuristic algorithms (where only 49% and 56% respectively of the negotiations end in

agreement). Thus when the negotiation parameters are subject to frequent change, the

RL algorithm outperforms the other algorithms.

Turning now to the share in the profits obtained using the algorithms and considering

only those negotiations that end in agreement. The agent using the BL algorithm, by

making an accurate model of its opponent's behaviour, garners a large share (88%) of

the profits. However the agent using the RL algorithm gains only 66.3% of the profits.

This difference occurs because the strategy that this algorithm recommends is mainly

geared towards adapting to changes in the environment and reaching an agreement un-

der changing circumstances. However this algorithm also performs better than the non-

adaptive agent described in chapter 4 which gains only 54% of the profits. Thus in order

to bargain aggressively and gain a large share of the profits available, we recommend

that the agent should use the BL algorithm.

Now, if we assume that the opponent is also using the same algorithm to adapt to

changes in our agent's behaviour or in other words if our agent is negotiating with a

version of itself then it is our expectation that the profits will be evenly divided between

the two. If the problem is set up as a competitive game then the 50% share will represent

a unique Nash equilibrium solution. This however needs to be substantiated by future

theoretical and empirical analysis.

To summarise, our algorithms are successful in adapting to the different dynamic con-

ditions that prevail in many multi-agent systems.
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Conclusions

In this chapter we present our conclusions and outline the areas of further investigation

that follow on from these studies.

In this thesis we have developed a learning based mechanism for automated, adaptive

negotiation. Specifically, we have considered bilateral agents negotiating in multi-agent

settings. The agents have to adapt to changes in their environment which contribute to

changes in their negotiation parameters like deadlines and reserve prices (see Chapter

3) and they also have to adapt to changes in their opponent's strategy (see Chapter 4).

Given this background, the work in thesis has examined in detail how these twin ob-

jectives can be achieved. After a thorough analysis of the literature in negotiation the-

ory and multi-agent systems, we have identified Reinforcement Learning and Bayesian

Learning as suitable techniques for learning in the dynamic and uncertain environments

that we are interested in.

In more detail, fof adapting to environmental conditions the technique we employ is

based on Markov Decision Processes approach where the agent progresses from state

to state by choosing appropriate actions. Thus the agent learns an appropriate mapping

between states and actions through a reward scheme that differentiates between good

and bad choices. To achieve this, we have set up our negotiation problem as a Markov

100
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negotiation problem and have developed a novel value iteration based algorithm to de-

termine an optimal policy mapping between states and actions. Using this algorithm,

the agent autonomously learns to respond to changes in the environment.

For our specific problem, we have changed the deadline, reservation prices and resource

availability and have evaluated how the agent responds to these changes. Wehave also

compared our algorithm to other standard techniques for solving negotiation problems

and determined that it enables the agent to make more agreements. It is also important

to note that our agent is adapting to non-stationary changes in the environment; that is,

the underlying probability distribution that governs the transitions between the states is

a function of time. This is a significant extension of the state of the art in negotiation

theory and enables us to deal with negotiation encounters in many dynamic multi-agent

systems. In short in this line of work we have developed an efficient algorithm by which

the agents adapt strategies autonomously when they have only probabilistic knowledge

of the dynamics of the environment. We have also shown theoretically that the algorithm

converges to the optimal solution in a sufficiently large number of iterations.

Next, in order to adapt to changes in the opponent's behaviour, we have developed an

algorithm based on Bayesian Learning methods. This algorithm models the opponent's

behaviour using a probability distribution and updates this distribution using the infor-

mation that it gains by negotiating repeatedly with its opponent. Thus by using Bayesian

techniques the agent refines its model of the opponent's strategy profile and learns the

true model of opponent behaviour. As it models the behaviour it also develops a re-

sponse to the opponent's strategy. This response converges to the optimal as the agent's

model converges to the true opponent behaviour model. Again, our agent deals with

an adaptive, non-stationary opponent meaning our algorithm represents an extension of

the state of the art in both Bayesian Learning algorithms and the theory of automated

negotiations. We have empirically evaluated this algorithm against stationary adaptive

algorithms based on BL techniques and have shown that the utility earned is higher than

that earned using the benchmark algorithms. Therefore we claim that we have devel-
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oped an efficient algorithm for responding to non-stationary opponents which can be

deployed in many multi-agent systems.

Finally, we have compared the performance of the two learning algorithms in situations

in which both the negotiation parameters and the strategies of the opponents change.

Based on our experiments, we recommend that the reinforcement learning technique be

used for conditions in which the environment is very dynamic and the Bayesian learn-

ing technique be used for when the opponent is aggressive and changes its strategies

frequently during the course of the encounter.

To sum up, by using the learning algorithms we have developed our agent is able to

negotiate autonomously and make decisions on its own. To function effectively, it only

requires a reward scheme for the reinforcement algorithm and some information about

the interaction between the opponent and the environment for the Bayesian algorithm.

This therefore satisfies our requirement 1. The agent also functions at all times in the

absence of complete information about the environment and its opponent meaning that

requirement 2 is satisfied. In particular, algorithm 1 is specifically designed to deal with

changes in the negotiation parameters of the agent. Therefore we satisfy requirement 3

of our model. Algorithm 2, on the other hand explicitly models opponent behaviour and

is designed to cope with changes in its behaviour. This satisfies requirement 5. By doing

this, we are also implicitly adapting to changes in the opponent's parameters as the

opponent's final strategy is a result of its adaptation to the environmental conditions and

changes in its own parameters. Therefore we satisfy requirement 4. Our reinforcement

learning algorithm is also designed to strive for agreements during negotiations and we

have shown, empirically, that it is successful in achieving this (see chapter 3). This

satisfies requirement 6.

Against this background, we legitimately claim to have achieved all the research objec-

tives laid out in chapter 1. We have built an effective, adaptive, automated negotiation

model for conditions that prevail in many multi-agent systems and in so doing we have
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extended the state of art in the areas of: '

• Machine learning

• Automated negotiations

• Interactions in multi-agent systems.

6.1 Future Research Directions

The fundamental research that has been undertaken in this thesis can be used as a point

of departure for further research in a number of areas. Essentially this work has provided

researchers with a new method of looking at interactions between agents. We have

built separate algorithms, a reinforcement algorithm that deals mainly with changes the

agent's own parameters and a Bayesian learning algorithm that essentially deals with

changes in its opponent's behaviour.

From this, a number of future research directions naturally follow:

• Developing an integrated reward scheme for algorithms 1 and 2 in order to de-

velop a single algorithm for dealing simultaneously with changes in the nego-

tiation parameters and the opponent's strategy. For this, a method needs to be

devised by which the numerical reward signal of the RL process can be aligned

with the utility function used in algorithm 2. With this in place, a single algo-

rithm would then enable the agent to adapt to the different changes described in

this work.

• Extending these algorithms to deal with multilateral negotiations (that is negotia-

tions involving more than one other party). Such negotiations are important when,

for example the salesman has to negotiate with more than one service provider for

the broadcast of his programs to get a good deal in scenario 1 or when the retail
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manager has more than one network operator in her area who can provide her

with services in scenario 2. To deal with this extension, we could build from the

Markov chain framework and adopt the idea of using basis vectors to reduce the

state space representation used in this thesis so that it can account for a model of

its opponent's behaviour. However, any algorithm designed for multilateral set-

tings would need to use a different protocol than the alternating offers one we use

in this work because this only permits two parties to participate.

• Extending this work to deal with multiple issues, (that is, negotiation about issues

other than price). Such negotiations are important when, for instance, the sales-

man can bargain for both the price and the quality of transmission in scenario 1

or when the retail manager has a choice of several services and therefore needs

to bargain both on the cost of the services and the number of services that can

be provided to her in scenario 2. This, we believe, would be a relatively straight-

forward extension of the ideas developed in this work. Specifically, the utility

function would have to be modified to reflect the benefit gained from bargaining

across different issues. But the main structure of the algorithms can be retained;

This means keeping the changes in the environment denned as states of the non-

stationary Markov chain and exploiting their properties to determine future states

and the Bayesian method of learning from experience.

• Benchmarking the algorithms we have developed against human negotiations (as

Das et al. [2001] did for the continuous double auction format). Such studies,

would enable the relative benefits of automated and human negotiations to be

compared in order to determine their relative strengths and weaknesses. Such

evaluations are important since wide scale adoption of these technologies is not

going to happen until compelling evidence of their superior performance is avail-

able.
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