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Low back pain is one of the most frequent medical problems in the western world and its

consequent cost is enormous. However, despite the high occurrence of low back pain,

diagnosis of the causes is still a major problem. Research has indicated that low back pain

is often related to mechanical disorders of the spinal or holding elements. Therefore, it

could be very helpful for clinical diagnosis to study the motion of lumbar spine in order

to determine where abnormal motion exists and hence any sources of mechanical

instability. Digital videofluoroscopy (DVF) is currently the only practical medical

imaging technique to obtain real-time, continuous motion sequences of the lumbar spine.

However, DVF images suffer from the presence of noise, poor contrast and adjacent

structures near the vertebrae due to the low radiation dosage.

Recently, wavelet-based approaches have been applied in edge detection to acquire multi-

scale gradient images. In multi-scale detection, the edges are more accurately located

with low scales but some false edges are produced; with large scales, fewer false edges

are identified but traded against a reduced accuracy in the edge location. This project

presents a scale multiplication in the identification of spinal vertebrae as a basis for
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quantifying kinematics. The scale multiplication is defined as the product of the response

of the detection filter at different scales so that it combines the advantages of the low and

large scales. Once edges are determined as the local maxima in scale multiplication, more

robust detection results are obtained after thresholding. The threshold values are decided

by the standard deviation of the noise in the images. With the edge information of the

lumbar spine vertebrae, biomechanical parameters, such as rotation and intervertebral

angles can be measured via manual landmarking.

Another development of this project is the automated tracking technique by using the

Generalized Hough transform algorithm. With the mathematical description of the

vertebral edges detected by the wavelet scale multiplication method, the vertebral

movements in spine motion are tracked. This approach is applied to the DVF image

sequences from a calibration model and from ten human subjects to demonstrate its

reliability and robustness.

This research would benefit the diagnosis of low back pain and provide a platform for the

further development of other clinical analysis, such as the cervical spine study.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and Motivation

Low back pain is defined as pain in the spine or muscle of the low back. Low back pain is

one of the most frequent problems treated by chiropractors, osteopathic physicians,

physical therapists (physiotherapists), anesthesiologists/pain medicine physicians, and

orthopaedic surgeons or neurosurgeons. In the U.S., acute low back pain is the fifth most

common reason for all physician visits. The research found that about 80-90% adults

experience back pain at some point in their life, and 20-50% working adults have back

pain every year (Patel,A.T. et al. 2000; Phillips,D.L. 2004). The evidence from Britain

and elsewhere also shows that back pain is an increasing problem - not that there is any

evidence of changing pathology, but rather due to changed attitudes and expectations.

This trend has been particularly noticeable since the mid '80s. Moreover, the cost of low

back pain is enormous. The estimated cost to the National Health Service (NHS) in the

U.K. is £481 million a year (min-max range £356-649 million), with non-NHS costs,

such as private consultations and prescriptions, being an additional £197 million per year.

Costs of the Department of Social Security (DSS) benefit is estimated at about £1.4

billion with lost production estimated at £3.8 billion. This situation breaks down to an

annual NHS cost to a purchasing authority with 250,000 people of £2.2 million (range

£1.6-2.9 million) (Oxford Radfliffe Hospital 1995). A typical general practitioner (GP)

practice with five GPs and 10,000 patients would bear costs of about £88,000 (range

£65,000-118,000) (Oxford Radfliffe Hospital 1995). Similarly, the cost of back pain in

the U.S. is conservatively estimated to be upwards of 90 billion dollars (Phillips,D.L.

2004).
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However, despite the high occurrence of low back pain, diagnosis of the underlying

causes is still a major problem. A possible reason is that low back pain is a symptom and

it could be caused by different sources, such as muscle strain, arthritis, trauma, and

osteoporosis. The other reason could be the complicated structure of spine and the

difficulty of undertaking in vivo diagnosis and analysis. However, low back pain is often

related to the mechanics of the spine and can often be described as due to mechanical

disorders. Therefore, it could be very helpful to study the motion of spine.

Currently, digital videofluoroscopy (DVF) is the only practical medical imaging

technology available with which to acquire spine motion sequences. However, digital

videofluoroscopic images have poor quality and, in addition, quality varies across the

image. Images are normally analyzed manually, which is very time consuming, and inter-

and intra-observations should be carried out repeatedly to improve the accuracy. These

fundamental problems inspire this project of the development of spine motion analysis

with DVF image sequences. In summary, spine motion analysis with DVF images

currently suffers from the following problems:

1. Poor quality of DVF images due to the low dosage radiation in image acquisition. In

order avoid the potential health risks of radiation exposure, the dosage rate is set as low

as possible. Furthermore, the skilled radiographer is required to follow the subject's

motion. This can cause the loss of the anatomical details and then reduce the confidence

and accuracy of both manual and computer-aid landmarking.

2. Lack of a suitable edge detection method for the segmentation of the lumbar vertebrae

in DVF images. The development of an appropriate edge detector will benefit the motion

tracking and the spinal biomechanics studies. However, poor quality of DVF images

makes the edge detection very difficult. Moreover, too many unwanted fake edges are

generated or too many edge details are lost when a uniform threshold value is applied.
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3. Although the segmentation of the lumbar vertebrae and the tracking of the spine

motion can be carried out by manual landmarking. The experience and sufficient prior

knowledge on radiographic anatomy are needed. Furthermore, the landmarking procedure

is time-consuming and labour-intensive, which could cause errors.

4. Knowledge of biomechanical parameters such as rotation angle, intervertebral angle,

and translation in the spine motion, is not enough to model normal or abnormal spinal

movement. There is a lack of comprehensive quantitative modeling tools for the

diagnosis of low back pain.

1.2 Objectives

This study attempts to bridge the spine kinematics and computer vision fields and it is

expected that this multidisciplinary effort can benefit the diagnosis of low back pain. This

research aims to develop a method of automated segmentation and tracking of lumbar

spine motion for low back pain diagnosis. Patients suffering from low back pain could

display irregular movement at one or more intervertebral levels during movements of the

lumbar spine. Hence, it is expected that the source of the damage could be located by

identifying the abnormal motion at the vertebral level. Characterization of the normal

motion of the lumbar spine could therefore be very valuable as a basis for diagnosing low

back pain. The main objective of this research is to develop an automated segmentation

and tracking algorithm for the analysis of spine motion. Biomechanical parameters

describing the spine motion can be obtained by using this method and they should be

close to 'gold standard' values generated by a experienced clinician of the method is to

become accepted in clinical practice.
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1.3 Overview of the Thesis

In Chapter 2, the anatomy and function of the human spine is briefly introduced and the

main components of human spine are discussed in detail. The emphasis is then on the

lumbar spine and its motion. Several concepts in spine biomechanics, such as rotation

angle, intervertebral angle, instantaneous centre of rotation, instantaneous axis of rotation,

and range of motion are introduced. Finally, low back pain, the common causes and the

problems created are discussed. This chapter will be helpful for understanding the

motivation and the clinical background of the research.

Several popular medical imaging technologies are introduced in Chapter 3. The analysis

of their suitability for the study of spine motion is also given. The reason that the digital

videofluoroscopy (DVF) method is chosen is then discussed. The DVF system, the

radiation dosage and the image acquisition procedure are then presented in detail. Finally

the advantages and disadvantages of DVF images are discussed.

Chapter 4 deals with the edge detection problem. Edge information is of great interest in

many computer vision applications and how to obtain edges efficiently and effectively

has been a main concern in image processing. In this study, vertebral edges become an

crucial part of the processing because it affects the tracking results of spine motion. The

conventional edge detection methods are introduced briefly and then a literature review

of the application of the edge detection to vertebral identification is presented. Finally,

some current results are given and discussed.

Since the conventional edge operators are not able to yield the vertebral edges

sufficiently well for subsequent processing, we propose a better edge detection method in

Chapter 5. We first introduce the wavelet transform (WT) theory and multiresolution
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analysis (MRA) in brief. Moreover, their application in image processing and edge

detection is discussed to show the potential of the wavelet-based method in our project.

Our edge detection approach using scale multiplication method in both one-dimensional

and two-dimensional analysis is then presented. Some examples of edge detection results

on DVF images are then shown to indicate the performance of the multi-scale product

method in detecting the vertebral contours from DVF images. Finally, spine

biomechanical parameters, such as the rotation angle and intervertebral angle, are studied

based upon the manual landmarking of our edge detection results on DVF images."

Chapter 6 represents the Generalized Hough transform technique developed for

automated tracking of the vertebrae from the edge detection results of DVF images. After

a brief introduction to the Hough transform, its development and application, our

Generalized Hough transform (GHT) algorithm is described, including the selection of

the template model, the building of a table to describe arbitrary shapes (the Reference

Table) and the tracking procedure. The description of shape is essential in arbitrary shape

tracking. The Reference Table is introduced to represent the shape of target object. To

evaluate the performance, the GHT algorithm is applied to DVF image sequences from a

calibration model. Moreover, the comparison with the pre-set values of the calibration

model is conducted and the tracking error is measured. Finally, the approach is applied to

human subject DVF sequences and tracking results are presented.

In Chapter 7, our automated segmentation and tracking method is further tested using real

DVF image sequences from 10 healthy subjects. The biomechanical parameters, such as

rotation and intervertebral angles are measured and compared with the 'gold standard'

results obtained from an experienced clinician. Statistical analysis shows that they are

very close but, importantly, our automated method avoids many problems inherent with

manual landmarking. The track of the translation of the vertebra in the spine motion

sequence is also shown in this chapter. The study is based on both flexion/extension and

lateral bending of the lumbar spine.
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Chapter 8 summarizes the work of this thesis, draws the conclusions and points out some

likely directions for future development of the spine motion analysis and other

applications of our method.

1.4 Contributions of the Research

The main contributions of the research developed in this thesis are:

1. First application of a wavelet scale multiplication edge detection method for digital

videofluoroscopy (DVF) image processing. The good performance of this wavelet-based

operator overcomes the need for manual landmarking of the vertebral contour which had

to be conducted in previous researches. The vertebral shapes obtained by this method can

be used directly to describe the target shapes for the spine motion tracking.

2. Development of an automated tracking approach to locate lumbar vertebrae for DVF

spine motion analysis. The Generalized Hough transform is employed in our spine

motion study due to its good performance in handing noise and describing shapes. The

automated tracking method alleviates substantially the laborious and time-consuming

manual landmarking procedure.

3. The ability of study the continuous motion of the lumbar spine. First, DVF technique

has enabled the possibility of obtaining the continuous motion information of the lumbar

spine with low radiation dosage. Second, the proposed wavelet scale multiplication is

designed to be suitable for the segmentation of the vertebrae in poor quality DVF images.

Finally, the Generalized Hough transform is applied to the edge detections to conduct the

spine motion tracking. This automated segmentation and tracking algorithm has been
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tested using DVF image sequences from a calibration model and from healthy human

subjects. The experimental results are close to the pre-set values and the 'gold standard'

values obtained from the experienced clinician.
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Chapter 2

Human Spine and Low Back Pain

2.1 The Anatomy and Functions of the Spine

2.1.1 Introduction

The spine is one of the most important structural parts of the human body. Without it,

humans could not keep themselves in an upright posture or even stand erect. It allows

people to move about freely and to bend with flexibility. The spine is also designed to

protect the spinal cord, which transmits neural signals between the periphery and the

brain.

The spine is composed of thirty-four small bones called vertebrae that are stacked on top

of each other via intervertebral discs to create the spinal column. From the top and

downwards, these vertebrae can be described as five components: the cervical spine

consisting of seven vertebral bodies; the thoracic spine consisting of twelve thoracic

vertebral bodies; the lumbar spine consisting of five lumbar vertebral bodies; the sacrum;

and the coccyx (Dykes,M.I. 2002; Oliver,J. et al. 1995). The vertebral column is shown

in Figure 2-1. In anatomy, lateral view means away from the midline and toward the

body side, shown in the middle column of Figure 2-1 and anterior means toward the front

of the body while posterior means toward the rear of the body. Moreover, the terms of

anterior and posterior (A/P) are almost always used in pairs in this thesis.
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Figure 2-1 Spine column (adapted from Hosmat Institute for Spine Problem (HISP) with kind
permission).
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Between each vertebra, there is a soft, gel-like cushion called the intervertebral disc. It

helps absorb pressure and keeps the bones from rubbing against each other. Moreover,

the discs allow flexibility in the spine and assist the muscles as shock absorbers.

Each vertebra is linked to others by groups of ligaments, called articular ligaments. An

articular ligament is a short band of tough fibrous dense regular connective tissue

composed mainly of long, stringy collagen fibers. Ligaments connect bones to other

bones to form a joint. They are elastic and lengthen under tension. There are also tendons

that fasten muscles to vertebrae. Tendons are similar to ligaments except that ligaments

join bone to bone and tendons are inelastic. Furthermore, each vertebral motion segment

(a term for the functional spinal unit, which is the smallest physiological motion unit of

the spine.) has two facet joints, also known as zygapophysial joints. They are located on

the posterior of the spine on each side of the vertebrae where they overlap the

neighbouring vertebrae. The biomechanical function of each pair of facet joints is to

allow a small amount of lateral bending, flexion and extension of the spine and prevent

excessive twisting.

The spinal column also holds and protects the entire spinal cord and its thirty-one pairs of

spinal nerve roots. Each root consists of the union of a sensory dorsal root and a motor

ventral root (Bergman,R.A. et al. 1989). The roots exit the spine on both sides through

spaces (intervertebral foramina) between each vertebra and transmit sensory and motor

impulses to and from different parts of the body.

The normal spine has an S-shape when looking at it from the lateral surface. The cervical

spine curves slightly inward, the thoracic curves outward, and the lumbar curves slightly

inward. The S-shape of the healthy spine allows for an even distribution of weight and

other stress applied on the spine. In particular, the lower potions of the spine hold most of
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the body's weight, so the segments in this part of spine have stronger structures, which

will be discussed later.

2.1.2 Basic Spine Anatomy

2.1.2.1 Spinal Vertebrae

The vertebrae, as shown in Figure 2-2, are the building blocks of the spinal column. The

body of each vertebra is the large, round portion of bone that is attached to a bony ring.

When the vertebrae are stacked one on top of the other, the ring creates a hollow tube

where spinal cord passes through.

The bony ring attached to the vertebral body consists of several parts. First, the laminae,

which are two broad plates directed backward and medially from the pedicles, extend

from the body to transmit the forces from the spinous and inferior articular processes.

Secondly, the spinous process is directed backward and downward from the junction of

the laminae and serves for the attachment of muscles and ligaments. Then there are two

transverse processes projecting one at either side from the point where the lamina joins

the pedicle, between the superior and inferior articular processes. The transverse

processes function as the attachment of muscles and ligaments. Finally, the pedicles are

two short, thick processes that connect to both sides of the laminae (Bogduk,N. 2005;

White,A.A. et al. 1990).

The vertebra, like all bones, has an outer shell called cortical bone. It is extremely hard

and composed of multiple stacked layers with few gaps. Cortical bone forms the surface

of bones and contributes about 80% of the weight of a human skeleton (Hubal.M.J. et al.

2005). The main function of cortical bone is to support the body, protect organs, provide
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levers for movement and store minerals. The inside is made of a soft, spongy type of

bone, called cancellous bone, which has a honeycomb structure. The cancellous bone fills

the inner cavity of bones with the low density and strength of osseous tissue.

Body

Pedicle

Transverse process

\

Superkw
articuSa?
process

Inferior'
articular
process

A

Body

Anterior tubercle o!
transverse process

B
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Foramen
transversawm

Posterior tubercle of
transverse process
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Spinous process
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Suicus ior transverse process

nerve

Figure 2-2 Spinal vertebrae (Hochamn.M. et al. 2005).
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2.1.2.2 Intel-vertebral Disc

The intervertebral discs are flat, round "cushions" that act as shock absorbers between

each vertebra in the spine, as shown in Figure 2-3. There is one disc between each pair of

adjacent vertebrae. Each disc has a strong outer ring of fibres called the annulus fibrosus,

and a soft, jelly-like centre called the nucleus pulposus (Bogduk,N. 2005; Giles,L.G.F. et

al. 2003; Oliver,! et al. 1995; White.A.A. et al. 1990).

The annulus fibrosus consists of several layers of fibrocartilage, with the fibres of each

layer running perpendicular its neighbours. So the annulus fibrosus is designed to be the

strongest area of the disc and it also helps keep the disc's center intact. The strong

annular fibers contain the nucleus pulposus and distribute pressure evenly across the disc.

The nucleus pulposus is viscous and fluid, like jelly. The nucleus pulposus is made up of

tissue that is very moist because it has high water content. The water content helps the

disc to act like a shock absorber - if subjected to pressure from any direction, the nucleus

pulposus will attempt to deform and will thereby transmit the applied pressure in all

directions.

2.1.2.3 Spinal Cord and Nerve Roots

The spinal cord is a column of millions of nerve fibers that run through the spinal canal,

as shown in Figure 2-4. The main function of the spinal cord is transmission of neural

inputs between the periphery and the brain. It extends from the brain to the area between

the end of the first lumbar vertebra and top of the second lumbar vertebra. At the second

lumbar vertebra, the spinal cord divides into several different groups of fibers that form

the nerves that will go to the lower half of the body. For a small distance, the nerves
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Figure 2-3 Intervertebral Disc.

actually travel through the spinal canal before exiting the neural foramen. This collection

of nerves is called the cauda equine while it is still inside the spinal canal (OliverJ. et al.

1995; Phillips,D.L. 2004).

The spinal cord is covered by three meninges - the outer dura mater, the arachnoid mater,

and the innermost pia mater. The dura mater forms a watertight sack around the spinal

cord and the spinal nerves. Inside this sack, the spinal cord is surrounded by

cerebrospinal fluid. The arachnoid mater, attached to the inside of the dura, surrounds the

spinal cord. Cerebrospinal fluid flows under this layer in the subarachnoid space, which

is full of the delicate fibers of the arachnoid extending down to attach to the pia mater.

Finally the pia mater attaches to the dura mater by the denticular ligaments through the

arachnoid mater in the spinal cord.
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Figure 2-4 Spinal cord and nerve roots.

The nerve fibers in the spinal cord branch off to form pairs of nerve roots that travel

through the small openings (foramina) between the vertebrae. The nerves in each area of

the spinal cord connect to specific parts of the body. This is why damage to the spinal

cord can cause paralysis in certain areas and not others - it depends on which spinal

nerves are affected (White,A.A. et al. 1990). The nerves also carry electrical signals back

to the brain that allow sensations to be felt and so damage to the nerve roots can cause

pain, tingling, or numbness.

2.2 Lumbar Spine and Low Back Pain

2.2.1 Lumbar Spine

The lumbar spine, as shown in Figure 2-5, consists of five lumbar vertebral bodies, which

are named according to their locations in the intact spinal column. The lumbar spine's

shape has what it called a lordotic curve (Bogduk,N. 2005). The lordotic shape is like
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backwards "C". If the spine is considerd to have an "S'Mike shape, the lumbar region

would be the bottom of the "S".

Each lumbar vertebra consists of a vertebral body and a vertebral arch (also called as

bony ring). The lumbar spine supports most of weight of the body, therefore the lumbar

vertebral bodies are the largest of the spine. They are wider from side to side than from

front to back, and a little thicker at the front than at the back. It is flattened or slightly

concave above and below, concave behind, and deeply constricted in front and at the

sides. The vertebral arch, consisting of a pair of pedicles and a pair of laminae, encloses

the vertebral opening (foramen) and supports seven processes. The pedicles are very

strong, directed backward from the upper part of the vertebral body. Consequently, the

inferior vertebral notches are of considerable depth. The vertebral notches are the

concavities above and below the pedicles. When the vertebrae are articulated, the notches

of each contiguous pair of bones form the intervertebral foramina. In general, the pedicle

width increases gradually from the upper lumbar to the lower lumbar. The laminae are

broad, short, and strong. They form the posterior portion of the vertebral arch. In the

upper lumbar region the lamina are taller than they are wide but in the lower lumbar

vertebra the lamina are wider than they are tall. The lamina connect the spinous process

to the pedicles (Ebraheim,N.A. et al. 2005).

Low back pain is very common complaint for a simple reason. Since the lumbar spine is

connected to the pelvis, this is where most of the body weight is concentrated and most of

the movements take place. Typically, this is where people tend to place too much

pressure, such as carrying a heavy object or twisting to move a heavy load. The repetition

of these tasks can lead to damage to the parts of the lumbar spine.
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Figure 2-5 Lumbar spine.

2.2.2 Movements of the Lumbar Spine

As we discussed above, the human lumbar spine is a complex structure consisting of five

vertebrae, associated with intervertebral discs and many attached ligaments and muscles.

Each of these components is fundamental for stability and movement. However, little is

known about the inter-connection between components. Images obtained from

videofluoroscopy (see Section 3.2) offer an opportunity to discuss the actual movement

of the lumbar spine between the extremes of motion. In the following, the two principal

spinal movements, flexion/extension and lateral flexion, which are involved in this

project, are briefly introduced.
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2.2.2.1 Flexion/Extension

Flexion is defined as forward bending projected onto the sagittal plane, i.e. the plane

which divides the body right and left halves; and extension is defined as backward

bending in the same plane.

During the process of flexion, the entire lumbar spine leans forwards. This is achieved

basically by the straightening of the lumbar lordosis. At the full range of forward flexion,

the lumbar spine assumes a straight alignment or is curved slightly forward, tending to

reverse the curvature of the original lordosis. The reversal occurs principally at the upper

lumbar levels. Forward flexion is therefore achieved for the most part by each of the

lumbar vertebrae rotating from their backward titled position in the upright lordosis to a

position in which the upper and lower surface of adjacent vertebral bodies are parallel to

one another. This relieves the posterior compression of the intervertebral discs and facet

joints, present in the upright lordotic lumbar spine. Some additional range of movement

is achieved by the upper lumbar vertebrae rotating further forwards and compressing their

intervertebral discs anteriorly (Bogduk,N. 2005; Dvorak,J. et al. 1991; Harvey,S.B. et al.

1998).

In general, extension movement of the lumbar spine is the converse of those that occur in

flexion. Basically, the vertebral bodies undergo posterior sagittal rotation and a small

posterior translation. However, certain differences are involved because of the structure

Of the lumbar vertebrae. During flexion, the inferior articular processes are free to move

upwards until their movement is resisted by ligamentous and capsular tension. On the

other hand, extension involves downward movement of the inferior articular processes

and the spinous process, and this movement is limited not by ligamentous tension but by

bony impaction.
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2.2.2.2 Lateral Flexion

Lateral flexion, also known as lateral bending, of the lumbar spine involves a complex

and variable combination of lateral bending and rotatory movements of the inter-vertebral

joints and diverse movements of the facet joints. As a result, lateral flexion of the lumbar

spine has not been subjected to detailed biomechanical analysis, probably because of its

complexity and the greater clinical relevance of sagittal plane movements and axial

rotation. However, some parameters of the biomechanics of lateral flexion can be studied

and will be discussed below.

Lateral flexion studies are commonly used to evaluate spine mobility, which is

considered an important parameter in the analysis of scoliosis (Novosad,J. et al. 2004;

Takahashi,S. et al. 1997; Vaughan,JJ. et al. 1996).

2.3.3 Biomechanical Parameters

After lumbar spine motion images are obtained, several biomechanical parameters, which

are available in the DVF image data sets (see Section 3.2), have been developed to

qualify the spine motion (Allen,R. et al. 1992; Muggleton,J.M. et al. 1998). The range of

parameters includes angles of rotation, intervertebral angles, instantaneous centre of

rotation (ICR), instantaneous axis of rotation (IAR), and range of movement (ROM).

This section will discuss the definition and measurement of these parameters in brief.
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2.3.3.1 Rotation Angle

In a flexion/extension or lateral bending motion sequence, each lumbar vertebra begins

from the initial neutral position to the extreme positions, and rotation angles measure the

changes of the vertebral angle during the movement process. To calculate the vertebral

angle, the four corners of the lumbar vertebra are located first and then the midplane of

the vertebral body can be obtained. The angle of the midplane and the horizontal

reference line is defined as the vertebral angle (Figure 2-6). Finally the change in

vertebral angle of each lumbar vertebra is computed frame by frame during the whole

motion sequence to obtain a series of rotation angles. The rotation angle should have

approximately sinusoidal distribution since the lumbar spine moves from the neutral

position to the extreme position and then back to the neutral position during

flexion/extension and lateral bending motion.

Figure 2-6 The definition of vertebral angle.
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Figure 2-7 The definition of intervertebral angle.

2.3.3.2 Intervertebral Angle (IVA)

The angle between two adjacent vertebrae is defined as intervertebral angle. In

computation of the intervertebral angle, midplanes of the two adjacent vertebrae are

obtained first and then the angle between the two midplanes is measured to get the inter-

vertebral angle (Figure 2-7). Recent research has indicated that a linear model can be

built to describe to relationship between the IVA and the range of motion (ROM) in

normal lumbar spine motion (Kondracki,M. 2001).
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2.3.3.3 Instantaneous Centre of Rotation (ICR)

For any body moving in the two-dimensioanl space, the motion can be defined from the

position, velocity and acceleration for any point on the body. There is a point for this

body for which the instantaneous rotational velocity is zero, which means that the body

rotates about this point. This point is called the instantaneous centre of rotation (or ICR).

Its location relative to the body is dependent on the relative values of the linear and

angular velocities. For near-zero angular velocities, such as pure translation motion, the

location of ICR approaches infinity.

The position of the ICR can be defined in several ways. For example, if the direction of

the velocities of two points A and B are known and they are different, as shown in Figure

2-8(a), the ICR is obtained by drawing the perpendicular to v^ through A and the

perpendicular to vB through B. The point in which these two lines intersect is the ICR. If

the velocities of vA and vB are perpendicular to the line AB and the magnitude of the

velocities are known, the ICR can be found by intersecting AB with the line joining the

extremities of the vectors, as shown in Figure 2-8(b).

In Figure 2-9, suppose the vertebra rotates from position 1 to position 2 without any

translation, then the intersection of the two perpendicular bisectors of AA' and BB' is the

ICR around which the vertebra rotates.
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Figure 2-8 Instantaneous Centre of Rotation (ICR).

Figure 2-9 Measurement of ICR in vertebral rotation.
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2.3.3.4 Instantaneous Axis of Rotation (IAR)

When the combination of sagittal rotation and sagittal translation of each lumbar vertebra

occurs during flexion/extension, the instantaneous centre of rotation (ICR) is not suitable

for describing such a complicated lumbar spine movement since the ICR considers only

rotation motion. Therefore, the biomechanical parameter known as the instantaneous axis

of rotation (IAR), is introduced here. The exact location of the IAR is a function of the

amount of sagittal rotation and the amount of simultaneous sagittal translation that occurs

during the phase of motion defined by the start and end positions selected. During the

flexion/extension, each lumbar vertebra exhibits an accurate motion in relation to the

vertebra below. The centre of the arc lies below the moving vertebra and is known as the

IAR, shown in Figure 2-10.

When IARs are located for each phase of movement and then plotted in sequence, they

depict a locus known as centrode of motion (Figure 2-11). The centrode is actually a map

of the path taken by the moving axis during the full range of motion of the joints. In

Figure 2-11, the flexion/extension of the vertebra can be reduced to small sequential

increments. For example, five such phases are illustrated in the figure. Each phase of

motion has a unique IAR. In moving from position 0 to position 1, the vertebra moved

around IAR 1. In moving from position 1 to position 2, it moved around IAR 2, and so

on. Finally, the IARs are connected in sequence and they describe the centrode.

Research shows that in normal lumbar spine motion, the centrode is short and is located

in a restricted area in the vicinity of the upper endplate of the adjacent lower vertebra.

However, in the abnormal lumbar spine motion, such as degenerative lumbar spine

movement, the centrode differs from the normal in length, shape and average location

(Gertzbein,S.D. et al. 1986). It can be seen that the centrode of normal vertebra motion is

short and tightly clustered (Figure 2-12(a)) and the abnormal vertebra motion may exhibit
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a longer, displaced and erratic centrode (Figure 2-12(b)). So the study of the IAR and the

centrode generated by the IARs could be very helpful in the diagnosis of low back pain.

MR

Figure 2-10 Instantaneous Axis of Rotation during flexion/extension.

Figure 2-11 Centrode of flexion/extension.
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(a) (b)

Figure 2-12 The centrode of normal (a) and abnormal (b) motion.

Mathematically, the location of an IAR can be expressed as:

~ X CR + *• I *•

Tsind
+

2(1 -cos0) 2tan(6/2)'

where (xIAR,yUR) is the coordinate of the IAR, (xCR,yCR) is the coordinate of the centre

of reaction, T is the translation exhibited by the moving vertebra and 6 is the angular

displacement of the vertebra (Bogduk,N. 2005), shown in Figure 2-13. The centre of

reaction (CR) is the point on the inferior endplate of the moving vertebra through which

the compression forces are transmitted to the underlying inter-vertebral disc. So the CR is

the mathematical average of all the forces distributed across the endplate.

However, with the above definition of the CR, it is difficult to locate its coordinate in a

DVF image. An important feature of the CR is that it is a point that undergoes no

rotation, which is the same as the feature of ICR. So (Kondracki,M. 1991) indicated that
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if a motion is divided into a pure rotation and then a pure translation, then the position of

the ICR in the pure rotation motion is exactly the position of the CR. Consider three

vertebral positions, 1, 2 and 3, as shown in Figure 2-14. In moving from position 1 to

position 2, the vertebra undergoes pure rotation around the ICR, by an angle of 6. In

moving from position to position 3, the vertebra translates a distance T in a particular

direction without further rotation. Hence the coordinate function of the IAR can be

rewritten as:

[xUR=xICR+T/2
Tsin0

2tan(0/2)'

where (x^,)/^*) are the coordinates of the IAR, (x1CR,yICR) are the coordinates of the

ICR, T is the pure translation exhibited by the moving vertebra and 6 is the angle of pure

rotation of the vertebra.

y u

Figure 2-13 Method I to calculate the IAR.
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iIAR

Figure 2-14 Method II to calculate the IAR.
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2.3.3.5 Range of Motion (ROM)

Range of motion (ROM) is the measurement of the achievable distance or rotation angle

between the fully flexed and extended positions of an observed subject during motion.

Radiographic studies provide the most accurate measurements of ROM (Littlewood,C. et

al. 2007). The technique of radiography helps to analyze the movement in the sagittal

plane for flexion/extension, horizontal plane for axial rotation and coronal plane for

lateral bending. For example, the range of motion of flexion/extension can be measured

by subtracting the maximum values from the minimum values of the angles of rotation in

the flexion/extension motion sequence (Van Herp,G. et al. 2000).

2.3.3.6 Summary

In this section, the biomechanical parameters related to spinal flexion/extension and

lateral bending are introduced briefly. If the image sequences of these spine motions are

available, some biomechanical parameters, such as rotation angle, intervertebral angle

and ROM, can be calculated simply by directly manual landmarking or some computer-

aided methods. Moreover, with the investigation of the translation of the lumbar spine,

the IAR can be obtained and then the distribution of IARs forms the centrode. All these

biomechanical parameters will help in the study of spine motion by quantitative analysis

or modelling tools using these parameters.
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2.3.4 Low Back Pain

Low back pain is one of the most frequent clinical problems presented in the western

world. It affects most people at some stage in their life and accounts for more sick leave

from work than any other single reason. Moreover, the cost of lower back pain is

enormous. The statistics have been presented in Chapter 1.

Low back pain is defined as pain perceived as arising from either the lumbar spinal

region or the sacral region or from a combination of both (Bogduk,N. 2005). Low back

pain can be either an acute or a chronic disabling condition. An acute lower back injury

may be caused by a traumatic event, like a car accident or a fall. It occurs suddenly and

victims will usually be able to pinpoint exactly when it happened. In acute cases, the

structural damage is likely to happen in the soft tissues like muscles, ligaments and

tendons. With a serious accident, fractures in the lumbar spine vertebrae may also occur.

Chronic lower back pain usually has a more insidious onset, occurring over a long period

of time. Causes include osteoarthritis, rheumatoid arthritis, degeneration of the discs

between the vertebrae, or tumours.

Psychological factors play a significant role in the onset of low back pain and the

transition from acute to chronic pain and disability. Depression, anxiety, distress and

cognitive factors have been linked to pain and disability (Linton,S.J. 2000). However,

recent research shows that psychological factors influence low back pain but are not the

most important causes of pain itself. Severe low back pain often arises from

biomechanical factors, such as inter-vertebral discs, apophyseal joints and sacroiliac

joints. These structures and their physical disruptions are strongly linked to low back pain

(Adams,M.A. et al. 2005). The cardinal movements of the lumbar spine include flexion,

extension, side flexion and rotation. Flexion and extension occur predominantly at the

lower two lumbar segments. Rotation at each lumbar segment is limited to only a few

degrees due to the vertical orientation of the lumbar facets. Combined movements like
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flexion and rotation, carry the highest injury potential. Repetitive movements, common in

sport, could fatigue the supporting structures of the lumbar spine and overwhelm the

protective mechanisms of the lumbar segments (Hainline,B. 1995).

However, diagnosis of low back pain is still a problem because it could be caused by

different sources and it is difficult to undertake in vivo diagnosis and analysis. Better

diagnosis of low back pain probably relies, to some extent, on improving the

understanding of spine biomechanics. Many researchers have focused on spinal motion

since disorders of spine could be revealed in abnormal spinal motion. Moreover spine

kinematics is able to investigate the spine movement without considering the forces

acting on the structures involved since the forces are difficult to measure in vivo.

Therefore spine kinematics could be very useful for better understanding of low back

pain and its diagnosis, treatment and rehabilitation.

Nowadays, several main medical imaging techniques have been explored to capture spine

images. However, not all of them are suitable in spinal motion studies. These techniques

will be discussed in the next chapter.
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Chapter 3

Digital Videofluoroscopy

3.1 Medical Imaging Techniques

Medical imaging techniques began with the discovery of X-rays in 1895 (Bushberg,J.T.

2002; Cho,Z.H. 1993). Since then medical imaging has developed rapidly and has proved

to be invaluable in diagnositic medicine. The popular medical imaging techniques will be

discussed in the following sections.

• X-rays.

An X-ray is a form of electromagnetic radiation with a wavelength in the range of 10

nanometers to 100 picometers (corresponding to frequencies in the range 30 +PHz to 3

*EHz) (BushbergJ.T. 2002). X-rays are primarily used for diagnostic medical imaging

and crystallography. Radiology is a specialised field of medicine that applies x-ray and

other techniques for diagnostic imaging. X-rays are especially useful in the detection of

pathology of the skeletal system, but also useful for detecting some disease in soft tissue.

However, traditional X-rays are seldom applied to some soft tissue problems, such as the

brain or muscle. In these cases, computerized axial tomography (CT), magnetic

resonance imaging (MRI) or ultrasound is used. X-rays images are usually of good

quality, but the radiation dosage is relative high. The scientific unit of measurement for

+ P is the symbol of SI prefix peta, which means 1015. A PHz is 1015 Hz.

* E is the symbol of SI prefix exa, which means 1018. A EHz is 1018 Hz.
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radiation dosage is the +millisievert (mSv). Because different tissues and organs have

varying sensitivity to radiation exposure, the actual dosage to different parts of the body

from an X-ray procedure varies. The term effective dosage is used when referring to the

dosage averaged over the entire body. For example, a typical chest X-ray results in an

exposure of about O.lmSv (Radiologylnfo 2007; Shrimpton,P.C. et al. 2003). Compared

with an effective dosage of about 3mSv per year of average person from natural

background (Radiologylnfo 2007), it is high radiation dosage and only a limited number

of static images can be obtained. For spine investigations that would usually be in the

neutral position and at the extreme positions of mobility and so it is impossible to analyze

spinal motion as the spine moves. An X-ray image of the lumbar spine is shown in Figure

3-1. The vertebral shapes are clear in the image, in particular, the L5 and sacrum can be

recognized even though they are covered by the pelvis. However, this image technique is

not adapted in our research because of the limitations of high radiation exposure and still

images.

• Computerized axial tomography (CT)

CT is a medical imaging method where digital processing is used to generate a 3-D image

from a large series of 2-D X-ray images taken around a single axis of rotation

(Popov,T.V. 2006). Many data scans are progressively taken as the subject is gradually

passed through a gantry containing the X-ray source and detector. They are combined

together by the mathematical procedure known as tomographic reconstruction. Since its

introduction in 1972 (Cho,Z.H. 1993), CT has become in medical imaging to be a

supplement to X-rays and medical ultrasonography and nowadays it is the "gold standard"

in the diagnosis of a large of number of different disease entities due to its excellent

+ The Sievert (Sv) is the international system unit of equivalent dosage. It attempts to reflect the

biological effects of radiation as opposed to the physical aspects, which are characterized by the

absorbed dosage, measured in Grays (Gy), which will be discussed in the later part of this

section.
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Figure 3-1 An X-ray image of the lumbar spine (adapted from Ruian People's Hospital for kind
permission).

image quality. However, CT is regarded as a high radiation diagnostic technique. For

example, compared with a typical chest X-ray exposure of about 0.1 mSv, a typical chest

CT has an effective dosage of 5.8mSv (Shrimpton,P.C. et al. 2003) or even 8mSv

(Radiologylnfo 2007). This amount of exposure is 2-3 times of the average person per

year from natural background. Furthermore, in a recent comprehensive survey in the UK

(Hart,D. et al. 2004), CT constituted about 7% of all radiologic examinations, but

contributed about 47% of the total collective dosage. This means that any increase in CT

examinations would lead to an overall increase in the total amount of medical radiation

used, despite the reductions of radiation dosage in other techniques. The other
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disadvantage of CT is that it cannot yield motion images because patients normally lay on

their back and should keep as stationary as possible during image acquisition. A CT

image of lumbar spine is shown in Figure 3-2. The vertebral shapes are clear in the image.

Moreover, the image is actually a 3-D image so the anatomical information can be

analyzed by investigating the horizontal layer in the image.

• Magnetic resonance imaging (MRI)

MRI is a method of creating images of internal organs and is primarily used to

demonstrate pathological or other physiological alterations of living tissues. This imaging

technique is based on the fact that body tissues act differently in strong magnetic fields.

In clinical practice, MRI is used to distinguish pathological tissue from normal tissue.

One of the advantages of an MRI scan is that, according to current medical knowledge, it

is harmless to the patient. It utilizes strong magnetic fields and non-ionizing radiation in

the radio frequency range. Since MRI makes use of radio waves very close in frequency

Figure 3-2 A CT image of the lumbar spine (adapted from Ruian People's Hospital for kind
permission).
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to those of ordinary FM radio stations, the scanner must be located within a specially

shielded room to avoid outside interference. Compare this to CT scans and traditional X-

rays which involve doses of ionizing radiation which may increase the chance of

malignancy, especially in children receiving multiple examinations. Furthermore, MRI

provides far better contrast resolution while CT provides superior spatial resolution. An

MRI image of spine is shown in Figure 3-3. The image offers anatomical information in

very good quality. The vertebrae bodies, the intervertebral discs and the soft tissues are

clear for clinical analysis and diagnosis. For a long time, MRI has been regarded as not

fast enough for motion analysis (Cho,Z.H. 1993) and it increases the cost of diagnosis.

Again, similar to CT, patients have to keep stationary in the process of image acquisition.

Therefore, MRI cannot yield dynamic images although this may change in future.

Figure 3-3 A MRI image of the lumbar spine (adapted from Ruian People's Hospital for kind
permission).
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From what has been discussed above, these medical imaging techniques are not suitable

for dynamic spine motion studies. They are limited by either radiation safety or by

providing static images only.

3.2 Digital Videofluoroscopy

Videofluoroscopy is an imaging technique to obtain real-time images by using a

fluoroscope which consists of an X-ray source and fluorescent screen. Therefore it allows

evaluation of regional spinal movement and specific intervertebral motion. Due to the use

of X-rays, patients suffer the potential health risks of radiation during acquisition the

procedure. Though physicians usually try to use low dosage rates, the length of a typical

procedure often results in a relatively high absorbed dosage. For example, the absorbed

dosage rate in the skin from the direct beam of a fluoroscopic X-ray system is typically

20-50 +mGy/min (FDA Public Health Advisory 1994). A dosage study was undertaken in

order to investigate this problem (Breen,A.Cf 1991). The absorbed dosage values

proposed in this research was compared with the typical values. The comparison result is

shown in Table 3-1. It is clear that there is a great reduction in radiation exposure.

The digital videofluoroscopic system used in this project is composed of a portable

passive motion table (PMT) and an X-ray videofluoroscopic system (Kondracki,M. 2001).

The passive motion table (PMT) has an upper section fixed and a lower section that can

+mGy is the symbol of milligray. Gray is the international system unit of absorbed dosage. Sv

(sievert) is the unit of equivalent dosage. To convert Gy to Sv, the radiation weighting factor COR

and tissue weighting factor coT need to be considered. The conversion equation is HT,R= a>R-

COT'DT,,R, where HT,R is equivalent dosage in Sv and DTR is absorbed dosage in Gy. For X-rays,

coR=l. For bone surface tissue, coT=0.01. So lGy=0.01Sv is assumed in this thesis.
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execute a smooth arc from the neutral position to 40° left, or to 40° right, and then back

to neutral. The PMT is motor driven and under the image intensifier tube so that the spine

movement controlled by the PMT can be recorded. The X-Ray videofluoroscopic system

consists of an X-ray generator, an X-ray tube assembly, an image intensifier tube, a

television camera, a VCR, and a monitor. The heart of the system is the image intensifier

tube. This tube permits diagnostic quality images to be produced at very low radiation

levels. It is used instead of intensifying screens and film as the image receptor. The

digital videofluoroscopy system (DVF) is shown in Figure 3-4. During spine movement,

the system records 5 frames per second. Furthermore, the analogue images are transferred

into digital format and then stored in a PC connected to the system.

Figure 3-4 The DVF system used in this project (Kondracki,M. 2001).
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Table 3-1 Absorbed radiation dosage (Breen,A.C. 1991).

Breen's DVF system

View

Lumbar A/P

Lumbar lateral

Absorbed dosage (mGy)

2.9

12.6

Typical fluoroscopic X-ray system

View

Lumbar A/P

Lumbar lateral

Absorbed dosage (mGy)

20

50

Table 3-2 Radiation dosage and screening times for ten subjects which will be analyzed in this
project (Kondracki,M. 2001).

Subject Index

BM

CR

DE

DO

GD

GP

JM

JW

NW

RM

Mean value

Average value

Total time (min)

1.7

1.9

1.6

1.7

1.7

1.8

1.8

1.9

1.9

2.3

1.83

0.915

Total dosage-area

product (Gy cm2)

6.82

3.43

5.87

4.88

3.85

5.34

4.05

5.98

4.77

6.01

5.1

2.55

Effective dosage

equivalent (mSv)

0.99

0.46

0.68

0.61

0.44

0.65

0.50

0.70

0.57

0.62

0.62

0.31

In the DVF system, the total radiation dosage of different subjects have been analyzed

(Kondracki,M. 2001) and are shown in Table 3-2. The average dosage-area product

(DAP) across all ten subjects for one screening is about 2.55 Gy cm2. There is a

significant reduction over the recommended maximum value of 15 Gy cm2 by the

National Radiation Protection Board (NRPB) of the United Kingdom.

Page|39



Chapter 3 Digital Videofluoroscopy

Digital Videofluoroscopy (DVF) was first introduced to study spine motion by Breen and

Allen in 1987 and subsequently developed further (Breen,A. et al. 1988; Breen,A.C. et al.

1987; Breen,A.C. et al. 1989a; Breen,A.C. et al. 1989b; Breen,A.C. et al. 1991;

Breen,A.C. et al. 1993). Since then DVF has been developed and widely applied in the

studies of low back pain (Allen,R. et al. 1992; Cholewicki,J. et al. 1991; Cholewicki,J. et

al. 1992; De Stefano,A. et al. 2004; Muggleton,J.M. et al. 1997; Muggleton,J.M. etal.

1998; Simonis,C. et al. 1992; Zheng,Y. et al. 2001; Zheng,Y. et al. 2003; Zheng,Y.L. et

al. 2004).

3.3 Conclusion

From the discussion in this chapter, digital videofluoroscopy is the only practical medical

imaging technique to safety obtain real-time, continuous motion sequences of the lumbar

spine. Using DVF images, the whole motion pattern of the lumbar spine could be

investigated rather than only at the neutral and extreme positions as in plain X-ray.

However, DVF images suffer from relatively poor quality due to the low radiation dosage.

This causes problems in identifying features in DVF images automatically, which is

much easier in X-ray, CT and MRI images. Furthermore, similar to plain X-ray images,

the quality of DVF images varies across the image. The images are brighter in the middle

area while the intensity and contrast are poorer in the other areas, as shown in Figure 3-5.

This causes problems in which the LI vertebra has low contrast against its neighbouring

area due to the effect of soft tissues and the L4-L5 area is often difficult to detecte due to

occlusion by the pelvis.

In conclusion, digital videofluoroscopy provides the possibility to investigate the spine

motion with a very low radiation dosage. However, the quality of DVF images is
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relatively poor. This leads to problems with the image processing which will be discussed

in the later chapters and forms the focus of the work undertaken in this project.

Figure 3-5 Typical DVF images from a motion sequence of the lumbar spine.
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Chapter 4

Conventional Edge Detection for

Lumbar Spine Vertebrae

4.1 Background

Edges characterize boundaries and therefore then detection is a problem of fundamental

importance in image processing. Edges in images are areas with strong intensity contrasts

- a jump in intensity from one pixel to the next. Edge detecting an image significantly

reduces the amount of data and filters out redundant information, while preserving the

important structural properties in an image.

This research project aims to develop a method of automated identification and tracking

of lumbar spine motion for low back pain diagnosis. Characterization of the normal

motion of the lumbar spine would form the basis for locating a source of damage by

identifying any abnormal motion at the vertebral level. Therefore development of a

suitable edge detector is the first step of this project. With the edge information, the

movement of lumbar spine can be tracked and the biomechanical factors can be studied.

Edge detection methods applied in this project are aimed at reducing significantly the

amount of data in images and filter out information that could be regarded as preserving
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the important structural properties and features of images. There are many conventional

approaches to edge detection, but most of them are divided into two approaches, known

as gradient-based and phase-based operators, in terms of the information used in these

methods.

4.2 Introduction to Edge Detection

Intuitively, an ideal edge has the properties of the model shown in Figure 4-1 (a). In gray

level, an ideal edge of this model is a set of connected pixels, each of which is located at

a step transition in intensity as shown by the horizontal profile in Figure 4-1 (a).

In practice, optics, sampling and image acquisition imperfections make edges more

closely modeled as having a "ramp-like" profile, which is shown in Figure 4-l(b). In this

model, a "thin" edge disappears and instead, the edge point now is any point contained

along the ramp and would then be a set of such points that are connected. The "thick"

edge is determined by the length of ramp, as it makes the transition from an initial to a

final gray level.

(b)

Figure 4-1 Model of an ideal edge (a) and a ramp edge (b).
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Gradient-based edge detectors are most generally applied for edge detecting. They locate

the edge by detecting the changes in brightness of images. The gradient-based edge

methods are divided into three categories (Nixon,M.S. et al. 2002; Sonka,M. et al. 1993):

l.Op erators that calculate the gradient of the image from the first derivate, such as

Canny, Sobel, Prewitt and Roberts;

2.0p erators that find the zero crossing of the second derivate of the image, such as

Laplace and Marr-Hildreth;

3.Op erators that attempt to match the image function to a parametric model of the

edge, such as the Active Contour (Snake) method.

Figure 4-2 shows a horizontal gray-level profile of a ramp edge, as well as the first and

second derivative of the gray-level profile. The first derivative is constant for the points

in the ramp and is zero in the areas of constant gray level. The edges are detected by

looking for maxima in the first derivative of the images and a threshold can be applied to

distinguish the real edges from noise. The second derivative is positive at the transition

associated with the low gray-level side, negative at the transition associated with the high

gray-level side and zero along the ramp and in areas of constant gray level. An edge

could then be detected by finding the zero-crossing of the second derivative. However,

the zero-crossing method is more sensitive to noise because zero crossings are difficult to

detect in a noisy background (Gonzalez,R.C. 1992), especially in cases of low signal-to-

noise ratio.

The 2-D gradient of an image fix,y) at location (x,y) is defined as the vector

VF -
dx

, where G,, / e (x,y) are the gradient operators in the x and y

direction. There are two important quantities in edge detection, the magnitude and

direction of the gradient vector. The magnitude quantity is usually denoted V/ , where
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Gray-level

First
derivative

Second
derivative

Figure 4-2 The profiles of gray-level, first derivative and second derivative

+Gy\2, while the direction is a(x,y) = tan l\ — -̂ . However, in practice,

absolute values are used to approximate the magnitude instead of squares and square

roots: V / = . This method is much more attractive computationally and still

preserves relative changes in gray level.

In order to be useful in digital image processing, these equations have to be expressed in

discrete form. A basic discrete definition of the first derivatives,^) is the difference
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— - f(x + \,y)- f(x,y), — - f(x,y + l)-f(x,y). Similarly, a second derivative is
dx dy

defined as the difference

y) , ^ f(X,y \) f(X,y\)
dy

Therefore, the gradient of each pixel of an image can be calculated from their

neighbouring pixels. In image processing, a concept of "subimage" is used so that the

neighbouring operation can be performed directly on the pixels of an image. The

subimage is also called a mask, which is the most prevalent terminology. In order to

obtain the gradient, each component of the mask has its own coefficient. A model of the

mask is shown in Figure 4-3. In this way, each gradient-based edge detector detects an

edge with its own mask. In Figure 4-4, the masks of several edge operators most widely

used in practice are presented. They aim to obtain the gradient at point zj. For the Prewitt

operator the mask with size of 3 x3 is given by

Gx = (z7 + z8 + zg)-(zl + z2 + z3), Gy =.(z3 + z 6 + z 9 ) - ( z , + z 4 + z 7 ) .

Similarly, the Sobel operator is given by

Gx =(z7 +2z8 + z9)-(z, +2z2 +z 3 ) , Gy = (z3 + 2z6 + z 9 ) - ( z , +2z4 +z 7 ) .

The Laplacian masks represent two forms encountered most frequently in practice, in

which the right one also considers the diagonal neighbours. For the Method I (left mask),

the function is given by V 2 / = 4z5 - (z2 + zA+z6+zi) while

V 2 / = 8zs - (z, + z2 + z3 + z4 +z6 + z7 + z8 + z9) for the Method II (right mask).

In edge detection, the mask is firstly started at the top-left area of an image and is then

slid from the left to the right, from the top to the bottom. Finally, it stops at the bottom-

right area of the image. This process is similar to the frequency domain concept of

convolution. For this reason, the mask is often referred to as a convolution mask. And
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y

.sk
coefficients,

showing
coordinate

arrangement

Figure 4-3 A 3><3 mask for easy of readability

similar to convolution, loss of the edge information in the comers of images happens

since the centre of mask cannot cover the comer positions. Gradient-based methods are

widely applied for edge detection. However, they suffer from some problems, such as the

estimation of the threshold value (Gonzalez,R.C. 1992). This problem is common to all

gradient-based edge detection schemes. Although the adaptive algorithm (Jin,J.S. et al.

2000) and statistical method (Rakesh,R.R. et al. 2004) have been applied in some

researches, the thresholding values are basically determined by experience. Another

problem is the missing of comers, which causes considerable difficulties for line labeling

because it relies on the correct identification of comers and junctions.
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Figure 4-4 Prewitt, Sobel and Laplacian masks

A phase-based edge detection operator, which is called phase congruency, is also used in

edge detection (Cao,G.T. et al. 2006; Kyan,M.J. et al. 2001; Liu,Z. et al. 2006; Wong,A.

et al. 2007). Phase congruency is a dimensionless quantity and provides information that

is invariant to changes in brightness or contrast of image. It could have good performance

in DVF images due to its robustness against low contrast. Phase congruency reflects the

behavior of the image in the frequency domain based on the concept that the edge-like

features have many of their frequency components in phase. Therefore, it provides an
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absolute measure of the significance of feature points, and thus allows a universal

threshold value. In the 1980's, a model named Local Energy Model was developed

(Morrone,M.C. et al. 1987). This model assumes that features are perceived at points in

an image where the Fourier components are maximally in phase rather than at points of

maximal intensity gradient. Then Morrone and Owens defined the phase congruency

function in terms of the Fourier series expansion of a signal at some location x as

PC{x) = max ^

where An is the amplitude of nth Fourier component, $n (x) is the local phase of the

Fourier component at position x, and ^(JC) is the amplitude weighted mean local phase

angle of all the Fourier terms at position x. Later, a new measure of phase congruency

was introduced by (Kovesi,P. 1999) and defined as

V" W(x)\ An (xYcosf^ (x) - d>(x)) - sin(^n (x) — <
PC(x) = ^ L

where W{x) is a weighed factor for frequency spread, e is a small constant to avoid

division by zero, T is the estimated noise influence, and the others are same as before.

Here, the symbol |_ J denotes that the enclosed quantity is equal to itself when its value is

positive and zero otherwise. The phase congruency does not have a good performance

with DVF images, which will be discussed in the next section and the edge detection

results of the phase congruency with different threshold values can be found in the

Appendix A.

An edge detection technique called the Active Contour (the Snake) is also used in feature

extraction. In this method, some initial points are defined around the feature to be

extracted. Then, these points are moved through an iterative process and an Energy

Function for each point in the neighbourhood image is calculated. Finally, the points are

moved to the position where the Energy Function is lowest. Here, the Energy Function is
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a function with the variables of continuity, curvature and image energy. The active

contour was successfully used in edge detection and segmentation in MRI and CT images

(Yezzi,A. et al. 1997). It was also introduced to segment the 3-D MRI images in

computer-aided spinal surgery (Booth,S. et al. 2001). However, the snake algorithm is

not commonly used in X-ray or DVF images since it is sensitive to noise.

4.2 Applications to Vertebral Contour Identification

4.2.1 Experimental Results using the Gradient-based Edge

Detectors

In this section, two typical gradient-based edge methods, the Canny and Laplacian of

Gaussian method are chosen to show the detection performance with DVF images. Other

gradient-based operators, such as the Sobel and Prewitt, will not be discussed since they

performance not as good as the Canny algorithm.

The Canny operator has been widely applied to the segmentation of medical images, e.g.

(Hamou,A.K. et al. 2004; Koh,H.K. et al. 2006; Li,J. et al. 2006; Xu,W. et al. 2005). The

Canny edge detector was also applied to obtain the edge pixels of the lumbar spine in

DVF images (Zheng,Y. 2002). However, the vertebral contour results were not good

enough for the Hough transform in the next step and manual landmarking and isolating

each vertebra were required. Here, we will discuss the implementation of the Canny

algorithm to DVF images and show the experimental results.

In the Canny algorithm, a Gaussian filter is firstly applied to the raw images to reduce the

response to noise because the Canny edge detector uses the first derivative of the

Gaussian filter to obtain the edge maps and is consequently sensitive to noise present on
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raw images. After that, the gradient is calculated using the first derivative of the Gaussian

filter. Each edge point has an edge direction and this edge direction, together with the

local gradient, gives an estimated intensity gradient at each point in the image. Given

these estimated gradients, a search is then carried out to determine if the gradient

magnitude assumes a local maximum in the gradient direction. This step is referred to as

non-maximum suppression. The Canny algorithm uses two thresholds to detect strong

and weak edges, and includes the weak edges in the output if they are connected to strong

edges. The final step in Canny edge detection is called hysteresis thresholding. In

hysteresis thresholding, if the gradient magnitude is below the low threshold level, it is

set to zero to be a non-edge. If the magnitude is higher than the high threshold level, it is

set to be an edge. If the magnitude lies between these two threshold levels, then it is

regarded as a non-edge unless there is a path from this pixel to a pixel with a gradient

above the high threshold level. Therefore, this method is more likely to detect true edges.

In order to select a suitable edge detection method for this project, an experiment has

been conducted to apply the Canny operator to DVF images. In the experiments, a low

and a high threshold were selected subjectively and by experience. The results are shown

in Figures 4-5 and 4-6. When a low threshold was applied, too many unwanted edges

remained and it is difficult to identify the contours of the vertebrae. However, there are

too few useful edges left when a high threshold was selected. These detected vertebral

boundaries will mislead the automated motion tracking in the next step of research. More

detection results with different threshold values are attached in the Appendix A.

In a further experiment, the Laplacian of Gaussian (LoG) method has also been applied to

DVF images. As discussed in the previous section, the Laplacian edge detector aims to

find the zero crossings of the second derivative of the image, however, it is sensitive to

noise. Therefore, the Gaussian operator is used before edge detection to reduce the effect
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(a)

Figure 4-S The Canny edge detection result of the DVF image in the neutral position, (a) The
original DVF image, (b) Canny with low threshold of [0.006 0.016]. (c) Canny with high
threshold of [0.019 0.047].

(a)

Figure 4-6 The Canny edge detection result of the DVF image in the extreme position, (a) The
original DVF image, (b) Canny with low threshold of [0.006 0.016]. (c) Canny with high
threshold of [0.019 0.047].

of noise and improve the performance. Consider the Gaussian function f(r) = -e 2ff2,

where r2=x2+y2 and a is the standard deviation. The Laplacian of the function with

respect to r is V 2 / ( r ) = - ( )e 2"2 and it is called the Laplacian of Gaussian.

Because the second derivative is a linear operator (discussed in the previous section),

filtering an image with V 2 / ( r ) is the same as convolving the image with the Gaussian

operator first and then computing the Laplacian of the result. Finally, locating the edges

consists of finding the zero crossings of the computed results. The detection results are
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shown in Figures 4-7 and 4-8. The thresholds were also set by experience and

observations of edge maps at the different threshold values. It can be seen that the

vertebral edges are worse than those from the Canny method. In particular, when a high

threshold was applied, the edges are not good even for the manual landmarking. More

detection results with different threshold values are also attached in the Appendix A.

(c)

Figure 4-7 The Laplaican of Gaussian (LoG) edge detection result of the DVF image in the
neutral position, (a) The original DVF image, (b) LoG with low threshold of 0.001. (c) LoG with
high threshold of 0.002.

(cj

Figure 4-8 The Laplaican of Gaussian (LoG) edge detection result of the DVF image in the
extreme position, (a) The original DVF image, (b) LoG with low threshold of 0.001. (c) LoG with
high threshold of 0.002.
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4.2.2 Experimental Results using the Phase-based Edge Detector

The phase congruency edge detection approach tries to find the maximal Fourier

components in phase (Morrone,M.C. et al. 1986; Morrone,M.C. et al. 1987). This has the

advantages over the gradient-based methods in feature extraction because it is invariant to

changes in image brightness or contrast and provides an absolute measurement of the

significance of feature points with a universal threshold. Here, to test the performance of

the phase congruency method to DVF images, an experiment has been conducted. The

primary Matlab code is based on Kovesi's previous research which is available online

(Kovesi,P. 2001). In his algorithm, the log-Gabor wavelets (Field,D.J. 1987) were used to

calculate the phase congruency (see Chapter 5 for an introduction to wavelets). After the

calculation, the non-maximum suppression and hysteresis thresholding were applied to

locate the estimated vertebral boundaries. The experimental results are shown in Figures

4-9 and 4-10. The threshoulds are largely selected subjectively. The results are not

promising though they may be good enough for manual landmarking (Zheng,Y. 2002).

However, the current research aims to develop a more automated identification procedure

and the vertebral edges yielded by the phase congruency cannot build the matching

template good enough for the motion tracking because too many or too few vertebral

contours are generated. Again, more detection results with different threshold values can

be seen in Appendix A.

4.2.3 Experimental Results using the Active Contour Algorithm

The Active Contour method, such as the Greedy Snake algorithm (Williams,DJ. et al.

1992), was also tried as a basis for obtaining the vertebral edges. In the Greedy Snake

algorithm, the Energy Function used in the implementation is expressed as

Etotai=aEcon,+fiEcurv+yEimage, where Econ, and Ecun, constitute the first and second order

continuity constraints and form the Internal Energy; the third term Eimage constitutes the
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(a)

Figure 4-9 The phase congruency edge detection result of the DVF image in the neutral position,
(a) The original DVF image, (b) Phase congruency with low threshold of 0.1. (c) Phase
congruency with high threshold of 0.4.

Figure 4-10 The phase congruency edge detection result of the DVF image in the extreme
position, (a) The original DVF image, (b) Phase congruency with low threshold of 0.1. (c) Phase
congruency with high threshold of 0.4.

External Energy and it can be due to various features, such as lines, edges or terminations.

The Econt corresponds to the first order continuity and it is calculated as Z)- |^-F |_ , | ,

where D is the average distance between points, and ^ - ^ _ , | means the absolute

difference between the two points under consideration. The Ecun> refers to the curvature,

which is calculated as Vi_l-2Vj+VM\ . Finally, the Eimage is basically a normalized

V • —V

^ m a & " " ' d e
 ; w h e r e Vmagnuudegradient magnitude, which can be written as Eimage = -

max min

represents the magnitude value of the calculated pixel, and Vmm and Vmax denote the
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minimum and maximum in the neighbourhood (the 5x5 mask in the experiment) of this

pixel. The parameters a, /? and y are used to balance the relative influence of these three

factors. In the experiments, the parameters were set as a=\ and y=1.2 (Williams,D.J. et al.

1992). At the end of the each iteration, a step was involved to determine the curvature at

each point on the new contour. If the value was the maximum, /? was then set to 1 for the

next iteration, or else it was set to 0. The different settings of the parameters cannot yield

the satisfactory contours either.

The edge detection results are shown in Figures 4-11 and 4-12. The experimental results

indicate that the Snake method is not suitable to yield the vertebral contour correctly in

DVF images. It could be caused by the fact that the Snake algorithm is very sensitive to

noise. Unfortunately, the DVF images contain a considerable amount of background

noise. Furthermore, if the Gaussian operator is used to filter out the noise, the pre-

processing of the Gaussian operator blurs the images and reduces the accuracy of the

locations of the vertebral boundaries.

(a) (b)

Figure 4-11 The Active Contour edge detection result of the DVF image in the neutral position,
(a) The original DVF image, (b) The Greedy Snake algorithm result.
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Figure 4-12 The Active Contour edge detection result of the DVF image in the extreme position,
(a) The original DVF image, (b) The Greedy Snake algorithm result.

4.2.4 Summary

From the experimental results, the Canny edge detection method appears to be the most

suitable for automated segmentation of the lumbar spine vertebrae. When a low threshold

is applied, the Laplacian of Gaussian and phase congruency operators produce more

vertebral contour information and too many unwanted fake edges. Therefore they would

be helpful in manual landmarking of the lumbar spine but not good enough in automated

segmentation. On the other hand, when a high threshold is applied, both the Laplacian of

Gaussian and phase congruency lost too many details during the detection (see the

Appendix A). Only the Canny operator is able to recognize the approximate contour of

the lumbar spine. However, some problems, such as broken edges, would affect the

tracking results in the next step. To locate better vertebral edges, a wavelet-based edge

detection method is considered and will be discussed in the next chapter.
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Chapter 5

Wavelet-based Edge Detection

Method

5.1 Overview

From the discussion in the previous chapter, the conventional edge operators cannot yield

the vertebral edges good enough for the automated tracking, a better edge detection

method will be proposed in this chapter. Wavelet multiresolution analysis (MRA) offers

an opportunity to investigate the edge information at the different scales. A combination

of edge maps at the different scales will provide a better vertebral shape for automated

tracking. The Canny edge detection algorithm has shown its potential in processing DVF

images, in the previous chapter and the first derivative of Gaussian (FDoG) is used as

edge detector in the Canny algorithm, so the FDoG function will be the prototype of edge

detector in our proposed method. The detection results at the two adjacent scales are

multiplied and this method is called wavelet scale multiplication edge detection method.

Each edge map has its advantages and disadvantages. Usually, the edges in small scale

are more accurate, although they are more sensitive to noise so that some false edges are

generated; on the other hand, with large scale, fewer wrong edges are detected but this is

traded against a reduced accuracy in edge position. The multi-scale product combines the

advantages at different scales together and yields the better edges. The experimental

results with the DVF image from the calibration model and human subjects will be

generated, shown and discussed in this chapter.
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5.2 Introduction to Wavelet and Multiresolution Analysis

The Fourier transform (FT) is widely used in analysis of raw time-domain signals. The

FT provides frequency information and the amplitude-frequency relationship. However,

it does not give any information about where in space or time the frequencies occur.

Therefore the FT can be used if the research is only interested in which spectral

components exist in a signal but is not interested in where these occur. To overcome this

problem, several methods have been developed in recent decades. The wavelet transform

is a transformation to basis functions that are localized in both scale and time. It is

capable of providing the time and frequency information simultaneously, hence giving a

time-frequency representation of the signal. The wavelet transform was introduced by

Alfred Haar in 1909. Since then the wavelet theory has developed rapidly. Recently, it is

increasing apparent that image processing can gain improvements in performance by

using wavelet-based approaches since Mallat's fundamental contribution to the

development of the wavelet theory (Mallat,S.G. et al. 1992b). Wavelet-based edge

detection approaches have been widely applied in processing biomedical images to help

clinical diagnosis. In particular, due to the characteristics of multi-resolution analysis, a

wavelet-based operator can have better performance than the conventional edge detectors

when poor quality images are presented, such as X-ray images (Deschenes,S. et al. 2002),

mammography images (Chen,C.H. et al. 1997) and ultrasound images (Kaspersen,J.H. et

al. 2001; Tsantis,S. et al. 2006). This chapter will discuss the wavelet theory briefly and

emphasize the wavelet scale multiplication edge detection as well as its application to

DVF images.

5.2.1 The Definition of Wavelet Series

The wavelet series is generated from a single basic wavelet y/(t), which is also called the

mother wavelet, and then scaled and translated to create a wavelet series. Because of the

property of zero average in the mother wavelet, a large value of scale corresponds to low'
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frequency while a small scale shows the high frequencies. A series of wavelets can be

derived from y/(t) by y/ab{t) = - 1 =^(——), (a,beR,a> 0) (Daubechies,I. 1992). In the
•4a a

_ i

equation, a is the scale factor, a 2 is for energy normalization across the different scales,

b is the translation factor and R denotes the +real number. For example, a Mexican Hat

wavelet y/(t) = (l-t2)-e 2 is shown in Figure 5-1 (a). Figure 5-l(b) shows the translated

wavelet y/i4(t) = t//(t-4) and Figure 5-l(c) shows the scaled and translated wavelet

(0 ( )

The discrete wavelets are only scaled and translated in discrete steps. Usually the scale

and translation parameters {a,b) a re defined based on a pair of constants (ao>\, bo>0) and

(a,b) = (a™,nboa™), (m,neZ), where Z denotes the set of 'integers. Then a set of

discrete wavelets can be rewritten as ym n (t) - ,— y/{ S-2-), (m, n e Z; a0 > 1, b0 > 0).

The effect of discretizing the wavelet is that the time-scale space is now sampled at

discrete intervals. Moreover the scale factor ao is usually set to be 2 so that the sampling

of the frequency axis corresponds to dyadic sampling which is a very natural choice for

computers. The translation factor bo is set to be 1 for dyadic sampling of the time axis. As

a result (a,b) = (2m,n-2m), (m,n)eZ, and the wavelets scaled by 2\ are written as

+The real number can be described as numbers that can be given by an infinite decimal
representation and represented as points along an infinitely long number line.

'The integers are the set of numbers consisting of the natural number and their negatives. In non-
mathematical terms, they are number that can be written without a fractional or decimal
component.
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A

(W <*)

Figure 5-1 The example of a series of the Mexican Hat wavelet, (a) The mother wavelet, (b) The
translated wavelet, (c) The scaled and translated wavelet.

After discretizing the wavelets, an infinite number of scales and translations are still

needed to calculate the wavelet transform. So a method to reduce the number of wavelets

to analyze a signal has to be developed and this method should keep the quality of the

transform. The translations of the wavelets are limited by the duration of the signal under

investigation so that there is an upper boundary for the wavelets. Then the question

remaining is that of how many scales are needed to analyze the signal to obtain

satisfactory results.

5.2.2 The Scaling Function and Filter Bank

It is well known from Fourier theory that stretching in the time domain is equivalent to

compressing the spectrum and shifting downwards in the frequency domain, which is

shown in the equation F< /(—) \ = a • F{acoi), where a>l and F(co)=F{j{t)}. This means

that a time stretch of the wavelet by a scale factor of 2 will compress the frequency

spectrum of the wavelet by the scale factor of 2 and also shift all frequency components

down by the scale factor of 2. Figure 5-2 shows an example, in which, y/j is the Fourier

transform of the mother wavelet and the others are the wavelet set derived from the

mother wavelet. As a result, since one wavelet can be considered as a band-pass filter, a

set of scaled wavelets can be considered as a band-pass filter bank. Moreover the ratio
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between the centre frequency of a wavelet spectrum and the width of this spectrum is the

same for all the wavelets in this set. This ratio is usually known as the Q factor and in this

case the set of the wavelets is therefore considered as a constant Q band-pass filter bank.

The scaling function </>(t) has the characterization of \</>{t)dt -1 (Mallat,S.G. 1989a)

which means that the scaling function does not detect the difference in the signals.

Furthermore, the scaling function has a low-pass spectrum and so it investigates the low

frequency components of the signal. Then if the signal is analyzed by a combination of

the scaling function and the wavelets, the scaling function is used to cover the remaining

spectrum after the wavelet has been stretched to a suitable scale, such as scaley+7, shown

in Figure 5-2. Since one wavelet can be considered as a band-pass filter and a scaling

function can be regarded as a low-pass filter, a series of scaled wavelets together with a

scaling function can be considered as a filter bank. In this way the number of the

wavelets is limited from an infinite number to a finite one. The number of filters needed

is actually decided by the application and selection requires trial and error.

scaling function spectrum <}>
wavelet function spectrum tp

Figure 5-2 Spectrum of a scaling function and a series of wavelet functions.
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5.2.3 Wavelet Decomposition and Multiresolution Analysis

The decomposition of signal using the filter bank can be built in an iterative way. The

first step is to split the signal spectrum in two equal components which are the output of a

low-pass filter and the output of a high-pass filter. The high-pass part contains the finest

details and therefore do not need a further processing. However the low-pass part

contains the coarse information and needs to be split again into a higher scale level. This

process is repeated until a satisfactory scale level is achieved. The process of splitting the

spectrum is graphically shown in Figure 5-3 (a).

From the view of block diagram (Figure 5-3(b)), when a signal/(5c,) is decomposed in the

filter bank, a series of detail signals {Wj} and a series of approximation signals {Vj} are

generated due to the characterizations of high-pass and low-pass filters. {Wj} is usually

called the detail spaces while {Fj} are called the subspaces. And

f(x) = Vl+W.l=V2+W2+wi = --- = VJ+Wj+Wj_x+---+.Wi+Wx . So ,Vj is the

approximation offifx) in the scale of j and {Fy} = {Vj,V}_x,• •-,V2,V1} is defined as a set of

the multiresolution analysis (MRA) of fix) (Strang,G. 1989a; Strang,G. 1993b). The

sequence {Vj} has the following properties (Cohen,A. et al. 1993; Mallat,S.G. 1989b):

(!)• VJ+l^Vj,

(2). f{x)eVj <zf(x-2J-k)eVJt

(3). f(x)eVj<^f(^)eVJ+l,

(4). UmVj={0}.
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IP HP

Figure 5-3 Decomposing the signal spectrum with an iteratire filter bank, (a) The spectrum view,
(b) The block diagram view. >

Property (7) means than an approximation at a scale of j contains all the necessary

information to compute an approximation at the next scale j+1. Property (2), the property

of self-similarity in time, indicates that Vj is invariant to any translation proportional to

the scale j . Property' (3) is the characteristic of self-similarity in scale, which shows that

dividing the dilating function by 2 in the time domain means that it enlarges the details by

2 in the frequency domain and it will be an approximation at the next scale j+1. Finally,

Property (4) implies that all the details of fix) will be lost when the scaley goes to infinity,

which means only low pass filters are used in the decomposition.
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The MRA provides a recursive algorithm to analyze a signal up to the desired details and

this theory was developed in many previous research works (Herley,C. et al. 1993;

Polyak,N. et al. 1998; Smith,MJ.T. et al. 1986; Vetterli,M. et al. 1992). The MRA has

been widely applied in field of audio compression (Srinivasan,P. et al. 1998), image

compression (Ben Amar,C. et al. 2005; Polyak,N. et al. 2000), image de-noising (De

Stefano,A. et al. 2004; Humeau,A. et al. 2002; Katkovnik,V. 2004; Strela,V. et al. 1999;

Zhong,J.M. et al. 2005) and pattern recognition (Chen,G.Y. et al. 2003; Zhang,L. et al.

2005). In the following part of this chapter, we will emphasize the application of wavelet

decomposition and MRA to edge detection in image processing.

5.3 Wavelet Multiresolution in the Application of Edge

Detection

5.3.1 Wavelet Multiresolution Decomposition in Two-Dimensions

In image processing, the one-dimensional (1-D) wavelet transform discussed in the

previous section is easily extended to two-dimensional (2-D) functions. A non-standard

decomposition method is usually applied to acquire the coefficients in the wavelet

transform (Strang,G. 1989b; Strang,G. 1993a). In two dimensions, a 2-D scaling function

<j>(x,y) , and three 2-D wavelets y/H(x,y), y/v(x,y) and y/D{x,y) are defined as

follows:

Here the superscripts of the wavelets mean the different directions. The if/1 measures the

variations along the columns in the image so that it detects the horizontal edges; the y/
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responds to the variations along the rows, such as the vertical edges; and the \\P examines

the variations along the diagonals since it detects the edges in both the horizontal and the

vertical directions. The wavelets are able to measure the variations in the intensity or grey

level of the image. Moreover the definitions of the 2-D wavelets do not increase the

computational complexity of the 2-D wavelet transform.

Given an image j{x,y) and J is the satisfactory finest scale value, which means fix,y) has

been decomposed into sufficient detail. Then the W^{J) defines the approximation of

fix,y) at the scale of J and the W^{j),i e {H,V,D} defines the detailed information at the

horizontal (H), vertical (V) and diagonal (D) directions at each scale of j . Here the

superscript index / identifies the direction H,V and D respectively. Figure 5-4 shows the

iteration procedure of 2-D wavelet decomposition into an approximation subband at the

scale of J and a series of detailed subbands at different resolution scales in all directions.

The approximation subband consists of the so-called scaling coefficients and the detailed

subbands are composed of the wavelet coefficients. In this case, an undecimated wavelet

transform (Mallat,S.G. 1999) is considered where the number of the wavelet coefficients

is equal at each scale. The undecimated method provides more precise information for the

frequency localization since the size of the coefficients array do not diminish from level

to level. As a result, it applies the wavelet decomposition at each point of the image and

preserves all the information contained in the image.

5.3.2 Review of the Applications

The conventional edge detectors have the problem of noisy and broken edges since they

depend on only one solution. A two stage edge extraction method (Shih,M.Y. et al. 2005)

was introduced to solve this problem. In their method, the original images were

decomposed into several subband gradient images by multiresolution wavelet theory.
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Figure 5-4 The block diagram of 2-D undecimated wavelet decomposition.
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Then a conventional edge operator was used to detect the edges in the finest-scale

gradient image. Finally, they proposed an edge tracking algorithm to refine the results

and reduce the noisy or blurred influences by analyzing the gradient images at different

resolutions. According to the wavelet multiresolution theory, the edge information was

propagated from fine scale to coarse scale. Some broken edges at the finest scale may be

connected at a coarser scale. With this idea, the broken edge problem was reduced and

better edge detection results were obtained. The localization criterion Pi (Aydin,T. et al.

1996) of 0.9370 and detection criterion Pe (Aydin,T. et al. 1996) of 0.1166 were reported
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(Shih,M.Y. et al. 2005), which shows great improvement compared with the conventional

edge detection methods. However, the decimated method was applied in this research and

this means that some edges may be lost with the reduction of the number of the wavelet

coefficients.

Another common problem in the conventional gradient-based edge detection is that

comers are often missed because the gradient at comers is usually small and so a wavelet

multiresolution comer detection algorithm (Lee,J.S. et al. 1995) was proposed. In their

algorithm, a three-scale wavelet transform on comer orientation (Liu,H.C. et al. 1990;

Rosenfeld,A. et al. 1975) was performed after the boundary of a shape was extracted.

Based on both the information of local maxima and modulus of the wavelet transform

results, comers and arcs were detected. The orientation ramp width, which was

determined by the ratio of the transformed modulus of two scales, reveals the difference

between the comer and arc and it is used in the detection of edge points. Their

experimental results proved that their method was more effective than several

conventional comer detection methods (Beus,H.L. et al. 1987; Cheng,F. et al. 1988;

Rattarangsi,A. et al. 1992; Rosenfeld,A. et al. 1973; Rosenfeld,A. et al. 1975), insensitive

to boundary noise and more computationally efficient.

Some researchers have tried to improve the accuracy of detection and reduce the effect of

noise in other ways. A combined spatial- and scale-space edge detection method

(Faghih,F. et al. 2002) was proposed since the spatial and wavelet-based techniques have

different advantages and disadvantages. The spatial domain approach is more successful

in detecting and locating the weak edges but can provide false edges in response to noise.

However, the wavelet-based edge detector is less sensitive to noise although it is not

accurate as the spatial domain method in locating the edges. So with the combination of

the results obtained in both spatial- and scale-space, edge maps are derived are well

localized as well as the successful suppression of the noise effects. However, their
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method focused more on de-noising and reconstructing the images by using the edge

information obtained from spatial- and scale-edge detection results.

In general, most wavelet multiresolution utilizations in edge detection are based on the

combination of the multiscale wavelet transform and decomposition with the traditional

edge detection approaches. This combined method has widely applied in the

segmentation of poor quality images, such as camera-generated images (Qin,Q. et al.

2004; Simhadri,K.K. et al. 1998; Wang,J.Z. et al. 2001) and biomedical images

(Bezerianos,A. et al. 1995; Song,Y. et al. 2004). Furthermore, this method also has good

performance in the identification of the features of interest in medical images

(Deschenes,S. et al. 2002; Kaspersen,J.H. et al. 2001).

From the discussion above, wavelet decomposition and multiresolution analysis help to

obtain better results from the conventional edge detectors. The typical problems of the

traditional edge detection method, such as broken edges and missing corners, are solved

to some extent by using the combined approach. However, these method discussed above

do not apply the wavelet theory to obtain the edge directly. A robust and simple wavelet-

based edge detection method will be discussed in the next section. This method uses the

wavelet filters to detect edges directly at various scales and combines these results

together to improve the performance in detection.
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5.4 Wavelet Scale Multiplication Edge Detection Method

5.4.1 Wavelet-based Edge Detection

Recall the discussion in the previous chapter, an edge in an image is a contour across

which the brightness of the image changes abruptly. In image processing, an edge is often

interpreted as one class of singularity. In mathematical function, singularities are able to

be characterized easily as discontinuities where the gradient approaches infinity.

However image data is discrete, so edges in an image are often defined as the local

maxima of the gradient.

Edge detection is an important task in image processing and it is a main tool in pattern

recognition and image segmentation. The classical edge detectors mentioned in the

previous chapter work well with high quality images, but usually are not good enough for

noisy images since they cannot distinguish edges with little difference in significance

since most of them analyze an image at a single resolution. Although the Fourier

transform (FT) is the main mathematical tool for analyzing singularities which represent

edges in mathematics, the FT is global and not well adapted to detecting local

singularities. It is hard to find the location and spatial distribution using the FT. The

wavelet transform is a local analysis and it is especially suitable for time-frequency

analysis (Goswami,J.C. et al. 1999), which is essential for singularity detection. This is

the major motivation for the study of the wavelet theory in edge detection.

With the development of the wavelet theory, the wavelet transform has proved to be a

powerful mathematical tool to examine the singularities in edge detection (Beus,H.L. et

al. 1987; Lee,J.S. et al. 1995; Liu,H.C. et al. 1990; Mallat,S.G. 1999; Mallat,S.G. et al.

1992b; Mallat,S.G. et al. 1992a; Tang.Y.Y. et al. 1999; Tang,Y.Y. et al. 2000; Yang,L.H.

et al. 2001). Recall the previous chapter, edge locations are related to the extreme of the
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first derivative of the signal and the zero crossings of the second derivative of the signal.

However, the local extreme of the first derivative wavelet function shows more

advantages than the zero crossings because the magnitude of the wavelet modulus

represents the relative strength of the edge (Mallat,S.G. et al. 1992b; Mallat,S.G. et al.

1992a) and is therefore able to recognize useful edges from small fluctuations cased by

noise. From the discussion in the previous chapter, the Canny edge detector has a better

performance in locating the vertebral edges than other gradient-based first derivative

edge detectors. Basically, in the Canny algorithm, the gradient is calculated using the first

derivative of Gaussian (FDoG) filter and so the FDoG function is used as the mother

wavelet in the wavelet transform. Given an image fix,y) and the Gaussian function 9(x,y),

edge points can be located from the two components W]f{x,y) and Ws
2f(x,y)of the

wavelet coefficients at a certain scale level of s and these two components are calculated

as:

j-(f*es){x,y)
ox

At each scale s, the wavelet modulus of the gradient vector is proportional to

MJ{x,y) =

And the angle of the gradient vector with the horizontal direction is given by

The direction of gradient vector at a point fay) indicates the direction in the image along

which the directional derivative of the image has the largest absolute value. An edge

point (local maxima) can be detected as point (xo,yo) such that the modulus of the gradient

vector is of maximum value in the image.
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In this way, the wavelet transform yields the edges of images at various resolutions and

thereby offers a multiresolution edge detection method to investigate the image

singularities more effectively. Based on Mallat's fundamental contributions to the

wavelet-based edge detection, the edge information in several scales can be combined for

consideration to compensate for the shortcomings of the results at single resolutions. For

example, Teager's energy operator (Kaiser,J.F. 1990) was used to combine the edge

results'at different resolutions to improve the performance of edge detection (Aydin,T. et

al. 1996). In 1-D, the operator is defined as T[f(s)] = f2(s)-f(s + l)f(s-l), where s

means the 5th scale. Although their approach improved edge detection in noisy images,

they employed a complex algorithm. Some simpler methods exist and will be discussed

in the following section.

5.4.2 Background of the Wavelet Scale Multiplication

Using the wavelet edge detection filter, edges can be detected at different scales. Each

edge map has its advantages and disadvantages. Generally speaking, the edge map in

small scale is more accurate, but it is also more sensitive to noise so that some false edges

are produced; on the other hand, with large scale, less wrong edge information is detected

but this is traded against a reduced accuracy in edge location. The idea here is,that a

better edge map will be obtained if multi-scale correlation combines the advantages at

different scales together. This idea was first put forward by Rosenfeld and his colleagues

who used the multi-scale products to enhance multi-scale peaks due to edges

(Rosenfeld.A 1970; Rosenfeld.A et al. 1971). The direct multiplication of the detection

results of images at different scales locates important edges very efficiently and quite

accurately. Similar research was conducted by Sadler,B.M. et al. (1999), and an odd

number multi-scale products was considered because it made the edges unbiased and

preserved edge-polarity information. They also noticed that with the increase of scale, the

growth of the region of support will reduce the interference of neighbouring edges.

Moreover, considering the shifts of edge position at different scales could improve the
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accuracy of the wavelet scale multiplication results (Lee,Y. et al. 2000). However, much

more simple methods were proposed to employ the wavelet edge detector at only two

adjacent scales and then multiply the edge results (Bao,P. et al. 2005; Zhang,L. et al.

2002). The final edge maps were determined by finding the local maxima directly in the

multi-scale product.

Since the wavelet scale multiplication amplifies edge structures while diluting noise,

these approaches have been tested in applications of denoising in Magnetic Resonance

Images (Bao,P. et al. 2003; Xu,Y.S. et al. 1994). The direct spatial correlation of the

wavelet transform at several adjacent scales was calculated to remove noise and preserve

edges. Xu and his colleagues indicated that their denoising technique can remove over 80%

of the noise from the images while maintaining at least 80% of the original value of the

gradient at most edges (Xu,Y.S. et al. 1994). Moreover, Bao and his colleagues proposed

a nonlinear thresholding algorithm and imposed it on the wavelet scale multiplication

results for noise suppression. Their experimental results also showed improved

performance. From what has been discussed above, potentially enhanced results are

expected if the wavelet scale multiplication edge detection method is applied to DVF

images.

5.4.3 One-Dimensional Analysis

To clarify the scale multiplication method, we first pose the edge detection in 1-D. In

previous studies (Bao,P. et al. 2003; Sadler,B.M. et al. 1999; Xu,Y.S. et al. 1994;

Zhang,L. et al. 2002), the non-orthogonal Mallat wavelet set (Mallat,S.G. et al. 1992a)

was used. Canny first presented the first derivative of Gaussian (FDoG) as an optimal

edge detector for isolating edges (Canny,J. 1986) and the Mallat wavelet set is very close

to the FDoG (see Figure 5-5). Moreover, the Mallat wavelet set can be designed to obtain

the multiresolution edges so it is more powerful than the Canny edge detector. Recall the

definition of wavelet, a function y/(x) is called a wavelet if it has a finite length or fast
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decaying oscillating waveform, and its average is equal to zero. A quadratic spline

function ytfx) as the mother wavelet and the region of support (RoS) is usually set to be

greater than 4 units of x since the Gaussian function decays rapidly (Bao,P. et al. 2005;

Sadler,B.M. et al. 1999). In this project, we set the RoS to be [-4,4], therefore the Mallat

wavelet can be written as:

0 x|>4

3 , 1
x2--x - 2 < x < 0 -

32 4
—(x + 4)2 - 4 < x < - 2

In Figure 5-5, y/(x) is plotted as well as the FDoG function. It can be seen that y/(x)

approximates the FDoG function closely. Therefore the Mallat wavelet set is

V*(*) - — ~ and the RoS is [-4s,4s], where s denotes the scale. The Mallat wavelet is
s

adopted in this project because it shows better performance than the Canny edge detector

which showed potential in Chapter 4. Moreover, we choose the Mallat wavelet due to the

fact that it is a real function (some wavelets are complex functions) and for the ease of

implementation. Bao, Zhang and their colleagues have proved that scale multiplication

using only two adjacent scales works simply and effectively (Bao,P. et al. 2005; Zhang,L.

et al. 2002), so we actually utilize the Mallat wavelet at two scales and here S2=2s\.

Recall the discussion in Chapter 4 that, in practice, a sub-image, which is also called a

mask, is used in edge detection. This process is similar to a finite impulse filter (FIR)

convoluted with the image. A pair of masks, hx and hy gives two directional gradient

images Gx and Gy respectively. The gradient image is traditionally calculated as

V/ = \GX I + Gy . This method is much more attractive computationally and still preserves

relative changes in grey level of the image. The Mallat wavelet should be discretized
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The Mallat warelal and the FOoG function

-0.2

The Mal l * w n d t l

- -Th# FDoG function

Figure 5-5 The Mallat wavelet (blue solid line) and the first derivative of Gaussian function (red
dashed line).

before implementation. In Mallat theory, the discrete filter length of the discrete Mallat

wavelet is / -2J+1 -2, where 7 denotes t h e / scale. In discretizing the Mallat wavelet,

/,
we basically choose the equal number — of the points at the positive and negative parts

of the wavelet and these points have equal spacing. As a result, these points are

symmetric and require the condition that wavelets have the mean value of zero. For

example, in Figure 5-6, we discretize the Mallat wavelet FIR filter to be

/ , =y/](x = ±2) = [0.125,-0.125] at the finest scale s=2°=l. At the second scale s=2'=2,

the discrete filter is then

f2 =if/2{x = ±2,±4,±6) = [0.0156,0.0625,0.0781,-0.0781,-0.0625,-0.0156].

Page | 75



Chapter 5 Wavelet-based Edse Detection Method

i

/

1

The Mallet wavelet when s=1

f\ -
/̂  :

i ]

The Mallet wavelet when s=2

Figure 5-6 The discrete Mallat wavelet FIR filter at the scales of 1 (top) and 2 (bottom).

After discretizing the Mallat wavelet, we can use it as an FIR filter in edge detection in

one-dimension. In simulation, we suppose the signal to be detected is composed of

several step edges and impulse edges, as well as additive unit-variance white Gaussian

noise. Figure 5-7(b) shows an example of 1-D signal W{x) = G(x) + n(x), where n{x)~

N(0,<72) is white Gaussian noise and G(x) is the signal without noise shown in Figure

5-7(a). Here we let G(x) = y4[s(x) + 3(x)], where A is a constant. G(x) takes the value of

A in the ranges [51, 150], [201, 250], [301, 320], [350, 360] and [401, 405], as well as the

impulse edges given by <5'(^-440), S(x-470) and S(x-473). The signal-to-noise

ratio (SNR) is 12dB, defined as 101og10—-, where A=4. We suppose the step edges

represent the real image edges and the impulse edges as well as the white Gaussian noise

are the background noise. From Figure 5-7(b), it can be seen that the edge information is

seriously affected by the noise under the condition of low SNR. This causes the problem

in edge detection, which is shown in Figure 5-8.
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1-D signal without white Gaussian noise

r n. JUL_in'
1-D signal with white Gaussian noise

- i r

Figure 5-7 An example of a 1-D signal without and with white Gaussian noise.

Figure 5-8(b)-(e) show the edge detection results using the discrete Mallat wavelet FIR

filter at the first four scales respectively. Due to low SNR, the edge is difficult to

distinguish from the background noise when a fine scale is used, which is shown in

Figure 5-8(b) and (c). In the figures, there is a lot of false edge information generated by

noise and they have similar values to those of the real edges. Therefore it is hard to detect

edges accurately in this situation. When a coarse scale is utilized, the false edges are

restrained and the real edges can be detected with a thresholding technique.

However, large scale decreases the accuracy of the edge location, which can be seen in

Figure 5-8(d) and (e). To improve the performance of the edge detection, multi-scale

products are introduced. Figure 5-9(c)-(e) show the multi-scale products generated by the

edge map at the 1st and 2nd scales, the 2nd and 3rd scales, as well as the 3rd and 4th scales

respectively. It can be seen that most of the Gaussian noise has been suppressed and the

real edges can be recognized relatively easily at the correct locations. Furthermore, all
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edges are now identified as positive changes in the edge maps due to the multiplication.

Considering DVF images suffer the problem with high noise interference, the scale

multiplication method should help us in identifying the vertebral edges.

To investigate the feasibility of the application of multi-scale products in the edge

detection of DVF images, we analyze a DVF image in the horizontal direction (the x

direction). Firstly, we select a small part from an original DVF image. The project target

is to identify the contour of spinal vertebrae in DVF images, so the small part of the

image we choose consists of a whole vertebra, as shown in Figure 5-10(b). From this we

can explore the performance of the scale multiplication method on the DVF image. From

Figure 5-10(b), it can be seen that the image has low contrast and high noise interference,

which can also be seen when the image is expanded in the horizontal direction row by

row. Figure 5-10(c) shows a single line of the DVF image (b) in the horizontal direction.

W * V ^ V ^ ' VWMrvftj V\̂ A^s,M \

50 100 150 200 250 300 350 400 450 500

150 200 250 3CD

^

A/v-v

150 450 500

150 350 4S0

Figure 5-8 The Mallat wavelet edge detection results, (a) The 1-D signal shown in Figure 5-7(b).
(b)-(e). The results of applying the discrete Mallat wavelet FIR filter at the first four scales.
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1
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Figure 5-9 The wavelet scale multiplication results, (a)-(b) The 1-D signals shown in Figure 5-7.
(c)-(e) the results of wavelet scale multiplication.

This figure shows five selected cycles which means that it displays five rows of the DVF

image (b). For each cycle, the selections having low values represent the vertebra body

which is dark in colour. The selection with a high value represents the adjacent structures

around the vertebra, such as soft issues, and can be treated here as noise. Like the

simulation discussed above, we applied the discrete Mallat wavelet FIR filter to this 1-D

DVF image signal and analyze the results of different scales and scale-products. Figure

5-1 l(b) and (c) show the edge detection results at the scales of 21 and 22 respectively. It

can be seen that the edge information is difficult to detect because a number of peaks are

present, which means that edges in the image are mixed with the erroneous edges caused

by noise and some peaks are too insignificant to be distinguished. However, after

multiplying the two results, much clearer edge information is obtained in Figure 5-1 l(d).

By detecting the peaks in the figure, the real edge can be identified correctly. In

conclusion, from the 1-D noisy signal simulation and the analysis of part of a real DVF

image in 1-D, the wavelet scale multiplication edge detection method appears to be able
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to solve the problems we encounter in the utilization of the traditional edge detectors. The

multi-scale product can avoid detecting erroneous edges caused by noise and can identify

the real edges in the correct location. So the scale multiplication can be applied in our

project and is expected to provide the information of spinal vertebrae edges and hence

vertebral contour, rotation angle and inter-vertebral angle, for the diagnosis of low back

pain.

(c)

Figure 5-10 An illustration of DVF image in 1-D. (a) An DVF image, (b) A small part of the
DVF image (a). A part of the DVF image in the x direction.
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

so i toq ISO i

250 300 350 400 450

Figure 5-11 The edge locating results of 1-D DVF signal, (a) 1-D DVF image signal shown in
Figure 5-10(c). (b)-(c) The Mallat wavelet edge detection results at the scale of 2' and 22. (d) The
result of scale multiplication of (b) and (c).

5.4.4 Two-Dimensional Analysis

Recall that in Section 5.4.1, the calculation of the wavelet modulus was presented. Now,

suppose the image j{x,y) is filtered by a discrete Mallat wavelet FIR filter at a small scale

S\ and a large scale 52 in the x direction and the responses are H* (x,y) and H* (x,y)

respectively. So the multi-scale product in the x direction is defined as

îrn =H*i(x,y)-H*i(x,y) . Similarly in the y direction, H*(x,y) and H^(x,y) are

calculated and then the scale multiplication P^ = H^ (x, y) • H^ (x,y) can be obtained.

So combining the result in both horizontal and vertical direction, the filtered result of the

whole image is Plm =P1
x
m+Pl

y
m.

Page|81



Chapter 5 Wavelet-based Edge Detection Method

Figure 5-12(a) shows a noisy synthetic image fix,y). This image is composed of several

plain edges superimposed with white Gaussian noise. From Figure 5-12(a), it can be seen

that the synthetic image has the steps at [51, 150], [201, 250], [301, 320], [351, 360] and

[401, 405]. We suppose that the step edges represent the real edges and the white

Gaussian noise is the background image noise. The image is filtered at a fine scale (21)

and at a coarse scale (22) respectively, and shown in Figure 5-12(b)-(c). Due to the low

SNR, the edges are difficult to distinguish from the background noise when a fine scale is

applied, which is shown in Figure 5-12(b). In the figure, the real edges are seriously

affected by false edge information.

Therefore it is hard to detect edges accurately in this situation. On the other hand, in

Figure 5-12(c), when a large scale is utilized, the edges appear but the large scale

decreases the accuracy of the edge location. To improve the performance, a multi-scale

product of (b) and (c) is introduced. Figure 5-12(d) shows the result of the wavelet scale

multiplication. It has the much sharper edges than Figure 5-12(c) and the noise is better

suppressed than in Figure 5-12(b). Most of the false edges are suppressed effectively and

real edges can be recognized relatively easily at the correct locations. Again this example

of the synthetic image indicates the good performance of the scale multiplication method

under high noise interference conditions. Moreover, in general, an improved result would

be expected after thresholding.
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Original NOI»J SpttliBlic bnaga Response al a krw scale
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Response al a high

Figure 5-12 A 2-D simulation for the swavelet scale multiplication edge detection method, (a) A
noisy synthetic image, (b) Response at a low scale, (c) Response at a high scale, (d) Results of the
scale multiplication.

5.4.5 Thresholding

In edge detection, the gradient image should be thresholded to eliminate false edges

generated by noise. Then a problem very commonly faced is the choice of threshold

values. When a single threshold is adopted, some false edges may appear if the single
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threshold value is too small. On the other hand, some true edges may be eliminated if the

value is too large. Canny proposed a double thresholding algorithm (Canny,J. 1986), in

which a low threshold and a high threshold are applied to obtain double threshold edge

maps. The double thresholding algorithm can also be applied in this project because of

the characteristics of low contrast and high noise interference. In DVF images, the areas

of interest have low contrast while the areas of less interest have a higher contrast. This

means that the areas of interest have much lower gradient values than the others after

filtering by the discrete Mallat wavelet filter. Hence the real vertebral edge information

will be missed if a large threshold is applied. Moreover, the edge detection results are

susceptible to noise and pick up of irrelevant features from images if a low threshold

value is adopted. As a result, the double thresholding method is applied after edge

detection on the DVF images.

In our project, the low threshold value can be calculated using an algorithm controlled by

the standard deviation of the noise in the image. Hence the threshold value is adaptive to

the noise level for the different DVF images. To calculate the low threshold ti, Bao and

his colleagues proposed the following algorithm,

cr and <70 =

where c is a constant, s, (i=l,2) is the scale value, and a is the standard deviation of the

noise in DVF images. To estimate the standard deviation of the noise in the DVF image,

we expanded the DVF images in the x-direction in the way shown in Figure 5-13(a), and

then we have the 1-D signal which is shown in Figure 5-13(b). By analyzing the power

spectral density (PSD) of this signal, we can learn about the cut-off frequency of the
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signal of interest. Then we can design a high-pass filter to estimate the noise distribution

in the jc-direction and calculate the standard deviation ax. For example, the PSD of the

noise in the jc-direction is shown in Figure 5-14(a) and the probability density function

(pdf) is plotted in Figure 5-14(b). Similarly, we estimate the noise distribution of the

noise in the ^-direction and calculate ay. The corresponding PSD and pdf are shown in

Figure 5-14(c) and (d) respectively. Denote the threshold in the jc-direction as t* and in

tx +ty

the y-direction as tj, then the threshold for the 2-D image is set to be t, - — —.

Furthermore, in order to eliminate the erroneous edges generated by the DVF system, a

high threshold h is applied. Because these system-generated edges have similar values,

an identical threshold can be applied to all DVF images. By analyzing the histogram of

the gradient image after wavelet filtering, the high threshold value can be selected.

Finally the edges belonging to the range [ti,th] are treated as the edge of interest and the

other edges are discarded.

\v w w \
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(a)

Figure 5-13 The illustration of a 2-D image in 1-D. (a) The expanding of a 2-D image to a 1-D
signal in the x-direction. (b) A part of the 1-D DVF image signal.
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. ' ' , 1

1.
(d)

Figure 5-14 The PSD and pdf of the noise of the DVF image, (a) The noise PSD in the x-
direction. (b) The noise pdf in the x-direction. (c) The noise PSD in the ̂ -direction, (b) The noise
pdf in the _y-direction.
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5.5 Experimental Results

We applied the Mallat wavelet for edge detection with the small scale si equal to 21, and

the large scale S2 to 22. Hence we have the two Mallat wavelets y/s=2(
x) a n d Vs =4(*)>

which are written as:

0

~ ( * - 8 ) 2

3JC2-16JC

-3JC2 -16JC

0

- ( x - 1 6 ) 2

3x2 - 3 2 *

-3x2 - 3 2 *

4<x<8

0<:;t<4

-4<x<0

- 8 < J C < - 4

8 < ^ <1

0<JC<8

-8<JC<0

-16 < JC<

From section 5.4.3, when discretizing the Mallat wavelets to FIR filters, the length of the

FIR filter is decided based upon I. = 2/+2 - 2 (/ = 1,2). So finally, the discrete Mallat

wavelet FIR filter can be written as:

/1 = VV2C* = ±2,±4,±6) = [0.0156,0.0625,0.0781,-0.0781,-0.0625,-0.0156],

f2 = ̂ J2=4(JC = ±2,±4,±6,±8,±10,±12,±14) = [0.0020,0.0078,0.0176,0.0313,0.0410,

0.0391,0.0254,-0.0254,-0.0391,-0.0410,-0.0313,-0.0176,-0.0078,-0.0020].

We filter DVF images using these two discrete Mallat wavelet FIR filters respectively

and then multiply them together. The pixel shift caused by FIR filtering in both

horizontal and vertical directions is considered, and then we shift the filtered image in the

inverse direction to avoid the error in edge position so that the vertebral contour can be
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detected at the correct location. A detection result after thresholding is shown in Figure

5-15, from which it can be seen that the result shows the clear lumbar vertebrae edges in

the correct locations. This is an example of a DVF image taken from the lateral side.

Another example using an anterior-posterior view is shown in Figure 5-16. Both of these

results are achieved under the same parameter settings.

Figure 5-15 The wavelet scale multiplication edge detection of the lateral view, (a) An original
lateral DVF image, (b) Edge detection by the scale multiplication method.

Figure 5-16 The wavelet scale multiplication edge detection of the posterior view, (a) An original
posterior DVF image, (b) Edge detection by the scale multiplication method.
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To conduct the initial test prior to real data and measure the precision of this method, a

calibration model (Breen,A. et al. 1988) has been introduced. The model is shown in

Figure 5-17 and consists of two human lumbar vertebrae (L3 and L4) hinged at the disc

centrum by a universal joint. A computerized numerically controlled machine was used

to accurately locate the angular positions in 2-D. The step change in the rotation angle is

5° and the useable range is 30°.

Figure 5-18 shows DVF images of the calibration model at rotation angles from -20° to

10°. The definition of rotation angle has been given in Section 2.3.3. Vertebra L4 remains

stationary while the vertebra L3 is rotated. The edge detection results of Figure 5-18 is

shown in Figure 5-19 and indicate the clarity of spine vertebral edges. The rotation angles

were then calculated (based on the definition of rotation angle discussed in Section 2.3.3)

to examine the accuracy of the scale multiplication approach. From Table 5-1, it can be

seen that the rotation angles are observed with considerable accuracy, which is well

within the limits that would be necessary for clinical application. However, in this case,

the distorting effects of soft tissues were not included. So the quality of these images is

better than the real DVF images and the better detection results are therefore expected.

Figure 5-17 The calibration model.
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Figure 5-18 The calibration model with changes in inter-vertebral angle.

Figure 5-19 The detection results of the edges of the calibration model.

We then attempted to track the vertebral position and measure the changes of rotation and

intervertebral angles over the spinal vertebrae motion sequence. The tracking for this

study was carried out by manual landmarking the comer positions for every vertebra in

each frame after the wavelet multiplication edge detector was applied. An example of the

manual landmarking process is shown in Figure 5-20 and vertebral comers are marked as

the yellow points in the figure. After the four comers of the lumbar vertebra are located,
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the midplane of the vertebra body can be obtained. Recall the section 2.3.3, the angle

between the midplane and the horizontal reference line is defined as the rotation angle

and the angle between two adjacent vertebrae is defined as the intervertebral angle. In

computation of the intervertebral angle, midplanes of the two adjacent vertebrae are

obtained first. After that, the angle between two midplanes is measured to get the

intervertebral angle.

In the measurement of rotation angles, we set the starting frame as the initial neutral

position of the motion sequence and normalize to zero. The measurements can then be

expressed as changes relative to this starting position. An example of the rotation angle of

the spinal vertebrae for a spine motion sequence is shown in Figure 5-21. In the motion

sequence, each flexion/extension begins from the initial neutral position. The subjects

proceed to full flexion and are then taken into full extension using the articulating table.

Moreover, the relative movement of one vertebra and its neighbour is also studied

because the movement of the vertebrae in the image sequence is not fixed to a reference

point. Figure 5-22 shows the changes of the intervertebral angles of the spine movement

in Figure 5-21. Only the lateral rotation images are shown here since the spinal motion of

the subjects is side bending in this case.
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Table 5-1 The results of the rotation of the calibration model.

L3

Presented Angle

(degree)

-20

-15

-10

-5

0

5

10

Results of the scale

multiplication (degree)

-21

-16

-10

-5

0

4

9

Error

(degree)

1

1

0

0

0

1

1

(a)

•*£ "X

Figure 5-20 An illustration of the manual landmarking process of the lateral edge maps.
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Angle rotation of the spinal vertebrae

10 15
lime (second))

Figure 5-21 The lateral angle of rotation of the spinal vertebrae in the spine flexion/extension.

Changes in intervertebral angles of the spinal vertebrae

Figure 5-22 The changes in the lateral intervertebral angles of the spinal vertebrae in the spine
flexion/extension.
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5.6 Discussions

Detection of the lumbar spine edges is the most difficult part of the motion analysis,

primarily due to the low contrast and large amount of noise in DVF images. Conventional

edge detection approaches, such as the Canny edge detector or phase congruency, cannot

adequately extract the vertebral shapes from poor quality DVF images for the automated

tracking of the spine" movement (Zheng,Y. 2002). Therefore, the wavelet multi-scale

product edge detector was developed for detection of the true edges from the noisy

background. The main peaks in the wavelet multi-scale product are used to locate the

correct vertebral shapes. The experimental results from the calibration model images

show that the calculated rotation angles are very close to the pre-set values and the error

is in the range of 0° to 1°. It is much better than that established in some similar studies

where an average error of from 4° to 10° was reported (Tezmol,A. et al. 2002; Wong,S.F.

et al. 2004). The standard error s3 is 0.28 according the following calculation equation

Equation 5.1

where Sd is the sample standard deviation, N is the number of the frames in the DVF

sequence, xt is the calculated result and xt is the pre-set value. Furthermore, the

experimental results from the human DVF image sequence from the lateral bending

motion shows the expected approximately sinusoidal motion pattern and it can be seen

that L4 has the most significant changes in the rotation angle while LI has the least

changes. This is because the subjects lay on the passive motion table (PMT), have their

upper body fixed on the articulating table and their lower body bends in each

flexion/extension (see Section 2.2)

However, the tracking discussed above is completed manually and it is very tedious and

time consuming. Moreover, inter- and intra-observer repeatability should be carried out
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to assess the accuracy when using the new edge detection method and compared with

previous reliability studies (Breen,A. et al. 1988; Breen,A.C. et al. 1989a). Further work

is aimed at automated identification of the vertebrae and hence the kinematic analysis. A

more automated tracking method has been developed based on the Hough transform

algorithm and described in the next chapter.
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Chapter 6

Generalized Hough Transform

6.1 Introduction

In the previous chapter, the intervertebral angle of the calibration model was calculated

based on the manual landmark position of four corners of the vertebra. The changes of

vertebral rotations and intervertebral angles over the spine motion were also measured by

manual landmarking the corner positions for every vertebra in each frame. Although the

measurement results show potential in clinical application, this measurement progress is

very tedious and time consuming. Moreover, this would be compounded if inter- and

intra-observer repeatability were carried out to. So a more automated method is required

to track the vertebrae movement by taking the advantage of the wavelet edge detection

results.

Generally speaking, extraction of the key features, such as lines, edges and curves, from

images, is a key step in an image analysis procedure. The most popular technique for

feature extraction is the Hough transform (HT). It was devised by Paul Hough to look for

particle tracks in bubble chambers rather than shapes in images (Hough,P.V.C. 1962). In

1969, Rosenfeld found that the Hough transform, as well as the Radon transform

(Deans,S.R. 1983), has the potential for curve detection (Rosenfeld,A. 1969).

Subsequently, the Hough transform was applied to detecting lines in images (Duda,R.O.

et al. 1972) and since then it has been developed considerably. Dana Ballard extended the

classical Hough transform to identify arbitrary shapes (Ballard,D.H. 1981). This modified
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Hough transform is known as the Generalized Hough transform (GHT). The GHT

combines the HT with the principle of the template matching. This combination enables

the HT to not only be used to detect features which can be described by equations, such

as lines or circles, but also can be applied to extract arbitrary objects which are described

using a model. Moreover the GHT is more efficient compared with the normal template

matching methods (Stockman,G.C. et al. 1977). The Generalized Hough transform is

therefore used to track the vertebrae movement in this project.

The Hough transform firstly defines a mapping from the image points into an

accumulator space (or Hough space). The HT can then be achieved by reformulating the

template matching process and gathering the evidence to locate the position of the peak

value in the accumulator space. In the Generalized Hough transform, the problem of

finding the object described using a model can be solved by detecting the reference

position of the model in an image. When the location of the reference point is known, the

object can be extracted using a reference table (see the later part of this chapter for detail).

In this chapter, a review of the Hough transform is conducted briefly and the Generalized

Hough transform is then described in more detail. Based on the wavelet edge detection

results, the experimental results in which the GHT has been applied to the calibration

model data are presented. The measurements have yielded promising results. Finally, the

GHT is applied to wavelet edge detection maps of real DVF image sequences and the

extraction results are analysed and reported.
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6.2 The Hough Transform

6.2.1 The Hough transform for Lines

The basic function of the Hough transform is to find lines in an image. A straight line can

be expressed as y=mx+c in the Cartesian parameterisation, where (x,y) are the co-

ordinates of a point on the line, m is the slope of the line and c is the intercept on the y

axis. Thus, a line can be defined by a pair of parameters (m,c) since all the points on the

line have the same value of the parameter set, such as (Xi,y,) and (Xj,yJ), which is shown in

Figure 6-1 (a). We can also re-write the equation of a line in the slope-intercept form as

c=-mx+y. This equation shows that each point (x,y) corresponds to a line in the (m,c)

space. In Figure 6-l(b), the /wc-space yields the equation of a single line for the point

(Xi,yi). Moreover, the other point (Xj,yJ) also has a line in the mc-space and these two lines

intersect at a point (mo,co)- Here, mo is the slope and Co is the intercept of the line

containing both (Xi,yi) and (Xj,yj) in the xy-space. Actually, all points contained on this line

have lines in the wc-space that intersect at (mo,co). As a result, the line can be extracted

by finding this point in the wc-space.

In the computation of the Hough transform, the /wc-space is called the accumulator space

or Hough space. The accumulator space is divided into so-called accumulator cells,

which is illustrated in Figure 6-2, where (mmjn,mmax) and (cmm,cmax) are the expected

ranges of the slope and intercept values. Each cell at coordinate (ij) corresponds to an

accumulator value Apj) and these cells are initially set to zero. Then, for every point (x,y)

in the image, the parameter m is set to equal to each of the allowed subdivision values on

the /w-axis and then the corresponding c can be calculated using the equation c--mx+y.

After that, the results are rounded to the nearest allowed value in the c-axis. When a

choice of m results in a solution of c, Af,jj is replaced by A(,jj+\. At the end of this

procedure, a value in A^j) represents the number of points lying on the line y=mx+c in the
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m

(a) (b)

c<~-xpi+yf

Figure 6-1 An illustration of the line extraction, (a) A line in the xy-space. (b) Lines in the mc-
space.

C -....mm

mwin

m_

Figure 6-2 Subdivision of the accumulator space for use in the Hough transform
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jcy-space. The peak value in the accumulator space provides the strong evidence that a

corresponding straight line exists in the searched image.

A problem with using the Cartesian parameterisation is that the slope m may approach to

infinity when the straight line becomes more and more vertical. In that case, it is

impractical to describe the line in the Cartesian parameterisation. This problem was

solved by using polar parameterisation. In polar parameterisation, a line is represented as

p=xcosd+ysind, where 6 is the angle of the line normal to the line in an image and p is

the length between the origin and the point where the lines intersect, as illustrated in

Figure 6-3(a). Thus, by considering the geometry of the arrangement in Figure 6-3(a),

c= and wj = tan#> = can be obtained. Figure 6-3(b) shows the subdivision

sin# tan#

of the accumulator space. The basic idea of constructing the accumulator cells is identical

to the method discussed for the slope-intercept representation. However, the wc-space is

replaced by the 0p-space and the polar representation yields sinusoidal curves in the Op-

space. Based on the polar representation, 6 can be defined in the range between -90° to

90°.

Figure 6-4 shows two simulation examples of locating lines using the polar Hough

transform. In Figure 6-4(a), there is a single line which generates the peak shown in

Figure 6-'4(c). The magnitude of the peak is proportional to the number of pixels in the

line from which it was generated. Figure 6-4(b) contains an image of a line with salt and

pepper noise added with a noise density of 0.5. The detection result is illustrated in

Figure 6-4(d), in which the peak value is still detected despite of the occurrence of the

interference. These two simulation examples indicate that the HT is able to deliver a

correct response to extract the line, as long as the number of co-linear points along the

line exceeds the number of the other pixels in the image.
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p

V.r

(a)

•

.̂

(b)

Figure 6-3 Polar parameterization of a line, (a) Polar definition of a line, (b) Subdivision of the
#p-space into cells.

(•) (b)

(0 Id)

Figure 6-4 Implementation of the polar Hough transform to detect a line.
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6.2.2 The Hough transform for circles and ellipses

The idea of the HT can be extended to the application of other analytical shapes, such as

circles and ellipses. The implementation for circle extraction is realized by modifying the

representation functions to (x-xof+(y-yd)2=r*, where (xo,yo) is the origin and r is the

radius. Because this representation has three parameters, two for the centre of the circle

and the other one for the radius of the circle, a three-dimensional accumulator space

(xo,yo, r) is needed in extraction. Furthermore, this three-dimensional accumulator space

can be reduced to a two-dimensional space by using the polar definition for circles. In

polar representation, the co-ordinates of a point on a circle can be written as

\x = x0 + r cos 9 [x0 = x-rcos9
< , and the centre of the circle can then be defined as <
[y = yQ+rsin9 [yo = y - r sin 9

Therefore, circles can be extracted from images by locating their centre points by trying

every possible parameter combination of 9 and r for each point in images.

Circle extraction is crucial in shape detection since many objects have a circular shape.

However, circles are usually deformed to ellipses due to several reasons, such as the

viewpoint of the camera. Based on the definition of an ellipse - — ~ — + ——j^— -1, a

a b

four-dimensional accumulator space (xo,yo,a,b) is needed. Aguado and his colleagues

represented the ellipse in a different way by using the differentiable vector-valued

function (Aguado,A.S. et al. 1996b). In their definition, an ellipse can be written as
[x-x0 + < 3 o s # + sin#

z(9)=xUx+yUy for Ux=[l,0], Uy=[O,l] and \ * • . . This equation
[y = y0+aycos9 + bysm9

corresponds to the polar representation of an ellipse. It contains six parameters

(xo,yo,ax,bx,ay,by) that build the shape of ellipse. Here 6 is not a free parameter but only a

position index in a reference table. Moreover, because axbx+ayby=0 is one of the well-

known properties of an ellipse, an ellipse can be extracted by finding its centre point

(xo,yo) in a three-dimensional accumulator space, which can be written as
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\x0 = x - ax cos 6 - bx sin 6
\yo=y-a cos0-b sine.

From the discussion above, it can be seen that the complexity of determining the maximal

vote increases with the increase of the dimensionality needed to extract the shape of

interest.

6.3 The Generalized Hough transform

6.3.1 Overview

In the Hough transform for circles and ellipses, the polar representation is used to reduce

the dimensionality of the accumulator space. Moreover, it introduces the idea that every

point on the features of interest can be represented as a parameter set (r,6) based on a

reference point, such as the centre point in the above examples. Here, r is the distance

between the reference point and the point lying on the feature curve and 6 is the angle

between these two points. As a result, this representation can be used to describe arbitrary

shapes without an analytical expression. The method to extract arbitrary shapes with

unknown position, size and orientation was firstly introduced by (Merlin,P.M. et al. 1975)

and was finally developed into a full template mapping approach, called the Generalized

Hough transform by (Ballard,D.H. 1981). Furthermore, some researchers have extended

the Hough transform to extract shapes in three-dimensional (3-D) space (Bhattacharya,P.

etal. 2000; Hu,G. 1995).

To improve the performance of the Hough transform, some researchers have tried to

improve its computational efficiency since it requires much storage and computation time
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with the increase in the complexity of the features of interest. The fast Hough transform

(Guil,N. et al. 1995; Li,H.W. et al. 1986) and the adaptive Hough transform (Cao,X. et al.

1988; Chau,C.P. et al. 2004; Ecabert,O. et al. 2004) are widely used to reduce storage and

computation time to locate an object in images. Alternatively, some researchers have

tried to improve the performance by using a better description of the contour of the object.

In this way, for example, the Fourier descriptor was introduced (Kuhl,F.P. et al. 1982;

Persoon,E. et al. 1986; Staib,L.H. et al. 1992) and was applied in object identification

with the Hough transform technique (Aguado,A.S. et al. 1996a; Aguado,A.S. et al. 1998;

Yuen,S.Y. etal. 1997).

Simultaneously, a different idea was proposed to save' storage and computation time in

the Hough transform. It is called the randomized Hough transform (RHT) (Xu,L. et al.

1990; Xu,L. et al. 1993). In the RHT, instead of taking every single point in an image,

this algorithm only picks up a randomly chosen sample set of input points. The evidence

vote stops when the peak value of the accumulator space is greater than a pre-defined

threshold value. The randomized Hough transform is widely used in the extraction of

lines, circles and ellipses (Basca,C.A. et al. 2005; Chen,T.C. et al. 2001; Cheng,Z. et al.

2004; Mao,J. et al. 2006; McLaughlin,R.A. 1996; McLaughlin,R.A. 1998; Yao,J. et al.

2004). Moreover, it can be applied in the detection of the arbitrary shapes (Fung,P.F. et al.

1996), motion (Kalviainen,H. et al. 1992; Kalviainen,H. 1996) and in medical image

processing (Behrens,T. et al. 2003; Lu,W. et al. 2005). However, the disadvantage of the

inversed RHT cannot be completed since lots of information is lost during the transform.

It is also difficult to set an appropriate thresholding value. Therefore, the randomized

Hough transform is not used in this project.

Here the Generalized Hough transform is selected to track the vertebral movement. The

GHT has been widely applied in motion extraction (Grant,M.G. et al. 2002; Li,H.L. et al.

1996; Montret,L. et al. 1994; Ulrich,M. et al. 2003) because of its properties of invariance

to translation and robustness to occlusion. Furthermore, the Generalized Hough transform
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and its modified extensions have been applied to detect features in medical images in

both good quality images (Brejl,M. et al. 2000; Zana,F. et al. 1999) and poor quality

images (Kobatake,H. et al. 1996; Scales,N. et al. 2004), In particular, a GHT based

approach has been used to locate rib borders in posterior chest radiographs (Yue,ZJ. et al.

1995). In this approach, a knowledge based GHT finds the approximate location of the

rib borders after pre-determining the thoracic cage boundary to restrict the searching area.

This pre-processing is able to improve the accuracy and reduce computation time.

Because the GHT can only find the approximate locations of the ribs, the active contour

method (Kass,M. et al. 1988) was used to finally locate the rib borders. The accuracy of

this approach was tested by comparing the detection results with those made by the

experienced radiologist. Another modified GHT method, called the Customized Hough

transform, was developed to locate the cervical vertebrae in X-ray images (Tezmol,A. et

al. 2002). In this method a template was obtained by averaging 50 manually landmarked

lateral cervical X-rays images. With the template image, the Customized Hough

transform was able to identify the cervical vertebrae and measure the variations of the

cervical vertebral shapes. However, the reported orientation error was 4.16° on average

which indicated that the accuracy was not good enough for spine biomechanical studies

in our project because the maximum rotation angle is about 30°. A much more accurate

result was obtained in locating the position of the lumbar spine vertebrae in DVF image

sequences (Zheng,Y. et al. 2003; Zheng,Y.L. et al. 2004). In their methods, binary

template edge information was acquired by using manual landmarking of the edge

detection results obtained from using the Sobel edge detector or phase congruency. The

Fourier descriptor was then used to describe the edge template mathematically. Finally,

the GHT was applied to track the lumbar spine motion and the measured accuracy was

much better than that established by (Tezmol,A. et al. 2002). However, manual

landmarking and isolating each vertebra are required in their methods and approximately

five minutes is needed to extract vertebrae in one DVF frame, so it is very time

consuming to process about 150 frames in a typical DVF sequence.
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In summary, the Generalized Hough transform is powerful in object identification and

motion tracking. Moreover, the GHT shows great potential to detect the shapes of interest

in the medical images, even in some poor quality images, such as in a mammogram or

DVF images. However, it has problems such as manual landmarking, unacceptable errors

and is time consuming. Since better edge information is obtained by using the wavelet

based edge detector in this project, a promising tracking result is expected after applying

the edge information directly to the generalized Hough transform.

6.3.2 Description of the Algorithm

The first problem in the Generalized Hough transform is how to determine the position of

an arbitrary object in an image. For a known 2-D object with a closed contour, its

reference point is usually defined as the centre of mass, like O in Figure 6-5(a). Thus,

given an edge point A in the image, it can belong to an infinite number of different

contours of the object, for example, some contours without considering rotation and

scaling are shown in Figure 6-5(b) and there is a possible centre O\ for each possible

contour. By repeating this procedure until all possible contours are considered, the most

likely position of the reference point of the translated object can be obtained by locating

the maximal number of votes in the accumulator space, shown in Figure 6-5(c).

Moreover, if rotation and scaling are considered, shown in Figure 6-5(d), the evidence

gathering procedure in the Generalized Hough transform can be extended to more

complex problems. This means that more parameters are needed to be considered and

more dimensions are needed for the accumulator space.

After locating the reference point of the arbitrary object, a reference table, which is called

the R-Table, was introduced to describe the arbitrary contour in the generalized Hough

transform. From the discussion in Section 6.2.2, any point on a given 2-D arbitrary

contour can be represented as a parameter set (r,8) based on a reference point, where r is

the distance between the reference point and the point lying on the feature curve of
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interest and 6 is the angle between these two points. Moreover, the edge direction /? of

this point is used to index the parameter set (r,0). In this way, the R-Table is built by

arranging the points with the same edge direction values in the same row, as shown in

Figure 6-6. It should be noticed that the number of the elements in each row may be

larger than one and be different since some points may have the same edge direction (e.g.

Table 6-1). .

J Lj <-

%

(a) (b)

(c) (d)

Figure 6-5 An illustration of arbitrary shape extraction using the Generalized Hough transform,
(a) An object and its reference point, (b) Some possible contours that fit edge point A. (c)
Evidence gathering in the accumulator space, (d) The object contour and possible rotated and
scaled contour.
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Figure 6-6 An illustration of building the R-Table.

Thus, the shape in the image can be defined by its two components fad") and the

reference point in the x and y directions, curve

'curve .

xr + sr sin 6'
, where [xrjvl is the

yr +sr cos 9'

coordinates of the reference point, s is the scale factor, 6'=6+(p and q> is the rotation angle.

In the cases of no scaling and rotation (s=\ and #>=0), the description of the shape is

xr + r sin 6 ]

yr + r cos 6

when scaling and rotation happen, the shape is expressed as:

written as I, which matches the definition of the R-Table. However,

xr + sr sin &

yr

xr + sr s'm(6

yr

xr + sr (sin 0 cos #> + cos 6 sin cp)

yr + sr (cos 6 cos <p - sin 6 sin (p)

\^\
+ s\_yr] [-sin (p

As a result, the curve depends on four parameters. Two parameters xr and yr define the

new position of the reference point on the curve, which means the translations in the x
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and y directions. So the new position of the reference point on the curve can be obtained

Jr.
as • = • — ~s

-sin q> cos^J_rcos#J

Moreover, the lumbar spine vertebrae are assumed to remain the same shape and have no

out-of-plane motion during the whole movement, which means the scale factor s is equal

to 1 in our project. The assumption of absence of out-of-plane motion is reasonable for

spine flexion/extension movements, but it is erroneous for spine lateral bending motion

where a couple of spine axial rotation is present (White,A.A. et al. 1978). So, the new

position of the reference point can finally be expressed as:

i xr = xcurve — r sin 6 cos (p — r cos 0 sin q>

yr = ycurve + r sin 6 sin cp - r cos 0 cos q>

In our Generalized Hough transform algorithm, the R-Table is firstly built to describe the

template vertebra edge obtained from the wavelet-based edge detector. Then for each

edge point in the edge detected images, the parameter sets (r,6) are checked by indexing

its edge direction angle /?. For every possible rotation angle (p and each value of the

parameter set (r,6\ the possible values of the (xryr) are calculated and then voted for to

find the peak, which represents the most likely position of the reference point on the

vertebra. Moreover, because the vertebrae move in a fairly tight range during the spine

motion, the possible values of the curve points and the rotation angles can be reduced to a

certain range to improve the efficiency and increase the accuracy. This will be discussed

later.

6.3.3 Applications to the Calibration Model

In the previous chapter, a calibration model (Breen,A. et al. 1988) was used to measure

the precision of the wavelet-based edge detector results. However, the measurement was

Page|109



Chapter 6 Generalized Hough Transform

carried out by manual landmarking the four corners of the vertebrae L3 and L4. In this

chapter, the precision of the wavelet-based edge detector is tested again and the test is

completed by using the Generalized Hough transform to locate the reference point (centre

point of the template model, CTM) and then calculate the rotation angle of the vertebra

L3. For the GHT, the likely rotation is from -90° to +90° and the original size of the

calibration model image is 396x420. During the GHT feature extraction, the changes of

unknown parameters xcurve,}'curve and 8 are limited to a small range in order to reduce the

computational cost and requirement on storage. In the example of the calibration model,

the range ofxCUrve and j w e are 150 pixels (from 100 to 250) and for 6 is 40° (from -25°

to +15°). This limitation leads to a size of the accumulator space (Hough space) of

151x151x41, which is much smaller than the original Hough space 396><420x 181.

As described in the GHT algorithm, a template was chosen first. Because the vertebra L3

moves from -20° to +10° in this case and -5° is the mean value of the rotation angles, the

frame of -5° is selected as the template frame, as shown in Figure 6-7(a). A small area

which contains the whole L3 is selected as the template model. After that, our wavelet

multiplication edge detection method was applied to obtain the edge map of the template

model. The R-Table (Table 6-1) was built based on this edge map. Every edge point in

the edge map is represented as the combinations of r and 6 indexed by edge direction /?.

For some edge directions, more than one combination exist, e.g. the edge direction with

0°. The reference point was calculated and shown as a cyan circle in Figure 6-7(b). Thus,

we aimed to track the reference point during the motion sequence and then calculate the

rotation angle of each frame and compare the results with the pre-set results to measure

the precision. Finally, in order to show the tracking results more clearly, the four

vertebral corners were manual marked and are shown as the green points in Figure 6-7(b).

The new positions of these four corners were also able to be tracked and displayed as the

green points in the image sequence after the application of the GHT with the wavelet

edge detection results.
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Figure 6-7 An illustration of the template selection and extraction, (a) The template frame in
which L3 rotates -5° and the selection of the template model, (b) The wavelet edge detection
result of the template model and the GHT of the template model corners and center point.
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Figure 6-8 The edge detection and tracking results of the calibration model DVF sequence.

The edge detection and tracking results are shown in Figure 6-8. The left column shows

the original DVF images of the calibration model, in which the L3 was pre-set to rotate

from -20° to 10°. The extraction results were superimposed on the edge detection results

and illustrated in the middle column. Corresponding to the template model in Figure

6-7(b), the green point means the corner point of the vertebrae and the cyan point

indicates the reference point of L3. The right-hand column shows the maps of the
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accumulator space (Hough space). Table 6-2 compares the GHT extraction results with

the pre-set rotation values and the previous manual landmarking results. Note that the

initial angle is -5° due to the template model selection, so this should be considered when

the rotation angles are finally calculated. It can be seen that the calculated rotation angles

from the GHT method are very close to the pre-set values and the error is in the range of

-1° to +1°. Although the accuracy of the automated tracking is very slightly worse than

the manual landmarking method, it is much better than that established in a similar study

where an average error of from 4° to 10° was reported (Tezmol,A. et al. 2002; Wong,S.F.

et.al. 2004). The standard error s3 is 0.345 according the standard error calculation

equation, which is Equation 5.1 expressed in Section 5.5. Furthermore, the interval values

for the parameters are 1° for rotation and 1 pixel for translation in this example, more

accurate results are expected when a finer interval is applied. However, this will increase

the computation cost and storage.

6.3.4 Applications to the DVF Images

After testing the accuracy of the Generalized Hough transform using the calibration

model, we applied the GHT to the real DVF image sequences to analysis the lumbar

spine motion. The DVF images we used here were collected from normal healthy

subjects without any lumbar spine problems (Kondracki,M. 2001). Based on these image

data, the normal lumbar spine movement and its several relative biomechanical

parameters can be studied with the application of the GHT. However, only the tracking

results will be discussed in this section and the study of the lumbar spine kinematics will

be discussed in the next chapter.
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Table 6-2 The GHT extraction results compared with the pre-set values and the manual
landmarking results.

L3

Pre-set rotation

angles (°)

-20

-15

-10

-5

0

5

10

The manual landmarking results

Calculated

rotation angles

(°)

-21

-16

-10

-5

0

4

9

Errors (°)

-1

-1

0

0

0

-1

-1

The GHT extraction results

Calculated

rotation angles

(°)

-19

-14

-10

-4

0

4

9

Errors (°)

1

1

0

1

0

-1

-1

6.3.4.1 Vertebra L3 Extraction

Generally speaking, the vertebra L3 area has the best display quality in DVF images

because the X-rays are usually focused on this area during the DVF acquisition. As a

result, we aimed to apply the GHT to track the L3 movement as a first step.

Similar to the tracking process in the calibration model, a template frame was first

selected. From the studies in the previous chapter, the rotation angles are normalized to

start from zero degrees and are distributed in an approximately sinusoidal way. Therefore,

we chose a frame with the neutral position as the template frame, shown in Figure 6-9(a),

and a small area containing the whole L3 was selected as the template model. After that,

our wavelet multiplication edge detector was applied to obtain the binary edge map for

the template model (Figure 6-9(b)). The R-Table was then built based on this edge map

and the reference point (centre point of the template model, CTM) was calculated as
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shown as a cyan circle in Figure 6-9(b). As described in the GHT algorithm, we aimed to

track this reference point during the whole motion sequence and calculate the rotation

angle of each frame. Moreover, in order to show the tracking results more clearly, four

corners of L3 were manual marked as shown as the green points in Figure 6-9(b). The

new positions of these four corners were also able to be tracked and displayed as the

green points in the image sequence after the application of the GHT.

For the GHT, the all likely rotations are from -90° to +90° and the original size of the

DVF images is 572x768. So theoretically, the size of the accumulator space (Hough

space) is about 572x768x181. Apparently, it is unnecessary and unpractical in the

computation. During the GHT feature extraction, only the small areas containing L3

vertebrae were analyzed in order to reduce the computational cost and improve the

efficiency. By experience, we set the range of xcurve and ycurve from 200 to 350, and from

250 to 400, respectively and it is guaranteed that the L3 vertebrae are located in the range

during the whole sequence. Furthermore, with the previous studies of the manual

landmarking results, and the rotation angle of L3, we also reduced the range of 0 from -

15° to +30°. Thus, the size of the accumulator space (Hough space) was reduced to

151x151 x46 rather than the full original size.
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(a)

20 40 60 80

(b)

Figure 6-9 An illustration of the template selection and edge extraction, (a) The template frame
with the neutral position and the selection of the template model, (b) The wavelet edge detection
result of the template model as well as the reference point (center point) determination and the
corner marking of the template model edges.

(a) (b) (O

(d) (e) (f)

Figure 6-10 The edge detection and GHT results on L3 of two DVF frames. The first column
shows the original DVF images. The second column shows the wavelet edge detection results as
well as the findings of the reference points (centre points) and the corners. The third column
shows the accumulator space (Hough space) in 2-D of the GHT.
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Two examples of the tracking results are illustrated in Figure 6-10. The first example (the

top row) shows the tracking of a frame of the neutral position and the second example

(the bottom row) shows the tracking of a frame of an extreme position. In Figure 6-10,

the first column shows the original DVF images and the tracking results superimposed on

the edge detection results derived from the wavelet multiplication method are shown in

the second column. Corresponding to the template model in Figure 6-9(b), the green

points mean the corner points of the L3 and the cyan points indicate the reference points

(centre points) of the L3. Moreover, the accumulator space (Hough space) in 2-D is

shown in the third column, in which the coordinates of the reference points (centre points)

can be easily located by finding the peaks.

6.3.4.2 Other Lumbar Spine Vertebrae Extraction

The GHT was applied to other lumbar vertebrae LI, L2 and L4 within the same neutral

and extreme images using the same template frame. However, different thresholding

values in the edge detection were chosen by experience since the vertebrae have different

definition in DVF images.

Figures 6-11 to 6-13 show the LI, L2 and L4 results respectively. In the figures, the first

row shows the template frame, the template model and its edges generated using the

wavelet multiplication edge detection method. The second and third rows show the

tracking results of the frames in the neutral and extreme position respectively.
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(h)

Figure 6-11 The template model selection and extraction as well as the edge detection and the
GHT results on the LI. The first row shows the template frame, the template model and its edges.
The second row shows the tracking result of the frame in the neutral position. The third row
shows the tracking result of the frame in the extreme position.
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(a)

(e)

(h)

Figure 6-12 The template model selection and extraction as well as the edge detection and the
GHT results on the L2. The first row shows the template frame, the template model and its edges.
The second row shows the tracking result of the frame in the neutral position. The third row
shows the tracking result of the frame in the extreme position.
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(h)

Figure 6-13 The template model selection and extraction as well as the edge detection and the
GHT results on the L4. The first row shows the template frame, the template model and its edges.
The second row shows the tracking result of the frame in the neutral position. The third row
shows the tracking result of the frame in the extreme position.

From what we have showed above, it can be seen that the GHT has good performance in

vertebral extraction. However, it sometimes fails to locate the LI and L4 correctly, which

is shown in Figure 6-14. This situation happens when some part of LI or L4 are covered

by other structures, such as the pelvis, during the whole motion sequence. The structure

overlapping causes the edge maps of LI and L4 to have edge lines crossing the vertebral

body in different positions. The lines have strong energy and generate different energy
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(a)

(c) (d)

Figure 6-14 An examples of erroneous tracking. The first row shows the poor tracking of the L1.
The second row shows the problem of tracking of the L4.

distribution. Therefore the R-Table generated by the template model cannot describe the

vertebra L1 and L4 well and this causes the fault in tracking.

6.3.4.3 Vertebral Extraction from the A/P View Images

In previous research, manual input was needed to initialize the template model shape and

to form the chain code, from which the Fourier Descriptors can be derived (Zheng,Y. et

al. 2003; Zheng,Y.L. et al. 2004). However, the edge maps generated from the

anterior/posterior (A/P) view images have no clear vertebral bodies because the vertebral
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body edge map is confused due to other structures of the spine, such as lamina, spinous

process and transverse process. Therefore, it is difficult to manual mark the vertebral

body shapes in the A/P view images after edge detection. As described in our GHT

algorithm, the R-Table is generated directly from the edges of the template model. As a

result, it is possible to apply the GHT to the DVF images taken from the A/P side to track

the lumbar spine motion.

The tracking process is the same as for tracking the lateral images. In the GHT, the size

of the accumulator space (Hough space) is also reduced by observation in order to

increase the computation efficiency and save the computation time. Some feature

extraction results of the LI, L2, L3 and L4 are shown in Figures 6-15 to 6-18 respectively.

Moreover, the four corners of the vertebra are manual marked in order to show the

tracking results more clearly. The neutral and extreme positions are chosen as the

examples, as for the lateral images.
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20 40 60 80100

(c) (c)

(h)

Figure 6-15 The template model selection and extraction as well as the edge detection and the
GHT results for LI from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The row column shows the tracking result of the frame in the extreme position.
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20 40 60 80100

(d) (e)

(h)

Figure 6-16 The template model selection and extraction as well as the edge detection and the
GHT results for L2 from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The third row shows the tracking result of the frame in the extreme position.
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Figure 6-17 The template model selection and extraction as well as the edge detection and the
GHT results for L3 from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The third row shows the tracking result of the frame in the extreme position.
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40 60 80100120

(e)

(8) (h)

Figure 6-18 The template model selection and extraction as well as the edge detection and the
GHT results for L4 from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The third row shows the tracking result of the frame in the extreme position.

From the figures, it can be seen that the GHT has a good performance on the A/P images.

Although the vertebral shapes are not easy to be distinguished by human eyes in the edge

maps, the GHT is able to track the vertebral movement correctly, even in the L4 tracking.

In this way, some characteristics of the normal spine motion can be studied based on the

DVF images taken from the A/P view and these studies do not require manual

landmarking. However, it sometimes fails to extract LI correctly, which is shown in
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(a) (b)

Figure 6-19 An example of erroneous tracking of LI.

Figure 6-19. This situation happens when the whole vertebral body of LI does not appear

in the image. The lack of integrity of the vertebra body causes the enormous description

of the shape of target.

6.4 Tracking using the Edge Results from the Canny Edge

Detector

Recall the discussions in Chapter 4, of the conventional edge detection methods the

Canny algorithm can yield the best vertebral contours. In order to investigate the tracking

results using the edge map generated by the Canny edge detector and compare it with that

from the wavelet scale multiplication edge detector, an experiment was designed to apply

the edge results from the Canny operator in the Generalized Hough transform. An

example of tracking results is shown in Figure 6-20. From the template model (Figure

6-20(b)), the fake edges contained inside the vertebral boundary affect the generation of a

reliable R-Table for the GHT tracking. Furthermore, in the edge map (Figure 6-20(d)),

there are also lots of fake edges existing inside the vertebral areas, which causes the

problem with matching to the template model. In conclusion, the tracking results show

Page|128



Chapter 6 Generalized Hough Transform

that the limitations of the edge results from the Canny edge detection method cause the

Canny operator not suitable in this project.

(a)

20 40 60 80

(b)

Figure 6-20 The template model selection and extraction as well as the edge detection and the
GHT results on the L3, using the edge map generated from the Canny edge detector. The first row
shows the template frame, the template model and its edges. The second row shows an example
of the tracking results.

6.5 Summary

In this chapter, an overview of the Hough transform was given, and the basic idea of the

Generalized Hough transform was introduced in detail followed by a brief review on the

previous studies of the GHT and its application to medical images. After that, the GHT
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algorithm used in tracking the vertebrae in DVF images was described. In order to

measure the performance and accuracy, the GHT was applied to the calibration model

images and the results look promising. Finally, the GHT was applied to the real DVF

images from the both lateral and A/P views. The results are still encouraging although the

method sometimes fails to track the LI and L4 in the lateral images, or the LI in A/P

images. This problem would be solved by the future efforts in several possible directions

which will be mentioned in the last chapter.
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Chapter 7

Automated Tracking of Vertebrae

in DVF Sequences

7.1 Introduction

All of the ten healthy subject files, which were listed in Chapter 3, were involved in the

tracking study. In the motion tracking, the generalized Hough transform was applied to

the vertebral shapes generated by using the wavelet scale multiplication edge detector.

For the DVF images taken from the lateral view, only the movements of the vertebrae L2

and L3 were investigated since not all the vertebral motion of LI and L4 can be tracked

correctly due to missing sections from some images. However, for the DVF images taken

from the anterior/posterior (A/P) view, the spinal movement of L2 to L4 were studied due

to the good performance of the GHT in tracking motion on the A/P view images because

the edge maps contain more integrated vertebral shapes even though they are confused

with other structures of human body. For each DVF sequence, the rotation angle, the

intervertebral angle and the translation of the centre point of the vertebrae were

calculated. Only some results will be displayed in this chapter but all tracking results are

presented in Appendix B-K.

Furthermore, the biomechanical tracking results, such as the rotation angles and

intervertebral angles, were compared with KondrackVs research (Kondracki,M. 2001)
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based on the same image frames in the same DVF sequences. He manual landmarked the

DVF sequences to calculate the biomedical parameters and, as an experienced clinician,

these results are regarded as the "gold standard" in our project. We aimed to evaluate our

edge detection and motion tracking method by comparing our results with the "gold

standard" data. The error and range of distribution were calculated and will be discussed.

Kondracki investigated every three or four image frames in each DVF sequence in his

research, so we also tracked the same frames. However, in the first few frames in every

DVF sequence, the octagonal edges (shown in Figure 7-1) generated by the DVF

acquisition system to aid focusing for the radiographer would affect the tracking results

because of their strong energy distribution. As a result, we actually tracked from about

the 13th or 14th frame and we therefore tracked a total of 34-46 image frames in every

DVF sequence.

(a) (b)

Figure 7-1 The DVF images contain the octagonal frames, (a) The lateral view, (b) The A/P view.
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7.2 Motion Tracking of the DVF Images from the Lateral

View

7.2.1 Rotation Angles of the Spine in Flexion/Extension

In the flexion/extension study, there are two sets from the lateral view ('laton' and

'latwo') of DVF sequences for each subject. However Kondracki did not provide the data

of the rotation angles for subject RM and recorded only 1 set ('laton') of the rotation

angles for subject JM in his research (Kondracki,M. 2001). Our algorithm was

successfully tested with 10 sets of the lateral images from 8 healthy subjects. These 10

data sets are BM 'laton\ CR 'latwo', DE 'laton', DO llaton\ DO 'latwo\ GP 'latwo',

JM 'laton', JW 'laton', JW 'latwo\ and NW 'laton\ Figure 7-2 shows a part of the

tracking results and Figure 7-3 shows the estimated rotation angles over a DVF sequence.

For each subject, we calculated the statistical values of mean and standard deviation for

our measurements and compared them with KondrackVs results. The Range of Motion

(ROM) of the rotation angles was also calculated and compared. Finally, to investigate

the accuracy of our method, the mean of the error, the standard deviation of the error and

the standard error (SE) were calculated. Here, the results of Kondracki are set to be the

'true' values and our measurements are set to be the estimated values. The standard error

(SE) s3 is expressed in Equation5.1. The statistical analysis of subject DO is shown in

Table 7-1. The errors of the ROM are in the range of 0°-3°. The absolute values of the

mean of the error are less than 1.25° and the standard deviations of the error are

controlled within 1.6°. Moreover, the figures of estimated rotation angles over DVF

sequences and the tables of the statistical analysis of all 10 data sets can be found in

Appendix B-J.
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Chapter 7

Automated Tracking of Vertebrae

in DVF Sequences

7.1 Introduction

All of the ten healthy subject files, which were listed in Chapter 3, were involved in the

tracking study. In the motion tracking, the generalized Hough transform was applied to

the vertebral shapes generated by using the wavelet scale multiplication edge detector.

For the DVF images taken from the lateral view, only the movements of the vertebrae L2

and L3 were investigated since not all the vertebral motion of LI and L4 can be tracked

correctly due to missing sections from some images. However, for the DVF images taken

from the anterior/posterior (A/P) view, the spinal movement of L2 to L4 were studied due

to the good performance of the GHT in tracking motion on the A/P view images because

the edge maps contain more integrated vertebral shapes even though they are confused

with other structures of human body. For each DVF sequence, the rotation angle, the

intervertebral angle and the translation of the centre point of the vertebrae were

calculated. Only some results will be displayed in this chapter but all tracking results are

presented in Appendix B-K.

Furthermore, the biomechanical tracking results, such as the rotation angles and

intervertebral angles, were compared with Kondracki\s research (Kondracki,M. 2001)
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based on the same image frames in the same DVF sequences. He manual landmarked the

DVF sequences to calculate the biomedical parameters and, as an experienced clinician,

these results are regarded as the "gold standard" in our project. We aimed to evaluate our

edge detection and motion tracking method by comparing our results with the "gold

standard" data. The error and range of distribution were calculated and will be discussed.

Kondracki investigated every three or four image frames in each DVF sequence in his

research, so we also tracked the same frames. However, in the first few frames in every

DVF sequence, the octagonal edges (shown in Figure 7-1) generated by the DVF

acquisition system to aid focusing for the radiographer would affect the tracking results

because of their strong energy distribution. As a result, we actually tracked from about

the 13th or 14th frame and we therefore tracked a total of 34-46 image frames in every

DVF sequence.

(a) (b)

Figure 7-1 The DVF images contain the octagonal frames, (a) The lateral view, (b) The A/P view.
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7.2 Motion Tracking of the DVF Images from the Lateral

View

7.2.1 Rotation Angles of the Spine in Flexion/Extension

In the flexion/extension study, there are two sets from the lateral view {'laton' and

'latwo') of DVF sequences for each subject. However Kondracki did not provide the data

of the rotation angles for subject RM and recorded only 1 set ('laton') of the rotation

angles for subject JM in his research (Kondracki,M. 2001). Our algorithm was

successfully tested with 10 sets of the lateral images from 8 healthy subjects. These 10

data sets are BM 'laton\ CR 'latwo\ DE 'latorf, DO 'laton', DO 'latwo', GP 'latwo\

JM 'laton', JW 'laton', JW 'latwo\ and NW 'laton''. Figure 7-2 shows a part of the

tracking results and Figure 7-3 shows the estimated rotation angles over a DVF sequence.

For each subject, we calculated the statistical values of mean and standard deviation for

our measurements and compared them with Kondracki's results. The Range of Motion

(ROM) of the rotation angles was also calculated and compared. Finally, to investigate

the accuracy of our method, the mean of the error, the standard deviation of the error and

the standard error (SE) were calculated. Here, the results of Kondracki are set to be the

'true' values and our measurements are set to be the estimated values. The standard error

(SE) s3 is expressed in Equation5.1. The statistical analysis of subject DO is shown in

Table 7-1. The errors'of the ROM are in the range of 0°-3°. The absolute values of the

mean of the error are less than 1.25° and the standard deviations of the error are

controlled within 1.6°. Moreover, the figures of estimated rotation angles over DVF

sequences and the tables of the statistical analysis of all 10 data sets can be found in

Appendix B-J.
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(a) Krame \o. 13

(d) Frame No, 61

(b) Krame No. 28

(e) Frame No. 79

(c) Krame No. 46

(f) Franic No. 94

(g) Frame No. 109 (h) Frame No. 124 (i) Frame No. 142

Figure 7-2 The tracking results of a healthy subject DO flexion/extension sequence in the lateral
view.
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Subject DO lateral view (laton)

Figure 7-3 The rotation angles of the vertebrae L2 and L3 versus frame number. Extension is
positive in the graph.

Based on the comparisons of all 10 data sets, the mean value of the mean of error (MME),

the mean value of the standard deviation of error (MSDE) and the mean value of the

standard error (MSE) were calculated and are shown in Table 7-2. The calculation of

7a/o»' data are based on 6 sets of DVF sequences while the calculation of 7afwo' data

are based on 4 sets of DVF sequences. From the table, it can be seen that the

experimental results from our method are close to Kondracki's manual method result.

Moreover, the overall error of the vertebra L3 tracking is generally smaller than that of

L2 because the focus of DVF system is on L3 during the image acquisition and L3

consequently has the better image quality than L2.

All the discussion above is based on the tracking of only the vertebrae L2 and L3.

Page| 135



Chapter 7 Automated Trackins of Vertebrae in DVF Seauences

Table 7-1 The rotation angle measurement of flexion/extension of subject DO.

Subject

DO

laton

latwo

L2

L3

L2

L3

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

5.96

5.04

8.98

8.04

5.37

4.14

7.54

6.74

stdof

the

rotation

(°)

9.44

8.73

11.44

10.83

8.01

7.59

10.71

10.15

Range

of

Motion

(°)

35

35

41

39

28

25

37

35

mean

of the

error

(°)

-0.91

-0.93

-1.23

-0.80

stdof

the

error

(°)

1.45

1.46

1.28

1.55

SE

0.253

0.256

0.302

0.296

+std is the standard deviation.

*SE is the standard error.

Table 7-2 The statistical analysis of the tracking results of the rotation angle from the lateral view
of 10 DVF sequences from 8 human subjects.

MME(°)

MSDE (°)

MSE

laton

L2

-0.820

1.190

0.2482

L3

-0.772

1.298

0.2560

latwo

L2

-0.568

1.230

0.2620

L3

-0.523

1.053

0.2488
+MME is the mean value of the mean of error.

+MSDE is the mean value of the standard deviation of error.

+MSE is the mean value of the standard error.
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7.2.2 Intervertebral Angles of the Spine in Flexion/Extension

The relative movement of one vertebra and its neighbour was also studied in this project

because the movement of the vertebrae in the image sequence is not fixed to a reference

point. With the 10 tracking results discussed above, we can calculate the intervertebral

angles over the motion sequence. For example, Figure 7-4 shows the changes of the

intervertebral angles of the spine movement in Figure 7-3. Similar to the rotation angle

measurement, the statistical and biomechanical parameters were investigated and are

shown in Table 7-3. All the statistical measurements of these 10 data sets can be found in

the Appendix B-J. Finally, the MME, MSDE and MSE of the intervertebral angle

measurement were calculated and shown in Table 7-4. The MME is close to 0°, the

MSDE is around 1.5° and the MSE value ranges from 0.22 to 0.28. Again, promising

tracking results were obtained, which suggests that the method is reliable and robust.

Subject DO lateral view (laton)

~ L2/3 Kondrackr I
- *r ~ L2/3 GHT I

o o o o o

v^

80 100
Frame Number

Figure 7-4 The intervertebral angles of the vertebrae L2/3 versus frame number.
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Table 7-3 The intervertebral angle measurement of flexion/extension of subject DO.

Subject

DO

L2/3 laton

latwo

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-3.02

-3.00

-2.17

-2.60

stdof

the

IVA (°)

2.17

2.83

2.99

2.90

Range

of

Motion

(°)

7

11

8.5

10

mean

of the

error

(°)

0.02

-0.43

stdof

the

error

(°)

1.82

1.60

SE

0.269

0.280

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.

Table 7-4 The statistical analysis of the tracking results of the intervertebral angle from the
lateral view of 10 DVF sequences from 8 human subjects.

MME(°)

MSDE (°)

MSE

L2/3

laton

-0.072

1.328

0.2287

latwo

-0.045

1.628

0.2800

MME is the mean value of the mean of error.

+MSDE is the mean value of the standard deviation of error.

+MSE is the mean value of the standard error.

7.2.3 Translations of the Spine in Flexion/Extension

In addition to the rotation angle, our Generalized Hough algorithm also provides the

translation of the centre point of the template model (CTM). However, the CTM cannot

be used directly to study the translation of the vertebrae in the spinal motion because the

CTM does not represent the centre point of the vertebra. Here, we define the centre point
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of the vertebra (CV) (xc\,ycv) as xcv = and ycv =
Sx,

•, where (xc,yc) is the
4 '" 4

coordinates of the four vertebral corners. To avoid the confusion, we show only the

CTMs as the cyan points in the tracking result sequences in Figure 7-2 while only the

distribution of CVs is displayed in this section. Figures 7-5 and 7-6 show the x- and y-

translation of the centre points of the vertebrae L2 and L3. Moreover, the 2-D illustration

of the translation of the CVs of the vertebrae L2 and L3 is shown in Figure 7-7. From

these figures, it can be seen that the vertebrae do not return to the starting position of the

movement, which match the tracking results of the rotation angle. Again, all 10 tracking

results of the translation can be found in the Appendix B-J.

Subject 00 lateral view (laton)

Figure 7-5 The x-translation of the CVs of the vertebrae L2 and L3 versus frame number.
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Subject DO lateral view (laton)

Figure 7-6 The ̂ -translation of the CVs of the vertebrae L2 and L3 versus frame number.

Subject 0 0 lateral view (laton)

290 300 310 320 330 340
x-translation of the CV (pixel)

360 360 370

Figure 7-7 The translation of the CVs of the vertebrae L2 and L3 in 2-D illustration.
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7.3 Motion Tracking of the DVF Images from the

Anterior/Posterior View

7.3.1 Rotation Angles of the Spine in Lateral Bending

In the lateral bending study, there are also two sets from the A/P view ('paone' and

'patwo') of DVF sequences for each subject. However Kondracki did not provide the

rotation angles for the 'paone' data sequences of subject CR, GD and NW and recorded

the rotation angles for only the 'paone' data set sequence of subject DE and JM in his

research (Kondracki,M. 2001). Moreover, the DVF sequence RM ipaone'> does not

include the entire image frames for tracking. Our algorithm was successfully tested with

the remaining 14 sets of the lateral images from 10 healthy subjects. Figure 7-8 shows a

part of the tracking results and Figure 7-9 shows the estimated rotation angles over a

DVF sequence. For each subject we calculated the same statistical values as what we did

for the lateral image sequences, for our measurements and compared them with

KondrackVs results. The Range of Motion (ROM) of the rotation angles was also

calculated and compared. Finally, to investigate the accuracy of our method, the mean of

error, the standard deviation of error and the standard error (SE) were calculated. Here,

the results of Kondracki are set to be the 'true' values and our measurements are set to be

the estimated values. The standard error (SE) s3 is expressed in Equation 5.1. The

statistical analysis of a subject is shown in Table 7-5. The errors of the ROM are in the

range of 0°-4°. The absolute values of the mean of the error are less than 1.35° and the

standard deviations of the error are controlled under 1.5°. In addition, the figures of

estimated rotation angles over DVF sequences and the tables of the statistical analysis of

all 10 data sets can be found in Appendix B-K.
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(a) Krame No. )3

(d) Frame No. 61

(b) Frame No. 29

(c) Frame No. 77

Ic) Frame No. 45

(f) Frame No. 93

(g) Frame No. 109 (h) Frame No. 125 (i) Frame ,Vw. 141

Figure 7-8 The tracking results of a healthy subject DO lateral bending sequence in the A/P view.
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Subjecl 00 A/P view (patwo)

o L2 Kondracki
-&— L2GHT
+ U Kondracki
-4—L3GHT

U Kondracki
L4GHT

Figure 7-9 The rotation angles of the vertebrae L2, L3 and L4 versus frame number. Left side
lateral bending is positive in the graph.

As discussed for the lateral view sequences, the mean value of the mean of error (MME),

the mean value of the standard deviation of error (MSDE) and the mean value of the

standard error (MSE) were calculated based on the comparisons of all 14 data sets. The

results are shown in Table 7-6. The calculation of "paone' data are based on 6 sets of

DVF sequences while the calculation of 'patwo' data are based on 8 sets of DVF

sequences. From Table 7-6, it can be seen that the experimental results of our method are

close to Kondracki's, which is regarded as the 'gold standard' in this research. The ROM

of lateral bending tends to be larger than that of flexion/extension but this probably

reflects the experiment design of Kondracki. In general, L4 has the worst tracking

accuracy because it has the largest range of movement of the three vertebrae followed.

All the discussion above is based on the tracking of only the vertebrae L2, L3 and L4.
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Table 7-5 The rotation angle measurement of lateral bending of subject DO.

(

Subject

DO

paone

patwo

L2

L3

L4

L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

3.08

2.43

5.63

4.74

6.57

5.97

3.49

2.43

4.29

3.80

6.89

5.54

stdof

the

rotation

10.36

9.37

12.95

12.01

14.34

13.57 •

9.24

8.46

10.80

10.60

13.20

12.85

Range

of

Motion

38

34

47

44

51

47

35

32

40

40

48

45

mean

of the

error

-0.64

-0.89

-0.61

-1.06

-0.49

-1.34

stdof

the

error

1.36

1.45

1.38

1.21

1.10

1.26

SE

0.292

0.331

0.294

0.273

0.204

0.314

std is the standard deviation.

+SE is the standard error.

Table 7-6 The statistical analysis of the tracking results of the rotation angle from the A/P view
of 14 DVF sequences from 10 human subjects.

MME

MSDE

MSE

paone

L2

-0.390

1.278

0.2345

L3

-0.518

1.428

0.2690

L4

-0.668

1.51

0.2890

patwo

L2

-0.634

1.173

0.2330

L3

-0.646

1.291

0.2476

L4

-0.844

1.425

0.2831

MME is the mean value of the mean of error.

+MSDE is the mean value of the standard deviation of error.

+MSE is the mean value of the standard error.
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7.3.2 Intervertebral Angles of the Spine in Lateral Bending

The relative movement of one vertebra and its neighbour was also studied in this project

because the movement of the vertebrae in the image sequence is not fixed to a reference

point. With the 14 tracking results discussed above, we can calculate the intervertebral

angles over the motion sequence. For example, Figure 7-10 shows the relative changes of

the intervertebral angles of the spine movement in Figure 7-9. Similar to the rotation

angle measurement, the statistical and biomechanical parameters were investigated and

shown in Table 7-7. All the statistical analysis of these 14 data sets can be found in the

Appendix B-K. Finally, the MME, MSDE and MSE of the intervertebral angle

measurement were calculated and are shown in Table 7-8. The MME is less than 0.2°, the

MSDE is around 1.2° and the MSE value ranges from 0.19 to 023. Again, promising

tracking results were also obtained, which means that our method is reliable and robust.

Subject DO A/P view (patwo)

ao ioo
Frame Number

Figure 7-10 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame number.
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Table 7-7 The intervertebral angle measurement of lateral bending of subject DO.

Subject

DO

paone

patwo

L2/3

L3/4

L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-2.55

-2.30

-0.93

-1.21

-0.80

-1.37

-2.6

-1.74

stdof

the

IVA (°)

2.87

3.00

2.30

2.75

1.81

2.62

2.65

2.67

Range

of

Motion

(°)

10

13

8

12

6.5

10

9.5

11

mean

of the

error

(°)

0.25

-0.28

-0.57

0.86

stdof

the

error

(°)

1.18

1.30

1.54

1.27

SE

0.234

0.258

0.279

0.260

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.

Table 7-8 The statistical analysis of the tracking results of the intervertebral angle from the A/P
view of 14 DVF sequences from 10 human subjects.

MME(°)

MSDE (°)

MSE

laton

L2/3

0.130

1.193

0.2100

L3/4

0.148

1.263

0.2242

latwo

L2/3

0.014

1.133

0.1971

L3/4

0.199

1.153

0.2050
+MME is the mean value of the mean of error.

+MSDE is the mean value of the standard deviation of error.

+MSE is the mean value of the standard error.
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7.3.3 Translations of the Spine in Lateral Bending

In addition to the information of rotation angle, our Generalized Hough algorithm also

provides the translation of the centre point of the template model (CTM). However, the

CTM cannot be used directly to study the translation of the vertebrae in the spinal motion

because the CTM does not represent the centre point of the vertebra. Here, we applied the

definition of the centre point of the vertebra CV (xcv,ycv) as mentioned in Section 7.2.3.

To avoid the confusion, we show only the CTMs as the cyan points in the tracking result

sequences in Figure 7-8 while only the distribution of CVs is displayed in this section.

Figures 7-11 and 7-12 show the x- and ^-translation of the centre points of the vertebrae

L2, L3 and L4. In addition, the 2-D illustration of the translation of the CVs of the

vertebrae L2, L3 and L4 is shown in Figure 7-13. From these figures, it can be seen that

the vertebrae do not return to the starting position of the movement, which match as the

tracking results for the rotation angle. Again, all 14 tracking results of the translation can

be found in the Appendix B-K.
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Subject DO A/P view (patwo)

/ / 1

1 *r 1

fcv / ^

1 1 1 1 1 t

• ^ ^ ^ ^

o L2
—<— L3
—-—L4

-©—<
-*

-

-

-

ao
Frame Number

Figure 7-11 The x-translation of the CVs of the vertebrae L2, L3 and L4 versus frame number.

Subject DO A/P view (patwo)

Figure 7-12 The ̂ -translation of the CVs of the vertebrae L2, L3 and L4 versus frame number.
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Subject DO A/P wew (patwo)

360 380 400
x-translation of the CV (pixel)

Figure 7-13 The translation of the CVs of the vertebrae L2, L3 and L4 in 2-D illustration.

7.4 Summary

The full tracking results of our method have been shown and discussed in this chapter.

Furthermore, the tracking results were compared with those of an experienced clinician,

Kondracki, manual approach (Kondracki,M. 2001). In his research, he showed that the

average values of rotation angles obtained in his study were broadly in agreement with

those found in the established literature for in vivo studies (Dvorak,J. et al. 1991;

Frobin,W. et al. 1996; Hayes,M.A. et al. 1989; Lin,R.M. et al. 1994; Pearcy,M.J. 1985;

White,A.A. et al. 1990; Yamamoto,I. et al. 1989). So the rotation data of Kondracki's

manual tracking method is assumed to be the 'gold standard' in our research. From the

figures and tables shown in this chapter as well as in the Appendix B-K, our results are

promising and close to the 'gold standard', which indicates the reliability and robustness

of our algorithm. Our method has been successfully tested on 24 sets of sequences out of
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40 DVF sequences. In our tracking, the image quality of the vertebral bodies affects the

accuracy as expected. So in the tracking of the flexion/extension sequences, the vertebra

L3 generally has smaller error values than L2. On the other hand, the range of motion of

the vertebrae reduces the precision of the tracking results. So in the tracking of the lateral

bending sequences, the vertebra L4 has the lowest accuracy in all three vertebrae since

L4 moves in the largest range, generally about 1.5 times that of the L2's range due to the

using of the passive motion table where the upper lumbar spine moves less than the

bottom parts of the lumbar spine.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Low back pain has become one of the serious problems in developed countries and its

cost, both economic and social, is enormous. Although low back pain occurs commonly,

its diagnosis remains difficult. The reasons could be that low back pain is caused by

many different sources and the analysis and diagnosis is difficult due to the complicated

structure of the human spine. Research has shown that low back pain is often related to

mechanical disorders of the human spine. As a result, the study of spine motion would be

very useful in diagnosis low back pain. To date, digital videofluoroscopy (DVF) is

currently the only practical technique to obtain continuous spine motion sequences.

However due to the low radiation dosage, DVF images have a poorer quality than other

medical images and the quality varies across the images.

This research aims to develop a method of automated segmentation and motion tracking

for the analysis of lumbar spine motion for low back pain diagnosis. Characterization of

the normal motion of the lumbar spine would form the basis for locating a source of

damage by identifying any abnormal motion at the vertebral level. The identification of

the vertebral contour is the first step in our research. In Chapter 4, we investigated the

edge detection results using some conventional edge operators. Both the gradient- and

phase-based edge detection methods were tested with DVF images. The edge maps after

thresholding from the neutral and extreme positions were presented. The Canny operator

Page|151



Chapter 8 Conclusions and Future Work

showed the most potential although it cannot yield the vertebral contours of sufficient

quality for automated tracking.

In Chapter 5, we applied a wavelet scale multiplication based approach as the edge

detector to DVF images of the lumbar spine. Since the previous studies showed that the

Canny edge detection has a better performance and the first derivative of Gaussian

(FDoG) function is used as edge detector in the Canny algorithm, we used the Mallat

wavelet, which is close to the FDoG function, as the mother wavelet to generate the

wavelet filter for edge detection. The experimental results on the artificial edge images

and oh the spine calibration model images were shown to demonstrate the promise of this

method. It has been shown that the contour of the spinal vertebrae can be detected

automatically in DVF images. The wavelet-based approach was also tested with DVF

sequences from human asymptomatic, healthy subjects. With the edge information,

biomechanical parameters, such as rotation angle and intervertebral angle, were

calculated based on manual landmarking the four corners of each vertebra.

However, manual landmarking is a laborious, time consuming and error-prone procedure.

An automated system is desired to reduce the workload and hence creat the possibility of

clinical implementation. Chapter 6 addressed the development of an automated tracking

technique for spine motion using the Generalized Hough transform. The procedure for

the selection of the template model, the building of the Reference Table and the tracking

algorithm were described. By locating the maximum value in the Hough space, we

obtained the rotation and translation parameters of the spine motion. The proposed

method was tested by the DVF image sequences of the calibration model and of the

human subjects. In the tracking of the calibration model sequences, the calculated

rotation angles were very close to the pre-set values. The error was in the range of-1° to

+1° and the standard error was 0.345. For the human subject sequences, our algorithm

was successful in tracking the vertebrae L2 and L3 in the lateral images while it had a

better performance in the A/P images, where L2-L4 were successfully tracked.
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Chapter 7 presented the further results of the tracking with the human subject sequences.

Twenty-four out of forty DVF image sequences of 10 healthy subjects were analyzed.

Considering some sequences have no 'true' rotation angle values for comparison with the

tracking results from our approach, we actually completed nearly 80% (24 out of 31

sequences) of motion analysis. Moreover, we compared our results with those from 'gold

standard' measurements made manually by the experienced clinician. The errors of the

rotation angles and intervertebral angles were small. The absolute value of MME was less

than 1°, and the MSDE was controlled within 1.6°. Furthermore, the standard error

generally ranged between 0.22 and 0.30. Finally, the translations of the centre of the

vertebrae were also plotted.

8.2 Future Work

8.2.1 Improvement of the Generalized Hough Transform

The efficiency of our algorithm could be improved for clinical practice. The

computational cost and memory required depend on the total number of edge points in

the target area of the images, the size of the target area, the possible range of the rotation

and translation parameters, and the intervals used for quantizing these parameters. In this

project, the Matlab programme requires about two minutes to extract one vertebra in one

DVF image frame on a 3GHz PC with 1GB memory. This includes the time consumed by

the wavelet scale multiplication method to detect the edge maps. Moreover, considering

the usage of the memory, the tracking procedure has to be separated into 3-4 parts for

each vertebra due to limitation of the memory available. Therefore, it is necessary to

optimize the source code with respect to the computational cost. This improvement

would benefit the real-time, clinical application.
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There are two main limitations existing in the Generalized Hough transform (GHT) in

analyzing motion sequences. First, for an image containing multiple objects, the GHT has

to extract them separately. The possible relationships (referred to as spatial information),

such as the position constraints, are not taken into account within the implementation of

the GHT. Second, for object extraction in a motion sequence, the GHT algorithm is

applied frame by frame. This means that the GHT does not take the advantage of the

possible relationships between frames (referred to as temporal information) in a motion

sequence. A new version of the Hough transform, the Spatio-Temporal Hough transform

(STHT), is designed to extend the ability of the Hough transform to handle motion

analysis by combining the spatio-temporal information (Zheng,Y. 2002). Thus, it is

expected to be more robust for motion analysis with an improved ability to process the

poor quality DVF image sequences more quickly. Previous research (Sarkar,S. et al. 2002)

has shown promising results on a large variety of motion sequences by using the Hough

transform combining the spatio-temporal space. This algorithm would be worth further

study in the next stage of this project.

8.2.2 Refined Description of Transformation Model and Image

Registration Method

In our tracking algorithm, the building of the Reference Table and the matching of the

Hough transform do not require manual landmarking. All the calculations are based

directly on the edge map obtained from our wavelet-based operator. So the obtaining of

good and clear edge maps will greatly benefit the motion tracking. The current study does

not succeed in tracking all five lumbar vertebrae due to the lack of integrity of vertebral

contour. For example, the tracking of LI suffers from the low contrast and missing

sections of the vertebral contour in many raw images. In the flexion/extension tracking,

L4 is usually behind the line of the pelvis which lies across the vertebral body.
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Vertebral shape gives crucial cues for accurate tracking. Vertebral contour may be better

described using more sophisticate mathematical tools, such as the affine transformation

(Cyganski,D. et al. 1987; Sapiro,G. et al. 1993). Because the deformation of vertebral

bodies does happen in DVF images, a technique, called the diffeomorphisms (Banyaga,A.

1997; Christensen,G.E. et al. 1996), provides support in the representation of the

transformation model. The diffeomorphisms technique has been applied in some research

on MRI and CT images (Joshi,S.C. et al. 2000; Marsland,S. et al. 2004) and may be

considered as a possible direction in the further development of this project.

With the transformation model, an image registration approach could be applied in

motion tracking. The Lucas-Kanade method (Lucas,B.D. et al. 1981; Lucas,B.D. 1984) is

still one of the most popular techniques of two-frame differential methods for motion

estimation, which is also called optical flow. Several researchers have tested the Lucas-

Kanade algorithm and obtained favorable results in medical image analysis (Zou,X.C. et

al. 2007), even in heart echocardiographic image sequences with poor image quality

(Baraldi,P. et al. 1996). Another potential technique is the Automated Image Registration

(AIR) algorithm (Woods,R.P. et al. 1993). The AIR algorithm has been used in image

registration in positron emission tomography (PET), CT and MRI images (Tohka,J. et al.

2004; Vaquero,J.J. et al. 2001) and may be applicable to DVF images.

8.2.3 Motion Modelling and Clinical Applications

Another possible area would be the understanding the relationship between the

distribution of biomechanical parameters and the spine motion. First, more biomechanical

analysis of the spine motion would be of great interest. For example, the instantaneous

axis of rotation (IAR) could be studied and the centrode can be built as demonstrated in

Section 2.3.3.4. At present, only DVF image sequences from ten healthy subjects were

analyzed. In the future, more healthy subjects would be involved in order to build a larger

Page| 155



Chapter 8 Conclusions and Future Work

database of normal spine motion if possible. And then the quantitative analysis and

modelling tools would then be used to model the normal spine movement.

Our algorithm has the potential to automate image processing of DVF images from other

clinical investigations and so could be also applied to other clinical biomechanical studies,

such as the cervical spine, the fingers, or the knee.

Finally, a new imaging technique, which can yield the motion sequence in real time with

better image quality and low radiation exposure, is still desired. When this appears or is

expected that the techniques developed for the DVF image sequences will achieve even

better results.
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Appendices

Appendices

Appendix A. Edge Detection Results

A.I Canny Edge Detector

(a) 7=[0.<K>, 0.016] (b) 7=[0.01,0.026]

(c) r=lO.OI4,0.036] (d) r=L0.019 0.047]

Figure Appendix-1 Edge maps using Canny edge detector.
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A.2 Laplaican of Gaussian Edge Detector

(a) 7-O.0O8 (b) 7-0.011

(c) T=0.014 (d) 7=0.017

Figure Appendix-2 Edge maps using Laplacian of Gaussian edge detector.
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A.3 Phase Congruency Edge Detector

(a) 740.1.0.5] (b) 740.2.0.5]

(c) 740.3. 0.5J (d) 740.4 0.5J

Figure Appendix-3 Edge maps using Phase congruency edge detector.
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Avvendices

Appendix B. Subject BM

B.I Motion Tracking of the DVF Images from the Lateral View

Table Append ix-1 The measurement of rotation angles of subject BM.

Subject

BM

laton L2

L3

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

3.37

1.91

5.83

5.03

stdof

the

rotation

6.26

5.90

8.92

8.75

Range

of

Motion

24.5

22

31.5

30

mean

of the

error

-1.46

-0.80

stdof

the

error

0.83

1.07

SE

0.287

0.227

+std is the standard deviation.

+SE is the standard error.

Table Appendix-2 The measurement of intervertebral angles of subject BM.

Subject

BM

L2/3 laton Kondracki

GHT

mean

of the

IVA (°)

-2.46

-3.26

stdof

the

IVA (°)

3.07

3.48

Range

of

Motion

11

11

. mean

of

error

-0.80

stdof

the

error

0.93

SE

0.208

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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Appendices

to (b)

Figure Appendix-4 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject BM 'laton\ (a) The rotation angles, (b) The intervertebral angles.

a

X %

V
(a) (b) (c)

Figure Appendix-5 The translation of the vertebrae L2 and L3 versus frame number of subject
BM Hatorf. (a) ^-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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B.2 Motion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-3 The measurement of rotation angles of subject BM.

Subject

BM

paone

patwo

L2

L3

L4

L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

5.48

4.83

5.63

5.03

9.87

8.83

8.89

7.57

9.66

8.51

9.80

9.03

std of

the

rotation

(°)

13.48

12.65

15.30

14.29

17.94

16.88

14.06

13.38

15.46

14.76

18.22

17.50

Range

of

Motion

(°)

46.5

42

•55

51

63.5

59

48

46

55

51

65

60

mean

of the

error

(°)

-0.63

-0.60

-1.04

-1.31

-1.14

-0.77

std of

the

error

(°)

1.38

1.54

1.47

' 1.08

r

1.19

1.44

SE

0.258

0.280

0.306

0.290

0.281

0.277

+std is the standard deviation.

+SE is the standard error.
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Table Appendix-4 The measurement of intervertebral angles of subject BM.

Subject

BM

paone

patwo

L2/3

L3/4

L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-0.17

-0.20

-4.24

-3.80

-0.77

-0.94

-0.14

-0.51

stdof

the

IVA (°)

2.21

2.10

2.98

3.11

1.80

2.15

2.92

3.05

Range

of

Motion

(°)

8.5

9

9.5

12

8

9

11

10

mean

of the

error

(°)

-0.03

0.44

-0.17

-0.37

stdof

the

error

(°)

1.24

1.20

0.95

1.17

SE

0.209

0.216

0.164

0.207

IVA is the intervertebral angle,

std is the standard deviation.

SE is the standard error.

\

(a) (b)

Figure Appendix-6 The rotation angles of the vertebrae L2, L3 and L4 versus frame number of
subject BM. (a) Data set 'paone'. (b) Data set lpatwo\

Page | 180



Appendices

Figure Appendix-7 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame
number of subject BM. (a) Data set 'paone'. (b) Data set 'patwo\

(a) (b) (c)

Figure Appendix-8 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject BM 'paone\ (a) Ar-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.

T - -

V

- t > »

( * ) 0» (c)

Figure Appendix-9 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject BM 'patwo\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix C. Subject CR

C.I Motion Tracking of the DVF Images from the Lateral View

Table Appendix-5 The measurement of rotation angles of subject CR.

Subject

CR

latwo L2

L3

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

4.51

4.06

5.63

5.00

stdof

the

rotation

5.93

6.80

9.82

9.47

Range

of

Motion

20.5

24

32

30

mean

of the

error

-0.46

-0.63

stdof

the

error

o
1.68

1.40

SE

0.295

0.259

+std is the standard deviation.

+SE is the standard error.

Table Appendix-6 The measurement of intervertebral angles of subject CR.

Subject

CR

L2/3 latwo Kondracki

GHT

mean

of the

IVA (°)

-1.11

-0.94

stdof

the

IVA (°)

4.20

3.10

Range

of

Motion

(°)

13.5

13

mean

of

error

o
0.17

stdof

the

error

(°)

2.16

SE

0.366

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(a) (b)
Figure Appendix-10 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject CR 'latwo\ (a) The rotation angles, (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-11 The translation of the vertebrae L2 and L3 versus frame number of subject
CR 'latwo\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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C.2 Motion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-7 The measurement of rotation angles of subject CR.

Subject

CR

patwo L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

2.39

2.09

5.43

4.74

4.71

3.94

stdof

the

rotation

(°)

9.54

8.59

14.52

13.31

16.77

15.71

Range

of

Motion

(°)

32.5

29

48

45

55

52

mean

of the

error

(°)

-0.30

-0.69

-0.77

stdof

the

error

(°)

1.30

1.44

1.52

SE

0.227

0.270 '

0.288

+std is the standard deviation.

+SE is the standard error.

Table Appendix-8 The measurement of intervertebral angles of subject CR.

Subject

CR

patwo

. . .

L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-3.04

-2.66

0.71

.0.80

stdof

the

IVA (°)

5.05

4.83

2.78

3.00

Range

of

Motion

16.5

17

8.5

10

mean

of the

' error

0.39

0.09

stdof

the

error

0.99

1.06

SE

0.180

0.180

+ IVA is the intervertebral angle.

+stdis the standard deviation.

*SE is the standard error.
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to (b)

Figure Appendix-12 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject CR 'patwo\ (a) The rotation angles, (b) The intervertebral angles.

\J
(b) (c)

Figure Appendix-13 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject CR 'patwo'. (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Avvendices

Appendix D. Subject DE

D.I Motion Tracking of the DVF Images from the Lateral View

Table Appendix-9 The measurement of rotation angles of subject DE.

Subject

DE

laton L2

L3

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

3.86

2.77

7.53

6.03

stdof

the

rotation

o
6.59

6.60

9.48

8.75

Range

of

Motion

23

24

30.5

30

mean

of the

error

-1.09

-1.50

stdof

the

error

1.09

1.36

SE

0.263

0.345

+std is the standard deviation.

+SE is the standard error.

Table Appendix-10 The measurement of intervertebral angles of subject DE.

Subject

DE

L2/3 laton Kondracki

GHT

mean

of the

IVA (°)

-3.67

-3.26

stdof

the

IVA (°)

3.22

2.58

Range

of

Motion

10.5

10

mean

of

error

0.41

stdof

the

error

1.48

SE

0.255

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(a) (b)
Figure Appendix-14 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject DE Hatorf. (a) The rotation angles, (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-15 The translation of the vertebrae L2 and L3 versus frame number of subject
DE 'laton\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.

Page| 187



Appendices

D.2 Motion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-11 The measurement of rotation angles of subject DE.

Subject

DE

paone L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

2.46

2.14

5.69

4.94

6.83

6.06

stdof

the

rotation

(°)

10.28

9.83

13.61

12.64

16.50

15.61

Range

of

Motion

(°)

38.5

35

51

48

62

59

mean

of the

error

(°)

-0.31

-0.74

-0.77

stdof

the

error

(°)

1.21

1.29

1.53

SE

0.212

0.252

0.291

+std is the standard deviation.

+SE is the standard error.

Table Appendix-12 The measurement of intervertebral angles of subject DE.

Subject

DE

paone L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-3.23

-2.80

-1.14

-1.11

stdof

the

IVA (°)

3.58

3.21

3.12

3.29

Range

of

Motion

(°)

12.5

13

11

11

mean

of the

error

(°)

0.43

0.03

stdof

the

error

(°)

1.13

1.14

SE

0.205

0.192

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(a) (h)
Figure Appendix-16 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject DE 'paone\ (a) The rotation angles, (b) The intervertebral angles.

**l -r *—-1 • * * •

(a) (b) (c)
Figure Appendix-17 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject DE 'paone\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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AppendixE. Subject DO

E.I Motion Tracking of the DVF Images from the Lateral View

Table Appendix-13 The measurement of rotation

Subject

DO

laton

latwo

L2

L3

L2

L3

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

5.96

5.04

8.98

8.04

5.37

4.14

7.54

6.74

angles of subject DO.

stdof

the

rotation

9.44

8.73

11.44

10.83

8.01

7.59

10.71

10.15

Range

of

Motion

35

35

41

39

28

25

37

35

mean

of the

error

-0.91

-0.93

-1.23

-0.80

stdof

. the

error

1.45

1.46

1.28

1.55

SE

0.253

0.256

0.302

0.296

+std is the standard deviation.

+SE is the standard error.
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Table Appendix-14 The measurement of intervertebral angles of subject DO

Subject

DO

L2/3 laton

latwo

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-3.02

-3.00

-2.17

-2.60

stdof

the

IVA (°)

2.17

2.83

2.99

2.90

Range

of

Motion

(°)

7

11

8.5

10

mean

of

error

n
0.02

-0.43

stdof

the

error

(°)

1.82

1.60

SE

0.269

0.280

IVA is the intervertebral angle,

std is the standard deviation.

SE is the standard error.

J
—*——a 1 * » *

(a) (b)
Figure Appendix-18 The rotation angles of the vertebrae L2 and L3 versus frame number of
subject DO. (a) Data set "laton\ (b) Data set 'latwo'.

(a) (b)
Figure Appendix-19 The intervertebral angles of the vertebrae L2/3 versus frame number of
subject DO. (a) Data set llaton\ (b) Data set 7a/wo'.
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it,,\

- t * * 1 r

(a)

-t > « •— • — • — « . « * - * — • - -
(b) (c)

Figure Appendix-20 The translation of the vertebrae L2 and L3 versus frame number of subject
DO llaton\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.

(a) (b) (0

Figure Appendix-21 The translation of the vertebrae L2 and L3 versus frame number of subject
DO llatwo\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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E.2 Motion Tracking of the DVF Images . from the

Anterior/Posterior View

Table Appendix-15 The measurement of rotation angles of subject DO.

Subject

DO

paone

patwo

L2

L3

L4

L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

3.08

2.43

5.63

4.74

6.57

5.97

3.49

2.43

4.29

3.80

6.89

5.54

std of

the

rotation

(°)

10.36

9.37

12.95

12.01

14.34

13.57

9.24

8.46

10.80

10.60

13.20

12.85

Range

of

Motion

(°)

38

34

47

44

51

47

35

32

40

40

48

45

mean

of the

error

(°)

-0.64

-0.89

-0.61

-1.06

-0.49

-1.34

std of

the

error

(°)

1.36

1.45

1.38

1.21

1.10

1.26

SE

0.292

0.331

0.294

0.273

0.204

0.314

+std is the standard deviation.

+SE is the standard error.
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Table Appendix-16 The measurement of intervertebral angles of subject DO.

Subject

DO

paone

patwo

L2/3

L3/4

L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-2.55

-2.30

-0.93

-1.21

-0.80

-1.37

-2.6

-1.74

stdof

the

IVA (°)

2.87

3.00

2.30

2.75

1.81

2.62

2.65

2.67

Range

of

Motion

(°)

10

13

8

12

6.5

10

9.5

11

mean

of the

error

(°)

0.25

-0.28

-0.57

0.86

stdof

the

error

(°)

1.18

1.30

1.54

1.27

SE

0.234

0.258

0.279

0.260

IVA is the intervertebral angle,

std is the standard deviation.

SE is the standard error.

w (b)

Figure Appendix-22 The rotation angles of the vertebrae L2, L3 and L4 versus frame number of
subject DO. (a) Data set 'paone\ (b) Data set 'patwo'.
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ir
(•) (b)

Figure Appendix-23 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame
number of subject DO. (a) Data set 'paone\ (b) Data set 'patwo\

.1.

(a) (b) (c)

Figure Appendix-24 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject DO 'paone\ (a) x-translation of the centre points of the vertebrae, (b) j-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.

,1
~f

(a) (b) (c)

Figure Appendix-25 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject DO 'patwo'. (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix F. Subject GD

F.I Motion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-17 The measurement of rotation

Subject

GD

patwo L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

3.99

3.66

7.99

7.29

9.46

8.77

angles of subject GD.

stdof

the

rotation

8.57

7.91

13.80

13.14

16.44

15.35

Range

of

Motion

31

29

49

46

57

54

mean

of the

error

-0.33

-0.70

-0.69

stdof

the

error

1.15

1.37

1.43

SE

0.202

0.260

0.268

+std is the standard deviation.

+SE is the standard error.

Table Appendix-18 The measurement of intervertebral angles of subject GD.

Subject

GD

patwo L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-4.00

-3.63

-1.47

-1.49

stdof

the

IVA (°)

5.44

5.49

2.84

2.67

Range

of

Motion

18

18

11

12

mean

of the

error

0.37

-0.01

stdof

the

error

1.13

1.43

SE

0.200

0.241

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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A/.

(•) (b)

Figure Appendix-26 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject GD 'patwo\ (a) The rotation angles, (b) The intervertebral angles.

-t * •—TT;—• > *-

(•) (b) (c)

Figure Appendix-27 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject GD 'patwo\ (a) ^-translation of the centre points of the vertebrae, (b) jy-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix G. Subject GP

G.I Motion Tracking of the DVF Images from the Lateral View

Table Appendix-19 The measurement of rotation angles of subject GP.

Subject

GP

latwo L2

L3

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

4.00

3.51

4.29

4.03

std of

the

rotation

(°)

4.82

4.93

7.03

6.75

Range

of

Motion

(°)

17

18

26

23

mean

of the

error

o
-0.49

-0.26

stdof

the

error

(°>

0.89

1.20

SE

0.172

0.207

std is the standard deviation.

+SE is the standard error.

Table Appendix-20 The measurement of intervertebral angles of subject GP.

Subject

GP

L2/3 latwo Kondracki

GHT

mean

of the

IVA (°)

-0.29

-0.51

stdof

the

IVA (°)

2.52

2.38

Range

of

Motion

10

8

mean

of

error

-0.23

stdof

the

error

1.27

SE

0.219

IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(«) (b>

Figure Appendix-28 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject GP 'latwo\ (a) The rotation angles, (b) The intervertebral angles.

\
V

\/~l
(b) (c)

Figure Appendix-29 The translation of the vertebrae L2 and L3 versus frame number of subject
GP 'latwo\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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G.2 Motion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-21 The measurement of rotation angles of subject GP.

Subject

GP

paone

patwo

L2

L3

L4

L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

5.60

5.17

9.03

8.40

11.14

10.34

6.56

5.80

7.50

6.86

11.33

10.51

std of

the

rotation

(°)

11.16

10.29

14.34

13.45

16.93

16.36

12.06

11.28

14.94

14.10

18.61

17.25

Range

of

Motion

(°)

41

36

50.5

48

60

56

43

40

53.5

50 -»

63.5

60

mean

of the

error

(°)

-0.43

-0.63

-0.80

-0.76

-0.64

-0.81

std of

the

error

(°)

1.28

1.34

1.43

1.14

1.22

1.62

SE

0.228

0.251

0.278

0.232

0.234

0.307

+std is the standard deviation.

+SE is the standard error.
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Table Appendix-22 The measurement of intervertebral angles of subject GP.

Subject

GP

paone

patwo

L2/3

L3/4

L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

1VA (°)

-3.43

-3.23

-2.11

-1.94

-0.94

-1.06

-3.83

-3.66

stdof

the

IVA (°)

3.66

3.76

2.81

3.40

3.13

3.27

3.84

3.41

Range

of

Motion

(°)

12

13

10.5

11

10.5

12

12

11

mean

of the

error

(°)

0.20

0.17

-0.11

0.17

stdof

the

error

(°)

1.17

1.37

1.12

1.07

SE

0.200

0.234

0.190

0.183

IVA is the intervertebral angle,

std is the standard deviation.

SE is the standard error.

I
X

-•****»=

-* -* * r- - * * -

(b)

Figure Appendix-30 The rotation angles of the vertebrae L2, L3 and L4 versus frame number of
subject GP. (a) Data set 'paone'. (b) Data set 'patwo'.
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(8)

JL, *

(b)

Figure Appendix-31 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame
number of subject GP. (a) Data set 'paone'. (b) Data set 'patwo'.

1/ \

_5al-

(b)

Figure Appendix-32 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject GP 'paone\ (a) ^-translation of the centre points of the vertebrae, (b) ̂ -translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.

(a) (b) (c)

Figure Appendix-33 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject GP 'patwo'. (a) x-translation of the centre points of the vertebrae, (b) ̂ '-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix H. Subject JM

H.I Motion Tracking of the DVF Images from the Lateral View

Table Appendix-23 The measurement of rotation angles of subject JM.

Subject

JM

laton L2

L3-.

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

2.99

2.40

0.91

0.60

stdof

the

rotation

8.43

7.71

9.80

8.98

Range

of

Motion

30

28

37

34

mean

of the

error

-0.59

-0.31

stdof

the

error

1.12

1.43

SE

0.215

0.248

+std is the standard deviation.

+SE is the standard error.

Table Appendix-24 The measurement of intervertebral angles of subject JM.

Subject

JM

L2/3 laton Kondracki

GHT

mean

of the

IVA (°)

2.07

1.80

stdof

the

IVA (°)

1.69

1.91

Range

of

Motion

8

9

mean

of

error

-0.27

stdof

the

error

1.20

SE

0.209

IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(a) (b)
Figure Appendix-34 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject JM 'latori'. (a) The rotation angles, (b) The intervertebral angles.

(a)

y
i

-

i.

N

|

\ / |

•?—-

•• / y

1 f' ^

(«)

^ 0 ^

Figure Appendix-35 The translation of the vertebrae L2 and L3 versus frame number of subject
JM 'laton'. (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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H.2 Motion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-25 The measurement of rotation angles of subject JM.

Subject

JM

paone L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

0.03

-0.14

3.06

2.94

4.71

4.31

stdof

the

rotation

(°)

10.63

10.17

13.04

12.34

16.17

15.25

Range

of

Motion

(°)

39

36

48

45

58

54

mean

of the

error

(°)

-0.17

-0.11

-0.40

stdof

the

error

(°)

1.22

1.40

1.54

SE

0.209

0.237

0.269

std is the standard deviation.

+SE is the standard error.

Table Appendix-26 The measurement of intervertebral angles of subject JM.

Subject

JM

paone L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-3.03

-3.09

-1.66

-1.37

stdof

the

IVA (°)

3.39

3.59

3.34

3.34

Range

of

Motion

(°)

11.5

10

12.5

11

mean

of the

error

(°)

-0.06

0.29

stdof

the

error

(°)

1.22

1.39

SE

0.207

0.241

IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(a) (b)

Figure Appendix-36 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject JM ~paone\ (a) The rotation angles, (b) The intervertebral angles.

:A
F*3i

I- t
(a) (b) (c)

Figure Appendix-36 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject JM 'paone'. (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix I. Subject JW

I.I Motion Tracking of the DVF Images from the Lateral View

Table Appendix-27 The measurement of rotation

Subject

JW

laton

latwo

L2

L3

L2

L3

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

1.93

1.51

3.06

2.63

3.17

3.09

4.49

4.09

angles of subject JW.

stdof

the

rotation

(°)

7.01

6.50

9.92

9.52

6.46

6.17

9.07

8.33

Range

of

Motion

(°)

26.5

24

36

32

25

23

33.5

30

mean

of the

error

(°)

-0.41

-0.43

-0.09

-0.40

stdof

the.

error

(°)

1.22

1.31

1.07

1.32

SE

0.217

0.234

0.181

0.233

+std is the standard deviation.

+SE is the standard error.
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Table Appendix-28 The measurement of intervertebral angles of subject JW.

Subject

JW

L2/3 laton

latwo

Kondracki

GHT

Kondracki

GHT

mean

ofthe

IVA (°)

-1.13

-1.11

-1.31

-1.00

std of

the

IVA (°)

3.39

3.42

2.83

2.61

Range

of

Motion

10.5

10

10

9

mean

of

error

0.01

0.31

std of

the

error

1.28

1.48

SE

0.216

0.255

IVA is the intervertebral angle,

std is the standard deviation.

SE is the standard error.

(a) (b)
Figure Appendix-37 The rotation angles of the vertebrae L2 and L3 versus frame number of
subject JW. (a) Data set 'latorf. (b) Data set 'latwo'.

(a) (b)

Figure Appendix-38 The intervertebral angles of the vertebrae L2/3 versus frame number of
subject JW. (a) Data set 'latorf. (b) Data set 'latwo'.
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(a) (b) (c)

Figure Appendix-39 The translation of the vertebrae L2 and L3 versus frame number of subject
JW 'laton\ (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.

„... *•*«.*»

\ •<

(a) (b) (c)

Figure Appendix-40 The translation of the vertebrae L2 and L3 versus frame number of subject
JW ilatwo\ (a) x-translation of the centre points of the vertebrae, (b) jy-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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1.2 Motion Tracking of the DVF Images from the Anterior/Posterior

View

Table appendix-29 The measurement of rotation angles of subject JW.

Subject

JW

paone

patwo

L2

L3

L4

L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

2.56

2.40

2.86

2.71

5.13

4.74

1.03

0.83

1.66

1.34

6.03

5.17

std of

the

rotation

(°)

11.15

10.43

13.57

12.31

17.02

15.75

7.99

7.24

11.21

10.30

14.87

13.77

Range

of

Motion

(°)

42

38

51

46

63.5

58

31

26

42

39

55

51

mean

of the

error

o
-0.16

-0.14

-0.39

-0.20

-0.31

-0.86

std of

the

error

(°)

1.22

1.55

1.71

1.18

1.32

1.38

SE

0.208

0.263

0.296

0.203

0.230

0.275

+std is the standard deviation.

+SE is the standard error.
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Table Appendix-30 The measurement of intervertebral angles of subject JW.

Subject

JW

paone

pat wo

L2/3

L3/4

L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-0.30

-0.31

-2.27

-2.03

-0.63

-0.51

-4.37

-3.83

std of

the

IVA (°)

3.11

2.68

3.54

3.75

3.61

3.38

3.93

3.84

Range

of

Motion

(°)

9.5

9

13

16

12

13

13

13

mean

ofthe

error

n
-0.01

0.24

0.11

0.54

stdof

the

error

(°)

1.22

1.18

1.23

1.31

SE

0.205

0.204

0.209

0.241

IVA is the intervertebral angle.

std is the standard deviation.

SE is the standard error.

r
• \ /

(a) (b)

Figure Appendix-41 The rotation angles ofthe vertebrae L2, L3 and L4 versus frame number of
subject JW. (a) Data set 'paone'. (b) Data set 'patwo\
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(b)

Figure Appendix-42 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame
number of subject JW. (a) Data set 'paone\ (b) Data set 'patwo'.

(a) (b) (c)

Figure Appendix-43 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject JW lpaone\ (a) ^-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.

(b) (c)

Figure Appendix-44 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject JW "patwo\ (a) ^-translation of the centre points of the vertebrae, (b) ^-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix). Subject NW

J.I Motion Tracking of the DVF Images from the Lateral View

Table Appendix-31 The measurement of rotation angles of subject NW.

Subject

NW

laton L2

L3

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

1.74

1.29

1.89

1.23

stdof

the

rotation

7.62

6.81

9.17

8.86

Range

of

Motion

30.5

27

34

32

mean

of the

error

-0.46

-0.66

stdof

the

error

1.43

1.16

SE

0.254

0.226.

std is the standard deviation.

+SE is the standard error.

Table Appendix-32 The measurement of intervertebral angles of subject NW.

Subject

NW

L2/3 laton Kondracki

GHT

mean

of the

IVA (°)

-0.14

0.06

std of

the

IVA (°)

1.83

2.45

Range

of

Motion

(°)

7

10

mean

of

error

(°)

0.20

stdof

the

error

o
1.26

SE

0.215-

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(a) (b)
Figure Appendix-45 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject RM 'latorf. (a) The rotation angles, (b) The intervertebral angles.

(a) (b)

Figure Appendix-46 The translation of the vertebrae L2 and L3 versus frame number of subject
NW 'latori'. (a) x-translation of the centre points of the vertebrae, (b) ^-translation of the centre
point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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J.2 Motion Tracking of the DVF Images from the Anterior/Posterior

View

Table Appendix-33 The measurement of rotation angles of subject NW.

Subject

NW

patwo L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT

mean

of the

rotation

(°)

6.69

5.97

9.54

8.77

10.31

9.40

std of

the

rotation

(°)

10.08

9.07

12.86

11.89

15.81

14.86

Range

of

Motion

(°)

36

31

45

42

55

52

mean

of the

error

(°)

-0.71

-0.77

-0.91

stdof

the

error

(°)

1.20

1.29

1.27

SE '

0.237

0.254

0.266

+std is the standard deviation.

+SE is the standard error.

Table Appendix-34 The measurement of intervertebral angles of subject NW.

Subject

NW

patwo L2/3

L3/4.

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-2.86

-2.80

-0.77

-0.63

stdof

the

IVA (°)

3.36

3.38

3.58

3.65

Range

of

Motion

11

11

12

13

mean

of the

error

0.06

0.14

stdof

the

error

1.03

1.09

SE

0.174

0.186

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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(a) (b)

Figure Appendix-47 The rotation and intervertebral angles of the vertebrae L2,L3 and L4 versus
frame number of subject NW 'patwo'. (a) The rotation angles, (b) The intervertebral angles.

J

(b) (c)

Figure Appendix-48 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject NW "patwo\ (a) x-translation of the centre points of the vertebrae, (b) ̂ -translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix K. Subject RM

K.1 Motion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-35 The measurement of rotation angles of subject RM.

Subject

RM

patwo L2

L3

L4

Kondracki

GHT

Kondracki

GHT

Kondracki

GHT .

mean

of the

rotation

n
3.69

3.29

4.69

4.26

5.63

5.03

stdof

the

rotation

(°)

7.40

6.58

10.38

9.27

12.98

11.83

Range

of

Motion

n
28

25

36

34

47

42

mean

of the

error

(°)

-0.40

-0.43

-0.60

stdof

the

error

(°)

1.12

1.40

1.48

SE

0.200

0.248

0.270

std is the standard deviation.

+SE is the standard error.

Table Appendix-36 The measurement of intervertebral angles of subject RM.

Subject

RM

patwo L2/3

L3/4

Kondracki

GHT

Kondracki

GHT

mean

of the

IVA (°)

-1.00

-0.97

-0.94

-0.77

stdof

the

IVA (°)

3.75

3.33

2.71

2.78

Range

of

Motion

12

10

11

12

mean

of the

error

0.03

0.17

stdof

the

error

(°)

1.07

0.82

SE

0.181

0.142

+ IVA is the intervertebral angle.

+std is the standard deviation.

+SE is the standard error.
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"* * * * * *~

Figure Appendix-49 The rotation and intervertebral angles of the vertebrae L2,L3 and L4 versus
frame number of subject NW 'patwo'. (a) The rotation angles, (b) The intervertebral angles.

(a) (b) (c)

Figure Appendix-50 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject RM 'patwo'. (a) x-translation of the centre points of the vertebrae. (b)_y-translation of the
centre point of the vertebrae, (c) The translation of the centre points of the vertebrae in 2-D.
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