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Low back pain is one of the most frequent medical problems in the western world and its
consequent cost is enormous. However, despite the high occurrence of low back pain,
diagnosis of the causes is still a major problem. Research has indicated that low back pain
is often related to mechanical disorders of the spinal or holding elements. Therefore, it
could be very helpful for clinical diagnosis to study the motion of lumbar spine in order
to determine where abnormal motion exists and hence any sources of mechanical
instability. Digital videofluoroscopy (DVF) is currently the only practical medical
imaging technique to obtain real-time, continuous motion sequences of the lumbar spine.
However, DVF images suffer from the presence of noise, poor contrast and adjacent

structures near the vertebrae due to the low radiation dosage.

Recently, wavelet-based approaches have been applied in edge detection to acquire muiti-
scale gradient images. In multi-scale detection, the edges are more accurately located
with low scales but sorﬁe false edges are produced; with large scales, fewer false edges
are identified but traded against a reduced accuracy in the edge location. This project

presents a scale multiplication in the identification of spinal vertebrae as a basis for
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quantifying kinematics. The scale multiplication is defined as the producf of the response
of the detection filter at different scales so that it combines the advantages of the low and
large scales. Once edges are determined as the local maxima in scale multiplication, more
robust detection results are obtained after thresholding. The threshold values are decided
by the standard deviation of the noise in the images. With the edge information of the
lumbar spine vertebrae, biomechanical parameters, such as rotation and intervertebral

angles can be measured via manual landmarking.

Another development of this project is the automated tracking technique by using the
Generalized Hough transform algorithm. With the mathematical description of the
vertebral edges detected by the wavelet scale multiplication method, the vertebral
movements in spine motion are tracked. This approach is applied to the DVF image
sequences from a calibration model and from ten human subjects to demonstrate its

reliability and robustness.

This research would benefit the diagnosis of low back pain and provide a platform for the

further development of other clinical analys.is, such as the cervical spine study.
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Chapter 1 Introduction

1.1 Background and Motivation

Low back pain is defined as pain in the spine or muscle of the low back. Low back pain is
one of the most frequent problems treated by chiropractors, osteopathic physicians,
physical therapists (physiotherapists), anesthesiologists/pain medicine physicians, and
orthopaedic surgeons or neurosurgeons. In the U.S., acute low back pain is the fifth most
commoﬁ reason for all physician visits. The research found that about 80-90% adults
experience back pain at some point in their life, and 20-50% working adults have back

pain every year (Patel,A.T. et al. 2000; Phillips,D.L. 2004). The evidence from Britain

and elsewhere also shows that back pain is an increasing problem — not that there is any

evidence of changing pathology, but rather due to changed attitudes and expectations.
This trend has been particularly noticeable since the mid ‘80s. Moreover, the cost of low
back pain is enormous. The estimated cost to the National Health Service (NHS) in the
UK. is £481 million a year (min-max range £356-649 million), with non-NHS cdsts,

such as private consultations and prescfiptions, being an additional £197 million per year.

Costs of the Department of Social Security (DSS) benefit is estimated at about £1.4

billion with lost production estimated at £3.8 billion. This situation breaks down to an
annual NHS cost to a purchasing authority with 250,000 people of £2.2 million (range
£1.6-2.9 million) (Oxford Radfliffe Hospital 1995). A typicall general practitioner (GP)
practice with five GPs and 10,000 patients would bear costs of about £88,000 (range
£65,000-118,000) (Oxford Radfliffe Hospital 1995). Similarly, the cost of back pain in

"the U.S. is conserVatively estimated to be upwards of 90 billion dollars (Phillips,D.L.
2004). ' '
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However, despite the high occurrence of low back pain, diagnosis of the underlying
| causes is still a major problem. A possible reason is that low back pain is a symptom and
it could be caused by different sources, such as muscle strain, arthritis, 'trauma, and
‘osteoporosis. The other reason could be the complicated structure of spine and the
difficulty of undertaking in vivo diagnosis and analysis. However, low back pain is often
related to the mechanics of the spine and can often be described as due to mechanical

disorders. Therefore, it could be very helpful to stﬁdy the motion of spine.

Currently, digital videofluoroscopy (DVF) is the only practical medical imaging
technology available with which to acquire spine motion sequences. However, digital
videofluoroscopic images have poor quality and, in addition, quality varies across the
image. Images are normally analyzed manually, which is very time consuming, and inter-
and intra-observations should be carried out repeatedly to improve the accuracy. These
fundamental problems inspire fﬁis project of the developméht of spiné motion analysis
with DVF image .sequences. In summary, spine motion analysis with DVF images

currently suffers from the following problems:

1. Poor quality of DVF images due to the low dosage radiation in image a_cquiéition. In
order avoid the potential health risks of radiation exposure, the dosage rate is set as low »
as possible. Furthermore, the skilled radiographer is required to follow the subject’s
motion. This can cause the loss of the anatomical details and then reduce the confidence

and accuracy of both manual and computer-aid landmaff(_ing.

2. Lack of a suitable eage detection method for the segmentation of the lumbar vertebrae
in DVF images. The development of an appropriate edge detector will benefit the motion
tracking and the spinal biomechanics studies. However, poor quality of DVF. images
makes the edge detection very difficult. Moreover, too many unwanted fake edges are

generated or too many edge details are lost when a uniform threshold value is applied.
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3. Although the segmenfatipn of the lumbar vertebrae and the tracking of the spine
motion can be carried out by manual landmarking. The experience and sufficient prior
knowledge on radiographic anatomy are needed. Furthermore, the landmarking procedure

" is time-consuming and labour-intensive, which could cause errors.

4. Knowledge of biomechanical parameters such as rotation angle, intervertebral angle,
and translation in the spine motion, is not enough to model normal or abnormal spinal
movement. There is a lack of comprehensive quantitative modeling tools for the

diagnosis of low back pain.

1.2 Objectives

This study attempts to bridge the spine kinematics and computer vision ﬁel‘ds and it is
expected that this multidisciplinary effort can benefit the diagnosis of low back pain. This
research aims to develop a method of automated segmentation and tracking of lumbar
spine motion for low back pain diagnosis. Patients suffering from low back pain could
display irregular movement at one or more intervertebral levels during movements of the
~ lumbar spine. Hence, it is expected that thevsourcerf the damage could be located by
identifying the abnormal motion at the vertebral level. Characterization of the normal
motion of the lumbar épine could therefore bé very valuable as a basis for diagnosing low
back pain. The main objective of this research is to develop an automated segmentation
and tracking algorithm for the analysis of spine motion. Biomechanical parameters
describing the spine motion can be obtained by using this method and they should be
close to ‘gold standard’ values generated by a experienced clinician of the method is to

become accepted in clinical practice.
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1.3 Overview of the Thesis

In Chapter 2, the anatomy and function of the human spine is briefly introduced and the
main components of human spine are discussed in detail. The emphasis is then on the
lumbar spine and its motion. Several concepts in spine biomechanics, such as rotation
angle, intervertebral angle, instantaneous centre of rdtation, instantaneous axis of rotation,
and range of motion are introduced. Finally, low back pain, the common causes and the
problems created are discussed. Thfs chapter wil] be helpful for understanding the

motivation and the clinical background of the research.

Several popular medical imaging technologies are introduced in Ch.apter 3. The analysis
of their suitability for the study of spine motion is also given. The reason that the digital
videofluoroscopy (DVF) methodv is chosen is then discussed. The DVF system, the
radiation dosage and the image acquisition procedure are then presented in detail. Finally

the advantages and disadvantages of DVF images are discussed.

Chapter 4 deals with the edge detection problem. Edge information is of great interest in
many computer vision applications and hownto obtain edges efficiently and effectively
has been a main concern in image processing. In this study, vertebral edges become an
crucial part of the processing because it affects the tracking results of spine motion. The
conventional edge detection methods afe introduced briefly and then a literature review
of the application of the edge detection to vertebral identification is presentéd. Finally,

. some current results are given and discussed.

Since the conventional edge operators are not able to yield the vertebral edges
sufficiently well for subsequent processing, we propose a better edge detection method in

Chapter 5. We first introduce the wavelet transform (WT) theory and multiresolution
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analysis (MRA) in brief. Moreover, their application in image processing and edge
detection is discussed to show the potential of the wavelet-based method in our project.
Our edge detection apbroach using scale multiplication method in both one-dimensional
and two-dimensional analysis is then presented. Some examples of edge detection results
on DVF images are then shown to indicate the performance of the multi-scale product
method in detecting the vertebral contours from DVF images. Finally, spine
biomechanical parameters, such as the rotation angle and intervertebral angle, are studied

based upon the manual landmarking of our edge detection results on DVF images.’

Chapter 6 represents the Generalized Hough transform- technique developed for
automated tracking of the vertebrae from the edge detection results of DVF images. After
a brief introduction to the Hough transform, its development and application, our
Generalized Hough transform (GHT) algorithm is described, including the selection of
the template model, the building of a table to describe arbitrary shapes (the Reference
Table) and the tracking procedure. The description of shape is essential in arbitrary shape
tracking. The Reference Table is introduced to represent the shape of target. object. To
evaluate the performance, the GHT algorithm is applied to DVF image sequences from a
calibration model. Moreover, the comparison with the pre-set values of the calibration
model is conducted and the tracking error is measured. Finally, the approach is applied to

human subject DVF sequences and tracking results are presented.

‘. In Chapter 7, our automated segmentation and tracking method is further tested using real
DVF image sequences from 10 healthy subjects. The biomechanical parameters, such as
rotation and intervertebral angles are measured and compared with the ‘gold standard’
results obtained from an experienced clinician. Statistical analysis shows that they are
very close but, importantly, our automated method avoids many problems inherent with
manual landmarking. The track of the translation of the vertebra in the spine motion
_sequence is also shown in this chapter. The study is based on both flexion/extension and

lateral bending of the lumbar spine.
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Chapter 8 summarizes the work of this thesis, draws the conclusions and points out some
likely directions for future development of the spine motion analysis and other

applications of our method.

1.4 Contributions of the Research

The main contributions of the research developed in this thesis are:

1. First application of a wavelet scale multiplication edge detection method for digital
videofluoroscopy (DVF) image processing. The good performance of this wavelet-based
operator overcomes the need for manual landmarking of the vertebral contour which had
to be conducted in previous researches. The vertebral shapes obtained by this method can

be used directly to describe the target shapes for the spine motion tracking.

2. Development of an automated tracking approach to locate lumbar vertebrae for DVF

spine motion analysis. The Generalized Hough transform is employed in our spine
motion study due to its good performance in handing noise and describing shapes. The
automated tracking method alleviates substantially the laborious and time-consuming

manual landmarking procedure.

3. The ability of study the continuous motion of the lumbar spine. First, DVF technique
has enabled the possibility of obtaining the continuous motion information of the lumbar
Spine with low radiation dosage. Second, the proposed wavelet scale multiplication is
designed to be suitable for the segmentation of the vertebrae in poor quality DVF images.
Fiﬁally, the Generalized Hough transform is applied to the edge detections to conduct the

spine motion tracking. This automated segmentation and tracking algbrithm has been
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tested using DVF image sequences from a calibration model and from healthy human
subjects. The experimental results are close to the pre-set values and the ‘gold standard’

values obtained from the experienced clinician.
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Chapter 2

Human Spine and Low Back Pain

2.1 The Anatomy and Functions of the Spine

2.1.1 Introduction

The spiné is one of the most important structural parts of the human body. Without it,
humans could not keep themselves in an upright posture or even stand erect. It allows
people to move about freely and to bend with flexibility. The spine is also designed to
protect the spinal cord, which transmits neural signals between the periphery and the

brain.

The spine is composed of thirty-four small bones called vertebrae that are stacked on top
of each other via intervertebral discs to create the spinal column. From the top and ‘
downwards, these vertebrae can be described as five components: the cervical spine
consisting of seven vertebral bodies; the thoracic spine consisting of twelve thoracic
vertebral bodies; the lumbar spine consisting of five lumbar vertebral bodies; the sacrum;
and the coccyx (Dykes,M.I. 2002; Oliver,J. et al. 1995). The vertebral column is shown
in Figure 2-1. In anatomy, lateral view means away from the midline and toward the
body side, shown in the middle column of Figure 2-1 and anterior means toward the front
of the body while posterior means toward the rear of the body. Moreover, the terms of

anterior and posterior (A/P) are almost always used in pairs in this thesis.
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Anterior view Left lateral view Posterior view

Atas (C1)— -
— Atlas (C1)
Axis (C2)—\ ) -y
7 4 J ¢ Axis (C2)
W Cervical # Cervical
curvature vertebrae
"
Cr—= 2
T
L Thoracic
Thoracic vertebrae
curvature

Lumbar
vertebeae

Lumbar
curvature

Sacrum (S1-5)

curvature

Cocoyx

Figure 2-1 Spine column (adapted from Hosmat Institute for Spine Problem (HISP) with kind
permission).
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Between each vertebra, there is a soft, gel-like cushion called the intervertebral disc. It
helps absorb pressure and keeps the bones from rubbing against each other. Moreover,

the discs allow flexibility in the spine and assist the muscles as shock absorbers.

~ Each vertebra is linked to others by groups of ligaments, called articular ligaments. An
. articular ligament is a short band of tough fibrous dense regular connective tissue

.'composed mainly of long, stringy collagén fibers. Ligaments connect bones to other
bones to form a joint. They are elastic and lengthen under tension. There are also tendons
that fasten muscles to vertebrae. Tendons are similar to ligaments except that ligaments
join bone to bone and tendons are inelastic. Furthermore, each vertebral motion segment
(a term for the functional spinal unit, which is the smallest physiological motion unit of
the spine.) has two fécet joints, also known as zygapophysial joints. They are located on
the posterior of the spine ‘on each side of the vertebrae where they overlap the
neighbouring vertebrae. The biomechanical function of each pair of facet joints is to
allow a small amount of lateral bending, flexion and extension of the spine and prevent

excessive twisting.

The spinal column also holds and protects the entire spinal cord and its thirty-one pairs of
spinal nerve roots. Each root consists of the union of a sensory dorsal root and a motor
ventral root (Bergman,R.A. et al. 1989). The roots exit the spine on both sides through
spaces (intervertebral foramina) between each vertebra and transmit sensory and motor

impulses to and from different parts of the body.

The normal spine has an S-shape when looking at it from the lateral surface. The cervical
spine curves slightly inward, the thoracic curves outWard, and the lumbar curves slightly
inward. The S-shape of the healthy spine allows for an even distribution of weight and

other stress applied on the spine. In particular, the lower potions of the spine hold most of
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the body’s weight, so the segments in this part of spine have stronger structures, which

will be discussed later.

2.1.2 Basic Spine Anatomy

2.1.2.1 Spinal Vertebrae

The vertebrae, as shown in Figure 2-2, are the building blocks of the spinal column. The
body of each vertebra is the large, round portion of bone that is attached to a bony ring.
When the vertebrae are stacked one on top of the other, the ring creates a hollow tube

where spinal cord passes through.

" The bony ring attached to the vertebral body consists of several parts. First, the laminae,
which are two broad plates dire(;,ted backward and lmedia]ly from the pedicles, extend
from the body to transmit the forces from the spinous and inferior articular processes.
Secondly, the spinous process is directed backward and downward from the junction of
the laminae and serves for the attachment of muscles and ligaments. Then there are two
transverse processes projecting one at either side from the point where the lamina joins
the pedicle, between the superior and inferior arﬁcular processes. The transverse
processes function as the attachment of muscles and ligaments. Finally, the pedicles are
two short, thick procésses that connect to both sides of the laminae (Bogduk,N. 2005;
White,A.A. et al. 1990). |

The vertebra, like all bones, has an outer shell called cortical bone. It is extremely hard
and composed of multiple stacked layers with few gaps. Cortical bone forms the surface
of bones and contributes about 80%'of the weight of a human skeleton (Hubal,M.J. et al.
2005). The main function of cortical bone is to support the body, protect organs, provide
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levers for movement and store minerals. The inside is made of a soft, spongy type of
bone, called cancellous bone, which has a honeycomb structure. The cancellous bone fills

the inner cavity of bones with the low density and strength of osseous tissue.
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Transverse process
\ .

Foramen
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Inferio
articular

process
{Lamina

A Spinous process
Supernor articular surface
Articular pillar
- P
Body Spinous
process
g
Anterior tubercle of 3
transverse process Posterior tubercie of
B Sulcus for fransverse process

nerve

Figure 2-2 Spinal vertebrae (Hochamn,M. et al. 2005).
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2.1.2.2 Intervertebral Disc

The intervertebral discs are flat, round “cushions” that act as shock absorbers between
each vertebra in the spine, as shown in Figure 2-3. There is one disc between each pair of
adjacent vertebrae. Each disc has a strong outer ring of fibres called the annulus fibrosus,
and a soft, jélly-like centre called the nucleus pulposus (Bogduk,N. 2005; Giles,L.G.F. et
al. 2003; Oliver,J. et al. 1995; White,A.A. et al. 1990).

The annulus fibrosus consists of several layers of fibrocartilage, with the fibres of each
layer running perpendicular its neighbours. So the annulus fibrosus is designed to be the
strongest area of the disc and it also helps keep the disc’s center intact. The strong

annular fibers contain the nucleus pulposus and distribute pressure evenly across the disc.

The nucleus pulposus is viscous and fluid, like jelly. The nucleus pulposus is made up of
tissue that is very moist because it has high water content. The water content helps the
disc to act like a shock absorber — if subjected to pressure from any direction, the nucleus
pulposus will attempt to deform and will thereby transmit the applied pressure in all

directions.

2.1.2.3 Spinal Cord and Nerve Roots

The spinal cord is a column of millions of nerve fibers that run through the spinal canal,
as shown in Figure 2-4. The main function of the spinal cord is transmission of neural
inputs between the periphery and the brain. It extends from the brain to the area between
the end of the first lumbar vertebra and top of the second lumbar vertebra. At the second
lumbar vertebra, the spinal cord divides into several different groups of fibers that form

the nerves that will go to the lower half of the body. For a small distance, the nerves
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Inter-vertebral Disc

\ Nucleus pulposus
Vi

Figure 2-3 Intervertebral Disc.

actually travel through the spinal canal before exiting the neural foramen. This collection
of nerves is called the cauda equine while it is still inside the spinal canal (Oliver,J. et al.
1995; Phillips,D.L. 2004).

The spinal cord is covered by three meninges — the outer dura mater, the arachnoid mater,
and the innermost pia mater. The dura mater forms a watertight sack around the spinal
cord and the spinal nerves. Inside this sack, the spinal cord is surrounded by
cerebrospinal fluid. The arachnoid mater, attached to the inside of the dura, surrounds the
spinal cord. Cerebrospinal fluid flows under this layer in the subarachnoid space, which
is full of the delicate fibers of the arachnoid extending down to attach to the pia mater.
Finally the pia mater attaches to the dura mater by the denticular ligaments through the

arachnoid mater in the spinal cord.
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Figure 2-4 Spinal cord and nerve roots.

The nerve fibers in the spinal cord branch off to form pairs of nerve roots that travel
through the small openings (foramina) between the vertebrae. The nerves in each area of
the spinal cord connect to specific parts of the body. This is why damage to the spinal
cord can cause paralysis in certain areas and not others — it depends on which spinal
nerves are affected (White,A.A. et al. 1990). The nerves also carry electrical signals back
to the brain that allow sensations to be felt and so damage to the nerve roots can cause

pain, tingling, or numbness.

2.2 Lumbar Spine and Low Back Pain

2.2.1 Lumbar Spine

The lumbar spine, as shown in Figure 2-5, consists of five lumbar vertebral bodies, which
are named according to their locations in the intact spinal column. The lumbar spine’s

shape has what it called a lordotic curve (Bogduk,N. 2005). The lordotic shape is like
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backwards “C”. If the spine is considerd to have an “S”-like shape, the lumbar region

would be the bottom of the “S”.

Each lumbar}venebra consists of a vertebral body and a vertebral arch (also called as
bony ring). The lumbar spine supports most of weight of the body, therefore the lumbar
vertebral bodies are the largest of the spine. They are wider from side to side than from
front to back, and a little thicker at the front than at the back. It is flattened or slightly

concave above and below, concave behind, and deeply constricted in front and at the

sides. The vertebral arch, consisting of a pair of pedicles and a pair of laminae, encloses -

the vertebral opening (foramen) and supports seven processes. The pedicles are very

strong, directed backward from the upper part of the vertebral body. Consequéntly, the
inferior vertebral notches are of considerable depth. The vertebral notches are the
_ concavities above and below the pedicles. When the vertebrae are articulated, the notches
of each contiguous pair of bones form the intervertebral foramina. In general, the pedicle
width increases gradually from the upper lumbar to the lower lumbar. The laminae are
broad, short, and strong. They form the posterior portion of the vertebral arch. In the
upper lumbar region the lamina are taller than they are wide but in the lower lumbar
vertebra the lamina are wider than they are tall. The lamina connect the spinous process

to the pedicles (Ebraheim,N.A. et al. 2005).

Low back pain is very common complaint for a simple reason. Since the lumbar spine is
connected to the pelvis, this is where most of the body weight is concentrated and most of
the movements take place. Typically, this is where people tend to place too much
pressure, such as carrying a heavy object or twisting to move a heavy load. The repetition

of these tasks can lead to damage to the parts of the lumbar spine.
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Intervertebral
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Figure 2-5 Lumbar spine.

2.2.2 Movements of the Lumbar Spine

As we discussed above, the human lumbar spine is a complex structure consisting of five
vertebrae, associated with intervertebral discs and many attached ligaments and muscles.
Each of these components is fundamental for stability and movement. However, little is
known about the inter-connection between components. Images obtained from
videofluoroscopy (see Section 3.2) offer an opportunity to discuss the actual movement
of the lumbar spine between the extremes of motion. In the following, the two principal
spinal movements, flexion/extension and lateral flexion, which are involved in this

project, are briefly introduced.
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2.2.2.1 Flexion/Extension

Flexion is defined as forward bending projected onto the sagittal plane, i.e. the plane
which divides the body right and left halves; and extension is defined as backward

bending in the same plane.

During the process of flexion, the entire lumbar spine leans forwards. This is achieved
basically by the straightening of the lumbar lordosis. At the full range of forward flexion,
the lumbar spine assumes a straight alignment or is curved slightly forward, tending to
reverse the curvature of the original lordosis. The reversal occurs principally at the upper
lumbar levels. Forward flexion is therefore achieved for the most part by each of the
lumbar vertebrae rotating from their backward titled position in the upright lordosis to a
position in which the upper and lower surface of adjacent vertebral bodies are parallel to
one another. This relieves the posterior compression of the intervertebral discs and facet
joints, present in the upright lordotic lumbar spine. Some additional range of movement
is achieved by the upper lumbar vertebrae rotating further forwards and compressing their
intervertebral discs anteriorly (Bogduk,N. 2005; Dvorak,J. et al. 1991; Harvey,S.B. et al.
1998). ' |

In general, extension movement of the lumbar spine is the converse of those that occur in
flexion. Basically, the vertebral bodies undergo posterior sagittal rotation and a small
posterior translation. However, certain differences are involved because of the structure
of the lumbar vertebrae. During flexion, the inferior articular processes are free to move
upwards until their movement is resisted by ligamentous and capsular tension. On the
other hand, extension involves downward movement of the inferior articular processes
and the spinous process, and this movement is limited not by ligamentous tension but by

bony impaction.
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2.2.2.2 Lateral Flexion

Lateral flexion, also known as lateral bending, of the lumbar spine involves a complex
and variable combination of lateral bending and rotatory movements of the inter-vertebral
joints and diverse movements of the facet joints. As a result, lateral flexion of the lumbar
spine has not been subjected to detailed biomechanical analysis, probably because of its
complexity and the greater clinical relevance of sagittal plane movements and axial
rotation. However, some parameters of the biomechanics of lateral flexion can be studied

and will be discussed below.

Lateral flexion studies are commonly used to evaluate spine mobility, which is
considered an important parameter in the analysis of scoliosis (Novosad,J. et al. 2004;

Takahashi,S. et al. 1997; Vaughan,J.J. et al. 1996).

2.3.3 Biomechanical Parameters

After lumbar spine motion images are obtained, several biomechanical parameters, which
are available in the DVF image data sets (see.Section 3.2), have been developed to
qualify the spine motion (Allen,R. et al. 1992; Muggleton,J.M. et al. 1998). The range of
parameters includes angles of rotation, intervertebral angles, instantaneous centre of
rotation (ICR), instantaneous axis of rotation (IAR), and range of movement (ROM).

This section will discuss the definition and measurement of these parameters in brief.
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2.3.3.1 Rotation Angle

In a flexion/extension or lateral bending motion sequence, each lumbar vertebra begins
from the initial neutral position to the extreme positions, and rotation angles measure the
changes of the vertebral angle during the movement process. To calculate the vertebral
angle, the four corners of the lumbar vertebra are located first and then the midplane of
the vertebral body can be obtained. The angle of the midplane and the horizontal
reference line is defined as the vertebral angle (Figure 2-6). Finally the change in
vertebral angle of each lumbar vertebra is computed frame by frame during the whole
motion sequence to obtain a series of rotation angles. The rotation angle should have
approximately sinusoidal distribution since the lumbar spine moves from the neutral
position to the extreme position and then back to the neutral position during

flexion/extension and lateral bending motion.

g . . midplane

Horzontal Refepence Line ¢

Figure 2-6 The definition of vertebral angle.
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midplane

& midplanc

Figure 2-7 The definition of intervertebral angle.

2.3.3.2 Intervertebral Angle (IVA)

The angle between two adjacent vertebrae is defined as intervertebral angle. In
computation of the intervertebral angle, midplanes of the two adjacent vertebrae are
obtained first and then the angle between the two midplanes is measured to get the inter-
vertebral angle (Figure 2-7). Recent research has indicated that a linear model can be
built to describe to relationship between the IVA and the range of motion (ROM) in

normal lumbar spine motion (Kondracki,M. 2001).
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2.3.3.3 Instantaneous Centre of Rotation (ICR)

For any body moving in the two-dimensioan! space, the motion can be defined from the
position, velocity and acceleration for any point on the body. There is a péint for this
body for which the instantaneous rotational velocity is zero, which means that the body
rotates about this point. This point is called the instantaneous centre of rotation (or ICR).
Its location relative to the body is dependent on the relative values of the linear and
angular velocities. For near-zero angular velocities, such as pure translation motion, the

location of ICR approaches infinity.

The position of the ICR can be defined in several ways. For example, if the direction of

the velocities of two points A and B are known and they are different, as shown in Figure
2-8(a), the ICR is obtained by drawing the perpendicular to v, through 4 and the
perpendicular to v, throﬁgh B. The point in which these two lines intersect is the ICR. If
the velocities of v, and v, are perpendicular to the line 4B and the magnitude of the

velocities are known, the ICR can be found by intersecting 4B with the line joining the

extremities of the vectors, as shown in Figure 2-8(b).

In Figure 2-9, suppose the vertebra rotates from position 1 to position 2 without any
translation, then the intersection of the two perpendicular bisectors of 44’ and BB’ is the

ICR around which the vertebra rotates.
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Figure 2-8 Instantaneous Centre of Rotation (ICR).

Figure 2-9 Measurement of ICR in vertebral rotation.
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2.3.3.4 Instantaneous Axis of Rotation (IAR)

When the combination of sagittal rotation and sagittal translation of each lumbar vertebra
occurs during flexion/extension, the instantaneous centre of rotation (ICR) is not suitable
for describing such a complicated lumbar spine movement since the ICR considers only
rotation motion. Therefore, the biomechanical parameter known as the instantaneous axis
of rotation (IAR), is introduced here. The exact location of the IAR is a function of the
_amount of sagittal rotation and the amount of simultaneous sagittal translation that occurs
during the phasé of motion defined by the start and end positions selected. During the
flexion/extension, each lumbar vertebra exhibits an accurate motion in relation to the
vertebra below. The centre of the arc lies below the moving vertebra and is known as the

IAR, shown in Figure 2-10.

When [ARs are located for each phase of movement and then plotted in sequence, the);
depict a locus known as centrode of motion (Figure 2-11). The centrode is actually a map
of the path taken by the moving axis during the full range of motion of the joints. In
Figure 2-11, the flexion/extension of the vértebra can be reduced to small sequential
increments. For example, five such phases are illustrated in the figure. Each phase of
motion has a unique IAR. In moving from position 0 to position 1, the vertebra moved
around IAR 1. In moving from position 1 to position 2, it moved around IAR 2, and so

on. Finally, the IARs are connected in sequence and they describe the centrode.

Research shoWs that in normal lumbar spine motion, the centrode is short and is located
in a restricted area in the vicinity of the upper endplate of the adjacent lower vertebra.
However, in the abnormal lumbar spine motion, such as degenerative lumbar Spine'
movement, the centrode differs from the normal in length, shape and average location
(Qeftzbein,S.D. et al. 1986). It can be seen that the centrode of normal vertebra motion is

_shoft and tightly clustered (Figure 2-12(a)) and the abnormal vertebra motion may exhibit
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a longer, displaced and erratic centrode (Figure 2-12(b)). So the study of the IAR and the
centrode generated by the IARs could be very helpful in the diagnosis of low back pain.
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Figure 2-11 Centrode of flexion/extension.
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{a) (b)

Figure 2-12 The centrode of normal (a) and abnormal (b) motion.

Mathematically, the location of an IAR can be expressed as:

Xr = Xcr +T/2
Yur = Yer 2(1 —cos 0) Yer 2tan(0/2) ’

where (x4, ,4z) is the coordinate of the IAR, (x.z,V¢z) is the coordinate of the centre

of reaction, T is the translation exhibited by the moving vertebra and @ is the angular
displacement of the vertebra (Bogduk,N. 2005), shown in Figure 2-13. The centre of
reaction (CR) is the point on the inferior endplate of the moving vertebra through which
the compression forces are transmitted to-the underlying inter-vertebral disc. So the CR is

the mathematical average of all the forces distributed across the endplate.

However, with the above definition of the CR, it is difficult to locate its coordinate in a
DVF image. An important feature of the CR is that it is a point that undergoes no
rotation, which is the same as the feature of ICR. So (Kondracki,M. 1991) indicated that
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if a motion is divided into a pure rotation and then a pure translation, then the position of
the ICR in the pure rotation motion is exactly the position of the CR. Consider three
vertebral positions, 1, 2 and 3, as shown in Figure 2-14. In moving from position 1 to
position 2, the vertebra undergoes pure rotation around the ICR, by an angle of 6. In
moving from position to position 3, the vertebra translates a distance 7 in a particular
direction without further rotation. Hence the coordinate function of the IAR can be

rewritten as:

Xup = Xcp +T/2
_ 4 Tsind + T
Yur = ViR T )1 —cos8) T " 2tan(6/2)’

where (x,,z,¥,z) are the coordinates of the IAR, (x,c,g,‘ Yicr) are the coordinates of the

ICR, T is the pure translation exhibited by the moving vertebra and @ is the angle of pure

rotation of the vertebra.

¥
{*nx * le'etR}

«¥

Figure 2-13 Method I to calculate the IAR.
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T __
2(an(6/2))

IAR

Figure 2-14 Method II to calculate the IAR.
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2.3.3.5 Range of Motion (ROM)

Range of motion (ROM) is the measurement of the achievable distance or rotation angle
between the fully flexed and extended positions of an observed subject during motion.
Radiographic studies provide the most accurate measurements of ROM (Littlewood,C. et
al. 2007). T};e technique of radiography helps to analyze the movement in the sagittal
plane for flexion/extension, horizontal plane for axial rotation and coronal plane for
lateral bending. For example, the range of motion of flexion/extension can be measured
by subtracting the maximum values from the minimum values of the angles of rotation in

- the flexion/extension motion sequence (Van Herp,G. et al. 2000).

2.3.3.6 Summary

In this section, the biomechanical parameters rela;ted to spinal flexion/extension and
lateral bending are introduced briefly. If the image sequences of these spine motions are
available, some biomechanical parameters, such as rotation angle, intervertebral angle
and ROM, can be calculated simply by dvirectly manual landmarking or some computer-
aided methods. Moreover, with the inveé_tigation of the translation of the lumbar spine,
the IAR can be obtained and then the distribution of IARs forms the centrode. All these
biomechanical parameters will help in the study of spine motion by quantitative analysis

or modelling tools using these parameters.
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2.3.4 Low Back Pain

Low back pain is one of the most frequent clinical problems presented in the western
world. It affects most people at some stage in their life and accounts for more sick leave
from work than any other single reason. Moreover, the cost of lower back pain is

enormous. The statistics have been presented in Chapter 1.

Fo.

Low back pain is defined as pain perceived as arising from either the lumbar spinal
region or the sacral region or from a combination of both (Bogduk,N. 2005). Low back
pain can be either an acute or a chronic disabling condition. An acute lower back injury
may be caused by a traumatic event, like a car accident or a fall. It occurs suddenly and
victims will usually be able to pinpoint exactly when it happened. In acute cases, the
structural damage is likely to happen‘ in the soft tissues like muscles, ligaments and
tendons. With a serious accident, fractures in the lumbar spine vertebrae may also occur.
Chronic lower back pain usually has a more insidious onset, occurring over a long period
of time. Causes include osteoarthritis, rheumatoid arthritis, degeneration of the discs

between the vertebrae, or tumours.

Psychological factors play a significant role in the onset of low back pain and the
transition from acute to chronic pain and disability. Depression, anxiety, distress and
cognitive factors have been linked to pain and disabil_ity (Linton,S.J. 2000). However,
recent research shows that psychologice/ll factors influence low back pain but are not the

most important causes of pain itself. Severe low back pain often arises from

biomechanical factors, such as inter-vertebral discs, apophyseal joints and sacroiliac 4

joints. These structures and their physical disruptions are strongly linked to low back pain
(Adams,M.A. et al. 2005). The cardinal movements of the lumbar spine include flexion,
extension, side flexion and rotation. Flexion and extension occur predominantly at the
lower two lumbar segments. Rotation at each lumbar segment is limited to only a few
degrees due to fhe vertical orientation of the lumbar facets. Combined movements like
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flexion and rotation, carry the highest injury potential. Repetitive movements, common in
sport, could fatigue the supporting structures of the lumbar spine and overwhelm the

protective mechanisms of the lumbar segments (Hainline,B. 1995).

However, diagnosis of low back pain is still a problem because it could be caused by
different sources and it is difficult to undertake in vivo diagnosis and analysis. Better
diagnosis of low back pain probably relies, to éome extent, on improving the
understanding of spine biomechanics. Many researchers have focused on spinal motion
since disorders of spine could be revealed in abnormal spinal motion. Moreover spine
kinematics is able to investigate the spine movement without considering the forces -
acting on the structures involved since the forces are difficult to measure in vivo.
Therefore spine kinematics could be very useful for better understanding of low back

pain and its diagnosis, treatment and rehabilitation.

Nowadays, several main medical imaging techniques have been explored to capture spine
images. However, not all of them are suitable in spinal motion studies. These techniques

will be discussed in the next chapter.

Page | 31




Chapter 3 Digital Videofluoroscopy

Chapter 3

Digital Vidéoﬂuoro_scopy

3.1 Medical Imaging Techniques

Medical imaging techniques began with the discovery of X-rays in 1895 (Bushberg,J.T.
2002; Cho,Z.H. 1993). Since then medical imaging has developed rapidly and has proved
to be invaluable in diagnositic medicine. The popular medical imaging techniques will be

discussed in the following sections.

*  X-rays.
An X-ra); is a form of electromagnetic radiation with a wavelength in the range of 10
nanometers to 100 picometers (corresponding to frequencies in the range 30 "PHz to 3
"EHz) (Bushberg,J.T. 2002). X-rays are primarily used for diagnostic medical imaging
and crystallography. Radiology is a specialised field of medicine that applies x-ray and
other techniques for diagnostic irmaging. X-rays are especially useful in the detection of
pathology of the skeletal system, but also useful for detecting some disease in soft tissue.
However, traditional X-rays are seldom applied to some soft tissue problems, such as the
brain or muscle. In these cases, computerized axial fomography (CT), magnetic
resonance imaging (MRI) or ultrasound is used. X-rays ifnages are usually of good

quality, but the radiation dosage is relative high. The scientific unit of measurement for

* P is the symbol of SI prefix peta, which means 10" . 4 PHz is 10" Hz.

* E is the symbol of SI prefix exa, which means 10" . A EHz is 10'® Hz.
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radiation dosage is the “millisievert (mSv). Because different tissues and organs have
varying sensitivity to radiation exposure, the actual dosage to different parts of the body
from an X-ray procedure varies. The term effective dosage is used when referring to the
dosage averaged over the entire body. For example, a typical chest X-ray results in an
exposure of about 0.1mSv (RadiologyInfo 2007; Shrimpton,P.C. et al. 2003). Compared
with an effective dosage of about 3mSv per year of average person from natural
background (RadiologylInfo 2007), it is high radiation dosage and only a limited number
of static images can be obtained. For spine investigations that would usually be in the
neutral pésition-and at the extreme positions of mobility and so it is impossible to analyze
spinal motion as the spinel moves. An X-ray image of thé lumbar spine is shown in Figure
3-1. The vertebral shapes are clear in the image, in particular, the L5 and sacrum can be
recognized‘ even though they are covered by the pelvis. However, this image technique is
not adapted in our research because of the limitations of high radiation exposure and still

images.

. Ct;;mputerized axial tomograj)hy (CT)
CT is a medical imaging method where digital processing is used to generate a 3-D image
from a large series of 2-D X-ray images taken around a single axis of rotation
(Popov,T.V. 2006). Many data scans are progressively taken as the subject is gradually
passed through a gantry containing the X-ray source and detector. They are combined
together by the mathematical procedure known as tomographic reconstruction. Since its
introduction in 1972 (Cho,Z.H. 1993), CT has become in medical imaging to be a
supplement to X-rays and medical ultrasonography and nowadays it is the “gold standard”

in the diagnosis of a large of number of different disease entities due to its excellent

" The Sievert (Sv) is the international system unit of equivalent dosage. It attempts to reflect the
biological effects of radiation as opposed to the physical aspects, which are characterized by the
absorbed dosage, measured in Grays (Gy), which will be discussed in the later part of this

section.
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Figure 3-1 An X-ray image of the lumbar spine (adapted from Ruian People’s Hospital for kind
permission).

image quality. However, CT is regarded as a high radiation diagnostic technique. For
example, compared with a typical chest X-ray exposure of about 0.1mSyv, a typical chest
CT has an effective dosage of 5.8mSv:(Shrimpton,P.C. et al. 2003) or even 8mSv
(RadiologyInfo 2007). This amount of exposure is 2-3 times of the average person per
year from natural background. Furthermore, in a recent comprehensive survey in the UK
(Hart,D. et al. 2004), CT constituted about 7% of all radiologic examinations, but
contributed about 47% of the total collective dosage. This means that any increase in CT
examinations would lead to an overall increase in the total amount of medical radiation

used, despite the reductions of radiation dosage in other techniques. The other
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disadvantage of CT is that it cannot yield motion images because patients normally lay on
their back and should keep as stationary as possible during image acquisition. A CT
image of lumbar spine is shown in Figure 3-2. The vertebral shapes are clear in the image.
Moreover, the image is actually a 3-D image so the anatomical information can be

analyzed by investigating the horizontal layer in the image.

e Magnetic resonance imaging (MRI)
MRI is a method of creating images of internal organs and is primarily used to
demonstrate pathological or other physiological alterations of living tissues. This imaging
technique is based on the fact that body tissues act differently in strong magnetic fields.
In clinical practice, MRI is used to distinguish pathological tissue from normal tissue.
One of the advantages of an MRI scan is that, according to current medical knowledge, it
is harmless to the patient. It utilizes strong magnetic fields and non-ionizing radiation in

the radio frequency range. Since MRI makes use of radio waves very close in frequency

¥
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Figure 3-2 A CT image of the lumbar spine (adapted from Ruian People’s Hospital for kind
permission).
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to those of ordinary FM radio stations, the scanner must be located within a specially
shielded room to avoid outside interference. Compare this to CT scans and traditional X-
rays which involve doses of ionizing radiation which may increase the chance of
malignancy, especially in children receiving multiple examinations. Furthermore, MRI
provides far better contrast resolution while CT provides superior spatial resolution. An
MRI image of spine is shown in Figure 3-3. The image offers anatomical information in
very good quality. The vertebrae bodies, the intervertebral discs and the soft tissues are
clear for clinical analysis and diagnosis. For a long time, MRI has been regarded as not
fast enough for motion analysis (Cho,Z.H. 1993) and it increases the cost of diagnosis.
Again, similar to CT, patients have to keep stationary in the process of image acquisition.

Therefore, MRI cannot yield dynamic images although this may change in future.

Figure 3-3 A MRI image of the lumbar spine (adapted from Ruian People’s Hospital for kind
permission).
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From what has been discussed above, these medical imaging techniques are not suitable
for dynamic spine motion studies. They are limited by either radiation safety or by

providing static images only.

‘3.2 Digital Vide'oﬂuoroscopy

Videofluoroscopy is an imaging technique to obtain real-time images by using a
fluoroscope which consists of an X-ray source and fluorescent screen. Therefore it allows
evaluation of vregional spinal movement and specific intervertebral motion. Due to the use
of X-.rays, patients suffer the potential health risks of radiation during acquisition the
procedure. Though physicians usually try to use low dosage rates, the length of a typical
procedure often results in a relatively high absorbed dosage. For example, the absorbed
dosage rate in the skin from the direct beam of a fluoroscopic X-ray system is typically
20-50 "mGy/min (FDA Public Health Advisory 1994). A dosage study was undertaken in
“order to investigate this problem (Breen,A.C. 1991). The absorbed dosage values
proposed in this research was compared with the typical values. The comparison result is

shown in Table 3-1. It is clear that there is a great reduction in radiation exposure.

The digital videofluoroscopic system used in this project is composed of a portable
passive motion table (PMT) and an X-ray videofluoroscopic system (Kondracki,M. 2001).

The passive motion table (PMT) has an upper section fixed and a lower section that can

"mGy is the symbol of milligray. Gray is the international §ystem unit of absorbed dosage. Sv
(sievert) is the unit of equivalent dosage. To convert Gy to Sv, the radiation weighting factor wg
and tissue weighting factor wr need to be considered. The conversion equation is Hrr= wg
wr D, where Hrp is equivalent dosage fn Sv and Dy is absorbed dosage in Gy. For X-rays,

wgr=1. For bone surface tissue, wr=0.01. So 1Gy=0.018v is assumed in this thesis.
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execute a smooth arc from the neutral position to 40° left, or to 40° right, and then back
to neutral. The PMT is motor driven and under the image intensifier tube so that the spine
movement controlled by the PMT can be recorded. The X-Ray videofluoroscopic system
consists of an X-ray generator, an X-ray tube assembly, an image intensifier tube, a
television camera, a VCR, and a monitor. The heart of the system is the image intensifier
tube. This tube permits diagnostic quality images to be produced at very low radiation
levels. It is used instead of intensifying screens and film as the image receptor. The
digital videofluoroscopy system (DVF) is shown in Figure 3-4. During spine movement,
the system records 5 frames per second. Furthermore, the analogue images are transferred

into digital format and then stored in a PC connected to the system.

Figure 3-4 The DVF system used in this project (Kondracki,M. 2001).
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“Table 3-1 Absorbed radiation dosage (Breen,A.C. 1991).

Breen’s DVF system Typical fluoroscopic X-ray system

View Absorbed dosage (mGy) View Absorbed dosage (mGy)
Lumbar A/P 2.9 Lumbar A/P 20 ’
Lumbar lateral 12.6 Lumbar lateral 50

Table 3-2 Radiation dosage and screening times for ten subjects which will be analyzed in this
project (Kondracki,M. 2001).

Subject Index Totél time (min) Total dosage-area Effective dosage
product (Gy cm?) equivalent (mSv)
BM 1.7 6.82 0.99
CR 1.9 3.43 0.46
DE 1.6 5.87 0.68
DO 17 T 438 T 061
GD 17 385 T 044
GP 1.8 5.34 0.65
M 1.8 4.05 0.50
W 19 5.98 ’ 0.70
NwW ‘ 1.9 4.77 0.57
RM 23 - 6.01 0.62
Mean value 1.83 ‘ 5.1 0.62
Average value ~ 0.915 2.55 © 031

“In the DVF system, the total radiation dosage of different subjects have been analyzed
(Kondracki,M. 2001) and are shown in Table 3-2. The average dosage-area prbduct
(DAP) across all ten subjects for one screening is about 2.55 Gy cm®. There is a
signiﬁéant reduction over the recommended maximum value of 15 Gy cm? by the
National Radiation Protection Board (NRPB) of the United Kingdom.
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Digital Videofluoroscopy (DVF) was first introduced to study spine motion by Breen and
Allen in 1987 and subsequently developed further (Breen,A'. et al. 1988; Breen,A.C. et al.
1987; Breen,A.C. et al. 1989a; Breen, A.C. et al. 1989b; Breen,A.C. et al. 1991;
Breen,A.C. et al. 1993). Since then DVF has been developed and widely applied in‘the
studies of low back pain (Allen,R. et al. 1992; Cholewicki,J. et al. 1991; Cholewicki,J. et
al. 1992; De Stefano,A. et al. 2004; Muggleton,J.M. et al. 1997; Muggleton,J.M. et al.
1998; Simonis,C. et al. 1992; Zheng,Y. et al. 2001; Zheng,Y. et al. 2003; Zheng,Y L. et
al. 2004). '

3.3 Conclusion

From the discussion in this chapter, digital videofluoroscopy is the only practical medical
imaging technique to safety obtain real-time, continuous motion sequences of the lumbar
spine. Using DVF images, the whole motion pattern of the lumbar spine could be

investigated rather than only at the neutral and extreme positions as in plain X-ray.

However, DVF image§ suffer from relatively poor quaility due to the low radiation dosage.
This causes problems in identifying features in DVF images automatically, which is
much easier in X-ray, CT and MRI images. Furthermore, similar to plain X-ray images,
the quality of DVF images varies across the image. The images are brighter in the middle
atea while the intensity and contrast are poorer in the other areas, as shown in Figure 3-5.
This causes problems in which the L1 vertebra has low contrast against its neighbouring
area due to the effect of soft tissues and the L4-L5 area is often difficult to detecte due to

occlusion by the pelvis.

In conclusion, digital videofluoroscopy provides the possibility to investigate the spine

motion with a very low radiation dosage. However, the quality of DVF images is'
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relatively poor. This leads to problems with the image processing which will be discussed

in the later chapters and forms the focus of the work undertaken in this project.

singie
62

singis
62

Figure 3-5 Typical DVF images from a motion sequence of the lumbar spine.
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Chapter 4
Conventional Edge Detection for

Lunribar Spine Vertebrae

4.1 Background

Edges characterize boundaries and therefore then detection is a problem of fundamental
importance in image processing. Edges in images are areas with strong intensity contrasts
— a jump in intensity from one pixel to the next. Edge detecting an image significantly
reduces the amount of data and filters out redundant information, while preserving the

important structural properties in an image.

This research project aims to develop a method of automated identification and tracking
of lumbar spine motion for low back pain diagnosis. Characterization of the normal
motion of the lumbar spine would form the basis for locating a source of damage by
identifying any abnormal motion at the vertebral level. Therefore development of a
suitable edge detector is the first step of this project. With the edge information, the

movement of lumbar spine can be tracked and the biomechanical factors can be studied.

Edge detection methods applied in this project are aimed at reducing significantly the

amount of data in images and filter out information that could be regarded as preserving
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the important structural properties and features of images. There are many conventional
approaches to edge detection, but most of them are divided into two approaches, known
as gradient-based and phase-based operators, in terms of the information used in these

methods.

4.2 Introduction to Edge Detection

Intuitively, an ideal edge has the properties of the model shown in Figure 4-1(a). In gray
level, an ideal edge of this model is a set of connected pixels, each of which is located at

a step transition in intensity as shown by the horizontal profile in Figure 4-1(a).

In practice, optics, sampling and image acquisition imperfections make edges more
closely modeled as having a “ramp-like” profile, which is shown in Figure 4-1(b). In this
model, a “thin” edge disappears and instead, the edge point now is any point contained
along the ramp and would then be a set of such points that are connected. The “thick”
edge is determined by the length of ramp, as it makes the transition from an initial to a

final gray level.

() (b)
Figure 4-1 Model of an ideal edge (a) and a ramp edge (b).
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Gradient-based edge detectors are most generally applied for edge detecting. They locate
the edge by detecting the changes in brightness of images. The gradient-based edge
methods are divided into three categories (Nixon,M.S. et al. 2002; Sonka,M. et al. 1993):

1.0p erators that calculate the gradient of the image from the first derivate, such as
Canny, Sobel, Prewitt and Roberts;

2.0p erators that find the zero crossing of the second derivate of the image, sucﬁ as
Laplace and Marr-Hildreth;

3.0p erators that attempt to match the image function to a parametric model of the

edge, such as the Active Contour (Snake) method.

Figure 4-2 shows a horizontal gray-level profile of a ramp edge, as well as the first and
second derivative of the gray-level profile. The first derivative is constant for the points
in the ramp and is zero in the areas of constant gray level. The edges are detected by
looking for maxima in the first derivative of the images and a-threshold can be applied to
distinguish the real edges from noise. The second derivative is positive at the transition
associated with the low gray-level side, negative at the transition associated with the high
gray-level side and zero along the ramp and in areas of constant gray level. An edge
could then be detected by finding the zero-crossing of the second derivative. However,
the zero-crossing method is more sensitive to noise because zero crossings are difficult to
detect in a noisy background (Gonzalez,R.C. 1992), especially in cases of low signal-to-

noise ratio.

The 2-D gradient of an image f{x,y) at location (x,y) is defined as the vector

24
Gx ox . . . : .
VF = a 171a v |’ where G,,ie(x,y) are the gradient operators in the x and y
y -
Loy

direction. There are two important quantities in edge detection, the magnitude and

direction of the gradient vector. The magnitude quantity is usually denoted V£, where
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" Gray-tevel profile

First
derivative

Second
derivative

Figure 4-2 The profiles of gray-level, first derivative and second derivative

Y

v =[G2 +G2}2, while the direction is a(x, ) =tan‘l(—(—;—
x y s s G

X

J . However, in practice,

absolute values are used to approximate the magnitude instead of squares and square

roots: Vf = |GX|+|Gy|. This method is much more attractive computationally and still

preserves relative changes in gray level.

-~

In order to be useful in digital image processing, these equations have to be expressed in

discrete form. A basic discrete definition of the first derivative f{x,y) is the difference
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gi =f(x+Ly)-f(x,), % = f(x,y+1)= f(x,y). Similarly, a second derivative is

X

defined as the differ_ence .

SE =N SN2 D) s TE= Sy Sy D27 y)

Therefore, the gradient of each pixel of an image can be calculated from their
neighbouring pixels. In image processing, a concept of “subimage” is used so that the
neighbouring operation can be performed directly on the pixels of an image. The
subimage is also called a mask, which is the most prevalent terminology. In order to
obtain the gradient, each component of the mask has its own coefficient. A model of the
mask is sﬁown in Figure 4-3. In this way, each gradient-based edge detector detects an
edge with its own mask. In Figure 4-4, the masks of several edge operators most widely
used in practice are presented. They aim to obtain the gradient at point zs5. For the Prewitt

operator the mask with size of 3x3 is given by

G, =(z; + 2, +2,)~ (2, +2, +23), G, =(2; +2zg+2,)— (2, +2, +2,).
Similarly, the Sobel operator is given by

G, =(2;+2z3 + 25) (2, + 22, + 2,), G, = (25 + 224 + 2) — (2, + 22, + z;).

The Laplacian masks represent two forms encountered most frequently in practice, in

which the right one also considers the diagonal neighbours. For the Method I (left mask),

the function is given by V2 f =4z, —(z, + z, + z, + z,) while

Vif =8z, —(z,+2z,+2z,+2z, +24 +2, + 2z, + z,) for the Method II (right mask).
5 1 2 3 4 6 7 8 9

In edge detection, the mask is firstly started at the top-left area of an image and is then
slid from the left to the right, from the top to the bottom. Finally, it stops at the bottom-
right area of the image. This process is similar to the frequency domain concept of

convolution. For this reason, the mask is often referred to as a convolution mask. And
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Figure 4-3 A 3x3 mask for easy of readability
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similar to convolution, loss of the edge information in the corners of images happens

since the centre of mask cannot cover the corner positions. Gradient-based methods are

widely applied for edge detection. However, they suffer from some problems, such as the

estimation of the threshold value (Gonzalez,R.C. 1992). This problem is common to all

gradient-based edge detection schemes. Although the adaptive algorithm (Jin,J.S. et al.

2000) and statistical method (Rakesh,R.R. et al. 2004) have been applied in some

researches, the thresholding values are basically determined by experience. Another

problem is the missing of cofners, which causes considerable difficulties for line labeling

because it relies on the correct identification of corners and junctions.
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Figure 4-4 Prewitt, Sobel and Laplacian masks

A phase-based edge detection operator, which is called phase congruencys, is also used in
edge detection (Cao,G.T. et al. 2006; Kyan,M.J. et al. 2001; Liu,Z. et al. 2006; Wong,A.
et al. 2007). Phase congruency is a dimensionless quantity and provides information that
is invariant to changes in brightness or contrast of image. It could have good performance
in DVF images due to its robustness against low contrast. Phase congruency reflects the
behavior of the image in the frequency domain based on the concept that the edge-like

features have many of their frequency components in phase. Therefore, it provides an
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absolute measure of the significance of feature points, and thus allows a universal
threshold value. In the 1980’s, a model named Local Energy Model was developed
(Morrone,M.C. et al. 1987). This model assumes that features are perceived at points in
an image where the Fourier components are maximally in phase rather than at points of
maximal intensity gradient. Then Morrone and Owens defined the phase congruency
function in terms of the Fourier series expansion of a signal at some location x as .

X 4, cos(g, (x) —~ 4(x))

PC(x)= max; o 2m Z 4 ,

where 4, is the amplitude of »™ Fourier component, ¢,(x) is the local phase of the

Fourier component at position x, and #(x) is the amplitude weighted mean local phase

angle of all the Fourier terms at position x. Later, a new measure of phase congruency

was introduced by (Kovesi,P. 1999) and defined as

Y () 4, ()cos(@, ()~ () ~|sin(, ()~ - T |
Y A, (x)+e ' ’

PC(x) =

where W(x) is a weighed factor for frequency spread, £ is a small constant to avoid
division by zero, T is the estimated noise influence, and the others are same as before.

Here, the symbol |_ J denotes that the enclosed quantity is equal to itself when its value is

positive and zero otherwise. The phase congruency does not have a good performance
with DVF images, which will be discussed in the next section and the edge detection
results of the phase congruency with different threshold values can be found in the

Appendix A.

An edge detection fechnique called the Active Contour (ghe Snake) is also used in feature
extraction. In this method, some initial points are de\ﬁned around the feature to be .
extracted. Then, these points are moved through an iterative process and an Energy
Function for each point in the neighbourhood image is calculated. Finally, the points are

moved to the position where the Energy Function is lowest. Here, the Energy Function is

i
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a function with the variables of continuity, curvature and image energy. The active
contour was successfully used in edge detectioﬁ and segmentation in MRI and CT images
(Yezzi,A. et al. 1997). It was also introduced to segment the 3-D MRI images in
computer-aided spinal surgery (Booth,S. et al. 2001). However, the snake algorithm is

not commonly used in X-ray or DVF images since it is sensitive to noise.

4.2 Applications to Vertebral Contour Identification

4.2.1 Experimental Results using the Gradient-based Edge

Detectors

In this section, two typical gradient-based edge methods, the Canny and Laplacian of
Gaussian method are chosen to show the detection performance with DVF images. Other
gradient-based operators, such as the Sobel and Prewitt, will not be discussed since they

performance not as good as the Canny algorithm.

The Canny operator has been widely applied to the segmentation of medical images, e.g.
(Hamouw,A K. et al. 2004; Koh,H.K. et al. 2006; Li,J. et al. 2006; Xu,W. et al. 2005). The
Canny edge detector was also applied to obtain the edge pixels of the lumbar spine in
DVF images (Zheng,Y. 2002). However, the vertebral contour results were not good
enough for the Hough transform in the next step and manual landmarking and isolating
each vertebra were required. Here, we will discuss the implementation of the Canny

algorithm to DVF images and show the experimental results.

In the Canny algorithm, a Gaussian filter is firstly applied to the raw images to reduce the
response to noise because the Canny edge detector uses the first derivative of the

Gaussian filter to obtain the edge maps and is consequently sensitive to noise present on
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" raw images. After that, the gradient is calculated using the first derivative of the Gaussian
filter. Each edge point has an edge direction and this edge direction, together with the
local gradient, gives an estimated intensity gradient at each point in the image. Given
these estimated gradients, a search is then carried out to determine if the gradient
magnitude assumes a local maximum in the gradient direction. This step is referred to as
non-maximum suppression. The Canny algorithm uses two thresholds to detect strong
and weak edges, and includes the weak edges in the output if fhey are connected to strong
edges. The final step in Canny edge detection is called hysteresis thresholding. In
hysteresis thresholding, if the gradieht mégnitudé is below the low threshold level, it is
set to zero to be a non-edge. If the magnitude is higher than the high threshold level, it is
set to be an edge. If the magnitude lies between these two threshold levels, then it is
regarded as a non-edge unless there is a path from this pixel to a pixel with a gradient

above the high threshold level. Therefore, this method is more likely to detect true edges.

In order to select a suitable edge detection method for this project, an experiment has
been conducted to apply the Canny operator to DVF images. In the experiments, a low
and a high threshold were selected subjectively and by experience. The results are shown
in Figures 4-5 and 4-6. When a low threshold was applied, too many unwanted edges
remained and it is difficult to identify the contours of the vertebrae. However, there are
too few useful edges left when a high threshold was selected. These detected vertebral
boundaries will mislead the automated motion tracking in the next step of research. More

detection results with different threshold values are attached in the Appendix A.

In a further experiment, the Laplacian of Gaussian (LoG) method has also been applied to
DVF images. As discussed in the previous section, the Laplacian edge detector aims to
find the zero crossings of the second derivative of the image, however, it is sensitive to

noise. Therefore, the Gaussian operator is used before edge detection to reduce the effect
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(b) {c)

Figure 4-5 The Canny edge detection result of the DVF image in the neutral position. (a) The
original DVF image. (b) Canny with low threshold of [0.006 0.016]. (c) Canny with high

threshold of [0.019 0.047].

Figure 4-6 The Canny edge detection result of the DVF image in the extreme position. (a) The
original DVF image. (b) Canny with low threshold of [0.006 0.016]. (c) Canny with high
threshold of [0.019 0.047].

()

; (a;5

»2

of noise and improve the performance. Consider the Gaussian function f(r):—e—gg,

where #*=x’+)” and ¢ is the standard deviation. The Laplacian of the function with

2 2 _7
respect to r is sz(r):_(r 40- e 2¢* and it is called the Laplacian of Gaussian.
o

Because the second derivative is a linear operator (discussed in the previous section),
filtering an image with V> f(r) is the same as convolving the image with the Gaussian
operator first and then computing the Laplacian of the result. Finally, locating the edges

consists of finding the zero crossings of the computed results. The detection results are
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shown in Figures 4-7 and 4-8. The thresholds were also set by experience and
observations of edge maps at the different threshold values. It can be seen that the
vertebral edges are worse than those from the Canny method. In particular, when a high
threshold was applied, the edges are not good even for the manual landmarking. More

detection results with different threshold values are also attached in the Appendix A.

Figure 4-7 The Laplaican of Gaussian (LoG) edge detection result of the DVF image in the
neutral position. (a) The original DVF image. (b) LoG with low threshold of 0.001. (¢) LoG with
high threshold of 0.002.

- W

[ili’ — (.b.) (S]

Figure 4-8 The Laplaican of Gaussian (LoG) edge detection result of the DVF image in the
extreme position. (a) The original DVF image. (b) LoG with low threshold of 0.001. (c) LoG with
high threshold of 0.002.
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4.2.2 Experimental Results using the Phase-based Edge Detector

The phase congruency edge detection approach tries to find the maximal Fourier
components in phase (Morrone,M.C. et al. 1986; Morrone,M.C. et al. 1987). This has the
advantages over the gfadient—based methods in feature extraction because it is invariant to
changes in image brightness or contrast and provides an absolute measurement of the
significance of feature points with a universal threshold. Here, to test the performance of
the phase congruency method to DVF images, an experimen:c has been conducted. The
primary Matlai) code is based on Kovesi’s previous research which is available online
(Kovesi,P. 2001). In his algorithm, the log-Gabor wavelets (Field,D.J. 1987) were used to
calculate the phase congruency (see Chapter 5 for an introduction to waveléts). After the
calculation, the non—maximurh_suppression and hysteresis thresholding were applied to
locate the estimated vertebral boundaries. The experimental results are shown in Figures
4-9 and 4-10. The threshoulds are largely selected subjectively. The results are not
promising though they may be good enough for manual landmarking (Zheng,Y. 2002). -
However, the current research aims to develop a more automated identification procedure
and the vertebral edges yielded by the phase congruency cannot build the matching
template good enough for the motion tracking because too many or too few vertebral
contours are generated. Again, more detection results with different threshold values can

be seen in Appendix A.

4.2.3 Experimental Results using the Active Contour Algorithm

The Active Contour method, such as the Greedy Snake algorithm (Williams,D.J. et al.
1992), was also tried as a basis for obtaining the vertebral edges. In the Greedy Snake
algorithm, the Energy Function used in the implementation is expressed as
Eiota=0E cons+ PEcurvt YEimage, Where Econ and E,, constitute the first and second order

continuity constraints and form the Internal Energy; the third term Ejp,g. constitutes the
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(b) ' (o) i

Figure 4-9 The phase congruency edge detection result of the DVF image in the neutral position.
(a) The original DVF image. (b) Phase congruency with low threshold of 0.1. (c) Phase
congruency with high threshold of 0.4.

: (b) ‘ ‘ (L:)

Figure 4-10 The phase congruency edge detection result of the DVF image in the extreme
position. (a) The original DVF image. (b) Phase congruency with low threshold of 0.1. (c) Phase
congruency with high threshold of 0.4.

(@)

External Energy and it can be due to various features, such as lines, edges or terminations.

The Econ corresponds to the first order continuity and it is calculated as B—lV,. o

2

means the absolute

where D is the average distance between points, and |V,.—V,_,
difference between the two points under consideration. The E.,. refers to the curvature,
which is calculated as ‘V,_] 4 +V:H|Z. Finally, the Ej.g is basically a normalized

V.=V

: 5 : " %/
gradient magnitude, which can be written as E, . ="’—;—'";;’M, where  Vipagnitude
max— min

represents the magnitude value of the calculated pixel, and Vy, and Ve denote the
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minimum and maximum in the neighbourhood (the 5x5 mask in the experiment) of this
pixel. The parameters a, f and y are used to balance the relative influence of these three
factors. In the experiments, the parameters were set as a=1 and y=1.2 (Williams,D.J. et al.
1992). At the end of the each iteration, a step was involved to determine the curvature at
each point on the new contour. If the value was the maximum, £ was then set to 1 for the
next iteration, or else it was set to 0. The different settings of the parameters cannot yield

the satisfactory contours either.

The edge detection results are shown in Figures 4-11 and 4-12. The experimental results
indicate that the Snake method is not suitable to yield the vertebral contour correctly in
DVF images. It could be caused by the fact that the Snake algbrithm is very sensitive to
noise. Unfortunately, the DVF images contain a considerable amount of background
noise. Furthermore, if the Gaussian operator is used to filter out the noise, the pre-
processing of the Gaussian operator blurs the images and reduces the accuracy of the

locations of the vertebral boundaries.

(a) (b)

Figure 4-11 The Active Contour edge detection result of the DVF image in the neutral position.
(a) The original DVF image. (b) The Greedy Snake algorithm result.
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(a) (b)

Figure 4-12 The Active Contour edge detection result of the DVF image in the extreme position.
(a) The original DVF image. (b) The Greedy Snake algorithm result.

4.2.4 Summary

From the experimental results, the Canny edge detection method appears to be the most
suitable for automated segmentation of the lumbar spine vertebrac. When a low threshold
is applied, the Laplacian of Gaussian and phase congruency operators produce more
vertebral contour information and too many unwanted fake edges. Therefore they would
be helpful in manual landmarking of the lumbar spine but not good enough in automated
segmentation. On the other hand, when a high threshold is applied, both the Laplacian of
Gaussian and phase congruency lost too many details during the detection (see the
Appendix A). Only the Canny operator is able to recognize the approximate contour of
the lumbar spine. However, some problems, such as broken edges, would affect the
tracking results in the next step. To locate better vertebral edges, a wavelet-based edge

detection method is considered and will be discussed in the next chapter.
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ChapterS
Wavelet-based Edge Detection

Method

5.1 Overview

From the discussion in the previous chapter, the conventional edge operators cannot yield
the vertebral edges good enough for the automated tracking, a better edge detection
method will be proposed in this chapter. Wavelet multiresolution analysis (MRA) offers
an opportunity to investigafe the edge information at the different scales. A combination
of edge maps at the different scales will provide a better vertebral shape for automated
tracking. The Canny edge detection algorithm has shown its potential in processing DVF
images- in the previous chapter and the first derivative of Gaussian (FDoG) is used as
edge detector in the Canny algorithm, so the FDoG function will be the prototype of edge

detector in our proposed method. The detection results at the two adjacent scales are

multiplied and this method is called wavelet scale multiplication edge detection method. -

Each edge map has its advantages and disadvantages. Usually, the edges in small scale
are more accurate, although they are more sensitive to noise so that some false edges are
generated; on the other hand, with large scale, fewer wrong edges are detected but this is
traded against a reduced accuracy in edge position. The multi-scale product combines the
advantages at different scales together and yields the better edges. The experimental
results with the DVF image from the calibration model and human subjects will be

generated, shown and discussed in this chapter.
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5.2 Introduction to Wavelet and Multiresolution Analysis

The Fourier transform (FT) is widely used in analysis of raw time-domain signals. The
FT provides frequency information and the amplitude-frequency relationship. However,
it does not give any information about where in space or time the frequencies occur.
Therefore the FT can be used if the research is only interested in which spectral
components exist in a signal but is not interested in where these occur. To overcome this
problem, severai methods have been developed in recent decades. The wavelet transform
is a transformation to basis functions that are localized in both scale and time. It is
capable of providing the time and frequency information simultaneously, hence giving a
time-frequency representation of the signal. The wavelet transform was introduced by
Alfred Haar in 1909, Since then the wavelet theory has developed r,apidly.. Recently, it is
increasing apparent that image processing can gain improvements in performance by
using wavelet-based approaches since Mallat’s fundamental contribution to the
development of the wavelet theory (Mallat,S.G. et ‘al. 1992b). Wavelet-based edge
detection approaches have been widely applied in processing biomedical images to help
clinical diagnosis. In particular, due to the characteristics of multi-resolution analysis, a
wavelet-based operator can have better performance'than the conventional edge detectors
when poor quality images are presented, such as X-ray images (Deschenes,S. et al. 2002),
mammography images (Chen,C.H. et al. 1997) and ultrasound images (Kaspersen,J.H. et
al. 2001; Tsantis,S. et al. 2006). This chapter'will discuss the wavelet theory briefly and
emphasize the Wavelet scale multiplication edge detection as well as its application to

DVF images.

5.2.1 The Definition of Wavelet Series

The wavelet series is generated from a single basic wavelet y(¢), which is also called the
mother wavelet, and then scaled and translated to create a wavelet series. Because of the

property of zero average in the mother wavelet, a large value of scale corresponds to low’
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frequéncy while a small scale shows the high frequencies. A series of wavelets can be

derived from y(9) by v, ,(t) = —j:w(ﬂ), (a,b € R,a > 0) (Daubechies,l. 1992). In the .
: a a2 |

1
equation, a is the scale factor, a 2 is for energy normalization across the different scales,

b is the translation factor and R denotes the ‘real number. For example, a Mexican Hat
’Z

wavelet () = (1-1%)- e 2 isshown in F igure 5-1(a). Figure 5-1(b) shows the translated
wavelet y,,(t) =w(t—4) and Figure 5-1(c) shows the scaled and translated wavelet

_L t+2

V-2 = \/E W(T) .

The discrete wavelets are only scaled and translated in discrete steps. Usually the scale
and translation parameters (a,b) a re defined based on a pair of constants (ag>1, b¢>0) and

(a,b)=(a, ,nbyay), (m,ne Z), where Z denotes the set of “integers. Then a set of

1

. . t—nba;
discrete wavelets can be rewritten asy,, , (¢) = \/_ w( m°a° ), (m,ne Z;a, >1,b, >0).
ay a

0

The effect of discretizing the wavelet is that the time-scale space is now sampled at
discrete intervals. Moreover the scale factor ayp is usually set to be 2 so that the sampling
of the frequency axis corresponds to dyadic sampling which is a very natural choice for

computers. The translation factor by is set to be 1 for dyadic sampling of the time axis. As

a result (a,5)=(2",n-2"), (m,n)e Z , and the wavelets scaled by 2’ are written as

Wj;n(t) = :/'IE_J—W(%) > (j’n € Z) .

*The real number can be described as numbers that can be given by an infinite decimal
representation and represented as points along an infinitely long number line.

*The integers are the set of numbers consisting of the natural number and their negatives. In non-
mathematical terms, they are number that can be written without a fractional or decimal
component.
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Figure 5-1 The example of a series of the Mexican Hat wavelet. (a) The mother wavelet. (b) The
translated wavelet. (¢) The scaled and translated wavelet. '

After discretizing the wavelets, an infinite number of scales and translations are still
needed to calculate the wavelet transform. So a method to reduce the number of wavelets
to analyze a signal has to be developed and this method should keep the quality of the
transform. The translations of the wavelets are limited by the duration of the signal under
investigation so that there is an upper boundary for the wavelets. Then the question
remaining is that of how many scales are needed to analyze the signal to obtain

satisfactory results.

5.2.2 The Scaling Function and Filter Bank

It is well known from Fourier theory that stretching in the time domain is equivalent to

compressing the spectrum and shifting downwards in the frequency domain, which is
shown in the equation F { f (L)} =|a|- F(aw), where a>1 and F(w)=F{f{#)}. This means
a .

that a time stretch of the wavelet by a scale factor of 2 will compress the frequency
spectrum of the wavelet by the scale factor of 2 and also shift all frequency components
down by the scale factor of 2. Figure 5-2 shows an example, in which, y; is the Fourier
transform of the mother wavelet and the others are the wavelet set derived from the
mother wavelet.. As a result, since one wavelet can be considered as a band-pass filter, a

set of scaled wavelets can be considered as a band-pass filter bank. Moreover the ratio
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between the centre frequency of a wavelet spectrum and the width of this spectrum is the
same for all the wavelets in this set. This ratio is usually known as the Q factor and in this

case the set of the wavelets is therefore considered as a constant Q band-pass filter bank.

The scaling vfunction' #(¢t) has the characterization of I¢(t)dt =1 (Mallat,S.G. 1989a)

which means that the scaling function does not detect the difference in the signals.
Furthermore, the scaling function has a low-pass spectrum and so it investigates the low
frequency components of the signal. Then if the signal is analyzed by a combination of
the scaling function and the wavelets, the scaling function is used to cover the remaining
spectrum after the wavelet has been stretched to a suitable scale, such as scale j+1, shown
in Figure 5-2. Since one wavelet can be considered as a band-pass filter and a scaling
function can be regarded as a low-pass filter, a series of scaled wavelets together with a
scaling function can be considered as a filter bank. In this way the number of the
wavelets is limited from an infinite number to a finite one. The number of filters needed

is actual.ly decided by the application and selection requires trial and error.

4 scaling function spectrum @ :

Py W

Figure 5-2 Spectrum of a scaling function and a series of wavelet functions.
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5.2.3 Wavelet Decomposition and Multiresolution Analysis

The decomposition of signal using the filter bank can be built in an iterative way. The
first step is to split the signal spectrum in two equal components which are the output of a
- low-pass filter and the output of a high-pass filter. The high-pass part contains the finest
details and | therefore do not need a further processing. However the low-pass part
contains the coarse information and needs to be split again into a higher scale level. This
process is repeated until a satisfactory scale level is achieved. The process of splitting the

spectrum is graphically shown in Figure 5-3(a).

From the view of block diagram (Figure 5-3(b)), when a signal f{x) is decomposed in the
filter bank, a series of detail signals {#¥;} and a series of approximation signals {¥;} are
generéted due to the characterizations of high-pass and low-pass filters. {/#;} is usually
called the detail spaces while {V;} are called the subspaces. And -
SxX)=V,+W, =V, +W, +Wl'=---=Vj. +W, AW+ +W,+W, . So .V; is the

approximation of /(%) in the scale of j and {VJ }= V.5V, VW) is defined as a set of

the multiresolution analysis (MRA) of f{x) (Strang,G. 1989a; Strang,G. 1993b). The
sequence {¥;} has the following properties (Cohen,A. et al. 1993; Mallat,S.G. 1989b):

a. v

j+

2.  fMeV, o f(x-2'-keV,,

cv,

B). fMeV, o f(%) &V,
(4).  limv, ={o0}. |
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Figure 5-3 Decomposing the signal spectrum with an iteratire filter bank. (a) The spectrum view.
(b) The block diagram view. . ‘

Property (1) means than an approximation at a scale of j contains all the necessary
information to compute an approximation at the next scale j+ 1. Property (2), the property
of self-similarity in time, indicates that V] is invariant to any translation probortional to
the scale j. Property’(3) is the characteristic of self-similarity in scale, which shows that
dividing the diléting function by 2 in the time domain means that it enlarges the details by
2 in the frequency domain and it will be an approximation at the next scale j+/. Finally,
P?operty (4) implies that all the details of f{x) will be lost when the scale j goes to infinity,

which means only low pass filters are used in the decomposition.
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The MRA provides a recursive algorithm to analyze a signal up to the desired details and
this theory was developed in many previous research works (Herley,C.‘ et al. 1993;
_Polyak,N. et al. 1998; Smith,M.J.T. et al. 1986; Vetterli,M. et al. 1992). The MRA has
been widely applied in field of audio compression (Srinivasan,P. et al. 1998), image
compression (Ben Amar,C. et al. 2005; Polyak,N. vet al. 2000), image de-noising (De
Stefano,A. et al. 2004; Humeau,A. et al. 2002; Katkovnik,V. 2004; Strela,V. et al. 1999;
Zhong,J. M. et al. 2005) and pattern recognition (Chen,G.Y. et al. 2003; Zhang,L.. et al.
2005). In the following part of this chapter, we will emphasize the application of wavelet

decomposition and MRA to edge detection in image processing.

5.3 Wavelet Multiresolution in the Application of Edge‘

Detection

5.3.1 Wavelet Multiresolution Decomposition in Two-Dimensions

t

In image processing, the one-dimensional (1-D) wavelet transform discussed in the
previous section is easily extended to two-dimensional (2-D) functions. A non-standard
decomposition method is usually applied to acquire the coefficients in the wavelet
transform (Strang,G. 1989b; Strang,G. 1993a). In _two. dimensions, xa 2-D scaling function
#(x,y) , and three 2-D wavelets " (x,y), v’ (x,y) and w°(x,y) are defined as

follows:

P(x, y) = p(x)4(»)

v’ (x, ) = w(x)p(y)
v’ (x,) = () (y)
w2 (x,y) = w(xWw(y)

Here the superscripts of the wavelets mean the different directions. The " measures the

variations along the columns in the image so that it detects the horizontal edges; the y"
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responds to the variations aiong the rows, such as the vertical edges; and the y” examines
the variations along the diagonals since it detects the edges in both the horizontal and the
vertical directions. The wavelets are able to measure the variations in the intensity or grey
level of the image. Moreover the definitions of the 2-D wavelets do not increase the

computational complexity of the 2-D wavelet transform.

Given an image fx,y) and J is the satisfactory finest scale value, which means f{x,y) has

been decomposed into sufficient detail. Then the W,(J) defines the approximation of

flx,y) at the scale of J and the WVL ()),i e {H,V,D} defines the detailed information at the

horizontal (H), vertical (V) and diagonal (D) directions ‘at each scale of j. Here the
superscript index / identifies the direction A,V and D respectively. Figure 5-4 shows the
iteration procedure of 2-D wavelet decomposition into an approximation subband at the
scale of J and a series of detailed subbands at different resolution sqales in all directions.
The approximation subband consists of the so-called scaling coefficients and the detailed
subbands are composed of the wavelet coefficients. In this case, an undecimated wavelet
transform (Mallat,S.G. 1999) is considered where the number of the wavelet coefficients
is equal at each scale. The undecimated method provides more precise information for the
fréquency localization since the size or' the coefficients array do not diminish frr)m level
to lével. As a result, it applies the wavelet decomposition at each point of the image and

preserves all the information contained in the image.

5.3.2 Review of the Applications

~

The conventional edge detectors have the problem of noisy and broken edges since they
depend on only one solution. A two stage edge extraction method (Shih,M.Y. et al. 2005)
was introduced to solve this problem. In their method, the original images were

decomposed into several subband gradient images by multiresolution wavelet theory.
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Fiéure 5-4 The block diagram of 2-D undecimated wavelet decomposition.

Then a conventional edge operator was used to detect the edges in the finest-scale
gradient image. Finally, they proposed an edge tracking algorithm to refine the results
and reduce the noisy or blurred influences by analyzing the gradient images at different
resolutions. According to the wavelet multiresolution theory, the edge information was
propagated from fine scale to coarse scale. Some broken edges at the finest scale may be
connected at a coarser scale. With this idea, the broken edge problem was reduced and
better edge detection results were obtained. The localization criterion P; (Aydin,T. et al.

1996) of 0.9370 and detection criterion P, (Aydin,T. et al. 1996) of 0.1166 were reported
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(Shih,M.Y. et al. 2005), which shows great improvement compared with the conventional
edge detection methods. However, the decimated method was applied in this research and
this means that somé edges may be lost with the reduction of the number of the wavelet

. coefficients.

Another common problem in the conventional gradient-based edge detection is tﬁat
corners are often missed because the gradient at corners is usually small and so a wavelet
multiresolution corner detection algorithm (Lee,J.S. et al. 1995) was proposed. In their
algorithm, a three-scale wavelet transform on corner orientation (Liu,H.C. et al. 1990;
Rosenfeld,A. ef al. 1975) was performed after the boundary of a shape was extracted.
Based on both the information of local maxima and modulus of the wavelet transform
results, corners and arcs were detected. The orientation ramp width, which was
determined by the ratio of the transformed modulus of two scales, reveals the difference
between the corner and arc and it is used in the detection of edge points. Their
experimental results proved that their method was more effective than several
conventional corner detection methods (Beus,H.L. et al. 1987; Cheng,F. et al. 1988;
Rattarangsi,A. et al. 1992; Rosenfeld,A. et al. 1973; Rosenfeld,A. et al. 1975), insensitive

to boundary noise and more computationally efficient.

Some researchers have tried to improve the accuracy of detection and reduce the effect of
noise in other ways. A combined spatial- and scale-space edge detection method
(Faghih,F. et al. 2002) was proposed since the spatial and wavelet-based techniques have
different advantages and disadvantages. The spatial domain approach is more successful
in detecting and locating the weak edges but can provide false edges in response fo noise.
However, the wavelet-based edge detector is leés sensitive to noise although it is not
accurate as the spatial domain method in locating the edges. So with the combination of
the results obtained in both spatial- and scéle—space, edge maps are derived are well

localized as well as the successful suppression of the noise effects. However, their
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method focused more on de-noising and reconstructing the images by using the edge

information obtained from spatial- and scale-edge detection results.

In general, most wavelet multiresolution utilizations in edge detection are based on the
combination of the multiscale wavelet transform and decomposition with the traditional
edge detection approaches. This combined‘ method has widely applied in the
segmentation of poor quality images, such as camera-generated images (Qin,Q. et al.
2004; SimhadriK.K. et al. 1998; WangJ.Z. et al. 2001) and biomedical images
(Bezerianos,A. et al. 1995; Song,Y. et al. 2004). Furthermore, this method also has good
performance. in the identification of the features of interest in medical images

(Deschenes,S. et al. 2002; Kaspersen,J.H. et al. 2001).

From the discussion above, wavelet decomposition and multiresolution analysis help to

obtain better results from the conventional edge detectors. The typical problems of the

traditional edge detection method, such as broken edges and missing corners, are solved

to some extent by using the combined approach. However, these method discussed abéve
do not apply the wavelet theory to obtain the edge directly; A robust and simple wavelet-
based edge detection method will be discussed in the next section. This method uses the
wavelet filters to detect edges directly at various scales and combines these results

together to improve the performance in detection.
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5.4 Wavelet Scale Multiplication Edge Detection Method

5.4.1 Wavelet-based Edge Detection

Recall the discussion in the previous chapter, an edge in an image is a contour across

~ which the brightness of the image changes abruptly. In image processing, an edge 1s often

interpreted as one class of singularity. In mathematical function, singularities are able to -

be characterized easily as discontinuities where the gradient approaches infinity.
However image data is discrete, so edges in an image are often defined as the local

maxima of the gradient.

Edge detection is an important task in image processing and it is a main tool in pattern
recognition and image segmentation. The classical edge detectors mentioned in the
previous chapter work well with high quality images, but usually are not good enough for
noisy images since they canno‘t distinguish edges with little difference in significance
since most of them analyze an image at a siﬂgle resolution. Although the Fourier
transform (FT) is the main mathematical tool for analyzing singularities which represent
edges in mathematics, the FT is global and not well adapted to detecting local
singularities. It is hard to find the locatioh and spatial distribution using the FT. The
wavelet transform is a local analysis and it is especially suitable for time-frequency
analysis (Goswami,J.C. et al. 1999), which is essential for singularity detectioﬁ. This is

the major motivation for the study of the wavelet theory in edge detection.

With the development of the wavelet theory, the wavelet transform has proved to be a
powerful mathematical tool to examine the singularities in edge detection (Beus,H.L. et
al. 1987; Lee,J.S. et al. 1995; Lju,H.C. et al. 1990; Mallat,S.G. 1999; Mallat,S.G. et al.
1992b; Mallat,S.G. et al. 1992a; Tang,Y.Y. et al. 1999; Tang,Y.Y. et al. 2000; Yang,L.H.

et al. 2001). Recall the previous chapter, edge locations are rélated to the extreme of the
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first derivative of the signal and the zero crossings of the second derivative of the signal.
However, the local extreme of the first derivative wavelet function shows more
advantages than the zero crossings because the magnitude of the wavelet modulus
represents the relative strength of the edge (Mallat,S.G. et al. 1992b; Mallat,S.G. et al.
1992a) and is therefore able to recognize useful edges from small fluctuations cased by
noise. From the discussion in the previous chapter, the Canny edge detector has a better
performance in locating the vertebral edges than other gradient-based first derivative
edge detectors. Basically, in the Canny algorithm, the gradient is calculated using the first
derivative of Gaussian (FDoG) filter and so the FDoG function is used as the mother
wavelet in the wavelet transform. Given an image f(x,jz) and the Gaussian function 8(x,y),

edge points can be located from the two components W, f(x,y) and W} f(x, ) of the

wavelet coefficients at a certain scale level of s and these two components are calculated

as:’

0
1 —(f*6,)(x,)
W, f(xy) o ! -
= = V 0 ’ .
(WSZf(x’ y)J § s (f * s)(x y)

g-y—(f *0,)(x,y)

At each scale s, the wavelet modulus of the gradient vector is proportional to '

Wif )| .

M, fG) =W 1) +

’

And the angle of the gradient vector with the horizontal direction is given by
\

W2 f(x,y)

A f(x,y)=tan™ =% :

The direction of gradient vector at a point (x;y) indicates the direction in the image along .

which the directional derivative of the image has the largest absolute value. An edge
point (local maxima) can be detected as point (xg,)s) such that the modulus of the gradient

vector is of maximum value in the image.
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In this way, the wavelet transform yields the edges of images at various resolutions and
thereby offers a multiresolution edge detection method to investigate the image
singularities more effectively. Based on Mallat’s fundamental contribuﬁons to the
wavelet-based edge detection, the edge information in several scales can be combined for
consideration to compensate for the shortcomings of the results at single resolutions. For
exampie, Teager’s energy operator (Kaiser,J.F. 1990) was used to combine the edge
results at different resolutions to improve the performance of edge detection (Aydin,T. et
;11. 1996). In 1-D, the operator is defined as T[f(s)]= f>(s)~ f(s +1)f(s —1), where s
means the s™ scale. Although their approach improved edge detection in noisy images,
they employed a complex algorithm. Some simpler methods exist and will be discussed

in the following section.

 5.4.2 Background of the Wavelet Scale Multiplication

Using the wavelet edge aetqction filter, edges‘ can be detected at different scales. Each
edge map has its advarntages and disadvantages. Generally speaking, the edge map in
small scale is more accurate, but it is also more sensitive to noise so that some false edges
are produced; on the other hand, with large scale, less wrong edge information is detected
but this is traded against a reduced accuracy in edge location. The idea here is.that é‘
better edge map will be obtained if multi-scale coﬁelation combines the advantages at
different scales together. This idea was first put forward by Rosenfeld and his colleagues
who used the multi-scale products to enhance multi-scale peaks due to edges
(Rosenfeld.A 1970; Rosenfeld.A et-al. 1971). The direct multiplication of the detection
results of images at different scales locates important edges very efficiently and quite
accurately. Similar research was conducted by Sadler,B.M. et al. (1999), and an odd
number multi-scale products was considered because it made the edges unbiased and
preserved edge-polarity information. They also noticed that with the increase of scale, the
growth of the region of support will reduce the interference of neighbouring edges.

Moreover, considering the shifts of edge position at different scales could improve the
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abcuracy of the wévelet scale multiplication results (Lee,Y. et al. 2000). However, much
more simple methods were proposed to employ the wavelet edge detector at only two’
adjacent scales and then multiply the edge results (Bao,P.’ et al. 2005; Zhang,L. et al.
2002). The final edge maps were determined by finding the local maxima directly in the

multi-scale product.

Since the wavelet scale multiplication amplifies edge structures while diluting noise,
these apprdaches have been tested in applications of denoising in Magnetic Resonance
Images (Bao,P. et al. 2003; Xu,Y.S. et al. 1994). The direct spatial correlation of the
wavelet transform at several adjacent scales was calculated to remove noise and preserve
edges. Xu and his colleagues indicated that their denoising technique can remove over 80%
of the noise from the images while maintaining at least 80% of the original value of the
gradient at most edges (Xu,Y.S. et al. 1994). Moreover, Bao and his colleagues proposed
a nonlinear thresholding algorithm and imposed it on the wavelet scale multiplication
res'ults for noise suppression. Their experimental results also showed improved
performance. From what has been discussed above, potentially enhanced results are
expected if the wavelet scale multiplication edge detection method is applied to DVF

images.

5.4.3 One-Dimensional Analysis

To clarify the scale multiplication method, we first pose the edge detection in 1-D. In
previous studies (Bao,P. et al. 2003; Sadler,B.M. et al. 1999; Xu,Y.S. et al. 1994,
Zhang,L. et al. 2002), the non-orthogonal Mallat wavelet set (Mallat,S.G. et al. 1992a)
was used. Canny first presented the first derivative of Gaussian (FDoG) as an optimal
edge detector for isolating edges (Canny,J. 1986) and the Mallat wavelet set is very close
to the FDoG (see Figure 5-5). Moreover, the Mallat wavelet set can be designed to obtain
 the multiresolution edges so it is more powerful than the Canny edge detector. Recall the

definition of wavelet, a function w(x) is called a wavelet if it has a finite length or fast
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decaying oscillating waveform, and its average is equal to zero. A quadratic spline
function yw(x) as the mother wavelet and the region of support (RoS) is usually set to be
greater than 4 units of x since the Gaussian ﬁmction decays rapidly (Bao,P. et al. 2005;
Sadler,B.M. et al. 1999). In. this project, we set the RoS to be [-4,4], therefore the Mallat

wavelet can be written as:

0 - |x|24

-y (=x) : _OSxS4
t//(x)=J___3.x2_lx -2<x<0-
. 32 4

—(x+4) —4<x<-2

In Figure 5-5, w(x) is plotted as well as the FDoG function. It can be seen that y(x)

approximates the FDoG function closely. Therefore the Mallat wavelet set is

x
w(=)
w,(x) = —2- and the RoS is [-4s,4s], where s denotes the scale. The Mallat wavelet is
S . .

adopted in this project because it shows better performance than the Canny edge detector
which showed potential in Chapter 4. Moreover, we choose the Mallat wavelet due to the

fact that it is a real function (some wavelets are complex functions) and for the ease of

~ implementation. Bao, Zhang and their colleagues have proved that scale multiplication

using only two adjacent scales works simply and effectively (Bao,P. et al. 2005; Zhang,L.

et al. 2002), so we actually utilize the Mallat wavelet at two scales and here s,=2s;.

Recall the discussion in Chapter 4 that, in practice, a sub-image, which is also called a
mask, is used in edge detection. This process is similar to a finite impulse filter (FIR)
convoluted with the image. A pair of masks, A, and 4, gives two directional gradient

images G, and G, respectively. The gradient image is traditionally calculated as

Vf =

relative changes in grey level of the image. The Mallat wavelet should be discretized

GX
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The Mallat wavelat and the FDoG function
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Figure 5-5 The Mallat wavelet (blue solid line) and the first derivative of Gaussian function (red

dashed line).

before implementation. In Mallat theory, the discrete filter length of the discrete Mallat

wavelet is /, =2/ -2, where j denotes the ;" scale. In discretizing the Mallat wavelet,

/
we basically choose the equal number 7’ of the points at the positive and negative parts

of the wavelet and these points have equal spacing. As a result, these points are

symmetric and require the condition that wavelets have the mean value of zero. For

example, in Figure 5-6, we discretize the Mallat wavelet FIR filter to be

fi =, (x =£2) =[0.125,-0.125] at the finest scale s=2°=1. At the second scale s=2'=2,

the discrete filter is then

f, =y, (x =12,44,4+6) =[0.0156,0.0625,0.0781,-0.0781,-0.0625,-0.0156] .
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The Mallet wavelet when s=1
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Figure 5-6 The discrete Mallat wavelet FIR filter at the scales of 1 (top) and 2 (bottom).

After discretizing the Mallat wavelet, we can use it as an FIR filter in edge detection in
one-dimension. In simulation, we suppose the signal to be detected is composed of
several step edges and impulse edges, as well as additive unit-variance white Gaussian
noise. Figure 5-7(b) shows an example of 1-D signal W (x) = G(x) + n(x), where n(x)~
N(0,0?) is white Gaussian noise and G(x) is the signal without noise shown in Figure
5-7(a). Here we let G(x) = A[s(x) + 5(x)], where 4 is a constant. G(x) takes the value of
A in the ranges [51, 150], [201, 250], [301, 320], [350, 360] and [401, 405], as well as the
impulse edges given by J(x—440), 6(x—470) and 6(x—473). The signal-to-noise
2

ratio (SNR) is 12dB, defined as IOIOgmiz-,
o

where 4=4. We suppose the step edges
represent the real image edges and the impulse edges as well as the white Gaussian noise
are the background noise. From Figure 5-7(b), it can be seen that the edge information is
seriously affected by the noise under the condition of low SNR. This causes the problem

in edge detection, which is shown in Figure 5-8.
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1-D signal without white Gaussian noise
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Figure 5-7 An example of a 1-D signal without and with white Gaussian noise.

Figure _5-8(b)-(ev) show the edge detection results using the discrete Mallat wavelet FIR
filter at the first four scales resi)ectively. Due to low SNR, the edge' is difficult to
distinguish from the background noise when a fine scale is used, which is shdwn in
Figure 548(b) and (c). In the figures, there ibs a lot of false edge information generated by
noise and they have similar values to those of the real edges. Therefore it is hard to detect
edges accurately in this situation. When a coarse scale is utilized, the false edges are

restrained and the real edges can be detected with a thresholding technique.

HoWever, large scale decreases the accﬁracy of the edge location, which can be seen in
Figure 5-8(d) and (e). To improve the performance of the edge deteétion, multi-scale
products are introduced. .F igure 5-9(c)-(e) show the multi-scale products generated by the
edge map at the 1% and 2™ scales, the 2™ and 3™ scales, as well as the 3™ and 4“‘ scales
respectively. It can be seen that most of the Gaussian noise has been suppressed and the

real edges can be recognized relatively easily at the correct locations. Furthermore, all
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edges are now identified as positive changes in the edge maps due to the multiplication.
Considering DVF images suffer the problem with high noise interference, the scale

multiplication method should help us in identifying the vertebral edges.

To investigate the feasibility of the application of multi-scale products in the edge
detection of DVF images, we analyze a DVF image in the horizontal direction (the x
direction). Firstly, we select a small part from an original DVF image. The project target
is to identify the contour of spinal vertebrae in DVF images, so the small part of the
image we choose consists of a whole vertebra, as shown in Figure 5-10(b). From this we
can explore the performance of the scale multiplication method on the DVF image. From
Figure 5-10(b), it can be seen that the image has low contrast and high noise interference,
which can also be seen when the image is expanded in the horizontal direction row by

row. Figure 5-10(c) shows a single line of the DVF image (b) in the horizontal direction.
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Figure 5-8 The Mallat wavelet edge detection results. (a) The 1-D signal shown in Figure 5-7(b).
(b)-(e). The results of applying the discrete Mallat wavelet FIR filter at the first four scales.
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Figure 5-9 The wavelet scale multiplication results. (a)-(b) The 1-D signals shown in Figure 5- 7
(c)-(e) the results of wavelet scale multiplication.

This figure shows five selected cycles which means that it displays five rows of the DVF
image (b). For each cycle, the selections having low values represent the vertebra body
which is dark in colour. The selection with a high value represents the adjacent structures
around the vertebra, such. as soft issues, and can be treated here as noise. Like the
simulation discussed above, we applied the discrete Mallat wavelet FIR filter to this 1-D
DVF image signal and analyze the results of different scales and scale-products. Figure
5—1/1(b) and (c) show the edge detection results at the scales of 2! and 2? respecﬁvely. It
can be seen that the edge information is difficult to detect because a number of peaks are
present, which means that edges in the image are mixed with the erroneous edges caused
by noise and some peaks are too insignificant to be distinguished. However, after
multiplying the two results, much clearer edge information is obtained in Figure 5-11(d).
By detecting the peaks in the figure, the real edge can be identified correctly. In
v conclusion, from the 1-D noisy signal simulation and the analysis of part of a real DVF

image in 1-D, the wavelet scale multiplication edge detection method appears to be able
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to solve the problems we encounter in the utilization of the traditional edge detectors. The
multi-scale product can avoid detecting erroneous edges caused by noise and can identify
the real edges in the correct location. So the scale multiplication can be applied in our
project and is expected to provide the information of spinal vertebrae edges and hence
vertebral contour, rotation angle and inter-vertebral angle, for the diagnosis of low back

pain.

{a)

Figure 5-10 An illustration of DVF image in 1-D. (a) An DVF image. (b) A small part of the
DVF image (a). A part of the DVF image in the x direction.
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Cycle 1 Cycle 2 ' Cycle 3 Cycle 4 Cycle 5

]

';§)I T
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Figure 5-11 The edge locating results of 1-D DVF signal. (a) 1-D DVF image signal shown in
Figure 5-10(c). (b)-(c) The Mallat wavelet edge detection results at the scale of 2' and 27. (d) The
result of scale multiplication of (b) and (c).

5.4.4 Two-Dimensional Analysis

Recall that in Section 5.4.1, the calculation of the wavelet modulus was presented. Now,

suppose the image f{x,y) is filtered by a discrete Mallat wavelet FIR filter at a small scale

s1 and a large scale s, in the x direction and the responses are H (x,y) and H_ (x,)
respectively. So the multi-scale product in the x direction is defined as
P, =H;(x,y)-H (x,y). Similarly in the y direction, H}(x,y) and H (x,y) are
calculated and then the scale multiplication A, = H_ (x,y)- H (x,y) can be obtained.

So combining the result in both horizontal and vertical direction, the filtered result of the

whole image is P, = P, + Py..
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Figure 5-12(a) shows a noisy synthetic image f(x,y). This image is composed of several
plain edges superimposed with white Gaussian noise. From Figure. 5-12(a), it can be seen
that the synthetic image has the steps at [51, 150], [201, 250], [301, 320], [351, 360] and
[401, 405]. We suppose that the step edges represent the real edges and the white
Gaussian noise is the background image noise. The image is filtered at a fine scale 2"
and at a coarse scale (22) respectively, and shown in Figure 5-12(b)-(c). Due to the low
SNR, the edges are difficult to distinguish from the background noise when a fine scale is
applied, whicﬁ is shown in Figure 5-12(b). In the figure, the real edges are seriously

affected by false edge information.

Therefore it is hard to detect edges accurately in this situation. On the other hand, in
Figure 5-12(c), when a large scale is utilized, the edges appear but the large scale
decreases the accuracy of the edge location. To improve the performance, a multi-scale
product of (b) and (c) is introduced. Figure 5-12(d) shows the result of the wavelet scale
multiplication'j It has the much sharper edges than Figure 5-12(c) and the noise is better
suppressed than in Figure 5-12(b). Most of the false edges are suppressed effectively and
real edges can be recognized relatively easily at the correct locations. Again this example
of the synthetic image indicates the good performance of the scale multiplication method
under high noise interference conditions. Moreover, in general, an improved result would

be expected after thresholding.
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Response at a low scale

Onginal Noisy Synthetic Image

Response at a high scale Result of scale multiphication

(©

Figure 5-12 A 2-D simulation for the swavelet scale multiplication edge detection method. (a) A
noisy synthetic image. (b) Response at a low scale. (c) Response at a high scale. (d) Results of the
scale multiplication.

5.4.5 Thresholding

In edge detection, the gradient image should be thresholded to eliminate false edges
generated by noise. Then a problem very commonly faced is the choice of threshold

values. When a single threshold is adopted, some false edges may appear if the single
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threshold value is too small. On the other hand, some true edges may be eliminated if the
value is too large. Canny proposed a double thresholding algorithm (Canny,J. 1986), in
which a low threshold and a high threshold are applied to obtain double threshold edge
maps. The double thresholding algorithm can also be applied in this project because of
the characteristics of low contrast and high noise interference. In DVF images, the areas
of interest have low contrast while the areas of leés interest have a higher contrast. This
means that the areas of interest have much lower gradient values than the others after
filtering by the discrete Mallat wavelet filter. Hence the real vertebral edge information
will be missed if a large threshold is applied. Moreover, the edge detection results are
susceptible to noise and pick up of irrelevant features from images if a low threshold
value is adopted. As a result, the double thresholding method is applied after edge

detection on the DVF images.

In our project, the low threshold value can be calculated using an algorithm controlled by
the standard deviation of the noise in the image. Hence the threshold value is adaptive to
the noise level for the different DVF images. To calculate the low threshold ¢, Bao and

his colleagues proposed the following algorithm,

t, =c-\1+2p* -0, 0,,

3.3.3
e
5

(s7 +57)°

/4
0,=4—5 -0 and 0, =4/— -0}

4s

1

where c.is a constant, s; (i=1,2) is the scale value, and ¢ is the standard deviation of the

p

noise in DVF images. To estimate the standard deviation of the noise in the DVF image,
~we expanded the DVF images in the x-direction in the way shown in Figure 5-13(a), and
then we have the l-D‘signa'l which is shown in Figure 5-13(b). By analyzing the power
spectral density (PSD) of this signal, we caﬁ learn about the cut-off frequency of the
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signal of interest. Then we can design a high-pass filter to estimate the noise distribution
in the x-direction and calculate the standard deviation o,. For example, the PSD of the
noise in the x-direction is shown in Figure 5-14(a) and the proBability density function
(pdf) is plotted in Figure 5-14(b). Similarly, we estimate the noise‘ distribution of the
noise in the y-direction and calculate o;. The corresponding PSD and pdf are shown in

Figure 5-14(c) and (d) respectively. Denote the threshold in the x-direction as ¢ and in

o . . o+t
the y-direction as ¢}, then the threshold for the 2-D image is set to be 7, = —-.

Furthermore, in order to eliminate the erroneous edges generated by the DVF system, a
high threshold #, is applied. Because these system-generated edges have similar values,
an identical threshold can be applied to all DVF,iniages. By analyzing the histogram of
the gradient image after wavelet filtering, the high threshold value can be selected.
Finally the edges belonging to the range [#,,] are treated as the edge of interest and the

- other edges are discarded.

o e A o o 1,

Figure 5-13 The illustration of a 2-D image in 1-D. (a) The expanding of a 2-D image to a 1-D
signal in the x-direction. (b) A part of the 1-D DVF image signal.
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Figure 5-14 The PSD and pdf of the noise of the DVF image. (a) The noise PSD in the x-
direction. (b) The noise pdf in the x-direction. (c) The noise PSD in the y-direction. (b) The noise
pdf in the y-direction.
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5.5 Experimental Results

We applied the Mallat wavelet for edge detection with the small scale s; equal to 2, and

the large scale s, to 2°. Hence we have the two Mallat wavelets W, (%) and w, _,(x),
which are written as:

r

0 x| =8
~-(x-8>  4<x<8
wslzz(x)=518—43x2—l6x 0<x<4
~3x*-16x . —-4<x<0
\(x+8)2 -8<x<-4
0 . H=16
-(x-16)* 8§<x<16
"//s2=4(x)=?1,,—< 3x* —32x 0<x<8
|=3x%-32x -8<x<0
(x+16)" ~16<x<-8.

From section 5.4.3, when discretizing the Mallat wavelets to FIR filters, the length of the
FIR filter is decided based upon [, =2™* -2 (i =1,2). So finally, the discrete Mallat

wavelet FIR filter can be written as:

Ji =y, (x = £2,44,46) =[0.0156,0.0625,0.078 1,-0.0781,-0.0625,-0.0156],

o =W, o (x = £2,44,46,48,+10,£12,+14) =[0.0020,0.0078,0.0176,0.0313,0.0410,
0.0391,0.0254,-0.0254,-0.0391,-0.0410,~0.0313,~-0.0176,-0.0078,-0.0020].

We filter DVF images using these two discrete Mallat wavelet FIR filters respectively
and then multiply them together. The pixel shift caused by FIR filtering in both
horizontal and vertical directions is considered, and then we shift the filtered image in the

inverse direction to avoid the error in edge position so that the vertebral contour can be
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detected at the correct location. A detection result after thresholding is shown in Figure
5-15, from which it can be seen that the result shows the clear lumbar vertebrae edges in
the correct locations. This is an example of a DVF image taken from the lateral side.
Another example using an anterior-posterior view is shown in Figure 5-16. Both of these

results are achieved under the same parameter settings.

(a)

Figure 5-15 The wavelet scale multiplication edge detection of the lateral view. (a) An original
lateral DVF image. (b) Edge detection by the scale multiplication method.

w P

(a) (b)

«

Figure 5-16 The wavelet scale multiplication edge detection of the posterior view. (a) An original
posterior DVF image. (b) Edge detection by the scale multiplication method.
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To conduct the initial test prior to real data and measure the precision of this method, a
calibration model (Breen,A. et al. 1988) has been introduced. The model is shown in
Figure 5-17 and consists of two human lumbar vertebrae (L3 and L4) hinged at the disc
centrum by a universal joint. A computerized numerically controlled machine was used
to accurately locate the angular positions in 2-D. The step change in the rotation angle is

5° and the useable range is 30°.

Figure 5-18 shows DVF images of the calibration model at rotation angles from -20° to
10°. The definition of rotation angle has been given in Section 2.3.3. Vertebra L4 remains
stationary while the vertebra L3 is rotated. The edge detection results of Figure 5-18 is
shown in Figure 5-19 and indicate the clarity of spine vertebral edges. The rotation angles
were then calculated (based on the definition of rotation angle discussed in Section 2.3.3)
to examine the accuracy of the scale multiplication approach. From Table 5-1, it can be
seen that the rotation angles are observed with considerable accuracy, which is well
within the limits that would be necessary for clinical application. However, in this case,
the distorting effects of soft tissues were not included. So the quality of these images is

better than the real DVF images and the better detection results are therefore expected.

Figure 5-17 The calibration model.

Page | 89




Chapter 5 Wavelet-based Edge Detection Method

Figure 5-19 The detection results of the edges of the calibration model.

We then attempted to track the vertebral position and measure the changes of rotation and
intervertebral angles over the spinal vertebrae motion sequence. The tracking for this
study was carried out by manual landmarking the corner positions for every vertebra in
each frame after the wavelet multiplication edge detector was applied. An example of the
manual landmarking process is shown in Figure 5-20 and vertebral corners are marked as

the yellow points in the figure. After the four corners of the lumbar vertebra are located,
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the midplane of the vertebra body can be obtained. Recall the section 2.3.3, the angle
between the midplane and the horizontal reference line is defined as the rotation angle
and the angle between two adjacent vertebrae is defined as the intervertebral angle. In
computation of the intervertebral angle, midplanes of the two adjacent vertebrae are
obtained first. After that, the angle between two midplanes is measured to get the

intervertebral angle.

In the measurement of rotation angles, we set the starting frame as the initial neutral
position of the motion sequence and normalize to zero. The measurements can then be
expressed as changes relative to this starting position. An example of the rotation angle of
the spinal vertebrae for a spine motion sequence is shown in Figure 5-21. In the motion
sequence, each flexion/extension begins from the initial neutral position. The subjects
proceed to full flexion and are then taken into full extension using the articulating table.
Moreover, the relative movement of one vertebra and its neighbour is also studied
because the movement of the vertebrae in the image sequence is not fixed to a reference
point. Figure 5-22 shows the changes of the intervertebral angles of the spine movement
in Figure 5-21. Only the lateral rotation images are shown here since the spinal motion of

the subjects is side bending in this case.
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Table 5-1 The results of the rotation of the calibration model.

L3
Presented Angle Results of the scale Error
(degree) multiplication (degree) (degree)
-20 21 1
=g -16 1
-10 -10 0
-5 -5 0
0 0 0
S + 1
10 9 1

(a) (b)

(¢) (d)

Figure 5-20 An illustration of the manual landmarking process of the lateral edge maps.
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Figure 5-21 The lateral angle of rotation of the spinal vertebrae in the spine flexion/extension.
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Figure 5-22 The changes in the lateral intervertebral angles of the spinal vertebrae in the spine
flexion/extension.
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5.6 Discussions

Detection. of the lumbar spine edges is the most difficult part of the motion analysis,
‘ primarily due to the low contrast and large amount of noise in DVF images. Conventional
edge detection approaches, such as the Canny edge detector or phase congruency, cannot
adequately extract the vertebral shapes from poor quality DVF images for the automated
tracking of the spine”movement (Zheng,Y. 2002). Therefore, the w;welet multi-scale
product edge detector was developed for detection of the true edges from the noisy
backgrdund. The main peaks in the wavelet multi-scale product are used to locate the
correct vertebral shapes. The experimental results from the calibration model images
show that the calculated rotation angles are very close to the pre-set values and the error
is in the range of 0° to 1°. It is much better than that established in some similar studies
where an average error of from 4° to 10° was reported (TezmoL,A. etal. 2002; Wong,S.F.

~ et al. 2004). The standard error s; is 0.28 according the following calculation equation

- Equation 5.1

where sq is the sample standard deviation, N is the number of the frames in the DVF

sequence, x, is the calculated result and X, is the pre-set value. Furthermore, the

experimental results from the human DVF image sequence from the lateral bending
motion shows the expected approximately sinusoidal motion pattern and it can be seen
that L4 has the most significant changes in the rotation angle while L1 has the least
changes. This is because the subjects lay on the passive motion table (PMT), have their
upper body fixed on the aniculating table and their lower body bends in each

flexion/extension (see Section 2.2)

However, the tracking discussed above is completéd manually and it is very tedious and

time consuming. Moreover, inter- and intra-observer repeatability should be carried out
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to assess the accuracy when using the new edge detection method and compared with
previous reliability studies (Breen,A. et al. 1988; Breen,A.C. et al. 1989a). Further work
is aimed at automated identification of the vertebrae and hence the kinematic analysis. A
more automated tracking method has been deVeloped based on the Hough transform

_algorithm and described in the next chapter.
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Chapter 6

Generalized Hough Transform

6.1 Introduction

In the previous chapter, the intervertebral angle of the calibration model was calculated
based on the manual landmark position of four corners of the vertebra. The changes of
vertebral rotations and intervertebral angles over the spine motion were also measured by
manual landmarking the corner positions for every vertebra in each frame. Although the
measurement results show pdtential in clinical application, this measurement progress is
very tedious and time consuming. Moreover, this would be compounded if inter- and
intra-observer repeatability were carried out to. So a more automated method is required
to track the vertebrae movement by taking the advantage of the wavelet edge detection

results.

Generally speaking, extraction of the key features, such as lines, edges and curves, from
images, is a key step in an image analysis procedure. The most popular technique for
feature extraction is the Hough transform (HT). It was devised by Paul Hough to look for
particle tracks in bubble'chambers rather than shapes in images (Hough,P.V.C. 1962). In
1969, Rosenfeld found that the Hough transform, as well as the Radon transform
(Deans,S.R. 1983), has the potential for curve detection (Rosenfeld,A. 1969).
Subsequently, the Hough transform was applied to detecting lines in images (Duda,R.O.
et al. 1972) and since then it has been developed considerably. Dana Ballard extended the
classical Hough transform to identify arbitrary shapes (Ballard,D.H. 1981). This modified
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‘Hough transform is known as the Generalized Hough transform (GHT). The GHT
combines the HT with the principle of the template matching. This combination enables
the HT to not only be used to detect features which can be described by equations, such
as lines or circles, but also can be applied to extract arbitrary objects which are described
using a model. Moreover the GHT is more efficient compared with the normal template
matching methods (Stockman,G.C. et al. 1977). The Generalized Hough transform is

therefore used to track the vertebrae movement in this project.

The Hough transform firstly defines a mai)ping from the image points into an
accumulator space (or Hough space). The HT can then be achieved by reformulating the
template matching process and gathering the evidence to locate the position of the peak
value in the accumulator space. In the Generalized Hough transform, the problem of
finding the object described using a model can be solved by detecting the reference

position of the model in an image. When the location of the reference point is known, the

object can be extracted using a reference table (see the later part of this chapter for detail).
In this chapter, a review of the Hough transform is conducted briefly and the Generalized ‘
Hough transform is then described in more detail. Based on the wavelet edge detection -

results, the experimental results in which the GHT has been applied to the calibration

model data are presented. The measurements have yielded promising results. Finally, the
GHT is applied to wavelet edge detection maps of real DVF image sequences and the

extraction results are analysed and reported.
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6.2 The Hough Transform

6.2.1 The Hough transform for Lines

The basic function of the Hough transform is to find lines in an image. A straight line can

be expressed as y=mx+c in the Cartesian parameterisation, where (x,y) are the co-
ordinates of a point on the line, m is the slope of the line and c is the intercept on the y

axis. Thus, a line can be defined by a pair of parameters (m,c) since all the points on the

line have the same value of the parameter set, such as (x;y:)-and (x;y;), which is shown in

Figure 6-1(a). We can also re-write the equation of a line-in the slope-intercept form as
c=-mx+y. This equation shows that each point (x,y) corresponds to a line in the (m,c)
space. In Figure 6-1(b), the mc-space yields the equation of a single line for the point
(x5y;). Moreover, the other point (x;);) also has a line in the mc-space and these two lines
intersect at a point (my,co). Here, my is the slope and ¢y is the intercept of the line
containing both (x;y;) and (x;y;) in the xy-space. Actually, all points contained on this line
have lines in the mc-space that intersect at (myg,cp). As a result, the line can be extracted

by finding this point in the mc-space.

In the computation of the Hough transform, the mc-space is called the accumulator space
or Hough space. The accumulator space is divided into so-called accumulator cells,
which is illustrated in Figure 6-2, where (Mmin,Mmax) and (Cmin,Cmax) are the éxpected
. ranges of the slope and intercept values. Each cell at coeordinate (i) corresponds to an
accumulator value 4 and these cells are initially set to zero. Then, for evéry point (x,y)
in the image, the parameter m is set to equal to each of the allowed subdivision values on
the m-axis and then the corresponding ¢ can be calculated using the equation c=-mx+y.
After that, the results are rounded to the nearest allowed value in the c-axis. When a
choice of m results in a solution of ¢, 44 is replaced by A4 ;+1. At the end of this

procedure, a value in A represents the number of points lying on the line y=mx+c in the
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Figure 6-1 An illustration of the line extraction. (a) A line in the xy-space. (b) Lines in the mc-

space.
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‘Figure 6-2 Subdivision of the accumulator space for use in fhe Hough transform
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xy-space. The peak value in the accumulator space provides the strong evidence that a

corresponding straight line exists in the searched image.

A problem with using the Cartesian parameterisation is that the slope m may approach to
_infinity when the straight line becomes more and more vertical. In that case, it is
impractical to describe the line in the Cartesian parameterisation. This problem was
solved by using polar parameterisation. In polar parameterisation, a line is represented as
p=xcosO+ysinf, where 6 is the angle of the line normal to the line in an image and p is
the length between the origin and the point where the lines intersect, as illustrated in

Figure 6-3(a). Thus, by considering the geometry of the arrangement in Figure 6-3(a),

.p and m~=tanqo=—

can be obtained. Figure 6-3(b) shows the subdivision
sin @ . tan

c=

of the accumulator space. The basic idea of constructing the accumulator cells is identical
to the method discussed for the slope-intercept fepresentation. However, the mc-space is
replaced by the Gp-space and the polar representation yields sinusoidal curves in the fp-
space. Based on the polar representation, 6 can be defined in the range between -90° to

90°.

Figure 6-4 shows two simulation examples of locating lines using the polar Hough
transform. In Figure 6-4(a), there is a single line which generates the peak shown in
Figure 6-4(c). The magnitude of the peak is proportional to the number of pixels in the
line from which it was generated. Figure 6-4(b) contains an image of a line with salt and
pepper noise added with a noise density of 0.5. The detection result is illustrated in
Figure 6-4(d), in which the peak value is still detected despite of the occurrence of the
interference. These two simulation examples indicate that the HT is able to deliver a
corfect response to extract the line, as long as the number of co-linear points along the

line exceeds the number of the other pixels in the image:.
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Figure 6-3 Polar parameterization of a line. (a) Polar definition of a line. (b) Subdivision of the
Op-space into cells.

(c) (d)

Figure 6-4 Implementation of the polar Hough transform to detect a line.
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6.2.2 The Hough transform for circles and ellipses

The idea of the HT can be extended to the application of other analytical shapes, such as’

circles and ellipses. The implementation for circle extraction is realized by modifying the
representation functions to (x-xg)°+(y-yo)’=r’, where (xo,y0) is the origin and r is the
radius. Because this representation has three parameters, two. for the centre of the circle
- and the other one for the radius of the circle, a three-dimensioﬁal accumulator space
(x0.y0,7) is needed in extraction. Furthermore, this three-dimensional accumulator space
" can be reduced to a two-dimensional space by using the polaf definition for circles. In
polar representation, the co-ord'inates‘ of a point on a circle can be written as
X, =x—rcosf

and the centre of the circle can then be defined as {

Yy =y—rsing’

| x=x,+rcosf
. >
y=y,+rsinf

Therefore, circles can be extracted from images by locating their centre points. by trying

.every possible parameter combination of & and r for each point in images.

Circle extraction is crucial in shape detection since many objects have a circular shape.

However, circles are usually deformed to ellipses due to several reasons, such as the

_ 2 . 2
viewpoint of the camera. Based on the definition of an ellipse (x f") + & bg} o)
a

four-dimensional accumulator space (xg,y0a,b) is needed. Aguado and his colleagues

=1,a

represented the ellipse in a different way by using the differentiable vector-valued
function (Aguado,A.S. et al. 1996b). In their definition, an ellipse can be written as

xX=x,+a,cos@+b sind

2(0)=xU,+yU, for U,=[1,0], U,=[0,1] and { This equation

Y=y, +a, 'cosé?+by>sim9 '
corresponds to the polar representation of an ellipse. It contains six parameters
(x0,y0,ax bx,ay, b)) that build the shape of ellipse. Here 6 is not a free parameter but only a
position index in a reference table. Moreover, because a:bx+a,b,=0 is one of the well-
known properties of an ellipse, an ellipse can be extracted by finding its centre point

(x0,y0) in a three-dimensional accumulator space, which can be written'as
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X, =x—a,cos@—b_ sin6
Yo =y—a,cosf-b sind.

From the discussion above, it can be seen that the complexity of determining the maximal
vote increases with the increase of the dimensionality needed to extract the shape of

interest.

6.3 The Generalized Hough transform

.6.3.1 Overview

In the Hough transform for circles and ellipses, the polar representation is used to reduce
the dirhensionality of the accumulator space. Moreover, it introduces the idea that every
point on the features of interest can be represented as a parameter set (7,6) based on a
reference point, such as the centre point in the above examplesv. Here, r is the distance
between the reference point and the point lying on the feature curve and 6 is the angle
between these two points. As a result, this representation can be used to describe arbitrary
shapes without an analytical expression. The method to extract arbitrary shapes with
unknown position, size and orientation was firstly introduced by (Merlin,P.M. et al. 1975)
and was finally developed into a full template mapping approach, called the Generalized
Hough transform by (Ballard,D.H. 1981). Furthermore, some researchers have extended
the Hough transform to extract shapes in three-dimensional (3-D) space (Bhattacharya,P.
et al. 2000; Hu,G. 1995). '

To improve .the performance of the Hough transform, some researchers have tried to

improve its computational efficiency since it requires much storage and computation time
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with the increase in the complexity of the features of interest. The fast Hough transform
(Guil,N. et al. 1995; Li,H.W. et al. 1986) and the adaptive Hough transform (Cao,X. et al.
1988; Chau,C.P. et al. 2004; Ecabert,O. et al. 2004) are widely used to reduce storage and
corhputation time to locate an object in images. Altei‘natively, some researchers have
tried to improve fhe performance by using a better description of the éontour of the object.
In this way, for example, the Fourief descriptor. was introduced (KuhLLF.P. et al. 1982;
Persoon,E. et al. 1986; Staib,L.H. et al. 1992) and was applied in object identification
with the Hough transform technique (Aguado,A.S. et al. 1996a; Aguado,A.S. et al. 1998;

Yuen,S.Y. et al. 1997). | -

Simultaneously, a different idea was proposed to save’ storage and computation time in
the Hough transform. It is called the randoﬁlized Hough transform (RHT) (Xu,L. et al.
1990; Xu,L. et al. 1993). In the RHT, instead of taking every single point in an image,
this algorithm only picks up a randomly chosen sample set of input points. The evidence
vote stops when the peak value of the accumulator space is greater than a pre-defined
threshold value. The randomized Hough transform is widely used in the extraction of
lines, circles and ellipses (Basca,C.A. et al. 2005; Chen,T.C. et al. 2001; Cheng,Z. et al.
2004; Mao,J. et al. 2006; McLaughlin,R.A. 1996; McLaughlin,R.A. 1998; Yao,J. et al.
2004). Moreover, it can be applied in the detection of the arbitrary shapes (Fung,P.F. et al.
1996), motion (Kalviainen,H. et al. 1992; Kalviainen,H. 1996) and in medical image
processing (Behrens,T. et al. 2003; Lu,W. et al. 2005). However, the disadvantage of the
inversed RHT cannot be completed since lots of information is lost during the transfor/m.
It is also difficult to set an appropriate thresholding value. Therefore, the randomized

Hough transform is not used in this project.

Here the Generalized Hough transform is selected to track the vertebral movement. The
GHT has been widely applied in motion extraction (Grant,M.G. et al. 2002; Li,H.L. et al.
1996; Montret,L. et al. 1994; Ulrich,M. et al. 2003) because of its properties of invariance

to translation and robustness to occlusion. Furthermore, the Generalized Hough transform
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and its modified extensions have been applied to detect features in medical images in
both good quality images (Brej,M. et al. 2000; Zana,F. et al. 1999) and poor quality
images (Kobatake H. et al. 1996; Scales,N. et al. 2004).& In particular, a GHT based
approach has been used to locate rib borders in posterior chest radiographs (Yue,Z.J. et al.
1995). In this approach, a knowledge based GHT finds the approximate location of the
rib borders after pre-détermining the thoracic cage boundary to restrict the searching area.
This pre-processing is able to improve the accuracy and reduce computation time.
‘Because the GHT can only find the approximate locations. of the ribs, the active contour
method (Kass,M. et al. 1988) was used to ﬁnally locate the rib borders. The accuracy of
this approach was tested by comparing the detection results with those made by the
experienced radiologist. Another modified GHT method, called the Customized Hough
ﬁansform, was developed to locate the cervical vertebrae in X-ray images (TezmoLA. et
al. 2002). In this method a template was obtained by averaging 50 manually landmarked
lateral cervical X-rays images. With the template image, the Customized Hough

transform was able to identify the cervical vertebrae and measure the variations of the
| cervical vertebral shapes. However, the reported orientation error was 4.16° on average
which indicated that the accuracy was not good enough for spine biomechanical studies
in our projvect because the maximum rotation angle is about 30°. A much more accurate
result was obtained in locating the position of the lﬁmbar spine vertebrae in DVF image
sequences (Zheng,Y. et al. 2003; Zheng,Y.L. et al. 2004). In their methods, binary
"template edge information was acquired by using manual landmarking of the edge
detection results obtained from using the Sobel edge detector or phase congruency. The
Fourier descriptor was then used to describe the edge témplate mathematically. Finally,
the GHT was applied to track the lumbar spine motion and the measured accuracy was
much better than that established by (Tezmol,A. et al. 2002). However, manual
landimarking and isolating each vertebra are required in their methods and approximately
ﬁve. minutes is needed to extract vertebrae in one DVF frame, so it is very time

consuming to process about 150 frames in a typical DVF sequence.
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In summary, the Generalized Hough transform is powerful in object identification and
motion tracking. Moreover, the GHT shows great potential to detect the shapes of interest
in the medical images, even in some poor quality images, such as in a mammogram or
DVF images. However, it has problems such as manual landmarking, unacceptable errors
and is time consuming. Since better edge information is obtained by using the wavelet
based edge detector in this project, a promising tracking result is expected after applying

the edge information directly to the generalized Hough transform.

6.3.2 Description of the Algorithm

The first problem in the Generalized Hough transform is how to determine the position of ,
an arbitrary object in an image. For a known 2-D object with a closed contour, its
reference point is usually defined as the centre of mass, like O in Figure 6-5(a). Thus,
given an edge point 4 in the image, it can belong to an infinite number of different
contours of the object, for example, some contours without considering rotation and
scaling are shown in Figure 6-5(b) and there is a possible centre O; for each possible
contour. By repeating this procedure until all possible contours are considered, the most
likely position of the reference point of the translated object can be obtained by locating
the maximal number of votes in the accumulator space, shown in Figure 6-5(c).
Moreover, if rotation and scaling are considered, shown in Figure 6-5(d), the evidence
gathering procedure in the Generalized Hough transform can be extended to more
'complex problems. This means that more parameters are needed to be considered and

more dimensions are needed for the accumulator space.

After locating the reference point of the arbitrary object, a reference table, which is called
the R-Table, was introduced to describe the arbitrary contour in the generalized Hough
transform. From the discussion in Section 6.2.2, any point on a given 2-D arbitrary
contour can be represented as a parameter set (#,8) based on a reference point, where r is

the distance between the reference point and the point lying on the feature curve of
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interest and 6 is the angle between these two points. Moreover, the edge direction g of
this point is used to index the parameter set (,6). In this way, the R-Table is built by
arranging the points with the same edge direction values in the same row, as shown in
Figure 6-6. It should be noticed that the number of the elements in each row may be
larger than one and be different since some points may have the same edge direction (e.g.

Table 6-1). : ' . .

@ )

e
L2
-,

LS

Figure 6-5 An illustration of arbitrary shape extraction using the Generalized Hough transform.
(a) An object and its reference point. (b) Some possible contours that fit edge point 4. (c)
Evidence gathering in the accumulator space. (d) The object contour and possible rotated and
scaled contour. -
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Figure 6-6 An illustration of building the R-Table.

Thus, the shape in the image can be defined by its two components (,60") and the
| x, + srsin @'

1]

¥, +srcost

}, where [X.):] is the
ycurve

’ . . . . | xcurve
reference point in the x and y directions, [ }=[

coordinates of the reference point, s is the scale factor, 6°=0+¢ and ¢ is the rotation angle.

In the cases of no scaling and rotation (s=1 and ¢=0), the description of the shape is

X x, +rsinf
written as [ e ] = [ r ] , which matches the definition of the R-Table. However,
Veurve y,+rcosé ‘ :

when scaling and rotation happen, the shape is expressed as:

Xoure | _| X, + 8T sin§'
|: ymm] - |: y, + srcos 6’]
| x, +srsin(@+9) | x, + sr(sin @ cos @ + cos @sin @)
- [y, + srcos(6 + qa)] - [y, + sr(cos@cos @ —sin Fsin ¢)]

x|, cosp sing | rsinf
= S .
¥, —sing cosg | rcosd
As a result, the curve depends on four parameters. Two parameters x, and y, define the

new position of the reference point on the curve, which means the translations in the x
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and y directions. So the new position of the reference point on the curve can be obtained
X, X curve cosg sing || rsiné
as = -8 . .
v, Veurve. —sing cos@ | rcos@|
Moreover, the lumbar spine vertebrae are assumed to remain the same shape and have no
out-of-plane motion during the whole movement, which means the scale factor s is equal
to 1 in our project. The assumption of absence of out-of-plane motion is reasonable for
spine flexion/extension movements, but it is erroneous for spine lateral bending motion

where a couple of spine axial rotation is present (White,A.A. et al. 1978). So, the new

position of the reference point can finally be expressed'as:

r = “curve

X, =x,. —rsinfdcosp—rcosfsing
Y, = Voume + 7SINOsin g —rcosfcosgp

In our Generalized Hough transform algorithm, the R-Table is firstly built to describe the
template vertebra edge obtained from the wavelet-based edge detector. Then for each
edge point in the edge detected images, the parameter sets (7,0) are checked by indexing
its edge direction angle f. For every possible rotation angle ¢ and each value of the
parameter set (r,0), the possible values of the (x,),) are calculated and then voted for to
find the peak, which represents the most likely position of the reference point on the
vertebra. Moreover, because the vertébrae move in a fairly tight range during the spine
motion, the poésiblé values of the curve points and the rotation angles can be reduced to a
certain range to improve the efficiency and increase the accuracy. This will be discussed

later.

6.3.3 Applications to the Calibration Model

In the previous chapter, a calibration model (Breen,A. et al. 1988) was used to measure |

the precision of the wavelet-based edge detector results. However, the measurement was
. /
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carried out by manual landmarking the four corners of the vertebrae L3 and 14. In this
chapter, the precision of the wavelet-based edge detector is tested again and the test is
completed by using the Generalized Hough transform to locate the reference point (centre
point of the template model, CTM) and then calc'ulate the rotation angle of the vertebra
L3. For the GHT, the likely rotation is from -90° to +90° and the original size of the
calibration model image is 396x420. During the GHT feature extraction, the changes of
unknown parameters Xcure, 'y;,m and 6 are limited to a small range in order to reduce the
- computational cost and requirement .on storage. In the example of the calibration model,
the range of xcuve and yeume are 150 pixels (from 100 to 250) and for 6 is 40° (from -25°
to +15°). This limitation leads to a size of the accumulator space (Hough space) of

151x151x41, which is much smaller than the original Hough space 396x420x181.

As described in the GHT algorithm, a template was chosen first. Because the vertebra L3
moves from -20° to +10° in this case and -5° is the mean value of the rotation angles, the
frame of -5° is selected as the template frame, as shown in Figure 6-7(a). A small area
which contains the whole L3 is selected as the template model. After that, our wavelet
multiplication edge detection method was applied to obtain the edge map of the template
model. The R-Table (Table 6-1) was built based on this edge map. Every edge point in
the edge map is{ represented as the combinations of 7 and 8 indexed by edge direction .
For some edge di(rections, more than one combination exist, e.g. the edge direction with
0°. The reference point was calculated and shown as a cyan circle in Figure 6-7(b). Thus,
we aimed to track the reference point during the motion sequence and then calculate the
rotation angle of each frame and compare the results with the pre-set results to measure
the precmon Finally, in order to show the tracking results more clearly, the four
vertebral corners were manual marked and are shown as the green pomts in Flgure 6-7(b).
The new positions of these four corners were also able to be tracked and displayed as the
green points in the image sequence after the application of the GHT with the wavelet

edge detection results.
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(a) (b)

Figure 6-7 An illustration of the template selection and extraction. (a) The template frame in
which L3 rotates -5° and the selection of the template model. (b) The wavelet edge detection
result of the template model and the GHT of the template model corners and center point.

Table 6-1 The R-Table for the calibration model tracking.

B (r,0)

0° (85.45, 0.96), (83.22, 0.99), (82.68, 1.01), (79.18, 1.08), ... , (50.45, -1.33)
1® (0, 0)

2° (0, 0)

90° (94.11, 0.82), (93.38, 0.81), (91.93, 0.80), (91.22, 0.79), ... , (63.29 -1.48)
180° (94.18, 0.84), (93.51, 0.85), (91.55, 0.87), (90.27, 0.89), ... , (62.01, -1.55)
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Figure 6-8 The edge detection and tracking results of the calibration model DVF sequence.

The edge detection and tracking results are shown in Figure 6-8. The left column shows
the original DVF images of the calibration model, in which the L3 was pre-set to rotate
from -20° to 10°. The extraction results were superimposed on the edge detection results
and illustrated in the middle column. Corresponding to the template model in Figure
6-7(b), the green point means the corner point of the vertebrae and the cyan point

indicates the reference point of L3. The right-hand column shows the maps of the
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accumulator space (Hough space). Table 6-2 compares the GHT extraction results with
the pre;set rotation values and the previous manual landmarking results. Note that the
initial angle is -5° due to the template model selection, so this should be considered when
the rotation angles are finally calculated. It can be seen that the calculated rotation angles
from the GHT method are very close to the pre-set values and the error is in the range of
- .-1° to +1°. IAlthbugh the accuracy of the automated tracking is very slightly worse than
the manual landmarking method, it is much better than that established in a similar study
where an average error of from 4° to 10° was reported (Tezmol,A. et al. 2002; Wong,S.F.

et al. 2004). The standard error s is 0.345 according the standard error calculation

equation, which is Equation 5.1 expressed in Section 5.5. Furthermore, the interval values
for the parameters are 1° for rotation and 1 pixel for translation in this example, more
accurate results are expected when a finer interval is applied. However, this will increase

the computation cost and storage.

6.3.4 Applications to the DVF Images

After testing the accuracy of the Generalized Hough transform using the calibration
model, we applied the GHT to the real DVF image sequences to .analysis the lumbar
spine motion. The DVF images we used here were collected from normal healthy
subjects without any lumbar spine problems (Kondracki,M. 2001). Based on these image
data, the normal lumbar spine movement and its several relative biomechanical
parameters can be studied with the application of the GHT. However, only the tracking _
results will be discussed in this section and the study of the lumbar spine kinematics will

be discussed in the next chapter.
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Table 6-2 The GHT extraction results compared with the pre-set values and the manual
landmarking results.

L3
The manual landmarking results The GHT extraction results
Pre-set rotation Calculated Errors (°) Calculated Errors (°)
angles (°) rotation angles : rotation angles
© | ©)
-20 21 -1 . -19 1
-15 -16 -1 -14 1
-10 -10 0 -10 ’ 0
-5 ' -5 | 0 -4 1
0 0 0o 0 0
5 VA T 7 1
10 ‘ | 9 _ -1 9 -1

6.3.4.1 Vertebra L3 Extraction

Generally speaking, the vertebra L3 area has the best display quality in DVF images
because the X-rays are usually focused on this area during the DVF acquisition. As a

result, we aimed to apply the GHT to track the L3 movement as a first step.

Similar to the tracking process in the calibration model, a template frame was first:
selected. From the studies in the previous chapter, the rotation angles are normalized to
start from zero degrees and are distributed in an approximately sinusoidal way. Therefore,
we chose a frame with the neutral position as the temp]ate frame, shown in Figure 6-9(a),
and a small area containing the whole L3 was selected as the template model. After that,
our wavelet multiplication edge detector was applied to obtain the binary edge map for
the template model (Figure 6-9(b)). The R-Table was then built based on this edge map

and the reference point (centre point of the template model, CTM) was calculated as
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shown as a cyan circle in Figure 6-9(b). As described in the GHT algorithm, we aimed to
track this reference point during the whole motion sequence and calculate the rotation
angle of each frame. Moreover, in order to show the tracking results more clearly, four
corners of L3 were manual marked as shown as the green points in Figure 6-9(b). The
new positions of these four corners were also able to be tracked and displayed as the

green points’ in the image sequence after the application of the GHT.

For the GHT, the all likely rotations are from -90° to +90° and the original size of the
DVF images is 572x768. So theoretically, the size of the accumulator space (Hough
‘space) is about 572x768x181. Appafently, it is unnecessary and unpractical in the
computation. During the GHT feature extraction, only the sﬁall areas containing L3
vertebrae were analyzed in order to reduce the computational cost and improve the
efficiency. By experience, we set the range of x.,ve and yume from 200 to 350, and from
250 to 400, respectively and it is guaranteed that the L3 vertebrae are located in the range
during the whole sequence. Furthermore, with the previous studies of the manual

landmarking results, and the rotation angle of L3, we also reduced the range of 6 from -

15° to +30°. Thus, the size of the accumulator space (Hough space) was reduced to .

151x151x46 rather than the full original size.
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Figure 6-9 An illustration of the template selection and edge extraction. (a) The template frame
with the neutral position and the selection of the template model. (b) The wavelet edge detection
result of the template model as well as the reference point (center point) determination and the

corner marking of the template model edges.

{a)

(d) (e) (f)

Figure 6-10 The edge detection and GHT results on L3 of two DVF frames. The first column
shows the original DVF images. The second column shows the wavelet edge detection results as
well as the findings of the reference points (centre points) and the corners. The third column
shows the accumulator space (Hough space) in 2-D of the GHT.
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Two examples of the tracking results are illustrated in Figure 6-10. The first example .(the
‘top row) shows the tracking of a frame of the neutral position and the second example
(the bottom row) shows the tracking of a frame of an extreme position. In Figure 6-10,
the first column shows the original DVF images and the tracking results superimposed on
the e&ge detection results derived from the wavelet multiplication method are shown in
the second column. Corresponding to the template model in Figure 6-9(b), the green
points mean the corner points of the 1.3 and the cyan points indicate the reference points
(centre points) of the L3 Moreover, the accumulator space (Hough space) in 2-D is
shown in the third column, in which the coordinates of the reference points (centre points)

can be easily located by finding the peaks.

6.3.4.2 Other Lumbar Spine Vertebrae Extraction

The GHT was applied to other lumbar vertebrae L1, .2 and L4 within the same neutral
and extreme images using the same template frame. However, different thresholding
values in the edge detection were chosen by experience since the vertebrae have different

definition in DVF images.

Figures 6-11 to 6-13 show the L1, L2 and L4 results respectively. In the figures, the first
row shows the template frame, the template model and its edges generated using-the
wavelet multiplication edge detection method. The second and third rows show the

tracking results of the frames in the neutral and extreme position respectively. '
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Figure 6-11 The template model selection and extraction as well as the edge detection and the
GHT results on the L1. The first row shows the template frame, the template model and its edges.
The second row shows the tracking result of the frame in the neutral position. The third row
shows the tracking result of the frame in the extreme position.
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Figure 6-12 The template model selection and extraction as well as the edge detection and the
GHT results on the L2. The first row shows the template frame, the template model and its edges.
The second row shows the tracking result of the frame in the neutral position. The third row
shows the tracking result of the frame in the extreme position.
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Figure 6-13 The template model selection and extraction as well as the edge detection and the
GHT results on the L4. The first row shows the template frame, the template model and its edges.
The second row shows the tracking result of the frame in the neutral position. The third row
shows the tracking result of the frame in the extreme position.

From what we have showed above, it can be seen that the GHT has good performance in
vertebral extraction. However, it sometimes fails to locate the L1 and L4 correctly, which
is shown in Figure 6-14. This situation happens when some part of L1 or L4 are covered
by other structures, such as the pelvis, during the whole motion sequence. The structure
overlapping causes the edge maps of L1 and L4 to have edge lines crossing the vertebral

body in different positions. The lines have strong energy and generate different energy
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Figure 6-14 An examples of erroneous tracking. The first row shows the poor tracking of the L 1.
The second row shows the problem of tracking of the L4.

distribution. Therefore the R-Table generated by the template model cannot describe the

vertebra L1 and L4 well and this causes the fault in tracking.

6.3.4.3 Vertebral Extraction from the A/P View Images

In previous research, manual input was needed to initialize the template model shape and
to form the chain code, from which the Fourier Descriptors can be derived (Zheng,Y. et
al. 2003; Zheng,Y.L. et al. 2004). However, the edge maps generated from the

anterior/posterior (A/P) view images have no clear vertebral bodies because the vertebral
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body edge map is confused due to other structures of the spine, such as lamina, spinous
process and transverse process. Therefore, it is difficult to manualimark the vertebral
body shapes in the A/P view images after edge detection. As described in our GHT
algorithm, the R-Table is generated directly from the edges of the template model. As a
resﬁlt, it is possible to apply the GHT to the DVF images taken from the A/P side to track

the lumbar spine motion.

The tracking process is the same as for tracking the lateral images. In the GHT, the size
of the accumulator space (Hough space) is also reduced by observation in order to

increase the computation efficiency and save the computation time. Some feature

extraction results of the L1, L2, L3 and L4 are shown in Figures 6-15 to 6-18 respectively.

Moreover, the four corners of the vertebra are manual marked in order to show the
tracking results more clearly. The neutral and extreme positions are chosen as the

examples, as for the lateral images.
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Figure 6-15 The template model selection and extraction as well as the edge detection and the
GHT results for L1 from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The row column shows the tracking result of the frame in the extreme position.
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Figure 6-16 The template model selection and extraction as well as the edge detection and the
GHT results for L2 from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The third row shows the tracking result of the frame in the extreme position.
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Figure 6-17 The template model selection and extraction as well as the edge detection and the
GHT results for L3 from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The third row shows the tracking result of the frame in the extreme position.
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(b)

() (h)

Figure 6-18 The template model selection and extraction as well as the edge detection and the
GHT results for L4 from the A/P view. The first row shows the template frame, the template
model and its edges. The second row shows the tracking result of the frame in the neutral position.
The third row shows the tracking result of the frame in the extreme position.

From the figures, it can be seen that the GHT has a good performance on the A/P images.
Although the vertebral shapes are not easy to be distinguished by human eyes in the edge
maps, the GHT is able to track the vertebral movement correctly, even in the L4 tracking.
In this way, some characteristics of the normal spine motion can be studied based on the
DVF images taken from the A/P view and these studies do not require manual

landmarking. However, it sometimes fails to extract L1 correctly, which is shown in
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(a)

Figure 6-19 An example of erroneous tracking of L1.

Figure 6-19. This situation happens when the whole vertebral body of L1 does not appear
in the image. The lack of integrity of the vertebra body causes the enormous description

of the shape of target.

6.4 Tracking using the Edge Results from the Canny Edge

Detector

Recall the discussions in Chapter 4, of the conventional edge detection methods the
Canny algorithm can yield the best vertebral contours. In order to investigate the tracking
results using the edge map generated by the Canny edge detector and compare it with that
from the wavelet scale multiplication edge detector, an experiment was designed to apply
the edge results from the Canny operator in the Generalized Hough transform. An
example of tracking results is shown in Figure 6-20. From the template model (Figure
6-20(b)), the fake edges contained inside the vertebral boundary affect the generation of a
reliable R-Table for the GHT tracking. Furthermore, in the edge map (Figure 6-20(d)),
there are also lots of fake edges existing inside the vertebral areas, which causes the

problem with matching to the template model. In conclusion, the tracking results show
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that the limitations of the edge results from the Canny edge detection method cause the

Canny operator not suitable in this project.

20 40 60 80

(a“) (b)

(d)

Figure 6-20 The template model selection and extraction as well as the edge detection and the
GHT results on the L3, using the edge map generated from the Canny edge detector. The first row
shows the template frame, the template model and its edges. The second row shows an example
of the tracking results.

6.5 Summary

In this chapter, an overview of the Hough transform was given, and the basic idea of the
Generalized Hough transform was introduced in detail followed by a brief review on the

previous studies of the GHT and its application to medical images. After that, the GHT
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algorithm used in tracking the vertebrae in DVF images was described. In order to
measure the performance and accuracy, the GHT was applied to the calibration model
images and the results look promising. Finally, the GHT was applied to the real DVF
images from the both lateral and A/P views. The results are still encouraging although the
method sometimes fails to track the L1 and L4 in the lateral images, or the L1 in A/P
images. This problem would be solved by the future efforts in several possible directions

* which will be mentioned in the last éhapter.
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Chapter 7
Automated Tracking of Vertebrae

in DVF Sequences

7.1 Introduction

¢

All of the ten healthy subject files, which were listed in Chapter 3, were involved in the
tracking study. In the motion tracking, the generalized Hough transform was applied to
the vertebral shapes generated by using the wavelet scale multiplication edge detector.
For the DVF images taken from the lateral view, only the movements of the vertebrae L2
and L3 were investigated since not all the vertebral motion of L1 aﬁd L4 can be tracked
correctly due to missing sections from some images. However, for the DVF images taken
from the anterior/posterior (A/P) view, the spinal movément of L2 to L4 were studied due
to the good performance of the GHT in tracking motion on the A/P view iméges because
the edge maps contain more integrated vertebral shapes even though they are confused
with other structures of human body. For each DVF sequence; the rotation angle, the
intervertebral angle and the translation of the centre point of the vertebrae were
calculated. Only some results will be displayed in this chapter but all tracking results are

presented in Appendix B-K.

Furthermore, the biomechanical tracking results, such as the rotation angles and

intervertebral angles, were compared with Kondracki’s research (Kondracki,M. 2001)
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based on the same image frames in the same DVF sequences. He manual landmarked the
DVF sequences to calculate the biomedical parameters and, as an experienced clinician,
these results are regarded as the “gold standard” in our project. We aimed to evaluate our
edge detection and motion tracking method by comparing our results with the “gold
standard” data. The error and range of distribution were calculated and will be discussed.
Kondracki investigated every three or four image frames in each DVF sequence in his
research, so we also tracked the same frames. However, in the first few frames in every
DVF sequence, the octagonal edges (shown in Figure 7-1) generated by the DVF
acquisition system to aid focusing for the radiographer would affect the tracking results
because of their strong energy distribution. As a result, we actually tracked from about
the 13" or 14™ frame and we therefore tracked a total of 34-46 image frames in every

DVF sequence.

(a) (b}

Figure 7-1 The DVF images contain the octagonal frames. (a) The lateral view. (b) The A/P view.
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7.2 Motion Tracking of the DVF Images from the Lateral

View
7.2.1 Rotation Angles of the Spine in Flexion/Extension

In the flexion/extension study, there are two sets from the lateral view (‘laron’ and

- ‘latwo’) of DVF sequences for each subject. However Kondracki did not provide the data

of the rotation angles for subject RM and recorded only 1 set (‘laton’) of the rotation
angles for subject JM in his research (Kondracki,M. 2001). Our algorithm was
successfully tested with 10 sets of the lateral images from 8 healthy subjects. These 10
data sets are BM ‘laton’, CR ‘latwo’, DE ‘laton’, DO ‘laton’, DO ‘latwo’, GP ‘latwo’,
M ‘laton’, JW ‘laton’, W ‘latwo’, and NW ‘laton’. Figure 7-2 shows a part of the
tracking results and Figure 7-3 shows the estimated rotation angles over a DVF sequence.
For each subject, we calculated the statistical values of mean and standard deviation for
our measurements and compared them with Kondracki’s results. The Range of Motion
(ROM) of the rotation angles was also calculated and compared. Finally, to investigate
the accuracy of our method, the mean of the error, the standard deviation of the error and
the standard error (SE) were calculated. Here, the results of Kondracki are set to be the
‘true’ values and our measurements are set to be the estimated values. The standard error

(SE) s; is expressed in Equation5.1. The statistical analysis of subject DO is shown in

Table 7-1. The errors of the ROM are in the range of 0°-3°. The absolute values of the
mean of the error are less than 1.25° and the standard deviations of the error are
controlled within 1.6°. Moreover, the figures of estifnated rotation angles over DVF
sequences and the tables of the statistical analysis of all 10 data sets can be found in

Appendix B-J.
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Chapter 7
Automated Tracking of Vertebrae

in DVF Sequences

7.1 Introduction -

All of the ten healthy subject ﬁles; which were listed in Chapter 3, were involved in the
tracking study. In the motion tracking, the generalized Hough transform was applied to
the vertebral shapes generated by using the wavelet scale multiplication edge detector.
For the DVF images taken from the lateral view, only the movements of the vertebrae L2
and L3 were investigated since not all the vertebral motion of L1 and L4 can be tracked |
correctly due to missing 'sections from some images. However, for the DVF images taken
from the anterior/posterior (A/P) view, the spinal movement of L2 to L4 were studied due
to the good performance of the GHT in tracking motion on the A/P view images because
the edge maps contain more integrated vertebral shapes even though they are confused |
with other structures of human body. For each DVF sequence, the rotation angle, the
intervertebral angle and the translation of the centre point of the yertebraé were
calculated. Only some results will be displayed in this chapter but all tracking results are

presented in Appendix B-K.

Furthermore, the biomechanical tracking results, such as the rotation angles and

intervertebral angles, were compared with Kondracki’s research (Kondracki,M. 2001)
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based on the same image frames in the same DVF sequences. He manual landmarked the
DVF sequences to calculate the biomedical parameters and, as an experienced clinician,
these results are regarded as the “gold standard” in our project. We aimed to evaluate our
edge detection and motion tracking method by comparing our results with the “gold
standard” data. The error and range of distribution were calculated and will be discussed.
Kondracki investigated every three or four image frames in each DVF sequence in his
research, so we also tracked the same frames. However, in the first few frames in every
DVF sequence, the octagonal edges (shown in Figure 7-1) generated by the DVF
acquisition system to aid focusing for the radiographer would affect the tracking results
because of their strong energy distribution. As a result, we actually tracked from about
the 13" or 14" frame and we therefore tracked a total of 34-46 image frames in every

DVF sequence.

(a) (b)

Figure 7-1 The DVF images contain the octagonal frames. (a) The lateral view. (b) The A/P view.
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7.2 Motion Tracking of the DVF Images from the Lateral

View
7.2.1 Rotation Angles of the Spine in Flexion/Extension

In the flexion/extension study, there are two sets from the lateral view (‘laton’ and
‘latwo’) of DVF sequences for each subject. However Kondracki did not provide the data
of the rotation angles for subject RM and recorded only 1 set (‘laton’) of the rotation
angles for subject JM in his research (Kondracki,M. 2001). Our algorithm was
successfully tested with 10 sets of the lateral images from 8 healthy subjects. These 10
data sets are BM ‘laton’, CR ‘latwo’, DE ‘laton’, DO “laton’, DO ‘latwo’, GP ‘latwo’,
IM ‘lator’, JW ‘laton’, TW ‘latWo’, and NW ‘laton’. Figure 7-2 shows a part of the
tracking results and Figure 7-3 shows the estimated rotation angles over a DVF sequence.
For each subject, we calculated tﬁe statistical values of mean and standard deviation for
our measurements and compared them with Kondracki’s results. The Range of Motion
(ROM) of the rotation angles was also calculated and compared. Finally, to ‘investigate
the accuracy of our method, the mean of the error, the standard deviation of the error and
the standard error (SE) were calculated. Here, the results of Kondracki are set to be the
‘true’ values and our measurements are set to be the estimated values. The standard error
(SE) s; is expressed in Equation5.1. The statistical analysis of subject DO is shown in
Table 7-1. The errors' of the ROM are in the range of 0°-3°. The absolute values of the
mean of the error are less than 1.25° and the standard deviations of the error are
controlled within 1.6°. Moreover, the figures of estimated rotation angles over DVF
sequences and the tables of the statistical analysis of all 10 data sets can be found in

Appendix B-J.
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(g) Frame No. 109 (h) Frame No. 124 (i) Frame No. 142

Figure 7-2 The tracking results of a healthy subject DO flexion/extension sequence in the lateral
view.
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Figure 7-3 The rotation angles of the vertebrae L2 and L3 versus frame number. Extension is
positive in the graph.

Based on the comparisons of all 10 data sets, the mean value of the mean of error (MME),
the mean value of the standard deviation of error (MSDE) and the mean value of the
standard error (MSE) were calculated and are shown in Table 7-2. The calculation of
‘laton’ data are based on 6 sets of DVF sequences while the calculation of ‘/atwo’ data
are based on 4 sets of DVF sequences. From the table, it can be seen that the
experimental results from our method are close to Kondracki’s manual method result.
Moreover, the overall error of the vertebra L3 tracking is generally smaller than that of
L2 because the focus of DVF system is on L3 during the image acquisition and L3

consequently has the better image quality than L2.

All the discussion above is based on the tracking of only the vertebrae L2 and L3.

Page | 135




Chapter 7 Automated Tracking of Vertebrae in DVF Sequences

Table 7-1 The rotation angle measurement of flexion/extension of subject DO.

mean stdof | Range | mean | std of SE
of the the of of the the

rotation | rotation | Motion | error error

) © ) ) ©

Subject | laton L2 | Kondracki | 5.96 9.44 35 ~0.91 145 | 0.253

DO GHT | 504 | 873 | 35
L3 | Kondracki | 8.98 11.44 41 -0.93 ‘ 1.46 0.256
| GHT | 804 | 1083 | 39 |
latwo | L2 | Kondracki| 537 | 801 | 28 | -123 | 128 | 0302

GHT 4.14 759 | 25

L3 | Kondracki | 7.54 10.71 37 -0.80 1.55 0.296
GHT 6.74 10.15 35 '

*std is the standard deviation.

*SE is the standard error.

Table 7-2 The statistical analysis of the tracking results of the rotation angle from the lateral view
of 10 DVF sequences from 8 human subjects.

laton latwo
L2 L3 . L2 L3.
MME (°) -0.820 -0.772 -0.568 T -0.523
MSDE (°) 1.190 1.298 1.230 1.053
MSE : 0.2482 0.2560 0.2620 0.2488

"MME is the mean value of the mean of error.
"MSDE is the mean value of the standard deviation of error.

*MSE is the mean value of the standard error.

Y
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7.2.2 Intervertebral Angles of the Spine in Flexion/Extension

The relative movement of one vertebra and its neighbour was also studied in this project

because the movement of the vertebrae in the image sequence is not fixed to a reference

point. With the 10 tracking results discussed above, we can calculate the intervertebral

angles over the motion sequence. For example, Figure 7-4 shows the changes of the

intervertebral angles of the spine movement in Figure 7-3. Similar to the rotation angle

measurement, the statistical and biomechanical parameters were investigated and are

shown in Table 7-3. All the statistical measurements of these 10 data sets can be found in

the Appendix B-J. Finally, the MME, MSDE and MSE of the intervertebral angle

measurement were calculated and shown in Table 7-4. The MME is close to 0°, the

MSDE is around 1.5° and the MSE value ranges from 0.22 to 0.28. Again, promising

tracking results were obtained, which suggests that the method is reliable and robust.

Intervertebral Angle (degree)

Figure 7-4 The intervertebral angles of the vertebrae L2/3 versus frame number.
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Table 7-3 The intervertebral angle measurement of flexion/extension of subject DO.

mean stdof | Range | mean | stdof SE
of the the of of the the
IVA (°) [ IVA (°) | Motion | error error
®) ®) e |
Subject | L2/3 .laton Kondracki | -3.02 2.17 7 0.02 1.82 | 0.269
DO : GHT -3.00 2.83 11 o
latwo | Kondracki | -2.17 2.99 85 | 043 1.60 | 0.280
GHT | 260 | 290 | 10 \

" IVA is the intervertebral angle.
“std is the standard deviation.

*SE is the standard error.

Table 7-4 The statistical analysis of the tracking results of the intervertebrél angle from the
lateral view of 10 DVF sequences from 8 human subjects.

L2/3

laton latwo

MME (°) . 0.072 -0.045
MSDE (°) 1.328 1.628
" MSE 0.2287 , 0.2800

"MME is the mean value of the mean of error.
"MSDE is the mean value of the standard deviation of error.

*MSE is the mean value of the standard error.

7.2.3 Translations of the Spine in Flexion/Extension

In addition to the rotation angle, our Generalized Hough algorithm also provides the
translation of the centre point of the template model (CTM). However, the CTM cannot
be used directly to study the translation of the vertebrae in the spinal motion because the

CTM does not represent the centre point of the vertebra. Here, we define the centre point
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4
Z xc.i Z yc,l

of the vertebra (CV) (xcv,yey) as x., = '=‘4 and y., = %, where (x.,.) is the

coordinates of the four vertebral corners. To avoid the confusion, we show only the
CTMs as the cyan points in the tracking result sequences in Figure 7-2 while only the
distribution of CVs is displayed in this section. Figures 7-5 and 7-6 show the x- and y-
translation of the centre points of the vertebrae L2 and L3. Moreover, the 2-D illustration
of the translation of the CVs of the vertebrae L2 and L3 is shown in Figure 7-7. From
these figures, it can be seen that the vertebrae do not return to the starting position of the
movement, which match the tracking results of the rotation angle. Again, all 10 tracking

results of the translation can be found in the Appendix B-J.
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Figure 7-5 The x-translation of the CVs of the vertebrae L2 and L3 versus frame number.
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Subject DO lateral view (laton)
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Figure 7-6 The y-translation of the CVs of the vertebrae L2 and L3 versus frame number.
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Figure 7-7 The translation of the CVs of the vertebrae L2 and L3 in 2-D illustration.
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7.3 Motion Tracking of the DVF Images from the

Anterior/Posterior View

7.3.1 Rotation Angles of the Spine in Lateral Bending

In the lateral bending study, there are also two sets from the A/P view (‘paohe’ and
‘patwo’) of DVF sequences for each subject. However Kondracki did not provide the
rotation angles for the ‘paone’ daté éequences of subject CR, GD and NW and recorded
the rotation angles for only the ‘paone’ data set sequence of subject DE and JM in his
research (Kondracki,M. 2001). Moreover, the DVF sequence RM ‘paone’ does not
include the entire image frames for tracking. Our algorithm was successfully tested with
the remaining 14 sets of the lateral images from 10 healthy subjects. Figure 7-8 shows a
part of the tracking results and Figure 7-9 shows the estimated rotation angles over a
DVF sequence. For each subject we calculated the same statistical values as what we did
for the lateral image sequences, for our measurements and compared them with
Kondracki’s results. The Range' of Motion (ROM) of the rotation angles was also
calculated and compared. Finally, to investigate the accuracy of our method, the mean of
error, the standard deviation of error and the standard error (SE) were calculated. Here,
the results of Kondracki are set to be the ‘true’ values and our measurements are set to be

the estimated values. The standard error (SE) s; is expressed in Equation 5.1. The

statistical analysis of a subject is shown in Table 7-5. The errors of the ROM are in the
range of 0°-4°. The absolute values of the mean of the error are less than 1.35° and the
standard deviations of the error are controlled under 1.5°. In addition, the figures of
estimated rotation angles over DVF sequences and the tables of the statistical analysis of

all 10 data sets can be found in Appendix B-K.
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(g) Frame No. 109 (h) Frame No. 125 (1) Frame No. 141

Figure 7-8 The tracking results of a healthy subject DO lateral bending sequence in the A/P view.
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Subject DO AP view (patwe)
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Figure 7-9 The rotation angles of the vertebrae L2, L3 and L4 versus frame number. Left side
lateral bending is positive in the graph.

As discussed for the lateral view sequences, the mean value of the mean of error (MME),
the mean value of the standard deviation of error (MSDE) and the mean value of the
standard error (MSE) were calculated based on the comparisons of all 14 data sets. The
results are shown in Table 7-6. The calculation of ‘paone’ data are based on 6 sets of
DVF sequences while the calculation of ‘patwo’ data are based on 8 sets of DVF
sequences. From Table 7-6, it can be seen that the experimental results of our method are
close to Kondracki’s, which is regarded as the ‘gold standard’ in this research. The ROM
of lateral bending tends to be larger than that of flexion/extension but this probably
reflects the experiment design of Kondracki. In general, L4 has the worst tracking

accuracy because it has the largest range of movement of the three vertebrae followed.

All the discussion above is based on the tracking of only the vertebrae L2, L3 and L4.
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Table 7-5 The rotation angle measurement of lateral bending of subject DO.

mean std of Range mean | std of SE
of the the of of the the
rotation | rotation | Motion | error | error
( ]l e ]6]o0
Subject | paone L2 | Kondracki | 3.08 10.36 38 -0.64 1.36 | 0.292
DO v GHT 2.43 9.37 34 1
L3 Kondracki | 5.63 12.95 47 -0.89 1.45 0.331
GHT 4.74 12.01 44
L4 | Kondracki | 6.57 14.34 51 -0.61 1.38 0.294
GHT 597 13.57 - 47
patwo L2 | Kondracki | 3.49 9.24 35 -1.06 1.21 0.273
GHT - 2.43 8.46 32
L3 | Kondracki | 4.29 10.80 40 -0.49 1.10 | 0.204
GHT 3.80 10.60 40 _
L4 | Kondracki | 6.89 13.20 48 -1.34 126 | 0314
GHT | 554 | 1285 | 45

“std is the standard deviation.

*SE is the standard error.

Table 7-6 The statistical analysis of the tracking results of the rotation angle from the A/P view
of 14 DVF sequences from 10 human subjects.

paone patwo
L2 L3 L4 L2 L3 L4
MME -0.390 -0.518 -0.668 -0.634 -0.646 -0.844
MSDE 1.278 1.428 1.51 1.173 1.291 1.425
MSE 0.2345 0.2690 0.2890 0.2330 0.2476. 0.2831
"MME is the meaﬁ value of the mean of error.
"MSDE is the mean value ofthe standard deviation of error.
"MSE is the mean value ofthe standard error.
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7.3.2 Intervertebral Angles of the Spine in Lateral Bending

The relative movement of one vertebra and its neighbour was also studied in this project

because the movement of the vertebrae in the image sequence is not fixed to a reference

point. With the 14 tracking results discussed above, we can calculate the intervertebral

angles over the motion sequence. For example, Figure 7-10 shows the relative changes of

the intervertebral angles of the spine movement in Figure 7-9. Similar to the rotation

angle measurement, the statistical and biomechanical parameters were investigated and

shown in Table 7-7. All the statistical analysis of these 14 data sets can be found in the
Appendix B-K. Finally, the MME, MSDE and MSE of the intervertebral angle

measurement were calculated and are shown in Table 7-8. The MME is less than 0.2°, the

MSDE is around 1.2° and the MSE value ranges from 0.19 to 023. Again, promising

tracking results were also obtained, which means that our method is reliable and robust.
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Figure 7-10 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame number.
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Table 7-7 The intervertebral angle measurement of lateral bending of subject DO.

mean std of [ Range | mean | stdof SE
of the the of of the the
IVA (°) | IVA (°) | Motion | error | error
) ®) )
Subject | paone | L2/3 | Kondracki { -2.55 2.87 10 0.25 1.18 0.234
DO GHT -2.30 3.00 13 7
L3/4 | Kondracki | -0.93 2.30 8 -0.28 1.30 | 0.258
GHT -1.21 2.75 12
patwo | L2/3 | Kondracki { -0.80 1.81 6.5 -0.57 1.54 | 0279
GHT -1.37 2.62 10
L3/4 | Kondracki | -2.6 2.65 9.5 0.86 | 127 1 0.260
GHT -1.74 | 2.67 11

* IVA is the intervertebral angle.

*std is the standard deviation.

*SE is the standard error.

Table 7-8 The statistical analysis of the tracking results of the mtervertebral angle from the A/P

view of 14 DVF sequences from 10 human subjects.

laton latwo
L2/3 L3/4 L2/3 L3/4
MME (°) 0.130 0.148 0.014 0.199
MSDE (°) 1.193 1.263 1.133 1.153
MSE 0.2100 0.2242 0.1971 0.2050

"MME is the mean value of the mean of error.

*MSDE is the mean value of the standard deviation of error.

"MSE is the mean value of the standard error.
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7.3.3 Translations of the Spine in Lateral Bending

In addition to the information of rotation anglé, our Generalized Hough algorithm also
| provides the trénslation of the centre point of the template model (CTM). However, the
CTM cannot be used directly to study the translation of the vertebrae in the spinal motion
because the CTM does not represent the centre point of the vertebra. Here; we applied the
definition of the centre point of the vertebra CV (xcv,ycr) as mentioned in Section 7.2.3.
To avoid the confusion, we show only the CTM:s as the cyan points in the tracking rqsult
sequences in Figure 7-8 while only the distribution of CVs is displayed in this section.
Figures 7-11 and 7-12 show the x- and y-translation of the centre points of the vertebrae
L2, L3 and L4. Ih addition, the 2-D illustration of the translation of the CVs of the
vertebrae L2, 1.3 and L4 is shown in Figure 7-13. From these figures, it can be seen that
the vertebrae do not return to the starting position of the movement, which match as the
tracking results for the rotation angle. Again, all 14 tracking results of the translation can

be found in the Appendix B-K.
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Figure 7-11 The x-translation of the CVs of the vertebrae L2, L3 and L4 versus frame number.
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Figure 7-12 The y-translation of the CVs of the vertebrae L2, L3 and L4 versus frame number.
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Figure 7-13 The translation of the CVs of the vertebrae L2, L3 and L4 in 2-D illustration.

7.4 Summary

The full tracking results of our method have been shown and discussed in this chapter.
Furthermore, the tracking results were compared with those of an experienced clinician,
Kondracki, manual approach (Kondracki,M. 2001). In his research, he showed that the
average values of rotation angles obtained in his study were broadly in agreement with
those found in the established literature for in vivo studies (Dvorak,J. et al. 1991;
Frobin,W. et al. 1996; Hayes,M.A. et al. 1989; Lin,R.M. et al. 1994; Pearcy,M.J. 1985;
White,A.A. et al. 1990; Yamamoto,l. et al. 1989). So the rotation data of Kondracki’s
manual tracking method is assumed to be the ‘gold standard’ in our research. From the
figures and tables shown in this chapter as well as in the Appendix B-K, our results are
promising and close to the ‘gold standard’, which indicates the reliability and robustness

of our algorithm. Our method has been successfully tested on 24 sets of sequences out of
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40 DVF sequences. In our tracking, the image quality of the vertebral bodies affects the
accuracy as expected. So in the tracking of the flexion/extension sequences, the vertebra
L3 generally has smaller error values than L2. On the other hand, the range of motion of
the vertebrae reduces the precision of the tracking results. So in the tracking of the lateral
bending sequences, the vertebra L4 has the lowest accuracy in all three vertebrae since
L4 moves in the largest range, generally about 1.5 times that of the L2’s range due to the
using of the passive motion table where the upper lumbar spine moves less than the

bottom parts of the lumbar spine.
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| Chapter 8

Conclusions and Future Work

8.1 Conclusions

Low back pain has become one of the serious problems in developed countries and its
cost, both economic and sociai, is enormous. Although low back pain occurs commonly,
its diagnosis remains difficult. The reasons could be that low back pain is caused by
many different sources and the analysis and diagnosis is difficult due to the complicated
structure of the human spine. Research has shown that low back pain is often related to
mechanical disorders of the human spine. As a result, the study of spine motion would be
very useful in diagnosis iow back pain. To date, digital videofluoroscopy (DVF) is
currently the only practical technique to obtain continuous spine motion sequences.
However due to the low radiation dosage, DVF images have a poorer quality than other

medical images and the quality varies across the images.

This research aims to develop a method of automated segmentation ‘and motion tracking
for the analysis of lumbar spine motion for low back pain diagnosis. Characterization of
~ the normal motion of the lumbar spine would form the basis for locating a source of
damage by identifying any abnormal motion at the vertebral level. The identification of
the vertebral contour is the first step in our research. In Chapter 4, we investigated the

edge detection results using some conventional edge operators. Both the gradient- and |
phase-based edge detection methods were tested with DVF images. The edge maps after
thresholding from the neutral and extreme positions were presented. The Canny operator

¢ -
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showed the most potential although it cannot yield the vertebral contours of sufficient

quality for automated tracking.

In Chapter 5, we applied a wavelet scale multiplication based approach as the edge
detector to DVF images of the lumbar spine. Since the previous studies showed that the
Canny édgé detection has a better performance and the first derivative of Gaussian
(FDoG) function is.used as edge detector in the Canny algorithm, we used the Mallat
wavelet, which is close to the FDoG function, as the mother wavelet to generate the
wavelet filter for edge detection. The experimental results on the artificial edge images
and on the spine calibration model images were shown to demonstrate the promise of this
method. It has been shown that the contour of the spinal vertebrae can be detected
automatically in DVF images. The wavelet-based approach was also tested with DVF
séquences from human asymptomatic, healthy subjects. With the edge information,
biomechanical parameters, such as rotation angle and intervertebral angle, were

calculated based on manual landmarking the four corners of each vertebra.

- However, manual landmarking is a laborious, time consuming and error-prone procedure.
An automated system is desired to reduce the workload and hence creat the possibility of
clinical implementation. Chapter 6 addressed the development of an automated tracking

* technique for spine motion using the Generalized Hough transform. The procedure for

the selection of the template model, the building of the Reference Table and the tracking

algorithm were described. By locating the maximum value in the Hough space, we
obtained the rotation and translation parameters of the spine motion. The proposed
method was tested by the DVF image sequences of the calibration model and of the
human subjects. In the tracking of the calibration model sequences, the calculated
rotation angles were very close to the pre-set values. The error was in the range of -1° to
+1° aﬁd the standard error was 0.345. For the human subject sequences, our algorithm
was successful in tracking the vertebrae L2 and L3 in the lateral images while it had a

better performance in the A/P images, where L.2-L4 were successfully tracked.
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Chapter 7 presented the further results of the tracking with the human subject sequences.
Twenty-four out of forty DVF image sequences of 10 healthy subjects were analyzed.
Considering some sequences have no ‘true’ rotation angle values for comparison with the
tracking results from our approach, we actually completed nearly 80% (24 dut of 31~
sequences) of motion analysis. Moreover, we compared our results with those from ‘gold
standard’ measurements made manually by the experienced clinician. The errors of the
rotation angles and intervertebral angles were small. The absolute value of MME was less
than 1°, and the MSDE was controlled within 1.6°. Furthermore, the standard error
generally ranged between 0.22 and 0.30. Finally, the translations of the centre of the

vertebrae were also plotted.

8.2 Future Work

8.2.1 Improvement of the Generalized Hough Transform

The efficiency of our algorithm could be improved for clinical practice. The
computational cost and memory required depend on the total number of -edge points in
the target area of the images, the size of the target area, the possible range of the rotation'
and translation parameters, and the intervals used for quantizing these parameters. In this
project, the Matlab programme requires aboﬁt two minutes to extract one vertebra in one
DVF image frame on a 3GHz PC with 1GB memory. This includes the time consumed by
the wavelet scale multiplication method to detect the edge maps. Moreover, considering
the usage of the memory, the tracking procedure has to be separated into 3-4 parts for
each vertebra due to limitation of the memory available. Therefore, it is necessary to
optimize the source code with respect to the computational cost. This improvement

would benefit the real-time, clinical application.
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There are two main limitations existing in the Géneralized Hough transform (GHT) in
analyzing motion sequences. First, for an image containing multiple objects, the GHT has
to extract them separately. The possible relationships (referred to as spatial information),
such as the position constraints, are not taken into account within the implementation of
the GHT. Second, for object extraction in a motion sequence, the GHT algorithrﬁ is
applied frame by frame. This means that the GHT does not take the advantage of the
possible relationships between frames (réferred to as temporél information,) in a motion
sequence. A new version of the Hough transform, the Spatio-Temporal Hough transform
(STHT), is designed to extend the ability of the Hough transform to handle motion
analysis by combining the spatio-temporal information (Zheng,Y. 2002). Thus, it is
expected to be more robust for motion analysis with an improved ability to process the
poor quality DVF image sequences more quickly. Previous research (Sarkar,S. et al. 2002)
has shown promising results on a large variety of motion sequences by using the Hough
transform combining the spatio-temporal space. This algorithm would be worth further

study in the next stage of this project.

8.2.2 Refined Description of‘T'ransform_ation Model and Image

Registration Method

,Inl our tracking algorithm, the building of the Reference Table and the matching of the
Hough transform do not require manual landmarking. All the calculations are based
directly on the edge map obtained from our wavelet-based operator. So the obtaining of
good and clear edge maps will greatly benefit the motion tracking. The current study does
not succeed in tracking all five lumbar vertebrae due to the lack of integrity of vertebral
contour. For example, the tracking of L1 suffers from the low contrast and missing
sections of the vertebral contour in many raw images. In the flexion/extension tracking,

L4 is usually behind the line of the pelvis which lies across the vertebral body.
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Vertebral shape gives crucial cues for accurate tracking. Vertebral contour may be better
described using more sophisticate mathematical tools, such as the affine transformation
(Cyganski,D. et al. 1987; Sapiro,G. et al. 1993). Because the deformation of vertebral
bodies does happen in DVF images, a technique, called the diffeomorphisms (Banyaga,A;
1997; Christensen,G.E. et al. 1996), providés support in the representation of thc;,
transformation model. The diffeomorphisms technique has been applied in some research
on MRI and CT images (Joshi,S.C. et al. 2000; Marsland,S. et al. 2004) and may be

considered as a possible direction in the further development of this project.

With the transformation model, an image registration approach could be applied in
motion tracking. The Lucas-Kanade method (Lucas,B.D. et al. 1981; Lucas,B.D. 1984) is
still one of the most popular techniques of two-frame differential methods for motion
estimation, which is also called optical flow. Several researchers -have tested the Lucas-
Kanade algorithm and obtained favorable results in medical image analysis (Zou,X.C. et
al. 2007), even in heart echocardiographic image sequences with poor image quality
(Baraldi,P. et al. 1996). Another potential technique is thé Automated Image Registration
(AIR) algorithm (Woods,R.P. et al. 1993). The AIR algorithm has been used in image
registration in positron emission tomography (PET), CT and MRI images (Tohka,J. et al.
2004; Vaquero,J.J. ét al. 2001) and may be applicable to DVF images.

8.2.3 Motion Modelling and Clinical Applications

Another possible area would be the understanding the relationship between the
distribution of biomechanical parameters and the spine motion. First, more biomechanical
analysis of the spine motion would be of great interest. For example, the instantaneous
axis of rotation (IAR) could be studied and the centrode can be built as demonstrated in
- Section 2.3.3.4. At present, only DVF image sequences from ten healthy subjects were

analyzed. In the future, more healthy subjects would be involved in order to build a larger
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database of normal spine motion if possible.. And then the quantitative analysis and

modelling tools would then be used to model the normal spine movement.

Our algorithm has the potential to automate image processing of DVF images from other
clinical investigations and so could be also applied to other clinical biomechanical studies,

such as the cervical spine, the fingers, or the knee.

Finally, a new imaging technique, which can yield the motion sequénce in real time with
better image quality and low radiation exposure, is still desired. When this appears or is
expected that the techniques developed for the DVF image sequences will achieve even

better results.
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Appendices

Appendix A. Edge Detection Results

A.1 Canny Edge Detector

P 1 4, 80 o 2 73

(a) 7=[0.06, 0.016] (b) 7=[0.01, 0.026]

2 3 X ¥, T 3 ax ¥,

(c) 7=(0.014, 0.036] (d) 7=[0.019 0.047)

Figure Appendix-1 Edge maps using Canny edge detector.
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A.2 Laplaican of Gaussian Edge Detector

g E: A K%

{a) 7=0.008 (b) 7=0.011
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I3 @

Figure Appendix-2 Edge maps using Laplacian of Gaussian edge detector.
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A.3 Phase Congruency Edge Detector

% 8 i T pr ) R w P 3 a0 £

(a) 7={0.1, 0.5] (b) 7=(0.2, 0.5]

E* 73 o W e

(c) 7=[0.3, 0.5] (d) 7=[0.4 0.5)

Figure Appendix-3 Edge maps using Phase congruency edge detector.
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Appendix B. Subiect BM

. B.1 Motion Trackihg of the DVF Images from the Lateral View

Table Appendix-1 The measurement of rotation angles of subject BM.

mean stdof | Range | mean | std of SE
of the the of of the the

rotation | rotation | Motion | error | error

) e | O © ®

Subject | laton | L2 | Kondracki| 3.37 | 626 | 245 | -146 | 0.83 | 0.287
BM ' GHT 1.91 5.90 22

L3 | Kondracki| 5.83 8.92 31.5 -0.80 1.07 | 0.227
GHT 5.03 875 | 30

*std is the standard deviation.

*SE is the standard error..

[

Table Appendix-2 The measurement of intervertebral angles of subject BM.

mean std of | Range |. mean | std of SE
of the the of of the
IVA (°) | IVA (°) | Motion | error error .
©) @) ©)
Subject | L2/3 | laton | Kondracki | -2.46 3.07 11 -0.80 0.93 0.208
BM GHT -3.26 | 3.48 11

" IVA is the intervertebral angle.
*std is the standard deviation.

*SE is the standard error.
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(a) (b)

Figure Appendix-4 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject BM ‘laton’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-5 The translation of the vertebrae L2 and L3 versus frame number of subject
BM ‘laton’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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B.2 Motion Tracking of the DVF Images

from the
Anterior/Posterior View
Table Appendix-3 The measurement of rotation angles of subject BM.
mean std of | Range | mean | std of SE
of the the of of the the
rotation | rotation | Motion | error error
@) ® - © ®
Subject | paone L2 | Kondracki | 5.48 13.48 46.5 -0.63 1.38 | 0.258
BM GHT 4.83 12.65 42
L3 | Kondracki | 5.63 15.30 55 -0.60 | 1.54 | 0.280
~GHT 5.03 14.29 51
L4 | Kondracki | 9.87 | 17.94 63.5 -1.04 147 | 0.306
GHT 8.83 16.88 59
patwo L2 | Kondracki | 8.89 14.06 48 v -1.31 |"1.08 | 0.290
GHT 7.57 13.38 46 -
L3 | Kondracki | 9.66 15.46 55 -1.14 1.19 | 0281
GHT 8.51 14.76 51
L4 | Kondracki | 9.80 18.22 65 20.77 144 | 0277

GHT 9.03 17.50° 60

*std is the standard deviation.

*SE is the standard error.,
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Table Appendix-4 The measurement of intervertebral angles of subject BM.

mean std of | Range | mean | std of SE
of the the of of the the
IVA (°) | IVA (°) | Motion | error error
) ) ©)
Subject | paone | L2/3 | Kondracki | -0.17 221 8.5 -0.03 1.24 | 0.209
BM GHT -0.20 2.10 9
L3/4 | Kondracki | -4.24 2.98 9.5 0.44 1.20 | 0.216
GHT -3.80 3,11 12
patwo | L2/3 | Kondracki | -0.77 1.80 8 -0.17 0.95 0.164
GHT -0.94 215 9
L3/4 | Kondracki | -0.14 2.92 11 -0.37 1074 |*0:207
GHT -0.51 3.05 10
" IVA is the intervertebral angle.
std is the standard deviation.
SE is the standard error.
§ ¥ ' . ‘ ; ’ 1az4
(a) (b)

Figure Appendix-6 The rotation angles of the vertebrae L2, L3 and L4 versus frame number of
subject BM. (a) Data set ‘paone’. (b) Data set ‘patwo’.
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(a) (b)

Figure Appendix-7 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame
number of subject BM. (a) Data set ‘paone’. (b) Data set ‘patwo’.

(a) (b) (c)
Figure Appendix-8 The translation of the vertebrae L2, L3 and L4 versus frame number of

subject BM ‘paone’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c¢) The translation of the centre points of the vertebrae in 2-D.

(a) (b) (<)

Figure Appendix-9 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject BM ‘patwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix C. Subject CR

C.1 Motion Tracking of the DVF Images from the Lateral View

Table Appendix-5 The measurement of rotation angles of subject CR.

mean stdof [ Range | mean | std of SE
of the the of of the the

rotation | rotation | Motion | error error

) ) ® © ©)

Subject | latwo L2 | Kondracki | 4.51 5.93 20.5 -0.46 1.68 0.295
CR GHT 4.06 6.80 24

L3 | Kondracki | 5.63 9.82 32 -0.63 140 | 0.259
GHT 5.00 9.47 30

*std is the standard deviation.

*SE is the standard error.

Table Appendix-6 The measurement of intervertebral angles of subject CR.

mean stdof | Range | mean | std of SE
of the the of of the
IVA (°) | IVA (°) | Motion | error error
) e | O
Subject | L2/3 | latwo | Kondracki | -1.11 4.20 135 |. 0.17 2.16 | 0.366
CR GHT -0.94 3.10 13

- " IVA is the intervertebral angle.
*std is the standard deviation.

"SE is the standard error.
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(a) (b)
Figure Appendix-10 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject CR ‘latwo’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-11 The translation of the vertebrae L2 and L3 versus frame number of subject
CR ‘latwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (¢) The translation of the centre points of the vertebrae in 2-D.
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C.2 DMotion Tracking of the DVF Images from the

Anterior/Posterior View

Table Appendix-7 The measurement of rotation angles of subject CR.

mean stdof | Range | mean | std of SE
of the the of of the the

rotation | rotation | Motion |} error error

© ) ® ©) )

Subject | patwo L2 | Kondracki | 2.39 9.54 325 -0.30 1.30 | 0.227
CR GHT 2.09 8.59 29

L3 | Kondracki | 5.43 14.52 . 48 -0.69 144 | 0270 |
GHT 4.74 13.31 45

L4 | Kondracki | 4.71 16.77 55 -0.77 1.52 0.288
GHT 3.94 15.71 52

*std is the standard deviation.

*SE is the standard error.

Table Appendix-8 The measurement of intervertebral angles of subject CR.

mean std of | Range | mean | std of SE

-of the the of of the the
IVA (°) | IVA (°) | Motion |} error | error
©) ©) ©
Subject | patwo | L2/3 | Kondracki | _3;04 5.05 16.5 0.39 0.99 | 0.180
CR | | GHT -2.66 4.83 17

L3/4 | Kondracki | 0.71 2.78 8.5 0.09 1.06 } 0.180
GHT | .0.80 3.00 10

" IVA is the intervertebral angle.
“std'is the standard deviation.

*SE is the standard error.
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(a) (b)

Figure Appendix-12 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject CR ‘patwo’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)

Figure Appendix-13 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject CR ‘patwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c¢) The translation of the centre points of the vertebrae in 2-D.
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Appendix D. Subject DE

D.1 Motion Tracking of the DVF Images from the Lateral View

Table Appendix-9 The measurement of rotation angles of subject DE.

mean std of | Range | mean | std of SE
of the the of of the the

rotation | rotation | Motion | error | error

) ) @ | O )

["Subject | laton | L2 | Konmdracki | 3.86 | 6.59 23 | -1.09 | 1.09 | 0263
DE ' GHT 277 | 6.60 24

L3 | Kondracki | 7.53 9.48 30.5 -1.50 1.36 | 0.345
GHT 6.03 8.75 30

*std is the standard deviation.

*SE is the standard error.

Table Appendix-10 The measurement of intervertebral angles of subject DE.

mean std of | Range | mean | std of SE
of the the of of the
IVA (°) | IVA (°) | Motion | error | error
®) ) ®)
Subject | L2/3 | laton | Kondracki | -3.67 3.22 10.5 0.41 148 | 0.255
DE _ GHT -3.26 2.58 10

" IVA is the intervertebral angle.
*std is the standard deviation.

*SE is the standard error.
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(a) (b)
Figure Appendix-14 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject DE ‘/aton’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-15 The translation of the vertebrae L2 and L3 versus frame number of subject
DE ‘lator’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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D.2 Motion Tracking of the DVF Images

from the
Anterior/Posterior View
Table Appendix-ll The measurement of rotation angles of subject DE.
mean stdof | Range | mean | std of SE
of the the of of the the
rotation rotation { Motion | error error
© ) ) © )
Subject | paone L2 | Kondracki | 2.46 10.28 38.5 -0.31 1.21 0212
DE T GHT | 214 | 98 | 35
L3 | Kondracki | 5.69 13.61 51 -0.74 1.29 | 0.252
GHT 4.94 12.64 48
L4 | Kondracki | 6.83 16.50 62 -0.77 1.53 | 0.291
GHT 6.06 15.61 59
“std is the standard deviation.
*SE is the standard error.
Table Appendix-12 The measurement of intervertebral angles of subject DE.
mean stdof | Range | mean | stdof SE
of the the of of the the
IVA (®) | IVA (°) | Motion | error error
© oo
Subject | paone | L2/3 | Kondracki | -3.23 3.58 12.5 0.43 1.13 | 0.205
DE GHT -2.80 3.21 13
L3/4 | Kondracki | -1.14 3.12 11 0.03 1.14\ 0.192
GHT | -111 | 329 | 11

* IVA is the intervertebral angle.

*std is the standard deviation.

*SE is the standard error,
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(a) (b)
Figure Appendix-16 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject DE ‘paone’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-17 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject DE ‘paone’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (¢) The translation of the centre points of the vertebrae in 2-D.
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AppendixE. Subject DO

E.1 Motion Tracking of the DVF Images from the Lateral View

" Table Appendix-13 The measurement of rotation angles of subject DO.

mean std of | Range | mean | std of SE
of the the of ofthe | the

rotation | rotation | Motion | error error

e. O © © )

Subject | laton | L2 | Kondracki| 596 | 944 | 35 | -091 | 145 | 0253
DO GHT | 504 | 873 | 35 |

L3 | Kondracki | 8.98 11.44 41 -0.93 1.46 | 0.256
GHT 8.04 10.83 39

latwo L2 | Kondracki { 5.37 8.01 28 -1.23 1.28 0.302

v

GHT 4.14 7.59 25

L3 Kondracki | 7.54 10.71 37 -0.80 1.55 0.296
GHT 6.74 10.15 35

*std is the standard deviation.

*SE is the standard error.
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Table Appendix-14 The measurement of intervertebral angles of subject DO

mean std of | Range | mean | std of SE
of the the of of the
IVA (°) | IVA (°) | Motion | error error
) ) )
Subject | L2/3 laton | Kondracki | -3.02 217 7 0.02 1.82 0.269
DO GHT -3.00 2.83 11
latwo | Kondracki | -2.17 2.99 8.5 -0.43 1.60 | 0.280
GHT -2.60 2.90 10

IVA is the intervertebral angle.

std is the standard deviation.

SE is the standard error.

(a)

el

(b)

Figure Appendix-18 The rotation angles of the vertebrae L2 and L3 versus frame number of
subject DO. (a) Data set ‘laton’. (b) Data set ‘latwo’.

(a)

(b)

Figure Appendix-19 The intervertebral angles of the vertebrae L2/3 versus frame number of
subject DO. (a) Data set ‘laton’. (b) Data set ‘latwo’.
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(@) (b) (c)

Figure Appendix-20 The translation of the vertebrae L2 and L3 versus frame number of subject
DO ‘laton’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.

(a) (b) (c)
Figure Appendix-21 The translation of the vertebrae L2 and L3 versus frame number of subject

DO ‘latwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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E.2 Motion Tracking of the DVF Images . from the
Anterior/Posterior View
Table Appendix-15 The measurement of rotation angles of subject DO.
mean std of | Range mean | std of SE
of the the of of the the
rotation | rotation | Motion | error | error
©) ©) ®) ) ©)
Subject | paone L2 | Kondracki | 3.08 10.36 38 -0.64 1.36 | 0.292
DO GHT 243 9.37 34
L3 | Kondracki | 5.63 12.95 47 -0.89 1.45 | 0.331
GHT 474 12.01 44 ‘
L4 | Kondracki | 6.57 14.34 51 -0.61 1.38 0.294
GHT 5.97 13.57 47
patwo L2 | Kondracki | 3.49 9.24 35 -1.06 1.21 0.273
GHT 243 8.46 32
L3 | Kondracki| 429 | 1080 | 40 | -049 | 1.10 | 0204
GHT 3.80 10.60 40
L4 | Kondracki | 6.89 13.20 48 -1.34 1.26 0.314
GHT 5.54 12.85 45

“std is the standard deviation.

*SE is the standard error.
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Table Appendix-16 The measurement of intervertebral angles of subject DO.

mean std of | Range | mean | stdof SE
of the the of of the the
IVA (°) | IVA (°) | Motion | error | error
©) ) )
Subject | paone | L2/3 | Kondracki | -2.55 2.87 10 0.25 1.18 0.234
DO GHT -2.30 3.00 13
L3/4 | Kondracki | -0.93 2.30 8 -0.28 1.30 0.258
GHT -1.21 2.75 12
patwo | L2/3 | Kondracki | -0.80 1.81 6.5 -0.57 1.54 0.279
GHT -1.37 2.62 10
L3/4 | Kondracki | -2.6 2.65 9.5 0.86 1.27 0.260
GHT -1.74 2.67 11
" IVA is the intervertebral angle.
std is the standard deviation.
SE is the standard error.
| ;x... i a i e R
y e : .
(a) (b)

Figure Appendix-22 The rotation angles of the vertebrae L2, L3 and L4 versus frame number of
subject DO. (a) Data set ‘paone’. (b) Data set ‘patwo’.
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(a) (b)

Figure Appendix-23 The intervertebral angles of the vertebrae L2/3 and L3/4 versus frame
number of subject DO. (a) Data set ‘paone’. (b) Data set ‘patwo’.

(a) (b) (c)

Figure Appendix-24 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject DO ‘paone’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c¢) The translation of the centre points of the vertebrae in 2-D.

(a) (b) (c)

Figure Appendix-25 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject DO ‘patwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix F. Subject GD

F.1 Motion Tracking of the DVF Images from the
Anterior/Posterior View
/
Table Appendix-17 The measurement of rotation angles of subject GD.
- mean stdof | Range | mean | std of SE
of the the of of the the
rotation | rotation | Motion | error error
, ) ®) ©) ®) ®)
Subject | patwo L2 | Kondracki | 3.99 8.57 31 -0.33 1.15 0.202
GD - GHT ‘3.66 7.91 29
L3 | Kondracki | 7.99 13.80 49 -0.70 1.37 | 0.260
GHT 7.29 13.14 46
L4 | Kondracki | 9.46 16.44 57 -0.69 | 143 | 0.268
GHT | 877 | 1535 | 54 |
“std is the standard deviation.
*SE is the standard error.
Table Appendix-18 The measurement of intervertebral angles of subject GD.
mean std of | Range | mean | stdof SE
of the the of of the the
IVA (®) [ IVA (°) | Motion | error error
) ©) ©)
Subject | patwo | L2/3 Kondracki | -4.00 5.44 18 0.37 1.13 | 0.200
GD GHT -3.63 5.49 18
13/4 | Kondracki | -1.47 2.84 11 -0.01 1.43 0.241
GHT --1.49 2.67 12

* IVA is the intervertebral angle.
“std is the standard deviation.

*SE is the standard error.

Page | 196




Appendices

(a) (b)

Figure Appendix-26 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject GD ‘patwo’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-27 The translation of the vertebrae L2, L3 and L4 versus frame number of

subject GD ‘patwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.

Page | 197




Appendices

Appendix G. Subject GP

G.1 Motion Tracking of the DVF Images from the Lateral View

Table Appendix-19 The measurement of rotation angles of subject GP.

mean std of Range | mean | std of SE
of the the of of the the

rotation | rotation | Motion | error error

© ©) ) )| O

Subject | latwo L2 | Kondracki | 4.00- 4.82 17 -0.49 0.89 | 0.172
GP GHT 3.51 493 18

L3 | Kondracki | 4.29 7.03 26 -0.26 1.20 | 0.207
GHT 403 | 675 23

"std is the standard deviation.

*SE is the standard error.

Table Appendix-20 The measurement of intervertebral angles of subject GP.

ﬁlean stdof | Range | mean | stdof SE
of the the of of the
IVA (°) | IVA (°) | Motion | error | error
, ® e 1O
Subject | L2/3 | latwo | Kondracki | -0.29 2.52 10 -0.23 1.27 0.219
GP ' GHT -0.51 2.38 8

" IVA is the intervertebral angle.
“std is the standard deviation.

*SE is the standard error.
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(a) (b)

Figure Appendix-28 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject GP ‘latwo’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-29 The translation of the vertebrae L2 and L3 versus frame number of subject

GP ‘latwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c¢) The translation of the centre points of the vertebrae in 2-D.
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G.2 Motion Tracking of the DVF Images from the
Anterior/ Posteridr View
Table Appendix-21 The measurement of rotation angles of subject_ GP.
v mean std of | Range | mean | std of SE
of the the of of the the
rotation | rotation | Motion | error error
, ) ) ®)- ® ®
Subject | paone L2 | Kondracki | 5.60 11.16 41 -0.43 1.28 0.228
GP GHT 5.17 10.29 36
L3 | Kondracki | 9.03 | 14.34 50.5 -0.63 | 1.34 | 0.251
GHT 8.40 13.45. 48 N
L4 | Kondracki | 11.14 16.93 60 -0.80 1.43 | 0.278
GHT 10.34 16.36 56
patwo L2 | Kondracki | 6.56 12.06 43 -0.76 1.14 | 0.232
GHT | 580 | 1128 | 40 N
L3 | Kondracki | 7.50 1494 |- 535 -0.64 1.22 | 0.234
T GHT | 686 | 1410 | 50 >
L4 | Kondracki | 11.33 18.61 63.5 -0.81 1.62 | 0.307
GHT 10.51 | 17.25 60

*std is the standard deviation.

*SE is the standard error.
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Table Appendix-22 The measurement of intervertebral angles of subject GP.

mean std of | Range | mean | std of SE
of the the of of the the
IVA (°) | IVA (°) | Motion | error error
) ) )
Subject | paone | L2/3 | Kondracki | -3.43 3.66 12 0.20 1.17 | 0.200
GP GHT -3.23 3.76 13
L3/4 | Kondracki | -2.11 2.81 10.5 0L 1T 1.37 | 0.234
GHT -1.94 3.40 11
patwo | L2/3 | Kondracki | -0.94 313 10.5 -0.11 1.12 | 0.190
GHT -1.06 3.27 12
L3/4 | Kondracki | -3.83 3.84 12 0.17 1.07 | 0.183
GHT -3.66 3.41 11

- IVA is the intervertebral angle.
std is the standard deviation.

SE is the standard error.

. ' ’ .
Friaesy H ' Tralesy
.

(a) (b)

Figure Appendix-30 The rotation angles of the vertebrae L2, L3 and L4 versus frame number of
subject GP. (a) Data set ‘paone’. (b) Data set ‘patwo’.
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(a) (b)

Figure Appendix-31 The intervertebral angles of the vertebrae L.2/3 and L3/4 versus frame
number of subject GP. (a) Data set ‘paone’. (b) Data set ‘patwo’.

(a) (b) (c)
Figure Appendix-32 The translation of the vertebrae L2, L3 and L4 versus frame number of

subject GP ‘paone’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.

(@) (b) (c)
Figure Appendix-33 The translation of the vertebrae L2, L3 and L4 versus frame number of

subject GP ‘patwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (¢) The translation of the centre points of the vertebrae in 2-D.
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Appendix H. Subiect JM

H.1 Motion Tracking of the DVF Images from the Lateral View

Table Appendix-23 The measurement of rotation angles of subject JM.

mean stdof | Range | mean | std of SE
" of the the of ofthe | the

rotation | rotation | Motion | error error

® ®) ) ) ©)

Subject | laton | L2 | Kondracki| 2.99 | 8.43 30 | -059 | 1.12 | 0215
M GHT 240 | 7.71 28

L3 | Kondracki | 091 | 980 | 37 | -031 | 143 | 0248
GHT | 060 | 898 | 34

*std is the standard deviation.

'SE is the standard error.

Table Appendix-24 The measurement of intervertebral angles of subjéct IM.

mean std of | Range | mean | std of SE
ofthe | the of of the
IVA (®) | IVA (°) | Motion | error error
©) ®) ©)
Subject | L2/3 | laton | Kondracki | 2.07 1.69 8 -0.27 1.20 | 0.209
M GHT 180 | 191 9 '

»* IVA is the intervertebral angle.
“std is the standard deviation.

*SE is the standard error.
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(a) (b)
Figure Appendix-34 The rotation and intervertebral angles of the vertebrae L2 and L3 versus
frame number of subject JM ‘/aton’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)

Figure Appendix-35 The translation of the vertebrae L2 and L3 versus frame number of subject
IJM ‘laton’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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H.2 Motion Tracking of the DVF Images from the
Anterior/Posterior View
Table Appendix-25 The measurement of rotation angles of subject JM.
mean Std of | Range | mean | std of SE
ofthe | - the of ~of the the
rotation | rotation | Motion | error | error
© ©) ©) ©) ©
Subject | paone L2 | Kondracki | 0.03 10.63 39 -0.17 1.22 0.209
M GHT -0.14 10.17 36
L3 | Kondracki | 3.06 .| 13.04 48 -0.11 1.40 | 0.237
GHT 2.94 12.34 45
L4 | Kondracki | 4.71 16.17 58 -0.40 1.54 | 0.269
GHT 4.31 15.25 54
“std is the standard deviation.
'SE is the standard error.
Table Appendix-26 The measurement of intervertebral angles of subject JM.
| mean std of | Range | mean | std of SE
of the the of ofthe | * the
IVA (°) IVA (°) | Motion | error | error
©) ) ©)
Subject | paone | L2/3 | Kondracki | -3.03 3.39 11.5 -0.06 1.22 | 0.207
M GHT -3.09 3.59 10
L3/4 | Kondracki | -1.66 3.34 12.5 0.29 1.39 | 0.241
GHT -1.37 3.34 11

" IVA is the intervertebral angle.

*std is the standard deviation.

*SE is the standard error.
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) ]
Te-lir=0id

(a) (b)

Figure Appendix-36 The rotation and intervertebral angles of the vertebrae L2, L3 and L4 versus
frame number of subject JM ‘paone’. (a) The rotation angles. (b) The intervertebral angles.

(a) (b) (c)
Figure Appendix-36 The translation of the vertebrae L2, L3 and L4 versus frame number of
subject JM ‘paone’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the
centre point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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Appendix 1. Subject JW

1.1 Motion Tracking of the DVF Images from the Lateral View

Table Appendix-27 The measurement of rotation angles of subject JW.

mean std of | Range | mean | std of SE
of the the of of the the .
rotation | rotation | Motion | error | error
, © ©) ®) ©) ©)
Subject | laton L2 | Kondracki 1.93 7.01 26.5 -0.41 1.22 0.217
W GHT 1.51 6.50 24
L3 Kondracki | 3.06 9.92 36 -0.43 1.31 0.234
GHT | 263 | 952 | 32 B
latwo | L2 | Kondracki| 317 | 646 | 25 | -0.09 | 1.07 | 0.18l
GHT 309 | 6.17 23 |
L3 Kondracki | 4.49 | 9.07 33.5 -0.40 1.32 0.233
GHT 4.09 8.33 30

*std is the standard deviation.

*SE is the standard error.
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Table Appendix-28 The measurement of intervertebral angles of subject JW.

mean std of | Range | mean | std of SE
of the the of of the
IVA (°) | IVA (°) | Motion | error error
©) ©) )

Subject | L2/3 laton | Kondracki | -1.13 3.39 10.5 0.01 1.28 0.216
IW GHT -1.11 3.42 10
latwo | Kondracki | -1.31 2.83 10 0.31 1.48 | 0.255
GHT -1.00 2.61 9

" IVA is the intervertebral angle.
‘std is the standard deviation.

SE is the standard error.

(a) (b)
Figure Appendix-37 The rotation angles of the vertebrae L2 and L3 versus frame number of
subject JW. (a) Data set ‘/aton’. (b) Data set ‘latwo’.

(a) (b)
Figure Appendix-38 The intervertebral angles of the vertebrae L2/3 versus frame number of

subject JW. (a) Data set ‘laton’. (b) Data set ‘latwo’.
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(a) (b) (c)

Figure Appendix-39 The translation of the vertebrae L2 and L3 versus frame number of subject
JW ‘laton’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c¢) The translation of the centre points of the vertebrae in 2-D.

(a) (b) (c)
Figure Appendix-40 The translation of the vertebrae L2 and L3 versus frame number of subject

JW ‘latwo’. (a) x-translation of the centre points of the vertebrae. (b) y-translation of the centre
point of the vertebrae. (c) The translation of the centre points of the vertebrae in 2-D.
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1.2 Motion Tracking of the DVF Images from the Anterior/Posterior

View

Table appendix-29 The measurement of rotation angles of subject JW.

mean | stdof | Range | mean | stdof | SE
of the the of of the the .

rotation | rotation | Motion | error error

) ® © ) ©

Subject | paone | L2 | Kondracki| 2.56 11.15 42 -0.16 122 | 0.208
Jw : GHT 2.40 10.43 38

L3 Kondracki | 2.86 13.57 51 --0.14 1.55 0.263
GHT 2.71 12.31 46

L4 | Kondracki | 5.13 17.02 63.5 -0.39 | 1.71 0.296
GHT | 474 15.75 58

patwo L2 | Kondracki | 1.03 7.99 31 -0.20 1.18 0.203
GHT 0.83 7.24 26

L3 Kondracki 1.66 11.21 42 -0.31 1.32 0.230
GHT 1.34 10.30 39

L4 | Kondracki | 6.03 14.87 55 -0.86 1.38 0.275
GHT 5.17 13.77 51

*std is the standard deviation.

*SE is the standard error.
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Table Appendix-30 The measurement of intervertebral angles of subject JW.

mean std of | Range | mean | stdof SE
of the the of of the the
IVA (®) | IVA (°) | Motion | error error
) ) )
Subject | paone | L2/3 | Kondracki | -0.30 3.11 9.5 -0.01 122 0.205
IW GHT -0.31 2.68 9
L3/4 | Kondracki | -2.27 3.54 13 0.24 1.18 | 0.204
GHT -2.03 375 16
patwo | L2/3 | Kondracki | -0.63 3.61 12 0.11 1.23 | 0.209
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