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Verifying system specifications using traditional model-checking techniques rapidly be-

comes infeasible as the complexity of the specification becomes non-trivial, due to the

state-space explosion problem, wherein the representation of the behaviour of the sys-

tem becomes too large to be practically constructable. Thus, we require techniques

that collapse the state-space to a manageable size while still preserving the information

required for verification of the desired properties.

The concept of abstraction provides one effective means of combatting state-space ex-

plosion. Essentially, abstraction aims to simplify the behaviour by hiding details that

are not directly relevant to the verification task. Within the abstraction framework, the

original behaviour of the system is known as the concrete behaviour, and the simplified

behaviour the abstract. The precise means of abstraction we consider acts by reducing

the set of actions appearing in the abstract behaviour by means of a mapping from each

of the set of concrete actions to an abstract action (action renaming) or to the empty

word (action hiding). It has been previously shown that when the abstraction fulfils a

condition called weak continuation-closure, then the abstract behaviour can be used to

decide whether or not the concrete behaviour satisfies a property under a satisfaction

relation called satisfaction within fairness, a relation that includes a built-in concept of

fairness. The drawback is that the technique requires the construction of the original

state-space, which is often infeasible.

The main contribution of this thesis is to show that partial-order reduction can be

combined with abstraction in such a way that the the abstraction can be used to decide

whether the concrete behaviour satisfies a given property within fairness using only

a partial-order reduced version of the state-space, which potentially could be orders of

magnitude smaller than the full state-space. Attention is also paid to providing practical

means for computing this partial-order reduction, and a couple of results in the field of

compositional verification are presented.
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Chapter 1

Introduction

1.1 Automated Verification

Automated verification, in the sense used throughout this thesis, is the mechanical testing

of a system specification to check whether it contains errors and conforms to a required

property. The most naive means of doing this is to build the state-space of the system:

a labelled transition system containing all possible states the system may move through

as it executes all of its possible computations. A partial-computation is a finite sequence

of actions, each of which is viewed as being an atomic event within the system; a

computation of a system is an infinitely extended partial computation. The behaviour

of the system is defined as the set of all possible computations of the system; thus the

state-space of the system, once constructed, affords a relatively easily exploited encoding

of the behaviour of the system.

1.2 Properties and Satisfaction

Verification of a system specification often equates to verifying that the behaviour of

a system "satisfies" a property. In this thesis, properties are identified with the set of

all "correct" computations and are typically formulated as a prepositional linear-time

temporal logic formula [Pnueli (1977)]. When deciding whether a system specification

"satisfies" a property, some measure of "fairness" is usually introduced into the satis-

faction condition in order to filter out those computations of the system that do not

conform to the property but which, while technically possible within the system, are

viewed as "unfair" or unrealistic sequences of events e.g. a computation in which an ac-

tion that is required to be taken in order for the computation to satisfy the property has

infinitely many chances to be taken, but never is. The definition of satisfaction we will
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deal with is known as "satisfaction within fairness": [Nitsche and Ochsenschlager (1996);

Nitsche and Wolper (1997)]. In essence, this definition says that a system behaviour

satisfies a property within fairness if and only if every partial computation of a system

can be extended to an infinite one that satisfies the property .

1.3 State-space Explosion

The aforementioned state-space of the system specification often grows exponentially

with the complexity of the system specification, a phenomenon known as the state-space

explosion problem; ameliorating this problem while verifying that the system specifica-

tion satisfies properties within fairness forms the main focus of this thesis. The main

result of this thesis combines two different means of state-space reduction: abstraction

and partial-order reduction.

1.4 Abstraction

Abstraction aims to reduce the size of the state-space by effectively "simplifying" the

system specification being considered by "hiding" some of the internal details of how

system components work. For example, if we had a system specification detailing a

communication protocol, we may be more interested in verifying whether a message

sent via the protocol is received by its intended recipient; the underlying mechanisms

employed by the protocol may be of no interest in the verification procedure, and only

the emergent behaviour (whether the sent message reaches its intended recipient) need

be verified. In this case, substantial reduction in the state-space may be obtained by

"abstracting away" these implementation details and only exposing the higher-level be-

haviours to the verification process.

The method of abstraction employed throughout this thesis is that of behaviour abstrac-

tion, wherein groups of actions are either mapped to some action which is viewed as

important with respect to the property we wish to verify (action renaming) or, more

usefully, mapped to the empty word if the actions are not of immediate importance to

the property being verified. This mapping on the set of actions is called an abstracting

homomorphism. In the previously mentioned example, we may wish to map all actions

comprising the low-level workings of the protocol to the empty word, and map the ac-

tion that initiates a "send" event to some action (rnsgsend, say) and the action that

signals a "receive" event to another action (msg-receive, say). The resulting behaviour,

with this abstracting homomorphism applied, will be very much simpler than the full,

detailed behaviour, and the state-space will be correspondingly smaller.

1 Originally, "satisfaction up to liveness".
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This approach is not too useful unless we may infer properties satisfied by the system

behaviour based on the abstract behaviour, and in fact it was shown in [Nitsche and

Ochsenschlager (1996)] that a specific class of abstracting homomorphisms (called weakly

continuation-closed homomorphisms) preserve satisfaction within fairness of properties;

that is, if the applied abstracting homomorphism is weakly continuation closed on the full

behaviour, the resulting abstract behaviour will satisfy a given propery within fairness

if and only if the full behaviour satisfies that property within fairness.

However, the usefulness of this result is diminished by the fact that computing this

abstract behaviour still required one to compute the full behaviour (state-space) of the

system at some point. The main contribution of this thesis is proving that we may avoid

having to construct this full state-space in favour of a partial-order reduced version.

1.5 Partial-order Reduction

Another means for reducing the size of a state-space stems from the observation that

some pairs of actions are "independent" of one another, in the sense that neither inter-

feres with the other and that following the pair of actions in either order leads to the

same state. Partial computations that may be transformed into one another by swapping

the order of independent actions adjacent to one another in the sequence, then, are in a

limited sense functionally equivalent, and the standard state-space construction will ex-

plore all such "redundant" computations. The persistent set selective search techniques

of Godefroid and Wolper [Godefroid (1991, 1995); Godefroid and Wolper (1993); Wolper

and Godefroid (1991)] aim to reduce the state-space by avoiding following some of these

redundant interleavings. The primary contribution of this thesis is to show that these

persistent set selective search techniques, in particular those which yield what is known

as a trace reduction of the full system behaviour, can, when modified to be "compatible"

with the abstracting homomorphism, give a reduced representation of the full behaviour

that can completely take the place of the full state-space required earlier. Thus, we

may use a combination of partial order reduction and abstraction to infer the proper-

ties satisfied within fairness by the full behaviour without ever having to construct the

state-space representing it.

1.6 Thesis Statement

The current requirement of constructing the entire state-space before performing ver-

ification on the smaller resulting abstract representation negates many of the benefits

of using abstraction in the first place and is in fact unnecessary: It is possible to use

a partial-order reduced version of the state-space instead, which can be significantly

smaller.
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1.7 Organisation of this Thesis

Chapter 2 deals with the formal definitions of the concepts mentioned in this Introduc-

tion. Chapter 3 deals with the main result of this thesis: proving that a partial-order

reduction of the state-space, appropriately modified to be compatible with the abstract-

ing homomorphism, can be used to decide which properties are satisfied within fairness

by the full behaviour. Chapter 4 provides a formalism of high-level Petri nets for speci-

fying systems (Petri nets are chosen as they are generally very amenable to partial-order

reduction methods) and aims to give a practical means for computing the persistent

sets required by the persistent set selective search by examining existing persistent set

construction algorithms and exploring how these might need to be adapted to work more

optimally with the special requirements of the result of Chapter 3. Chapter 5 presents a

result that combines partial-order reduction and abstraction with compositional verifi-.

cation. Chapter 6 gives an experimental justification of the main result of this thesis by

testing the the modified persistent set algorithm on a practical example. We conclude

the main thesis by giving a summary of the results presented and a comparison with

existing work, and suggesting some avenues for future research.

The five Appendices to the thesis contain material which, for various reasons, is largely of

minor importance or of purely theoretical interest. Appendix A describes an algorithm

for deciding whether a given abstracting homomorphism is weakly-continuation closed

on a given behaviour; in the case where the efficiently checkable sufficient conditions are

of no help, this result is more efficient than the existing technique. Appendix B contains

a variant of the persistent set selective search optimised for the case where we wish only

to extract the abstract behaviour of a system specification, as is the case in the result

of Chapter 5. Appendix C answers an open question concerning whether a result called

"the commuting limits theorem" holds for non-regular languages. Appendix D gives an

explicit algorithm for deciding whether a language satisfies a property within fairness.

Finally, Appendix E gives a comparison of some definitions of "fairness" of a satisfaction

relation, and shows where our notion of satisfaction within fairness fits in the hierarchy.
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Preliminaries

2.1 Overview

This chapter introduces most of the core concepts used in this thesis, starting with some

Automata and Language Theory. We then move on to model checking and describe

some existing techniques to reduce the size of the state space during the model checking

process (the techniques of abstraction and partial-order reduction) and describe what it

means for a system to model a property under different notions of "fairness".

2.2 Automata and languages

In this section, we will present some of the required definitions from automata and

language theory [Hopcroft and Ullman (1979); Harrison (1978)].

Definition 2.1. Formally, a finite automaton A = (Q, £, S, qo, F) consists of a finite set

Q of states, an input alphabet S, a transition relation S C Q x E x Q, an initial state

qo £ Q, and a set F of accepting states.

In all examples we consider in this document, the set F is trivially set to Q; i.e. all

states are accepting.

Definition 2.2. When an automaton A satisfies the condition F = Q, it is called a

labelled transition system, or an LTS for short. We write A = (Q, S, 6, qo) if A is an

LTS.

Every automaton of this kind encodes a language over the alphabet S, as described in

the next few definitions.
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Definition 2.3. A run of A on a finite word x = x\X2---xn £ S* (a;, £ S) is a sequence

[qi € Q] such that (qi-i, Xi, qi) £ 5 for each i = 1,2,..., n. The automaton .4. accepts this

word x if and only if gn £ i*1.

Since, for an LTS, F = Q, the condition for acceptance of x by an LTS A is simply that

there exists a run of A on x.

Definition 2.4. Let L be the set of words accepted by A ; i.e.

L = {x E Y,*\A accepts x}. .

Then we call L the language accepted by A.

It is also possible to define the acceptance by A of infinite words (or to—words), a notion

usually called Biichi-acceptance[Buchi (1962)], as we will begin to do now.

Definition 2.5. A run of A on an w—word x = x\Xi— £ Sw (XJ £ E) is an infinite

sequence

9o9i92-

[qi € Q] such that (qi-i,Xi, qi) £ 8 for all 2 = 1,2,3,...

For a run r £ Q", define w(r) to be the set of states occurring infinitely many times in

r; we say then that:

Definition 2.6. The automaton A Biichi-accepts the w—word x = x\X2--- £ Sw if and

only if there is a run r of x satisfying u>(r) D F ^ <$>.

Obviously, in the case where A is an LTS, this condition again simplifies to A Biichi-

accepts x if and only if there is a run of A on x. As before, the language Zw Biichi-

accepted by the automaton A is simply the set of infinite words Buchi-accepted by A (a

language consisting of UJ—words, such as Lw, is called an UJ — language). We will have a

little more to say about the language Buchi-accepted by an LTS A after the following

important set of definitions.

Definition 2.7. Let x = x\Xi----xn £ S* be a word over S. Then we define:

pre(x) = {x\X2---xm\0 < m < n}

i.e. the set of words that are the "beginning segments" of x. Similarly, we define for an

w—word x.= x\X2-... £ S^

pre(x) — {x\X2---xm\m, > 0}
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In either case, if y G pre(x), we write y ^ x. If y £ pre(x) but y ^ x, we write y < x.

Note that the m = 0 case corresponds to the empty word e. We extend the definition

to languages in the obvious way:-

pre(L) = {y £ L\3x G L : y ^ x]

where L may be either an ordinary language or an u>—language.

Definition 2.8. A language L is said to be prefix-closed if and only if pre(L) = L; that

is, if a word w is in L, then all prefixes of w are in L.

Note that the language accepted by an LTS is always prefix-closed.

Definition 2.9. We define the Eilenberg Limit [Eilenberg (1974)] of the language L C D *

to be the u>—language over £ defined as

lim(L) = {x £ E^a00™ G pre{x) : w G L}

where "3°°..." should be read as "there exist infinitely many different... ".

Perhaps a more intuitive definition would be to say that a word x 6 Sw is in lim(L) if

and only if there is a sequence W\,W2,--- of words of increasing length in L such that

W{ -< Wi+i for each i = 1,2,... and Wi -< x for all i = 1,2,.... Thus, an w-word x is in

lim(L) if and only if there is a sequence of finite words, all contained in L, each extending

the previous word by appending actions to it and, very informally, "converging" to the

w-word x as this process is continued to infinity. -

Note that in the case where L is prefix-closed, Definition 2.9 may be simplified to

lim(L) = {x G Sw|Vw; G pre(x) : w G L} .

as follows. Let L C S* be a prefix-closed language and let x G Sw be an w-word in

lim(L). Then as noted, we would have a sequence wi,W2,--- of words in L such that

Wi -< tUj+i for each i — 1,2,... and Wi -< x for all i = 1,2,.... Given any word w G L

where w -< x, then w would be a prefix of all words Wi for which \wi\ >= \w\ and, since

all Wi are in L and L is prefix-closed, w would also be in L.

In the case where A is an LTS, it can be shown that the language Biichi-accepted by

A coincides with the Eilenberg Limit of the finitary language accepted by A [Thomas

(1990)] , so obtaining a representation of lim(L) given a representation of L is trivial.

Definition 2.10. The leftquotient [Harrison (1978)] or continuation of a word w G £*

in a language L C S*, denoted cont(w, L), is denned as

cont(w,L) = {t/£ £*|uiy G L}



Chapter 2 Preliminaries

with a similar definition for u>—languages Lw C Ew;

Note 2.1 It is an important fact that the elements in the set {cont(w,L)\w G L)

correspond exactly to the states in the minimal automaton representing the language

L. To make this correspondence clear, take any state s in this minimal automaton and

find all words accepted from that state (i.e. this operation is equivalent to temporarily

switching the initial state of the automaton to s, and finding the language accepted by

this new automaton); then this will be one of the sets in {cont(w, L)\w G L). In fact,

it will be equal to the set cont(w, L), where w is any word that leads from the original

initial state to s; thus, as an aside, we see that the sets cont(w, L) and cont(w',L) (with

w,w' G £*) are equal if and only if the words w and w' lead to the same state in the

minimal automaton representing L. As a consequence, most definitions involving a state

s in this thesis are implicitly extended to any word w leading from SQ to s, and most

definitions in terms of a word w in a language are extended to definitions in terms of the

state s reached by following w from so in the automaton representing that language.

For example, we extend Definition 2.10 to a definition involving states as follows: let A

be the automaton representing L, and let s be a state of A that can be reached in A by

following a word ! u £ i . Then we define

cont(s,L) = cont(w,L)

As mentioned, the language represented by cont(s, L) is precisely the language accepted

by the automaton obtained by changing the initial state of A from qo to s, which provides

an efficient means for computing cont(s,L) and, by extension, cont(w,L).

Definition 2.11. A word w G L is maximal in L if cont(w,L) = {e}; i.e. no further

actions may be followed after following w.

The state in the aforementioned minimal automaton corresponding to such a maximal

word would be a dead-end or a deadlock state, from which no further progress is possi-

ble. We should make an important note at this point; the main result of this thesis is

not directly compatible with automata containing deadlocks (nor, by implication, lan-

guages containing maximal words) - more precisely, Theorem 2.18 requires, for technical

reasons, that the automaton not contain deadlocks. To overcome this restriction, we

do the following: we introduce a "dummy" action, which we will denote by "#". If an

automaton contains a deadlock state, then we introduce a transition from that state to

itself, labelled with "#" (so the formerly maximal words in the corresponding language

now have the set {#"'|n > 0} as their continuation). The input alphabet is now E u { # } ;



Chapter 2 Preliminaries 9

to avoid this cumbersome notation, however, we will simply assume that the "#" action

has been included and just write S instead.

Strongly-connected components[Aho et al. (1974)] are used in several places in this

thesis, and we introduce them here.

Definition 2.12. Let A— (Q,T,,8,qo,F) be an automaton. Then a strongly connected

component C C Q of A is a subset of the set of states of A with the property that, for

any pair s, s' (E C of states in C, there is a path

a\ 02 an i
S = Si > S2 > S3 . . . 5 n —-> S n + i = S

such that Si G C for all i — 1,2, ...n + 1 and (SJ, a,;, s^+i) G 5 for all i = 1, 2, ...n.

An automaton A is strongly-connected if all of its states form a single, strongly connected

component. If C C Q is a strongly-connected component of A and there is no C C Q

such that C C C and C" is also a strongly-connected component of .4, then C is said

to be maximal.

A strongly connected, bottom component C of .4 is a strongly connected component of

A with the additional property that there does not exist a transition (s,a,s') G 5'with

s € C and s' £ C; it represents a strongly connected component with no transitions

leading but of the strongly connected component.

It is a fact that from any state s in any automaton A, we may always reach from s either

a deadlock state or a strongly connected bottom component.

Having dealt with the automata-related preliminaries, we now move on to the idea

behind model-checking.

2.3 Model-Checking

Model-checking, loosely speaking, consists of modelling the behaviour of a real-life system

within a computer (by means of an appropriate system specification) in order to check

whether the behaviour is a model of some property V, as expressed in some logical

language.

2.3.1 System Specifications

For our purposes, a specification of a system must contain the following information:
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A set of actions: Intuitively, this is the set of elementary operations that the system may

perform, or events that may occur within the system; for example, sending or receiving

messages, dealing with a client in a queue, etc.

A notion of the states of the system: A state may be likened loosely to a snap-shot of

the system at a given moment in time, and should contain all information describing

the internal configuration of the system at that moment to a level of detail deemed

sufficient for the verification of the chosen properties1. For example, the state of a

system could contain the list of the clients in the queues, the progress of a message

through a communication network, the values of variables at the current stage of a

calculation, etc.

A transition relation: This tells one which state the system enters after performing

action a at state s; i.e. it contains the information describing the evolution of the

system during a sequence of actions. There should also be a rule that allows one to

tell which actions the system is immediately able to perform at each state s, based on

the information contained in the internal representation of s; this set is called the set of

enabled actions at the state s, denoted En(s). By Note 2.1, we extend this definition

to En(w) (where w is any word such that following w from so leads to s), "the set of

enabled actions at u>".

Given this information, we may form an automaton representing the 'behaviour' of the

system (the inverted commas are used because the behaviour of a system has a more

formal definition, given later - see Definition 2.14) in an obvious way: the set of states

Q is the set of states of the system reachable from the initial state of the system; the

set S is the set of actions of the system, and 5 is identified with the transition relation

of the system.

We form this automaton A by starting with the initial state so of the system, finding all

enabled actions En(so) at this state, firing each in turn and using the transition relation

to see which new states are entered. Then for each of these new states, we find the set

of enabled actions, fire them, work out which new states are entered, etc. We carry on

until no new states are created. More formally, the procedure may be described as in

Algorithm 2.1. Note that the particular formulation given in Algorithm 2.1 is that of

a breadth-first search, but this is not a necessity and a depth-first version would work

equally well.

The resulting set of states in this LTS is called the state-space of the system. Let L

henceforth denote the language accepted by A.

Definition 2.13. A partial computation of the system is a word in L. A computation
1 Obviously, one may increase the detail of the model to an arbitrary degree, but there of course

comes a point where one must assume that the model is sufficiently detailed to justify the inference of
a property of the real-life system from a property of the model. This notion of sufficient detail is quite
closely linked with that of abstraction, which we will describe later.
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1: Q <— <f>;NewStates <— so;
2: do while NewStates ^ <£
3: pick s G NewStates;
4: NewStates <— NewStates — s;
5: Q < - Q U s ;
6: . let T = £n(s);
7: if T = ^ then / / The state s must be a deadlock
8: 5 <— <5 U (s, # , s); / / state. Add a loop to itself marked
9: endif . / / with the dummy label. "#"
10: for each action a in T
11: for each states s' such that firing a at s leads to s'
12: if s' £ Q
13: NewStates <— NewStates U s';
14: endif
15: next
16: <5^ 5U(s,a,s');
17: next
18: loop

Algorithm 2.1 - Basic State-Space Exploration Algorithm for Constructing
the LTS Representing the System

is an infinitely extended partial computation; i.e. a word in lim(L).

Definition 2.14. The behaviour of the system is the set of all these computations; i.e

is equal to lim(L).

The usage of infinite sequences of actions need some justification: Even though protocols

are finite, usually one considers consecutive runs of them, leading to infinite system

behaviour. In the case where one is dealing with terminating systems, one can add to

each potential termination (deadlock) state a transition to a new state with a self-loop

labelled with special symbol standing for "I have terminated"; as mentioned earlier, we

use "#" for this special symbol in this thesis.

2.3.1.1 Introduction to Petri Nets

One method for specifying systems that is particularly amenable to the partial-order

methods we will employ in this thesis is to use Petri Nets [Jensen (1997); Hack (1976);

Reisig (1985)]. There are various 'levels' of Petri Nets, the simplest (and least useful

practically) being low-level Petri Nets . These consist of a numbered set of places, each

of which contains a number of tokens, and a set of actions (S)2. Places are represented

2 In most of the literature on Petri Nets, this set is called the set of transitions; we have adopted an
alternative notation to emphasize the fact that this set corresponds to the set of elementary operations
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by circles with the number of tokens contained in the centre, and the place-number

located on the outside3; actions are represented by rectangles with the action name

inside. Each action may have a number of arrows pointing into places, and a number

of arrows pointing in to it from places. Information of the former kind is encoded in a

function

F : S -> IN™

where the ith component of F(a) is the number of arrows going from a into place

number i, and n is the total number of places. Similarly, the latter kind of information

is expressed in a function

B : E -> IN"

where the ith component of B(a) is the number of arrows coming into a from place

number i.

The current state of a Petri-Net specified system may be captured completely by a vector

m e IN™ in which the ith component is the number of tokens in place i. This vector

is called the current marking of the Petri Net, and we will use the terms marking and

state interchangeably. The initial marking (state) is usually denoted Mo.

The actions enabled at a state M, En(M), are precisely the set of actions a £ £ such

that the vector M — B(a) has no negative components. The marking reached by firing

a at M is defined to be the marking M' — M — B(a) + F(a); this gives us our transition

relation.

As an example (taken from [Nitsche and Wolper (1997)]), consider the following system,

which consists of a server that behaves as follows: when the server receives a request,

it may respond with a result or a rejection, depending on the availability of a resource

(free or lock). If the resource is free when needed, the server will send a result; and until

the result is sent the resource is seized by the server. If the resource is locked, the server

responds with a rejection.

This verbal description may be modelled using the Petri-Net shown in Figure 2.1.

Note that the only actions enabled at M$ = (0,1,1,0,0,0) are request [because MQ -

B(request) = (0,1,0,0,0,0) contains no negative components] and lock [because MQ —

B(lock) = (0,0,1,0,0,0) contains no negative components]. The automaton represent-

ing the behaviour of the system is shown in Figure 2.2.

of the system.
3 Again, this notation is peculiar to this document and is not generally used in the literature.
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FIGURE 2.1: An Example low-level Petri Net

no

reject / \request.

free ]~~A free /~S free i
I lock VJlock [jlock

reject

FIGURE 2.2: The behaviour of the system in Figure 2.1, as constructed by the algo-
rithm of Algorithm 2.1

2.3.2 Properties

For the purposes of the results in this thesis, a property V is a subset of Ew4[Alpern and

Schneider (1985)]. Intuitively, it is a condition that we would like to check whether the

behaviour of the system satisfies e.g. that the system never reaches a dead-locked state;

any message sent through the system eventually reaches its intended recipient; etc.

We will describe here a formalism for describing such properties known as Propositional

Linear-time Temporal Logic (PLTL) [Pnueli (1977)]. We present a 'cut down' version of

the formalism; the most general version involves an additional set of atomic propositions

and a labelling function that maps actions onto a subset of this set, all of which is

superfluous to our needs. Note that the restriction of properties to those with an infinite

sequence as their model unfortunately precludes the usage of properties expressed in CTL

or CTL*,.which has a tree-like structure as its model[Thomas (1989)].

Formally, a PLTL formula is defined recursively as follows:

each element of £ is a PLTL formula, as are the atomic propositions true and false;

Remember, £ is assumed to contain the "dummy action", "#".
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if £ and <; are PLTL formulae, then so are

(0,(0

OnZt/ formulae constructed in accordance with these rules are PLTL formulae.

[the symbol -> denotes negation].

In addition, for notational convenience, we also introduce the abbreviations

F ( 0 = {true)U(£) ("eventually £") and G(0 = ->-F(-^0 ("always £")•

Let a; = X1X2... G S w , and let 77 be a PLTL formula. Then the conditions under which

x satisfies rj [written x \= rj ] are as shown below:

• If if = true then x (= rj.

• If rj G S, then x f= 77 if and only if 77 = x\.

• If 77 = -1 (£), then x \= 77 if and only if it is not the case that x \= £.

• If 77 = ( 0 A (?), then x \= rj if and only if a; (= ^ and x f= <;.

• If r; = (£) V (?), then x (= 77 if and only if x (= £ or x f= ?.

• If 77 = x (Oi then x 1= 77 if and only if X2X3... |= ^

• If 77 — (£)U(<;). then x f= 77 if and only if there exists i 6 {1,2,...} such that

XiXi+ixi+2... (= C and for all 3 < i, XjXj+\... \= £.

Thus (^) should be read as '^ holds immediately after the next action' and (£) {/ (?) as

'eventually, C will hold and until then, £ must hold'. F ( 0 is then simply 'eventually, ^

will hold' and G(£) is '£must always hold'. Thus G(F(£)) is interpreted as 'it is always

the case that £ will eventually hold' i.e. '£ holds infinitely often'.

The property V(tj) C Sw specified by 77 is simply the set of infinite words that satisfy 77;

i.e.

V(rj) = {x e Sw|x \= 77}
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2.3.3 Satisfaction of Properties, and "Fairness"

There are several definitions (of varying degrees of 'fairness') of what it means for the

behaviour of a system to satisfy a property V. The most obvious would be to say

that the behaviour (lim(L), from Definition 2.14) of a system satisfies V if and only

if lim(L) C V: that is, all computations of the system must satisfy V. This is called

linear-time satisfaction [Alpern and Schneider (1985)]. Equivalently, we say that the

behaviour satisfies, the property V linearly.

This can, however, be slightly too restrictive: there may be computations of the system

which violate the property but which are considered very unusual or unreasonable, and

which we are happy to overlook. For example, the property G(F(result)) is violated by

the system described earlier (Figure 2.2), specifically by those computations in which

the resource is not freed sufficiently often, or often freed but not at the right time [the

computation lock.request. (free. lock)w is an example of a computation that violates the

property]. Obviously, the situation where the resource is free infinitely often but never

returns a result is hardly a reasonable one and we would not accept this circumstance as

a real violation of the property; the requirements for a system behaviour to satisfy the

property are not "fair".Generally, fairness assumptions about the behaviour of a system

are necessary for the verification of liveness properties [Owicki and Lamport (1982)] to

ensure that a non-deterministic system progresses in a realistic manner, so that e.g. a

process scheduler never arbitrarily starves a process forever, or, in the classic example of

the Dining Philosophers problem [Lehmann and Rabin (1981)], a philosopher eventually

stops eating and returns his fork.

A number of different definitions of what it means for a system to satisfy a property

have been proposed, including weak fairness and strong fairness [Francez (1986)]. A

computation of a system is said to be weakly fair if for each action a that is eventually

enabled throughout the computation, it holds that the action a occurs infinitely often

in the computation. A computation of a system is said to be strongly fair if for each

action o that is enabled infinitely often during the computation, it holds that a occurs

infinitely often in the computation. [Note that all strongly fair computations, then, are

automatically weakly fair]. A system behaviour B is then said to satisfy the property

V under weak fairness if and only if all weakly fair computations of the system are in

V, with a similar definition for satisfaction under strong fairness. Appendix E provides

more formal definitions of these notions.

The definition of satisfaction we will concentrate on in this thesis, however, is a relation

called "satisfaction" within fairness" [Nitsche and Ochsenschlager (1996); Nitsche and

Wolper (1997)] 5 , described in the next sub-section.

In previous papers, this was referred to as "satisfaction up to liveness", or "relative liveness".
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2.3.4 Satisfaction Within Fairness

Definition 2.15. We say that the behaviour of the system satisfies V within fairness, or

equivalently, that V is a relative liveness property of the system [in either case, written

"lim(L) \=WF Vr'\ if and only if:

Vw; G pre(lim(L)), 3.x £ cont(w, lim(L)) : wx G V

In words, this states that the behaviour satisfies V within fairness if and only if every

partial computation that may be extended to an infinite one may be extended to an

infinite one satisfying the property6; that is, no matter which state in the system we are

currently at, there is some way of satisfying the property from here. Our server satisfies

the property G{F(result)) within fairness: it is easily checked from Figure 2.2 that no

matter which state we are in, we can always reach a state where result is enabled and

can be taken infinitely often.

Appendix E gives a more complete discussion of all of these types of satisfaction relations

as well as a comparison with this new notion of satisfaction within fairness. In brief,

it is shown that the four mentioned definitions of satisfactions may be arranged into a

hierarchy of fairness, with linear satisfaction (the most stringent) occurring at the top,

and satisfaction within fairness (the most lenient, or "fair") at the bottom:

B satisfies V linearly =$• B satisfies V under weak fairness => B satisfies V under strong

fairness => B satisfies V within fairness.

For details on deciding whether a given system satisfies a given property within fair-

ness, see Appendix D. Very briefly, we are required at least to construct the product

automaton of the automata. AL and A-p.

2.4 State-Space Explosion

And herein lies the problem: for industrial-sized specifications, the ones we are really

interested in, the automaton AL can be huge; given that the size of A-p can also be

exponential in the length of the PLTL formula ?7, and that the size of the product

automaton can be as great as the product of the sizes of A-p and Ar,, we see that the

size of A-pxL can be very large: far too vast to fit within a computer's memory. This

is the state^space explosion problem, and attempts to ameliorate this problem form the

main focus of our research.
6 In the special (and common) case where L contains no maximal words, we have that p)"e(lim(L)) = L

[as L is assumed to be prefix-closed]; then the definition may be expressed as ".. . the behaviour satisfies
V within fairness if and only if every partial computation may be extended to an infinite one satisfying
the property..."
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2.4.1 Current Techniques

There are already some methods to help combat this problem:

2.4.1.1 Abstraction

Abstraction [Bruns (1993); Clarke et al. (1992); Graf and Loiseaux (1993); Kurshan

(1994); Nitsche and Wolper (1997)] aims to hide details of the system not pertinent to

the property to be verified, hopefully resulting in a simpler abstract system description

with a correspondingly smaller state-space that can still be used to verify whether the

original, concrete system satisfied the property.

Data Abstraction[C\axke et al. (1992); D.E. Long (1993); S. Graf and C. Loiseaux (1993);

Graf (1994)] is one means of accomplishing this reduction. In this approach, a mapping

from each of the domains of the variables comprising the state of a system to a smaller

domain is created, and, consequently, the full set of concrete states may be mapped to

a smaller set of abstract states. Let S be the set of concrete states, A the mapping that

turns a concrete into an abstract state, and S the set of abstract states resulting from

applying A to S. For an abstract state s e S , let A~^ be the set of concrete states whose

image under A is s. The state-space exploration is carried out at the level of abstract

states: the starting state(s) in the abstract automaton are those so for which A~^{JQ)

contains initial states of the concrete automaton. The transition s -^-> s ' is added to

the abstract state space if and only there is a transition s -—> s' in the concrete state

space with A(s) = s and A(s) = s'. Since the size of the abstract state space is clearly

bounded by the size of S and this is often much smaller than S, the exploration generally

terminates rapidly.

A classic example of this approach is that of the Dining Mathematicians, as presented in

[Dams et al. (1997)]. In this example, two mathematicians, A and B, say, who alternate

between eating in the communal dining area and thinking, have a mutual dislike of

each other and have arranged a method by which they will never end up eating in the

dining area at the same time by means of a flag, in the form of a positive integer n to

which they both have read and write access. The initial value of n is arbitrary, implying

multiple possible initial states and both mathematicians start off in their think states.

Mathematician A may only proceed to the dining room if n is odd; upon finishing his

meal and leaving the dining area, he must set the value of n to 3n + 1. Mathematician

B may only eat if the value of n is even; upon finishing, he must set the value of n to

n/2. The properties proposed for verification in [Dams et al. (1997)] are as follows:

i) There is no state in which both mathematicians are eoiing at once (mutual exclu-

sion) ;
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ii) After any state in which Mathematician A has finished easing, all subsequent

execution paths will contain a state in which Mathematician B is eoiing (absence

of individual starvation); and

iii) After any state in which Mathematician B has finished easing, all subsequent

execution paths will contain a state in which Mathematician A is easing (absence

of individual starvation, roles reversed). f

A state must encompass the value of the flag n and the individual states of the two

mathematicians, each of which is in {eat, think]; thus, any state s in the system will

be in the set S = {eat, think} x {eat, think} x IN — 0. The state space is infinite,

and so cannot be built exhaustively. We must use an abstraction coupled with abstract

interpretation[Cousot and Cousot (1992)] in order to decide the properties.

Since parity of n is so important in the system, it makes sense to take as our abstraction

an abstraction that reduces the domain of n to just the set {e, o}, where n is mapped

to e if n is even, and o if it is odd; that is, given a concrete state s = (a,b,'n) where

a, b £ {eat, think} represent the states of the two mathematicans, respectively, at s:

A(s) . = (a, b, e) if n is even

= (a, b, o) if n is odd

Thus, any abstract state must be contained in {eat, think} x {eat, think} x {e, o}. The

exploration of the state space is now quite simple: The initial value of n is arbitrary and

A- and B both start off thinking, so the initial abstract states are (think, think, e) and

(think, think, o), as n is abstracted to being either just even or odd. At (think, think, o),

A is allowed to eat as this corresponds to n being odd in the concrete system, and eating

leads to (eat, think, 6). When A finishes easing, he sets n to 3n+ 1 which is always even

when n is odd, as is the case here, and so leads to state (think,think,e). Since this

corresponds to concrete states with even n, B may now eat, leading us to the abstract

state (think, eat, e). Now, when B finishes, he sets n to n/2, and this value may be

odd or even, and so when B finished eaiing we may be in the state (think, think, o) or

(think,think,e), so we must include transitions to both these states. The construction

continues according to these rules until no new abstract states are created, rapidly

resulting in the state space of Figure 2.3 (adapted from [Dams et al. (1997)]).

It was shown in [Dams et al. (1997)] that this abstraction and the resulting state space

in Figure 2.3 are sufficient to prove i) (there are no states in Figure 2.3 where A and B

are eaiing at once) and ii) (the only continuation from the only state where A is eaiing,

(eat, think, 6), leads to the state (think, eat, e) after two transitions). It is not able to

prove property iii), however: according to Figure 2.3, we may cycle forever between

the states (think, think, e) and (think, eat,e), never allowing A to eat. In general, it

holds that any computation that can occur in the concrete system can also occur in the
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think B

FIGURE 2.3: Abstract state-space of the Dining Mathematicians problem

abstract version, but that some computations may occur in the abstract system that

can not occur in the concrete.

The abstraction technique we will focus on is behaviour a&siracfoon [Nitsche (1998)].

Like data abstraction, this approach also aims to reduce the state-space but, whereas

data abstraction achieves this by reducing the domains of the variables comprising a

state, directly reducing the number of possible abstract states, behaviour abstraction

reduces the state-space indirectly by reducing the domain of the actions the system

can perform, giving a simpler abstract behaviour that can hopefully be represented

by a smaller automaton. For example, consider an extremely detailed specification of

a communications network, including low-level specifications of the protocols used to

send messages, descriptions of handshaking between terminals etc. in addition to_ the

high-level specifications (rules for dealing with clients, when to send messages etc.): the

behaviour is very complex, and the automaton representing'this behaviour will likely be

very large. However, the correctness criterion is whether or not the network 'serves' the

client correctly i.e. it is a condition on the high-level behaviour only (the behaviour that

is visible to the user) and so the low-level details are relegated to mere 'implementation

details' that need not be considered in the verification step. Thus, we can ignore the

low-level (invisible to the user) actions and concentrate on the actions that are directly

related to the interaction with the client.

More formally, the group of low-level actions contributing to an elementary high-level

operation (for example, sending a message) can be coalesced into one high-level action

(called send-message, for example) or perhaps hidden if they are entirely unimportant to

the high-level behaviours being verified. In short, behaviour abstraction ignores certain

actions in the implementation and focuses only on actions that are visible to the outside

world.

Abstractions of this kind are carried out by using an abstraction (or abstracting) homo-
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morphism[Nitsche (1998)].

Definition 2.16. Let £, S' be two alphabets. Define £°° = E^'UE* (the set of all finite

and w-words consisting of letters from E), and similarly for £ /o°. Then an abstracting

homomorphism, h, is a mapping

h : E°° -> S/o° U {e}

such that the following conditions all hold:

i) If we restrict h to S, we obtain a total function h : E —> E' U {e}

ii) Vx,y £ £*, z £ E1*' we have that

h(x)h(y) = /i(ccy)

and

h(x)h(z) — h{xz)

iii) /)(.x) is undefined for any x €E Sw such that h(x) would otherwise be finite (an

abstracting homomorphism cannot map an infinite word to a finite one).

The set E' is called the set of abstract actions and corresponds to the high-level opera-

tions that the abstracted system may perform when we have ignored the low-level ones

or combined them into a single new abstract action ; in contrast, we call the original

set S the set of concrete actions'. In our examples, £ ' will generally be a subset of S,

but our analysis does not require this to be the case so we allow E' to be an arbitrary

finite alphabet. Condition i) asserts that h maps concrete actions to abstract actions.

Condition ii) asserts that the concatenation of the abstractions of two finite Avords (or

a finite word and an w-word) is equal to the abstraction of the concatenations. Con-

dition iii) is more complex, and will be dealt with separately. The original behaviour,

lim(L), is called the concrete behaviour, and the new behaviour lim(h(L)) the abstract

behaviour. Coalescing several concrete actions into one (non-hidden; i.e. not equal to

s) abstract action is called action renaming: mapping actions to the hidden word e is

called action hiding.

The formulation given in Definition 2.16 was, for the purposes of [Nitsche and Ochsen-

schlager (1996)] (which was focussed on proving properties of such mappings on w-words)

the most natural, but for our purposes (which are more focussed on mappings acting

7 To preserve the compatibility with the upcoming Theorem 2.18, we define h(#) = #, and assume
(as we .did with E) that £' contains the dummy action, "#".
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on individual actions, rather than tc'-words) we will use a different, equivalent formula-

tion. We note, that a function h : S —> £' U {e} defined on individual actions (which

satisfies Definition 2.16i)) can be extended uniquely to an abstracting homoniorpliism as

defined in Definition 2.16 by the inductive application of Definition 2.16ii) to build up a

mapping from E°° to S'00, followed by the culling of any created mappings h(x) where

x G Ew and h(x) is finite as required by Definition 2.16iii) and so. we will, throughout

this thesis, define abstracting homomorphisms simply as functions from £ to £ ' U {e}.

The condition Definition 2.16iii) is in need of some justification; briefly, it was required

for the proofs in [Nitsche (1994)] and it can be shown that, within the context of sat-

isfaction within fairness under abstraction, the exclusion of words of this form is not

problematic: a word i £ E u that is mapped to a finite word by h represents an infinite

sequence of actions that, when abstracted, become invisible after a certain finite point

under the abstraction. In our analysis, such computations are represented instead by

a computation y that shares a prefix with x but which always continues to be visible

under the abstraction - more specifically, y is such that h(y) is infinite and h(x) -< h(y).

Should a system behaviour contain such an x without a corresponding y, then the ab-

stracting homomorphism will fail a condition called weak continuation-closure (defined

later) and we will be unable to verify the satisfaction within fairness of any property

under the given abstracting homomorphism. Suffice to say that in practice, the condi-

tion of Definition 2.16iii) offers no additional restriction on the possible choices of the

function h : S -> £' U {e}.

Informally, an abstracting homomorphism is 'good' if there is plenty of action renaming

and hiding (hiding being the more satisfactory of the two) i.e. if lots of concrete actions

are mapped into the same abstract action, and 'bad' if this does not occur that much; the

two extremes occur on the one hand when all actions are hidden (and so all information

is lost) and on the other when h is the identity (in which case we have not simplified

the system at all, and have gained no reduction in the size of the state space).

Construction of the automaton -4h(L) representing the abstract behaviour is simple: in

the for each transition in the concrete automaton, AL-, replace the label, a £ £, say,

with its abstract image, h(a) G £ ' and determinise the result. Determinisation of this

automaton serves the dual purpose of collapsing the state-space down to a hopefully

much smaller size, and of making the automaton amenable to decidability tests for

weak-continuation closure and satisfaction within fairness of a property, both of which

require a determinised automaton to work on; see Appendices A and D, respectively, for

more details on these algorithms.

Formally, the process of determinising AL after the re-labelling is 0(2^^) and can lead

to exponential blow-up, but for most practical cases it is far, far less than this very

pessimistic upper bound, and so the computation of Ah(L) is usually feasible and, more

importantly, potentially very useful. The reason that the resulting determinised automa-
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ton is often smaller than the original is that usually the abstracting homomorphism is

chosen explicitly so that the observable abstract behaviour is much simpler than the con-

crete behaviour, often by hiding all those actions that correspond to complex low-level

work that the end user never sees. For example, if there were a system with a complex

communications channel with the property that sent messages are always received and

no message is sent until the previous one has been received, then the observable result,

under an abstracting homomorphism that hides all actions apart from sending out a

message over the channel (mapped to sendjmsg, say) and fully receiving a sent message

(mapped to recvjmsg, say), wTould be the prefix-closure of (sendjmsg.recv-.msg)*, which

can be represented by an automaton with just two states. For further justification of the

statement that the abstract automaton is usually smaller than the concrete, including

experimental results, see e.g. [Ultes-Nitsche (1998)].

We note at this point an important difference between the techniques of data and be-

haviour abstraction regarding efficiency - both techniques ultimately map sets of concrete

states on a single abstract state, but with data abstraction this mapping is very explicit:

given a concrete state, we can immediately map it to its abstract image (for example, in

the Dining Mathematicians example, the concrete state (eat, think, 5) is clearly mapped

to the abstract state (eat, think, o) as 5 is odd), or map an abstract state to the cor-

responding set of concrete states. As a consequence, we may perform our state-space

exploration directly at the level of abstract states, of which there are generally far less

than of concrete states, resulting in a quickly terminating exploration.

In contrast, with behaviour abstraction the relation between a concrete state and its

abstract image is much more opaque, depending more on the sequences of actions that

lead in to and out of the state than the properties of the state itself, and so we cannot

even know the set of final abstract states until the we perform the deterniinisation step

(which accomplishes the final mapping of sets of concrete states to abstract states) which

appeared to be only doable after the whole concrete state space has been constructed.

That is, even though the final set of abstract states may be quite small, we still must

construct the whole state space in order to find them. The main result of this thesis

reduces the impact of this by allowing us to use a reduced representation of the concrete

state space in place of the full state space, but it remains the case that data abstraction

usually terminates more rapidly and does not need to explore more states than are finally

present in the abstract automaton.

2.4.1.2 Abstraction with Satisfaction Within Fairness

Properties are now defined for the abstract (high-level) behaviour (i.e. V C S/w ), and

we would like to be able to infer whether the concrete behaviour satisfies a given property

within fairness based on whether the abstract behaviour satisfies that property. If such
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an inference is justified, i.e. if

lim(L)

holds, where h~l(V) = { i € 5J°\h(x) G V} , then we say that the abstraction h preserves
the property V under satisfaction within fairness, or simply that h preserves the property.

Examples can be given in which a choice of h does not in fact preserve the property (i.e.

the abstract behaviour satisfies a property within fairness while the concrete behaviour

does not satisfy the corresponding concrete-level property); see Figure 2.4.

System A

requests

lock] I lock

lockr> lockr*[r lock. ..
jree \ ifree I jjree

resulty-^yes

\\-GF(result)

h(result)=result

h(request)=request

h(reject) = reject

h hides all other
actions

yes

'JjfGF(result)

_ \\-GF(result)
reject

Abstraction of Both Systems

FIGURE 2.4: An example that shows that we cannot always deduce properties of the
concrete system based on its abstraction.

It was shown in [Nitsche and Ochsenschlager (1996)] that whether or not h will pre-

serve satisfaction within fairness can be decided simply by testing whether h satisfies a

condition called weak continuation-closure.

2.4.1.3 Weak Continuation-Closure

A weakly-continuation closed homomorphism h is contrasted with a continuation closed

h, defined as follows: h is continuation closed on L if and only if it satisfies the (fairly

restrictive) condition

Vu; 6 L,h(cont(w,L)) = cont(h(w), h(L))

It was shown in [Nitsche and Ochsenschlager (1996)] that this is a needlessly strong

condition for preserving properties and weak continuation closure was defined as follows:
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Definition 2.17. h is WCC on L if and only if:

Vw £ L, 3v G cont(h(w),h(L)) : cont(v, h(cont(w, L))) = cont(v,cont(h(w),h(L)))

This is a rather difficult concept to grasp; the intuition is that Vu; G L, we do not have

immediate continuation closure, but by following some string of abstract actions from

h(w) we 'eventually' have continuation closure at some later state. All we need to know

about WCC homomorphisms, though, is whether a given homomorphism is WCC on a

language is decidable[Ochsenschlager (1994), Appendix A], with some useful, efficiently

checkable sufficient conditions (for example, it can be shown that if the automaton

representing L is strongly-connected, then any abstracting homomorphism h will be

WCC on L) and that they are, as mentioned, precisely the class of homomorphisms that

preserve satisfaction within fairness; that is:

Theorem 2.18. Let L G S* be a prefix-closed regular language containing no maximal

words, h : E —> £ ' U {e} an abstracting homornorphism defined on L. and P e E ' w a

property. Then

lim(L) \=WF h l

if and, only if h is weakly-continuation closed .(WCC) on L.8

Note that we will assume throughout this thesis that L is a regular language i.e. that L

may be represented by a finite automaton, unless otherwise stated. Whether or not the

result could be extended to include non-regular L was an open question, finally answered

decisively in Appendix C.

From Theorem 2.18, and the fact that the behaviour of System B from Figure 2.4 does

not satisfy a property within fairness whereas its abstraction does, we can deduce that

h was in fact not WCC on the language L representing the behaviour of B, and it may

be instructive to digress briefly and examine why.

Let L be the language representing the behaviour of System B, and A the automaton

representing this language (so A is as shown in Figure 2.5 a)). Both [Ochsenschlager

(1994)] and Appendix A hint that the weak-continuation closure of a homomorphism h

on a language L represented by an automaton A depends on strongly-connected bottom

components of A. We will pick a state s in the single strongly-connected bottom compo-

nent and examine the abstraction of its continuation within L i.e. examine h(cont(s, L)).

The first step is to compute cont(s.L): from the comment immediately after Defini-

tion 2.10, we can do this by re-setting the initial state of A to s and then removing

all states and transitions that are no longer reachable from this new initial state s, as
8 Technically, this result holds only when L has no maximal words (AL has no deadlock states);

however, as we have seen, the inclusion of the dummy action "#" circumvents this restriction.
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they no longer contribute anything. The result of this step is shown in Figure 2.5 b).

Next, we replace all the transitions labels a G S with their abstract images, h(a) € £';

this yields the automaton representing h(cont(s, L)), shown in Figure 2.5 c). Finally, we

determinise this automaton, to obtain the more compact and manageable representation

of h(cont(s,L)), as shown in Figure 2.5 d). Note that the action result never occurs in

the language h(cont(s,L)). Next, note that the word w = lock leads from SQ to s in

the original automaton, A.: from Note 2.1, we have that cont(s,L) = cont(w, L), from

which it follows that h(cont(s,L)) = h(cont(w,L)). Since h(w) — e, we have

cont{h(w),h(L)) = cont(e,h(L)) = h(L)

So according to Definition 2.17, in order for h to be WCC on L, we would need there

to be a word v G h(L) such that cont(v,h(cont(s,L))) — cont(v,h(L)) (the automaton

representing h(L) is shown at the bottom of Figure 2.4). However, there is no such v; as

noted previously, the abstract action result never occurs in h(cont(s,L)), but it always

appears in at least one word in cont(v,h(L)) for any v £ h(L), as from any state in

the automaton representing h(L) we can always reach a state where result is enabled

and taken. Thus, there is a word w in L which, when followed, restricts the subsequent

behaviour so much that it cannot ever coincide with the abstract behaviour h(L) (in

this case, because we can no longer perform an action that can always be performed by

the full abstract behaviour), and this is why h is not WCC on L .

• ! reject

loci

result,
reject

Strongly-connected
bpttom component

requesty)..
JJock

, request f \

reject reject

request

(c) h(cont(s,L)) (d) h(cont(s,L)) (deter-
minised)

(a) Original behaviour (b) cont(s,L)

FIGURE 2.5: Abstraction of a Strongly-Connected Bottom Component

So if h is WCC on L, then we can preserve satisfaction within fairness of properties suf-

ficiently under abstraction, and thus may deduce properties of the concrete behaviour

based on the abstract behaviour. The size of the final product automaton, A-pxh(L)i ^s

usually significantly smaller than that for the concrete behaviour lim(L) and property

h~l(V). The problem is, however, that we must currently construct the entire (pro-

hibitively large) concrete automaton AT, in order to construct *4/i(£), which may not be

feasible . Thus, in the unusual case where the state-space of the system is effectively

constructible, we do gain some advantage from this approach; constructing the product
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automaton for deciding satisfaction within fairness can be much easier for the abstract

behaviour than for the concrete. However, in the more likely case where the state-space

is simply too big, we gain nothing. We will return to this problem later on, in Chapter 3.

2.4.1.4 Partial-Order Methods.

Consider a state in a system in which a number of actions a\. a^,...,an are enabled, and

imagine further that it does not matter which order a pair of these actions is executed

in: we end up in the same state in the automaton either way. This can happen if, for

example, neither action interferes with any resources used by the other action. Then

a straightforward application of the algorithm for constructing the state-space of the

system (Algorithm 2.1) will implicitly consider all orderings, or interleavings of these

independent actions [there are up to n! such interleavings in the worst case in which

all n actions are all mutually independent], when we do not really gain much from

doing so as the end result will only be considered once . The persistent set selective

search of Godefroid and Wolper [Godefroid (1991, 1995); Godefroid and Wolper (1993);

Wolper and Godefroid (1991)], a particular partial-order method, gives us a method of

avoiding consideration of all these interleavings of independent actions, giving a reduced

automaton that preserves a restricted class of properties.

We begin now to formalize these concepts.

Definition 2.19. Actions a, b G E are independent [Godefroid (1991, 1995); Godefroid

and Wolper (1993); Wolper and Godefroid (1991)] at w G L if they satisfy the following

pair of properties:

i) cont(wab,L) = cont{wba.L)

ii) if b G cont(w,L) then a G cont(w,L) <=> a G cont(wb,L), and if a € cont(w,L)

then b G cont(w, L) -^ b G cont(wa, L).

If a pair of actions a, b G E are independent at all w G L, then we simply say that a and

6 are independent.

The first condition asserts that the order in which we carry out the actions is unimpor-

tant; they both lead to the same state (the same continuation). The second states that

the two actions may neither enable nor disable one another.

As always, these definitions in terms of words w G L are extended to states s in the

automaton representing L, as per Note 2.1.

Definition 2.20. An independence relation A over a language L C S* is a relation

A C E x E x L such that (a, b,w) G A implies that a and b are independent at w in L.
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As an aside, note that independence relations are always symmetric (that is, (a, b. w) €

A <=> (6, a, w) for all a, b € £ and w G £) by definition, but are not necessarily reflexive

nor transitive - an example of an independence relation that is neither reflexive nor

transitive is given in Section 3.4.

For a given w £ L and independence relation A over L, we impose an equivalence

relation =A,W on words in cont(w,L) such that the words w',w" G cont(w,L) satisfies

w' =w w" if and only if w' may be transformed into w" by a sequence of transpositions of

adjacent independent actions. Two such equivalent words are said to be trace equivalent

at w G L. More formally, we have:

Definition 2.21. Let w e i , Then we define a relation =A,WQ cont(w, L) x cont(w,L)

by saying that w' =A,W W" if and only if there exists a sequence of words iui, W2, •••, wn

for some n > 1 with w' = W\ and w" — wn and such that, for each 1 < m < n we may

write

wm = xambmy •

and

Wm+i = xbmamy

where (am,bm,wx) G A.

The set of words that are trace equivalent at w S L is called the trace at w:

Definition 2.22. Given t u e i and an independence relation A over L, the set of words

in cont(w,L) which are trace equivalent to w1 G cont(w,L) at w is called the trace

containing w' at w, and is denoted [W/]A,UI-

Partial-order methods are geared towards discarding some (but not all) of the words

in the same trace during construction of the automaton, giving a reduced automaton

representing a language that we will call R^. The algorithm for constructing such a

reduced automaton is called the persistent-set selective search [Godefroid and Wolper

(1993)] and may be expressed as in Algorithm 2.2

The function Persistent_set(s) returns a set of actions that is a persistent set at s. A

persistent set at a state s (or equivalently, at a word w £ L: see Note 2.1) is a non-empty

subset of the enabled actions at s such that all actions in the persistent set P at s are

independent of the actions that could possibly become enabled at any state that could

be reached from s without firing any actions in P. More formally (and hopefully, more

clearly!)

Definition 2.23. Let L C E* be a language over a,n alphabet S, A C S x E x I b e an

independence relation over L. Then P C En(w) is persistent at w G L if it is non-empty

and if the following condition holds:
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1: Q <— {so} , stack *— <f>;
2: push (so) onto stack;
3: sub DFS()
4: s = top(stack); •

6: let T =Persistent_Set(s);
7: if T = </> then / / The state s must be a deadlock
8: 5 <— 5 U (s, # , s); / / state. Add a loop to itself marked
9: endif / / with the dummy label, "#"
10: for each action a in T {
11: find state s' such that firing a at s leads to s';
12: S <— <5U (s, a, s');
13' if s' ^ Q
14: push (s') onto stack; '
15: call DFS();
16: endif
17: }
18: pop s from stack;
19: end sub

Algorithm 2.2 - The Persistent-set Selective Search

Let p be any action in P, v = aia2-..an be any word in (S — P)* Pi cont(w, L). Then

we require, for each m = 1,2, ...,n that (p, am, waia2..am-i) G A. As with the notion

of WCC. this is a rather difficult definition to grasp, and the original raison d'etre for

persistent sets may be a useful aid. The definition was motivated by the observation

that, if P were persistent at s, then no word v in (£ — P)* n cont(w,L) could lead to

a deadlock state (because following v would have to disable all actions in P, which is

impossible since all actions in v are independent of all actions in P) and so We would

not need to consider them in our search for deadlocks.

We present the alternate (but equivalent) definition in terms of states in the hopes that

this will further clarify the concept for the reader:

p ( q )

this will further clarify the concept for the reader:

Definition 2.24. Let I C S* be a language over an alphabet £ represented by an

automaton A with set of states 5, A C S x S x S be an independence relation over L.

Then P C En(s) is persistent at the state s of A if it is non-empty and if the following

holds.

Let p be any action in P, v = a\a,2---an be any word in (£ — P)* H cont(s, L); then there

is a sequence of states s = s\ -̂ -> s2 -̂ -> sz—sn -̂ -> sn+i in A, and none of the a; is in

P. Then we require, for each m ='1.2, ...,n, that (p,am,sm) G A.
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From the defmiton. the full set of enabled states at s, En(s), is always persistent, so

such a function Persistent_set(s) does exist. Persistent sets are relatively simple to

construct with Petri-Net specified systems [Valmari (1991a,b), Section 4.3.3]. The full

set of enabled states at s is referred to as the trivial persistent set.

As an example of a persistent set, consider the Petri Net shown in figure Figure 2.6.

We will attempt to find a persistent set at the state s = (1,0,1). There are precisely

two actions enabled at the state s; a and c (so En(s) = {a,c}). Thus, a non-trivial

persistent set at s, if it exists, will be either {o} or {c}; we will examine both candidates

in turn. The independence relation is as follows: o and b are dependent as firing a will

always disable b and vice versa (as each actions removes the single token from the place

marked 1, whose presence is necessary for the other action to fire), a and c do not share

access to any place, and so it is impossible for one to directly affect the other; thus,

a and c are independent. Finally, b and c are dependent, as firing c will enable b. So

A = {(a,c),(c,a)}..

So take P = {a} as our candidate persistent set. Then, according to Definition 2.24,

we must examine all words in (£ — P)* n cont(s,L), and make sure that they do not

contain any actions that a is dependent on. Since the only action that a is dependent on

is b, this reduces to making sure that (£ — P)* n cont(s, L) does not contain any words

that include the action b.

We construct cont(s, L) by exploring from s using the state space exploration algorithm

of Algorithm 2.1, modified so that the starting state is now s. The resulting automaton

is shown in Figure 2.7a). To find (£ — P)* n cont(s, L), we remove from this automaton

any transitions labelled with an action from p = {a}, and then remove all states and

transitions that are no longer reachable from s: the result of this process is shown in

Figure 2.7b). Straightaway, we see that the word cb e (£ — P)* fl cont(s, L), and since

(o, b) £ A i.e. o and b are not independent, we see that P = {a} is not a persistent set

at the state s.

Let us move on to the only other candidate: P = {c}. The only action c is dependent

on is b, so we must ensure that b does not occur in any word in (E — P)* fl cont(s, L).

We compute (E — P)* n cont(s, L) in an identical manner to the last case; remove from

cont(s,L) any transitions with label with an action in P = {c}, and remove all states/

transitions that are no longer reachable from s. The result of this operation is shown

in Figure 2.7c). This time, we see that no word in (S — P)* n cont(s.L) contains b (in

fact, this set consists of just the words e and a), so the set P = {c} is persistent at the

state s.

It should be noted that this is a very ai'tificial example of the construction of a persistent

set: in a real-life example, we would not proceed by trying out each non-empty proper

subset of En(s) in turn to see if it is persistent, as this would be unfeasible with a

large En(s). Nor would we explicitly construct the automata representing cont(s,L) or
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(S — P)* H cont(s, L), as this would negate the whole purpose of partial order reduction,

which aims to cut down the amount of state-space exploration as much it can. A

much more efficient (though less "optimal", as it is not guaranteed to find the smallest

persistent set at a given state) method, the stubborn-set technique[Valmari (1991a,b)] is

detailed in Chapter 4.

FIGURE 2.6: A Petri-net Based Persistent Set Example

(a) cont(s,L) (b) (£ - {a})* n cont(s,L) (c) (S - {<:})* n cont(s,L)

FIGURE 2.7: Continuations of Figure 2.6 for Candidate Persistent Sets

It can be shown that the reduced automaton resulting from a persistent set selective

search will contain a deadlock if and only if the full automaton includes one [Godefroid

and Wolper (1993)] or, equivalently, that the language represented by the reduced au-

tomaton will contain a maximal word if and only if L contains one. However, because we

are discarding a lot of information concerning the ordering and indeed, the presence of

actions, this is about the only property that we can guarantee will be preserved during

the reduction9. There are apparently newer methods wherein the construction of the

reduced automaton is guided by the property one wishes to check in such a way as to

ensure the property is preserved, but in general a blind application of the persistent-set

selective search will likely destroy any properties one would wish to check.

9Strictly, we should say that this is the only liveness property that we can guarantee will be preserved
as, by noting that we can modify the system specification so that it deadlocks as soon as the required
safety property (say, "no division by zero", for example) is violated, we see that many safety properties
can be reduced to deadlock detection [Godefroid (1995); Varpaaniemi (1993)].
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2.5 Summary

We have described key concepts from Automata and Language Theory, and defined the

behaviour of a system to be the Eilenberg Limit of a prefix-closed regular language L

over an alphabet £ of actions performable by the system. Equivalently, the behaviour

is the full set of computations of the system, where each computation is the result of a

finite (partial) computation of the system, extended to infinity.

We have denned the satisfaction of a property by a behaviour under various definitions of

fairness, and in particular the concept of satisfaction of a property by a behaviour within

fairness, a relation which, informally, states that the behaviour of a system satisfies a

given property if and only if, after following any finite sequence of actions in the system

(or equivalently, performing any partial computation of the system), we may always

extend this finite sequence to an infinite one which satisfies the property. The class of

properties for which this result is applicable is the class of properties which have infinite

sequences as their base such as e.g. PLTL. Importantly, CTL does not fall within this

class of properties.

After introducing behaviour abstraction, a technique of abstraction that achieves reduc-

tion in the state-space of the system by a combination of hiding individual actions in

E and merging groups of actions into one abstract action by means of an abstracting

homomorphism, we observed that we can deduce which properties are satisfied within

fairness by the original behaviour by examining those properties satisfied within fairness

by the abstract system, as long as the abstracting homomorphism fulfils a condition

called weak continuation-closure. Since the automaton representing the abstract be-

haviour could be substantially smaller than that of the original behaviour, this could

give a gain in efficiency. However, this gain is almost completely negated by the fact

that in order to construct the abstract behaviour, we must first construct the original

behaviour, which may be unfeasible.

A candidate solution to this problem involves the incorporation of partial-order reduction

techniques. These techniques aim to reduce the size of the state-space by avoiding having

to consider all (redundant) interleavings of sequences of actions which are deemed to be.

independent of each other. This is achieved by following, at each state reached during

the construction of the state-space, a subset of the full set of actions enabled at that

state called a persistent set. Calculation of small persistent sets is in general non-trivial,

but with e.g. Petri-net specified systems, there exist effective means for constructing

reasonably small persistent sets, which we will detail in Chapter 4.

This concludes the summary of the existing techniques; we now go on to present a

chapter on the main result of this thesis [St James and Ultes-Nitsche (2001)], which

aims to combine partial-order methods and abstraction in order to solve the problem of

having to compute the full behaviour prior to constructing the abstract behaviour.
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Combining Partial-order

Reduction and Abstraction

3.1 Overview

As mentioned, accepting only a subset of the words in each trace will usually destroy

properties of the system, on the concrete level. However, if we restrict our definition of

an independence relation A so that a pair of actions are in A only if they satisfy the

requirements of Definition 2.19 and, in addition, are 'compatible' under the abstraction

[i.e. have the same abstracted image], then it is easily seen that all words in the same

trace will have identical images under h. Thus, discarding some of these words should

not destroy properties on the abstract level, since their images are represented by any

of their fellow trace-members that we decided to accept. This insight led to the result

presented in [Ultes-Nitsche (1999)].

The essence of this paper was that, having modified the independence relation so that

independent actions must be h—compatible1, the reduced automaton (representing the

reduced language, i?,^, which we will describe more fully in Definition 3.4) resulting from

an application of a (modified) persistent-set selective search would preserve sufficiently

properties of the concrete behaviour under abstraction. Furthermore, it was shown that

h is WCC on R^ if and only if h is WCC on L; thus, R^ can be used entirely in place of

L when verifying relative liveness properties without any detrimental effects whatsoever.

More formally, the main result of the paper may be expressed as:

F V <* lim(L)

if and only if h is WCC on R^-
1 More precisely, we first form our standard independence relation A (that relation containing pairs

of actions that satisfy the requirements of Definition 2.19) and then make it ft-compatible by removing
from A any pairs (a, 6) £ A that do not satisfy h(a) = h(b).

32
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The benefit here of course is that we no longer need to construct the automaton rep-

resenting the full set of behaviours of the system prior to abstraction; the construction

of the partial-order reduced automaton is sufficient. In other words, we do not have to

construct the entire state-space in order to derive properties about it.

The main result of this thesis, presented at PODC'01 [St James and Ultes-Nitsche

(2001)], refines this result and makes it much more practical, and is the subject of this

chapter. A small and simple Petri-net based example of the usage of this result is given

in Section 3.4, but it should be stressed that the result presented in this section in no

way requires that Petri nets be used to specify the system.

The problem with the construction in [Ultes-Nitsche (1999)] is that any pair of actions

(a, b) £ A not satisfying h(a) = h(b) must be discarded from A. Taking this observation

into the context of constructing persistent sets, we see that for a set P C En(s) to be

persistent at s, we now have the additional requirement that

for all a e P, and for all actions b that occur in words in cont(s, L) D (E — P)*, we must

have h(a) = h(b).

A moment's thought tells us that this in turn implies that all actions in P and all actions

in cont(s, L )n (S — P)* must all have the same image under h which is unlikely to occur

in most real-life examples. Therefore, the "persistent sets" at most states will probably

be trivial, and the reduction obtained either minor or possibly non-existent.

The first task of my PhD was to make this result more practical, starting from the

consideration that the requirement that pairs (a, b) £ A must satisfy h(a) = h(b) is in

fact too strong for our needs. Recall that this '^-compatibility' restriction was imposed

on A to ensure that all words in the same trace had identical images under abstraction, so

that we could discard some words in the same trace without losing essential information

on the abstract level . In fact, it is fairly clear that to ensure this we need only stipulate

that pairs (a, b) 6 A satisfy h(ab) = h(ba) [proved later on in Lemma 3.8], which opens

up the extra possibilities where one or more of a and b may be hidden by h. Since 'good'

abstractions hide many actions, this allows for a much expanded independence relation

compared with that in [Ultes-Nitsche (1999)].

Relatively soon, we managed to extend [Ultes-Nitsche (1999)] to give the desired result

for the improved independence relation, but with the restriction [Ultes-Nitsche and

St James (2000)] that non-trivial persistent sets PC En(s) must contain a non-hidden

action, say a £ P with h(a) = A ^ e. Unfortunately, this caused a similar but less

severe problem to that in the case of [Ultes-Nitsche (1999)]; that is, that all actions a

contained in P or occurring in words in cont(s, L) n (S — P)* must satisfy h(a) € {e, A},

which is still a restriction that can severely impact the level of reduction that we may

obtain . Eventually, though, this restriction was removed and the concept of completely

hidden persistent sets became a possibility. Such sets are extremely desirable because
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all actions in a completely hidden set are automatically /i-compatible with any other

actions, so the restriction of /i-compatibility ceases to be a problem in this case.

3.2 Statement of the Result

We now give a more formal description of this result, and a proof that it is correct. Prior

to this, though, we need some definitions.

3.2.1 Trace Reductions

We present here the definition of trace reductions (taken from [Godefroid (1991, 1995)]),

together with the abstraction-related modifications we need to make to the original

definition of independence.

Definition 3.1. Let L C £* be a regular language, a, b £ £, w € L. Then a and b are

h-compatibly independent a t w e i if and only if

i) a and b are independent at w £ L according to Definition 2.19; and

ii) h{ab) = h(ba)

Definition 3.2. Let L C S* be a regular language, A C £ x £ x L. Then A is an

h-compatible independence relation over L if and only if (a,b,w) implies that a and b

are /^-compatibly independent at w.

Definition 3.3. A trace automaton, A^ [Godefroid (1991, 1995)], is an automaton

resulting from a modified form of the persistent set selective search (Algorithm 2.2)

on L using the independence relation A. The modification comes from changing the

function "Persistent_Set(s)" in line 7 to "Persistent_Set_Satisfying_Proviso(s)" ; this

new function returns a set P C En{s) that satisfies:

i) P is persistent at s; and

ii) If P is non-trivial (i.e. P C En(s)) then there is a state s' and an action a £ P

such that s' ^ stack and s —>• s'

The second condition is the proviso in "Persistent_Set_Satisfying_Proviso(s)", and the

reason why it is required probably seems a little opaque at this point; in brief, it is

a "fairness" condition that ensures that no actions are unfairly "ignored" during the

construction of the trace reduction: please refer to Section B.2 for more details. Whether

or not a candidate persistent set satisfies this proviso is obviously easily decidable.
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Definition 3.4. We call the language represented by such a trace automaton Af; a

trace reduction of L with respect to A, and denote it by R^.

It was shown in [Godefroid (1991, 1995)] that:

Theorem 3.5. If R^ is a trace reduction of the language L, then:

i) R$ Q L;

(i.e. i?£ is no more expressive than L. In fact, the trace automaton is a sub-

automaton of the automaton representing L)

ii) R^ is prefix-closed when L is (as we are assuming throughout this document); and

in) \/w' e RL,VV G cont(w,L).3w" G cont{w',R%),v G pre \[w"]AiW,).

(i.e. for all states s in the trace automaton representing R^, and for all words

in the continuation from s in the automaton representing L, this word appears (in

a slightly tangled form) in the continuation from s in the automaton representing

Rt)

The algorithm, then is as shown in Algorithm 3.1. It is taken from [Godefroid (1991,

1995); Godefroid and Wolper (1993); Wolper and Godefroid (1991)] with small modifi-

cations, such as our addition of "#" labels at deadlock states, as described on Page 8.

We say that R^ is ̂ -compatible if and only if A is, and assume henceforth that this is

the case. The main result we are working towards can be expressed as in Theorem 3.6.

Theorem 3.6. If h(Rj^) does not contain maximal words, then the condition

]im(/i(/#)) HvF V & lim(i) HVF^ h-\V)

holds if and only if h is weakly continuation-closed on R^.

3.3 Proof of Correctness

We now begin to prove the result of Theorem 3.6, beginning with a few preliminary

Lemmas.

Lemma 3.7 (trace-equivalent words lead to the same state). Let w G L,, w',w" €

cont(w,L) such that w' =A,W w"• Then cont(ww',L) = cont{ww"\L).

Proof. By definition, w' =A,W W" implies that w\ can be transformed into w" by re-

peatedly swapping pairs of adjacent actions. So let (w-'l)1<,:<n be a sequence of words
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1: Q <—{so}, stack *—<f>; ' ,
2: push (so) onto stack;
3: sub DFS()
4: s = top(stack);
5: Q «- Q U {s};
6: let T —Persistent_Set_Satisfying_Proviso(s);
7: if T — </> t h e n / / The state s must be a deadlock
8: 5 <— 5 U (s, # , s); / / state. Add a loop to itself marked
9: endif / / with the dummy label. "#"
10: for each action a in T{
11: find state s' such that firing a at s leads to s';

12: <5^-<5U(s,a,s');
13: if s' <£ Q
14: push (s') onto stack;
15: call DFS();
16: endif
17: }
18: pop s from stack;
19: end sub

Algorithm 3.1 - The Algorithm for Constructing a
Trace Reduction

such that w1 = w' and wn = w" and for all 1 < i < n — 1, wl+1 can be obtained

from wl by transposing precisely one pair of independent actions adjacent in wl. Let

a and b be that pair; then wl may be written as wx = uabv, wl+1 as wl+i = ubav

for some u,v G S*. Because a and 6 are independent at wu, we have from part i) of

Definition 2.19 that cont(wuab,L) — cont(wuba, L) and as an immediate consequence

that cont(wuabv,L) = cont(wubav,L). Thus, cont(wwl,L) = cont(wiul+1, L) for each

1 < i < n — 1, so cont(ww',L) = cont(ww",L). •

Lemma 3.8 (all words in the same trace have the same abstract image). Let w £ L,

w',w" £ cont(w,L) such that w' =A,U> w". Then h(w') = h(w").

Proof. By definition, w' =A,W W" implies that w' can be transformed into w" by re-

peatedly swapping pairs of adjacent actions. So let (u;J)1<j<n be a sequence of words

such that u;1 = w' and wn = w" and for all 1 < i < n — 1, wl+1 can be obtained

from wl by transposing precisely one pair of independent actions adjacent in wl. Let

a, b be that pair ; then, since by assumption A is ^-compatible, h(ab) = h(ba). Thus

h (V+1) = h (w') for each 1 < i < n ~ 1, and so /i(u/) = h{w"). U

Lemma 3.9 (equivalence of continuations under abstraction).
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Proof. Theorem 3.5i) implies that cont(w',Rf) C cont(w',L). so after applying h to

both sides we see that it is sufficient to prove that h(cont(w', L)) C h(cont(w',R^)).

Let w G cont(w', L); then by Theorem 3.5iii), we have that 3iv" G cont(w', R,£) such that

w G pre ([w"]/±wi) • So let u be such that wv =A,U/ W"\ then by Lemma 3.8, h(wv) —

h(w"). Since /), is non-length-increasing [as noted after the definition of abstracting

homomorphisms], and i?£ is prefix-closed by Theorem 3.5ii), there is some prefix u of

w" such that h(u) = h(w), and further, u G cont(w',R^). Thus, for all w £ cont{w',L)

there is u G cont(w',R^) such that h(u) = /i(io); so h(cont(w',L)) C h(cont(w',R^)),

and the lemma is proved. •

Corollary 3.10.

Proof. Follows immediately from Lemma 3.9 upon setting w' — e. •

Lemma 3.11 (one "half" of continuation-closure is guaranteed).

\/w G L,h(cont(w,L)) C cont(h(w), h(L))

Proof. Let v G cont(w,L). Then wv e L. So h{wv) — h(w)h(v) £ ft,(L). Therefore,

h(v) G coni(h(w), h(L)); hence result. •• •

Lemma 3.12 ("associativity" of continuations).

cont(uv, cont(w,L)) = cont(v, cont(wu,L))

Proof.

cont(uv, cont(w,L)) = {x\uvx £ cont(w,L)}

= {x\uvx G {y|wy G

= {xjwuwx G L)

= {x|ux G {j/|u'uy G

= {.T|UX G cont(wu, L)}

= cont(v,cont(wu,L))

•
Lemma 3.13. If h is weakly continuation-closed on Rj^, then h is weakly continuation-

closed on L.
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Proof. We wish to show that for any w £ L, there exists r € cont(h(w), h(L)) such that

cont(r, cont(h(w),h(L))) = cont(r,h(cont(w,L))) (3.1)

By Lemma 3.11, it suffices to show that the LHS of (3.1) is contained in the RHS of

(3.1).

Let w G L. Then there exists w" € R^ (and so w" € L also, by Theorem 3.5i)) such that

w G pre [[w"]^e\ by Theorem 3.5iii). Therefore, there exists v such that wv =A,e w";

since to" £ L, wv G L as well. Since A is an /i-compatible independence relation, we

observe that cont(wv,L) = cont(w", L) (Lemma 3.7) and

h(wv) = h(w") (3.2)

Applying h to both sides of cont(wv,L) — cont(w",L) and invoking the result of

Lemma 3.9 leads to the string of equations

h(cont(wv,L)) = h(cont{w",L)) = h(cont(w",R$;)) (3.3)

Because h is weakly continuation-closed on i?^, there exists u G cont(h(w), h(R^)) such

that

cont{u, cont(h{w"), h{R%))) = cont(u, h{cont(w", R%))) (3.4)

Now consider the set of equations

cont(h(v)u, cont(h(w), h(L)) = cont(u,cont(h(w)h(v),h(L))) by Lemma 3.12

= cont(u, cont(h(w"), h(R^))) by definition of h,

(3.2), and Corollary 3.10

= cont(u,h{cont{w",Ri))) by (3.4)

= cont(u,h(cont(wv,L))) by (3.3)

= cont(u, h(cont(v, cont(w, L)))) by Lemma 3.12

C cont(u, cont(h(v),h(cont(w, L)))) by Lemma 3.11

= cont(h(v)u,h(cont(w,L))) by Lemma 3.12

Thus

cont(h(v)u, cont(h(w),h(L))) C cont(h(v)u,h(cont(w,L)))

Setting r = /i(u)u e cont(h(w), h(L)) and comparing this with our objective (3.1) proves

the result. •

Lemma 3.14. If h is weakly continuation-closed on L, then h is weakly continuation-

closed on

Proof. Let w' G R^. Then w' G L by Theorem 3.5i). Using the fact that /i is weakly
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continuation-closed on L, let u € cont(h(w),h(L)) be such that

cont(u, cont(h(w'),h(L))) = cont(u,h(cont(w',L)))

Then using this result in conjunction with Corollary 3.10 and Lemma 3.9 we have that

cont(u,cont(h(w'),h(Ri))) = cont(u, cont(h(w'),h(L)))

— cont(u,h(cont(w',L)))

= cont(u,h(cont(w',Ri;)))

D

The proof of the Main Theorem of this thesis, Theorem 3.6, then follows immediately

from Theorem 2.18, Corollary 3.10 and Lemmas 3.13 & 3.14.

The restriction to languages not containing maximal words is again circumvented by

using the ' # ' action, as described on page 8 . So this result improves upon that in

[Ultes-Nitsche (1999)] by expanding the independence relation, which as a rule of thumb

increases the magnitude of the state-space reduction obtained via a trace reduction2. It

should also be noted that the 'better' the abstracting homomorphism is, in the rather

subjective sense described in the section on abstraction, the closer still the h—compatible

independence relation is to the original independence relation, and again the amount

of reduction obtained should be further increased. In systems in which a relatively

high proportion of pairs of transitions are independent, for example weakly interacting

systems, partial-order methods (without the encumbrance of ̂ -compatibility) often give

a reduction of orders of magnitude, so this, in principle at least, is a very promising

result.

3.4 A Small Example

We now give a small and rather artificial example of the usage of this theorem. The

example is much too small to give an idea of the power of the result (although even in

this case, the reduction is not entirely insignificant) and is given solely as an attempt to.

clarify the concepts involved.

The dummy example T (shown in Figure 3.1; note that the place numbers have been

omitted for clarity) is loosely based on the idea of two copies of the earlier example Petri

net (Figure 2.1) running concurrently.

2 The intuition is that the more actions are independent of each other, the more likely a given pair
are independent, which in turn means that smaller subsets of actions at states are more likely to be
persistent, and so the reduction in the size of the automaton due to partial-order methods is increased.
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FIGURE 3.1: An Example Petri Net Specification, 7.

Although Theorem 3.6 tells us that there is no need to, we have calculated the state-

space of the system (i.e. the automaton representing the behaviour, lim(L), of ?). It

has 14 states and 28 transitions, and is shown in Figure 3.2.

rej2

FIGURE 3.2: The behaviour of the system in Figure 3.1.

We set the abstracting homomorphism h to be the identity on the set of actions reql,

resl and rejl, and the empty word on all other actions. We form the /i-cornpatible inde-

pendence relation by first constructing the ordinary independence relation (consisting of

all pairs of actions that do not share a place) and then refining it by removing all pairs

that are not ^-compatible; the result is shown in Table 3.1. Note that this table shows

that, as mentioned earlier, an independence relation need not be reflexive nor transitive:

resl and many other actions are clearly not independent of themselves (as they disable

themselves when fired), and reql is independent of req2, req2 is independent of resl,

but reql is not independent of resl.
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resl
rejl
reql
yesl
nol
res2
rej2
req2
yes2
no2

resl

X
X

rejl

X
X
X
X
X

reql

X
X
X
X

: X

yesl

X
X

nol

X
X

-

res2

X
X

rej2
X
X
X
X
X

req2
X
X
X
X
X

yes2

X
X

no2

X
X

TABLE 3.1: Table representing the independence relation, A, for the system in Fig-
ure 3.1

We then constructed the trace automaton representing the trace reduction of L. R^,

using an implementation of the trace reduction algorithm (Figure 3.1) in a preliminary

version of our Petri Net tool that works only with low-level Petri nets. The persistent

sets were calculated at each state of the trace automaton using a generic persistent

set calculator, tailored for use with low-level nets. In Chapter 4, we describe how to

construct persistent sets for "richer" classes of Petri Nets. The resulting trace automaton

is shown in Figure 3.3; it has 10 states and 16 transitions.

resl
res2

FIGURE 3.3: The automaton representing the trace reduction of the system

Using a manual application of the result of Appendix A (after noting that the set of all
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states but the first one form a strongly-connected bottom component of the automa-

ton), it can be shown that h is WCC on R^ (and hence on L, from Lemma 3.13) which

according to Theorem 3.6, implies that we may deduce properties of the full behaviour

from the abstraction of Rj^. Computing this w.r.t. h gives the automaton shown in

Figure 3.4. As mentioned in our comparison of behaviour abstraction and data abstrac-

tion, the relationship between concrete and abstract states under behaviour abstraction

is not particularly meaningful or useful, so we will not show the relation here.

res!

rejl

FIGURE 3.4: The abstract behaviour of the dummy system.

From this abstract automaton, and using the result of Theorem 3.6, we see that the

full behaviour of the system must satisfy, for example, the property G (reql =>• F(resl))

("it is always the case that firing the action reql will eventually give a resl") within

fairness.

3.5 Sleep-sets

The sleep-set technique of Godefroid and Wolper [Godefroid (1995)] is a commonly used

supplement to the persistent-set selective search designed to further reduce the number of

transitions (not states) in the "trace" automaton. Sleep sets are not especially relevant

to our results, so we will give only a vague description of them. We feel, though, that

they warrant at least a brief mention for two reasons; firstly, it should be noted that

this commonly-used optimization for the persistent-set selective search is in fact not

compatible with the main result of this thesis; and secondly, because it may be the

case that it can be used to improve a result presented in our section on compositional

verification; see Appendix B. As we will see, a persistent-set selective search augmented

by the sleep-set technique results, in general, in a greatly weakened version of a trace

automaton that does not allow us to decide weak continuation closure of the original

language based on the trace reduction.

Even when using the persistent-set selective search, which dramatically reduces the num-

ber of interleavings of independent actions considered, some easily-avoided redundant

interleavings will still be considered during construction; for example, in the case where

a persistent set contains several mutually independent actions. The sleep-set technique

is geared towards removing some of the actions followed while guaranteeing that we do



Chapter 3 Combining Partial-order Reduction and Abstraction 43

not 'miss out' on any states by doing so.

The simplest example occurs when two independent actions o, b occur at a persistent

set at s, as shown in Figure 3.5.

. (a) Original (b) Why not this?

FIGURE 3.5: The simplest situation where the sleep-set technique may be of use.

A more dramatic example occurs when the same three mutually independent actions

occur in successive persistent sets, as in Figure 3.6.

(a) Original (b) After sleep set

FIGURE 3.6: A More Complicated Sleep-set Example.

Briefly, the sleep-set technique achieves this reduction on-the-fly by maintaining for each

state s a set called a "sleep-set" . This is a set s.Sleep C S of actions that need not

be followed from s since it can be guaranteed (using reasons similar to the result of

Lemma 3.7) that doing so will not lead us to any states that we could not reach by not

following these actions from s (for more details, see [Godefroid (1995)]). For example, if

a and b are independent at s and are both followed from s (so that both words ab and

ba can be followed from s) we may pick one of these two words to follow: say, ab. At the

state s', say, reached from following 6, we would add a to the sleep-set at s' as a signal

that a does not need to be followed from s': if a and b are independent at s and we are

following ab from s, we do not gain much from following ba.

If the construction of R^ incorporates the sleep-set technique, then Theorem 3.5iii)

holds only at states with an empty sleep set; i.e. Theorem 3.5iii) becomes "Vu; e L
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such that So -̂ -> s' with s'.Sleep = <£...", so we do not have a trace reduction. This

is because, as one can see from the examples above, sleep-sets generate a large amount

of dead-end states, or at the very least severely disrupt the original sets cont(s.R^).

Thus, the results of Lemma 3.9 cannot be guaranteed to hold and in fact there are

examples in which the blind application of the sleep-set technique contravenes the result

of Lemma 3.9 and the main result, Theorem 3.6, as we will see in the next sub-section.

However, we will show later that the sleep-set technique preserves sufficient information

to be useful in a compositional verification result presented later (see Chapter 5 and

Appendix B for more details).

3.5.1 Sleep-sets and Theorem 3.6

In this sub-section, we give an example of a language L, an abstracting homomorphism

h on L, and a trace reduction Rj^ of L augmented by the sleep-set technique that does

not satisfy the statement h is WCC on L if and only if h is WCC on i?£.

Consider the low-level Petri Net (as shown in Figure 3.7, with set of actions S =

{a, b, c, d, e}). Note that o and b are independent (we can tell this from a static analysis

of the Petri net: they share access to no places, and so cannot affect one another).

FIGURE 3.7: The Petri Net specification we will use for the counter-example

Expand it to give the language L, as represented by the automaton in Figure 3.

FIGURE 3.8: The language L accepted by the Petri Net of Figure 3.7
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Define an abstracting homomorphism h : S —> £' U {e} with £ ' = {B, C} as follows:

h(o) = h(d) = h{e) = e,

h{b) = B,h{c) = C

The abstraction h(L) may then be represented by the automaton in Figure 3.9.

FIGURE 3.9: The abstraction of L

We now construct a partial-order reduced version of L, R^, as follows: at the initial

state, we follow the trivial persistent set. After we follow a, we may add a to the sleep-

set at 52 as, as we explained earlier, the sleep-set technique rests on the assumption

that if we are going to follow ab, there is no point in following ba [when a and b are

independent]. At every state but 52, we follow the trivial persistent set and do not use

sleep-sets. At 52, we follow the trivial set minus the S^sleep = {a}, as the sleep-set

technique says we may. We end up with the automaton as shown in Figure 3.10.

FIGURE 3.10: The representation of the sleep-set reduced version of L

It is now easy to show that h is weakly continuation-closed on L; to see this, see that L

can be represented by the automaton in Figure 3.11 (which is actually just a minimized

version of the automaton in Figure 3.8).

A manual application of the result of Appendix A shows that h is weakly continuation-

closed on L. However, h is not weakly-continuation-closed on RL; to see this, let w = b

: then h(cont(w,L)) = e, and cont(h(w),h(L)) — cont(B,h(L)) = C*. If h were weakly

continuation-closed on L, then there would be some v G cont(h(w),h(L)) = C* such
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e L

FIGURE 3.11: The minimized version of the automaton representing L

that

cont(v,h(cont(w,L)) = cont(v, cont(h(w),h(L)); i.e.

cont(v,e) — cont(v,C*); i.e.

which is plainly a contradiction. Thus we cannot use the unmodified sleep-set technique

with our result. It is possible that some restricted version of the sleep-set technique may

be invented to complement this result, but we currently have no idea what form this

new technique might take.

3.6 Summary

We have improved the practicality of the result of [Nitsche and Ochsenschlager (1996)]

(Theorem 2.18 in this thesis) by showing that constructing the trace reduction R^ of

a regular, prefix-closed, language L. with an independence relation A modified so as

to be /i-compatible, enables us to compute the abstract behaviour h(L) and also to

determine whether h is WCG on L, all without having to construct the behaviour of L.

Since the necessity of constructing this full behaviour was the main impediment to the

usefulness of the result of Theorem 2.18, this has the potential to be a very useful result.

Interestingly, however, the result is in fact not compatible with the sleep-set technique,

which is often used to further decrease the amount of transitions in the trace automaton.

Our result improves the practicality of [Ultes-Nitsche (1999)] by loosening what the

restrictions for two independent actions a and b to be /i-compatible; formerly, it was

that h(a) = h(b), which is a very strong restriction that would likely make the existence

of non-trivial persistent sets very rare. The result of [Ultes-Nitsche and'St James (2000)]

weakened the restriction so that a and b could be called ^-compatible if h(ab) — h(ba).
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which opened up the possibility of one of a and b being hidden, but unfortunately also

required that any persistent set must contain at least one non-hidden action, which again

made non-trivial persistent sets comparatively rare. The result presented in this chapter

removes this restriction on persistent sets, allowing such sets to be completely hidden

by the abstraction. This has the effect of making non-trivial persistent sets much more

likely to be found. A practical example of the usage of this result is given in Chapter 6.

While the main result of this chapter is applicable to any means of specification that

can be unfolded into a LTS, we have used Petri Net-specified systems to illustrate the

concepts, as algorithms for constructing persistent sets for Petri-net specified systems are

well understood. The new requirement of /i-compatibility of the independence relation

and resulting persistent sets, however, requires us to re-visit these algorithms, which will

be the subject of the next chapter.



Chapter 4

High-level Petri Nets and

Persistent Sets

4.1 Overview

Generally, the construction of a persistent set at a state in a Petri net specified system is

reasonably straightforward: one need only construct a stubborn se£[Valmari (1991a,b)]

and intersect it with the set of actions currently enabled at that state[Godefroid (1995)].

The result of Chapter 3, however, requires a modification to the definition of indepen-

dence, and hence to persistent sets: the independence relation must now be abstraction-

compatible, which may mean that the old stubborn set methods must be adjusted. For

this reason, and also the fact that some problems with Petri nets (notably the binding

problem) are of importance in the following chapter and the fact that our chosen practi-

cal example of Chapter 6 would be difficult to construct using low-level Petri nets, this

chapter will explore high-level Petri nets and the stubborn-set approach to constructing

persistent sets in high-level Petri net specified systems.

Specifying systems using low-level Petri nets is a cumbersome chore, and for this reason

high-level Petri nets are more commonly used; high-level Petri nets bear approximately

the same relation to low-level nets as high-level languages do to low-level ones, such

as assembly code. As with high-level languages, high-level Petri nets come in many

different varieties and dialects, and we present in this Chapter a brief overview of the

dialect used to generate the practical results presented in Chapter 6 (an implementation

of a variant of the Sliding Windows Protocol). Since this practical example benefits

from the addition of "native" Petri net queues, we describe also the queue extension

to our Petri net dialect and show how they fit into the definition of independence. We

then go on to describe the stubborn set technique for constructing persistent sets, and

how we may slightly relax the definition of independence when constructing stubborn

sets, and then explore how the requirement of abstraction-compatibility complicates

48
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matters. Finally, we attempt to put everything together and provide some heuristics

for constructing reasonably good stubborn sets while taking into account abstraction-

compatibility and making use of some special properties of queues.

4.2 High-level Petri Nets

A rigorous formulation of our conception of Petri nets would be very long and detailed

and, for the purposes of this chapter, quite unnecessary. We will restrict ourselves, then,

to a relatively vague formulation; usually, in the areas where we have given insufficient

detail as to how something works or is defined, "common-sense" is usually enough to

flesh-out the details.

The most important differences between high- and low-level Petri nets are as follows.

Perhaps the most important difference is that high-level Petri nets allow tokens/place

contents to belong to user-defined data-t3'pes that may be more complex than the set

of positive integers that low-level nets are restricted to. Usually, these data-types are

constructed (informally) from the built-in data types (finite ranges of the natural num-

bers, Boolean) and user-specified enumerated sets, using operators such as the Cartesian

product, unions, and Kleene star (although, as we will see later, our formulation does

not use Kleene stars). Each place has a data-type associated with it (which we call

the domain of the place), and a token may only be placed in a place if it belongs to

the domain of the place. The contents of a place, which could only be a non-negative

integral number of tokens in the low-level case, is now a multi-set of tokens drawn from

the domain of the place. As before, the "state" of a high-level Petri net is determined

by the contents of its places.

The actions of a high-level Petri net differ from those in a low-level one in several ways.

An action in our high-level Petri nets conception consists of a base-action a,base G ^base

together with a binding of the variables of a;,ase; each base-action at,ase £ S{,ase has

associated with it a set of variables x\,x^, ...x^a, and a binding of a^ase is simply an

assignment x\ — v-^.x^ = V2,...x^lla = v of values to these variables. The set of actions,

then, is the set consisting of all pairs of base-actions and bindings to their variables, and

is denoted E. When constructing the automaton representing the behaviour of the Petri

net, each transition is labelled with the base-action followed and the variable binding

with which it was fired; i.e. the input alphabet is S, consistent with earlier chapters.

Also, each action now has a guard predicate associated with it; a little more about this

later.

Base-actions still have input/ output arcs, but each of these now carries an inscription,

which is a multi-set of expressions in the set of variables associated with a1. Expres-

sions, informally speaking, are built from variables, user-defined constants, user-defined
1 The guard of an action a is also an expression in the set of variables of a.
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functions, the arithmetical operators .+ , -, / (integer division), * (multiplication) and

mod ("remainder" function); formation into vectors (e.g. (1,3,x)) and some special

in-built functions: the projection function, proj(x, n), which returns the nth component

of vector x (if it exists) (e.g. proj((l,3),2) = 3, proj((1, (2,3)), 2) = (2,3), etc.); the

isin function, isin (x,D) which returns true or false as x belongs to the domain D: and

the if function, if(testExpression, exprl, expr2), which returns the result of exprl if the

testExpression evaluates to true, and expr2 otherwise. User-defined functions consist of

the function name, a list of arguments, and a return expression. User-defined functions,

constants and domains are usually declared in a special section of the Petri net called

the preamble. There is an additional restriction on the arc inscriptions of a base-action

a; each variable associated with a must occur "naked" in the arc inscription of an input

arc of a. This restriction will be described more fully in Section. 4.2.1.

We begin now to present a slightly more formal definition of high-level Petri nets, starting

with the definitions of some of the basic building blocks required; those of multi-sets,

domains and tokens.

Definition 4.1. A multi-set MS(S) over the set S is defined as a function

' MS(S) : S -> IN

Let S be a set, A : S -> IN and B : S —> IN be multi-sets over S. Then we say A C B if

and only if A(s) < B{s) for all s G S. We define the multi-set A + B over S to be the

multi-set over 5 defined by (A + B)(s) = A(s) + B(s) for all s <E S. If A C B, then we

define B — A as the mapping [B — A)(s) — B(s) — A(s) for all s G S. Note that addition

of multi-sets is commutative.

Definition 4.2. A domain is any set that can be constructed inductively according to

the following rules.

• For any a, b £ IN with a < b, the finite range {a, a + 1,..., b}, represented as [a, b]

is a domain.

• Any set {.si,S'2, •••sn} of strings is a domain.

• If D\ and £>2 are domains, then the union D\ U D2 is a domain.

• If D\, D2, •••,Dn
 a r e domains, then the set {(di, di, ••, dn) \di € D{\ is a domain.

We define D as the set of all possible domains.

Definition 4.3. Let D be the set of all domains, where domains are denned as in

Definition 4.2. The the set of all possible tokens is equal to (Jdez? ̂ U {null}, where null

is called the null token. The null token is defined to belong to all domains, and has some

other special properties that will be described later.
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We define T to be the set of all possible tokens.
j

Definition 4.4. A token multi set is a multi-set over the set T — {null}.

As mentioned earlier, the null token null has some special properties, which are as

follows: for any token multi-set M we define null £ M and M+null = M and M—null =

M.

Definition 4.5. A token expression in n variables is a mapping expr: Tn —> T.

Define Expr(n) to be the set of all expressions in n variables, and Expr = Un=i 2 Expr(n)

to be the set of all expressions in any number of variables.

Definition 4.6. A high-level Petri net (P is a vector (E;,ase,P, / , Mo) where

• S&ase = {ai,a2. ...,an} is the set of base actions. Each base-action a G £f,ase is

associated with a set {x^.x?;, ...,x^o} of variables and a guard expression guard(a)

which is an expression in the ma variables associated with a;

• P = {pi,P2, •••,Pr} is the set of places. Each placep, G P has an associated domain

Di £ D;

• J is a partial function / : £base x P V P x £j>ase —> MS (Expr) representing the

arcs between places and base-actions. If / is defined for the pair (pi,a) or (a,pi),

then the result must be an expression in ma variables, where ma is the number of

variable associated with the base-action a; and

• Mo : P —> MS(D) is the initial marking or the initial state of the Petri net 7.

States are defined a little more formally in Definition 4.7.

Definition 4.7. A marking (or, as we prefer, a state) S of a Petri net 7 = (£&ase, P. I, MQ)

is a mapping S : P —> MS(D) which maps the place pi to a multi-set over the domain

Dj of pi. This multi-set is called the contents of the place Pi at the state S.

Definition 4.8. An action A = (a, (v\,V2, ...,vma)) in a high-level Petri net CP =

(^base, P, I, Mo) is a pair consisting of a base-action a G £base together with a binding

of token values to the variables associated with a e.g. xf = v\,x\ = V2,--.x^na = vma,

Definition 4.9. Let J1 — (£&ase, P, I, Mo) be a Petri net, a&ose £ E&ose be a base-action.

The the set m (a;,ase) C P of inpui places of ahase is equal to the set of places pi € P

such that /((pj, a,base)) is denned and yields a non-empty multi-set. Similary, the set

out (abase) C P of output places of a^ase is equal to the set of places pi 6 P such that

I ((abase, Pi)) is defined and yields a non-empty set.

Let A be the action consisting of the base-action a and the binding x\ = v\,x\ =

V2, ...x^a — vma, Vi G T of its variables. Let p,;n G in (a) be an input place. Then
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the multi-set of tokens taken from pin by A is defined as /((Pm,a))(fi, V2, ...i)mJ and

abbreviated rem,ove(A,p). If the token t is in this multi-set of tokens taken from pin by

A, then we say that A takes t from pj,n.
, * • '

Let pout G out (abase) C P be an output place of a, and A an action consisting of the

base-action a and the binding x" = v i , ^ = U2,---a;ma = "m^ Then the multi-set of

tokens added to p by A is denned as I((a,p0Ut)){vi,V2, ...i 'mJ and abbreviated ad,d(A,p).

If the token t is in this multi-set of tokens taken added to pout by A, then we say that

A adds t to pOut- ' ' -

Definition 4.10. Let T = (T,base,P,I,M0) be a Petri net, 5 : P -> M5(D) be a state

that maps each p, to a multi-set over Di, the domain associated with pi. Let >1 be the

action consisting of the base-action a and the binding x™ = «i,X2 = ^2; •••Xma = "ma>

Wj G T of its variables. Then we say that A is enabled at the state 5 if and only if it

passes all of the following tests,

i) If guard(a)(vi,v%, ...vma) is equal to 0 or null, then A is not enabled at S.

ii) For each pin G in(a), if A takes a non-null token t from p,;n that is not in the

domain of Pin, then A is not enabled at S.

iii) For each pout G out(a), if vl takes a non-null token £ from po u t that is not in the

domain of pout- then A is not enabled at S.

Note: if A fails any of the above three tests, then A is said to be an invalid action,

and can never be enabled at any state. Actions that pass these three checks are

deemed valid, although there is still the possibilty that a valid action will never be

enabled at any state.

iv) For each pin G in(a), the multi-set I((p,a))(vi,V2, •••vm,a) of tokens removed from

Pin must be contained in pin; i.e. if it is not the case that I((p, a))(v\,V2; •••Vma) ̂

S(pin), then A is not enabled at S.

If A passes all of these tests, then A is enabled at S. If A is enabled at 5, we also say

that A may fire at S.

Definition 4.11. Let 7 = (T,base, P, I, Mo) be a Petri net, S : P -> MS(D) be a state

that maps each pi to a multi-set over its associated domain D^. Let A be the action

consisting of the base-action a and the binding x" = t ' l , ^ = v<i, •••x^na — vma, Vi G T of

its variables that may fire at 5. Then the state S' reached by firing A at S is defined as

follows.

lip G P is in in(a), then S'{p) = S(p) - I((p,a))(vi,v2, ••.v7na)..

If p G P is in out (a), then S'(p) — S(p) + I{{p, a))(v\,V2, —vma).

Otherwise, S'(p) = S(p).
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4.2.1 A Problem with Bindings

In order to correctly compute En(s) for a given state s we must compute, for each

base-action a, the set B of bindings to the variables of a with which a may fire at s.

Definition 4.12. Let a be a base-action and s be a state of a Petri-net T\ Let B :

{x", x| , •••, .x ĵo} —+ T be any binding to the variables of o such that a may fire with

binding B at s. Then B is called a valid binding for a at s.

The problem of generating, for each base-action a at each state s, a finite set of bind-

ings such that no valid binding for a at s is overlooked (a pre-requisite for computing

En(s)) is worth mentioning since it causes special problems in the area of composi-

tional verification (indeed, as we will see, one idea for compositional verification renders

the problem insoluble). The basic problem is exemplified by the example Petri net

specification of Figure 4.1. The set of variables associated with the action a is {x}.

<UninvertableFunction(x)>

FIGURE 4.1: A situation that causes binding problems.

It is obvious in this example from the conditions under which a may fire with a bind-

ing that the set of bindings x = v with which a may fire is precisely the set such

that the token returned by UninvertableFunction{v) is in the contents of place p i.e.

U ninvertableF unction (v) G {1,2,3}.2

The function U ninvertableF unction (x) represents a function for which the problem

of constructing, for some value A, the set {x\UninvertableF'unction (x) — A} is not

feasible; perhaps because there is no known algorithm that effects the inversion of the

function, or because this set is infinite, etc. We could arbitrarily restrict x to lie in some

finite set, but then it is, in general, impossible to prove that we are not missing out any

valid bindings of x. So one can see that in general, the problem of finding a finite set of

bindings that demonstrably includes all valid bindings is not solvable.

The most commonly used method to avoid this is to restrict the set of acceptable Petri

nets by stipulating that for each base action a e ^base, and for each variable x associated

with a, x occurs "naked" in some expression of some inscription arc of a [Burkhardt et al.

2 This illustrates an important general principle; in the general case, virtually the only way to ensure
that the set of bindings is finite is by using the contents of input places to restrict the bindings considered.
Ideally, for the sake of efficiency, we should generate only valid bindings, but in general, some instantly
recognisably invalid bindings will almost always be proposed and have to be checked.
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(1989)]. We say that x occurs naked in an expression if and only if there is some sequence

of projections that can -be applied to the expression that results in the variable x: as

we will see, this allows us to determine all values of x which could possibly be part of a

valid binding, effectively "solving" the arc inscription for x. For example, the variable

x occurs naked in the following expressions:

• expr =< x > [Empty sequence of projections]

• expr =< (x,y) > \proj(expr, 1) = x]

• expr =< (y + 3, (x, z)) > \proj(proj(expr, 2), 1) = x]

• expr =< (f(y), (z, (x, y))) > \proj(proj(proj{expr, 2), 2), 1) = x]

but not in

< f(x) >, < x + 3 > or < (x + 2,4) >.3 .

It can be shown then that if P is the function that effects the sequence of projections

that is applied to the expression in the input arc / in which x occurs naked, then for

a to fire at s with a binding that assigns x =.v, the input place p connected to I must

contain a token t such that P(t) = v. In fact, we can invert this to use the set of tokens

in p to get a set of bindings for x that will not 'miss' any valid bindings for x. Here

is an example that will hopefully clarify this; we wish to generate a "sufficient" set of

bindings for the variable x for the base-action in Figure 4.2.

FIGURE 4.2: An example of deriving a sufficient set of bindings.

The function P, from earlier, is defined by P(t) = proj(proj(proj(t, 2), 2.), 1). Applying

P to each token t in p gives the sufficient set of bindings for x as x — 3 and x = (4,5).

No other bindings of x need be considered. We use the same technique to get sufficient

bindings for all of the other associated variables of a, and so get a set of sufficient

bindings for all variables associated with a by letting each variable range independently

over all of its sufficient bindings. As mentioned in Footnote 2, this will likely generate

many "invalid" bindings, but this is really unavoidable, and unimportant anyway, since

invalid bindings will be eliminated by the firing conditions of Definition 4.10.

3 Note that this restriction is a little too restrictive; for example, in the latter two examples, the
possible bindings of x can be easily found because the "function"re+3 is very easily inverted. Nevertheless,
for the sake of simplicity, this is the restriction we will adopt.
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4.3 High-level Petri Nets and Persistent Sets

Having given a brief description of high-level Petri nets and their semantics, we now

turn our attention to the problem of computing a persistent set at a given state in a

high-level Petri net and see how the additional requirements of /i-compatibility imposed

by the main result of this thesis may be accommodated. The problem reduces to two

components; finding an independence relation for the actions in the high-level net, and

the actual algorithm for taking this relation and using it to produce a persistent set. We

deal with the problem of independence first, and show that the definition of independence

is actually a little too strong for our needs when constructing persistent sets.

4.3.1 High-level Petri Nets and Independence

We review the definition of persistent sets:

Definition 4.13. Given a language L over an alphabet E. and a word w £ L, the

set P C En(w) (where En(w) is the set of actions enabled "at w"; i.e. En(w) =

E n cont(w, L)) is persistent at w if and only if P is non-empty and for all p G P and

all words v = a\a2---an G cont(w, L) n (S — P)*, for all i = 2,..., n — 1 we have that p is

independent of a.j at wa\a2---ai-\-

We draw attention to the statement "p must be independent of Oj at wa\a2--o,i—\n. Now,

p is enabled at w, and none of the a{'s may disable it my definition of a peristent set;

thus, p is still enabled at wa\ai—ai-i.. By assumption, ctj is also enabled at wa\a%...ai-i,

and so we need pay no heed to whether a* and p may enable each other at wa\a2...ai^\

- they are both certainly enabled! That is, we may ignore the "actions may not enable

one another" condition of Definition 2.19 when constructing persistent sets, giving us a

"weaker" notion of independence which we will call weak-independence:

Definition 4.14. Given a language L over an alphabet E, and a word w G L, two

actions a and b enabled at w are said to be weakly-independent at w if and only if:

i) Vii) G L, cont(wab, L) = cont{wba,L)

ii) Vu; G L, (a,b) G cont(w,L) implies ab,ba G cont(w,L).

The second item simply asserts that a and b may not disable each other at w. As before,

if two actions a and b are weakly independent at all w G L, we simply say that they

are weakly-independent.This is contrasted with the original definition of independence,

which included the additional restriction that independent actions could not enable one

another at a state.

Analogously, this leads to the notion of a weak-independence relation:
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Definition 4.15. A weak independence relation A over a language L C E* is a relation

A C S x S such that (a, b) G A implies that a and b are weakly-independent.

It is beneficial, when constructing persistent sets, to use in place of A a "weakened"

version of A, which we will call Aweak, defined in Definition 4.16.

Definition 4.16. Let L C £* be a language over the alphabet E. A C £ x £ x L.

Then the weak-independence analogue of A, Aweak, is the weak independence relation

satisfying the following property: \/w G L, if a and b may not enable one another at

w £ L, then (a, b, w) G A.

The motivation for this definition is obtaining a weak-independence relation from a full

independence relation A by adding pairs of actions that are only not allowed in A

because they may enable one another4.

We prove now that we can use this weaker version of independence to simplify the

construction of persistent sets; the nature of the simplification won't be made clear until

the section on the stubborn set technique, so for now, we present it as the following

theorem: '

Theorem 4.17. L C E* be a language over an alphabet £, w be a word in L. and P C

En{w) be a non-empty subset of the set of enabled actions at w in L. Let A C S x E x I

be an independence relation over L, and Aweajc C S x E be the weakened version of A.

If for all p G P and actions a that appear in words in cont(w,L) n ( S — P)* we have

that (a,p) G Aweak, then for all p € P, v = a\a,2-.-a,n G (S — P)* n cont(w,L) we have,

for each m = l,2,...,n, that- (p,am,wa\a2--am-i) G A; i.e. P is persistent at w.

Proof. Let p be any action in P and v = a\a2--.an be any word in cont(w. L) n (E — P)*.

By assumption, (p, aj) G Aweak for all i = 1,2, ...,n. Now, p must be enabled at

waia2--.am-\ for each m = 1,2, ..:n + 1; else, let i > 0 be the smallest number such

that p is not enabled at waia^-.-CLi- Then i cannot-be zero, as p is enabled at w, so p is

enabled at wa\a,2-..ai-\ by definition of i. But then a,; must disable p at waia,2.--(H~i,

contradicting the fact that Aweak is a weak-independence relation.

So both p, am must be enabled at waia2---am-i f°r each m = 1,2, ...,n + 1, so p and

am (trivially) cannot enable one another at waia2-..am-\- Combining this with the

fact that (p,am) G Aweak by assumption, we have that (p, am,waia2—am-i) G A from

Definition 4.16. . D
4The "only" is stressed as there are other reasons why one might wish to remove a triple (a, b, w)

from an independence relation e.g. for ^-compatibility. We do not want to include pairs of actions
in our weakened version of A if they are disqualified from inclusion in A for other reasons besides
non-enablement.
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So, given a high-level Petri net, how does one go about constructing a weak independence

relation?

Note that our conception of an action, which now encapsulates both the base action

and, importantly, the binding of values to its variables ensures that two things remain

constant from state to state: the result of the guard expression, and the multi-sets

resulting from evaluating the arc inscriptions on the input/ output places of the base-

action (and hence, the set of tokens removed from each input place and added to each

output place when the action fires)5.

This tells us two things: firstly, that the only way an action a can disable another action

b is by taking one of the tokens required by b from the input place for 6 (as a cannot

affect the result of evaluating 6's guard expression, which is a constant); and secondly,

that any pair of actions always "commute" i.e. that following ab and 6a at a state s (if

both words are followable from s) will lead to the same state6. Therefore:

Theorem 4.18. // two actions a, b G £ do not remove the same token from the same

place, then a and b are weakly-independent at all states.

It is possible for two actions that remove the same token t from the same place p

(and which would ordinarily be assumed to be dependent, for safety) to be weakly-

independent at a state s if the place p in the state s contains sufficiently many copies

of token t for a to fire while leaving enough t's in p for 6 to fire and vice-versa, but we

ignore this apparent optimisation as in practice exploiting it is difficult and in fact gives

very little in the way of gain [personal correspondence with Pierre Wolper]. The reason

it initially seemed like a worthwhile optimisation is that it seemed that we could exploit

it in construction of a persistent set s' if, for example, a was in a candidate set P and we.

could show that at all states s reachable by following a word in (S — P)* n cont(s',L)

from s' such that b is enabled at s, a and b would be weakly-independent at s. However,

verifying this would involve exploring all such states s which would be a very expensive

procedure, so for safety we simply assume that a and b are always dependent. . Thus,

we restrict ourselves to the "uniform" (invariant from state to state) weak independence

relation implied by Theorem 4.18.

Before moving on to show how to use the weak-independence relation to construct

persistent sets, we will briefly discuss the incorporation of queues into our Petri net

framework and show how to alter the independence relation in order to take the addition

of queues into account.
5It was this second fact that enabled us to define the functions add(a.p) and remove(a,p) in Defini-

tion 4.9.
6Informally, this follows from the definitions of the place contents of the successor states after follow-

ing an action (Definition 4.11) coupled with the properties of addition/ subtraction of multi-sets (e.g.
addition of multi-sets is commutative)
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4.3.2 Queues and Independence

When modelling communications networks with Petri nets, it is beneficial to have some

sort of queue structure to simulate messages being sent down a channel. Originally,

we were planning to use a place whose domain was the Kleene star of an element type

and whose contents took the form of a concatenated string representing a queue of

that element type, but as we will see in Section 4.3.4, our choice of implementation

enforces finite (and preferably small) domains for places, which rules this approach out.

Cyclic queues may be modelled in the framework presented earlier with a little ingenuity,

but are "inefficient" in the sense that they swell the size of the state-space immensely.

Eventually, we decided to add a new, native type of place which can be used as a

queue. A queue q. where each element is a member of the domain d and which can hold

maxinqueue elements, is identified by writing Queue(d, maxinqueue) as the domain of

the place. If maxinqueue is equal to zero, the queue q is unbounded. The contents of a

place that is a queue q over domain Dq is an element in fi™ca:mQueue jf maxinqueue > 0,

and D* if maxinqueue = 0 i.e. if q is unbounded; the definition of states should be

modified to reflect this. If the contents of q at a state s is equal to d\d2--.dn, di G Dq,

then di is called the tail of q at s and dn is called the head or leading element of q at s.

The changes to the Petri net semantics brought about by the addition of queues are as

follows; the changes are fairly minor, so we give only a brief, informal description.

If an the base action of an action a has no input/ output places that are queues, the

conditions for whether a may fire are unchanged.

Otherwise, a few new conditions are added. Let a be an action, and let

Qout — Queue{d, maxinqueue)

be an output place of the base action of a which is also a queue. Then in addition to

the rules for deciding whether a may fire presented earlier, we add the following.

• a may not fire if add(a,qout) is non-null and add(a,qout) is not a single token (t,

say).

• a may not fire if add{a, qOut) = t, a non-null token, and qout contains maxinqueue

elements i.e. we cannot add a non-null token to a full queue.

Now we consider the restrictions imposed when a has an input place

Qin — Queue(d, maxinqueue)

• a may not fire if add(a, qin) is non-null and add(a, qin) is not a single token (t, say).
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• a may not fire if add(a, qtn) = t, a non-null token, but t is not the element at the

head of qin (which obviously precludes the case where qin is empty).

If a meets all the requirements for firing, then the changes to the output places that

are not queues are the same as always. For each output place qout that is a queue,

qout either stays the same if t = add(a,qout) is the null token, or t is appended to the

tail of qout i.e. if contents (qout) represents the current contents of qout, then the new

contents of <?oui is given by t. contents (qout)- F° r each input place qin, qin stays the same

if t = add(a,qout) is null, and has the leading element removed if t is non-null i.e. f

•contents(qout) = d\d,2---dn represents the current contents of qOuti then the new contents

of qout is given by d\d2...dn-\.

How does this new semantics affect the weak-independence relation described in The-

orem 4.18? It actually remains largely unchanged; the only new dependencies arise

between actions that add to the same queue.

Assume two actions a and b add different (non-null) tokens iQi and t\, to the same place,

q, and that q = Queue(d, maxinqueue) is a queue. Let s be a state such that the words

ab and ba are each followable from s. Then the contents of q in the state s' reached by

following ab from s would begin with tf)ta i.e. would be of the form tbta. contents (q, s).

Following ba from s, however, would leave q with the string tatf).contents(q, s); thus the

sequences of actions ab and ba lead to different states, contravening the definition of

independence (weak or otherwise). Thus, a pair of actions that add different tokens to

the same queue are not weakly-independent.

In fact, even if a and b added the same non-null token t to the queue q (in which case

ab and ba would indeed lead to.the same state when followed from s), then a and b will

still probably not be weakly-independent, for a may disable b by filling up the queue

(so that q contains maxinqueue elements) and preventing it from firing. Even if q in

the current state s had ample space remaining, we cannot guarantee that the words

occurring "outside" of a candidate persistent set P C En(s) containing a at s (i.e.

those words in cont(s, L) n (S — P)*) do not fill up q, disabling a; thus, it is best, when

constructing persistent sets, to assume that two actions a and b that add non-null tokens

to the same queue q are not weakly-independent.

Theorem 4.19. / / two actions a, 6 G S do not remove the same token from, the same

•place, and do not both add non-null tokens to the same queue, then a and b are weakly-

independent at all states.

We now move on to the basic method for computing persistent sets: Valmari's stubborn

set technique[Valm&n (1991a,b)]. After presenting this technique, we describe a few

heuristics intended to aid the efficient construction of reasonably small persistent sets.
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4.3.3 The Stubborn Set Technique

Constructing persistent sets is not a simple task, and although we have seen one method

of construction (see the example involving Figure 2.7), this particular method simply

does not scale to non-trivial systems: as noted in that example, it involves a potentially

large amount of exploration at each state for multiple subsets of the set of enabled

actions at each state. Valmari's Stubborn Set Technique provides a much more effective

means of computing persistent sets. The intuition is that, if we can ensure for a given

subset P of the set of enabled actions En(s) at a state s that each action dependent on

any action in P. is either a) also in P; or b) cannot fire "outside of P" (i.e. does not

occur in any word in (X — P)* Dcont(s, L)), then P will be persistent. The stubborn set

technique initially starts with a set StubbornSet consisting of a single action in En(s)

and then begins to progressively add actions to StubbornSet until the subset of actions

P = En(s) n StubbornSet is persistent at s. If an action b occurs in a word in (E — P)* Pi

cont(s, L) and b is dependent on some action in P, then the stubborn set technique

will add actions to P in order to prevent b from appearing in (S — P)* n cont(s, L) by

determining which actions are required to fire in order to enable b, and attempting to

prevent these actions from appearing in (S — P)* n cont(s, L), recursively. The process

continues until there are no such b, at which point P will be a persistent set.

A more detailed description follows. Throughout this section, we will deem two actions

a and b to be dependent if the pair (a, b) is not contained in the weak-independence

relation Aweak described in Theorem 4.18.

Assume that we. wish to find a persistent set P at the state s. We pick an action

a\ 6 En(s), and attempt to form a persistent set around it. The stubborn set is initially

empty; we now place a\ in it. The first step in constructing a persistent set containing

<ii is to find all actions b that are dependent on a,\ - it is very important to note that this

includes actions which may not currently be enabled. For each such b that is enabled at

s, this action b must be added to the stubborn set, as it eventually must be contained

in any persistent set containing a\. For each such action 6 that is not currently enabled,

the situation is more complicated; if there were a sequence of actions outside of our

desired persistent set7 that enables b, then our persistent set could be invalid; hence,

we must make sure that b can not occur outside of the persistent set. We do this by

picking a set of actions (call it NES(b, s)) such that b cannot fire from the current state

s without an action in NES(b, s) having fired first, and add these to the stubborn set.

Then we pick another set of actions actions such that none of the currently disabled

actions in NES(b, s) can fire without one of these actions firing first, and add these to

the stubborn set, etc. We continue this "chain" until we have added sufficient actions-

to ensure that b cannot fire outside of the eventual persistent set. Then we repeat this

7By "outside of our persistent set", we mean a sequence of actions that can occur in cont{s,L) n
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process for each enabled action in the stubborn set that has not yet been dealt with in

this manner, until no new actions are added to the stubborn set.

This describes the basic idea behind the construction, but the algorithm is actually

structured slightly differently; it can be expressed as in Algorithm 4.1.

In this algorithm. StubbornSetNew is a set that represents actions that must be pro-

cessed. Eventually, all actions in here will be transferred to StubbornSet. Initially, both

of the sets StubbornSetNew and StubbornSet are empty; then an action is chosen from

a £ En(s) and added to StubbornSetNew. The main loop then begins; at each itera-

tion, an action a is removed from StubbornSetNew. There are two cases: the first case

occurs when a £ En(s) (Line 17). Since a will be transferred to StubbornSet, and since

the final persistent set is equal to StubbornSet n En(s) (Line 25), a will be in the final

persistent set, P. Therefore, we cannot alloAV any actions dependent on a (including

actions that are not enabled at s) to occur outside of P; therefore, all such actions

are added to StubbomSetNew for processing (Lines 17-21). Note that we never add an

action to StubbornSetNew that is already there or that is in StubbornSet; such actions

have already been processed (or will soon be processed), and there is no need to process

them again.

The second case is when a is not enabled at s; we see then that a is either dependent

on some action that will be in the final persistent set, P, or is part of a chain of actions

that are required to enable some action dependent on an action that will be in P: in

either case, o, must be prevented from firing outside P, so we find a set of actions that

are required to enable a8, and these actions to StubbornSetNew (Lines 8-11).

The stubborn set construction ends when there are no new actions left to process (i.e.

when StubbornSetNew — <f>), at which point we compute the final persistent set (Line 25).

Note that the choice of the initial action to place in the stubborn set and the subsequent

choices of deficient place and token pairs used to generate necessary enabling sets for

actions are non-deterministic, and the size of the eventual persistent set and the number

of steps required to construct it are dependent on the quality of the heuristics employed

for making these choices. We will briefly mention some heuristics for making these

choices later on this chapter.

A quick definition is useful in formulating the algorithm:

Definition 4.20. Let L C S* be a language over an alphabet S, let w £ L, and let

a £ £ be an action not enabled at w. Then a necessary enabling set for a at w is a set

of actions NES(a,w) C S such that for any v = a\a-2-..ana £ cont(w,L), at least one of

the aj's must be in NES(a, w), with an analogous definition, in terms of states.

In other words, a necessary enabling set NES(a, s) for a disabled action d at a state s

8For a more formal definition of what we mean here, see Definition 4.20.
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1: StubbornSet <— <f>, StubbornSetNew <— <j>;
2: pick a\ £ En(s), and add it to StubbornSetNew;
3: repeat
4: pick a 6 StubbornSetNew,
5: StubbornSetNew <— StubbornSetNew \ a;
6: if a ^ En(s) /* This action is one that must be prevented
7: • from firing outside of our persistent set */
8: find a necessary enabling set NES(a, s) for a at s;
9: for each c G NES(a, s)
10: if c ^ StubbornSet U NewStubbornSet
11: ' StubbornSetNew <— StubbornSetNew U {c};
12: endif N

13: next
14: else /* Add this action to the stubborn set
15: and all actions dependent on it to StubbornSetNew
16: for processing */
17: for all b such that (a, b) $. Au;eQfc/* Includes b not enabled at s */
18: if b £ StubbornSet U NewStubbornSet ,
19: StubbornSetNew <- StubbornSetNew U {6};
20: endif
21: next
22: endif
23: StubbornSet <— StubbornSet U {a};
24: until StubbornSetNew = cj>;
25: PersistentSet(s) = StubbornSet(s) n En(s);

Algorithm 4.1 - The Basic Stubborn Set Algorithm

is a set of actions such that any occurrence of a in a word followable from s must be

preceded by at least one of the actions in NES(a, s).

We now comment on the main stubborn set algorithm, Algorithm 4.1, and discuss how

to obtain an efficient implementation of the algorithm.

4.3.4 Towards an Efficient Petri Net Implementation

In this section, we present some fairly obvious and well-known observations that help

with the efficient construction of stubborn sets (although the work involving queues is,

as far as we are aware, novel). We begin by ignoring the complications caused by the

requirement of /i-compatibility, which we will explore in Section 4.3.4.2.
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4.3.4.1 Without Abstraction Compatibility

We draw attention to how Definition 4.16 coupled with Theorem 4.17 help with com-

puting stubborn sets: given an enabled action a which must be included in the final

persistent set, we can instantly decide which other actions b must be added to the stub-

born set in order to ensure that the final set of enabled actions in the stubborn set is

persistent; the set of actions is equal to9 the set {b\(a,b) ^ Aweafc}, as shown in Lines

17-21. Computing the set of actions that would have to be added straight from the

"raw" definitions (Definitions 2.23/ 2.24) would be most difficult, and would probably

require us to explore sub-automata from s to ensure that the final candidate persistent

set was in fact persistent; this would, of course, be very inefficient indeed.

The problem of computing the set of all actions dependent on an action a, and find-

ing a necessary enabling set for an action a both require a certain task to be per-

formed, which we describe now. For a given action a, the problem of computing the set

{b\(a,b) (fi Aweak} is solved with the help of Theorem 4.19; we simply need to find all

actions that remove the same token t from the same place p, and if a adds a non-null

token to a queue q, all actions that add a non-null token to the same queue. When we

come to consider ^-compatibility, we may, if h(a) ^ e, also need to be able to find all

actions b for which h(ab) ^ h(ba).

For computing a necessary enabling set for an action, we need to perform a similar task.

Before describing this task, we need some further analysis and terminology.

Say an action a is not enabled at a state s. We know from earlier that-the guard

condition for a given action is a constant, so if the guard condition for a is false, it can

never be enabled and so can be ignored. Similarly, as the arc inscriptions do not vary,

if a attempts to add/ remove a token t from a place p which is not in the domain of p,

then a can never fire and can again be ignored. So from the semantics'presented earlier,

we know that either a attempts to remove more copies of a token t from a place p than

are contained in p at s, or it attempts to add a non-null token to a queue q which is full

at s. • •

Definition 4.21. Let a be a valid action that is not enabled at a state s. If a attempts

to remove a token t from a place p, and p does not contain t at s, then p is called a

deficient place for a at s (or simply a deficient place if a and s are understood). The

pair (p, t) is called a deficient place and token pair for a at s (or simply a deficient place

and token pair).

If a attempts to place a non-null token t in a queue q and.q is full at s, then q is called

a blocking queue, for a at s, or simply a blocking queue.
9Or more accurately, is a subset of; this method could well force actions that are not required for

persistence to be added to the set. This does not seem to be too much of a problem, fortunately.



Chapter 4 High-level Petri Nets and Persistent Sets 64

The fact that if there is a deficient place and token pair (p, t) for an action o at s, then

a cannot fire until some action places the token t in the place p. gives a strong hint as to

how a set NES(a, s) can be constructed; in fact, we Can just pick NES(a, s) equal to the

set of all actions that place the token t in the place p10. Similarly, if a has a blocking

queue q at s-, a necessary enabling set for a could be the set of all actions that remove

a non-null token from queue, thus unblocking it.

So in order to perform either of these two operations (finding all actions dependent on

a given action, and finding a necessary enabling set for an action), it is necessary to be

able to generate the set of all actions that add/ remove a given token from a given place

(or an arbitrary non-null token, if a has a blocked queue) - and this includes actions

that are not currently enabled. If we have the set up shown in Figure 4.3 where x is the

a,
base

FIGURE 4.3: Finding the set of bindings for a,baSe that add the token t to p is easy in
this case. ,

only variable associated with aiase, then it is not too difficult to generate all possible

bindings for the base action abase t n a * will place a given token t in p. However, if the arc

inscription expression is more complex, containing conditionals and functions and several

variables, then the problem of generating all bindings for a^ase that add a given token

t to p is much, much more difficult. Also, as we will see in the next sub-section, if we

wish to find all actions dependent on an action a such that h(a) ^ e and h compatibility

is required, we must know all of the possible actions b such that h(b) is non-hidden and

not equal to h(a). For these reasons (and a few others to come), we suggest that an

implementation compute all valid actions before exploration of the state-space begins,

and that a lookup table of which actions add token t to place p for all places p and all t

in the'domain of p.

In order to do this, we suggest restricting the domains of places to a finite number.

This is achieved in our formulation by simply not providing the means to declare place

domains as* infinite sets. It is then relatively easy to use the fimteness of each place

domain in order to generate all possible bindings for each base action (disregarding

invalid actions), and hence build the.lookup table.

This approach has a number of other benefits: for example, we may evaluate the arc

inscriptions of the actions and build a look up for these, eliminating the need to evaluate

them every time wTe are deciding whether a base-action may fire with a given binding, and

what tokens are added/ removed from the input/ output places of the base action if it

10An action a may have several deficient place and token pairs, and so there may be several possible
necessary enabling sets for oa t s. We are not obligated, however, to pick more than one, although
as mentioned earlier, the size of the resultant persistent set can vary widely based on our choices of
necessary enabling sets.
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does. Also, the finiteness of the set of possible tokens that can occur in the net allows us

to enumerate the possible tokens, thus imposing a natural, rapidly evaluated ordering on

the set of tokens - since several storage schemes for the set of states encountered during

the state-space exploration rely on an ordering on the set of states (e.g. balanced trees),

which in turn usually requires an ordering on the set of tokens, this can be quite a boon

in terms of computational efficiency. Plus, of course, it enables us to find all non-hidden

actions in advance.

Computing small stubborn sets in minimal time is no easy task; while the basic algorithm

is relatively simple, we see that there are two points where we are asked to make non-

deterministic choices: Firstly, at Line 2 where we pick the first enabled action that

will add act as a "seed" for the stubborn set; and secondly, at Line 8 where we are

asked to find NES(a, s) to prevent a from firing, which requires us to choose a deficient

place and token pair for a at s, and these choices can dramatically affect the size of

the final stubborn set (and hence, the final persistent set). Since we wish the set to

be as small as possible (as small persistent sets tend to give greater reduction in the

size of the resulting state-space, and constructing a large stubborn set gives a greater-

computational overhead), it is beneficial to have some set of heuristics that can be

efficiently employed to prevent the stubborn set from growing out of control. One such

heuristic that immediately springs to mind is that the initial action should have as few

dependent actions as possible; this helps prevent an initial "surge" of actions being

added to the set. " '

Firstly, then, we note that weak-independence admits the possibility of what may be

called "always-persistent actions". These are actions that are weakly-independent of all

other actions in the system, and so will always form a persistent set if taken on there

own. That is, if one of these "always-persistent" actions, a, say, is enabled at a state s,

then the set {a} is a perfectly valid (and indeed, optimal) persistent set at s. Always

persistent actions may be immediately spotted from the static topology of the Petri net:

if a base-action a does not share an input place with any other base-action, then for

any binding of its variables, a plus the binding is an always persistent set11. We can

exploit this in the stubborn set algorithm by including a first line that simply checks

whether any "always-persistent" actions are enabled at s; if we find one, then we may

terminate the algorithm immediately and return a persistent set consisting of just this

one action [the diagram in Figure 4.4 gives a clue as to which actions to target in this

initial search]. This implies that as well as returning smaller sets, the new result could

well significantly decrease the computational overhead involved in computing these sets.

All of this is useless, of course, unless these always-persistent actions are reasonably

ubiquitous in real life situations. Thankfully, this does indeed seem to be the case; for

example, in the example low-level Petri net in Figure 3.1, the actions (rej2 and req2)

uIf some kind of ^-compatibility is required in the weak independence relation, for some abstracting
homomorphism h, then we also require of course that these actions are hidden by h.



Chapter 4 High-level Petri Nets and Persistent Sets 66

No other actions take from
any place that a also takes
from.

FIGURE 4.4: Topological characteristics of an always-persistent action.

are always-persistent, with the actions (rejl and reql) only prevented from being such

by the restriction of /i-compatibility with the abstracting homomorphism h used in that

example.

A concept that is probably more useful (in that it will occur more commonly in real-life

examples) is found in "always-persistent" pairs. These are actions that depend only

upon each other and so, if they are both enabled at a state, will form a persistent set

when taken" as a pair. Thus, if we have" found no always-persistent actions enabled at

the current state, we may begin a search for always-persistent pairs. Again, a glance

at the topology of the Petri net gives • a clue as to which base-actions we should start

searching first.

No other actions take from p,
Nor from other places that a or
B take from

FIGURE 4.5: Topological characteristics of an always-persistent pair.

Let av° and bVb be two actions that have a and b as their base-actions, respectively: then

if the token taken by the actions aVa and bVb is the same, then these two actions are

dependent on each other and moreover will quite probably occur "in tandem" throughout

the state-space i.e. aVa will be enabled at a given state if and only if bVh is12; this enables

us to rapidly construct a persistent set consisting of just these two actions. This of

course presupposes that no other bindings of variables-to the base actions remove the

required token from the input place p; usually, though, this is not a problem as the
12 This is because whether an action can fire at a state usually depends more on whether the required

tokens from the input places are available at that state than on any other "guard" conditions. There
are, of course, exceptions to this, so we must exercise some care.
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functions determining which tokens are taken are usually injective mappings in the

associated variables. If this is not the case, and these other actions are enabled at

the current state, then we can include these actions in the set and hence generalize to

.always-persistent triples, or quadruples; etc.

At the other extreme, actions that add non-null tokens to queues should be strongly

discouraged from being chosen as our initial action (or indeed, as the action added to

the stubborn set as it is required to enable an action a, as in Line 8) as, according to

Theorem 4.19, every other action that adds a non-null token to the same queue will

need to be added to the set, and this set of actions is often quite large.

On the subject of queues, queues offer some interesting strategies that may aid in the

efficient construction of small persistent sets, or even in reducing the size of the state-

space by more direct means. We deal with the latter, more interesting assertion first.

Consider a queue q with a capacity of maxinqueue whose elements belong to a domain

d. At any state s, the contents of q could have any of

maxinqueue

(which is o(\d\maxinqueue)) different values. In fairly asynchronous systems, there is more

of a tendency for the contents of the places to vary more-or-less independently over the

range of their allowable contents, implying that a (very rough) approximation to the

size of the state-space can be given my multiplying the sizes of all.possible contents of

the each place together (assuming these sizes are finite, of course13). All of this very

vague reasoning is meant to illustrate the following (hopefully non-contentious) -point;

if we can restrict the set of values that the contents of a place ranges over during the

exploration of a state-space, we may directly reduce the size of the resulting state-space.

With queues, it seems that, we quite often can do this, by adding a bias to the stubborn

set construction algorithm towards including actions that remove tokens from queues

as the initial choice of a seed for the stubborn set. In principle, this will work well if

including such an action does not necessarily imply that an action that adds another

token to the queue must always be included in the final persistent set14; in the absolute

ideal case, every time the queue has a token added to it, we can remove it straight away,

ensuring that the queue never contains more than one element at a time, thus giving the

desired restriction on the set of values the contents of the queue may take, and in turn

13 A multi-set or unbounded queue over a finite domain d can technically take an infinite number
of values; in practice, however, the "multi" aspect of multi-sets tends to be seldom used (so the set
of contents of a place at a state s tends to be a straight set drawn from the place domain), and the
structure of the system helps to add a bound to the queue (or else the system would be infinite).

14Our analysis of dependence shows that an action that removes from a queue and an action that
adds to the queue need not be dependent, so, barring any other sources of dependency between two such
actions (e.g. perhaps they are not /i-compatible, or perhaps they take the same token from the same
place) this is not at all unlikely.
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reducing the size of the state space. Of course, this ideal state of affairs probably will

not be attained in practice, ,but we believe that we may reasonably expect a high-degree

of reduction.

The former benefit of queues mentioned earlier also concerns actions that remove from

queues. Apart from making a good "seed" action for stubborn sets, these actions are

also a very good choice for the "necessary enabler" actions that are required for the

stubborn set algorithm (Line 8) as, typically, the construction of a stubborn set at a

state s proceeds as follows: An initial action is chosen, and this action will likely be

dependent on other actions. For each dependent action a that is not currently enabled,

we must take steps to avoid a being enabled from s "outside" of the final persistent set

at s, and we do this by choosing a "necessary enabler" action, b say, that is necessary

to enable a, and add it to the stubborn set. Typically, b has a different base-action to

a. If b is not currently enabled, then we need to find an action c that is required to

enable b from s, and c quite often has a different base-action again. We see then that,

very loosely speaking, the stubborn set often "grows" around the initial action like an

expanding wavefront, encompassing more and more of the net topology as it goes on.

Typically, the more of the base-actions from the net topology are required, the larger

the resulting persistent set (and the longer the time spent constructing it).

If, however, we are required to find a necessary enabling set for an action aq that takes

a non-null token t from a queue q, and that q is non-empty and is currently a deficient

place for aq at state s, then we may stop there15: the fact that the queue is non-empty

but deficient for aq means that the head of the queue is not the token t that aq requires

from q, and that we cannot reach a state where t is the head of q without the actions

that are enabled at s and take a non-null token from q firing first. Thus, the set of

actions (call it A) that are enabled at s and take a non-null token from q are a necessary

enabling set for q. Often, the only actions that are dependent on such actions are other

actions that take from the same q, in which case A forms a necessary enabling set for

these new actions, too. So in our conception of the stubborn set as a growing wavefront

emanating from the initial action to encompass all of the Petri net, actions that take

from queues often act as terminators for this process. Also, this rule is relatively simple

to implement in a stubborn set construction algorithm.

The stubborn set algorithm we ended up using in the implementation in Chapter 6

was primitive, and basically involved assigning all actions a "weighting", based on how

immediately promising it looked. When looking for a seed action at a state s, we would

choose the action with the highest weighting; likewise, when looking for a deficient

place and token pair for an action a at state s, we would pick the one that allowed

us to use the NES(a, s) that gave the highest weighting over the sum of actions in the.

15By which we mean that we cannot necessarily just stop the stubborn set construction algorithm,
but we can stop the current "chain" of finding necessary enabling sets, then finding necessary enabling
sets for these necessary enabling sets etc.
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necessary enabling set. The algorithm was thus "greedy", and may not have given

optimal persistent sets, but we must be careful to weigh the cost of computing the

persistent set (which will increase if we adopt a "trial-and-error" approach, evaluating

many possible seed actions for each persistent set and many deficient place and token

pairs for each action we need to disable) against the reduction in total time attained by

reducing the size of the state-space explored.

The weighting for a given action was calculated as follows:

1. Action disables no other action: Add 5 points.

2. Actio7i removes a token from a queue: Add 10 points

3. Action adds a token to a queue: Subtract 10 points

4. Action shares a (non-queue) input place with another action: Subtract 3 points

for each such action.

The weightings are intended to gain from the queue-emptying strategy foremost via Rule

1), while favouring always-persistent actions if no queue-emptying actions are enabled

via a combination of Rule 2) and Rule 4). If no such actions are present, we try to

look for one that is least likely to have many dependent actions via Rule 4) and, since

all actions that add to the same queue are mutually dependent, discriminating against

such actions via Rule 3). In practice, this approach seemed to yield reasonably good

reductions; practical results are given in Chapter 6.

4.3.4.2 With Abstraction Compatibility

Having detailed some techniques for constructing stubborn sets, we now describe the

effects that the requirement of ^-compatibility has on them. None of the practical

examples considered in this thesis involve mapping different actions to the same non-

hidden action, so for simplicity, we will assume a "worst case" scenario where, if an

action is not hidden by h, then it cannot be /i-compatibly independent of any other

non-hidden action.

Without the restriction of /i-compatibility, the actions dependent on an action a invari-

ably share a place with a, and so are fairly easily identified and very localised - an action

located deep within a component of a system is likely to be independent of an action deep

within a different component. As a consequence, stubborn sets tend to take the form of

a set of actions with the seed action as a nucleus, expanding to encompass neighbouring

actions of actions currently within the set until no more need to be added. It is quite

common for a stubborn set seeded around an internal action of a component to consist



Chapter 4 High-level Petri Nets and Persistent Sets 70

solely of actions from that component, which gives a great boost to the state-space re-

duction resulting from a persistent set selective search due to the fact that by following

actions only from one component at each state, we are greatly reducing the state-space

explosion which would otherwise occur due to having to consider all interleavings of all

components. The concepts of "components" and "local states" will be formalised in the

next Chapter, but for now we will present an illustrative example. Consider the variant

of the low-level Petri net specified system of Figure 3.1, shown in Figure 4.6.

FIGURE 4.6: The system of Figure3.1 decomposed into three components.

Here, we have decomposed the system into three components: component C\, which

contains the actions resl, yesl, nol, rejl, reql and the places PIA,PIB,PIC and P\D\

C<I which contains the actions resl, yes2, no2, f'ej2, req2 and the places P-2A?P2B J^2C

and P2D', and a central, unnamed component that contains the places P and Q. Given

a state s, the C\-local state of s is simply the 4-tuple consisting of the contents of the

places PIA,PIB,PIC and P\D in that order (so e.g. the Ci-local state of the initial state

so of Figure 4.6 is (0,1,0,0)), and similarly for the C2-local state (so the C2-local state of

so is (0,0,1,0)). The state s, then, can be expressed as the combination of the Ci-local

state of s, the contents of P and Q, and the C2-local state of s e.g. if we use the symbol

o to represent composing an n-tuple with an m-tuple to get an n + m-tuple, then we

can say

s0 = (0,1,0,0) o( l ,0)o(0,0, l ,0)

Let sio and S20 represent the Ci-local and C2-local states of so respectively, and let su

represent the Ci-local state of the state reached by following reql from so and S22 the

C2-ldcal state of the state reached by following req2 from so- Note that following reql

from a state has no effect on the C2-local state and similarly, following req2 doesn't

affect the Ci-local state. If we ignore /i-compatibility for the time being, then both
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{reql} and {req'2} are persistent sets at SQ (in fact, reql and req2 are always-persistent

actions, as they are weakly-independent of all other actions), and are also persistent sets

where all actions belong to the same component (C\ in the case of {reql}; C% in the case

of {7-e<?2}). So, using the definitions just presented, the beginnings of a persistent-set

selective search of the state-space of the system of Figure 4.6 (we're ignoring all actions

but reql and req2, here, and only go exploring a handful of states) could look as shown

in Figure'4.7a). , .

If, however, we introduce an abstracting homomorphism h that is the identity on the

actions reql and req2 but hides all other actions, then reql and req2 are no longer

(/i-compatibly) independent of one another, and so the sets {reql} and {req2} are

no longer persistent at so, so the only persistent set available at so is the trivial set

{reql,req2}; a small portion of the ^-compatible persistent set selective search is shown

in Figure 4.7b). Note that without /i-compatibility, we avoided having to consider the

interleaving of the Ci-local state sn with the C2-local state S22 but now, since the

requirement of ^-compatibility has introduced a dependency between two actions in the

two different components Ci and C2, we are forced to consider this interleaving. In

this particular (simple) example, this only introduces one extra state but one can easily

imagine the consequences when dealing with a more complex system with more complex

local states.

(a) Without /i-compatibility (b) With /i-compatibility

FIGURE 4.7: Part of a persistent set selective search of the system shown in Figure 4.6

Thus, ^.-compatibility is problematic not only because it can increase the amount of

actions that are no longer independent of a non-hidden action (which can lead to larger

persistent sets, and thus less of a reduction in state-space size),, but also because the

actions that are added as dependent can be located in entirely different parts of the

system, potentially weakening the reduction we previously obtained by not having to

consider all interleavings of local states.

When experimenting with the stubborn set creation algorithm with our Sliding Windows

example and the chosen abstracting homomorphism h, we found that the weighting al-

gorithm dealt very badly with the added restriction of /i-compatibility: in fact, we had
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to bias against choosing hidden actions to a degree that was very surprising to us.

With hindsight, the reason for this is obvious: the reduction in the weak-independence

relation incurred by ^-compatibility would already be troublesome if all newly added

dependencies were only between actions that are in the same component, but when

it involves creating dependencies between actions that are in different components, its

effects on the reduction obtained by partial-order reduction are much more damaging

for the reasons just described. The example in Chapter 6 had this quality: it could

loosely be decomposed into a "sending" component and a "receiving" component, with

many of the actions in one component being independent of many of. those in the other,

but the particular abstracting homomorphism introduced new dependencies between ac-

tions in different components, with very damaging effects. Fortunately, however, when

a sufficiently large weighting penalty for non-hidden actions was incorporated, the re-

quirement of /i-compatibility made very little difference to the reduction obtained; again,

fuller details are provided in Chapter 6. The final rule was as follows:

5. Action is not hidden by h: Subtract 13 points

Another problem with /i-compatibility, briefly alluded to earlier, is the problem of finding

all actions that are dependent on a given action a, a necessity for the stubborn set

technique to work: when /i-compatibility is ignored, we (informally) need only consider

actions that share a place with a, whereas this is not the case when we deal with h-

compatibility. Our solution was simply to ensure that all places have finite domains so

that all possible actions of the system can be known before we begin an exploration:

then, the problem of finding all actions b such that h(ab) ^ h(ba) becomes trivial. If

this is not an acceptable solution for a given situation, however, then we would need to

find an alternate solution.

4.4 Summary

We have chosen to use an implementation of the Sliding Windows Protocol to gauge the

practical usefulness of the results of Chapter 3 and, since specifying this using low-level

Petri nets would be very difficult and time-consuming, we have created and presented

a dialect of Petri nets more suited to specifying the protocol, which features native

"queue" places. One of the pre-requisites for using the result of Chapter 3 to decide

properties of a system is a means of constructing abstraction-compatible persistent sets

that also deal with the newly-introduced queue places, and so we have described a means

of constructing these persistent sets, based heavily on Valmari's stubborn set technique.

The stubborn set technique involves creating a set of actions (each of which may or may

not be enabled at the current state) starting with a seed action and progressively adding
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actions in order to ensure that no actions that are dependent on any of the actions in

the set that are currently enabled can fire, unless one of the enabled actions currently

in the set fires first. It can be shown that when no further actions need be added, the

intersection of this stubborn set with the set of currently enabled actions is persistent. An

argument concerning which actions are liable to be enabled "outside" of a persistent set

showed that we need not consider the "full" definition of independence in Definition 2.19

when computing persistent sets: a weaker definition called weak independence will suffice,

and with this, a pair of actions are deemed dependent when they either lead to a different

state when followed in a different order, or when one may disable the other. With this

relaxed rule, the result of the stubborn set technique is still a persistent set in the original

sense. The stubborn set technique is non-deterministic at several steps, so we adopted

a crude "weighting" algorithm to help make reasonably effective decisions at each step.

Incorporating queues into the stubborn set technique is largely trivial: we need only

revise the dependence rules for pairs of actions that either add or remove a non-null

token from the same queue place, and these rules are simple. Abstraction-compatibility

is, however, potentially much harder to add: not only can it reduce the number of pairs of

actions that are deemed to be independent, leading to larger persistent sets and less state-

space reduction but, more importantly, it can create dependencies between previously

independent "components" of the system, and an abstraction-compatible persistent-

set selective search where the stubborn set weighting algorithm is left untouched will

likely explore more interleavings of local states of system components and dramatically

lessen the effectiveness of the state-space reduction, as we found to be the case with our

practical experiments with our Sliding Windows Protocol implementation. However,

in this case at least, it was found that simply adding a strong bias in the weighting

algorithm against non-hidden actions negated this to a large degree.

We now go on to give an overview of compositional verification. We will consider com-

positional verification only as applied to Petri-net-specified systems.
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Compositional Verification

5.1 Overview

Systems may often be decomposed into (or built up from) two or more components,

which may be viewed as separate processes running more or less independently of one

another, communicating via shared resources or specialized communication channels1.

By attempting to isolate components from one another, and explore only the local state

space of each component separately (in contrast with the full, or global state space of the

system), it may be possible to greatly reduce the size of the state-space examined due to

the fact that we may not need to consider all possible interleavings of each component's

local states as we would in a typical state-space exploration.

The situation where we wish to construct the full behaviour of a single component

appears especially often in the context of feature interaction. Here, new "features"

(components) are added to the "core" system, and we wish to check whether each feature

satisfies certain properties: For example, if our core system was some kind of exchange

server, we might want to "plug in" a feature such as call-forwarding and check whether

this feature behaves as desired in the context of the core system. As more features are

added over time, they are bound to interfere (interact) with the existing features, either

directly if they share the same resources, or indirectly through the knock-on effect of the

changes to the core system behaviour induced by adding the new features. It is useful,

then, to be able to construct the behaviour of just one or more of these features in order

to verify that it still behaves correctly, preferably without having to construct the whole

system behaviour, and this is precisely what this result enables us to do.

Naive attempts to isolate a component simply by severing it from the .rest of the Petri

Net, however, results in problems related to the binding problem of the previous Chapter,
1 This 'disintegration' into components is fairly natural with Petri nets, since they are most often

constructed component-wise, usually with each component being situated on a different 'page', or at
least being "geographically" separate from other components.
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where restrictions on the firing of actions arising from the removal of restrictions on the

possible values of variables corresponding to the action can possibly lead to local states

in the isolated components that have no counterpart in the full system. The appearance

of false local states such as these and the possible resulting explosion of the local state

space exploration of a component are part of what is called the enviroment problem.

The main result of this chapter is to leverage the abstraction-compatible persistent-set

technique of Chapter 3 to solve the environment problem for a specific configuration

of components, allowing us to efficiently construct the entire behaviour and set of local

states of a given component based on a partial-order reduced version of the full system.

Solving the enviroment problem is the sole focus of this chapter: we do not consider other

aspects of Compositional Verification, such as decomposition strategies and deduction

of properties satisfies by the full system based on properties satisfied by its individual

components.

Unlike the result of Chapter 3, this result is explicitly tied to Petri-net specified systems,

but not to any particular formulation of Petri nets. We define abstract Petri nets (of

which the low-level Petri nets of Chapter 2 and the high-level Petri nets of Chapter 4 are

merely specific formulations) to simplify and generalize the proofs. After this, we give

some more formal definitions of concepts such as local sta,tes and go on to describe the

specific configuration of systems our result applies to, and describe some existing tech-

niques that attempt to solve the environment problem. We then present the algorithm

we used to solve the environment problem and enable the efficient construction of a full

component's behaviour, and prove that it works. We then show that the restriction to

the specific system configuration we have chosen may in fact not be necessary after all.

Finally, we describe a much more straightforward method of constructing the behaviour

of a component using abstraction-compatible partial-order reduction, and attempt to

justify why the more complex result of this chapter should be used instead.

The result of this chapter was presented at VVEIS'03 [St James and Ultes-Nitsche

(2003)].

5.1.1 Abstract Petri Nets

In preparation for the statement and proof of the result, we present an alternative

formulation of high-level Petri nets (which we will call abstract Petri nets) to give a

more abstract, generalized formulation. This is done both to simplify the proofs and to

avoid restricting the applicability of the result to the specific formulation of Petri nets

we presented in Chapter 4. This generalization is intended to preserve key aspects of

Petri net definitions (such as the one presented in Chapter 4),,namely the use of place

contents to specify a state; the fact that the enablement of s base-action a with a given

binding at a state is determined by a guard condition along with a condition on the

contents of the set of input and output places of a; and the fact that the state reached
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by firing a base-action a with a given binding differs from the preceding state only in

the contents of the set of input and output places of a. The generalization is inspired by

the definition in Chapter 4 (indeed, such Petri nets are merely a specific case of these

abstract Petri nets - we will show this by drawing parallels between the definition of

Abtract Petri nets and the Petri nets described in Chapter 4 .)

Before this, a small definition that will be useful throughout this section.

Definition 5.1. Let X C S(,a,se be any subset of the set of base-actions. Then we define

Xv as the set of all base-actions o in X together with the set of. bindings of the variables

of a. In other words, Xv is the set of all actions whose base-action belongs to X.

Definition 5.2. An Abstract Petri Net 7 consists of the followmg:-

A set P of places. Each place Pi G P contains a multi-set of elements drawn from some

domain, dj. .

A set £{,ose of base-actions. Each base-action a G S&ase n a s a set x^.x?;, • •••/x%la of

variables, a set Ina C P of input places, and a set Outa C P of output places. It also

has two functions associated with it; more on this later.

A state of a Petri Net is a mapping from each pi G P to a multi-set of dj, (i.e. an

assignment of contents to each place pi G P; in low-level Petri nets, this would be the

number of tokens in place pi ). Let s(p) denote the contents of place p G P at state s.

Let S be the set of all possible states; i.e. the set of all mappings of the type described.

An initial state, SQ G S. '

So far, the definition of an abstract Petri net mirrors the definition of a high-level Petri

net given in Definition 4.6 very closely.

Each base-action a G £f,o,se has associated with it a guard predicate.

guarda,Pi( i), x\,

defined for each pi G OutaUlna. s (pj), rather than just s, is explicitly used to emphasize

that guarda,Pi is dependent solely on the. the contents of place pi-in s, rather than the

contents of all other places as would be the implication if we had used s instead. . If

a G S^Qse (Definition 5.1; i.e. if it is a base-action together with a set of values for each of

the variables x\.x^, ...,a;^,a), then we abbreviate the guard predicate as guard<a:Pi(s(pi)).

An action in an abstract Petri net is defined as in Definition 4.8 - it is a pair consisting

of a base action plus a binding of values to the set of variables associated with that base

action. From Definition 5.1, an action belongs to the set

An action a G ̂ lase is enabled at a state s G 5 if and only the guard predicate

guar.da<Pi{s(pi),x1,.x%,...,x%la) .
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is true for each pi G Outa U Ina. This is basically an abstraction of the rules concerning

enablement of actions at a state, as in Definition 4.10. Instead of dealing with complex,

concrete rules dealing with input and output arcs and labels, we have simply abstracted

the most essential information piece of information: that whether an action may fire at

a given state s is dependent solely on the'values of the bindings and on the contents of

the input and output places of a at s.

The second function associated with a G ^base is changea,Pi(s(pi),xf,x\, ...,xa
ma). This

function is defined for each p$ G OutaUlna and returns a multi-set drawn from dj. Again,

if a G ££ttse, we abbreviate the function by changea.Pi(s(pi)). If a G S1; is enabled at

s € S then the state s' G S reached from s 6 5 by following the action a € S" is defined

as:
s'(p) = s{p) VpG P -Outa0Ina;

s'(p) = changet}P(s(p)) Vp G Outa U Ina

This final function encapsulates the essential part of Definition 4.11 - that the firing of

action a takes us to a new state where the only differences from the old state are the

contents of the input and output, places of o.

We formalise the idea of a "local state" of a component as follows. Note that when

dealing with a component and its local states, an ordinary state s G S in an abstract

Petri net 7 is often described as a global state, solely to differentiate it from a local state.

Definition 5.3. Let 7 be an abstract Petri net with a set P — (pi,P2, •••,pn) of n places

and full set of states S, and X C P be a subset of m of the set of places. Let s G S be

any state. Then the X-local state.of s is the m-tuple obtained by taking the n-tuple s

and simply removing the components that do not represent the contents of a place in

X. More formally, let x be an injection from the set {1,2,.... m} into the set {1,2,..., n}

(m < n) such that x{i) < x(j) whenever i < j (such x can be placed in a one-to-one

correspondence with subsets X C P by defining X = {px(i),px(2)i •••Px(m)}); a n ( i s be a

state in S. Then the X-local state of s is the m-tuple (s(px^), s(px^)): •••)s(Px(?n)))-

If s' is an X-local state of any s G S, then s is said to be a global state corresponding

to the local state s'. If there is no such s in the set of states obtained in a state-space

exploration of the abstract Petri net 9, then s' is called a false local state. A local state

is simply an |X|-tuple which is an X-local state of a state s G S for some X C P.

Let C C Tiimse be a subset of the set of base-actions in T; then a.C'-local state of 7 is

an X-local state of 7 with X = \JaeC Outa U Ina i.e. it is the local state restricted to

those places that are an input/ output place of some a G C.
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5.2 The Problem and Existing Techniques.

The main result of this Chapter is geared towards systems that have a particular de-

composition into components. In these systems one component, which we will call C\,

is the only one whose behaviour we are interested in. Direct communication between

this component and the rest of the system, C2, is prohibited, and all such communi-

cations must be passed through what we will call the interface component, denoted / .

Usually, C\ and C2 are "larger" than / in terms of numbers of actions; indeed, in such

systems, the interface-level often appears as a thin strip of actions sandwiched between

two large sub-Petri nets representing C\ and C2 (see Figure 5.1). Since C\ and C2 may

not communicate directly, the type of system we will concentrate on looks, schemati-

cally, like that in Figure 5.1. The arrows indicate informational flow [so C\ and C2 may

"communicate" only via / ] .

FIGURE 5.1: Schematic of the type of situation we will concentrate on in this section.

As mentioned, it is theoretically possible to derive large reductions in the state-space

from considering just the behaviour of the required component in isolation from the

others, and we describe now the problem that occurs when attempting to do this. "Iso-

lating" a component in a Petri net is a very convenient operation: one simply forms a

new Petri net by removing all actions not in the component one wishes to investigate,

and removing all places except for ones accessed only by the actions in our desired com-

ponent, and explores this new net. The "dummy" example of Figure 5.2 shows this [the

component C2 is ignored for the sake of simplicity].

Perhaps counter-intuitively, this Petri net contains at least as many behaviours from

the point of view of component C\ as the original . This is because the Petri net

semantics tells us that removing input and output arcs from an action in a Petri net

merely removes restrictions on whether that action may fire. To illustrate why this is a

"problem, consider a flawed system where C\ is a component that takes requests from C2

using / as an intermediary (see Figure 5.3), and which has undefined behaviour if called

upon to process a certain pair of requests (say, reqjx and reqJb) consecutively. Assume

that the system has been designed in such a way that / and C2 ensure that C\ is never
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Isolate

FIGURE 5.2: "Isolating" a component.

handed this pair of requests . Performing the severing step to isolate C\ as shown in

Figure 5.3, we see that C\ can choose to receive, at any state, any possible request (the

severed C\ is said to operate in a maximal environment[Kupferman and Vardi (1997)]),

and so can end up trying to process sequences of requests that were forbidden in the full

system, including the pair reqjx and req-b that can lead to undefined behaviour. We

call such computations that occur in the Petri net formed by isolating C\ and which

have no counterpart in the full Petri net false computations, and the local states that

they can lead to are often false local states . It is not unusual for the lack of restrictions

and regulations of data provided to G\ to create a great many such false local states,

leading to a phenomenon which might be termed the local state-space explosion, where

the number of local states explodes due to proliferation of false local states created due

to the lack of external regulation incurred when we isolate C\ from the rest of the system.

(Process
Request)

kej-eq |«

Isolate Q
, t -1
I (Process j
i Request) j

recv req

FIGURE 5.3: A problem with isolating components.

We are also potentially faced with a problem with finding the possible bindings for

the req variable associated with the base-action (see Definition 4.6) recvjreq which is

necessary for finding the set of enabled actions at a state - if the domain of req is finite,

then it is not too difficult - we must simply assign all possible values in the domain to

req (which will likely be many more values that could be assigned if recvjreq's input
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place had not been removed - this is the main source of the local state-space explosion).

If, however, it is infinite, then we will likely be unable to proceed as we cannot in general

know if we have considered all possible bindings to req with which recvjreq may fire,

and so cannot generate the full set of enabled actions at the given state.

The problems with isolation denned here - particularly the creation of false computa-

tions and the resulting false local states - are called the environment problem [McMillan

(1997, 2000)]. The environment problem occurs in any situation where we remove the

corrective influence of the rest of a system from a component of the system, and is

not restricted to Petri nets. There are two main ways of dealing with the environ-

ment problem: the assume-guarantee^'nueli (1985); Jones (1983)] technique, and the

compositional minimisation[de Alfaro and Henzinger (2001); M. Chiodo et al. (1992)]

technique.

The assume-guarantee technique attempts to solve the problem of the isolated C\ com-

ponent acting in ways not permissible in the full system by using assumptions about

how the rest of the system (/ plus C2, in our example) behaves when verifying properties

about C\ e.g. " / and C2 will never submit requests reqjx and reqJb to C\ consecutively".

This can reduce some of the aberrant behaviours that would otherwise be seen after C\

has been isolated. Having then verified properties of C\ under the given assumptions,

we must then prove that the assumptions do indeed hold (e.g. prove that / and C2

do indeed never submit the problematic pair of requests). The main drawbacks of the

assume-guarantee technique are that these initial assumptions about how the rest of the

system behaves must often be specified manually by an engineer, usually after several

rounds of trial and error verification of the isolated C\ i.e. the verification is performed

and, if any behaviours of the isolated C\ are observed that are judged to be impossible

in the full system, then assumptions necessary to prevent these behaviours are added to

the list of assumptions about the rest of the system, and the verification is attempted

again.

Another drawback is the possibility for circular reasoning when verifying that our as-

sumptions about the rest of the system (again, this corresponds t o / plus C2 in our

example) are indeed correct: verifying the full, composed system negates the point

of performing compositional verification so we must make assumptions, when verify-

ing that / plus C2, about the behaviour'of C\, which can leads to tricky exercises in

reasoning[Barringer and Giannakopoulou (2003)]. Also, we aim to construct the local

behaviour of C\ exactly, and it is not clear that the level of detail about I and Ci re-

quired to achieve this can be captured by a list of assumptions. These drawbacks make

the assume-guarantee approach a poor fit for the problem at hand, so we shall expand

on the technique no further.

Compositional minimsation takes a, different approach; here, the rest of the system /

plus C<i is replaced by a surrogate component that behaves, from the point of view
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of C\, exactly as / plus C2 does. If this surrogate component is smaller than the

original / plus Ci • (as is quite likely, as it must model only the behaviours which are

directly visible to C\. and no others), then great gains in efficiency can be made during

the verification of C\. This, of course, leaves open the question of how this surrogate

component can be created in the first place (although it appears, in general, to be

easier to automate than the assume-guarantee technique[de la Riva and Tuya (2006)])

and it is this question which will explore here. The main result of this chapter can be

summarised as a compositional minimisation approach to the environment problem for a

wide class of Petri nets that uses partial order reduction and abstracting homomorphisms

to create a surrogate component that represents, from the point of view of Ci, exactly

the behaviour of / plus C2, enabling the full behaviour of the C\ to be constructed with

no false computations or false local-states created.

5.2.1 Statement and Proof of Result.

In this section, we formalise some key concepts and state and prove our result. We begin

by formalising the separation of a net into components C\. C2 and / such that C\ and

C2 may not communicate directly. We assume throughout that !P is an instance of an

Abstract Petri net with set of base-actions £{,0.se (a Petri net as per the definitions in

Chapter 4 will do, as previously noted). Let Ly be the language represented by this

automaton.

Definition 5.4. Let S&ase be the set of base-actions of 3>. Then a C\ — I — C2 com,po-

nentisation of 7 is a split of £(,ase into three subsets c\, 02 and I such that:

• Ci, C2 and I are mutually disjoint;

• Ci U c2 U / — T,base: and

• Va 6 ci, b G C2, (Outa U Ina) n (outj, U Irib) = q>.

The last condition is the interpretation of the requirement that C\ and C2 may not

communicate directly: we enforce this by stipulating that no action in c\ may share an

input or output place with any action in c% (and vice-versa). Note that since c\ LJC2U/ =

^base-, we have (using the notation of Definition 5.1) that cjLJ^U Iv = ££ose. The key

point of the result of this section is that given this restriction on c\ and C2, any action

in c\ is independent of any action in d-;, so that the firing of any action in c\ at a state s

cannot affect whether any action in c\ may fire at the reached state. As a consequence,

whether an action in c\ may fire is determined solely by which actions in c\ U Iv have

fired previously. We exploit this fact by constructing just the interface level behaviour

of 7 (defined shortly) and subsequently using this behaviour to decide when a given

action a G c\ may fire, without any reference to actions in c\. This forms the "surrogate

component" mentioned in the description of compositional minimisation. .
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Definition 5.5. Let £ be an input alphabet, I C E . Then the mapping

hx : £ -> £ U

is denned by
a) = a V a G l

a) = e Va<£X

This mapping simply preserves actions in X but hides all others.

Definition 5.6. Let £ be an input alphabet, X C £, hx be the mapping as defined

in Definition 5.5. Then we denote the minimal automaton representing the language

hx{Ly) by Ax- We write Lx as an abbreviation for hx(Ly), the language accepted by

Ax-

Definition 5.7. The interface-level behaviour of a Petri net 3> representing language

Ly with a C\ — I — C2 componentisation of its base-actions is the language hjv (Ly) i.e.

the language obtained after hiding all actions in words of Ly that are not in Iv.

We employ the partial-order reduction technique [St James and Ultes-Nitsche (2001)

and Chapter 3 of this thesis] (or perhaps the successor to this result, presented in

Appendix B) in order to find the automaton Aj-»- from Definitions 5.6 and 5.7, this

represents the behaviour of the component / . We then form a new Petri net by "sever-

ing" C2 from / and C\ by erasing all actions in C2 and all places connected to actions

in C2 and all arcs connected with these places (i.e. the operation is very similar to that

performed in Figure 5.2)2. We then use the earlier mentioned fact that the enablement

of actions in c\ at a state s depend only on which actions in c\ and I" have previously

fired in order to construct an automaton A1*'01 that we will eventually prove represents

the language LCV\JIV, from which it is a simple matter to abstract the full behaviour of

the C\ component of "?, without having to construct the full behaviour of ? first.

Definition 5.8. Let A be any automaton, with transitions labelled by elements from

some alphabet £. If the word w G £* may be followed from some state s of A, reaching

the state s' of A, then we write:

succ(s, w) = s'.

Definition 5.9. We set P~^C2 = P-U a 6 C 2 {Outa U Ina) (so P^P~~C2 •- UaGC2 (Outa U Ina)).

P^°2 corresponds to the set of places that cannot be directly affected by the firing of

any action in c\ .
2Note that many base-actions in / will now have "missing" input places, and so it seems that we run

the risk of creating false computations and states. We stipulate that the automaton representing the
behaviour of / must contain information about variable bindings precisely in order to circumvent the
"binding problem" described earlier, and will show this information is sufficient to ensure that no false
computations (and so no false states) are created.
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Definition 5.10. Construction of A1"01 is as follows. Each state in the automaton will

be a pair (s,!s), with s e S and "s € Ajv. The states s £ S are a "restricted" Petri Net

state in the sense that we only care about the contents' of a subset P^C2 C P of the

places; the contents of the places P — P^C2 C P may be assumed to be always empty,

or set to some arbitrary value; they will play no part in the construction of .47"01. Also,

the base-actions in ci are completely ignored during construction.

The initial state of A^01 is (so,so), where SQ,~S~Q are the initial states of Ay and Aiv,

respectively.

The construction proceeds as follows. The action a G X may fire at the state (s,s) if

and only if both of the following conditions hold:-

Cl) guardatPi(s(pi)) is true for each pi £ (Outa U Ina) fl P^°2; and

•C2) if a £ Iv, then a is enabled at s in Ap>.

The state (s',~s') reached by following this transition (if enabled) from (s, s) is defined

by:-
s'(p) = changeatP(s{p)) if p £ (Outa U Ina) n P^2

s'(p) = s(p) otherwise

and _
s' = s iia^T

s' = siicc(~s, a) otherwise

Two.states (s, s) and (s',~s') in AP'C1 are equivalent if and only if s ~p-.C2 s' and s = ?'.

Let the language represented by this automaton be Z/"Cl.

Having now denned our terms and the construction of the automaton AIVci, we now

begin to prove that even though the construction process of A1"01 involves removing

arcs and places from actions in I that could lead to false states and computations as

described earlier, the language Lr"Cl represented by AlLci is in fact equal to the desired

behaviour Lcv,jjv (and no such false states and computations are created).

Definition 5.11. Let s, s' £ S, and let X C P. Then we say that

s ~x s' if and only if s(p) = s'(p)Vp £ X

Such a pair s, s' are said to be X-equivalent .

Intuitively, two states are X-equivalent if and only if the contents of each place in X for

each state are equal - the contents of places not in X are ignored in the comparison.

Lemma 5.12 (if two states are "X-equivalent" (for some X C P), then they are still

X-equivalent after they both follow the same action). Let X C P be any subset of the
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set of places, s and s' be two states in S .such that s ~ x s' (Definition 5.11). Let a £ £

be any action that is enabled at both s and s'. Then succ{s,a) ~ x succ(s',a).

Proof. If suffices to show that succ(s,a)(p) = succ(s', a)(p)\/p £ X. Let p £ l ; there

are two cases:

Case i) p £ Outa U Ina.

Then succ(s,a)(p) = changea^p(s(p)) — changea^p(.s'(p)) = succ(s',a)(p).

Case ii) p £ Outa U Ina

Then succ(s,a)(p) = s(p) = s'(p) = succ(s',o)(p). D

Lemma 5.13 (actions in c\ do not affect local states, of C2). Let s £ S. Then if a £ c\

is enabled at s, leading to s'. then s ~p—p^c2 s'

Proof. P — P^°2 = Utec2(OuttU Int). By assumption, -

Va £ ci, b £ c2, (Out a U 7na) n (Out6 U 7nb) = <j)

By rules of construction, s' differs from s only in the places in (Outalllna). The

previous two equations taken together imply that (Outa U Ina) C P~*C2. Thus s' differs

from s in no places in P — P"°2; i.e. s ~p_p-c2 s'. •

Corollary 5.14 (words in (c\Y do not affect local states of C2.). 7ei s £ S1. 77ien i/

a £ (ci)* can 6e followed from s, leading to s', then s ~p-p-"^ s'

Proof. Induction on \w\, using Lemma 5.13. . •

Lemma 5.15. Let s £ S. Then if b £ cV> is enabled at s. leading to s'. then s ^p^c2 s'

Proof. Mirrors proof of Lemma 5.13. •

Corollary 5.16. Let s £ S. Then ifbE (c^)* can be followed from s, leading to s', then

S ^~ip--C2 S .

Proof. Mirrors proof of Corollary 5.14. •

Lemma 5.17 (firing of C\ actions is not dependent on the local state of C2). If s ~p-c2

s' then a 6 c\ is enabled at s <4> a £ c\ is enabled at s'.

Proof. In a similar manner to the proof of Lemma 5.12, we deduce that

Outa U Ina C F^C2.Thus, s(pi) = s'{pi)Mpi £ Outa U Ina [since s ~P-C 2 S'}.
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Therefore, guarda^Pi(s{pi)) = guarda>Pi(s'{pi))\/pi S OutaUlna C P^C2, since s ~p-c2 s'.

Thus, a G c\ is enabled at s « a £ c\ is enabled at s'; hence result. •

Corollary 5.18. If s ~ p -c2 s' then

i) w G (c\y may be followed from s <=$> w <E (c\y may be followed from s'; and

ii) succ(s, w) ~p^c2 succ(s', w)

Proof. Induction on length of \w\, coupled with results of Lemmas 5.12&5.17. •

Lemma 5.19. If s ~p_p^c.2.s' then b G c\ is enabled at s 44> 6 6 c\ is enabled at s'.

Proof. Mirrors that of Lemma 5.17. •

Corollary 5.20. If s ~p_p-=2 s' then

i) w G (c*j)* may be followed from s •<=? w G (c^)* may be followed, from s'; and

ii) succ(s, w) ~p_p-"C2 succ(s', ID)

Proo/. Mirrors that of Corollary 5.18. •

Lemma 5.21 (actions in c\ and c\ are independent). Let wabw' G Ly be any action in

Ly such that a G c\ and b G c^. T/ien

ij wbaw' G ij>;

M^ succ(so,wabw') = succ(so.wbaw').

Proof. We prove i) & ii) together.

Let s be the state reached by following w. Now, succ(s,a) ~p-.p-*c2 s by Lemma 5.12.

Since 6 is enabled at succ(s,a) [because wab can be read from so], b is enabled at s [by

Lemma 5.17]. Thus, wb G Ly.

Now, succ(s, b) ~p_p-q2 s by Lemma 5.15. Thus, a is enabled at succ(srb) = sw,cc(so, tub).

So wba G Ly. Now

succ(s,b) ~p~.p^2 succ(s, ba) by Lemma 5.13 (5.1)

succ(s, a) ~p_p-c2 s by Lemma 5.13 (5-2)

sttcc(s,a6) <̂ p__p-c2 succ(s, 6) by Lemma 5.12 and 5.2 (5.3)
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Eliminating succ(s,b) from (5.3) and (5.1) gives that

succ(s, ab) ^p^p-c2 succ(s, ba) y (5.4)

Now,

succ(s.a) ~p^c2 succ(s,ab) by Lemma 5.15 (5.5)

succ(s,b) ~p-"=2 s by Lemma 5.15 (5-6)

succ(s,ba) ~p^c2 succ(s, a) by Lemmas 5.12 and 5.2 (5.7)

Eliminating succ(s. a) from (5.7) and (5.5) gives that

succ(s, ab) ~p^c2 succ(s, ba,) (5-8)

Combining (5.4) and (5.8) gives that

succ(s, ab) — succ(s, ba)

Thus, w' is readable from succ(s, ab) if and only if w' is readable from succ(s, ba) and

moreover, we reach the same state either way. Hence i) and ii) hold. •

Lemma 5.22 (separating words into C\ and Ci "segments".). If ww'w" G Ly, where

w' G (clUc%)*. then

i) there is a word wxyw" 6 Lj> where x G (c\;)* and y G (tfj)*; and

ii) SUCC{SQ,WW'w") = succ(so,wxyw").

Proof. We may transform ww'w" into wxyw" by repeatedly swapping pairs Xi G c\ and

yi G cJ) in w' whenever j/j appears directly before X{. The results i) & ii) hold at each

step by Lemma 5.19. • D

Lemma 5.23 (a computation in the full system, with C2 actions hidden, is represented in

our construction; i.e. "faithfulness" of the construction w.r.t C\ holds in one direction.).

IfwG Lj>, then

Furthermore, let s G S be the state of Ay reached by following w, (s',s') the state

of A1"01 reached by following hc^\jlv(w). Then

ii) s ~p-c2 s' and

Hi) s' is the state of Aj-» reached by following hjv(w) & L l.
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Proof. First, a little sub-lemma. Parts ii) and iii) hold for w G Ly if and only if they

hold for wy E Ly, where y E (c^)*. Briefly, this is a consequence of the fact that

succ(so,w) ~p-c2 succ(so,y) [by Corollary 5.16] and that /icju/"(^) — hc^ul"(wy) and

/i/«(zu) = hiv(wy).

We now move to the main proof. Proof is by induction on m = \w\.

Proof for m = 0;

We must have w = e and so /icju/"(^) = hjv(w) = e. The result is immediate.

Assume true for all words of length m — 1. If w E (C^) , then result is immediate from

m = 0 case and the sub-lemma.

If w = oia2...am, with am E d;, then again result holds by induction and sub-lemma.

Otherwise, am £ c^U Iv.

Let s be the state reached by following aia2...am_i, (s',s') the state in ^./Uci reached

by following /iC5lu/1'(oia2"-am-i)- Then s' ~p-c2 s and succ(so>^/"(ai02"-am-i)) = ~s'

by induction hypothesis.

If am G Cj", then am is enabled at (s',s') by Lemma 5.15, the fact that s' ~p-<--2 s, and

the rules of construction of AIX'C1, so i) holds [since /?.c«u/u(aia2...am_i)am = hc^uTv{w)].

Let (s",~s') = succ((s',~s') ,am) in .4/ 'Cl [second component is still l' since am ^ J11],

s'" = succ(s,am) in yly. Then by Lemma 5.12 and rules of construction of A Cl,

s" ~p-c2 's'", so ii) holds. Since hiv(w) = hiv{aia2...am-{), iii) also holds.

Finally, we must consider the case where am G Iv. As s' ~p-=2 s and am is enabled

at s, we see that condition Cl) is fulfilled. Now hp>{w) = hiv(a\a2..-am-{)hjv(am) =

h[v(o,ia2...am_i)am; i.e. hjv(a\a,2---am-i)am G L/-". Thus am is enabled at s' in Aiv, so

C2) is fulfilled. Therefore, i) holds. Let (s",s") be the state of .47"C1 reached by firing

am; from rules of construction of AIVci, ?" is indeed the state of Aj-» reached by following

hjv(w), so iii) holds. Also, since s' ~p-c2 s, we see from Lemma 5.12 that s" ~p-<=2 s'",

where s'" = succ(s, am) in Ay. so ii) holds.

Hence result. •

Corollary 5.24.

Proof. Lemma 5.23 tells us that for all w E Ly, hc-»ulv(w) E L1Vci. Hence result. •

We now come to the most important part of the proof. Recall that during the process

of "severing" C2 from / and C\ several base-actions of / have had some of their input/

output places removed; in the Petri net framework, this equates to removing restrictions
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on the firing conditions of these actions. How, then, can we be sure that these actions

do not fire at an inappropriate time? That is, how do we know that an action in Ju

can fire at a certain point in our.; construction only if it may fire at a corresponding

point in the full behaviour (remember, at the corresponding point in the full behaviour,

the action may be disabled by some of its input/output places that are not present in

the reduced Petri net we are using)? To put it in yet another way, how do we make

sure that the construction does not give rise to false states or computations? This is a

seemingly serious problem, for we are entirely ignoring the whole component of C<i in

our construction, and this component plays a major part in determining whether actioris

in Iv may fire.

We show now that, perhaps surprisingly, we are fully justified in stating that these

actions never fire at "inappropriate" times during our construction.

Lemma 5.25 (the construction is no more expressive than the full behaviour; that is,

"faithfulness" w.r.t C\ holds.in the other direction.). Ifw £ Z/"Cl, then w £ I^u/"-

Proof. If w fc LIV<?1. then w £ (c" U Iv)*. The word w may be written as

W = XiI\X2h—XnInXn+l

and hjv{u>) may be written as Iih-.Jn, where in both cases,n > 0, /,; £ / ' ; , x, £ (cV)*.

By construction of A l,

hiv(w)ehIv(L9) • (5.9)

Therefore, 3w' £ L7"C1 such that hiv(w') = I\l2...In- We may write w' in the form

, w' = W\IiW2h--WnInWn+l

where wi £ {c\ U c\)*. By an obvious extension of Lemma 5.22, there is a word

w" = x1yilix2y2h---xnynlnxn+iyn+i s Ly

where h £ F, Xi £ (c?)':, Vi £ (c^)*.

We claim now that in fact the word

w = xiyiIiX2y2l2-—xnynInXn+l is m Ly. Proof proceeds as follows.

Let TO > 0. Then we claim that:-

i) xiyilixiy2h--xmymlm e Ly.

Let s' be the state in Aj> reached by following
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Let s be the state in Aj> reached by following

Let (si,£) be the state in Alv°l reached by following

Then

ii) s ~p-.e2 si; and

iii) s ~p-p^2 s'.

Proof is byt,induction on m. The m = 0 case corresponds to the words above all being

equal to e, and the result is immediate. So assume true for m, and try to prove for

m + 1.

Note that since xm+i is enabled at (si,s) [since xiIiX2l2---xmImxm+i S Z/"C1], and

si ~p-c2 s by hypothesis, then xm+i is enabled at s in Aj>. by Corollary 5.18i).

Let(s2,s) = succ({si,~s),xm+]). Then

-P-^2 s2 (5.10)

s' by hypothesis

(5.11)

by Corollary 5.18ii) and rules of construction of AIUci.

Also, s" — succ(s,xm+i) ~p_p-=2 s by Corollary 5.14, and s ~

and s' ~p-p-^c2 succ(s',xm+1) by Corollary 5.14 again, so that

SUCC{s,Xm+i) succ(s',

Therefore, since ym+i is followable from succ(s'', x"m+l), and using Corollary 5.20ii), we

see that ym +i is followable from succ(s,xm+i): i.e., so.far we know that ccm+ij/m+i is

followable from s.

Now

succ(s, xm+rym+i) ~ P ^ 2 -succ(s, xm+i)

by Corollary 5.16. From (5.11), and using Corollary 5.20ii),

succ{s: xm+iym+{) ~P_-P-C2 succ(s', xm+lym+\)

Also, using (5.12) and (5.10),

SUCc(s,Xm+iym+l) ~P~C2 SUCc(s,Xm+\) ~p-c2 S2

We must now show that Im+i is enabled at succ(s,.xm+iym+i).

(5.12)

(5.13)

(5.14)
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Firstly, note that Im+i is enabled at (s2,«) in A1"01 by the fact that (s2,s) is reached

by following xili...xmlmxm+i in A1"01, and xih...xmImXm+iIm+i may be followed in

AI%Cl (it is a prefix of w). By the rules of construction of A1"01, we must have that

guardImtP(s2(p)) = true Vp G {OutIrn U /n/m)-n P"C2 (5.15)

From (5.14), we deduce that

guardjmtP (succ{s, xm+iym+i)(p)) = true Vp G (Outim U /n/m) n P"C2 (5.16)

Since / m is enabled at succ(s/,a;rn+1ym+i), we must have that

guardIm!P \succ(s',x"m+lym+i){j>)] = i rue Vp G (Ou</m U InIm)

In particular,

guardIm:P (succ(s', x"m+lym+1)(p)) = true Vp G (Oitf/m U /n / m ) n (P - P^C2) (5.17)

In light of (5.13), (5.16) becomes

guardImtP (succ(s, xm+1ym+1)(p)) = true Vp G (OutIm U /n / m ) n (P - P ^ 2 ) (5.18)

Combining (5.15) and (5.17) to get

guardImtP (succ{s, xm+iym+i)(p)) = true Vp G {OutIm U /n/m)

we see that /m+i is indeed enabled at 6-ucc(s,xm+ij/m+i).. Thus part i) of the induc-

tion hypothesis holds. That succ(s, xm+\ym+\Im+\) ~p-p-c2 succ(s',xm+lym+\Im+i),

[part ii) of induction hypothesis] and succ(s,xm+iym+iIm+\) ~p~--.2 s3 where (s3,s') =

succ((s'2,'s) , /m+i) [part iii) of induction hypothesis] hold is a consequence of (5.13) and

(5.14) respectively, coupled with Lemma 5.12.

So by induction, the word x\y\I\X2yil2----XnyrJ-n is in L<$. It is now a simple matter

to show that x\y\I\Xiyili-—xnynInxn+\ = w is in Ly. Thus h(w)cvujv G Lc'1'u/t'- But

h{w)cv\jiv = w'i Lemma proved. •

Theorem 5.26 (Main result for this section).

Proof. Immediate from Corollary 5.16 and Lemma 5.21. •

It is now a simple matter to "abstract away" the unwanted actions in /", leaving just

the required behaviour Lcv.
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5.2.2 Improving the Result

In the introduction to this result, we implied that we needed to construct the entire

interface-level (or "core"-) behaviour of the system in order to construct the behaviour

of C\ & C2, and that we were currently restricted to having just two components beside

the interface-level one. A quick glance at the mechanics of the proof, however, shows

that the only restriction on the set of actions C2 is that they are independent of all

actions in c\. Therefore, we see that in order to construct the behaviour of C\ we may

in fact set / to be just .the set of actions not in c\ but dependent on actions in ci, and ci

to be every other action, even if the system has the form of more than two components

accessing the central, interface-level "hub"; the diagram in Figure 5.4 may help to clarify

this.

Component C2 j

Component C,

Actions
"dependent" on
actions in Cj - i.e.

TZI

_Multiple
Components

_Central, "core"
component

FIGURE 5.4: The result works for more complex systems than originally implied

Thus, the set / of non-hidden actions is much smaller than we implied (so the partial-

order reduction should be correspondingly more effective) and we are not in fact re-

stricted to a 3-component system after all. Note that we may construct the behaviours

of several components using just one application of the partial-order reduction by setting

/ to be the set of actions dependent on actions in any of the required components by

symmetry. We may then use this compositional verification result with the resulting

automaton to construct the behaviours of the desired components in turn.

We now deal with one obvious objection to the usefulness of the result. Recall that

we are constructing the full behaviour of the component C\, LC1 — hCl (CP) by first

constructing an /(./-compatible partial-order reduced version of Ly and then using this

to construct an automaton AIVci from which LCl can be extracted. This raises the

question: would it not be easier to simply construct hCl by means of an hci-compatible

partial-order reduced version of Ly? This is a valid objection if the construction of an

hCl-compatible partial-order reduced version of Ly was more efficient (i.e. contained less

states) than a hi -compatible partial-order reduced version. However, the assumptions

we have made for this scenario (that / was assumed to be a small interface between the

larger components C\ and C^-, coupled with the improvements to the results presented
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in the last section that means we can get away with a smaller / than we had thought)

actually make it much more likely that the hj -compatible partial-order reduced version

will be smaller than the hCl-compatible partial-order reduced version of Ly, intuitively

because there will be a much smaller set of non-hidden actions in the former case.

Recall that an ^-compatible partial-order reduction is a standard partial-order reduction

with some additional constraints on when two actions a, h G S axe independent - we must

have that h(ab) = h(ba), which implies that one or both of a and b are hidden by h. or

they are both mapped to the same non-hidden image. With a mapping of the form in

Definition 5.5 which hides all actions not in X but which is the identity on all actions in

X, two distinct actions a, b G X can never be /ix-compatibly independent. Since partial-

order reduction gives better results the fuller the independence relation, we would want,

for an /incompatible partial-order reduction of a language, the set X to be as small as

possible. As per our assumption, the set X = / will be smaller than either of the sets

X = Ci and X = C2.

Another reason why one would use this result instead of directly using an hci -compatible

partial-order reduction is that we may want to later construct the behaviour hC2. With

our result, this can be easily and efficiently created from the automaton hjv we used to

construct /iC] using a symmetry argument. Without the result presented in this Chapter,

we would have to do yet another expensive partial-order reduction of Lj>, this time with

the encumberance of /^-compatibility.

5.3 Summary

In this chapter, we have presented a specific problem: given a Petri-net specified system

that can be decomposed into three components labelled C\, Ci and / , where C\ and

C2 are assumed not to affect each other directly (and where it is further assumed,

for reasons that will be re-iterated shortly, that | / | < \C\\ and | / | < IC2I), efficiently

construct the full behaviour and local states of C\. A "component" is denned as a subset

of base-actions of the Petri net, and from the statement of the problem, / and C2 can be

deduced automatically when we have made our choice of C\. One approach is to try to

isolate C\ from C2 and attempt to explore its local state-space by paying as little heed to

/ and C2 as possible, with a view to reducing the total number of global states explored

by reducing the number of interleaved local states of C\ and C2 as much as possible. In

attempting this, however, we run into the environment problem, where restrictions on

which actions of C\ can fire at a given point (and hence, which local states the isolated

C\ component may enter) are removed by the isolation process, leading to local states

and behaviours of the isolated C\ component that have no counterpart in the full system.

By taking a compositional minimisation approach to tackling the enviroment problem,

we remedy this by constructing an automaton which acts as a representative of I + C2,
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behaving exactly like it from the point of view of C\. This representative is created

by using an ^/-compatible partial-order reduction of the full system, using either the

algorithm of Chapter 3 or possibly, if it proves more efficient in general, the algorithm

of Appendix B. To simplify the definitions, algorithms and proofs, as well as to ensure

that the result is not tied to any particular dialect of Petri nets, abstract Petri nets were

introduced. These merely remove some dialect-specific features of Petri nets and extract-

some common features.

Having presented the algorithm for constructing the full behaviour and local state-space

of Ci, we then showed that the result not only enables us to construct the full behaviour

of C\, but also that of Ci by symmetry, both based on the same /i/-compatible partial-

order reduction of the full system. Further, the definition of "Ci" was revealed to

be somewhat arbitrary: "Ci" may encompass several components of the system, as

long as we choose / and Ci so that Ci does not affect any of the components in C\.

Thus, the result allows us to reconstruct the full behaviours and state-spaces of multiple

components, all from the same hi -compatible partial-order reduction.

There appears to be a much simpler method of achieving our original goal of constructing

the full behaviour of C\ than this rather circuitous approach, however: simply comput-

ing the hd -compatible partial order reduction of the full system would suffice. If this

simple approach is just as effective as the one we have developed in this chapter, it could

undermine the usefulness of this result. We argue, however, that the assumption that

|/ | < |Ci| would imply that the ^/-compatible partial order reduction would be much

more efficient to construct than the hct-compatible one. Recall that the effectiveness of

partial-order reduction is dependent on the number of pairs of actions that are mutually

independent: generally, having a large proportion of pairs of actions being independent

will yield large reductions in the size of the state-space, whereas having a small propor-

tion will give lesser reductions. Since an fox-compatible partial order reduction requires

all actions with base-action X to be mutually dependent, it follows that we would wish

X to be smaller. The additional benefit of being able to construct Ci from the same

partial-order reduction is another advantage of the result presented in this section over

this alternate approach.
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Chapter 6

A Practical Example - The

Sliding Windows Protocol

6.1 Overview

In this chapter,we present a brief "proof of concept" for the result of Theorem 3.6 to

show that a useful level of state-space reduction can be achieved with partial-order

reduction, even with the restriction of /i-compatibility imposed. We would like to stress

that the prototype tool we will use is still very preliminary, and several of the required

algorithms are not yet fully implemented, in particular, the generalised check for weak

continuation-closure (see Appendix A), minimisation of automata, and the check for

satisfaction within fairness (see Appendix D). Also, the implementation of the stubborn

set construction algorithm is extremely primitive.

The system we will be verifying is a simple variant of the Sliding Windows Protocol

[Holzmann (1991)] (in particular, it is a modification of the variant known as the Go-

Back-n Protocol, expressed in the Petri Net formalism presented in Chapter 4). Although

the stubborn set implementation is not at all advanced, it does include the queue-based

optimisations presented in the same Chapter.

We will present, for a number of configurations of our Sliding Windows Protocol im-

plementation, the number of states in the state-space of the full system, the number

of states resulting from an ordinary partial-order reduction of the system and then, to

see how much difference ^.-compatibility makes to the reduction obtained from partial-

order reduction, the number of states resulting from a partial-order reduction of the

system with three different approaches to incorporating /i-compatibility, including that

suggested by the result of Theorem 3.6.

94
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6.2 The Sliding Windows Protocol

The Sliding Windows Protocol allows for sequences of messages to be sent and subse-

quently received, in the correct order, over a lossy channel that may lose, duplicate or

re-order messages sent over it. It affords greater efficiency in terms of utilisation of avail-

able bandwidth than the less sophisticated method of waiting for an acknowledgement

of the previous sent message before sending the next (the Stop-and- Wait Protcol) by

allowing more messages to be in transit between acknowledgement receipts. The basic

method is as follows; we will describe only the Go-Back-n variant.

The sender maintains a "window" consisting of a consecutive sequence of frames, num-

bered between frameBegin and frameEnd, say. The size of the window (the difference

between frameBegin and frameEnd) is initially zero. Whenever the. current size of the

window is less than the maximum size, WindowSize, the sender may send the next mes-

sage in his queue. Whenever a message is sent, it is tagged with the current value of

frameEnd, and the value of frameEnd is incremented, incidentally increasing the size of

the current window. The following mechanisms described are designed to ensure that

the following conditions hold:' that every message sent by the receiver is tagged with

a frame number; that no two messages share a frame number; and that at any time,

all messages in the current window (that is, all messages tagged 'with a frame between

frameBegin and frameEnd — 1, inclusive) are those messages that have been sent but

which have not yet been acknowledged as having been received by the receiver in the

correct order. Any message and frame pair in the current window is eligible to be re-sent

at the sender's discretion: typically, a message will be re-sent after a certain period has

elapsed since it was last sent, and no acknowledgement has been received.

The receiver maintains a value called ExpectedTag, representing the frame number tagged

onto the next message it expects to receive. This number is initially chosen to correspond

to the frame tag given to the first message the sender will send, and is agreed upon

by sender and receiver upon initiation of the connection. At any time, any message

retrieved by the receiver from the communication channel which is not tagged with the

expected frame number is discarded; this is to ensure that the receiver does not accept a

message that was dispatched after the required message, which would be to tantamount

to receiving the messages sent by the sender in the wrong order.

When a message tagged with the expected frame is received, an acknowledgement is sent

back by the receiver to the sender, consisting of just the frame number. The expected

frame number is then incremented. As with sent messages, the acknowledgements are

not safe from being lost, duplicated or re-ordered while in transit.

When the sender receives an acknowledgement, it is checked to see whether it is equal.to

the current value of frameBegin (and thus corresponds to an acknowledgement of receipt

of the earliest sent message that has not yet been properly acknowledged), and if so, the
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current value of fmmeBegin is incremented (decreasing the size of the current window

and allowing more messages to be sent, and removing the acknowledged messages from

the list of tagged messages that might need to be resent); otherwise, the acknowledge-

ment is simply discarded, as we cannot know for sure that the receiver has received this

message, and received it in its correct place in the sequence of messages sent by the

sender.

The process continues, with the window gradually "sliding" as the values of fmmeBegin

and frameEnd steadily increase (roughly in step with that of ExpectedTag) and the

messages in the current window being resent until they are acknowledged as having been

received in the desired order, until the whole sequence of message has been correctly sent

and received (at which point the window will have zero size, and there will be no more

messages to add to it). '

6.3 Petri Net Specification

Our current Stubborn Set implementation (see Chapter 4) relies on the fact that the

domains of each place (that is, the set of tokens that the place is allowed to contain)

are finite and preferably small, which would not be the case when we are sending large

messages with the protocol just described: with long messages, fram,eBegin, frameEnd

et al would necessarily assume large values, and so the places containing these values

would need correspondingly large domains. Instead, we have opted for a slightly un-

usual variant in which the frameBegin, frameEnd etc values are bounded, and the spec-

ification is designed such that should any of these variables exceed their bounds, they

"wrap-around" back to the value. 1, creating what might be called a "cyclical-window"

protocol1. Now, one of the conditions that the Sliding Windows specification takes.care

to ensure is that no two messages are ever labelled with the same frame number, which

is clearly not the case here, and it so happens that this condition is essential in order to

ensure that the messages are received in the order they are sent, even when the channel

may duplicate and re-order messages sent through it. Thus, this new protocol will not

have the desired properties when sent over a channel that may re-order and duplicate

messages, although, as we will show in this Chapter, it will work if the channel is allowed

only to lose messages.

The Petri Net specification of this protocol is as shown in Figure 6.1. The preamble de-

fines three constants: NumMessageObjects: WindowSize and MaxInQueue, which allows

us to parameterise the protocol. The specification models a sender that sends sequences

of messages drawn from a pool of NumMessageObjects possible messages (each coded

for convenience as a number in the range [1, NumMessageObjects)) in arbitrary order

1 Actually, this restriction is not all that unrealistic as TCP (for example) uses the same approach,
albeit with a much higher upper-bound before "wrapping" occurs.
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and with arbitrary sequence length (in fact, the sender modelled here simply never ter-

minates). The protocol specification has been designed with simplicity in mind and as

such contains shortcuts and omissions: for example, the protocol does not wait until

a certain length of time has passed before a message is resent, as would a "real-life"

specification - a message is instead eligible for re-sending as soon as it is sent i.e., as

is usual in protocol modelling, non-determinism is used to model time-outs. A more

detailed description of the specification follows.

The possible values for a frame number (e.g. the variables frameBegin, frameEnd arid

expectedTag) range from 1 to WindowSize + 1, inclusive. Initially, both frameBegin

and frameEnd are set to the same value (signifying an empty window), which we have

chosen as 1. The preamble defines a pair of "convenience" functions: IncFrame, which

returns the value that the provided frame number would attain if it were incremented

(including "wrapping-around", if necessary), and IsWindowFull, which'tests whether or

not the current window (as defined by the values of frameBegin and frameEnd) is full,

and correspondingly whether any new messages may be sent.

The base-action (see Definition 4.6 and commentary) SendMsg has the following vari-

ables: msg, frameBegin, and frameEnd. If the guard condition (that the current window

is not full) is fulfilled, the tagged message (consisting of the pair (msg, frameEnd)) is

added to the set of tagged messages to be sent over the channel, and the current value

of frameEnd is incremented. The ToSend device is used to simplify the addition of a

"re-sending" mechanism to the protocol, and is purely an implementation detail. The

base-action AddToChannel takes, when the communication channel SendChannel is not

full, a tagged message from the current list of tagged messages to be (re-)sent and

pushes it into the channel, which is modelled by a bounded queue. It also adds the

tagged message to the "re-sendable" set of tagged messages.

RcvSent simulates the retrieval of a tagged message msgAndTag by the receiver from

the SendChannel, or possibly the loss of this tagged message by the channel during

transference, depending on the value of success (true or false; both are possibilities

whenever a message is received). If, and only if, the frame number tagged onto the

message (since tagged messages are of the form {msg, frameNum), this value is equal to

proj (msgAndTag, 2)) is equal to expectedTag and the message was received successfully

(i.e. was not lost in the channel, corresponding to the condition success equals 1), then

an acknowledgement consisting of the frame number tagged onto the received message

is sent, and the value of expectedTag is incremented. Under any other cirumstances, the

retrieved tagged message is discarded.

RcvAck simulates the receipt of an acknowledgement from the receiver (in the form of

the frame number tagged on to the message received). As with RcvSent, there is a

success variable simulating the lossiness of the communication channel. If, and only if,

the retrieval of the acknowledgement is successful and the acknowledged frame matches
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FIGURE 6.1: The Sliding Windows Protocol

the value of frameBegin, then the CanAdvanceFrame flag is set to true.

AdvanceFrame handles the advancement of the start of the window, frameBegin, when

an acknowledgement of receipt of the first message in the window is received. It can

fire if and only if CanAdvanceFrame is true, and if the (unique) message in the current

window tagged with the current value of frameBegin is in the "to (re-)send" list of
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tagged messages; the latter condition is an (admittedly clumsy) means of ensuring that

this successfully received message is not re-sent2.

This describes the basic workings of the' protocol; we now, describe the abstracting

homomorphism that we will use, and which properties it will allow us to decide are

satisfied within fairness by the full behaviour, in conjuction with Theorem 3.6.

The abstraction h : E —> S' U {e} defined one the set S of all possible actions hides all

actions, unless the action a fulfils one of the following conditions:

• the action o has SendMsg as its base-action. In this case, the action is mapped

to "Seridmsg" i.e. the value of the variable msg in the binding of the variables

associated with SendMsg comprising the action a, prefixed by the word "Send";

or

• the action a has RcvSent as its base-action, the value of success in the binding

to the variables associated with RcvSent is true, and the value of the tag is equal

to the value of ExpectedTag; in other words, the conditions for a message to be

successfully received (and subsequently acknowledged). In this case, the action is

mapped to "Rcvmsg" where msg = proj (msgAndTag, 1) i.e. the message part of

the variable msgAndTag, prefixed by the word "Rev".

Thus, the abstract set of actions E' consists of the set of actions labelled

{Rcyl,Rcv2,...,RcvM}

together with the set

{Sendl, Send2,..., SendM}

where M is the number of different messages that can be sent through the system (it is

just equal to the parameter NumMessageObjects, used instead only because it is shorter).

This abstracting homomorphism is sufficient to decide, using the result of Theorem 3.6,

whether the full behaviour encoded by the language L C E* satisfies (within fairness)

the property "whenever a message m is sent, it is eventually received" based only on the

abstract automaton representing the language h(L), computing from the ft-compatible

trace reduction obtained (assuming, of course, that h is WCC on L); it is true if and

only if

h(L) \=WF V

where V is the property expressed in PLTL as
2In the original specification, this was an optional optimisation to avoid having to resend redundant

messages; in this "cyclical" variant, however, it is actually necessary for the protocol to function correctly.
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G(Sendl = » F(Rcvl)) A G(Send2 => F(Rcv2)) A ... A G(SendM = » F(RcvM))

Perhaps more interestingly, we may also verify the property that all messages are received

in the correct order by taking as our property V all sequences w of actions in 2'* for

which, if we ignore the Rev actions to get the subsequence

consisting of all Sendm actions of w, in order of occurrence in w, and then ignore the

Send actions to get the subsequence

RCV&1RCV62RCV63...

of Rev actions in order of occurrence in w, satisfies ai = \ for all i. Although this

property probably cannot be expressed as a PLTL formula, it is not probably too difficult

to construct an algorithm for constructing an automaton representing this property i.e.

an automaton that encodes the language pre(V) C S*. The full behaviour L then

satisfies linearly [Alpern and Schneider (1985)] the property that all messages sent are

received in the correct order if and only if h(L) C pre(P). Informally, this is because

the full behaviour does not satisfy the property if and only if there is a trace w in which

the messages are received in the wrong order. Since the abstracting homomorphism h

preserves all "Send" and "Receive" events, this is true if and only if, in the abstract

trace h(w), the messages are received in the wrong order which, by choice of V, is true

if and only if h(w) <£ V.

6.4 Experimental Results and Commentary

In this section, we present a short series of practical results, summarised in Table 6.1.

The experiment consisted of computing, for a small sample of values for each of NumMessageObjects,

WindowSize and MaxInQueue, the following automata from our example Sliding Win-

dows Protocol system:

• Unreduced: the full state space of the system;

• hNONE: a partial-order reduced version of the system without the encumberance

of ^-compatibility;
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M

2
3
3
3
3
3
3

W

3
2
2
2
2
3
3

Q

2
2
3
4
5
2
3

Unreduced

88260
12670

38675
112186

312423

342256

N/A

h.NONE

30188
4122

11212

29765

74369

116119
452872

/iSOFSEM99

84910
12247

37168
107774

299844

328833

N/A

hVCLOO

44380
6008

19611
55558

116550

157619
678465

/iPODCOl

33627
4664

12128

33075
81504

120925
471774

(W = WindowSize, M = NumMessageObjects, Q = MaxInQueue)

TABLE 6.1: Results of the partial-order reduction on the specification of Figure 6.1

hSOFSEM99: an /i-compatible partial-order reduced version of the system where

actions a and b cannot be independent unless h{a) = h(b), as in [Ultes-Nitsche

(1999)];

hVCLOO: an /i-compatible partial-order reduced version of the system where ac-

tions a and b cannot be independent unless h(ab) = h(ba), and an h-compatible

persistent set .must contain at least one action that is not hidden by h, as in

[Ultes-Nitsche and St James (2000)]; and

hPODCOl: an /i-compatible partial-order reduced version of the system where

actions a and b cannot be independent unless h(ab) = h(ba), and /i-compatible

persistent sets may be completely hidden by h, as in [St James and Ultes-Nitsche

(2001)] and Theorem 3.6 of this thesis.

Of these, the most important figures for assessing the usefulness of Theorem 3.6 are the

full state-space ("Unreduced") size, the ordinary'partial-order reduced ("/iNONE") size,

and the result obtained from an application of Theorem 3.6 ("/iPODCOl"), which to-

gether show how much the imposition of /i-compatibility reduces the reduction obtained.

As we can see, the original attempt at incorporating partial-order reduction (foSOFSEM99

in the table) gives very little in the way of reduction, and so is of almos.t no practical

use. This particular result came as no surprise to us: checking each state in the example

of Figure 3.1 for persistent sets when the independence relation requires actions to have

identical abstract images (the simplicity of that particular system makes finding optimal

persistent sets for a state a simple matter of trial and error) revealed that no non-trivial

persistent sets exist, at any of the 28 states of the system. It seems that the requirement

of identical abstract images is too restrictive in practice to be workable.

The successor to this result, where independent actions need only be compatible under

the abstraction rather than identical but where completely hidden persistent sets were

disallowed (WCL00 in the table), fared much better and appears to be of at least some

practical use. The successor to this result where completely hidden persistent sets are
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now permitted (ftPODCOl in the table; the result of the main theorem of this thesis)

fared better still, although we were surprised at the comparatively small gap between

it and its predecessor, /iVCLOO; this appears to result from the fact that this particular

example system does not have a particularly large scope for completely hidden persistent

sets.

The results, considering the lack of optimisations to the stubborn set algorithm and the

lack of parallelity in the chosen example specification, are quite reasonable. In particular,

the enciimberance of /i-compatibility, which could conceivably have greatly lessened the

reduction, is quite insignificant, at least when using the result of the main theorem of

this thesis. Theorem 3.6. One slightly disappointing observation stems from the results

of increasing the queue size while keeping the other parameters (the number of message

objects and the window size) static; we had hoped that the "queue" optimisations of

Section 4.3.4 would have greatly limited the increase in the state-space under partial-

order reduction (keeping the increase fairly close to zero, in fact) which unfortunately

appears not to have been the case.

Another disappointing observation is that the addition of partial-order methods to the

original technique (involving straight abstraction of the full state-space) could make

the check for weak-continuation closure less efficient. This is because, based on the

example tried here, the partial-order reduction cannot be guaranteed to preserve the

strongly-connectedness of the resulting automaton; that is, even when the automaton

representing L is strongly-connected, it is not necessarily the case that R^ is. Since

strong-connectedness of the automaton representing L is an efficiently checkable (linear

in the size of the automaton being checked) condition that is sufficient to prove that h

is WCC on L, applying paxtial-order reductions means that we may lose this efficient '

means of deciding WCC. However, the result of Appendix A will hopefully lessen the

impact of this significantly.

6.5 Summary

In order to gauge the usefulness of the result of Theorem 3.6, we have specified a variant

of the Sliding Windows Protocol for use with our (currently very primitive) Petri Net

tool. The current stubborn set implementation relies on the domains of the Petri net

being small and finite, so we have chosen to implement a "cyclical windows" protocol.

Our choice of h was such that a couple of interesting properties of the full behaviour could

be deduced based on just the abstract behaviour, although only one of these actually

utilised the full Theorem 3.6. We calculated the full state-space of the system, a partial-

order reduced version ignoring ^.-compatibility, and partial-order reductions using three

different definitions of an /i-compatible persistent set drawn from [Ultes-Nitsche (1999)],

[Ultes-Nitsche and St James (2000)] and [St James and Ultes-Nitsche (2001)].
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The results were not unacceptable, considering the fact that the specification is not

particularly amenable to partial-order reduction. For us, by far the most important

aspect of the results is whether the loss of reduction due to the encumbrance of h-

compatibility is significant as compared to the unencumbered /iNONE: this is impor-

tant as generally, partial-order reduction has been a successful method of state space

reduction, so the usefulness of the result of Theorem 3.6 depends largely on whether

the restriction of h -compatibility greatly hampers the reduction as compared to un-

encumbered partial-order reduction. We see that the original attempt at incorporating

^-compatibility, ftSOFSEM99, predictably hampered the reduction quite severely, ren-

dering this approach almost useless, practically. The successor to this attempt, ft,VCL00,

was dramatically more successful, giving a reduction significantly closer to that achieved

by ft,NONE. The final attempt, utilising the main result of this thesis, did better still,

in general leading to state-spaces only a few percent larger than those resulting from

/iNONE for the larger values of NumMessageObjects, WindowSize and MaxInQueue.

Based on this one example, it seems that /i-compatibility need not significantly hamper

the reduction as compared to an unencumbered partial-order reduction, which is a very

encouraging result.

On the negative side, it was found that partial-order reduction may not preserve the

strong-connectedness of the full state-space of a system, and so by applying partial-

order reduction we may lose an efficient check for WCC, forcing us to rely on the less

efficient and more complex result of Appendix A. Additionally, the hypothesised gains

in reduction from the Queue Emptying Strategy of the Chapter 4 appear to be non-

existent.
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Conclusions

7.1 Summary

Chapter 2 introduced satisfaction of a property by a system within fairness (informally,

a system satisfies a property within fairness if arid only if, no matter what has occurred

in the system so far, the system can still progress in a way that satisfies the property)

and abstracting homomorphisms, which are abstractions performed on the actions of a

concrete system. Previous work has shown that given a system that can be expressed as

a finite LTS and a property expressible as a set of w-words over the set of actions^ in the

abstract system (e.g. a property specified using PLTL), such an abstracting homomor-

phism h can yield smaller, simpler behaviours while preserving sufficient information

to allow us to infer properties satisfied within fairness by the original, concrete system,

provided that h is weakly continuation closed on the concrete system: i.e. a weakly-

continuation-closed abstracting homomorphism preserves satisfaction within fairness.

However, the need to a) construct the abstract behaviour itself and b) to prove that h is

weakly-continuation closed on the concrete behaviour meant that we were still required

to construct the whole (prohibitively large) state-space prior to the abstraction step,

reducing the usefulness of this approach. The focus of this thesis has been on improving

the practicality of this technique by removing this requirement.

Partial-order methods, in particular the persistent set selective search techniques of

Godefroid and Wolper, appeared to be a promising approach for achieving this aim: they

give a means of reducing the state-space of a system by attempting to avoid following as

many redundant interleavings of "independent" actions as possible, which can lead to

significant reduction of the state-spaces of systems. However, the persistent set selective

search needed to be modified to fit with our goals and the modifications had a price: some

interleavings of independent actions that would otherwise be ignored by the persistent set

selective search turn out to be crucially important with respect to preserving satisfaction

within fairness under h, and so the definition of "independence" of actions had to be

104
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restricted to ensure abstraction compatibility with h, and the "sleep-set" optimisation

for reducing the number of transitions (but not states) can no longer, be used. Since

the persistent set selective search achieves its best reduction when there are many pairs

of independent actions, this restriction could negatively impact the reduction obtained

from the persistent set selective search, especially if the abstracting homomorphism does

not hide many actions.

The definitions of abstraction- compatibility went through three progressively less re-

strictive revisions, and Chapter 3 proved the main result of this thesis: that when the

independence relation is modified in line with the least restrictive of these, the resulting

partial-order reduction of the concrete state-space can be used entirely in place of the

concrete state-space that we were previously required to use. So constructing the con-

crete state-space was now shown to be unnecessary, but whether or not the replacement

/i-compatible partial-order reduction was of more practical use still required justification.

Since the persistent set selective search is already well-established, especially when deal-

ing with systems with a large amount of pairs of independent actions, e.g. those com-

posed, of loosely-coupled components, the most important factor to consider when gaug-

ing the practicality of this new method is to what degree the added restrictions of

abstraction compatibility affect the reduction obtained from the persistent set selective

search. A series of experiments were performed to measure this.

Our practical experiments used Petri nets as the means for specifying systems as they

work particularly well with persistent sets. Initial results were not promising: even the

most relaxed definition of abstraction compatibility led to significantly larger persistent

sets compared to those obtained when abstraction compatibility was ignored, leading

to correspondingly larger state-spaces. We explored just why the existing persistent

set algorithms were performing so poorly, and modified the algorithms used to account

for the special complications arising from /incompatibility: essentially, the persistent set

construction algorithms involve choosing actions to add to a candidate persistent set at

each stage, and non-hidden actions must be heavily discriminated against when choosing

these actions. Chapter 4 describes the formulation of Petri nets used for our practical

example; our analysis of the consequences of /i-compatibility on persistent sets; and the

persistent set construction algorithms we eventually used in our practical experiments,

obtained by modifying existing algorithms to take this analysis into account, and also

incorporating the addition of the queues required by the sliding windows example to our

Petri net formulation.

For the practical experiment we constructed a parameterisable implementation of a vari-

ant of the sliding windows protocol using our formulation of Petri nets, and examined

the state-space resulting from: a standard state-space exploration; a standard persistent

set selective search without the restriction of /i-compatibility; and persistent set selective

searches using the three revisions of ^.-compatibility. The full analysis is found.in Chap-
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ter 6 but briefly, it was found that the impact of ̂ -compatibility was quite small, with the

state-spaces being only a few percent larger than those obtained when ^-compatibility

was ignored. So, in this case at least, the full concrete state-space originally required

for constructing the abstraction and deciding whether h was weakly-continuation closed

can indeed be replaced by a significantly smaller reduced version.

On a less positive note, it was found that one of the most useful efficiently checkable

conditions for deciding whether an abstracting homomorphism is weakly continuation-

closed (if the LTS representing the system is strongly-connected, then all abstracting

homomorphisms are weakly continuation-closed on it) might be rendered less useful:

the partial-order reduction does not necessarily preserve strong-connectedness. The less

efficient (but more efficient than previous means of deciding weak continuation-closure

in the general case) result of Appendix A was created, as a fallback.

Chapter 5 presented a result that combined abstraction-compatible partial-order re-

duction and compositional verification, allowing us to construct the full behaviour of

a required set of components without constructing the full behaviour of the system by

using a suitable abstracting homomorphism to create an interface automaton that repre-

sents the behaviour of the full system from the point of view of the required components.

This automaton can then be used in conjunction with an algorithm to circumvent the

environment problem by allowing us to guide the construction of the required compo-

nents even when isolated from the rest of the system. The result presented is not the

most direct way of using abstraction-compatible partial-order reductions to construct

the full behaviour of specific components, but the abstracting homomorphism is chosen

in such a way that it should give better partial-order reduction that the more direct

means. This hypothesis remains to be experimentally justified.

7.2 Related Work

The concept of satisfaction within fairness of a property V by a behaviour B is a re-

phrasing "V is a relative liveness property of B'\ emphasing that the satisfaction of a

property is considered relative to the possible behaviours of the system. Relative liveness

properties were developed in the context of real-time systems in [Henzinger (1992)],

although this work was more focussed on its counterpart, relative safety. Relative liveness

properties have their roots in the concept of machine-closure [Abadi and Lamport (1988,

1990); Alur and Henzinger (1995)], to which they are nearly identical. It was shown in

Appendix E that satisfaction within fairness is more "lenient" than satisfaction under

strong fairness in that if a behaviour satisfies a property under strong fairness, it will

satisfy that property within fairness.

Our main result uses behaviour abstraction as its abstraction approach. This differs from

data abstraction in that it aims to reduce domain of actions (i.e. labels on the LTS) of
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the system, rather than reducing the domains of variables that comprise a system state.

This approach has a few disadvantages compared to data abstraction: as mentioned

in Section 2.4.1.1. whereas the explicit mapping between concrete and abstract states

granted by data abstraction allows us to perform the state-space exploration using the

smaller set of abstract states only, often with the result that an exploration terminates

quite rapidly, with behaviour abstraction the set of abstract states cannot be deduced

until after an exploration of the full state space (or, in the.light of the main result of this

thesis, an abstraction-compatible partial-order reduction of this) has been completed,

so data abstraction can generally be relied upon to finish more quickly. Our behaviour

abstraction approach is also unable to deal with infinite state-spaces (see Appendix C)

and, crucially, is unable to deal with properties specified in CTL.

In its favour, the main result of this thesis is quite simple and general, and has a broad

applicability: for example, systems whose behaviour can be represented by a finite,

strongly-connected LTS are quite common, and we can state that for all such systems

(i.e. we do not care about the specific means of specifying the system used: it could

be Petri net-based, PROMELA, etc), for all abstracting homomorphisrns h (i.e. we do

not care about the specific abstraction used), and any property that can be expressed

as a set of to-words over the range of h, the abstract behaviour satisfies the property

within fairness if and only if the concrete behaviour satisfies the concrete version of

the property. Data abstraction may need more tailoring to the specific formulation and

abstraction used[J. Dingel and T. Filkorn (1995)]! Also, in the field of communications

where we may be more interested in the presence/ order of messages sent through the

system, behaviour abstraction seems to be a better fit: simply use an abstraction that

preserves those messages that we are interested in and hides the rest of the system.

The main result refines the previous attempts to maxry partial-order reduction and

satisfaction within fairness under abstracting homomorphisms in [Ultes-Nitsche (1999);

Ultes-Nitsche and St James (2000)] by reducing the restrictions on what it means for a

pair of actions to be ^-compatibly independent; a comparison of the practical differences

arising from relaxing these restrictions is given in Chapter 6.

The result of Chapter 5 attempts to tackle just the environment problem [McMillan

(2000, 1997)] in the field of compositional verification, and does not attempt to propose

decomposition strategies [Nam and Alur (2006); Cobleigh et al. (2003); Cobleigh et al.]

nor reasoning about properties of the complete system based on verified properties of the

system's components[Misra (2001); Cohen (2002); Ehmety and Paulson (2005)]. There

are two main approaches to the environment problem: assume-guarantee [Jones (1983);

Pnueli (1985)], and compositional minimisation[M. Chiodo et al. (1992); de Alfaro and

Henzinger (2001); Liu (2000)]. We wanted to create the full behaviour of a component

Ci, and while there are automated techniques for generating assumptions [Cobleigh et al.;

de la Riva and Tuya (2006)], they don't necessarily scale well[Shankar (1998); de la

Riva and Tuya (2006)], there may be circular reasoning problems when verifying the
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assumptions themselves[Barringer and Giannakopoulou (2003)], and encoding the full

behaviour of the remainder of the system as a set of assumptions may not be feasible.

For these reasons, we opted for the compositional minimisation approach, using an

abstraction compatible persistent set reduction of the system to create the surrogate

component representing the behaviour of the rest of the system from the point of view

ofCx.

Probably the closest result to that of the one in Chapter 5 (in terms of capability, if not

approach; the approach of using an abstraction compatible persistent set reduction of

the system as the surrogate component appears to be novel) is that of [Christensen and

Petrucci. (2000)]. This aims to construct the full behaviour of a component by exploiting

the structure of the system to explore all components separately as far as possible, using

a "synchronisation graph" to remove the disadvantages imposed by the environment

problem, which corresponds roughly to the Ajv automaton. This approach makes more

effective use of the structure of the system and reduces a lot of the interleaving of local

states, but doesn't reduce the amount of interleavings within a component as is the case

with our persistent set approach. The paper does not target high-level Petri nets, but

notes that generalising to these should be easy - in addition, there seems to be nothing

prevent it working with the abstract Petri nets that our result works with. Attempting

to combine the two approaches might be an interesting topic of future research.

7.3 Future Work

Much of the future work involves experimental justification of some of the results pre-

sented in this thesis. Testing the results of Chapter 5 is also a priority, as both results

may well be less efficient than other techniques. Attempting to combine the result with

that of [Christensen and Petrucci. (2000)] may also be fruitful. A comparison of Algo-

rithm 3.1 and Algorithm B.I to see which performs better when we wish to compute the

abstraction of a behaviour would also be interesting. It would also be interesting to see

if the main result of this Thesis could be adapted to work with ample sets[Peled (1994)]

in addition to persistent sets, especially in the light of efficient ample-set construction

techniques such as those in [van der Schoot and Ural (1996)].



Appendix A

An Improved Decidability Result

for WCC

A.I Overview

In this Appendix, we present an algorithm for deciding whether a homomorphism h

is weakly continuation-closed on a language L. The starting result is a theoretical

result by Ochsenschlager [Ochsenschlager (1992)] which proved decidability of WCC by

showing that the problem reduced to deciding a simpler condition on pairs of states (no

explicit algorithm was provided) from AL and A^L) • We refine this result by drastically

reducing the number of pairs of states that must be checked before going on to provide

an algorithm for deciding the aforementioned simple condition. It should be noted that

the decision algorithm is still not 'efficient' since we must determinise sub-automata of

the automaton representing the concrete behaviour, and we would conjecture that there

does not exist such a,n efficient decision algorithm.

The reasons why this result is hidden away in an Appendix rather than in the main body

of the thesis are twofold; firstly, there exist efficiently checkable sufficient conditions for

WCC that are often satisfied by most 'realistic' systems; and secondly, if a system does

not satisfy these conditions it is very unlikely that a given homomorphism will be WCC

on it.

A.2 Preliminaries

In this section, we will re-cap some old definitions, present some new ones, and prove

some preliminary Lemmas and Theorems, before moving onto the new algorithm.

Let L be a prefix-closed regular language represented by the (minimal) LTS AL, which

109



Appendix A An Improved Decidability Result for WCC 110

contains no deadlocks; if a deadlock state s exists in AL, we add a transition from s

to itself labelled with the dummy action, "#", as in Section 2, thus turning s into a

SCBC. Let h be an abstraction homomorphisni and let A^L) be the (minimal) LTS

representing h(L). Let So,so be the initial states of AL and Ah(L) respectively.

Definition A.I. A state s in AL is said to contribute to a state s in AH(L) if and only

if there exists w £ L such that So —> s and so —> s-

When constructing A ^ L ) , each state "s in Ah(L) is automatically put into correspondence

with a subset of states in AL; this subset is precisely the set of states that contributes

to s~, so the 'contribution' relation can be effectively inferred.

As mentioned, our result takes an existing theorem and refines it. The theorem is as

follows:

Theorem A.2 (Ochsenschlager (1992)). The hornomorphism h is WCC on L if and

only if for all pairs (s,"s) C AL X A^L) such that s contributes to ~s,

3v G cont(H,h(L)) such that cont(v,h(cont(s,L))) = cont{v,cont{s,h{L)))

We present some new definitions that allow us to re-cast this Theorem A.2 in more

useful terms.

Definition A.3. Let s be a state in AL, S a state in A^L) to which s contributes. Then

we say that s is WCC with ~s if and only if 3v G cont(s, h(L)) such that

cont(v,h(cont(s, L))) = cont(v,cont(js,h(L)))

Definition A.4. Let s be a state in AL- Then s is a WCC-state if and only if, for all

s to which s contributes, s is WCC with s.

In light of this definition. Theorem A.2 may be re-phrased as in Theorem A.5.

Theorem A.5. The homomorphism h is WCC on L if and only if, for all states s in

AL, S is a WCC-state.

The results of Theorems A.2 and A.5 suggest then that we must decide, for every single

state in AL, whether the state is a WCC-state. Our refinement comes from the obser-

vation that it is in fact sufficient just to pick a representative state from each strongly-

connected bottom component (SCBC) of AL, chosen arbitrarily, and check whether each

of these states are WCC-states. In all fairness, we should stress here that if a system

had more than one SCBC, few homomorphisms would-be WCC on it.

Theorem A.6. Let C\,C2,---,CN be the SCBCs of AL, and let S\,S2,.--,SN be states

such that s/v is in CN for each i = 1,2, ...,N. Then all states in AL are WCC-states if

and only if each Si is a WCC-state, for each i — 1,2,..., N.
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Proof. (=>) Trivially true.

(<=) Let s be any state in AL, and let s" be any state in Ah{L)-to which s contributes;

then let w G L be such that SQ —> s and so —> H. By Definition A.4, it suffices to

prove that 3v G cont(7i, h(L)) such that

cont(v,h(cont(s,L))) = cont(v,cont(s,h(L)))

Prom s, we can reach a strongly connected bottom component Cj1, and so by assumption

we can reach a-WCC-state, Sj. Let y be a word such that s -̂ -> s,, and let ?j be the

(unique) state such that s —• ?,.

Now, so —> Sj and so —> Sj , so s; contributes to Sj and so, by denmtion of

Si,

3v' € cont{si,h{L)) :'cont(v',h(cont(si,L))) = cont(v', coni(sj,/i(L))) (A.I)

Firstly, we will prove that

cont(v',h(cont(si,L)) C cont(h(y)v',h(cont(s,L))) (A.2)

as follows: let x £ cont(v', h(cont(.Si, L)). Then v'x £ h(cont(si,L)). Therefore, there is

z € cont(si,L) such that /i(z) = w'x. Since s -̂ -> Sj, we see that yz e cont(s,L).

Therefore, h(y)h(z) G h(cont(s,L)); i.e. h(y)v'x £ h(cont(s,L)). Therefore, a; G

cont(h(y)v',h(cont(s.L)), hence (A.2).

Therefore, combining (A.I) and (A.2), we see that

cont(v'',cont(si,h{L))) C cont(h(y)v',h(cont(s,L))) (A.3)

Since s" —> 1$, we have that

cont(v'', cont(Ji,h(L))) = cont(h(y)v',cont{s,h{L)))

Plugging this into (A.3) we get

cont(;h(y)v'\cont(l,h(L))) C cont(h(y)v',h(cont(s,L)))

Since the inclusion (D) always holds, we finally have that

cont(h(y)v',cont(l,h(L))) = cont(h(y)v',h(cont(s,L)))

Let v = /i(y)u' [G cont(s, h(L))}; then for all pairs (s,3) C ^ x Ah(L) such that s

1In general, for any automa.ton, each state in the automaton can always reach either a SCBC or a
deadlock state. Since AL is assumed to contain no deadlocks, the latter is not an option.
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contributes to s, there exists v G cont(l, h(L)) such that

cont(v,h(cont(s,L))) = cont(v, cont(j,h(L)))

So s is a WCC-state. Hence result. D

This is the key theorem in this Appendix. Combining it with Theorem A.5. we see

that deciding whether h is WCC on L reduces to deciding whether, for a pair 5 G AL,

s G Ah(L), we have that:

3v G cont(~s,h(L)), cont(v,h(cont(s,L))) = cont(v, cont{s,h{L)))

i.e. whether s is WCC with s. The remainder of this section is geared towards defining

concepts and proving results that will allow us to decide this condition, thus filling the

blanks left in [Ochsenschlager (1992)].

Definition A.7. Let Ah(COnt(s,L)) be the minimal automaton representing the lan-

guage h(cont(s, L)), .4cont(s,fr(L)) be the minimal automaton representing the language

cont(~s,h(L)). Let So and SQ represent the.initial states in *4/i(Conj(.s,L)) a n d «4cont(s,/i(L))

respectively.

Note that the sets cont(v,h(cont(s,L)) and cont{v,cont(s,h(L)) correspond to states

in the automata ^4/i(COnt(s,i)) a n d ^cont(s,/i(L)) respectively, namely the states reached in

each automaton by reading v; that is,

cont(v,h(cont(s,L))) = cont(succ(So,v),h(cont(s,L)) (A.4)

and

cont{v,cont(js,h{L)) = cont{succ{So,v),cont(~s,h{L))) (A.5)

This observation leads directly to Lemma A.8.

Lemma A.8. The state s in AL is WCC with the state s in Ah^ if and only if there

is a word v G cont(s,h(L)) such that

cont(succ(So,v),h(cont(s,L))) = cont(succ(So,v), cont(s,h(L)))

Proof. Proof follows immediately from Definition A.3, combined with (A.4) and (A.5).

D

Definition A.9. Let (S:S) be a state in ./4/i(Cont(s.z,)) x -Acont(sM(L))- If ^ is n° t the

case that Va G S, a is enabled at 5 in Ah(c.ont(s,L)) if a n d only if a is enabled at S in

Acont{s,h{L}) • then we call (S,S) a bad state.
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The next theorem is the main Theorem of this Appendix, and leads to an algorithm for

deciding WCC of h on L, as we will describe once the theorem has been proved.

Theorem A.10. Let s be a state in At,, ~s o, state in A^^ to which s contributes. Then

s is a WCC state with ~s if and only if there is a state in Ah(amt(s L)) x •^•cont(s h(L)) that

cannot reach a bad state in A(cOnt(s>L)) x A;<mt

Proof. (=>) Assume that s is WCC with s, and so let v G cont(s,h(L)) be such that

cont(succ(So,v),h(cont(s,L)) = cont(succ(So,v), cont{s,h{L)). For brevity, we will

write 5 = succ(So,v), S = succ(So,v).

The state (S,S) is in A(C07it(s,L)) x ^cont(s,ft(L)) [as (succ(S0,v),succ(S0,v)) clearly is].
We claim that (5, S) cannot reach a bad state; proof is by contradiction.

So assume that (S, S) can reach a bad state which we will denote (5', S ); let w be such

that (5, 5) —> (5", S ). By definition of a bad state, there exists o e E such that either

a is enabled at S' in Ah(cont(s,L)) but not at s' in Acont(s,h{L))

[in which case wa G cont(S,h(cont(s,L)) but wa (fc cont(S,cont(s,h{L)))]\ or

a is not enabled at S' in -4h(COn£(s,L)) but is enabled at S in Acont(s.h(L))

[in which case wa £ cont(S,h(cont(s, L)) but wa G cont(S, cont(s,h(L)))].

In either case, we do not have that wa G cont(S,h(cont(s,L)) if and only if wo G

cont(S,cont('s,h(L))); thus cont(S,h(cont(s,L)) ^ cont(S,cont(H,h(L)). Therefore,

from Lemma A.8, s is not WCC with ~s; a contradiction.

Thus (5,5) G -̂ /l(cont(s,L)) x -4contO?,h(L)) cannot reach a 6a<i state; hence result.

(<=) Let (5,5) G ̂ /i(cont(s,i)) x-/4-com!(31/i(L)) be a state that cannot reach a bad state. Since

(5,5) G ./4/i(«mt(s.L)) x 4̂coni(s,/i(L))> w e nrnst have (from rules of construction of product

automata) that there exists v G h(cont(s,L)) n cont{s,h{L)) such that 5 = swcc(5o,v)

& 5 =

In light of Lemma A.8, it suffices then to prove that

cont(S, h(cont(s, L)) = cont(S, contfc h(L))

i.e. that

w £ cont(S,h(cont(s,L)) -v̂  w G cont(S, cont{s,h{L))

Again, proof is by contradiction. Assume not; then there exists w such that either

i) w G cont(S, h(cont(s, L)) but w £ cont(S, cont(7S,h(L)); or

ii) w £ cont(S,h(cont(s,L)) but w G cont(S, cont(ji,h{L))
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Let w' be the largest prefix of w such that w' is in both of cont(S,h(cont(s, L)) and

cont(S, contiji, h(L)) [w' = e satisfies this requirement, so such a w' does indeed exist].

Let a be the (unique) action such that w'a ^ w. Let (S',S ) = succ((S, S),w') [so

S" = succ(S,w') & 5 ' = succ(S,w')}. Now, (S',ls') is reachable from (5,5), which is

not marked as 'may reach a bad state', so (S',S ) is not 'bad'; i.e. a is enabled at 5 ' in

•A-h(cont(s,L)) i f and only if a is enabled at 5 ' in -4cont(5,/i(L))-

If case (i) holds, then a is enabled at 5 ' in Ah(cont(s,L)) [since w £ cont(S,h(cont(s, L))

implies that w'a e cont(S,h(cont(s,L))], but not at S in Acont(g^(L)) N s e w e would

have w'a G cont(S,cont(s,h(L)) and w'a £ cont(S,h(cont(s,L)), contradicting the

definition of to'], which contradicts the fact that (5', 5 ) is not 'bad'.

If case (ii) holds, we have a similar contradiction; hence result- •

A.3 The Algorithm, and Commentary

The last theorem, Theorem A. 10, strongly hints at an algorithm for deciding WCC of h

on L, which we will now detail.

Firstly, we must find all SCBCs of AL', label them Ci,C2, ...,Cjv, and pick a state Si

(completely arbitrarily) from Cj for each i = 1,2, ...,N. All of this can be accomplished

in O {\AL\) [Aho et al. (1974)].

From Theorem A.6, it suffices to show that each s, is a WCC-state, so we need only

show how to decide whether a given state s in AL is a WCC-state.

To check that a given state s in Ai is a WCC-state, we first construct the automaton

Ah(cont(s,L))'-, t o do this, we temporarily reset the initial state of AL to be s, and deter-

minise the result. This is the most expensive operation of the whole procedure; formally,

it is O (2<^L<^, but since the abstracted version of a system is usually much, much smaller

than the original (after all, this is why we construct A^L) instead of just using AL\)-

one imagines that it will in fact be much smaller than this; very probably, of comparable

size to Auth^iy Then we must find all states s' in Ah(L) to which s contributes; as

mentioned after Definition A.I, this can be accomplished very easily, directly after the

construction of Ah(L). The number of such ~s if of course bounded by Ah(L).

For each such s, we must check whether s is WCC with s. To do this, we must first

compute the automaton Acont(s,h{L))- This operation can be accomplished instantly, as

it merely involves temporarily setting the initial state of Ah{L) to 5, and so we have

that |«4cont(s./i(L))| — l^(i-) • We must then compute the product of this automaton

with Ah{cmt{s,L)) t o g i ve the automaton Ah(Cont(s,L)) x Acont^^{L))\ this can be per-

formed in O (|-4/i(co7it(s,L))| \Acont(s,h{L))\)i which from above is less than or equal to
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We must then find all bad states of the automaton -̂h(cont(s.L)) x -4cont(s.fc(L))> a n d t n e n

find all states in this automaton that may reach a bad state: both of these stages are

linear in the size of the product automaton Ah(COnt(s,L)) x ~^-amt{^,h{L))i a n d s o c a n be

performed in O (|A(cont(s,L))| |A(L)|)- If there are states in A(corit(s,L)) x Aont(3,/i(L))

that cannot reach a bad state, then s is WCC with s; else, it is not, and so s is not. a

WCC-state, and so, by Theorem A.6, h is not WCC on L. Thus, if we ever encounter an

•A-h(cont(s.L)) x •^•cont(s.h(L)) where all states may reach a bad state, we may immediately

terminate the algorithm with the value "false".

The algorithm scores over the "old" one (which was never actually articulated) by re-

ducing the number of states s in AL that must be checked to see if they are WCC states

from all states in AL to just N, where N is the number of SCBCs of AL- In general, N

is very much smaller than \AL\, SO this represents a very significant saving.

A.4 Summary

We have presented an algorithm for deciding whether an abstraction h is weakly-

continuation closed on a language L for use in the case where the efficiently checkable suf-

ficient condition (i.e. that the automaton representing L, AL, is not strongly-connected)

doesn't hold. The algorithm is not technically efficient since it involves the determinisa-

tion of sub-automata of AL, but is more practical than the most obvious algorithm as

it requires checks on only N states of AL (where N is the number of strongly-connected

bottom components of AL) rather than all states of AL-



Appendix B

An Improved Partial-Order

Technique for Computing

Abstractions

B.I Overview

This section presents a version of a persistent set selective search optimized specifically

for finding just the abstraction of a language. It differs from Algorithm 3.1 in that it

lifts the original proviso to which all persistent sets are subject and replaces it with what

could be called a "weaker" one.1 The result is relegated to the Appendices as, although

the proviso is weaker in the sense described in Footnote 1. it may be that there is no

practical means for exploiting it; indeed, as we will see when we present the algorithm

that incorporates the proviso (Algorithm B.I), the fact that we must re-visit a state

and expand the number of actions followed from it until the proviso is satisfied may

well actually make it less efficient than that of Algorithm 3.1. Also, the algorithm very

probably does not lead to a trace reduction, as does Algorithm 3.1 .

The algorithm presented in this section was directly inspired by the necessity of efficiently

computing the abstraction of a system behaviour in order for the result of Chapter 5 to

be of any use:

B.2 The Original Proviso

Recall that the original proviso that a persistent set at the state s had to satisfy was

that it had to lead to a state not in the current stack, or else be trivial (i.e. the full set of
1It is weaker in the sense that using the proviso as in Algorithm 3.1 automatically fulfills this "new"

proviso for all states.
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actions). We briefly explore why it was used, in order to contrast it with the weakened

proviso used in the result in this Appendix.

Consider the following (rather silly) situation, as shown in Figure B.I.

FIGURE B.I: A rather large system specification.

The Petri net 7 represents some colossal system specification, perhaps that of a global

communications system specified down to the atomic level. This system has been ex-

panded to form a new system. J", by means of introducing an additional action, a, with

a hidden image under the abstraction h, and a single place connected to a. This action,

does not interact in any way with CP, and so is completely (/i-compatibly) independent

of all actions in 03. In light of this, and the fact that it is enabled at the initial state

of 7', we see that a is persistent at the initial state. Thus, if we ignored the proviso

imposed on candidate persistent sets, a perfectly valid partial-order reduction R of the

monster specification 03' could be as shown in Figure B.2:

FIGURE B.2: A partial-order reduction of Figure B.I.

Now, one really cannot argue that the behaviour of D>' is adequately represented in this

reduction2 due to the huge amount of actions 'excluded' from the reduction. A rather less

silly and more realistic situation occurs when the set of actions followed at each successor

of a state in the persistent set selective search is confined to some proper subset A c E o f

the actions of the system. In this situation, the construction of the automaton will likely

terminate rapidly and prematurely, with none of the actions in S — A being represented

at all in the resulting automaton. It is just this sort of situation, where whole 'important'

sequences of actions are not represented in the reduction, which the proviso is designed

to prevent; when all actions followed from a state all lead to "old" states (those in the

stack), it is an indication .that the construction might terminate "prematurely" without

due consideration of other actions, and so we either try to follow more actions that lead

We told you it was a silly example.
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to "new" states, or we just follow all actions enabled, just to be sure. In other words, it

is a "fairness" condition on the set of actions followed.

B.3 Statement &; Proof of the Result

We show that a variant of the persistent set selective search, with a different proviso than

that used in the trace reduction algorithm (Algorithm 3.1), leads to an automaton with

the same abstract image as the whole language. The proof of this is difficult (perhaps

even impossible) for the usual definition of persistent sets (Definition 2.23), so we adopt

a more restrictive definition, which was briefly introduced in Section 4.3.1 as a more

workable definition. We define "strong persistent sets" as follows:

Definition B.I. Let L C S* be a language over S, A C E x E x i a n independence

relation over E, and Aweak C E x H the weakened version of this relation (see Defini-

tion 4.16).

Let w G L, P C En(w) a non-empty subset of the set of enabled actions at w. Then

P is strongly-persistent at w if and only if for all p G P, and all actions a appearing in

words in cont(w,L) D (S - P)*, (p,a) G Aweak.

If the weak independence relation used is ^-compatible, then we say that P is an h-

compatible strongly persistent set at w.

Definition B.2. Let Ah be an /i-compatible independence relation (see Definition 3.2).

Then the language Ri is said to be an h-compatible persistent reduction of a language

L if and only if the following hold:

i) R$h C L;

ii) For all w' G R^', the set of actions cont(w',R^1) n S followed is ^-compatibly

strongly persistent at w' in L; and

iii) For all w' G R%h, h{cont(w', L)) ̂  e => h(cont{w',R%h)) # e.

The final condition means that at each state s in the automaton representing R^ , if

the continuation from s in L contains any non-hidden actions, then the continuation

from s in the automaton representing R^rmist also contain a non-hidden action. This

is the "new proviso" that each state s must fulfil. Unlike the original proviso, which

is decidable for s without having to explore from s, this one may require us to explore

from s multiple times, each time exploring a larger sub-automaton of the original AL',

see Lines 21-38.
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We claim that the language R.£ allows us to compute the abstraction of L under h; more

specifically, that h(R.£ ) = h(L). First, though, we need a few preliminary Lemmas.

For the next few Lemmas, we let L C S* be a language over E, A C E x £ x L be an

independence relation and Awea,k be the weakened version of A.

Lemma B.3. Let w G L, v = xaby G cont{w.L) with (a,b) G Aweak &nd a,b £

cont(w,L). Then v' — xbay is in cont{w}L) and cont(wv,L) = cont(wv',L).

Proof. By definition of Aweak, and from the assumption that a, b G cont(w, L), we have

that 6a G cont(wx,L) and that cont(wxab, L) = cont(wxba,L). Since y G cont(wxab, L)

and cont(wxab,L) = cont(wxba,L), we have that xbay — v' G cont{xu,L). That

cont(wv, L) = cont(wv', L) is an immediate consequence of the fact that cont(wxab, L) —

cont(wxba,L). D

Lemma B.4. Let w G L. If b,a\a2...an G cont(w,L), with (6, aj) G A.weaj.yi < i < n,

then .

a\a2--Mjb G cont(w, L)

for each 0 < jf < n.

Proof. Assume otherwise; let j be the smallest index such that a\a2-..ajb £ cont(w,L).

Then j ^ 0, since 6 G cont(w, L).

By choice of j , a\a-2---aj-\b G cont(w,L), so 6 and aj are in cont(waia2--.aj,L) [the

latter since a\a2...aj-\a,j G cont(w,L) and using prefix-closure of L]. Therefore, 6 G

cont(waia2...a.j, L), by Definition 4.14i). Thus a\a2...ajb G cont{w,L), a contradiction.

Hence result. •

Lemma B.5. Lei w £ L. If b, a\a2-..an G cont(w,L), with {b, a,;) G AweafcVl < z < n.

Define Vj = a\a2---ajbaj+\ajjt2---an for each 0 < j < n. Then for each 0 < j < n;

ij Vj G cont(w,L) and cont(wvj,L) = cont(wvn,L); and

ii) if Aweak is h-compatible, then h(vj) = h(vn).

Proof. To prove i): assume otherwise; then let j be the largest index such that

Vj G cont(w.L) and cont(wvj,L) = cont(wvn,L)

Note that vn G cont(w, L) by Lemma B.4, so j ^ n.

By choice of j ,

Uj.fi G cont(w,L) and con£(«Wj+i) = cont(wvn,L) (B-1)
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Now Vj is formed from Vj+i by transposing the pair of actions (b, aj+i) that are adjacent

in Uj+i; since (b, CLJ+I) G Aweak, and b,a,j+i G cont(waia2.--a,j,L) [from assumption and

Lemma B.4], we have, from Lemma B.3, that Vj G cont(w,L) and

cont(wvj,L) = cont(wVj+i,L) = cont(wvn,L)

a contradiction. Hence result.

The proof of ii) is trivial; simply note that since Vj is formed from Vj+\ by transposing

the pair of actions (6, a7+i) G Au,eafc that are adjacent in VJ+I and Aweak is /i-compatible,

we have that h(vj) — h(yj+\). A simple proof by contradiction very much along the

lines of that used in i) is sufficient. This proof is omitted.

Hence result. •

Lemma B.6. Let w G L. Let x — aia,2—an G cont(w,L), y — b\b2---bn G cont(w,L),

with (a,i,bj) G Aweak
 and V% G cont(w,L). Then xy G cont(w,L) and cont(wxy,L) =

cont(wyx,L).

_ Proof. Proof is by induction on n = |x|.

Case n = 1 [x = oi].

Immediate from Lemma B.5.

Assume true for n — 1.

So 6i62...6maia2...an-ian G cont(w,L) from the assumption that yx G cont(w,L).

Therefore bib2--bm.aia2---a,n-i G cont(w,L) by prefix-closure of L. By induction hy-

pothesis, then, we have

-.-bm £ cont{io,L) (B.2)

and

cont(waia2---an-ibib2--.bm, L) = cont(wbib2---bmaia2---o,n-i, L) (B.3)

From (B.3) and the fact that

an G

we have that An G cont(wa\a,2...an-ib\b2-• -bm) and that

) = cont(yx,L)

(B.4)

From Lemma B.5, we have that

G cont(w,L) (B.5)
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(i.e. xy G cont(w,L)) and

cont(xy.L) =

(B.6)

Chaining equations (B.6) and (B.4) gives us that cont(wxy,L) = cont(yx,L). Hence

result.

•

Lemma B.7. Let w G L. Let x = a\a2...an G cont(w,L), y = b\b2---bm G cont(w,L),

with (a,i,bj) G A,j;eafc. Then yx £ cont(w,L).

Proof. Induction on n = \x\ again.

Case n — 1 [x = a{\.

Immediate from Lemma B.5.

Assume true for n — 1. Then

an-i £ cont(w,L)

by induction hypothesis. Prom Lemma B.6:

a\a2---an-ib\b2---bm € cont(w, L) (B.7)

and

cont{wa\a2---an-ibib2---bm, L) = cont(wbib2---bma,ia2---an-\, L) (B-8)

Since an e cont(waia,2---an-i, L) by hypothesis, as does b\b2--.bm, we see from the earlier

Lemma B.5 that

cont(wa\a2...an-\,L)

i.e.
.••an-ianbib2--.bm G cont(w,L)

Hence result, by induction. , •

Theorem B.8. Let R^ be an h-compatible persistent reduction of L. Then Vu/ G R^1

h{cont(w',R£h)) = h{cont{w', L))

Proof. The inclusion from left to right follows almost immediately from Definition B.2);

see Lemma 3.9 for details. Thus it suffices to prove inclusion from right to left. Proof is

by induction on the length of words in continuations in L.

We take as our induction hypothesis the statement
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If \v\ = n, then V«/ G i?,£ such that v G cont(w',L), there is a v' G cont(w\R^ )

such that h(v') = h(v).

Let w' G R^ ' and v = aia.2...an be any word in cont(w', -L). The base case n = 0 [w = e]

is immediate, since i/ = e is in cont(w', R^ ) [since t</ G i?,^ ] and h(v') = e = /i(v).

So assume true for all words of length less than n, and try to prove true for n.

The case where h{v) = e is again immediate [with v' = £ in this case also], so we assume

that h(v) ^ e.

So /i(u) G h(cont(w',L)), so h(cont(w', L)) ^ e, so by definition of R^ , we must have

that h{cont{w',R^1)) ^ e. Therefore, either there is a non-hidden action [call it p] in

Pers(w'), or there is some x — x\x-i--xm G cont(w', R^ ) [m, > 1] with Pers(w'xiX2-'--Xi)

for 0 < i < m not containing any non-hidden actions and Pers(w'x) containing a non-

hidden action, p. [For notational convenience, we set x — e in the first case]. Note that

in either case, h(x) = e.

Now:

Case i) There is no prefix x' G pre(x) such that such that any of the a,'s is in Pers(w'x').

We wish first to show that xpv G cont(iu', L). This poses no problems in the case where

x = e, so we assume that re = xiX2---xm[m > 1].

None of the a '̂s is in Pers(w'x\X2---Xj) for j = O...m — 1, but Xj+i is. By definition of

these persistent sets, then, (OJ, Xj) G A^,eafc for all 1 < i < n,\ < j < m [and by a similar

argument, (di,p) G A^eafc for all 1 < i < n]. Thus, for each pair of actions taken from

v G cont(w',L) arid xp G cont(w',L) respectively, that pair is in A^eafc. Therefore, from

Lemma B.7,

xpv G cont(w',L)

Since (a{,p) G Ah for all 1 < i < n, and h(p) ^ e and h(v) ^ e, we deduce that

h{v) = h{p)k

for some A; > 1.

Let I be the largest index such that h(ai) = h(p): then

h(aia2...ai-i) = /i(p)"1"1

Now xpai<i2---ai-i G cont(w',L) by prefix-closure of L. Let

u = aia,2---ai-\ G cont{w'xp,L)

[so |u| < n]. Then by induction hypothesis, there is u G cont(w'xp, L) with /?,(u') = h{u).
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Since h(x) = e, we have that

h(xpu') = h(pu') = hWhip)™-1 = h{p)m = h{v)

So setting v' = xpu1 £ cont(w',R^ ) does the trick.

Case ii) There is some prefix x' £ pre(x) such that some of the a^s are in Pers(w'x'). .

Let x1 be the smallest such prefix. We wish first to show that x'v £ cont(w',L). If

x' = e then this is no trouble. Otherwise, x' = x\X2---X\ for some 1 < I < m.. Using

similar reasoning to that in case i), we see that by minimality of x', (a,i,Xj) £ A^eofc for

all 1 < i < n.l < j < I.

Let j be the smallest prefix such that aj £ Pers{w'x'). Then (aj,a,k) £ A^eafc for all

1 S k < j . Since a?- £ Pers{w'x'), aj £ cont(w',R^ ) C cont(w',L), as does a\a2---dj-\-

Therefore, by Lemma B.5, aja\a2-.aj-\ £ cont(w',L) and

cij—i,L) = cont{w' jj

[so ajaia2--.aj-iaj+i.--an G cont(w',L)] and h(aja\a2---aj-i) = h{a\a2---aj-\aj), so that

h{ajaia2---dj~iCij-\-i...an) = h(aia,2---a,j—iajaj+\...an) — h(v) (B.9)

Since aj £ Pers(w'x'), we have that w'x'dj £ R^'.

Let u' = ai<i2---aj-iaj+i...an £ cont(w'x'aj,L). Then by induction hypothesis, there is

u' £ cont(w'x'aj,R^h) with /i(u') = /i(u).

Now h(xa,ju') — h(a,ju) — h(a,jaia2—aj-iaj+i...an) = h(v) using h(x) = E and (B.9).

So u' = xaju' £ cont(w' ,Rfx) will do.

So we have proved for n in both cases. Hence result, by induction. •

Theorem B.9.

) = h(L)

Proof. Immediate corollary to the previous theorem. Theorem B.8. •

We give now an algorithm (Algorithm B.I) that will construct such an ^-compatible

persistent reduction R^ . Note that neither the algorithm nor the proofs rely on the

system being a 'component-based' system [with components Ci, / and C2] even though

finding the abstraction [interface-level behaviour] of these special types of systems was

the original motivation for this result. Thus, the algorithm is completely generic.

It should be noted, though, that since in the special 'component-based' case we set h to

be the identity on E" so we could preserve variable bindings, all interface-level actions
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are dependent on one another [or rather, no pairs of interface-level actions are allowed

in an /i-compatible weak-independence relation]; that is, there is no "action renaming"

allowed, and so two actions can belong to an /i-compatible weak-independence relation

only if one of them is hidden; i.e. is in C\ or C<i- This poses some special problems when

implementing this algorithm., which we will briefly discuss later.

Each state s visited in the construction has a Boolean flag s.NonHiddenCont that is

set to true if and only there is a non-hidden action in the continuation of s in R£ *. It

can be shown that if a state s is such that s.NonHiddenCont is still set to false upon

termination of the algorithm, then h(cont(s,L)) — e, so our construction does indeed

produce a an ^.-compatible persistent reduction of L as denned in Definition B.2.

If a state s is still unmarked after exploring all actions in its set of actions just followed,

T(s), then we explore again from s, this time with a persistent set T(s) that includes

some additional actions enabled at 5 that were not previously explored, so there is a

kind of "iterative" aspect to the algorithm. If T(s) were the full set of enabled actions

at s, then we "admit defeat" and resign ourselves to the fact that we cannot produce a

non-hidden action in the continuation of s.3

If a non-hidden action is explored from a state, then this and all "predecessor" states [all

states in the current stack] have their NonHiddenCont flags set to true [so a depth-first

rather than breadth-first exploration is more or less essential for this algorithm]. Like-

wise, if during our construction we re-visit a state with its NonHiddenCont obligations

fulfilled, then all states in the current stack may have their NonHiddenCont flags set to

true.

As we see it, the main problem with implementing such an algorithm is that, in general,

a set of actions is much more likely to be persistent at a state if it is hidden, since there

are no "/i-compatibility" issues to worry about.4 In the case where we are trying to ex-

tract the interface-level behaviour for use with our first compositional verification result,

then this bias towards "hidden" persistent sets is very much stronger since, for reasons

described above, ^-compatibility is much more of an issue in this case. So what we will

probably see during construction is a strong tendency towards consideration mainly of

hidden persistent sets, which do nothing towards fulfilling the proviso obligations for

3 A brief examination of the algorithm tells us that if a state is unmarked even after the algorithm
terminates, then all of its successors are unmarked and at each we must have "admitted defeat" after
exploring the full set of actions enabled at the state. Thus, we see that if s is unmarked when the
construction is finished, then we will in fact have constructed the automaton cont(s, L); i.e. cont(s, L) =
cont(s,R^ ). This is how we can justify the statement that if a state s has no non-hidden actions in
its continuation in Rf; , then s has no non-hidden actions in its continuation in L. This is a possible
source of inefficiency of the. algorithm, but we should point out that most "realistic" systems would
rarely contain a state with a completely hidden continuation unless that state were a dead-end sta,te,
which would pose no problem since our construction would stop at such a state anyway.

4 With our new relaxation of the restrictions on persistent sets, and with so-called "wild-card" hidden
actions that are always guaranteed to form a persistent set when taken on their own, one could argue that
the restriction of ^.-compatibility now becomes the primary force for disallowing candidate persistent
sets.
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1: Q <— 4>\ 5 <— (f>; so.NonHiddenCont = false; stack <— (f>;
2: push (so) onto stack;
3: sub DFS()
4: s = top(stack);
5: if s.NonHiddenCont = true then / / Reached a state with a non-
6: for each s' 6 stack / / hidden continuation, so
7: s.NonHiddenCont = true;// update the .NonHiddenCont
8: next / / flags of all states in the
9: endif / / current stack.
10: if s £ Q then
11: pop (s) from stack;
12: exit sub /* This state has been dealt with already */
13: endif
14: s.NonHiddenCont = false; Q *— Q U {s}; /* This is a newly
15: created state*/
16: if En(s) = (j> then / / The state s is a deadlock
17: 5 <— 5 U (s, # , ,s); / / state. Add a loop to itself marked
18: pop (s) from stack; // with the dummy label, "#", pop it
19: exit sub ; / / off the stack, and exit sub .
20: endif
21: T — (f>; /* Begin an iterative loop to try and get
22: a NonHiddenCont for the current state
23: by following progressively larger subsets T of En(s). */
24: do until s.NonHiddenCont — true or T = En(s)
25: NewActions = PersistentSetIncludingT(s,T);
26: T = PersistentSetIncludingT(s, T);
27: for each a G NewActions
28: if h{a) ^ e then / / A non-hidden action found;
29: for each s € stack; // update all states in stack
30: I.NonHiddentCont — true; // accordingly
31: next
32: endif
33: let s' be such that firing a at s leads to s;
34: 6*-SU{s,a,s');
35: push (s') onto stack;
36: call DFS();
37: next '
38: loop
39: pop (s) from stack;
40: end sub

Algorithm B.I - Algorithm for Computing RL
weak
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each state, nor indeed towards furthering the construction of the desired interface-level

behaviour. As we have seen, this can be a bad thing since the algorithm tends to "panic"

and "fully explore" from a state in an attempt to ensure the proviso holds at that state.

What we suspect will increase the magnitude of the reduction is a heuristic which occa-

sionally "throws in" a non-hidden persistent set5 in an attempt to fulfill the proviso for

as many states as possible. Just when to throw in these non-hidden sets to "even up the

mix" is tricky, and is a topic for future research; nevertheless, we remain confident that

strategies exist that will augment the state-space reduction in the majority of 'realistic'

cases.

B.4 Summary

We have presented an algorithm that uses a persistent-set selective search to find the

abstraction of a language by weakening the proviso used in Algorithm 3.1 to which

all explored states are subject. The proviso now reads "if a state has a non-hidden

continuation in the full state-space, then it must have a non-hidden continuation in the

partial-order reduced state-space", and will likely lead to an automaton that does not

have the properties of a trace reduction. This weakened proviso cannot be checked as

easily as the old proviso, so the algorithm may be required to "re-explore" a previously

explored state if the proviso is found not to hold at that state, this time following more

transitions in an attempt to get the proviso to hold. Whether this approach will truly be

more efficient at just finding the abstraction of a language than Algorithm 3.1 requires

experimental justification.

5 Again, because the problem of /i-compatibility is greatly exacerbated in the component-based case,
this persistent set will very likely be trivial.



Appendix C

Commuting Limits for

Non-Regular Languages

C.I Overview

The result in this Appendix is a very small and obscure one. It is relegated to the

appendices for both this reason and also because it answers in the negative a question

that, even if answered in the affirmative, would really have been primarily of theoretical

rather than practical interest. It is included mainly because it took a fair amount of

effort to resolve, and for its value as a curiosity .

An open question from Dr Ultes-Nitsche's thesis is whether the Commuting Limit Theo-

rem holds for WCC homomorphisms on non-regular, prefix closed languages. The result

had already been proved for general homomorphisms on regular, prefix closed languages

L, and it simply states that

/i(lim(L)) = lim(/i(L)) (C.I)

The result is in fact sufficient to prove that "lim(L) \=WF h~l(V) <=$ lim(h(L)) \=WF 'P

if and only if h is WCC on L". Note that the inclusion of the LHS in the RHS in (C.I)

always holds, whatever the nature of h and L. The reason why we wanted (C.I) to

hold in the case of non-regular, prefix closed languages is that it could perhaps have

opened a new avenue into model-checking infinite state-spaces using abstraction and

weak continuation-closure, although as said before it is more likely that no real practical

application would have been found.

For general h defined on non-regular L, (C.I) does not hold; one counter-example arises

from setting

L = pre{{anbn\neTN})

a prefix-closed, non-regular language, and defining h(a) = e and h(b) = B. Then

127
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lim(L) = {aw}, so h(\im{L)) = {e}. But Bw G \im(h(L)), so (C.I) is violated. It had

been noticed that in this and a few other such counter-examples, h was highly non-WCC

and it seemed reasonable that the commuting limit theorem held in the non-regular case

when h was WCC on L.

However, after many failed attempts to prove the result, a search was launched for a

counter example, and relatively soon one was discovered. Let

L = pre {{anbnc{b\J c)* |n € IN}), h{a) = e, h{b) = B and h{c) = C

It is easy to verify that: L is prefix-closed and non-regular; h is WCC on L; and that

JBW G lim(/i(L)) but Bw fi h(\im(L)), so we have a counter-example. Moreover, L

is in that class of languages representable by deterministic stack automata, the most

"fundamental" non-regular languages; thus we cannot 'retreat' and try to prove that

the theorem holds for a more restricted class of non-regular languages. However, it is

very easily shown (although we will not do,so here) that the result of (C.I) does in fact

hold if h is "non-erasing"; i.e. hides no actions. This, though, is the least useful type of

abstraction homomorphism.

It seems that the highly non-WCC nature of the original counter-examples arose not

because of any conflict between the notions of WCC and non-commuting limit, but

rather because of the preponderance of maximal words in the counter-examples. This

statement is in need of some clarification, so note that if a language L has a maximal

word, w say, and a word w' with h(w) = h(w') and h(cont(w', L)) ^ {e}, then h cannot

be WCC on L. This is because- h{cont(w', L)) ^ e implies that cont(h(w'),h(L))[=

cont(h(w), h(L))] ^ {e}. Now any non-trivial word v G cont(h(w). h(L)) will give

cont(v, h(cont(w, L))) = <j> because w is maximal, and so h cannot be WCC on L.

In the original example above, there were infinitely many such pairs w,w', namely

w = anbn, w' = an+1bn for each n G IN, thus explaining the highly non-WCC nature of

the counter-examples. It was the recognition of this problem that first led us to append

the (b U c)* to every word in L, which in turn led us to the proper counter-example.

C.2 Summary

It was conjectured that the Commuting Limit Theorem would hold for prefix-closed, non-

regular languages as long as the abstracting homomorphism was weakly continuation-

closed on the language. In fact, this turned out to be not the case, and this Appendix

presents a counter-example to the conjecture.



Appendix D

Deciding Satisfaction Within

Fairness

D.I Overview

This Appendix details an algorithm for deciding satisfaction within fairness of a property

by a language. It is not presented as a major part of the thesis due to its triviality.

D.2 Algorithm 1

Let L C (S U {#})* be a language represented by a deterministic LTS, AL, and let

PC(ELJ {#})w be a property represented by a Buchi-automaton Ap. Note that, when

treated as a Buchi-automaton, the automaton AL represents the language lim(L).

It can be shown [Nitsche and Ochsenschlager (1996)] that

lim(L) \=WF V & pre(lim(L)) C pre(\im(L) D V) (D.I)

Since L contains no maximal words (the dummy action "#" was introduced specifically

to prevent this situation), we have that•pre(lim(L)) = L, so (D.I) becomes

lim(L) ^=WF V <* L C pre(lim(L) D V) (D.2)

The condition (D.2) can be written as

lim(L) \=WF V&Ln pre(lim(L) C\V) = 4> • (D.3)

where V for a language V C (E')* denotes the complement of the language L', (T,')*—L'.

The condition L H pre(\im(L) nV) = <f> is easily decided using elementary automaton
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algorithms; first, we form the Buchi-automaton representing the w-language lim(L) n V

by taking the Biichi-product of AL and A-p ; then, we find the automaton representing

pre(lim(L) fl V). This is done by repeatedly removing all deadlock states and SCBCs

containing no accepting states until neither of these two operations can be performed,

at which point we set all states to be accepting. We then complement this automaton

(note that an automaton must be determinized before this operation can be performed)

to give an automaton representing the language pre(lim(L) r\V). Finally, we take the

product of this automaton and AL, and check whether this final automaton is empty,

as per (D.3).

Efforts were made to try and improve the efficiency of this algorithm, with limited

success: whilst the new algorithm was superficially less complex, it still involved the

determinization of the automaton pre(lim(L) DV), by far the most (formally) expensive

of the operations listed above. It was therefore, from the point of view of computational

complexity, almost identical to the original algorithm, and this is why we are presenting

it in an Appendix, rather than in the main text. We comment on the exact algorithms

to use at each stage, and upon the computational complexity.

D.3 Algorithm 2

Firstly, as with the first case, we must compute the Buchi-product of the automata AL

and A-p; ordinarily, this process is more complicated (and yields a larger final automa-

ton) than that required to compute the product of two Ordinary automata [Thomas

(1990)]. due to subtleties involving faithfulness to the acceptance conditions of both

component automata. In this special case, however, this is not an issue due to the

trivial acceptance conditions of automaton AL; in fact, it can be shown that the usual

algorithm of Algorithm D.I will suffice.

Each state in the resulting automaton, then, is a pair (SL,SJ>) with SL G AL, s-p G A-p.

We now have a Buchi-automaton representing lim(L) Pi V, which we will call ALXV-

We now use this to construct the automaton representing pre(lim(L) D V)- using the

method described in the old algorithm, and call it A^-p- We then determinise this

and call the result (A^^p), . Note that any state 5 G (•^Lxv)det m a ^ ^ e w r^ten as

& = {(si's7>) ' isL>sv) > •••' (s£>sp)} f°r s o m e ni where again sL G AL, S\, G A-p for

i = 1,2, ...,n. We will show that we may detect violations of lirn(L) \=WF V during the

process of determinising Ap
L

r^v, and that if no such violations are detected by the time

we have fully constructed (Ap
L

r^-p)d t, then lim(i) \=WF V.

First, we need a couple of lemmas; the lemmas are presented without proof as, although

they are "obvious", the proofs are fairly complex and make use of the details of the

determinization algorithm.



Appendix D Deciding Satisfaction Within Fairness ' 131

1: Q <— <p: NewStates <— (SQ, SQ): /* Unbarred states are assumed to be in
2: A; barred ones in A' */
3: do while NewStates ^ (/>
4: pick (Sj's) 6 NewStates;
5: NewStates <— NewStates — (s,s);
6: Q<-QU(s ,s) ;
7: if 7s is accepting then / / Since A is assumed to be an LTS,
8: (s>-*) is accepting; / / the acceptance conditions of the
9: else / / states of the product automaton
10: (s;^0 is n°t accepting; / / depend solely on those of A'.
11: endif
12: for each a 6 S such that o G En(s) P\ En(ls)
13: for each (s'.s') such that s' = succ(s,a) & s' = succ(s, a)
14: i f(s' ,5')GQ
15: . NewStates <- NewStates U {(s', s')};
16: endif
17: <J*-<JU((s,5))av(s',s/));
18: next
19: next
20: loop

Algorithm D.I - Algorithm for constructing the product of two automata, A and
A1. The automata are assumed to contain no transitions labelled with e, and A is

assumed to be an LTS.

Lemma D.I. Let S e {^PLxv)det; we may write S = { ( s i ' s ^) ' (si's?>) > —' (S2' s ^
as mentioned earlier. Then

Proof. Proof is immediate from the determinization algorithm coupled with the fact

that AL is deterministic. •

In light of Lemma D.I, we will re-write S = {(s^.sjb) , (st:sp) i •••> is2^sv)} a s & =

(s; {si, sj,..., s%}), where s = s\ = a\ = ... = sn
L.

Lemma D.2. Let S = (s; {s£>sp' ...,s^}) &e a stoie m 5 G (^x>) d e t ' a e (E u {#})*

.an action enabled at S in (Ap^-p)d , S' = (s'; I s'p,s'p, ...,s'p >) be the (unique) suc-

cessor of S following a. Then s' is the (unique) state in AL such that s —> s'.

Proof. Again, the result is an obvious consequence of the workings of the determinization

algorithm together with the fact that AL is deterministic. •

Lemma D.3. lim(L) \=WF V if o>n^ only if for all w € L, there is a run of w on
( jtpre \
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Proof. Immediate from (D.I), after noting that the acceptance conditions of the au-

tomata representing L and pre(\im(L) DV) are trivial, so that they accept a word if and

only if there is a run of that word on the automaton. D

Theorem D.4. There is a run of w on {A^-p)det for eac^ w € L if and only if, for

each state S = (s; {sp,sp\, ...,sp
1}) in (A^p), , there is no action a enabled at s in AL

that is not followed at S in (

Proof. (=>) Assume that Vw 6 L, there is a run of w on (Ap
L

r^-p) det- Let

be any state in ( . 4 ^ ) , ; then from the workings of the determinization algorithm,

there must be some word w such that the (unique) run of w on [A^^-p), leads to 5.

Let a be any action enabled at s in AL- Then by assumption, there is a run of wa on

(•^Lx'p)d-t' Thus, s m c e *n e run of w on (A^-p), . leads to 5. a must be enabled at 5

in (AL™-p)d t- So for every action a enabled at s in AL, a is enabled at S in {Ap
L

r^v), .

(<=)Assume that for all states S = (s; {sp, sp,...', Sp}) in {Ap
L

Typ) , , all actions a enabled

at s in AL are enabled at S in (Ap
r™j>)d,t- Let w — a\a2-:-am 6 L; we must show that

there is a run of w on (A^x-p)d .,+ • Proof is by induction on m.

The case m — 1 (w = a\) is immediate on noting that a\ is enabled at so in AL, and so

it is enabled at the initial state So = (so, {sp, sp,..., s^}) of (A^-p), ; so there is a run

of w = ax on ( f % )

Assume true for m — 1 and try to prove for m. Now, by inductive hypothesis there, is a

run of w' = aia2...om-i 6 L on ( ^ x V ) d e t ; le t S = (s; {s^s^, ...,sp
1}) be the (unique)

state reached by following this run. Since the (unique) run of w' = aia2-.-am-i on AL

leads to the state s, a must be enabled at s in AL (as there is a run of /w on AL, by

assumption). Therefore, by assumption, a is enabled at S. Thus there is a run of w on

( ) D

Now for a brief commentary on the computational complexity, starting with the forma-

tion of the product automaton of AL and A-p, ALXV,
 a s we have seen, each state in this

automaton is of the form {SL,S-P), with SL £ AL, s-p € A-p, so the number of states is

bounded by \AL\ \AJ>\, where \A\ for an automaton A represents the number of states of

A. The automaton A^-p created at the next stage will be a sub-automaton of ALXV,

therefore, [-A^-pl < |Akxp| < \AL\ \A-p\- The final stage is to determinise this automa-

ton (although if the language L does not satisfy lim(L) \=\VF 'P, we may stop before this

determinization is complete); each state in this automaton, (Ap
L

r£-p)det, is of the form

S = (s; {sp,s^, ...,sp}); the number of possible states is therefore bounded by \AL\ 2l-Apl

This is the largest of the values so far, and so the whole process is O (\AL\ 2>AV\).
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One minor optimization to this algorithm exists; we may remove from A-p, prior to the

construction of AixP, those states in A-p that cannot reach an accepting state that is

reachable from itself. Informally, this is because any pairs {s,7i) in ALXV where s has

the aforementioned property will not appear in Ap^-p, which is where the final check is

made. We are currently aware of no other optimizations.

D.4 Summary

This Appendix contains an algorithm for deciding whether a language satisfies a property

within fairness. The algorithm is a fairly obvious one, and so was not presented in the

main body of the thesis.



Appendix E

Comparison of Notions of

Fairness

E.I Overview

In this Appendix, we define weakly and strongly fair satisfaction, and explore the rela-

tionship between them and the definition of satisfaction within fairness.

E.2 Definitions

Let S be a system represented by a minimal, deterministic finite LTS A = (Q, S, 6, qo),

which encodes a prefix-closed regular language L C S. We. assume that L contains no

maximal words, as per the construction on page 8 (so A contains no deadlock states).

Let B = lim(L) be the behaviour of S, and V C Sw be any property over £.

Definition E.I . Let w.= a<)ai... e lim(L) be a computation of S, and let qoqiq2--- be

the unique sequence of states such that (qi, â , gi+i 6 6) for all i = 0,1,2,.... Then w is a

weakly fair computation of S if and only if the firing of no action which is continuously

enabled is postponed indefinitely. More formally, w is weakly fair if and only if for all

a such that there is some na for which a is enabled at all of the states qm (m > na), a

appears infinitely many times in the sequence aoa\....

Definition E.2. Let w = a^ai... G lim(L) be a computation of S, and let <?o<Zi<72--- be

the unique sequence of states such that (qi, Oj, qi+i G 6) for all i = 0,1,2,.... Then w is

a strongly fair computation of S if and only if for all a such that a is enabled at the

state qi for infinitely many i, a occurs infinitely many times in the sequence

Definition E.3. The behaviour B = lim(L) of a system S satisfies the property ? C E W

under weak fairness if and only if for all weakly fair computations w £ lim(L), w G V.

134
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Definition E.4. The behaviour B = lim(L) of a system S satisfies the property V C E1"1

under strong fairness if and only if for all strongly fair computations w £ lim(L). w £ V.

E.3 Statement and Proof of the Result
J

We prove now that given an L as described at the beginning of this Appendix, any

finite word w £ L (partial computation of S) may be extended to an computation in S

that is strongly fair. The intuition is that after following a path to one of the strongly-

connected bottom components (see Definition 2.12) of A from the state reached by

following w from q$, we may generate an infinite path that includes all actions that can

be enabled, infinitely many times.

Lemma E.5. Let L be a prefix-closed regular language containing no maximal words,

and let w £ L. Then 3x £ cont(w,lim(L)).such that the computation IUX £.lim(L) is

strongly fair.

Proof. Let s be the (unique) state in A reached by following w from qo. Then from

the comment after Definition 2.12, we know that from s we may reach either a deadlock

state or a strongly-connected bottom component of A. Since A is assumed to contain no

deadlock states, we may always reach the former; let C be such a SCBC of A reachable

from s. Label the states in C as s\, $2,..., sn, and let y be a word that leads from s to

the state s\ in A. Since, from a state in C, we may only reach other states in C, the set

of actions that can be followed from any state in C is equal to A = \JSieC^ u ^n(si)>

where En(si) is the set of actions enabled at the state Sj, as denned in Section 2.3.1.1

We then build an cj-word £ cont(si,L) that includes every action in a infinitely many

times; we do this by going through each element a £ A in turn, following a path that

leads to a state where a is enabled and following a (we know this is possible from the

definition of A and the fact that C is strongly-connected), then doing the same for the

next element of A until all a £ A have been included, then repeating the process for all

elements of A, indefinitely. The w-word y is the limit of this sequence. Let x = yz.

Thus, the word xz £ lim(L) has the property that each of the actions a £ A occurs

infinitely many times in xz. Since the only actions that may occur infinitely often in xz

are those in A, xz is strongly fair. •

Lemma E.6. Let w £ lim(L) be a strongly fair computation; then w is also weakly fair.

Proof. We prove this result by its contrapositive. Let w — a^ai... £ lim(L) be a compu-

tation that is not weakly-fair, and <?o9l<72--- be the sequence of states in Q as described

In other words, for any word x € cont(si.L), x will be a word over A*.
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in Definition E.I; then 3a such that there is some na for which a is enabled at all of the

states qm (in > na), but a occurs only finitely many times in w.

But then a is enabled at infinitely many of the qi 's but does not occur infinitely many

times in w; thus w is not strongly fair. Hence result. •

Theorem E.7.

i) If B satisfies V linearly, then B satisfies V under weak fairness;

ii) If B satisfies V under weak fairness, then B satisfies V under strongly fairness;

iii) If B satisfies V under strong fairness, then B satisfies V within fairness.

Proof. To prove i): If B satisfies V linearly, then for all w G B, w G P. Thus, trivially,

any weakly-fair computation of B is also in V.

To prove ii): Assume that B satisfies V under weak fairness. Let w be any strongly fair

computation of B; then w is weakly-fair by Lemma E.6; therefore, w G P. Thus for all

strongly fair computations w of B, w G P.

To prove iii): Assume that B satisfies V under strong fairness. Let w be any partial

computation of B i.e. w is a word in L. Then from Lemma E.5, there exists x £

cont(w, \im(L)) such that wx is strongly fair. Since B satisfies V under strong fairness,

wx G V. Thus, for all w G L, 3x G cont(w, lim(L)) such that wx &V. •

E.4 Summary

We have defined weakly and strongly fair satisfaction and have proven that, if B is a

system behaviour and V a property, then:

B satisfies V linearly =^ B satisfies V under weak fairness =>• B satisfies V under strong

fairness =>• B satisfies V within fairness.

Thus, satisfaction within fairness can be described as more fair or more lenient than

strong fairness.
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