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This thesis presents the development of an innovative method for de

scribing the behaviour of steel members under load. It uses a direct solution 

to a set of six differential equations key to the state of a cross-section of 

a member. Because the method focuses upon cross-sectional response to 

loading, it incorporates member deflection and is ideal for use in numerical 

equation solvers which are becoming more prevalent as personal computing 

power continues to rise. The six equations are described, a novel method 

for ascertaining their solutions is introduced and the whole system is set to 

work. Simulated structures include a family of pinned struts of varying slen

derness, and single-span steel portal frames. The method may be used at 

varying levels of detail, having the flexibility to make use of a selection of 

stress-strain relationships, and families of struts are tested under a number 

of these conditions. The results of these simulations are compared and the 

result best comparable to design code crushing strength is that which carries 

the most data: a full elastic-plastic-strain-hardening stress strain curve used 

in simulations which consider the impact of bending moments and thrusts 

through each cross-section, without neglecting the internal stresses of hot

rolled steel sections. The portal frame computer models are an evolution 

of the strut simulations, providing a rigorous analysis of a sample frame as 

well as comparisons with existing design methods. Results from both series 

of structural model are discussed before future developments of the method 

and its application to enhanced simulations. 
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Few fields of human enterprise have been untouched by the impact of 

computer-based data processing to help provide a better understanding of 

their mechanisms. Structural steel design has benefited enormously from the 

availability of stiffness-matrix-based analysis tools and the explosion in avail

able personal computing power in the past 20 years. Such tools sit within 

the bounds of their mathematical methodology, codified safe design methods 

and available time to analyze the computer simulation. This project sets 

out to extend the mathematical methodology, work within present codes and 

supply analysis tools which provide accurate results in a time-efficient way. 

In so doing, it sidesteps the conventional terminology of 'first-order' and 

'second-order' models, using a differential equation model of the structural 

member with computer-based numerical equation solvers. The numerical 

equation solvers provide a high-detail, numerical solution to the differential 

equation model, collating the impact of every response to loading included in 

the model, not only the first- or second-level solutions. In contrast to exist

ing stiffness matrix-based methods and their fixed points at which member 

behaviour is evaluated, Analytic Structures provides a continuous analysis 

of each member within the framework. Further, solving a model written in 

terms of differential equations using so-called 'intelligent' differential equa

tion solvers, which are both able to improve their numerical accuracy if the 

density of the solution requires it and to avoid numerical singularities, pro

vides an unprecedented level of detail in the structural behaviour analysed. 

This also accommodates the benefits of using a full-detail stress-strain re

sponse and the residual stresses (or internal strains) of hot-rolled steel. The 

model is deployed in two collections of models: first, a buckling strut for 

which exceptional correlation is shown with the BS5950 (Table 24) Series 

A Buckling Curve; and second, steel portal frames at a variety of spans. 

While preparing these simulations, the work records the importance of in

ternal strain data during the strain-hardening phase of buckling and to the 

behaviour of slender (,\ > 130) struts. The failure methods and ultimate 
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limit state values for the portal frame simulations are comparable to existing 

methods. Additionally, the method compares well with a manual Second

Order analysis from SCI P-292, showing that the Analytic Structures model 

is as good as the present best methods for structural steelwork design. 

The present context to the field of research is introduced in Chapter Two, 

describing the growth of mathematical representations of member behaviour, 

both as pen-and-paper analysis and digital computation, and in terms of 

best-design-practice codes. 

Subsequently, the core mathematics is introduced in Chapter Three. Start

ing with the axes, naming and sign conventions, the notion of parameterising 

a member so that its deformed position can be followed is introduced before 

the six equations of state which form the core of the method. The type and 

variety of stress-strain relationships used is next introduced, along with a 

method to include the internal stresses arising from hot-rolled steel fabrica

tion. 

The notion of a tabulated store of loading and associated curvature de

flection is next introduced (Chapter Four), following two paths of either 

moment-only curvature table or a moment-axial-curvature surface. The nec

essary tools for producing such a table are included also. Finally, the pro

duced relationships are tested against expected values of curvature arising 

from loading. 

Chapter Five contains the method deployed in simulations of a pinned 

strut. Using a variety of stress-strain curves and moment-curvature relations, 

a selection of slendernesses, from stocky to extremely slender, were tested, 

described and analyzed. 

Chapter Six applies the model so far developed to portal frame structures. 

A concerted effort is made to analyze and describe the loading response 

and failure mechanism of a 30.0m span frame. Additionally, comparisons 

are made with existing first-order manual design analysis, computer-based 

analysis and second-order analysis. Finally, the behaviour predicted by the 

3 



Analytic Structures method is compared to first- and second-order manual 

analyses over a range of span-to-height ratios. 

Chapter Seven summarises the work presented here and draws conclu

sions before introducing potential avenues for extending Analytic Structures. 

Chapter Eight contains the tables of Curvature data prepared in Chapter 

Four, a list of relevant notation and the bibliography. 
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Literature Review 
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2 .1 Introduction 

The literature describing the present state of the art may be broadly grouped 

under three labels: that concerning empirical research to gain an understand

ing of the physical properties of steel structures; that concerning the design 

codes created to ensure safe deployment of steelwork; and that concerning 

the computer-based analysis methods which automate the codified design 

requirements. Due to the novel direction set out in the Chapter Three and 

following, there are additional components which do not fit this taxonomy, 

which are also included for reference. 

2.2 Development of the Elasto-Plastic Model 

The history of the elasto-plastic design method is a long and drawn-out one. 

The lack of mathematical tools required for analysis of statically indeter

minate structures led to a compromise in the regular use of elastic design 

methods. The Bessemer process arrived in the middle of C.19 and provided 

an inexpensive means to produce ductile steel, and overcame the difficul

ties in producing purified non-brittle steel. Consequently, experimental work 

with brittle pig-iron supported the initial development of linear elastic mod

els for failure loads. This led to formidable structures, such as the Forth 

Rail Bridge. Opened in 1889 following the delays in its construction caused 

by the catastrophic collapse during a storm of a comparable cast iron rail 

bridge across the River Tay, this structure features steelwork that remains 

within the elastic range of stress-strain behaviour and deflects very little, 

even in extreme winds. Clearly this design strategy is excessive and pressure 

to economise, in parallel with the scientific search for a better representation 

of the physical processes of structural steel behaviour, provided the impetus 

to improve the design methodology 

The first analytical treatment of strut design was performed by Leon-
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hard Euler (1707-1783) and published in Mathematica (1736) as part of the 

revolution he brought about in applied mathematics. Euler is credited with 

the first development of useful calculus methods, although rivalling Newton's 

method of fluxions, his approach is a closer relation to that used today. 

Euler's analysis concerns a perfect strut (a straight circular column, free 

from material residual stresses and of homogeneous material around its loaded 

axis to avoid buckling along an axis containing some defect) held upright by 

pins at each end and subjected to a pure axial load, resulting in no lateral 

deflection of the member under the load. Labelling its critical buckling load 

Pen the member, being perfect, only shrinks in length under compression un

til it reaches Per. This model can be amended to describe an imperfect strut 

if a small lateral force is added halfway down the the member currently un

der consideration, ensuring that the strut has an initial lack of straightness. 

Euler's work has: 

(2.1) 

The origin of this equation is described in Chapter 3. The value of n in (2.1) 

can be any integer, thus permitting an infinite number of mathematically

stable if physically impossible buckled positions (for example those described 

in Figure 2.1, which would have to be obtained in the same manner as the 

half-sine buckled state here: initial perturbing loads forcing deviation from 

true at the positions corresponding to the extremes of the Sine curve). Prac

ticalities of physical systems force n = 1 whether by gravity effects, material 

imperfections, the inclusion of strain hardening, local buckling or other prop

erties of a member. 

The need to understand the behaviour of steel beyond its elastic stress

strain region was recognised by A.E.H. Love (1892) who identified the need 

for plastic behaviour to be included in design and construction and whose 

comments identify that elastic theory to be "at [that} time behind engineering 

practice". The inclusion of this aspect of structural behaviour in design 

practice did not begin for almost forty years. 
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Figure 2.1: The first five modes of buckling as prescribed by Euler's strut-buckling 

formula 

(a) (b) (c) 

Figure 2.2: Example stress distribution across a uniform member (a) under general 

load - elastic behaviour; (b) with yield spreading from the extreme fibres into the 

cross-section at elastic limit; (c) idealised visualisation oHull-plastic state for hinge 

in simple-plastic theory 
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A few years later J.A. Ewing (1899) suggested Figure 2.2, the enduring 

standard for understanding the behaviour of a member whose cross-section is 

under bending moment loads at the limit of elastic behaviour and beyond (see 

IVloy, 1996, eh. 2). The figure placed here identifies the stress distribution for 

a pure bending moment across a member of uniform cross-section. Applied 

bending moments cause flexure of the beam, which stretches one edge and 

compresses the other, giving rise to a stress distribution across the depth of 

the member (Figure 2.2(a)). When it is assumed that the material of the 

member follows an elastic-plastic stress-strain relationship (describing a flat 

stress response beyond the elastic region, as per Figure 2.3(f)), the standard 

description of plastic stress distribution passes a boundary where parts of the 

cross-section become plastic (Figure 2.2 (b)) and moves on to a terminal state 

of bending moment, where the state depicted in Figure 2.2( c) is presented 

as the final, albeit impossible in practice, state which arises as the stress 

continues to increase with bending moments. In addition, this work advised 

that the bending moment which permits collapse cannot be calculated using 

the engineer's beam equation due to the inability of the method to support 

non-elastic values of stress. J.F. Baker (1956) was critical that Ewing may 

never have seen Figure 2.2( c) in experimental conditions; however its reason

able appearance became the standard explanation of simple plastic theory 

for the development of the stress distribution as bending moment increases 

up to its maximum (plastic hinge) value. 

It now serves to qualify the stress-strain curves used in the variety of 

analyses surveyed here. As introduced in Figure 2.3, the six key stress-strain 

relationships used in analysis. Initial work assumes a linear elastic response 

wi th a fixed deflection regardless of the load (Figure 2.3 ( a) ); "Elasto-plastic" 

analysis uses Figure 2.3(f), but pragmatic need to simplify calculations led to 

the "rigid-plastic" mode of Figure 2.3(e), which avoided additional moment 

behaviour caused by displacements arising from loading; Figure 2.3(b) is the 

"rigid-plastic-rigid" sequence of Horne and IVIedland (1966), which allows 
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(a) (b) (c) 

(d) 

o-y ~~~~~~ ____ ~ ____ = ____ = ___ ~ ___ W 
(f) 

Figure 2.3: Variety of stress-strain relationships 

p w w p 

A B 

Figure 2.4: Maier-Liebnitz' overspecified beam layout above bending moment di-

agram 

post-plastic movement approximating strain hardening while strain-locking 

any hinges which may form. The same work refers to a "rigid-plastic-strain

hardened" stress-strain curve of Medland (1963). The full elastic-plastic

strain-hardened relationship is Figure 2.3(d). 

In the 1950s and 1960s, the inclusion of plastic and post-plastic analysis 

in design methods began. Baker (1956), cited the above two works of (Ewing, 

1899) and (Love, 1892), and wrote of the experiments performed upon fixed

end beams by Maier-Liebnitz (1936). Maier-Liebnitz showed that a built

in beam (Figure 2.4) can support more load than elastic theory predicted. 
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2.4m 2.4m 

O.8m O.8m O.8m O.8m O.8m O.8m 

Figure 2.5: First overspecified structure tested by Baker 

This featured the moments at supports for the span of the beam reaching 

the elastic moment, ME and continuing to support further increases of load 

while not failing. The forces spread out across the beam until Me = M p , 

when a failure mechanism was formed. This inspired Baker to perform his 

pioneering investigations into the plastic behaviour of continuous beams and 

portal frames. First, a two-span beam was set up with its three supports on 

the level (Figure 2.5) and loaded to collapse. The test was repeated twice 

again, once with the central support raised (first, 0 > 0 in Figure 2.5) and 

once lowered (second, 0 < 0 in Figure 2.5) sufficiently far as to generate a 

moment equal to !vIp. The beam was subsequently loaded to collapse, and in 

doing so it supported more then the predicted elastic load. Baker states that 

the raising or sinking of supports does not affect the ultimate strength of a 

continuous beam. The second round of testing focused upon portal frames 

and observed a second linear stage of deflection after the elastic stage (as 

Figure 2.6). This was assumed to be relating to the spread of a plastic hinge 

across the centre of the span (although work detailed in Chapter Six shows 

this to be strain-hardening resistance to further buckling). 

Horne (1960) lays weight to the need for elasto-plastic design principles 

with arguments arising from the lack of attention paid to potential impact 

of partial plasticity on frame instability. The work moves toward the goal 

of estimating the elasto-plastic collapse load by examining a selection of 

approximate techniques for calculating the collapse load. It first explores the 
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Figure 2.6: Load-deflection curve from Baker (1956) portal frame testing, with 

second linear section of deflection, after formation of the first plastic hinge 

methods of elastic, simple (or rigid) plastic and elastic-plastic analyses (which 

use Figure 2.3 (a), (e) and (f) respectively) and explains their assumptions 

before providing graphical comparisons, such as those replicated in Figure 

2.7. This figure indicates a geometrical method for ascertaining a measure, 

p, of the deflection for a given load factor A/oad of the elastic-plastic mode of 

behaviour, and does so without neglecting axial loads. 

The curve ODE of Figure 2.7 is an approximation to OAF D of Figure 2.8 

by geometric construction. The value sought is Ap, the Merchant-Rankine 

collapse load. Merchant (1954) generalised the Rankine load for the collapse 

of a strut (from Rankine (1866)). The Merchant-Rankine load is an estimate 

of the lower bound of failure and was created to balance the elastic yield 

and elasto-plastic critical loads when it was observed that the elasto-plastic 

value was too conservative and the first elastic critical mode too inefficient 

an estimator of collapse. Horne uses this estimator in search of an optimal 

load factor, designated AH due to the later use of A to denote slenderness. 

The first search for AH uses a parameterisation by p to examine the stabil

ity of the underlying energy function of a structure, and such a relationship 
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Figure 2.8: Load deflection curve for an elastic-plastic structure 
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provides both Figures 2.7 and 2.8; the second search, experimental observa

tion. The line G H in Figure 2.8 comes from the assumption of a rigid-plastic 

stress-strain relationship (2.3(e)); ideal elastic behaviour would predict OBC, 

which rises to AC, the first elastic critical load arising from axial loading. The 

actual path OAF D moves linearly from the origin to the start-of-yield at A, 

which corresponds to Ay, to the peak at F with corresponding AF, before 

approaching G H asymptotically. Horne notes that Merchant's claims, (Mer

chant, 1954, 1956) that AF may be a function of AC,Ap and Ay as well as 

AG, alleviate the problem of calculating AF directly. Horne states that the 

easiest way to calculate AF involves the use of AC and Ap. 

Horne (1963) fleshes out the previous rationale for calculating an analogue 

to OAF D of 2.8. AF, the Merchant-Rankine load, is the peak of the elasto

plastic curve which includes the effects of axial thrusts (in Figure 2.7). First, 

the deflection (.6. c) and load factor (Ac) corresponding to the elastic critical 

buckling load are calculated. The intersection of the Load Factor axis (above 

Ay) with the line from -.6.c to DAD supplies the height on the vertical axis; 

the position on the horizontal axis remains the horizontal position along 

OAD. Horne claimed that AF is the maximum at D. A serious criticism 

of all the methods outlined in this work (Horne (1963)) is implicit in this 

graph (2.8): neglecting axial loads will cause significant over-estimation of 

the carrying capacity of critical parts of a structure. 

Additionally, Horne (1963) is critical of methods neglecting the strain

hardening properties of steel, including an heuristic explanation for the spread 

of plasticity in a hinge. Figure 2.9 illustrates the development of this mode 

of thought, using the example of a simply-supported beam with a point load 

at its mid-span: (a) under rigid-plastic a strain-strain relationship (as per 

2.3 ( e) ); (b) an elasto-plastic stress-strain curve provides deflection before a 

plastic hinge is formed; (c) the inclusion of a stress-strain model featuring 

a strain hardening behaviour following short section of post-elastic plastic

ity was expected to produce a length of the beam made flexible under the 
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Figure 2.9: Advances in failure modelling, from the simple plastic of (a), through 

the single plastic hinge of (b) to the plastic section (DE) in which strain hardening 

spreads curvature of (c) 

J 
l 

A 

Figure 2.10: Spread of plasticity in a strain-hardened hinge mechanism 

loading, which spreads as the load increases. 

An example strain-hardened hinge is featured in 2.10, for which 2.11 is a 

graph for moment against distance x from the body of the structure (both 

are after figures from Horne (1960)). Horne calculates the work performed 

in the situation of Figures 2.10 and 2.11 to be: 

2 E I 2 
A~lV s + A~Rf3 l = ~Mp¢ + ~ kfy hS Mp ¢ (2.2) 

under certain assumptions concerning the scale of the terms involved. The 

first summation may be analogous to P - 0 deflections and concerns the load 
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Figure 2.11: Graph of moment used to calculate work absorbed in 2.10 

factor A, loads Wand small-scale deflections s; the second, an analogue of 

P - 6. effects, with axial loads R, hinge rotations (3 and l for loaded member 

lengths; the third calculates work done against member elasticity, using ]v!p 

for plastic moment, ¢ for total rotation at a joint; and the fourth incorporates 

the extra work done against strain hardening: !f is the strain-hardening mod

ulus; f y , the yield stress; I, second moment of area; S, the plastic modulus; 

h the 'effective lever arm' of Figure 2.11; and Iv!p and ¢ are as before. The 

load factor A will not be less than Ap if the strain-hardening components in 

Equation 2.2 are not less than those of the P - 6. effects. Thus Horne shows 

that strain-hardening has the potential to compensate for frame instability 

which would otherwise lower the load-bearing capacity of a frame to less than 

that of a simple-plastic collapse load. Horne additionally concludes that com

puter modelling is the only reasonable place to include the strain-hardened 

behaviour due to the complexity it brings manual calculations. 

Horne and Medland (1966) identifies "strain hardening is sufficient in 

many cases, particularly single-storey frames, to contrast the effect of defor

mations on fail load", which is a step forward for the inclusion of strain

hardened behaviour but at the same time a step backwards in its bypassing 

the inclusion of second-order effects in steel design. The inclusion of the 
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rigid-plastic-strain-hardened method of Medland (1963) showed that strain 

hardening allowed the mean stress in the flanges to be considered as varying 

linearly with the curvature. Using a value of slope for the strain hardening 

section 11, where K is the proportional strain-hardening modulus, analysis of 

the average curvature for mean stress permits the formation of an estimate 

of the length of the strain-hardened plastic hinge, along with the creation of 

a family of curves for members relating their curvature and loading under 

rigid-plastic strain-hardened deformation. The use of (another) parameter k 

set at the ratio of strain-hardening yield strain to strain at elastic yield has 

these curves underestimate the curvature and stresses. Medland found that 

taking a value for k just above this ratio gives good agreement with observed 

data, but determining exactly how large the discrepancy between these two 

values (K and k) requires inspection of the bending-moment diagrams for a 

specific structure and its loading. Medland and Horne conclude by saying 

that the best place to apply the phenomenon of strain hardening is in the 

digital computation of structural behaviour, particularly in the creation of 

look-up tables and interpolating functions to describe such behaviour. 

Byfield et al. (2005) examine Mill Test Data in the search for k and find 

that 8275 data supports k at 9.3; 8335, 9.0; a conservative k = 10 is deemed 

a pragmatic choice for practice, both in terms of accuracy and safety. From 

their analysis of 50 mill tests of hot-rolled 1- and H-sections, an accurate 

stress-strain relationship is developed and its parameters supplied. Addi

tionally, a computer-generated moment-curvature relationship is described, 

a process central to the present work and fully-explained in Chapters Three 

and Four. 

Davies (2006) identifies that the above work (Byfield et al., 2005) ignored 

buckling effects in creating a moment-curvature relationship and acknowl

edges that in the absence of either local or lateral-torsional buckling, strain 

hardening effects have a rationale for inclusion in structural steel design. 

However, these benefits disappear in the presence of local buckling of the ten-
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sion flange or lateral-torsional buckling, even if these factors are accounted 

for in design. Additionally, the closing comments identifying the existence of 

a relation between strain hardening and rotation capacity are upheld in this 

project's computer simulations. 

2.3 Design Codes 

The need for safety is balanced against economy in construction, requiring 

legislated direction as to acceptable tolerances in design and construction. A 

response to this has been the development of safe guidelines in the BS449, 

BS968, BS5950 and Eurocode 3 standards for the use of structural steel

work. Their inception arose from the development of understanding of beam 

behaviour. 

Euler's initial steps were augmented 150 years after Mechanica by W.E. 

Ayrton and J. Perry's work (1886), which demonstrated an alternative means 

for calculating the crushing stress in a strut (which is has a lower-case P 

symbol denoting stress while the corresponding Euler force calculated above 

is denoted as an upper-case P symbol). 

Initially assuming a pinned strut restrained so that its sinusoidal bowing 

with amplitude 5 is solely in one plane, purely elastic behaviour, no internal 

stresses and that collapse occurs when the stress on the concave side reaches 

Per. Then Per is the lesser root of 

(2.3) 

for PE = 7r;;;, Py is the yield stress or chosen design strength and Per the 

required mean stress at failure. The other terms: 7] relates a non-dimensional 

factor measuring initial crookedness; E the stress-strain properties of the 

material; A the slenderness of the beam (measured as the ratio of l, the 

buckled length of the member as measured on its original axis to r, the radius 

of gyration). Initially 7] = ~.g from the derivation, with c being the distance 
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from the centroid to the extreme fibres of the beam and <5 = ldoo. Ayrton 

and Perry also suggested that 'T} = O!A, where O! is an empirically-derived 

imperfection factor used to reduce 'T} to accommodate the existence of internal 

stresses. Incorporating the internal stresses into this design approach led to 

the adjustment made by Robertson in 1925, which became part of the first 

UK code for structural steelwork, BS449 (1932, 1948). His recommendations 

included setting O! = 0.003 and using this value for the curves of a number 

of grades of steel. 

BCSA-29 (1966), discussing the use of plastic design in portal frames 

to BS968 (1942, 1968) says: "The effect of axial loads in the frame on the 

value of NIp is usually negligible, but a safe allowance may be made by cal

wlating Mp for the highest axial load in any member", which is a striking 

commentary three years after the discussion of member thrusts in structural 

analysis in Horne (1963) as discussed above. Unfortunately these axial loads 

may be hard to determine in the rafters of a portal frame, leading to the 

conventionally-held the assumption that the largest axial load appears in the 

columns. Davies (1990) examines the basis of the BS5950 (1990) require

ments concerning the omission of axial load effects during the calculation of 

the stability of pitched-roof portal frames. In such frames the axial thrusts 

along rafters can be of the same order as the axial thrusts in the columns. 

§5.5.3.2 of BS5950, in particular, is criticised heavily, suggesting that frames 

are used with low axial thrusts or more-rigourous second-order analyses are 

performed. Alternative calculations are suggested to ameliorate these diffi

culties of the 1990 edition of BS5950-I. 

Further developments to design code BS449 arose from G.B. Godfrey'S 

derivation in (1962) of a curve based upon 

3 llr 2 

'T}=10(1000) (2.4) 

along with the suggestion in 1972 by J.B. Dwight of· a new formula to allow 

for the plateau at low slenderness indicated by experimental data. This newer 
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formula is 

'T] = o{\ - sd· (2.5) 

Dwight also suggested that an appropriate value for Sl would be one fifth of 

the value of .\ for which the Euler Per causes crushing (Sl = ~g). This was 

chosen because it also the slenderness for which the strain-hardening Euler 

curve (using Es instead of E) cuts the line Per = Py . When codified in the 

preliminary publication of BS5950 (1985), four values of a are used in this 

equation to produce four curves used to classify column behaviour according 

to cross-section type, with four classes of cross-section having values of a = 

0.0020, 0.0035, 0.0055, and 0.0080. 

BS5950 recommends calculating the compression strength for a strut from 

the methodology as stated above. In BS5950 (1990), Appendix C (p.98) the 

Perry strut formula describes the compressive strength (not the stress, despite 

being expressed in units of stress), appearing as 

Pe = ¢ + V¢2 - PEPy 
PEPy 

(2.6) 

where ¢ is used here as a constant: ¢ = PY+(i+1)PE. This is analogous to 

the derivation described above. The four column curves described above, 

included to model different cross-sections, are as above. §7.2.6 (p.10) of 

BS5950 : Part 2: 1985 describes the assumed lack-of-straightness: non

hollow sections used as beams or compression members, /'l,s = 3mm or 1doo' 

whichever is the greater. Any other section has /'l,s = 560. Eurocode 3 

(EC3 (1992) Figure 5.5.1, Page 100) specifies an initiallack-of-straightness 

of 660' for a member appropriate to its Class A buckling curve. Lacking 

perfect straightness in this way ensures that any beam will eventually buckle 

under critical load. The same section contains a formula for calculating the 

maximum moment in a beam, halfway between two points of inflexion (Figure 

2.12). The formula is 

(2.7) 
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Figure 2.12: A built-in strut with deflection contributing points of curvature in

flexion 

and the corresponding moment in the member at a distance lx from a point 

of inflexion is: 1v1max sin( 18f1x), inheriting a sinusoidal bowing from Euler's 

strut formula. 

The curves were selected for BS5950 upon the previous work done for 

BS449 (1959 and 1969/1970), and were in line with contemporaneous rec

ommended standards curves for the European Community (as it was then 

known). The mode of buckling which most influences the curves is the in

teractive combination of both flexural and local buckling. British Standards 

before BS5950 used two methods to describe this behaviour, the Effective Sec

tion Method and the Effective Yield Method. The Effective Section Method 

is relates the collapse load to the critical strength by disregarding an ineffec

tive width in the column. The collapse load is then calculated from 

(2.8) 

It uses the same column curve as the original section. The Effective Yield 
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Method arose in BS449 and uses a reduction in the yield stress CTpy , for which 

Then 

(2.9) 

where p~ comes from the reduced column curve of CTpy . 

BS5950:1990 itself contains three methods for describing interactive flex

ural behaviour. One is called the Compact Zone method, and is in essence 

the Effective Section Method outlined above. The second, Effective Width, is 

most suited to beam-columns. When use in pure column situations it dimin

ishes the buckling stress where it appears in the ratio for be referring to an 

element remote from the axis of buckling. These methods appear somewhat 

conservative when applied to columns and are better suited to beams. The 

third method, again, reduces the yield stress such that the given section be

comes compact. Then the collapse load is acquired as for that of a compact 

member with this reduced yield. 

Bayo and Loureiro (2001) provides a good introduction to the Eurocode 3 

requirements and mechanism for buckling analysis of steel-framed structures, 

while providing an alternative method which avoids having to calculate an 

'effective length' between points of inflexion of a buckled member. Also 

included is a clear flow chart describing selection criteria for picking the 

analysis (direct second-order, first-order with amplified moment or first-order 

with sway moment) most appropriate to the planned design. 

The specifications in Eurocode 3 relating to compression members con

tinue the pattern of multiple strut curves, each appropriate to the axis of 

buckling and the type of cross-section of the beam (Taylor (2001)). Tay

lor identifies the design procedures for rolled steel, stating that compression 

member have a relative slenderness calculated for them before the reduction 

factor X is applied to the cross-sectional resistance to obtain the member 

bucking resistance. Taylor also identifies that combined axial force and bend-
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ing make use of an interaction formula which was not finalised at the time 

of publication. 

§5.5 (p.97) of Eurocode 3 contains tabulated imperfection factors for uni

form members, tabulated reduction factors and equations for describing flex

ural buckling. Torsional and interactive torsional-flexural buckling appear in 

Part 1.3 of Eurocode 3. Equation 5.45 (ibid, §5.5.1.1, p.97) of Eurocode 3 

describes the design buckling resistance of a strut: 

N
b
.
Rd 

= Xi3A AJy. 
YM1 

(2.10) 

X is the reduction factor, either calculated from a formula or, where appro

priate, read from table 5.5.2 (p.99) (here as Figure 2.13). Jy is the yield 

strength; i3 A a scaling factor equal to 1 for cross-sections labelled 'Class 1', 

'Class 2' and 'Class 3', and equal to A~t for beams labelled 'Class 4'. YM 1 

is the resistance of the member to buckling, equal to 1.1 (ibid, p.54). For a 

member of constant cross-section under constant axial compression, X may 

be calculated from 

for which 

¢ = ~(1 + o{\ _ ~) + :\2) 
2 5 

:\ = J i3AAJy = ~~ 
Ncr A1 

fJ!35 
7]= -

Jy 

A=i 
r 

A1 = 7r fE = 9397] 
Y Y;; 10 

(forJy inN/mm2
). 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

a, the imperfection factor, for curve (a) is 0.21; 0.34 for (b); 0.49 for (c); and 

0.76 for (d). 

Member imperfections or initial lack of straightness are covered in §5.2.4.5 

(ibid, p.64), part of the section on internal forces and moments, indicating 
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Page 98 
ENV 199:3-1-1 : H}!}2 

Table 5.5.2 Reduction factors X 

Buckiing curve 
}, 

a b I c d 
! - -

I 
0,2 1,0000 1,0000 1,0000 1,0000 

0,3 0,9775 0,9641 0,9491 0,9235 

0,4- 0,9528 0,9261 I 0,8973 0,8504 

0,5 0,9243 0,8342 I 0,8430 0,7793 j 

0,6 0,8900 0,8371 

I 
0,7854 0,7100 

0,6431 
I 

0,7 0.8477 0,7837 0.7247 I 
O.S 0,7957 0,7245 , 0,6622 0,5797 

0,9 0,7339 0,6612 I 0.5998 0,5208 

1.0 0,6656 0,5970 0,5399 0,4671 

1,1 0,5960 0.5352 0,4842 0,4189 

1,2 0,5300 0,4781 0.4338 0,3762 

1,3 0,4703 0,4269 0,3868 0,3385 

1 f4 0.4179 0,3817 0,3492 0,3055 

1,5 0,3724 0,3422 0,3145 O~2766 

itO 0,3332 0,3079 0,2842 0,2512 

1,7 0,2894 0,2781 (US77 i 0.1289 
j 

1,8 0,2702 0,2521 0,2345 ! 0,2083 

1,9 0,2449 0,2294 0,214'i 0,1920 

2/0 0,2229 0,2095 I 0,1962 0,1766 

2,1 0,2036 0,1920 I 0,1803 0,1630 

2 " 0,1867 0,1765 0,1662 0,1508 ,L 

2,3 0,1717 0,1623 0,1537 0,1399 

2,4 0,1585 0,1506 0,1425 0,1302 , 
2,5 0,1461 0,1397 0,1325 0,1214 I 

2,6 0,1362 0,1299 0,1234 0,1i 34 I 
! 

2,7 0,1267 0,1211 0,1153 0,1062 

2,8 0,1182 0,1132 0,1079 0,0997 

2,9 0,1105 0,1060 0.1012 0,0937 

3,0 0.1036 0,0994 0,0951 0,0882 
I 

Figure 2.13: Eurocode (EN1993) Table 5.5.2 for reduction factors X of steel 
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that such arise only in second-order treatment of design stability. Figure 5.5.1 

(here as Figure 2.14) describes the three approaches to analysis of a beam 

depending upon whether it is governed by elastic behaviour, linear or non

linear plastic behaviour, as well as modifying YMI for the beam. Table 5.5.3 

(Figure 2.15) describes the mechanism by which the appropriate flexural 

buckling curve is to be calculated. Conservative estimates abound within 

Eurocode 3. 

The Commentary to German design code DIN 18800 (Beuth Kommen

tar DIN-18800) supplies Figure 2.16, which quantifies the scale of internal 

strains used in the simulations below. The same reference supplies the EC3 

recommendations for internal strains in hot-rolled steel members. 

Some of Davies' (1990) suggestions are included in BS5950 Part I (2000), 

and its content in this area is explained in King (200la). The notion of 

frame second-order effects (termed P - Ll effects) and member second order 

effects (termed P - <5 effects) are introduced (Figure 2.17). The work has 

a particular focus on in-plane stability because out-of-plane buckling can be 

checked as per any other beam-column between lateral restraints. In-plane 

buckling relies on the stiffness of members within a portal frame to resist 

buckling effects; the scale of the axial loads in the rafters being comparable 

to the columnar thrusts requires different stability checks in pitched-roof 

portal frames than for beam-and-column structures. King introduces the 

elastic critical buckling factor, AeR, for portal frames, analogous to the Euler 

strut formula 2.1 which appears in Figure 2.18. The use of load factors in 

analysis is criticised briefly, due to the impact caused to P - Ll effects by 

variations in loading patterns. 

2.4 Analysis Using Digital Computation 

Davies (1966) is heavily critical of the Merchant-Rankine load advocated 

above, particularly where its predictions about the failure load compromise 
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-

Cro ...... ctlon Method of global IIla/Ylls 

. Method used Section type and Elastic or Elasto-plastic 
to verify axis Rigid - Plastic or (plastic zone method) 
resistance Elastic - Perfectly plastic 

Elastic Any 
[5.4.8.21 

o( A - 0,2) ky W./fA -. 

Linear plastic Any 01 A - 0,2) ky Wp,/A -
15.4.8.1 (1211 

I-section yy-axis 1 ,33a( A - 0,2) Ic. W.,/A a( A - 0,21_Ic"WDlfA 
Non-linear 
plastic I-section zz-axis 2,0 Ie. e.HIE leye.HfE 

15.4.8.1(1) to 
Rectangular 1 ,33a( A - 0,2) ky Wp,/A •• a( A - 0,2) ky Wp,lA 

1111l hollow section 

Circular 1,5 lcye.Hlt Iere.Hlt 
hollow section 

Ie. E 11 - k.) + 2 klA but ky~1,0 

Buclcli[l,O curve Ie. 
a e.H 

YMI = 1,05 YMI = 1,10 YMI ... 1,15 YMI .. 1,20 

a Oi21 11600 0,12 0,23 0,33 0,42 

b 0,34· 1/380 0,08 0,15 0,22 0,28 

c 0,49 11270 0,06 0,11 0,16 .0,20 

-
d 0,76 lI1BO 0,04 0,08 0,11 0,14 

Non-unlform members: 

Use.valu·e of Wel/A or W~,/A at centre oi buckling length It 

Figure 5.5.1 Design values of equivalent initial bow imperfection eo,d 

. -

Figure 2.14: EN1993 Figure 5.5.1 guidelines for initial lack of straightness and 

recommended path for analysis 
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ENV 1993-1-1 : 1992 

TableS.5.3 Selectjo~ of buckling curve for across-section - . 
Cross section Umits Buckling Buckling 

about axis curve 
-,-

Roiled I·sections hIb > 1.2: 
1, ~ 40mm yAy a 

z-z b 

C· , ;1-' 40mm < t, ;:5; 100mm yAy b 
z-z c 

hIb ~ 1.2: 
, 

-L-U t, :s; 100mm yAy b 
z·z c 

t, > 100mm y.y d 
-- z-z -d 

Welded I-sections " 1 *1 t,S40mm y.y b 
: -Tl . 1; -- z-z c '-l=' ',- .-' ' t,> 40mm yAy c 

z-z d 
. z z 

Hollow sections hot rolled any a. 

0 0 0 cold formed 
- using fyb") . any b 

cold formed 
- using fya') any c 

--
Welded box sections 

El 
generally 

- r- _ (except as below) any b L+ .': thick welds and 
..i -'. 

I 'b - I bitt < 30 yAy , C 

h IIw < 30 z-z c 

!.l-. L-, j·andsoiid seclioflS 

·-e-b + * .. 
any c 

... . 

')See 5.5.1.4(4) and figure 5.5.2 

Figure 2.15: EC3 buckling curve selection criteria 
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Figure 2.16: Residual Stresses as a ratio of yield stress (Py) for welded sections, 

(c); tubular sections, (d) and hot rolled 1- and H-sections, (f) 
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Figure 2.17: Portal frame under sway deflection showing P - b.. and P - t5 effects 
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Slenderness (A) 

Figure 2.18: Elastic critical buckling load (PeR) and squash load (Py) for a strut 

the stability of portal frames. The work introduces the formulation and 

techniques involved in computer-based structural analysis using stiffness ma

trices. It concludes that strain-hardening behaviour can compensate for the 

loss of carrying capacity due to frame instability as it raises the expected 

value of failure load; that Merchant-Rankine remains an appropriate tool 

for assessing failure load despite criticism; and that the inclusion of strain 

hardening behaviour in computer modelling is the only reasonable place to 

account for the benefits of strain-hardening in tall or slender structures. 

The advocacy of digital computation is continued in Davies (1967), which 

has particular application to shakedown loads. In contrast to overloading col

lapse, shakedown is the repeated loading and unloading below the calculated 

elastic yield load which causes plasticity in the extreme fibres of members and 

leads to reduced load-bearing capacity and eventual collapse. (The primary 

paths to collapse investigated in the 1960's were shakedown and overload

ing collapse; present opinion as per Davies (2002) is that failure arising from 

shakedown methods is far less likely than collapse brought about by overload

ing.) A form of analysis is explained which uses stiffness matrix methods to 

find points at which simple plastic hinges are found, alongside the discussion 

of an extension of the method to discover the stability of the structure. How-
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Figure 2.19: Two false fail mechanisms found by FE methods: many simulations 

predict hinges with opposite sign to actual bending moments such that hinge 

mechanisms in any combination of (a) or (b) cannot permit collapse. Correct fail 

mechanisms match the direction for their bending moments to that of the failure 

mechanism. 

ever, the use of computer-bound analyses is advocated in conjunction with 

engineering judgement and manual calculations. Davies (1988) stated that 

blindly trusting the computer-based packages for safe designs is not appro

priate both for safety and for the expert status of Chartered Civil Engineer. 

Preliminary calculations and tests of the results from computer programs 

are essential because many, at the time, failed to correctly predict the failure 

mode of certain pinned-base portal frames (Figure 2.19) precisely because 

the moments causing some of the predicted hinges act in the opposite direc

tion to the motion of failure. A suggested mechanism is detailed to test if 

the predictions of a given computer system are correct (Figure 2.20). 

Chan (2001) is in basic agreement with Davies' criticisms of unwise use 

of computer-based analysis tools. While establishing the need for member 

imperfections to be included in the initial state of a structure modelled by 

computer (and introducing an extension to present FEM methods which in

corporates this information), Chan says: "(The presented technique's) exten

sion to design by elasto-plastic analysis under static and cyclic loads requires 
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Figure 2.20: Suggested test model from Davies (1988) to evaluate correctness of 

supplied results from computer-based analysis 

careful standardisation, codification and, most importantly, training to engi

neers. Benchmarked examples and software should be established for quality 

assurance. Before this objective is achieved, all these powerful analysis tools 

remain toys for experienced researchers and engineers." 

One method by which justification may be found for a particular com

putation method could be full-scale tests of structures, against whose data 

computed predictions may be compared. Davies et al. (1990) explains the 

processes followed in constructing and testing sample frames (Figure 2.21) 

in order to calibrate results provided by simulation. The computer model of 

this structure had two gable ends and one portal frame span. The hinges 

were simulated as partially flexible at their links to the haunched sections 
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Fig I. General rzrrangement for tests 

Horizontal 
jack 

Figure 2.21: Single-bay portal frame tested in Davies et al. (1990) 

of the rafters. Both the simulation and laboratory tests were reported as 

failing due to shear distortion at the interface between the column and rafter 

haunches (Figures 2.22, 2.22). The conclusion that the model, calibrated 

by the test data, will provide accurate information about the structural be

haviour under loads must face the criticism that the full-scale tests were 

stage-managed to alleviate potential problems related to the transfer of load 

via the purlins supporting the roof sections or related to the stiff end-frames 

not flexing when the central span was loaded and the resulting effect upon 

the total load carried by the portal; these effects are not mitigated in contem

porary construction so further research to quantify them and include them 

in computer-based analysis may be beneficial. 
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Figure 2.22c Observed Failure MOde of Test Frame in Figure 2.21 

Shear hinge 
. distortion 

CompreSSiOn zone 
fOilure 

Figu,·e 2.23, Predicted Failure Mode of test Frame in Figure 2.21 
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Davies (2002) qualifies the previous commentary on the reliability of 

computer-based analysis methods with solid explanations of correct method

ology, which had been known for a number of years before this paper was sub

mitted but withheld due to commercial considerations. Davies explains the 

steps taken to perform analysis by F.E.M. and Influence Coefficient methods 

(a computational technique arising from the special use of shakedown to pre

dict the collapse load), with the inclusion of steps necessary to protect against 

the false fail methods mentioned above. Also explained are the inclusion of 

second-order effects, semi-rigid joints and strain-hardening in elasto-plastic 

frame analysis and the inclusion of semi-rigid joints and stability functions 

in Influence Coefficient analysis. 

Most computational systems work under assumptions of elastic behaviour 

up to plasticity in order to predict the formation of plastic hinges and conse

quent collapse mechanism. Gu and Chan (2005) is no different, but seeks to 

unify the process of design around simulation and analysis without reference 

to structural design codes. As part of the journey in this direction, they pro

vide an advanced element for finite element analysis which is able to describe 

the large-scale buckling characteristics of a member using a single element in 

analysis without need to calculate the effective length of the member. Bayo 

and Loureiro (2001) follow a similar path, using virtual work in contrast to 

Gu and Chan's direct solving of the differential equilibrium equation. 

Lay and Smith (1965) were critical of the impossible curvature of Figure 

2.2( c), insisting that strain-hardening has to be included to avoid the impos

sible discontinuity in cross-sections with fully-plastic hinges. Their investiga

tion developed a numerical method for characterising the moment-curvature 

relationship which included strain hardening. The method makes use of a ta

ble of corresponding values which assist the search for valid values of moment 

at the end of loaded members, allowing the deflection of a structure to be 

calculated. Their predicted curves showed good agreement with contempora

neous results. Their recommendation to characterise the moment-curvature 
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and moment-axial-curvature relationships informed the techniques used in 

Chapters Three and Four. 

2.5 Additional Ideas 

Internal stresses within members further complicate the process of analysis. 

Hot rolled steel, with different portions of the cross section cooling at dif

ferent rates, locks in additional stress distributions which can significantly 

affect the behaviour of the member under loading. Szalai and Papp (2005) ex

tended existing work approximating internal stress distributions in I-shaped 

members and made it effective for structural analysis. Where previous as

sumed stress distributions had sought to satisfy the equilibrium of moments 

in both axes of a cross section and associated normal forces, Szalai and Papp 

recognised that torsional forces and bimoment needed to be satisfied also. 

Governed by five equations (one for normal forces, two for moments, one for 

bimoment of torsion and one for twisting forces), they selected a parabolic 

distribution for internal stresses and found the algebraic expression of stress 

distribution across the web and flange: 

bt f (3b2 + 4h6) 
cf = afy 2b3tf + 8bh5tf + h8tw; 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

It must be acknowledged that the distributions featuring in this work 

assume each member is made of infinitesimally-thin plates, which permits 

one-dimensional parametrisation across the width of the flange or depth of 

the web, an area which can be extended. However, this model shows good 

agreement with the previous work, with additional support for modelling 

lateral torsional buckling and similar modes of failure. 
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It is difficult to place Rolfe (2005) within this discussion. Offering an 

alternative framework entirely for structural work which uses series summa

tion to continuously model structural elements, this paper requires a different 

kind of appreciation than given to the texts discussed above. Its main feature 

is an introduction to Chebyshev (or Tschebyshef) polynomials and the use 

of these series summations to follow the curves of known structural elements. 

A Chebyshev polynomial is a special polynomial series calculated for a nor

malised length, that is one of the range (-1,+ 1), whose terms are equidistant 

along an arc of radius one. This makes the distribution of corresponding 

terms of the series along the (-1, +1) axis non-uniform, guaranteeing conver

gence and vastly improving the rate at which convergence is obtained. The 

absolute maximum error is smaller than other polynomial series methods 

and so the use of these series to describe the deflection, shear forces, bending 

moments etc. of structural members is highly suited. Rolfe works through 

a few examples, showing that integer coefficients may be retained through

out the calculations. It must be noted that the Chebyshev polynomials are 

independent of the level of complexity used to model structures and that an 

assumption of small deviation and simple stress-strain properties can increase 

the errors arising in calculation. This would indicate that they are a useful 

tool for desk-based checking of state or the generation of initial predictions. 

2.6 Summary 

The aim of this chapter has been to provide an overview of the present 

state of steel design theory and practice. Practicality and a correspondence 

between theory and reality have driven the empirical research which supports 

developments in theory and which in turn provides the means to analyse the 

behaviour of structures. This is in turn tempered by the legal requirements 

for safe construction of real structures, expressed in structural design codes. 

Computer-based analyses speed the process of designing structures according 
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to design codes 

Love (1892) identified that theory of structural steel beyond elasticity 

was lacking, with theory being in advance of practice; Ewing (1899) be

gan to work towards an elastic-plastic theory. The need for consistency and 

safety against the pressure to economise in real structures led to the creation 

of design codes, including those for steelwork was not an exception. British 

Standards 449, 968 and 5950 have provided engineers with safe limits for 

practice. In the 1950's and 1960's the quest for a strong theoretical foun

dation resumed, with Baker, Horne and Medland contributing plastic and 

post-plastic analyses. Unfortunately, Horne (1963) arrived at the erroneous 

conclusion that strain hardening may be sufficient to counteract the effects 

of deflection on collapse load, providing the older theory with a reprieve. At 

that time a new means of analysis arose with the arrival of digital computers. 

Davies and others have set the standard for Stiffness Matrix methods, which 

have been championed for a nearly half a century. As the present work heads 

toward the implementation of another computer-based analysis, the words 

of Chan (2001) should temper the approach: "Benchmarked examples and 

software should be established for quality assurance. Before this objective 

is achieved, all these powerful analysis tools remain toys for experienced re

searchers and engineers." 

Having identified the state of present theory and design methodology, 

the present work on Analytic Structures sets out in a novel direction in 

order to provide alternative insights into structural members and their failure. 

In particular, hot-rolled steel structures form the particular focus of this 

work. However, before these structures can analysed, a firm grounding in the 

mathematical methods of Analytic Structures is required. This is presented 

in Chapter Three. 
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Chapter 3 

Core Mathematics 
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Figure 3.1: Three-dimensional Cartesian axes 

3.1 Basic conventions 

In this project, the standard axes and rotation convention are used, including 

the Oxyz system of three-dimensional Cartesian axes, also known as the 

right-hand triple. Figure 3.1 illustrates how the triple can be applied to a 

set of axes. A rotation about an axis is denoted as 'positive' on appearing 

clockwise when viewed up the axis i. e. looking as z increases a clockwise 

rotation is recorded as positive. This is analogous to holding a right-hand fist 

with thumb extended around an axis with the thumb and fingers indicating 

positive motion and rotation, respectively. This convention is chosen because 

it maintains consistency of signs. 

This chosen convention conveniently includes t hat of a positively-signed 

force acting a positive distance from the origin and has a positive value of 

moment (as does its counterpart in a couple: a negatively-signed force a 

negative distance from the same point of reference). A moment formed from 

such a couple brings about positive curvature; a positive moment brings 

about positively-signed deflection. Finally, with curvature of members being 

such an important factor in in-plane flexure , K, = 1- requires that the radius 
Tc 

of curvature (rc) will have a sign in sympathy with t hat of the curvature. 

Both positive and negative situations are illustrated in Figure 3.2, where the 

Oxyz triple of axes has t he x-axis entering the page, with positive direction 

away from the reader. Figure 3.2(a) has negative moment ahead of the cross

sectional slice at the start of the section and positive moment behind, which 
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Figure 3.2: Sign convention of moments and curvature 

is part of a negative overall moment. This total moment accompanies a 

negative measurement of r c agreeing with negative curvature and negative 

value of deflection. 3. 2(b) has a positive curvature from a positive value of r c, 

agreeing with positive moments and positive deflection along the member. 

Beam elements are an essential tool for describing and understanding 

structural response to load. The beam in Figure 3.3 is shown with no forces 

having x components and the load being applied in the y-z plane. The z

axis is used to indicate distance along the beam in its initial state; when 

deflected its position is parameterised by s. This s is the distance along 

the beam found using terms in differential geometry. Given a beam or a 

structure that follows a function F(y, z), the function can be parameterised 

by s related to y and z. This s is then used to describe the distance along 

the beam. Although the function F may not be described or written down 

in simple equation terms, the process of following the path of the deformed 

beam follows some function with a parameter that is labelled s. 

For this project, the origin of the axis is placed at ground level on the 

corner of the structure under investigation so that all calculation of posi-
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Figure 3.3: Typical loads on a beam 
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qy 

Figure 3.4: Internal action of a shear force 

tion occurs in the positive-positive-positive octant ofthree-dimensional space. 

While working on the two-dimensional model of a single frame arch, the origin 

is placed so that the computer models it with positive x- and y-coordinates 

These standard axes provide convenient shorthand while examining loaded 

beam systems. Figure 3.3 indicates the letter notation for various loads. A 

shear load will be denoted q and axial thrust p, each with subscripts indi

cating the direction in which they act. Torsion has not been included due to 

the nature of the beams under consideration: I-beam girders do not behave 

well under torsional forces and so every effort is made to avoid placing them 

under this type of load. 

In addition to the Cartesian axes, the notion of a reporting surface needs 
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Figure 3.5: A typical reporting surface in a straight beam 

introduction. The rotation sign convention informs how to record bending 

moments. The moment is clearly about some axis and this fact supplies an 

indication of how to record its sign. Figure 3.4 illustrates the internal shear 

forces in a section of a beam under a shear load, with a section at the end 

of it displayed distinct for illustration. The beam is in equilibrium, so the 

section at the end should have a reaction opposite to the external load, and 

then, at the join between the section and the main body of the beam, the 

force at the end of the beam is in the same direction as the external load. 

There are two possible forces to report as internal shear forces, one at either 

side of the surface between the two sections of the beam. 

In this document, the term "reporting surface" will be used to describe 

the surface of a small cross-section whose behaviour under the load is being 

investigated. This surface is the one first met as progress is made along the 

beam away from the origin. Because the axes are usually set up to go along 

the beam, the reporting surface is most often that where the axis arrow "goes 

in" to the section being looked at. In more-complicated structures, such as 

the arch of a portal-frame roof, the path of the arch is followed. This is why 

the method is described as following the beam, progressing along it, initially 

moving away from the origin. The parameter s can be thought of as defining 

the location of the reporting surface. 

Figure 3.5 indicates a reporting surface in a single beam, and Figure 3.6 
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Figure 3.6: The reporting surfaces through a portal-frame 

those in a portal frame, where the connected members are considered as one 

long curved beam. It must be noted that the bold line of section (a) in Figure 

3.6 clearly is the start of a section into which the z-axis enters, whereas the 

bold line of section (b) is nearly at right-angles to the z-axis and the bold 

line at the start of section (c) apparently the wrong edge of the suggested 

section but remains the one to be used as it continues along the beam as 

described above. 

3.2 Member segment parametrisation 

The Engineer's Beam Equations supply 

which provides the relation 

M 
I 

() E 

y T'c 
, 

1 M 
/'i, = T'c = EJ" 

(3.1) 

(3.2) 

This describes how the curvature, /'i" depends upon the moment. Because 

of its reliance upon the Engineer's Beam Equations, it is complicit with the 

assumptions made for the derivation of those equations: linear elastic stress

strain behaviour; plane sections remaining plane and perpendicular to the 
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Figure 3.7: Triangle showing angle relationships that supply differential equations 

beam core; and material homogeneity. Of these three assumptions, only one 

is kept in this project: that planar cross-sections remain planar and per

pendicular to the member's core. The project's goals of simulating Steel 

Portal Frame structures make acceptable the assumption that shear forces 

can be neglected, due to the low likelihood that portal frame member failure 

arises from shear stresses. The core process by which the alternative math

ematical derivation for structural analysis described here models members' 

loading and deformation follows a parameterised position along the core of 

its members. 

Standard differential geometry results show, for a function y that depends 

upon z (i.e. y = f (z)), the arc length along that curve from a point a to a 

point x is: 

(
dy )2 

S = l x 

1 + dz dz. (3.3) 

Also, from Figure 3.7, tan e = ~;, which, when differentiated with respect to 

z, becomes 

This leaves 
de 
dz 

1 d2y 

(1 + tan2 e) dz2 

which, when combined with 

ds 

dz (
dY') 2 1+ -
dz 
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(the differentiated form of 3.3), results: 

1 de de dz 

ds dz ds 
(3.7) 

The above result differs from standard small-deflection theory, which uses 

1 ]1.1 d2 y 

Tc EI dz2 
(3.8) 

This approximation relies upon assumptions of purely-elastic stress-strain 

behaviour and the deviation ~; in Equation 3.7 to be small enough that 

its part in the denominator of the right-most expression in Equation 3.7 is 

approximately one. The implementation of the Analytic Structures method 

needs the additional detail provided by the denominator of Equation 3.7 and 

so cannot tolerate the loss of accuracy in the approximation of Equation 3.8. 

However, the solutions to the system of equations under investigation here 

require that both elastic, plastic and strain-hardened material behaviour are 

described and incorporated into the structural behaviour, and that any scale 

of deflection is tolerated (for instance: although unlikely, slender members 

may be permitted to flex under loading to a degree greater than could be 

modelled accurately by small deflection theory). The system of equations 

described below side-steps the requirements of small deflection theory. The 

technique is able to describe members with built-in curvature (or initial lack

of-straightness such as the strut in Figure 3.8) and structures designed with 

flexible members. 

3.3 Beam Behaviour 

Figure 3.9 indicates internal bending moments arising from the load qy. The 

cross-section at the left-most end is at rest. The internal bending moment 

can be thought of as counteracting the load on the beam-element at the left

most end of the beam. At any surface join between a beam element and 

main body of the beam, the bending moments cancel to ensure the beam is 
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Figure 3.8: Pin-ended Euler strut with perturbation force at mid-section to ensure 

eventual buckling 

Figure 3.9: Internal shear forces in a beam 

at rest. The example reporting surface shown in Figure 3.9 is a portion of 

the way through the member. 

A built-in cantilever beam acting under the forces generated by a down

ward point-load at its free end and the reaction at the fixed end has its 

upper surface under tension and lower surface under compression. These 

forces cause elastic deformation and the lengthening and shortening of the 

upper and lower surfaces, respectively. There must remain a plane along the 
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Figure 3.10: Stress distributions through a cross-section as stress increases to 

complete plasticity in a loaded member 

length of the beam that remains unchanged in length. This plane is known as 

the neutral axis or neutral plane. Under bending moments alone, the neutral 

plane remains inside the body of the beam. 

So far, the discussion of beam behaviour has been assumed to be within 

the elastic range of the steel material. It is important to quantify and allow 

for the abrupt jump to plastic (and thereafter strain-hardening) that occurs in 

a hypothetical 'extreme fibre' of a loaded steel cross-section. For the current 

discussion, it is assumed that an instantaneous discontinuity occurs at the 

transition point into plastic behaviour. Also assumed is an identical response 

to a load under both tension and compression, which may not happen in every 

material, and that plane sections remain plane under bending. 

In order to start with a relatively simple elastic-plastic system, the loaded 

beam is taken as one that is symmetrical about the y-z plane. As with 

bending, a neutral axis emerges according to the shape of the cross-section, 

about which there is no stress. A beam loaded solely by moments satisfies 

the assumptions and allows the use of the Engineer's Beam Equation: 

My 
O"z = T· (3.9) 
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Eventually increasing M will result in C5z reaching the maximum direct stress 

the beam can support, C5y, the point of elastic yield stress. This will happen 

according to the cross-sectional shape of the beam with either top or bot

tom (yl or y2, respectively) of Figure 3.10 reaching the limit first. Figure 

3.10 indicates the progression of yield in the material made as the moment 

increases to the plastic moment, Mp. This is the moment at which the en

tire cross-section is yielding and behaving plastically. As the moment M 

increases and the yield stress has been reached at one edge of the cross

section, yield spreads into the cross-section until the hypothetical end-stage 

is reached with the entire cross-section in plastic flow (Figure 3.10(e)). The 

theoretical moment which causes the entire cross-section to be in plastic flow 

is named the plastic moment, }I,!!p. A beam in equilibrium that develops a 

plastic cross-section becomes free to flex about that point. The section be

comes known as a plastic hinge, and well-placed plastic hinges will form a 

collapse mechanism for a system of beams. Statically determinate structures 

will collapse when a single plastic hinge is formed. In contrast, statically 

indeterminate structures are those whose behaviour under plastic flow does 

not necessarily allow sufficient plastic hinges to be formed to establish a fail

ure mechanism, simply because their layout has too many supports. These 

require more than one plastic hinge before a failure mechanism may emerge. 

Figure 3.11 indicates a statically determinate structure which has a hinge 

forming a collapse mechanism, and includes the bending moment diagram 

which shows the plastic section forming the hinge and how it arises from 

the material being stressed so much that strains exceeding (II and the mo

ments exceed ME- The ratio of plastic moment to yield moment is known as 

the shape factor of the cross-section. Beams whose material is partly in an 

elastic state and partly plastic have their behaviour controlled by the elastic 

portions of the member, and this is referred to as "controlled plastic flow." 

Among the techniques used to calculate beam behaviour for statically 

indeterminate systems (and a portal-frame being statically indeterminate) 
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Figure 3.11: A beam with plastic hinge below its bending moment diagram (after 

Megson) 

is the superposition method. It works by calculating the bending moments 

of beams, adding the factors of each force. It does not work for situations 

involving plastic flow. The order in which forces are applied affects the way 

in which plastic hinges develop. The alternative method is to apply small 

disturbances to a system in equilibrium. Small virtual displacements require 

work to be done on the system. The conservation of energy says that the sum 

of work done by internal forces is equal to that done by the external forces. 

This method allows the study of beam behaviour in both plastic and statically 

indeterminate situations. Ignoring these methods, computing solutions to 

the structure's system of equations, and making use of an accurate stress

strain curve to cover behaviour of beams under such loads that would bring 

about plastic and post-plastic behaviour also allows the inclusion of strain 

hardening behaviour to influence the stability of the structure 
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3.4 Strut Behaviour 

The first mathematical treatment of strut behaviour was performed by Leon

hard Euler (1707-1783) (published in Mechanica in 1736) as part of a revolu

tion he brought about in the approach taken to applied mathematics. Euler 

is credited with the first development of useful calculus methods, although 

rivalled by Newton's method of fluxions, his approach is a closer relation to 

that used today. 

If a perfect strut (one straight, free from residual stresses and homogenous 

around its loaded axis to avoid buckling along an axis containing some defect) 

is held upright by pins at each end and subjected to a pure axial load, there 

is no lateral deflection of the beam under the load. Labelling its critical 

buckling load PeT) the member, being perfect, only shrinks in length under 

compression along the axis in which it is loaded, until the load reaches P cr. 

The material imperfections of any other strut may be investigated by adding 

a small lateral force halfway down the member currently under consideration 

(as per Figure 3.8), which brings about a lack of straightness. Removing the 

lateral force at any load below Per will have the beam return to its straight 

position. However, when the axial load is Per, removing the lateral force 

does not let the beam return to its straight state, because the buckling load 

causes a natural state of equilibrium. In this state, the lateral deflection of 

the strut will grow as the load increases. 

Given a particular deflection in this beam loaded at its critical load, 

the moment-curvature relationship under the assumption of purely-elastic 

behaviour has 
M 1 de 

EI Ie ds 
(3.10) 

This links the moment, lvI, to the deflection y. In an infinitesimal section 

along the strut under load PeT) the moment about the loaded axis, is .Af = 

Per.y. In the case where the deflection, ~; , is of the order of 0.1 %, there is 
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a strong agreement in the approximation of 

M 
EI 

(3.11) 

to Equation 3.10. This allows the rearrangement of this O.D.E. to show that 

it is a regular second-order ordinary differential equation of simple harmonic 

motion: 
d2y Pc:r.y 
ds2 + EI = O. (3.12) 

This equation has solutions for y = ,usin(~s) + l/cos(~s), where e 
The boundary conditions that supply ,u and l/ are v = 0 at s = 0 and s = I, 

where I is the length of the deflected beam as measured along the loaded 

axis. Thus l/ = 0, and examining ,u provides information about Per (but not 

,u itself): a non-trivial solution to this problem requires sin( ~l) = O. This 

forces ~l = mr where n is any whole number. The consequences of this is 

that, for a strut following a small deflection as per Euler's work, 

(3.13) 

The value n in Equation 3.13 can be any integer, and so this solution 

permits an infinite number of stable buckling positions (for example those 

described by Figure 2.1). Using the term 'buckling points' to describe the 

extremes of a strut buckled into one of the later Euler buckling modes, a 

strut restrained to two-dimensional loading, lateral forces applied in the right 

pattern to match the buckling modes associated with an n larger than one 

and the appropriate Per load applied, the lateral forces could be removed 

and the crushed member would stand stable. Such unusual load patterns 

may permit buckled states for n > 1, but it is a safe assumption that nearly 

all load cases will buckle at the Per for n = 1 first. Alternatively, present 

practice applies restraints at the buckling points of a few low n in order to 

add resistance to buckling. This discussion highlights the flaws in Euler's 

method: it is easy to supply an n for which the physical capabilities of a 

beam cannot match the predictions of Euler's theory. 
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3.5 Algebraic Method 

Previous formulaic descriptions of the limiting stresses for a compression 

member have relied upon curve-fitting and analytic approximation to empir

ical data curves. Recent developments in desktop computing have allowed 

the development of software that follows the codified patterns for the failure 

loads of beams. An alternative approach has been taken in the present work. 

Beginning with the equations of state for the beam and using high-precision 

numerical equation-solving tools, the behaviour of the system may be mod

elled under a number of conditions. The eventual goal is the development 

of equation-solving functions which enable each possible failure outcome of 

a structure to be considered. 

Primarily, the analysis tool presented here quantifies the behaviour of an 

infinitesimal cross-section of a structure's members and uses equation solvers 

to follow through the path of the loaded and/or deflected member. The 

equations of state for a member under load can be synthesized to a set of 

differential equations which can then be solved either analytically by modern 

mathematical computer programs or numerically, according to the amount 

of information available about the system. There are three components to 

the method: differential geometry for following the path of the beam; solv

ing the differential equations for the member so as to follow the deformed 

shape of the member and speeding up the calculation by tabulating the re

lationships between loading and deflection, all of which follow below. The 

computer modelling uses the assumptions that plane sections remain planar; 

local buckling is ignored; and there is no shear deformation. As this is a stan

dard assumption with all present models of structural analysis it is justified 

despite the possibility that structures can be constructed whose connectors 

and loading defy this requirement. 
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Figure 3.12: Short segment of beam and its forces 
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Figure 3.13: Short segment of beam and its measurements 

3.5.1 Equations of State 

A segment of a loaded beam, as Figure 3.12, is used to calculate the equations 

of state. These then can be solved to gain an understanding of the behaviour 

of the system. To begin, the notation is identified: the relationship between 

the length (5s) of an infinitesimal segment, its angle e to reference axes 

and the corresponding changes in height on those axes (5y,5z). Additional 

geometric information is available from Figure 3.13. The triangle at the base 

of the figure, in the limits as the respective 5s, 5y, and 5z tend to zero, 
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yields the relationships cos e = ~;, and sin e = ~~. Furthermore, measuring 

in radians permits c5s = rec5e. Consequently: 

1 de 
K, = - =-. 

re ds 
(3.14) 

This allows the curvature of a given member to be specified in terms of its 

initial lack of straightness and the change in angle at a single cross-section 

generated by the forces acting upon it. The equations of state are (from 

Figure 3.12): 

(Vertical Equilibrium) 

(3.15) 

(Horizontal Equilibrium) 

(3.16) 

When the limits of the c5's are calculated, 3.15 and 3.16 render the differential 

relationships between forces in the x- and y-directions as 

dfy 
-=Wy 
ds 

(3.17) 

and 
dfz 
-=Wz · 
ds 

(3.18) 

Taking moments about the surface marked B in Figure 3.12, using small 

angle approximations where appropriate and considering the limits of the c5's, 

the following ODE's are formed: 

c5s2 c5e c5s2 c5e 
-wz( 2) sin( 2 )-wy( 2) cos( 2 )+qy cos (c5e) c5s-tz sin (c5e) c5s+Mx-Mx-c5Mx = 0 

w z c5s w yc5s c5s 
--2- - -2- + qy - tz re 

c5Mx 
c5s 
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Figure 3.14: Beam segment under compression, including force diagram and rela

tionship between os, Oy, oz, and or} 

3.5.2 Length Contraction Under Axial Load 

The initial mathematical model of beam-segments is inaccurate, failing to 

include any changes in length that occur when an elastic material is squashed 

or stretched. A steel beam or strut, when loaded, will change in length as 

it follows its stress-strain curve. To model this, the equations need to be 

altered to allow for this change in length. In constructing these equations, 

again, a small segment of the member is being considered so that small

angle approximation is appropriate. The situation and the trigonometric 
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relationship appear in Figure 3.14. 

_ !J.s _ [iz cos e + i y sin e] 
E - ds - EO' A (3.21) 

describes the relationship between the strain and the load, via the stress

strain relationship, when the beam segment is at angle e to the x - z plane. 

If the segment in question, originally ds in length, contracts by length !J.s to 

become ds - !J.s long, the relationship to cos e as described by Figure 3.14 

is , and use, as indicated in the Notation section of the Resources, Ea[] to 

indicate a strain calculated from its associated stress: 

cos e = dz = dz ( 1 ) = dz (_1 ) 
ds - !J.s ds 1 - ~: ds 1 - E . 

(3.22) 

Using the same logic for sin e, the equations become: 

sine = dy = dy (_1_) . 
dS - !J.s ds 1 - E 

(3.23) 

The same 'squashy factor' appears in the shearing forces exactly as Equations 

3.19 and 3.20 when the length 'ds' is replaced by 'ds - !J.s': 

-Wz(O;)(dS - !J.s) sin(On - Wy(O;)(dS - !J.s) cos(O~) 

+qy cos (de) (dS - !J.s) - tz sin (de) (dS - !J.s) 

_ wzds _ wydS + q (1 _ !J.s) _ t
z 
ds 

2 2 y ds T'c 

dMx 

ds 

(3.24) 

=0 

(3.25) 

(3.26) 

The differential equation relationships are found in the limit case as dy, dz 

and ds tend to zero: 

dz (1 ) e e ( [iz cos e + i y sin e]) ds = - E cos = cos 1 - EO' A (3.27) 

dy = (1 _ ) . e = . e (1 _ [iz cos e + i y sin e]) ds E sm sm EO' A . (3.28) 
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3.5.3 Differential Equations of State 

These six equations form the Differential Equations of State: 

dz 
ds 

dy 

ds 

de 
ds 

dfy 
ds 
dfz 
ds 

dMx 

ds 

(1- f) cose 

cos e (1 - fa [fz COS e : fy sin e] ) 

(1 - f) sin e 

. e ( [fz cos e + fy sin e]) sm 1- fa A 

1 -+I1;(s) 
rc 

. ( [fzcose+fySine]) (fy cos e + fz sm e) 1 - fa A . 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

The variable s parameterises the member, indicating length along it 

through some central point and avoiding the use of X-, y- or z-coordinates. 

'fa []' is a function supplying a value of strain for a given value of stress, 

allowing a variety of stress-strain relationships to be included in the analysis. 

The loads, wyand W z can themselves be parameterised. The inclusion of e 
allows the member to positioned and loaded at any angle; the ~: permits 

modelling of curved members with a parametric function of curvature, 11;( s). 

All this may be included in the structure and the loads will yet deform it 

sensibly. 

3.6 Shooting 

Finding solutions to the six equations of state, above, requires a mathemat

ical technique called 'Shooting'. Often it is assumed to be impossibly com

plicated while, in fact, it is deceptively simple. While this project the has a 
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large number of mathematical equations that need solving, the consistency 

of the system of equations is used to extract from known values the initial 

conditions which permit these values. Key to this method of analysis is the 

computer-based mathematics package used: Wolfram Research's Mathemat

ica. Alternative software, such as Maplesoft's Maple or Mathworks' Matlab 

may be used but may not have the sophisticated algorithms of Mathematica. 

3.6.1 Introducing Mathematica 

Simulations in this project were designed and run on Mathematica 4.1 under 

the 32-bit edition of Microsoft's Windows XP. Mathematica is a powerful 

mathematics package combining algebraic and numerical tools for computa

tion. It is presently at version 6.0 which supports 64-bit numerical accuracy 

and larger memory configurations where available and will run on Microsoft 

Windows, Apple Mac OS X and GNU jLinux platforms. The algebraic tools 

include symbolic differentiators and integrators, which can calculate sums 

such as 
1 jX s2 

<D(x) = - e"2ds. 
27f -00 

(3.35) 

The numerical tools provide algorithms for calculations where algebraic tools 

will not suffice. Many systems of ODE's and PDE's are not solvable by 

algebra alone, and numerical integration or numerical differentiation provide 

accurate alternatives. The standard numerical error within the 32-bit edition 

of Mathematica used, for a result x, 10-8 + ixi10-8
. 

In M athematica, the commands to differentiate and integrate, solve a 

set of equations and solve a family of differential equations in symbolic or 

algebraic form are D, Integrate, Solve and DSol ve. Differentiation has 

a numerical counterpart in the decimal fraction expression N [%] (because 

in Mathematica simple fraction remains an algebraic statement unless ex

plicitly forced to become a decimal expression); integration in the function 

NIntegrate; equation-solving in FindRoot; and differential equation-solving 
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in NDSol ve. Due to the non-linear state of the full-detail stress-strain rela-

tionship, NDSol ve and FindRoot are the key tools for solving the equations of 

state and discovering the unknown initial conditions that match the known 

boundary conditions. The numerical differential. equation solvers in M ath

ematica require initial conditions rather than general boundary conditions 

due to their use of iterative methods to find solutions. 

3.6.2 Shooting for the area under a parabola 

An example of shooting may be finding the relationship between the area be

Iowan upside-down parabola and coefficients of the parabola. The equation 

is known: 

y = f(x) = -(ax2 + bx + c). (3.36) 

Additionally the calculations are simplified if the parabola is centred on 

the y-axis, which makes f( -x) = f(x) and b = o. Also, when x = 0, 

y = -c. There is some number d which represents the area enclosed by 

the parabola and the x-axis. Suppose that a project requires knowledge of 

a in terms of the other constants. Some simple calculus may be performed 

at this point to discover that a = ~~23. Alternatively, the same equations 

may be programmed into the computer system to discover the value for a. 

The exact command for Mathematica would be Solve [d==Integrate [- (a 

x2 + c), {x, -J(c/a), J(c/a)}] ,a], where Solve is used because this re

mains purely algebraic and has no differentials. 

3.6.3 Shooting for Solutions to the Equations of State 

The simplest deployments of the equations of state are columns, built-in or 

simply-supported members, structures which feature a single member. Fig

ure 3.15 show a cantilevered beam under UDL and the six known boundary 

conditions that permit the overall solution to be found - the boundary con

ditions are each paired with one of the six equations of state, showing that 
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Figure 3.15: Cantilevered beam indicating which boundary values are known at 

each end (a) and (b) 

solutions can be found. Often the collection of column-beams, members and 

struts comprising a given structure is more complicated than a column or 

simply-supported beam. Each additional member brings information about 

joins and adds boundary conditions to the equations. These arise in mul

tiples of three, being information about the forces, moments, positions and 

slopes at particular positions throughout the structure. As an example, Fig

ure 3.16 features a network of beams, for which positions (a) and (c) supply 

information about the position (x, y) and the moment (Mx); position (b), 

conservation of both moments about that point and horizontal and vertical 

forces; and position (d) information about the position (x, y) and the cur

vature (K:) at that point. Another example, the system of Figure 3.16 has 

nine bounding values which permit the associated set of three conservation 

equations (moments about the join, horizontal and vertical forces) and the 

six differential equations to be solved. Examining the examples of Figure 

3.15 and Figure 3.16 in greater detail should provide necessary clarity to this 

simple technique. 

Figure 3.15 features a built-in cantilevered beam under UDL (acting ver

tically rather than perpendicular to the member surface). At the start-point 

for the member, the ys-position, z-position and built-in angle (8) are known. 

At the end of the member, the horizontal and vertical loading and end-
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(a) (b) (c) (d) 

Figure 3.16: Network of beams with two pin-jointed ends and one fixed-in end 

moment are known, information which is required for the initial conditions. 

The equation solver is asked what initial values of horizontaljverticalloading 

and moment will supply the known end-values, and the result obtained fed 

in to the initial conditions. 

Figure 3.16 is more complicated, having the network of members split 

around a fixed join. Knowing that the conservation laws of force and moment 

still hold, the structure can be divided into constituent parts and dealt with 

in stages. Shooting will need to follow from (a) to (b) and then branch as the 

structure does to incorporate the effects of lengths Ee and ED, shooting 

for each from their respective start points and iteratively incorporating the 

results to find the required initial conditions. 

Although each structure has its own particular known final conditions 

which will permit the essential initial conditions to be found by numerical 

equation solvers, there remains a heuristic rule for solving any final points of a 

structure: built-in ends of members have known angle (defined by geometry) 

and unknown moment; pinned ends of members, known moment (usually 

zero) and unknown angle. It is the loading condition of each member-end 

within the structure, along with how each member's loading is conserved 

and transferred, which is key to finding a set of initial conditions for the 

Equations of State. 
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3.7 Program Flow-Chart 

Having described the core Equations of State and the method by which known 

information about a structure undergoing analysis will provide a path to full 

simulation, it is important that these two core components are tied together 

well. The flow chart of Figure 3.17 shows the pattern followed, namely, 

unknown initial conditions used in the Differential Equation Solver to find 

solutions to the Equations of State are found by repeated improvements to 

guesses of those initial values. A complete set of known boundary conditions 

is essential for the mathematics of the equation-solvers to complete their 

function; a broad range of such boundary values will permit the shooting 

program to find the necessary unknown boundary values. 

3.8 Additional Components 

Non-linear physical factors of the material of structural steelwork add a chal

lenging numerical layer to the process of modelling and simulation. For the 

cross-sections under consideration in this document, the stress-strain curve 

and the internal strains arising from the hot-rolling fabrication process are 

highly important. The following paragraphs document their inclusion in this 

project. 

3.8.1 Stress-Strain Relationships 

Using the information supplied by Byfield et al. (2005) , the elastic-plastic

strain-hardened stress-strain curve can be defined. 50 sets of mill tests data 

provide an accurate understanding of the stress-strain response of S275- and 

S335-grade steel from 0 to 4% strain. The lower bound of the 95% confidence 

interval for the S275 samples provides the detail of Figure 3.18: Ey is at the 

end of the elastic range and has value Ey = Ii. Esh = 6Ey , and the slope of 

the strain-hardened section, ESH = 2700N/mm2
, in contrast to the slope 
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Define Constants 
(E, cry, member properties, etc.) 

Define Initial Conditions 
(xo, Yo, etc) 

Estimate Unknown Values 

(x" y/, etc) 

Use Estimates to solve 
Equations of State 

Obtain Improved Estimates 
of Unknown Values 

Yes 

Are 
Improved Estimates 
of Unknown Values 

Good Enough? 

Display Solved 
Equations of State 

No 

Figure 3.17: Core Program Flow-Chart for Analytic Structures 
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Figure 3.18: Mild steel stress-strain curve as per Byfield et al. (2005) 

of the elastic section, E = 20500N/mm2
. This stress-strain curve provides 

accurate details for mild steel up to 4% strain. An accurate model of the 

stress vs. strain relationship is not supported by experimental testing of 

Byfield and Nethercot (1998). The stress-strain curve is not required beyond 

3% strain because local buckling has been shown to lead to a rapid decline 

in strength where the maximum strain exceeds 3% in the plastic hinge and 

because deflections are very large in frames with such high degrees of strain. 

Due to this scale of deflection, destabilising P - 6 effects will again lead 

to overall frame buckling (in sway frames). It is assumed that the tensile 

and compressive stress response of 8275 steel is identical (albeit for different 

sign and directions). Where convenient for subsequent computation, such 

as in the creation of Chapter Four's Curvature Look-Up Tables, modelling 

assumptions included allowing the strain-hardening behaviour to continue 

indefinitely at a rate of ESH as all the member material acts as in a strain

hardened mechanism. 

The precise implementation of the stress-strain curve in Mathematica 

bears discussion. In order to ensure that there is bijective mapping between 

a value of stress and a value of strain (that is to say that every (]" is associated 
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with only one E), an insignificant slope was added to the plastic range. For all 

of the simulations using an elastic-plastic-strain-hardened stress-strain curve, 

the plastic region is modelled by the relation 

(3.37) 

using Epl = 10-9 . This has the side-effect of sliding the strain-hardened 

region so that a given stress predicts a smaller strain and a given strain will 

predict a larger value of stress. To combat this, the position at which the 

plastic 'plateau' meets the strain hardened section can be moved so that 

the strain-hardened section lies along the original position. Rather than 

following line (a) of Figure 3.19, which is clearly distinct from line (c), the 

dashed line (b) is followed from the plastic range below E = Esh until it meets 

the strain hardening. Finding the place where O"pl (of Equation 3.37) meets 

O"sh = O"y + Esh (E - Esh) shows a marginal difference between this method and 

a flat plastic plateau: 

O"join = 

Ejoin 

5
0"y EshEpl 

O"y+ -------'---
E Esh - Epl 

1485 
O"y + 221399999999918 ~ O"y + 6.70732 X 10-

12 

O"y 6Esh - Epl 

E Esh - Epl 

178199999999989 ~ E 2.48419 X 10-15 . 

22139999999991800 sh+ 

3.8.2 Incorporation of Residual Stresses 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

The uneven cooling of hot-rolled steel sections leaves residual internal stresses 

through the cross-section of the profile. The internal stresses affect the struc

tural performance of the steelwork, most notably in the moment-curvature 

relationship. These are incorporated in the calculation of the stress from the 

strain throughout the member, with scale of these components suggested by 

J.B. Dwight (see Figure 6, 1978 - note the sign convention: the negative 
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Figure 3.19: Minor alterations to the plastic range of a stress-strain relationship 

allow for a one-to-one relationship between stress and strain as well as accurate 

values of stress and strain in the strain-hardening region. (a) is typical of the 

relationship when programmed into a computer; (b) meets halfway between (a) 

and the ideal, (c) 

sign is a compressive force) copied to figures Figure 3.20 and Figure 3.21, 

comparable with German DIN 18800 code (from the commentaries edited by 

H. Schmidt, 2004). The Deutsche Industrie Normale (DIN) 18800 (German 

steel design codes) indicates that building practices incorporate as much as 

~ extra compressive load in the tips of an I-section or H-section. Beams 

whose dimensions have a ratio of ~ below 1.2 are expected to contain half 

the yield load locked in to the internal stresses while those whose ~ ratio is 

more than 1.2 hold 30% of the elastic yield load. The detail of this is shown 

in Figure 3.22 and Figure 3.23, and these residual stresses inspired the val

ues incorporated into EC3. The differences between the linear residual stress 

curves suggested in Figure 3.22 to those suggested by Figure 3.23 are minimal 

(Byfield and Ofner (2004)). The extra compressive forces in the flange tips 

of I-Beams will result in their yielding under stress lower than that expected 

affecting the moment-curvature relationship. This is a reaction particularly 
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U.B. 

Figure 3.20: Typical patterns of internal stresses in a Universal Beam (Figure 6, 

Dwight (1978)) 

important while the member is prone to flexural buckling instability. The 

method of their inclusion is documented in Chapter Four. 

3.9 Conci us ions 

The task so far has been to identify and describe the core tools of the project. 

The standard conventions for signs and axes are stated and the existing the

ory used for beam and column behaviour is outlined. The six Differential 

Equations of State, which form the core mathematics of this project, are de

rived for a cross-section of a member, from first principles, with allowances 

for moment-, shear- and thrust-loading, arbitrary positioning and angles. A 

method is outlined to provide solutions to these equations over the length of 
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Figure 3.21: Typical patterns of internal stresses in a Universal Column (Figure 

6, Dwight (1978)) Grade 43 Steel, now S275 
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Figure 3.22: Beuth-Kommentar DIN18800 Bild 2 - 1.6 (b) with linear residual 

stresses in terms of Py 
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Figure 3.23: Beuth-Kommentar DIN18800 Bild 2 - 1.6 (f) parabolic residual 

stresses in terms of Py 

a member or multi-member structure, making use of known boundary con

ditions to provide the needed initial conditions for computer-based numer

ical equation-solvers. Finally, implementation-specific behaviour regarding 

stress-strain responses and locked-in strains from I-Section fabrication are 

introduced. 
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Chapter 4 

Curvature Look-Up Tables 
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4.1 Introduction 

The large displacement beam equations presented in Chapter Three have the 

potential to provide extremely accurate predictions of elastic deformations. 

This is because curvature can be accurately predicted in elastic structures. 

Predicting the curvature for a given moment and axial thrust is more prob

lematic for non-elastic structures. Lay and Smith (1965) considered the prob

lem of non-linear moment-curvature relationships and suggested the creation 

of look-up tables of pre-calculated data. This chapter develops a technique to 

quantify this non-linear relationship for use in Chapter Three's Differential 

Equations of State. The technique is an advance on previous methods (By

field et al. (2005)) because it includes the effects of axial thrusts and residual 

stresses on curvature. One table needs to be created for each cross-section 

used in Chapter Three's Equations of State (Page 57). Each load combina

tion, as usual, causes a deflection, and inherent in this deflection is curvature. 

Such a value of is used in Equation 3.31 to avoid repeated shooting to find 

the amount of curvature associated with the load. 

The Ultimate Limit State predictions of load capacity for many portal 

frame structures rely on elastic-plastic reserves of strength. These structures 

are especially sensitive to sway deformation and so it is important to ac

curately predict structural displacements if the full elastic-plastic reserve of 

strength is to be utilised. This chapter seeks to address the problem, cre

ating look-up tables of cross-sectional curvature. Moreover, the relationship 

between curvature, axial thrusts and moment is quantified for cross-sections 

with a given residual stress distribution. The fully-analytical approach used 

is an advance on existing techniques for the analysis of portal framed struc

tures because of the inclusion of the complex effects of axial thrust and 

residual stresses on cross-sectional curvature. Since the inclusion of these 

effects increases curvature and consequently frame displacements, negligence 

of these effects could, in some circumstances, lead to an overestimate of the 
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(a) (b) (c) (d) (e) 

Figure 4.1: Beam segment (a) with cross-section (b), its strain distribution (c), 

the stress-strain curve (d) used to calculate stress distribution (e) 

load-carrying capacity of sway-sensitive frames. 

In the search for solutions to the Differential Equations of State (3.29 

to 3.34), tabulated values for the Curvature Function /1:(s) in Equation 3.31 

avoids repeated calculation of the expected cross-sectional curvature caused 

by a given load. The path taken to development of this tabulated data, re

ferred to hereafter as Curvature Functions or Curvature Look-Up Tables, is 

explained in this chapter, starting with the simple elastic model and extend

ing it to meet the needs of accurate simulation. 

4.2 Relating Moment and Curvature 

All the work presented in this chapter follows the pattern of Figure 4.l. This 

figure describes the overall process relating curvature and moment: for a 

particular thin slice cross-section of beam (e.g. that in Figure 4.1 (b)) an 

infinitesimal strip across the cross-section with area 5Ai can be taken, for 

which its strain Ei is known and related to the curvature as in Figure 4.1 (c). 

The stress is calculated via a stress-strain curve (Figure 4.1 ( d)) and the sum 

of the stress across the entire cross section is used to relate the loading to 

the cross-section's curvature. 

The standards for sign remain as at the start of the previous chapter. The 

same right-hand triple of axes is employed, which couples a positive moment 
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Figure 4.2: Dimensions of sample 203xl02x23 I-section for which Curvature Look

Up Functions are created 

with positive curvature and also with a positive angular measurement, as at 

the start of Chapter 3. If Equation 3.2 holds (Page 43, reiterated here: K, = 

t = ~i), then T' c must be positive with positive curvature, and so is measured 

from the member to the centre of curvature such that a positive value of 

T'c occurs relative to the axes of the cross-section. Also, the assumptions 

discussed in Chapter 3 hold: that plane cross-sections remain planar under 

load and that no shear deformation occurs. 

The work begins by selecting a reasonably representative I-Section suit

able for use in Portal Frame structures: 203xl02x23 I-section (seen in Figure 

4.2) from Table B-4 of SCI P202 (6th Ed., 2001). Steel is modelled as per 

S275, using detail from the Mill Test Data of Byfield et al. (2005). The 

internal strains arising in the steel from the 'hot-rolled' fabrication process 

take values from Schmidt (2004). The Curvature Look-Up Tables created 

here use these properties throughout to enable comparisons. The process 
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Figure 4.3: Geometry for the calculation of the strain distribution across a member 

of creating a Curvature Look-Up Table begins with the Engineer's Beam 

Equations, which supply a relationship between moment and curvature (a 

reiteration of Equation 3.2): 

(4.1) 

Since portal frame design relies upon the elastic-plastic reserve of strength, 

plastic and strain-hardened modes of steel behaviour will be included. 

Knowing that planar slices through the material remain planar under 

loading provides the reassurance that the strain distribution will be linear. 

Figure 4.3 indicates the dimensions and symbols used to calculate the strain 

distribution in a cross-section with curvature K, whose neutral axis is 7"c from 

apex with angle r5e. Without any axial loading, the neutral axis and centroid 

coincide. The arc length of the neutral axis is r5e7" c, and that at distance y 

from the neutral axis is r5e(7"c+Y). This establishes that x = 7"cr5e, 6.x = r5ey 

and: 
6.x r5ey y 

E--------K,y 
- X - r5e7"c - 7"c - • 

(4.2) 

Knowing this strain distribution and the stress-strain properties of the 

steel under simulation, a stress distribution can be calculated. If a certain 

infinitesimal slice of area r5A has stress (J"i (as in Figure 4.1), then the thrust 
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through this slice is 

(4.3) 

and the sum of these Pi provides the thrust through the cross-section: 

OAi 

(4.4) 

Taking the moments of each strip about the centroid of the cross-section, 

using y to denote the lever arm from the centroid: 

(4.5) 

The relationship between curvature and moment in Equation 4.5 allow 

Curvature Look-Up Tables to be drawn up so that the curvature of a cross

section can be calculated from its moment load. This saves an enormous 

amount of work solving the Differential Equations of State, particularly Equa

tion 3.31, where the inverse of this relationship would have to be discovered, 

by additional shooting, at every step of the search for solutions. 

Figure 4.4 shows example moment-only Curvature Look-Up tables using 

(a) elastic, (b) elastic-plastic-strain-hardened and (c) elastic-plastic stress

strain relationships, respectively. There is very good agreement between the 

elastic line and the elastic ranges of both the elastic-plastic and higher-order 

curve. This is to be expected when the strain is converted to stress by !Y = Ef 

in Equation 4.5: 

M J !YydA = J E,,"y2 dA 

,,"E J y2dA = ,,"EI. (4.6) 

The shape of the knee at N£E, the elastic moment, of the two plastic-capable 

curves (Figure 4.4(b) and 4.4( c), respectively) indicates good agreement 
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Figure 4.4: Moment-curvature relationships: (a) elastic, (b) elastic-plastic and (c) 

elastic-plastic-strain-hardened 

between the Curvature Look-Up tables produced using elastic-plastic and 

elastic-plastic-strain-hardened stress-strain curves. The limited influence of 

strain hardening before 110% of ME indicates that the particular cross

sections used for this graph are influenced by the onset of strain hardening 

behaviour only after a large amount of deflection. 

4.3 Building a Moment-Curvature Look-Up 

Table 

Prepared with reasonable guesses of curvature, the equation solver is asked 

to find the appropriate values of Curvature that produce a known value of 

moment. In Mathematica, the table of values was created using the Table 

command for values of Moment between 0 and 120% of the elastic Moment, 

litE for the chosen I-Section. The process was performed with repeated use 
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of the M athematica command: 

i M M 
FindRoot[ (J [I);y] dA == M, {I);, {90%-, 1l0%-}}], 

(x,Y)EA EIxx EIxx 
(4.7) 

where (J is a function which provides the stress from a known value of strain. 

The method was sufficiently robust to use guesses for I); of 90% and 110% of 

~ to find the Curvature, 1);, associated with Moment, M, between 0% and 

120% of ]V[E. This tabulated data, using an elastic-plastic-strain-hardened 

stress-strain curve and depending solely on moment loading, will be hereafter 

referred to as Curvature Look-Up Table (a). 

4.4 Relating Moment and Axial loads to Cur-

vature 

With the impact of axial loadings already included in the Chapter Three's 

member equation, and it is a natural progression to examine the impact of 

axial thrusts upon the curvature of a loaded cross-section. Under combined 

axial and moment loading, the curvature of the cross section is influenced by 

the axial loading altering the dimensions of the thinly-sliced cross-section. 

(Given that this project's goals are the simulation of Steel Portal Frames, 

neglecting shearing forces is acceptable due to the low likelihood of portal 

frame member failure caused by shear stresses. The creation of a Curvature 

Look-Up Function including shear stresses is proposed future work.) At the 

very least, this new model will need to accommodate the impact of axial 

forces advancing the arrival of plasticity at the extremes of the cross-section. 

Additional care is taken to incorporate the stress distribution of the axial 

forces and to build a look-up table of I); for a range of values of !vi and P. 

Finally, the locked-in strain of hot-rolled steels are included in the generation 

of a surface of curvature. 

In a cross-section of a member loaded under both moment and axial 

forces, the cross-sectional stress or strain distributions may be separated into 
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slope: K 
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Figure 4.5: Combining strains from moment (EM) and thrust (EP) to calculate 

total strain and strain neutral axis position 

components arising from thrusts or moments. Figure 4.5 indicates that the 

neutral axis under moment and thrust loading occurs when the respective 

strains caused by the moment and axial loads cancel each other out as EM + 
Ep = O. If the simple moment-curvature model is extended to include the 

effects of axial loads, the formation of Equation 4.2 may be kept so long as 

the notation records that y = 0 at the neutral axis: 

E = K,naY. (4.8) 

If the centroid occurs at some position Yc under these new coordinates, the 

strain at Yc is: 

(4.9) 

Alternatively, the same statement has: 

Yc = rnaEp, (4.10) 

where rna is the radius of curvature to the neutral axis. This helps the move 

from these new coordinates to ones which place y' = 0 at the centroid. The 

radius of curvature to the centroid, r c can be obtained from rna: 

(1 - Ep)' 
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(4.12) 



where K,na = _1_ and K,c = 1.. denoting respective curvatures associated with 
rna Tc 

the distance to the neutral axis and centroid. If Yc is replaced by Yna and Y 

by Y' = Y + Yna, then the expression for the strain distribution of Equation 

4.8 becomes: 

(4.13) 

Equation 4.4 still provides the axial loading, with stress calculated from 

E = K,c(l - Ep), As can be seen in the presence of Ep, axial loads provide an 

additional component in the Moment sum M = J CTydA. However, this can 

be neglected for one of two possible reasons: either because axial forces are 

conceived as a point-load through the Y = 0 and have no moment generating 

capability; or because St Venant's principle and long-beam theory say that 

the entire cross-section carries a proportion of the axial load (i.e. there is a 

part of the thrust acting on each component 6"A to be included). If the latter 

case, moments about the centroid sum to zero in the symmetric cross-sections 

of I-beams: 

A1 J (CT + ~)ydA (4.14) 

J CTydA + ~ J ydA 

J CTydA. 

Including axial loads forces the measurement of the position of zero strain 

(Yna) and so needs two equations to find the two unknowns K, and Yna' Fortu

nately the strain distribution of Equation 4.13 can be used in both Equations 

4.4 and 4.5. These two equations in two unknowns are then supplied to Math

ematica in order to discover the relationship between moment, axial thrust 

and curvature. 
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Figure 4.6: Moment (normalised) , Thrust (normalised) with contours of Curvature 

(m -1) for the cross-section of Figure 4.2 

4.5 Building a Moment-Axial-Curvature Look-

Up Table 

When the full-detail stress strain relationship is engaged in the moment 

sum, a curve such as that in Figure 4.4 is produced. Extending the curve

generating program to include axial thrusts generates another non-linear 

graph of curvature. Figure 4.6 shows the contours of curvature for a Moment

Axial Curvature function. This work makes for enormous improvements in 

the efficiency of any program solving the Differential equations of state, as 

Equation 3.31 (~: = K:(s)) may now use a look-up table instead of direct 

calculation. 

Two Curvature Look-Up Tables were created: one that reliably predicts 

the curvature associated with a moment- and thrust-loading; the second that 
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builds on the first with the inclusion of locked-in strains brought about by the 

hot-rolling fabrication process. These Look-Up Tables are labelled Curvature 

Look-Up Table (b) and (c), respectively. Both methods are described and 

evaluated below. 

4.5.1 Methodology 

Equations 4.5 and 4.4 depend, respectively, upon the values of curvature 

and strain neutral axis in a member cross-section to calculate the associated 

moment and axial thrust. Shooting reverses this dependence, allowing values 

of moment, Al, and thrust, P, to be matched with values of /'C and Yna. Values 

of JIll and P were selected from a rectangular grid, and a table of values of /'C 

was assembled. Values of !vI and P between those on the grid were provided 

by interpolation. This triplet of values for (JIll, P, /'C) make up the Curvature 

Look-Up Table. ± 120% of ME formed the extremes for Al in order to 

cover the elastic and extend into the strain-hardened ranges. The values of 

P ranged between ± 70% of P cr as, at higher increments of load, shooting 

failed to find smooth curves. This provides a broad-enough range of moment 

and axial loads for use when shooting with the Differential Equations of State 

in models of portal frame structures. 

4.5.2 Initial Guesses for Shooting 

Key to the process of finding values of curvature and neutral axis for a given 

moment- and thrust-loading are the initial guesses supplied to the numerical 

equation solvers. Good guesses vastly speed up the process of finding valid 

results; bad guesses may never find suitable results. The grid of M and P 

values was covered by iterating over values of moment while holding constant 

the values of axial load. Once the upper limit of Al was reached, P was 

increased. The initial guesses of curvature, /'C, and neutral axis location Yna 

used in building Curvature Tables lend themselves to following increments of 
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the moment, because they are calculated by iterating a proportional increase 

of the supplied results from the previous step of the algorithm. To do this, 

the output for the previous two iterations of K, and Yna are needed to predict 

the next. The difference between the last two known steps (being, at some 

ith position along the way, K,(i) - K,(i-l) and Yna(i) - Yna(i-l)) supply the guesses 

for the next iteration. Shooting will easily find solutions from initial guesses 

of: 

Yna(i) + 80%(Yna(i) - Yna(i-l)) < Yna(i+l) < Yna(i) + 120%(Yna(i) - Yna(i-l)). 

Where there was no previous step, such as the first step after p has been 

incremented and m = 0, educated guesses predicting values for K, and Yna are 

needed. These can be easily supplied from Elastic theory, with 

ME(.l:L+L) 
NIE Per 

K, = EI ' (4.16) 

which scores the loading as a proportion of the elastic limits for each and uses 

that in Equation 3.2, and a good prediction for the position of the neutral 

axis using the predicted K, in: 

_ Ep ~ P 
Yna - ) ~ ( ). 

K, (1 - E p K, AE - P 
( 4.17) 

Additionally, the following short cuts avoid evaluating integrals known to be 

zero: when K, = 0, m _ 0; when Yna = 0, P == O. 

4.5.3 Including internal stresses 

If 111 and P are calculated from the overall stress in a member according to 

its position through the cross-section, then the built-in strains of hot-rolled 

steel members can be added into the equations for Iv! and P. Using the inter

nal stress values from Schmidt (2004), as shown in Figure 2.16, Figure 3.22 

and Figure 3.23, a parabolic strain distribution was calculated for flange and 

web internal strains. It is important to note that the expansion of hot metal 
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Figure 4.7: Internal stress diagram for hot-rolled steel member 

and consequent internal displacements of a hot-rolled member cooling dis

proportionately create internal strains which are most-often acknowledged by 

their associated internal stresses. These locked-in strains cause no additional 

deflection to a given cross section, so their overall impact upon the stress dis

tribution - the sum over the whole of a web or flange and entire cross-section 

- is assumed to be zero. This allows the parabolas to be calibrated to the 

member, retaining local built-in stresses without compromising the shape of 

the cross-section. The parabolas are assumed to follow the mid-line of the 

web and flanges and be uniformly spread across the cross-section, in similar 

fashion to Szalai and Papp (2005), who assumed that their web and flanges 

behave as line elements with zero width. Figure 4.7 shows the initial model 

used here, dividing up the I-section into three rectangles with appropriate 

parabolic internal strain distributions. 

4.5.4 Program Outline 

The program written to create each Curvature Look-Up Table followed the 

same pattern of: predict initial estimates for curvature; shoot for curvature; 

store values. The program loop, incrementing values of load while the load 

was within predefined limits. In the cases where Look-Up Tables use both 

moment and axial loadings, the iteration held constant the thrusts while the 

moments stepped up to their limit, before the thrust was incremented and a 
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new value used. 

The procedure used to shoot for the required values of curvature is an 

extension of that explained in Figure 3.17 (Page 63). With known physical 

constants from the material and cross-section dimensions input, the process 

of shooting inherent to Figure 3.17 is followed until sufficiently accurate re

sults are obtained, and the results graphed. The key differences between 

Curvature Look-Up Tables (a), (b) and (c) are outlined in Figure 4.8 which 

also functions as an outline of the shooting process used to derive each set 

of data. 
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Figure 4.8: Constants, Equations and Initial Guesses used in Shooting Program for Curvature Look-Up Tables (a), (b) and (c) 



4.6 Reliability Testing 

Figure 4.9 shows that the increased strains in a cross-section due to axial 

thrusts advances the arrival of the 'knee' of plasticity. This plasticity occurs 

as 

(4.18) 

The line marked (a) is the elastic moment curvature relation, from Equa

tion 3.2; (b) is the curvature predicted by the elastic-plastic-strain-hardened 

stress-strain curve and the internal strains through each cross section when 

no axial load is supplied (contrast the 2D equivalent in Figure 4.4, Page 76); 

(c) adds 10% of Per; (d), 20%; (e), 30%; (f), 50%; and (g), 70%. A more-

clear edition of this graph appears in Figure 4.10. Their divergence from 

the straight line of elastic curvature occurs in total agreement with Equation 

4.18, which is also appears in Equation 5.23, §5.2 of Megson (1987). 

The data for Curvature Look-Up Tables (a), (b) and (c) have been ap

pended in the Resources section (on pages 171 to 185), facilitating compar

isons of the predictions of curvature against existing theory. The tables on 

pages 171 to 178 provide insight into the effect of progressive increase in Axial 

Thrusts for fixed values of Moment, while pages 179 to 185 show curvature 

increasing with Moment at fixed values of Axial Thrust. Due to the way 

that the shooting simulations run in Mathematica and way that the data has 

been stored, the tabulated values here come via interpolation. Their com

parison against E~~x while in the elastic range is one path to their validity; 

outside that range, comparisons are made against a round of Direct Shooting 

for the given value of Curvature associated with the given values of Moment 

and Thrust. This indicates that an interpolated surface using the data of 

Curvature Look-Up Table (c) is an accurate and appropriate way to find 

intermediary values of the calculated known points. 

In the first series of tables, it can be seen at a glance that the fixed values 

of Moment, the Moment-only Curvature Functions ('Elastic Curvature' and 
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Figure 4.9: Moment-Curvature graph of Curvature Look-Up Table (c) with in

creasing values of Axial Load, compared to the elastic (a), P = 0 in (b); 10% of 

PCT in (c); 20% in (d); 30% in (e); 50% in (f); and 70% in (g) 

Curvature Look-Up Table (a)) do as advertised: remain fixed. With the 

Thrust-aware Curvature functions (Curvature Look-Up Tables (b) and (c)), 

additional curvature is recorded as the Thrust increases. There is a drastic 

increase in curvature when the Moment and Thrust work together to bring 

about post-elastic portions of the cross-section. This can be seen throughout 

both sets of tables, with Curvature Look-Up Table (c) beginning the 'knee' of 

increased curvature when the proportional contributions from Moment and 

Thrust, 
A1 P 
-+-
ME PCT ' 

(4.19) 

is 90%. This difference must be seen in proportion - it is never larger than 

5% - and must be attributed to the presence of Internal Strains caused by 

Hot-Rolled fabrication. 
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Figure 4.10: Moment against Curvature as per Figure 4.9 with additional detail 

to show where each level of Axial Load departs from the elastic curvature 

The second series of tables clearly shows the deviation of the Curvature 

Table (a) from the predicted Elastic Curvature as the Moment rises above 

.ME. Curvature Look-Up Tables (b) and (c) differ in their post-plastic state, 

with (b) being lower in the plastic region before growing to larger curvature 

for less moment than (c) as the loading increases (Figure 4.11). There is also 

an earlier onset of plasticity in for Curvature Data (c) which arises from the 

presence of internal strain data in the computer model. The internal strain 

also accounts for Curvature (c) 's increased stiffness after plasticity, which is 

noteworthy for its potential to aid the stiffness of heavily-laden structures, 

later in this thesis. 

4.7 Conclusions 

The introduction of an important segment of the Analytic Structures system 

is completed above, with the description of the mathematical relationship 
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Figure 4.11: Moment against Curvature comparing Look-Up Tables (b) (solid line) 

and (c) (dashed line) into post-elastic behaviour 

between Curvature and Moment in the cross-section of a structural member. 

The goal of producing Look-Up Tables of Curvature is achieved for three 

variations of input data: Moment-only loading, Moment and Axial loading 

and the same but for the inclusion of Internal Strains arising from the fab

rication of Hot-Rolled Steel Cross-sections. These sets of data are labelled, 

respectively, Curvature Look-Up Tables (a), (b) and (c). 

Within the data produced by Shooting with Equations 4.4 and 4.5, pre

dictions below the Elastic boundaries of .AtE and P c:r correlate in all cases, 

showing that 
.M 

K,=-
EI 

( 4.20) 

is an appropriate descriptor of the curvature of a member while its cross

section is deflecting within the elastic range of steel behaviour, i.e. when 

P M 
-+-<1. Pcr ME -

(4.21 ) 

Figures 4.4, Page 76 and 4.9, Page 87 are both good indicators of this agree-
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ment. The surface formed from the data points of Curvature Look-Up Table 

( c) correlates well with direct scoring of the data. This supports the rec

ommendation that an interpolated 'blanket' surface be used to predict the 

curvature of a cross-section loaded between known points. 

At present the method suffers from the shortcomings of being unable 

to predict the curvature for axial loads above 70% of the crushing stress 

of the cross-section used, or that it does not cater for shear stresses in the 

cross-section. Neither of these issues impact the behaviour of Portal Frame 

structures and so do not harm the use of this method in the analysis of the 

next few chapters. Among the results sought in Chapter Five are the limits 

of applicability of these Curvature Look-Up Tables to columnar members, 

and further comment is made there. The issue of shear deformation in cross

sections is suggested further work. 

With a whole system for Structural analysis outlined, its application to 

two test scenarios continues in this document. One test case is the develop

ment of a Strut-Buckling curve after BS5950-2000 Table 24(a) and appears 

in Chapter Five. Chapter Six then continues to test this structural modelling 

system as applied to a 30m Portal Frame span, comparing the Analytic Struc

tures method against the design code results for BS5950 and simulated result 

from CSC UK's Fastrak Portal Frame Steel Design Software. 
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Chapter 5 

Simulated Struts 
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5.1 Introduction 

This chapter sets out to simulate structures which implement the mathe

matical models outlined in the preceding pages, to quantify the accuracy of 

these computer models and lend support to the reliability and accuracy of 

the structural modelling system introduced in this work. 

In Chapter Two, the background for computer-based Structural Steelwork 

Analysis was discussed. Chapter Three saw the introduction of the Core 

Mathematics of Analytic Structural Steelwork Design, including the method 

of discovering initial conditions from boundary values, known as Shooting, 

as well as the six Equations of State for a cross-section of a member (as on 

Page 57). 

Chapter Four introduced important optimisations to the Program out

lined in Figure 3.17, where the .1.. of Equation ?? is supplied by a pre-
Te 

calculated table relating Axial Thrust, Moment and Curvature, hereafter 

known as a Curvature Look-Up Table. Three Curvature Look-Up tables 

were created using the methods outlined in Chapter Four: Table (a) relates 

Moment to Curvature via a full-range (elastic, plastic and strain-hardening) 

stress-strain curve; Table (b) matching a Moment and Axial Thrust to a Cur

vature using the full-range stress-strain relationship of Figure 2.3(d); and 

Table (c) supplying a value of Curvature from Moment and Axial Thrust 

loads taking into consideration both the Internal Strains of Hot-Rolled Steel 

members and the fullest stress-strain relationship. 

The computer program models struts of uniform cross-section in simula

tions of increasing complexity to qualify the behaviour of a simple, pin-ended 

Euler strut against the predicted strut-buckling loads from BS5950. The se

ries of strut simulations builds from an infinitely elastic strut through the 

elastic-plastic-strain-hardened strut using Curvature Look-Up Table A to 

using Curvature Look-Up Table B and Table Curvature Look-Up Table C 

which incorporate internal strains of Section 3.8.2. These simulations were 
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then extended to include improved initial guesses, built-in curvature and 

self-load, with the intent to compare Curvature Look-Up Tables A and C. 

5.2 Mathematical Framework 

The most effective method of building a complex simulated model of struc

tural behaviour will start with what is known and easily verifiable - albeit 

with inherent assumptions which limit deployment in design practice - be

fore extending the model to include behaviour which removes the reliance 

upon assumptions and extends the applicable scope of the simulations. For 

this reason, the models used here start with assumptions of elastic behaviour 

and no axial component in the relationship between loading and curvature. 

The primary assumptions remain: that of plane sections remaining plane; 

the members deflect within the plane of their loading; and that no shear 

strain occurs. Given that the simulations concern a pin-ended strut, the 

assumptions are reasonable, and loads in practice can be applied via pinned 

joints so that the load is transferred to the entire cross-section of the strut 

from the pin. Localised strains may emerge from a pin which is not in 

contact with the entire cross-section, but such behaviour is assumed not 

to happen (by St Venant's principle). Neglecting deformation arising from 

shear strain is appropriate to Steel I-sections but would deem this modelling 

method inadequate for other materials; the required mathematical adaption 

is discussed in the chapter on Proposed Further Work. 

5.3 Buckling of a Pinned Strut 

Megson (1987) and Moy (1996) comment that struts, following the derivation 

of Euler's Buckling Load and its application in the elastic small-deflection 

equation (3.8, ~i = - ~:n, predict a sinusoidal deflection pattern. The first 

mode of a strut whose ends are fixed in position and has ends free to rotate 
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is a half-sine curve; constraining the angle by building-in the ends of the 

strut forces deflection into a full-phase sine curve, as predicted by solutions 

to Euler's Strut-Buckling formula (Equation 3.12, ~ + PEl = 0). 

The pin-ended strut was selected in order to qualify simulations of this 

model due to Euler's original derivation of the strut-buckling curve. Euler's 

formula provides a good starting point for comparison of known theory to 

results produced by the system of equations and curvature look-up tables 

explained in this document. The single input variable - axial thrust - and 

the single member lend themselves to quick calculation and analysis. 

5.3.1 Development and Methodology 

Having introduced the mathematics of the system of structural modelling 

above, in Section 5.2 which features Figure 3.17, the specific details of mod

elling a pinned strut can be filled in. As identified above, the path to a full 

detail model started from a simple and verifiable beginning with infinitely

elastic properties, before advancing onward. 

The simulations were performed in M athematica using a pre-calculated 

curvature look-up table in the six equations of state, 3.29 to 3.34 (repeated on 

Page ?? as Equations ?? to ??), and shoots to discover the initial rotation, 

axial load and load in the plane of buckling. A strut of length l is held 

horizontally and pinned at each end, and compressed by a force Wy applied 

at the top. The shooting uses the knowledge of the axial loading at the top 

of the strut (fy (l)), that the upper pin remains directly above the lower pin 

(z(O) = z(l)) and that the moment around the upper pin is zero (lvlx(l) = 0) 

because the pin cannot provide resistance to moment. The unknown sought 

by the shooting process is the initial angle of the strut to its base pin. An 

overview of the layout is in Figure 5.l. 

The member tested throughout the range of simulations was a 203x102x23 

I-section from table B-4 of SCI P202 (6th Edition, 2001), whose radius at 
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Figure 5.1: Shooting for the base conditions at (a) of a pinned strut using known 

boundary conditions at (b) 

the web-flange intersection was neglected in order to simplify the method 

by which internal stresses of hot-rolled steel sections were included in the 

simulations. The tests calculated the mean stress at collapse for a range of 

values of slenderness, from a near-zero value up to A = 300. The use of a 

very small but non-zero lowest value for A is essential to avoid a zero value 

of height when the slenderness is used to calculate the length of the strut as 

per Equation 5.1, 

A= ~ ~ l=AJIIA, 
vIlA 

(5.1) 

which also defines the initial lack of straightness, as per BS5950:2:1985 §7.2.6 

(p.lO): the larger of 3mm or Idoo for Class A sections. It is important to 

note that inserting nonsensical values (such as a near-zero A which creates 

a strut of height < lmm with initial midpoint deflection 3mm as per design 

guidelines) into the computer simulation will result in nonsensical output 
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height 

Figure 5.2: Geometry of the relation between initial lack of straightness and radius 

of curvature in pinned struts Series A-D 

from the computer program. 

5.3.2 Infinitely Elastic Strut 

The first iteration of the simulations, labelled Series A (key details: elastic, 

moment only), held to the elastic stress-strain response throughout the full 

range of load. As identified above this assumption of unending elastic be

haviour permits the use of a moment-curvature derived from the Engineer's 

Beam Equations (Equation 3.2): K, = ~ = ~j. The built-in curvature for this 

set of simulations followed the arc of a circle, with a constant value for K,s 

added to Equation 3.31. This was derived from the geometry of Figure 5.2. 

Further, the tangent at the base provides a good guess of e when s = 0, the 

angle of the strut to the base pin. 

A few methods were available for calculating the radius of this circle, 

denoted r in Figure 5.2, the first and simplest being adopted for use in 

this family of equations. There are three paths to calculating a built-in 
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curvature arising from the initial lack of straightness, one using a small

angle assumption, another assuming that PQ is a straight line of length ~ , 

the third using a numerical equation-solver. In the first case b = ,sin e, and, 

via Pythagoras' Theorem and the arc length ,e = ~: 

(5.2) 

Alternatively, using Pythagoras twice (on a2 + b2 = PQ2 = (~)2 and (, -

a)2 + b2 = ,2): 
h2 

,=-
Sa 

(5.3) 

The differences between the curvature calculated from these two guesses are 

of the order of 10-12 throughout the range of A used in these simulations. 

The final method uses 

,-a a 
cose=-- ~ ,=---

, 1 - cose 
(5.4) 

and 

,e = !!. = ae 
2 1 - cose 

(5.5) 

from which the right-hand equality is input into an equation solver to discover 

a value for e (typically around -0.004 for a = lO~O) which can be substituted 

into 
1 1 - cose 

(5.6) 1'1,=-=---

thus providing a direct path to the built-in curvature arising from the initial 

lack of straightness. e is also a good guess for the angle at the base of the 

strut, due to the similar triangles to the tangent of the arc. The alternative of 

stating, as a function involving inverse cosines, with Equation 5.5 rearranged 

to the form 

(, - a) h ,e = ,cos-1 
-,- = 2' (5.7) 

is equally correct and saves a step in calculation only to incur the expense 

of checks on the in put to the inverse cosine function so that -1 ::; r-;.a ::; 1. 

The difference between the first two methods against the third is consistently 

0.001%. 

97 



5.3.3 Non-Elastic Behaviour 

As identified in Chapter Four, the choice of stress-strain distribution informs 

the behaviour of the moment-curvature relation, so great care was taken 

to include non-elastic behaviour accurately throughout the second phase of 

simulation development. A new stress-strain response brings a new moment

curvature relation that of Byfield et al. (2005) with an improved relation 

between moment and curvature, as per Chapter Four: 

M = J CTy.ydA (5.8) 

This was the only change to this family of simulations, although it must 

be noted that dropping the assumption of elasticity influences the 'squashy 

factor' of (1 - E) in Equations 3.29, 3.30 and 3.34. 

A complication arose from use of an elastic-plastic stress-strain response 

curve (Figure 2.3(f), Page 10) makes for a limiting plateau in the Curvature 

Look-Up Table created using this stress-strain relationship, and is shown in 

the Moment-Curvature graph of Figure 4.4( c) (see Page 76). This causes 

the inability to solve the Differential Equations of State for the member. 

There is no full data set completed for an elastic-plastic strut due to these 

difficulties. Such simulations are planned future work because it is believed 

that the information provided will give insight into the plastic and post

plastic behaviour of cross-sections in columns. 

A full elastic-plastic-strain-hardened stress-strain curve (Figure 2.3( d)) 

provides the defining shape for Curvature Look-Up Table (a). Figure 4.4(b) 

illustrates this, showing a knee as partial plasticity through the cross-section 

permits more flexure to occur before stiffening and strain-hardened behaviour 

governs increases in deflection. For this series of simulations, no changes were 

made to the built-in curvature ofthe member or the initial angle guess (e(O)), 

and this data were denoted Series B (with the key details: full stress-strain; 

moment-only) . 
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5.3.4 Combined Axial and Moment Loads in Deflec-

tion and Curvature 

This next phase of simulations also saw the incorporation of axial loading 

behaviour upon the curvature of the strut. The equations governing this 

interaction are outlined in Chapter Four, and the most-significant changes 

made to the system were the alteration of Equation 3.31 (appears as ~~ = 

t + ,.,;( s) on Page ??) to make use of the interaction of moment, thrust 

and curvature values in Curvature Look-Up Table (b). Also, while it must 

be noted that the presence of internal strains are modelled, their inclusion 

arrives later, with simulations using Curvature Look-Up Table (c). This 

allowed the reliability and stability of the initial conditions to be confirmed 

for the simulations using the more-complicated Curvature Look-Up Table (b). 

At this stage, the same series of assumptions about initiallack-of-straightness 

and built-in curvature were applied from the previous families of simulations 

and the data are identified as Series C (key details: full stress-strain; moment 

and axial forces). 

5.3.5 Internal Strains from Cooling of Hot-Rolled Steel 

With an established family of simulations using Curvature Look-Up Table 

(b), the next step included the effect of internal strains from cooling of hot

rolled steel cross-section. As described in Chapter Four, Curvature Look

Up Table (c) uses the predicted values of internal strains (cint) supplied in 

Schmidt (2004) added to the strain arising in Equations 4.4 and 4.5. The 

differences between Curvature Look-Up Tables (b) and (c) are compared in 

Chapter Four. Curvature Look-Up Table (c) was included in a family of 

simulations which appear as Series D (with the key details: full stress-strain; 

internal strains; moment and axial forces). 
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Figure 5.3: Simulated Strut Showing Sine Pattern Caused by Curvature 

5.3.6 Fully-Loaded Simulations 

Having previously assumed that the member itself has no impact upon the 

load, efforts were made to include the weight of the member in the simulation. 

The weight was applied from a look-up table which matched the height up the 

strut to the weight from the mass of steel above it, and supplied to Equation 

3.32 (as ~: = Wy on Page ??) as a function parameterised by s, the distance 

along the member. With the tables of cross-section properties of SCI P-202 

supplying a value for mass per metre length, this was an easy feature to 

add, calculated from the initial member data. Including this behaviour was 

deemed essential for future use in modelling portal-frame arches. 

Additionally, while initial simulations assumed that the curvature of the 

strut follows the arc of a circle, which simplified calculating the built-in cur

vature arising from the initial lack of straightness, progressive simulations 

adopted a built-in initial-Iack-of-straightness supplied by a sine curve sub

stituted into Equation 3.7. The Sine curve was chosen because the in-plane 
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deflection of struts appear to follow a Sine curve (Figure 5.3). Parameterising 

z = sand y = <5 sin [ 7] , where <5 = max( ldoo' 3mm) as before, permits: 

-<5 (T) 2 sin [7] 
/'l,s [s] = 3, 

( 1 + <52 (T) 2 cos2 [7]) 2 

0< s < l. (5.9) 

This has the additional benefit of providing an accurate estimate for the 

value eo for shooting, making use of the tangent at zero to the parameterised 

function of curvature: 

(5.10) 

This combination of stress-strain relationship, Curvature Look-Up Table, 

loading patterns and initial curvature are included among the data as Se

ries E. The key details of Series E are: full stress-strain; internal strains; 

self-weight; curvature incorporating moment and axial loads. A final data 

series was created, using the same details as Series E but for no axial thrust 

component in the Curvature Look-Up Table. 

5.3.7 Summary of simulations 

Table 5.3.7 summarises the key details in each family of pinned-strut simu

lations run and Figure 5.4 shows the path followed in the strut simulations. 
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o 
tv 

Series Name 

Series A 

Series B 

Series C 

Series D 

Series E 

Stress-Strain Type 

As per Figure 2.3(a) 

Figure 2.3(d) 

Figure 2.3(d) 

Figure 2.3(d) 

Figure 2.3(d) 

Curvature Function Built-in Curvature Loading 

M 
Ii = E1xx 

88 
lis = "fi2 wz(s) = Wy(s) == 0; fz(s) == 

0; fy is upper-pin point load 

Look-up Table (a) 88 
lis = "fi2 Wz(s) = Wy(s) == 0; fz(s) == 

0; fy is upper-pin point load 

Look-up Table (b) 86 
lis = "fi2 Wz(s) = Wy(s) == 0; fz(s) == 

0; fy is upper-pin point load 

Look-up Table (c) 86 
lis = P wAs) = wy(s) == 0; fAs) == 

0; fy is upper-pin point load 

Look-up Table (c) 
-6( 2!. r sin["s] 

wy(s) is weight of column lis [s] = I I 3 

( 1+62 ( T ) 2 cos2 [ 7] ) '1 
above position s; others as 

above 

Table 5.1: Summary of Key Details for Each Strut Simulation 



5.4 Results of Strut Simulations 

Having run the above families of simulations, two classes of data arise: the 

initial conditions for a given loading pattern, provided by Shooting, and the 

Look-Up Tables of y- and z-position, y- and z-loading, moment and angle 

throughout the member. With five families of simulations tested at 21 or 22 

values of A with incremental loading of between 25-50 stages, a large amount 

of digital data was created. Each test was deemed to have 'failed' when it was 

clear that the limiting boundaries of the computer simulation fail to contain 

the loading pattern. Typically, this appeared as extended time to complete 

a given simulation, with physically impossible initial conditions found by 

shooting, or with graphs of the resulting strut showing an unlikely physical 

deflected position. 

Due to the logic of the system of equations and absence of intelligence, 

the program will try to simulate impossible loading patterns, which prompts 

the warning appropriate to all computer systems: Garbage In, Garbage Out. 

This is to say that bad assumptions and incorrect implementations input to 

the computer will create useless output. The following sections seek to show 

that the system described here is not garbage input and does not produce 

garbage output. One such point is the in-plane deflection of the struts: unless 

constrained, a strut will flex about its weakest axis - unfortunately not the 

one not tested here. 
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Define constants: 'Tt, E, Esh' etc. 

Define member by {d, b, tw ' tf, Py' 'A} 

Calculate: {A, lxx, I, K init, strength['A]} 
./ 

t 

Choose Stress-Strain curve 

t 

Define Curvature Look-Up Table for K 

t 

Set wy ; Identify unknowns: eO' y" e, t--

I .... 
r -... 

Solve Equations of State to find eo, y" ~ 
when z,=O; ~=O;fy,=O;fz,=O 

'-
I 

.... 

[ Is wy > 105% of strength['A]? ] 
I 

/" 
Yes J [ No J-

Draw graphs from solved equations 

Figure 5.4: Flowchart Summarising the Program Used in Chapter Five's Strut 

Simulations 
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5.4.1 Elastic Simulations against Euler Buckling Loads 

The comparison of the elastic-only simulation family, Data Series A, with 

the predictions of 

P (,,\) = 1[2 E 
E ,,\2 (5.11) 

is of tremendous importance in establishing whether the methods introduced 

in this document are appropriate to structural analysis. Figure 5.5 shows 

that, for a large range of values of >., from 15 to 300, the data in Series A 

is a tremendously good fit to the Euler Crushing Load. Figure 5.6 shows 

that the percentage proportional error of Series A is never more than 0.4% 

from the Euler Crushing Load. For further qualification of the quality of 

Series A as a model of a pinned-end crushing strut, the Pearson Product

Moment Correlation Coefficient, used to show how well-related are two tables 

of numbers, has T pearson = 0.99990690 in its first eight significant digits. 

In the context of a perfect positive correlation having Tpearson=l, this is a 

remarkable result. Additionally, performing a two-tailed significance test of 

the correlation of this data provides a p-value probability that the association 

is a random coincidence of 5.00 x 10-35 . 

It may be of note to show Figure 5.7 of a sample Series A simulation 

over-loaded far past the Euler crushing load, behaving in a similar manner 

to a family of curves known as the Elastica. It is not possible to examine the 

midpoint deflection of the strut, as will be done below for other simulations, 

because of the undefined parameter in the solution y = f-L sin [ jPiis] to 

Euler's Strut Bucking Equation (also seen as Equation 3.12): 

d2y Pcr·y 
ds2 + EI = O. (5.12) 

5.4.2 BS5950 against Series E 

As with Series A, a comparison of Series E against the BS5950 Table 24(a) 

failure stress shows an exceptional similarity between these values of failure 

stress. The data of Series E are not available for the full range of ,,\ as seen 
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Figure 5.7: Elastic strut continuing to buckle as its pin passes through the simu

lation's 'floor' 

in previous families of simulations due to difficulties in creating entries for 

Moment-Curvature Look-Up Table (c) at high values of axial load and low 

values of moment. Further work would seek to include the flexure of local 

buckling which is manifest in high-thrust and low-moment loading patterns. 
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Figure 5.8: Series E data plotted next to BS5950 Table 24(a) dat a 



Figure 5.8 is a side-by-side comparison; Figure 5.9 shows how small the 

deviation is between these two sets of data. Again, the Pearson Product

Moment Correlation Coefficient is invoked as a measure of similarity between 

the two sets of data, and is calculated to be 0.99994780 in its first eight places, 

with the two-tailed significance test having p-value 2.87 x 10-3°. 
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5.4.3 The Impact of Internal Strain 

Computer simulations of thrust-dependent buckling struts should make nec

essary the inclusion of thrust in the Curvature Look-Up tables of the sim

ulation. Less obvious is the need for the internal strains arising from the 

hot-rolling fabrication process. Series C and D share the same initial factors 

of stress-strain response, loading patterns, initial curvature. Their only devi

ation is in their Curvature Look-Up Tables, with both using the interaction 

of Moment and Curvature loading to follow the. curvature of a cross-section 

in the Equations of State. Series C neglects, while Series D includes, the 

additional internal strains found in hot-rolled members. Figure 5.10 shows 

the respective Strut-Buckling Curves of Data Series C and D. 
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Figure 5.11: Moment against Curvature comparing Look-Up Tables (b) (solid line) 

and (c) (dashed line) into post-elastic behaviour 

Series D and BS5950 are so close as to be indistinguishable above A = 70, 

m Figure 5.10, while Series C is only able to closely predict the BS5950 

Crushing Load between 70 S A S 120. The additional resistance to crushing 

failure of Series D above A = 125 comes from the increased strain capacity 

around the web-flange junction in the lower half of the I-Section, that is the 

portion of the cross-section under tensile forces from the Moment load which 

has increased compressive strain from the Hot-Rolling fabrication process. 

As remarked in Chapter Four (particularly Figure 4.11, Page 89, repro

duced here as Figure 5.11), the presence of internal strains in the computer 

model alters the Curvature Look-Up Table such that Series C will be stiffer 

before abrupt onset of plasticity with lower post-plastic resistance to deflec

tion where Series D has a smoother 'knee' into plastic behaviour and stiffer 

post-plastic response. This provides the interpretation of the differences of 

the respective Data Series' Strut-Buckling curve: where C and D fail at sim-

114 



ilar loads (70 < A < 130), little post-elastic behaviour occurs, and where 

their fail loads diverge (130 < A < 300), the difference in post-elastic be

haviour generates the difference in failure loads. In the more-slender struts, 

the increased flexure is associated with increased curvature, which is shown 

in Figure 5.11 to match larger values of curvature to lower values of moment 

for Series C than D. This increased curvature results in larger deflections 

and consequent lower failure load. It is clear that Internal Strain behaviour 

is important in slender struts to counteract their increased flexure compared 

to stocky struts. 

5.4.4 Increasing the Accuracy of Computer Models 

The failure load differences between Series D and E are minimal. This is a 

testament to the Curvature data created in Chapter Four. The results that 

D and E provides an additional quality which should not be overlooked: that 

Series E has a higher-fidelity model of a strut and consequently is able to 

provide results close to the BS5950 curve for lower values of A than D does 

(5.2). Even though the series do not have a full set of data for the whole range 

of A, among Series E's additional data is a call to more-detailed computer 

models for a higher degree of accuracy. 

5. 5 Conclusions 

This chapter developed a computer model of a buckling strut according to 

the mathematical model developed in Chapters Three and Four. A pin-ended 

strut, loaded axially and constrained to the major axis of its 203x102x23 1-

Section, was simulated and five families of simulations were run at a range 

of values of strut slenderness from A = 0 to A = 300, combining variations of 

stress-strain response, Curvature Look-Up Table (from Chapter Four) and 

cross-section internal strain. Each simulation presented data points of the 

mean stress at failure, which are analyzed, compared and discussed. 
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>. BS5950 Failure Load Series D Series E 

30 260 

40 260 259.948 

50 251 250.7 

60 239 240.258 

70 224 224.121 

80 203 203.5 202.541 

90 180 179.846 181.345 

100 157 158.172 156.219 

110 137 140.458 139.213 

120 119 120.834 119.875 

130 103 102.959 104.695 

155 75 75.7936 75.0912 

180 57 57.4508 57.1361 

210 43 43.2098 43.6268 

250 28 28.4876 28.4876 

300 22 21.745 21.745 

Table 5.2: Failure loads comparing numerical results of Series D and E to BS5950 

The agreement between the elastic-only strut and the predictions from 

Euler's Strut Formula are exceptionally well correlated and provide an im

pressive base-line for the reliability of the method developed here. This base

line is bettered by the fullest-detail strut simulations in the chapter matching 

the BS5950 Table 24 Strut-Buckling for Class A sections. This simulation 

used a full-range stress-strain function and a Curvature Look-Up Table built 

from the interaction of moment, thrust and member internal strains. The 

small differences between a few of the series of data serves both to describe 

the iterative development of the strut-buckling simulation and to highlight 

the causes of previously unidentified member behaviour. In particular, the 
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impact of internal strains in Data Series D in comparison to its predecessor, 

Series C, shows the importance of internal strains to increase the post-plastic 

stiffness of slender (.\ > 130) members. 

Overall, this chapter achieves its aim to show that Analytic Structures' 

mathematical model is suited to structural analysis, being a highly-reliable 

means to model structural elements. The next step is to show the reliable 

simulation of structural elements within a whole structure. 
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Chapter 6 

Simulated Portal Frames 
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6.1 Introduction 

Due to its economy and versatility, the steel portal frame is the most common 

structural form in pitched-roof buildings. Its typical loading pattern consists 

primarily of large moments but relatively low axial thrusts and it is ideally 

suited to the modelling system developed and described in this project. With 

the mathematics of the system, the development of Curvature Look-Up Ta

bles described, a real-world application is an ideal place to compare existing 

design practice and an existing computer design package. 

6.2 Methodology 

An in-plane two-dimensional model of a single-bay portal frame was devel

oped in the Analytic Structures system and progressively-loaded until failure. 

The structural model is, in principle, similar to that used in Chapter Five. 

As before, the physical constants and member properties are defined. The 

loading pattern was also created, and the initial guesses prepared. The six 

Differential Equations of State remain the same as those laid out in Chapter 

Three. The Curvature Look-Up table follows the same principles as described 

in Chapter Four. The looped search for solutions is the same, in principle, as 

that used in Chapter Five. It differs in using four steps, one for each member 

in the span. This can be most easily achieved by solving the Different Equa

tions of State for each component member of the structure, supplying the 

final state of each member to the next. The general program outline appears 

in Figure 6.1; the path taken within the Shooting stage of the Portal Frame 

simulations is summarised in the flow-chart of Figure 6.2. 

The first iterations of the computer model used the same cross-sections in 

both the columns and rafters to check that the guesses used in Shooting could 

find suitable initial conditions. The dimensions of the frame simulated are 

sketched in Figure 6.3 and adopt the convention of measuring to the member 
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/' -...... 

Define constants: n, E, Esh' etc. 

Define member by {d, b, tw ' tf, Py' 'A} 

Calculate: {A, lxx, 1, Kinit' strength['A]} 

... 

Choose Stress-Strain curve ] 
t 

Define Curvature Look-Up Tables 

i 

Set wy; Unknowns are: BlO), FylO), FyiO) l-

t 
Shoot to find unknowns when 

zil)=O, Yil)=Span, Mil)=O 
'--. 

t 
Is wy> 105% ULS or Simulation Failed? J 

}" 
[ Yes ] [ No }-

Draw graphs from solved equations 

Figure 6.1: Flowchart Summarising the Program Used in Chapter Six's Portal 

Frame Simulations 

centrelines. This first round of simulations only depended on the Moment 

loading, using Curvature Look-Up Table (a) in S275 Steel. It provided re

sults which justified the development of further models. Subsequently, the 

behaviour of Moment and Thrust loading and the internal strains of hot

rolled cross-section was included, via Curvature Look-Up Table (c), along 

with adaptations for differing I-Sections in the column and rafters (Column: 

533x210x101 UB; Rafter: 457x191x67 UB), both in S275 Steel. These simu-

lations, again, delivered behaviour in line with experimental results. 
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Shooting: Find unknowns (BiO), FyiO), F;,lO)) when 

zil)=O, yil)=Span, Mil)=O 

Column 1: Solve Differential Equations of State using Guesses 

Supply Results as Initial Conditions of Rafter 1 

Rafter 1: Solve Differential Equations of State 

Supply Results as Initial Conditions of Rafter 2 

Rafter.2: Solve Differential Equations of State 

Supply Results as Initial Conditions of Column 2 

Column 2: Solve Differential Equations of State 

Supply Results for Testing 

Testing: are Results close to 

zil)=O, yil)=Span, Mil)=O 

A 
[~--J~--. Yes: Return Results. No: Improve guesses 

Figure 6.2: Flowchart Summarising the Shooting Process for Four Members of the 

Portal Frame 
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Figure 6.3: Dimensions of the Portal Frame tested here 
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The third iteration of the model included haunches at each joint. The 

specific details are shown in Figure 6.4 Under the assumption that haunched 

cross-sections would remain elastic and, as ever with portal frames, that axial 

loads are minimal in contrast to moment loads, the Curvature Function for 

the haunches used an adapted form of Equation 3.2, varying according to the 

Ixx of the cross-section. Throughout the Analytic Structures method, there 

is a dependence upon the position along the member, s, and as a result it 

was simple to calculate the second moment of area of the I-Section plus its 

haunch: 

This version of the calculation - one of many possible alternatives - uses 

an I-Section of height d + x and adds to it the flange of the original non

haunched cross-section, shown in Figure 6.5. Converting the position s in 

the haunched section of a member to the depth x is a linear equation: 

s 
x = L dhaunch 

haunch 
(6.2) 

for appropriate values of the length (Lhaunch) and depth (dhaunch)of the haunched 

section. In this instance it is assumed that the length of the Haunch (Lhaunch) 

is the length in the direction of the member and that dhaunch, the haunch 

depth is the total extra depth added, from the lowest point of the original 

cross-section's web to the base of the haunch web. 

In order to extend the existing four-member model of a portal frame, a 

considerable time-saving approximation was made: the haunched parts of 

each member were added as highly-resistive sections at their respective ends 

of the columns and rafters (as in Figure 6.6). This will cause the resistance 

to motion of the eave haunches to count twice in resisting bending - once 

at the top of the column and also at the start of the rafter. Although this 

amendment did not harm the simulation's reliability (as is shown below), 

this method of haunch inclusion is inadequate. Plans for its replacement, 
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Figure 6.5: Dimensions of I-Section Haunch for use in Equation 6.1 

Figure 6.6: Simple implementation of Haunches has overlapping sections, which 

are highlighted 

simulating each of the haunched sections as distinct members, is outlined 

among the further work. 

The final amendments included altering the cross-section data for the 

portal frame to use different members for column and rafter and to include 

in the loading pattern the self-load of the frame. From the data provided 

by each completed simulation, four key figures were drawn: First is the 

displacement diagram, scaled 1:1 for the deflection; second, the ubiquitous 

Bending Moment Diagram; third, showing the strains at each extreme of the 

member's fibres; and fourth, a figure showing the reduced stiffness of the 

member. These measures are discussed in greater detail below. 
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Figure 6.7: Loading pattern for the Portal Frame under examination 

6.3 Testing 

The model of Portal Frame selected for testing was that of a 30m span with 

7.0m eaves height and rafter angle 6° (Figure 6.3). This was selected to match 

the hand calculations presented in the worked example by Salter et al. (2004) 

(SCI Publication No252). This calculation of collapse load was repeated us

ing the Fastrak Portal Frame programme developed by CSC Ltd in conjunc

tion with Professor J.M.Davies of Manchester University. This programme 

uses the elasto-plastic design methodology and is marketed specifically for 

portal frame design. Thus the predictions of collapse load provide a good 

benchmark for the predictions from the methodology developed herein. 

The cross-sections used were input to the frame simulation in Mathe

matica, and Curvature Look-Up tables were calculated for the column and 

rafter cross-sections. The load pattern is as Figure 6.7, with a uniformly 

distributed load w working vertically across the rafters and a horizontal load 

of w /200 at the left-side eaves-rafter join providing the Notional Horizontal 

Load. The loading w does not include the forces from self loading due to 

their whole-frame context in contrast to the uniform loading of w across the 

rafters. As assumed in SCI-P252, the gravity load case is dominant in this 

analysis. 

The predictions made by the elastic-plastic simulation from Fastrak in-
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elude an overview of the members and their positioning, haunch and restraint 

positioning, varied load cases as per the detailed design stage, graphs of the 

position of plastic hinges, the frame bending moment diagram and examina

tions of frame stability. Again, it is the frame bending moment diagram and 

collapse load calculations which provide insight into the predicted behaviour 

and consequently assist qualification of the Analytic Structures method. 

Among the most significant of the contributions from the Analytic Struc

tures method is the ability to examine the ongoing process of post-elastic 

behaviour. Where other analysis methods break each member into discrete 

chunks, continuity is retained because of the analytic properties of the six 

core differential equations of state. The creation of a sufficiently-detailed 

Curvature Look-Up Table is essential to this process, and the final results of 

these simulations are to be investigated below. 

The admission must be made that these simulations are intended to be 

provisional indications of the applicability of the method to portal frame 

analysis. Not all of the results replicate those in Salter et al. (2004) - some 

of the results diverge from methods used for comparison which is to be ex

pected in the situations where existing analysis makes assumptions which 

have no corollaries in Analytic Structures. The differences between empir

ical observation and behaviour predicted by Analytic Structures also offer 

indicators of the potential for fine-tuning of the simulations used here. 

6.3.1 Measuring the Formation of Plastic Hinges 

The early stages of yielding do not cause significant loss of stiffness m a 

member because the majority of the section remains elastic and therefore 

stiff. Conversely, significant yielding throughout a cross-section leads to a 

substantial loss of stiffness which will then be referred to as a plastic hinge. 

The progression of the plastic hinges has been recorded herein by a percentage 

loss of stiffness, which is defined as the second moment of area of the elastic 
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region of the section divided by the full second moment of area. If there the 

two points within the cross-section at which the plastic boundary occurs are 

labelled Yl and Y2 which are measured from the centroid and which adopt 

the convention Yl < 0 < Y2, Analytic Structures calculates the reduced Ixx 

from: 

l~x = lxx + l~x.2 + l~x.2 

o 
l~x.l = -b(Yl + ~)(Yl;d)2 

-btfCd;tf)2 - tw(Yl + ~ - tf)(Yl-~+tf)2 

o 

(6.3) 

d 
Yl <-2" 

ddt -2" < Yl < -2" + f 

-~J < Yl < 0 
(6.4) 

d 
2" < Yl 

l~x.2 = -b(~ - Y2)(d+,/2)2 ~ - tf < Y2 < ~ (6.5) 

_btf(d~tf)2 - tw(~ - tf - Y2)(d-t~+Y2)2 0 < Y2 < ~ - tf 

Table 6.1 shows the proportions of second moment of area that each 

segment of the cross-section provide. With the flanges providing close to 

80% of the stiffness of a cross-section, it is likely that a hinge occurs when 

the reduced stiffness is less than 20% of the original lxx. 

Member Dimensions Ixx(cm4 ) Flange Ixx(cm4 ) % of Ixx Web Ixx(cm4 ) 

Column 533x210xlO1 5.814 x 104 2.331 X 104 40.085% 1.153 x 104 

Rafter 457x19lx67 2.898 x 104 1.171 X 104 40.407% 5.560 x 103 

Table 6.1: Proportions of Second Moment of Area and Stiffness from Flanges and 

Web 

The table below provides a method to calibrate the reduced second mo

ment of area. The table above shows that 80% of the Ixx lies in the flanges, 

and so the reduced second moment of area should be less than 20% in a 

hinge. When these hinges appear, knowing the order in which they form for 

a range of values of the reduced second moment of area will permit criteria to 

be established as to the presence of a fail-capable section of plasticity. In the 
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table below, the three-letter names for members denote either right-or left

hand side by their first letter, and whether a column or rafter by their third: 

Left-Hand Column (LHC); Left-Hand Rafter (LHR); Right-Hand Column 

(RHC); and Right-Hand Rafter (RHR). 

129 



I-' 
c.u 
o 

Stiffness Reduction, % 20 50 80 85 89 90 91 95 

Wy 8.36 8.66 8.86 9.06 9.36 9.36 9.46 9.66 

First Hinge Member LHC LHC LHC LHC LHC LHC LHC LHC 

Span 6344-6400 6329-6400 6331-6400 6341-6400 6316-6400 6369-6400 6337-6400 6361-6400 

Wy 9.16 9.46 9.66 9.96 10.96 10.96 11.06 11.16 

Second Hinge Member LHR LHR LHR LHR LHR RHR RHR RHR 

Span 3000-3029 3000-3014 3000-3006 3000-3016 3000-3003 1500-1596 1500-2417 1500-2383 

Wy 9.66 10.06 10.56 10.86 10.96 11.16 11.16 11.26 

Third Hinge Member RHC RHC RHC RHR RHR LHR LHR LHR 

Span 600-655 600-625 600-608 1500-2288 1500-2032 3000-3037 3000-3017 3000-3083 

Wy 10.56 10.66 10.76 11.06 11.16 11.16 11.36 11.36 

Fourth Hinge Member RHR RHR RHR LI-IR LHR LHR LHR LHR 

Span 1500-2271 1500-2047 1500-2189 13120-13583 13367-13583 13582-13583 13454-13583 13036-13583 

Table 6.2: Sequence of hinge formation for varying severity of plastic hinges (wy in kNjm, Span distances in mm from start of member 



This shows an unexpected pattern of plasticity, with the appearance of 

plastic sections in the left-hand rafter and right-hand column before any 

plasticity emerges in the right-hand rafter. The distinction is so great that 

both left-hand rafter and right-hand column are very near to no elastic second 

moment of area as small portions of plasticity appear in the right-hand rafter. 

Also, a second portion of plasticity emerges in the left-hand rafter at the end 

of the apex haunch at failure. Despite these additional areas of plasticity, 

the failure relies upon hinging mechanisms at the base of the eaves haunch 

on the left-hand side and at the end of the apex haunch in the right-hand 

rafter, shown by the scale of reduced stiffness in the right-hand rafter in 

the each column in which it appears, typically being an order of magnitude 

larger in length than comparable portions of the left-hand rafter or right

hand column. The point at which this behaviour predominates over the 

other regions of plasticity is at 10% of the full cross-sectional stiffness. This 

suggests the 10% of a section's Ixx is the boundary at which reduced stiffness 

plastic hinging occurs and further provides a rule-of-thumb boundary for the 

furthest infringement of plasticity in an I-section member appearing at ±H. 
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Figure 6.9: Load-deflection curve from Baker (1956) showing second linear section 

of deflection 

Figure 6.8 shows the absolute distance of the right eaves (red), apex 

(green) and left eaves (blue) from their respective starting positions as the 

loading increases. The line marked (a) shows the appearance of plasticity in 

the frame. The load here, wY ' is 9.16 kN/m, but the near-linear deflection 

continues until the line marked (b), between wy=9.96 and wy= 10.06 kN/m. 

The line (b) shows the end of linear deflection and the start of a second 

linear stage of deflection, similar to that of Baker (1956), as shown below 

in Figure 6.9. The additional stiffness after wy=10.06 is supported by the 

graphs of strain in the extreme fibres of the cross-section: at wy=10.06 kN /m 

strain hardening appears in the left-hand column. The ability of the strain

hardened portions of the structure to resist the weakness of plasticity ends 

when Wy reaches 11.06 kN/m (c), where uncontrolled deflection begins before 

eventual failure of the simulation at Wy =11.36 kN/m. 

Development of First Plastic Hinge (Figure 6.8(a)) 

The elastic limit of the frame was reached when Wy =9.16 kN/m (80.6% of 

collapse load), seen in the red highlighted portion of the Bending Moment 
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Diagram of Figure 6.10. Whilst this load signals the true limit to elastic 

behaviour, deflections remain linear until a load of 9.96kN/m was exceeded. 

Figure 6.8 shows that the eaves cease spreading apart and begin to sway 

sideways after wy =9.66 kN/m. 
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Figure 6.10: Bending Moment Diagram for wy =9.16 kNjm (80.6% of failure load) 



First Reduced Stiffness Hinge 

The behaviour of the structure at wy=9.36 kN 1m is classified as having a 

plastic hinge in the left-hand column, beginning below the eaves haunch and 

extending down the column. Figure 6.11 shows the reduction of member 

stiffness at wy =9.36 kN 1m, with the minimal values of remaining elastic 

portion of the cross-section provided as an annotation: the left-hand column 

has a minimum of 9.40% at the hinge marked (a); the left-hand rafter has its 

least elastic portion marked by (b) which clearly indicates that significant (in 

this case more than 40%) plasticity does not correlate with plastic hinging. 

Interpolation between steps of loading shows that the 10% reduced stiffness 

criterion is exceeded - and the hinge appears in the left-hand column - when 

wy =9.32 kN 1m. 
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Appearance of Strain Hardening (Figure 6.8(b)) 

Figure 6.12 shows the formation of the first hinge at 88.6% of the collapse 

load. The figure shows that the hinge has formed fully and strain hardening 

begun. Plastic strains are shown in yellow; strain-hardening in red, indicating 

that the hinging portion of the left column is resisting unhindered plastic 

deflection. This additional resistance drives the frame into a sway deflection 

pattern where prior deflection was spread (Figure 6.8). 
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Development of Second Plastic Hinge (Figure 6.8(c)) 

The second Plastic Hinge began to form at a load of w y =10.76 kN/m. At 

this load, ME is exceeded in two sections: one, 1281mm long below the 

eaves haunch in the left column; the other 532mm long to the right of the 

apex haunch taper. This is shown in Figure 6.13. It should be noted that the 

predictions of hinging behaviour based upon ME do not correlate to the large 

changes in deflection of Figure 6.8. They may provide a safe conservative 

criterion for increased risk of structural failure but do not describe actual 

structural behaviour. 

The second Reduced Stiffness Hinge appears in the right-hand rafter 

when wy =10.95 kN/m and is shown in the figure of wy =10.96 kN/m (Fig

ure 6.14). Highlights of the Reduced Stiffness Figure for wy =10.96 kN/m 

include the two hinging portions of the structure, (a) and (b), highlighted in 

red, with three additional portions of reduced stiffness without appreciable 

hinges formed. The lowest values of remaining cross-sectional stiffness are 

labelled at positions (c), (d) and (e), which make clear that these portions, 

while flexing, are not hinging. Hinging caused by reduced cross-sectional 

stiffness better matches the expected progress of frame failure than conven

tional elastic-plastic hinge predictions, particularly at wy =11.16 kN/m where 

the appearance of Reduced Stiffness Hinges (Figure 6.15) in the left rafter 

causes the final kink in Figure 6.8, marked with the line (d). 
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Figure 6.15: Reduced Stiffness at w y= 11 .16 leN/ m (98.23% of fail load) 



The simulation fails at w y=11.36 kN jm. The figure showing the reduced 

stiffnesses of the frame's members at this load identifies five portions of hing

ing behaviour. The least values of reduced cross-sectional stiffness are la

belled (a) to (e) in Figure 6.16. The hinge containing (a) is known to be the 

first to appear, as before. This final state of the frame shows clearly that 

the next longest hinge is in the right-hand rafter, in agreement with existing 

known failure modes for Portal frames. As the Analytic Structures method 

does not follow elastic-plastic method and assume that plasticity establishes 

a freely-rotating hinge in the structure wherever it appears, these five por

tions still have remaining stiffness. However it is insufficient to deem the 

structure stable at this load - especially when Analytic Structures has failed 

to find a stable standing position for the structure (Figure 6.17). 
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Figure 6.16: Reduced Stiffness at wy =11.36 kNjm (100% of fail load) 



6.3.2 Failure Load 

The next table of results shows the Collapse Load for the Manual method, 

Fastrak and the Analytic Structures simulations. In contrast to the worked 

example of SCI P-252, Analytic Structures found its failure load from pro

gressive increases of the load wy . The structure remains stable despite the 

establishment of significant portions of plasticity. The simulation continues 

to stand under increased loadings up to the Collapse Load, despite the exis

tence of more than two significant sections of member plasticity At the point 

at which Analytic structures cannot find a set of initial conditions for the 

Differential Equations of State of Chapter Three, the structure is deemed to 

not be able to meet the material and loading conditions and so has failed. In 

practical terms, the frame has failed. In mathematical terms, a singularity 

has been found. 

Value Manual Calculation Fastrak 4.1 Analytic Structures 

Collapse Load 11.71 kN I m 11.64 kN I m 11.36 kN I m· 

Table 6.3: Comparison of the Failure Loads Predicted by Manual Calculation, 

Fastrak and the Analytic Structures method 

It is important to note that the simulation software failed at w y =11.36 

kN 1m. This means something precise: that the process of solving the Dif

ferential Equations of State (from Chapter Three) could not be completed 

within the bounds of the material properties and structural layout of the 

portal frame. This failure to meet the constraints of the computer model 

supports the sensible claim that the frame will fail at this level of load. How

ever, this is not always the case, as sometimes the initial guesses supplied to 

the Analytic Structures system can cause it to terminate early, as can too 

large a step incrementing the loading. Great care was taken to ensure early 

termination did not occur. Careful initial guesses of the boundary conditions 

were input, using interpolation based on the previous two increments of load-
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mg. At the later stages, the increments of loading were shrunk to 10% of their 

initial values, ensuring that it was possible to find solutions to the boundary 

conditions right up to the failure load. Fine-tuning these parameters of the 

simulation requires careful application of basic structural design methods to 

ensure that good initial values and small increments yield reliable simulation 

results. Figure 6.17 shows an impossible state of deflection provided by a 

failed simulation set, where the portal frame could not resist the loading put 

on it, i.e. a" real" solution to the problem does not exist because the frame 

has failed. 
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Figure 6.18: Moment against Curvature comparing non-internal strain Curvature 

Table (line (a)) and internal-strain Curvature Table (line (b)) 

6.3.3 Comparison between Analytic Structures, Fas

trak and manual calculations 

The path to failure of all three structural analysis methods involves hinging. 

All three correlate the position of their hinges: the first is in the column below 

the start of the eaves haunch and the second at the end of the apex haunch 

taper. This coincidence of hinge position is reassuring. However, both the 

results from the manual calculations and Fastrak make use of point-hinges, 

where Analytic Structures has hinging lengths. This will have an adverse 

effect upon the load-carrying capacity of the structure as larger portions of 

the structure have reduced stiffness associated with plastic or post-plastic 

behaviour and so deflect further (numbers) than the elastic-plastic method 

used in Fastrak; the manual method makes no use of elastic flexure. 

The failure loads for each method are within reasonable bounds. Both 

the manual calculation and Fastrak Portal Frame aim for a required frame 
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Position of Deflection, mm Analytic Structures Deflection Fastrak Deflection 

Eaves Join 114 18.92 

Apex· 333 186.2 

Table 6.4: Absolute Deflection (mm) of Key Frame Points 

strength of 11.3 kN 1m, failing 1.03 and 1.036 times that value, respectively. 

This difference is likely to arise from the manual calculations using a rigid

plastic stress-strain model, where Fastrak deems hinges to form where the 

moment reaches 99% of MP. The shortfall of the predicted failure loads of 

Analytic Structures, while meeting the required frame strength, is caused by 

the automatic inclusion of P - 0 and P - Ll effects in its model and with 

the increased deflection of the method. Figure 4.11 of Chapter Four (here as 

Figure 6.18) shows the behaviour of the Curvature Look-Up Table used in 

this portal frame simulation (dashed line). The gentler knee of line (b) (in 

comparison to the solid line - an identical curvature table but for internal 

strain data) shows comparatively earlier increase in curvature at the onset 

of plasticity. This causes greater deflection in the Analytic Structures por

tal frame simulations. The greatest contributor to the early failure of the 

Analytic Structures simulated Portal Frame is the lengths of each member 

behaving plastically when a hinge in formed. In contrast to a point hinge, 

a length within the frame which has a reduced-stiffness hinge deflects more 

than a purely elastic member of the same length and suffers from the cumula

tive effect of that increased deflection. It is of no surprise that the deflections 

in Analytic Structures are greater than those predicted by Fastrak, as high

lighted in Table 6.4. 

The data for Table 6.4 is taken at the emergence of the second hinge. In 

Fastrak, this coincides with the failure load of 11.64 kNlm, but for Analytic 

Structures this occurs at a load of 10.76 kN/m. Even under less load, the 

Analytic Structures frame has deflected further. The ongoing stability of 
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the Analytic Structures frame simulation at loads up to 11.36 kN/m is a 

testament to the capability of strain hardening to resist sway failure (Horne 

(1960) ). These deflection figures highlight the importance of second-order 

frame and member effects (P - [) and P - 6., respectively) upon stability. 

The second-order analyses within Fastrak are labelled 'Frame Stability -

SCI-P292 Check'. Studying SCI Publication No292 (King, 2001) and follow

ing its worked example of a second-order analysis for the original frame with 

its 30.0m span, 7.0m eaves height and 6° pitch, the second-order load factor 

(AM) reduces Ap such that the failure load is predicted to be 11.41 kN/m, a 

total 100.459% of the load at which Analytic Structures failed. Further to 

this, the computer model of the frame in the Analytic Structures analysis 

allows its members to shrink with the thrust strain (including shear strain 

is proposed as an extension to the model). This adds to the differences in 

structural behaviour shown between the three methods of analysis under dis

cussion: neither the manual calculation nor Fastrak incorporate this, and as 

such it may be considered a higher-order effect than P - [) and P - 6. effects, 

which explains its present neglect. 
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6.3.4 Span-to-Height Ratio 

Additional simulations were run, changing only the length of the frame span 

so as to compare the stability of broad-based frames. The frame's geometry 

is sketched in Figure 6.19. The span ranged from 21.0 m to 49.0 m, reflecting 

span-to-height ratios of 3-to-1, 4-to-1, 5-to-1, 6-to-1 and 7-to-1 for the 7.0m 

height of the existing simulated Portal Frame. The dimensions of the haunch 

length retained their previous proportions: 10% of the span at the eaves and 

5% at each side of the apex. The vertical depths of the haunch remained 

at 600mm and 400mm for the eaves and apex, respectively, due a lack of an 

explicit method in design documents for the depth of the haunch. It must be 

noted that the default settings in Fastrak take a haunch depth which depends 

on the length of the span. This was overridden for sake of comparison with 

simulations run in Analytic Structures. 

Span-Height Analytic Elastic-Plastic Elastic-Plastic 
Span 

Ratio Structures plus P - <5 & P - .6. 

21.0m 3-to-1 20.9 23.06 23.0 

28.0m 4-to-1 12.3 13.36 13.2 

35.0m 5-to-1 7.86 8.79 8.6 

42.0m 6-to-1 5.86 6.27 6.0 

49.0m 7-to-1 4.46 4.73 4.1 

Table 6.5: Failure Loads (kN jm) using Analytic Structures, Elastic-Plastic (Fas

trak) and P - 0" modified Elastic-Plastic method for a Range of Values of Span-to 

Height Ratio 

Table 6.5 and Figure 6.20 contrasts the predicted failure loads of Analytic 

Structures with those of Fastrak Portal Frame over a range of span-to-eaves

height ratios. Two sets of data are presented for comparison with Analytic 

Structures: one from the original Elastic-Plastic analysis method and a sec

ond, including the second-order analysis from SCI P-292. The percentage 
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difference is included at each stage, comparing the results from Analytic 

Structures with each of the other analyses. The data shows that the elastic

plastic model used in Fastrak provides distinctly higher load capacities than 

Analytic Structures. The shortfall of Analytic Structures' predicted Failure 

Loads in contrast to results obtained from Elastic-Plastic analysis is an av

erage of 7.29%. There are two causes of these discrepancies in failure load: 

that the elastic-plastic method may be slightly overestimating the capacity 

of the structure because of lack of inclusion of internal strains in predictions 

of member behaviour, as well as failure to accommodate spread of plastic

ity with each member. This is supported by the Curvature Look-Up Table, 

shown above in Figure 6.18, showing additional curvature occurring at the 

elastic-plastic knee due to the presence of internal strains. This additional 

curvature will translate into additional deflection and consequently earlier 

onset of buckling. 

The additional cause for the differences in failure loads is due to dif

ferences in the treatment of second order effects. The elastic-plastic (Fas

trak) method uses a first-order model, neglecting second- and higher-order 

behaviour. It is however possible to extend the elastic-plastic analysis to 

incorporate second-order effects, using the methodology presented in SCI P-

292. The second-order modified results are presented in Table 6.5, with the 

differences between the methods of analysis shown to reduce as the frames 

become more shallow. While an extreme case, the strength of the 7:1 ratio 

frame in Analytic Structures is higher than that for the SCI P-292 analy

sis, and this difference may be attributed to the absence, in the SCI P-292 

analysis of additional post-elastic stiffness due to strain hardening. 
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The 7:1 span-to-eaves-height ratio matches the SCI P-292 predicted col

lapse load where the other results do not. The 7:1 ratio span is unusual 

in practice, having long rafters whose self-weight contributes such large mo

ments and such significant second-order deflections that the frame is rarely 

economic. In the case of the simulated 7: 1 ratio span, the self weight is 22% of 

the failure load and forms 26% of the moment in the column hinge at failure. 

Therefore the P - 0 deflections are the explanation that the second-order 

SCI P-292 analysis matches that of Analytic Structures. 

Table 6.6, below, shows the eaves deflection at failure and proportion at 

which 99% of Mp is achieved in each span. Analytic Structures consistently 

shows larger deflections which are the most likely root of the lower failure 

loads, despite the additional data in Analytic Structures' computer model. 

The 99% of 1t1p is the point at which Fastrak considers a hinge to have 

formed, and so can be used to highlight the similar way in which both meth

ods have their frames fail across the range of spans. Both Analytic Structures 

and the SCI P-292 method show a shrinking of the proportion of fail that 

99% of IvIp appears in the frame, indicating that they follow similar paths to 

failure and that the larger values of fail load predicted by Fastrak are poten

tially dangerous overestimations due to their lack of accurate stress-strain, 

cross-sectional curvature or internal strain data. 

The differences in Table 6.6 are startling. The established second-order 

analysis from SCI P-292 follows the expected progression whereby the stock

ier frames deflect less and the wider-based frames sway further as their longer 

members succumb to greater P-.6. effects. In contrast, the predicted eaves 

deflections calculated by Analytic Structures' simulations show no trend at 

all. 

Without any trend, the most likely explanation for Analytic Structure's 

results is that the deflections shown here are not related to the strength of the 

frame or to Aip. The process by which each simulation was loaded to failure 

increased the UDL across the rafters by the same small increment irrespective 
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Eaves-Height Span, Analytic Structures: SCI P-292 

to Span m Eaves Deflection, Eaves Deflection, 

Ratio mm mm 

3:1 21.0 327 25.7 

4:1 28.0 203 65.7 

5:1 35.0 213 109.1 

6:1 42.0 205 155.9 

7:1 49.0 342 205.5 

Table 6.6: Absolute Eaves Deflection (mm) at Failure Load for Each Frame 

of the span-to-height ratio of the frame simulation. The structures modelled 

by the simulation are deemed to fail when the equation-solvers cannot find 

a realistic position in which the frame may stand. This state corresponds 

to a mathematical singularity within the differential equations and will be 

accompanied by numerical instability to the deflection of the frame. The 

stability of this ultimate state of simulation may be disturbed even further 

by the unavoidable errors within the numerical equation solvers. When put 

together, these factors around failure can cause rapid variations in deflection 

as failure is approached and so bring a random property to how far each sim

ulation has progressed before the computer system emits an error declaring 

its failure to complete the simulation. In such a case, the results of Table 6.6 

may be produced. Such behaviour may be mitigated if the equation solvers 

are carefully managed to minimise the error and to carefully negotiate the 

mathematically-unstable behaviour close to portal frame failure. Further 

work is proposed to investigate the best methods for these processes. 
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6.4 Conclusions 

Having previously shown the reliability of the Analytic Structures method 

when applied to columns, in Chapter Five, the task set out in this chapter has 

been to assess the accuracy of Analytic Structures predictions of frame load 

capacity in comparison with the state-of-the-art commercial portal frame 

design software (Fastrak Portal Frame). A sample single bay portal frame 

was selected and simulations run to ascertain its failure load. 

From the data created by these simulations the process of failure was de

vised and qualified. The results were compared to contemporaneous methods 

of analysis (manual and computer-driven) and are comparable. The failure 

load predicted by Analytic Structures meets the required strength of the 

frame, but falls short of the predicted failure loads of rigid plastic manual 

calculations and elastic-plastic computer-based analysis. This lower load ca

pacity is due to Analytic Structures producing larger deflections for given 

loads, which ultimately led to a lower load carrying capacity. The increase in 

deflection arises from the accurate quantification of the moment, thrust and 

curvature relationship in the Curvature Look-Up Table, which also includes 

the effects of internal strains on moment curvature response. In addition, ad

ditional deflections due to the spread of plasticity is automatically included. 

Analytic Structures models plasticity as a continuous behaviour within a 

portion of the member in contrast to the elastic-plastic method, which as

sumes that plasticity is confined to the node point. In addition, the Analytic 

Structures method provides an accurate account of P - 5 destabilising ef

fects. Regardless of these differences the final load capacities varied by on 

average only 7%. This difference was less where the elastic-plastic method 

incorporated the industry standard P - 5 strength reduction. 

Frames with a range of width to eaves height ratios were considered. 

It was found that a very close agreement between the Analytic Structures 

method and the elastic-plastic method were achieved when the aspect ra-
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tion was 7:1, with predictions matching extremely closely when the P - 5 

modification was included in the elastic-plastic analysis method (SCI P-292). 

The Analytic Structures method and program offer opportunities to ex

amine and qualify structural behaviour in an efficient manner. Their appli

cation to the field of structural design is a necessary one, allowing frames 

to be analysed at a greater level of detail than previously permitted, at the 

desk of the engineer using contemporaneous personal computing power. 
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Chapter 7 

Conclusions 
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7 .1 Conclusions 

The work presented here introduces a number of additions to the field of 

structural analysis, ranging from mathematical theory through to computer 

programming and results of structural analysis. It has the potential to be ex

tended further, and has potential for a new class of structural analysis involv

ing the direct solution of the member equations, rather than stiffness matrix 

solutions. The method is tied into the computer, using the ever-increasing 

power of personal computing to provide information about frame and mem

ber behaviour at any point within the structure. The work progresses to 

qualify its behaviour against empirical results and existing methods of anal

ysis, in the particular cases of an Eulerian Strut and a single-span Portal 

Frame. 

At the core of the work is a mathematical expression of member be

haviour. Its most important contribution is to use differential equations at a 

particular cross-section position to quantify angle, loading and position. The 

equations additionally include the impact of axial shortening. The derivation 

of these equations is presented. Any examination of member behaviour us

ing these differential equations avoids first- and second-order approximations. 

When the equations are solved within the computer program, the results are 

not stated in terms of x or y, but through a numerical interpolation function. 

The information within the interpolation includes every order of approxima

tion and its accuracy is constrained to the accuracy of the equation-solving 

program. 

Any computer method needs a knowledgeable expert to make best use 

of the uncritical automaton performing the calculation. While it is possible 

to program the Analytic Structures into a computer and realise excellent 

results, it is as possible to misuse the system and compromise its results 

by programming bad initial values, loading patterns and member properties. 

Care must be taken to estimate good boundary conditions when solving the 
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member's differential equations of state. 

Care has also been taken to accurately predict the curvature in a cross

section under given loads. Contemporaneous methods of analysis ignore the 

additional curvature resulting from internal strains (residual stresses) and 

axial forces in beam members. In the present analysis the contribution to 

cross-sectional curvature from moment and axial thrust loading has been 

quantified, whilst taking into account the effects of internal strains. The 

curvature look-up tables calculated from the model of this relationship were 

developed using the nonlinear material properties and this was a significant 

technical challenge. In particular, iteration was essential to the calculation of 

the position of the neutral axis for given thrusts and moments. The resulting 

functions provide accurate curvature predictions and, in doing so, speed up 

the computation of structural behaviour by avoiding repeated calculations. 

Additionally they provide insight into the increased quantity of curvature 

(and corresponding deflection) brought about during the formation of plastic 

hinges. It was found that internal strains and axial thrusts have a significant 

influence on the moment-curvature relationship of steel I-sections bending 

about their strong axis. In particular, internal strains and axial thrusts 

result in significantly greater curvatures at the elastic-to-plastic transition 

point of the moment curvature curve. 

In contrast to the elastic-plastic method programmed into an industrial 

design package for portal frames (Fastrak Portal Frame), the Analytic Struc

tures method will appear inefficient. The core Elastic-Plastic analysis was 

developed in the 1960's on calculating machines which are less powerful than 

today's school calculators. The same software runs on today's personal com

puters in a fraction of a second, while a portal frame analysis in Analytic 

Structures typically takes an hour and requires the previously-prepared ta

bles of Curvature data, each of which uses about a day's computation time 

each. Analytic Structures, as used to provide the results of Chapters Five 

and Six, is not yet optimised for speedy computation, but performance ben-
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efits can be found within the system: reducing the required accuracy of the 

equation solvers and using larger increments of loading are available options. 

This thesis describes the results of simulated struts derived from a se

ries of computer models. The struts were a common I-section restrained to 

buckle along their major axis. The most-detailed computer model is corre

lated exceptionally well (p = 0.99994780) with the BS5950 Class A Strut 

Buckling Curve (Table 24( a)). This model contained the internal strains 

(residual stresses) arising from the hot-rolled steel manufacturing process. A 

comparison between two families of simulations, one with internal strain data 

and one without, revealed that internal strains can delay the onset of buck

ling. The comparisons of the Analytic Structures' Elastic Struts to the Euler 

Strut-Buckling formula shows exceptional correlation, with p = 0.99990690. 

The model was extended to consider failure of single-span portal frames 

and the predicted failure loads provide a close match with those derived using 

existing analysis methods. The predictions from two such existing two such 

existing design analysis methods are compared, one a manual calculation 

and the other by a computer-based design package (Fastrak Portal Frame 

by CSC Ltd.). All three methods predict failure by creation of an identical 

series of plastic hinges, a statement that comes with the warning that point

hinges, as predicted in the manual calculation and Fastrak analyses, are not 

a part of the Analytic Structures method. Due to the continuous modelling 

of the cross-section in the differential equations of Analytic Structures, plas

ticity emerges in lengths of the frame. Consequently the equation-solving 

mechanism models large portions of the frame as softened by plasticity. The 

additional curvature brought about by these large zones of softening causes 

larger deflections than those predicted using the elastic-plastic method. This 

additional deflection is the major cause of Analytic Structures falling short 

of the predicted failure loads from the other methods. The presence of in

ternal strains or residual stresses of hot-rolled member manufacturing, as 

mentioned above, advances the onset of non-elastic flexure while stiffening 
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the strain-hardening behaviour. This has the effect of permitting signifi

cant contiguous portions of a simulated portal frame to flex plastically but 

to have the strain-hardening of the flexing member resist structural failure 

as predicted by Horne (1960). The thesis simulated a portal frame with 

30.0m span, 7.0m eaves height and 6° pitch angle has required strength of 

11.3 kN/m. Analytic Structures predicts a failure load of 11.36 kN/m, lower 

than the ll.71 kN/m failure load of the manual calculation, or the ll.64 

kN 1m of the elastic-plastic analysis from Fastrak. This happens due to An

alytic Structures tolerating larger portions of the frame behaving plastically 

and strain-hardening, leading to increased frame deflection and mildly earlier 

failure. Analytic Structures does, however, show that the frame meets the 

required strength of ll.3 kN/m. 

Work was also completed comparing results from Analytic Structures 

and Elastic-Plastic analysis for a variety of ratios of span-to-eaves height. 

Analytic Structures showed the same shortfall in results through these sim

ulations. However, including allowance for second-order frame and member 

deflections provided a agreement in failure modes in the wider span frames. 

While the predicted failure loads were in close agreement, the predicted 

deflections recorded by the elastic-plastic (Fastrak) analyses were substan

tially less than those predicted by Analytic Structures. As stated, the greater 

deflections resulted from spread of plasticity and the inclusion of internal 

strains and axial thrusts in the moment curvature relationship. These addi

tional deflections were responsible for the lower failure loads predicted using 

the Analytical structures method. 

7.2 Further Work 

As discussed above, some of the shortcomings of the Analytic Structures 

method as implemented here can be alleviated by additions to the mathe

maticalmodel, curvature tables or the simulations themselves. The following 
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material introduces these adaptations, hoping to make clear their purpose 

and discuss their suitability. 

Improvements to the Structural Mathematics 

Future developments here may include out-of-plane loading and an extension 

to the internal stress function. The six Differential Equations of State become 

12 when the third dimension is included: 

dfz 
-=Wz ds 

(7.1) 

dMz ( ) -- = qz 1- E 
ds 

dez 
- =K,z 
ds 
dz 
ds = cos(ex ) cos(ey). dy = sin(e ) 

ds x 

The equations for position are stated in terms of ex and ey because a 

simplifying assumption about NIz , K,z and ez makes a reasonable case that 

they may be ignored: that K,z and ez are likely to destroy compliance with 

the assumption that plane sections remain planes, whenever they become 

large enough to cause deflection which stretches one end of a member and 

compresses the other. The need for initial values and estimates of final values 

remains the same: for each equation, at least one boundary condition is 

needed or found from Shooting. The inclusion of out-of-plane loading will 

necessitate extensions to the Curvature Functions, which are discussed below. 

One of the obvious uses for out-of-plane deflection is the modelling of an 

entire building made of linked Portal Frames. 

The internal stress function approximates empirical tests of hot-rolled 

members, using the close-enough concept of a parabolic or linear stress dis

tribution through the member. It could be extended to use a computer model 

built from the first principles of locked-in strains from cooling, which supply 

the assumption that locked-in strain follows the position in the cross-section 

which cooled most slowly. This is directly that portion of the cross-section 
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Figure 7,1: Lines of Slowest Cooling or Most Distance to Edge within an I-section 

(with/without Flange Fillets) 

furthest from the surface of the member (Figure 7.1). Consequently, the path 

of maximum locked in stress can be graphed and the parameters by which 

the parabola of internal stresses follow can be determined from the sum of 

the stresses across an unloaded cross-section being zero: 

J O"intdxdy = O. (7.2) 

Numerical investigation is planned for the entire cross-section to ascertain 

the parameters of the parabolae which define the internal strains. Further 

extension to this work would also account for volume expansion in the hot

rolling process and its influence in causing the locked-in strains. 

Improvements to the Curvature Look-Up Tables 

It is recommended that the Curvature function be updated to supply a value 

of curvature from a pair of moments, one about the x-axis and one about 

the y-axis. This is required for the extensions proposed above for out-of

plane loading and deflection. With the two Moment loadings, the resulting 

curvature may be calculated either as two values of curvature, or as one 

value of curvature and the angle at which it acts, analogous to measuring in 

Cartesian or Polar coordinates. 

Shear deflections are generally low in comparison with bending deflections 

for steel portal frames. The Shear modulus of most cross-sections is suffi

cient that this aspect of structural behaviour is neglected in analysis. Should 

the Analytic Structures method be adapted for use modelling the behaviour 
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Figure 7.2: Circle Sheared to Ellipse 

of structures constructed from other materials, it would be beneficial to in

corporate the impact of the shear strain upon the member curvature. It is 

appropriate to do this to the models of Chapter Four, as the changes will be 

made in the creation of tables of Curvature data. It may not be necessary 

to calculate new tables of Curvature data, as the impact of shear strain may 

be included in the program directly. 

In the general case of a member with constant curvature, this is equivalent 

to a circle of radius r placed so that it touches the origin at its lowest point. 

The equatIons are, either in x- and y-coordinates or parameterised for s: 

(7.3) 

{ : r cos(s) 

r (sin ( s) + 1) 
(7.4) 

The portion of the curve at the origin occurs when s = ~7r. If this space is 

sheared by the matrix (as per Figure 7.2): 

(7.5) 

the parametric form of the resulting ellipse is 

{ ; r cos(s) 

r (sin(s) + 1) - EqrCos(s) 
(7.6) 
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The curvature K, uses the same equations as in Chapter Three: 

Xl y" - yl x" 

(X/2 + y/2) ~ 

1 ( 1 ) ~ 
-:;: E~ sin2 (s) + 3Eq sin(s) cos(s) + 1 

(7.7) 

Even in the transformed coordinates (Xl, yl), the origin remains at s = - ~, 

and so is: 

K, Is=-7I. = ~(-1 1 2)~ . 
2 r + E q 

(7.8) 

Therefore the factor by which an existing known value of curvature is amp li-

fied by the shear strain is: 

(7.9) 

Extensions to Strut Simulations 

As mentioned above, a fuller set of strut-buckling curves is planned, with 

the inclusion of a series bounded by plastic behaviour, and a series using the 

internal strain data but ignoring the impact of axial thrusts. Also, the test of 

a built-in crushing strut, with its full-Sine deflection pattern, would provide 

good qualitative information about the influence of p-6 effects in struts across 

the range of simulations performed here. The simulation would need to 

ensure that the upper built-in end of the strut falls as the member contracts 

and deflects under the load; which could be one of the three unknowns at the 

upper end found by shooting. This simulation would be able to check the 

common assumption arising from the Euler Strut Formula of the sine-curve 

deflection pattern, and should it not be 

Extensions to Portal Frames Simulations 

The scope is extensive for further work on the Portal Frame models. Among 

potential other frames for study: multi-bay frames, hit-and-miss portal framed 

buildings, and tied frames. The move to haunched sections solid in their own 
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(1) (1) 

Figure 7.3: Segmented Portal Frame Model 

right (not overlapped as at present) is a high priority, as is the move to 

consider loading and deformation out-of-plane. 

Additionally, a more complete model of a portal frame span could be 

constructed by splitting the structure into 8 segments, mirrored around the 

apex (Figure 7.3), with the haunches at the eaves and apex simulated as if 

their own members. The non-haunched sections of the columns and rafters 

are modelled as before. Initial steps could use haunches which have an elastic 

Curvature Function, which could require the exact cross-section dimensions 

to calculate the area, Ixx and weight where they appear in the system. The 

joins of members in an Analytic Structures simulation do not have any flex

ibility, as the end-points of the previous members have their final conditions 

passed to the next member as its starting conditions. It would be possi

ble to insert elastic shims to flex under the loading. These improvements 

are facilitated by the parametric nature of the Analytic Structures method: 

the member loading and properties can be programmed to depend on the 

parameter s for position in a given member. 
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Chapter 8 

Resources 
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8.1 Curvature Look-Up Tables 

The following tables contain the data for the Curvature Look-Up Tables 

(a), (b) and (c) as introduced in Chapter Four. The I-Section applicable to 

these curvature data is the 203xl02x23 I-section from Table B-4 of SCI P202 

(6th Ed., 2001). The two groups (one beginning on Page 171 and ending 

178 and the other beginning on Page 179 and ending 185) recording the 

curvature for increases in axial thrust while holding moment constant and 

recording the curvature for increases in moment while holding the thrust 

constant, respectively. The curvature predicted by Equation 3.2 (see Page 

43) is included for comparison. 
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79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

Elastic Curvature Curvature Curvature 

Curva- Look-Up Look-Up Look-Up Direct Shooting 

ture Table (a) Table (b) Table (c) 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

2.64E-06 2.64E-06 2.64E-06 2.77E-06 2.77E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 3.96E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 3.96E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 3.96E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 3.96E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 3.96E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 3.96E-06 

3.96E-06 3.96E-06 3.96E-06 4.08E-06 4.08E-06 

3.96E-06 3.96E-06 3.96E-06 4.92E-06 4.92E-06 
.. -



f-' 
-.;J 
CN 

Moment 

2.23E+07 

2.23E+07 

2.23E+07 

2.23E+07 

2.23E+07 

2.23E+07 

2.23E+07 

2.23E+07 

2.79E+07 

2.79E+07 

2.79E+07 

2.79E+07 

2.79E+07 

2.79E+07 

2.79E+07 

2.79E+07 

Normalised 

Moment 

(MIME) 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

Normalic;ed 

Axial Axial 

Thrust Thrust 

(piPer) 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

Elastic Curvature Curvature Curvature 

Curva- Look-Up Look-Up Look-Up Direct Shooting 

ture Table (a) Table (b) Table (c) 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 5.28E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 5.28E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 5.28E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 5.28E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 5.28E-06 

5.28E-06 5.28E-06 5.28E-06 5.37E-06 5.37E-06 

5.28E-06 5.28E-06 5.28E-06 6.09E-06 6.09E-06 

5.28E-06 5.28E-06 1.65645E-05 1.70816E-05 1.70816E-05 

6.60E-06 6.60E-06 6.60E-06 6.60E-06 6.60E-06 

6.60E-06 6.60E-06 6.60E-06 6.60E-06 6.60E-06 

6.60E-06 6.60E-06 6.60E-06 6.60E-06 6.60E-06 

6.60E-06 6.60E-06 6.60E-06 6.60E-06 6.60E-06 

6.60E-06 6.60E-06 6.60E-06 6.69E-06 6.69E-06 

6.60E-06 6.60E-06 6.60E-06 7.35E-06 7.35E-06 

6.60E-06 6.60E-06 1. 13419E-05 1.36155E-05 1.36155E-05 

6.60E-06 6.60E-06 8.97467E-05 8.2346E-05 8.2346E-05 



f-' 
-.;J 
~ 

Moment 

3.35E+07 

3.35E+07 

3.35E+07 

3.35E+07 

3.35E+07 

3.35E+07 

3.35E+07 

3.35E+07 

3.91E+07 

3.91E+07 

3.91E+07 

3.91E+07 

3.91E+07 

3.91E+07 

3.91E+07 

3.91E+07 

Normalised 

Moment 

(M/NIE ) 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

Normalised 

Axial Axial 

Thrust Thrust 

. (piPeT) 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

Elastic Curvature Curvature Curvature 

Curva- Look-Up Look-Up Look-Up Direct Shooting 

ture Table (a) Table (b) Table (c) 

7.92E-06 7.92E-06 7.92E-06 7.92E-06 7.92E-06 

7.92E-06 7.92E-06 7.92E-06 7.92E-06 7.92E-06 

7.92E-06 7.92E-06 7.92E-06 7.92E-06 7.92E-06 

7.92E-06 7.92E-06 7.92E-06 7.99E-06 7.99E-06 

7.92E-06 7.92E-06 7.92E-06 8.58E-06 8.58E-06 

7.92E-06 7.92E-06 1.12052E-05 1.24605E-05 1.24605E-05 

7.92E-06 7.92E-06 7.48989E-05 6.76851E-05 6.76851E-05 

7.92E-06 7.92E-06 0.000134408 0.000126892 0.000126892 

9.24E-06 9.24E-06 9.24E-06 9.24E-06 9.24E-06 

9.24E-06 9.24E-06 9.24E-06 9.24E-06 9.24E-06 

9.24E-06 9.24E-06 9.24E-06 9.31E-06 9.31E-06 

9.24E-06 9.24E-06 9.24E-06 9.86E-06 9.86E-06 

9.24E-06 9.24E-06 1.18302E-05 1.30616E-05 1.30616E-05 

9.24E-06 9.24E-06 5.9921E-05 5.23558E-05 5.23558E-05 

9.24E-06 9.24E-06 0.000120019 0.000112537 0.000112537 

9.24E-06 9.24E-06 0.0001785 0.000170923 0.000170923 
-



f-' 
--J 
C;l 

Moment 

4.47E+07 

4.47E+07 

4.47E+07 

4.47E+07 

4.47E+07 

4.47E+07 

4.47E+07 

4.47E+07 

5.03E+07 

5.03E+07 

5.03E+07 

5.03E+07 

5.03E+07 

5.03E+07 

5.03E+07 

5.03E+07 

Normalised 

Moment 

(IvI/ ME) 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

0.9 

Normalised 

Axial Axial 

Thrust Thrust 

(piPer) 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

Elastic Curvature Curvature Curvature 

Curva- Look-Up Look-Up Look-Up Direct Shooting 

ture Table (a) Table (b) Table (c) 

1.05627E-05 1.05561E-05 1.05627E-05 1.05898E-05 1.05898E-05 

1.05627E-05 1.05561E-05 1.05627E-05 1.06077E-05 1.06077E-05 

1.05627E-05 1.05561E-05 1.05627E-05 1. 11063E-05 1. 11063E-05 

1.05627E-05 1.05561E-05 1.27194E-05 1.36248E-05 1.36248E-05 

1.05627E-05 1.05561E-05 3.31289E-05 3.34073E-05 3.34073E-05 

1.05627E-05 1.05561E-05 0.000105707 9.84064E-05 9.84064E-05 

1.05627E-05 1.05561E-05 0.000164231 0.000156778 0.000156778 

1.05627E-05 1.05561E-05 0.000222544 0.000215002 0.000215002 

1. 1883E-05 1. 18756E-05 1. 1883E-05 1.20734E-05 1.20734E-05 

1.1883E-05 1.18756E-05 1. 1883E-05 1.24376E-05 1.24376E-05 

1.1883E-05 1.18756E-05 1.37318E-05 1.4638E-05 1.4638E-05 

1. 1883E-05 1.18756E-05 2.47447E-05 2.73854E-05 2.73854E-05 

1. 1883E-05 1. 18756E-05 9.19585E-05 8.50671E-05 8.50671E-05 

1.1883E-05 1.18756E-05 0.000150631 0.000143223 0.000143223 

1.1883E-05 1.18756E-05 0.000209003 0.000201454 0.000201454 

1. 1883E-05 1. 18756E-05 0.000267265 0.000259648 0.000259648 



I-' 
--l 
Ol 

Moment 

5.59E+07 

5.59E+07 

5.59E+07 

5.59E+07 

5.59E+07 

5.59E+07 

5.59E+07 

5.59E+07 

6.15E+07 

6.15E+07 

6.15E+07 

6.15E+07 

6.15E+07 

6.15E+07 

6.15E+07 

6.15E+07 

Normalised 

Moment 

(I\1/ ME) 

1 

1 

1 

1 

1 

1 

1 

1 

1.1 

1.1 

1.1 

1.1 

1.1 

1.1 

1.1 

1.1 

Axial 

Thrust 

0 

79483.8 

158967.6 

238451.4 

317935.2 

397419 

476902.8 

556386.6 

0 

79483.8 

158967.6 

238451.4 

317935.2 

397419 

476902.8 

556386.6 

.N ormalised 
Elastic 

Axial 
Curva-

Thrust 

(PiPer) 
ture 

0 1.32034E-05 

0.1 1.32034E-05 

0.2 1.32034E-05 

0.3 1.32034E-05 

0.4 1.32034E-05 

0.5 1.32034E-05 

0.6 1.32034E-05 

0.7 1.32034E-05 

0 1.45237E-05 

0.1 1.45237E-05 

0.2 1.45237E-05 

0.3 1.45237E-05 

0.4 1.45237E-05 

0.5 1.45237E-05 

0.6 1.45237E-05 

0.7 1.45237E-05 

Curvature Curvature Curvature 

Look-Up Look-Up Look-Up Direct Shooting 

Table (a) Table (b) Table (c) 

1.33364E-05 1.32034E-05 1.413E-05 1.413E-05 

1.33364E-05 1.48117E-05 1.58366E-05 1.58366E-05 

1.33364E-05 2.26839E-05 2.48239E-05 2.48239E-05 

1.33364E-05 8.26015E-05 7.59706E-05 7.59706E-05 

1.33364E-05 0.000139092 0.000131851 0.000131851 

1.33364E-05 0.000196778 0.000189234 0.000189234 

1.33364E-05 0.000254714 0.000247073 0.000247073 

1.33364E-05 0.000312734 0.000305046 0.000305046 I 
I 

2.29563E-05 2.30575E-05 2.91319E-05 2.91319E-05 

2.29563E-05 3.81539E-05 5.32328E-05 5.32328E-05 

2.29563E-05 0.000108693 9.9639E-05 9.9639E-05 

2.29563E-05 0.000153457 0.000145257 0.000145257 

2.29563E-05 0.00019799 0.000190807 0.000190807 

2.29563E-05 0.000244928 0.00023788 0.00023788 

2.29563E-05 0.000301529 0.000293921 0.000293921 

2.29563E-05 0.000359002 0.000351312 0.000351312 
-~ 



f-' 
-.J 
-.J 

Moment 

6.70E+07 

6.70E+07 

6.70E+07 

6.70E+07 

6.70E+07 

6.70E+07 

6.70E+07 

6.70E+07 

Normalised 

Moment 

(1\,1J I filJ E) 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

Normalised 

Axial Axial 

Thrust Thrust 

(PiPer) 

0 0 

79483.8 0.1 

158967.6 0.2 

238451.4 0.3 

317935.2 0.4 

397419 0.5 

476902.8 0.6 

556386.6 0.7 

Elastic Curvature Curvature Curvature 

Curva- Look-Up Look-Up Look-Up Direct Shooting 

ture Table (a) Table (b) Table (c) 

1.58441E-05 0.00015785 0.000172344 0.000158531 0.000158531 

1.58441E-05 0.00015785 0.000181944 0.000167888 0.000167888 

1.58441E-05 0.00015785 0.000206269 0.000193094 0.000193094 

1.58441E-05 0.00015785 0.00023961 0.000227606 0.000227606 

1.58441E-05 0.00015785 0.000275655 0.000266124 0.000266124 

1.58441E-05 0.00015785 0.000310509 0.000303205 0.000303205 
! 

1.58441E-05 0.00015785 0.000350485 0.000343125 0.000343125 

1.58441E-05 0.00015785 0.000406319 0.000398629 0.000398629 



I-' 
---;J 
co 

Axial 

Thrust 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Normalised 

Axial 

Thrust 

(PiPer) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
- -------

Normalised 

Moment Moment 

(M / JvIE ) 

0 0 

5.59E+06 0.1 

1.12E+07 0.2 

1.68E+07 0.3 

2.23E+07 0.4 

2.79E+07 0.5 

3.35E+07 0.6 

3.91E+07 0.7 

4.47E+07 0.8 

5.03E+07 0.9 

5.59E+07 1 

6.15E+07 1.1 

6.70E+07 1.2 

Elastic Curvature 

Curva- Look-Up 

ture Table (a) 

0 6.09E-23 

1.32E-06 1.32E-06 

2.64E-06 2.64E-06 

3.96E-06 3.96E-06 

5.28E.:06 5.28E-06 

6.60E-06 6.60E-06 

7.92E-06 7.92E-06 

9.24E-06 9.24E-06 

1.05627E-05 1.05561E-05 

1. 1883E-05 1. 18756E-05 

1.32034E-05 1.33364E-05 

1.45237E-05 2.29563E-05 

1.58441E-05 0.00015785 
---

Curvature Curvature 

Look-Up Look-Up Direct Shooting 

Table (b) Table (c) 

-8.34E-24 4.85E-23 4.85E-23 

I 1.32E-06 1.32E-06 1. 32E-06 

2.64E-06 2.64E-06 2.64E-06 

3.96E-06 3.96E-06 3.96E-06 

5.28E-06 5.28E-06 5.28E-06 

6.60E-06 6.60E-06 6.60E-06 

7.92E-06 7.92E-06 7.92E-06 

9.24E-06 9.24E-06 9.24E-06 

1.05627E-05 1.05898E-05 1.05898E-05 

1. 1883E-05 1.20734E-05 1.20734E-05 

1.32034E-05 1.413E-05 1.413E-05 

2.30575E-05 2.91319E-05 2.91319E-05 

I 0.000172344 0.000158531 0.000158531 
I 



f-' 
-.:j 
CD 

Axial 

Thrust 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

79483.8 

Normalised 

Axial 

Thrust 

(P/Per) 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

Moment 

0 

5.59E+06 

1.12E+07 

1.68E+07 

2.23E+07 

2.79E+07 

3.35E+07 

3.91E+07 

4.47E+07 

5.03E+07 

5.59E+07 

6.15E+07 

6.70E+07 

Normalised Elastic 

Moment Curva-

(M / lvIE ) ture 

0 0 

0.1 1. 32E-06 

0.2 2.64E-06 

0.3 3.96E-06 

0.4 5.28E-06 

0.5 6.60E-06 

0.6 7.92E-06 

0.7 9.24E-06 

0.8 1.05627E-05 

0.9 1. 1883E-05 

1 1. 32034E-05 

1.1 1.45237E-05 

1.2 1.58441E-05 
~- -

Curvature Curvature Curvature 

Look-Up Look-Up Look-Up Direct Shooting i 

Table (a) Table (b) Table (c) 

6.09E-23 -1.09E-23 3.99E-23 3.99E-23 

1.32E-06 1.32E-06 1.32E-06 1.32E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 

6.60E-06 6.60E-06 6.60E-06 6.60E-06 

7.92E-06 7.92E-06 7.92E-06 7.92E-06 

9.24E-06 9.24E-06 9.24E-06 9.24E-06 

1.05561E-05 1.05627E-05 1.06077E-05 1.06077E-05 

1. 18756E-05 1. 1883E-05 1.24376E-05 1. 24376E-05 

1.33364E-05 1.48117E-05 1.58366E-05 1.58366E-05 

2.29563E-05 3.81539E-05 5.32328E-05 5.32328E-05 

0.00015785 0.000181944 0.000167888 0.000167888 
- ~-- -



f-' 
CXJ 
o 

Axial 

Thrust 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

158967.6 

Normalised 

Axial 
Moment 

Thrust 

(PiPer) 

0.2 0 

0.2 5.59E+06 

0.2 1. 12E+07 

0.2 1.68E+07 

0.2 2.23E+07 

0.2 2.79E+07 

0.2 3.35E+07 

0.2 3.91E+07 

0.2 4.47E+07 

0.2 5.03E+07 

0.2 5.59E+07 

0.2 6.15E+07 

0.2 6.70E+07 

Normalised Elastic 

Moment Curva-

(MINIE ) ture 

0 0 

0.1 1.32E-06 

0.2 2.64E-06 

0.3 3.96E-06 

0.4 5.28E-06 

0.5 6.60E-06 

0.6 7.92E-06 

0.7 9.24E-06 

0.8 1.05627E-05 

0.9 1. 1883E-05 

1 1.32034E-05 

1.1 1.45237E-05 

1.2 1.58441E-05 

Curvature Curvature Curvature 

Look-Up Look-Up Look-Up Direct Shooting 

Table (a) Table (b) Table (c) 

6.09E-23 9.98E-24 3.83E-23 3.83E-23 

1.32E-06 1.32E-06 1.32E-06 1.32E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 

6.60E-06 6.60E-06 6.60E-06 6.60E-06 

7.92E-06 7.92E-06 7.92E-06 7.92E-06 

9.24E-06 9.24E-06 9.31E-06 9.31E-06 

1.05561E-05 1.05627E-05 1. 11063E-05 1.11063E-05 

1.18756E-05 1.37318E-05 1.4638E-05 1.4638E-05 

1.33364E-05 2.26839E-05 2.48239E-05 2.48239E-05 
! 

2.29563E-05 0.000108693 9.9639E-05 9.9639E-05 

I 0.00015785 0.000206269 0.000193094 0.000193094 



f-' 
GO 
f-' 

Axial 

Thrust 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

238451.4 

Normalised 

Axial 
Moment 

Thrust 

(PiPer) 

0.3 0 

0.3 5.59E+06 

0.3 1.12E+07 

0.3 1.68E+07 

0.3 2.23E+07 

0.3 2.79E+07 

0.3 3.35E+07 

0.3 3.91E+07 

0.3 4.47E+07 

0.3 5.03E+07 

0.3 5.59E+07 

0.3 6.15E+07 

0.3 6.70E+07 

Normalised Elastic 

Moment Curva-

(M/NIE ) ture 

0 0 

0.1 1.32E-06 

0.2 2.64E-06 

0.3 3.96E-06 

0.4 5.28E-06 

0.5 6.60E-06 

0.6 7.92E-06 

0.7 9.24E-06 

0.8 1.05627E-05 

0.9 1.1883E-05 

1 1.32034E-05 

1.1 1.45237E-05 

1.2 1.58441E-05 

Curvature Curvature Curvature 

Look-Up Look-Up Look-Up Direct Shooting 

Table (a) Table (b) Table (c) 

6.09E-23 1.21E-23 4.31E-23 4.31E-23 

1.32E-06 1.32E-06 1.32E-06 1.32E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 

6.60E-06 6.60E-06 6.60E-06 6.60E-06 

7.92E-06 7.92E-06 7.99E-06 7.99E-06 

9.24E-06 9.24E-06 9.86E-06 9.86E-06 

1.05561E-05 1.27194E-05 1.36248E-05 1.36248E-05 

1. 18756E-05 2.4 7 44 7E-05 2.73854E-05 2.73854E-05 
\ 

1.33364E-05 8.26015E-05 7.59706E-05 7.59706E-05 

2.29563E-05 0.000153457 0.000145257 0.000145257 

0.00015785 0.00023961 0.000227606 0.000227606 



f-' 
(X) 
to 

Axial 

Thrust 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

317935.2 

Normalised 

Axial 

Thrust 

(piPeT) 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

Moment 

0 

5.59E+06 

1. 12E+07 

1.68E+07 

2.23E+07 

2.79E+07 

3.35E+07 

3.91E+07 

4.47E+07 

5.03E+07 

5.59E+07 

6.15E+07 

6.70E+07 

Normalised Elastic 

Moment Curva-

(MI !VIE) ture 

0 0 

0.1 1.32E-06 

0.2 2.64E-06 

0.3 3.96E-06 

0.4 5.28E-06 

0.5 6.60E-06 

0.6 7.92E-06 

0.7 9.24E-06 

0.8 1.05627E-05 

0.9 1.1883E-05 

1 1.32034E-05 

1.1 1.452378-05 

1.2 1.58441E-05 

Curvature Curvature Curvature 

Look-Up Look-Up Look-Up Direct Shooting 

Table (a) Table (b) Table (c) 

6.09E-23 7.72E-24 1.43E-23 1.43E-23 

1.32E-06 1.32E-06 1.32E-06 1.32E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 

5.28E-06 5.28E-06 5.28E-06 5.28E-06 

6.60E-06 6.60E-06 6.69E-06 6.69E-06 

7.92E-06 7.92E-06 8.58E-06 8.58E-06 

9.24E-06 1.18302E-05 1.30616E-05 1.30616E-05 

1.05561E-05 3.31289E-05 3.34073E-05 3.34073E-05 

1. 18756E-05 9.19585E-05 8.50671E-05 8.50671E-05 

1.33364E-05 0.000139092 0.000131851 0.000131851 

2.295638-05 0.00019799 0.000190807 0.000190807 

0.00015785 0.000275655 0.000266124 0.000266124 
--



f--" 
(X) 
c..u 

Axial 

Thrust 

397419 

397419 

397419 

397419 

397419 

397419 

397419 

397419 

397419 

397419 

397419 

397419 

397419 

Normalised 

Axial 

Thrust 

(PiPer) 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

Moment 

0 

5.59E+06 

1. 12E+07 

1.68E+07 

2.23E+07 

2.79E+07 

3.35E+07 

3.91E+07 

4.47E+07 

5.03E+07 

5.59E+07 

6.15E+07 

6.70E+07 

Normalised Elastic 

Moment Curva-

(M/NIE ) ture 

0 0 

0.1 1.32E-06 

0.2 2.64E-06 

0.3 3.96E-06 

0.4 5.28E-06 

0.5 6.60E-06 

0.6 7.92E-06 

0.7 9.24E-06 

0.8 1.05627E-05 

0.9 1. 1883E-05 

1 1.32034E-05 

l.1 l.45237E-05 

1.2 1.58441E-05 

Curvature Curvature Curvature 

Look-Up Look-Up Look-Up Direct Shooting 

Table (a) Table (b) Table (c) 

6.09E-23 6.50E-24 2.55E-23 2.55E-23 

1.32E-06 1.32E-06 1.32E-06 1.32E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 

3.96E-06 3.96E-06 3.96E-06 3.96E-06 

5.28E-06 5.28E-06 5.37E-06 5.37E-06 

6.60E-06 6.60E-06 7.35E-06 7.35E-06 

7.92E-06 1.12052E-05 1.24605E-05 1.24605E-05 

9.24E-06 5.9921E-05 5.23558E-05 5.23558E-05 

1.05561E-05 0.000105707 9.84064E-05 9.84064E-05 

1. 18756E-05 0.000150631 0.000143223 0.000143223 

l.33364E-05 0.000196778 0.000189234 0.000189234 

2.29563E-05 0.000244928 0.00023788 0.00023788 

0.00015785 0.000310509 0.000303205 0.000303205 



I--' 
co ..,.. 

Axial 

Thrust 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 

476902.8 
--

Normalised 

Axial 

Thrust 

(PiPer) 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 

0.6 
- ----

Normalised 

Moment Moment 

(M(ME) 

0 0 

5.59E+06 0.1 

1.12E+07 0.2 

1.68E+07 0.3 

2.23E+07 0.4 

2.79E+07 0.5 

3.35E+07 0.6 

3.91E+07 0.7 

4.47E+07 0.8 

5.03E+07 0.9 

5.59E+07 1 

6.15E+07 1.1 

6.70E+07 1.2 

Elastic Curvature Curvature Curvature 

Curva- Look-Up Look-Up Look-Up Direct Shooting 

ture Table (a) Table (b) Table (c) 

0 6.09E-23 1.35E-23 -3.36E-24 -3.36E-24 

1.32E-06 1.32E-06 1.32E-06 1.32E-06 1.32E-06 

2.64E-06 2.64E-06 2.64E-06 2.64E-06 2.64E-06 

3.96E-06 3.96E-06 3.96E-06 4.08E-06 4.08E-06 

5.28E-06 5.28E-06 5.28E-06 6.09E-06 6.09E-06 

6.60E-06 6.60E-06 1. 13419E-05 1.36155E-05 1.36155E-05 

7.92E-06 7.92E-06 7.48989E-05 6.76851E-05 6.76851E-05 

9.24E-06 9.24E-06 0.000120019 0.000112537 0.000112537 

1.05627E-05 1.05561E-05 0.000164231 0.000156778 0.000156778 

1. 1883E-05 1. 18756E-05 0.000209003 0.000201454 0.000201454 

1.32034E-05 1.33364E-05 0.000254714 0.000247073 0.000247073 

1.45237E-05 2.29563E-05 0.000301529 0.000293921 0.000293921 

1.58441E-05 0.00015785 0.000350485 0.000343125 0.000343125 
--



f-" 
(X) 
CJl 

Axial 

Thrust 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

556386.6 

Normalised 

Axial 

Thrust 

(PiPer) 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

Moment 

0 

5.59E+06 

l.12E+07 

l.68E+07 

2.23E+07 

2.79E+07 

3.35E+07 

3.91E+07 

4.47E+07 

5.03E+07 

5.59E+07 

6.15E+07 

6.70E+07 

Normalised Elastic 

Moment Curva-

(MIME) ture 

0 0 

0.1 l.32E-06 

0.2 2.64E-06 

0.3 3.96E-06 

0.4 5.28E-06 

0.5 6.60E-06 

0.6 7.92E-06 

0.7 9.24E-06 

0.8 1.05627E-05 

0.9 l.1883E-05 

1 l.32034E-05 

l.1 l.45237E-05 

l.2 l.58441E-05 

Curvature Curvature Curvature 
I 

i 
I 

Look-Up Look-Up Look-Up Direct Shooting 

Table (a) Table (b) Table (c) 

6.09E-23 8.12E-24 l.21E-23 l.21E-23 

l.32E-06 l.32E-06 l.32E-06 l.32E-06 
! 

2.64E-06 2.64E-06 2.77E-06 2.77E-06 

3.96E-06 3.96E-06 4.92E-06 4.92E-06 

5.28E-06 1.65645E-05 l.70816E-05 l.70816E-05 

6.60E-06 8.97467E-05 8.2346E-05 8.2346E-05 

7.92E-06 0.000l34408 0.000126892 0.000126892 

9.24E-06 0.000l785 0.000170923 0.000l70923 

l.05561E-05 0.000222544 0.000215002 0.000215002 

1.18756E-05 0.000267265 0.000259648 0.000259648 

l.33364E-05 0.000312734 0.000305046 0.000305046 

2.29563E-05 0.000359002 0.000351312 0.000351312 

0.00015785 0.000406319 0.000398629 0.000398629 
~-



8.2 Notation 

b width of a plate element 

be effective width of a plate element 

I generic force 

Ie compressive stress due to axial load 

effective length of deflected section along its original axis 

lx distance from a point of inflexion in a buckled beam 

Pe average critical stress 

P E Euler buckling stress 

qy shear force in the y-direction 

T radius of gyration, calculated from T = [li
Te radius of curvature 

8 variable following path of member along its length 

81 plateau width for the 1972 adapted Perry curve, by Dwight. 81 = ~[!; 

t thickness of plate in a beam 

t z thrust along z-axis 

Wy load in y-direction 

W z load in z-direction 

YM partial safety factor in EN1993 for ultimate limit state 

YM1 relates the partial safety factor resistance of a member to buckling 

A cross-sectional area of the beam 

AeJ J effective cross-sectional area of member 

E Young's Elastic Modulus for Steel 

Es strain-hardening elastic modulus, taken to be :s by Dwight (1972) 

F mathematical function 

I second moment of area of the beam 

NI moment 
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Pcr mean load at failure of the strut 

PE Euler buckling load, 

Py design strength or yield stress 

S Plastic Modulus 

1<11 generic load 

Wc collapse load 

a imperfection factor 

(3, J constants used in differential equation solution 

o initiallack-of-straightness,o = Max(3mm, Idoo) 

Os length of a small segment of beam 

oy small length in y-direction 

Oz small length in z-direction 

oe small change in angle of beam arising from curvature of a small segment 

rYE [] interpolation function supplying a value of stress for a given value of strain 

1] a non-dimensional factor measuring initial crookedness 

'" curvature 

"'s inherent lack-of-straightness in a beam 

A slenderness of column, A = ~ 

AZoad load factor 

e angle of curvature of the beam 

E(7 [] interpolation function supplying a value of strain for a given value of stress 

~ constant used in differential equation solution, e = 1fr-
b.s the length a small segment of beam changes under thrust 

187 



Bibliography 

ENV-1992 'Eurocode 3 Normalisation document', 1992. 

BSI449 'For the use of structural use of steel in building', 1932. 

BSI5950:1990 'Structural use of steelwork in building', 1990. 

BSI5950:2000 'Structural use of steelwork in building', 2000. 

S.L. Andrade and L.J. Morris. Assessment of parameters affecting the be

haviour of haunched rafters. Pacific Structural Steel Conference, Auckland 

NZ, 2:365, 1986. 

S.T. Ariatnam. Quarterly Journal of Mechanics and Applied Mathematics, 

14:137, 1961. 

W.E. Ayrton and J. Perry. On struts. The Engineer, 62, 1886. 

J.F. Baker. The Steel Skeleton Vol. 2. Cambridge, 1956. 

Eduardo Bayo and Alfonso Loureiro. An efficient and direct method for 

buckling analysis of steel frame structures. Journal of Constructional Steel 

Research, 57:1321-1336, 2001. 

M.P. Byfield and D.A. Nethercot. An analysis of the true bending strength 

of steel beams. Procedures of the Institute of Civil Engineers: Structuress 

f3 Buildings, 128:188-197, 1998. 

M.P. Byfield and R. Ofner. e-mail contact. 2004. 

188 



M.P. Byfield, J.M. Davies, and M. Dhanalakshmi. Calculation of the strain 

hardening behaviour of steel structures based on mill tests. Journal of 

Constructional Steel Research, 61: 133-150, 2005. 

S.L. Chan. 2001. 

J.M. Davies. Frame instability and strain hardening in plastic theory. Pro

ceedings of the American Society of Civil Engineers, 92(ST3), 1966. 

J.M. Davies. Collapse and shakedown loads of plane frames. Journal of 

the Structural Division, Proceedings of the American Society of Civil En

gineers, 93(ST3), 1967. 

J.M. Davies. False mechanisms in elastic-plastic analysis. The Structural 

Engineer, 66(16):268, 1988. 

J.M. Davies. In-plane stability in portal frames. Structural Engineer, 68(8): 

141-147, 1990. 

J.M. Davies. Second-order elastic-plastic anaylsis of plane frames. Journal 

of Constructional Steel Research, 58:1315-1330, 2002. 

J.M. Davies. Strain hardening, local buckling and lateral torsional buckling 

in plastic hinges. Journal of Constructional Steel Research, 62:27-34, 2006. 

J.M. Davies, P. Engel, T.T.C. Liu, and L.J. Morris. Realistic modelling of 

steel portal frame behaviour. The Structural Engineer, 68(1):1-6, 1990. 

J.B. Dwight. Use of Perry formula to represent the new European strut

curves. Cambridge, 1972a. 

J.B. Dwight. Use of perry formula to represent the new european strut-curves. 

In I.A.B.S.E. International Colloquim on Column Strength, 1972b. 

J.B. Dwight. Lecture 3: Design of axially-loaded columns including interac

tive buckling. In The Background to the New British Standard for Struc

tural Steelwork, 1978. 

189 



L. Euler. Mechanica. 1736. 

J.A. Ewing. Strength of Materials. Cambridge, 1899. 

Godfrey G.B. The allowable stresses in axially-loaded steel struts. The 

Structural Engineer, 40(3), 1962. 

J.X. Gu and S.L. Chan. Second-order analysis and design of steel structures 

allowing for member and frame imperfections. International Journal for 

Numerical Methods in Engineering, 62:601-615, 2005. 

M. Herzog. Die groj3e der eigenspannungen in walz-und schweij3profilen nach 

messungen (the size of internal stresses in rolled and welded profiles after 

measurements. Der Stahlbau, 1977. 

H.R. Horne. Instability and the plastic theory of structures. Transactions of 

the Engineering Institute of Canada, 4(2) :31-43, 1960. 

M.R. Horne. A moment distribution method for the analysis and design of 

structures by the plastic theory. Proc. Inst. Civil Eng. Part III, 3:51, 1954. 

M.R. Horne. Progress in Solid Mechanics, 2:277, 1961. 

M.R. Horne. Elastic-plastic fail loads of plane frames. Proceedings of the 

Royal Society, Series A, 274:343, 1963. 

M.R. Horne. An approximate method for calculating the elastic critical load 

to multi-storey plane frames. The Structural Engineer, 53(6), 1975. 

M.R. Horne and M.W. Chin. Plastic Design of Portal Frames in Steel to 

BS968, 1966. 

M.R. Horne and I.C. Medland. Collapse loads of steel frameworks allowing 

for the effect of strain hardening. Proceedings of the Royal Society, Scheme 

A, 3:381, 1966. 

W. Horne, editor. Proc. Conf. Behavioural Slender Structures. 1977. 

190 



A.R. Kemp, M.P. Byfield, and D.A. Nethercot. Effect of strain hardening on 

flexural properties of steel beams. Structural Engineer, 80(8):29-35, 2002. 

C. King. In-plane stability of portal frames. New Steel Construction, 9(4): 

17-19, 200la. 

C. King. In-plane stability of Portal Frames to BS5950:2000, 2001b. 

M.G. Lay and T.V. Galambos. Inelastic steel beams under uniform moment. 

Proceedings of the American Society of Civil Engineers, 91(ST6):67-93. 

M.G. Lay and P.D. Smith. Role of strain hardening in plastic design. Journal 

of Structural division of the American Society of Civil Engineers, page 25, 

1965. 

A.E.H. Love. Treatise on the Mathematical Theory of Elasticity. Cambridge, 

1892. 

H. Maier-Liebnitz. Test results, their interpretation and application. In 

Preliminary Publication, 2nd Congress of the International Association 

for Bridge and Structure Engineering, Berlin, 1936. 

I.C. Medland. Strain Hardening and the Collapse Loads of Steel Frameworks. 

PhD thesis, University of Manchester, 1963. 

T.H.G. Megson. Strength of Materials for Civil Engineers, 2nd ed. Edward 

Arnold, 1987. 

w. Merchant. The failure load of rigid joints as influenced by stability. 

Structural Engineer, 32:185, 1954. 

w. Merchant, editor. Proc. 9th Int. Congress of App. Mech. Brussels, 1956. 

w. Merchant, C.A. Rashid, A. Bolton, and A. Salem. The behaviour of 

unclad frames. In Proceedings of the Fiftieth Annual Conference of the 

Institute of Structural Engineers, 1958. 

191 



S.S.J. Moy. Plastic Methods for Steel and Concrete Structures, 2nd ed. 

MacMillan, 1996. ISBN 0-333-64177-9. 

B.G. Neal. The plastic methods of structural analysis. Chapman and Hall, 

1956. 

W.J.M Rankine. Useful Rules and Tables. London, 1866. 

A. Robertson. The strength of struts. Institute of Civil Engineers Selected 

Engineering Paper, (28), 1925. 

J .M. Rolfe. An alternative mathematical framework for structural theory. 

The Structural Engineer, 2005. 

P.R. Salter, Malik A.S., and C. King. Design of Single-Span Steel Portal 

Frames to BS5950-1:2000, 2004. 

H. Schmidt, editor. Beuth-Kommentar DIN-18800 Teil 7: Stahlbauten, Aus

furungen und herstellequalifikation {Steel Structures, design and manufac

ture qualification. 2004. 

J. Szalai and F. Papp. A new residual stress distribution for hot-rolled 1-

shaped sections. Journal of Constructional Steel Research, 61:845-861, 

2005. 

J.C. Taylor. EN1993 Eurocode 3: Design of Steel Structures. Civil Engineer

ing, (144):29-32, 2001. 

192 


