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The computationally demanding nature and lack of generality of free energy methods are the
main barriers to their common place use in rational drug design. This study investigates the pos-
sibility of producing protocols to accurately calculate the binding free energy of protein-ligand
complexes more efficiently than presently established methods, using large scale distributed
computing. There has been an explosion of useful nonequilibrium work methods recently,
mainly due to the discovery of the Jarzynski equilibrium [Jarzynski(1997b)]. After an indepth
investigation of these methods a subset, all with the possibility of large scale parallelisation, was
chosen for further study. Also, replica exchange fast growth (REFG), was developed, a method
which combines replica exchange and fast growth methods in a similar way to replica exchange
thermodynamic integration (RETI) [Woods et al.(2003a)Woods, Essex & King]. These meth-
ods of interest were applied to a large number of harmonic oscillator systems and compared
to the established method TI. Those methods deemed to perform best were then applied to
some simple solute-solvent test systems and compared to the established method RETI. The
best performing method from these studies was then compared to RETI for the calculation of
relative binding free energies of two sets of cogeneric inhibitors bound to their receptor pro-
teins. REFG was found to perform as well as RETI and produce constantly predictive results.
REFG was able to produce these results in significantly less wall clock time by using large scale

distributed computing.
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Chapter 1

Rational drug design

1.1 Introduction

Our ability to find ways to treat the diseases which affect us is one of the major factors in
the continual increase in quality and length of human life. Every year billions of dollars are
invested in finding and designing drug molecules to help treat disease and health disorders. As
with almost all aspects of human endeavour the advent of computers and the rapid increase in
computational power has enabled new and highly sophisticated approaches to the problem. The
use of computational techniques in drug design/discovery is now common place [Leach(1996)].
This study will be concerned with finding computational methodologies which can efficiently
and accurately rank molecules on how well they bind to a target receptor using 3D structures
of the candidate molecules bound to the target receptor. These calculations are common in the
literature, but they are not, as yet, regularly used in the pharmaceutical industry, because of

their computational cost and unreliability.

1.2 Computational Drug design

Most computational drug design techniques fall into four categories: De novo molecule de-
sign; docking; ligand based screening; binding affinity prediction techniques. De novo molecule
design, docking and binding affinity prediction generally require that a 3D structure of the
receptor understudy is available (receptor based techniques).

De novo design is the creation of novel ligand structures which may bind to particular tar-
gets with high affinity. This is a very difficult task and many studies rely on searching large

combinatorial libraries of real and/or theoretical molecules. For example Kick et al. demon-
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strated the coupling of combinatorial chemistry and structure based design resulting in the
creation of a number of low nanomolar non-peptide inhibitors of Cathepsin D (Cat-D) [Kick
et al.(1997)Kick, Roe, Skillman, Liu, Ewing, Sun, Kuntz & Ellman]. This study searched
a library of suitable molecules for favourable groups, positioning each of them in turn on a
non-peptide backbone, which was a stable mimetic of the tetrahedral intermediate of amide
hydrolysis, within the Cat-D X-ray structure, in order to ascertain their suitability.

In the absence of three dimensional receptor information, virtual screening can also be car-
ried out where there are known ligands for a protein (ligand-based virtual screening). Ligand
based virtual screening uses descriptors to select molecules with similar properties to known
highly active ligands, for further analysis [Leach(1996)]. These empirical binding affinity pre-
dictors are generally thought to have problems with transferability as they have been trained
on only one set of data. Also, any advantageous interactions not represented in the training
data set will not be present in any resulting high scoring binders.

Docking methodology attempts to find solutions to the problem of positioning ligand struc-
tures correctly within the binding sites of receptor molecules. Docking is generally used to
screen large sets of lead-like molecules to yield a smaller set for further analysis (virtual screen-
ing). Often this problem is simplified by treating ligand and receptor structures as rigid and
ignoring any solvent effects. In this simplified case docking is a matter of optimising geome-
tries and interactions, in order to fit the ligand to the receptor [Leach(1996)] [Jhoti(2007)].
Even in this simplified case finding solutions is computationally expensive due to the enormous
amount of possible ligand and receptor configurations. In the future, docking may be made
easier by using knowledge of protein domains common in the proteome to predict binding sites.
Current docking algorithms generally make many assumptions, but are still generally able to
find real binding poses of drug molecules [Warren et al.(2006)Warren, Andrews, Capelli, Clarke,
LaLonde, Lambert, Lindvall, Nevins, Semus, Senger, Tedesco, Wall, Woolven, Peishoff & Head].
From the findings of Warren et al. it seems that there is a need for more accurate scoring of
possible bound structures to pick the correct poses from the possibilities suggested.

Prediction of binding affinity of a given drug candidate generally begins with a ligand-
receptor complex structure. Often binding affinity prediction algorithms are bundled in with

docking packages; in this case they are called scoring functions. The term scoring function
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often refers to the both the potential which drives the optimisation of sampling towards find-
ing possible ligand-receptor positions and the calculations which then rank the possible ligand
poses. The latter and more demanding of these two jobs must rank ligand poses in line with
experimental free energies (binding affinity scoring functions) [Jhoti(2007)]. Scoring functions
are generally one of three types; force-field based, empirical or knowledge based.

Force-field based scoring functions use force-field terms, often with simplified non-bonded
terms to describe the interactions between receptor and ligand. To describe solvent screen-
ing effects a distance dependent dielectric can be used as it is computationally inexpensive
[Jhoti(2007)]. As calculation of force-field terms can be time consuming these functions often
approximated to save time. These approximate scoring methods are prone to error as they often
ignore entropy and many internal energy effects. Also, unless specific force-field parameters are
generated the choice of parameters can be problematic.

Empirical scoring functions are based on the structure-activity relationships developed in the
1960s. Here the binding free energy is decomposed into a number of chemically relevant terms
which are calculated individually and summed. Each term is found by multiplying an interac-
tion score by a coefficient found previously through regression fitting to known experimental
binding free energies. Common terms include hydrogen bonding, hydrophobic interactions, and
internal energy. As with ligand based virtual screening these methods have problems as possibly
advantageous interactions not represented in the training set will not be found in the highly
ranked ligands [Jhoti(2007)].

Knowledge based methods use the sum of statistically derived potentials of mean force
(PMF) scores between protein and ligand atoms from the Protein Data Bank (PDB) as a mea-
sure for protein-ligand binding affinity. These statistically derived PMF's are similar but not
strictly equal to normal PMFs. Knowledge based methods have shown some improvement over
empirical and force field-based methods [Klebe(2000)].

Scoring methods which could possibly discard useful candidates are obviously counter pro-
ductive. Hence, the success of these docking/scoring methods is generally measured by how
many runs it takes to obtain a particular percentage of useful candidates from a large data set.
This method of displaying the performance of a docking/scoring method is called enrichment.
These less rigorous methods of scoring binding affinity may not be very reliable, but they can

be used to obtain an initial set of candidate ligands for higher level analysis by more time
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consuming and accurate methods.

Accurate evaluation of drug candidate binding free energies can be achieved through the
use of relatively realistic, complex molecular mechanical simulations of ligand-protein complexes
and various thermodynamic calculations. These types of calculation are generally termed free
energy calculations. Free energy calculations and the simulations which they use are discussed
in detail in the next chapter.

The methods we discuss in this study rely on the presence of 3D structures of target re-
ceptors which can be time consuming to produce. Problematic assessment of best possible
receptor target strategies and slow methods of elucidating 3D protein structures have been a
major bottle neck to wide spread use of some of these structure based methods. Integrated
use of systems biology and omics (genomics, proteomics, metabolomics, pharmacogenomics and
interactomics etc.) techniques and data combined with high-throughput crystallography in the
future may offer the ammunition for well directed and efficient structure based computational
approaches [Blundell & Patel(2004), Cho et al.(2006)Cho, Labow, Reinhardt, van Oostrum &

Peitsch].

1.3 Aims of this study

This study will concentrate on the fast, accurate, computational calculation of ligand binding
free energies (fast free energy methods) with a view to screening of lead drug candidates (i.e.
screening a smaller number of previously identified candidates). Thus, the fields of molecular
simulation and free energy calculations will be reviewed with a view to finding new and possi-
bly useful fast free energy methods. These methods will then be investigated and compared to

those currently in general use.




Chapter 2

Calculating the Free Energy

2.1 Molecular Simulation

2.1.1 Introduction

In the field of molecular modelling it has become apparent that a single conformation cannot
properly represent a molecule. Molecular simulation is the calculation of the prevalence of possi-
ble states of a molecular system and generally takes two forms: Molecular Dynamics (MD) and
Monte Carlo (MC) simulations. Both forms of simulation use a potential expression to describe
the different forces acting on each atom with calculated atom point charges and associated bond,
bond angle and dihedral parameters (a molecular mechanics force field) [Atkins(1994)]. Using
statistical mechanics it is possible to extract important macroscopic properties from microscopic
data which, with accurate simulations, can be used to estimate experimental properties. This
is the basis of the ligand binding affinity methods described in this study.

Although the focus of this study is entirely towards classical molecular mechanical simu-
lations it is convenient to consider some of the basics through quantum theory. In quantum
theory we are able to consider each individual microstate of a system whereas classical theory

presents us with a continuum of states.

2.1.2 Thermodynamics

The word thermodynamics comes from the Greek thermos meaning heat and dynamics mean-
ing power. Thermodynamics originated through the production of the first vacuum pumps

and then steam engines in the 1600s. Thermodynamics has a number of central concepts and
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relations [Frenkel & Smit(1996)]. One basic concept is the idea of a system and its surround-
ings. A system is defined by its particles and their average motions. The system interacts with
its surrounding in some defined way. Thermodynamics is the study of how the macroscopic
properties such as temperature, pressure and volume of a system and its surroundings relate to

each other.

Another basic concept of thermodynamics is energy. Energy can be transferred between
systems and particles as heat or work and is attributed as kinetic energy (heat) and poten-
tial energy (potential work). If a system has no net transfer of energy between itself and its
surroundings and has no change in its macroscopic observables with time it is said to be in
equilibrium. When in a state of equilibrium a system’s state properties can be described by
equations of state such as the classical ideal gas law. In other words we can use the average
system properties at equilibrium to calculate other properties. We are now able to think of a
model system and how we can study it. In a molecular simulation we make a model of a system
in which we are interested and accumulate useful data about the properties of its state, which

we can then use to calculate other state properties.

2.1.3 The Boltzmann factor and Statistical Mechanics

A system will always tend towards configurations or microstates with the most ways of dis-
tributing the energy amongst its particles. This means that isolated systems tend to occupy
lower energy states most of the time, as in these low energy states there are more ways to
distribute the energy (for a more in depth explanation see Atkins (1994)).

The Boltzmann factor is a weighting term which can be used to find the probability of

individual energy states of a system in thermodynamic equilibrium:

P x exp{—FE/kpT} (2.1)

where F is the energy of the system, kp is the Boltzmann constant and T is the temperature.
The Boltzmann factor is not normalised but the ratio of the probabilities of two states is given
by the ratio of their Boltzmann factors. The Boltzmann factor can be normalised by dividing
by the sum of all the Boltzmann factors of all possible energy states of a system. This is called
the partition function. The partition function is very useful as many of the thermodynamic

variables of the system can be expressed in its terms. The exact nature of the partition function




CHAPTER 2. CALCULATING THE FREE ENERGY 7

of a system relies on how the system is defined, and there are a number of well known system
definitions termed ensembles. A statistical mechanical ensemble is a collection of replicas of
a system which are effectively different configurations of this system with particular defined
constraints.

The Boltzmann constant is generally determined experimentally and is in units of energy
per temperature (e.g. JK~!). Thus, the Boltzmann constant relates the energy and tempera-
ture of particles in a system. The most basic result associated with the Boltzmann constant is

that of the ideal gas equation:

PV = NpkgT (2.2)

where N, is the number of gas molecules present in the subject system. The ideal gas equation
shows us that kT is the pressure applied times unit volume for each molecule of an ideal gas.

Statistical mechanics links the microscopic properties of atoms and molecules to the macro-
scopic properties of thermodynamics. In molecular simulation statistical mechanics can be used
to obtain bulk properties of model systems. The main tools of Statistical mechanics are the

Boltzmann factor and the partition function.

2.1.4 The Ensembles of Statistical Mechanics

Another important idea in statistical mechanics is the ensemble average. When attempting to
study a model system, which is part of a particular ensemble, properties of the whole ensemble
(all microstates) are considered, i.e. ensemble averages. This is necessary as in experiment it
is not possible to freeze time and evaluate the properties of a system. Instead averages over
large systems and amounts of time are taken. We are able to find ensemble averages through
sampling and averaging over large numbers of states of a system ensemble. The average does
not necessarily have to be over the whole ensemble which is fortunate as systems can have an
extremely large number of microstates.

In order that the assertion in the paragraph above may be achieved, statistical mechanics

makes some assumptions:-

1. The equal a priori probability postulate: this postulate assumes that each microstate

has an equal possibility of being occupied and is the fundamental postulate of statistical
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mechanics. Justification for the assumption of the equal a prior: probability postulate

can be found with Liouville’s theorem [Frenkel & Smit(1996)].

2. The ergodic hypothesis: coﬁsider the path of a system across the energy surface made
up by plotting all microstates of the systems ensemble. Owing to the equal a prior:
probability postulate the system will, in the long run, visit each area of this energy sur-
face equally and hence each microstate is equally probable over a long period of time.
This means that a long time average and an average over the whole statistical ensemble
are the same. Equally for systems evolving in a non-time linked fashion, sampled mi-
crostates will inevitably be in a localised area, but the assumption of ergodicity allows
a large average to equate to the ensemble average. Within this assumption is the idea

that ensemble averages are independent of the initial state or configuration of the system.

Thus we can use MD or MC simulations to find properties of the whole ensemble of states of a
system by sampling for a long time or sampling a large number of configurations. In practice
many systems are not ergodic and it is important to consider this before assuming the ergodicity

of an exotic model.

It is important to define a system ensemble when applying statistical mechanics. When
creating a model, one of a number of well known system ensembles can be used with differing
properties. Each ensemble has a characteristic state function C, a thermodynamic quantity

such as the free energy, from which we can directly find the partition function (Z) through,

C=KgThhZ O (23)

Next the basic ideas behind some of the well known ensembles will be explained.

Microcanonical ensemble

The microcanonical ensemble refers to a system isolated from the outside environment. As the
system is isolated it is unable to exchange energy with the environment and has a fixed total
energy. This means that the system can only access those microstates which have the same

energy as the system. The entropy of a microcanonical system can only increase and does so
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until the equilibrium point is reached (due to the second law of thermodynamics). While in
equilibrium the entropy of the microcanonical ensemble can easily be calculated using Boltz-

mann’s famous equation:

S = kg In QUE) (2.4)

where S is the entropy and Q(F) is the number of microstates with the total energy of the
system E. The microcanonical ensemble is often referred to as an NVE ensemble as it has fixed
numbers of atoms, volume and energy. The number of microstates available to the system in

the case of a microcanonical ensemble is found directly from Boltzmann’s equation for entropy:

Q(N,V,E) = exp{S/kB}. (2.5)

Q(N,V, E) is the microcanonical partition function as in this case the system can only have one
energy. As can be seen from eq. 2.5, for the microcanonical ensemble S is the characteristic

state function.

Canonical ensemble

The canonical ensemble is an ensemble of states of a system which is able to exchange heat with
a heat reservoir. The connected heat reservoir must be very large such that through exchange
with the main system both are kept at constant temperature. The main system and the heat
" reservoir together are isolated from the outside environment and assumed to be in thermal
equilibrium. The canonical ensemble is also called an NVT ensemble as it has fixed numbers of
atoms, volume and temperature.

The partition function of the canonical ensemble (Z) is,

Z = Ze:cp{—ﬂEi}, (2.6)

where § = 1/kgT. An extra term, g; is sometimes included to account for the degeneracy
of microstates 4, i.e. if only macrostates are counted, the number of microstates within each

macrostate must be included F;:
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Z =) giexp{~BE:}. (2.7)

The canonical ensemble partition function can be derived in a number of different ways; most
rely on the notion that the probability of the system being in a particular state is proportional
to the number of states of the heat reservoir. The characteristic state function of the canonical

ensemble is the Helmholtz free energy (A) as,

Z(N,V,T) = exp{— A} (2.8)

holds.

In classical mechanics the partition function is a continuous distribution rather than discrete
as described above. The number of system states are uncountable as the position and velocity
of particles are continuous variables. In this case very similar microstates are grouped together

as one and the partition function becomes an integral,

1 o 0]
7= sz [ cop{-BH v, an) oy, 29)
: —o0

Here h is Plank’s constant, N! is a term which is included to ensure the number of microstates
is not over counted, H(pn,gn) is the classical Hamiltonian, p is the momentum of particle N
and ¢ is the position of particle N. H(px,qn) is made up of the kinetic energy (K) due to
the momenta p of the system particles and the potential energy (U) due to the particle coor-
dinates g. In practice, the integration over the momenta can be carried out analytically as K
is a quadratic function of the momenta. Thus, the difficulty lies in evaluating functions of the
particle positions (py). Only in a few simple cases can the potential be evaluated analytically

and it is generally found through numerical methods which will be discussed later in this chapter.

Isothermal-isobaric ensemble

The isothermal-isobaric ensemble is similar to the canonical ensemble, except the volume is
allowed to change. The volume is controlled to give a specified average pressure. This ensemble

can be called the NPT ensemble as pressure is also kept constant. This ensemble is important
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as chemical reactions often require constant pressure and simulations often require the volume

to be equilibrated. The partition function of the isothermal-isobaric ensemble is,

A(N,P,T) = / > exp—B(E; + PV)dV. (2.10)

The characteristic state function for the NTP ensemble is the Gibbs free energy (G) as,

A(N,P,T) = exp{—BG}, (2.11)

is correct. G is similar to A with an extra term to account for the pressure of the system,
G=U-TS+PV=A+PV.

The classical, continuous, NPT partition function is derived from the canonical partition
function through a various routes, for one example see Frenkel and Smit (1996). The extra part

of the equation is due to the work done by the system in going from Vj to V:

1 oo o0
A(N, P, T) = W /0v dV/ e_ﬁ(H(pNﬂN)—l_PV)dedQN (2.12)
° -0

where Vj is the initial volume.

2.1.5 Statistical mechanics and computer simulation

Quantum calculations are intrinsically more exact than the classical equivalent. Without going
into details, quantum calculations on a complex system is slow compared to general classical
methods. For the purposes of computer simulation of large biologically or chemically relevant
systems, a classical mechanical method for evaluating molecular systems has been developed

called molecular mechanics.

Molecular mechanics is a formalism where each atom of a system constitutes one particle
with an assigned van der Waals (vdW) radius and constant point charge. Atomic point charges
are found through quantum mechanics (QM) or experiment. Bond, angle, dihedral and non-
bonded forces between atoms are assigned simple mathematical relations to give the behaviour
needed for a particular model, this is often called the potential. A set of parameters and the

potential needed for molecular mechanics of a particular model is called a force field.
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2.1.6 Classical force fields

Classical force fields for bio-molecular simulation have taken up a fairly consistent form over

the last few decades. The total energy of the potential is split into:

Etotal = Z Ebonded + Z Enon—bonded7 (213)
Ebonded = Z Ebondlength + Z Eangle + Z Etorsiona (214)
Enon—bonded = Z Eelectrostatics + Z EvdW) (215)

with bonded referring to covalent bonds [Leach(1996)].

Covalent bonds are most often modelled with harmonic potentials of the form,

Epona = Y ke(r —10)?, (2.16)
bonds

Eangle = Z k0(9 - 90)2a (217)
angles

where k. and kg are the force constants controlling the size of oscillations, rg and 8¢ are the
reference positions of the bonded particles and r and 8 its displacement. The potential of
equation 2.16 does not exactly describe the potential of a real covalent bond. However, under
the standard thermodynamic conditions for which classical force fields are designed to be used,
these harmonic potentials describe the real bond potential well. It is also possible to use the
Morse potential to describe covalent bonds. The Morse potential is able to describe real bond
potentials more accurately but is rarely used due to the increased computational expense in-

volved.

The torsions of bonds are more complex than bond length or angles as they may have
multiple minima and some may have restrictions (e.g. planar rings). Thus, in general torsions
are modelled by simple periodic functions with additional harmonics for improper torsions and
energies between atoms bonded together through one other atom i.e. coupling angles and di-

hedrals (1-3 energy or Urey-Bradley energy),
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Biorsion = Y k[l + cos(ng — 6)] (2.18)

torsions

+ > ku(w—uwp)® (2.19)

impropers

+ Z K (u — ug)?. (2.20)

Urey—Bradley

In equation 2.18 k¢ is the torsional force constant and dictates the amplitude of the torsional

potential, n controls the periodicity of the potential (i.e. how many minima) and  controls the
displacement along the axis of angle ¢. One notable exception to this rule is the AMBER force
field which uses additional periodic functions for improper torsions rather than harmonics. Tor-
sional parameters are génerally selected to correct energies and conformations of torsions due
to the bond, angle and non-covalent potentials in simple molecules with respect to experiment
or quantum calculations.

The non-covalent or non-bonded potential for both electrostatics and vdW is calculated as a
pair-wise sum over all non-bonded atoms separated by at least three bonds. The vdW potential
between a pair of atoms has a repulsive interaction which increases sharply as the interatomic
distance r gets very small, and an attractive interaction which decreases relatively slowly as r
is increased (figure 2.1). The vdW force field term is called the Lennard-Jones (LJ) potential

and is defined as,

Eyaw = NZI > ey [(?)12 - <@>6} , (2.21)

r
7=11i=7+1 Y

where 7 and j are each pair of atoms, € is the depth of the potential well and o is the interatomic
distance between the particles when their interaction energy is zero as seen in figure 2.1. The
term to the power 12 describes the repulsive interaction (i.e. the hardness of the vdW radii)
and the power 6 term describes the attraction. As vdW interactions are relatively short range,
the LJ potential is generally truncated (used with a cut off). A cut off will only apply the LJ

potential to atoms pairs which are within a certain distance.
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Figure 2.1: Plot of the Lennard-Jones potential with energy (E) on the y-axis and inter-
atomic distance (r) on the x-axis.

The electrostatic potential of a pair of atoms is modeled using the Coulomb potential based
on Coulomb’s law. The Coulomb potential is proportional to the size of the electric charge on

each atom of a pair and inversely proportional to 7:

N-1 N .
Eelec: Z Z ﬂ (222)

degry;
G=1 i=j+1 07ij

Here q is the charge on an atom and €g is the relative permittivity of free space. The electro-
statics of a system can be difficult to model, due to their long-ranged nature.

In the case of bio-systems, long range electrostatics can be important and it is not gener-
ally possible to calculate long range electrostatics using the Coulomb sum even if the modelled
system is large enough. This is because of the large number of atom pairs, and a cut off is
generally used. The size of the electrostatic cut off can make large differences to the calculated
properties and care should be taken in their use. In general, the molecular interactions will be
scaled down gradually at the cut off boundary in an attempt to reduce the effects of a sudden
discontinuity of forces [Frenkel & Smit(1996)]. Also, a faster alternative has been developed
called the particle mesh Ewald sum (PME) which is able to closely approximate the long range
Coulomb sum [Essmann et al.(1995)Essmann, Perera, Berkowitz, Darden, Lee & Pedersen].

The most widely used atomistic force fields for biomolecules are AMBER [Pearlman et al.(1995)Pearlman,

Case, Caldwell, Ross, Cheatham, Debolt, Ferguson, Seibel & Kollman], CHARMM [Brooks
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et al.(1983)Brooks, Bruccoleri, Olafson, States, Swaminathan & Karplus], GROMACS [Spoel
et al.(2005)Spoel, Lindahl, Hess, Groenhof, Mark & Berendsen] and OPLS [Jorgensen & Tirado-
Rives(1988)]. AMBER, CHARMM and OPLS have potential functions exactly of the form
described above with options of differing torsional 1-4 terms. GROMACS has the options of
different bonding interactions, including the Morse potential and a harmonic approximation.
Also, torsional 1-4 interactions can be dealt with by a special LJ interaction or a power series
of cos ¢ can be used with out a 1-4 interaction.

The AMBER, CHARMM and GROMACS force fields have been parameterised specifically
for MD of biosystems while OPLS has been developed for use with MC, but all can and are
used with either style of simulation. The parameters for all of these force fields have been found
through a mixture of experimental observations of small organic molecules and high level quan-
tum mechanical (QM) calculations and are thus generally termed empirical. The parameters
of almost all force fields are developed self-consistently, and it is never a good idea to mix and
match parameters from different parametrisations.

The main deficiencies of these force fields stems from the fact that many of the interac-
tions of molecules (including vdW and electrostatics) are environment dependent [Ponder &
Case(2003)]. A new generation of polarizable force fields have recently been developed with
polarisable versions of AMBER and CHARMM available. These polarisable force fields are
able to account for the electronic polarisation of the environment around each atom. AMBER
polarisable force fields can either use point charges as traditional non-polarisable versions, or
can add extra off-centre point charges to better model the angular dependence of hydrogen
bonds [Cieplak et al.(2001)Cieplak, Caldwell & Kollman].

Water models are also extremely important for biosimulations as most biological interac-
tions take place in soluti.ons of water. Solvation in simulations takes two forms, explicit, where
water molecules are explicitly present and implicit, where solvent is represented by a continuum.

Implicit solvation models also take two general forms; accessible surface area models such as
the generalised born model (GB) [Jeancharles et al.(1991)Jeancharles, Nicholls, Sharp, Honig,
Tempczyk, Hendrickson & Still] and continuum electrostatics models such as the Poisson-
Boltzmann model (PB) [Lu et al.(2005)Lu, Zhang & McCammon]. These implicit models

improve the speed of molecular simulations dramatically and may be able to reduce errors
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found in explicit solvent simulations due to incomplete sampling of solvent conformations. This
can have a direct effect on the focus of this study, free energy calculations in protein-ligand
systems. A recent study has highlighted the possible advantages of implicit solvation in binding
free energy calculations [Michel et al.(2006)Michel, Verdonk & Essex].

However, implicit solvent models do have major lilhitations. Both types of implicit method-
ology are parameterised especially for the particular type of calculation for example, the pa-
rameterisation carried out by Michel et al. for free energy calculations with MC [Michel
et al.(2004)Michel, Taylor & Essex]. Also, both models are unable to properly deal with cases
where water molecules are directly involved in a process.

Explicit solvation models can be classified through the number of interaction sites used to
define a water molecules and the flexibility of the molecule. The use of flexible water models
can add significantly to the time taken for simulation. Thus, the most widely used water mod-
els are rigid and use only the non-bonded Coulomb and Lennard-Jones potentials introduced
above. Popular 3-site models include TIP3P [Jorgensen et al.(1983)Jorgensen, Chandrasekhar,
Madura, Impey & Klein] and SPC [Berendsen et al.(1981)Berendsen, Postma, van Gunsteren &
Hermans] and generally have no Lennard-Jones parameter for the two hydrogen atoms. Other
models include up to 6 interaction sites with extra dummy sites used to model the distribution

of the electrostatic field around the water molecule [Jorgensen & Tirado-Rives(2005)).

2.1.7 Simulation sampling methodologies

The possibilities of simulation system set-up have now been set out and it only remains to
discuss the methods used for sampling these systems. In addition to the MD and MC meth-
ods mentioned above, systems can be sampled through minimisation algorithms. Minimisation
algorithms attempt to find the minimum of the potential by adjusting a systems degrees of
freedom and exploring its energy surface. Minimisation is useful in many ways but is often

used only to remove any bad contacts from a starting structure.
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Molecular Dynamics

MD uses approximate numerical integration to calculate the positions and velocities of each
particle of a system after a small time step (6t). By calculating the state of the system through
many successive steps a trajectory through time is produced.

The force acting on an atom can be lcalculated through the derivative of the energy with

respect to the change in the atom’s position,

7o _ vy (2.23)

2
dr;

where F; is the force on atom i and r; the position of particle ¢, and U is the potential en-

ergy. By solving Newton’s equation, F = m;a;, for two particles, it is possible to calculate the
trajectory of particle 7 as a function of time. However, for more than two particles numerical
approaches must be sought.

A number of useful MD integration schemes exist, based on a Taylor series expansion ap-
proximation. The different integration schemes have differing attributes. The majority of
current MD packages use the velocity Verlet or Verlet leapfrog integration schemes due to their
good energy conservation at relatively large time steps [Swope et al.(1982)Swope, Andersen,
Berens & Wilson], [Cramer(2002)]. The velocity Verlet algorithm is generally considered the
most complete as it is alone in being able to accurately provide particle positions and velocities
at time t. There are 4 steps to the velocity Verlet algorithm, including a step to find the veloc-
ity at the mid point of each time step, ¢ + 6t/2 [Swope et al.(1982)Swope, Andersen, Berens &

Wilson], as follows:

r(t+6t) = r(t) +v(t)ot + %a(t)6t2, (2.24)
ot + %) — () + %a(t)ét, (2.25)
alt+6t) = —%VU (r(t + 61)) , (2.26)
v(t+6t) = v(t+ %) + %a(t + 6t)dt. (2.27)
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All of the MD integrators presently in use are limited in the size of possible time steps. If
the time steps are too large the integrator will not be stable, energy will not be conserved and
the simulation will uncontrollably increase in energy. Time steps for atomistic simulation are
in the region of two femtoseconds (fs). This means that MD simulations are limited in possible
timescales. Even with the powerful computers now available MD simulations do not easily go
beyond the nano second (ns) timescale. Many biological processes are of a time scale which MD
cannot reach with out a large coordinated effort, such as the folding@home effort to understand
protein folding [Shirts & Pande(2000)]. Thus, in practice, MD simulations may get stuck in
local energy minima, which are very difficult to get out of in the time available. This can hinder
the full sampling of phase space and the amassing of accurate ensemble averages for statistical
mechanics calculations. It is important to note that MD is time linked, time reversible and
deterministic. It is therefore able to model real physical processes such as reaction pathways,

unlike MC.

Monte Carlo

MC refers to any method which uses a sequence of random numbers to sample; this means
MC is stochastic (i.e. noﬁdeterministic). MC methods can be used for numerical integration
problems. They are found to be more efficient than other techniques (quadrature) where the
integrand is very large and has a number of dimensions. The most simple representation Qf an

MC integration method for a one dimensional integral I is as follows:

b
I = /f(m)da:, (2.28)
I = (b—a)(f(z)). (2.29)

where (f (a:)) is an average of f(z) in the interval a to b. Using MC this integral is found by
evaluating f(z) many times (Ny,.) with random values of . As N, approaches infinity the
average would provide I [Frenkel & Smit(1996)].

MC techniques could be applied to evaluate an average of an ensemble of statistical me-

chanics by randomly sampling states (sampling from all possible arrangements of a system,

equivalent to (b - a) above) and weighting them according to the Boltzmann distribution.
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However, this would be exceedingly inefficient as most states found this way would not be
weighted heavily within the ensemble of interest. The system would become a random jumble
of particles which would never occur in reality. Thus, it is important that when using MC with
molecular mechanics, we only sample states that have a reasonable probability of occurring
according to the Boltzmann distribution.

This is achieved through a special type of importance sampling [Frenkel & Smit(1996)].
With importance sampling random points or configurations are taken from a specific volume of
all possibilities, a nonuniform distribution where configurations are more likely to occur accord-
ing to the Boltzmann distribution. The closer this distribution, which limits our sampling, is to
the Boltzmann distribution the more efficient the MC sampling will be. Of course, the optimum
choice of limiting distribution is the Boltzmann distribution itself, which is unobtainable due
to the limitless nature of the partition function. This problem of defining the limiting distribu-
tion is solved through considering the relative probability of sampled configurations as opposed
to the absolute probability through the partition function. Using the Boltzmann factor alone
the configurations can be sampled with a relative probability proportional to the Boltzmann

distribution.

An "MC simulation” in chemistry generally refers to the Metropolis MC method and this
shall be the case from now on in this work [Metropolis et al.<1953)Metropolis, Rosenbluth,
M.N., A.-H. & Teller]. Metropolis MC employs a particular Markov process to produce system
configurations from a limiting distribution which is the Boltzmann distribution. For an in depth
explanation refer to appendix A.

MC in its most simple form perturbs the present configuration O, within preset parameters,
to produce a new trial configuration (N) of the system. N is accepted or rejected depending
on the relative probability of each state occurring. The criterion for accepting a new configu-
ration is the Metropolis criterion, equation 2.30, where P, .y is the probability of accepting a

new configuration, 7(O — N) is the probability of the move from O to N being accepted and

(O — N) visa versa:

Poeeny = min(l,7(O — N)/n(N — O)), (2.30)




CHAPTER 2. CALCULATING THE FREE ENERGY 20

When accepted N becomes O and the properties of N are added to the average being accu-
mulated. If rejected NV is discarded, the properties of O are added to the average again and a
new trial configuration is generated. In order that the distribution sampled by this process is
maintained the probability of moving from any configuration leaving state O must be the same
as the probability of any state arriving in state O. An easy way of ensuring this condition is
met is to make the probability of leaving O for N the same as the probability of leaving N for
O (7(O — N) = (O — N)). This condition is termed detailed balance.
7(O — N) can be split into its component parts,

(0O — N) = a(0 — N) X Pyeen(O — N) (2.31)

where « is the probability of finding a trial configuration N and acc is the probability of
accepting N. By making the perturbation which produces N random the matrix of all possible
a is symmetric (a(O — N) = (N — 0)). Thus we can write equation 2.30 in terms of acc
only and the distribution sampled by accepted configurations will depend only on the relative
probabilities of acc. By using the Boltzmann factors of the O and N configurations the sampled

distribution is the Boltzimmann distribution:

Poeeny = min (1,%), (2.32)
= min(1,exp{—B[Uo — Un]}), (2.33)

where Up and Uy are the potentials of the old and new configurations respectively. Using
this process of sampling, over many cycles, the distribution of accepted configurations has
been proven to converge to the Boltzmann distribution regardless of the initial configuration
(appendix A). It is possible to use alternative non-symmetric matrices of o and still maintain
detailed balance; an outline of such methods is given in appendix B.

Despite the concepts behind this algorthm being difficult, it is quite simple in practice, it

is described in figure 2.2.
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Figure 2.2: Flow diagram of the Metropolis MC algorithm.

In practice N is accepted if the ratio in equation 2.33 is greater than a random number

found from 0 to 1.

In the MC algorithm described here there is the possibility of wasting large amounts of time
through rejecting many trial configurations. There are some interesting methods for ensuring a
high rate of acceptance of trial configurations in difficult cases [Roseubluth & Rosenbluth(1955)]
but they will not be discussed here. The acceptaice rate is maintained at a high level through
adjustment of the parameters controlling the random perturbation of the present configuration.

In general, the perturbation of O is localised to a random single entity such as a molecule
or protein residue. This being the case, when evaluating the potential of /V, it is not necessary
to calculate the full potential but only the bits of the potential which have been affected by

the perturbation. Thus, unlike MD, MC moves only small portions of the configuration in one

step, and the time taken to find the new energy is smaller.
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2.2 Free energy methods

Ligand binding affinities are measured experimentally through a association constant (I,)
when bound to a particular receptor. Computationally, ligand binding affinities are compared
using the change of free energy (Gibbs or Helmholtz) on ligand binding (AFping). At equilib-
rium and under standard conditions AF is related to the equilibrium constant via equation
2.34 [Atkins(1994)], where R is the gas constant and T is the absolute temperature. This is
important as it can give an idea of the size of error which is reasonable for free energy calcula-
tions. It is noteworthy that an error in AFp;nq of 1 kcal.mol ™! is equivalent to an error in K, of
two orders of magnitude and an error in AFy;,q of 2 keal mol~! is equivalent to an error in K,
of three orders of magnitude. It is generally assumed an error in calculated A Fy;,g of around 1
keal mol™! is the limit for usable d@ta. It is also noteworthy that the problem of maintaining
consistent conditions between labs when measuring experimental binding constants can make

it difficult to compare their results.

AF = —RTInK, (2.34)

2.2.1 Difficulty of calculating free energy

Through the theory discussed above the route to calculation of system free energies seems clear.

In the case of the canonical ensemble the free energy is derived through,

1 oo
exp(~PA} = o | copl-BH (o, w))dpwdan. (2.35)

By calculating the free energy of a ligand bound to a receptor and free in solution the free
energy difference could be found. Unfortunately, in practice with large bio-simulations, suffi-
cient sampling to provide an accurate integral with equation 2.35 is beyond the reach of present
sampling methods and computational resources. Quantities such as A which depend directly on
a system’s phase space volume and not on functions of the phase space coordinates are called
thermal quantities.

It is possible to attempt to evaluate the free energy as an ensemble average. However,

the simulation methods discussed above sample the low energy regions of phase space in the




CHAPTER 2. CALCULATING THE FREE ENERGY 23

overwhelming majority. Hence, there are many high energy states which contribute to the
free energy which are not encountered with MD or MC. These methods are unable to sample
adequately the high energy regions of phase space and converged averages are not possible.
As free energies can be either G or A depending on the ensembles under study, in subsequent
discussions F' will represent general free energy either G or A.

These practical realities enforce the need for special methods for calculating free energy
differences. Experimental measurements of free energies are generally carried out in reference
to a substance of known free energy, as thermal quantities are also difficult to measure exper-
imentally. For the purposes of drug design the most basic information needed is the relative
binding free energy of a set of ligands with one protein receptor. Thus, the rest of the chapter
will be concerned with special methods which can be used to calculate free energy differences

between two systems, defined by,

AF = Fp— F4 (2.36)

where Fy is the free energy of system A, Fg is the free energy of system B and AF is the free
energy difference.

It is important that a free energy method remains within the rules of statistical mechanics
to ensure that calculations are accurate. However, even if a method is rigorous with regards
to statistical mechanics (from now on referred to as rigorous methods), there are still some
assumptions involved particularly related to the choice of potential. On the scale of accurate
free energy estimates, statistical mechanically approximate methods (from now on referred
to as approximate methods) are in general thought to be less accurate than rigorous ones
[Pearlman(2005)] [Kuhn et al.(2004)Kuhn, Gerber & Stahl]. This investigation is interested in
fast free energy estimates, and thus it may be useful to investigate approximate methods as

well as those which are thought to be rigorous.

2.2.2 Approximate binding free energy methods

One major line of investigation is the calculation of the binding free energy difference (A Fping)
based on partitioning the free energy into separate, individually calculated, components. This

methodology assumes that each of the components of AF can be calculated separately and
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sumined to find the total. An example of this is,

AFying = AFson, + AFconf + AFint + AFpor, (237)

where AFg,, is the free energy change on ligand-receptor binding due to solvation effects.
AFons is the free energy change on binding due to changes in conformational structure of
ligand and receptor, A Fjy; is the enthalpy change due to interactions such as electrostatic and
van der Waals forces between the ligand and receptor, and AFy,: is the change in entropy
due to change in freedom of motion of the atoms of the ligand and receptor. AF,, can be
split into changes in internal rotations, translational motions and vibrational free energy due
to binding [Cramer(2002)].

If it is possible to calculate the total absolute free energy of a system in this way, then
AFying can be found by simply calculating the free energy of the receptor-ligand complex, sep-

arate receptor and separate ligand and taking the difference as in,

AFl)i'nd = AFcomple:t - (AFreceptor + AFli_qomd) . (238)

Calculated energy contributions often take the form of simulation ensemble averages of partic-

ular observables.

Assumptions are often made to allow or simplify the calculation of these energy partitioned
methods. The basis for these assumptions depends on the types of system under study and the
computational time allowed. For example new vibrational modes created on binding are often

ignored or approximated in an ad hoc manner, as this can be a difficult goal to achieve efficiently.

Linear Interaction Energy (LIE)

The LIE method is based on the partitioning of the total binding energy into polar and non-
polar contributions [Aqvist et al.(1994)Aqvist, Medina & Samuelsson]|. The polar contribution
is derived from MD simulation average energies where the solvent is assumed to have a lin-
ear response to electrostatic changes due to the solute (i.e. linear response behaviour). The
non-polar contributions are found using experimental binding data to create an empirically

calibrated function which includes averaged simulation van der Waals energies.
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This methodology is based on studies suggesting that solvation energies of non-polar com-
pounds are linearly related to molecular size measures such as surface area or volume [Blokzijl
& Engberts(1993)]. Average computer simulation solute-solvent van der Waals energies have
also been shown to relate to size measures in a similar way [Aqvist et al.(1994)Aqvist, Medina
& Samuelsson|. The use of an empirically calibrated parameter is expected to take into account
all other contributions to non-polar free energy, such as entropy effects etc.

An LIE calculation uses two MD simulations as depicted in figure 2.3

AF pind
@-
aq

Figure 2.3: Thermodynamic cycle used in the LIE method. The binding free energy
A Fying is given by the sum of a non-polar contribution AAG,,snpoter and a polar contri-
bution AAFyoar = AFpoiarbound — DFpolar free. The actual simulation systems are denoted
by the blue squares labelled sim1 and sim?2.

From these simulations the average electrostatic and van der Waals energies of the ligand
with its surroundings are taken and differences calculated. The calculation of polar energies is

carried out via equation 2.39 and the non-polar via equation 2.40.

AFpolar = ﬁLIE ((AEpola1'bound> Ty (AEpolurf‘r'ca)) (2-3'(’))

AFnonpolar = ULIE ((AEnonpolarbound> = (AEIIO'JLIJOIUI'IJ'66->) (2~40)

In equations ?? Brrg = % according to the linear response assumption, (AEpoarbound) 1S
the intermolecular electrostatic interaction energy, averaged over an MD trajectory for the

bound ligand, (AFEeiecfree) is the same for the unbound ligand. o ;g was originally set at

0.16 using a set of endothiapepsin inhibitors to calibrate this figure, (AV,gwpound) is the van
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der Waals interaction energy again averaged over an MD trajectory for the bound ligand and
(AVyaw free) is the same for the unbound ligand. Equations 2.39 and 2.40 are combined to
calculate A Fp;,q. This original model, calibrated using the endothiapepsin inhibitors, has been
used reasonably successfully on several systems iucluding HIV protease, trypsin and glucose
binding protein [Hansson & Aqvist(1995), Aqvist & Mowbray(1995), Aqvist & Hansson(1996)].
The root mean squared (RMS) error for 18 inhibitors from these studies was 1.57 kcal mol™?,
although there were significant errors, particularly for some HIV protease inhibitors.

The validity of the electrostatic linear response approximation was investigated by com-
parison to Free Energy Perturbation (FEP)(explained below). Calculations were validated for
mono-valent ionic solutes but relationships may be different, while still linear, for di-polar so-
lutes especially if hydroxyl groups were present [Aqvist & Hansson(1996)].

The major problem with LIE is the need for data with which to carry out system specific
parameterisation. The original model was improved by allowing different scaling factors for
the bound and unbound states in both the polar and non-polar components of the LIE free
energy equation. This measure was intended to represent possible differences in electrostatic
response in the solvent and protein environments. Also a free energy constant term, I'r 7 g, was
investigated as a non-zero difference between terms in corresponding linear expressions, giving

a new free energy as,

A}Fpola.'r = QLIE prot ((AEnonpola'rbound> - O-’LIE,wat<AEvderee>) +
(2.41)

ﬁLIE‘,prot ((AEpolarbound> - ﬁLIE,wat(AEelecfree» + FLIE‘-

This new equation was tested and optimised with the same set of 18 inhibitors as the earlier
equations 2.39 and 2.40. Best agreement with experimental data was found when the free en-
ergy constant term was disregarded and both arrg were identical and [rrg values were almost

identical. A system of generalised 81 ;g terms was therefore derived.




CHAPTER 2. CALCULATING THE FREE ENERGY 27

Brre,rep(class) = 0.50 for "charged class” (Q # 0),
= 0.43 for class = 0(Q = 0, No. OH =0),
= 0.37 for class = 1(Q =0, No. OH = 1),
= 0.33 for class = 2(Q = 0, No. OH > 1),

(2.42)

This model divides possible solutes into four classes as in equation 2.42 where @ is the
charge and No.OH is the number of hydroxylate groups present. The values of 8 were found
by simulation of typical compounds from each of the classes [Aqvist & Hansson(1996)]. This
model has shown an RMS error of 0.84 kcal mol~! using the same set of 18 inhibitors [Marelius
& Hansson(1998)]. Whether using the original model or the improved version this methodology
has shown it can give results with errors in the order of 1 kcal mol~! in test cases.

A recent study has tested a large number of possible descriptors and coefficients for use
in prediction of binding affinities from simulation trajectories [Tominaga & Jorgensen(2004)].
This approach seems to yield limited advantages and descriptors used are similar to the ones

used in the LIE methods above.

Molecular Mechanics/Poisson Boltzmann, Surface Area (MM /PBSA)

The MM/PBSA methodology splits free energy into four partitions as in equation 2.43 [Kollman
et al.(2000)Kollman, Massova, Reyes, Kuhn, Huo, Chong, Lee, Lee, Duan, Wang, Donini,
Cieplak, Srinivasan, Case & Cheatham|. Conformational space is sampled by MD simulations
with explicit solvent to produce a trajectory of system configurations (snap shots). Each of
the simulation snap shots is post-processed to remove solvent atoms. Solvent contributions are

calculated through the use of an implicit continuum solvation model.

AF = Eyym + Gpe +Gsa —TSmm (2.43)

In equation 2.43, Ejsps is the average molecular mechanical energy of the receptor-ligand com-
plex. Eprar can be decomposed into the different terms in the force field equation used (equation

2.15). Gpp is the polar solvation free energy which is found by solving the Poisson-Boltzmann




CHAPTER 2. CALCULATING THE FREE ENERGY 28

equation. It is possible to replace this solvation free energy term with one based on a GB
continuum model [Gohlke & Case(2004)]. Gga represents the non-polar solvation free-energy

and is a simple scaled term based on the solvent accessible surface area (SASA):

Ggsa = vs4aSASA+b. (2.44)

where vg4 and b are 0.00542 kcal.mol~1.A% and 0.92 kcal.mol~! respectively. T'Spsps is the so-
lute entropy which is estimated by quasi harmonic or normal-mode analyses [Swanson et al.{2004)Swanson,
Henchman & Mccammon]|, [Donnini & Juffer(2004)]. It is worth noting that the free energy due
to ionic strength effects can be added with a continuum approach. Also, the AGor and AGon s
terms from equation 2.37 are not properly accounted for within the MM/PBSA method.
When used to find binding free energies of ligand receptor systems there are two possi-
ble MM/PBSA forms; one involves analysing separate MD trajectories of receptor, ligand and
complex (SEP) while the other uses one trajectory of the receptor-ligand complex which is
processed to give data for all four terms in equation 2.43 (SING). Method SING is more ef-
ficient, depending on the length of MD trajectories used, although it ignores any free energy
due to conformational change on binding (AGconyg). This deficiency will have varying effects
depending on the system under study although promising results have been reported by some
(e.g. [Huo et al.(2002)Huo, Wang, Cieplak, Kollman & Kuntz], [Kuhn & Kollman(2000)]. A
possibly more important point is that the SING method displays a significantly lower level of
error than the SEP method. This is due to the fact that the simulations used to find Easps for
the complex and its separated constituents are one and the same, meaning that sampling and

force field errors cancel.

Three recent studies of the MM/PBSA methodology have introduced some novel meth-
ods of estimating energy change due to entropy and translational, rotational freedoms on
binding, and also attempted to test the current methodologies on various systems [Swanson
et al.(2004)Swanson, Henchman & Mccammon], [Donnini & Juffer(2004)], [Gohlke & Case(2004)].
Gohlke and Case utilised structural data of the H-Ras/C-Rafl complex to investigate MM /PBSA
methodology [Gohlke & Case(2004)]. The H-Ras/C-Rafl, protein-protein system has a ”"small
to moderate” level of flexibility on binding and Ras interacts with Raf through the formation of

an inter-protein (-sheet. Swanson et al. applied their methodologies to the fairly rigid FK506
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binding protein (FKBP12), which is a small immunophilin, and its immunosuppressive ligand
4-hydroxy-2-butanone (BUT). Donnini and Juffer used 36 different protein-ligand complexes of
various different types including MHC, TIM and SH2 and 3 protein domains. The following is

a list of important points to arise from these studies:-

Comparison of PB and GB techniques: The effects of employing PB compared to
three different GB implicit, continuum solvent models was assessed using MM/PBSA method
SING [Gohlke & Case(2004)]. PB calculations gave over and under estimations of AGping
depending on the atomic radii used, with smaller atomic radii giving lower energies. When
compared to the PB model, results for the GB models all deviated from PB and over estimated
AGping using the same atomic radii. However the same relative trends in scoring snapshots were
seen in GB models compared to the PB model. In general the authors comment that the results
reflect the way the GB models have been parameterised. Two of the models were parameterised
for use with MD i.e. to give constant energy differences between different conformations of one
molecule. For use in calculation of AGy;,g, atom radii parameter sets are needed to also give

consistent free energies across different molecular species.

Inaccuracy of SASA term: Deficiencies of the SASA non-polar solvation term due to
over simplification were addressed, again by Gohlke and Case [Gohlke & Case(2004)]. Non-
polar solvation is due to solvent cavity formation (dependent on volume and shape of excluded
volume) and solute-solvent van der Waals interactions. Thus the simple SASA dependent term
may not describe this completely. A new term was constructed, equation 2.45, where G,qy is
the cavity solvation free energy which is determined by equation 2.46, and Hy,qw,sotute-solvent-
Hyaw, solute—solvent 18 the average solute-solvent van der Waals interaction energy from the sim-
ulation and is assumed to be approximately equal to the free energy due to solute-solvent van
der Waals interactions (Guaw,solute—solvent)- 1 equation 2.46 Geqy is equal to a surface tension

constant, 7, ,and the molecular surface area, MSA.

Gnonpolar = Geav + H’Udl/V,solute—solvent (245)
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Geaw = 7 MSA (2.46)

The old SASA dependent term was thought to overlook the van der Waals attraction be-
tween the unbound solute and solvent atoms, over estimating the contribution of non-polar
solvation to the binding free energy [Gohlke & Case(2004)]. The free energy change due to non-
polar solvation found using this new term was more favourable than the old SASA dependent
term, which fits well with the view that the old term missed these van der Waals interactions.

The Hyqw,solute—solvent values taken from snapshots of Ras, Raf and their complex were shown

to converge as the size of the water shell used reached 9 and 10 A, which also backs up the
view that this new term is superior. This method of calculating the non-polar solvation energy
has previously been used with encouraging results [Vorobjev et al.(1998)Vorobjev, Almagro &

Hermans.

Comparison of entropic calculations: All three of the papers discussed here used dif-
ferent methods to account for the solute entropic contributions or loss of translational, rota-
tional and vibrational freedom. Gohlke and Case compared quasi-harmonic analyses to the
normal mode analyses which would normally be used [Gohlke & Case(2004)]. As would be
expected, TASpnq was divided into loss of translational, rotational and vibrational entropy
(Strans; Srots Svip respectively). Almost identical S, contributions were demonstrated be-
tween normal mode and quasi-harmonic analyses. However the S,;, contributions calculated
with quasi-harmonic analysis were very different from those for normal mode analysis and lead
to a very dis-favourable T'ASp;,q- The authors highlight the fact that their trajectories do not
show convergent, quasi-harmonic, S, through 10 ns of MD, and the fact that other studies have
also failed. This finding is further supported by Swanson et al. [Swanson et al.(2004)Swanson,
Henchman & Mccammon]. This is more pertinent as errors in TASy;,4 are almost completely
attributed to Sy;. Thus, quasi-harmonic analysis is seen to be a poor choice due to sampling

issues.

Swanson et al. attempt to calculate the loss of translational and rotational freedom due
to the ligand (which they refer to as "association free energy”). This was done via a concep-

tual link between the translational configuration integral and the volume of space occupied
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by the ligand’s centre of mass through the simulation. The volume was measured using the
quasi-harmonic model and the covariance matrix to account for coupled motions. The resulting
variance was then related to a spring force constant to obtain an average potential energy. A
similar method was used for rotational freedom except quaternions were used to represent any
motions. The authors then separated the 23.3 kcal mol™! association energy they found into
enthalpic and entropic components, assuming that all translational and orientational motions
of the ligand can be described by a classical harmonic oscillator. Data for vibrational free-
dom/conformational flexibility were omitted from this study.

Another interesting method of conformational flexibility estimation has been utilised re-
cently by Donini and Juffer [Donnini & Juffer(2004)]. This method estimates the difference in
side chain conformational entropy on binding empirically from the change in side chain acces-
sible surface area. It is difficult to assess how accurate the figures for side chain conformational
entropy from this study were, as most calculated binding free energy values were an order of

magnitude out from experimental values, with or without these entropy figures.

Inaccuracies due to conformational change on binding (relaxation energy):
Both Swanson et al. and, Gohlke and Case investigated the use of MM /PBSA SEP, described
above [Gohlke & Case(2004), Swanson et al.(2004)Swanson, Henchman & Mccammon]. The
H-Ras/C-Rafl system of Gohlke and Case is thought to have more conformational change be-
tween bound and unbound states than systems in previous studies. Thus there is little surprise
that a comparison between SEP and SING gave differing results for Epspr, AGsoy and TAS.
The free energy of the isolated H-Ras/C-Rafl molecules would be expected to be less
favourable while in the bound conformation. An easy rationale for this is that otherwise they
would exist in this conformation when not bound. Hence, for this comparison the free energy of
the unbound molecules would be expected to be more favourable, with a less favourable AGping,
for results from method SEP. However, in this study the opposite was found with AGp;ng being
more favourable for method SEP than SING, being -19.3 and -3.1 kcal mol™! respectively. The
authors suggest this disparity may arise due to the use of ensemble structures from explicit
solvent simulations being used in implicit solvent free energy calculations. In other words the

implicit solvent models inadequately model the forces found in explicit solvent simulations.
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Swanson et al. draw different conclusions from their similar analysis of a more rigid ligand-
receptor system. They found that the SEP method gave energy plots which did not converge
and were dominated by noise. Hence, they did not use these results to find the relaxation

energy of the receptor. However, as the small ligands sampling and therefore convergence was

far more complete it was possible to find the ligand relaxation energy (1.7 kcal mol~1!).

Statistical Convergence of Average Energies: It is important that the averaged
values found using MM /PBSA are converged as otherwise they will be imprecise. Plots of gas-
phase and solvation free energies from the 10 ns trajectories used by Gohlke and Case displayed
small amounts of absolute drift even after 2 ns of equilibration [Gohlke & Case(2004), Donnini
& Juffer(2004)]. As the authors comment, this points to incomplete sampling and the need for
longer MD trajectories.

Gohlke and Case reported a standard error of 3.0 kcal mol™! in gas-phase and solvation free
energies using separate trajectories (method SEP). This error is too high for useful application
in drug design, and thus method SING with an error in gas-phase and solvation free energies
of 0.3 kecal mol~! may be more useful. With independent trajectory snapshots, the standard
error of the mean is inversely proportional to the square root of the number of snapshots. The
authors find the snap shots to be independent as correlation time of fluctuations in the energy
is about 1 ps. This ignores large molecular movements in the protein that may be over a much
longer period. If snap shots can remain independent, this means that the more snapshots the
smaller the error and this may offer a way of minimising the larger errors of method SEP.

Interestingly, despite the problems detailed above, when results taken only from the first
and second half of the trajectories were compared with those from the whole trajectory, all
were in good agreement in terms of total binding free energy, although errors were higher for
the smaller sets of snapshots. The agreement is the result of deviating gas-phase, solvation
and entropic energies compensating for each other. Thus, the total free energy is more reliable
than the separate energy components especially when using smaller MD trajectories for both

methods.
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2.2.3 Rigorous relative binding free energy methods
Free energy perturbation methodologies

Zwanzig described a method of calculating free energy differences which was mathematically

derived from the partition functions of each system [Zwanzig(1954)]:

AF = Fg—Fy, (2.47)

= -1/8Wn{Zs/Z4}, (2.48)

e f ez =BUs(a))
= ~uAl {femp{—ﬂUA<qN>}}' (2.49)

Let Ug(an) = Ual(gn) + Uas(gn),

. _1/8l [ exp{—BlUa(an) + Uan(an)]}
= -y/am T exp{—BUalan)} } (2:50)
= —1/B1n(exp{-BAU4B(qn)}) 4 - (2.51)

Equation 2.51 gives AF from the exponential ensemble average of the difference in energy
between the two systems A and B, where (...), denotes an ensemble average over system A
and AUap(gqn) the difference in the potential energies of A and B due to the present set of

coordinates.

The computational implementation of Zwanzig’s equation is called free energy perturbation
(FEP). FEP in its simplest form entails running a simulation of one system (A or B) which
at each simulation step adds to the average in equation 2.51. The AE4p(gn) term can be
found using differing techniques. These techniques are single topology; where the difference
between the systems A and B is found by evaluating the configuration of the simulation using
two different potentials (A and B) and dual topology; where the difference is found due to the
exchange of one or more molecules of system A for those of system B [Cramer(2002)]. Obviously,
single topology is only applicable in cases where systems A and B are similar and have the same
number of atoms, although, through the use of dummy atoms (atoms which cannot be seen by
the rest of the system), differing numbers of atoms can be used. Dual topology can, in theory,

be used with any two systems. In the case of a dual topology system which differs in one
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molecule, both instances of the differing molecule, A and B, must be present and moved as part
of the simulation all of the time. This is possible as the potential of molecules A and B cannot
affect each other but only the rest of the system around them. This can cause difficulties as
the system may react differently to each molecule. Also, the molecules will behave differently
causing increased noise in AE 4 p(gn) measurements [Cramer(2002)].

In practice, systems A and B must be very similar if we are to produce a converged AF' using
equation 2.51. This is because FEP simulation techniques use the same system configuration
to evaluate both systems A and B. Thus, if the most commonly sampled low energy region of
phase space for system A is in a different place from that of system B, it will be difficult to
sample the important regions of system B while the simulation is using the potential of system
A. The simple solution to this problem is to ensure that any free energy difference evaluated
using equation 2.51 has good overlap of important phase space of systems A and B. This often
means using a series of intermediate systems between A and B to ensure good phase space
overlap. This is achieved by coupling the differences between systems A and B to a simulation
parameter, A, where A = 0 gives system A and A = 1 gives system B. A simple and widely used

example of this is the linear coupling of the system Hamiltonian to A:

H), = (l—/\)HA-i-/\HB. (2.52)

This coupling of A can also be implemented at the level of the parameters which vary between
systems A and B. It is then simple to use equation 2.51 on intermediates between A and B and
sum the resulting free energy differences to give an overall AF'. This is the FEP technique, as

shown in equation 2.53.

1
AF=Fp—Fy=3 —% In {exp{—BAUA5(an)}) 5; - (2.53)
A=0

This technique of coupling the differences in systems A and B to ) is used in the many rigorous
free energy methods. In general the change from system A to system B is called a perturbation.
Thermodynamic Integration

Thermodynamic Integration (TI) is a well established rigorous free energy method and is well

represented in many texts [Leach(1996)], [Frenkel & Smit(1996)]. T1 is based on the perturba-
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tion technique, which uses A, described above for FEP. Simulations are run at values of A (A

windows) which allow good phase space overlap from systems A to B. The property accumu-
lated by each simulation is the free energy gradient (‘3—1;) A- AF from A to B is then found by

integrating over the measured gradients:

1
AF = Fg—Fy = / (%) dx. (2.54)
: 0 A

The free energy gradients can be found analytically through the ensemble average of the
gradient of the force field. This in turn is found from the gradient of each force field term with
respect to A. Alternatively, the free energy gradients can be approximated numerically by the
finite difference as in equation 2.55. TI which uses a finite difference approximation is called
Finite Difference Thermodynamic Integration (FDTI) and will be used in this study over other

forms of TI due to its simplicity.

(5.5,

AF in equation 2.55 can be found using the Zwanzig equation (equation 2.51) and potential

values at A and A\.

The size of the A evaluation made to find a gradient measurement, in FDTI, must be small
in order that the exact gradient at the correct point is obtained. With FEP the size of A)s is
dependent on the number of intermediate states between A = 0 and A = 1 used. Another issue
is the presence of a non-linear exponential average in the FEP equation 2.53. This can cause
bias in estimates of AF and is not present with TT based methods which evaluate a standard
linear average. Owing to these necessities the ensemble average gradient may often be con-
verged more easily with FDTI than with FEP. Also, any hysteresis of the same A evaluation

in opposing directions is minimised (i.e. A =0 — 1 compared to A =1 — 0).

Replica Exchange Thermodynamic Integration

Replica Exchange Thermodynamic Integration (RETI) is a development of TT which incorpo-

rates Hamiltonian replica exchange moves between A window simulations adjacent on the A
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coordinate (A moves) [Woods et al.(2003a)Woods, Essex & King], [Woods et al.(2003b)Woods,
Essex & King]. A moves are made periodically and in such a way that one configuration cannot
be swapped twice. In order that A moves adhere to detailed balance, they are accepted or
rejected with the equivalent of two metropolis tests, one for each configuration introduced to a

new simulation. Thus, moves are accepted if,

exp{B[Us(j) — Up(i) — Ua(j) + Ua(§)]} 2 rand(0,1), (2.56)

is true, where i and j are configurations being exchanged, and A and B are the Hamiltonians
of the replicas exchanging.

RETT increases sampling especially of the solvent by providing the possibility of ensembles
making large jumps in phase space. Also, as simulations are able to move freely across A, configu-
rations which are more favourable to a particular area of A may migrate there. These advantages
are demonstrated through comparisons to conventional TT using water-methane and calix[4]-
pyrrol test systems [Woods et al.(2003a)Woods, Essex & King], [Woods et al.(2003b)Woods,
Essex & King]. |

The Adaptive Integration Method (AIM) is similar to RETY [Fasnacht et al.(2004)Fasnacht,
Swendsen & Rosenberg]. AIM calculates AF' using the same integral as TT and RETI, equa-
tion 2.54. An AIM simulation makes A moves similar to RETI but with a differing Metropolis

acceptance test,

exp{—B[Es(j) — Ea(i)] + B[AE, — AF,]} > rand(0, 1), (2.57)

where, AF, and AF, are the current running free energy estimates after and before the present
A move respectively. The incorporation of current AF estimates into the A move acceptance test
smoothes the convergence of the free energy gradients. This may make it possible to use fewer
measurements for each ensemble average gradient and consequently more integration points
could be used. The A move acceptance test of AIM, however, only satisfies detailed balance
asymptotically and estimates are only rigorously correct when fully converged.

AIM has been compared favourably with other free energy methods using relative hydration
free energy test systems as discussed later in the next chapter [Ytreburg et al.(2006)Ytreburg,

Swendsen & Zuckerman)].
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2.2.4 Other interesting methods

Methods which calculate free energy differences from computer simulation can be classified
neatly into density of states methods and work based methods. An example of work based
methods is FEP described above, where the change in energy is measured due to a change

made to the Hamiltonian.

Density of states methods calculate AF' directly through its relation to how the configu-
rations of the systems under study are weighted by the Boltzmann factor [Kofke(2005)]. A
simulation able to freely sample systems A and B will reside in each systems configurations in

proportion to the Boltzmann factor of their free energies,

P(i) o exp{—BEF} (2.58)

where P(i) is the probability of sampling system ¢ with free energy F;. AF is then found as
the ratio of these probabilities.

In general, density of states methods have suffered as it is generally difficult to obtain suf-
ficient sampling of all systems of interest. A recent and interesting example is the A-AFED
method of Abrams et al. This method uses A coupling functions such that a large barrier be-
tween the end states A and B is created, ensuring that the simulation spends most of its time at
the A and B end states and not in less relevant intermediate states [Abrams et al.(2006)Abrams,
Rosa & Tuckerman|. The introduction of this new barrier can make switches from system A to
B rare. To this end the A variable is given a high temperature so the barrier is crossed easily
and a large mass such that A achieves adiabatic separation from the rest of the system. The
free energy is then found easily through the ‘probability distribution of the simulation residing

at A=0and A =1 (Pugp(N)):

F()\) = —k)BT,\ In Padb()\)- (259)

This method was compared to FEP and TI for three simple test systems including the solvation
free energies of methane and methanol and found to be up to 15 times more efficient.

Another recent and relatively successful development is the transition matrix MC method
(TMMC) [Errington(2003)]. This methodology uses the information from attempted transitions
between configurations of a Markov chain. Using this data estimates of transition probabilities

between states along the path of interest which changes the free energy of the system can be
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found. However, methods such as these have not been applied to the problem of protein ligand
binding free energies.

An interesting method which uses ideas from both density of states and work based view
points is the A dynamics method of Kong and Brooks (1996). The A variable, which is used to
control the mutation from one species to another with FEP is developed, giving A;. A; represents
a set of molecules which simultaneously exist in the same space, whilst being invisible to each
other, and vary with A. One advantage of this type of methodology is that it is possible to
evaluate more than two systems at once through the equivalent of a computational competitive
binding experiment [Kong & Brooks(1996)], [Zhuyan et al.(2003)Zhuyan, Durkin, Fischmann,
Ingram, Prongay, Zhang & Madison|, although in practice the necessity for several systems
existing in the same space can limit the application of this concept.

A ); is assigned to each of L ligands and the comparison uses a hybrid potential,

L
V(A z) =Y MN(Vi(z) — F) + Ven(2), (2.60)

where Veny(z) is the interaction involving enviromental atoms (those atoms common to every
ligand system) and V;(z) is the interaction due to those atoms distinct to each (4) ligand system.
In equation 2.60 the sum of A;s is equal to one. F; is a biasing 'poten’cial and corresponds to
the unbound free energy of the ligand, which has been determined previously. The different A;
potentials will evolve, through the simulation, to find the lowest free energy regions of A; space.

The running averages of each ); is the probability distribution of that system and a reflec-
tion of the free energy difference between the molecules. The AAG of any two molecules, i and
j, can be calculated using equation 2.61, where P;(\; = 1, {A\x # ¢} = 0) is the probability that

the system is dominated by ligand i.

POy =1, (v £ 41 = 0)

AAGy; = —kTln (2.61)

This method although seemingly complex can be quick to run as it only requires one rel-
atively short simulation to rank a set of ligands, although multiple windows may be used to
give increased accuracy with average free energy differences and errors. A recent study used

A-dynamics to find the relative binding free energies of HCV protease (HCVp) inhibitors and
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results were compared to similar FEP calculations [Zhuyan et al.(2003)Zhuyan, Durkin, Fis-
chmann, Ingram, Prongay, Zhang & Madison]. The suitability of this technique for comparing
ligands with many differences and ligands which affect receptor conformation on binding has

not been tested. This may prove to be a limiting factor in its use.

2.2.5 Summary and the direction of the present study

Here the possibility of using statistical mechanics and computers to study the interactions
of biomolecules has been displayed. Protein-ligand systems can be modelled using molecular
mechanics force fields and the behaviour of these systems explored using sampling techniques
such as MD and MC. Various free energy methods can then be used to calculate free energy
differences between related systems. These free energy differences can then be combined in
a thermodynamic cycle to give the relative binding free energies of a set of inhibitors for an
enzyme drug target.

Despite the myriad of methods for computational calculation of free energy differences, the
methods most widely used for large biosystems are still FEP and TI. These methods are not
recent developments having first been mentioned over 50 years ago, although it is only recently
that the computational resources have become available with which to use these methods on
large protein-ligand systems. Still, rigorous free energy calculations are thought to be compu-
tationally costly, limiting there use in the pharmaceutical industry. Hence the use by many of
more approximate methods such as LIE and MMPBSA and more simple scoring functions (see
chapter 1).

A recent development of work based free energy methods displays relations with both FEP
and TT [Jarzynski(1997a)]. This set of methods, called fast growth (FQG) in this work, is thought
to be extraordinary in its ability to relate nonequilibrium simulation data to equilibrium free
energies. Possibly just as extraordinary is the fact that this related set of methods has only
recently been discovered so long after its relations FEP and TT and just at the right time to
take advantage of the new distributed computational resources to which is it so suited well (see
appendix D).

Owing to the potential of FG methods for fast free energy difference calculation these meth-

ods will be the subject of this study. The next chapter will review the FG literature with a view
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to identifying those methods best suited to protein-ligand calculations and drug design. Useful
FG methods will then be compared to the currently established methods FDTI and RETI to
gauge there possible utility. This comparison will start with simple analytically tractable toy
systems (chapter 4), moving on to simple solute-solvent systems (chapter 5). The best of the
remaining methods will then be compared to RETI for two protein-ligand binding free energy
studies (chapters 6 and 7). The final chapter will summarise and discuss the issues arising from

this work.




Chapter 3

Nonequilibrium Free Energy
Methods

3.1 Introduction

In the previous chapters the utility of fast free energy calculations in rational drug design has
been described. However, as discussed improvements in efficiency and applicability of these
methods are required before wide spread use in the drug design process becomes a reality. Re-
cent advances in nonequilibrium free energy methods have provided the possibility of improving
the speed of these calculations through use of large distributed computing resources.

Hence, here nonequilibrium free energy methods will be reviewed in detail and the relative

attributes of these methods compared to the presently established methods.

3.2 Slow Growth

Slow Growth or adiabatic switching (SG) uses the same perturbation methodology as FEP and
TI. SG was originally presented as a TI-like integration over a continuous sequence of equilib-
rium states linking systems A and B [Kirkwood(1935)]. A possibly more pleasing description

is that SG utilises the basic rule of thermodynamics,

AF = Wy, (3.1)

Equation 3.1 states that over the course of a reversible, isothermal process linking two equi-
librium states, the work (W) performed on the system is equal to the free energy difference

between the two states. For a process linking two states, also known as a switch to be truly
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reversible, in principle, it must be infinitely long. For this reason, SG switches cannot be truly
reversible. Accuracy of SG calculations relies on how close to the reversible limit the simulated

switch is.

In practice an SG switch is a simulation coupled to a A coordinate, where A is slowly in-
cremented from 0 to 1. The work performed as a consequence of each A increment is summed
to give a free energy difference estimate, AF, of the true free energy difference, AF. This

is expressed in terms of the potential at the present A value, Uy,(¢n) and the potential at the

next value of A, Uy, ,(gn), as follows,

AF =W = Z U/\i+1(QN) = Ux(qn)- (3.2)
i=1

An SG calculation invariably produces a systematic error due to its non-equilibrium nature.

The simulation lags behind the changing potential, this is often referred to as Hamiltonian

lag [Pearlman & Kollman(1989)]. Hamiltonian lag contributes positively to W such that,

AF = W — Wass. (3.3)

This contribution is called the dissipated work (Wy;ss) and is associated with the increase of en-
tropy during an irreversible process [Jarzynski(1997a)]. Hamiltonian lag is most easily demon-
strated through the consideration of switches proceeding in opposite directions i.e. switches
from system A to B as already discussed but also starting from system B and ending at system
A. A switch from A to B (A =0 to A = 1) will from now on be termed forward and B to
A (A =1 to A = 0) backward, and it will be assumed they have the same internal structure
(i.e. numbers of A increments and MC trials). A non-zero Wg;ss me'ans a hysteresis will exist

between switches in the forwards and backwards directions, i.e.

WF + WR 7£ 0, (34)

where WF/ r is the average work in the forwards or backwards directions respectively. The

fact that the Wy, always contributes positively means that the true AF (AFy) must always

be between values for W in switches in opposing directions. Some studies have suggested that
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mean W values (W) of switches in opposing directions can give good estimates of AF,, as Wy;ss

from opposing directions may cancel, i.e.

AF = (Wp — Wg)/2, (3.5)

[Wood(1991)], [Hermans(1991)], [Hu et al.(2002)Hu, Yun & Hermans], [Hummer(2002)]. Equa-
tion 3.5 will provide good AF estimates only when the free energy difference of study provides
identical barriers to sampling in both forward and backward directions. The systems and
changes in potential which display such symmetries are more often simple systems with simple
potential changes. However, the size of Wy, is proportional to the length of the SG switch,
therefore with reasonably slow switch rates the error in an estimate of AF,, after the use
of equation 3.5 may be low even for systems with non-symmetrical forwards and backwards
switches [Hu et al.(2002)Hu, Yun & Hermans]. The efficiency of the estimation method de-
scribed by equation 3.5 (symmetric A) will be investigated for various AF' calculations in this
study. Also, unlike FEP and TI, for SG the potential change due to each A increment is rep-
resented by one measurement. These intrinsic problems are undoubtedly the main reasons SG
calculations are thought to be relatively inaccurate. With a few exceptions, SG calculations
are not presently used to estimate free energy differences [Hu et al.(2002)Hu, Yun & Hermans].
However, one advantage of SG and methods which use continuous switching simulations is that
the production of a calculation with small levels of hysteresis gives high levels of confidence in
the result. In such a case the simulated process is a good approximation of quasi-static process

which underlies reversibility and free energy differences.

3.3 Fast Growth

Fast Growth (FG) as the name suggests is similar to SG except the switches made can be
made faster. Recently there has been a renewed interest in methods which employ a continuous
switching process methodology. This is mainly due to the work of Jarzynski and the equality
he derived [Jarzynski(1997b)], [Jarzynski(1997a)].

Jarzynski discovered an equality which relates the distribution of non-equilibrium work val-

ues used with equation 3.5 to the equilibrium free energy difference rather than an upper or
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lower bounding value.

(exp{-BW}) = exp{-BAF} (3.6)

AF = —kgT ln {exp{-BW}) (3.7

Equation 3.7 reduces to FEP where switches are instantaneous and is related to TI in the
case that the work is integrated across A (as in the previous chapter (...) denotes an ensemble
average). The Jarzynski equality is also closely related to other interesting non-equilibrium
relations recently derived [Crooks(1999)] [Crooks(2000)].

For equality 3.6 to be true the switches made to produce the distribution of work values
must have initial configurations taken from the same equilibrium ensemble (an ensemble of
switches). Also, all switches in an ensemble must be of the same internal structure (same

numbers of A increments and simulation steps) as expressed by,

Jd[Zr] P[Zp|M]ezp{-fW}

exp{—PAF} = [ dzg P(z)

(3.8)

Here, P[Zp|)\] is the probability of the switch, Zr, being produced when switches are struc-
tured with an amount of A switches and MC trials represented by \; and P(zg) is the probability
of a switch starting configuration zg i.e. the equilibrium ensemble probability of a configuration
for system A (P(z¢) = exp{—SUa(gn)}). Of course this integral does not need to be considered
as switches are produced automatically with the correct frequency. The practical FG protocol
is described in figure 3.1 starting with system equilibration and then performing switches from

system A (circles) to system B (squares).
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A=0 A=1

System equilibration

equilibrated
structure

Switches are performed,
works collected

-

4

Many works give {exp{-BW})

Figure 3.1: Diagram describing the FG protocol. Circles represent the configurations of
system A and squares the configurations of system B. Circles/squares filled with cyan
are equilibrated while those filled with red are not equilibrated. Full black lines represent
equilibrium simulations and thinner red wavy lines represent FG switches.

Equality 3.6 has been explicitly proved for the cases of MC, MD (coupled to various ther-
mostats) and Langevin dynamics [Jarzynski(1997b)], [Jarzynski(1997a)], [Crooks(1998)], the
main difference being that MD would produce deterministic switches while MC and MD cou-
pled to stochastic thermostats would produce stochastic forms. In the case of deterministic
dynamics, each switch and work value depends only on the equilibrium starting configuration
and thus the distributions P[Zr|\;] and P(zo) become the same distribution. MC FG switches,
although possibly non-equilibrium are assumed to obey the Markov assumption and detailed
balance (in this case detailed balance is not assumed through reversibility but through the
behaviour of the system while A is fixed) [Jarzynski(1997b)]. Thus, it is not possible to use
MC moves which could not be used for equilibrium MC sampling in FG switches. Interestingly,
it has been shown that for stochastic and deterministic MD arbitrarily large time steps can

be used and Jarzynski’s equality still holds [Lecher et al.(2006)Lecher, Oberhofer, Dellago &

Geissler|. Using large MD time steps can lower the computational expense of switches and an
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efficiency saving of an order of magnitude was reported for computing the work needed to move
a particle through a dense liquid.

Although Jarzynski’s equality is extraordinary in its ability to link equilibrium free energy
differences to non-equilibrium switches, the problems discussed for SG unfortunately remain.
The left hand side of equation 3.6 is an average over an infinite ensemble of switching possi-
bilities. The difference for FG is the possibility of parallelising the switches and reducing the
clock time needed to find AF'.

In practice, the number of FG switches needed to produce an accurate AF estimate varies
and depends on the nature of the distribution of work values produced by the calculation.
When close enough to equilibrium, all FG work distributions will be Gaussian, as is the work

distribution represented by the black line in figure 3.2.

Normalised probability

Figure 3.2: Depiction of a Gaussian FG work distribution (in black). The blue line
represents p(W)e ™" which is the distribution of the exponential weights of the works.
Also, the red line denotes the free energy difference.

The exponential average of the Jarzynski equality can be written as an integral over the

distribution of work values,

(exp(—BW)) = / AW p(W )ezp(—BW). (3.9)

The integrand distribution of equation 3.9 labeled p(W)e W in figure 3.2 is peaked to the left

of the average work and AF. The work values which contribute most to the right hand side
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of the Jarzynski equality (equation 3.6) are those in the peak of p(W)e™"W and in the far left
hand tail of the work distribution p(W). These important work values (termed dominant) are
thus, unfortunately, produced by the rarest switches. This is the major problem of estimating
AF with equation 3.7.

The probability of producing a switch in the peak of p(W)e™#W sharply decreases as a
function of Wy;ss [Gore et al.(2003)Gore, Ritort & Bustamante]. Therefore, it is important
that the Wy;ss of the work distribution should always be minimised to produce an efficient FG

calculation.

Another useful non-equilibrium free energy relation also introduced by Jarzynski is described

by equation 3.11 [Jarzynski(1997a)].

oo

AF = Z(—ﬂ)”‘l%‘ (3.10)
n=1 :
Bo*
AF = (W) - 2= (3.11)

2

Equation 3.11 is based on the expansion of the right hand side of equation 3.7 as a sum of
cumulants [Sornette(2000)] as described by equation 3.10. In equation 3.10 wy is the nth

cumulant of the distribution of work values. If the distribution of work values used is Gaussian

then all but the first two cumulants are zero and equation 3.10 reduces to equation 3.11. The
Wiss is related to the fluctuations in W through equation 3.11 and hence this estimator of
the free energy difference is called the fluctuation-dissipation estimator (FD). As 3.11 is only
accurate for Gaussian distributions of W it is important to use switches which are close to
equilibrium, as although a Gaussian work distribution is possible without switches being close
to equilibrium (e.g. a bead being dragged through water by a Hookean spring [Mazonka &
Jarzynski(1999)]), being close to equilibrium ensures a Gaussian distribution of W values.

The FD estimator has also been used with some success in a similar arrangement to W in
equation 3.5 as,

Wr - Wg) B(c} — 0%)

( R
AF = ~ 1
F 5 TR | (3.12)
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[Hummer(2002)]. This estimator of AF, called symmetric B in this work, will be compared to
other interesting methods, with various simple test systems.

Studies of the error and efficiency of FG calculations seem to have come to a number of
useful conclusions [Gore et al.(2003)Gore, Ritort & Bustamante|, [Zuckerman & Woolf(2002b)],

[Hummer(2001]], [Shirts & Pande(2005)].

1. As W moves away from AF the distribution of works gets wider and the probability of
a work value close to AF becomes less. The probability of a negative Wy, is related
to Wysss, in general the larger the Wy;es the fewer highly weighted switches. Thus, it is
important to minimise the Wgiss [Gore et al.(2003)Gore, Ritort & Bustamante| [Jarzyn-

ski(1997a)].

2. The near equilibrium/gaussian work distribution regime should be obtainable from any
system if switched slowly enough. This regime is needed for FD to work and for the

Jarzinksi estimator to be accurate [Gore et al.(2003)Gore, Ritort & Bustamante].

3. The variance of W scales approximately as 1/t where t = switch time [Hummer(2001)].
Hence, all relevant studies have concluded that it is in general more efficient to use
fewer longer switches than more shorter switches [Gore et al.(2003)Gore, Ritort & Bus-

tamante|, [Zuckerman & Woolf(2002b)], [Shirts & Pande(2005)].

4. For the FD related estimators, if the standard deviation of a distribution of works is of
order KT statistical error is approximately independent of number of repetitions M for a
particular length of switch [Hummer(2001)]. Thus, if the variance of a work distribution

is of order KT there is no point in adding to the work distribution.

5. It may be optimal to divide the A co-ordinate into a number of intervals which are
evaluated independently. For example, if equilibrium seed simulations are run at A = 0,
0.25, 0.75 and 1, switches can be run from A = 0 to A = 0.25, A = 0.25 to A = 0.75 and
A =0.75 to A = 1 with the resultant FG AF's added to get the AF from A =0to A = 1.

This arrangement is described in figure 3.3 and can be called a FG-BY3 protocol as the
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A co-ordinate has been split by three. This organisation of switches increases the overlap
of switch end states and therefore could improve convergence in much the same way it
does for TT and FEP. However, as the number of intermediate equilibrium starting states
across A is increased, the number of AF's, each with a bias and error needing to be added,
increases too. Without increasing the number of simulation steps used, the amount of
sampling for each independent FG calculation will decrease as the number of A divisions
increases. Thus, for some systems, for which FG converges slowly, extra A divisions may

result in increased bias and error [Hummer(QObl)], [Shirts & Pande(2005)].
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A=0 N=1l

System equilibration

A equilibrations

Switches are performed,
works collected

o
<€

Figure 3.3: Diagram describing the FG-BY3 protocol. Circles represent the configura-
tions of system A and squares the configurations of system B. Circles/squares filled with
cyan are equilibrated while those filled with red are not equilibrated. Full black lines rep-
resent. equilibrium simulations, black dashed lines represent the proliferation of a single
system configuration and thin red wavy lines represent FG switches.

3.3.1 The validity of Jarzynski’s equality

There has been some discussion in the literature over whether Jarzynski's equality (3.6) is
physically correct [Cohen & Mauzerall(2004)], [Jarzynski(2004)], [Cohen & Mauzerall(2005)].
Cohen and Mauzerall claimed that the derivation of equality 3.6 was flawed by the improper

handling of heat exchange between the system and the water bath [Cohen & Mauzerall(2004)].
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Specifically, Cohen and Mauzerall pinpoint the failure to incorporate the heat absorbed by the
system when switching in W and the use of the heat bath temperature in 8, in equality 3.6
as "ad hoc and unjustified” considering the irreversible nature of the switch and the possi-
ble thermal fluctuation. In reply Jarzynski argues that the Lieat absorbed by the system in
a switch does not need to be included in W as equality 3.6 has been shown to be correct for
irreversible processes. Also, although the use of the heat bath 3 is effectively ”ad hoc”, it is in
no way improper and, as equality 3.6 has been shown to hold in many situations by many other
authors, is extremely useful [Crooks(1998)], [Crooks(1999)], [Sun(2003)], [Evans(2003)], [Ober-
hofer et al.(2005)Oberhofer, Dellago & Geissler]. Jarzynski demonstrates both of these ideas
with clear examples and mathematics [Jarzynski(2004)].

The points Cohen and Maugzerall make are based on possible physical, not mathematical,
errors. Hence, the validity of these points should be found through experiment. Cohen empha-
sizes that examples driven far from equilibrium have been shown to be inaccurate [Cohen &
Mauzerall(2004)]. However equality 3.6 assumes infinite switches which in the case of very fast
switching obviously becomes more important. Thus, it is difficult to truly test the ability of
Jarzynski’s equality with systems driven far from equilibrium and this question requires further
study.

Cohen and Mauzerall do state that Jarzyski’s equality does hold for near equilibriuin
switches [Cohen & Mauzerall(2005)]. This near equilibrium requires a constant g, a Gaus-
sian distribution of the work values and the validity of the fluctuation dissipation theorem.
Also, despite these issues Jarzynski’s equality has been shown to be very useful in many con-
texts, experimental and simulation [Liphardt et al.(2002)Liphardt, Dumont, Smith, Tinoco
& Bustamante], [Douarche et al.(2005)Douarche, Ciliberto, Petrosyan & Rabbiosi], [Collin
et al.(2005)Collin, Ritort, Jarzynski, Smith, Tinoco & Bustamante] with and without a Gaus-
sian distribution of work values [Hummer(2002)|, [Shirts & Sorin(2005)]. Jarzynski’s equality
has been shown to give accurate results in comparison to more established, non controver-
sial, equilibrium methods [Shirts & Pande(2005)], [Ytreburg et al.(2006)Ytreburg, Swendsen &

Zuckerman], [Oostenbrink & Gunsteren(2006)].
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3.3.2 Evaluating forward and backward switches together

As discussed above for SG, the Jarzynski estimator applies to switches aud work distributions

in both forwards and backwards directions, with

(exp(—BW)) g = exp{—BAFF}, (exp{-pW}) g = exp{-BAFR}, (3.13)

where AFF is the free energy difference estimate in the forwards direction and AFg in the
backwards direction. Hence, AFr = —AFg.

The work distributions for F'G calculations in the forwards and backwards directions can be

related through a generalised version of the entropy fluctuation theorem derived for stochastic
microscopically reversible dynamics by Crooks (1999a). The dynamics in question must satisfy

a condition of microscopic reversibility as follows,

PZr|\]

m = €$P{_5Q[ZF|/\t]} (3.14)

where P[Zfp|)¢] is the probability of the switch, Z g, being produced when switches are struc-
tured with a number of A switches and MC trials represented by A; and P[Zg|\] is the prob-
ability of the equivalent backward switch. @ is the energy moving from the heat bath to the
system, which is odd under time reversal, Q[Zr|A;] = —Q[Zr|A:]. This microscopic reversibility
is similar but still distinct to the principle of microscopic reversibility at equilibrium originally
given by Tolman [Tolman(1924)]. Microscopic reversibility, as in equation 3.14, is generally
satisfied with typical stochastic simulation techniques such as Metropolis Monte Carlo and
Langevin dynamics as long as individual steps satisfy the condition of detail balance described
earlier in chapter 2.

Crooks was able to express the entropy fluctuation theorem, which has been proven for a
range of systems [Evans & Searles(1994)], [Kurchan(1998)], in terms of the amount of work

performed on a system that starts in equilibrium, i.e. the specific assumptions of the Jarzynski

equality, as follows,

Pr(BW)

Pr(—pgw) — coP{-BAF}ezp{fW} = exp{fWaiss } (3.15)

In equation 3.15 Pr(BW) is the probability of realising a particular work value for a switch in

the forwards direction and Pr(—pBW) is the same for the backwards switches. Crooks validated
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his expression with an analytically tractable one dimensional model system [Crooks(1999)].
For explanations of more general cases where this fluctuation theorem is correct, check Evaus
and Searles (2002). Crooks and Jarzynski have subsequently shown equation 3.15 to hold for
a simple system with non-Gaussian work fluctuations [Crooks & Jarzynski(2007)]. Also, the
nonequilibrium fluctuation theorem of Crooks (equation 3.15) has been validated with single
molecule force measurements on a real system [Collin et al.(2005)Collin, Ritort, Jarzynski,
Smith, Tinoco & Bustamante].

Using the Jarzynski equality and equation 3.15 Crooks was subsequently able to show that,

(W) g
({=W)ezp{—-BW})g’

exp(—PBAF) = (3.16)

is true where f{W) is any function of the work with subscript F or R denoting the work is in
the forwards or backwards directions [Crooks(2000)]. Equation 3.16 is the same form derived
by Bennett for FEP (a limiting case of FG) in his derivation of the Bennetts acceptance ratio
method (BAR) [Bennett(1976)].

Bennett found the function f{W) which when used in equation 3.16 gave the AF with the

lowest variance and therefore the highest statistical accuracy was,

W) =@+ Z—;exp{ﬂW _AF})7! (3.17)

where np and ng are the numbers of switches (in the case of FEP these would be instantaneous
switches) in the forwards and backwards directions. AF can now be found: starting with the
lower bound estimate of AF, found through the average work, AF is increased slowly and
iteratively until AF satisfies equation 3.16. This AF is the BAR estimate.

BAR for nonequilibrium switching has recently been derived using Bayesian theory to show
that it is the maximum likelihood estimator for AF' with a given set of forwards and backwards
switches [Shirts et al.(2003)Shirts, Blair, Hooker & Pande|. This means that a BAR estimate
will have the lowest possible variance of any asymptotic estimator for a given set of forwards
and backwards switches. It should be noted that this does not necessarily mean that a BAR
estimate is more accurate than others with regards to AF.

The ratio in equation 3.15 can be written in Bayesian notation as with Pp(8W) being
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P(W|F), the conditional probability of a particular work value assuming it comes from a forward
switch of a particular structure, and Pr(pW) being P(W|R), the conditional probability of a
particular work value assuming it comes from a backwards switch of the same structure. As

P(F|W) 4+ P(R|W) = 1 Bayesian theory allows the following rearrangement:

(FIW)P(R) _ _P(FIW) P(R)

_F (3.18)
P(W|R)  P(RIW)P(F) 11— P(F|W)P(F) '
We can substitute this into equation 3.15 assuming that P(R)/P(F) = ngr/nr, giving,
P(F|W) ng
—— =Iln— - AF 1
In = PETW) n nRﬂ(W ) (3.19)

Given a particular AF value, it is now possible to express P(F|W;), the probability of a

particular forwards work value as,
n
P(FIW;) = (1 + ie:vp{—ﬂ(Wi ~ AF)}™! (3.20)

and P(R|W;), the probability of a particular forwards work value, given a particular estimate

of AF, as,
P(RIW;) = (1 + = eap{f(W; — AF)}™! (3.21)
R

Using these expressions for P(F|W;) and P(R|W;) it is now possible to find the likelihood of

obtaining a set of forwards and backwards work values for a given AF":

L(AF) = ﬁP(F|W¢) ﬁP(R|W¢). (3.22)
i=1 j=1

Thus the best estimate of AF is that which maximises L(AF). However, it may be easier
to find the maximum log likelihood. Shirts et al. (2003a) take the log likelihood and then

differentiate this with respect to AF, setting it to zero, to give:

O L{AF) lndfj;ﬁ%F ) _ Dt Teap(B(Wi AR T =3 (1 L eap{~A(W; - AF)}) T =0 (3.23)

i=1 j=1
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Equation 3.23 is the same as BAR described by Bennett (1976) and discussed above. Hence,
BAR gives the AF estimate which, maximises the probability that the observed work values

are realised. Shirts et al. also discuss and derive a formula for the variance of a BAR estimate

although this was not used in this study and will not be discussed here.

It is instructive to consider the efficiency of BAR with different ng/ng ratios. In the cases
of ng > ng and ng > nrp BAR (equation 3.23) collapses to the Jarzynski equality (equation
3.6). This is not surprising considering the origins of BAR. Bennett has shown that the optimal
ratio of ng/ng for BAR is generally close to 1 [Bennett(1976)]. This makes sense as owing to
equation 3.15 the forwards and backwards work distributions must be thought of together
as a single independentl distribution. To estimate this single distribution well, forwards and
backwards switches should be used in equal amounts.

As mentioned earlier, the issues discussed here may suggest that BAR should always be used
in preference to other FG estimators. In fact the literature does describe cases where BAR is
not the most efficient estimator of AF. Shirts and Pande describe one such case with simple
two dimensional harmonic oscillator systems which give Gaussian work distributions [Shirts &

Pande(2005)]. This harmonic oscillator test system was defined by

H = w(zi — z;)’, (3-24)

where H is the Hamiltonian and, z; and z; are the particle coordinates. Of the perturbation
end points A and B, A had a larger force constant (w) than B and consequently a smaller range
of possible particle positions (phase space). Shirts and Pande found that Jarzynski estimates
in the backwards directions where extremely poor with a variance tending to infinity as w of
A becomes twice as big as w of B. The forwards Jarzynski estimates were found to be more
efficient than BAR estimates with slightly lower standard errors. The origin of this result is in

the relative behaviour of the forwards and backwards work distributions. The backwards work

distribution was so poorly behaved that it causes BAR to be less efficient than the forwards

work distribution alone.

While BAR is possibly the best FG estimator in most cases, as it gives the estimate with
the lowest variance for a given set of forwards and backwards work values, in some cases a
Jarzynski estimate using work values from one direction will be more efficient. With this being

the case it becomes important to know when a particular estimator or work distribution should
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be used in preference to BAR.

Recently, an interesting extension to BAR has been developed for finding the maximumn
likelihood estimates of free energy differences of multiple states using parallel tempering simu-
lations [Maragakis et al.(2006)Maragakis, Spichty & Karplus]. This method considers a set of
systems (Ngys) with different Hamiltonians each sampled at a number of replicas with different
temperatures. Switches are allowed from any of the replicas of one system to another. Mara-
gakis et al. found this method to be many times more efficient than BAR for a simple vacuum

test system.

3.3.3 Bias calculation

The FD and Jarzynski estimators are asymptotic and so for finite numbers of switches (N),
estimates are biased. This bias is a result of the often inefficient sampling of the important but

rare switches discussed above. To be clear, the bias of an FG estimate is,

B=AF — AF,, (3.25)

where B is the bias, AF is the average AF, and AF,, is the true free energy difference.
In the limit of infinite switches this bias will be zero (AF = AF,), and it will increase
monotonically with decreasing N, until N=1 and B=Wg;,s. Some literature investigations
of FG concentrate on attempting to define and correct for the bias of FG estimators [Zuck-
erman & Woolf(2002b)], [Gore et al.(2003)Gore, Ritort & Bustamante], [Wu & Kofke(2004)].
Other studies have attempted to define tests to check for a result that is free of bias [Wu &
Kofke(2005a)], [Jarzynski(2006)].

Gore et al. and Zuckerman and Woolf have independently derived the same identity for
the bias of the Jarzynski estimator (Bs) when N is said to be large (equation 3.29) [Zuckerman
& Woolf(2002b)], [Gore et al.(2003)Gore, Ritort & Bustamante]. This derivation starts with
the reasonable assumption that the variance Var(exp{—/SW?}) is finite. For large N the central
limit theorem guarantees that many realisations of (exp{—SW}) (denoted by Y') gives a normal
distribution with mean ezp{—fSAF,} (denoted by ¥) and variance Var(ezp{—SW})/N. A

linear expansion of In(Y) around Y = Y gives,
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1 o (Y=Y) (Y-Y) 2vy-Y7)
AF = =5 |(¥)+ g =S+ S - (3.26)
AF = AR, +—vorlesp{=6W}) (3.27)

" 2Bexp{—-2BAFs}N

Equation 3.27 has AF and a second term equal to the average free energy difference estimate.

Hence, Gore et al. finds that B of the estimate is,

Var(esp(—pW)) _ Var(eap{—BWass})

Bs 2Bexp{—2BAF}N 28N

(3.28)

exp{,BQU‘Z,V -1} exp{26Wyiss — 1}
28N = 28N

By (3.29)

where O'%V is the variance of the work values. Gore et al. define large N with relation to
the Wg;ss, for switches arbitrarily far from equilibrium as N > variance of exp{BWy;.s}
(Var(exp{BW4iss})). Assuming the variance of the work values is finite, with large enough
N, the work distribution should be Gaussian as discussed above. However when N is this large
the bias is generally not significant and would be dominated by the statistical error. Also, this
large N may be difficult to obtain for systems of interest such as biomolecular systems where it
is difficult to minimise the Wy;ss.

It is more useful to concentrate on possibilities where switches are in the near equilibrium
regime and the work distribution is Gaussian. Here it may be possible to calculate the bias of
FG estimates when the bias is the dominant form of error. Gore et al. approximate By in the

near equilibrium regime with small N as,

I/T/'diss

Equation 3.30 comes directly from the observation that a log-log plot of B against N, where
N is small, is approximately linear. The ag variable is placed to account for the differences in
how fast the bias falls away with different amounts of W s, as systems with larger Wy, have
a bias which falls away more slowly as N is increased. The ag parameter must be assigned with

consideration of where the small N limit ends. In the near equilibrium regime when N is large,
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equation 3.29 is applicable.

Through equations 3.29 and 3.30 it may be possible to find B for a Jarzynski estimate and
to correct it giving a more accurate estimate of the true AF. However, the point at which the
calculation is perceived to switch from small to large N must be defined. As equatioﬁ 3.29 arises
by assuming that the first order term of equation 3.27 is dominant, the point N > (eQﬁWdi“"l)
is a good choice for the small/large N intersect. Thus, Gore et al. assume that the intersect of

small and large N occurs at,

Ng = C(e2Waiss =1y, (3.31)

where C > 1 is a constant that defines how small the bias must be before the large N limit is

reached. Hence,

_ I/T/diss _ eXp(ZIBWdiss — 1) _ 1
By(Nc) = Nee 2 = 550" (3.32)

The a¢ parameter from equation 3.30 can now be defined for small N bias using equation 3.32:

In [ZﬁCWdiss] In [Z,BCWdiss]
g = =

 In[CVar(e?Waiss)] ~ In [C(eQﬂWdiss — 1)] ' (3.33)

It is now possible to calculate the bias of a Jarzynski estimate using the estimated Wgss.
However, this estimate of W;s, is biased due to the bias of the Jarzynski estimate AF. Thus,

an attempt to correct this estimate of the Wyss can be made by using Wi as defined in
equation 3.34. Figure 3.4 is a flow diagram of the steps taken to calculate the corrected bias of

a Jarzynski estimate (Gore bias, Bya).

Wyiss2 = W — AF — By (3.34)
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Find the small/large N intersect using
equation 1.30 for Nc and place the
present work distribution in either

small or large N regime.

If large N find B, using &
1st order expansion |
equation 1.28 i

If small N then find a
using equation 1.32

e N

Find B, using small N

approximation equation
1.29.

{ Find B, using small N
{1 approximation equation
1.29 again with

corrected W

Figure 3.4: Flow diagram of the steps taken to calculate the Gore bias of a Jarzynski
estimate.

Gore et al. discuss an example using a test system, without sampling noise, where the B,
of Jarzynski estimates with switches displaying a number of Wg;,,.s are calculated using the
equations discussed above. These Bjs were compared to the bias found using effective Al
(exhaustive numbers of switches) [Gore et al.(2003)Gore, Ritort & Bustamante]. The calculated
B s seem to match with the exhaustive estimates well, although the two start to diverge at the
small/large N intersect area as the size of the Wy;s, is increased.

In practice, there may be a number of problems with the wider use of the Gore bias correc-
tion: The work distributions of large complex systems and perturbations may not be Gaussian
at the levels of N that are easily obtainable. The Gore bias correction would possibly be used
with faster switches and medium levels of N, which may often be the area where the model
works least well. Hence, when a work distribution has a large Wy;s, it may be more accurate
to use the Gore bias correction with smaller N rather than N which is close to the small/large
N intersect. In this study the small N approximation (equations 3.30 and 3.34) will be tested
to gauge its suitability for general use. The large N 1st order expansion (equation 3.29) is not

used as when this method for estimating the bias is valid the variance is by far the dominant
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form of error.

It may be possible to design FG calculation which are well behaved for many systems aud
display very small levels of bias. However, it is difficult to be sure of the level of bias present
in an estimate without having an idea of AF,,. As the Gore bias methodology discussed above
shows, the bias of FG calculations behaves in a way which may be statistically tractable and
predictable, so it may be possible to predict a well converged estimate.

Wu and Kofke developed a measure of the bias of a Jarzynski estimate based on measuring
sampling specifically in the tails of the work distribution called the "neglected tail model” [Lu &
Kofke(2001)]. The neglected tail model was originally developed for use with FEP calculations
which use many (100,000s) measurements to find the average, exp(—BW). This model was ex-
tended for general use with FG calculations which use any amount of sampling. The extended
model assumes that all of the bias is due to the lack of W contributions below a particular level,
W*. The extended neglected tail model was tested on the same Gaussian work model as used
by Gore et al. and found to have improved agreement with the numerical bias.

Wu and Kofke subsequently defined a measure ([]), for the case of the near equilibrium
regime, where [[ > O when the calculation is fully converged and bias is negligible [Wu &

Kofke(2004)].

II= \/WL [%(N - 1)2} — Bow. (3.35)

Where W (z) is the Lambert W function, defined as the solution for w in * = wezp{w}. A
plot of bias of the Jarzynski estimator against [] is a curve which meets the point of negligible
bias at [] = 0. Again, [] is susceptible to the generally biased estimate of Wgy;,s through ow
(the standard deviation of the works) of equation 3.35. However, Wu and Kofke attempt to
demonstrate that [[ would not take on a value suggesting convergence when convergence had
not been achieved and is therefore "fail-safe” [Wu & Kofke(2004)]. It is important to note that
this "fail-safe” does not extend to cover the case of non-gaussian work distributions.

Another important idea not considered by equation 3.35 is the fact that the bias is often
not syminetric, i.e. it is not same in the forwards and backwards work distributions. Without
knowledge of AF,, or the phase-space relationships of the A and B end states it is difficult

to know which direction is more prone to bias. With this in mind Wu and Kofke developed a
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method of measuring phase-space relations which they called ”relative-entropy measures” [Wu
& Kofke(2005a)]. Information theory defines the relative entropy measures S4 and Sp, from

each end state as,

Sa = /F dypa(y)In [pAm], (3.36)

sa = [ dwst)in [pB (3.37)

where I' is the area of phase space important to the system, i.e. where the system resides
almost all of the time, and p4(y) and pg(v) are the probability densities for phase space points
(vel') from the A and B end states. This definition of relative entropy may not be familiar
to statistical mechanics and S4 and Sp are not related to the entropies of states A and B,
but a connection with the information theory concept has been shown, with a specific ex-
ample of the non-equilibrium relaxation of a polymer chain system, which is relevant to this
work [Qian(2000)].

Equations 3.36 and 3.37 are unfortunately not in an accessible form as the full phase space
distributions of systems of interest are not presently tractable. Wu and Kofke expressed equa-

tions 3.36 and 3.37 as,

Sa = (BW)4_p— BAF, (3.38)

Sp = —(BW)p_a+PBAF, (3.39)

through the fact that p4(y) = e #V4(") /Z,4 and hence v can be replaced by W in equation 3.37.
This new form (equation 3.39) is useful as S4 and Sp are equal to the Wiss Of the respective
work distributions. S4 and Sp are equal to zero when the work distributions of switches start-
ing at systems A and B are identical. As the S4/Sp ratio becomes larger the important phase
space sizes of systems A and B become more different, with the system with a lower S having a
smaller important phase space. As the size of both S4 and Sp increases, while staying similar
relative to each other, the displacement of the two end system phase spaces will also increase.

Equations 3.38 and 3.39 have been derived independently by Jarzynski [Jarzynski(2006)].
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Using the expressions for [] and S above a definition for ] which takes account of asym-

metric bias in work distributions in the forwards and backwards directions is,

II = \/%WL [%(N—1)2_— 254, (3.40)

A—B

H = \/‘;_jw,; [%(N—1)2-—\/283. (3.41)

B—A

Here Bow has been replaced by /254 as S4 is equivalent to Wy;ss and a dependency of [T on
W included to account for the phase-space relationship between A and B end states [Wu &
Kofke(2005a)].

It may be important to note that only in the case of FEP (instant FG switches) will equa-
tions 3.38 and 3.39 connect directly to equations 3.36 and 3.37. However, Wu and Kotke
comment that the heuristic in equations 3.41 should generally apply to FG calculations which
do not use instant switches [Wu & Kofke(2005b)]. Also, statistical error can affect [ and to be
sure of a bias free estimate, confidence limits of [| must be checked. For this reason Wu and
Kofke suggest using [[ > 0.5 as a prescription of an accurate estimate.

Again, Wu and Kofke demonstrate the applicability of equation 3.41 with simple one dimen-
sional Gaussian models [Wu & Kofke(2005a)]. The model perturbations with varying phase-
space relationships all display the same relation in bias and [] with negligible bias corresponding
to [[ > 0. Also, logical arguments as to the ”fail safe” nature of the [[ measure with regard
to the general bias in estimates of S4 and Sg (V_Vdiss) are presented similar to those discussed
above for equation 3.35. An extra measure designed to guard against a possible false positive

[T >0, is to swap the AF estimates used in producing S4 and Sg as below,

Sa = (BW),p— BAFp_4, (3.42)
Sp = —(BW)p_4+BAFa_B. (3.43)
This seemingly arbitrary extra measure gives a larger estimate of S4 and Sp, especially in the

case of a large underestimation of S4 or Sp, due to estimator bias, and thus makes it more

difficult to obtain a false positive [[. One caveat to the fail safe is noted where N is very low
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(less than about 4) and [] can approach 0. The signal for detection of this error is the rapid
decrease of [ with extra switches.

Central to the idea of microscopic reversibility (equation 3.14) described above and the
idea of there being a single work distribution, is the idea that any forward switch has an exact
backwards equivalent and wvise versa, or that switches exist as conjugate pairs related by time
reversal. This idea is discussed at length for deterministic dynamics with explanations for

most common types of system by Jarzynski [Jarzynski(2006)]. Jarzynski also shows that the

dominant switches, important to the exponential average (close to p(W)e'ﬁW in figure 3.2)

are the conjugate twins of the most common switches, which result in work values close to
the W peak in the work distribution as shown in equation 3.44 where we use Cé‘;m to denote

the dominant switches of the forwards distribution and (£, for the common switches of the

backwards distribution.

Caom = Com (3.44)

This is- nicely illustrated by an ideal gas enclosed within a piston where for the process of
pushing the piston into the gas the dominant switches are those where there are no collisions
between piston and gas i.e. where the system starts in the type of configuration from which
you would expect the process in the opposite direction to start. Further, Jarzynski has shown
that the relative contribution of a set of forward switches to the exponential average is equal
to the probability of realising the conjugate twin of this switch in the backwards direction and

vise versa.

These ideas are important when thinking about how many switches may be needed to obtain
a converged AF estimate and which estimator is most eflicient for a particular calculation. To

obtain a converged estimate of AF from the Jarzynski estimator, dominant switches must be
sampled from the region close to p(W)e W . Using equation 3.15 the probability that a sampled

forwards switch is the the region ¢ ;;m is,

P(Zaom) = /F d[ZrIN]PIZp|\] = /R dZa N PZrIMesp{—BWasssZrIN]).  (3.45)

dom com

Then as (£, constitutes almost all of the backwards work distribution, P[Zg|\], we can say,
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P(Zgom) ~ exp{—BWaiss|[Zr|\e]} /CR d[ZR|N)PZR|A] ~ exp{—BWaiss|Zr|N]}.  (3.46)

Thus, a good estimate of the number of switches to obtain an example of Cfom is,

NziF;m = P(Zdom)_l ~ exp{'f‘ﬁWdiss[ZRl/\t])}, (3.47)

and similarly in for the backwards calculation,

Nzﬁm ~ el‘p{'f‘ﬁWdiss[ZFMt])}- (348)

This suggests that as a rule of thumb the number of switches needed for convergence varies
exponentially with the average work dissipated. This is very similar to the relationship dis-
cussed above as part of the Gore bias [Gore et al.(2003)Gore, Ritort & Bustamante]. However,
here it is W in the opposing direction to that of interest which is related to the convergence
i.e. the work dissipated in the backward direction determines the convergence of the forwards

calculation.

For the case of work distributions where the bias is not symmetric in both directions, as
discussed above, this suggests that the direction which has the largest Wy;ss will converge most
quickly. Thus, this reasoning of Jarzynski agrees with the relative entropy measure approacl
of Wu and Kofke discussed above which has similar conclusions with regards convergence and
Waiss of the work distribution in the opposite direction. Although this idea is counterintuitive
it can be easily rationalised through studying the relative sizes and positions of forwards ail
backwards work distribution with regard to AF. Figure 3.5 shows the forward and backward
work distributions for a single free energy difference where the Wy, is smaller for the backward
compared to the forward distribution. The forwards distribution is wider than the backwards,
which is much taller. Also, owing to equat%on 3.44¢ g)m is closer to AF than ¢ (ﬁm. Consequently
the probability that a forward switch is dominant is higher than the probability that a backward
switch is dominant, as dominant switches are found deeper in the tail of the backwards distri-
bution. Hence, the switching direction with the highest Wy (forwards direction for the case of

figure 3.5) will converge to an accurate result with fewer switches than the alternative direction.
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Figure 3.5: Representation of forwards (black) and backwards (red) work distributions
where the backwards distribution (p(W)g) has a smaller Wy;ss than the forwards dis-
tribution than the forwards distribution. The AF is found at the point where the two
distributions meet.
Importantly, the findings of Jarzynski discussed here and the relative entropy measures
of Wu and Kofke discussed above are not limited to Gaussian work distributions as are the

Gore bias and Kofke bias measures [Gore et al.(2003)Gore, Ritort & Bustamante], [Jarzyn-
ski(2006)], [Wu & Kofke(2005a)]. Therefore, it may be that relative entropy measures are more
generally applicable to real FG calculations than the Kofke bias measures. By simpily calculat-
ing the Wy, of the forwards and backwards work distributions it may be possible to pick the
most accurate estimate in the case that BAR is not the most accurate. However, as discussed
for the Kofke bias measures, estimates of Wy, found through calculations where an exhanstive
protocol is not possible are prone to bias. This bias may cause the prediction of the most
efficient switching direction to be incorrect when forwards and backwards distributions have

relatively similar amounts of bias while still being different.

3.3.4 Extrapolation methods

One of the earliest FG methods attempted to remove the sampling bias (equation 3.25) of
standard fast switching calculations through block averaging and extrapolation [Zuckerman &
Woolf(2002a)]. In essence this is a simple idea. As more and more switches are added to a work

distribution, a Jarzynski estimate will become more and more accurate. Thus, given a certain
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amount of work data, it may be possible to extrapolate to the infinite data limit and obtain
a good estimate of AF,,. However, the behaviour of estimates as more work data is added
is often erratic, as with many non-linear averages, making extrapolation difficult. Therefore,
block averaging all of the work data can be employed to give a well behaved monotonically
decreasing set of running estimates with which to extrapolate. Initially, block averaging was
done using each work value only once, after a random reshuffie of work values from the order they
were performed, limiting the number of possible blocks with the number of switches perfromed
[Zuckerman & Woolf(2002a)]. It was found reshuffling the work data again gives rise to variation
in AF estimate curves. This variation was removed by resampling the data and increasing the
numbers of blocks used for each AF estimate [Ytreburg & Zuckerman(2004)].

Ytreburg and Zuckerman (2004) define their Jarzynski estimate block averaging scheme

with Ny, work values, Ny work values in each block and m blocks as,

1 Ntot/Npii

AFpiay = — > —kpTIn(exp{—BW}),. (3.49)
i=1

Work values are drawn at random and not replaced until a block is complete, so m can be made
~ 100 X Nior /Ny Then AFpyy 4, is simply averaged over the number of blocks m to produce
an estimate of AF for a particular Ny termed here as AFy.

Extrapolation of these block averaged free energy estimates has been carried out with two
methods [Ytreburg & Zuckerman(2004)]. Both methods start by plotting AFy as a function
of x where,

X=—- (3.50)

n

T must be picked from the range 0.3 < 7 < 0.7, all of which produce useable results. The
choice of 7 controls the spread of the data in a plot; decreasing 7 causes the data to be confined
to a small region near to x = 1 with a large distance to extrapolate to x = 0, increasing 7
leads to the spread of the data becoming larger and the slope of the tail can become uncertain.
Ytreburg and Zuckerman (2004) find a 7 = 0.5 is optimum for linear extrapolation with their
test systems (discussed below). The limit Ny, = oo is now found at x = 0.

The first method is a simple linear extrapolation method where after plotting AFy against
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X the data is extended with a straight line using only the small y tail to y = 0. Thus, another
choice must be made over the extent of the small x tail. Ytreburg and Zuckerman (2004) use
a small yx tail which is 1/5 of the data, as using more introduced bias into any extrapolated
estimate and any less resulted in similar estimates as for a x tail of 1/5, but with greater
uncertainty.

The most precise AFy values are always found with small Ny (x = 1) as these estimates
are averaged over the most blocks. This being the case it may be a problem that the linear
extrapolation method described above uses only the most uncertain AFy estimates at small
X to extrapolate to x = 0. Therefore, Ytreburg and Zuckerman (2004) devised an alternative
extrapolation scheme where all estimates across y are integrated into an extrapolation.

A cumulative integral estimate (CI) of AFn(x = 0) is given by,

dAFN(X')) .

i (3.51)

crt0 = [ ax (AFN<X'> B
X

CI(x) is started from CI(x = 1) and accumulated across a plot to CI(x = 0) where CI(x) =
AF'. Also the derivative in equation 3.51 is found by numerical methods. 7 is chosen differently
for this CI extrapolation scheme compared to the previous linear method. Here 7 is not fixed
but is chosen for each extrapolation process to minimise the slope of the tail of the small x tail
of CI(x). Again the small x tail of CI(x) is 1/5 of the data.

Ytreburg and Zuckerman (2004) tested their linear and CI extrapolation methods on five
test systems of increasing complexity: a perturbation between harmonic oscillator potentials, a
chemical potential calculation with a Lennard-Jones fluid, the growth of a chloride ion in watcr,
a perturbation from methanol to ethanol in water, and a stearic to palmitic acid perturbation
in water. Jarzynski estimates and estimates using linear and CI extrapolation are made for
each test system with estimates of AF, found from subsets of the total data, averaged over
500 repetitions for a range of Ny from 10 to 1000. This range of estimates are compared to
-Jarzynski estimates found using all work values available and A F's found using various equilib-

rium methods.

For all systems these extrapolation methods are found to give more accurate estimates of
AF than the Jarzynski estimator for small N;,. For the less complex systems (harmonic oscilla-

tor potentials and the Lennard-Jones fluid) Jarzynski and both extrapolation methods converge
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to the similar AF's which are the same as independent estimates fouud exhaustively by other
methods. For the more complex systems (growth of a chloride ion in water, methanol to ethanol
in water and stearic to palmitic acid in water), at Ny, = 1000, linear extrapolation estimates
find similar AF's to the exhaustive Jarzynski estimates. However, the independent, exhaustive
AF's are different due to bias in the exhaustive Jarzynski estimates. CI extrapolation seems to
give estimates closer to these independent, exhaustive AF's. The authors suggest that the CI
extrapolation method is able to see beyond the small amounts of work data it is given. They
also compare the amount of work data needed for AF estimates to within 2 kcal.mol™! and
find that CI extrapolation is 5-40 times more efficient.

Although the CI extrapolation method seems to offer improved accuracy it also displays
increased levels of statistical uncertainty compared to using the Jarzynski estimator alone. The
standard deviation of estimates from the 500 repeats more than doubled for CI extrapolation

compared to the Jarzynski estimator (from ~ 1 to~ 3 kcal.mol™!) for the palmitic to stearic

acid test system, where the difference in accuracy was ~ 2 kcal.mol~!. Also, these 500 repeats
were made by drawing small numbers of work values at random from the large number of works
available for each system. This means that equilibrium starting configurations used to produce
work values in any repeat are spread over a much larger area of phase space than would be the
case when using these methods for real calculations where the large number of work values is
not available. When using these methods it would make no sense to produce many work valucs
and then only use a small subset for any subsequent calculations. It is not clear how well these
extrapolation methods would compare to Jarzynski when used with using small numbers of
work values produced from equilibrium starting configurations which are produced in sequence.

Another issue not mentioned in this study of extrapolation methods is the effects of non-
symmetric bias in forwards and backwards work distributions [Ytreburg & Zuckerman(2004)].
Especially for the more complex test systems, work distributions may be more efficient in one

direction, or together when used with BAR.

3.3.5 Rosenbluth FG sampling

Wu and Kotke recently introduced a set of FG methods which attempt to improve the sampling

of the rare, important switches which are close to p(W)e W in figure 3.2 by applying a bias
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to the calculation [Wu & Kofke(2005¢)]. The name Rosenbluth FG sampling is taken from
the Rosenbluth-sampling methods [Rosenbluth & Rosenbluth(1955)] used in MC simulations of
lattice based polymeric chains. The idea of breaking an extremely unlikely event into smaller
more likely events is applied to producing an FG switch which has a work value close to the
highly weighted p(W)e W peak.‘

The structure of a switch within the original FG sampling method has a predefined set of
uniformly spaced A values starting at 0 and ending at 1. A predefined number of MC trials
are carried out at each A value before incrementing to the next and adding the work performed
in that X increment to the total work for the switch (equation 3.2). However, in the course of
switching from systems A to B the work performed at each A increment is often not uniform.
Depending on the perturbation, often particular areas of a switch are more or less prone to
producing large work values. When a high work is probable, it is possible that the size of the
work can be lowered by particular favourable system configurations or by using very small A
increments. However, using very small A increments throughout an FG calculation may be
seen as ineflicient and favourable system configurations cannot be relied upon as they must he

chosen at random from the Boltzmmann distribution.

Wu and Kofke applied Rosenbluth sampling to bias the choice of both the size of individual
A increments and the configuration the system takes up while undergoing a A increment, in
order that the work performed for each A increment of a switch is low. Three methods were
descibed: A bias FG which biases the size of each A increment to minimise the work performed,
configuration bias FG which biases the configuration the system takes up when undergoing a
A increment, and a hybrid bias FG which does both.

With A bias FG the A value to which the system is incremented, is found from a continuuin
weighted by the potential. This continuum is structured in such a way that A cannot go back-

wards with \; € [\;_1, a;] where a; is a predefined set of incremental constants i.e.

O<ar<ay-<ap—1=1. (3.52)

Thus, for each A increment the new A ();) is found from a continuum between the current A
(Ai—1) and the next a value (a;). This allows a variation in the maximum that A; can take up.

The selection of A; according to the potential of the current configuration (Uy,(gi—1) with
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probability density

1

P, (\N)= ———W—
-3 (M) Ri(gi—1;Xi-1)

pi(Ai)e_ﬁQKUAi(Qi—l), (3.53)

where R;(g;—1;Ai—1) is the Rosenbluth weight, which ensures a normalised probability:

a;
Ri(gi-1; Xi-1) =/ pi(A)e ParUalai-1)g), (3.54)
Ai-1

Here ak is a predefined constant designed to control the influence of the potential of the present
configuration (Uy,(gi—1)) on the weighting of the probability density Py,_,(A;). Also, p;i(A) is
another weighting term designed to control the size of the potential weight from outside the
exponential term. It is possible that the form of these two weighting terms rely on ¢ and are
different for each A increment, although this must be predefined and not depend on Uy, (g;—1).
As there are a predefined number of A increments (n), the final A increment must be made such
that A, = 1 and hence cannot be weighted.

Each A bias FG switch will be slightly different depending on the configurations which the
system takes up for each A increment. Because the probability density applied to find each
new A value in each switch is different, the resulting work values do not give an average which
relates directly to the free energy difference. The work performed must be modified to account

for the specific weighting of each A bias switch as follows,

BW (Aie1 — A {ﬂ(l.* ar)Ux (¢i-1) — BUx_, (@i=1) — In[Ri(gi—1; Xi-1)/Ti(Mi=1)]  if 1<i<mn

IBU)\n (Qn—l) - IBU)\n—l(qn—l) ’Lf 1 ="n.
(3.55)
In equation 3.55 the I;(A;—1) term is defined as,
a;
Li(hoy) = /A Dpi(N) (3.56)
i—1

to account for the ideal-gas normalisation for switching A from A;_; to A;. Wu and Kofke
also demonstrated that this definition of the work was consistent with the Jarzynski equality
(equation 3.6) by defining AF in terms of these A values chosen from a distribution [Wu &

Kofke(2005c¢)].
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There are various options in defining the parameters ag, a; and p;(A\). The ax parameter
should in essence be varied depending on the general size of the system potential. If the potential
is very large it would bias A increments to be very small, causing a large final A increment to
complete a switch and inevitably large total work values. The ay parameter should be less
than one so that it reduces the effect of the potential on the probability density Py, _, (A;). Wu

and Kofke use,

ax = 1/Ny, (3.57)

where N) is the "number of atoms or particles involved in the difference between the A and B
systems”. This came from direct investigation of the use of ax values from 0 to 1 on four quite
different test systems, each of ten independent harmonic oscillators (Ny = 10). A minimum
of inaccuracy was found in each of the four cases which corresponds to using « K defined by
equation 3.58. Although equation 3.58 is the best definition of aj for these harmonic oscillator
systems, it is probable that a quite different definition may be required for large bio-systemns
with thousands of atoms, of which only a very small fraction are perturbed in changing from
end point systems A to B.

The obvious choice of a; is to have each a value equal to 1. This would allow each new A
to be any value from the present value to 1. In the case that the potential does not react to a
large increase in A this would allow the switch to proceed to towards A = 1 very quickly whichi
would be desirable as it would avoid the situation of have a large forced final A incremeunt.
Unfortunately, this situation can cause large work values as the subsequent small A increments
produce very small Rosenbluth weights (equation 3.54) and the corrected work contributions
would not be small. Depending on how it is defined, the effect discussed here can be controlled

by the I; term. Wu and Kofke found the definition,

a; =i/(n—1), (3.58)

for a; preferable to the above for their test systems. Equation 3.58 gives the process an upper
bound for each A increment and prevents initial A increments from being too large.

Wu and Kofke used p;(\) = 1 in all their presented results [Wu & Kofke(2005c)]. This

means that no extra weight, except that involving Uy(z;—1), is given to the selection of A;.
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Wu and Kofke discussed two other possibilities which although interesting were not considered

useful and will not be discussed here.

It is worth discussing the practical implementation of A bias algorithm, carried out as part
of this study, as it is not simple and there may be different possibilities not discussed by Wu

and Kofke. Figure 3.6 is a flow diagram describing one FG switch of the A bias algorithm.

Find
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Figure 3.6: Flow diagram describing the A bias algorithm. Step numbers are marked in
light blue.

A bias FG attempts to find a new A value from a distribution dictated by the probability
density P,,_,(A;). In practice, sampling from this distribution can be achieved by: Taking a
random JA; from A;_; to a; (step 5 figure 3.6) and accepting or rejecting it through compari-
son of the probability density F,,_,()\;) to a random value (rand(0-1) in step 8, figure 3.6). If

Py, () is less than rand(0-1) it is rejected and a new \; is selected. This is repeated until a A;
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is accepted and this value then becomes A;_; (step 9). As P, ()\;) is a probability density it
must be normalised in some way such that different calculated P,,_, (A;) values are equivalent.
This can be done either by selecting rand(0-1) from the range 0 to F,,_,();) or by finding the
maximum value for Py, ,();) through equation 3.53 (step 4 in figure 3.6) and using this to
normalise the present Py,_, (A;) so it will be in the range 0 to 1 and then also finding rand(0-1)
in the range 0 to 1.

Step 3 in figure 3.6 utilises equation 3.54 and muét integrate over the system potential froi
the current value of A (A;—1) to the next set maximum A value (a;) to produce the Rosenblutl
weight (R;(gi—1; Ai—1)). This integration must be performed numerically and in this study the
trapezoidal rule was used. It is important that this numerical integration calculation is accurate
otherwise the biasing of new A values described above will be incorrect. As the potential of a
system often undergoes constant fluctuation, 1000 sample points from A;—; to a; were used to
ensure an accurate integration result. Evaluating the potential 1000 times can be extremcly
demanding on a large system and it is advisable to limit energy evaluations for this calculation
to the forcefield terms directly affected by a change in A.

Configurational bias FG sampling uses the idea of Rosenbluth sampling to bias the use of
configurations which are used to increment A to produce switches with a lower Waiss. The
structure of a standard FG switch has a predefined set of uniformly spaced points where A
increments are performed. This means that the system configuration present at each of thesc A
increment points is used whether or not these configurations allow the low work values preferred
in producing a low W giss.

At the point a A increment is performed, configuration bias FG selects a system configu-
ration from a subset of those configurations the simulation has taken up since the previous A
increment. The choice of configuration is biased to one which produces a low work value when
the A increment is performed. Thus, the switch produced via configuration bias may be more
important to the exponential average, exp(—SBW), in equation 3.6.

The configuration to be used in a A increment is selected from a set of m taken at uniform

intervals from the simulation since the previous A increment according to,

Py, (gi1) = —R;(l—;)ewp{—ﬁf[UAi (g1} (3.59)
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In equation 3.59 the Rosenbluth weight defined as,

Ri(A\) =Y exp{—Bf U, (qi-15)]}- (3.60)

Jj=1

The term f[Uy,(gi—1,;)] is a function of the potential for which Wu and Kofke list two possible
options: Configuration bias-c, where as with A bias, f[Hj,(2i-1,;)] = axH)(2zi—1) and ak has
the same definition as for A bias (equation 3.58). Configuration bias-d where f[H), (zi-1,;)] =
H),(zi—1) — Hy,_,(2i-1) and is simply the work incurred in performing a A increment.

Again the definition of the work performed on each switch must be modified to account for

the differences in internal structure as follows,

BW (Xi—1 = Ai) = BUx(gi-1) — BUx_, (gi—1) = BFUr(2i-1,5)] — In[Ri(N;) /m]. (3.61)

With configuration bias-d equation 3.61 collapses to contain only the term containing the Rosen-
bluth Weight.

Figure 3.7 is a flow diagram describing a single switch of configurational bias F'G.
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Figure 3.7: Flow diagram describing the configuration bias algorithm. Step numbers are
marked in light blue.

The configuration bias algorithm should in theory be less computationally demanding that
the A bias algorithm described above as it does not involve a computationally expensive numer-
ical integration. However, as the whole system configuration must be stored (step 3 in hgure
3.7) m times, m must be limited by available memory. A good check on correctness of the
algorthm is that the sum of Py, (g;—1)s far all stored configurations for a A increment should be
one. For this implementation the biased selection of stored configurations (step 7 in figure 3.7)
was performed by summing Py, (g;—1) for each stored configuration and which ever part of this
sum a random number from 0 to 1 falls in, is chosen.

As recognised by Wu and Kofke the present A bias algorithm has limitations for systems
with small or no phase space overlap [Wu & Kotke(2005¢)]. If a A bias switch has barriers to
sampling after the initial stage’s, A increments will be small and the final forced increment will
incur large amounts of work. Wu and Kofke (2005a) attempt to alleviate this problem to some
degree through a hybrid of both A and configuration bias.

Hybrid bias FG is organised so that first a number of system configurations are generated
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and one chosen in a way biased by the subsequent A increment. The size of the subsequent A
increment is then chosen as discussed above with A bias. The hybrid bias probability density

for selecting the configuration with which to perform a A increment is,

Ri(qi—1; Mi—1)

HOw (3.62)

P5._(gi-1) =

In equation 3.62 R;(gi—1; A;—1) is the same term as found in the A bias method described above

(equation 3.54) and the Rosenbluth weight R}();) is defined as,

Ri(X) = Ri(gi-1,5 Mi-1)- (3.63)

J=1

Then the modified definition of the work for hybrid bias FG is,

BW (Xi—1 — A)

B(1 — ax)Ux(gi-1) — BUx_1 (i-1) — In{[Ri(Xim1)/mLs(Ai1)]} if 1<i<n
BUN, (gn-1) — BUx,_, (n—1) = Bf[Ur, (@n-1)] = In{Rp(Xn)/m}  ifi=n.

(3.64)

Wu and Kofke only consider the use of hybrid bias with the configuration bias-c definition
of f[Ux,{gn-1)]- This is because the ax parameter was shown to be important to A bias, and
hybrid bias mainly uses the parameters of A bias.

Thus, Wu and Kofke have provided three Rosenbluth FG sampling algorithms which, with
various parameter options, give a number of possible methods [Wu & Kotke(2005¢)]. The six
possible methods discussed above and listed in table 3.1 were investigated using four harmouic
oscillator test systems (test systems discussed in the next chapter). The Gaussian nature of
these harmonic oscillator systems allowed the analytical production of equilibrated configura-
tions at each step. FG switches produced with this method of sampling are still nonequilibriuin,
due to the discrete steps in A, but the nonequilibrium effects of Hamiltonian lag are minimised,
modelling the effects of large amounts of sampling between A increments. They found that A
bias has increased efficiency compared to original FG when applied to systems with a reason-
able amount of phase space overlap and where the size of phase space important to the startiug

system is much larger than the destination system. Configurational bias-d FG was found to
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give improved accuracy and efficiency compared to original FG when there is less overlap of
end point systems A and B.

Wu and Kofke then investigated four of these methods (2, 3, 4, 6) using standard metropolis
MC with the same four harmonic oscillator test systems (discussed in the next chapter). In
this study, these same methods will be investigated with similar systems and a larger water-
methane system, with protocols designed to assess their suitability for calculations with larger

bio-systems. These investigations and discussions of these systems start in chapter 3.

Method number | FG sampling method a; U, (gn=1)]
1 A bias 1
2 A bias i/(n—1)
3 configuration bias-c arUy; (wi-1)
4 configuration bias-d U, (gi-1) — BUA,_,(gi-1)
5 hybrid bias 1 axUx(gi-1)
6 hybrid bias i/(n—1) axUy(gi-1)

Table 3.1: Parameters for six Rosenbluth FG sampling methods investigated by Wu
and Kofke [Wu & Kofke(2005¢)]. In all methods except method 4 Wu and Kofke used

Qp = 1/N,\

3.3.6 FG path sampling

As discussed above and in the literature the major obstacle to efficient use of FG calculations
is the bias of AF' estimates due to the non-linear nature of the exponential work average
in equation 3.6 [Gore et al.(2003)Gore, Ritort & Bustamante]|, [Zuckerman & Woolf(2002b)],
[Hummer(2001)], [Shirts & Pande(2005)]. In contrast the TI based methods discussed above
do not experience this bias as they do not involve any non-linear average (discussed [Shirts &
Pande(2005)]). This advantage of TI over FG based methods is the motivation for another sct

of methods discussed here.

Sun (2003) derived an expression for AF which utilises FG switches but is similar to TI
based methods in that it does not contain a non-linear average. This derivation starts by

defining a function f(ag) where ag is a weighting variable, using equation 3.8 above, such that,

_ JdlZr] P[ZFl/\t]emp{—asﬂW}.

[ dzo Plzo) (3.65)

flas)
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where [ d[Zp] is an integration over all possible switches from systems A to B and P(zo) is the
probability of a switch starting configuration zg i.e. the ensemble probability of a configuration
for system A (P(zg) = exp{—BUa(gn)}). According to equation 3.65 the AF is found when

ag = 1. Thus the derivative of f() with respect to ag is,

Of __pJdize] PZeNWerp{-asW) [ dize] PRrJerp{-astW) g oo
dag [d|ZF] P|Zg|A\]exp{—asfW} [ dzo P(z) ) '
In the more concise notation style of equation 3.6 (Jarzynski equality) we can denote:
fd[ZF] P[Zp|/\t]Wexp{—a3,BW}
Wy .= . 3.67
Was =" aze] PlzriNleap{-aspW] (367
The derivative (equation 3.66) above can now be written
of
E =—p <W>a5 flas). (3.68)

Solving equation 3.68 for f(ag) gives

flas) =ezp{-p [ daly )y | (3.69)

Now the free energy difference can be expressed as:

AF = /0 dag (W), (3.70)

Equation 3.70 is a result from which AF can be found with a linear average which expe-
riences no internal bias. This linear average is over a new distribution weighted by the work
and extra weighting variable ag (ezp{—asBW}). Thus the sampling employed to accumulate
this average must sample switches such that works of a particular value have the probability
exp{—asfW}.

Another comparison can help understanding of equation 3.70 and the relevance of the g
parameter: When switches are made instantly the Jarzynski equality becomes the FEP method
described in the previous chapter. In the case of equation 3.70 instant FG switches producc

the TT method where ag replaces A,
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lim (W), = <5H(a5) >GS (3.71)

t=0

With the advent of a method of calculating AF' from a straight average of FG switches, it
is important to understand the possible reasons, if any, for using finite switches over instant
switches. When evaluating AF's of complex bio-systems, which is the ultimate focus of this
study, barriers between regions of configurational space, due to hard potentials, can hinder
the sampling of the necessary areas. The same is true of switch space, possibly even more so.
The longer the switches employed between systems A and B, the easier it becomes to reacl: all
areas of switch space. Also, as shown explicitly by Sun (2003) the variance of (W),  would he
expected to increase with shorter switches.

The actual comparison between FG path sampling (FGPS) and TT as discussed in the pre-
vious chapter is not as simple as discussed here and by Sun (2003). It should be made clear
that although equation 3.70 collapses to equation 3.71 the o parameter is distinct from A and
hence different parameters are being integrated in FGPS and TT.

A similar FG path sampling approach was developed subsequently by Ytreburg and Zuck-
erman (2004b) where only a single ensemble average must be converged to obtain AF, called
single ensemble path sampling (SEPS). Here a distribution is sampled from all possible switclies
which weights the selection of switches with low work values such that the work average can hc
related to AF'. In deriving their methods Ytreburg and Zuckerman (2004b) consider the samc

ratio seen in equation 3.8 where P(zq) is brought into the probability of a switch, P[Zg|A/],

giving,

[d[Zp] PlZp|)\)exp{—asBW}
[d[ZF] P[ZF|)\] '

exp{—PAF} = (3.72)

This can be rearranged by introducing a new, as yet undefined, work weighted distribution

D[Z || giving,

[ dZs] DIZe|N] (PIZrIN/DIZeN]) eap{~BW) |
esp{=BAFY = T ] Dz Pz DN O

_ 2PN Pz Jezp{~AW}/DIZr|N] (3.74)
ZD[ZF|’\‘] P[ZFp| M|/ D[ZF|\] | |
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where ZD[ZF ] signifies a sum over all switches produced according to D[Zg|X;]. The work

weighted distribution D[Zg|A;] is then defined as,

DIZr|A] = P[Zr|\exp{~B/2W). (3.75)

Ytreburg and Zuckerman (2004b) found this choice of D[Zfg|)\;] to be optimal and did try

others. With equation 3.75, equation 3.74 collapses to give an expression for AF":

D[ZF|/\1,] D[ZFI’\f-]

AF=%1n Z exp{—5/2W}/ Z exp{+6/2W} 5. (3.76)

As long as equation 3.76 is correct SEPS should be more efficient than original FGPS as ouly
one average needs to be evaluated.

The implementation of FGPS and SEPS requires that switches are sampled from specific
distributions; it is important to discuss the algorithms used as they may present problems which

affect how useful these methods are for the sorts of calculations of interest.
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Figure 3.8: Flow diagram describing the path sampling algorithm. Step numbers are
marked in light blue.

Figure 3.8 is a flow diagram describing the sampling procedure for both FGPS and SEPS.
The major difference between FGPS and SEPS with regard to figure 3.8 is the acceptance
test (step 6). For FGPS a new switch (Zp)(switch 1 in figure 3.8) with work W' is accepted

according to,

(3.77)

wii [1’ P|Z 1| M)GZ pr]exp{—as W }} |

P[Zr MG [Zrlep{—asfW}

where G[Zp] is the probability of generating switch 1 from switch 0. For SEPS a new switch

is accepted according to

mi |i1’ P[ZF'|/\t]G[ZF']e:Cp{_ﬂ/2VV/}:| ] (578)

PIZrINGZrlexp{—B/2W)
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It may be important to note that equations 3.77 and 3.78 have an extra term compared to
the original FGPS and SEPS studies [Sun(2003)], [Ytreberg & Zuckerman(2004b)]. Ytreburg
and Zuckerman put forwards a correction to their original acceptance criterion which is the
form listed above [Ytreberg & Zuckerman(2004a)]. Owing to equations 3.77 and 3.78, both
FGPS and SEPS require the calculation of the statistical weight of each switch (P[Zf|)A¢]. For
deterministic dynamics the statistical weight of a switch is simply the Boltzmann weight of its
equilibrium starting configuration. For stochastic dynamics the statistical weight of a switch is
the product of the Boltzmann weight bof equilibrium starting configurations and the transition
probabilities of each simulation step.

Step 3 in figure 3.8 randomly perturbs the randomly chosen shoot configuration which will
be the starting point for the new switch (switch 1). This is not always necessary in the case of
stochastic dynamics as the random nature of these simulations ensures the new switch is differ-
ent from the old one. Another issue that is worth note is the need for all configurations of the
new and old switches to be stored in memory so that they may be used as shoot configurations
for the next switch. This means there will be an upper limit of the size of switches.

Sun (2003) compared FGPS to the Jarzynski equality (equation 3.6) using a free energy
difference between one dimensional harmonic oscillators with system A having a double well
in its potential and system B having a single well. Jarzynski estimates were unable to give an
estimate accurate within 15 kg7 using 1x10% switches, whereas FGPS used 10,000 switches of
the same length to give an accurate estimate. Also, a perturbation of the separation of two
methane molecules in a periodic box of water was studied, with the separation being 8 A at
system A and 4 A at system B. Again with 5 ps deterministic switches FGPS gave accurate
estimates where the Jarzynski method did not.

Ytreburg and Zuckerman (2004b) compared the computational time used in Jarzynski es-
timates using various switch lengths, TT with ten A windows and SEPS with short switches for
two dimensional harmonic oscillators with system A having a single well and system B a double
well. They found that SEPS was over 500 times more efficient than either FG or TI [Ytreberg
& Zuckerman(2004b)], [Ytreberg & Zuckerman(2004a)].

In a more recent study, Ytreburg et al. compared SEPS, TI, AIM, Jarzynski averaging,
BAR and SEPS with the BAR estimator (SEPS-BAR) [Ytreburg et al.(2006)Ytreburg, Swend-
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sen & Zuckerman]. The SEPS-BAR method involves the use of switches in both directions with

the SEPS method. BAR generalised to use work values from the SEPS method is,

D[Zp|M] D[Zp|M]

exp{+8/2W } B exp{+5/2W}
Z (1+ Z—gercp{ﬁ(Wi - AR} Z (1 + ZEexp{—B(W; “AR)Y) (3.79)

ng

The two test calculations used in this comparison were the free energy of growing a Lennard-
Jones sphere and charging of the same Lennard-Jones sphere both in a box of water. Fdr the
Lennard-Jones growth calculation it was found that AIM, TI and BAR were able to produce
estimates to within 0.5 kcal.mol~! with around 4 times fewer MC steps, while AIM and SEPS-
BAR were able to provide the most accurate and precise estimates. For the charging of a
Lennard-Jones sphere again AIM, TI and BAR produced estimates to within 0.5 kcal.mol™!
faster than the others by around 3-4 times, with BAR using 80,000 MC steps and AIM and TI
using 145,000. AIM and BAR were deemed able to give the most precise estimates.

While this most recent study of AIM, TI, FG, BAR, SEPS and SEPS-BAR used a solvated
system for calculations, both the growth and charging calculations were not very demanding
when compared to many types of calculation that may found with protein-ligand systems.
SEPS and SEPS-BAR both suffered from costly equilibrations of their switch sampling pro-
cesses. These methods may offer advantages for very demanding calculations with large PMF
undulations as they fully evaluate across A and do not experience bias, the two main disadvan-
tages of the other methods. For these systems AIM and BAR proved to be the most useful

overall.

3.3.7 Replica Exchange Fast Growth

Combining replica exchange methodology (RE methods) with free energy methods has been
shown to provide improvements in accuracy and efficiency [Woods et al.(2003a)Woods, Essex &
King], [Woods et al.(2003b)Woods, Essex & King|. Combining RE methods with FG (REFG) is
therefore deemed worthwhile. It is not p.ossible to make the A moves discussed for RETI in the
previous chapter between nonequilibrium switches as apart from the initial ones, configurations
are not part of an equilibrium ensemble. Thus, combining RE and FG can only be achieved by

performing A swap moves between configurations of the equilibrium seed simulations. A swap
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moves would again be accepted on the basis of equation 2.56 of chapter 1.

When attempting a A swap move it is important that there is a large amount of phase
space overlap between the two ensembles involved. Attempting A swaps between equilibrium
seed simulations at A = 0 and A = 1 would result in an extremely low acceptance rate for all
but the smallest perturbations. In discussions above of the best practice for FG calculations,
the idea of dividing the A coordinate into a number of smaller intervals which are evaluated by
independent FG calculations was found to be more efficient in many situations than performing
uninterrupted switches from systems A to B. These differences in protocol are described in
figures 3.1 and 3.3 above. By using a protocol with many equilibrium seed simulations across
the A coordinate we can increase the phase space overlap of those equilibrium seed simulations
adjacent in A. In this case of increased phase space overlap RE A swap moves carried out
between equilibrium seed simulations adjacent in A have the possibility of a high acceptance
rate. The use of RE A swap moves in the generation of FG starting configurations should in
theory reduce error associated with incomplete sampling of large systems.

REFG methods will be investigated in this study and compared to original FG and RETI

to discern if they have any application in protein-ligand free energy calculations.

3.4 Calculating errors, and inaccuracies of free en-

ergy calculations

When producing a computational estimate of AF' there are often errors. It is extremely useful

to be able to measure the error of an estimate and to be able to declare an estimate free of

error. The accumulation of averages of simulation configurations and of FG switches can be
discussed together as general measurements when error calculation is being discussed.

Errors in simulation averages have their origins in the fact that sampling of systems with
infinite phase spaces can never be complete. However the ergodic hypothesis discussed in the
previous chapter allows the convergence of simulation averages with a finite amount of sampling.
In practice, simulation methods are often unable to negotiate large energy barriers in the phase
space of bio-systems, and get stuck sampling only from local minima. Thus two independent

simulations can converge to different averages as they have sampled different regions of phase

space.
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General practice for estimating errors in simulation averages is to use statistical measures of
the variance of averages due to K independent blocks of measurements (block variance meth-
ods). It is difficult to measure the independence of blocks of measurements. One approximate
method for finding independent block sizes for block variance methods is to increase the size of
blocks until the calculated error reaches a plateau and does not change significantly. Hummer
(2001) plotted error estimates as a function of In K to find estimates with independent blocks,
as the estimates plateau as K gets smaller (independent blocks method).

The block variance methods discussed here can only give an idea of the variance in the data.
If a simulation is unable to overcome barriers in the energy surface of a system and only samples
from a subset of phase space these methods will not give a good estimate of the possible range
of results. The best way to gauge the possible range of results is to independently repeat cal-
culations a number of times. This can be extremely time consuming for protein-ligand systems
as these types of calculation can be slow.

Another method routinely used to gauge the true convergence of free energy calculation is
to engineer a cycle of calculations such that the overall AF is zero. Owing to the fact that
free energy is a function of state a pathway of system perturbations starting and ending with
the same system will have a AF of zero. If the same cycle of computational estimates of the
AF' is equal to zero it signifies the possibility that the calculations in the pathway are truly
converged. The random balancing of unconverged AF' estimates is of course a real possibility
and this method of cycle closure should not be relied upon not to give false positives.

Of course for non-linear averages such as that in the Jarzynski equality (equation 3.6)
another source of error is the bias of the average which is not explicitly considered in block
variance methods. Various methods of considering the bias of non-linear averages have been
discussed above and evaluations of the relative size of statistaical error and bias can be found
in the literature [Hummer(2001)], [Gore et al.(2003)Gore, Ritort & Bustamante], [Shirts &
Pande(2005)], [Wu & Kofke(2005a)]. The Kofke bias measure discussed above is able to give
estimates of bias-free results for Jarzynski calculations where the work distribution is Gaussian.
The necessary Gaussian nature of Kofke bias estimates may be a major drawback as many
systems of interest may not have work distributions which are Gaussian. However the work of
Jarzynski (2006a) may give hope of similar measures of the bias of FG calculations which are

universally applicable. In this case the bias of Jarzynski averages may become an advantage
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giving the ability to predict convergence.

The aim of this study is to investigate the application of free energy calculations to drug
design and therefore protein-ligand systems. Thus, it is important not to forget that possibly
the most important and difficult area which must be mastered in avoiding errors in AF esti-

mates in comparison to experiment is the building of an accurate model system.

3.5 Attributes and limitations of relevant methods

As discussed in the main introduction, this study is concerned with finding the most appropri-
ate methods for fast and accurate computational calculation of ligand binding affinities such
that they may be used at the lead optimisation stage of the drug design process. At present
the goal of using free energy calculations in drug design is not realised. What is necessary for
this to become reality? Some members of the drug design industry feel a successful method
would need to be able to calculate the relative binding free energies of a set of lead drug candi-
dates (around 7-15 ligands) for a particular target overnight. Of course it is desirable that this
method could deal with a group of ligands which were highly heterogeneous in structure but
this is not absolutely necessary. The most important aspect of these calculations is that they
are reliable and give results that large pharmaceutical companies will risk money on.

There are examples of calculations which have achieved the benchmark discussed in the
paragraph above using FEP the oldest and most basic method discussed here [Price & Jor-
gensen(2000b)], [Price & Jorgensen(2000a)], [McDonald & Still(1996)]. Also, there are exam-
ples of studies using more sophisticated methods and achieving relatively fast and accurate
results [Michel et al.(2006)Michel, Verdonk & Essex|. However, these examples are still very
system specific and generally limited to groups of ligands which have a strictly common struc-
ture (congeneric set of ligands). At present, to move beyond these congeneric sets of ligands
either a dual topology free energy methodology must be employed or a non-rigourous method
such as MMPBSA.

MMPBSA has been shown to be unreliable by some studies [Pearlman(2005)] [Kuhn et al.(2004)Kuhn,
Gerber & Stahl] and may not be able to reproduce results of the quality needed as discussed
above. Dual topology free energy methods suffer from large amounts of sampling error which

can result in noise and convergence problems. At present dual topology calculations need many
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times the amount of simulation sampling of single topology methods. Thus, faster and more
efficient free energy methods are still required.

The speed of a free energy calculation can be measured in a number of ways, normally either
computational time or wall clock time. Computational time is the amount of time it would
take a single processor to complete the task at hand whereas wall clock time is the amount of
time the task takes regardless of the number of processors used. In terms of carrying out the
calculations at hand if unlimited funds are available to invest in unlimited computers all that

matters is wall clock time.

FG based methods have the advantage that calculations can be parallelised on a large scale,
while other methods are able to utilise very limited parallelisation or must be run on a single
processor. This is a large advantage often overlooked by using comparisons of computational
time. If many processors are available then FG may be able to run calculations at a fraction
of the wall clock time of other methods. Thus this study will investigate some of the FG based
methods discussed above and compare them to the established equilibriumm methods TI and

RETIL.

All of the FG based methods discussed above have been investigated to some degree. The
extrapolation methods discussed above have been investigated. However, any extrapolation
results are not discussed here as investigations were not completed due to their unfavourable
nature. FGPS and SEPS, although powerful and promising methods, are not easily paral-
lelised; indeed SEPS must be run on a single processor. For that reason FGPS and SEPS will
not be investigated here. All of the remaining methods unless otherwise stated are listed in

a table 3.2 with any abbreviations, figure legend labels and associated equations or descriptions.
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Method name Abbreviation Figure legend Type Description
Jarzynski none Jarz Fwd/Bwd Estimator Equation 3.7
Fluctuation FD FD Fwd/Bwd Estimator Equation 3.11
dissipation
Symmetric A none Symmetric A Estimator Equation 3.5
Symimetric B none Symmetric B Estimator Equation 3.12
Bennett’s BAR BAR Estimator Equation 3.23
acceptance ratio
Gore bias none Jarz Fwd/Bwd-GBias | Bias correction Figure 3.4
Kofke Bias none Kofke Bias fwd/bwd Bias measure Equations 3.41
and 3.43
A bias none A bias Switch sampling Figure 3.6
Configuration bias-d none Confbias-d Switch sampling Figure 3.7
Hybrid bias none Hybridbias Switch sampling | Equations 3.62,
3.63 and 3.64
Division of A -BY? -BY? Switch sampling Figure 3.3
REFG none REFG Seed sampling Described above
and equation 2.56

Table 3.2: Table of all FG methods to be investigated in this work. The figure legend
column contains the labels used for each method in all figures. The type column gives a
simple description of the method with a reference to the equation of description in the
description column.

The methods of table 3.2 were implemented using the ProtoMS 2.1 MC application [Woods
& Michel(2005)] often with large associated scripts [Cossins(2007)]. To be clear, it is possible to
combine many of the methods of table 3.2 in the same calculation, and this study will be con-
cerned with finding the most efficient combination for use with protein-ligand systems. These
methods have been applied to simple one dimensional harmonic oscillator systems in order that
implementations may be validated and their performances measured against results found ana-
lytically and compared to the established equilibrium methods. Methods deemed most suitable
will then be applied to calculations involving solvent rearrangements, as this is a major factor in
protein-ligand calculations and again compared to the established methods. Then the best FG
based methods will be applied to two sets of protein-ligand calculations recently presented by
Michel (2006) and results compared. The results of this study will ascertain whether any of the
FG based methods discussed above have the attributes to be routinely applied to protein-ligand

calculations.




Chapter 4

Harmonic Oscillator systems

4.1 Introduction

In all areas of science it is important to be careful and test all your ideas and methods. Fast
Growth (FG) is a relatively ne\;v method and there are still on-going discussions in the literature
as to whether or not the Jarzynski equality (equation 3.6) is exactly thermodynamically and
mathematically correct [Jarzynski(1997b)], [Cohen & Mauzerall(2004)], [Jarzynski(2004)], [Co-
hen & Mauzerall(2005)]. Thus it is important to thoroughly test FG and our implementation
of it. Testing can be done on very simple models which can be evaluated quickly and results

checked with confidence by comparison with analytical or exact numerical solutions.

4.2 Harmonic Oscillator Models

The independent harmonic oscillator model (IHO) is essentially a simple spring in vacuum.
To test our FG implementations we can define two IHO systems and calculate the free energy
difference (AF) between them. Systems A and B both have the same number of oscillating

particles, N, with differing Hamiltonians,

N
i=1 )

N
HB = ZwB(mi e 2,‘0)2 (42)
i=1
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where z; is the reference coordinate for particle i and w4 and wp are the force constants of the
two systems which control the size of oscillations the particles will undergo. w4 and wg control
the size of phase space each system explores. zg displaces the reference position of particles in
system B which together with w4 and wp gives control over the amount of phase space overlap
between the systems.

This ITHO model is very simple and we can calculate many of its properties analytically,
including AF which can be found using equation 4.3. This is very useful as the result from our
protocol can be compared to the right answer rather than an answer found using an exhaustive

free energy protocol.

AF = L NkpTIn (“’—B) (4.3)
2 wAa

The THO systems described here were originally proposed by Wu and Kofke in their study
of Rosenbluth FG .sampling [Wu & Kofke(2005¢)]. Similar IHO systems were used to test FG
by Shirts and Pande in a slightly earlier study [Shirts & Pande(2005)]. As we have implemented
the FG methods developed by Wu and Kofke for our study it was convenient to validate aud
test our implementations on the same test systems. The parameters of these systems are listed

in table 4.1.

Each of the cases described in table 4.1 is set up in an attempt to model difficulties en-
countered with free energy calculations on more complex, chemically relevant systems. Those
difficulties are: if important phase space of systems A and B is in different places as the sys-
tem is perturbed, from A to B, it is likely that the system will be in a configuration which is
unfavourable for the Hamiltonian of system B and that large energies will result, which can
hinder convergence (energetic barriers). Energetic barriers are increased as zg is increased,
and the amount of important phase space overlap between systems A and B decreased. If the
important phase space of one end point (A or B) is much larger than the other as the system
is perturbed from A to B it is likely that the system will be in an area of phase space within
the larger important phase space but outside of the smaller important phase space again caus-
ing large energies and hindering convergence (entropic barriers). Entropic barriers, which may
come about both by decreasing phase space overlap and as the relative size of the destination

system’s important phase space is decreased compared to the starting system i.e. increasing
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the wp /w4 ratio.

| Case | N [ wp(kcalmol™1) [ wa(kcalmol™) [ zo | BAF
A 10 500 1 0 | 31.07
B 10 20 1 0 14.98
C 10 20 1 1 14.98
D 10 5 1 3 8.05

Table 4.1: Parameters of four test IHO systems used to test our FG implementations

It is instructive to visualise the phase space of the end point systems of cases A-D. As each

of the particles in each case is independent of the other, visualisation can take the form of phase

space distributions for a single particle. It becomes easy to understand the problems involved

in sampling from both distributions in each of the cases when studying figure 4.1.
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Figure 4.1: Phase space distributions of single particles for IHO cases A-D as defined in
table 4.1. Solid lines are phase-space distributions for system A and dashed lines are for
system B. The x axis is the dimensionless particle coordinate and all distributions are

normalised to unity.

e Case A is an example of an extreme subset relation; wp is extremely large in comparison to
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w4. Thus, it becomes improbable that a simulation will sample configurations important

to system B while close to system A.

¢ Case B is an example of a subset relation; wg is larger in comparison to wy. This relation
is similar to Case A but the entropic barriers associated with the relative size of systems

A and B are smaller.

e Case C is an example of a subset, partial overlap relation combination; wg is larger in
comparison to w4 and is also moved to the right. In this case it is very improbable
that the simulation will sample system B while close to system A as the most probable

sampling areas of the two systems are in different places.

e Case D is an example of a slight subset, non-overlap relation combination; wg is slightly
larger in comparison to w, and is moved far enough to the right so the two distribu-
tions share no important phase space at all. In this case it is extremely difficult for the

simulation to sample phase space important to system B while close to system A.

We would expect to find differing combinations of the problems represented by cases A-D in
more complex systems. In the case of protein-ligand perturbations, barriers linked to solute-
solvent and solute-protein interactions cause many of the difficulties encountered and energy
surfaces are extremely large and rugged. The IHO systems investigated here are unable to
represent these problematic interactions and energy surfaces well, and this analysis should not
be regarded as a good model specifically for protein-ligand perturbations but instead illustrate

the specific issues involved.

4.3 Simulation of Harmonic Oscillator Systems

All THO systems were set up as molecules with eleven particles and ten bonds. Each of the
bonds was setup as an IHO with the force constant w, all other possible interactions were not
used. THO simulations were carried out using a quiﬁed version of our ProtoMS 2.1 Monte
Carlo simulation software [Woods & Michel(2005)]. All THO simulations were coupled to A
through a single topology switching protocol. FG starting configurations were generated every

200 MC trials from equilibrium sampling of the end point systems.
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4.4 Harmonic Oscillator Results

4.4.1 Method Validation

This validation must have two levels. First, FG methods must be able to produce AF's which
are very accurate compared to the analytical value. Second, FG methods should be able to
reproduce the efficiency trends which are demonstrated by Wu and Kofke [Wu & Kofke(2005c¢)].
To achieve this validation we make a direct comparison of our results with Wu and Kofke.

Before making the proposed comparison there are some important points to consider. When
publishing their study, Wu and Kofke defined the ratio wp/w4 with out giving the actual val-
ues for wp and wy, for each of the cases A-D. While this information is enough to describe
the relative size of the important phase spaces of the two end point systems A and B, it does
not define the size of the important phase spaces relative to the displacement zy (problem 1).
Problem 1 means it is hard to know how big to make the variable zy in cases C and D. If we
set wp and w4 too high compared to zy then the energetic barriers encountered will be bigger
than those used by Wu and Kofke and methods will be less efficient.

The range of possible MC particle move sizes are also not mentioned (problem 2). Problem
2 could affect the efficiency of free energy estimates in all of the IHO cases. However as long
as Wu and Kofke did not vary the size of MC moves between cases or between MC moves, this
is a simple case of finding an optimal maximum move size.

The ten IHOs in each of cases A-D are part of one molecule in this study. This means that
each of the bond lengths (i.e. independent oscillators) will be moved for each MC trial. It is
not clear whether this is also true for the study carried out by Wu and Kofke (problem 3).
This will result in possible differences in MC trial acceptance rates and the efficiency of AF

calculations.

Wu and Kofke describe their coupling of A to the Hamiltonian as a linear scaling of the
reference and target Hamiltonians (equation 4.4). This method uses two separate systems in
a dual topology arrangement. The A coupling used in the present study is achieved by scaling

the parameters of a single system in a single topology arrangement as in equation 4.5.

Hx(2) = Ha(2) + A[Hp(2) — Ha(2)] (4-4)
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N

N
Z i Z Awp)(z; — \zo)? (4.5)

i=1

H in equations 4.4 and 4.5 is the Hamiltonian and z is the present system configuration.
What effect this difference in perturbation method will have is not clear (problem 4). We can
~attempt to understand the differences between these two methods by plotting the important

phase space at the point of each A increment (figure 4.2).
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Figure 4.2: Phase space distributions of single particles using single and dual topology

methods for THO cases C and D from table 4.1. Bach of the coloured (hstnbutlom
represents the system at a particular value of lambda. The x axis is the dimensionless

particle coordinate and all distributions are normalised to unity.

It is unclear whether either dual or single topology calculations have an advantage for these
THO cases. In theory it is possible that dual topology sampling has an advantage for cases C
and D as the most important regions of phase space (the distribution peaks in figure 4.2) do

not shift from their previous position as A is changed, as they do for single topology sampling.
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However, the dual topology method may have higher levels of sampling error compared to single
topology as the system does not truly mutate as A changes and systems A and B could be in
different areas of phase space. When applied to large complex systems (such as protein-ligand
systems) the high levels of sampling noise generally found with dual topology methods can be a
large disadvantage. Therefore single topology methods have been used through out this study
as the main focus is towards calculating ligand binding affinities. The issues involved in this
comparison of dual and single topology THO calculations are not clear and their clarification
is not within the scope of this study. Thus, it should be noted that this is another source of
difference between the present study and that of Wu and Kofke [Wu & Kofke(2005c¢)].

Figure 4.3 shows the inaccuracy of BAF estimates (i.e. the difference between the FG esti-
mate and the analytical result of equation 4.3) as the numbers of FG switches used per estimate
is increased, using the different FG sampling methods discussed in chapter 3. Unless otherwise
stated, when comparing to the work of Wu and Kofke, FG switches consist of 10 AAs with
1000 MC trials between each AX. Also, figures in this study use the following abbrieviations:
OrigFG denotes original FG estimates, Lambias denotes A bias FG estimates, Confbias-C de-
notes configuration bias-c FG estimates, Contbias-D denotes configuration bias-d FG estimates
and Hybridbias denotes hybrid bias FG estimates.

Another issue to be aware of when studying figure 4.3 is the method of data point averaging
used. Wu and Kofke describe ”additional outer repetitions” made to better characterise the
inaccuracy in the free energy difference in their estimates. These outer repetitions are used
to eliminate the statistical uncertainty by averaging each FG estimate over many individual
calculations. Wu and Kofke used 10000 outer repetitions. It is unclear whether this means
10000 independent FG switches were used for the analysis of each case, or if 10000 independent
FG estimates were made for each data point (this is problem 5). Our analysis has used the
former of these two possibilities. Thus, for each case in figure 4.3 10000 FG switches were
made. Hence, the data point for 1 FG switch per FG estimate was averaged over 10000 esti-

mates and the data point for 1000 FG switches per FG estimate was averaged over 10 estimates.
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Figure 4.3: THO results using all Rosenbluth FG methods and original FG for cases A-D
showing inaccuracy in SAF against numbers of trajectories where a trajectory has 10 \
increments and 1000 MC trials per A increment. For configuration bias 10 configuration
samples were used per A increment.

Case B is the least demanding of cases A-D, shown in figure 4.3. All the Kofke FG methods
can calculate a free energy very close to the analytical value. Our results, for case B, reproduce
those seen by Wu and Kofke very well [Wu & Kofke(2005¢)]. The calculated free energies diverge
from the Wu and Kofke results and give a less clear idea of the inaccuracy as we approach 1000
FG trajectories for Case B, this may be due to problem 5.

Case A is a more demanding free energy difference to evaluate than Case B. Consequently,
original FG can only estimate AF to within 20-30 units. Hybrid bias and A bias FG give a
performance improvement of almost an order of magnitude. Configuration bias-C and D FG
show improved efficiency over original FG. This result is in line with that seen by Wu and

Kofke.

Case C is similar to Case B but provides an extra barrier to sampling. Our results for
Case C show significant difference from those of Wu and Kofke. Original FG displays similar

performance when only one FG switch is used for each SAF' estimate. However as the numbers
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of switches is increased our results do not have the same improvement in accuracy with our 103
switches data point being at around 6 inaccuracy units and that of Wu and Kofke’s being at
around 2. Wu and Kotke show hybrid bias and A bias to perform better than original FG in
this case whereas our results show them to perform slightly worse. This suggests that there is
some difference between the calculations, probably that discussed as problems 1 and 3.

Case D has very similarly sized areas of important phase space for systems A and B but
with larger entropic barriers to sampling than case C. Our results for this case show the same
trends as Wu and Kofke but with increased inaccuracy for all methods except configuration
bias-d.

We have managed to almost exactly reproduce the results of Wu and Kofke for cases A

and B. Inaccuracies for cases C and D show the same trends as those in the Wu and Kotke

study except that the amount of displacement relative to the size of important phase space
(the effective size of zp) is larger in our study, consistant with problem 1. This problem can
be demonstrated by changing the size of wp and w4 relative to zy while keeping the ratio
wp/wy the same. Two more examples of cases C and D were used as detailed in table 4.2 and
figure 4.4. We would expect that our FG methods to be more efficient for new cases Cx0.5 and
Dx0.5 and less efficient for cases Cx2 and Cx2. It is also apparent that as the size of the zg
displacement parameter is increased relative to the size of the A and B phase space i.e. the A
bias methodology gives a larger disadvantage, whereas the confbias methodology gives a larger

advantage.

Case | N | wg(kcalmol™1) | wa(kcalmol™1) | zo | BAF
Cx2 | 10 40 2 1 | 14.98
Cx0.5 | 10 10 0.5 1 | 14.98
Dx2 | 10 10 2 3 8.05
Dx0.5 | 10 2.5 0.5 3 8.05

Table 4.2: Parameters for new case Cx2, Cx0.5 and Dx2 and Dx0.5 systems
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Figure 4.4: Phase space distributions of single particles for IHO new cases C and D as de-
fined in table 4.2. Solid lines are phase-space distributions for system A and dashed lines
are for system B. The x axis is the dimensionless particle coordinate and all distributions
are normalised to unity.

Figure 4.5 shows that, as predicted, results for cases Cx0.5 and Dx0.5 all FG methods be-
come more effcient compared to cases Cx2 and Dx2. They are less efficient compared to cases
C and D. This confirms that problem 1 is an issue for this comparison. Average estimates for
case Cx0.5 with configuration bias-d become smaller than the analytical result at around 15
switches, shown in figure 4.5 as the red line curving down to below 0.01 and then immediately
increasing again to above 0.1. This behaviour is simply due to statistical error as inaccuracies
become very small and data points are averaged over fewer estimates.

The relative performance of FG methods for case Cx0.5 is the same as that seen for case C in
figure 4.3. Therefore case Cx0.5 is still different from case C results seen by Wu and Kofke [Wu
& Kofke(2005¢)] apart from configuration bias-d displaying the least inaccuracy. This suggests
there is still a systematic difference in the protocols used. Issues discussed as problem 3 may
explain the discrepancy in relative performance of these methods. If the protocol used by Wu

and Kofke involves fewer MC trials between each A increment, configuration bias methods and
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original FG would be expected to show an improvement relative to A bias methods, as configu-
ration bias methods rely on a broad sampling of phase space between A increments to find the
best configuration for a A increment. This is seen when comparing all case C analyses of this
study with case C of Wu and Kokfe.

The relative performance of FG methods for case Dx0.5 is the same as that seen for case D

and is therefore similar to case D results of Wu and Kofke. The inaccuracies of all FG methods

for case Dx0.5 are much more similar to those seen by Wu and Kofke, although they are not

identical.
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Figure 4.5: inaccuracy in SAF against numbers of trajectories for new cases C and D,

where a trajectory has 10 A increments and 1000 MC trials per AX. For confbias 10
configuration samples were used per A\.

For cases A and B we have quantitatively reproduced the results of Wu and Kofke. The
differences found for cases C and D have been rationalised through the differences in proto-
col from the study of Wu and Kofke. While the difference in protocol may have harmed the

comparison with the study of Wu and Kofke, the protocols to be used in this study have been
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validated and the possible improved performance of these FG methods demonstrated. For case
A, Hybrid bias FG has been shown to be the most efficient, for cases B, C and D Configuration

bias-d is the most efficient.

To be sure that all methods used in this study are correct, another analysis was carried
out using cases A, B, C and D. The idea in this extra analysis is to produce convergence of
AF for all our FG estimators. All FG switches are the same as switches in the previous FG
method comparison with 10 AAs and 1000 MC trials between each AM in both the forward
and backward directions. Additionally the convergence heuristic described by Wu and Kofke
(Kofke bias) will be tested for each of cases A-D [Wu & Kofke(2005a)]. When the Kofke bias
measure is above zero convergence of an FG calculation is predicted.

In practice the Kofke bias measure has been implemented with some slight differences from
that described by Kofke and in the FG background chapter [Wu & Kofke(2005a)]. When
studying equation 3.41 it is worth realising that the Lambert W function (W) will only accept
positive values for its input. This being the case S4 or Sp must be positive. Owing to the use
of the "fail safe” definitions of equation 3.43, it is, in some cases possible to find negative Sy

and Sp values. In the case that either S4 or Sg is negative the alternative definitions,

Sa = (BW),_p+BAFp_a, (4.6)

Sp = <ﬂW>B_,A+ﬂAFA_;B. (4.7

are used to replace only the S value found to be negative.

In figure 4.6, estimators which require FG switches in both directions effectively use twice
the number of FG switches shown. Figures in this study use the following abbrieviations; Jarz
Fwd denotes the Jarzynski Estimator in the forward direction and Jarz Bwd in the backwards
direction, Jarz Fwd-GBias denotes the Jarzynski estimator corrected by the bias as calculated
by Gore et al. in the forwards direction and Jarz Bwd-GBias in the backwards direction [Gore
et al.(2003)Gore, Ritort & Bustamante], FD Fwd denotes the fluctuation-dissipation estimator
in the forwards direction and FD Bwd in the backwards direction, Symmetric A and B denotes
the symmetric A and B estimators, BAR denotes Bennett’s acceptance ratio and analytical FE
denotes the analytical free energy difference. Results for relatively inaccurate extimators may

be omitted from a figure and legend in favour of gaining extra detail for the more accurate
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estimators. Errors for all results in this chapter are calculated using the block variance method
using 10 blocks, apart from the FD estimators which use the independent blocks method, both

described earlier in the main introduction.

For case A, neither forwards only, nor backwards only switching with any estimator has
produced a good AF estimate. However, BAR converges to a relatively accurate answer at
around 20 thousand switches. This is reflected by the Kofke bias measure as both forward
and backward predictions are well below zero. Surprisingly, Case B is very different; here only
estimates using forward switches and the Jarzynski estimator are accurate and converged. The
inaccuracy of estimates using switches in the backwards direction is possibly due to the dif-
ficulty of sampling configurations important to system A from a simulation close to system
B. This inaccuracy of backwards switches for case B is large enough to inhibit the ability of
BAR to give accurate estimates. The measure predicts that backwards Jarzynski estimates are
converged with a value well above zero. The forwards value Kofke bias value is just below zero.
This Kotke bias convergence measure is obviously wrong in this case.

Cases C and D are similar and show that only BAR and the syminetric B estimators are ac-
curate and easily converged. The relative displacement of the important phase spaces of systems
A and B in cases C and D creates a sampling barrier which is seen in estimators using switches
in one direction. It is interesting that the symmetric B estimator gives accurate estimates for
case C. Case C is a partial overlap relation but the size of the additional subset relation means
that the barriers experienced in the forwards and backwards directions are not expected to be
similar; consequently the symmetric A estimator is highly inaccurate. The Kofke bias predicts

that forwards and backwards Jarzynksi estimates are not converged for cases C and D.
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Figure 4.6: AF estimates calculated using original FG with all estimators using 2210%
configurations. The plots labelled Kofke Bias display the Kofke bias of estimates plotted
in the main windows. If the Kofke bias is above 0-0.5 then the corresponding estimate is
predicted to be converged and accurate.

4.4.2 Best practice for accurate AF prediction

THO systems take a very small amount of computer time to sample and simulate. Therefore,
it is possible to explore the parameter space of our FG methods more fully than we could with
other, larger, more demanding systems.

It is interesting to consider the effect of varying the numbers of A increment and amount
of sampling between each A increment for the same number of overall configurations used in a
switch. It is not immediately obvious whether FG switching protocols differing only in numbers
of A increment and amount of intervening sampling will have substantially different performance
characteristics. With this in mind a set of nine switching protocols has been designed to be
used with each of the IHO cases A-D and each of our implemented FG sampling methods and
estimators (table 4.3). Configuration bias calculations with fewer than 25 MC trials between
A increments will have 5 sampled conformations to pick from for each A increment rather than
10, as is the case with all other calculations. All FG calculations use the same starting configu-
rations where possible to allow closer comparison of the different protocols. The figures in this

section display the number of FG switches for the whole calculation on the x-axis. Owing to
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the exhaustive nature of this analysis, configuration bias-c will not be investigated as previous

results have shown it to be inferior to configuration bias-d in all regards.

Protocol | lambda inc’s | MC trials | Configurations/Switch | Configurations/Calculation
1 10 100 1x10° 1x107
2 50 .20 1x10° 1x107
3 200 5 1x10° 1x107
4 10 500 5x10° 5x107
5 50 100 5x103 5x107
6 200 25 5x103 5x107
7 10 1000 1x107 1x10°
8 50 200 1x104 1x10%
9 200 50 1x10% 1x10°

Table 4.3: THO test FG switching protocols

The present analysis has a very large amount of results, which would be difficult to display
in full. In each of the following plots only data of interest is displayed. Results of interest are
defined as results which show reasonably good performance relative to all other FG methods.
In demanding cases, the FD estimator and Gore Bias estimator give wildly incorrect results and
large statistical errors. Also in cases with large differences between the forward and backwards
calculations the symmetric estimators are inaccurate. These estimators will be referred to in
this work as the poorer estimators. In some figures below results for the poorer estimators may

be displayed without their statistical errors as these errors are large and can obscure the figure.

Case A: Extreme Subset Relation

Figure 4.7 shows a small yet instructive subset of AF estimates using original FG on Case
A. Other results from this analysis are displayed in appendix C. The AX = 200, MC trials =
50 protocol seems to display the most accurate estimates and lowest statistical uncertainties.
The Jarzynski estimator gives the best estimates of the single direction estimators, while BAR
is most accurate overall for all of the protocols tested. The FD and symmetric estimators are
persistantly very inaccurate due to the challenging nature of the entropic barrier present in case
A. Only with the AX = 200, MC trials = 50 protocol does the symmetric B estimator produce
estimates relatively close to the analytical free energy difference. Also, the Kofke bias measure
becomes positive when all 10000 forward switches are used with the A\ = 200, MC trials = 50

protocol [Wu & Kofke(2005a)].
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The forwards Jarzynski calculation gives better estimates than the backwards calculation
in each of the nine protocols displayed apart from the AA = 10, MC trials = 100 protocol.
For the A\ = 10, MC trials = 100 protocol the backwards Jarzynski estimate is better than
the forwards until at least 16000 FG switches are used in estimates when accuracy is similar in

either direction.

The behaviour of the forwards and backwards calculations can be explained through the
phase space relationship and work distributions. The much larger phase of system A is able
to access the whole of the smaller system B phase space, although switches which are very
important to the exponential average may be rare due to the entropic problem of finding the
much smaller system B phase space from system A. The relatively small phase space of system
B is unable to access many of the system A configurations. This confers a forwards work
distribution which is much wider than backwards, with a much larger Wgiss. Thus, in case
A, switches important to the calulation are far more common in the forwards direction than
the backwards direction while the work average is further from the analytical answer. This
gives the behaviour seen with the AA = 10, MC trials = 100 and AX = 50, MC trials =
20 protocols with forwards estimates being initially poor and improving quickly to be more
accurate than backwards estimates which are inaccurate and showing no change with very low
statistical error. This rationale is also demonstrated and discussed by Kofke and Jarzynski [Wu
& Kofke(2005a)], [Jarzynski(2006)]. This behaviour with initially poor forwards Jarzynski
estimates seems to be eased when using a protocol with many AMs, as seen by comparing
figures 4.7 a), b) and c¢). This would be expected as the change from large phase space to small
is more gradual. The Kofke bias measure seems to reflect this idea that the backwards
Jarzynski estimates are initially closer to the analytical result but converge slowly compared to
the forwards estimates which are initially poor but converge fast. The Kofke bias predicts the
backwards estimates to be initially more accurate with forwards estimates showing a relative
improvement for protocols with 1x10” MC trials but shows the forwards estimates becoming

converged for protocols with 1x108 MC trials.
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Figure 4.7: AF estimates with original FG using 1x10® and 1x107 configurations for case

A bias results for case A with all estimators seem to converge slightly faster in comparison
to original FG for the 1x10® protocols apart from BAR which seems almost identical (figure
4.8). However the 1x107 X bias protocols seem to give similar performance to the equivalent
original FG results. If the system is not well equilibrated between each A increment, which may
often be the case with larger systems, then A bias may not offer any improvement. The Kofke
bias measure seems to give negative scores to A bias forward Jarzynski calculations that look
like they are converged such as those in figure 4.8 d), while giving positive scores to similar
calculations with original FG in figure 4.7 d). This suggests that the Kofke bias measure may
be incorrect for these biased FG methods, although it is worth note that the Kofke bias measure

does not give any indication of fully converged estimates when there are none (false positives).
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Figure 4.8: AF estimates with A bias FG using 1x10® and 1x107 configurations for case

Configuration bias-d shows similar trends to A bias; there is a slight improvement, of config-

uration bias-d over original FG, seen with the longer protocols (figure 4.9). Configuration bias-d

also performs better than original FG when few A increments are used but not when many are

used. Configuration bias shows better accuracy than original FG for BAR and Fwd Jarzynski

with the AX = 10, MC trials = 100 protocol but this is reversed for the AX = 200, MC trials

= 5 protocol. This is almost certainly down to the smaller number of configurational samples

taken for the AX = 200, MC trials = 5 protocol as previously discussed. For configuration hias

FG it may be important to use well separated configuration samples to pick from for each A

increment. Again, the Kofke bias measure fails to give a score reflecting the convergence of the

longer protocols, but has no false positives.
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Hybridbias shows similar trends to A bias. Surprisingly, estimates for the AX = 200, MC

trials = 50 protocol with Hybrid bias are less accurate than for all the other methods including

original FG. The BAR estimates for the AX = 200, MC trials = 50 protocol is less accurate

than the forwards Jarzynski estimates.

the slightly worse performance of estimates using only backwards switches.

This inaccuracy in the BAR estimator is related to

This may suggest

that Hybrid bias is less efficient than other methods when switching from systems with a small

important phase space to systems with a large important phase space.
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Figure 4.10: AF estimates with hybridbias FG using 1x10% and 1x107 configurations for

case A.

The advantages of the Kofke FG methods seem to decline when an FG protocol which does

not allow good equilibration between A increments is used. This is more clearly demonstrated

by using the 1x10” config’s, AX = 200 MC Trials = 5 protocol with the analysis method of

Wu and Kofke [Wu & Kofke(2005¢)] (figure 4.11 a)). With this protocol all the methods have

relatively similar efficiency. A bias seems more accurate with 1 switch but not with 1000. The

same data plotted together in the analysis method of the present study (figure 4.11 b)) shows

that although results are very similar, original FG seems to give more accuracy with fewer FG

switches.
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Figure 4.11: THO results for Case A showing inaccuracy in JAF' against numbers of FG
switches where a switch has 200 \ increments and 5 MC trials per A increment.

It may be that accuracy of FG calculations can be improved by scaling the size of A in-
crements at a specific point of a switch with the size the barrier encountered at that point.
It is obviously preferable to be able to find the most advantagous set of A\ increment sizes or
switching path without prior knowledge of the nature of the switch. Logarithmic paths from
system A to B, rather than the usual linear paths as used in previous calculations in this study,
have been investigated previously by other authors and used with TT [Shirts & Pande(2005)].
This study described slight advantages using a logarithmic perturbation path in scaling from

system A to B for harmonic oscillators with a large subset relation (4.8).

Hy(z) = Ha(2)'  Hp(z)? (4.8)

A logarithmic perturbation path used with original FG also shows a slight improvement
in accuracy, compared to original and possibly A bias FG, when used with the short protocol
(figure 4.11). This comparison is further clarified by looking at the work performed at each A
increment, averaged over 1000 switches (figure4.12). Figure 4.12 suggests that A bias is able to
react to the barrier present at the beginning (A = 0) of case A switches as the peak is reduced
compared to original FG with a linear and logarithmic path. However, after the initial peak A
bias switches are very similar to original FG with a linear path and a logarithmic path shows

a slightly lower work.
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Figure 4.12: Distribution of average work performed over FG switches for the 200 AA, 5
or 50 MC trials per A\ protocols.

However, logarithmic scaling of the path from systems A to B may not provide the optimum
path for extreme subset relation free energy differences. This can be seen clearly if we compare
the size of A increments used, by a particular method, to the areas of the path which give the
largest works (figure 4.13, red, green and blue lines are plotted from the right hand side y-axis
while the black line is plotted from the left hand y-axis). Figure 4.13 shows that A bias attempts
to scale its A increments to the barriers found in a switch with very low A increments at around
A = 0 (green line is at a low value when black line is at a high value). A bias then seems to
pick relatively large A increments at around A = 0.1 even though the work values incurred still
seem to be relatively large.

This over sizing of A increments at around A = 0.1 is easily explained in terms of the A
bias algorithm: When there are a series of small A increments at the beginning of a switch,
due to heavy Rosenbluth weighting, the range from the current A (\;—;) to a; which the next
lambda (A;) must be chosen from gets larger. This increases the probability of a A increment
being larger for the same Rosenbluth weight as the calculated probability density is spread over
a larger range. Thus, as the average work performed in figure 4.13 (black line) eases off, the
possible range of the next A increment is large and as the Hamiltonian is more favourable than
previously to large A increments, larger A increments ensue.

In the absence of a large barrier A bias seems to display a degree of noise in its A increment

choices.
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Figure 4.13: Plot of work performed and size of AAs against A for linear and logarithmic
perturbation paths using a 200 A\, 5 MC trials per A\ protocol.

It is clear from comparing FG calculations with 200 and 10 A increments (and the same
number of total configurations used) in the analysis above that increasing the number of A
increments for the same number of configurations can improve accuracy and precision. It is
also clear from figure 4.3 case A and figure 4.11 that attempting to scale the size of X increments
to the size of the barriers being experienced in a switch can be more efficient in some cases.

A bias FG may be ineffective in the case of many barriers which are not near the beginning
of a switch as the final A increment must move the system to A = 1. If a switch has large
barriers at the beginning and end, then A bias will perform poorly. A A bias method could
work well if not constrained by the number of A increments allowed per switch. However, it
may be difficult to produce a ensemble of switches of different lengths.

In light of the problem discussed here, the case of many large barriers, original FG with few,
long trajectories, many A increments and BAR. could give the best performance. Alternatively
configuration bias-d could be used with few, long trajectories and large amounts of sampling

between A increments and BAR.

Case B: Slight Subset Relation

The methods investigated performed unexpectedly with case B, given the case A findings. In
general, for original FG sampling with the forward direction, the Jarzynski estimator seems to
perform better than BAR. This is demonstrated in figure 4.14 d). This is also true but to a

lesser extent with the short protocol as seen in figures 4.14 a), b) and c). These findings are
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also backed up by an earlier study [Shirts & Pande(2005)]. This is due to the fact that BAR
relies on both forwards and backwards measurements. If one of those directions is very poorly
behaved this will adversely affect the estimate. This is highlighted in Case B as opposed to
Case A as the entropic barriers involved are very large in Case A meaning both forwards and
backwards directions are slow to converge and BAR will give better estimates.

With protocols containing 200 A increments, estimates for case B, made using the backwards
directions seem unstable with large errors in comparison to the forwards direction; this is in
keeping with Shirts and Pande’s findings, on a similar two dimensional system, that estimates in
the backwards direction have a variance which tends to infinity as the ratio w4 /wp is increased
after wa > 2wp [Shirts & Pande(2005)]. The reason the poor performance of the backwards
direction is more marked with case B than case A is because the forwards direction is initially
very poor with case A whereas it is very good with case B. A separate study also found the
backwards Jarzynski estimator to not converge, where as the forwards direction converges well
for systems similar to case B [Wu & Kofke(2005b)]. Thus, it could be assumed that estimates
made with the backwards Jarzynski estimator are not reliable.

The different switching protocols in this original FG analysis seem to give comparable esti-
mates with the numbers of configurations, taking into account statistical error when using the
forwards Jarzynski estimator. This can be seen through study of figure 4.14 and case B original
FG figures in appendix C. However, the error is slightly larger in those protocols with smaller
numbers of A increments as seen by comparing forward estimates in figures 4.14 a), b) and c).

The Kofke bias measures are similar between protocols and switching directions at around
-4 to -5. This may reflect the relative ease of convergence for case B. Most of the forwards
Jarzynski estimates for case B seem reasonably well converged and this is not reflected by the
Kofke bias. The poorer estimators perform better relative to the better estimators in case B
compared to case A. The symmetric B estimator gives good AF estimates when using 5x107

configurations or more (figure 4.14 d)).

A bias FG displays similar trends to original FG with forwards Jarzynski estimates gener-
ally being more accurate than BAR (figure 4.15). A bias, Jarzynski estimates in the backwards
direction seem more stable than their original FG counterparts seen by comparing figures 4.14

and 4.15. However, figure 4.15 d) shows set of backwards Jarzynski estimates which are above
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Figure 4.14: AF estimates with original FG using 1x10® and 1x107 configurations for for

case B

the forwards estimates rather than below as would be expected. Although slightly worrying
this may reflect the fact that the statistical error is the dominant form of estimator bias for
case B. Comparing figures 4.14 d) and 4.15 d) it seems that the FD estimator is less accurate

for X\ bias than original FG.



CHAPTER 4. HARMONIC OSCILLATOR SYSTEMS

114

9.5

— Jarz Fwd
— Jarz Bwd
— Jarz Fwd-GBias
= Jarz Bwd-GBias

F — FD Bwd
i [ — Symmatric B
k- = Bare
& <+ Analytical
E ¥
g ¢t i Kofke bias
=< . = =l v e
cesd T ———1F®
< C i o
— ———————————— QL F
r Ju46F
8 1 1 1 1 1 I L n
0 5k 10k 15k 20k Sk 10k ISk 20k
FG switches

(a) 1x107 config’s, AXA = 200 MC Trials = 5

9.5p

AF (kecal mol“)

=

20
i

(¢) 1x107 config’s, AN = 10, MC Trials = 100

— Jarz Fwd

— Jarz Bwd

— Jarz Fwd-GBias
— Jarz Bwd-GBias
— FD Bwd

— Symmelric B
— BAR

«o Analytical FE

Kofke bias

4-.2r -

A e
— Bwd|

1 1
10 k 15k 20k
FG switches

L 2 L L
Sk 10k 15k 20k

T

AF (kcal mol ™)

146

— Jarz Fwd

— Jarz Bwd

— Jarz Fwd-GBias

— Jarz Bwd-GBlas
FB Bwd

— Symmalric B

~— BAR

«oon Analylicnl FE

Kofke bias
— Pwd]
T

s

/

78

(b) 1x10

o
Sk

1 1 1
10k 15k 20k

FG switches

Sk IOk 15k 20K

7 config’s, AN = 50 MC Trials = 20

P
=)
T

AF (keal mol™)

oo
oo
Ty

1 A bw

Jaat /

Jarz Bwd

Jarz Fwd-GBias ‘

Jarz Bwd-GRias

FD Bwd

Symmatric A

— Symmalric B
BAH

oo Annlytical FE ‘

Kolke bias
ml TR

/

1‘
%

0

L L 1 1 1
5k 10 k 15k 20k
FG switches

KK IS K 20k

(d) le8 config’s, AN = 200, MC Trials = 50

Figure 4.15: AF estimates with A bias FG using 1x10% and 1x107 configurations for case

Figures 4.16 a) b) and c¢) seem to show that configuration bias-d gives slightly better for-

wards Jarzynski estimates with the AX = 10, MC Trials = 100 protocol than protocols with the

same number of configurations but more A increments. Also, BAR is significatntly below the

forwards Jarzynski estimates in figure 4.16 c¢). Strangely, figure 4.16 d) has backwards Jarzyn-

ski more accurate than forwards Jarzynski. This may signify an improvement in backwards

estimates with configuration bias-d, yet equally it may simply signify the small differences in

these estimates and the presence of statistical errors.



CHAPTER 4. HARMONIC OSCILLATOR SYSTEMS 115

9.5¢ T T T ] = 9.5r T T T T g 1 T
E ] — Jarz Bwd L

— Jarz Fwd-GBras

— Jarz Bwd-GBias

— BAR FD Bwd

+- Analytical FE — Symmatric B
— BAR
. Analytical FE

Kofke bias Kofke bias

af— rwd )
— Dwd

FG switches

(a) 1x107 config’s, A\ = 200 MC Trials = 5

T e G
— Py

Hwal

r 16 / [ -6 V.l
3: . t . i s i s e e [ gt i L y I TR | S
0 5K 10k 15k 20k 5k 10K 15K 20K %0 5K 10k 15K 0K Sk 0K 5k 20k

£ FG switches
(b) 1x107 config’s, AN = 50 MC Trials = 20

— Jarz Fwd or — Jarz Fwd
— Jarz Bwd — Jarz Bwd
— Jarz Fwd-GBias Jarz Fwd-GRias
— Jarz Bwd-GBias Jarz Bwd-GBias
— BAR FD Bwd
r ++«+ Analytical FE — Symmatne A
'-_6 — Symmatic B
r 5 — BAR
£ £ 3,9_— «... Analytical FE l
¥ ] Kofke bias oL Sk
1 [~ T x [ 4 |“.1| L, '
r 1 — Bwd == [ T
'8 e, .
: v Sl (- i - |
[ 1aal 8.8 s /
F = 2 4k
[ 461 b ’
8 L L 1 . 1 13 L L . n " 1 . 1 . 1 =] =i IS =i
0 5k 10 k 15k 20k 5k 10k 15k 20k 0 5k 10k 15k 20k Sk 10k 15k 20K

FG switches
(d) 1x108 config’s, AX = 200, MC Trials = 50

FG switches

(c) 1x107 config’s, A\ = 10, MC Trials = 100

Figure 4.16: AF estimates with configuration bias-d FG using 1x10* and 1x10” configu-
rations for case B

Hybrid bias FG produced results for case B similar in their trends to configuration bias FG
(figure 4.17). Again, studying figures 4.17 a) b) and c¢) suggests that estimates with the A\
= 10, MC Trials = 100 protocol are slightly improved over protocols with the same number
of configurations but more A increments for forwards Jarzynski estimates. Figures 4.17 a) and
b) show a set of BAR estimates between forwards and backwards Jarzyanki estimates while
the forwards Jarzynski estimates seem still to be more accurate. This unpredictability in the
relative placement of BAR may make it difficult to pick which estimator to use in any particular
situation. Figure 4.17 c) has a set of backwards Jarzynski estimates which are above the for-
wards estimates, which was somthing seen in figure 4.15 d). Also, there is a large jump in value
between the final and penultimate estimates of backwards Jarzynski calculation in figure 4.17
¢). This again points to the instability of backwards Jarzynski estimates for case B. Figure 4.18
is a scatter plot of all work values for the AN = 10, MC Trials = 100 protocol in the backwards
direction. The two data points below -15 in figure 4.18 are responsible for the sudden jump
backwards Jarzynski estimates descibed above in figure 4.15 d). If these values are removed the

final backwards Jarzynski AF estimate then becomes -9.52 kcalmol! and falls into line with
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the estimates that have come before it.
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Figure 4.17: AF estimates with hybrid bias FG using 1x10® and 1x107 configurations for

case B
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Figure 4.18: Work values for the AX = 10, MC Trials = 100 protocol in the backwards
direction.

Figure 4.19 a) shows a general trend in 1x107 calculations, that protocols with 10 A in-

crements are slightly more accurate, seen in all methds but A bias for case B. However the
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difference is small enough to be a random effect and figure 4.19 b) (1x107 configurations) does
not agree. Also, the statistical error gets smaller as you increase the number of A increments.
Thus, it may be preferable to use many A increments with normal FG calculations similar in
nature to case B.

It is difficult to pick any method which offers better accuracy when using 1x107 configura-
tions. Figure 4.20 compares all methods with the A\ = 200, MC Trials = 5 protocol. Original

FG is most accurate in figure 4.20 but again the difference between these estimates is very small.
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Figure 4.19: Case B AF estimates using original FG with 1x107 or 1x10® configurations
and three different switching protocols.
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Figure 4.20: AF estimates for all methods with the forwards Jarzynski estimator, using

AX = 200, MC Trials = 5 protocol.



CHAPTER 4. HARMONIC OSCILLATOR SYSTEMS 118

Case C: Subset and Overlap Relation

Owing to the slight displacement of system B in case C, all FG methods using switches from a
single direction can be inaccurate. There is an improvement in accuracy of the single direction
estimators as the number of A)s increase, without extra configurations (figures 4.21 a), b), ¢)).
It is clear that, overall BAR is the most accurate estimator for case C. Single direction Jarzyn-
ski with 1x10® configurations and many A)s is able to rival BAR (4.21 d)). The symmetric

estimators are not as accurate as BAR as forward and backward switches are different due to

the slight phase space difference between systems A and B.
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Figure 4.21: AF estimates with original FG using 1x10% and 1x107 configurations for
case C

Comparison of figure 4.22 with equivalent estimates in figure 4.21 suggests that the biased
FG methods offer no improvement in accuracy for case C. Figure 4.22 also shows that A bias
and configuration bias-d with the Jarzynski estimator give optimum performance with different
switching protocols. A bias gives good perfromance similar to original FG with' the AA = 200
MC Trials = 5 protocol, while configuration bias is relatively poor with this protocol (figure
4.22). configuration bias-d performs best with the AX = 10 MC Trials = 100 protocol (figure

4.22). This preference in configuration bias-d is probably due to a lack of sampling between
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AXs meaning all configuration choices are very similar.
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Figure 4.22: AF estimates with A and configuration bias FG using 1x10" configurations

for Case C

For all protocols with 1x107 configurations hybrid bias performs worse than original FG

seen by comparing figures 4.23 a} b) ¢} and 4.21 a) b) ¢). Hybrid bias seems to show accuracy

more comparible to original FG with larger protocols (figure 4.23 d)), although estimates seem

slightly unstable.
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Figure 4.23: AF estimates with hybridbias bias FG using 1x10® and 1x107 configurations

for Case C

Case D: Slight Subset and Non-Overlap Relation

Analysis of case D results show the same trends described for case C.
the most accurate estimator but the symmetric estimators are almost

case D (figure 4.24). The improvement in the symmetric estimators is

Again, overall, BAR. is
as accurate as BAR for

due to the forward anc

backward directions being more similar in case D, i.e. the important phase spaces of systems

A and B are of a more similar size.
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Figure 4.24: AF estimates with original FG using 1x10® and 1x107 configurations for
Case D

The biased FG methods perform slightly worse than original FG with single direction es-
timators (figure 4.25). One exception is configuration bias-d FG with protocols with few A\s
and many sampling steps in between. Figure 4.25 d) shows improvement of single direction
estimates over the equivalent original FG estimates in figure 4.24 b). This is less marked for pro-
tocols with fewer configurations (see appendix C). When BAR is used with biased FG methods,
accuracy is comparable to original FG (figure 4.25). Hybrid bias FG shows similar behaviour

to A bias (see appendix C).
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Figure 4.25: AF estimates with \ bias and configuration bias-d bias FG using 1x10% and
1x107 configurations for Case D

Which estimator should be used when?

It is clear that different estimators often provide the best estimates for different cases and pro-
tocols. How do we pick between estimators when we do not know the analytical answer? The
Kofke bias measure mentioned earlier attempts to measure the convergence of a calculation [Wu
& Kofke(2005a)]. The analysis of figure 4.6 showed that this measure cannot be relied upon in

all cases.

Another possible method of picking between estimators is to use the relative entropy niea-
sures of Wu and Kofke [Wu & Kofke(2005a)]. As discussed in chapter 3, these measures attempt
to give an idea of relative size of important phase space of each end point system. The Jarzynski
estimate with the highest relative entropy measure should be the direction starting from the
system with the biggest phase space and thus converge faster. Table 4.4 compares these relative
entropy measures with the relevant estimates for cases A-D with AX = 10, MC Trials = 100
and AX = 200, MC Trials = 5 switching protocols.

Correlating the highest relative entropy measure with the most accurate Jarzynski estimate

shows that this method of picking the most accurate Jarzynski estimate does not work well.
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For case A with a AX = 10, MC Trials = 100 protocol and case D with both protocols the
backwards Jarzynski estimate is the most accurate while the relative entropy measure predicts

that the forwards estimate will be most accurate.

Generally in table 4.4 BAR is the most accurate estimator. Only with case B estimates is
forwards Jarzynski more accurate than BAR. In those cases the BAR estimate is not placed
between the forwards and backwards Jarzynski estimates. Thus, it may be possible to pick the
best estimator by using BAR when it is placed between the forwards and backwards Jarzynski
estimates but using the Jarzynski estimate picked by the relative entropy measures when this

is not the case.

Case Fwd ent | Bwd ent | Fwd Jarz | Bwd Jarz | BAR | Analytic AF
A, 10-100 269.77 36.22 28.64 11.29 19.99 18.4
A, 200-5 63.07 5.17 19.62 15.84 18.25 18.4
B, 10-100 4.44 1.78 8.90 8.58 8.98 8.87
B, 200-5 3.23 2.12 8.92 9.50 8.95 8.87
C, 10-100 13.62 7.87 12.61 4.66 8.63 8.87
C, 200-5 9.33 5.68 9.67 7.96 9.00 8.87
D, 10-100 33.99 21.32 31.10 ~15.70 7.73 4.77
D, 200-5 37.55 19.70 20.50 -11.84 4.36 4.77

Table 4.4: Table of forward and backwards relative entropy measures and inaccuracies
in Jarzynski and BAR estimates of cases A-D free energy differences with AX = 10, MC
Trials = 100 and AX = 200, MC Trials = 5 switching protocols.

What is the optimum switch length?

Previous studies in the literature tell us, it is more efficient to use fewer longer FG switches [Gore
et al.(2003)Gore, Ritort & Bustamante], [Ytreburg & Zuckerman(2004)]. Figure 4.26 shows the
difference in efficiency using switches of 10,000 configurations (200 A increments with 50 inter A
increment MC trials) and 1000 configurations (200 A increments with 5 inter A increment MC
trials). The difference in efficiency between long and short switches can be quite different for
the cases A-D. For case B there is no difference in efficiency after 10° configurations, while for
case D there is a very large difference in efficiency. Therefore when evaluating AF's which have
barriers only of the form found in case’s A and B the advantage of extra parallelisation may be

more important for calculation of this type.



CHAPTER 4. HARMONIC OSCILLATOR SYSTEMS 124

1 e — Ty T T = il S i e
3 = - - ] — 20X A4's, 50 MC Irials
r 200 405, 50 MG Inals | - 4 \ 200 AXs, § MC Irials
r — 200 AX's, 5 MC Irials 1 \\ okl e
R '-é \
é A 10 hod .
£ £ \
8\ 3\ i \\
o 100 - © N
S 3 \
8 \ 2 L \ 1
- ©
g S & \
= x\-a‘.& £ \\
10 P B | Sy Ny ISR SR S, e PO e U T [ e e
= 4 5 6 7 3 -+ b 0o il
10 10 10 10 10 10 10 10 10 10
Number of configurations Number of configurations
(a) Case A (b) Case B
100 T 100 [T T ey
[ 200 ak's, 50 MC trials| | [ e — 00 AA's, 50 MC Inals
s 200 AX's, 5 MC trials | - — 200 AR's, 5 MC trials
L | 1 wo | e
L <]
A a1
= L i c
> >
[5) 1)
5]
8 \-\--H §
— IO_
c s c
c e o c
£ ok e | £
- -"—--_\_\_\__v__ <
L ¥ B L —
P o b T B G R e | M e s AT W iy Gl sl s e e
3 4 3 i 3 4 5 b T
10 10 10 10° 10 10 10 10’ 10° 10
Number of configurations Number of conligurations
(c) Case C (d) Case D

Figure 4.26: THO results for Original FG showing inaccuracy in SAF against numbers
of MC configurations where a switch has 200 A increments and either 5 or 50 MC trials
per A increment. Both calculations use a maximum of le7 configurations.

4.4.3 Comparison with TI

Our implementation of FDTI uses the trapezium rule to integrate over the potential gradients
found from simulation. If the potential over the A coordinate undergoes a large amount of
localised curvature our TI method will be error prone, as this curvature will not be detected.
Accurate TI calculations rely on a smooth free energy gradients across A. This analysis will
investigate TT with 11 and 51 A increment collection windows using a total of 1x107 MC con-
figurations. In table 4.5, "wins” is the number of windows used by TI and the numbers after
the acronym FG relate to the number of AAs and MC trials between each A increment, in that
order.

For Case A, TI compares quite poorly with both original and configuration bias-d FG (table
4.5). TT calculations done using 11 windows display very large inaccuracies. This is because of

a high level of curvature in the potential between the first and second AX window simulations
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(i.e. A =0and 0.1). Increasing the number of configurations used, in each A window with these
TT protocols gives almost no improvement in performance as the poteutial averages are not the

source of the error.

Case B has a potential change over X of a similar shape to case A but with smaller amounts
of curvature. Consequently, TT is able to produce a reasonable estimate of AF. However, FG
still gives slightly better performance than TI for case B.

Case C has the same potential change over A as case B. As expected, TI performs slightly

worse than FG.

Case D has a potential change over A with even less curvature than cases C and B. This

allows TT to calculate AF accurately as the majority of the potential curvature, and therefore

the error, is removed. Case D also has a large barrier due to the 3 A displacement of the
oscillator systems. As FG is only equilibrated at A = 0 and A = 1 this energetic barrier is more
of a problem compared with TI which is equilibrated at various points across A. This can be
seen in table 4.5 as FG is slightly less accurate than TI for case D. It is also interesting that
configuration bias-d seems to reverse the trend, for more AAs to be more efficient, seen with
original FG. This agrees with earlier results suggesting configuration bias-d perfroms best with

few A increments with large amounts of sampling between each A increment.

Case TI (11 wins) | TI (51 wins) | FG 10-100 | FG 50-20 | FG 200-5
Case A, origFG 46.70 6.76 1.59 0.07 0.15
Case A, conf-d 46.70 6.76 1.09 0.30 0.20
Case B, origFG 0.69 0.03 0.11 0.13 0.07
Case B, conf-d 0.69 0.03 0.19 0.12 0.18
Case C, origFG 0.70 0.04 0.25 0.07 0.14
Case C, conf-d 0.70 0.04 0.06 0.05 0.10
Case D, origFG 0.00 0.21 2.96 2.26 0.41
Case D, conf-d 0.00 0.21 0.16 3.50 5.09

Table 4.5: Comparison of inaccuracy in AF (kcalmol™!) for Cases A-D using TI and
BAR

In the case of a demanding system each A window takes so long to provide a converged
potential average that literature studies generally use no more than 21 windows [Price & Jor-
gensen(2000b)], [Michel et al.(2006)Michel, Verdonk & Essex], [Pearlman & Charifson(2001)].
In some cases this may not be enough to capture the true nature of the potential gradient
and can introduce error. Methods which are able to sample along the A coordinate have an

advantage as they experience all of the barriers involved in perturbing the system. This view
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is backed up by Shirts and Pande [Shirts & Pande(2005)]. Shirts and Pande presented a lim-
iting moment statistical analysis of the variance and bias of FG aud TI on simple harmouic
oscillator systems. They found that TI had higher standard error for THO, phase space subset
perturbations, which increased at a faster rate than FG as the ratio of wg/wa was increased.
The present study clearly shows that FG should be used in preference to TI when evaluating
free energy differences of THO systems.

This analysis has highlighted a deficiency of FG methods. The system has to react to the
changes made to the system by switching. It may increase the perforimance of FG methods if a
A switch is split up with intermediate starting points and then the AF' of each part of the switch
is summed [Hummer(2001)], [Shirts & Pande(2005)]. This switch splitting methodology should
decrease the amount of dissipated work the system must undergo in switching, and bring all
simulations closer to equilibrium. Table 4.6 shows results from FG calculations for cases A and
D comparing calculations where switches are split into ten equally smaller switches (FG-BY10)
and calculations where switches are not split at all. The labels of each column refer to the
switching protocol used, with the first number refering to the number of A iﬁcrements and the
second number after the ”-” refers to the number of MC trials between each A increment. All
calculations, in table4.6, used 1x107 configurations. Thus, the 20-5 (+10) calculations used

200000 switches while all others used 20000.

Case 10-100 (BY10) | 10-100 | 200-5 (BY10) | 20-5 (BY10) | 200-5
Case A, fwd 0.30 10.24 0.20 0.52 1.22
Case A, bwd 1.73 7.11 0.76 2.59 2.56
Case A, BAR 0.19 1.59 0.37 0.42 0.15
Case D, fwd 0.24 26.33 0.21 0.13 15.73
Case D, bwd 0.07 20.47 0.40 0.24 16.61
Case D, BAR 0.58 2.96 0.73 0.7 0.41

Table 4.6: Comparison of inaccuracy in AF's estimated with FG for Cases A and D with
the A switches split into 10, and not split at all.

Splitting FG switches into 10 separate FG calculations has improved the performance for
both cases A and D. This is especially marked for the single direction Jarzynski estimates.
Case D estimates using 10 A)s in the forwards direction improves in accuracy by an order of
magnitude when the A coordinate is split into 10 with switches kept at the same length and

out performs BAR using the same protocol. This may be because the variance of BAR does
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not reduce as quickly as with Jarzynski as the calculations become better behaved [Shirts &
Pande(2005)].

It is interesting to compare the estimates for case A which use the 200-5 BY10 and 20-5 BY10
protocols from table 4.6. These protocols give similar results except the backwards Jarzynski
estimate for 20-5 BY10 is far less accurate and similar to the 200-5 estiimate. This suggests
that for case A backwards Jarzynski estimates, the improvement seen for 200-5 BY10 comes
from the effective increase in length of switching rather than the extra equilibrated switching
points across A. If the same protocols are compared for case D, it is clear that to 20-5 BY10
estimates are much improved compared to the 200-5 estimates. Thus, the extra equilibrated
points across A are more important in this case.

Comparing BAR estimates for BY10 and not BY10 protocols seems to suggest that BAR
estimates, with a protocol with many A increments, are slightly more accurate without splitting

up the A coordinate.

4.5 Conclusions: When to use which methods?

The new sampling methods investigated here, originally presented by Koftke et al. offer ad-
vantages for the test protocols originally presented [Wu & Kofke(2005¢)]. A bias offers large
improvements in accuracy for case A using the original test protocol (fig 4.3). When other
protocols and estimators are explored these advantages do not necessarily remain. Original G
sampling is more efficient than any of the biased FG methods as long as the size of A increments
is kept very small. The A bias method must be altered to give A increments proportional to the
barriers throughout a switch, to be effective in all cases. The configuration bias-d method needs
large amounts of sampling between )\ increments, so that the possible choice of configurations
are less correlated. This means that it is often less efficient than original FG.

Of the estimators investigated here, it is clear that for difficult IHO switches BAR is the
most efficient. Using Jarzynski in the direction of larger phase space to smaller phase space
may be more accurate in the case of a slight subset relation. Jarzynski is also more accurate
when the A coordinate is split into ten and the resultant AF's are added together. From these
IHO results it maybe possible to set some simple rules to pick between estimators when the

correct AF' is not known. If a BAR estimate is placed between the forwards and backwards
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Jarzynski estimates then this is probably the most accurate estimate. If a BAR estimate is
not placed between the forwards and backwards Jarzynski estimates tlien the estimate in the
direction of the highest W,z should be chosen. There are cases where this method of picking
estimates does not work. Specifically, figure 4.16 ¢) and 4.17 a) although these problem cases
are both biased FG examples.

When attempting to think about these results in terms of the best protocol for protein-
ligand systems, it is less straight forward as these systems have extra barriers which are not
linked to phase space relationships but to interactions between different constituents of tlie
system. Switches between similar ligands in the solvent or protein environments are unlikely to
include the large localised amounts of curvature found in case A switches. However, these types
of protein switches could involve many barriers due to interactions between the ligand and its
environment. This almost certainly means an FG switch would be pushed far from equilibrium.
Thus, it seems sensible to use the splitting methodology discussed here.

Splitting an FG switch into smaller parts also makes sense from a computing point of view
as it allows more parallelisation. The bottleneck for FG calculations is the production of the
starting configurations. Splitting the calculation into ten smaller calculations allows the pro-
duction of the starting configurations to be parallelised as well. It is also necessary to take
a computing point of view when selecting the length of FG switches. The analysis presentcd
here suggests that the longest switches possible should be used. This detracts from the main
advantage of FG which is its possible parallelisation. This limits the length of FG switches and

a compromise position must be found.




Chapter 5

Solute-Solvent test systems

5.1 Introduction

The THO systems in the previous chapter allowed the thorough investigation of the accuracy
and efficiency of free energy methods for different phase space relationships. The results and
concepts taken from the investigation of IHO systems can be applied to the more complex
systems which hold more interest and real world application. However, owing to their morc
complex nature, these systems have extra interactions which must be studied to understand
the best approach to calculating their free energy differences.

The protein-ligand systems, which are the ultimate interest of this work, are invariably in
a water environment. Thus, one of the extra interactions and possible causes of free energy
differences and barriers are the interactions of a solute with a solvent (in this case water). The
free energy difference due to rearrangement of water is difficult to capture due to the large
number of degrees of freedom and possible long range electrostatics.

Here we have investigated the performance of FG methods in calculating free energy dif-
ferences with two relatively simple solute-solvent systems. First the free energy of charging
of a sodium ion in water and then the relative hydration free energy of water and methane

(perturbation of water to methane in water).
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5.2 Sodium charging

5.2.1 Description of calculation

Calculating the free energy difference due to ion hydration is a well known test for free en-
ergy methods. Of ion hydration calculations, the hydration of a sodium ion in water is
possibly the most commonly used test system in the literature [Hummer(2002)], [Ytreburg
et al.(2006)Ytreburg, Swendsen & Zuckerman|, [Han et al.(2001)Han, Kim, Mhin & Son]. This
is due to its simplicity, and the well behaved nature of the free energy clianges involved.

The calculation of sodium ion hydration free energy can be split into two to make it easier.
First, the free energy of cavity creation and any solvent dispersive effects for a van der Waals
sphere with the same Lennard-Jones parameters as sodium; second, the free energy due to
turning on the charge of the sodium ion. Many studies decide to ignore the first calculation
(cavity creation and dispersive effects) and simpily study the sodium ion charging. This is due
to the relative size of these free energy differences. The free energy due to sodium charging
is far larger than that due to growth of a sodium sized Lennard-Joues sphere, and thereforce
the latter calculation may be ignored without a significant loss of accuracy. This study will
concentrate on the free energy due to the charging of a sodium ion. Also, comparison to exper-
imental results for sodium ion hydration is not made, as the simulation software used is unable
to reproduce the long range electrostatics as discussed below. This test is used simply as an
initial validation and comparison for our FG implementations. Results are compared to TT and
similar studies from the literature.

Our study will initially attempt to repeat the calculations of Hummer [Hummer(2002)].
Hummer used the Jarzynski, fluctuation-dissipation (FD), and their symmetric varients to
calculate the free energy of charging sodium in water. Studies of ion charging systems have
suggested that fluctuations in the electrostatic energy near the solute are approximately gats-
sian and correspond to a linear response regime [Hummer et al.(1996)Hummer, Pratt & Garcial,
[Hummer et al.(1998)Hummer, Pratt & Garcia, [Ashbaugh & Wood(1997)], [Levy et al.(1991)Levy,
Belhadj & Kitchen], [Lynden-Bell & Rasaiah(1997)] [Hummer(2002)]. The change in free en-
ergy due to charging a sodium ion is purely electrostatic with a large portion of this heing the
solute-solvent interactions. Thus, the FD estimator and its symmetric varient should perform

well, as they rely heavily on the FG work distribution being very close to gaussian.
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Our sodium ion is represented as a Lennard-Jones sphere with a point charge and param-
eters as used by Straatsma and Berendsen in their 1988 study, and subsequantly by Hum-
mer [Straatsma & Berendsen(1988)]. Owing to studies carried out on system size effects
of this calculation, Hummer was able to justify using a very small solvent box [Hummer
et al.(1996)Hummer, Pratt & Garcial, [Hummer(2002)]. This allows very fast sampling of
the system which enables exhastive protocols to be used. A periodic box of 64 simple point
charge (SPC) water molecules with all dimensions 12.49 A was used to solvate the ion [Berend-
sen et al.(1981)Berendsen, Postma, van Gunsteren & Hermans]. These parameters are identical
to those of Hummer, as is the method of coupling the simulation to A. Hummer used the Ewald
summation for long range electrostatics and corrected the resulting free energies for interactions
of the solute with other periodic solute images [Ewald(1921)]. As a modified version of ProtoMS
2.1 was used for these simulations, Ewald was not available and a residue based, non-bonded
cutoff was used at 6.2 A and smoothed for a further 0.3 A [Woods & Michel(2005)]. The sim-

ulation parameters used in this study are summarised in table 5.1.

Parameter description Setting
Ensemble NVT
Temperature 25 °C
Pressure 1 atm
Boundary conditions Orthorhombic periodic
Non-bonded cutoff 6.2 A
Solute/solvent trials ratio 1/64
Max solute translation/rotation 0.15A/00°
Max solvent translation/rotation 0.15A/15.0°
Preferential sampling centre Sodium ion
Preferential sampling parameter 200 \

Table 5.1: Simulation parameters for Sodium charging simulations

The system set-up used in the present study was expected to give very different free energies
to those of Hummer [Hummer et al.(1996)Hummer, Pratt & Garcia], due to the difference in the
handling of long range electrostatics. The difference between an Ewald and cutoff electrostatic
potential was investigated with a very similar sodium charging calculation by Ashbaugh and
Wood in a previous study and the resulting free energies were found to differ by 20 % [Ash-
baugh & Wood(1997)]. The discrepancy was found to be due to effects at the boundary of the

potential cutoff. Therefore, this study will be solely concerned with an efficiency comparsion of
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FG estimators and TI when evaluating solvent reorganisation.

The system was equilibrated for 100,000 passes at A is 0 and 1 where each pass is as many
MC trials as there are molecules/residues in the system (in this case 65). Then 500 FG starting
configurations where taken, one every 100 passes. Calculations with 500 FG switches in both
directions, of 200, 2000, 5000, and 10,000 passes were run. All calculations in this study used

switches which contain a A increment every MC pass unless otherwise stated.

5.2.2 Sodium charging results

Once FG simulations were completed, all the estimators discussed here were applied to the
data. These AF' estimates were compared to FDTT estimates. FDTI was run using the same
protocol as Hummer, with 3 FDTI simulations of 680,000 passes resulting in a AF' of -83.7 4
0.5 kcal.mol™! [Hummer(2002)]. This TI result uses similar amounts of configurations to the
FG protocol using 2000 A increments. Figure 5.1 shows estimates from all estimators. 'The
legend of figure 5.1 is the same as used in chapter 4 with ”Jarz” refering to the Jarzynski
estimator and -GBias refering to the Jarzynski estimator corrected by the bias as calculated by
Gore et al. (2003)(see table 3.2). All statistical errors in calculations in this section were cal-

culated with the block variance method discussed in the FG background chapter with 10 blocks.
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Figure 5.1: Free euergies of sodium charging in water, comparing FG estimators to
TI. Figure (a) shows Jarzynski and Jarzynski-Gore bias. Figure (b) shows FD, and all
estimators using switches in both forwards and reverse directions.

Comparing to FDTI in figure 5.1 it is clear that the use of shorter FG switches with the

Jarzynski estimator leads to large inaccuracies. Jarzynski estimates are relatively similar when
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using the longest switches with 10,000 A increments. Jarzynski estiinates are also synunetric
with forwards and backwards estimates being equally inaccurate. The Jarz-GBias corrected
estimates show improvement with forwards estimates giving accurate results with the least ex-
pensive protocol. The success of the Jarz-GBias estimator is due to the strictly Gaussian nature
of the work distribution. However, this success in bias correction is unreliable as forward Gore
bias corrected estimates are less accurate compared to the Jarzynski estimator alone with the
longer 10,000 pass switches. This bias over-correction as Wy;ss becomes small is a problemn
noted and discussed by Gore et al. in his original study [Gore et al.(2003)Gore, Ritort & Bus-
tamante| and here in the FG background chapter.

The FD estimators show much improved accuracy compared to the Jarzynski estimator as
predicted by Hummer [Hummer(2002)]. The improvement shown by the FD estimator is un-
doubtedly specific to cases such as this where the work distribution is almost perfectly gaussian.
Possibly the best estimator for this system is the symmetric A estimator closely followed by
the symmetric B estimator. The ease of predictioin of these symmetric estimators is due to the
symmetric nature of switching this system from uncharged to charged. As the change in AF is
linear with changes in A these changes are also symmetric.

Considering the results of chapter 4, it was deemed useful to investigate possible improve-
ments found with an FG-BY10 approach. This FG-BY10 calculation used FG switches, with
2000 MC passes and 2000 X increments, as used by Hummer (2002). 50 switches were used for
each of the 10 individual FG calculations making up the perturbation from A = 0 to A = 1,
with the results of each FG calculation in the same direction being summed to get the AF.
This calculation was compared to a normal FG calculation using 2000 A increment switches
where estimates where calculated every 200 switches (in both directions). Some estimators
were previously very inaccurate with this length of switches (2000 MC passes in figure 5.1), so
there is room for improvement with FG-BY10. Figure 5.2 a) shows the normal FG calculation
results as the number of switches is increased. There seems to be little improvement in the poor
Jarzynski estimates through the course of the calculation, although BAR and FD give good
accuracy even with only 200 switches. Figure 5.2 b) shows as expected that by splitting the A
coordinate into 10, errors due to hamiltonian lag have been almost removed. Estimates froin

the FG-BY10 calculation may not have completely converged and seem to be moving towards
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the TI estimate. Here FG-BY10 is able to show similar accuracy to TI. TI is however able

to use a small number of A window simulations as the the change in free energy with A is lin-

ear. Thus, for the charging of sodium, TI may be able to converge more easily than FG methods.
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sodium charging in water using FG-BY1 and

The configuration bias-d switch sampling method investigated in the previous chapter on

harmonic oscillator models was applied to this sodium charging test system. The conliguration

bias-d results in figure 5.3 used three different switching protocols with differing numbers of

A increments and MC trials.

It is clear from these results that using a small number of A

increments with large amounts of MC trials between each is most efficient. However, the most

efficient configuration bias-d calculation with 20 A increments is no more eflicient than the

FG-BY1 protocol in figure 5.2 above.
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Figure 5.3: Estimates of the free energy of sodium charging in water using configura-
tlon bias-d FG sampling using three switching protocols. ‘70()() 65, 200-650 and 20-6500
denotes switching protocols with 1 MC pass between each of 2000 A increments, 100
MC pass between each of 200 )\ increments and 1000 MC pass between each of 20 A
increments respectively.

5.2.3 Sodium charging conclusions

As previously shown by Hummer (2002) using FG switches and the Jarzynski estimator in a
single direction is unable to produce results as accurate as 1T using the same number of MC
trials. This is mainly due to the possibility of using only three A simulation windows with
TI as the free energy change is linear. However, as previously found by Hummer (2002), the
FD estimator and Symmetric estimators are able to offer more accurate estimates of a similar
accuracy to TT in the case of sodium charging. This analysis helps validate this implementation
of these FG methods as they agree in general with published results [Hummer(2002)].

BAR has been shown to be more accurate than the Jarzynski estimator and as accurate
as FD and Symmetric estimators. Also, as discussed in the FG background chapter the Gore
bias has been shown to improve Jarzynski estimates when the bias is large (small N) but is
unreliable when the bias is very small (large N).

The use of a FG-BY10 protocol has been shown to improve the accuracy of the Jarzynski

estimator such that it is as accurate as BAR for the FG-BY1 protocol. Indeed using FG-BY10
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all estimators give very similar results. Also, the configuration bias-d switch sampling method
has been shown to be no more accurate than original FG switch sampling, for this sodium

charging system, while being more computationally expensive.

5.3 Relative hydration free energy of water and methane

5.3.1 Description of calculation

The hydration free energies of water and methane have been studied extensively in the litera-
ture. At standard conditions it is an example of the hydrophobic effect and consequently has
been studied extensively in the modelling literature [Hernandez-Cobos et al.(2001)Hernandez-
Cobos, Mackie & Vegal, [Delle Site(2001)], [Radmer & Kollman(1997)]. Here we will investigate
calculation of the relative hydration free energy of water and methane.

The relative hydration free energy of water and methane can be calculated through the

thermodynamic cycle in figure 5.4 in connection to the equivalent experimental steps.

AF

perturb

(methane)

Figure 5.4: Thermodynamic cycle used to calculate the relative hydration free energy of
water and methane

Thus, perturbations or switches must be performed from water to methane in vacuum and
water environments. The relative free energy difference (AAF) is found by taking the AF of

the water leg from the AF of the vacuum leg (equation 5.1).
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AAFyyq = AFperi(vac) — AF,eri(aq)

= AFyyq(methane) — AFpyq(water)

The experimental free energy of hydration of methane is unfavourable at 2.00 kcal.mol~! at 298
K, while the hydration of water has a favourable AF of -6.31 kcal.mol ™! [Zhou et al.(1998)Zhou,
Li, Hawkins, Cramer & Truhlar|. This gives an experimental water to methane relative hydra-
tion free energy of -8.31 kcal.mol~!.

This calculation has been performed in the literature by Woods et al. using many free
energy methods in a direct comparison [Woods et al.(2003a) Woods, Essex & King]. It is con-
venient to use the same system setup to give a quick comparison of FG methods with the
equilibrium methods investigated by Woods et al. The water to methane model consists of
a TIP4P water molecule switching to an OPLS united atom methane molecule [Jorgensen
et al.(1984)Jorgensen, Madura & Swenson], [Jorgensen et al.(1983)Jorgensen, Chandrasekhar,
Madura, Impey & Klein|. The oxygen atom of the TIP4P water is switched to the OPLS
methane while the TIP4P hydrogens and extra "M” atom are switched to dummy atoms. The
bond lengths of the TIP4P hydrogens are reduced to 0.2 A as they become dummy atoms to
help smooth the switch and to pull them inside the influence of the methane molecule. The
water-methane resides in an periodic, orthorhombic box of 1679 TIP4P molecules.

Both the TIP4P water and the OPLS methane are rigid-molecule models. Consequently,
for this calculation, the vacuum leg of the calculation from figure 5.4 will give a AF of zero aund
can be discounted. The calculation now consists of a single perturbation and the free energy
difference is now due to the solvent rearrangement only. This is useful as a free energy method
can be assessed solely on its ability to evaluate solvent rearrangment and solute-solvent inter-

actions.

The solvated water to methane perturbation may display a decrease in entropy due to ex-
cluded volume effects of the hydrophobicity of the methane [Hernandez-Cobos et al.(2001)Hernandez-
Cobos, Mackie & Vega]. It may be possible that as the water-methane molecule becomes
methane the surrounding water forms a rigid shell around it and loses entropy. In terms of
the THO cases discussed in chapter 4, this perturbation may display characteristics of cases

C and D, as the number of degrees of freedom explored in the methane system may be less
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than the non methane system, so the sizes of phase space when A is 0 and 1 will differ. Also,
the overall structure of the system will change as the solvation slells of the two systems dif-
fer. Neutron diffraction results for a methane system show peaks for both hydrogen-methane
and oxygen-methane radial distribution function (RDF) at 3.5 A [Dejong et al.(1997)Dejong,
Wilson, Neilson & Buckingham]. As the hydrogen peak is broader than the oxygen peak it is
thought that the waters orientate themselves with hydrogens towards the methane. The results
for pure water show a sharp oxygen-oxygen RDF peak at 2.8 A with a second shell at 4.5 A

and a third at 6.8 A. This change in structure is likely to cause FG calculations to display some
level of hamiltonian lag where T1T equilibrium calculations would not. Also, as the AF' is mainly
due to solvent rearrangement, it is likely that this solvated water to methane perturbation will
display a smooth potential energy change. This will allow TT calculations to integrate over tle
free energy gradient with a good level of accuracy.

Water-methane simulation parameters used by Woods et al. for all simulations are set out
in table 5.2. The present study used the same parameters, although as ProtoMS 2.1 Monte
Carlo simulation software [Woods & Michel(2005)] was used rather than MCPRO 1.5 [Jor-
gensen(1996)], a small adjustment was required. ProtoMS 2.1 is unable to force volume moves
every 10375 MC trials. Instead volume moves are made with a probability relative to solufe
and solvent moves. The MC trial probability ratios used for water-methane simulation in the
present study are volume 2:solute 13:solvent 20800. This is very close to the MC trial proba-

bilities used by Woods et al.

Parameter description Setting
Ensemble NPT
Temperature 25 °C
Pressure 1 atm
Boundary conditions Orthorhombic periodic
Non-bonded cutoff 15 A
Solute/solvent trials ratio 1/1600
frequency of volume trials 1 every 10375 trials
Max solute translation/rotation 0.1A/5.0°
Max solute translation/rotation 0.1A/25°
Maximum volume change 830 A3
Preferential sampling centre Oxygen/CH, of the solute
Preferential sampling parameter 200

Table 5.2: Simulation parameters for relative hydration free energy of water and methane
simulations.




CHAPTER 5. SOLUTE-SOLVENT TEST SYSTEMS 139

Woods et al. equilibrated the water-methane system, at A = 0 for 2 niillion MC trials.
For the methods employing fixed A simulations, FEP, FDTI, PTTI (parallel tempering ther-
modynamic integration), RETI, and REFEP (replica-exchange free energy perturbation), 21
uniforrﬁly spaced windows were used, starting with the final configuration from the equilibration
run. 10 million MC trials were allowed in each window, split into 3 million for A equilibration
and 7 million for calculation data. This protocol uses a total of 212 million MC trials.

Woods et al. were able to show the improved performance of RETI and REFEP compared
to the established non-enhanced methods, FDTI and FEP [Woods et al.(2003a)Woods, Essex
& King]. The addition of replica-exchange moves over A reduced the random sampling error
and the statistical error. Also, RETI performed consistently better than REFEP and was in
very good agreement with experiment.

When designing an FG protocol for this water-methane calculation, it is important to con-
sider the results of chapter 3. Thus, owing to the nature of the water-methane perturbation, a
switch splitting protocol is advisable, to attempt to minimise any hamiltonian lag. Also, results
from chapter 3 suggest that the longest switching trajectories and smallest A increments possi-
ble should be used to increase efficiency. All FG calculations use as close as possible the samc
number of MC trials as the RETI protocol of Woods et al. (total MC trials used will be noted in
brackets the first time each method/protocol is mentioned) [Woods et al.(2003a) Woods, Essex
& King].

The advantages of a A swap move in FDTT and FEP protocols is clear [Woods et al.(2003a) Woods,
Essex & King], [Wéods et al.(2003b)Woods, Essex & King]. A X swap move can also be applicd
across a series of FG calculations which traverse A (REFG). It makes sense to conduct replica
exchanges between the equilibrium simulations used to produce FG starting configurations (secl
simulations) which are adjacent on the A coordinate. As the seed simulations can differ in sizc
depending on the FG protocol (i.e. the number of MC trials between starting configurations),
for REFG it may be Worthwhile to choose a protocol which maximises seed simulation sampling

at the expense of switch length and thus allows more exchange of replicas.
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5.3.2 Water-methane results

Figure 5.5 shows water-methane results for non-replica exchange (non-RE) methods, comparing
four repeated calculations, which all started with the same equilibrated structure and are joined
by a line, using FEP, TI and various protocols of FG. In figure 5.5 the calculation protocols
labeled FG-BY10, FG-BY10-Bwd and FG-BY20 are explained below. Black lines denote cal-
culations where A is being incremented from 0 to 1 and red lines where A is being incremented
from 1 to 0 with cyan lines representing BAR calculations. The dashed black line marks the
experimental relative hydration free energy of 8.31 kcal.mol™* % 0.5 and the dashed red line
marks the recently exhaustively calculated relative hydration free energy of 8.8 kcal.mol ™!

0.1 using RETT with randomly chosen A swap moves, as discussed below [Woods(2007)].
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Figure 5.5: Relative hydration free energy of water and methane, estimated by four rep-
etitions for each non-RE method. Each set of four estimates is linked with a line and
labeled with the method abbrieviation. These estimates are compared to the experimen-

tal value of 8.31 kecal.mol™! which is the black dashed line and the accurate caleulated
free energy difference of 8.8 kcal.mol™! [Woods(2007)]

FG protocol | Switches | AAs | MC trials A Total MC Equilibrium MC
per AA | Split | trials (millions) trials/A swap
FG-BY1 400 1000 375 1 196 100000
FG-BY10 400 1000 375 10 207 100000
FG-BY20 800 500 375 20 235 100000
Table 5.3: Table describing non-RE FG protocols used in figure 5.5

FEP estimates display a hysteresis of 0.5 to 1 kcal.mol™!. The problem of choosing a sam-

pling direction may be solved by application of BAR to the FEP results, which would find the
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optimum estimate due to the variance of the data. However, more of an issue is the spread of
FEP estimates in a single direction which is around 2 kecal.mol™!. This large spread is despite
the relatively simple system and the common equilibrated starting structure for each calculation
repetition. Each FEP calculation repetition probably samples different areas of configurational
phase space giving these different results. This problem can be called the random sampling
error, as discussed by Woods et al. [Woods et al.(2003a)Woods, Essex & King]. FDTI shows
very low levels of hysteresis, however this is obviously a poor measure of the level of possible
error as the random sampling error is comparable to that of FEP.

The results labelled FG-BY1 use an FG protocol (196 million MC trials) with uninter-
rupted switches from A = 0 to A = 1 and numbers of switches, A increments and MC trials
per A increment listed in table 5.3. The hysteresis of the FG estimates is very large at around
13 kcal.mol~!. However, the BAR estimates from the same switches is of similar quality to
FEP and TI. Owing to the hamiltonian lag experienced by uninterrupted FG water-methane
switches, the addition of extra work values to a Jarzynski calculation seems to make little dif-
ference, as can be seen by the relative lack of improvement in Jarzynski estimates in figure 5.6
a). The Gore bias correction seems to offer some improvement in accuracy, especially in with
forwards switches. Owing to the size of the bias in the Jarzynski estimates the bias is calculated
accurately using equation 3.30.

The FD estimator with forward switches (starting as water) seems to offer improved per-
formance compared to the Jarzynski estimator and similar accuracy to the estimators using
switches in both directions shown clearly in figure 5.5. Forward FD estimates seem to pgo
through large fluctations although they do seem to converge as more switches are used (figurce
5.6 b). FD estimates with backwards switches seem to fluctuate less than their forwards coun-
terparts but give less accurate estimates. These results demonstrate that although forwards
and backwards jarzynski estimates have similar inaccuracy, forwards and backwards switches

contain different levels of bias for this system.
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Figure 5.6: AF' estimates against numbers of FG switches for the FG-BY1 protocol (table
5.3) i.e. where switches are from A = 0 to A = 1 and various estimators.

FG-BY10 (207 million MC trials) uses the same switching protocol as as FG-BY1. However,
as the A coordinate is split into ten, the effective length of switches is ten times longer (table
5.3). The use of a FG-BY10 protocol massively lowers the hysteresis of AF' estimates. BAR
estimates due to the FG-BY10 protocol are not improved over BAR estimates with uninter-
rupted switches.

The FG-BY10-Bwd results are where another four FG-BY 10 repetitions were carried out,
but with the system equilibrated at A = 1 (methane) as opposed to A = 0 (water). From
the eight FG-BY10 and FG-BY10-Bwd estimates reported here it is possible that there is no
advantage in equilibrating in one starting system over the other and that both sets of four
estimates are fully equilibrated.

The FG-BY20 (235 million MC trials) protocol splits the A coordinate into 20 with effective
length of switches which are the same as FG-BY10 (table 5.3) i.e. twice as many switches
are used with each individual switch being half the length of those in the FG-BY10 protocol.
This protocol produces quite similar estimates to the FG-BY10 protocol (figure 5.5). FG-BY20
estimates are in general slightly closer to the, thought to be accurate, value of 8.8 kcal.mol !
of Woods et al. [Woods(2007)]. However, FG-BY20 seems to produce slightly more hysteresis

between forwards and backwards calculations.

For FG, FG-BY10 and FG-BY20 BAR estimates could be picked according to the estimator
rules described in the previous chapter; where a BAR estimate is used if it is placed between

the forwards and backwards Jarzynski estimates, otherwise the Jarzynski estimates are chosen
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with regard to the relative entropy measures of Kofke et al. In the case of these (figure 5.5) FG
calculations BAR. would be used for every estimate according to these rules; this would not be
the set of estimates closest to the accurate value. BAR estimates are not always most accurate,
although as estimates for each FG calculation are in general very close (little hysteresis) this

may be due entirely to random sampling error.
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Figure 5.7: Relative hydration free energy of water and methane, estimated by four rep-

etitions for each RE method. Each set of four estimates is linked with a line and labeled
with the method abbrieviation. These estimates are compared to the experimental value

of 8.31 kcalmol™! which is the dashed line.

FG protocol Switches | AXs | MC trials A Total MC FBquilibrinm MC
per AX | Split | trials (millions) trials/A swap
REFGI 800 1000 200 10 217 50000
REFG2-BY10 800 1000 200 10 240 100000
REFG2-BY20A 1600 500 200 20 267 100000
REFG2-BY20B 1600 1000 200 20 427 100000

Table 5.4: Table describing REFG protocols used in figure 5.7

Methods involving A swap moves display significantly more consistent AF estimates. As
shown by Woods et al. RETI AF estimates show very low random sampling error and ex-
tremely good agreement with experiment [Woods et al.(2003a)Woods, Essex & King]. REFEP
has slighty larger levels of hysteresis and random sampling error. Both REFEP and RETT show
a flipping of the relative positions of forwards and backwards estimates in comparison to FEP
and FDTI, this will be discussed in full later.

The four RETI estimates of figure 5.7 although in very good agreement with experiment
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may not be properly converged and accurate. These four RETT calculations were performed
with MCPRO [Jorgensen(1996)] and a A swap scheme where coufigurations adjaceut in \ arc
swapped in alternate directions as is the case with REFGI in figure 5.8. The dashed red line
marks the more recent RETT estimate performed with ProtoMS 2.1 [Woods & Michel(2005)]
and using a A swap scheme were configurations adjacent in A are swapped in random directions
(RETI-random) unlike all the other RE free energy protocols discussed here [Woods(2007)].
The RETI-random estimate uses the same protocol as the four RETI estimates in all other
ways. It is difficult to interpret these results without further investigation but it may be that
this new RETI-random estimate is more accurate than the original four RETI estimates of
Woods (2003a).

REFG1 (217 million MC trials) is a replica-exchange FG protocol, as discussed in the FG
background chapter, where configurations of equilibrium seed simulations, adjacent in A, are
intermittently swapped (A swap move) on the basis of a dual metropolis test. A swap moves
can only be attempted on alternate pairs of simulations, as described in figure 5.8, any morc
and configurations could undergo more than one A swap at once. Switches are performed im-
mediately after a set of A swap moves have been made.

Figure 5.8 describes REFG1 with a BY3 (X coordinate is split into three) set of FG calen-
lations, to save space. In figure 5.8 each thick, black, straight, arrowed line represents a section
of equilibrium seed simulation. The circles represent system A and squares represent systcin
B, filled with cyan these systems are equilibrated while if filled with red they are not. Eacl
thinner dashed line represents the use of one system configuration to start multiple simulations
across A. Very thick blue lines with arrows at either end represent A swap moves and thin wavy

red lines are FG switches.

As shown in figure 5.8 REFGI starts with the same system equilibration as other FG metl-
ods described in the FG background chapter. The equilibrated structure is then used to start

simulations at 11 uniform intervals across A as with FG-BY10. These simulations are then

stopped at prespecified intervals to attempt A\ swap moves and then perform FG switches fromn

each equilibrium X simulation, in both directions to the next equilibrium A simulation.
REFGI estimates use a switching protocol, described in table 5.4, which has twice as many

switches of almost half the length compared with the protocol used for FG-BY10 estimatcs.

This change is an attempt to allow wider sampling of equilibrium seed simulations. All REFG
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estimates use the same switching protocol as REFG1 (table 5.4) except REFG2-BY20.
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Figure 5.8: Diagram describing the REFG1 protocol. Black lines represent equilibrium
simulations, thick blue lines represent A swap moves, black dashed lines represent the
proliferation of a single system configuration and thinner red wavy lines represent FG
switches.

REFGI1 estimates in figure 5.7 seemed to show higher levels of random sampling error
compared to FG-BY10, and larger statistical errors. REFG1 also dislays a flipping of relative

placement of forward and backward estimates as seen with FG-BY20. REFEP and RETT. How-

ever, unlike FG-BY20 the BAR estimates have moved to be very similar to backward Jarzynski
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estimates and consequently forward Jarzynski estimates may be chosen rather than BAR esti-
mates according to the estimator rules previously stated in chapter 4.

REFQG2 is similar to REFGI, the difference being that A swap moves are made in both
directions between each set FG switches. Figure 5.9 shows that for REFG2 a A swap move
is attempted between all seed simulations adjacent in A before the next set of FG switches is

started.
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Switches are performed,
works collected

Y

Figure 5.9: Diagram describing the REFG2 protocol. Black lines represent equilibrium
simulations, thick blue lines represent A swap moves, black dashed lines represent the
proliferation of a single system configuration and thinner red wavy lines represent FG
switches.
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REFG2-BY10 (240 million MC trials) estimates in figure 5.7 have less random sampling
error than the other FG protocols but slightly more than RETIL. It seems that forward Jarzyn-
ski REFG2-BY10 estimates are more accurate and consistent than BAR. BAR estimates seem
hampered by the less consistent backwards data. REFG2-BY10 forwards Jarzynski estimates
seem to have converged slightly above the RETI-random value of 8.8 kcal.mol~! while being as
consistent as the four RETI estimates while using approximately half the MC configurations.
Although this REFG2-BY'10 protocol uses the same alternate direction A swap scheme as the
four original RETT estimates it is closer to the RETI-random estimate.

REFG2-BY20A (267 million MC trials) is a REFG2 protocol with 20 FG calculations over
the A coordinate rather than 10. REFG2-BY20A estimates in figure 5.7 display estimates with
less random sampling error compared to FG-BY20. Again for REFG2-BY20A, BAR estimates
are all above the forwards and backwards Jarzynski estimates which are very similar. Jarzynski
REFG2-BY20A estimates display less hysteresis than REFG2-BY10, although there is a chance
this is a random effect. REFG2-BY20 calculations display a higher A swap acceptance rate than
REFG2-BY10 calculations owing to the equilibrium seed simulations being closer to each other
across A. REFG2-BY20 typically has A swap acceptance rates of 80 % while REFG2-BY10 is
65 %. For all REFG calculations replicas were able to move freely across A from 0 to 1.

REFG2-BY20B (427 million MC trials) is similar to REFG2-BY20A but the length of
switches aré doubled in an attempt to find a consistently high level of convergence. Here
Jarzynski estimates are all extremely similar with levels of hysteresis similar to the four RETI
estimates but random sampling error is still significantly lérger than that seen for RETT (figure
5.7) even though many more configurations are used.

The relative entropy measures of Wu and Kofke (i.e. the Wg; ) can help us to choosc
whether forwards or backwards FG calculations are more likely to be accurate [Wu & Kotke(2005a)].
The switching direction which gives rise to the largest Wg;ss should originate from a systcmn
with the larger important phase space. Hence, in theory the Jarzynski estimate with the largest
Wiss Will give a more accurate AF. However, this method of predicting the most accurate
AF estimate is far from fool proof and in cases where the amount of bias in each direction is
similar (such as this study of the relative free energy of hydration of water and methane) ran-

dom factors can result in an incorrect prediction. The Kofke bias measure described in the FG
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background chapter may offer a more reliable prediction of the best estimate as this measure
attempts to give an idea of the over all bias present.

FG protocols such as REFG2-BY10 discussed above have a number of small FG calcula-
tions across A rather than one calculation relating the A and B systems. This means there are
a number of ways estimates of the full free energy difference can be found from the individual

FG calculations across A, here we will test three:

1. Independently chosen relative entropy measure: In the case of these multi FG
calculation protocols each individual FG calculation can be treated independently and
a particular estimator chosen for each, with the result being that different estimators
are used for different parts of the perturbation (independently chosen relative entropy

measure).

2. Independently chosen Kofke bias: Same as above except the Kofke bias is used to

pick the most accurate estimator.

3. Totalled relative entropy measure: The relative entropy measure can be totalled
across the A coordinate and a direction chosen from these totals, so the same estimator
is used for each individual FG calculation across A (totalled relative entropy measurc).
This method may help to choose the correct estimator when using few, very long switches
and calculations are well behaved as relative entropy measures are likely to be similar in
the forwards and backwards direction. Consequently random fluctuations could have an

impact.

Table 5.5 shows the Kofke bias measures and free energy estimates for each individual
calculation of the first REFG2-BY10 repetition in figure 5.7. For the three sections of the
A coordinate between 0 and 0.3 the forwards Kofke bias measure is negative, predicting that
these forwards Jarzynski estimates are not converged. The Kofke bias measure suggests that
in general the backwards Jarzynski estimates are more converged than the forwards Jarzynski
estimates. These are trends seen in all repetitions of these REFG2-BY10 calculations suggest-
ing the initial portion of the A coordinate is difficult to converge in the forwards direction and

overall the backwards direction may provide converge faster. However, these suggestions do
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not fit with observation that the forwards Jarzynski estimates seem more internally consistent

than the backwards estimates.

A Fwd Kofke | Bwd Kofke | Fwd Jarz | Bwd Jarz | BAR
0-0.1 -0.977 1.429 4.600 4.552 4.447
0.1-0.2 -0.738 0.550 2.048 1.858 2.182
0.2-0.3 -0.216 2.383 1.115 0.943 1.083
0.3-0.4 0.195 . 0.009 0.486 0.608 0.590
0.4-0.5 0.074 13.550 0.333 0.372 0.383
0.5-0.6 0.572 2.189 0.240 0.143 0.247
0.6-0.7 1.624 1.133 0.050 0.079 0.071
0.7-0.8 1.622 1.245 0.048 0.061 0.057
0.8-0.9 0.510 5.727 0.035 0.040 0.047
09-1 1.947 1.618 0.017 0.009 0.029

Table 5.5: Table of Kofke bias measure values and free energy differences for each in-
dividual calculation of the first repetition of the REFG2-BY10 protocol (all free energy
differences in kcal.mol™!). Fwd Kofke and Bwd Kofke denote the Kofke bias measure in
the forwards and backwards direction respectively. Also, Fwd Jarz and Bwd Jarz denotes
the Jarzynski estimator in the forwards and backwards directions respectively.

FG protocol | Repetition | Fwd Wdiss | Bwd Wdiss | Fwd Jarz | Bwd Jarz | BAR
REFG2 1 1.81 1.63 8.97 8.67 9.13
REFG2 2 1.73 1.38 9.29 9.14 9.7
REFG2 3 1.36 1.23 9.19 7.87 8.92
REFG2 4 1.74 1.86 9.20 9.59 9.62

Table 5.6: Table of relative entropy measure values and relative hydration free energy of
water and methane estimates (kcal.mol™!) for FG-BY10 and REFG2 methods.

Relative entropy measures totalled across A for the REFG2-BY10 calculations given in this
study are in table 5.6. Finding estimates using the totalled relative entropy measure for the
REFG2-BY10 repetitions we pick the forwards direction in all but repetition 3 where the BAR
estimate is placed between the two Jarzynski estimates. While the estimate chosen is not al-
ways the closest to the RETI-random estimate of 8.8 kcal.mol~! (red dashed line), the chosen
estimates, labelled ”Wdiss Pick total” in figure 5.10, are consistently very close to the RETI-

random estimate.
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Figure 5.10: Relative hydration free energy of water and methane, These estimates are
compared to the experimental value of 8.31 kcalmol~! which is the dashed line.

Finding estimates using the independently chosen relative entropy measure for the REFG2-
BY10 repeats (labelled ”Wdiss Pick” in figure 5.10) produces estimates of a similar quality
to the totalled relative entropy measure but possibly slightly less consistent. Again producing
estimates using the independently chosen Kofke bias measure (labelled "Kofke Pick” in figure
5.10) gives similar estimates but even less consistent than the methods using the relative en-
tropy measure.

In theory finding an free energy difference estimate using the independently chosen Kofke
bias measure should produce the best results as it should find the estimate with the least bias.
In this test it is difficult to see which method is the best, possibly due to the fact that random
factors may be the main source of error in these calculations. The totalled relative entropy
measure ("Wdiss Pick total” in figure 5.10) seems to produce the most constantly accurate
results although it is possibly the most arbitrary.

From the results discussed above it is clear that in general it is advisable to use RE free
energy methods as opposed to non-RE methods. REFG2-BY10 is able to produce c‘uusist(-utll\/
more accurate results than FG-BY10. The improvement in convergence between similar FG-
BY10 and REFG2-BY10 protocols is again demonstrated in figure 5.13. The REFG2-BY10

PMFs are more consistent than the FG-BY10 equivalents.
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Figure 5.11: Plots of the PMF across A of 4 FG-BY10 and 4 REFG2-BY'10 calculations.

There was evidence, discussed in chapter 4, to suggest that configurational bias-d FG is

more efficient than other FG methods with cases C and D. Cases C and D may have similar

barriers to sampling as the relative hydration free energy of water and methane calculation in
S * [= 9

the present study. Thus, it was deemed worthwhile to investigate the performance of configu-

rational bias-d relative to original FG with our water to methane system. Figure 5.12 shows
O 2 5

estimates for three configurational bias-d protocols, which are listed in table 5.7, compared to

FDTI and FG-BY10 estimates discussed earlier. The configurational bias-d estimates seem to

isplay higher levels of hysteresis between the forwards and backwards Jarzynski estimates.
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Figure 5.12: Relative hydration free energy of water and methane, estimated by four
repetitions for each method. Each set of four estimates is linked with a line and labeled
with the method abbrieviation. These estimates are compared to the experimental value
of 8.31 kecal.mol~! which is the black dashed line and the RETI-random calculated value

of 8.8 kcal.mol~!.
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FG protocol | Switches | AXs | MC trials | Split
Confbias-d-1 400 500 300 10
Confbias-d-2 400 100 4000 10
Confbias-d-3 400 10 40000 10

Table 5.7: Table describing configurational bias-d FG protocols used in figure 5.12

5.3.3 Water-methane conclusions

The addition of replica exchange moves to FG calculations of the relative hydration free energy
of water and methane improves accuracy and precision. REFG2 is able to produce estimates
of similar quality to RETI. However, for free energy calculations such as the relative hydration
free energy of water and methane RETI should be the method of choice. The PMI of the
change in hydration free energy between water and methane is very smooth. This means that a
method which makes more evaluations at less discrete points across lambda will produce more
easily converged results than a method which makes fewer evaluation at many points across

lambda.
Figure 5.13 compares the PMF of four RETI and four REFG2-BY 10 forwards Jarzynski

calculations. REFG2-BY10 compares well with RETT in this case, especially as half as many
configurations are used to produce the REFG2-BY 10 forwards estimates as the RETT estimates,
although the RETI repeats are slightly more consistent. However, as can be seen from figure

5.7 other REFG protocols and estimators display less reproducible behaviour.
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Figure 5.13: Calculated PMF of relative hydration free energy of water and methane.
From 4 repetitions of a RETI calculation and 4 repetitions of a REFG2-BY10 calcualtion
using the forwards Jarzynski estimator. RETI data suplied by C. Woods, taken from

[Woods(2003)]

The four RETI calculations of Woods (2003) (figure 5.7) are consistently close to the ex-
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perimental value of 8.31 kcal.mol™! # 0.5. This may, unfortunately, be due to chance. A more
recent RETI-random calculation gives a value with slightly higher precision, of 8.8 kcal.mol ™! +
0.1 [Woods(2007)]. REFG-BY10 estimates are close to the RETI-random value. It may be that
the highly consistent four RETI estimates give a false idea of the level of reproducibility of tle
RETT protocol, by chance. There is the possibility that there is an issue with the periodicity of
A swap moves in RETT causing differing efficiencies in convergence, although more investigation
is required to clear this up. The REFGI1 protocol is the same as the REFG2-BY10 protocol
except REFG2-BY10 has two A swaps between each switch starting configuration and REFG1
has only one. Also, REFG1 has 50,000 MC trials between A swaps whereas REFG2-BY10 has
100,000. The difference in performance between REFG1 and REFG2-BY10 (sce figure 5.7)
must be attributed to some combination of the extra A swaps and equilibrium seed simulation

MC trials.

When forwards and backwards Jarzynski BAR FG estimators do not give the same valuc
it may be difficult to choose the most accurate estimate. A good method tested here and pos-
sibly the most simple is to use the totalled relative entropy measure of Wu and Kofke (2005¢)
(effectively the Wy;ss) to find the Jarzynski estimator which is most likely to be accurate, in
the case of a BAR estimate not being between forwards and backwards Jarzynski estimates.
Alternatively, it may be even simpler to just use BAR on all occasions.

For free energy calculations on chemically and biologically relevant systems, where the PMI
from system A to B is smooth and has no sharp curvature or sudden fluctations, RETI may
perform more efficiently than any FG protocol. It is not clear whether these large biological
systems do experience sufficiently sharp changes in free energy to cause a problem for TI bascd

methods.

If the limiting parameter to calculations is not the number of MC trials but instead is the
wall clock time, then FG methods may have an advantage. This being the case and depending
on the number of computers used for FG, more MC trials could be used in an FG calculation
than for a TT calculation taking the same amount of time. As REFG2 has been shown to give
similar performance to RETT with this extra computational advantage both RETI and REFG
methods may be equally suitable for calculations similar to the relative hydration free energy

of water and methane.




Chapter 6

Protein Ligand Binding Free

Energies: Neuraminidase

6.1 Introduction

Neuraminidase is a glycoside hydrolase enzyme and is found on the surface of the influenza virus
(EC 3.2.1.18, [Bairoéh(ZOOO)]). It is thought that neuraminidase aids in the efficiency of virus
release from cells. Thus, neuraminidase has been a major target for drug design programmes
and inhibiting compounds in current use as treatments are zanamivir (Relenza) and oseltamivir
(Tamifiu).

Neuraminidase inhibitors have been the subject of a recent binding free energy study using
RETT with both implicit and explicit solvation [Michel et al.(2006)Michel, Verdonk & Essex].
Michel et al. used a structure of N9 neuraminidase (PDB code 1BJI) and attempted to pre-
dict the binding aflinity of 10 ligands originally investigated by Wall et al. using LIE [Wall
et al.(1999)Wall, Leach, Salt, Ford & Essex]. Unfortunately the results of Wall et al. and
Michel et al. cannot be fairly compared as differing receptor structures were used, with Miclicl
et al. having the advantage of a newer, possibly more appropriate receptor. Michel et al.
produced predictions of ligand binding affinities which showed excellent quantitative agreement
with experiment using both implicit and explicit methodologies.

Here the reproduction of the explicitly solvated neuraminidase results of Michel et al. using

FG is investigated. How well do FG methods compare with RETI and experimental analyses?
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6.2 The neuraminidase system n vivo

Influenza is a wide-spread disease amongst humans, with infections affecting 20 % of the world’s
population annually [Moscona(2005)]. Influenza can also be extremely virulent. From 1918 to
1920 a pandemic due to the deadly strain HIN1 of influenza A virus killed 50-100 million people
worldwide. With the parallels between the recent H5N1 strain and that of the 1918 pandemic,
the threat posed by nfluenza is clear [Kamps et al.(2006)Kamps, Hoffmann & Preiser]. Through
vaccination we can prevent infection and this is the main strategy used to tackle the problem.
However, vaccine programs can fail due to antigenic drift, inadequate vaccine supply and the
slow nature of present methods of vaccine production. Therefore, anti-viral drugs are important
for pandemic strategies and the treatment of individual cases.

The neuraminidase protein has a mushroom shaped head of four co-planar spherical subunits
projecting from the virus membrane and a hydrophobic trans-membrane region. Neuraminidase
disconnects the influenza viron from cell surface receptors which attach newly released virons
to an infected cell (figure 6.1). The neuraminidase active site binds the terminal sialic acid of
these cell surface receptors and cleaves the glycosidic linkage between the sialic acid and the
adjoining saccharide (EC 3.2.1.18, [Bairoch(2000)]). Without this action the virus is effectively

unable to reproduce and the infection is halted.

Neuraminidase activity

Budding virus

Host o
cell g Neuraminidase cleaves receptor
1%
I
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¥ 1 -
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Py containing —
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Figure 6.1: The action of neuraminidase in the replication of influenza virons. Taken
from [Moscona(2005)]
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Effective neuraminidase inhibitors were designed when the three dimensional structure of
the enzyme was produced and the position of the active site found [Colman et al.(1983)Colmau,
Varghese & Laver|. Zanamivir and Oseltamivir both closely mimic the natural substrate, sialic
acid, but bind more favourably. Current neuraminidase inhibitors have very little toxicity con-
pared to alternatives and are effective against all strains of influenza [Moscona(2005)].

The binding site of neuraminidase is solvent exposed and water molecules play a role in bind-
ing of the sialic acid substrate. Figure 6.2 shows the binding site of the x-ray crystal structure
of N9 neuraminidase with PDB code 1BJI [Taylor et al.(1998)Taylor, Cleasby, Singh, Skarzyn-
ski, Wonacott, Smith, Sollis, Howes, Cherry, Colman & Varghese]. The sialic acid substrate is
placed correctly in the binding site, although this structure has not undergone any minimisa-
tion or equilibration. The slightly enlarged green spheres in figure 6.2 are the oxygen atoms of
the crystallographic water molecules present in the binding site. At least one of these bound
waters is thought to mediate binding for some inhibitors, including DANA types and amino
types [Smith et al.(1996)Smith, Sollis, Howes, Cherry, Vobley, Taylor, Whitington, Skarzynski,
Cleasby, Singh, Varghese & Colman]|, [Wall et al.(1999)Wall, Leach, Salt, Ford & Essex]. The
general protein-ligand interactions seen in figure 6.2 and for all complexes are as follows: the car-
boxylic acid of the ligand interacts with arginines 118, 292 and 371 through charge-charge hascd
hydrogen bonds, including a possible planar salt bridge to 371 [Varghese et al.(1992)Varghesc,
McKimm-Breschkin, Caldwell, Kortt & Colman]|, [Taylor et al.(1998)Taylor, Cleasby, Singl,
Skarzynski, Wonacott, Smith, Sollis, Howes, Cherry, Colman & Varghese]. The acetamido
fragment placed in the middle, lower region of figure 6.2 has hydrogen bonds to Arg 152 and a
bound water. The methyl associated with this acetamido fragment makes favourable hydropho-
bic contact with two residues Trp 178 and Ile 222, which are slightly lower in the binding sitc
than Arg 152. The two more terminal hydroxyl groups of the glycerol moiety have a bidentatc
interaction with Glu 276. The hydroxyl group on the left of the sialic acid molecule in figure
6.2 experiences hydrogen bonding with residues Glu 119 and Asp 151 which is facilitated by

a bound water [Varghese et al.(1992)Varghese, McKimm-Breschkin, Caldwell, Kortt & Colman].
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Figure 6.2: The substrate binding site of N9 neuramindase from influenza A (pdb 1BJI
[Taylor et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smith, Sollis, Howes,
Cherry, Colman & Varghese]) with sialic acid bound. Binding site water oxygen atoms
are enlarged and in green. Sidechain hydrogens are removed for clarity. The position of
the sialic acid molecule is modelled in the binding site with reference to the sialic acid
analogue (ligand 10 in this study) of the 1BJI structure.

Figure 6.3 is a schematic of the basic scaffold for all ligands used in this study, which is
based on the substrate sialic acid. The scaffold positions Rcis, Rtrans (referring to the cis and

trans pockets described above) and Rpol are filled by different substituents for the different

ligands listed in table 6.1.

Il?cis
N-
Rtrans

Figure 6.3: 2D chemical structure diagram of the basic scaffold for all neuramindase
ligands used in this study.
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Compound Rirans Reis Rpol ICs (uNI)

1 Me H NHF 190

2 Et H NHF 13

3 Me Me NH3 2.4

4 Et Et NH7T 0.003

5 Me H | NHC(NH;)* 7

6 Me Me | NHC(NH,)* 0.025

7 Et Et | NHC(NH;)* 0.001

8 (CH3)2Ph | Pr | NHC(NH3)* 0.005

9 (CH2),Ph | H NH7 12

10 (CHQ)QPh Pr NH; 0.005

Table 6.1: Experimental activity of the sialic acid analogues against neuraminidase [Wall
et al.(1999)Wall, Leach, Salt, Ford & Essex]

From the IC5p data in table 6.1 it seems that it is favourable for binding to fill both the cis

and trans pockets. There is little difference between binding affinities of ligands 4, 7, 8 and 10

suggesting there is little profit in bulkier groups than Et for both the trans and cis pockets. The

difference between binding affinities of ligands 4, 7, 8 and 10 are within experimental errors of

approximately half an order of magnitude [Wall et al.(1999)Wall, Leach, Salt, Ford & Essex].

The positioning of the (CHy)2Ph and Pr groups in the substrate binding site is shown in figure

6.4. The phenethyl group is placed between Ile222 and Ala246 (the trans pocket), while the

propyl is between the Glu276 and Arg224 residues (the cis pocket).
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Figure 6.4: The substrate binding site of N9 neuramindase from influenza A (pdb 1BJI
[Taylor et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smith, Sollis, Howes,
Cherry, Colman & Varghese]) with the amino, sialic acid analogue, ligand 10 bound.
Binding site water oxygen atoms are enlarged and in green. Sidechain hydrogens are
removed for clarity.

The substitution of an amino group at position Rpol for a guanadino group is also strongly
favourable (compare ligand 3 and 6 in table 6.1). This is due to the displacement of a bound
water by the guanadino group, which would be present with ligands 1 to 4 ,9 and 10, [Taylor

et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smith, Sollis, Howes, Cherry, Colman

& Varghese].
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Figure 6.5: The substrate binding site of N9 neuramindase from influenza A (pdb 1Bl
[Taylor et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smith, Sollis, Howes,
Cherry, Colman & Varghese]) with the guanadino, sialic acid analogue, ligand 7 bound.
Binding site water oxygen atoms are enlarged and in green. Sidechain hydrogens are
removed for clarity.

6.3 The neuraminidase system in silico

This study is concerned with calculating relative binding free energies (AAF') of a set of in-
hibitors for neuraminidase. This allows the ranking of ligands to find those which are the
strongest. binders. To find AAFs for protein-ligand systems it is necessary to run two [ree
energy calculations which are part of a thermodynamic cycle as shown in figure 6.6. AAFs are

then calculated through equation 6.2.

AF . (water) _
e ~ lig2
AF_u(ligh) AF_(ig2)
AF_.(protein)

Figure 6.6: Thermodynamic cycle used in the calculation of the relative binding free
energy of neuraminidase inhibitors
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AAFyng = AFpe(protein) — AFpe(water) (6.1)
= AFying(ligl) — AFyna(lig2) (6.2)

The model system used in this study is identical to that of Michel et al. in their recent

study [Michel et al.(2006)Michel, Verdonk & Essex]. All system setup information is described

for completeness. A 2 A resolution PDB structure of N9 neuraminidase (PDB code 1BJI) was
used as the receptor model for all calculations. Missing hydrogen atoms were added to 1BJI
using Reduce [Word et al.(1999)Word, Lovell, Richardson & Richardson]. The experimental
studies on these ligands were done at a pH of 6.5 so all histadine residues were protonated unless
evidence of an available hydrogen bonding interaction was found. All ligands were placed in
the l?inding site with the bonding mode of ligand 10 in the crystal structure 1BJI.

The AMBER99 forcefield was used for the protein and GAFF was used to parametrise the
ligands [Pearlman et al.(1995)Pearlman, Case, Caldwell, Ross, Cheatham, Debolt, Ferguson,
Seibel & Kollman]. Partial charges were produced using the AM1/BCC method as implemented
in AMBER 8 [Case(2004)] [Jakalian et al.(2002)Jakalian, Jack & Bayly].

The complex of protein and ligand 10 was then put through a short minimisation using the
Sander simulation program of AMBER 8 with Generalised Born {GB) solvation [Case(2004)].
This minimisation consisted of 100 steps of steepest descent followed by 400 steps of conjugate
gradient and was intended only to remove bad contacts.

All residues outside 15 A from any heavy atom of the ligand (ligand 10) were removed to
give a protein scoop for all subsequent simulations. The system was solvated with a 22 A sphere
of TIP4P waters centered on the geometric centre of the ligand. A similar sphere of water was
used to solvate ligand-only simulations. The system was neutralised by removing the charge of
lysine residues 273 and 432 which are both not close to the binding site.

All sampling was carried out using a version of ProtoMS 2.1 [Woods & Michel(2005)] mod-
ified to run any extra FG methods. All backbone atoms were kept rigid for all simulations.
The solvent was constrained using a half-harmonic potential of 1.5 kcal.mol='.A~! applied to
water oxygen atoms which go beyond 22 A from the geometric centre of the starting position

of ligand 10. Residues with all heavy atoms further than 10 A from all the ligand heavy atoms
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were rigid and not sampled. The neutralised lysine residues were in this frozen regioun. Also, a

non-bonded cut off of 10 A was imposed to increase the efficiency of sampling. This setup gives
a belly simulation with a moving core surrounded by a frozen shell. Within the moving core
bond angles and torsions of sidechains were sampled except for those which are part of a ring
structure. The ligand was sampled in a similar way with the addition of rigid body translations
(0.03 A) and rotations (0.1°).

Simulations were run at a temperature of 37 °C in agreement with experiment [Taylor
et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smith, Sollis, Howes, Cherry, Col-
man & Varghese]. For simulations of protein-ligand complexes, solvent, protein and ligand
moves were attempted 85.7 %, 12.8 % and 1.4 % of the time. For ligand-only simulations,
solvent and ligand moves were attempted 98.4 % and 1.6 % of the time. In preparation for
equilibrium simulations the solvent was equilibrated for 20 million moves, with the protein held
rigid, in an attempt to remove any repulsive contacts with the protein or ligand. Then the
whole system was equilibrated for another 20 million moves at one extreme of the coupling
parameter which corresponds to the largest ligand. The equilibrated system configuration is
then used to start all simulations, at different A values, needed for a particular protocol. The
RETT analysis of Michel et al. equilibrated each A window simulation for 10 million MC trials
before any data was collected. The FG protocols of this study equilibrated each A window
seed simulation for 2 million MC trials. This reduction in the size of the \ equilibration for
FG protocols was made to save time. The smaller size of these equilibrations was found to be
sufficient through studying the energy fluctuations of these equilibrations and the fact that test
AF's were consistent with protocols with longer equilibrations.

The perturbations used were picked to close four thermodynamic cycles shown in figure 6.7.
This allowed the calculation of hystereses of different paths to the same AAF's giving an idea
of the consistency of the calculations. Also, the averaging of AAF's from different perturbation

paths gives more precise results.
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Figure 6.7: Closed perturbation pathways used to find hystereses for consistency checks.
Ligand numbers are in black and closed cycle numbers are in red.

Perturbations were performed using a single topology method in a similar style to the water
to methane perturbation of chapter 5. The growth of large groups such as benzene rings was
made possible by hiding all atoms of the larger group to be grown behind the smaller group
from which it is growing. All bonds and atoms in the larger group to be grown were set to 0.2
A and dummies, respectively, in the end state without the larger group (i.c. not seen by the
rest of the system). For example, the perturbation from ligand 2 to 9 grows a benzene ring
from a hydrogen. The end state with ligand 2 has a benzene ring of dummy atoms with bonds
2 A long. Even with the benzene ring in its shrunken state, it is unable to hide completely
behind the influence of the hydrogen atom from which it grows. However, it is important that
as the dummy atoms of the ring are turned on they are not close to any other atoms as this
will possibly cause extremely large energies and lead to issues of free energy convergence.

TI calculations carried out by J. Michel used 12 A windows with 11 spaced uniformly every
0.1 and one at 0.95. Each A window simulation was equilibrated for 10 million MC trials and
then A\ measurements were collected for 30 million MC trials. The FDTT A used in every case

was 0.001.

FG protocols for this study were devised with the results and conclusions of chapters 3
and 4 in mind. After experimentation the FG-BY10 protocol was deemed most suitable for

this and possibly all protein ligand systems and was therefore tested for original FG, REFG2



CHAPTER 6. PROTEIN LIGAND BINDING FREE ENERGIES:

NEURAMINIDASE 164

and configurational bias FG. Again, FG protocols with few, long switches were employed, as

discussed in chapters 3 and 4.

6.4 RETI Results

Table 6.2 shows RETI protein-ligand (AFpro) and solvent-ligand (AA Fyyq) free energies which
give the relative binding free energies (AAFy;,q) which can be compared to the experimental
(Exp) relative binding free energies. Also, vacuum free energies (AFy,.) are shown, which en-
able the calculation of solvation free energies (AA Fyq,,). Errors were calculated using the block

variance method described earlier in the main introduction.

Pert EXP AAGbind AAAG’aolv AGprot AGwa,t AG"ua.c

1t2 | -1.63 1.44 + 041 1.24 + 0.32 1.87 + 0.29 0.43 £0.29 | -0.81 £0.14
1t3 | -2.67 | -5.25 £ 0.62 | -1.58 &£ 0.67 | 21.87 £ 0.34 | 27.12 £ 0.52 | 28.70 £+ 0.43
2t3 | -1.04 | -7.19 £ 0.77 | -2.52 £ 0.78 | 19.74 + 0.43 | 26.93 £+ 0.64 | 29.45 £+ 0.45
3t4 | -4.09 | -4.14 £ 0.69 1.46 + 0.54 | -8.78 £ 0.51 | -4.64 & 0.47 | -6.10 £ 0.27
5t6 | -3.45 | -5.61 £ 0.58 | -1.62 + 0.62 | 20.69 + 0.27 | 26.30 £ 0.51 | 27.92 4+ 0.35
5t7 | -5.15 | -7.34 £1.18 | 0.10 £ 1.04 | 15.12 + 0.78 | 22.46 £ 0.88 | 22.36 £ 0.56
2t4 | -5.13 | -9.32 £ 1.06 | -2.53 £ 1.08 | 12.04 + 0.65 | 21.36 + 0.84 | 23.89 £+ 0.68
2t9 | 0.08 | -2.56 &+ 1.21 0.84 +£0.93 | -7.30 £ 0.80 | -4.74 + 0.91 | -5.58 + 0.20
6t7 | -1.70 | -1.36 = 0.66 114 £ 053 | -4.54 £ 049 | -3.18 £ 0.44 | -4.32 £ 0.29
7t8 | 0.65 | -3.97 £1.39 | 3.07 &+ 1.04 | -4.62 £0.99 | -0.65 £ 0.97 | -3.72 £ 0.37
4t10 | 0.25 | -5.46 £ 1.38 | 234 +1.09 | -3.12 £ 0.90 | 2.34 £ 1.04 0.00 £ 0.31
9t10 | -4.80 | -11.86 £ 1.33 | -1.49 £ 1.32 | 13.33 £ 0.81 | 25.19 + 1.06 | 26.68 + 0.78

Table 6.2: Experimental and calculated relative binding free energies with the protein-
ligand and solvent-ligand free energies used in their calculation. Also, relative solvation
free energies calculated with the vacuum-ligand free energies used in their calculation.
Experimental free energies are calculated with the formula AAG = AG, — AG, =
RTIn(K,/K>,) assuming that the ratio of the /Cs¢s is equal to the dissociation constants
[Cheng & Prusoff(1973)]. All free energies in this table are in kcal.mol™, were found
with RETI and taken from the PhD thesis of J.Michel [Michel(2006)].

The trends in the calculated AAF};,4s in table 6.2 are similar to those seen from experi-
ment. The calculated AA Fj;,4s are in general slightly overestimated.

Table 6.3 shows the changes taking place at the cis and trans positions and compares this
with the inaccuracy in AAFy;,q and the percentage of AAFy;ng made up by AAFgy,. In the

non

cis and trans columns the groups listed before and after the is present are at A = 0 and A
= 1, respectively. The same/diff column has "Both diff” and "Both same” if changes at the

cis and trans positions are different or the same, respectively. It is interesting that the two
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most accurate AAFy;ng estimates have Me-Et changes at both the cis and trans positions. All
AAFying estimates which grow a (CHs)oPh at the trans position are more inaccurate than the
mean unsigned error of 3.39 kcal.mol~!. The Et-(CHjy)sPh change of perturbation 2t9 gives a
relatively small inaccuracy of 2.64 kcal.mol™!. This suggests that it may be the Et-Pr change
which is the source of the relatively high inaccuracies in perturbations 7t8 and 4t10. It is inter-
esting that perturbation 2t3 is very inaccurate as perturbations with similar sized changes in cis
and trans groups do not show such large inaccuracies. Hence, the large error for perturbation

2t3 may be due to random sampling error issues.

Pert trans cis same/diff | AAFp;,q4 error
1t2 Me-Et H -3.07
1t3 Me H-Me 2.58
2t3 Et-Me H-Me Both diff 6.15
3t4 Me-Et Me-Et | Both same 0.05
5t6 Me H-Me 2.11
5t7 Me-Et H-Et Both diff 2.19
2t4 Et H-Et 4.19
2t9 | Et-(CHy)2Ph H 2.64
6t7 Me-Et Me-Et | Both same -0.34
7t8 | Et-(CH2)2Ph | Et-Pr | Both diff 4.62
4t10 | Et-(CH2)2Ph | Et-Pr | Both diff 5.71
9t10 (CH;3)2Ph H-Pr 7.06

Table 6.3: Table showing the perturbations taking place at the cis and trans positions
from figure 6.3 and the error of calculated AF's compared to experiment. Also, the
percentage of the AA Fy;,q value which is contributed by the AAF,, is listed in the last
column.

The hystereses of the 4 thermodynamic cycles made by the neuraminidase perturbations
are listed in table 6.4. Cycle 2 has a relatively large AAF},;,q hysteresis of 2.01 kcal.mol!.
However, the total level of error in cycle 1 is larger than cycle 2 as can be seen from table 6.3
and so it could be argued that the large error in perturbation 2t3 has given cycle 1 a high level

of consistency, fortuitously. If the possibly random error in perturbation was more in line with

errors in other similar perturbations it would be cycle 1 with the high hystereses and not cycle 2.
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( Cycle pathway hystping hystsotu
1(1,2,3) 0.50 £1.07 | 0.30 £+ 1.08
2(2,3,4) 2.01 £ 1.48 | 1.47 £ 1.43

3(2,4,9,10) | 0.88 £ 2.50 | 0.46 £ 2.23
1(5,6,7) 0.37 + 1.47 | 0.58 £ 1.32

Table 6.4: Hystereses of 4 thermodynamic cycles for relative binding (hystyine) and solva-
tion (hystse.) free energies of the neuraminidase ligands. All hysty;,g and hystg, values
in kcal.mol™*.

Table 6.5 shows the free energy difference of each of the ligands relative to ligand 1. The
perturbation 3t6 in table 6.5 is not listed in tables 6.2 and 6.3 above. This is because perturba-
tion 3t6 is problematic due to the necessary expulsion of a water molecule from the binding site
as explained earlier [Taylor et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smitl,
Sollis, Howes, Cherry, Colman & Varghese]. Attempts to tackle this perturbation with relatively
simple methods were not successful [Michel(2006)]. The proper treatment of this perturbation
would require more complex methodology, outside of the scope of this study. Barillari et al.
studied this neuraminidase system with the same AMBERY99 force field and a more rigourous
simulation set up including periodic boundary conditions and protein backbone movement [Bar-
illari et al.(2006)Barillari, Taylor, Viner & Essex|. Barillari et al. investigated a very similar
perturbation with the same water expulsion through the growth of a guanadino group from an
amino group. The perturbation counsisted of an annihilation of crystallographic bound waters
using a double decoupling method [Gilson et al.(1997)Gilson, Given, Bush & McCammon] fol-
lowed by the mutation of ligand 3 to 6. With a non-bonded cut off of 30 A Barillari et al. found
a relative binding energy of -3.4 + 1.1 keal.mol ™! which is close to the experimentally measurcd
value of -2.78 kcal.mol~!. Owing to the complexity of the Barillari et al. methodology and the
problems of applying this large cutoff (30 A) with the water droplet methodology of the present
study Michel opted to use the relative binding energy value of Barillari et al. [Michel(2006)].
Hence, the value of -3.4 + 1.1 kcal.mol~! will be used for the perturbation of 3t6 through out
this study.

Table 6.5 shows whether this RETI analysis has predicted the ranking, from best binder to
worst, correctly. Overall most ligands are in the correct order. Ligands 8 and 10 are incorrectly
predicted to be better binders than ligands 4 and 7. Also, ligand 4 is predicted to have almost

the same AAFy;,4 as ligand 6, whereas experimental AA Fj;,,q show that it is a better binder.
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Interestingly the large error of perturbation 2t3 discussed above is quenched by the combined
error of an opposite sign in perturbations 1t2, giving a AAF};,q for ligand 2 which is in line
with the general trend. Again this may be fortuitous.

Figure 6.8 again compares the calculated and experimental AAFy;,q of each ligand relative
to ligand 1. Here again, it is clear that the prediction suffers from the large over estimation
of ligand 8 (NHJ,(CH3)sPh,Pr) and 10 (NHC(NHj)*,(CHz)2Ph,Pr) AAFypng. Figure 6.8 also
shows a predictive index (PI) score. PI is a quantitative measure of how useful a predicted

set of protein-ligand AA Fypngs are [Pearlman & Charifson(2001)]. PI is calculated using the

formula,
_ Djsi 22 wiiCly

Pr= D gi 2 Wig (93)

with,
wij = [E(j) — E(5)] (6.4)

and,

+1 if E()-E()/P() - P) <0

Cij={-1 if B(j)-E(i)/P()-Pl)>0 (6.5)

0 if P(j)—P@)=0.

In equations 6.3, 6.4 and 6.5 P(i) is the calculated binding affinity of ligand ¢ and E(i)
is the experimental binding affinity of the same ligand. Thus, a PI of 1.0 for a set of ligands
means that all ligands are in the correct rank order with respect to the experimental order. A
PI of -1.0 means that the predicted rank order of the ligand is the opposite of the experimental
order and a PI of 0 means the predicted order is random.

The PI score of the set of estimates shown in figure 6.8 is 0.93. This is a very good scorc
and suggests that the prediction has a near correct rank order and would be very useful in
deciding which ligands to investigate further. The mean unsigned error (MUE) of this analysis
is 3.37 kcal.mol™!, which is quite high. This high error is obviously largely due to the over es-

timation of ligands 8 and 10. Figure 6.8 also shows the coefficient of determination which is 0.82.
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Compound Perturbation pathway Calec AAFying | Expl AAFying
7 [163+3t6+6t7] 10.01 £ 1.42 715
1 [1t3+3td];[1t2+2td 864 £ 1.03 -6.76
8 [1t3+3t6+6t7+7t8 -13.98 £+ 1.99 -6.51
10 [1t2+2t9+9t10];[1t3+3t4+4t10] | -13.92 + 1.75 -6.51
6 [1t3+3t6] “8.65 + 1.26 5.45
3 [1¢3] “5.25 £ 0.62 2.67
5 [1t3+3t6+6t5] -3.04 +1.39 -2.00
9 [1t2+2t9] 112 + 1.28 171
2 [1t2[;[1t3+3t2] 1.69 + 0.70 -1.63
1 0 0

Table 6.5: Experimental and RETT calculated binding free energies with respect to ligand
1. All free energies in this table are in kcal.mol~?.
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Figure 6.8: Comparison of calculated and experimental AAFs for 10 Neuraminidase

ligands. Data points are labelled with the chemical groups at the trans and cis positions
from table 6.1. Taken from J.Michel et al. 2006 [Michel et al.(2006)Michel, Verdonk &

Essex].

6.5 FG Results

Table 6.6 shows the FG-BY 10 calculated and experimental AA Fp;pgs, calculated AA Figypys and

the AFprois, AFyas and AFy,.s needed for their calculation. This FG-BY10 analysis used 400

switches of 750 MC trials between each of 1000 A\s with 71300 MC trials of seed simulation
between each starting configuration (400x1000x750). This adds up to 318 million MC trials

to obtain a AFpry or AFsy, which is similar to the 360 million MC trials used for the sainc
calculation in the RETI analysis above. Errors in table 6.6 were calculated using the block

variance method described earlier in the main introduction with 2 blocks.
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Pert | Exp AAFying AAF o1, AFp ot AF a0t AF, ¢
162 | -1.63 | 1.61 £0.21 | -0.68 £ 0.20 | -0.03 £ 0.13 | -1.64 + 0.17 | -0.96 £ 0.11
1t3 | -2.67 | -4.64 £ 0.19 | -1.32 = 0.15 | 22.60 = 0.11 | 27.24 + 0.15 | 28.57 + 0.01
2t3 | -1.04 | -2.67 £ 0.32 | -3.564 +£ 0.17 | 23.25 + 0.27 | 25.92 + 0.17 | 29.46 £ 0.01
3t4 | -4.09 | -4.48 £0.23 | -0.10 £ 0.12 | -11.11 £ 0.20 | -6.63 £ 0.11 | -6.53 £ 0.03
5t6 | -3.45 | -4.53 + 0.15 | -2.72 £ 0.13 | 20.56 £ 0.08 | 25.09 £ 0.12 | 27.81 £ 0.01
5t7 | -5.15 | -5.28 £ 0.26 | -3.17 = 0.20 | 13.69 £ 0.17 | 18.98 £ 0.19 | 22.15 £ 0.06
2t4 | -5.13 | -7.38 £ 0.34 | -4.83 £ 0.31 | 10.97 + 0.14 | 18.35 £ 0.31 | 23.18 + 0.01

‘ 2t9 | 0.08 | -5.99 £ 0.56 | 0.58 £ 0.52 | -1.17 £ 0.22 | 4.82 £ 0.51 4.24 £+ 0.03
6t7 | -1.70 | -2.83 £ 0.21 | 1.64 = 0.18 | -6.00 £ 0.17 | -3.17 £ 0.13 | -4.81 £ 0.12
7t8 | 0.65 | -5.17 £ 0.53 | 1.53 £ 0.45 2.24 £ 0.29 7.41 +0.65 | 5.88 + 0.04
4t10 | 0.25 | -4.41 +0.28 | -1.23 £ 0.21 | 4.68 £ 0.21 9.09 4 0.19 | 10.32 + 0.09
9t10 | -4.80 | -9.83 £ 0.38 | -3.93 + 0.33 | 13.23 &£ 0.19 | 23.06 + 0.33 | 26.98 + 0.04

Table 6.6: Experimental and calculated relative binding free energies with the protein-
ligand and solvent-ligand free energies used in their calculation. Also, relative solvation
free energies calculated with the vacuum-ligand free energies used in their calculation.
Experimental free energies are calculated with the formula AAG = AGy — AG) =
RTIn(K:/K,) assuming that the ratio of the ICsgs is equal to the dissociation constants
[Cheng & Prusoff(1973)]. All calculated free energies in this table were found using
FG-BY10 and BAR with 400 switches of 750 MC trials between each of 1000 AXs (FG-
BY10-BAR-400x1000x750).

Pert Cis Trans same/diff | AAFyng TT error | AAFyiq FG error
1t2 Me-Et -3.07 -3.24
1t3 H-Me 2.58 1.97
2t3 | H-Me Et-Me Both diff 6.15 1.63
3t4d | Me-Et Me-Et Both same 0.05 0.39
5t6 | H-Me 2.11 1.08
5t7 | H-Et Me-Et Both diff 2.19 0.13
2t4 | H-Et 4.19 2.25
2t9 Et-(CHz)2Ph 2.64 6.07
6t7 | Me-Et Me-Et Both same -0.34 1.13
7t8 | Et-Pr | Et-(CHy)oPh | Both diff 4.62 5.82
4t10 | Et-Pr | Et-(CH2)2Ph | Both diff 5.71 4.66
9t10 | H-Pr 7.06 5.03

Table 6.7: Table showing the perturbations taking place at the cis and trans positions
from figure 6.3 and the error of calculated AF's compared to experiment for TI and
FG-BY10-BAR-400x1000x750.

The FG-BY10 calculated AAFj;,qs are relatively similar to those of the RETI analysis in
table 6.2 and show very similar trends. Table 6.7 shows that errors in AA Fj;ngs compared
with experiment are very similar to those found with the RETT analysis above (table 6.3). The
biggest differences are in perturbations 2t3 and 2t9. The large error seen in perturbation 2t3
with RETT is not present with FG-BY 10, however, FG-BY10 shows a large error in perturbation

2t9 not seen with RETT. These differences suggest possible occasional large random errors. The

average unsigned error of the AA Fj;,4s in table 6.6 is 2.30 kcal.mol™! which is lower than the
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RETI equivalent of 3.39 kcal.mol™!. However, the consistency of these FG-BY10 results seems
much worse than the RETI results as shown in table 6.8. The closed thermodynamic cycles
which showed a very low hystereses for the RETI analysis show much larger hystereses with
FG-BY10. Only cycle 2, which showed a hysteresis of hysty;,q of 2.01 kcal.mol™! for RETI, is
relatively accurate with a low hysty;ng of 0.23 kcal.mol™%. This relative inaccuracy in hystereses
for FG-BY 10 may not show any real lack of consistency as the underlying changes causing it
are simply due to the differences in perturbations 2t3 and 2t9 and slightly higher accuracy of

perturbations 5t6 and 5t7 (table 6.7).

Cycle pathway hystping hystsorw
1 (1,2,3) 3.58 £ 043 | 2.9 £ 0.30
2 (2,34) 023 £ 052 | 1.19 + 0.37
3(2,4,9,10) | 4.03 £ 0.80 | 2.71 £ 0.72
4 (5,6,7) 2.08 £ 0.37 | 2.09 £ 0.30

Table 6.8: Hystereses of 4 thermodynamic cycles for relative binding (hystping) and sol-
vation (hystse,) free energies of the neuraminidase ligands found using FG-BY10-BAR-
400x1000x750 protocol. All hystying and hystgy, values in kcal.mol™*.

The underlying AF,,ts and AFy,qs of table 6.6 display significant differences from their
RETI counterparts. The FG-BY10-BAR-400x1000x750 AFpoi, AFyq and AFyee values for
perturbations 2t9, 4t10 and 7t8 show significant differences from their RETI counterparts but
strangely the differences seem to be much smaller when comparing RETT and FG-BY10-BAR-
400x1000x750 AAFyings and AAFy,s. It is not coincidence that each of these perturbations
showing the largest discrepancies between FG-BY10-BAR-400x1000x750 and RETTI involve tle
growth of a phenyl into the trans pocket. In investigating this discrepancy it was convenient to
concentrate on vacuum perturbations as simulations are faster and more accurate than protein
and water perturbations. Figure 6.9 shows the PMF across the A coordinate for perturbation
2t9 with black vertical lines marking the points at which FDTI A window simulations are run.
The large disparity in the PMFs of FG-BY10-BAR-400x1000x750 and RETI for perturbation
2t9 in a vacuum is clear. The FG-BY10-BAR-400x1000x750 PMF undergoing a large peak

between A = 0 and A = 0.1 which is missed by TI.
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Figure 6.9: Comparison of RETI and FG-BY10 PMFs of perturbation 2t9 in a vacuum.
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Figure 6.9 also suggests the reason for the disparity seen in perturbations 2t9, 4t10 and 7t8.
The large peak in the BAR PMF between A = 0 and A = 0.1 is not present in the RETT PMF.
Apart from this the two PMFs seem relatively similar. From this it can be deduced that the
RETT calculation misses this large peak seen with BAR due to the discrete and non-discrete na-
ture of sampling with RETT and FG-BY10-BAR-400x1000x750 respectively. Figure 6.10 shows
the same comparison as figure 6.9 but with 30 RETI A\ sampling windows between A = () and
A = 0.3 rather than 3. The difference between figures 6.10 and 6.9 is very clear and verifies
the idea that the disparity seen between RETI and FG-BY10 for perturbations 2t9, 4010 and
7t8 is because of a large error in the RETI calculation due to its discrete nature and a lack of

necessary A\ sampling windows.
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Figure 6.10: Comparison of TI with extra AX sampling windows and FG-BY10 PMF's
of perturbation 2t9 in a vacuum. The TI analysis has 30 A sampling windows between
A=0and A =0.3.

The large peak in the PMF in figure 6.10 is due to very large intra-molecular Lennard-Jones
(LJ) and Coulombic forcefield energies. These large LJ and Coulombic energies are produced by
the very close proximity of the atoms of the phenyl ring as they are turned on at the beginning
of the perturbation (they are 0.2 A apart at A = 0). This means the large peaks in figure 6.10
are an artefact of the perturbation method and would not be expected to be seen commonly
in protein-ligand perturbations. The use of larger bond distances for the phenyl group in its
shrunken state removes this artefact although increases the risk of clashes with other molecules
as the non-bonded terms are turned on. This suggests that the use of a soft core poten-
tial [Zacharias et al.(1994)Zacharias, Straatsma & McCammon]|, [Beutler et al.(1994)Beutler,
Vanschaik, Gerber & van Gunsteren|] for perturbation involving the growth a large group may
produce a more favourable path. However, the discovery of this error with FG does highlight
the importance of sampling across the whole A coordinate. As the disparity is an internal solute
non-bonded effect, it is very well behaved and, as it is present in both protein and water pertur-
bations, is cancelled out in the resulting AAFj;,q values. The PMFs in figure 6.10 still do not

fully converge. There seems to be a small difference between FG-BY10-BAR-400x1000x75() and

RETT at the A = 1 end. This smaller disparity is again the result of the discrete nature of RETT.

Table 6.9 and figure 6.11 compare the calculated and experimental AA Fy;,q of each ligand
relative to ligand 1. The rankings of the ten ligands for FG-BY10-BAR-400x1000x750 and

RETT are very similar. The major difference is that the amino, Et, H and amino, (CHy),Ph, H
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ligands have both moved down the Y axis in the FG analysis with one of these ligand moving
back into the correct rank order and one moving out. The movement of these two data points
can be attributed to the extra overestimation of perturbation 2t9 and the large improveinent

in perturbation 2t3. The FG-BY10-BAR-400x1000x750 PI score is 0.95 which is only slightly

more than the RETI analysis. The FG and RETI MUE and r? values are also both very similar.

Compound Perturbation pathway Cale AAFying | Expl AAFying
7 [1t3+3t6+6t7] -10.87 £ 1.14 -7.15
4 [1t3+3t4];[1t2+2t4 -7.45 £ 0.25 -6.76
8 [1t3+3t6+6t7+7t8 -16.04 £+ 1.25 -6.51
10 [1t24+2t9+9t10];[1t3+3t4+4t10] | -13.87 £+ 0.41 -6.51
6 [1t3+3t6] -8.04 + 1.12 -5.45
3 [1t3] -4.64 + 0.19 -2.67
5 [1t3+3t6+6t5] -3.51 + 0.37 -2.00
9 [1t242t9] -4.38 + 0.60 -1.71
2 [1t2];[1t3+3t2] -0.18 £+ 0.43 -1.63
1 0 0

Table 6.9: Experimental and FG-BY10-BAR-400x1000x750 calculated binding free cu-
ergies with respect to ligand 1. All free energies in this table are in kcal.mol™?.
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Figure 6.11: Comparison of calculated and experimental AAFs for 10 Neuraminidase

ligands using FG-BY10-BAR-400x1000x750. Data points are labelled with the chemical
groups at the trans and cis positions from table 6.1.

The variation seen between the RETI and FG-BY10-BAR-400x1000x750 analyses seen by
comparing figures 6.11 and 6.8 is enough to suggest repeating the FG protocol to check on the

possible sensitivity of results. The FG-BY10-BAR-400x1000x750 analysis described here was
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therefore repeated another 3 times. These repeats were started with the equilibrated systein
structure and so all A equilibrations were included in the repeats. As seen in chapter 5, the
statistical errors give a very poor idea of the actual reproducibility of an analysis. Figure 6.12
shows that despite the relatively high r? and PI scores of the first FG-BY10-BAR-400x1000x750
analysis discussed above, in general, this protocol may not produce results of high quality. The

PI scores of the four repeated analyses range from 0.95 to 0.44.
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Figure 6.12: Four repeated comparisons of calculated and experimental AAFs for 10
Neuraminidase ligands using FG-BY10-BAR-400x1000x750.

Figure 6.13 shows the PI scores of the 4 repeated FG-BY10-BAR-400x1000x750 analyses
throughout the calculation. The x-axis shows the number of MC trials for one calculation leg as
shown in figure 6.6. Hence figure 6.13 shows the convergence of PI score through the calculation
when all simulations are run in parallel. The RETI PI data points are every 100,000 MC trials
for each simulation. The FG-BY10-BAR-400x1000x750 PI data points are only calculated every
750,000 MC trials for each simulation, as a new PI can only be found after a set of switches

is completed. In the legend of figure 6.13 FG Rep X refers to FG-BY10-BAR-400x1000x75()
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repeat X.

Figure 6.13 shows that the predictive accuracy of the 4 FG-BY10-BAR-400x1000x750 anal-
yses does not change much through the calculation. Hence the 3 poorer FG repeats are poor
through out. The FG-BY10-BAR-400x1000x750 analysis which shows comparable predictive
accuracy to RETI (FG Rep 1) seems to converge to a high PI score after a similar number of

MC trials have been used.

Figure 6.14 is the same as figure 6.13 but for MUE. The RETI MUE has minimum of about
2.3 kcal.mol ™! around a third of the way through the simulation. The final MUE of FG Rep 1,
Rep 4 and RETT are all very close at around 3.2 to 3.5 kcal.mol™*. This suggests that MUE is a
less sensitive measure of the predictive accuracy of an analysis as FG Rep 4 had a significantly

lower PI score than FG Rep 1 and RETI.
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Figure 6.13: Comparison of PI scores for 4 FG-BY10-BAR-400x1000x750 and 1 RETI
Neuraminidase analyses.
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Figure 6.14: Comparison of the MUE for 4 FG-BY10-BAR-400x1000x750 and 1 RETI
Neuraminidase analyses.

It is clear that the FG-BY10-BAR-400x1000x750 protocol used here is unable to produce
consistently accurate free energies. Although, the first FG-BY10-BAR-400x1000x750 data set
discussed above is of similar quality to the RETI data set, the subsequent 3 FG-BY10-BAR-
400x1000x750 repeats are all of a lower and far less useful quality. The poor predictive quality
of the 3 extra FG-BY10-BAR-400x1000x750 repeats is due to a subset of the perturbations
carried out in this neuraminidase analysis. Figure 6.15 compares the individual perturbation
AAFs for the 4 FG-BY10-BAR-400x1000x750 repeats. Figure 6.15 makes it clear that iu the
three poorer FG-BY 10-BAR-400x1000x750 repeats, perturbations 2t9 and 4610 differ the most
from RETI and FG-BY10-BAR-400x1000x750 repeat 1 and are the major source of the poor
predictive accuracy in repeats 2,3 and 4. It is worth note that perturbations 2t9 and 4t10 both
involve the growth of a phenyl ring as discussed above.

The repeat of the FG-BY10-BAR-400x1000x750 analysis is also instructive to test the sta-
tistical errors found AAFy;.q4s in table 6.6, as they are extremely low both in absolute terms
and in comparison to their RETI counterparts in table 6.2. These errors have been calculated
by finding the standard error between blocks of measurements. As discussed in chapter 3,
varying the number of blocks used to calculate statistical errors can affect the size of these
errors. In general, the number of blocks is decreased until decreasing them further results in
little change in the size of the errors. The small number of measurements used in the FG-
BY10-BAR-400x1000x750 protocol allows for only a small amount of adjustment of the error

calculation method where as there is much room for adjustment with the many measurements
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of the RETT analysis. Even considering this problem the small errors in table 6.6 may signify a
low coverage of system phase space for the FG-BY10-BAR-400x1000x750 calculations relative
to the RETTI simulations of table 6.2. Also, there is a very large inconsistency between the

general range in AA Fy;,q seen in figure 6.15 and the statistical error found in table 6.6.
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Figure 6.15: Comparison of AAFy;,4s for 4 FG-BY10-BAR-400x1000x750 repeated Neu-
raminidase analyses.

Considering the improved consistency displayed by the REFG2 protocol in chapter 5, a sini-
ilar REFG2 protocol was used to see if a similar improvement is found with the neuraminidase
system. Table 6.10 shows the results from a neuraminidase analysis using an REFG2 protocol
with 800 switches of 375 MC trials between each of 1000 AAs with 50000 MC trials of seed
simulation between each starting configuration and the BAR estimator (REFG2-BY10-BAR-
800x1000x375). This protocol uses 318 million MC trials to obtain a AG s or AG gy, which is
the same as the FG-BY10-BAR-400x1000x750 analysis above and similar to the 360 million MC
trials used for the same calculation in the RETT analysis. Errors in table 6.6 were calculated
using the block variance method described earlier in the main introduction with 4 blocks.

Comparison of the REFG2-BY10-BAR-800x1000x375 results of table 6.10 to the FG-BY10-
BAR-400x1000x750 results of table 6.6 shows no major differences. The MUE of the AAGy;q8
found using the REFG2-BY10-BAR-800x1000x375 protocol is 2.78 kcal.mol™! which is very
similar to the equivalent figure for the FG-BY10-BAR-400x1000x750 results of table 6.6 which

was 2.30 kcal.mol™!. The highlighted differences, in perturbations 2t3 and 2t9, between the
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FG-BY10-BAR-400x1000x750 and RETI analyses of tables 6.6 and 6.2 are not as marked for
the REFG2-BY10-BAR-800x1000x375 analysis of table 6.10. The closed thermodynamic cycles
which showed relatively large hystereses with FG-BY10-BAR-400x1000x750 are smaller with
this REFG2-BY10-BAR-~800x1000x375 and of a similar standard to the RETI hystereses in

table 6.4.

Pert | Exp AAGhing AGprot AGyat
1t2 | -1.63 1.81 + 0.21 0.67 £0.18 | -1.14 £ 0.12
1t3 | -2.67 | -5.53 £ 0.19 | 22.28 £ 0.07 | 27.81 =+ 0.18
2t3 | -1.04 -4.32 +£ 0.3 22.21 £ 0.22 | 26.53 £ 0.19
3t4 | -4.09 | -3.84 +£0.43 | -9.61 +0.36 | -5.77 4+ 0.23
5t6 | -3.45 | -5.25 £ 0.22 | 21.04 + 0.06 | 26.29 £+ 0.22
5t7 ( -6.15 | -7.52 £ 0.46 | 12.62 + 0.36 | 20.15 £+ 0.28
2t4 | -5.13 | -8.95 £ 0.28 10.13 £ 0.1 19.08 + 0.26
2t9 0.08 -3.93 £ 04 -1.54 £ 0.16 | 2.39 £+ 0.37
4t10 | -1.70 -6.2 £ 0.64 4.08 £ 0.37 | 10.28 £ 0.52
6t7 0.65 -2.53 +£0.24 | -6.78 £ 0.14 | -4.25 £ 0.19
7t8 0.25 -6.16 £ 0.4 -0.5 £ 0.25 5.66 + 0.3
9t10 | -4.80 | -11.84 £ 0.78 | 12.86 &+ 0.71 | 24.70 + 0.33

Table 6.10: Experimental and calculated relative binding free energies with the protein-
ligand and solvent-ligand free energies used in their calculation. All free energies in

thisttablle are in kcal.mol™! and were found with the REFG2-BY10-BAR-800x1000x375
protocol.

Cycle pathway hystying
1(1,2,3) 3.02 £ 0.41
2 (2,3,4) 0.79 + 0.59
3 (2,4,9,10) | 0.62  1.12
4 (5,6,7) 0.26 £+ 0.56

Table 6.11: Hystereses of 4 thermodynamic cycles for relative binding (hystpng) and
solvation (hysts,) free energies of the neuraminidase ligands found using REFG2-BY10-
BAR-800x1000x375 protocol. All hystying and hyste,, values in kcal.mol~?.

Again the REFG2-BY10-BAR-800x1000x375 analysis was repeated four times with the data
in ;cables 6.10 and 6.11 above being for repetition 1. Figure 6.16 shows REFG2-BY10-BAR-
800x1000x375 predicted AAFs compared to experiment. In general the four REFG2-BY10)-
BAR-800x1000x375 analyses have a similar PI score to the RETI analysis discussed above.
Also, all of the r? values of the REFG2 analyses are higher than that of the RETI analysis.

This suggests that this REFG2 protocol is at least as predictive as the RETI protocol.
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Figure 6.16: Four repeated comparisons of calculated and experimental AAF's for

Experimental AAG / keal.mol’’
(c) Repeat 3

Experimental AAG / keal.mol™
(d) Repeat 4

10

Neuraminidase ligands using REFG2-BY10-BAR-800x1000x375.

Interestingly repeat 2 in figure 6.16 has a comparatively low MUE of 2.06 kcal.mol~!. This

is due to the fact that, compared with all other neuraminidase analyses, the two (CHg)2Ph,Pr

data points have moved closer to their experimental values.

In turn, the difference in the

(CH3)oPh,Pr data point is due to differing AF" values for perturbations 4t10, 6t7, 7t8 and 9t10,

seen clearly in figure 6.17. This improvement seen only in one repeat is most likely a fortuitous

error although the possibility of it being an example of slightly better predictive accuracy with

a higher level of convergence remains.
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Figure 6.17: Comparison of AAFs for 4 REFG2-BY10-BAR-800x1000x375 repeated
Neuraminidase analyses.

Figure 6.18 shows the PI score of the four REFG2-BY10-BAR-800x1000x375 analyses
throughout the calculations compared to that for the RETI analysis. It is fair to say all are
fairly similar in figure 6.18. RETI seems to take slightly longer to converge to a high PI score,
this may be due to the fact that the RETI analysis did not include A swap moves during the
equilibration of the A window simulations. Figure 6.19 shows the MUE of the four REFG2-
BY10-BAR-800x1000x375 analyses throughout the calculations compared to that for the RIS
analysis. REFG2-BY10-BAR-800x1000x375 repeat 2 starts low and does not fluctuate as much
as the other analyses. Again it is interesting how a low MUE does not necessarily translate to

a comparatively high PI score, and visa-versa, as seen with repeats 2 and 4.
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Figure 6.18: Comparison of PI scores for 4 REFG2-BY10-BAR-800x1000x375 and 1
RETI Neuraminidase analyses. The number of MC trials on the x-axis reprents the
number of MC trials from one pertyrbation leg i.e. all protein and water simulations are
run in parallel.
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Figure 6.19: Comparison of the MUE for 4 REFG2-BY10-BAR-800x1000x375 and 1
RETI Neuraminidase analyses. The number of MC trials on the x-axis reprents the
number of MC trials from one pertyrbation leg i.e. all protein and water simulations are
run in parallel.

In previous chapters the idea of picking an FG estimator, for each protein and solvent
calculation, from the relative AF values has been discussed. If the BAR estimate is between
the forwards and backwards Jarzynski estimates, the BAR. estimate is chosen. Otherwise the
Jarzynski estimate with the largest relative entropy measure as defined by Wu and Kofke [Wu

& Kofke(2005a)] is used. Figures 6.20 and 6.21 show the four repeated REFG2-BY10-BAR-

800x1000x375 analyses, PIs and MUEs found using these estimator picking rules with a dashed



CHAPTER 6. PROTEIN LIGAND BINDING FREE ENERGIES:
NEURAMINIDASE 182

line, PIs and MUEs found with BAR only have unbroken lines. Figure 6.21 shows that analyses
where estimators are picked are very similar to those using only BAR. The picked analyses have
slightly lower PI scores in two of the repeats with the other two having the same PI scores.
Again, figure 6.20 shows that the MUEs of all four repeats are very similar, although for all
four repeats the analyses with picked estimates have slightly lower MUEs. For the system un-
der study here there seems to be little difference between results from the different estimators,
although for other systems this may not be the case as seen for the calculation of the relative

hydration free energy of water and methane in the previous chapter.
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Figure 6.20: Comparison of PI scores for 4 REFG2-BY10-BAR-800x1000x375 analyses
where AF estimators have been picked. The number of MC trials on the x-axis reprents
the number of MC trials from one pertyrbation leg i.e. all protein and water simulations
are run in parallel.
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Figure 6.21: Comparison of the MUE for 4 REFG2-BY10-BAR-800x1000x375 analyses
where AF estimators have been picked. The number of MC trials on the x-axis reprents
the number of MC trials from one pertyrbation leg i.e. all protein and water simulations
- are run in parallel.

As these FG analyses discussed above are completed in a relatively low wall clock time
(around 10 hours on 100 condor nodes for each calculation, including A window equilibration)
it is possible to investigate any possible improvement found by increasing the number of MC
trials used. A REFG2 protocol with three times the sampling of the analyses above (918 million
MC trials for each protein and water AF' ) was devised. This longer protocol has 800 switches of
1125 MC trials between each of 1000 AAs with 100000 MC trials of seed simulation between cach
starting configuration and the BAR estimator (REFG2-BY10-BAR-800x1000x1125). This more
expensive protocol can still be completed in approximately 20 hours using 100 condor nodes
for each calculation in parallel. In figure 6.22 the new label FG x3 corresponds to the new
REFG2-BY10-BAR-800x1000x1125 analysis. Figure 6.22 shows the comparison of calculated

AA Fyngs with experiment, suggesting that the extra sampling gives little advantage.
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Figure 6.22: Comparison of AFs for a REFG2-BY10-BAR-800x1000x1125 Neu-
raminidase analysis.

- Figure 6.23 compares REFG2-BY10-BAR-800x1000x1125 predicted neuraminidase AA Fy;q8
to experiment. Again comparing figure 6.23 to figure 6.16 above suggests that the extra sam-

pling in this new analysis offers little predictive improvement.
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Figure 6.23: Comparison of calculated and experimental AAF's for 10 Neuraminidase
ligands using REFG2-BY10-BAR-800x1000x1125.

6.6 Conclusions: Does FG offer any thing new?

The FG-BY10-BAR-400x1000x750 analysis was shown to have a large range of predictive per-

formance for this neuraminidase relative binding free energy analysis. The PI scores ranged
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from 0.95 for repetition 1 to 0.44 for repetition 2 in figure 6.12. The REFG2-BY10-BAR-
800x1000x375 protocol displayed a high level of constancy with PI scores ranging from 0.93 to
0.97 (figure 6.16). The consistently high predictive power of the REFG2-BY10-BAR-800x1000x375
protocol compared favourably with the RETT analysis shown in figure 6.8. Indeed all REFG2-
BY10-BAR-800x1000x375 r? and PI scores were equal to or improvements on the RETI PI

score of 0.93 and r? of 0.81.

One of the four repeated REFG2-BY10-BAR-800x1000x375 (repetition 2) analyses pro-
duced a MUE of 2.06 kcal.mol~! which is significantly lower than all other neuraminidase
analyses in this study. This was due to the two (CHy)oPh,Pr data points having moved closer
to their experimental values. It is difficult to tell whether this improvement in repetition 2 of
figure 6.16 is due to a lack of proper convergence in the other REFG2-BY10-BAR-800x1000x375
repetitions or a lack of convergence in repetition 2. As the REFG2-BY10-BAR-800x1000x375
repetition 2 is the only example of this improvement compared to experiment and the REFG2-
BY10-BAR-800x1000x1125 analysis was unable to show this improvement, it may be that this
is a chance movement of calculated free energies to give the overall effect in REFG2-BY10-
BAR-800x1000x375 repetition 2.

The large error found in RETT perturbations involving the growth of a phenyl ring highliglits
one deficiency of any free energy method based on TI. TT is unable to accurately calculate the
free energy of PMFs with a high curvature if insufficient A window simulations are performed.
It is generally thought that for bio-systems such as the one under study here, a PMF of high
curvature is relatively unlikely. The large peak in the PMF seen in figures 6.9 and 6.10 is an
artefact and not a real property of the perturbation or the system. However, the unearthing of
this large discrepancy does highlight the importance of evaluating the whole perturbation path
even if just in an exploratory capacity. Also, it may be that TI and RETT lose accuracy with

PMFs of medium curvature as seen in figure 6.10 and discussed by Shirts and Pande [Shirts &

Pande(2005)].

The statistical errors for the FG-BY10-BAR-400x1000x750 analysis listed in table 6.6 and
the REFG2-BY10-BAR-800x1000x375 analysis listed in table 6.10 are much smaller than the
levels of variation of AA Fy;,gs seen in figures 6.15 and 6.17. This suggests that statistical
errors cannot be used reliably to give an idea of the possible range of variation in binding free

energy analyses. Thus, it may be important to repeat calculations especially when testing new
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protocols or challenging systems.

When considering which method to use for calculations such as this neuraminidase relative
binding free energy analysis, it is clear that FG type methods offer something new and useful.
Here the REFG2-BY10-BAR-800x1000x375 protocol has been shown to perform at least as
well as RETI. Also, FG discovered some very large errors which were missed with the initial
RETT analysis due to its discrete nature. Although, as these errors were present in both protein
and water perturbations they were fortuitously cancelled out. Another advantage of FG typce
methods realised in this study is the possible use of extreme parallelisation. The REFG2-BY10-
BAR-800x1000x375 protocol is able to produce a single AAF;,;,4 result in around 10 hours on
100 condor nodes while RETT takes around 24 hours on 12 2.2 Ghz Opterons. Owing to the
parallelisation of FG the REFG2-BY10-BAR-800x1000x1125 protocol was generally completed
in around 20 hours on 100 condor nodes. This is a slightly unfair comparison as the REFG2-
BY10-BAR-800x1000x375 protocol involved 2 million MC trials of A window equilibration while
the RETT protocol used 10 million MC trials of A window equilibration. However, it is clear
that FG methods have a large advantage in being able to utilise large clusters of processors.
This advantage may become larger as an era of powerful computer processors with many inde-

pendent processing cores is realised.




Chapter 7

Protein Ligand Binding Free
Energies: Cyclooxygenase-2

7.1 Introduction

Cyclooxygenase (COX) is a target for nonsteriodal anti-inflammatory drugé (NSAID) which in-
hibit the synthesis of prostaglandins by blocking the COX mediated cyclooxygenation of arachi-
donic acid (AA) to prostaglandin Gy (PGGs) (EC 1.14.99.1, [Bairoch(2000)]). PGGy is a pre-
cursor of many prostaglandins which can possess analgesic, anti-pyretic and anti-inflammatory
properties and protection for the gastric mucosa.

The existence of another COX isoform, COX-2 has recently been described and subsc-
quently the crystal structures of both forms elucidated [Picot et al.(1994)Picot, Loll & Gar-
avito], [Kurumbail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gildc-
haus, Miyashiro, Penning, Seibert, Isakson & Stallings]. COX-2 is encoded by a different gene
to COX-1, is thought to be expressed specifically in inflammatory tissues and is not implicated
in production of gastrointestinal tolerability prostaglandins, unlike COX-1 [Xie et al.(1991)Xie,
Chipman, Robertson, Eriksont & Simmons]. This explains the ulcerogenic side effects of estab-
lished NSAIDs asprin, ibuprofen and naproxen as these drugs inhibit both COX-1 and COX-2
isoforms [Hawkey(1999)]. A new set of NSAIDs which selectively inhibit COX-2 and therefore
display a decreased level of ulcerogenic side effects have been developed. One of the best of
these new NSAIDs, celecoxib 1 has been used in treatments for rheumatoid arthritis and ostc-
orarthritis, although is the subject of recent controversy. Celecoxib 1 has also been approved
for clinical use against familial adenomatous polyposis in the UK and as the USA.

Celecoxib 1 like, inhibitors have been the subject of two recent binding free energy studics




CHAPTER 7. PROTEIN LIGAND BINDING FREE ENERGIES:
CYCLOOXYGENASE-2 188

using RETT and FEP [Michel et al.(2006)Michel, Verdonk & Essex], [Price & Jorgensen(2000Dh)].
Both studies assessed the same set of inhibitors using different free energy methods, force fields
and amounts of computation producing binding affinities which showed excellent quantitative
agreement with experiment. Here again the results of analysis with FG methods will be com-

pared to more established methods, RETI and FEP.

7.2 The COX-2 system in vivo

Prostaglandins are autocrine and paracrine lipid mediators which ligate a subfamily of G-
protein-coupled receptors. These receptors are quite varied, and hence prostaglandins have a

range of actions which include:

e the constriction or dilation in vascular smooth muscle cells

e the aggregation or disaggregation of blood platelets

e the constriction of smooth muscle

e the regulation of calcium movement

e the regulation of hormone regulation

e the control of cell growth

e the regulation of inflammatory mediation

e the production of pain in spinal neurons

COX facilitates the conversions of AA to PGGs using the cyclooxygenase site and PGGq
to prostaglandin Hy (PGHs) through a heme site with peroxidase acti.vity. These COX steps
are the rate limiting steps in all prostaglandin biosynthesis. Presently there are three known
COX isoenzymes COX-1, 2 and 3. COX-3 is a splice variant of COX-1, while as previously
described COX-2 is coded by a separate gene [Chandrasekharan et al.(2002)Chandrasekharan,
Dai, Lamar Turepu Roos, Evanson, Tomsik, Elton & Simmons]. COX-1 is considered a consti-
tutive enzyme being found in the majority of mammalian cells. COX-2 has not been detected

in most tissues and expression is thought to be induced in cells at sites of inflammation.




CHAPTER 7. PROTEIN LIGAND BINDING FREE ENERGIES:
CYCLOOXYGENASE-2 189

The non-specific NSAID COX inhibitors have adverse effects such as peptic ulceration and
dyspepsia. These adverse effects may be due to direct irritation of the gastric mucosa as many
non-specific NSAIDs are acids, as well as reducing production of the protective prostaglandins
in the gastrointestinal tract [Price & Fletcher(1990)]. NSAIDs selective for COX-2 are thought
to halve the risk of peptic ulceration. However, COX-2 selectivity does not help other possible
side effects of NSAIDs such as the increased risk of renal failure [Malhotra et al.(2004)Malhotra,
Shafiz & Pandhi.

Very recent studies have suggested COX-2 selective NSAIDs increase the risk of myocardial
infarction, even with short term use [Kearney et al.(2006)Kearney, Baigent, Godwin, Halls,
Emberson & Patrono]. Also, courses of large doses of traditional NSAIDs have been associated
with a similar increased risk of vascular events. Rofecoxib, a NSAID which is strongly COX-2
selective, was taken of the market in 2004 due to these concerns, while celecoxib with a lower
selective strength remains but is the subject of an FDA alert in the US and is prescribed with
care [Chan(2006)]. New selective COX-2 inhibitors have been produced and are in use arouund
the world although none have been approved in the US. Also, it has been found that neuroblas-
tomas have abnormal expression levels of COX-2. COX-2 seems to reduce the action of the ph3
tumour suppressor. Thus, celecoxib has been shown to help restore p53 function and reduce
tumour growth [Johnsen et al.(2004)Johnsen, Lindskog, Ponthan, Pettersen, Elfman, Orrego &
Sveinbjornsson].

COX-1 and 2 have a similar size and make up and with 599 and 604 residues respectively
and 65% amino acid sequence homology. The COX-1 and 2 active sites are very similar with
the most significant difference being the substitution of isoleucine 523 in COX-1 for valine in
COX-2. The smaller Val residue in COX-2 opens up a hydrophobic pocket in the active site

which the Ile residue obscures.

The COX2 active site is a hydrophobic channel stretching from the membrane bound portion
of the protein. There is a relatively small entrance area at one side of the binding site which is
gated by Arg120, Glub24, Tyr355, and Arg513 forming hydrogen bonds, which is marked with

a dashed orange circle in figure 7.1.
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Figure 7.1: The substrate binding site of murine COX-2 (pdb 1CX2 [Kurum-
bail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gildehaus,
Miyashiro, Penning, Seibert, Isakson & Stallings]) with compound SC558 (celecoxib)
bound. The structure is oriented to show the entrance area of the binding site high-
lighted in orange. Much of the protein backbone has been removed for clarity.

The residues of COX-2 which have important interactions with binding compounds can
be seen in figure 7.2. The trifluromethyl group of celecoxib interacts with the guanidinium
group of Argl20 [Kurumbail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman,
Pak, Gildehaus, Miyashiro, Penning, Seibert, Isakson & Stallings]. This is a weakly favourable
interaction when compared to the salt bridge formed by many traditional NSAIDs in this area
of the binding site and may contribute towards COX-2 selectivity [Grieg et al.(1997)Grieg,
Francis, Falgueyret, Ouellet, Percival, Roy, Bayly & O'Neill]. In the COX-2 binding site the
sulphonamide group is able to reside in the relatively polar pocket made by residues Val523,
Arg513, GIn192 and His90. There has, however, been ambiguity over the orientation of the
sulphonamide with two crystal structures from the same group (1CX2 and 6COX) showing dif-
ferent sulphonamide positions. Figure 7.2 show the sulphonamide position of structure 1CX2.
In 1CX2 an oxygen of the sulphonamide seems to interact unfavourably with the carbonyl oxy-
gen of GInl192. In structure 6COX the sulphonamide is rotated and hydrogen bonds can form
between the sulphonamide NHs and the GIn192 carbonyl oxygen. The docking and FEP anal-

yses of the positioning of this sulphonamide group carried out by Price and Jorgensen suggest
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that the 6COX orientation is the correct alternative [Price & Jorgensen(2000b)]. The phenyl-
bromine group of celecoxib resides in a hydrophobic pocket, at the top of figure 7.2, made up

of Ser530, Phe381, Leu384, Tyr385, Trp385 and Met522.
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Figure 7.2: The substrate binding site of murine COX-2 (pdb 1CX2 [Kurui-
bail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gildehaus,
Miyashiro, Penning, Seibert, Isakson & Stallings]) with compound SC558 (celecoxih)
bound. The structure is oriented to display as many of the residue-ligand interactions as
possible. Much of the protein backbone has been removed for clarity.

The series of ligands evaluated in this study have the same scaffold as celecoxib in figure 7.2
and vary only at the position of the bromine atom (highlighted in purple). This common scaffold
is displayed in figure 7.3 and the ten R group substitutions with corresponding experimental
binding affinities is listed in table 7.1. Table 7.1 shows a larger range of binding affinities than
the neuraminidase series of the previous chapter, from nanomolar to hundreds of micromolar.
It is clear that placing polar hydrogen bonding groups at position R reduces binding affinity
(ligands 4, 7 and 8) for COX-2, electron donating groups increase affinity (ligands 5 and 6) and
larger groups also decrease affinity (ligand 3). This makes sense considering the nature of the

environment in which the R group will reside, discussed above.
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Figure 7.3: Common structure of the series of celecoxib analogues under study.

Ligand R ICsy (M)
1 CHj; 0.040
3 CH,CHj; 0.86
4 CH,OH 93.3
5 SCHj; 0.009
6 OCHj4 0.008
7 CF3 8.23
8 OH >100
9 Cl 10.01
10 F 0.041
11 H 0.032

Table 7.1: Experimental activity of the celecoxib analogues against COX-2

7.3 The COX-2 system in stlico

The structure of murine COX-2 complexed with celecoxib, 1CX2, was the starting point for
the model system [Kurumbail et al(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman,
Pak, Gildehaus, Miyashiro, Penning, Seibert, Isakson & Stallings]. The 1CX2 structure had
the advantage of hydrogen atoms being pre-assigned by the crystallographic study authors.
The position of the sulphonamide group of each of the ligands in the binding site was changed
as detailed by Price and Jorgansen and discussed in the in vivo section above [Price & Jor-
gensen(2000b)]. The heme of the second binding site of COX-2 was removed as it does not
interact directly with the COX binding site under study and would have required specific pa-
rameterisation. Histidines were visually inspected in order to select an appropriate protonation
state and His90, 95, 133, 204, 207, 214, 226, 232, 242, 278, 309, 320, 351, 356, 386, 388 and 417

were assigned d-tautomer status with others being charged. The ethyl analogue, ligand 3 was
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positioned in the COX-2 binding site on the basis of the binding mode of celecoxib in 1CX2.
Other ligands with extra degrees of freedom in the substituted R group were modelled using
observations from Price and Jorgensen [Price & Jorgensen(2000Db)].

The COX-2 system was set up using the same protocol and forcefields as neuraminidase in
the previous chapter. Thus, these details will not be reproduced here. Free energy perturba-
tions were designed to close two thermodynamic cycles shown in figure 7.4 to allow the analysis
of cycle hystereses and calculation of path averaged AAF's. TI and FG protocols used here are

also the same as those in the previous chapter.

Figure 7.4: Closed perturbation pathways used to find hystereses for consistency checks.
Ligand numbers are in black and closed cycle numbers are in red.

7.4 RETI Results

Table 7.2 shows RETI protein-ligand (AF,.4) and solvent-ligand (AF,q) free energies which
give the relative binding free energies (AA Fy;,4) which can be compared to the experimental
(Exp) relative binding free energies. Also, vacuum free energies (AFy,.) are shown, which en-
able the calculation of solvation free energies (AA Fyop, ). All errors in table 7.2 were calculated

using the block variance method described earlier in the main introduction.
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Pert Exp AAFying AA-Fprot AFyat JAVAV AFyqac

1t3 1.82 2.24 + 0.36 3.56 £+ 0.27 1.32 £ 0.24 0.58 £ 0.26 0.74 £ 0.09
1t7 3.16 3.90 £ 0.25 20.71 £ 0.26 16.81 + 0.23 0.39 £ 0.24 16.42 £ 0.07
3t5 -2.70 -1.75 £ 044 | -3.19 + 0.36 -1.49 £ 0.26 | -0.46 £+ 0.34 | -0.50 &+ 0.22
4t3 -2.78 -2.18 + 0.45 0.8 £ 0.26 2.98 +£ 0.37 6.39 + 0.38 | -3.91 &+ 0.09
5t6 -0.07 -1.75 £ 0.52 | -6.56 + 0.38 -4.81 £0.36 | -1.18 £ 0.64 | -3.66 £ 0.53
8t1 <-4.64 | -2.90 +£ 0.37 | 15.03 £ 0.15 | 17.93 £ 0.34 | 4.39 £ 0.35 | 13.53 + 0.08
8t6 < -5.59 | -3.68 £ 0.75 | 9.35 + 0.39 13.03 £ 0.64 | 4.03 £ 0.73 | 8.91 £ 0.035
8t9 <-546 | -3.49+0.31 | 17.12 £ 0.11 20.61 £+ 0.29 5.20 £+ 0.29 15.40 £ 0.02
10t9 -0.84 -1.33 £ 0.18 | -0.19 £+ 0.08 1.14 £ 0.16 -0.08 £+ 0.16 1.22 + 0.01
11t8 > 4.77 1.66 + 0.29 | -21.47 £+ 0.10 | -23.13 + 0.27 | -4.49 £+ 0.27 | -18.65 £ 0.02
11t10 0.15 0.01 £ 0.17 -3.47 £ 0.05 -3.48 £ 0.18 0.95 £ 0.16 -4.45 £+ 0.02

Table 7.2: Experimental and calculated COX-2 relative binding free energies with the
protein-ligand and solvent-ligand free energies used in their calculation. Also, relative
solvation free energies calculated with the vacuum free energies used in their calculation.

All free energies in this table are in kcal.mol™!, were found with RETI and taken froim
the PhD thesis of J. Michel [Michel(2006)].

The calculated AAFj;4s of table 7.2 are in good agreement with the experimental values.
They are also very close to the calculated AAFy;,4s of Price and Jorgensen which were calcu-
lated with FEP and the OPLS forcefield [Price & Jorgensen(2000b)]. The MUE of AA Fy;,,4s
in table 7.2 is 1.25 kcal.mol™! which is very low. The hystereses of the closed cycles of per-
turbation detailed in figure 7.4 are listed in table 7.3. Despite these two cycles containing 4
and 5 perturbations the respective hystereses of binding energies (hystpings) of 0.43 and 0.16
keal.mol™! and hystereses of solvation energies (hystsorys) of 0.70 and 0.16 keal.mol™! are very

low, suggesting all these RETT calculations are consistent and well converged.

Cycle pathway hystying hystsoin
1(8,11,10,9) | 0.43 £ 1.14 | 0.70 &+ 1.12
2 (3,1,8,6,5) 0.51 +£0.49 | 0.16 £ 0.27

Table 7.3: Hystereses of 2 thermodynamic cycles for relative binding (hysty,e) and sol-
vation (hystsop) free energies of the COX-2 ligands. All hysty;ug and hystse, values in
kecal. mol~!.

Table 7.4 shows the relative free energies of each ligand with respect to ligand 1. The MUE
of AAFyings from table 7.4 is 0.76 kcal.mol~!, which is extremely low. The data from table 7.4

are plotted in figure 7.5 which show the calculated and experimental results to be very similar.

The 12 of 0.85 and PI of 0.96 show this RETI analysis to be highly predictive.
It is interesting to compare these RETT results to those of Price and Jorgensen on the same

system using FEP and the OPLS forcefield [Price & Jorgensen(2000b)]. Price and Jorgenscn
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produced results which agreed with experiment slightly better thau thiese RETT results; with a
2 of 0.96 and an MUE of 0.40 kcal.mol~!. This improvement was achieved with significantly
less computation than used here. Considering the variation in results seen in previous chapters,
especially chapter 6, it is possible that this improvement is entirely fortuitous. However, it
could also be rationalised by other factors. It is possible that the OPLS forcefield and CM1A
atomic partial charges may hold some advantage over the AMER99 forefield and AM1/BCC
atomic partial charges used here. Price and Jorgensen solvated there COX-2 system in such a
way that water molecules were present in the binding site bridging Ser530 and Tyr385 and for
some perturbations hydrogen bonded to Met522 [Price & Jorgensen(2000b)]. These waters were
not present in the RETI simulation of Michel and could contribute to any differences [Michel
et al.(2006)Michel, Verdonk & Essex].

Perturbation of 11t10 is particularly interesting as the water interacting with Met522 in
the simulations of Price and Jorgensen also interacted with the substituted R group of the poer-
turbed ligand. This was investigated by Price and Jorgensen, by running an extra simulation
without this Met522 interacting water and found that the AAF changed to 1.52 kcal.mol !
from -0.15 keal.mol™! with the Met522 interacting water [Price & Jorgensen(2000b)]. As can
be seen from table 7.2 the result of 0.01 kcal.mol™! for perturbation 11t10 found by Michel
is closer to the experimental value than both of the Price and Jorgensen results without the
Met522 interacting water being present [Michel et al.(2006)Michel, Verdonk & Essex|. It is
difficult to come to a conclusion over the probable in vivo occupancy of these binding site water
molecules and the comparison of results with and without these waters needs the addition of a

number of repeated calculations to check their reliability.
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Compound Perturbation pathway Calec AAFyina | Expl AAFyind
6 [1t8+8t6];[1t3+3t5+5t6] -0.99 £+ 0.81 -0.95
5 1t3+3t5 0.54 + 0.57 -0.88
9 1t8+8t9 -0.58 £ 0.48 -0.82
11 [1t848t9+9t10+10t11];[1t8+8t11] | 0.99 £ 0.51 -0.13
1 0 0
10 [1t8+8t9+9t10];[1t8+8t11+11t10] 1.00 £+ 0.51 0.01
3 1t3 2.25 £+ 0.36 1.82
7 1t7 3.90 £ 0.25 3.15
4 [1t3+3t4] 4.42 £+ 0.58 4.59
8 1t8 2.90 4+ 0.37 4.63

Table 7.4: Experimental and RETT calculated binding free energies with respect to ligand
1. All free energies in this table are in kcal.mol™?.
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Figure 7.5: Comparison of calculated and experimental AAFs for 10 COX-2 ligands.
Taken from J.Michel et al. 2006 [Michel et al.(2006)Michel, Verdonk & Essex].

7.5 FG Results

Table 7.5 shows protein-ligand (AFp.¢) and solvent-ligand (AFy,q) free energies, found with

the REFG2-BY10-BAR-800x1000x375 protocol of the previous chapter, which give the relative

binding free energies (AAFy;nq). Also, vacuum free energies (AFy,.) are shown, which enable

the calculation of solvation free energies (AAFy,;,,). Errors in table 7.5 were calculated using

the block variance method described earlier in the main introduction with 4 blocks.
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Pert Exp AAG’bind AG’prot AGwat AAC"solu AG’zvac
1t3 1.82 2.48 +£ 0.13 3.44 + 0.08 0.96 £+ 0.10 0.24 + 0.10 0.72 £ 0.002
1t7 3.16 4.15 £ 0.08 | 20.70 £ 0.03 | 16.55 £ 0.07 | 0.20 £ 0.07 16.35 £+ 0.003
3t5 -2.70 -3.04 £ 0.14 | -3.06 £ 0.13 -0.01 £ 0.06 | 0.49 £ 0.06 -0.50 £ 0.003
4t3 -2.78 -4.03 £ 0.17 | -0.35 £ 0.09 3.68 £ 0.15 7.59 £ 0.15 -3.91 + 0.003
ot6 -0.07 -1.85 £ 0.14 | -5.96 £ 0.08 -4.11 £ 0.12 | -0.45 £+ 0.12 -3.66 £+ 0.008
8tl <-464|-271+£013 | 1498 £0.04 | 17.70 £ 0.12 | 4.17 £ 0.12 13.53 £ 0.003
8t6 < -5.59 | -1.66 £ 0.25 9.12 + 0.11 10.79 £ 0.22 | 1.88 £ 0.22 8.91 £+ 0.005
8t9 < -546 | -4.01 £ 0.17 | 16.84 £ 0.04 | 20.85 £ 0.17 | 5.45 £ 0.17 15.40 £+ 0.001
10t9 -0.84 -2.05 £ 0.06 | -0.60 £ 0.02 1.45 £+ 0.06 0.23 + 0.06 1.22 + 0.0001
11t8 >4.77 | 1.78 £ 0.12 | -22.11 £ 0.03 | -23.88 + 0.12 | -5.23 £ 0.12 | -18.65 £ 0.0009
1110 0.15 0.23 £ 0.07 | -3.51 £ 0.01 -3.74 £ 0.07 | 0.71 £ 0.07 -4.45 + 0.002

Table 7.5: Experimental and calculated relative binding free energies with the protein-
ligand and solvent-ligand free energies used in their calculation. All free energies in
this table are in kcal.mol™! and were found with the REFG2-BY10-BAR-800x1000x375

protocol.
Again the calculated AA Fpingss found using the REFG2-BY10-BAR-800x1000x375 proto-

col are in good agreement with experiment (table 7.5). The MUE of these AAFjy;n4ss is 1.51

kcal.mol~! which is slightly more than the equivalent MUE for the RETI results above. The
hystereses of the closed cycles of perturbations detailed in figure 7.4 are listed in table 7.6.
These hystereses are not as low as those produced from the RETI analysis above since the
hystsing and hystgy, of cycle 1 are significantly larger than the RETI equivalent and the other
REFG2-BY10-BAR-800x1000x375 hystereses. This suggests an error or possible lack conver-
gence in the REFG2-BY10-BAR-800x1000x375 AAFgys in table 7.5. This indication of a
lack of convergence conflicts with the indication from the forwards and backwards Jarzynski
estimates of all of the perturbations in cycle 1, which are all very close, suggesting convergence.

The average difference between forwards and backwards Jarzynski estimates from cycle 1 is

0.25 kcal.mol™1.

Cycle pathway hystying hystsoly
1(8,11,10,9) | 0.53 +£0.23 | 0.72 £ 0.16
2 (3,1,8,6,5) 3.46 +£ 0.37 | 2.09 £ 0.30

Table 7.6: Hystereses of 2 thermodynamic cycles for relative binding (hysteing) and sol-
vation (hysts.,) free energies of the COX-2 ligands. All hysty;,s and hysty., values in
kecal.mol™t.

Table 7.5 lists the error, in relation to experimental values, of the calculated AAFy;nqs

for the RETI and REFG2-BY10-BAR-800x1000x375 analyses above {columns headed AAFy;,q4

RETI/REFG error) and the difference between RETI and REFG2-BY10-BAR-800x1000x375
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AF,q values (columns headed AFy,,; RETI - REFG). In the column labelled R the groups
listed before and after the ”-” is present are at A = 0 and A = 1, respectively. The errors
in AAFy;,q values relative to experiment are very similar for RETI and REFG2-BY10-BAR-
800x1000x375, with the only really significant difference found in perturbation 8t6, where the
error in REFG AA F;q compared to experiment is 2.02 kcal.mol™! greater than the RETI
errbr. This difference in perturbation 8t6 is almost entirely due to the difference in A Fq val-
ues and causes the larger hysty;ng hystsen, in table 7.6. The REFG2-BY10-BAR-800x1000x375
8t6 perturbation in water does seem to be well converged as forward and backward Jarzynski
estimates are very close, being 10.17 and 10.09 kcal.mol™! respectively. Thus, this difference
between RETI and REFG calculations may either be caused by random sampling error or a

methodological difference, which is not clear.

\ Pert R AAFynqg RETI error | AAFy;,4 REFG error | AFy,q: RETI - REFG
1t3 Me-Et 0.42 0.66 -0.36
1t7 Me-CF3 0.74 0.99 -0.26
3t5 Et-SCH-3 0.95 -0.34 1.48
4t3 CH,OH-Et 0.60 -1.25 0.70
5t6 SCH3-OCHs3 -1.68 -1.78 0.70
8t1 OH-Me 1.74 1.93 -0.23
8t6 OH-OCHj; 1.91 3.93 -2.24
8t9 OH-C1 1.97 1.45 0.24
10t9 F-Cl -0.49 -1.21 0.31
11t8 H-OH -3.11 -2.99 -0.75

11t10 H-F -0.14 0.08 -0.26

Table 7.7: Table showing the perturbations taking place at the R position from figurc
7.3 and the error of calculated AAF's compared to experiment for RETI and REFG2-
BY10-BAR-800x1000x375.

Table 7.8 shows the relative free energies of each ligand with respect to ligand 1 calculated
with the REFG2-BY10-BAR-800x1000x375 protocol. The data from table 7.8 is plotted in
figure 7.6 which show good agreement between calculated and experimental results. The r? of
0.76 and PI of 0.94 show this REFG2-BY10-BAR-800x1000x375 analysis to be slightly less pre-
dictive than the RETI analysis presented above. It is possible that this difference in predictive
quality, which can be attributed to the overestimation of AAFy;,4s for ligands 10 (F) and 4

(CH,0H), is a random effect.
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Compound Perturbation pathway Calc AAF,;,q | Expl AAFyn4
6 [1t8+8t6];[1t3+3t5+5t6] -0.68 £ 0. -0.95
5 1t3+3t5 -0.56 £ 0. -0.88
9 1t84-8t9 -1.30 £ 0. -0.82
11 [1t3+8t9+9t10+10¢11);[1t8+8¢11] | 0.72 £ 0. 0.13
1 0 0
10 [1t8+8t9+9t10];[1t8+8t11+11t10] 2.50 £ 0. 0.01
3 1t3 2.48 £ 0. 1.82
7 1t7 4.14 + 0. 3.15
4 [1t3+3t4] 6.50 £+ 0. 4.59
8 1t8 2.70 + 0. 4.63

Table 7.8: Experimental and REFG2-BY10-BAR-800x1000x375 calculated binding free
energies with respect to ligand 1. All free energies in this table are in kcal.mol™?.
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Figure 7.6: Comparison of REFG2-BY10-BAR-800x1000x375 calculated and experimen-
tal AAF's relative to ligand 1 for 10 COX-2 ligands.

Protocol REFG2-BY10-BAR-800x1000x1125 described in the previous chapter was applied
to investigate any predictive improvements possible by increasing the computational time given

to the calculation. Table 7.9 shows AFp.,: and AF,,; free energies, found with the REFG2-

BY10-BAR-800x1000x1125 protocol, which give the relative binding free energies (AA Fying).
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Pert Exp AAGping AAGpro AG pat
1t3 1.82 2.13 £0.13 3.13 £ 0.09 1.00 £ 0.10
1t7 3.16 4.10 £ 0.25 | 20.66 = 0.24 | 16.56 £+ 0.06
3t5 -2.7 -3.15+£0.13 | -3.64 + 0.12 -0.49 £+ 0.06
4t3 -2.78 | -3.28 +£0.13 | 0.29 + 0.09 3.56 £ 0.10
5t6 -0.07 | -1.69+0.13 | -6.15 £ 0.08 | -4.46 + 0.10
8t1 < -4.64 | -3.28 £ 0.12 | 14.73 £0.04 | 18.01 £+ 0.11
8t6 < -5.59 | -3.18 &+ 0.19 9.54 £+ 0.11 12.71 £ 0.16
8t9 < -5.46 | -4.14 £ 0.11 | 16.75 £ 0.03 | 20.90 £+ 0.11
10t9 -0.84 -1.75 £ 0.06 | -0.53 + 0.02 1.22 £+ 0.06
11t8 >4.77 | 0.95 £0.11 | -21.98 £ 0.03 | -22.94 £+ 0.11

11t10 0.15 0.16 + 0.05 | -3.48 £ 0.01 | -3.65 + 0.05

Table 7.9: Experimental and calculated relative binding free energies with the protein-
ligand and solvent-ligand free energies used in their calculation. All free energies iu

thisttablle are in kcal.mol™! and were found with the REFG2-BY 10-BAR-800x1000x1125
protocol.

The MUE of the AAFy;,4s in Itable 7.9 is 1.24 kcal.mol™! which is just lower than the
equivalent MUE for the RETT results above. The major difference hetween the RETI and
REFG2-BY10-BAR-800x1000x375 analyses above was perturbation 8t6. Perturbation 8t6 in
table 7.9 is more similar to the RETI analysis with the difference being 0.5 kcal.mol~!. The
hystereses of the closed cycles of perturbations detailed in figure 7.4 are listed in table 7.10.

These hystereses are still higher than the RETI analysis above while cycle 1 is lower than the

REFG2-BY10-BAR-800x1000x375 analysis above and cycle 2 is higher.

Cycle pathway | hystying
1 (3a178a675) -2.81
2 (8,11,100) | -1.24

Table 7.10: Hystereses of 2 thermodynamic cycles for relative binding (hystyng) and
solvation (hysts., ) free energies of the COX-2 ligands. All hysty;,g and hystge, values in
kcal.mol~1.

Table 7.11 shows the relative free energies of each ligand with respect to ligand 1 calculated
with the REFG2-BY10-BAR-800x1000x1125 protocol. Figure 7.11 compares REFG2-BY10-
BAR-800x1000x1125 calculated with experimental relative binding free energies. This more
costly REFG2-BY10-BAR-800x1000x1125 analysis has a MUE of AAFy;,4s relative to ligand
1 of 0.89 kcal.mol™!, an 12 of 0.79 and a PI of 0.94 which is a slight improvement over the

REFG2-BY10-BAR-800x1000x375 analysis above.
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Compound Perturbation pathway Calec AALy;q | Expl AAFy 4
6 [1t8+-8t6];[1t3+3t5+5t0] -1.31 £ 0. -0.95
5 1t3+4-3t5 -1.02 &£ 0. -0.88
9 1t8+4-8t9 -0.86 *+ 0. -0.82
11 [1t8+8t9+9t10+10t11];[1t8+8t11] 1.53 £ 0. -0.13
1 0 0
10 [1t8+8t9+9t10];[1t8+8t11+11t10] 2.48 + 0. 0.01
3 1t3 2.12 &£ 0. 1.82
7 1t7 4.10 + 0. 3.15
4 [1t3+3t4] 5.40 £ 0. 4.59
8 1t8 3.23 £ 0. 4.63

Table 7.11: Experimental and REFG2-BY10-BAR-800x1000x375 calculated binding free
energies with respect to ligand 1.
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Figure 7.7: Comparison of REFG2-BY10-BAR-800x1000x1125 calculated and experi-
mental AAF's relative to ligand 1 for 10 COX-2 ligands.

It is important to study the level of predictability throughout the analyses presented above
as this may fluctuate to some extent. Figures 7.8 and 7.9 shows the fluctuations in PT and MUE
through the calculations of the COX-2 analyses of this chapter. The number of MC trials of
one perturbation leg (protein or water) from figure 7.4 are on the x-axis, as if all perturbation
legs are run in parallel. In the legend of figures 7.8 and 7.9 REFG-375 and REFG-1125 refers
to the REFG2-BY10-BAR-800x1000x375 and REFG2-BY10-BAR-800x1000x1125 protocols re-
spectively. Also, REFG-375-pick and REFG-1125-pick refers to the same protocols where the
FG estimator to be used with each perturbation at each data point is chosen according to the
rules stated in previous chapters—: If the BAR estimate is between the forwards and hackwards

Jarzynski estimates, the BAR estimate is chosen. Otherwise the Jarzynski estimate with the
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largest relative entropy measure as defined by Wu and Kofke [Wu & Kofke(2005a)] is used.
Figure 7.8 shows that the RETI analysis converges to a high PI score more quickly than the
REFG analyses. Also, the REFG analyses where estimators are picked seem to offer slightly
higher PI scores than the BAR-only and RETT analyses, but seem to fluctuate. Figure 7.9
shows that the RETT analysis has a lower MUE than the REFG analyses at all points of
the calculations. The REFG analyses with picked estimators offer an slight improvement in
MUE for the REFG2-BY10-BAR-800x1000x375 protocol but almost no improvement for the
REFG2-BY10-BAR-800x1000x1125 protocol. This lack of improvement in the REFG2-BY 10-

BAR-800x1000x1125 protocol suggests this set of calculations are more fully converged.
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Figure 7.8: Comparison of PI scores for COX-2 analyses. The number of MC trials on
the x-axis represents the number of MC trials from one perturbation leg i.e. all protein
and water simulations are run in parallel.
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Figure 7.9: Comparison of the MUE for COX-2 analyses. The number of MC trials on
the x-axis represents the number of MC trials from one perturbation leg i.e. all protein
and water simulations are run in parallel.

7.6 Conclusions: Do FG methods offer anything new?

All the COX-2 binding free energy analyses discussed above are very similar and of good pre-
dictive quality with regards to experimental measurements. Thus, again the REFG protocols
used in this chapter and the previous chapter have been shown to be useful in the drug design
process. The MUE of binding free energies relative to a ligand from the series being evalu-
ated for COX-2 is significantly lower than that found for neuraminidase, being 1.25 versus 3.48
kcal.mol™! found with the REFG2-BY10-BAR-800x1000x1125 protocol. This difference is al-
most certainly related to the difference in the complexity of the individual perturbations with
some neuraminidase perturbations growing large phenyl groups.

The only real disparity between the RETI and REFG analyses was the relatively large dif-
ference (2.02 kcal.mol™1) in 8t6 perturbations in the water environment. This disparity was not
present in the extra REFG2-BY10-BAR-800x1000x1125 analysis. It is not clear whether this
improvement is found because of the extra sampling of the REFG2-BY10-BAR-800x1000x1125
analysis or it is just a random effect. The RETI and REFG COX-2 analyses need to be repeated
a number of times to clarify any possible differences.

The RETI protocol discussed here seemed to converge to a high PI score and low MUE

using fewer MC trials than the REFG protocols (figure 7.8). RETI converges to a PI score

above 0.9 at around 2.46x107 MC trials while REFG2-BY10-BAR-800x1000x375 reaches a PI
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above 0.9 at around 1x10% MC trials. It could be argued that this slower convergence of REFG?2
protocols is because of the smaller A equilibration of the REFG2 protocols compared to {he
RETT protocol. However this advantage of RETI over the two REFG analyses could easily be a
random effect. This possible advantage should be tempered by the fact that the REFG2-BY10-
BAR-800x1000x375 protocol is generally completed much faster than it is possible to complete
the RETT protocol. Using 100 condor processors and the REFG2-BY10-BAR-800x1000x375
protocol, COX-2 perturbations are generally completed in ca. 10 hours, whereas RETI cal-
culations are limited in terms of paralellisation and the protocol discussed here takes arouid
24 hours on 12 2.2 Ghz Opterons. Again, it should be noted that the RETI protocol used 10
million MC trials for A window equilibration while REFG protocols used 2 million MC trials

for the same equilibrations.




Chapter 8

Discussions and Conclusions

8.1 The findings of this study

This study set out with the aim of investigating the use of FG techniques and finding methods
which are of use in calculating accurate protein-ligand binding energies for the drug design pro-
cess. Jarzynski’s original FG study triggered the start of an extraordinary torrent of differcunt
and powerful FG associated methods [Jarzynski(1997b)]. During the course of the investigation
many new methods appeared as work proceeded and the selection of a subset appropriate for
our goal of using large scale distributed computing was essential.

Here the results of the investigations into the methods chosen to be investigated are dis-
cussed. The implications of these results to the applicability of free energy calculations to

rational drug design will then be discussed as a conclusion to this work.

8.1.1 Harmonic oscillator study

The Rosenbluth FG methods of Wu and Kofke were found to offer advantages over original FG
sampling only in specific cases and with specific switching protocols. When the possibility of
all switching protocols are taken into account there is little efficiency advantage to be found
by using these Rosenbluth methods over original FG. In most cases original FG sampling with
switching protocols of many small A increments was found to perform best. However, A bias
may have potential if it can be developed further. This development must be such that the final
A increment is not forced to unity (not constrained by the number of A increments) and the
size of A increments is made proportional to the suitability of the present configuration for the

increment, regardless of the size of previous increments (see figure 4.13). Configuration bias re-
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quires large amounts of sampling between A increments in order that a configuration favourable
for the A increment may be found. This necessity can make it computationally costly.

Overall, testing with harmonic oscillator systems suggested that BAR is the most efficient
FG estimator. Certain cases where found where the Jarzynski estimator was found to be more
accurate. Specifically, in the case of a slight subset relation, the Jarzynski estimator using
switches starting with the system of larger important phase space to smaller phase space will
be more accurate (figure 4.14 d)). This deficiency of BAR originates in the relatively poor
behaviour of switches starting with the system of smaller important phase space due to the in-
accessibility of the destinations phase space from the starting system. This is a view supported
by the work of Shirts et al. [Shirts & Pande(2005)].

Owing to the possibility of different FG estimators being more accurate in different situa-
tions, it is necessary to find a method to pick between estimators without o priori knowledge
of the free energy. An estimator picking scheme was investigated where BAR is chosen when
its result lies between that of the forwards and backwards Jarzynski estimates, otherwisc a
Jarzynski estimate is chosen using either the relative entropy or bias measures of Wu and Kolke
(2005¢). Although seemingly arbitrary, these estimator rules are reasonably successful at pre-
dicting the most accurate estimate. Alternatively BAR could be used in every situation, as in
the cases where BAR is not the most accurate it is generally close, and the loss of accuracy
would be negligible within the complex calculations involved in finding protein-ligand binding
free energies.

Harmonic oscillator test systems were shown to be more tractable when the A coordinate
is split into a number of smaller sections which are evaluated using FG separately. This tech-
nique is used routinely with FEP calculations. Also, as shown in various previous studies, in
general fewer longer switches were found to be more efficient than more shorter switches [Gore

et al.(2003)Gore, Ritort & Bustamante], [Ytreburg & Zuckerman(2004)].

8.1.2 Solute-solvent test systems

The methods found to be most applicable for the study of harmonic oscillators were then ap-

plied to two simple solute-solvent test systems.
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The study of the hydration free energy due to sodium charging

Here the FG estimators used in this study were further validated successfully. Specifically
for this test system, the FD estimator performs with significantly greater efficiency than the
Jarzynski estimator due to the linear response nature of the free energy change. Also, the
symmetric estimators and BAR perform well for this system.

The configuration bias-d method displayed no efficiency improvement for extra computa-
tional expense while the FG-BY 10 protocol was shown to improve the efficiency of the Jarzynski

estimators such that the performance of all estimators is very similar.

The study of the relative hydration free energy of water and methane

This study was designed to investigate and overcome the problems found in calculating free
energy differences for systems with large solvent conformational changes. It can be difficult to
obtain consistently accurate free energy differences for these important systems due to random
sampling error.

REFG2 was shown to improve the reproducibility of accurate results compared to nou-
RE FG methods. REFG2 also displays comparable consistent accuracy to RETI [Woods
et al.(2003a)Woods, Essex & King]. However, when the number of MC trials used for a calcu-
lation such as this is limited, RETT should be the method of choice as convergence is generally
found more quickly and easily. It may be important with REFG calculations that equilibriumn
seed sampling is maximised possibly at the expense of switch sampling. This was highlighted
by the difference in performance of REFG1 and REFG2-BY10 calculations figure 5.7. Also,
there may be need for an investigation of any possible differences between the performance
of RETI-random and RETI as some difference in precision has been uncovered by Woods et
al. (2003), (2007). An interesting study of this issue has found a method of choosing pairs of
replicas for a A swap which are not adjacent which may be of use for methods such as RETI
and REFG [Brenner et al.(2007)Brenner, Sweet, VonHandorf & Izaguirre].

Another issue with these FG calculations is finding the appropriate estimator for optimuimn
accuracy. A number of methods of picking between forwards and backwards Jarzysnki esti-
mates and BAR were investigated. All of the estimator picking methods gave similar results.

However, the method which gave the most consistent and accurate results was the totalled
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relative entropy measure. This method of picking uses BAR when a BAR estimate is placed
between the forwards and backwards Jarzynski estimates; when this is not the case the Jarzyn-
ski estimate with the highest total Wgss summed over all FG calculations across ) is chosen.
The use of BAR alone is also relatively accurate. Hence, these two estimator picking methods
were used in the subsequent protein-ligand studies.

Here it has been shown that REFG methods have the possibility of similar levels of accuracy
to RETI when a limit is placed on the number of MC trials used in a calculation. It is difficult
to compare the speed of RETI and REFG calculations as these RETI calculations were carried
out on a small number of dedicated, fast, processors while REFG calculations were carried ouf,
on a large number (100) of condor nodes (see appendix D). However, it is clear that REFG
methods may be able to run calculations faster than RETI when sufficient computational rc-

sources are available.

8.1.3 Study of the binding free energy of a set of inhibitors for

Neuraminidase

The neuraminidase analysis of Michel et al. (2006) was shown to be relatively demanding and
is in some ways, beyond the limits of the present methodology.

The ligands of the group under study which contain an amino group at position Rpol (sce
figure 6.3) utilise a mediating water to help binding. This mediating water is not used by the
ligands with a guanadino group at position Rpol. Thus, in perturbing from an amino ligaud
to a guanadino ligand the mediating water must be displaced from its buried position in the
binding site, something beyond the present methodology. Consequently a free energy from a
more complex study of a similar system was used for the perturbation of ligand 3 to ligand
6 [Barillari et al.(2006)Barillari, Taylor, Viner & Essex]. This problem highlights one of a nun-
ber of limitations of using free energy calculations in drug design.

This analysis contained a number of perturbations (namely perturbations of ligands 2 to
9, 4 to 10, 7 to 8 and 9 to 10) which include the growth of large chemical groups where much
smaller groups were originally. Owing to the relatively large numbers of atoms affected by these
perturbations they can be difficult to converge. It has been shown that the number of switches

required to obtain converged free energies is proportional to the number of atoms involved in
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the work process [Kofke(2006)].

Owing to the complexity of some of the perturbations in this neuraminidase analysis, it is
probable that the converged calculated binding free energies differ significantly from the exper-
imental values. Although the exact nature of these disparities is not clear they are possibly due
to deficiencies of the model.

The FG-BY10 protocol was shown to be unreliable in evaluating this set of inhibitors for
neuraminidase. PI scores ranged from a very low 0.44 to very high 0.95 and r?s from 0.47 to
0.88. This suggests that FG-BY10 is unable to produce converged results in within the number
of MC configurations used due to the challenging nature of some of the perturbations of this
analysis.

REFG2 was shown to compare favourably with RETI in producing results of a repeatedly
high predictive standard. PI scores ranged from 0.91 to 0.97 and r?s from 0.88 to 0.94 with the
RETT analysis producing a PI of 0.93 and r? of 0.81. These results suggest that RE free energy
methods should always be used for protein-ligand binding free energy calculations and that the
REFG2 protocol is at least as good as RETI for this purpose.

One advantage of FG methods was highlighted as large inaccuracies were found in somc
perturbations of the original RETT analysis of Michel et al. (2006). A large peak in the PMF
of FG perturbations 2 to 9, 4 to 10 and 7 to 8 in both the water and protein environmeuts
were not present in the RETI equivalents (figure 6.9). This sudden change in the free energy
originates from very large intra-molecular L.J and Coulombic forcefield energies produced hy
the close proximity of the atoms of the phenyl ring of the cis group at the early stages of these
perturbations. These phenyl ring atoms start as dummy atoms but as their non-bonded terins
are switched on these atoms are too close and a large energy is produced. This large change in
the free energy was not detected by the RETT analysis as it came between the discrete simula-
tion points across A. Also the large errors in the water and protein leg perturbations was not
discovered in the original RETI analysis as this large energy artefact is a very similar size in
both water and protein legs resulting in its effective cancelation. This example may serve to
highlight the exploratory use of FG methods in analyses such as this or the need for extremec

care in the use of TI based methods.

This study also highlighted the limitations of statistical error bars in predicting the repro-

ducibility of free energy calculations on large complex systems. In future it may be important
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to routinely reproduce calculations to be sure of the results they give.

The totalled relative entropy measure estimator picking rules were used in this study aud
compared to using BAR alone. This method of FG estimator picking was shown to give very
similar results to using BAR alone, mainly due to the fact that BAR estimates were generally
placed between forwards and backwards Jarzynski estimates for these neuraminidase perturba-

tions.

The major result of this neuraminidase study is that REFG has shown significant im-
provements in calculation wall clock time compared to the established RETT method while
maintaining high levels of accuracy. REFG calculations were completed in around 10 hours

using 100 condor nodes while RETI calculations took around 24 hours on 12 2.2 Ghz Otperouns.

8.1.4 Study of the binding free energy of a set of inhibitors for
COX-2

This set of COX-2 perturbations were in general much less demanding than the neuraminidase
analysis discussed above. These COX-2 perturbations involve changes to a single group which
often consists of one atom only. This means that these COX-2 calculations require a smaller
number of MC trials to give a converged free energy estimate. Indeed a similar study of the
same system by Price and Jorgensen (2000a) used FEP calculations with around one third of
the MC trials of the protocols used in this study and found comparable if not better results.

This COX-2 analysis again demonstrated that REFG2 is able to produce results of a sim-
ilar predictive quality to RETI. However, for this COX-2 analysis RETI seems able produce
converged and accurate results using fewer MC trials than REFG2 (see figures 7.8 and 7.9).
The seeming efficiency advantage of RETI may be tempered by the possibility of running MC
trials faster using FG methods and many computers in parallel.

Again, the totalled relative entropy measure estimator picking rules were used and gave very
similar results to BAR alone. Also a wall clock time advantage of REFG over RETI similar to

that found for the neuraminidase study was found for these COX-2 calculations.
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8.2 FG Best practice

As can be seen in the FG background chapter (chapter 3) there have been many interesting
developments in the area of nonequilibrium work free energy methods over recent years. Here
we have picked some particularly interesting methods for investigation with the idea of large
scale parallelisation of calculations in mind. Of the methods chosen for investigation some have
been found to be more suitable than others for use in rational drug design.

It is clear from the results of this work that overall the BAR estimator is tlie most ¢f-

ficient. This estimator is able to produce results of very good accuracy in all cases studicd
here. This is a view shared by other studies in the literature [Shirts & Pande(2005)], [Ytreburg
et al.(2006)Ytreburg, Swendsen & Zuckerman]. There are cases were the Jarzynski estimator
may outperform BAR but differences in accuracy are small. For the case of demanding protein-
ligand binding studies BAR is a suitable choice.

Although seeming to have potential, the Rosenbluth sampling FG methods of Wu and Kofke
were found, in general, to be less efficient than original FG [Wu & Kofke(2005¢)]. REFG pro-
tocols were found to perform Dbest for the relative hydration free energy of water and methanc
and binding free energy studies of neuraminidase and COX-2 systems. REFG was able to show
similar levels of accuracy to the established RETI method with the possibility of wall clock
time saving through the use of large distributed computational resources.

A series of FG bias calculations methods have been discussed and investigated in this
work [Gore et al.(2003)Gore, Ritort & Bustamante], [Wu & Kofke(2005a)], [Jarzynski(2006))].
In general these methods rely on a Gaussian distribution of work values, something which is
not always possible especially for the large protein-ligand systems of interest here. Hence, thesc
method were found to be less reliable. It may be that in future more generally applicable and

reliable methods are developed.

8.3 Free energy calculations in rational drug design

The central purpose of this work was to investigate a relatively new set of free energy methods
to test whether they can help further the applications of free energy methods in rational drug

design. As discussed earlier the reasons for the as yet low levels of use of these methods by
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the pharmaceutical industry are as follows: free energy calculations on protein-ligand systems,
although significantly faster than previously, are still relatively slow to carry out and compu-
tationally demanding. For use in rational drug design it should be possible to run analyses of
around 10 drug targets overnight. These calculations are also limited in applicability as the
sets of inhibitors under study must be very similar with low levels of system conformational
change (requiring single topology methods). Dual topology methods may be able to speed up
the process of system set-up and increase the range of applicable systems. However, dual topol-
ogy methods are more computationally demanding again. Thus, large increases in efficiency ol
free energy calculations may be able to increase the usability of these methods in rational drug
design.

Here it has been shown that FG based methods are able to produce protein-ligand binding
free energy results of a similar quality to the established RETI method in significantly shorter
time through the use of a large distributed computer. Here REFG calculations were able to

use 3 times more MC trials than RETI in around the same amount of wall clock time. How-

ever, this sampling speed improvement did not offer any improvements in predictive accuracy.
Further, dual topology calculations may need many 10s of times more sampling than the single
topology calculations performed here. Hence extremely large computational resources would he
needed to make these sorts of calculations viable in the time frames needed. This study has also
highlighted the advantage of FG based methods in being able to find unexpected occurrences
in a perturbation that would be missed by TI based methods. In this way FG methods arc

more reliable.

As more research into the use of free energy calculations in protein-ligand binding studics
is carried out, the limitations of these methods will become clearer. This should lead to the
gradual increase in use of these methods in drug design. Also, as the power of computational
resources continues to increase, the reliability and applicability of these methods will become

better.




Appendix A

Markov chains

A Markov chain, named after Andrey Markov, is a sequence of discrete random variables or
states where production of the next state (N) is independent of all states except the most recent
(O) (known as the Markov property). The changes in state are called transitions, and brought
about by application of a particular Markov process or a trial. Hence, the transition probability

7(O — N) can be interpreted as the conditional probability,

(0 — N) = P(Xp = N|Xn_1 = O), (A.1)

where X, is the present state and X,_1 is the immediately previous state. When at O the
probabilities of arriving at all possible N states make up a row of a matrix called the transition
matrix (J]) the sum of each row must be equal to one. Also, 7(O — N) must be ergodic as

discussed later.

This definition of a Markov process has a special property. A clear way to show this property
starts with consideration of the probability P(X, = N) that at step n (the present step) the

system is in state N:

P(Xp=N)=P(X,=N|Xp_1 = O0)P(Xn-1=0)=7(0 - N)P(X,_1=0), (A2)

Therefore the master equation, which considers the change in this probability over repeated
realisations of the Markov process (change in n, where 7 is continuous rather than discrete ie.

P(X, = N) = P(N,n) can be,

dP(N,n)

= > w0 = NP(N,n)+ Y  w(N—O)P(O,n). (A.3)
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This identifies the evolution of the system as a continuous-time Markov process [Landau(2000)].
As long as the two terms on the right hand side of A.3 are kept equal the probability of a state

being conserved is,

dP(N,n)
dn

0. (A1)

Also, owing to the Markov property, the state at step n in the process will completely deter-
mine the future evolution. Thus, property of such a Markov process is that through mauy
applications of [] it will converge to a unique limiting distribution regardless of the state in
which it begins. The resulting expression of equation A.3 is known as "detailed balance”. To
satisfy detailed balance the probability of leaving O for N must be the same as the probability
of leaving N for O (7(O — N) = #(0O — N)).

It is important to note that not all systems have properties compatible with equation A.3.
For this to be the case it is important that the Markov chain produced is ergodic. To be ergodic

a Markov chain must be:

aperiodic: A state O has a period J if any return to state O must/may occur in a multiple of
J applications of the process. For example, if it is only possible to return to state O in an even
number of steps then O is periodic with a period (J) of 2. If J is 1 the state O is aperiodic and
the process can return to O without a specific period. A Markov chain is aperiodic if all its
states are aperiodic. To be aperiodic a state must also be irreducible, able to reach any point,
in configuration space from any other in a finite number of transitions.

positive recurrent: A Markov chain is positive recurrent if starting in each state the chain
can return to this state in a finite number of applications of the process. If the probability the
chain will never return to a given state is non-zero that state is said to be transient.

" Another important note is that it is possible to produce a conserved limiting distribution with-
out detailed balance, where equation A.4 is satisfied with the terms on the right hand side of
equation A.3 not being equal. However, this is extremely difficult and would need knowledge

of T, which is not easily obtainable.




Appendix B

Monte Carlo moves

B.1 Basic moves

The basic Metropolis MC method entails the construction of a symmetric transition matrix
through finding a trial configuration N at random. As discussed before this is generally achieved
through the localised perturbation of the present configuration O according to preset paramc-
ters. This has‘ the advantages that.if configuration O is a member of the Boltzmann limiting
distribution then N has a good chance of being a member too and that new total energy evalua-
tions may not be necessary. In the interests of keeping the acceptance rate of new configurations
high and the range of possible moves as big as possible, the size of this perturbation is adjusted
to an appropriate level which is kept constant, as changing it may violate detailed balance.

With these ideas in mind, in the case of condensed phase simulations, it can be shown that
it is generally most efficient to perturb only one particle at a time [Frenkel & Smit(1996)]. Ou
average, a trial move will be rejected if the change in the potential is more than kpT. Thus,
if more than one particle is moved at a time, the time taken to evaluate the new potential is
larger and the move is likely to be rejected.

The range in size of any translational move of particles (A) is a parameter which is gen-
erally set through trial and error. A is set such that the acceptance rate of a simulation is a
target figure which according to the literature is around 50% [Frenkel & Smit(1996)]. When
considering this problem, it may be worth considering that the speed with which a MC code can
perform trials has a large effect on possible target acceptance rates. If displacement per CPU
time is the term to be optimised, then the faster the code the lower the possible acceptance
rate target. For example for MC on hard core systems where a moves can be rejected much

faster (as soon as an overlap is detected), optimum acceptance rates may be as low as 20 %.
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A size range parameter for rotational movement of particles (6) is also necessary if particles
are molecules. The optimum 6 can be found with the same considerations as for translational

moves above.

In the case of non-rigid molecules then moves of the internal degrees of freedom must also
be undertaken. The range of size parameter for moves of the internal coordinates of each atom
can be individual to that atom depending on its environment, with similar considerations to

those discussed above for translational moves.

B.2 Biased moves

When choosing a sampling method for molecular simulations, perhaps the majority of investiga-
tors employ MD. All other efliciency issues being relatively equal, MD is able to offer information
on the time linked dynamic behaviour of a system. However, in specific cases, where MD gots
trapped in local energy minima and is too slow to allow convergence of calculations in feasible
time scales, specifically biased MC methods can offer important advantages.

Biased MC methods bias the normally random production of new configurations (N) such
that they have an increased probability of being accepted into the average being accunulated.
This can be an extreme time saving strategy in some cases. Clear examples of this possibil-
ity are ensembles where molecules must be inserted as part of a move and the probability of
a random move being accepted is very small. Slightly less clear maybe are cases of protein
simulations which are directly related to this study. There are however good examples of MC
methods which can bias protein back-bone moves and increase the speed of protein sampling,
which is notoriously slow and difficult due to large energy barriers between possible conforma-
tions [Ulmschneider & Jorgensen(2003)]. Also, a bias may be introduced relatively easily to
increase the number of moves performed on molecules close to a point of interest (preferential
sampling) [Owicki(1977)]; the most relevant example is biasing moves for water molecules close
to a protein binding site.

The basis of biased MC lies in introducing bias into the transition matrix, [], described
earlier and then correcting for this bias in the acceptance test probabilities. If a method of
producing state N conducive to a high acceptance rate is found, which uses a function of the

potential of the current configuration, the transition probabilities will be:
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a(0 = N) = f(Un), a(N = 0) = f(Uo). (B.1)

In order that detailed balance and the Boltzmann distribution be preserved, these same prob-

abilities must be introduced into the acceptance test:

Pach = min(l, %_Z—iezp{—ﬂ[ljo - UN]}). (B.Q)

Thus, it is necessary to know the probabilities of (O — N) and (N — O) = f(Up) which

may not always be easily found.
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Extra results of harmonic oscillator
study
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Figure C.1: AF estimates with original FG using 1x10® configurations for CaseA
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Figure C.2: AF estimates with original FG using 5x107 configurations for CaseA
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) oo o
o ) ] &)
T T T T

AF (kcal mol™")

o
N
T

— Jarz Fwd
— Jarz Bwd
Jarz Fwd-GBins
Jarz Bwd-GBias
FD Fwd
FD Bwd
Symmatric A
— Symmalric B
~=- Bannalt's Acc
Analytical FE

2
“[— Pwa ; ;
Bwd | =
1F — -
¥ i

o -

oot
)

i
10k
FG switches

1
5k

1
15k

20k

B
T . s L
T 5k 10k 15k 20k

(a) AN = 50 MC Trials = 200

3 10}
=St
a L
O
=5
wo|
q b
S
0

ST _1 et G
5K 10 k ISk
FG switches

1=
20k

Jarz Bwd

Jarz Fwd-GBins
Jarz Bwd-GBlay
FD Bwd
Symmatric A
Symmatric B
Banriatt's Aco
Anaiytical FE

Kofke bias
iy

— Jarz Fwd l

24 T l 3
i o= )l'n.l L ’
|20 =
28 / {
i A ‘
3,2 . . e
TSk Wk 15k 0k

(b) AX = 10, MC Trials = 1000

Figure C.5: AF estimates with original FG using 1x10® configurations for Case C
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Appendix D

FG and Distributed computing: The

use of Condor

The power of computer processors has been increasing at an astonishing rate ever since the ear-
liest computers of the 1940s. The rate of increasing power is so steady that the termi Moore's
Law was coined around 1970 describing the tendency for the number of transistors (which can
be loosely converted to computational power) on a commodity computer processor to double
every 24 months [Intel(2007)]. In recent times there has been discussion by the major computer
processor producers that the limit of this law may soon be reached as the size of transistors
approaches the atomic scale.

Despite the speed with which computer processors are increasing in power, such is the thirst
for computer power of calculations like those discussed in this study, that methods for increas-
ing power are always sought. The most common method for increasing computer power is to
use many cheap yet powerful commodity computers in parallel, connected by a local high specd
network in a "high performance computer cluster” (HPC). The use of multiple computers in a
single calculation is termed ”distributed computing” which is a type of ”parallel computing”
with the latter term generally referring to calculations run on multiple processors which are part
of the same computer. These HPCs are often used with the Linux operating system (OS), as
this OS is free and a good environment for developing software, in a set up termed a ” Beowulf

cluster”.

In order that a calculation can be used on a computer cluster, it must be split into smaller
calculations which can be distributed across the processors. This limits the eflicient use of
computer clusters to those calculations which can be parallelised (split up into suitable smallcr

calculations). Parallel computer program codes (parallel codes) are sometimes able to allocatc
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jobs to different processors automatically (implicit parallelism). The majority of implicit par-
allel codes require that all processors and computers included in a calculation are of the same
or similar architecture (homogeneous cluster) which can limit the make up of a useful cluster.
Also, the number of processors a parallel calculation can use efficiently is in general not un-
limited (the scalability of a calculation). This is because the overheads such as the processors
communicating with each other over the network slow the calculation [Allan(1999)).

Some calculations are such that they naturally break up into many smaller calculations
which can be run independently on single processors of many computers (coarsely parallelised
calculations). One example of such a calculation is FG where each switch of a FG calculation
can be run on a separate computer, with the work value from each switch combined at tlie end
to give an estimate of the free energy difference.

Coarsely parallelised calculations can be run efficiently with grid computing as there is
no necessity for high speed communication between the processors involved. A grid can be a
heterogeneous group of computers connected with some level of network to run calculations.
The network is often the internet but can be a large non-local network. Grid computing is
normally thought to be between computers which are geographically distributed. Some grid
clusters are set up to use the unused compute of idle computers in officcs and homes. Exaniples
of this are the folding@home project [Shirts & Pande(2000)] which runs molecular simulations
on thousands of computers around the world when they are idle.

Condor [Litzkow et al.(1988)Litzkow, Livny & Mutka] is workload management softwarc,
able to distribute computer jobs within large heterogeneous networks. It is able to identify idle
computers (target machines) on the network and distribute jobs to them where the predefined
parameters of the computer and jobs fit. Users of Condor submit individual jobs which are then
matched to an idle machine which receives the job, completes it and sends the output back to
the user. This can effectively produce a large amount of computation that would otherwise
be wasted. A good example, which was the case for this study, is a university library which
contains many old low specification computers used intermittently by students. Other examples
of similar software which is more oriented towards security is Globus [Foster(2006)] and United
Devices Virtual Cluster software [UnitedDevices(2007)].

Using Condor with a heterogeneous network of in-use computers can be a delicate and coni-
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plex task, and thought must be given to producing optimum performance. Here some basic
ideas and concepts will be explained from the point of view of the individual user:

First, the code used must be compiled so it can run on the target machines. In the case of
this study the majority of the Condor pool used the Microsoft Windows XP operating systeim
(OS), so the code was compiled for Windows.

Each job submission must have a set of parameters defining its target machines on the
network. The architecture and OS of the target machines must be given. The memory needs of
the individual calculations must be assessed and parameters set such that only machines with
enough memory are used. Other possible parameters include, location in the network, disk
space and cpu speed.

For each job submitted to a Condor pool the required input files and executables must he
transferred to the target machine. Depending on the size of the files to be transferred, this
limits the number of jobs a single submit node can service at one time. For the protein-ligand
calculations run in this study it was found that 100-150 jobs could be easily serviced from
one submit node. This meant that multiple submit nodes were needed to run a whole set of
protein-ligand calculations.

Consideration must be given to the length of jobs submitted to a Condor pool. A Coudor
pool can be set up such that when a user starts using a Condor pool computer which is running
a Condor job, this job is either deprioritised or stopped and given back to the Condor pool
controller to reassign. Also, sometimes a Condor job can fail and not be returned to the submit
node. Either way, the longer a job is, the more chance it has of taking longer than it should or
of failing.

However, if jobs are too small the computer from which jobs are submitted to the Condor
pool (submit computer) will be unable to finish uploading all the input files for the requested
jobs, to the condor pool, before the results of some jobs start to be returned to the submit com-
puter. This issue can effect the efficiency of the calculation as the submit computer is unable to
get the requested number of jobs running in the Condor pool. Thus, a balance, must be found
allowing the submit computer time to upload all requested jobs, minimising the possibility of
jobs slowing or failing, and the demands of the calculations at hand. In this study it was found
that FG jobs were at optimum length at around 2-3 hours. Also, it may be advisable to plan

for any possible slow or failing jobs by starting a few more than are actually needed.
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Using a large Condor pool for free energy calculations lias advautages and disadvantages:
The speed at which calculations are completed can be unpredictable. If the Condor pool coni-
puters are undergoing heavy use by non-Condor users calculations will be very slow. Hence, use
overnight and at the weekend can be more efficient. On the other hand, as only coarsely paral-
lelised jobs can be run on Condor and often a large Condor pool is used by only a few projects,
extremely large calculations can be run which would be unfeasible on a often oversubscribed
dedicated Beowulf clusters. Of course, it would be preferable to run large parallelised FG cal-
culations on large, fast, dedicated clusters as this could produce extremely fast calculations.
For large pharmaceutical companies, the use of Condor or Globus pools can be a extremcly

cost effective solution as they often have large offices full of suitable under-used computers.
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