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The computationally demanding nature and lack of generality of free energy methods are the 

main barriers to their common place use in rational drug design. This study investigates the pos­

sibility of producing protocols to accurately calculate the binding free energy of protein-ligand 

complexes more efficiently than presently established methods, using large scale distributed 

computing. There has been an explosion of useful nonequilibrium work methods recently, 

mainly due to the discovery of the Jarzynski equilibrium [Jarzynski(1997b)]. After an indepth 

investigation of these methods a subset, all with the possibility of large scale parallelisation, was 

chosen for further study. Also, replica exchange fast growth (REFG), was developed, a method 

which combines replica exchange and fast growth methods in a similar way to replica exchange 

thermodynamic integration (RETI) [Woods et al.(2003a)Woods, Essex & King]. These meth­

ods of interest were applied to a large number of harmonic oscillator systems and compared 

to the established method T!. Those methods deemed to perform best were then applied to 

some simple solute-solvent test systems and compared to the established method RET!. The 

best performing method from these studies was then compared to RET I for the calculation of 

relative binding free energies of two sets of cogeneric inhibitors bound to their receptor pro­

teins. REFG was found to perform as well as RETI and produce constantly predictive results. 

REFG was able to produce these results in significantly less wall clock time by using large scale 

distributed computing. 
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Chapter 1 

Rational drug design 

1.1 Introduction 

Our ability to find ways to treat the diseases which affect us is one of the major factors in 

the continual increase in quality and length of human life. Every year billions of dollars are 

invested in finding and designing drug molecules to help treat disease and health disorders. As 

with almost all aspects of human endeavour the advent of computers and the rapid increase in 

computational power has enabled new and highly sophisticated approaches to the problem. The 

use of computational techniques in drug design/discovery is now common place [Leach(1996)]. 

This study will be concerned with finding computational methodologies which can efficiently 

and accurately rank molecules on how well they bind to a target receptor using 3D structures 

of the candidate molecules bound to the target receptor. These calculations are common in the 

literature, but they are not, as yet, regularly used in the pharmaceutical industry, because of 

their computational cost and unreliability. 

1.2 Computational Drug design 

Most computational drug design techniques fall into four categories: De novo molecule de­

sign; docking; ligand based screening; binding affinity prediction techniques. De novo molecule 

design, docking and binding affinity prediction generally require that a 3D structure of the 

receptor understudy is available (receptor based techniques). 

De novo design is the creation of novel ligand structures which may bind to particular tar­

gets with high affinity. This is a very difficult task and many studies rely on searching large 

combinatorial libraries of real and/or theoretical molecules. For example Kick et al. demon-



CHAPTER 1. RATIONAL DRUG DESIGN 2 

strated the coupling of combinatorial chemistry and structure based design resulting in the 

creation of a number of low nanomolar non-peptide inhibitors of Cathepsin D (Cat-D) [Kick 

et al.(1997)Kick, Roe, Skillman, Liu, Ewing, Sun, Kuntz & Ellman]. This study searched 

a library of suitable molecules for favourable groups, positioning each of them in turn on a 

non-peptide backbone, which was a stable mimetic of the tetrahedral intermediate of amide 

hydrolysis, within the Cat-D X-ray structure, in order to ascertain their suitability. 

In the absence of three dimensional receptor information, virtual screening can also be car­

ried out where there are known ligands for a protein (ligand-based virtual screening). Ligand 

based virtual screening uses descriptors to select molecules with similar properties to known 

highly active ligands, for further analysis [Leach(1996)]. These empirical binding affinity pre­

dictors are generally thought to have problems with transferability as they have been trained 

on only one set of data. Also, any advantageous interactions not represented in the training 

data set will not be present in any resulting high scoring binders. 

Docking methodology attempts to find solutions to the problem of positioning ligand struc­

tures correctly within the binding sites of receptor molecules. Docking is generally used to 

screen large sets of lead-like molecules to yield a smaller set for further analysis (virtual screen­

ing). Often this problem is simplified by treating ligand and receptor structures as rigid and 

ignoring any solvent effects. In this simplified case docking is a matter of optimising geome­

tries and interactions, in order to fit the ligand to the receptor [Leach(1996)] [Jhoti(2007)]. 

Even in this simplified case finding solutions is computationally expensive due to the enormous 

amount of possible ligand and receptor configurations. In the future, docking may be made 

easier by using knowledge of protein domains common in the proteome to predict binding sites. 

Current docking algorithms generally make many assumptions, but are still generally able to 

find real binding poses of drug molecules [Warren et al.(2006)Warren, Andrews, Capelli, Clarke, 

LaLonde, Lambert, Lindvall, Nevins, Semus, Senger, Tedesco, Wall, Woolven, Peishoff & Head]. 

From the findings of Warren et al. it seems that there is a need for more accurate scoring of 

possible bound structures to pick the correct poses from the possibilities suggested. 

Prediction of binding affinity of a given drug candidate generally begins with a ligand­

receptor complex structure. Often binding affinity prediction algorithms are bundled in with 

docking packages; in this case they are called scoring functions. The term scoring function 
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often refers to the both the potential which drives the optimisation of sampling towards find­

ing possible ligand-receptor positions and the calculations which then rank the possible ligand 

poses. The latter and more demanding of these two jobs must rank ligand poses in line with 

experimental free energies (binding affinity scoring functions) [Jhoti(2007)]. Scoring functions 

are generally one of three types; force-field based, empirical or knowledge based. 

Force-field based scoring functions use force-field terms, often with simplified non-bonded 

terms to describe the interactions between receptor and ligand. To describe solvent screen­

ing effects a distance dependent dielectric can be used as it is computationally inexpensive 

[Jhoti(2007)]. As calculation of force-field terms can be time consuming these functions often 

approximated to save time. These approximate scoring methods are prone to error as they often 

ignore entropy and many internal energy effects. Also, unless specific force-field parameters are 

generated the choice of parameters can be problematic. 

Empirical scoring functions are based on the structure-activity relationships developed in the 

1960s. Here the binding free energy is decomposed into a numberof chemically relevant terms 

which are calculated individually and summed. Each term is found by multiplying an interac­

tion score by a coefficient found previously through regression fitting to known experimental 

binding free energies. Common terms include hydrogen bonding, hydrophobic interactions, and 

internal energy. As with ligand based virtual screening these methods have problems as possibly 

advantageous interactions not represented in the training set will not be found in the highly 

ranked ligands [Jhoti(2007)]. 

Knowledge based methods use the sum of statistically derived potentials of mean force 

(PMF) scores between protein and ligand atoms from the Protein Data Bank (PDB) as a mea­

sure for protein-ligand binding affinity. These statistically derived PMFs are similar but not 

strictly equal to normal PMFs. Knowledge based methods have shown some improvement over 

empirical and force field-based methods [Klebe(2000)]. 

Scoring methods which could possibly discard useful candidates are obviously counter pro­

ductive. Hence, the success of these docking/scoring methods is generally measured by how 

many runs it takes to obtain a particular percentage of useful candidates from a large data set. 

This method of displaying the performance of a docking/scoring method is called enrichment. 

These less rigorous methods of scoring binding affinity may not be very reliable, but they can 

be used to obtain an initial set of candidate ligands for higher level analysis by more time 
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consuming and accurate methods. 

Accurate evaluation of drug candidate binding free energies can be achieved through the 

use of relatively realistic, complex molecular mechanical simulations of ligand-protein complexes 

and various thermodynamic calculations. These types of calculation are generally termed free 

energy calculations. Free energy calculations and the simulations which they use are discussed 

in detail in the next chapter. 

The methods we discuss in this study rely on the presence of 3D structures of target re­

ceptors which can be time consuming to produce. Problematic assessment of best possible 

receptor target strategies and slow methods of elucidating 3D protein structures have been a 

major bottle neck to wide spread use of some of these structure based methods. Integrated 

use of systems biology and omies (genomics, proteomics, metabolomics, pharmacogenomies and 

interactomics etc.) techniques and data combined with high-throughput crystallography in the 

future may offer the ammunition for well directed and efficient structure based computational 

approaches [Blundell & Patel(2004), Cho et al.(2006)Cho, Labow, Reinhardt~ van Oostrum & 

Peitsch]. 

1.3 Aims of this study 

This study will concentrate on the fast, accurate, computational calculation of ligand binding 

free energies (fast free energy methods) with a view to screening of lead drug candidates (i.e. 

screening a smaller number of previously identified candidates). Thus, the fields of molecular 

simulation and free energy calculations will be reviewed with a view to finding new and possi­

bly useful fast free energy methods. These methods will then be investigated and compared to 

those currently in general use. 



Chapter 2 

Calculating the Free Energy 

2.1 Molecular Simulation 

2.1.1 Introduction 

In the field of molecular modelling it has become apparent that a single conformation cannot 

properly represent a molecule. Molecular simulation is the calculation of the prevalence of possi­

ble states of a molecular system and generally takes two forms: Molecular Dynamics (MD) and 

Monte Carlo (MC) simulations. Both forms of simulation use a potential expression to describe 

the different forces acting on each atom with calculated atom point charges and associated bond, 

bond angle and dihedral parameters (a molecular mechanics force field) [Atkins(1994)J. Using 

statistical mechanics it is possible to extract important macroscopic properties from microscopic 

data which, with accurate simulations, can be used to estimate experimental properties. This 

is the basis of the ligand binding affinity methods described in this study. 

Although the focus of this study is entirely towards classical molecular mechanical simu­

lations it is convenient to consider some of the basics through quantum theory. In quantum 

theory we are able to consider each individual microstate of a system whereas classical theory 

presents us with a continuum of states. 

2.1.2 Thermodynamics 

The word thermodynamics comes from the Greek thermos meaning heat and dynamics mean­

ing power. Thermodynamics originated through the production of the first vacuum pumps 

and then steam engines in the 1600s. Thermodynamics has a number of central concepts and 



CHAPTER 2. CALCULATING THE FREE ENERGY 6 

relations [Frenkel & Smit(1996)J. One basic concept is the idea of a system and its surround­

ings. A system is defined by its particles and their average motions. The system interacts with 

its surrounding in some defined way. Thermodynamics is the study of how the macroscopic 

properties such as temperature, pressure and volume of a system and its surroundings relate to 

each other. 

Another basic concept of thermodynamics is energy. Energy can be transferred between 

systems and particles as heat or work and is attributed as kinetic energy (heat) and poten­

tial energy (potential work). If a system has no net transfer of energy between itself and its 

surroundings and has no change in its macroscopic observables with time it is said to be in 

equilibrium. When in a state of equilibrium a system's state properties can be described by 

equations of state such as the classical ideal gas law. In other words we can use the average 

system properties at equilibrium to calculate other properties. We are now able to think of a 

model system and how we can study it. In a molecular simulation we make a model of a system 

in which we are interested and accumulate useful data about the properties of its state, which 

we can then use to calculate other state properties. 

2.1.3 The Boltzmann factor and Statistical Mechanics 

A system will always tend towards configurations or microstates with the most ways of dis­

tributing the energy amongst its particles. This means that isolated systems tend to occupy 

lower energy states most of the time, as in these low energy states there are more ways to 

distribute the energy (for a more in depth explanation see Atkins (1994)). 

The Boltzmann factor is a weighting term which can be used to find the probability of 

individual energy states of a system in thermodynamic equilibrium: 

P ex exp{ -EjkBT} (2.1) 

where E is the energy of the system, kB is the Boltzmann constant and T is the temperature. 

The Boltzmann factor is not normalised but the ratio of the probabilities of two states is given 

by the ratio of their Boltzmann factors. The Boltzmann factor can be normalised by dividing 

by the sum of all the Boltzmann factors of all possible energy states of a system. This is called 

the partition function. The partition function is very useful as many of the thermodynamic 

variables of the system can be expressed in its terms. The exact nature of the partition function 
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of a system relies on how the system is defined, and there are a number of well known system 

definitions termed ensembles. A statistical mechanical ensemble is a collection of replicas of 

a system which are effectively different configurations of this system with particular defined 

constraints. 

The Boltzmann constant is generally determined experimentally and is in units of energy 

per temperature (e.g. JK-1). Thus, the Boltzmann constant relates the energy and tempera­

ture of particles in a system. The most basic result associated with the Boltzmann constant is 

that of the ideal gas equation: 

(2.2) 

where N m is the number of gas molecules present in the subject system. The ideal gas equation 

shows us that kBT is the pressure applied times unit volume for each molecule of an ideal gas. 

Statistical mechanics links the microscopic properties of atoms and molecules to the macro­

scopic properties of thermodynamics. In molecular simulation statistical mechanics can be used 

to obtain bulk properties of model systems. The main tools of Statistical mechanics are the 

Boltzmann factor and the partition function. 

2.1.4 The Ensembles of Statistical Mechanics 

Another important idea in statistical mechanics is the ensemble average. When attempting to 

study a model system, which is part of a particular ensemble, properties of the whole ensemble 

(all microstates) are considered, i.e. ensemble averages. This is necessary as in experiment it 

is not possible to freeze time and evaluate the properties of a system. Instead averages over 

large systems and amounts of time are taken. We are able to find ensemble averages through 

sampling and averaging over large numbers of states of a system ensemble. The average does 

not necessarily have to be over the whole ensemble which is fortunate as systems can have an 

extremely large number of microstates. 

In order that the assertion in the paragraph above may be achieved, statistical mechanics 

makes some assumptions:-

1. The equal a priori probability postulate: this postulate assumes that each microstate 

has an equal possibility of being occupied and is the fundamental postulate of statistical 
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mechanics. Justification for the assumption of the equal a priori probability postulate 

can be found with Liouville's theorem [Frenkel & Smit(1996)]. 

2. The ergodic hypothesis: consider the path of a system across the energy surface made 

up by plotting all microstates of the systems ensemble. Owing to the equal a priori 

probability postulate the system will, in the long run, visit each area of this energy sur­

face equally and hence each microstate is equally probable over a long period of time. 

This means that a long time average and an average over the whole statistical ensemble 

are the same. Equally for systems evolving in a non-time linked fashion, sampled mi­

crostates will inevitably be in a localised area, but the assumption of ergodicity allows 

a large average to equate to the ensemble average. Within this assumption is the idea 

that ensemble averages are independent of the initial state or configuration of the system. 

Thus we can use MD or Me simulations to find properties of the whole ensemble of states of a 

system by sampling for a long time or sampling a large number of configurations. In practice 

many systems are not ergodic and it is important to consider this before assuming the ergodicity 

of an exotic model. 

It is important to define a system ensemble when applying statistical mechanics. When 

creating a model, one of a number of well known system ensembles can be used with differing 

properties. Each ensemble has a characteristic state function C, a thermodynamic quantity 

such as the free energy, from which we can directly find the partition function (Z) through, 

C = KBTlnZ (2.3) 

N ext the basic ideas behind some of the well known ensembles will be explained. 

Microcanonical ensemble 

The micro canonical ensemble refers to a system isolated from the outside environment. As the 

system is isolated it is unable to exchange energy with the environment and has a fixed total 

energy. This means that the system can only access those microstates which have the same 

energy as the system. The entropy of a micro canonical system can only increase and does so 



CHAPTER 2. CALCULATING THE FREE ENERGY 9 

until the equilibrium point is reached (due to the second law of thermodynamics). While in 

equilibrium the entropy of the micro canonical ensemble can easily be calculated using Boltz­

mann's famous equation: 

S = kB lnO(E) (2.4) 

where S is the entropy and O(E) is the number of microstates with the total energy of the 

system E. The micro canonical ensemble is often referred to as an NVE ensemble as it has fixed 

numbers of atoms, volume and energy. The number of microstates available to the system in 

the case of a micro canonical ensemble is found directly from Boltzmann's equation for entropy: 

O(N, V,E) = exp{S/kB}. (2.5) 

O(N, V, E) is the micro canonical partition function as in this case the system can only have one 

energy. As can be seen from eq. 2.5, for the micro canonical ensemble S is the characteristic 

state function. 

Canonical ensemble 

The canonical ensemble is an ensemble of states of a system which is able to exchange heat with 

a heat reservoir. The connected heat reservoir must be very large such that through exchange 

with the main system both are kept at constant temperature. The main system and the heat 

- reservoir together are isolated from the outside environment and assumed to be in thermal 

equilibrium. The canonical ensemble is also called an NVT ensemble as it has fixed numbers of 

atoms, volume and temperature. 

The partition function of the canonical ensemble (Z) is, 

(2.6) 

where f3 = l/kBT. An extra term, 9i is sometimes included to account for the degeneracy 

of microstates i, i.e. if only macrostates are counted, the number of microstates within each 

macrostate must be included E i : 
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(2.7) 

The canonical ensemble partition function can be derived in a number of different ways; most 

rely on the notion that the probability of the system being in a particular state is proportional 

to the number of states of the heat reservoir. The characteristic state function of the canonical 

ensemble is the Helmholtz free energy (A) as, 

Z(N, V, T) = exp{ -,BA} (2.8) 

holds. 

In classical mechanics the partition function is a continuous distribution rather than discrete 

as described above. The number of system states are uncountable as the position and velocity 

of particles are continuous variables. In this case very similar microstates are grouped together 

as one and the partition function becomes an integral, 

(2.9) 

Here h is Plank's constant, N! is a term which is included to ensure the number of microstates 

is not over counted, H(PN,qN) is the classical Hamiltonian, P is the momentum of particle N 

and q is the position of particle N. H(PN, qN) is made up of the kinetic energy (K) due to 

the momenta P of the system particles and the potential energy (U) due to the particle co or-

dinates q. In practice, the integration over the momenta can be carried out analytically as K 

is a quadratic function of the momenta. Thus, the difficulty lies in evaluating functions of the 

particle positions (p N)' Only in a few simple cases can the potential be evaluated analytically 

and it is generally found through numerical methods which will be discussed later in this chapter. 

Isothermal-isobaric ensemble 

The isothermal-isobaric ensemble is similar to the canonical ensemble, except the volume is 

allowed to change. The volume is controlled to give a specified average pressure. This ensemble 

can be called the NPT ensemble as pressure is also kept constant. This ensemble is important 
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as chemical reactions often require constant pressure and simulations often require the volume 

to be equilibrated. The partition function of the isothermal-isobaric ensemble is, 

~(N, P, T) = J 2.= exp -(3(Ei + PV)dV. (2.10) 
~ 

The characteristic state function for the NTP ensemble is the Gibbs free energy (G) as, 

~(N, P, T) = exp{ -(3G}, (2.11) 

is correct. G is similar to A with an extra term to account for the pressure of the system, 

G = U - T S + PV = A + PV. 

The classical, continuous, NPT partition function is derived from the canonical partition 

function through a various routes, for one example see Frenkel and Smit (1996). The extra part 

of the equation is due to the work done by the system in going from Va to V: 

(2.12) 

where Va is the initial volume. 

2.1.5 Statistical mechanics and computer simulation 

Quantum calculations are intrinsically more exact than the classical equivalent. Without going 

into details, quantum calculations on a complex system is slow compared to general classical 

methods. For the purposes of computer simulation of large biologically or chemically relevant 

systems, a classical mechanical method for evaluating molecular systems has been developed 

called molecular mechanics. 

Molecular mechanics is a formalism where each atom of a system constitutes one particle 

with an assigned van der Waals (vdW) radius and constant point charge. Atomic point charges 

are found through quantum mechanics (QM) or experiment. Bond, angle, dihedral and non-

bonded forces between atoms are assigned simple mathematical relations to give the behaviour 

needed for a particular model, this is often called the potential. A set of parameters and the 

potential needed for molecular mechanics of a particular model is called a force field. 
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2.1.6 Classical force fields 

Classical force fields for bio-molecular simulation have taken up a fairly consistent form over 

the last few decades. The total energy of the potential is split into: 

Etotal L Ebonded + LEnon-bonded, 

Ebonded L Ebondlength + L Eangle + L Etorsion, 

Enon-bonded = L Eelectrostatics + L EvdW , 

with bonded referring to covalent bonds [Leach(1996)]. 

Covalent bonds are most often modelled with harmonic potentials of the form, 

Ebond = L kr(r - ro)2, 

bonds 

Eangle = L ke(e - eO)2, 

angles 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where kr and ke are the force constants controlling the size of oscillations, ro and eo are the 

reference positions of the bonded particles and rand e its displacement. The potential of 

equation 2.16 does not exactly describe the potential of a real covalent bond. However, under 

the standard thermodynamic conditions for which classical force fields are designed to be used, 

these harmonic potentials describe the real bond potential well. It is also possible to use the 

Morse potential to describe covalent bonds. The Morse potential is able to describe real bond 

potentials more accurately but is rarely used due to the increased computational expense in-

volved. 

The torsions of bonds are more complex than bond length or angles as they may have 

multiple minima and some may have restrictions (e.g. planar rings). Thus, in general torsions 

are modelled by simple periodic functions with additional harmonics for improper torsions and 

energies between atoms bonded together through one other atom i.e. coupling angles and di-

hedrals (1-3 energy or Urey-Bradley energy), 
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Etorsion L kc,b[l + cos(n</> - 6)] (2.18) 
torsions 

+ L kw(w - WO)2 (2.19) 
impropers 

+ (2.20) 
U rey- Bradley 

In equation 2.18 kc,b is the torsional force constant and dictates the amplitude of the torsional 

potential, n controls the periodicity of the potential (i.e. how many minima) and 6 controls the 

displacement along the axis of angle </>. One notable exception to this rule is the AMBER force 

field which uses additional periodic functions for improper torsions rather than harmonics. Tor-

sional parameters are generally selected to correct energies and conformations of torsions due 

to the bond, angle and non-covalent potentials in simple molecules with respect to experiment 

or quantum calculations. 

The non-covalent or non-bonded potential for both electrostatics and vdW is calculated as a 

pair-wise sum over all non-bonded atoms separated by at least three bonds. The vdW potential 

between a pair of atoms has a repulsive interaction which increases sharply as the interatomic 

distance r gets very small, and an attractive interaction which decreases relatively slowly as r 

is increased (figure 2.1). The vdW force field term is called the Lennard-Jones (LJ) potential 

and is defined as, 

N-1 N [( )12 ( )6] (Jij (Jij 
EvdW = L L 4Ei,j -. . - -. . ' 

j=1 i=j+1 r2J r~J 
(2.21) 

where i and j are each pair of atoms, E is the depth of the potential well and (J is the interatomic 

distance between the particles when their interaction energy is zero as seen in figure 2.1. The 

term to the power 12 describes the repulsive interaction (i.e. the hardness of the vdW radii) 

and the power 6 term describes the attraction. As vdW interactions are relatively short range, 

the LJ potential is generally truncated (used with a cut off). A cut off will only apply the L.1 

potential to atoms pairs which are within a certain distance. 
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E 

r 

Figure 2.1: Plot of the Lennard-Jones potential with energy (E) on the y-axis and inter­
atomic distance (r) on the x-axis. 

The electrostatic potential of a pair of atoms is modeled using the Coulomb potential based 

on Coulomb's law. The Coulomb potential is proportional to the size of the electric charge on 

each atom of a pair and inversely proportional to r: 

(2.22) 

Here q is the charge on an atom and EO is the relative permittivity of free space. The electro-

statics of a system can be difficult to model, due to their long-ranged nature. 

In the case of bio-systems, long range electrostatics can be important and it is not gener-

ally possible to calculate long range electrostatics using the Coulomb sum even if the modelled 

system is large enough. This is because of the large number of atom pairs, and a cut off is 

generally used. The size of the electrostatic cut off can make large differences to the calculated 

properties and care should be taken in their use. In general, the molecular interactions will be 

scaled down gradually at the cut off boundary in an attempt to reduce the effects of a sudden 

discontinuity of forces [Frenkel & Smit(1996)]. Also, a faster alternative has been developed 

called the particle mesh Ewald sum (PME) which is able to closely approximate the long range 

Coulomb sum [Essmann et al.(1995)Essmann, Perera, Berkowitz, Darden, Lee & Pedersen]. 

The most widely used atomistic force fields for biomolecules are AMBER [Pearlman et al.(1995)Pearlman, 

Case, Caldwell, Ross, Cheatham, Debolt, Ferguson, Seibel & Kollman], CHARMM [Brooks 
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et al.(1983)Brooks, Bruccoleri, Olafson, States, Swaminathan & Karplus], GROl'vIACS [Spoel 

et al.(2005)Spoel, Lindahl, Hess, Groenhof, l'vIark & Berendsen] and OPLS [Jorgensen & Tirado­

Rives(1988)]. AMBER, CHARMM and OPLS have potential functions exactly of the form 

described above with options of differing torsional 1-4 terms. GROMACS has the options of 

different bonding interactions, including the Morse potential and a harmonic approximation. 

Also, torsional 1-4 interactions can be dealt with by a special LJ interaction or a power series 

of cos ¢ can be used with out a 1-4 interaction. 

The AMBER, CHARMM and GROMACS force fields have been parameterised specifically 

for MD of biosystems while OPLS has been developed for use with MC, but all can and are 

used with either style of simulation. The parameters for all of these force fields have been found 

through a mixture of experimental observations of small organic molecules and high level quan­

tum mechanical (QM) calculations and are thus generally termed empirical. The parameters 

of almost all force fields are developed self-consistently, and it is never a good idea to mix and 

match parameters from different parametrisations. 

The main deficiencies of these force fields stems from the fact that many of the interac­

tions of molecules (including vdW and electrostatics) are environment dependent [Ponder & 

Case(2003)]. A new generation of polarizable force fields have recently been developed with 

polarisable versions of AMBER and CHARMM available. These polarisable force fields are 

able to account for the electronic polarisation of the environment around each atom. AMBER 

polarisable force fields can either use point charges as traditional non-polarisable versions, or 

can add extra off-centre point charges to better model the angular dependence of hydrogen 

bonds [Cieplak et al.(2001)Cieplak, Caldwell & Kollman]. 

Water models are also extremely important for biosimulations as most biological interac­

tions take place in solutions of water. Solvation in simulations takes two forms, explicit, where 

water molecules are explicitly present and implicit, where solvent is represented by a continuum. 

Implicit solvation models also take two general forms; accessible surface area models such as 

the generalised born model (GB) [Jeancharles et al.(1991)Jeancharles, Nicholls, Sharp, Honig, 

Tempczyk, Hendrickson & Still] and continuum electrostatics models such as the Poisson­

Boltzmann model (PB) [Lu et al.(2005)Lu, Zhang & McCammon]. These implicit models 

improve the speed of molecular simulations dramatically and may be able to reduce errors 
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found in explicit solvent simulations due to incomplete sampling of solvent conformations. This 

can have a direct effect on the focus of this study, free energy calculations in protein-ligand 

systems. A recent study has highlighted the possible advantages of implicit solvation in binding 

free energy calculations [Michel et al.(2006)Michel, Verdonk & Essex]. 

However, implicit solvent models do have major limitations. Both types of implicit method­

ology are parameterised especially for the particular type of calculation for example, the pa­

rameterisation carried out by Michel et al. for free energy calculations with MC [Michel 

et al.(2004)Michel, Taylor & Essex]. Also, both models are unable to properly deal with cases 

where water molecules are directly involved in a process. 

Explicit solvation models can be classified through the number of interaction sites used to 

define a water molecules and the flexibility of the molecule. The use of flexible water models 

can add significantly to the time taken for simulation. Thus, the most widely used water mod­

els are rigid and use only the non-bonded Coulomb and Lennard-Jones potentials introduced 

above. Popular 3-site models include TIP3P [Jorgensen et al.(1983)Jorgensen, Chandrasekhar, 

Madura, Impey & Klein] and SPC [Berendsen et al.(1981)Berendsen, Postma, van Gunsteren & 

Hermans] and generally have no Lennard-Jones parameter for the two hydrogen atoms. Other 

models include up to 6 interaction sites with extra dummy sites used to model the distribution 

of the electrostatic field around the water molecule [Jorgensen & Tirado-Rives(2005)]. 

2.1.7 Simulation sampling methodologies 

The possibilities of simulation system set-up have now been set out and it only remains to 

discuss the methods used for sampling these systems. In addition to the MD and MC meth­

ods mentioned above, systems can be sampled through minimisation algorithms. Minimisation 

algorithms attempt to find the minimum of the potential by adjusting a systems degrees of 

freedom and exploring its energy surface. Minimisation is useful in many ways but is often 

used only to remove any bad contacts from a starting structure. 
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Molecular Dynamics 

MD uses approximate numerical integration to calculate the positions and velocities of each 

particle of a system after a small time step (8t). By calculating the state of the system through 

many successive steps a trajectory through time is produced. 

The force acting on an atom can be calculated through the derivative of the energy with 

respect to the change in the atom's position, 

- -dU 
Fi = -- = -"Vu. 

dn 
(2.23) 

where ~ is the force on atom i and ri the position of particle i, and U is the potential en-

ergy. By solving Newton's equation, ~ = miai, for two particles, it is possible to calculate the 

trajectory of particle i as a function of time. However, for more than two particles numerical 

approaches must be sought. 

A number of useful MD integration schemes exist, based on a Taylor series expansion ap-

proximation. The different integration schemes have differing attributes. The majority of 

current MD packages use the velocity Verlet or Verlet leapfrog integration schemes due to their 

good energy conservation at relatively large time steps [Swope et al.(19S2)Swope, Andersen, 

Berens & Wilson], [Cramer(2002)]. The velocity Verlet algorithm is generally considered the 

most complete as it is alone in being able to accurately provide particle positions and velocities 

at time t. There are 4 steps to the velocity Verlet algorithm, including a step to find the veloc-

ity at the mid point of each time step, t + 8t/2 [Swope et al.(19S2)Swope, Andersen, Berens & 

Wilson], as follows: 

r(t + 8t) 
1 

r(t) + v(t)8t + "2a(t)8t2, (2.24) 

8t 
v(t + 2) 

1 
v(t) + "2a(t)8t, (2.25) 

a(t + 8t) 
1 

(2.26) --"VU (r(t + 8t)) , 
m 

v(t + 8t) 
8t 1 

v(t + 2) + "2 a(t + 8t)8t. (2.27) 
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All of the MD integrators presently in use are limited in the size of possible time steps. If 

the time steps are too large the integrator will not be stable, energy will not be conserved and 

the simulation will uncontrollably increase in energy. Time steps for atomistic simulation are 

in the region of two femtoseconds (fs). This means that lVID simulations are limited in possible 

timescales. Even with the powerful computers now available MD simulations do not easily go 

beyond the nano second (ns) timescale. Many biological processes are of a time scale which MD 

cannot reach with out a large coordinated effort, such as the folding@home effort to understand 

protein folding [Shirts & Pande(2000)J. Thus, in practice, MD simulations may get stuck in 

local energy minima, which are very difficult to get out of in the time available. This can hinder 

the full sampling of phase space and the amassing of accurate ensemble averages for statistical 

mechanics calculations. It is important to note that MD is time linked, time reversible and 

deterministic. It is therefore able to model real physical processes such as reaction pathways, 

unlike MC. 

Monte Carlo 

MC refers to any method which uses a sequence of random numbers to sample; this means 

MC is stochastic (Le. nondeterministic). MC methods can be used for numerical integration 

problems. They are found to be more efficient than other techniques (quadrature) where the 

integrand is very large and has a number of dimensions. The most simple representation of an 

MC integration method for a one dimensional integral I is as follows: 

I lb f(x)dx, 

1= (b-a)(f(x)). 

(2.28) 

(2.29) 

where (f(x)) is an average of f(x) in the interval a to b. Using MC this integral is found by 

evaluating f(x) many times (Nmc) with random values of x. As Nmc approaches infinity the 

average would provide I [Frenkel & Smit(1996)J. 

MC techniques could be applied to evaluate an average of an ensemble of statistical me­

chanics by randomly sampling states (sampling from all possible arrangements of a system, 

equivalent to (b - a) above) and weighting them according to the Boltzmann distribution. 
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However, this would be exceedingly inefficient as most states found this way would not be 

weighted heavily within the ensemble of interest. The system would become a random jumble 

of particles which would never occur in reality. Thus, it is important that when using Me with 

molecular mechanics, we only sample states that have a reasonable probability of occurring 

according to the Boltzmann distribution. 

This is achieved through a special type of importance sampling [Frenkel & Smit(1996)]. 

With importance sampling random points or configurations are taken from a specific volume of 

all possibilities, a nonuniform distribution where configurations are more likely to occur accord­

ing to the Boltzmann distribution. The closer this distribution, which limits our sampling, is to 

the Boltzmann distribution the more efficient the Me sampling will be. Of course, the optimum 

choice of limiting distribution is the Boltzmann distribution itself, which is unobtainable due 

to the limitless nature of the partition function. This problem of defining the limiting distribu­

tion is solved through considering the relative probability of sampled configurations as opposed 

to the absolute probability through the partition function. Using the Boltzmann factor alone 

the configurations can be sampled with a relative probability proportional to the Boltzmann 

distri bu tion. 

An "Me simulation" in chemistry generally refers to the Metropolis Me method and this 

shall be the case from now on in this work [Metropolis et al.(1953)Metropolis, Rosenbluth, 

M.N., A.H. & Teller]. Metropolis Me employs a particular Markov process to produce system 

configurations from a limiting distribution which is the Boltzmann distribution. For an in depth 

explanation refer to appendix A. 

Me in its most simple form perturbs the present configuration 0, within preset parameters, 

to produce a new trial configuration (N) of the system. N is accepted or rejected depending 

on the relative probability of each state occurring. The criterion for accepting a new configu­

ration is the Metropolis criterion, equation 2.30, where PaccN is the probability of accepting a 

new configuration, 1f( 0 ---t N) is the probability of the move from 0 to N being accepted and 

1f (0 ---t N) visa versa: 

PaccN = min(l, 1f(0 ---t N)/1f(N ---t 0)), (2.30) 
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\A/hen accepted N becomes 0 and the properties of N are added to the average being accu-

mulated. If rejected N is discarded, the properties of 0 are added. to the average again and a 

new trial configuration is generated. In order that the distribution sampled by this process is 

maintained the probability of moving from any configuration leaving state 0 must be the same 

as the probability of any state arriving in state O. An easy way of ensuring this condition is 

met is to make the probability of leaving 0 for N the same as the probability of leaving N for 

o (7f(0 ---+ N) = 7f(0 ---+ N)). This condition is termed detailed balance. 

7f( 0 ---+ N) can be split into its component parts, 

7f(0 ---+ N) = a(O ---+ N) x PaccN(O ---+ N) (2.31) 

where a is the probability of finding a trial configuration N and ace IS the probability of 

accepting N. By making the perturbation which produces N random the matrix of all possible 

a is symmetric (a(O ---+ N) = a(N ---+ 0)). Thus we can write equation 2.30 in terms of ace 

only and the distribution sampled by accepted configurations will depend only on the relative 

probabilities of acc. By using the Boltzmann factors of the 0 and N configurations the sampled 

distribution is the Boltzmann distribution: 

PaccN . (1 exp{ -,BUo}) 
m~n '{ }' exp -,BUN 

(2.32) 

= min(l, exp{ -,B[Uo - UN]}), (2.33) 

where Uo and UN are the potentials of the old and new configurations respectively. Using 

this process of sampling, over many cycles, the distribution of accepted configurations has 

been proven to converge to the Boltzmann distribution regardless of the initial configuration 

(appendix A). It is possible to use alternative non-symmetric matrices of a and still maintain 

detailed balance; an outline of such methods is given in appendix B. 

Despite the concepts behind this algorthm being difficult, it is quite simple in practice, it 

is described in figure 2.2. 
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Figure 2.2: Flow diagram of the Metropolis Me algorithm. 
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In practice N is accepted if the ratio in equation 2.33 is greater than a random number 

found from 0 to 1. 

In the MC algorithm described here there is the possibility of wasting large amounts of t im 

through rejecting many trial configurations. There are some interesting methods for ensuring a. 

high rate of acceptance of t rial configurations in difficult cases [Rosenbluth & Rosenblut h(1955)] 

but t hey will not be discussed here. The acceptance rate is maintained at a high level through 

adjustment of the parameters controlling t he random perturbation of t he present configuration. 

In general, the perturbation of 0 is localised to a random single entity such as a molecule 

or protein residue. T his being the case, when evaluating t he potent ial of N , it is not necessary 

to calculate the full potential but only the bits of the pot ent ial which have been affected by 

t he perturbation. T hus, unlike MD , MC moves only small port ions of t he configuration in one 

step , and t he time t aken to find the new energy is smaller. 
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2.2 Free energy methods 

Ligand binding affinities are measured experimentally through a association constant (I(a) 

when bound to a particular receptor. Computationally, ligand binding affinities are compared 

using the change of free energy (Gibbs or Helmholtz) on ligand binding (.6.Fbind). At equilib-

rium and under standard conditions .6.F is related to the equilibrium constant via equation 

2.34 [Atkins(1994)], where R is the gas constant and T is the absolute temperature. This is 

important as it can give an idea of the size of error which is reasonable for free energy calcula-

tions. It is noteworthy that an error in .6.Fbind of 1 kcal.mol- 1 is equivalent to an error in Ka of 

two orders of magnitude and an error in .6.Fbind of 2 kcal mol- 1 is equivalent to an error in Ka 

of three orders of magnitude. It is generally assumed an error in calculated .6.Fbind of around 1 

kcal mol-1 is the limit for usable data. It is also noteworthy that the problem of maintaining 

consistent conditions between labs when measuring experimental binding constants can make 

it difficult to compare their results. 

.6.F = - RTlnKa (2.34) 

2.2.1 Difficulty of calculating free energy 

Through the theory discussed above the route to calculation of system free energies seems clear. 

In the case of the canonical ensemble the free energy is derived through, 

(2.35) 

By calculating the free energy of a ligand bound to a receptor and free in solution the free 

energy difference could be found. Unfortunately, in practice with large bio-simulations, suffi-

dent sampling to provide an accurate integral with equation 2.35 is beyond the reach of present 

sampling methods and computational resources. Quantities such as A which depend directly on 

a system's phase space volume and not on functions of the phase space coordinates are called 

thermal quantities. 

It is possible to attempt to evaluate the free energy as an ensemble average. However, 

the simulation methods discussed above sample the low energy regions of phase space in the 
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overwhelming majority. Hence, there are many high energy states which contribute to the 

free energy which are not encountered with l'vID or Me. These methods are unable to sample 

adequately the high energy regions of phase space and converged averages are not possible. 

As free energies can be either G or A depending on the ensembles under study, in subsequent 

discussions F will represent general free energy either G or A. 

These practical realities enforce the need for special methods for calculating free energy 

differences. Experimental measurements of free energies are generally carried out in reference 

to a substance of known free energy, as thermal quantities are also difficult to measure exper­

imentally. For the purposes of drug design the' most basic information needed is the relative 

binding free energy of a set of ligands with one protein receptor. Thus, the rest of the chapter 

will be concerned with special methods which can be used to calculate free energy differences 

between two systems, defined by, 

(2.36) 

where FA is the free energy of system A, FE is the free energy of system Band l:1F is the free 

energy difference. 

It is important that a free energy method remains within the rules of statistical mechanics 

to ensure that calculations are accurate. However, even if a method is rigorous with regards 

to statistical mechanics (from now on referred to as rigorous methods), there are still some 

assumptions involved particularly related to the choice of potential. On the scale of accurate 

free energy estimates, statistical mechanically approximate methods (from now on referred 

to as approximate methods) are in general thought to be less accurate than rigorous ones 

[Pearlman(2005)] [Kuhn et al.(2004)Kuhn, Gerber & Stahl]. This investigation is interested in 

fast free energy estimates, and thus it may be useful to investigate approximate methods as 

well as those which are thought to be rigorous. 

2.2.2 Approximate binding free energy methods 

One major line of investigation is the calculation of the binding free energy difference (l:1Fbind ) 

based on partitioning the free energy into separate, individually calculated, components. This 

methodology assumes that each of the components of l:1F can be calculated separately and 



CHAPTER 2. CALCULATING THE FREE ENERGY 24 

summed to find the total. An example of this is, 

(2.37) 

where t1Fsolv is the free energy change on ligand-receptor binding due to solvation effects. 

t1Fconj is the free energy change on binding due to changes in conformational structure of 

ligand and receptor, t1Fint is the enthalpy change due to interactions such as electrostatic and 

van der Waals forces between the ligand and receptor, and t1Fmot is the change in entropy 

due to change in freedom of motion of the atoms of the ligand and receptor. t1Fmot can be 

split into changes in internal rotations, translational motions and vibrational free energy due 

to binding [Cramer(2002)]. 

If it is possible to calculate the total absolute free energy of a system in this way, then 

t1Fbind can be found by simply calculating the free energy of the receptor-ligand complex, sep­

arate receptor and separate ligand and taking the difference as in, 

t1Fbind = t1Fcomplex - (t1Freceptor + t1Fligand) . (2.38) 

Calculated energy contributions often take the form of simulatioll ensemble averages of partic­

ular observables. 

Assumptions are often made to allow or simplify the calculation of these energy partitioned 

methods. The basis for these assumptions depends on the types of system under study and the 

computational time allowed. For example new vibrational modes created on binding are often 

ignored or approximated in an ad hoc manner, as this can be a difficult goal to achieve efficiently. 

Linear Interaction Energy (LIE) 

The LIE method is based on the partitioning of the total binding energy into polar and non­

polar contributions [Aqvist et al.(1994)Aqvist, Medina & Samuelsson]. The polar contribution 

is derived from MD simulation average energies where the solvent is assumed to have a lin­

ear response to electrostatic changes due to the solute (i.e. linear response behaviour). The 

non-polar contributions are found using experimental binding data to create an empirically 

calibrated function which includes averaged simulation van der Waals energies. 
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This methodology is based on studies suggesting t hat solvation energi of non-polar om-

pounds are linearly related to molecular size measures such as surface area or volum [Blokzij l 

& Engberts(1993)]. Average computer simulation solute-solvent van der Waal n rgi hav -

also been shown to relate to size measures in a similar way [Aqvist et al.(1994)Aqvist , M dina 

& Samuelsson] . The use of an empirically calibrated parameter is expected to take into ac ount 

all other contributions to non-polar free energy, such as ent ropy effects etc. 

An LIE calculation uses two MD simulations as depicted in figure 2.3 

L'.L'.F non· polar 

Figure 2.3: Thermodynamic cycle used in the LIE method. The binding free energy 
8.Fbind is given by the sum of a non-polar contribut ion 6.6.Gnonpolar and a polar contri­
bution 6.6.Fpolar = 6.Fpolarbound - 6.Fpolar j ree . The actual simulation systems are denoted 
by the blue squares labelled simI and sim2. 

From these simulations the average electrostatic and van der Waals energies of the ligand 

with its surroundings are t aken and differences calculated . The calculation of polar energies is 

carried out via equation 2.39 and the non-polar via equation 2.40. 

tlFpolar = (3LIE ( (tlEpolarbound ) - (tlEpolar f ree ) ) (2 .39) 

tlFnonpolar = a LIE (( tlEnonpolarbound) - (tlEnonpolar fr ee) ) (2.40) 

In equations ?? (3LIE = ~ according to the linear response assumption , (tlEpolarbound ) is 

the intermolecular electrostatic interaction energy, averaged over an MD trajectory for the 

bound ligand, (tlEelecj ree ) is the same for the unbound ligand. a LIE was originally set at 

0.16 using a set of endothiapepsin inhibitors to calibrate t his figure, (tl VvdWbound) is t he van 
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der Waals interaction energy again averaged over an rvlD trajectory for the bound ligand and 

(.6. VvdW free) is the same for the unbound ligand. Equations 2.39 and 2.40 are combined to 

calculate .6.Fbind. This original model, calibrated using the endothiapepsin inhibitors, has been 

used reasonably successfully on several systems including HIV protease, trypsin and glucose 

binding protein [Hansson & Aqvist(1995), Aqvist & Mowbray(1995), Aqvist & Hansson(1996)]. 

The root mean squared (RMS) error for 18 inhibitors from these studies was 1.57 kcal mol-I, 

although there were significant errors, particularly for some HIV protease inhibitors. 

The validity of the electrostatic linear response approximation was investigated by com­

parison to Free Energy Perturbation (FEP)(explained below). Calculations were validated for 

mono-valent ionic solutes but relationships may be different, while still linear, for di-polar so­

lutes especially if hydroxyl groups were present [Aqvist & Hansson(1996)]. 

The major problem with LIE is the need for data with which to carry out system specific 

parameterisation. The original model was improved by allowing different scaling factors for 

the bound and unbound states in both the polar and non-polar components of the LIE free 

energy equation. This measure was intended to represent possible differences in electrostatic 

response in the solvent and protein environments. Also a free energy constant term, r LIE, was 

investigated as a non-zero difference between terms in corresponding linear expressions, giving 

a new free energy as, 

.6.Fpolar = O'.LIE,prot ((.6.Enonpolarbound) - O'.LIE,wat(.6.EvdW free)) + 

f3LIE,prot ((.6.Epolarbound) - f3LIE,wat(.6.Eelecfree)) + rLIE. 

(2.41) 

This new equation was tested and optimised with the same set of 18 inhibitors as the earlier 

equations 2.39 and 2.40. Best agreement with experimental data was found when the free en­

ergy constant term was disregarded and both O'.LIE were identical and f3LIE values were almost 

identical. A system of generalised f3LIE terms was therefore derived. 
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f3LIE,FEP(class) = 0.50 for "charged class" (Q i= 0), 

= 0.43 for class = 0 (Q = 0, No. OR = 0) , 

= 0.37 for class = 1 (Q = 0, No. OR = 1), 

0.33 for class = 2 (Q = 0, No. OR > 1) , 
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(2.42) 

This model divides possible solutes into four classes as in equation 2.42 where Q is the 

charge and No.OH is the number of hydroxylate groups present. The values of f3 were found 

by simulation of typical compounds from each of the classes [Aqvist & Ransson(1996)]. This 

model has shown an RMS error of 0.84 kcal mol- 1 using the same set of 18 inhibitors [Marelius 

& Ransson(1998)]. Whether using the original model or the improved version this methodology 

has shown it can give results with errors in the order of 1 kcal mol- 1 in test cases. 

A recent study has tested a large number of possible descriptors and coefficients for use 

in prediction of binding affinities from simulation trajectories [Tominaga & Jorgensen(2004)]. 

This approach seems to yield limited advantages and descriptors used are similar to the ones 

used in the LIE methods above. 

Molecular Mechanics/Poisson Boltzmann, Surface Area (MM/PBSA) 

The MM/PBSA methodology splits free energy into four partitions as in equation 2.43 [Kollman 

et al.(2000)Kollman, Massova, Reyes, Kuhn, Ruo, Chong, Lee, Lee, Duan, Wang, Donini, 

Cieplak, Srinivasan, Case & Cheatham]. Conformational space is sampled by MD simulations 

with explicit solvent to produce a trajectory of system configurations (snap shots). Each of 

the simulation snap shots is post-processed to remove solvent atoms. Solvent contributions are 

calculated through the use of an implicit continuum solvation model. 

(2.43) 

In equation 2.43, EMM is the average molecular mechanical energy of the receptor-ligand com­

plex. EMM can be decomposed into the different terms in the force field equation used (equation 

2.15). GpB is the polar solvation free energy which is found by solving the Poisson-Boltzmann 
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equation. It is possible to replace this solvation free energy term with one based on a GB 

continuum model [Gohlke & Case(2004)]. GSA represents the non-polar solvation free-energy 

and is a simple scaled term based on the solvent accessible surface area (SASA): 

GSA = ')'sASASA + b. (2.44) 

where ')'SA and bare 0.00542 kcal.mol- 1 .A2 and 0.92 kcal.mol- 1 respectively. TSMM is the so-

lute entropy which is estimated by quasi harmonic or normal-mode analyses [Swanson et al.(2004)Swanson, 

Henchman & Mccammon], [Donnini & Juffer(2004)]. It is worth noting that the free energy due 

to ionic strength effects can be added with a continuum approach. Also, the llGmot and llGconJ 

terms from equation 2.37 are not properly accounted for within the MMjPBSA method. 

When used to find binding free energies of ligand receptor systems there are two possi­

ble MMjPBSA forms; one involves analysing separate MD trajectories of receptor, ligand and 

complex (SEP) while the other uses one trajectory of the receptor-ligand complex which is 

processed to give data for all four terms in equation 2.43 (SING). Method SING is more ef­

ficient, depending on the length of MD trajectories used, although it ignores any free energy 

due to conformational change on binding (llGconJ ). This deficiency will have varying effects 

depending on the system under study although promising results have been reported by some 

(e.g. [Huo et al.(2002)Huo, Wang, Cieplak, Kollman & Kuntz], [Kuhn & Kollman(2000)]. A 

possibly more important point is that the SING method displays a significantly lower level of 

error than the SEP method. This is due to the fact that the simulations used to find EM M for 

the complex and its separated constituents are one and the same, meaning that sampling and 

force field errors cancel. 

Three recent studies of the MMjPBSA methodology have introduced some novel meth-

ods of estimating energy change due to entropy and translational, rotational freedoms on 

binding, and also attempted to test the current methodologies on various systems [Swanson 

et al.(2004)Swanson, Henchman & Mccammon], [Donnini & Juffer(2004)], [Gohlke & Case(2004)]. 

Gohlke and Case utilised structural data ofthe H-RasjC-Rafl complex to investigate MMjPBSA 

methodology [Gohlke & Case(2004)]. The H-RasjC-Rafl, protein-protein system has a "small 

to moderate" level of flexibility on binding and Ras interacts with Raf through the formation of 

an inter-protein ,6-sheet. Swanson et al. applied their methodologies to the fairly rigid FK506 
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binding protein (FKBP12), which is a small immunophilin, and its immunosuppressive ligand 

4-hydroxy-2-butanone (BUT). Donnini and Juffer used 36 different protein-ligand complexes of 

various different types including MHC, TIM and SH2 and 3 protein domains. The following is 

a list of important points to arise from these studies:-

Comparison of PB and GB techniques: The effects of employing PB compared to 

three different GB implicit, continuum solvent models was assessed using MM/PBSA method 

SING [Gohlke & Case(2004)]. PB calculations gave over and under estimations of flGbind 

depending on the atomic radii used, with smaller atomic radii giving lower energies. When 

compared to the PB model, results for the GB models all deviated from PB and over estimated 

flGbind using the same atomic radii. However the same relative trends in scoring snapshots were 

seen in GB models compared to the PB model. In general the authors comment that the results 

reflect the way the GB models have been parameterised. Two of the models were parameterised 

for use with MD i.e. to give constant energy differences between different conformations of one 

molecule. For use in calculation of flG bind , atom radii parameter sets are needed to also give 

consistent free energies across different molecular species. 

Inaccuracy of SASA term: Deficiencies of the SASA non-polar solvation term due to 

over simplification were addressed, again by Gohlke and Case [Gohlke & Case(2004)]. Non­

polar solvation is due to solvent cavity formation (dependent on volume and shape of excluded 

volume) and solute-solvent van der Waals interactions. Thus the simple SASA dependent term 

may not describe this completely. A new term was constructed, equation 2.45, where G eav is 

the cavity solvation free energy which is determined by equation 2.46, and HvdW,solute-solvent. 

HvdW,solute-solvent is the average solute-solvent van der Waals interaction energy from the sim­

ulation and is assumed to be approximately equal to the free energy due to solute-solvent van 

der Waals interactions (GvdW,solute-solvent). In equation 2.46 G eav is equal to a surface tension 

constant, "Ie ,and the molecular surface area, MSA. 

Gnonpolar = G eav + HvdW,solute-solvent (2.45) 
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Gcav = 'Yc~MSA (2.46) 

The old SASA dependent term was thought to overlook the van der Waals attraction be­

tween the unbound solute and solvent atoms, over estimating the contribution of non-polar 

solvation to the binding free energy [Gohlke & Case(2004)]. The free energy change due to non­

polar solvation found using this new term was more favourable than the old SASA dependent 

term, which fits well with the view that the old term missed these van der Waals interactions. 

The HvdW,salute-salvent values taken from snapshots of Ras, Raf and their complex were shown 

to converge as the size of the water shell used reached 9 and 10 A, which also backs up the 

view that this new term is superior. This method of calculating the non-polar solvation energy 

has previously been used with encouraging results [Vorobjev et al.(1998)Vorobjev, Almagro & 

Hermans]. 

Comparison of entropic calculations: All three of the papers discussed here used dif­

ferent methods to account for the solute entropic contributions or loss of translational, rota­

tional and vibrational freedom. Gohlke and Case compared quasi-harmonic analyses to the 

normal mode analyses which would normally be used [Gohlke & Case(2004)]. As would be 

expected, T b..Sbind was divided into loss of translational, rotational and vibrational entropy 

(Strans, Srat, Svib respectively). Almost identical Srat contributions were demonstrated be­

tween normal mode and quasi-harmonic analyses. However the Svib contributions calculated 

with quasi-harmonic analysis were very different from those for nonmiJ mode analysis and lead 

to a very dis-favourable T b..Sbind. The authors highlight the fact that their trajectories do not 

show convergent, quasi-harmonic, Svib through 10 ns of MD, and the fact that other studies have 

also failed. This finding is further supported by Swanson et al. [Swanson et al.(2004)Swanson, 

Henchman & Mccammon]. This is more pertinent as errors in T b..Sbind are almost completely 

attributed to Svib. Thus, quasi-harmonic analysis is seen to be a poor choice due to sampling 

issues. 

Swanson et al. attempt to calculate the loss of translational and rotational freedom due 

to the ligand (which they refer to as "association free energy"). This was done via a concep­

tual link between the translational configuration integral and the volume of space occupied 
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by the ligand's centre of mass through the simulation. The volume was measured using the 

quasi-harmonic model and the covariance matrix to account for coupled motions. The resulting 

variance was then related to a spring force constant to obtain an average potential energy. A 

similar method was used for rotational freedom except quaternions were used to represent any 

motions. The authors then separated the 23.3 kcal mol- 1 association energy they found into 

enthalpic and entropic components, assuming that all translational and orientational motions 

of the ligand can be described by a classical harmonic oscillator. Data for vibrational free­

dom/conformational flexibility were omitted from this study. 

Another interesting method of conformational flexibility estimation has been utilised re­

cently by Donini and Juffer [Donnini & Juffer(2004)]. This method estimates the difference in 

side chain conformational entropy on binding empirically from the change in side chain acces­

sible surface area. It is difficult to assess how accurate the figures for side chain conformational 

entropy from this study were, as most calculated binding free energy values were an order of 

magnitude out from experimental values, with or without these entropy figures. 

Inaccuracies due to conformational change on binding (relaxation energy): 

Both Swanson et al. and, Gohlke and Case investigated the use of MM/PBSA SEP, described 

above [Gohlke & Case(2004), Swanson et al.(2004)Swanson, Henchman & Mccammon]. The 

H-Ras/C-Rafl system of Gohlke and Case is thought to have more conformational change be­

tween bound and unbound states than systems in previous studies. Thus there is little surprise 

that a comparison between SEP and SING gave differing results for EMM, b.Gsolv and Tb.S. 

The free energy of the isolated H-Ras/C-Rafl molecules would be expected to be less 

favourable while in the bound conformation. An easy rationale for this is that otherwise they 

would exist in this conformation when not bound. Hence, for this comparison the free energy of 

the unbound molecules would be expected to be more favourable, with a less favourable b.Gbind, 

for results from method SEP. However, in this study the opposite was found with b.Gbind being 

more favourable for method SEP than SING, being -19.3 and -3.1 kcal mol- 1 respectively. The 

authors suggest this disparity may arise due to the use of ensemble structures from explicit 

solvent simulations being used in implicit solvent free energy calculations. In other words the 

implicit solvent models inadequately model the forces found in explicit solvent simulations. 
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Swanson et al. draw different conclusions from their similar analysis of a more rigid ligand­

receptor system. They found that the SEP method gave energy plots which did not converge 

and were dominated by noise. Hence, they did not use these results to find the relaxation 

energy of the receptor. However, as the small ligands sampling and therefore convergence was 

far more complete it was possible to find the ligand relaxation energy (1.7 kcal mol-I). 

Statistical Convergence of Average Energies: It is important that the averaged 

values found using MM/PBSA are converged as otherwise they will be imprecise. Plots of gas­

phase and solvation free energies from the 10 ns trajectories used by Gohlke and Case displayed 

small amounts of absolute drift even after 2 ns of equilibration [Gohlke & Case(2004), Donnini 

& Juffer(2004)]. As the authors comment, this points to incomplete sampling and the need for 

longer MD trajectories. 

Gohlke and Case reported a standard error of 3.0 kcal mol- 1 in gas-phase and solvation free 

energies using separate trajectories (method SEP). This error is too high for useful application 

in drug design, and thus method SING with an error in gas-phase and solvation free energies 

of 0.3 kcal mol-1 may be more useful. With independent trajectory snapshots, the standard 

error of the mean is inversely proportional to the square root of the number of snapshots. The 

authors find the snap shots to be independent as correlation time of fluctuations in the energy 

is about 1 ps. This ignores large molecular movements in the protein that may be over a much 

longer period. If snap shots can remain independent, this means that the more snapshots the 

smaller the error and this may offer a way of minimising the larger errors of method SEP. 

Interestingly, despite the problems detailed above, when results taken only from the first 

and second half of the trajectories were compared with those from the whole trajectory, all 

were in good agreement in terms of total binding free energy, although errors were higher for 

the smaller sets of snapshots. The agreement is the result of deviating gas-phase, solvation 

and entropic energies compensating for each other. Thus, the total free energy is more reliable 

than the separate energy components especially when using smaller MD trajectories for both 

methods. 
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2.2.3 Rigorous relative binding free energy methods 

Free energy perturbation methodologies 

Zwanzig described a method of calculating free energy differences which was mathematically 

derived from the partition functions of each system [Zwanzig(1954)]: 

(2.47) 

(2.48) 

-l//3ln {J exp{ -/3UB(QN)}}. 
J exp{ -/3UA(QN)} 

(2.49) 

(2.50) 

(2.51) 

Equation 2.51 gives !:1F from the exponential ensemble average of the difference in energy 

between the two systems A and B, where ( ... ) A denotes an ensemble average over system A 

and f}.UAB(QN) the difference in the potential energies of A and B due to the present set of 

coordinates. 

The computational implementation of Zwanzig's equation is called free energy perturbation 

(FEP). FEP in its simplest form entails running a simulation of one system (A or B) which 

at each simulation step adds to the average in equation 2.51. The f}.EAB(QN) term can be 

found using differing techniques. These techniques are single topology; where the difference 

between the systems A and B is found by evaluating the configuration of the simulation using 

two different potentials (A and B) and dual topology; where the difference is found due to the 

exchange of one or more molecules of system A for those of system B [Cramer(2002)]. Obviously, 

single topology is only applicable in cases where systems A and B are similar and have the same 

number of atoms, although, through the use of dummy atoms (atoms which cannot be seen by 

the rest of the system), differing numbers of atoms can be used. Dual topology can, in theory, 

be used with any two systems. In the case of a dual topology system which differs in one 
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molecule, both instances of the differing molecule, A and B, must be present and moved as part 

of the simulation all of the time. This is possible as the potential of molecules A and B cannot 

affect each other but only the rest of the system around them. This can cause difficulties as 

the system may react differently to each molecule. Also, the molecules will behave differently 

causing increased noise in flEAB(qN) measurements [Cramer(2002)]. 

In practice, systems A and B must be very similar if we are to produce a converged flF using 

equation 2.51. This is because FEP simulation techniques use the same system configuration 

to evaluate both systems A and B. Thus, if the most commonly sampled low energy region of 

phase space for system A is in a different place from that of system B, it will be difficult to 

sample the important regions of system B while the simulation is using the potential of system 

A. The simple solution to this problem is to ensure that any free energy difference evaluated 

using equation 2.51 has good overlap of important phase space of systems A and B. This often 

means using a series of intermediate systems between A and B to ensure good phase space 

overlap. This is achieved by coupling the differences between systems A and B to a simulation 

parameter, )" where), = 0 gives system A and), = 1 gives system B. A simple and widely used 

example of this is the linear coupling of the system Hamiltonian to ),: 

(2.52) 

This coupling of ), can also be implemented at the level of the parameters which vary between 

systems A and B. It is then simple to use equation 2.51 on intermediates between A and Band 

sum the resulting free energy differences to give an overall flF. This is the FEP technique, as 

shown in equation 2.53. 

1 1 
flF = FB - FA = L -73 1n (exp{ -!3flUAB(qN)}hi' 

)..=0 

(2.53) 

This technique of coupling the differences in systems A and B to ), is used in the many rigorous 

free energy methods. In general the change from system A to system B is called a perturbation. 

Thermodynamic Integration 

Thermodynamic Integration (TI) is a well established rigorous free energy method and is well 

represented in many texts [Leach(1996)], [Frenkel & Smit(1996)J. TI is based on the perturb a-



CHAPTER 2. CALCULATING THE FREE ENERGY 35 

tion technique, which uses A, described above for FEP. Simulations are run at values of A (A 

windows) which allow good phase space overlap from systems A to B. The property accumu­

lated by each simulation is the free energy gradient (~f) A' b.F from A to B is then found by 

integrating over the measured gradients: 

(2.54) 

The free energy gradients can be found analytically through the ensemble average of the 

gradient of the force field. This in turn is found from the gradient of each force field term with 

respect to A. Alternatively, the free energy gradients can be approximated numerically by the 

finite difference as in equation 2.55. TI which uses a finite difference approximation is called 

Finite Difference Thermodynamic Integration (FDTI) and will be used in this study over other 

forms of TI due to its simplicity. 

(2.55) 

b.F in equation 2.55 can be found using the Zwanzig equation (equation 2.51) and potential 

values at A and b.A. 

The size of the b.A evaluation made to find a gradient measurement, in FDTI, must be small 

in order that the exact gradient at the correct point is obtained. With FEP the size of b.As is 

dependent on the number of intermediate states between A = 0 and A = 1 used. Another issue 

is the presence of a non-linear exponential average in the FEP equation 2.53. This can cause 

bias in estimates of b.F and is not present with TI based methods which evaluate a standard 

linear average. Owing to these necessities the ensemble average gradient may often be con­

verged more easily with FDTI than with FEP. Also, any hysteresis of the same b.A evaluation 

in opposing directions is minimised (i.e. A = 0 ------t 1 compared to A = 1 ------t 0). 

Replica Exchange Thermodynamic Integration 

Replica Exchange Thermodynamic Integration (RETI) is a development of TI which incorpo­

rates Hamiltonian replica exchange moves between A window simulations adjacent on the A 
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coordinate (A moves) [Woods et al.(2003a)Woods, Essex & King], [Woods et al.(2003b)Woods, 

Essex & King]. A moves are made periodically and in such a way that one configuration cannot 

be swapped twice. In order that A moves adhere to detailed balance, they are accepted or 

rejected with the equivalent of two metropolis tests, one for each configuration introduced to a 

new simulation. Thus, moves are accepted if, 

(2.56) 

is true, where i and j are configurations being exchanged, and A and B are the Hamiltonians 

of the replicas exchanging. 

RETI increases sampling especially of the solvent by providing the possibility of ensembles 

making large jumps in phase space. Also, as simulations are able to move freely across A, configu­

rations which are more favourable to a particular area of A may migrate there. These advantages 

are demonstrated through comparisons to conventional TI using water-methane and calix[4]­

pyrrol test systems [Woods et al.(2003a)Woods, Essex & King], [Woods et al.(2003b )Woods, 

Essex & King]. 

The Adaptive Integration Method (AIM) is similar to RETI [Fasnacht et al.(2004)Fasnacht, 

Swendsen & Rosenberg]. AIM calculates b.F using the same integral as TI and RETI, equa­

tion 2.54. An AIM simulation makes A moves similar to RET I but with a differing Metropolis 

acceptance test, 

(2.57) 

where, b.Fo and b.Fn are the current running free energy estimates after and before the present 

A move respectively. The incorporation of current b.F estimates into the A move acceptance test 

smoothes the convergence of the free energy gradients. This may make it possible to use fewer 

measurements for each ensemble average gradient and consequently more integration points 

could be used. The A move acceptance test of AIM, however, only satisfies detailed balance 

asymptotically and estimates are only rigorously correct when fully converged. 

AIM has been compared favourably with other free energy methods using relative hydration 

free energy test systems as discussed later in the next chapter [Ytreburg et al.(2006)Ytreburg, 

Swendsen & Zuckerman]. 
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2.2.4 Other interesting methods 

Methods which calculate free energy differences from computer simulation can be classified 

neatly into density of states methods and work based methods. An example of work based 

methods is FEP described above, where the change in energy is measured due to a change 

made to the Hamiltonian. 

Density of states methods calculate t1F directly through its relation to how the configu-

rations of the systems under study are weighted by the Boltzmann factor [Kofke(2005)]. A 

simulation able to freely sample systems A and B will reside in each systems configurations in 

proportion to the Boltzmann factor of their free energies, 

P(i) ex: exp{ -f3Fi } (2.58) 

where P( i) is the probability of sampling system i with free energy Fi . t1F is then found as 

the ratio of these probabilities. 

In general, density of states methods have suffered as it is generally difficult to obtain suf­

ficient sampling of all systems of interest. A recent and interesting example is the A-AFED 

method of Abrams et al. This method uses A coupling functions such that a large barrier be­

tween the end states A and B is created, ensuring that the simulation spends most of its time at 

the A and B end states and not in less relevant intermediate states [Abrams et al.(2006)Abrams, 

Rosa & Tuckerman]. The introduction of this new barrier can make switches from system A to 

B rare. To this end the A variable is given a high temperature so the barrier is crossed easily 

and a large mass such that A achieves adiabatic separation from the rest of the system. The 

free energy is then found easily through the probability distribution of the simulation residing 

at A = 0 and A = 1 (Padb(A)): 

(2.59) 

This method was compared to FEP and TI for three simple test systems including the solvation 

free energies of methane and methanol and found to be up to 15 times more efficient. 

Another recent and relatively successful development is the transition matrix MC method 

(TMMC) [Errington(2003)]. This methodology uses the information from attempted transitions 

between configurations of a Markov chain. Using this data estimates of transition probabilities 

between states along the path of interest which changes the free energy of the system can be 



CHAPTER 2. CALCULATING THE FREE ENERGY 38 

found. However, methods such as these have not been applied to the problem of protein ligand 

binding free energies. 

An interesting method which uses ideas from both density of states and work based view 

points is the A dynamics method of Kong and Brooks (1996). The A variable, which is used to 

control the mutation from one species to another with FEP is developed, giving Ai. Ai represents 

a set of molecules which simultaneously exist in the same space, whilst being invisible to each 

other, and vary with A. One advantage of this type of methodology is that it is possible to 

evaluate more than two systems at once through the equivalent of a computational competitive 

binding experiment [Kong & Brooks(1996)], [Zhuyan et al.(2003)Zhuyan, Durkin, Fischmann, 

Ingram, Prongay, Zhang & Madison]' although in practice the necessity for several systems 

existing in the same space can limit the application of this concept. 

A Ai is assigned to each of L ligands and the comparison uses a hybrid potential, 

L 

V()., x) = I: Af(Vi(x) - Pi) + Venv(x), (2.60) 
i=l 

where Venv(x) is the interaction involving enviromental atoms (those atoms common to every 

ligand system) and Vi(x) is the interaction due to those atoms distinct to each (i) ligand system. 

In equation 2.60 the sum of AiS is equal to one. Fi is a biasing potential and corresponds to 

the unbound free energy of the ligand, which has been determined previously. The different Ai 

potentials will evolve, through the simulation, to find the lowest free energy regions of Ai space. 

The running averages of each Ai is the probability distribution of that system and a refiec-

tion of the free energy difference between the molecules. The .6..6.G of any two molecules, i and 

j, can be calculated using equation 2.61, where Pi (Ai = 1, {Ak i- i} = 0) is the probability that 

the system is dominated by ligand i. 

(2.61) 

This method although seemingly complex can be quick to run as it only requires one rel-

atively short simulation to rank a set of ligands, although multiple windows may be used to 

give increased accuracy with average free energy differences and errors. A recent study used 

A-dynamics to find the relative binding free energies of HCV protease (HCVp) inhibitors and 
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results were compared to similar FEP calculations [Zhuyan et al.(2003)Zhuyan, Durkin, Fis­

chmann, Ingram, Prongay, Zhang & Madison]. The suitability of this technique for comparing 

ligands with many differences and ligands which affect receptor conformation on binding has 

not been tested. This may prove to be a limiting factor in its use. 

2.2.5 Summary and the direction of the present study 

Here the possibility of using statistical mechanics and computers to study the interactions 

of biomolecules has been displayed. Protein-ligand systems can be modelled using molecular 

mechanics force fields and the behaviour of these systems explored using sampling techniques 

such as MD and Me. Various free energy methods can then be used to calculate free energy 

differences between related systems. These free energy differences can then be combined in 

a thermodynamic cycle to give the relative binding free energies of a set of inhibitors for an 

enzyme drug target. 

Despite the myriad of methods for computational calculation of free energy differences, the 

methods most widely used for large biosystems are still FEP and TI. These methods are not 

recent developments having first been mentioned over 50 years ago, although it is only recently 

that the computational resources have become available with which to use these methods on 

large protein-ligand systems. Still, rigorous free energy calculations are thought to be compu­

tationally costly, limiting there use in the pharmaceutical industry. Hence the use by many of 

more approximate methods such as LIE and MMPBSA and more simple scoring functions (see 

chapter 1). 

A recent development of work based free energy methods displays relations with both FEP 

and TI [Jarzynski(1997a)]. This set of methods, called fast growth (FC) in this work, is thought 

to be extraordinary in its ability to relate nonequilibrium simulation data to equilibrium free 

energies. Possibly just as extraordinary is the fact that this related set of methods has only 

recently been discovered so long after its relations FEP and TI and just at the right time to 

take advantage of the new distributed computational resources to which is it so suited well (see 

appendix D). 

Owing to the potential of FC methods for fast free energy difference calculation these meth­

ods will be the subject of this study. The next chapter will review the FC literature with a view 
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to identifying those methods best suited to protein-ligand calculations and drug design. Useful 

FG methods will then be compared to the currently established methods FDTI and RETI to 

gauge there possible utility. This comparison will start with simple analytically tractable toy 

systems (chapter 4), moving on to simple solute-solvent systems (chapter 5). The best of the 

remaining methods will then be compared to RETI for two protein-ligand binding free energy 

studies (chapters 6 and 7). The final chapter will summarise and discuss the issues arising from 

this work. 



Chapter 3 

Nonequilibrium Free Energy 

Methods 

3.1 Introduction 

In the previous chapters the utility of fast free energy calculations in rational drug design has 

been described. However, as discussed improvements in efficiency and applicability of these 

methods are required before wide spread use in the drug design process becomes a reality. Re­

cent advances in nonequilibrium free energy methods have provided the possibility of improving 

the speed of these calculations through use of large distributed computing resources. 

Hence, here nonequilibrium free energy methods will be reviewed in detail and the relative 

attributes of these methods compared to the presently established methods. 

3.2 Slow Growth 

Slow Growth or adiabatic switching (SG) uses the same perturbation methodology as FEP and 

TI. SG was originally presented as a TI-like integration over a continuous sequence of equilib­

rium states linking systems A and B [Kirkwood(1935)]. A possibly more pleasing description 

is that SG utilises the basic rule of thermodynamics, 

(3.1) 

Equation 3.1 states that over the course of a reversible, isothermal process linking two equi­

librium states, the work (W) performed on the system is equal to the free energy difference 

between the two states. For a process linking two states, also known as a switch to be truly 
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reversible, in principle, it must be infinitely long. For this reason, SG switches cannot be truly 

reversible. Accuracy of SG calculations relies on how close to the reversible limit the simulated 

switch is. 

In practice an SG switch is a simulation coupled to a >. coordinate, where>. is slowly in-

cremented from 0 to 1. The work performed as a consequence of each>' increment is summed 

to give a free energy difference estimate, b.F, of the true free energy difference, b.Foo . This 

is expressed in terms of the potential at the present >. value, U Ai (qN) and the potential at the 

n 

b.F = W = LUAi+1(qN) - UAi(qN). (3.2) 
i=l 

An SG calculation invariably produces a systematic error due to its non-equilibrium nature. 

The simulation lags behind the changing potential, this is often referred to as Hamiltonian 

lag [Pearlman & Kollman(1989)J. Hamiltonian lag contributes positively to W such that, 

b.F = W - Wdiss' (3.3) 

This contribution is called the dissipated work (Wdiss) and is associated with the increase of en-

tropy during an irreversible process [Jarzynski(1997a)J. Hamiltonian lag is most easily demon-

strated through the consideration of switches proceeding in opposite directions i.e. switches 

from system A to B as already discussed but also starting from system B and ending at system 

A. A switch from A to B (>. = 0 to >. = 1 ) will from now on be termed forward and B to 

A (>. = 1 to >. = 0) backward, and it will be assumed they have the same internal structure 

(i.e. numbers of >. increments and Me trials). A non-zero Wdiss means a hysteresis will exist 

between switches in the forwards and backwards directions, i.e. 

(3.4) 

where WFjR is the average work in the forwards or backwards directions respectively. The 

fact that the Wdiss always contributes positively means that the true b.F (b.Foo) must always 

be between values for W in switches in opposing directions. Some studies have suggested that 
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mean W values (W) of switches in opposing directions can give good estimates of I::l.Foo as l¥diss 

from opposing directions may cancel, i.e. 

(3.5) 

[Wood(1991)], [Hermans(1991)]' [Hu et al.(2002)Hu, Yun & Hermans], [Hummer(2002)]. Equa­

tion 3.5 will provide good I::l.F estimates only when the free energy difference of study provides 

identical barriers to sampling in both forward and backward directions. The systems and 

changes in potential which display such symmetries are more often simple systems with simple 

potential changes. However, the size of Wdiss is proportional to the length of the SG switch, 

therefore with reasonably slow switch rates the error in an estimate of I::l.Foo after the use 

of equation 3.5 may be low even for systems with non-symmetrical forwards and backwards 

switches [Hu et al.(2002)Hu, Yun & Hermans]. The efficiency of the estimation method de­

scribed by equation 3.5 (symmetric A) will be investigated for various I::l.F calculations in this 

study. Also, unlike FEP and TI, for SG the potential change due to each A increment is rep­

resented by one measurement. These intrinsic problems are undoubtedly the main reasons SG 

calculations are thought to be relatively inaccurate. With a few exceptions, SG calculations 

are not presently used to estimate free energy differences [Hu et al.(2002)Hu, Yun & Hermans]. 

However, one advantage of SG and methods which use continuous switching simulations is that 

the production of a calculation with small levels of hysteresis gives high levels of confidence in 

the result. In such a case the simulated process is a good approximation of quasi-static process 

which underlies reversibility and free energy differences. 

3.3 Fast Growth 

Fast Growth (FG) as the name suggests is similar to SG except the switches made can be 

made faster. Recently there has been a renewed interest in methods which employ a continuous 

switching process methodology. This is mainly due to the work of Jarzynski and the equality 

he derived [Jarzynski(1997b)]' [Jarzynski(1997a)]. 

J arzynski discovered an equality which relates the distribution of non-equilibrium work val­

ues used with equation 3.5 to the equilibrium free energy difference rather than an upper or 
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lower bounding value. 

(exp{-jJW}) = exp{-jJ~F} (3.6) 

~F = -kBTln (exp{ -jJW}) (3.7) 

Equation 3.7 reduces to FEP where switches are- instantaneous and is related to TI in the 

case that the work is integrated across A (as in the previous chapter ( ... ) denotes an ensemble 

average). The Jarzynski equality is also closely related to other interesting non-equilibrium 

relations recently derived [Crooks(1999)] [Crooks(2000)]. 

For equality 3.6 to be true the switches made to produce the distribution of work values 

must have initial configurations taken from the same equilibrium ensemble (an ensemble of 

switches). Also, all switches in an ensemble must be of the same internal structure (same 

numbers of A increments and simulation steps) as expressed by, 

(3.8) 

Here, P[ZFIAt] is the probability of the switch, ZF, being produced when switches are struc-

tured with an amount of A switches and MC trials represented by At and P(zo) is the probability 

of a switch starting configuration Zo i.e. the equilibrium ensemble probability of a configuration 

for system A (P(zo) = exp{ -jJU A(qN)}). Of course this integral does not need to be considered 

as switches are produced automatically with the correct frequency. The practical FG protocol 

is described in figure 3.1 starting with system equilibration and then performing switches from 

system A (circles) to system B (squares). 
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Figure 3.1: Diagram describing the FG protocol. Circles represent the configuration'" of 
system A and squares the configurations of system B. Circles/squares filled with 'yan 
are equilibrated while those filled with red are not equilibrated. Full black lines r pr -s -nt 
equilibrium simulations and thinner red wavy lines represent FG swit h s. 

Equality 3.6 has been explicitly proved for the cases of MC, MD (coupl d to various th I'-

mostats) and Langevin dynamics [Jarzynski(1997b)]' [Jarzynski(1997a)], [Crooks(1998)], the 

main difference being that MD would produce deterministic switches while MC and MD cou-

pled to stochastic thermostats would produce stochastic forms. In the case of deterministi ' 

dynamics, each switch and work value depends only on the equilibrium starting configuration 

. and thus the distributions P[ZFIAt] and P(zo) become the same distribution. MC FG switches, 

although possibly non-equilibrium are assumed to obey the Markov assumption and detailed 

balance (in this case detailed balance is not assumed through reversibility but through the 

behaviour of the system while A is fixed) [Jarzynski(1997b)] . Thus, it is not possible to use 

MC moves which could not be used for equilibrium MC sampling in FG switches. Interestingly, 

it has been shown that for stochastic and deterministic MD arbitrarily large time steps can 

be used and Jarzynski's equality still holds [Lecher et al.(2006)Lecher, Oberhofer , Dellago & 

Geissler]. Using large MD time steps can lower the computational expense of switches and an 
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efficiency saving of an order of magnit ude was reported for computing the work n ded to mov 

a part icle through a dense liquid. 

Although J arzynski 's equality is extraordinary in its ability to link equilibrium fr 

differences to non-equilibrium switches, the problems discuss d for SG unfortunat ly l' main. 

The left hand side of equation 3.6 is an average over an infinite ensemble of swit hing po i-

bilities . The difference for FG is the possibility of parallelising t he switches and r dueing th 

clock t ime needed to find 6.F. 

In practice, t he number of FG switches needed to produce an accurate 6.F estimat v':l.ri 

and depends on the nature of the distribution of work values produced by the calculati n. 

When close enough to equilibrium, all FG work distribut ions will be Gau sian, as i ~ th work 

distribut ion represented by t he black line in figure 3.2. 
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Figure 3.2: Depiction of a Gaussian FG work distribution (in black) . The blu lin 
represents p(W) e-,BW which is the distribution of the exponential weights of th works. 
Also, the red line denotes the free energy difference. 

The exponential average of the Jarzynski equality can be written as an integral over the 

distribution of work values, 

(exp( - ,6W)) = J dWp(W)exp( - ,6W). (3 .9) 

The integrand distribution of equation 3.9 labeled p(W )e-,BW in figure 3.2 is peaked to the left 

of the average work and 6.F. The work values which cont ribute most to the right hand side 
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of the Jarzynski equality (equation 3.6) are those in the peak of p(W)e-,6W and in the far left 

hand tail of the work distribution p(W). These important work values (termed dominant) are 

thus, unfortunately, produced by the rarest switches. This is the major problem of estimating 

f}.F with equation 3.7. 

The probability of producing a switch in the peak of p(W)e-,6W sharply decreases as a 

function of VVdiss [Gore et al.(2003)Gore, Ritort & Bustamante]. Therefore, it is important 

that the Vv diss of the work distribution should always be minimised to produce an efficient FG 

calculation. 

Another useful non-equilibrium free energy relation also introduced by Jarzynski is described 

by equation 3.11 [Jarzynski(1997a)]. 

CXl 

f}.F = ~(_,8)n-l Wn 
~ n! 
n=l 

f}.F = (W) _ ,80"2 

2 

(3.10) 

(3.11) 

Equation 3.11 is based on the expansion of the right hand side of equation 3.7 as a sum of 

cumulants [Sornette(2000)] as described by equation 3.10. In equation 3.10 Wn is the nth 

cumulant of the distribution of work values. If the distribution of work values used is Gaussian 

then all but the first two cumulants are zero and equation 3.10 reduces to equation 3.11. The 

Vvdiss is related to the fluctuations in W through equation 3.11 and hence this estimator of 

the free energy difference is called the fluctuation-dissipation estimator (FD). As 3.11 is only 

accurate for Gaussian distributions of W it is important to use switches which are close to 

equilibrium, as although a Gaussian work distribution is possible without switches being close 

to equilibrium (e.g. a bead being dragged through water by a Hookean spring [Mazonka & 

Jarzynski(1999)]), being close to equilibrium ensures a Gaussian distribution of W values. 

The FD estimator has also been used with some success in a similar arrangement to TV in 

equation 3.5 as, 

(3.12) 
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[Hummer(2002)]. This estimator of 6..F, called symmetric B in this work, will be compared to 

other interesting methods, with various simple test systems. 

Studies of the error and efficiency of FG calculations seem to have come to a number of 

useful conclusions [Gore et al.(2003)Gore, Ritort & Bustamante]' [Zuckerman & Woolf(2002b)]' 

[Hummer(2001)]' [Shirts & Pande(2005)J. 

1. As W moves away from 6..F the distribution of works gets wider and the probability of 

a work value close to 6..F becomes less. The probability of a negative W diss is related 

to Wdiss , in general the larger the Wdiss the fewer highly weighted switches. Thus, it is 

important to minimise the Wdiss [Gore et al.(2003)Gore, Ritort & Bustamante] [Jarzyn­

ski(1997a)]. 

2. The near equilibrium/gaussian work distribution regime should be obtainable from any 

system if switched slowly enough. This regime is needed for FD to work and for the 

Jarzinksi estimator to be accurate [Gore et al.(2003)Gore, Ritort & Bustamante]. 

3. The variance of W scales approximately as l/t where t = switch time [Hummer(2001)]. 

Hence, all relevant studies have concluded that it is in general more efficient to use 

fewer longer switches than more shorter switches [Gore et al.(2003)Gore, Ritort & Bus­

tamante], [Zuckerman & Woolf(2002b)], [Shirts & Pande(2005)]. 

4. For the FD related estimators, if the standard deviation of a distribution of works is of 

order KbT statistical error is approximately independent of number of repetitions M for a 

particular length of switch [Hummer(2001)]. Thus, if the variance of a work distribution 

is of order KbT there is no point in adding to the work distribution. 

5. It may be optimal to divide the A co-ordinate into a number of intervals which are 

evaluated independently. For example, if equilibrium seed simulations are run at A = 0, 

0.25, 0.75 and 1, switches can be run from A = 0 to A = 0.25, A = 0.25 to A = 0.75 and 

A = 0.75 to A = 1 with the resultant FG 6..Fs added to get the 6..F from A = 0 to A = 1. 

This arrangement is described in figure 3.3 and can be called a FG-BY3 protocol as the 
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), co-ordinate has been split by three. This organisation of switches increases the overlap 

of switch end states and therefore could improve convergence in much the same way it 

does for TI and FEP. However, as the number of intermediate equilibrium starting states 

across), is increased, the number of b.Fs, each with a bias and error needing to be added, 

increases too. Without increasing the number of simulation steps used, the amount of 

sampling for each independent FG calculation will decrease as the number of ), divisions 

increases. Thus, for some systems, for which FG converges slowly, extra), divisions may 

result in increased bias and error [Hummer(2001)]' [Shirts & Pande(2005)]. 

( 
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Figure 3.3: Diagram describing the FG-BY3 protocol. Circles represent the configura­
t ions of system A and squares the configurat ions of system B. Circles/squares filled with 
cyan are equilibrat ed while those filled with red are not equilibrated. Full black lines rep­
resent equilibrium simulations, black dashed lines represent the prolif' ration of a single 
system configuration and t hin red wavy lines represent FG switches. ' 

3.3.1 The validity of Jarzynski's equality 

There has been some discussion in the literature over whether J arzynski's equality (3.6) is 

physically correct [Cohen & Mauzerall (2004)]' [Jarzynski(2004)], [Cohen & Mauzerall(2005)]. 

Cohen and Mauzerall claimed that the derivation of equality 3.6 was flawed by t he improper 

handling of heat exchange between the system and the water bath [Cohen & Mauzerall(2004)]. 
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Specifically, Cohen and Mauzerall pinpoint the failure to incorporate the heat absorbed by the 

system when switching in Wand the use of the heat bath temperature in /3, in equality 3.6 

as "ad hoc and unjustified" considering the irreversible nature of the switch and the possi­

ble thermal fluctuation. In reply Jarzynski argues that the heat absorbed by the system in 

a switch does not need to be included in W as equality 3.6 has been shown to be correct for 

irreversible processes. Also, although the use of the heat bath /3 is effectively" ad hoc", it is in 

no way improper and, as equality 3.6 has been shown to hold in many situations by many other 

authors, is extremely useful [Crooks(1998)], [Crooks(1999)], [Sun(2003)], [Evans(2003)], [Ober­

hofer et al.(2005)Oberhofer, Dellago & Geissler]. Jarzynski demonstrates both of these ideas 

with clear examples and mathematics [Jarzynski(2004)]. 

The points Cohen and Mauzerall make are based on possible physical, not mathematical, 

errors. Hence, the validity of these points should be found through experiment. Cohen empha­

sizes that examples driven far from equilibrium have been shown to be inaccurate [Cohen & 

Mauzerall(2004)]. However equality 3.6 assumes infinite switches which in the case of very fast 

switching obviously becomes more important. Thus, it is difficult to truly test the ability of 

Jarzynski's equality with systems driven far from equilibrium and this question requires further 

study. 

Cohen and Mauzerall do state that Jarzyski's equality does hold for near equilibrium 

switches [Cohen & Mauzerall(2005)]. This near equilibrium requires a constant /3, a Gaus­

sian distribution of the work values and the validity of the fluctuation dissipation theorem. 

Also, despite these issues Jarzynski's equality has been shown to be very useful in many con­

texts, experimental and simulation [Liphardt et al.(2002)Liphardt, Dumont, Smith, Tinoco 

& Bustamante], [Douarche et al.(2005)Douarche, Ciliberto, Petrosyan & Rabbiosi], [Collin 

et al.(2005)Collin, Ritort, Jarzynski, Smith, Tinoco & Bustamante] with and without a Gaus­

sian distribution of work values [Hummer(2002)]' [Shirts & Sorin(2005)]. Jarzynski's equality 

has been shown to give accurate results in comparison to more established, non controver­

sial, equilibrium methods [Shirts & Pande(2005)], [Ytreburg et al.(2006)Ytreburg, Swendsen & 

Zuckerman], [Oostenbrink & Gunsteren(2006)]. 
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3.3.2 Evaluating forward and backward switches together 

As discussed above for SG, the Jarzynski estimator applies to switches and work distributions 

in both forwards and backwards directions, with 

(exp(-,8W))F = exp{-,8~FF}' (exp{-,8W})R = exp{-,8~FR}, (3.13) 

where ~FF is the free energy difference estimate in the forwards direction and ~FR in the 

backwards direction. Hence, ~FooF = -~FooR' 

The work distributions for FG calculations in the forwards and backwards directions can be 

related through a generalised version of the entropy fluctuation theorem derived for stochastic 

microscopically reversible dynamics by Crooks (1999a). The dynamics in question must satisfy 

a condition of microscopic reversibility as follows, 

(3.14) 

where P[ZFJAt] is the probability of the switch, ZF, being produced when switches are struc-

tured with a number of A switches and MC trials represented by At and P[ZRJAt] is the prob-

ability of the equivalent backward switch. Q is the energy moving from the heat bath to the 

system, which is odd under time reversal, Q[ZFJAt] = -Q[ZRJAt]. This microscopic reversibility 

is similar but still distinct to the principle of microscopic reversibility at equilibrium originally 

given by Tolman [Tolman(1924)]. Microscopic reversibility, as in equation 3.14, is generally 

satisfied with typical stochastic simulation techniques such as Metropolis Monte Carlo and 

Langevin dynamics as long as individual steps satisfy the condition of detail balance described 

earlier in chapter 2. 

Crooks was able to express the entropy fluctuation theorem, which has been proven for a 

range of systems [Evans & Searles(1994)]' [Kurchan(1998)]' in terms of the amount of work 

performed on a system that starts in equilibrium, i.e. the specific assumptions of the Jarzynski 

equality, as follows, 

PF(,8W) 
P

R
( -,8W) = exp{ -,8~F}exp{,8W} = exp{,8Wdiss}' (3.15) 

In equation 3.15 PF(,8W) is the probability of realising a particular work value for a switch in 

the forwards direction and PR( -,8W) is the same for the backwards switches. Crooks validated 
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his expression with an analytically tractable one dimensional model system [Crooks(1999)]. 

For explanations of more general cases where this fluctuation theorem is correct, check Evans 

and Searles (2002). Crooks and Jarzynski have subsequently shown equation 3.15 to hold for 

a simple system with non-Gaussian work fluctuations [Crooks & Jarzynski(2007)]. Also, the 

nonequilibrium fluctuation theorem of Crooks (equation 3.15) has been validated with single 

molecule force measurements on a real system [Collin et al.(2005)Collin, Ritort, Jarzynski, 

Smith, Tinoco & Bustamante]. 

Using the Jarzynski equality and equation 3.15 Crooks was subsequently able to show that, 

(f(W))F 
exp( -(3!J.F) = (f( - W)exp{ -(3W}) R' (3.16) 

is true where f(W) is any function of the work with subscript F or R denoting the work is in 

the forwards or backwards directions [Crooks(2000)]. Equation 3.16 is the same form derived 

by Bennett for FEP (a limiting case of FG) in his derivation of the Bennetts acceptance ratio 

method (BAR) [Bennett(1976)]. 

Bennett found the function f(W) which when used in equation 3.16 gave the !J.F with the 

lowest variance and therefore the highest statistical accuracy was, 

nF 1 f(W) = (1 + -exp{(3W - !J.F})-
nR 

(3.17) 

where nF and nR are the numbers of switches (in the case of FEP these would be instantaneous 

switches) in the forwards and backwards directions. !J.F can now be found: starting with the 

lower bound estimate of !J.F, found through the average work, !J.F is increased slowly and 

iteratively until !J.F satisfies equation 3.16. This !J.F is the BAR estimate. 

BAR for nonequilibrium switching has recently been derived using Bayesian theory to show 

that it is the maximum likelihood estimator for !J.F with a given set of forwards and backwards 

switches [Shirts et al.(2003)Shirts, Blair, Hooker & Pande]. This means that a BAR estimate 

will have the lowest possible variance of any asymptotic estimator for a given set of forwards 

and backwards switches. It should be noted that this does not necessarily mean that a BAR 

estimate is more accurate than others with regards to !J.Foo. 

The ratio in equation 3.15 can be written in Bayesian notation as with PF((3W) being 
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P(WIF), the conditional probability of a particular work value assuming it comes from a forward 

switch of a particular structure, and PR C6W) being P(WIR), the conditional probability of a 

particular work value assuming it comes from a backwards switch of the same structure. As 

P(FIW) + P(RIW) = 1 Bayesian theory allows the following rearrangement: 

P(WIF) 
P(WIR) 

P(FIW)P(R) 
P(RIW)P(F) 

P(FIW) P(R) 
1 - P(FIW) P(F)· 

We can substitute this into equation 3.15 assuming that P(R)/ P(F) = nR/nF, giving, 

In P(FIW) = In nF ,6(W - b.F) 
1- P(FIW) nR 

(3.18) 

(3.19) 

Given a particular b.F value, it is now possible to express P(FIWi), the probability of a 

particular forwards work value as, 

(3.20) 

and P(RIWi ), the probability of a particular forwards work value, given a particular estimate 

of b.F, as, 

(3.21 ) 

Using these expressions for P(FIWi) and P(RIWi) it is now possible to find the likelihood of 

obtaining a set of forwards and backwards work values for a given b.F: 

nF nR 

L(b.F) = II P(FIWi) II P(RIWi). (3.22) 
i=l j=l 

Thus the best estimate of b.F is that which maximises L(b.F). However, it may be easier 

to find the maximum log likelihood. Shirts et al. (2003a) take the log likelihood and then 

differentiate this with respect to b.F, setting it to zero, to give: 
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Equation 3.23 is the same as BAR described by Bennett (1976) and discussed above. Hence, 

BAR gives the 6.F estimate which, maximises the probability that the observed work values 

are realised. Shirts et at. also discuss and derive a formula for the variance of a BAR estimate 

although this was not used in this study and will not be discussed here. 

It is instructive to consider the efficiency of BAR with different nF /nR ratios. In the cases 

of nF » nR and nR » nF BAR (equation 3.23) collapses to the Jarzynski equality (equation 

3.6). This is not surprising considering the origins of BAR. Bennett has shown that the optimal 

ratio of nF/nR for BAR is generally close to 1 [Bennett(1976)]. This makes sense as owing to 

equation 3.15 the forwards and backwards work distributions must be thought of together 

as a single independent distribution. To estimate this single distribution well, forwards and 

backwards switches should be used in equal amounts. 

As mentioned earlier, the issues discussed here may suggest that BAR should always be used 

in preference to other FG estimators. In fact the literature does describe cases where BAR is 

not the most efficient estimator of 6.F. Shirts and Pande describe one such case with simple 

two dimensional harmonic oscillator systems which give Gaussian work distributions [Shirts & 

Pande(2005)]. This harmonic oscillator test system was defined by 

(3.24) 

where H is the Hamiltonian and, Xi and Xj are the particle coordinates. Of the perturbatioll 

end points A and B, A had a larger force constant (w) than B and consequently a smaller range 

of possible particle positions (phase space). Shirts and Pande found that J arzynski estimates 

in the backwards directions where extremely poor with a variance tending to infinity as w of 

A becomes twice as big as w of B. The forwards Jarzynski estimates were found to be more 

efficient than BAR estimates with slightly lower standard errors. The origin of this result is in 

the relative behaviour of the forwards and backwards work distributions. The backwards work 

distribution was so poorly behaved that it causes BAR to be less efficient than the forwards 

work distribution alone. 

While BAR is possibly the best FG estimator in most cases, as it gives the estimate with 

the lowest variance for a given set of forwards and backwards work values, in some cases a 

Jarzynski estimate using work values from one direction will be more efficient. With this beillg 

the case it becomes important to know when a particular estimator or work distribution should 
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be used in preference to BAR. 

Recently, an interesting extension to BAR has been developed for finding the ma..xilllUlll 

likelihood estimates of free energy differences of multiple states using parallel tempering siInu­

lations [Maragakis et al.(2006)Maragakis, Spichty & Karplus]. This method considers a set of 

systems (Nsys ) with different Hamiltonians each sampled at a number of replicas with different 

temperatures. Switches are allowed from any of the replicas of one system to another. Mara­

gakis et al. found this method to be many times more efficient than BAR for a simple vacuum 

test system. 

3.3.3 Bias calculation 

The FD and Jarzynski estimators are asymptotic and so for finite numbers of switches (N), 

estimates are biased. This bias is a result of the often inefficient sampling of the important but 

rare switches discussed above. To be clear, the bias of an FG estimate is, 

(3.25) 

where B is the bias, t::..F is the average t::..F, and t::..Foo is the true free energy difference. 

In the limit of infinite switches this bias will be zero (t::..F = t::..Foo) , and it will increase 

monotonically with decreasing N, until N=l and B=Wdiss . Some literature investigations 

of FG concentrate on attempting to define and correct for the bias of FG estimators [Zuck­

erman & Woolf(2002b)J, [Gore et al.(2003)Gore, Ritort & Bustamante], [Wu & Kofke(2004)]. 

Other studies have attempted to define tests to check for a result that is free of bias [Wu & 

Kofke(2005a)J, [Jarzynski(2006)]. 

Gore et al. and Zuckerman and Woolf have independently derived the same identity for 

the bias of the J arzynski estimator (BJ) when N is said to be large (equation 3.29) [Zuckerman 

& Woolf(2002b)J, [Gore et al.(2003)Gore, Ritort & Bustamante]. This derivation starts with 

the reasonable assumption that the variance Var(exp{-,BW}) is finite. For large N the central 

limit theorem guarantees that many realisations of (exp{ - ,BW}) (denoted by Y) gives a normal 

distribution with mean exp{ -,Bt::..Foo} (denoted by Y) and variance Var(exp{ -,BW} )/N. A 

linear expansion of In(Y) around Y = Y gives, 
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_ ~ [1 (Y) (Y - Y) _ (Y - y)2 2(Y - y)3 _ ] 
j3 n + Y 2!y2 + 3!y3 .... (3.26) 

Var(exp{ -j3W}) 
I::!:.Fco + 2j3exp{ -2j3I::!:.Foo }N + ... (3.27) 

Equation 3.27 has I::!:.Fco and a second term equal to the average free energy difference estimate. 

Hence, Gore et al. finds that B J of the estimate is, 

Var(exp{ -j3W}) 
2j3exp{ -2j3I::!:.Foo }N 

Var(exp{ -j3Wdiss }) 
2j3N 

exp{j320'tv - I} 
2j3N 

exp{2j3Wdiss - I} 
2j3N 

(3.28) 

(3.29) 

where O'tv is the variance of the work values. Gore et al. define large N with relation to 

the Wdiss , for switches arbitrarily far from equilibrium as N » variance of exp{j3Wdiss} 

(Var(exp{j3Wdiss} )). Assuming the variance of the work values is finite, with large enough 

N, the work distribution should be Gaussian as discussed above. However when N is this large 

the bias is generally not significant and would be dominated by the statistical error. Also, this 

large N may be difficult to obtain for systems of interest such as biomolecular systems where it 

is difficult to minimise the W diss' 

It is more useful to concentrate on possibilities where switches are in the near equilibrium 

regime and the work distribution is Gaussian. Here it may be possible to calculate the bias of 

FG estimates when the bias is the dominant form of error. Gore et al. approximate BJ in the 

near equilibrium regime with small N as, 

(3.30) 

Equation 3.30 comes directly from the observation that a log-log plot of BJ against N, where 

N is small, is approximately linear. The CtG variable is placed to account for the differences in 

how fast the bias falls away with different amounts of W diss, as systems with larger W diss have 

a bias which falls away more slowly as N is increased. The CtG parameter must be assigned with 

consideration of where the small N limit ends. In the near equilibrium regime when N is large, 
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equation 3.29 is applicable. 

Through equations 3.29 and 3.30 it may be possible to find B J for a Jarzynski estimate and 

to correct it giving a more accurate estimate of the true t::.F. However, the point at which the 

calculation is perceived to switch from small to large N must be defined. As equation 3.29 arises 

by assuming that the first order term of equation 3.27 is dominant, the point N » (e2,6WdiSs-l) 

is a good choice for the small/large N intersect. Thus, Gore et al. assume that the intersect of 

small and large N occurs at, 

(3.31) 

where C » 1 is a constant that defines how small the bias must be before the large N limit is 

reached. Hence, 

B (N ) = Wdiss = exp(2,6Wdiss - 1) 
J C N~G 2,6Nc 

1 
2,6C' 

(3.32) 

The aG parameter from equation 3.30 can now be defined for small N bias using equation 3.32: 

In [2,6CWdissJ 
a G = -:--=------:--=-==-''-----:-::-

In [CV ar (e2,6Wdiss ) J 
(3.33) 

In [C(e2,6Wdiss - l)J . 

It is now possible to calculate the bias of a J arzynski estimate using the estimated W diss' 

However, this estimate of Wdiss is biased due to the bias of the Jarzynski estimate t::.F. Thus, 

an attempt to correct this estimate of the W diss can be made by using W diss2 as defined in 

equation 3.34. Figure 3.4 is a flow diagram of the steps taken to calculate the corrected bias of 

a Jarzynski estimate (Gore bias, BJ2)' 

Wdiss2 = W - t::.F - BJ (3.34) 
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Find the small/large N intersect using 
equation 1.30 for Nc and place the 
present work distribution in either 

small or large N regime. 

If small N then find Q 

using equation 1.32 

Find BJ1 using small N 

approximation equation 
1.29. 

Find BJ2 using small N 
approximation equation 

1.29 again with 
corrected IN diss' 

If large N find BJ1 using 

1 st order expansion 
equation 1.28 

Figure 3.4: Flow diagram of the steps taken to calculate the Gore bias of a Jarzynski 
estimate. 

Gore et al. discuss an example using a test system, without sampling noise, where the BJ 

of J arzynski estimates with switches displaying a number of W dissS are calculated using the 

equations discussed above. These BJs were compared to the bias found using effective b.Foo 

(exhaustive numbers of switches) [Gore et al.(2003)Gore, Ritort & Bustamante]. The calculated 

BJs seem to match with the exhaustive estimates well, although the two start to diverge at the 

small/large N intersect area as the size of the W diss is increased. 

In practice, there may be a number of problems with the wider use of the Gore bias corf(~C-

tion: The work distributions of large complex systems and perturbations may not be Gaussian 

at the levels of N that are easily obtainable. The Gore bias correction would possibly be used 

with faster switches and medium levels of N, which may often be the area where the model 

works least well. Hence, when a work distribution has a large Wdiss it may be more accurate 

to use the Gore bias correction with smaller N rather than N which is close to the small/large 

N intersect. In this study the small N approximation (equations 3.30 and 3.34) will be tested 

to gauge its suitability for general use. The large N 1st order expansion (equation 3.29) is not 

used as when this method for estimating the bias is valid the variance is by far the dominant 
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form of error. 

It may be possible to design FG calculation which are well behaved for many systems and 

display very small levels of bias. However, it is difficult to be sure of the level of bias present 

in an estimate without having an idea of t1Foo . As the Gore bias methodology discussed above 

shows, the bias of FG calculations behaves in a way which may be statistically tractable and 

predictable, so it may be possible to predict a well converged estimate. 

Wu and Kofke developed a measure of the bias of a J arzynski estimate based on measuring 

sampling specifically in the tails of the work distribution called the "neglected tail model" [Lu & 

Kofke(200l)]. The neglected tail model was originally developed for use with FEP calculations 

which use many (100,000s) measurements to find the average, exp( -,BW). This model was ex­

tended for general use with FG calculations which use any amount of sampling. The extended 

model assumes that all of the bias is due to the lack of W contributions below a particular level, 

W*. The extended neglected tail model was tested on the same Gaussian work model as used 

by Gore et al. and found to have improved agreement with the numerical bias. 

Wu and Kofke subsequently defined a measure (IT), for the case of the near equilibrium 

regime, where IT > 0 when the calculation is fully converged and bias is negligible [Wu & 

Kofke(2004)]. 

(3.3G) 

Where WL(X) is the Lambert W function, defined as the solution for w in x = wexp{w}. A 

plot of bias of the J arzynski estimator against IT is a curve which meets the point of negligible 

bias at IT = O. Again, IT is susceptible to the generally biased estimate of W diss through ow 

(the standard deviation of the works) of equation 3.35. However, Wu and Kofke attempt to 

demonstrate that IT would not take on a value suggesting convergence when convergence had 

not been achieved and is therefore "fail-safe" [Wu & Kofke(2004)]. It is important to note that 

this "fail-safe" does not extend to cover the case of non-gaussian work distributions. 

Another important idea not considered by equation 3.35 is the fact that the bias is often 

not symmetric, i.e. it is not same in the forwards and backwards work distributions. Without 

knowledge of t1Foo or the phase-space relationships of the A and B end states it is difficult 

to know which direction is more prone to bias. With this in mind Wu and Kofke developed a 
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method of measuring phase-space relations which they called "relative-entropy measures" l'Vu 

& Kofke(2005a)]. Information theory defines the relative entropy measures SA and SB, from 

each end state as, 

(3.36) 

(3.37) 

where r is the area of phase space important to the system, i.e. where the system resides 

almost all of the time, and PA ('Y) and P B ('Y) are the probability densities for phase space points 

('YEr) from the A and B end states. This definition of relative entropy may not be familiar 

to statistical mechanics and SA and SB are not related to the entropies of states A and B, 

but a connection with the information theory concept has been shown, with a specific ex-

ample of the non-equilibrium relaxation of a polymer chain system, which is relevant to this 

work [Qian(2000)]. 

Equations 3.36 and 3.37 are unfortunately not in an accessible form as the full phase space 

distributions of systems of interest are not presently tractable. Wu and Kofke expressed equa-

tions 3.36 and 3.37 as, 

(jJW) A->B - jJb.F, (3.38) 

- (jJW) B->A + jJb.F, (3.39) 

through the fact that PAb) = e-(3UAh) /ZA and hence 'Y can be replaced by W in equation 3.37. 

This new form (equation 3.39) is useful as SA and SB are equal to the Wdiss of the respective 

work distributions. SA and SB are equal to zero when the work distributions of switches start-

ing at systems A and B are identical. As the SAl SB ratio becomes larger the important phase 

space sizes of systems A and B become more different, with the system with a lower S having a 

smaller important phase space. As the size of both SA and SB increases, while staying similar 

relative to each other, the displacement of the two end system phase spaces will also increase. 

Equations 3.38 and 3.39 have been derived independently by Jarzynski [Jarzynski(2006)]. 
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Using the expressions for TI and S above a definition for TI which takes account of asym-

metric bias in work distributions in the forwards and backwards directions is, 

II (3.40) 
A-tB 

II (3.41 ) 
B-tA 

Here (Jaw has been replaced by ...)2S A as SA is equivalent to W diss and a dependency of TI on 

W L included to account for the phase-space relationship between A and B end states [Wu & 

Kofke(2005a)]. 

It may be important to note that only in the case of FEP (instant FG switches) will equa-

tions 3.38 and 3.39 connect directly to equations 3.36 and 3.37. However, Wu and Kof1(e 

comment that the heuristic in equations 3.41 should generally apply to FG calculations which 

do not use instant switches [Wu & Kofke(2005b)]. Also, statistical error can affect TI and to be 

sure of a bias free estimate, confidence limits of TI must be checked. For this reason Wu and 

Kofke suggest using TI 2: 0.5 as a prescription of an accurate estimate. 

Again, Wu and Kofke demonstrate the applicability of equation 3.41 with simple one dimcu-

sional Gaussian models [Wu & Kofke(2005a)]. The model perturbations with varying phase-

space relationships all display the same relation in bias and TI with negligible bias corresponding 

to TI 2: O. Also, logical arguments as to the "fail safe" nature of the TI measure with regard 

to the general bias in estimates of SA and S B (W diss) are presented similar to those discussed 

above for equation 3.35. An extra measure designed to guard against a possible false positive 

TI 2: 0, is to swap the b.F estimates used in producing SA and SB as below, 

(3.42) 

(3.43) 

This seemingly arbitrary extra measure gives a larger estimate of SA and SB, especially in the 

case of a large underestimation of SA or SB, due to estimator bias, and thus makes it more 

difficult to obtain a false positive TI. One caveat to the fail safe is noted where N is very low 
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(less than about 4) and IT can approach O. The signal for detection of this error is the rapid 

decrease of IT with extra switches. 

Central to the idea of microscopic reversibility (equation 3.14) described above and the 

idea of there being a single work distribution, is the idea that any forward switch has an exact 

backwards equivalent and vise versa, or that switches exist as conjugate pairs related by time 

reversal. This idea is discussed at length for deterministic dynamics with explanations for 

most common types of system by Jarzynski [Jarzynski(2006)]. Jarzynski also shows that the 

dominant switches, important to the exponential average (close to p(W)e-.ew in figure 3.2) 

are the conjugate twins of the most common switches, which result in work values close to 

the W peak in the work distribution as shown in equation 3.44 where we use (%am to denote 

the dominant switches of the forwards distribution and (t'om for the common switches of the 

backwards distribution. 

;-F _;-R 
'>dam - '>cam (3.44) 

This is nicely illustrated by an ideal gas enclosed within a piston where for the process of 

pushing the piston into the gas the dominant switches are those where there are no collisions 

between piston and gas i.e. where the system starts in the type of configuration from which 

you would expect the process in the opposite direction to start. Further, Jarzynski has showll 

that the relative contribution of a set of forward switches to the exponential average is equal 

to the probability of realising the conjugate twin of this switch in the backwards direction and 

vzse versa. 

These ideas are important when thinking about how many switches may be needed to obtain 

a converged b..F estimate and which estimator is most efficient for a particular calculation. To 

obtain a converged estimate of b..F from the Jarzynski estimator, dominant switches must be 

sampled from the region close to p(W)e-.ew . Using equation 3.15 the probability that a sampled 

forwards switch is the the region (%am is, 

Then as (~m constitutes almost all of the backwards work distribution, P[ZRIAt], we can say, 
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(3.46) 

Thus, a good estimate of the number of switches to obtain an example of (!om is, 

(3.47) 

and similarly in for the backwards calculation, 

(3.48) 

This suggests that as a rule of thumb the number of switches needed for convergence varies 

exponentially with the average work dissipated. This is very similar to the relationship dis-

cussed above as part of the Gore bias [Gore et al.(2003)Gore, Ritort & Bustamante]. However, 

here it is W in the opposing direction to that of interest which is related to the convergence 

i.e. the work dissipated in the backward direction determines the convergence of the forwards 

calculation. 

For the case of work distributions where the bias is not symmetric in both directions, cu.; 

discussed above, this suggests that the direction which has the largest Wdiss will converge most 

quickly. Thus, this reasoning of Jarzynski agrees with the relative entropy measure approach 

of Wu and Kofke discussed above which has similar conclusions with regards convergence and 

Wdiss of the work distribution in the opposite direction. Although this idea is counterintuitive 

it can be easily rationalised through studying the relative sizes and positions of forwards awl 

backwards work distribution with regard to !:::.F. Figure 3.5 shows the forward and backward 

work distributions for a single free energy difference where the Wdiss is smaller for the backward 

compared to the forward distribution. The forwards distribution is wider than the backwards, 

which is much taller. Also, owing to equation 3.44 (!om is closer to !:::.F than (!lam' Consequently 

the probability that a forward switch is dominant is higher than the probability that a backward 

switch is dominant, as dominant switches are found deeper in the tail of the backwards distri-

bution. Hence, the switching direction with the highest Wdiss (forwards direction for the case of 

figure 3.5) will converge to an accurate result with fewer switches than the alternative direction. 
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Figure 3.5: Representation of forwards (black) and backwards (red) work di t ribution 
where the backwards distribution (P(W)R) has a smaller Wdiss than t he forwards ll ­
tribution than the forwards distribution. The llF is found at the point wher th tw 
distributions meet. 

Importantly, the findings of Jarzynski discussed here and the relative ent ropy m as lI' s 

of Wu and Kofke discussed above are not limited to Gaussian work distributions as ar t h 

Gore bias and Kofke bias measures [Gore et al.(2003)Gore, Ritort & Bustamante]' [J arzyn-

ski(2006)], [Wu & Kofke(2005a)]. Therefore, it may be that relative entropy m asures ar mor -

generally applicable to real PG calculations than the Kofke bias measures. By simpily calculat-

ing the Wdi ss of the forwards and backwards 'work distributions it may be possible to pick (;b 

most accurate estimate in the case that BAR is not the most accurate. However, as di us d 

for the Kofke bias measures, estimates of W di ss found through calculations wher an xhaustive 

protocol is not possible are prone to bias. This bias may cause the prediction of t h m t 

efficient switching direction to be incorrect when forwards and backwards distributions hav 

relatively similar amounts of bias while still being different. 

3.3.4 Extrapolation m ethods 

One of the earliest PG methods attempted to remove the sampling bias (equation 3.25) of 

standard fast switching calculations through block averaging and extrapolation [Zuckerman & 

Woolf(2002a)]. In essence this is a simple idea. As more and more switches are added to a work 

distribution, a Jarzynski estimate will become more and more accurate. Thus, given a certain 
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amount of work data, it may be possible to extrapolate to the infinite data limit and obtain 

a good estimate of b.Foo . However, the behaviour of estimates as more work data is added 

is often erratic, as with many non-linear averages, making extrapolation difficult. Therefore, 

block averaging all of the work data can be employed to give a well behaved monotonically 

decreasing set of running estimates with which to extrapolate. Initially, block averaging was 

done using each work value only once, after a random reshuffle of work values from the order they 

were performed, limiting the number of possible blocks with the number of switches perfromed 

[Zuckerman & Woolf(2002a)]. It was found reshuffling the work data again gives rise to variation 

in b.F estimate curves. This variation was removed by resampling the data and increasing the 

numbers of blocks used for each b.F estimate [Ytreburg & Zuckerman(2004)]. 

Ytreburg and Zuckerman (2004) define their Jarzynski estimate block averaging scheme 

with N tot work values, Nblk work values in each block and m blocks as, 

1 Ntot/Nblk 

b.FBlkAv = - L -kBTln(exp{-,BW})i· 
m i=l 

(3.49) 

Work values are drawn at random and not replaced until a block is complete, so m can be made 

rv 100 x Ntot!Nblk. Then b.FBlkAv is simply averaged over the number of blocks m to produce 

an estimate of b.F for a particular Nblk termed here as b.FN. 

Extrapolation of these block averaged free energy estimates has been carried out with two 

methods [Ytreburg & Zuckerman(2004)]. Both methods start by plotting b.FN as a function 

of X where, 

1 
X--- n T • 

(3.50) 

T must be picked from the range 0.3 < T < 0.7, all of which produce useable results. The 

choice of T controls the spread of the data in a plot; decreasing T causes the data to be confined 

to a small region near to X = 1 with a large distance to extrapolate to X = 0, increasing T 

leads to the spread of the data becoming larger and the slope of the tail can become uncertain. 

Ytreburg and Zuckerman (2004) find aT = 0.5 is optimum for linear extrapolation with their 

test systems (discussed below). The limit N tot = 00 is now found at X = O. 

The first method is a simple linear extrapolation method where after plotting b.FN against 



CHAPTER 3. NONEQUILIBRIUl\II FREE ENERGY 1\IlETHODS 67 

X the data is extended with a straight line using only the small X tail to X = O. Thus, another 

choice must be made over the extent of the small X tail. Ytreburg and Zuckerman (2004) use 

a small X tail which is 1/5 of the data, as using more introduced bias into any extrapolated 

estimate and any less resulted in similar estimates as for a X tail of 1/5, but with greater 

uncertainty. 

The most precise 6.FN values are always found with small Nblk (X ~ 1) as these estimates 

are averaged over the most blocks. This being the case it may be a problem that the linear 

extrapolation method described above uses only the most uncertain 6.FN estimates at small 

X to extrapolate to X = O. Therefore, Ytreburg and Zuckerman (2004) devised an alternative 

extrapolation scheme where all estimates across X are integrated into an extrapolation. 

A cumulative integral estimate (CI) of 6.FN(X = 0) is given by, 

(3.51) 

CI(X) is started from CI(X = 1) and accumulated across a plot to CI(X = 0) where CI(X) = 

6.F. Also the derivative in equation 3.51 is found by numerical methods. T is chosen differently 

for this CI extrapolation scheme compared to the previous linear method. Here T is not fixed 

but is chosen for each extrapolation process to minimise the slope of the tail of the small X tail 

of CI(X). Again the small X tail of CI(X) is 1/5 of the data. 

Ytreburg and Zuckerman (2004) tested their linear and CI extrapolation methods on five 

test systems of increasing complexity: a perturbation between harmonic oscillator potentials, a 

chemical potential calculation with a Lennard-Jones fluid, the growth of a chloride ion in water, 

a perturbation from methanol to ethanol in water, and a stearic to palmitic acid perturbation 

in water. J arzynski estimates and estimates using linear and CI extrapolation are made for 

each test system with estimates of 6.F, found from subsets of the total data, averaged over 

500 repetitions for a range of N tot from 10 to 1000. This range of estimates are compared to 

. Jarzynski estimates found using all work values available and 6.Fs found using various equilib­

rium methods. 

For all systems these extrapolation methods are found to give more accurate estimates of 

6.F than the Jarzynski estimator for small N tot . For the less complex systems (harmonic oscilla­

tor potentials and the Lennard-Jones fluid) Jarzynski and both extrapolation methods converge 
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to the similar tlFs which are the same as independent estimates found exhaustively by other 

methods. For the more complex systems (growth of a chloride ion in water, methanol to ethanol 

in water and stearic to palmitic acid in water), at N tot = 1000, linear extrapolation estimates 

find similar tlFs to the exhaustive Jarzynski estimates. However, the independent, exhaustive 

tlFs are different due to bias in the exhaustive Jarzynski estimates. CI extrapolation seems to 

give estimates closer to these independent, exhaustive tlFs. The authors suggest that the CI 

extrapolation method is able to see beyond the small amounts of work data it is given. They 

also compare the amount of work data needed for tlF estimates to within 2 kcal.mol- 1 and 

find that CI extrapolation is 5-40 times more efficient. 

Although the CI extrapolation method seems to offer improved accuracy it also displays 

increased levels of statistical uncertainty compared to using the Jarzynski estimator alone. The 

standard deviation of estimates from the 500 repeats more than doubled for CI extrapolation 

compared to the Jarzynski estimator (from ~ 1 to~ 3 kcal.mol- 1 ) for the palmitic to stearic 

acid test system, where the difference in accuracy was ~ 2 kcal.mol- 1 . Also, these 500 repeats 

were made by drawing small numbers of work values at random from the large number of works 

available for each system. This means that equilibrium starting configurations used to prodllce 

work values in any repeat are spread over a much larger area of phase space than would be the 

case when using these methods for real calculations where the large number of work values is 

not available. When using these methods it would make no sense to produce many work values 

and then only use a small subset for any subsequent calculations. It is not clear how well thcs(~ 

extrapolation methods would compare to Jarzynski when used with using small numbers of 

work values produced from equilibrium starting configurations which are produced in sequence. 

Another issue not mentioned in this study of extrapolation methods is the effects of non­

symmetric bias in forwards and backwards work distributions [Ytreburg & Zuckerman(2004)]. 

Especially for the more complex test systems, work distributions may be more efficient in one 

direction, or together when used with BAR. 

3.3.5 Rosenbluth FG sampling 

Wu and Kofke recently introduced a set of FG methods which attempt to improve the sampling 

of the rare, important switches which are close to p(W)e-,BW in figure 3.2 by applying a bias 
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to the calculation [Wu & Kofke(2005c)]. The name Rosenbluth FG sampling is taken from 

the Rosenbluth-sampling methods [Rosenbluth & Rosenbluth(1955)] used in :tvIC simulations of 

lattice based polymeric chains. The idea of breaking an extremely unlikely event into smaller 

more likely events is applied to producing an FG switch which has a work value close to the 

highly weighted p(W)e-,6W peak. 

The structure of a switch within the original FG sampling method has a predefined set of 

uniformly spaced A values starting at 0 and ending at 1. A predefined number of MC trialH 

are carried out at each A value before incrementing to the next and adding the work performed 

in that A increment to the total work for the switch (equation 3.2). However, in the course of 

switching from systems A to B the work performed at each A increment is often not uniform. 

Depending on the perturbation, often particular areas of a switch are more or less prone to 

producing large work values. When a high work is probable, it is possible that the size of the 

work can be lowered by particular favourable system configurations or by using very small A 

increments. However, using very small A increments throughout an FG calculation may be 

seen as inefficient and favourable system configurations cannot be relied upon as they must be 

chosen at random from the Boltzmann distribution. 

Wu and Kofke applied Rosenbluth sampling to bias the choice of both the size of individual 

A increments and the configuration the system takes up while undergoing a A increment, ill 

order that the work performed for each A increment of a switch is low. Three methods were 

descibed: A bias FG which biases the size of each A increment to minimise the work performed, 

configuration bias FG which biases the configuration the system takes up when undergoing a 

A increment, and a hybrid bias FG which does both. 

With A bias FG the A value to which the system is incremented, is found from a continuuUl 

weighted by the potential. This continuum is structured in such a way that A cannot go back­

wards with Ai E [Ai-I, ail where ai is a predefined set of incremental constants i.e. 

(3.52) 

Thus, for each A increment the new A (Ai) is found from a continuum between the current A 

(Ai-I) and the next a value (ai)' This allows a variation in the maximum that Ai can take up. 

The selection of Ai according to the potential of the current configuration (UAi (qi-l) with 



CHAPTER 3. NONEQUILIBRIUM FREE ENERGY lVIETHODS 70 

probability density 

(3.53) 

where Ri(qi-I; Ai-I) is the Rosenbluth weight, which ensures a normalised probability: 

(3.54) 

Here Ct:K is a predefined constant designed to control the influence of the potential of the present 

configuration (U>'i (qi-d) on the weighting of the probability density Pqi- 1 (Ai). Also, Pi(A) is 

another weighting term designed to control the size of the potential weight from outside the 

exponential term. It is possible that the form of these two weighting terms rely on i and are 

different for each A increment, although this must be predefined and not depend on U>'i (qi- d. 

As there are a predefined number of A increments (n), the final A increment must be made such 

that An = 1 and hence cannot be weighted. 

Each A bias FG switch will be slightly different depending on the configurations which the 

system takes up for each A increment. Because the probability density applied to find each 

new A value in each switch is different, the resulting work values do not give an average which 

relates directly to the free energy difference. The work performed must be modified to account 

for the specific weighting of each A bias switch as follows, 

In equation 3.55 the Ii(Ai-d term is defined as, 

if 1::; i < n 

';f • 1, = n. 

(3.55) 

(3.56) 

to account for the ideal-gas normalisation for switching A from Ai-I to Ai. Wu and Kofke 

also demonstrated that this definition of the work was consistent with the Jarzynski equality 

(equation 3.6) by defining b.F in terms of these A values chosen from a distribution [Wu & 

Kofke(2005c) ]. 
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There are various options in defining the parameters CiK, o,i and pi(A). The CiK parameter 

should in essence be varied depending on the general size of the system potential. If the potential 

is very large it would bias A increments to be very small, causing a large final A increment to 

complete a switch and inevitably large total work values. The CiK parameter should be less 

than one so that it reduces the effect of the potential on the probability density Pqi - 1 (Ai). \Vu 

and Kofke use, 

CiK = liN>.., (3.57) 

where N>.. is the "number of atoms or particles involved in the difference between the A and 13 

systems". This came from direct investigation of the use of CiK values from 0 to 1 on four quite 

different test systems, each of ten independent harmonic oscillators (N).. = 10). A minimul1l 

of inaccuracy was found in each of the four cases which corresponds to using CiK defined by 

equation 3.58. Although equation 3.58 is the best definition of CiK for these harmonic oscillator 

systems, it is probable that a quite different definition may be required for large bio-systellls 

with thousands of atoms, of which only a very small fraction are perturbed in changing fWIll 

end point systems A to B. 

The obvious choice of o,i is to have each 0, value equal to 1. This would allow each new A 

to be any value from the present value to 1. In the case that the potential does not react to a 

large increase in A this would allow the switch to proceed to towards A = 1 very quickly which 

would be desirable as it would avoid the situation of have a large forced final A incremellt. 

Unfortunately, this situation can cause large work values as the subsequent small A incremellts 

produce very small Rosenbluth weights (equation 3.54) and the corrected work contributiolls 

would not be small. Depending on how it is defined, the effect discussed here can be controlled 

by the Ii term. Wu and Kofke found the definition, 

o,i = i/(n - 1), (3.58) 

for o,i preferable to the above for their test systems. Equation 3.58 gives the process an upper 

bound for each A increment and prevents initial A increments from being too large. 

Wu and Kofke used Pi(A) == 1 in all their presented results [Wu & Kofke(2005c)]. This 

means that no extra weight, except that involving U>..(Zi-l) , is given to the selection of Ai. 
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Wu and Kofke discussed two other ,possibilities which although int r sting w r not n id r d 

useful and will not be discussed here. 

It is worth discussing the practical implementation of A bias algorithm, arri d ut part 

of this study, as it is not simple and there may be different possibiliti s not di u d by Wu 

and Kofke. Figure 3.6 is a flow diagram describing one FG swit h of th /\ bias algorithm. 

Find 
corrected 

work and stop 

Figure 3.6: Flow diagram describing the A bias algorithm. Step numbers are marked in 
light blue. 

A bias FG attempts to find a new A value from a distribution dictated by the prol ability 

density Pqi - 1 (Ai). In practice, sampling from this distribution can be achieved by: Taking a 

random Ai from Ai -l to ai (step 5 figure 3.6) and accepting or rejecting it through compari-

son of the probability density Pqi - 1 (Ai) to a random value (rand(O-l) in step 8, figure 3.6). If 

Pqi - 1 (Ai) is less than rand(O-l) it is rejected and a new Ai is selected. This is repeated until a Ai 
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is accepted and this value then becomes Ai-I (step 9). As Pqi - 1 (Ai) is a probability density it 

must be normalised in some way such that different calculated Pqi - 1 (Ai) values are equivalent. 

This can be done either by selecting rand(O-l) from the range 0 to Pqi - 1 (Ai) or by finding the 

maximum value for Pqi - 1 (Ai) through equation 3.53 (step 4 in figure 3.6) and using this to 

normalise the present Pqi - 1 (Ai) so it will be in the range 0 to 1 and then also finding rand(O-l) 

in the range 0 to 1. 

Step 3 in figure 3.6 utilises equation 3.54 and must integrate over the system potential froIll 

the current value of A (Ai-I) to the next set maximum A value (ai) to produce the Rosenbluth 

weight (Ri(qi-I; Ai-I)). This integration must be performed numerically and in this study tlw 

trapezoidal rule was used. It is important that this numerical integration calculation is accurate 

otherwise the biasing of new A values described above will be incorrect. As the potential of a. 

system often undergoes constant fluctuation, 1000 sample points from Ai-I to ai were used to 

ensure an accurate integration result. Evaluating the potential 1000 times can be extremely 

demanding on a large system and it is advisable to limit energy evaluations for this calculatioll 

to the forcefield terms directly affected by a change in A. 

Configurational bias FG sampling uses the idea of Rosenbluth sampling to bias the use of 

configurations which are used to increment A to produce switches with a lower Wdiss . The 

structure of a standard FG switch has a predefined set of uniformly spaced points where A 

increments are performed. This means that the system configuration present at each of these A 

increment points is used whether or not these configurations allow the low work values preferred 

in producing a low W diss. 

At the point a A increment is performed, configuration bias FG selects a system configu-

ration from a subset of those configurations the simulation has taken up since the previous A 

increment. The choice of configuration is biased to one which produces a low work value when 

the A increment is performed. Thus, the switch produced via configuration bias may be more 

important to the exponential average, exp( -jJW), in equation 3.6. 

The configuration to be used in a A increment is selected from a set of m taken at uniform 

intervals from the simulation since the previous A increment according to, 

(3.59) 
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In equation 3.59 the Rosenbluth weight defined as, 

m 

Ri(.>\i) = L exp{ -,Bj[U'\i(Qi-1,j)]}. 
j=l 

(3.60) 

The term f[U'\i(qi-l,j)] is a function of the potential for which Wu and Kofke list two possible 

options: Configuration bias-c, where as with A bias, f[H'\i(Zi-1,j)] = O'.KH'\i(Zi-1) and O'.K has 

the same definition as for A bias (equation 3.58). Configuration bias-d where j[H'\i(Zi-1,j)] = 

H'\i (Zi-1) - H'\i_l (Zi-1) and is simply the work incurred in performing a A increment. 

Again the definition of the work performed on each switch must be modified to account for 

the differences in internal structure as follows, 

(3.61) 

With configuration bias-d equation 3.61 collapses to contain only the term containing the Rosell-

bluth Weight. 

Figure 3.7 is a flow diagram describing a single switch of configurational bias FG. 
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Pick configuration 
biased by P,)Qi-1) 

I 

Figure 3.7: Flow diagram describing t he configuration bias algorithm. St p numb rs ar 
marked in light blue. 

The configuration bias algorithm should in t heory be less computationally demanding that 

the ). bias algorithm described above as it does not involve a computationally xpensiv num r-

ical integration. However, 'as the whole system configuration must be stor d (step 3 in figur 

3.7) m times, m must be limited by available memory. A good check on correctn s. of the 

algorthm is that the sum of PAi (qi- l) S far all stored configurations for a ). incr ment shoull be 

one. For this implementation the biased selection of stored configurations (. tep 7 in figur 3.7) 

was performed by summing PAi (qi- d for each stored configuration and which ever part of this 

sum a random number from 0 to 1 falls in, is chosen. 

As recognised by Wu and Kofke the present ). bias algorithm has limitations for systems 

with small or no phase space overlap [Wu & Kofke(2005c)]. If a ). bias switch has barriers to 

sampling after the init ial stage's, ). increments will be small and the final forced increment will 

incur large amounts of work. Wu and Kofke (2005a) attempt to alleviate this problem to some 

degree through a hybrid of both), and configuration bias. 

Hybrid bias FG is organised so that first a number of system configurations are generated 
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and one chosen in a way biased by the subsequent A increment. The size of the subsequent A 

increment is then chosen as discussed above with A bias. The hybrid bias probability density 

for selecting the configuration with which to perform a A increment is, 

(3.62) 

In equation 3.62 ~(qi-I; Ai-I) is the same term as found in the A bias method described above 

(equation 3.54) and the Rosenbluth weight R~(Ai) is defined as, 

m 

R~(Ai) = L ~(qi-I,j; Ai-d· 
j=1 

Then the modified definition of the work for hybrid bias FG is, 

(3.6~1) 

if 1 ~ i < n 

if i = n. 

(3.fl4) 

Wu and Kofke only consider the use of hybrid bias with the configuration bias-c definitioll 

of J[U>'n (qn-I)]. This is because the aK parameter was shown to be important to A bias, awl 

hybrid bias mainly uses the parameters of A bias. 

Thus, Wu and Kofke have provided three Rosenbluth FG sampling algorithms which, with 

various parameter options, give a number of possible methods [Wu & Kofke(2005c)]. The six 

possible methods discussed above and listed in table 3.1 were investigated using four harmollic 

oscillator test systems (test systems discussed in the next chapter). The Gaussian nature of 

these harmonic oscillator systems allowed the analytical production of equilibrated configura-

tions at each step. FG switches produced with this method of sampling are still nonequilibrium, 

due to the discrete steps in A, but the nonequilibrium effects of Hamiltonian lag are minimised, 

modelling the effects of large amounts of sampling between A increments. They found that A 

bias has increased efficiency compared to original FG when applied to systems with a rea.'3011-

able amount of phase space overlap and where the size of pha.'3e space important to the startillg 

system is much larger than the destination system. Configurational bias-d FG was found to 
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give improved accuracy and efficiency compared to original FG when there is less overlap of 

end point systems A and B. 

Wu and Kofke then investigated four of these methods (2, 3, 4, 6) using standard metropolis 

Me with the same four harmonic oscillator test systems (discussed in the next chapter). In 

this study, these same methods will be investigated with similar systems and a larger wat.er-

methane system, with protocols designed to assess their suitability for calculations with larger 

bio-systems. These investigations and discussions of these systems start in chapter 3. 

Method number FG sampling method ai f[U>.." (qn-l)] 
1 A bias 1 
2 A bias i/(n - 1) 
3 configuration bias-c CtJ(U>"i (wi-d 
4 configuration bias-d U>"i (qi-d - j3U>"i_l (qi-d 
5 hybrid bias 1 CtJ(U>"i (qi-d 
6 hybrid bias i/(n - 1) CtJ(U>"i (qi-d 

Table 3.1: Parameters for six Rosenbluth FG sampling methods investigated by Wll 
and Kofke [Wu & Kofke(2005c)]. In all methods except method 4 Wu and Kofke used 
Ci'.K = liN).... 

3.3.6 FG path sampling 

As discussed above and in the literature the major obstacle to efficient use of FG calculatiolls 

is the bias of 6.F estimates due to the non-linear nature of the exponential work averag;e 

in equation 3.6 [Gore et al.(2003)Gore, Ritort & Bustamante], [Zuckerman & Woolf(2002b)], 

[Hummer(200l)]' [Shirts & Pande(2005)J. In contrast the TI based methods discussed above 

do not experience this bias as they do not involve any non-linear average (discussed [Shirts & 

Pande(2005)]). This advantage of TI over FG based methods is the motivation for another set 

of methods discussed here. 

Sun (2003) derived an expression for 6.F which utilises FG switches but is similar to TI 

based methods in that it does not contain a non-linear average. This derivation starts by 

defining a function j(as) where as is a weighting variable, using equation 3.8 above, such that, 

(3.6S) 
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where J d[ZFJ is an integration over all possible switches from systems A to Band P(zo) is the 

probability of a switch starting configuration Zo i.e. the ensemble probability of a configuration 

for system A (P(zo) = exp{-f3UA(QN)}). According to equation 3.65 the b..F is found when 

O:s = 1. Thus the derivative of fO with respect to O:s is, 

8f = -f3 J d[ZFJ P[ZFIAtJWexp{ -o:sf3W} x J d[ZFJ P[ZFIAtJexp{ -o:sf3W} 
80:s J d[ZFJ P[ZFIAtJexp{ -o:sf3W} J dzo P(zo) 

(3.66) 

In the more concise notation style of equation 3.6 (Jarzynski equality) we can denote: 

(W) = J d[ZFJ P[ZFIAtJWexp{ -o:sf3W} 
as J d[ZFJ P[ZFIAtJexp{ -o:sf3W} 

(3.67) 

The derivative (equation 3.66) above can now be written 

8f 
-J: - = -f3 (W)as f(o:s)· 
UO:s 

(3.68) 

Solving equation 3.68 for f(o:s) gives 

(3.69) 

Now the free energy difference can be expressed as: 

b..F = r1 

do:s (W)a . Jo s 
(3.70) 

Equation 3.70 is a result from which b..F can be found with a linear average which expc-

riences no internal bias. This linear average is over a new distribution weighted by the work 

and extra weighting variable O:s (exp{ -o:sf3W}). Thus the sampling employed to accumulate 

this average must sample switches such that works of a particular value have the probability 

exp{ -o:sf3W}. 

Another comparison can help understanding of equation 3.70 and the relevance of the as 

parameter: When switches are made instantly the Jarzynski equality becomes the FEP method 

described in the previous chapter. In the case of equation 3.70 instant FG switches produce 

the TI method where O:s replaces A, 
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1· (W) (8H(as )) 1111 a = 
t=OS 8as as 

(3.71 ) 

With the advent of a method of calculating t1F from a straight average of FG switches, it 

is important to understand the possible reasons, if any, for using finite switches over instant 

switches. When evaluating t1Fs of complex bio-systems, which is the ultimate focus of this 

study, barriers between regions of configurational space, due to hard potentials, can hinder 

the sampling of the necessary areas. The same is true of switch space, possibly even more so. 

The longer the switches employed between systems A and B, the easier it becomes to reach all 

areas of switch space. Also, as shown explicitly by Sun (2003) the variance of (W) as would be 

expected to increase with shorter switches. 

The actual comparison between FG path sampling (FGPS) and TI as discussed in the prc-

vious chapter is not as simple as discussed here and by Sun (2003). It should be made clear 

that although equation 3.70 collapses to equation 3.71 the a parameter is distinct from A awl 

hence different parameters are being integrated in FGPS and TI. 

A similar FG path sampling approach was developed subsequently by Ytreburg and Zuck-

erman (2004b) where only a single ensemble average must be converged to obtain t1F, called 

single ensemble path sampling (SEPS). Here a distribution is sampled from all possible switch(~s 

which weights the selection of switches with low work values such that the work average can lw 

related to t1F. In deriving their methods Ytreburg and Zuckerman (2004b) consider the sallle 

ratio seen in equation 3.8 where P(zo) is brought into the probability of a switch, P[ZFIAt], 

giving, 

(3.72) 

This can be rearranged by introducing a new, as yet undefined, work weighted distribution 

exp{ -jJt1F} 
f d[ZFl D[ZFIAtl (P[ZFIAtl/ D[ZFIAt]) exp{ -jJW} 

f d[ZFl D[ZFIAtl (P[ZFIAtl/ D[ZFIAt]) 

I:D[ZFIAtl P[ZFIAtlexp{ -jJW} / D[ZFIAtl 

I:D[ZFIAtl P[ZFIAtl/ D[ZFIAtl 

(3.n) 

(3.74) 
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where 2:D[ZFI>.tl signifies a sum over all switches produced according to D[ZFIAtl. The work 

weighted distribution D[ZFIAtl is then defined as, 

(3.75) 

Ytreburg and Zuckerman (2004b) found this choice of D[ZFIAtl to be optimal and did try 

others. With equation 3.75, equation 3.74 collapses to give an expression for t:::..F: 

1 {D[ZFI>.tl D[ZFI>.tl } 
t:::..F=:e ln L exp{-,8/2W}/ L exp{+,8/2W} . (3.7G) 

As long as equation 3.76 is correct SEPS should be more efficient than original FGPS as oIlly 

one average needs to be evaluated. 

The implementation of FGPS and SEPS requires that switches are sampled from specific 

distributions; it is important to discuss the algorithms used as they may present problems which 

affect how useful these methods are for the sorts of calculations of interest. 
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Figure 3.8: Flow diagram describing t he path sampling algorithm. Step numbers ar 
marked in light blue. 

Figure 3.8 is a flow diagram describing the samplin,g procedure for both FGPS and SEPS. 

The major difference between FGPS and SEPS with regard to figure 3.8 is the acceptance 

test (step 6). For FGPS a new switch (ZF' ) (switch 1 in figure 3.8) with work W' is acc pt d 

according to, 

. [ P[ZF' IAtlG[ZF'J exp{ -as,BWI}] 
mm 1, P[ZFIAtJG[ZFJexp{ - as,BW} . 

(3 .77) 

where G[ZF'J is the probability of generating switch 1 from switch O. For SEPS a new switch 

is accepted according to 

. [ P[ZF'IAtlG[ZF'JexP{ - ,B/2WI}] 
mm 1, P[ZFIAtlG[ZFJexp{ - ,B/2W} . 

(3.78) 
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It may be important to note that equations 3.77 and 3.78 have an extra term compared to 

the original FGPS and SEPS studies [Sun(2003)], [Ytreberg & Zuckerman(2004b)]. Ytreburg 

and Zuckerman put forwards a correction to their original acceptance criterion which is the 

form listed above [Ytreberg & Zuckerman(2004a)]. Owing to equations 3.77 and 3.78, both 

FGPS and SEPS require the calculation of the statistical weight of each switch (P[ZFI>-tl. For 

deterministic dynamics the statistical weight of a switch is simply the Boltzmann weight of its 

equilibrium starting configuration. For stochastic dynamics the statistical weight of a switch is 

the product of the Boltzmann weight of equilibrium starting configurations and the transition 

probabilities of each simulation step. 

Step 3 in figure 3.8 randomly perturbs the randomly chosen shoot configuration which will 

be the starting point for the new switch (switch 1). This is not always necessary in the case of 

stochastic dynamics as the random nature of these simulations ensures the new switch is differ­

ent from the old one. Another issue that is worth note is the need for all configurations of the 

new and old switches to be stored in memory so that they may be used as shoot configurations 

for the next switch. This means there will be an upper limit of the size of switches. 

Sun (2003) compared FGPS to the Jarzynski equality (equation 3.6) using a free energy 

difference between one dimensional harmonic oscillators with system A having a double well 

in its potential and system B having a single well. Jarzynski estimates were unable to give an 

estimate accurate within 15 kBT using lxl06 switches, whereas FGPS used 10,000 switches of 

the same length to give an accurate estimate. Also, a perturbation of the separation of two 

methane molecules in a periodic box of water was studied, with the separation being 8 A at 

system A and 4 A at system B. Again with 5 ps deterministic switches FGPS gave accurate 

estimates where the Jarzynski method did not. 

Ytreburg and Zuckerman (2004b) compared the computational time used in Jarzynski es­

timates using various switch lengths, TI with ten >- windows and SEPS with short switches for 

two dimensional harmonic oscillators with system A having a single well and system B a double 

well. They found that SEPS was over 500 times more efficient than either FG or TI [Ytreberg 

& Zuckerman(2004b)], [Ytreberg & Zuckerman(2004a)]. 

In a more recent study, Ytreburg et al. compared SEPS, TI, AIM, Jarzynski averaging, 

BAR and SEPS with the BAR estimator (SEPS-BAR) [Ytreburg et al.(2006)Ytreburg, Swend-
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sen & Zuckerman]. The SEPS-BAR method involves the use of switches in both directions with 

the SEPS method. BAR generalised to use work values from the SEPS method is, 

exp{ +,B/2W} exp{ +,B/2W} 
(3.79) 

nF 
(1 + ~~ exp{,B(Wi - ~F)}) (1 + !lE. exp{ -,B(W· - ~F)}) . 

7lR J 

The two test calculations used in this comparison were the free energy of growing a Lennard-

Jones sphere and charging of the same Lennard-Jones sphere both in a box of water. For the 

Lennard-Jones growth calculation it was found that AIM, TI and BAR were able to produce 

estimates to within 0.5 kcal.mol- 1 with around 4 times fewer MC steps, while AIM and SEPS-

BAR were able to provide the most accurate and precise estimates. For the charging of a 

Lennard-Jones sphere again AIM, TI and BAR produced estimates to within 0.5 kcal.mol- 1 

faster than the others by around 3-4 times, with BAR using 80,000 MC steps and AIM and TI 

using 145,000. AIM and BAR were deemed able to give the most precise estimates. 

While this most recent study of AIM, TI, FG, BAR, SEPS and SEPS-BAR used a solvated 

system for calculations, both the growth and charging calculations were not very demanding 

when compared to many types of calculation that may found with protein-ligand systems. 

SEPS and SEPS-BAR both suffered from costly equilibrations of their switch sampling pro-

cesses. These methods may offer advantages for very demanding calculations with large PMF 

undulations as they fully evaluate across A and do not experience bias, the two main disadvan-

tages of the other methods. For these systems AIM and BAR proved to be the most useful 

overall. 

3.3.7 Replica Exchange Fast Growth 

Combining replica exchange methodology (RE methods) with free energy methods has been 

shown to provide improvements in accuracy and efficiency [Woods et al.(2003a)Woods, Essex & 

King], [Woods et al.(2003b)Woods, Essex & King]. Combining RE methods with FG (REFG) is 

therefore deemed worthwhile. It is not possible to make the A moves discussed for RETI in the 

previous chapter between nonequilibrium switches as apart from the initial ones, configurations 

are not part of an equilibrium ensemble. Thus, combining RE and FG can only be achieved by 

performing A swap moves between configurations of the equilibrium seed simulations. A swap 
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moves would again be accepted on the basis of equation 2.56 of chapter l. 

When attempting a A swap move it is important that there is a large amount of phase 

space overlap between the two ensembles involved. Attempting A swaps between equilibrium 

seed simulations at A = 0 and A = 1 would result in an extremely low acceptance rate for all 

but the smallest perturbations. In discussions above of the best practice for FG calculations, 

the idea of dividing the A coordinate into a number of smaller intervals which are evaluated by 

independent FG calculations was found to be more efficient in many situations than performing 

uninterrupted switches from systems A to B. These differences in protocol are described in 

figures 3.1 and 3.3 above. By using a protocol with many equilibrium seed simulations across 

the A coordinate we can increase the phase space overlap of those equilibrium seed simulations 

adjacent in A. In this case of increased phase space overlap RE A swap moves carried out 

between equilibrium seed simulations adjacent in A have the possibility of a high acceptance 

rate. The use of RE A swap moves in the generation of FG starting configurations should in 

theory reduce error associated with incomplete sampling of large systems. 

REFG methods will be investigated in this study and compared to original FG and RETI 

to discern if they have any application in protein-ligand free energy calculations. 

3.4 Calculating errors, and inaccuracies of free en­

ergy calculations 

When producing a computational estimate of b.F there are often errors. It is extremely useful 

to be able to measure the error of an estimate and to be able to declare an estimate free of 

error. The accumulation of averages of simulation configurations and of FG switches can be 

discussed together as general measurements when error calculation is being discussed. 

Errors in simulation averages have their origins in the fact that sampling of systems with 

infinite phase spaces can never be complete. However the ergodic hypothesis discussed in the 

previous chapter allows the convergence of simulation averages with a finite amount of sampling. 

In practice, simulation methods are often unable to negotiate large energy barriers in the phase 

space of bio-systems, and get stuck sampling only from local minima. Thus two independent 

simulations can converge to different averages as they have sampled different regions of phase 

space. 
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General practice for estimating errors in simulation averages is to use statistical measures of 

the variance of averages due to K independent blocks of measurements (block variance meth­

ods). It is difficult to measure the independence of blocks of measurements. One approximate 

method for finding independent block sizes for block variance methods is to increase the size of 

blocks until the calculated error reaches a plateau and does not change significantly. Hummer 

(2001) plotted error estimates as a function of In K to find estimates with independent blocks, 

as the estimates plateau as K gets smaller (independent blocks method). 

The block variance methods discussed here can only give an idea of the variance in the data. 

If a simulation is unable to overcome barriers in the energy surface of a system and only samples 

from a subset of phase space these methods will not give a good estimate of the possible range 

of results. The best way to gauge the possible range of results is to independently repeat cal­

culations a number of times. This can be extremely time consuming for protein-ligand systems 

as these types of calculation can be slow. 

Another method routinely used to gauge the true convergence of free energy calculation is 

to engineer a cycle of calculations such that the overall b.F is zero. Owing to the fact that 

free energy is a function of state a pathway of system perturbations starting and ending with 

the same system will have a b.F of zero. If the same cycle of computational estimates of the 

b.F is equal to zero it signifies the possibility that the calculations in the pathway are truly 

converged. The random balancing of unconverged b.F estimates is of course a real possibility 

and this method of cycle closure should not be relied upon not to give false positives. 

Of course for non-linear averages such as that in the Jarzynski equality (equation 3.6) 

another source of error is the bias of the average which is not explicitly considered in block 

variance methods. Various methods of considering the bias of non-linear averages have been 

discussed above and evaluations of the relative size of statistaical error and bias can be found 

in the literature [Hummer(2001)]' [Gore et al.(2003)Gore, Ritort & Bustamante], [Shirts & 

Pande(2005)], [Wu & Kofke(2005a)]. The Kofke bias measure discussed above is able to give 

estimates of bias-free results for Jarzynski calculations where the work distribution is Gaussian. 

The necessary Gaussian nature of Kofke bias estimates may be a major drawback as many 

systems of interest may not have work distributions which are Gaussian. However the work of 

Jarzynski (2006a) may give hope of similar measures of the bias of FG calculations which are 

universally applicable. In this case the bias of J arzynski averages may become an advantage 



CHAPTER 3. NONEQUILIBRIUM FREE ENERGY METHODS 86 

giving the ability to predict convergence. 

The aim of this study is to investigate the application of free energy calculations to drug 

design and therefore protein-ligand systems. Thus, it is important not to forget that possibly 

the most important and difficult area which must be mastered in avoiding errors in t::.F esti­

mates in comparison to experiment is the building of an accurate model system. 

3.5 Attributes and limitations of relevant methods 

As discussed in the main introduction, this study is concerned with finding the most appropri­

ate methods for fast and accurate computational calculation of ligand binding affinities such 

that they may be used at the lead optimisation stage of the drug design process. At present 

the goal of using free energy calculations in drug design is not realised. What is necessary for 

this to become reality? Some members of the drug design industry feel a successful method 

would need to be able to calculate the relative binding free energies of a set of lead drug candi­

dates (around 7-15 ligands) for a particular target overnight. Of course it is desirable that this 

method could deal with a group of ligands which were highly heterogeneous in structure but 

this is not absolutely necessary. The most important aspect of these calculations is that they 

are reliable and give results that large pharmaceutical companies will risk money on. 

There are examples of calculations which have achieved the benchmark discussed in the 

paragraph above using FEP the oldest and most basic method discussed here [Price & Jor­

gensen(2000b)]' [Price & Jorgensen(2000a)], [McDonald & Still(1996)]. Also, there are exam­

ples of studies using more sophisticated methods and achieving relatively fast and accurate 

results [Michel et al.(2006)Michel, Verdonk & Essex]. However, these examples are still very 

system specific and generally limited to groups of ligands which have a strictly common struc­

ture (congeneric set of ligands). At present, to move beyond these congeneric sets of ligands 

either a dual topology free energy methodology must be employed or a non-rigourous method 

such as MMPBSA. 

MMPBSA has been shown to be unreliable by some studies [Pearlman(2005)] [Kuhn et al.(2004)Kuhn, 

Gerber & Stahl] and may not be able to reproduce results of the quality needed as discussed 

above. Dual topology free energy methods suffer from large amounts of sampling error which 

can result in noise and convergence problems. At present dual topology calculations need many 
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times the amount of simulation sampling of single topology methods. Thus, faster and more 

efficient free energy methods are still required. 

The speed of a free energy calculation can be measured in a number of ways, normally either 

computational time or wall clock time. Computational time is the amount of time it would 

take a single processor to complete the task at hand whereas wall clock time is the amount of 

time the task takes regardless of the number of processors used. In terms of carrying out the 

calculations at hand if unlimited funds are available to invest in unlimited computers all that 

matters is wall clock time. 

FG based methods have the advantage that calculations can be parallelised on a large scale, 

while other methods are able to utilise very limited parallelisation or must be run on a single 

processor. This is a large advantage often overlooked by using comparisons of computational 

time. If many processors are available then FG may be able to run calculations at a fraction 

of the wall clock time of other methods. Thus this study will investigate some of the FG based 

methods discussed above and compare them to the established equilibrium methods TI and 

RET!. 

All of the FG based methods discussed above have been investigated to some degree. The 

extrapolation methods discussed above have been investigated. However, any extrapolation 

results are not discussed here as investigations were not completed due to their unfavourable 

nature. FGPS and SEPS, although powerful and promising methods, are not easily paral­

lelised; indeed SEPS must be run on a single processor. For that reason FGPS and SEPS will 

not be investigated here. All of the remaining methods unless otherwise stated are listed in 

a table 3.2 with any abbreviations, figure legend labels and associated equations or descriptions. 
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Method name Abbreviation Figure legend Type Description 
Jarzynski none Jarz Fwd/Bwd Estimator Equation 3.7 

Fluctuation FD FD Fwd/Bwd Estimator Equation 3.11 
dissipation 

Symmetric A none Symmetric A Estimator Equation :3.5 
Symmetric B none Symmetric B Estimator Equation 3.12 

Bennett's BAR BAR Estimator Equation 3.23 
acceptance ratio 

Gore bias none Jarz Fwd/Bwd-GBias Bias correction Figure 3.4 
Koike Bias none Koike Bias fwd/bwd Bias measure Equations 3.41 

and 3.43 
A bias none A bias Switch sampling Figure 3.6 

Configuration bias-d none Confbias-d Switch sampling Figure :t 7 
Hybrid bias none Hybridbias Switch sampling Equations 3.62, 

3.63 and 3.64 
Division of A -BY? -BY? Switch sampling Figure 3.:3 

REFG none REFG Seed sampling Described above 
and equation 2.56 

Table 3.2: Table of all FG methods to be investigated in this work. The figure legend 
column contains the labels used for each method in all figures. The type column gives a 
simple description of the method with a reference to the equation of description in the 
description column. 

The methods of table 3.2 were implemented using the ProtoMS 2.1 MC application [Woods 

& Michel(2005)] often with large associated scripts [Cossins(2007)]. To be clear, it is possible to 

combine many of the methods of table 3.2 in the same calculation, and this study will be con-

cerned with finding the most efficient combination for use with protein-ligand systems. These 

methods have been applied to simple one dimensional harmonic oscillator systems in order that 

implementations may be validated and their performances measured against results found ana-

lytically and compared to the established equilibrium methods. Methods deemed most suitable 

will then be applied to calculations involving solvent rearrangements, as this is a major factor in 

protein-ligand calculations and again compared to the established methods. Then the best FG 

based methods will be applied to two sets of protein-ligand calculations recently presented by 

Michel (2006) and results compared. The results of this study will ascertain whether any of the 

FG based methods discussed above have the attributes to be routinely applied to protein-ligand 

calculations. 



Chapter 4 

Harmonic Oscillator systems 

4.1 Introduction 

In all areas of science it is important to be careful and test all your ideas and methods. Fast 

Growth (FG) is a relatively new method and there are still on-going discussions in the literature 

as to whether or not the Jarzynski equality (equation 3.6) is exactly thermodynamically and 

mathematically correct [Jarzynski(1997b)], [Cohen & Mauzerall(2004)]' [Jarzynski(2004)], [Co-

hen & Mauzerall(2005)]. Thus it is important to thoroughly test FG and our implementation 

of it. Testing can be done on very simple models which can be evaluated quickly and results 

checked with confidence by comparison with analytical or exact numerical solutions. 

4.2 Harmonic Oscillator Models 

The independent harmonic oscillator model (IHO) is essentially a simple spring in vacuum. 

To test our FG implementations we can define two IHO systems and calculate the free energy 

difference (flF) between them. Systems A and B both have the same number of oscillating 

particles, N, with differing Hamiltonians, 

N 

HA = LWAX1 
i=l 

N 

HB = LWB(Xi - xO)2 
i=l 

(4.1) 

(4.2) 
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where Xi is the reference coordinate for particle i and WA and WE are the force constants of the 

two systems which control the size of oscillations the particles will undergo. WA and WE control 

the size of phase space each system explores. Xo displaces the reference position of particles in 

system B which together with WA and WE gives control over the amount of phase space overlap 

between the systems. 

This IHO model is very simple and we can calculate many of its properties analytically, 

including !:1F which can be found using equation 4.3. This is very useful as the result from our 

protocol can be compared to the right answer rather than an answer found using an exhaustive 

free energy protocol. 

!:1F = -NkETln -1 (WE) 
2 WA 

(4.3) 

The IHO systems described here were originally proposed by Wu and Kofke in their study 

of Rosenbluth FG sampling [Wu & Kofke(2005c)]. Similar IHO systems were used to test FG 

by Shirts and Pande in a slightly earlier study [Shirts & Pande(2005)]. As we have implemented 

the FG methods developed by Wu and Kofke for our study it was convenient to validate and 

test our implementations on the same test systems. The parameters of these systems are listed 

in table 4.1. 

Each of the cases described in table 4.1 is set up in an attempt to model difficulties en-

countered with free energy calculations on more complex, chemically relevant systems. Those 

difficulties are: if important phase space of systems A and B is in different places as the sys-

tem is perturbed, from A to B, it is likely that the system will be in a configuration which is 

unfavourable for the Hamiltonian of system B and that large energies will result, which can 

hinder convergence (energetic barriers). Energetic barriers are increased as Xo is increased, 

and the amount of important phase space overlap between systems A and B decreased. If the 

important phase space of one end point (A or B) is much larger than the other as the system 

is perturbed from A to B it is likely that the system will be in an area of phase space within 

the larger important phase space but outside of the smaller important phase space again caus-

ing large energies and hindering convergence (entropic barriers). Entropic barriers, which may 

come about both by decreasing phase space overlap and as the relative size of the destination 

system's important phase space is decreased compared to the starting system i.e. increasing 
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the WE/WA ratio. 

Case N wB(kcalmol 1) wA(kcalmol >1) Xo (3b.F 
A 10 500 1 0 31.07 
B 10 20 1 0 14.98 
C 10 20 1 1 14.98 
D 10 5 1 3 8.05 

Table 4.1: Parameters of four test IHO systems used to test our FG implementations 

It is instructive to visualise the phase space of the end point systems of cases A-D. As each 

of the particles in each case is independent of the other, visualisation can take the form of phase 

space distributions for a single particle. It becomes easy to understand the problems involved 

in sampling from both distributions in each of the cases when studying figure 4.1. 
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Figure 4.1: Phase space distributions of single particles for IHO cases A-D as defined in 
table 4.1. Solid lines are phase-space distributions for system A and dashed lines are for 
system B. The x axis is the dimensionless particle coordinate and all distributions are 
normalised to unity . 

• Case A is an example of an extreme subset relation; WE is extremely large in comparison to 
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WA. Thus, it becomes improbable that a simulation will sample configurations important 

to system B while close to system A. 

• Case B is an example of a subset relation; WE is larger in comparison to WA. This relation 

is similar to Case A but the entropic barriers associated with the relative size of systems 

A and B are smaller. 

• Case C is an example of a subset, partial overlap relation combination; WE is larger in 

comparison to W A and is also moved to the right. In this case it is very improbable 

that the simulation will sample system B while close to system A as the most probable 

sampling areas of the two systems are in different places. 

• Case D is an example of a slight subset, non-overlap relation combination; WE is slightly 

larger in comparison to WA and is moved far enough to the right so the two distribu­

tions share no important phase space at all. In this case it is extremely difficult for the 

simulation to sample phase space important to system B while close to system A. 

We would expect to find differing combinations of the problems represented by cases A-D in 

more complex systems. In the case of protein-ligand perturbations, barriers linked to solute­

solvent and solute-protein interactions cause many of the difficulties encountered and energy 

surfaces are extremely large and rugged. The IHO systems investigated here are unable to 

represent these problematic interactions and energy surfaces well, and this analysis should not 

be regarded as a good model specifically for protein-ligand perturbations but instead illustrate 

the specific issues involved. 

4.3 Simulation of Harmonic Oscillator Systems 

All IHO systems were set up as molecules with eleven particles and ten bonds. Each of the 

bonds was setup as an IHO with the force constant w, all other possible interactions were not 

used. IHO simulations were carried out using a modified version of our ProtoMS 2.1 Monte 

Carlo simulation software [Woods & Michel(2005)J. All IHO simulations were coupled to A 

through a single topology switching protocol. FG starting configurations were generated every 

200 MC trials from equilibrium sampling of the end point systems. 
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4.4 Harmonic Oscillator Results 

4.4.1 Method Validation 

93 

This validation must have two levels. First, FG methods must be able to produce b.Fs which 

are very accurate compared to the analytical value. Second, FG methods should be able to 

reproduce the efficiency trends which are demonstrated by Wu and Kofl<e [Wu & Kofl<e(2005c)J. 

To achieve this validation we make a direct comparison of our results with Wu and Kofke. 

Before making the proposed comparison there are some important points to consider. When 

publishing their study, Wu and Kofke defined the ratio WE/WA with out giving the actual val­

ues for WE and WA, for each of the cases A-D. While this information is enough to describe 

the relative size of the important phase spaces of the two end point systems A and B, it does 

not define the size of the important phase spaces relative to the displacement Xo (problem 1). 

Problem 1 means it is hard to know how big to make the variable Xo in cases C and D. If we 

set WE and WA too high compared to Xo then the energetic barriers encountered will be bigger 

than those used by Wu and Kofke and methods will be less efficient. 

The range of possible MC particle move sizes are also not mentioned (problem 2). Problem 

2 could affect the efficiency of free energy estimates in all of the IHO cases. However as long 

as Wu and Kofke did not vary the size of MC moves between cases or between MC moves, this 

is a simple case of finding an optimal maximum move size. 

The ten IHOs in each of cases A-D are part of one molecule in this study. This means that 

each of the bond lengths (i.e. independent oscillators) will be moved for each MC trial. It is 

not clear whether this is also true for the study carried out by Wu and Kofke (problem 3). 

This will result in possible differences in MC trial acceptance rates and the efficiency of b.F 

calculations. 

Wu and Kofke describe their coupling of A to the Hamiltonian as a linear scaling of the 

reference and target Hamiltonians (equation 4.4). This method uses two separate systems in 

a dual topology arrangement. The A coupling used in the present study is achieved by scaling 

the parameters of a single system in a single topology arrangement as in equation 4.5. 

(4.4) 
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N N 

H),(z ) = 2:)(1 - A)WA)(Xi )2 + 2:)AWB) (Xi - /\ XO) 2 ( 4.5) 
i=l i= l 

H in equations 4.4 and 4.5 is the Hamiltonian and z is the present system onfiguration. 

What effect this difference in perturbation method will have is not clear (problem 4). We an 

attempt to understand the differences between these two method by plotting th important 

phase space at the point of each A increment (figure 4.2). 
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Figure 4.2: Phase space distributions of single particles using single and dual topology 
methods for IHO cases C and D from table 4.1. Each of the coloured distribut ions 
represents the system at a particular value of lambda. The x axis is the dimensionl ss 
particle coordinate and all distribut ions are normalised to unity. 

It is unclear whether either dual or single topology calculations have an advantage for these 

IHO cases. In t heory it is possible t hat dual topology sampling has an advantage for cases C 

and D as the most important regions of phase space (the distribution peaks in figure 4.2) do 

not shift from their previous position as A is changed, as. they do for single topology sampling. 
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However, the dual topology method may have higher levels of sampling error compared to single 

topology as the system does not truly mutate as A changes and systems A and B could be in 

different areas of phase space. When applied to large complex systems (such as protein-ligand 

systems) the high levels of sampling noise generally found with dual topology methods can be a 

large disadvantage. Therefore single topology methods have been used through out this study 

as the main focus is towards calculating ligand binding affinities. The issues involved in this 

comparison of dual and single topology IHO calculations are not clear and their clarification 

is not within the scope of this study. Thus, it should be noted that this is another source of 

difference between the present study and that of Wu and Kofke [Wu & Kofke(2005c)J. 

Figure 4.3 shows the inaccuracy of f36.F estimates (i.e. the difference between the FG esti­

mate and the analytical result of equation 4.3) as the numbers of FG switches used per estimate 

is increased, using the different FG sampling methods discussed in chapter 3. Unless otherwise 

stated, when comparing to the work of Wu and Kofke, FG switches consist of 10 6.AS with 

1000 MC trials between each 6.A. Also, figures in this study use the following abbrieviations: 

OrigFG denotes original FG estimates, Lambias denotes A bias FG estimates, Confbias-C de­

notes configuration bias-c FG estimates, Confbias-D denotes configuration bias-d FG estimates 

and Hybridbias denotes hybrid bias FG estimates. 

Another issue to be aware of when studying figure 4.3 is the method of data point averaging 

used. Wu and Kofke describe" additional outer repetitions" made to better characterise the 

inaccuracy in the free energy difference in their estimates. These outer repetitions are used 

to eliminate the statistical uncertainty by averaging each FG estimate over many individual 

calculations. Wu and Kofke used 10000 outer repetitions. It is unclear whether this means 

10000 independent FG switches were used for the analysis of each case, or if 10000 independent 

FG estimates were made for each data point (this is problem 5). Our analysis has used the 

former of these two possibilities. Thus, for each case in figure 4.3 10000 FG switches were 

made. Hence, the data point for 1 FG switch per FG estimate was averaged over 10000 esti­

mates and the data point for 1000 FG switches per FG estimate was averaged over 10 estimates. 
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Figure 4.3: IHO results using all Rosenbluth FG methods and original FG for ases A-D 
showing inaccuracy in j3 !:::..F against numbers of trajectories where a trajectory has 10 A 
increments and 1000 Me trials per A increment. For configuration bias 10 configuration 
samples were used per A increment . 

Case B is the least demanding of cases A-D , shown in figure 4.3. All the Kofl<: FG metho 1 

can calculate a free energy very close to the analytical value. Our results , for case B , r produce 

those seen by Wu and Kofre very well [Wu & Kofl<:e(2005c)]. The calculated free energi s div rge 

from the Wu and Kofre results and give a less clear idea of the inaccuracy as we approach 1000 

FG trajectories for Case B, this may be due to problem 5. 

Case A is a more demanding free energy difference to evaluate than Case B. Consequently, 

original FG can only estimate b.F to within 20-30 units. Hybrid bias and A bias FG give a 

performance improvement of almost an order of magnitude. Configuration bias-C and D FG 

show improved efficiency over original FG. This result is in line with that seen by Wu and 

Kofre. 

Case C is similar to Case B but provides an extra barrier to sampling. · Our results for 

Case C show significant difference from those of Wu and Kofre. Original FG displays similar 

performance when only one FG switch is used for each {3b.F estimate. However as t he numbers 



CHAPTER 4. HARMONIC OSCILLATOR SYSTElVIS 97 

of switches is increased our results do not have the same improvement in accuracy with our 103 

switches data point being at around 6 inaccuracy units and that of \Vu and Kofke's being at 

around 2. Wu and Kofke show hybrid bias and A bias to perform better than original FG in 

this case whereas our results show them to perform slightly worse. This suggests that there is 

some difference between the calculations, probably that discussed as problems 1 and 3. 

Case D has very similarly sized areas of important phase space for systems A and B but 

with larger entropic barriers to sampling than case C. Our results for this case show the same 

trends as Wu and Kofke but with increased inaccuracy for all methods except configuration 

bias-d. 

We have managed to almost exactly reproduce the results of Wu and Kofke for cases A 

and B. Inaccuracies for cases C and D show the same trends as those in the Wu and Koike 

study except that the amount of displacement relative to the size of important phase space 

(the effective size of xo) is larger in our study, consistant with problem 1. This problem can 

be demonstrated by changing the size of WE and WA relative to Xo while keeping the ratio 

WE/WA the same. Two more examples of cases C and D were used as detailed in table 4.2 and 

figure 4.4. We would expect that our FG methods to be more efficient for new cases CxO.5 and 

DxO.5 and less efficient for cases Cx2 and Cx2. It is also apparent that as the size of the Xo 

displacement parameter is increased relative to the size of the A and B phase space i.e. the A 

bias methodology gives a larger disadvantage, whereas the confbias methodology gives a larger 

advantage. 

Case N wB(kcalmol· 1
) wA(kcalmol 1

) Xo (3tlF 
Cx2 10 40 2 1 14.98 

CxO.5 10 10 0.5 1 14.98 
Dx2 10 10 2 3 8.05 

DxO.5 10 2.5 0.5 3 8.05 

Table 4.2: Parameters· for new case Cx2, CxO.5 and Dx2 and DxO.5 systems 
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Figure 4.4: Phase space distributions of single particles for IHO new cases C and D as de­
fined in table 4.2. Solid lines are phase-space distributions for system A and dashed lines 
are for system B. The x axis is the dimensionless particle coordinate and all distributions 
are normalised to unity. 

Figure 4.5 shows that, as predicted, results for cases CxO.5 and DxO.5 all FG methods be-

come more effcient compared to cases Cx2 and Dx2. They are less efficient compared to cases 

C and D. This confirms that problem 1 is an issue for this comparison. Average estimates for 

case CxO.5 with configuration bias-d become smaller than the analytical result at around 15 

switches, shown in figure 4.5 as the red line curving down to below 0.01 and then immediately 

increasing again to above 0.1. This behaviour is simply due to statistical error as inaccuracies 

become very small and data points are averaged over fewer estimates. 

The relative performance of FG methods for case CxO.5 is the same as that seen for case C in 

figure 4.3. Therefore case CxO.5 is still different from case C results seen by Wu and Kofke [Wu 

& Kofke(2005c)] apart from configuration bias-d displaying the least inaccuracy. This suggests 

there is still a systematic difference in the protocols used. Issues discussed as problem 3 may 

explain the discrepancy in relative performance of these methods. If the protocol used by Wu 

and Kofke involves fewer MC trials between each ..\ increment, configuration bias methods and 
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original FG would be expected to show an improvement r lat ive to A bia m thod a onfigu-

ration bias methods rely on a broad sampling of phase space between A in r m nts to find th 

best configuration for a A increment . This is seen when comparing all case C analy s of thi 

study with case C of Wu and Kokfe. 

The relative performance of FG methods for case DxO.5 is t he same as that een for ase D 

and is therefore similar to case D results of Wu and Kofke. T he inaccuracies of all FG m th d 

for case DxO.5 are much more similar to those seen by Wu and Kofke, alt hough they are n t 

identical. 
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Figure 4.5: inaccuracy in f3 l::.F against numbers of t rajectories for new cases C and D, 
where a trajectory has 10 A increments and 10.00 MC t rials per l::.A. For confbias 10 
configuration samples were used per l::.A. 

For cases A and B we have quantitatively reproduced the results of Wu and Kofke. The 

differences found for cases C and D have been rat ionalised t hrough the differences in proto-

col from the study of Wu and Kofke. While the difference in protocol may have harmed the 

comparison with t he study of Wu and Kofke, the protocols to be used in this study have been 
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validated and the possible improved performance of these FG methods demonstrated. For case 

A, Hybrid bias FG has been shown to be the most efficient, for cases B, C and D Configuration 

bias-d is the most efficient. 

To be sure that all methods used in this study are correct, another analysis was carried 

out using cases A, B, C and D. The idea in this extra analysis is to produce convergence of 

flF for all our FG estimators. All FG switches are the same as switches in the previous FG 

method comparison with 10 flAs and 1000 MC trials between each flA in both the forward 

and backward directions. Additionally the convergence heuristic described by Wu and Kofke 

(Kofke bias) will be tested for each of cases A-D [Wu & Kofke(2005a)]. When the Kofke bias 

measure is above zero convergence of an FG calculation is predicted. 

In practice the Kofke bias measure has been implemented with some slight differences from 

that described by Kofke and in the FG background chapter [Wu & Kofke(2005a)]. When 

studying equation 3.41 it is worth realising that the Lambert W function (W L) will only accept 

positive values for its input. This being the case SA or SB must be positive. Owing to the use 

of the "fail safe" definitions of equation 3.43, it is, in some cases possible to find negative SA 

and SB values. In the case that either SA or SB is negative the alternative definitions, 

(,8W) A-->B + (3flFB-->A, 

((3W) B-->A + (3flFA-->B· 

are used to replace only the S value found to be negative. 

(4.6) 

(4.7) 

In figure 4.6, estimators which require FG switches in both directions effectively use twice 

the number of FG switches shown. Figures in this study use the following abbrieviations; Jarz 

Fwd denotes the J arzynski Estimator in the forward direction and J arz Bwd in the backwards 

direction, Jarz Fwd-GBias denotes the Jarzynski estimator corrected by the bias as calculated 

by Gore et al. in the forwards direction and Jarz Bwd-GBias in the backwards direction [Gore 

et al.(2003)Gore, Ritort & Bustamante], FD Fwd denotes the fluctuation-dissipation estimator 

in the forwards direction and FD Bwd in the backwards direction, Symmetric A and B denotes 

the symmetric A and B estimators, BAR denotes Bennett's acceptance ratio and analytical FE 

denotes the analytical free energy difference. Results for relatively inaccurate extimators may 

be omitted from a figure and legend in favour of gaining extra detail for the more accurate 
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estimators. Errors for all results in this chapter are calculated using the block variance method 

using 10 blocks, apart from the FD estimators which use the independent blocks method, both 

described earlier in the main introduction. 

For case A, neither forwards only, nor backwards only switching with any estimator has 

produced a good !J..F estimate. However, BAR converges to a relatively accurate answer at 

around 20 thousand switches. This is reflected by the Kofke bias measure as both forward 

and backward predictions are well below zero. Surprisingly, Case B is very different; here only 

estimates using forward switches and the Jarzynski estimator are accurate and converged. The 

inaccuracy of estimates using switches in the backwards direction is possibly due to the dif­

ficulty of sampling configurations important to system A from a simulation close to system 

B. This inaccuracy of backwards switches for case B is large enough to inhibit the ability of 

BAR to give accurate estimates. The measure predicts that backwards J arzynski estimates are 

converged with a value well above zero. The forwards value Kofke bias value is just below zero. 

This Kofke bias convergence measure is obviously wrong in this case. 

Cases C and D are similar and show that only BAR and the symmetric B estimators are ac­

curate and easily converged. The relative displacement of the important phase spaces of systems 

A and B in cases C and D creates a sampling barrier which is seen in estimators using switches 

in one direction. It is interesting that the symmetric B estimator gives accurate estimates for 

case C. Case C is a partial overlap relation but the size of the additional subset relation means 

that the barriers experienced in the forwards and backwards directions are not expected to be 

similar; consequently the symmetric A estimator is highly inaccurate. The Kofke bias predicts 

that forwards and backwards Jarzynksi estimates are not converged for cases C and D. 
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Figure 4.6: !J.F estimates calculated using original FG with all estimators using 2x l08 
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4.4.2 Best practice for accurate 6 F p redict ion 

IHO systems take a very small amount of computer time to sample and simulat T herefore, 

it is possible to explore t he parameter space of our FG methods more fully than w could with 

other , larger , more demanding systems. 

It is interesting to consider the effect of varying the numbers of A increment an 1 amount 

of sampling between each A increment for t he same number of overall configurations used in a 

switch . It is not immediately obvious whether FG switching protocols differing only in numb rs 

of A increment and amount of intervening sampling will have subst antially different performance 

characteristics. With this in mind a set of nine switching protocols has been designed to be 

used with each of t he IHO cases A-D and each of our implemented FG sampling methods and 

estimators (table 4_3) . Configuration bias calculations with fewer t han 25 MC trials between 

A increments will have 5 sampled conformations to pick from for each A increment rather than 

10, as is the case with all other calculations. All FG calculations use the same start ing configu-

rations where possible to allow closer comparison of t he different protocols. T he figures in this 

section display the number of FG switches for t he whole calculation on the x-axis. Owing to 
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the exhaustive nature of this analysis, configuration bias-c will not be investigated as previous 

results have shown it to be inferior to configuration bias-d in all regards. 

Protocol lambda inc's MC trials Configurations/Switch Configur ations / Calculation 
1 10 100 1xlO::! 1x107 

2 50 20 1x10::! 1x107 

3 200 5 1x10::! 1x107 

4 10 500 5x10::! 5x107 

5 50 100 5x10::! 5x107 

6 200 25 5x10::! 5x107 

7 10 1000 1x104 1xlOI:! 
8 50 200 lx104 1x101:! 
9 200 50 lx104 1x101:! 

Table 4.3: IHO test FG switching protocols 

The present analysis has a very large amount of results, which would be difficult to display 

in full. In each of the following plots only data of interest is displayed. Results of interest are 

defined as results which show reasonably good performance relative to all other FG methods. 

In demanding cases, the FD estimator and Gore Bias estimator give wildly incorrect results and 

large statistical errors. Also in cases with large differences between the forward and backwards 

calculations the symmetric estimators are inaccurate. These estimators will be referred to in 

this work as the poorer estimators. In some figures below results for the poorer estimators may 

be displayed without their statistical errors as these errors are large and can obscure the figure. 

Case A: Extreme Subset Relation 

Figure 4.7 shows a small yet instructive subset of 6.F estimates using original FG on Case 

A. Other results from this analysis are displayed in appendix C. The 6..\ = 200, MC trials = 

50 protocol seems to display the most accurate estimates and lowest statistical uncertainties. 

The J arzynski estimator gives the best estimates of the single direction estimators, while BAR 

is most accurate overall for all of the protocols tested. The FD and symmetric estimators are 

persistantly very inaccurate due to the challenging nature of the entropic barrier present in case 

A. Only with the 6..\ = 200, Me trials = 50 protocol does the symmetric B estimator produce 

estimates relatively close to the analytical free energy difference. Also, the Kofke bias measure 

becomes positive when all 10000 forward switches are used with the 6..\ = 200, MC trials = GO 

protocol [Wu & Kofke(2005a)]. 
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The forwards J arzynski calculation gives better estimates than the backwards calculation 

in each of the nine protocols displayed apart from the 6."\ = 10, rvIC trials = 100 protocol. 

For the 6."\ = 10, MC trials = 100 protocol the backwards Jarzynski estimate is better than 

the forwards until at least 16000 FG switches are used in estimates when accuracy is similar in 

either direction. 

The behaviour of the forwards and backwards calculations can be explained through the 

phase space relationship and work distributions. The much larger phase of system A is able 

to access the whole of the smaller system B phase space, although switches which are very 

important to the exponential average may be rare due to the entropic problem of finding the 

much smaller system B phase space from system A. The relatively small phase space of system 

B is unable to access many of the system A configurations. This confers a forwards work 

distribution which is much wider than backwards, with a much larger W diss' Thus, in case 

A, switches important to the calulation are far more common in the forwards direction than 

the backwards direction while the work average is further from the analytical answer. This 

gives the behaviour seen with the 6."\ = 10, MC trials = 100 and 6."\ = 50, MC trials = 

20 protocols with forwards estimates being initially poor and improving quickly to be more 

accurate than backwards estimates which are inaccurate and showing no change with very low 

statistical error. This rationale is also demonstrated and discussed by Kofke and J arzynski [Wu 

& Kofke(2005a)], [Jarzynski(2006)]. This behaviour with initially poor forwards Jarzynski 

estimates seems to be eased when using a protocol with many 6."\s, as seen by comparing 

figures 4.7 a), b) and c). This would be expected as the change from large phase space to small 

is more gradual. The Kofke bias measure seems to reflect this idea that the backwards 

Jarzynski estimates are initially closer to the analytical result but converge slowly compared to 

the forwards estimates which are initially poor but converge fast. The Kofke bias predicts the 

backwards estimates to be initially more accurate with forwards estimates showing a relative 

improvement for protocols with 1x107 MC trials but shows the forwards estimates becoming 

converged for protocols with 1x108 MC trials. 
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Figure 4.7: llF estimates with original FG using lxl08 and lxl07 config~lI' ations for a'e 
A. 

).. bias results for case A with all estimators seem to converge slightly faster in comparison 

to original FG ' for the lxl08 protocols apart from BAR which s ems almost identical (ftgur 

4.8). However the lxl07 ).. bias protocols seem to give similar performance to th quivalent 

original FG results. If the system is not well equilibrated between each)" increm nt , which may 

often be the case with larger systems, then).. bias may not offer any improvement . The Kof1< 

bias measure seems to give negative scores to ).. bias forward J arzynski calculation that look 

like they are converged such as those in figure 4.8 d) , while giving positive scor s to similar 

calculations with original FG in figure 4.7 d). This suggests that the Kof1<e bias measure may 

be incorrect for these biased FG methods, although it is worth note that the Kof1<:e bias measure 

does not give any indication of fully converged estimates when there are none (false positiv s) . 
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Figure 4.8: 6.F estimates with A bias FG using l xl08 and l xl07 configurations for as 
A. 

Configuration bias-d shows similar t rends to >. bias; t here is a slight improvement , of config-

uration bias-d over original FG, seen with the longer protocols (figure 4.9). Configuration bi '-d 

also performs better than original FG when few>. increments are used but not wh n many ar 

used. Configuration bias shows better accuracy than original FG for BAR and Fwd J arzynski 

with the .6.>' = 10, MC trials = 100 protocol but this is reversed for the .6.>' = 200, MC tria ls 

= 5 protocol. This is almost certainly down to t he smaller number of configurat ional sampl s 

taken for the .6.>' = 200, MC trials = 5 protocol as previously discussed. For configuration bias 

FG it may be important to use well separated configuration samples to pick from for each >. 

increment. Again , the Kofke bias measure fails to give a score reflecting the convergence of the 

longer protocols, but has no false positives. 



CHAPTER 4. HARMONIC OSCILLATOR SYSTEMS 107 

~25 

o 
E 

- Jarz Fwd 
- Jarz Bwd 
- Jarz Bwd·GBias 
- FD Bwd 
- BAR 
.. .. Analytical FE 

1 20 ... ..... . ~~~ .. '":-: . . ::-:-... ::-:-.. . "" ..... ,..,. .. ~-.,.,,,~.= .. "-"', T ~:i' bi'J 
~ ~ - -
<'] 15 - 10 --

F it -12 

.14---

I 00~~~5;-Lk~~"';':1Ot-'k,.........~1;';!5'-7k~-'-'-;;2~0 k 5 k 10 k 15 k 20 k 

FG switches 
(a) 1x107 config's, 6.>" = 200 Me Trials = 5 

~ 25 

o 
E 
Iti 20 
6 
~ 

<l 15 

Jan Fwd 
- JarzBwd 
- Jan Bwd·GBlas 
- FDBwd 
- BAR 
.... Analytical FE 

Koike bias 

.... .....~ - R""tl 
·8 __ 

·10 
· 12 :r . 14 __ 

...... ~ ... ..... ~ ........... . '6

Q
'"' 

100 5k 10k 15k 20k ·16 
5 k IOk l5 k 20k 

FG switches 
(c) 1x107 config's, 6.>" = 10, Me Trials = 100 

~ 25 

o 
E 
Iti 20 
() 
~ .. ......... :r--.... ..... y ......... "H" •••••••••• " .. .... ..... . 

~ 

<l 15 
:L 

JarzFWd 
- JanBwd 
- Jail. Bwd·OBhu 
- FOBwd 
- BAR 
.. ,. Analytical FE 

Koike bias 

-6 = :~~ 
·R 

- 10 

- 12--

100 5k 10k 15 k 20k -14 
5 k IOk l5k20k 

FG switches 
(b) 1x107 config's, 6.>" = 50 Me Trials = 20 

19 

':"0 18 
E 
Iti 17 
() 

~ 

~ 16 

15 

: 
== 

- Jarz Fwd 
- Jarz Bwd 
- Jarz Fwd·GBlas 
- Jarz Bwd·GBlss 
- FDBwd 
- Symmetric B 
- BAR 
.. .. Analytical FE 

Kofke bias 
-2 - Fw,1 
-4 - 11"\1 

-6 
·x -·_-

· 10 
· 12 
- 14 

140!:--~-5::-'-k;--' ~----;-c1 0::-k;--~1:-:5-:-k~---:::2+:"0 k '-5=':-k--1:7.-0 7"""k ~1 5""k '=:2()!-:'k 

FG switches 
(d) 1x10B config 's, 6.>" = 200 , Me Trial = 50 

Figure 4.9: !:::..F estimates with configuration bias-d FG using lxlO and l xl07 onfigu­
rations for case A. 

Hybridbias shows similar trends to ). bias. Surprisingly, estimates for t he .6.), = 200, M 

trials = 50 protocol with Hybrid bias are less accurate than for all the other methods in luding 

original FG. The BAR estimates for the 6.), = 200, Me trials = 50 protocol is les, a curat 

than the forwards J arzynski estimates . This inaccuracy in the BAR estimator i ' related t 

the slightly worse performance of estimates using only backwards switche . This may suggest 

that Hybrid bias is less efficient than other methods when switching from systems with ':I, small 

important phase space to systems with a large important phase space. 



CHAPTER 4. HARMONIC OSCILLATOR SYSTEMS 108 

~ 25 
(5 
E 
(ij 20 
<.> 

::::­
LL 

<I 15 

Jerz Fwd 
- JarzSwd 
- Jerz Bwd-GBias 
- FDBwd 
- BAR 
, ... Analytical FE 

I I I I I Kofke bias 

= -12 ___ 

}-----'II--.. ·-····.;;;-·· ··-···-····-····-····-···-··· r:
1 

:] 

I 00=--~-5="k,----~"""1 0:-.,k,----'---:1:-:!5--;-k~----=-20-:!--:'k -14 5 k 10k 15 k 20 k 

FG switches 
(a) l x107 config's, .0.>' = 200 Me Trials = 5 

~25 

(5 
E 
(ij 20 
6 
LL 

<I 15 

I I I I 

-7.5 

-8 

Jan Fwd 
- Jarz Bwd 
- Jan Fwd·GBiss 
- Jarz Bwd·GBias 
- FD Bwd 
- SymmelricA 
- SymmetrieS 
- BAR 
... . Analytical FE 

Kofke bias 

T~ :] I _~~~¥~~~~:r~~~:r ~~-8.5 ____ 
106"- 5 k 10 k 15 k 20 k -9 5 k 10 k 15 k 20 k 

FG switches 
(c) lxl07 config's, .0.>' = 10, Me Trials = 100 

~25 

(5 
E 
(ij 20 
6 
LL 

<I 15 

~-I--It---Ir---:11 
i ·· ······ ·i ...... .... ;[ ........... :.; ........... :r 

Jon Fwd 
- JorzBwd 
- Jon Bwd·GBias 
- FDBwd 
- BAR 
.... Analytical FE 

Kofke bias 

-R -' 

~- I U 
100 5k 10k 15k 20k -12

5k IOkI 5 k20k 

FG switches 
(b) lxl07 config 's, .0.>' = 50 Me Trials = 20 

19 

':"(518 

E 
(ij 17 
<.> ::::-
';t 16 

15 

~ ... ............ , .... ... ........... .. "" ......... ..... ...... .. . . 

-4.4 
-4.6 

Jorz Fwd 
- Jorz Bwd 
- Jorz Fwd·GBlns 
- Jnrz Bwd·G8lns 
- FDBwd 
- Syl1llllolricB 
- BAR 
.... Ann/yllcnl FE 

~ ~~r~/~l':''' :l 
1 40~~-5;:-"k;--~-;-;10;;-,k;--~1;-;!5'-;-k~~2~0 k 5k Ilik 15k 20k 

FG switches 
(d) lxl08 config's, .0.>' = 200 , Me Trial. = 50 

Figure 4.10: !:J..F estimates with hybridbias FG using 1x108 and 1x107 configuration for 
case A. 

The advantages of the Kofke FG methods seem to decline when an FG protocol whi h d 

not allow good equilibration between>. increments is used. This is mor.e clearly d mono trated 

by using the lxl07 config's, 6'\ = 200 Me Trials = 5 protocol with the analysis meth 1 of 

Wu and Kofke [Wu & Kofke(2005c)] (figure 4.11 a)). With this protocol all the methods hav 

relatively similar efficiency. >. bias seems more accurate with 1 switch but not with 1000. T h 

same data plotted together in the analysis method of the present study (figur 4.11 b)) shows 

that although results are very similar, original FG seems to give more accuracy with fewer FG 

switches. 
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Figure 4.11: IHO results for Case A showing inaccuracy in {3l:1F against numb r of FG 
switches where a switch has 200 A increments and 5 MC trials per A incr m nL 

It may be that accuracy of FG calculations can be improved by scaling the siz of /\ in-

crements at a specific point of a switch with the size the barrier ncountered at that point. 

It is obviously preferable to be able to find the most advantagous set of A inCl·em nt size or 

switching path without prior knowledge of the nature of the switch. Logarithmic path from 

system A to B, rather than the usual linear paths as used in previous calculations in thi. t udy, 

have been investigated previously by other authors and used with TI [Shir ts & Pand (2005)]. 

This study described slight advantages using a logarit hmic perturbation path in scaling fr m 

system A to B for harmonic oscillators with a large subset relation (4.8). 

(4.8) 

A logarithmic perturbation path used with original FG also shows a slight impr vement 

in accuracy, compared to original and possibly A bias FG, when used with the short protocol 

(figure 4.11). This comparison is further clarified by looking at the work performed at each A 

increment, averaged over 1000 switches (figure4.12). Figure 4.12 suggests that A bias is able to 

react to the barrier present at the beginning (A = 0) of case A switches as the peak is reduced 

compared to original FG with a linear and logarithmic path. However, after the initial peak A 

bias switches are very similar to original FG with a linear path and a logarithmic path shows 

a slightly lower work. 
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Figure 4.12: Distribution of average work performed over FG swit ches for t he 200 6. )" r.: 
or 50 Me trials per 6.)" protocols. 

However , logarithmic scaling of the path from systems A to B may' not provid th optimum 

path for extreme subset relation free energy differences . This can be seen clearly if w ompttr 

the size of A increments used , by a particular method, to the areas of t he path which gi v th 

largest works (figure 4.13, red , green and blue lines are plotted from the right hand side y-8uxis 

while the black line is plotted from the left hand y-axis). Figure 4.13 shows that A bias at t mpt . 

to scale its A increments to the barriers found in a switch with very low A in r m nt at around 

A = 0 (green line is at a low value when black line is at a high value). A bias then seem ' to 

pick relatively large A increments at around A = 0.1 even though the work values in UlT 1 till 

seem to be relatively large. 

This over sizing of A increments at around A = 0.1 is easily explained in term of th A ' 

bias algorithm: When there are a series of small A increments at t he 'beginning of a swi tch , 

due to heavy Rosenbluth weighting, the range from the current A (Ai- I) to ai which t he n xt 

lambda (Ai ) must be chosen from gets larger. This increases the probability of a A incr m nt 

being larger for the same Rosenbluth weight as t he calculated probability density is spread ov r 

a larger range. Thus, as the average work performed in figure 4.13 (black line) eases off, the 

possible range of the next A increment is large and as t he Hamiltonian is more favourable than 

previously to large A increments, larger A increments ensue. 

In the absence of a large barrier A bias seems to display a degree of noise in its A increment 

choices. 
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Figure 4.13: Plot of work performed and size of .6.).s against). for lin ar and logarithmic 
perturbation paths using a 200 .6.)' , 5 Me trials per .6.), protocol. 

It is clear from comparing FG calculations wit h 200 and 10 ).. increments (and the s' me 

number of total configurations used ) in t he analysis above t hat increasing the number of /\ 

increments for t he same number of configurations can improve accuracy and pr cision . It is 

also clear from figure 4.3 case A and figure 4.11 t hat attempting to scale t he size of /\ in r m ut 

to the size of t he barriers being exp erienced in a swit ch can be more effi 'ient in some cas d . 

).. bias FG may be ineffective in t he case of many barriers which are not near t he beginning 

of a switch as t he final)" increment must move the system to ).. = 1. If a switch has large 

barriers at the beginning and end , then ).. bias will perform poorly. A)" bias method ould 

work well if not constrained by the number of ).. increments allowed per switch . Howev 1' , it 

may be difficult to produce a ensemble of switches of different lengths. 

In light of the problem discussed here, t he case of many large barriers, original FG with few, 

long t rajectories, many ).. increments and BAR could give the best performance. Alt rnativ ly 

configuration bias-d could be used with few, long trajectories and large amounts of sampling 

between ).. increments and BAR. 

Case B: Slight Subset Relation 

The methods investigated performed unexpectedly with case B , given t he case A findings. In 

general, for original FG sampling wit h t he forward direction, t he J arzynski estimator seems to 

perform better t han BAR. This is demonstrated in figure 4.14 d). T his is also true but to a 

lesser extent wit h t he short protocol as seen in figures 4. 14 a) , b ) and c). These findings are 
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also backed up by an earlier study [Shirts & Pande(2005)J. This is due to the fact that BAR 

relies on both forwards and backwards measurements. If one of those directions is very poorly 

behaved this will adversely affect the estimate. This is highlighted in Case B as opposed to 

Case A as the entropic barriers involved are very large in Case A meaning both forwards and 

backwards directions are slow to converge and BAR will give better estimates. 

With protocols containing 200 A increments, estimates for case B, made using the backwards 

directions seem unstable with large errors in comparison to the forwards direction; this is ill 

keeping with Shirts and Pande's findings, on a similar two dimensional system, that estimates in 

the backwards direction have a variance which tends to infinity as the ratio WA/WB is increased 

after WA > 2WB [Shirts & Pande(2005)J. The reason the poor performance of the backwards 

direction is more marked with case B than case A is because the forwards direction is initially 

very poor with case A whereas it is very good with case B. A separate study also found the 

backwards Jarzynski estimator to not converge, where as the forwards direction converges well 

for systems similar to case B [Wu & Kofke(2005b) J. Thus, it could be assumed that estimates 

made with the backwards J arzynski estimator are not reliable. 

The different switching protocols in this original FG analysis seem to give comparable esti­

mates with the numbers of configurations, taking into account statistical error when using the 

forwards Jarzynski estimator. This can be seen through study of figure 4.14 and case B original 

FG figures in appendix C. However, the error is slightly larger in those protocols with smaller 

numbers of A increments as seen by comparing forward estimates in figures 4.14 a), b) and c). 

The Kofke bias measures are similar between protocols and switching directions at around 

-4 to -5. This may reflect the relative ease of convergence for case B. Most of the forwards 

J arzynski estimates for case B seem reasonably well converged and this is not reflected by the 

Kofke bias. The poorer estimators perform better relative to the better estimators in case B 

compared to case A. The symmetric B estimator gives good f:j.F estimates when using 5x107 

configurations or more (figure 4.14 d)). 

A bias FG displays similar trends to original FG with forwards J arzynski estimates gener­

ally being more accurate than BAR (figure 4.15). A bias, Jarzynski estimates in the backwards 

direction seem more stable than their original FG counterparts seen by comparing figures 4.14 

and 4.15. However, figure 4.15 d) shows set of backwards Jarzynski estimates which are above 
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Figure 4.14: t:::.F estimates with original FG using 1x108 and 1x107 configurations for for 
case B 

the forwards estimates rather than below as would be expected . Although slightly worrying 

this may reflect t he fact t hat the st atist ical error is the dominant form of estimator bias f r 

case B. Comparing figures 4.14 d) and 4. 15 d) it seems that t he FD estimator is Ie s a curat 

for A bias than original FG. 
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Figure 4.15: !::::.F estimates with A bias FG using 1x108 and 1x107 configuration. for a 
B 

Figures 4.16 a) b) and c) seem to show that configuration bias-d gives slightly b tter £ l'-

wards J arzynski estimates with the boA = 10, Me Trials = 100 protocol than protocols with th 

same number of configurations but more A increments. Also, BAR is significatnt ly b low th 

forwards J arzynski estimates in figure 4.16 c). St rangely, figure 4. 16 d) has backward J arzyn-

ski more accurate than forwards J arzynski. This may signify an improvement in backwards 

estimates with configuration bias-d, yet equally it may simply signify t he small diff r nces in 

these estimates and t he presence of statistical errors. 
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Figure 4.16: D..F estimates with configuration bias-d FG using 1x 108 and 1x107 nfigu­
rations for case B 

Hybrid bias FG produced results for case B similar in their trends to configuration bias F 

(figure 4.17). Again, studying figures 4.17 a) b) and c) suggests that estimat with the 1:::. /\ 

= 10, MC Trials = 100 protocol are slightly improved over protocols with th . am number 

of configurations but more A increments for forwards J arzynski estimates. Figures 4.17 a) and 

b) show a set of BAR estimates between forwards and backwards Jarzyanki estimates whil 

the forwards J arzynski estimates seem still to be more accurate. This unpredictability in th 

relative placement of BAR may make it difficult to pick which estimator to use in any particular 

situation. Figure 4.17 c) has a set of backwards J arzynski estimates which are above th for-

wards estimates, which was somthing seen in figure 4.15 d). Also, there is a large jump in value 

between the final and penultimate estimates of backwards J arzynski calculation in figure 4.17 

c) . This again points to the instability of backwards J arzynski estimates for case B. Figure 4.18 

is a scatter plot of all work values for the 6A = 10, MC Trials = 100 protocol in the backwards 

direction. The two data points below -15 in figure 4.18 are responsible for t he sudden jump 

backwards Jarzynski estimates descibed above in figure 4.1 5 d). If these values are removed the 

final backwards Jarzynski I:::.F estimate then becomes -9.52 kcalmol 1 and falls into line with 
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the estimates t hat have come before it . 
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Figure 4.18: Work values for the 6.,)" = 10, Me Trials = 100 protocol in the backwards 
direction. 

Figure 4.19 a) shows a general trend in 1x107 calculations, that protocols with 10 A in-

crements are slightly more accurate, seen in all methds but A bias for case B . However the 
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difference is small enough to be a random effect and figure 4. 19 b) (1x107 onfigurati n ) d 

not agree. Also, t he statistical error gets smaller as you incr ase th numb r of ). in r m nt 

Thus, it may be preferable to use many). increments with normal FG al ulation imilar in 

nature to case B. 

It is difficult to pick any method which offers better accuracy when u ing 1x107 onfigura-

tions . Figure 4.20 compares all methods with the 6). = 200, Me Trial = 5 prot 01. Original 

FG is most accurate in figure 4.20 but again the difference between these estimat i v ry small . 
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Figure 4.19: Case B llF estimates using original FG with 1x107 or 1x108 onfigurations 
and three different switching protocols. 

9.2 
,-, 

o 
E 9.1 
ctS 
u 
~ --

5k 

- Jarz Fwd Original FG 
- Jarz Fwd A bias 
- Jarz Fwd confblas-d 
- Jarz Fwd hybridbias 
.. .. Analytical FE 

10 k 15 k 20k 
FG switches 

Figure 4.20: llF estimates for all methods with the forwards J arzynski estimator , using 
ll)' = 200 , MC Trials = 5 protocol. 



CHAPTER 4. HARMONIC OSCILLATOR SYSTEMS 11 

Case C: Subset and Overlap Relation 

Owing to the slight displacement of system B in case C, all FG method u ing witch f1' m a 

single direction can be inaccurate. There is an improvement in accuracy of th ingl di1' ti n 

estimators as the number of 6.>.s increase, without extra configurations (figur 4.21 a), b) )) . 

It is clear that, overall BAR is the most accurate estimator for case C. Single dir t ion J arzyn-

ski with 1x108 configurations and many 6.>.s is able to rival BAR (4.21 d)) . Th symm tri 

estimators are not as accurate as BAR as forward and backward switch ar diff r nt du t 

the slight phase space difference between systems A and B. 
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Figure 4.21: f1F estimat es with original FG using l x l08 and l x l07 configurat ions for 
case C 

Comparison of figure 4.22 with equivalent estimates in figure 4.21 suggests that th biased 

FG methods offer no improvement in accuracy for case C. Figure 4.22 also shows that>. bias 

and configuration bias-d with the Jarzynski estimator give optimum performance with different 

switching protocols. >. bias gives good perfromance similar to original FG with' the 6.>' = 200 

MC Trials = 5 protocol, while configuration bias is relatively poor with this protocol (figure 

4.22). configuration bias-d performs best with the 6.>' = 10 MC Trials = 100 protocol (figure 

4.22) . This preference in configuration bias-d is probably due to a lack of sampling between 
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.6.AS meaning all configuration choices are very similar. 
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Figure 4.22: 6.F estimates with A and configuration bias FG using lxl07 onfigurati n 
for Case C 

For all protocols with 1x107 configurations hybrid bias performs worse than original FG 

seen by comparing figures 4.23 a) b) c) and 4.21 a) b) c) . Hybrid bias se m to .. how accura y 

more comparible to original FG with larger protocols (figure 4.23 d)) , although stimate s m 

slightly unstable. 
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Figure 4.23: flF estimates with hybridbias bias FG using l xlO and l x l07 onfigur Ltions 
for Case C 

Case D: Slight Subset and Non-Overlap Relation 

Analysis of case D results show the same trends described for case C. Again , overall , BAR j ' 

the most accurate est imator but the symmetric estimators are almost as accurate BAR for 

case D (figure 4.24). The improvement in t he symmetric estimators is due to th forward and 

backward directions being more similar in case D, i.e. the important phas 'paces of syst ms 

A and B are of a more similar size. 
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Figure 4.24: 6..F estimates wit h original FG using lxlOB and Ix l07 configurations for 
Case D 

The biased FG methods perform slight ly worse than original FG with single dire tion -s-

timators (figure 4.25). One except ion is configuration bias-d FG with protocols with f w .6.AS 

and many sampling steps in between . Figure 4.25 d) shows improvement of singl dir ctiOll 

estimates over the equivalent original FG estimates in figure 4_24 b) . This is less mark d for pr -

tocols with fewer configurations (see appendix C) . When BAR is used with bias d FG method ', 

accuracy is comparable to original FG (figure 4.25) . Hybrid bias FG shows similar b havioLlr 

to A bias (see appendix C) . 
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Figure 4.25: flF estimates with A bias and configuration bias-d bias FG u'ing l x l08 nd 
lxl07 configurations for Case D 

Which estimator should be used when? 

It is clear that different estimators often provide the best estimates for different cases an 1 pro­

tocols_ How do we pick between estimators when we do not know the analytical answ r7 The 

Kofke bias measure mentioned earlier attempts to measure the convergence of a 'alculation [Wu 

& Kofke(2005a)]. The analysis of figure 4.6 showed that this measure cannot be r Ii d up 11 in 

all cases. 

Another possible method of picking between estimators is to use the relative ntropy m a-

sures of Wu and Kofke [Wu & Kofke(2005a)]. As discussed in chapter 3, these rneasures attempt 

to give an idea of relative size of important phase space of each end point system. The Jarzynski 

estimate with the highest relative entropy measure should be the direction start ing from the 

system with the biggest phase space and thus converge faster. Table 4.4 compares t hese r lative 

entropy measures with the relevant estimates for cases A-D with LlA = 10, MC Trials = 100 

and LlA = 200, MC Trials = 5 switching protocols . 

Correlating the highest relative entropy measure with the most accurate J arzynski estimate 

shows that this method of picking the most accurate Jarzynski estimate does not work well. 
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For case A with a ,6..\ = 10, Me TI:ials = 100 protocol and case D with both protocols the 

backwards Jarzynski estimate is the most accurate while the relative entropy measure predicts 

that the forwards estimate will be most accurate. 

Generally in table 4.4 BAR is the most accurate estimator. Only with case B estimates is 

forwards J arzynski more accurate than BAR. In those cases the BAR estimate is not placed 

between the forwards and backwards Jarzynski estimates. Thus, it may be possible to pick the 

best estimator by using BAR when it is placed between the forwards and backwards Jarzynski 

estimates but using the Jarzynski estimate picked by the relative entropy measures when this 

is not the case. 

Case Fwd ent Bwd ent Fwd Jarz Bwd Jarz BAR Analytic !::.F 
A, 10-100 269.77 36.22 28.64 11.29 19.99 18.4 
A,200-5 63.07 5.17 19.62 15.84 18.25 18.4 
B, 10-100 4.44 1.78 8.90 8.58 8.98 8.87 
B, 200-5 3.23 2.12 8.92 9.50 8.95 8.87 
C, 10-100 13.62 7.87 12.61 4.66 8.63 8.87 
C,200-5 9.33 5.68 9.67 7.96 9.00 8.87 

D, 10-100 33.99 21.32 31.10 -15.70 7.73 4.77 
D, 200-5 37.55 19.70 20.50 -11.84 4.36 4.77 

Table 4.4: Table of forward and backwards relative entropy measures and inaccuracies 
in Jarzynski and BAR estimates of cases A-D free energy differences with .6.'\ = 10, MC 
Trials = 100 and .6.'\ = 200, MC Trials = 5 switching protocols. 

What is the optimum switch length? 

Previous studies in the literature tell us, it is more efficient to use fewer longer FG switches [Gore 

et al.(2003)Gore, Ritort & Bustamante], [Ytreburg & Zuckerman(2004)J. Figure 4.26 shows the 

difference in efficiency using switches of 10,000 configurations (200 .\ increments with 50 inter .\ 

increment Me trials) and 1000 configurations (200 .\ increments with 5 inter .\ increment Me 

trials). The difference in efficiency between long and short switches can be quite different for 

the cases A-D. For case B there is no difference in efficiency after 106 configurations, while for 

case D there is a very large difference in efficiency. Therefore when evaluating ,6.Fs which have 

barriers only of the form found in case's A and B the advantage of extra parallelisation may be 

more important for calculation of this type. 
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Figure 4.26: IHO results for Original FG showing inaccuracy in (36F against numb'r 
of Me configurations where a switch has 200 A increments and either 5 or 50 lV1 ' tri l. 
per A increment. Both calculations use a maximum of le7 configurations. 

4.4.3 Comparison with TI 

Our implementation of FDTI uses the t rapezium rule to integrate over th potential gradi nts 

found from simulation. If t he potential over t he A coordinate undergoes a large amount of 

localised curvature our T I method will be error prone, as this curvature will not b d te t d. 

Accurate TI calculations rely on a smooth free energy gradients across A. This analysis will 

investigate TI with 11 and 51 A increment collection windows using a total of 1x107 MC con-

figurations. In table 4.5, "wins" is t he number of windows used by T I and the numb rs aft r 

t he acronym FG relate to t he number of 6.AS and MC trials between each A increment, in that 

order . 

For Case A, TI compares quite poorly with both original and configuration bias-d FG (table 

4.5). TI calculations done using 11 windows display very large inaccuracies. This is because of 

a high level of curvature in t he potent ial between the first and second 6. A window simulations 
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(i.e. A = 0 and 0.1). Increasing the number of configurations used, in each A window with these 

TI protocols gives almost no improvement in performance as the potential averages are not the 

source of the error. 

Case B has a potential change over A of a similar shape to case A but with smaller amounts 

of curvature. Consequently, TI is able to produce a reasonable estimate of 6.F. However, FG 

still gives slightly better performance than TI for case B. 

Case C has the same potential change over A as case B. As expected, TI performs slightly 

worse than FG. 

Case D has a potential change over A with even less curvature than cases C and B. This 

allows TI to calculate 6.F accurately as the majority of the potential curvature, and therefore 

the error, is removed. Case D also has a large barrier due to the 3 A displacement of the 

oscillator systems. As FG is only equilibrated at A = 0 and A = 1 this energetic barrier is more 

of a problem compared with TI which is equilibrated at various points across A. This can be 

seen in table 4.5 as FG is slightly less accurate than TI for case D. It is also interesting that 

configuration bias-d seems to reverse the trend, for more 6.AS to be more efficient, seen with 

original FG. This agrees with earlier results suggesting configuration bias-d perfroms best with 

few A increments with large amounts of sampling between each A increment. 

Case TI (11 wins) TI (51 wins) FG 10-100 FG 50-20 FG 200-5 
Case A, origFG 46.70 6.76 1.59 0.07 0.15 
Case A, conf-d 46.70 6.76 1.09 0.30 0.20 
Case B, origFG 0.69 0.03 0.11 0.13 0.07 
Case B, conf-d 0.69 0.03 0.19 0.12 0.18 
Case C, origFG 0.70 0.04 0.25 0.07 0.14 
Case C, conf-d 0.70 0.04 0.06 0.05 0.10 
Case D, origFG 0.00 0.21 2.96 2.26 0.41 
Case D, conf-d 0.00 0.21 0.16 3.50 5.09 

Table 4.5: Comparison of inaccuracy in 6F (kcalmol- 1) for Cases A-D using TI and 
BAR 

In the case of a demanding system each A window takes so long to provide a converged 

potential average that literature studies generally use no more than 21 windows [Price & Jor-

gensen(2000b)]' [Michel et al.(2006)Michel, Verdonk & Essex]' [Pearlman & Charifson(2001)]. 

In some cases this may not be enough to capture the true nature of the potential gradiellt 

and can introduce error. Methods which are able to sample along the A coordinate have an 

advantage as they experience all of the barriers involved in perturbing the system. This view 
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is backed up by Shirts and Pande [Shirts & Pande(2005)]. Shirts and Pande presented a lilll-

iting moment statistical analysis of the variance and bias of FG and TI on simple harmonic 

oscillator systems. They found that TI had higher standard error for IHO, phase space subset 

perturbations, which increased at a faster rate than FG as the ratio of WB/WA was increased. 

The present study clearly shows that FG should be used in preference to TI when evaluating 

free energy differences of IHO systems. 

This analysis has highlighted a deficiency of FG methods. The system has to react to the 

changes made to the system by switching. It may increase the performance of FG methods if a 

A switch is split up with intermediate starting points and then the 6.F of each part of the switch 

is summed [Hummer(2001)], [Shirts & Pande(2005)]. This switch splitting methodology should 

decrease the amount of dissipated work the system must undergo in switching, and bring nIl 

simulations closer to equilibrium. Table 4.6 shows results from FG calculations for cases A and 

D comparing calculations where switches are split into ten equally smaller switches (FG-BYI0) 

and calculations where switches are not split at all. The labels of each column refer to the 

switching protocol used, with the first number refering to the number of A increments and the 

second number after the "-" refers to the number of MC trials between each A increment. All 

calculations, in table4.6, used lx107 configurations. Thus, the 20-5 (--;-10) calculations used 

200000 switches while all others used 20000. 

Case 10-100 (BY10) 10-100 200-5 (BY10) 20-5 (BY10) 200-5 
Case A, fwd 0.30 10.24 0.20 0.52 1.22 
Case A, bwd 1.73 7.11 0.76 2.59 2.56 
Case A, BAR 0.19 1.59 0.37 0.42 0.15 
Case D, fwd 0.24 26.33 0.21 0.13 15.73 
Case D, bwd 0.07 20.47 0.40 0.24 16.61 
Case D, BAR 0.58 2.96 0.73 0.7 0.41 

Table 4.6: Comparison of inaccuracy in !:::.Fs estimated with FG for Cases A and D with 
the A switches split into 10, and not split at all. 

Splitting FG switches into 10 separate FG calculations has improved the performance for 

both cases A and D. This is especially marked for the single direction Jarzynski estimates. 

Case D estimates using 10 6.AS in the forwards direction improves in accuracy by an order of 

magnitude when the A coordinate is split into 10 with switches kept at the same length and 

out performs BAR using the same protocol. This may be because the variance of BAR does 
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not reduce as quickly as with Jarzynski as the calculations become better behaved [Shirts & 

Pande(2005)]. 

It is interesting to compare the estimates for case A which use the 200-5 BYlO and 20-5 BYlO 

protocols from table 4.6. These protocols give similar results except the backwards Jarzynski 

estimate for 20-5 BYIO is far less accurate and similar to the 200-5 estimate. This suggests 

that for case A backwards Jarzynski estimates, the improvement seen for 200-5 BYlO comes 

from the effective increase in length of switching rather than the extra equilibrated switching 

points across A. If the same protocols are compared for case D, it is clear that to 20-5 BYlO 

estimates are much improved compared to the 200-5 estimates. Thus, the extra equilibrated 

points across A are more important in this case. 

Comparing BAR estimates for BYIO and not BYIO protocols seems to suggest that BAR 

estimates, with a protocol with many A increments, are slightly more accurate without splitting 

up the A coordinate. 

4.5 Conclusions: When to use which methods? 

The new sampling methods investigated here, originally presented by Kofke et at. offer ad­

vantages for the test protocols originally presented [Wu & Kofke(2005c)]. A bias offers large 

improvements in accuracy for case A using the original test protocol (fig 4.3). When other 

protocols and estimators are explored these advantages do not necessarily remain. Original FC 

sampling is more efficient than any of the biased FC methods as long as the size of A incremellts 

is kept very small. The A bias method must be altered to give A increments proportional to the 

barriers throughout a switch, to be effective in all cases. The configuration bias-d method needs 

large amounts of sampling between A increments, so that the possible choice of configuratiolls 

are less correlated. This means that it is often less efficient than original FC. 

Of the estimators investigated here, it is clear that for difficult IHO switches BAR is the 

most efficient. Using Jarzynski in the direction of larger phase space to smaller phase space 

may be more accurate in the case of a slight subset relation. Jarzynski is also more accurate 

when the A coordinate is split into ten and the resultant b.Fs are added together. From these 

IHO results it maybe possible to set some simple rules to pick between estimators when the 

correct b.F is not known. If a BAR estimate is placed between the forwards and backwards 
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Jarzynski estimates then this is probably the most accurate estimate. If a BAR estimate is 

not placed between the forwards and backwards J arzynski estimates then the estimate in the 

direction of the highest W diss should be chosen. There are cases where this method of picking 

estimates does not work. Specifically, figure 4.16 c) and 4.17 a) although these problem cases 

are both biased FG examples. 

When attempting to think about these results in terms of the best protocol for protein­

ligand systems, it is less straight forward as these systems have extra barriers which are not 

linked to phase space relationships but to interactions between different constituents of the 

system. Switches between similar ligands in the solvent or protein environments are unlikely to 

include the large localised amounts of curvature found in case A switches. However, these types 

of protein switches could involve many barriers due to interactions between the ligand and its 

environment. This almost certainly means an FG switch would be pushed far from equilibrium. 

Thus, it seems sensible to use the splitting methodology discussed here. 

Splitting an FG switch into smaller parts also makes sense from a computing point of view 

as it allows more parallelisation. The bottleneck for FG calculations is the production of the 

starting configurations. Splitting the calculation into ten smaller calculations allows the pro­

duction of the starting configurations to be parallelised as well. It is also necessary to take 

a computing point of view when selecting the length of FG switches. The analysis presented 

here suggests that the longest switches possible should be used. This detracts from the main 

advantage of FG which is its possible parallelisation. This limits the length of FG switches and 

a compromise position must be found. 



Chapter 5 

Solute-Solvent test systems 

5.1 Introduction 

The IHO systems in the previous chapter allowed the thorough investigation of the accuracy 

and efficiency of free energy methods for different phase space relationships. The results and 

concepts taken from the investigation of IHO systems can be applied to the more complex 

systems which hold more interest and real world application. However, owing to their more 

complex nature, these systems have extra interactions which must be studied to understand 

the best approach to calculating their free energy differences. 

The protein-ligand systems, which are the ultimate interest of this work, are invariably in 

a water environment. Thus, one of the extra interactions and possible causes of free energy 

differences and barriers are the interactions of a solute with a solvent (in this case water). The 

free energy difference due to rearrangement of water is difficult to capture due to the large 

number of degrees of freedom and possible long range electrostatics. 

Here we have investigated the performance of FG methods in calculating free energy dif­

ferences with two relatively simple solute-solvent systems. First the free energy of charging 

of a sodium ion in water and then the relative hydration free energy of water and methane 

(perturbation of water to methane in water). 
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5.2 Sodium charging 

5.2.1 Description of calculation 

Calculating the free energy difference due to ion hydration is a well known test for free en­

ergy methods. Of ion hydration calculations, the hydration of a sodium ion in water is 

possibly the most commonly used test system in the literature [Hummer(2002)], [Ytreburg 

et al.(2006)Ytreburg, Swendsen & Zuckerman]' [Han et al.(200l)Han, Kim, Mhin & Son]. This 

is due to its simplicity, and the well behaved nature of the free energy changes involved. 

The calculation of sodium ion hydration free energy can be split into two to make it easier. 

First, the free energy of cavity creation and any solvent dispersive effects for a van del' Waals 

sphere with the same Lennard-Jones parameters as sodium; second, the free energy due to 

turning on the charge of the sodium ion. Many studies decide to ignore the first calculatioll 

(cavity creation and dispersive effects) and simpily study the sodium ion charging. This is dne 

to the relative size of these free energy differences. The free energy due to sodium chargillg 

is far larger than that due to growth of a sodium sized Lennard-Jones sphere, and thereforn 

the latter calculation may be ignored without a significant loss of accuracy. This study will 

concentrate on the free energy due to the charging of a sodium ion. Also, comparison to exper­

imental results for sodium ion hydration is not made, as the simulation software used is unable 

to reproduce the long range electrostatics as discussed below. This test is used simply as all 

initial validation and comparison for our FG implementations. Results are compared to TI alJ(1 

similar studies from the literature. 

Our study will initially attempt to repeat the calculations of Hummer [Hummer(2002)]. 

Hummer used the J arzynski, fluctuation-dissipation (FD), and their symmetric varients to 

calculate the free energy of charging sodium in water. Studies of ion charging systems have 

suggested that fluctuations in the electrostatic energy near the solute are approximately gaus­

sian and correspond to a linear response regime [Hummer et al.(1996)Hummer, Pratt & Garcia]' 

[Hummer et al.(199S)Hummer, Pratt & Garcia]' [Ashbaugh & Wood(1997)], [Levy et al.(1991)Levy, 

Belhadj & Kitchen], [Lynden-Bell & Rasaiah(1997)] [Hummer(2002)]. The change in free en­

ergy due to charging a sodium ion is purely electrostatic with a large portion of this being the 

solute-solvent interactions. Thus, the FD estimator and its symmetric varient should perform 

well, as they rely heavily on the FG work distribution being very close to gaussian. 
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Our sodium ion is represented as a Lennard-Jones sphere with a point dlaTge and panun-

eters as used by Straatsma and Berendsen in their 1988 study, and subsequantly by Hllll1-

mer [Straatsma & Berendsen(1988)]. Owing to studies carried out on system size effects 

of this calculation, Hummer was able to justify using a very small solvent box [Hummer 

et al.(1996)Hummer, Pratt & Garcia], [Hummer(2002)]. This allows very fast sampling of 

the system which enables exhastive protocols to be used. A periodic box of 64 simple point 

charge (SPC) water molecules with all dimensions 12.49 A was used to solvate the ion [Berelld-

sen et al.(1981)Berendsen, Postma, van Gunsteren & Hermans]. These parameters are identical 

to those of Hummer, as is the method of coupling the simulation to A. Hummer used the Ewald 

summation for long range electrostatics and corrected the resulting free energies for interactions 

of the solute with other periodic solute images [Ewald(1921)]. As a modified version of Prot oMS 

2.1 was used for these simulations, Ewald was not available and a residue based, non-bonded 

cutoff was used at 6.2 A and smoothed for a further 0.3 A [Woods & Michel(2005)]. The sim-

ulation parameters used in this study are summarised in table 5.1. 

Parameter description Setting 
Ensemble NVT 

Temperature 25°C 
Pressure 1 atm 

Boundary conditions Orthorhombic periodic 
Non-bonded cutoff 6.2 A 

Solute/solvent trials ratio 1/64 
Max solute translation/rotation 0.15 A/ 0.0 ° 

Max solvent translation/rotation 0.15 A/ 15.0 ° 
Preferential sampling centre Sodium ion 

Preferential sampling parameter 200 

Table 5.1: Simulation parameters for Sodium charging simulations 

The system set-up used in the present study was expected to give very different free energies 

to those of Hummer [Hummer et al.(1996)Hummer, Pratt & Garcia], due to the difference in the 

handling of long range electrostatics. The difference between an Ewald and cutoff electrostatic 

potential was investigated with a very similar sodium charging calculation by Ashbaugh and 

Wood in a previous study and the resulting free energies were found to differ by 20 % [Ash-

baugh & Wood(1997)]. The discrepancy was found to be due to effects at the boundary of the 

potential cutoff. Therefore, this study will be solely concerned with an efficiency comparsion of 
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FG estimators and TI when evaluating olvent reOl-gani ation. 

The system was equilibrated for 100,000 passes at A i 0 and 1 wher ach pas i man 

MC trials as there are molecules/residues in th system (in t his as 65). T h n 500 FG t ar tin ' 

configurations where taken, one every 100 passes. Calculation with 500 FG wit h in b th 

directions, of 200, 2000, 5000, and 10,000 passes were run. All calculation in thi t udy u -d 

switches which contain a A increment every MC pass unl ss otherwis tat d. 

5.2.2 Sodium charging results 

Once FG simulations were completed , all the estimators discus ed h r w r appli d t th 

data. These t::.F estimates were compared to FDTI estimates. FDTI Will run u ing th - , am 

protocol as Hummer , with 3 FDTI simulations of 680,000 passes result ing in a t::.F f - 3.7 ± 

0.5 kcal.mol- 1 [Hummer(2002)]. This TI result uses similar amounts of configurati n th 

FG protocol using 2000 A increments. Figure 5.1 shows estimates from all est imator 1 h 

legend of figure 5.1 is the same as used in chapter 4 with " J arz" refering to th J arzyn ki 

estimator and -GBias refering to the Jarzynski estimator corrected by t h bias as cal ulate 1 by 

Gore et al. (2003)(see t able 3.2). All st atistical errors in calculations in this section w r 

culated with the block variance method discussed in t he FG background chap t r with 10 blo k. 
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Figure 5.1: Free energies of sodium charging in water , comparing FG estimators to 
TI. Figure (a) shows Jarzynski and Jarzynski-Gore bias. Figure (b) shows FD, and all 
estimators using switches in both forwards and reverse directions. 

Comparing to FDTI in figure 5.1 it is clear that the use of shorter FG switches with the 

Jarzynski estimator leads to large inaccuracies . Jarzynski estimates are relat ively similar when 
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using the longest switches with 10,000 A increments. J arzynski estimates are also sYlllmetric 

with forwards and backwards estimates being equally inaccurate. The Jarz-GBias correct('d 

estimates show improvement with forwards estimates giving accurate results with the least ex­

pensive protocol. The success of the J arz-GBias estimator is due to the strictly Gaussian nature 

of the work distribution. However, this success in bias correction is unreliable as forward Gore 

bias corrected estimates are less accurate compared to the Jarzynski estimator alone with the 

longer 10,000 pass switches. This bias over-correction as \V-diss becomes small is a problem 

noted and discussed by Gore et al. in his original study [Gore et al.(2003)Gore, Ritort & Bus­

tamante] and here in the FG background chapter. 

The FD estimators show much improved accuracy compared to the J arzynski estimator as 

predicted by Hummer [Hummer(2002)]. The improvement shown by the FD estimator is un­

doubtedly specific to cases such as this where the work distribution is almost perfectly gaussian, 

Possibly the best estimator for this system is the symmetric A estimator closely followed by 

the symmetric B estimator. The ease of prediction of these symmetric estimators is due to the 

symmetric nature of switching this system from uncharged to charged. As the change in !::J.F i~ 

linear with changes in A these changes are also symmetric. 

Considering the results of chapter 4, it was deemed useful to investigate possible improw~­

ments found with an FG-BYlO approach. This FG-BYlO calculation used FG switches, with 

2000 MC passes and 2000 A increments, as used by Hummer (2002). 50 switches were used for 

each of the 10 individual FG calculations making up the perturbation from A = 0 to A = 1, 

with the results of each FG calculation in the same direction being summed to get the !::J.F. 

This calculation was compared to a normal FG calculation using 2000 A increment switches 

where estimates where calculated every 200 switches (in both directions). Some estimators 

were previously very inaccurate with this length of switches (2000 MC passes in figure 5.1), so 

there is room for improvement with FG-BY10. Figure 5.2 a) shows the normal FG calculation 

results as the number of switches is increased. There seems to be little improvement in the poor 

Jarzynski estimates through the course of the calculation, although BAR and FD give good 

accuracy even with only 200 switches. Figure 5.2 b) shows as expected that by splitting the A 

coordinate into 10, errors due to hamiltonian lag have been almost removed. Estimates from 

the FG-BY10 calculation may not have completely converged and seem to be moving towards 



CHAPTER 5. SOLUTE-SOLVENT TEST SYSTEMS 134 

t he T I estimate. Here FG-BYIO is able to how similar a uracy to TI. TI i how v r abl 

to use a small number of A window simulations as the the chang in fr with A i lin-

ear . Thus, for the charging of sodium, TI may be able to converge mor asil than Form th d . 
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Figure 5. 2: Estimates of the free energy of sodium charging in water u ing FG-BYI a.nd 
FG-BYIO protocol with all FG estimators. 

The configuration bias-d switch sampling method investigated in the pr viou hapt -r . n 

harmonic oscillator models was applied to t his sodium charging test system. The configuration 

bias-d results in figure 5.3 used three different switching protocols with differing numb r ' f 

A increments and MC trials. It is clear from these results that using a small numl r of A 

increments with large amounts of MC trials between each is most efficient. However , t h most 

efficient configuration bias-d calculation with 20 A increments is no more effici nt than th 

FG-BYI protocol in figure 5.2 above. 
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Figure 5.3: Estimates of the free energy of sodium charging in water using onfigur ­
t ion bias-d FG sampling using three switching protocols. 2000-65 , 200-650 and 20-6500 
denotes switching protocols wit h 1 Me pass between each of 2000 A incr -ments, 100 
Me pass between each of 200 A increments and 1000 Me pass between h f 20 ,\ 
increments respectively. 

5.2.3 Sodium charging conclusions 

As previously shown by Hummer (2002) using FG switches and the Jarzyn ki stlmat r in a 

single direction is unable to produce results as accurate as 1'1 using the same number of M 

trials . This is mainly due to t he possibility of using only three A simulation wind w. with 

1'1 as the free energy change is linear . However, as previously found by Humm r (2002), th 

FD estimator and Symmetric estimators are able to offer more accurate estimates of a similar 

accuracy to 1'1 in the case of sodium charging. T his analysis helps validate this implementation 

of these FG methods as they agree in general with published results [Hummer (2002)J. 

BAR has been shown to be more accurate than the J arzynski estimator and as accurat 

as FD and Symmetric estimators. Also , as discussed in t he FG background chapter the Gore 

bias has been shown to improve Jarzynski estimates when the bias is large (small N) but is 

unreliable when the bias is very small (large N). 

The use of a FG-BYIO protocol has been shown to improve the accuracy of t he Jarzynski 

estimator such that it is as accurate as BAR for t he FG-BYI protocol. Indeed using FG-BYlO 
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all estimators give very sin),ilar results. Also, th configuration bias-d witch ampling m th d 

has been shown to be no more accurate t han original FG witch an1pling for thi dium 

charging system, while being more computationally exp nsiv . 

5.3 Relative hydration free energy of water and methane 

5.3.1 Description of calculation 

The hydration free energies of water and methane have been studied extensively in th li t -ra-

ture. At standard conditions it is an example of t he hydrophobic effect and on equ ntly h 

been studied extensively in the modelling literature [Hernand z-Cobos et al.(2001)H rnand -'z-

Cobos, Mackie & Vega], [Delle Site(2001)], [Radmer & Kollman(1997)J . H r w will inv tigat 

calculation of the relative hydration free energy of water and methane. 

The relative hydration free energy of water and methane can be calculat d through the 

thermodynamic cycle in figure 5.4 in connection to t he equivalent experimental st ps. 

LlFperturb 
(water) 

LlF pertUrb(vac) 

LlF pertUrb(aq) 

LlFperturb 
(methane) 

Figure 5.4: Thermodynamic cycle used to calculate the relative hydration free energy of 
water and methane 

Thus, perturbations or switches must be performed from water to methane in vacuum and 

water environments. The relative free energy difference (6.6.F) is found by taking the 6.F of 

the water leg from the 6.F of t he vacuum leg (equation 5. 1). 
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llFpert (vac) - llFpert (aq) 

llFhyd (methane) - llFhyd (wateT) 

The experimental free energy of hydration of methane is unfavourable at 2.00 kcal.mol- 1 at 298 

K, while the hydration of water has a favourable llF of -6.31 kcal.mol- 1 [Zhou et al.(1998)Zhou, 

Li, Hawkins, Cramer & Truhlar]. This gives an experimental water to methane relative hydra­

tion free energy of -8.31 kcal.mol- 1 . 

This calculation has been performed in the literature by Woods et al. using many free 

energy methods in a direct comparison [Woods et al.(2003a)Woods, Essex & King]. It is con­

venient to use the same system setup to give a quick comparison of FG methods with the 

equilibrium methods investigated by Woods et at. The water to methane model consists of 

a TIP4P water molecule switching to an OPLS united atom methane molecule [Jorgenseu 

et al.(1984)Jorgensen, Madura & Swenson], [Jorgensen et al.(1983)Jorgensen, Chandrasekhar, 

Madura, Impey & Klein]. The oxygen atom of the TIP4P water is switched to the OPLS 

methane while the TIP4P hydrogens and extra "M" atom are switched to dummy atoms. The 

bond lengths of the TIP4P hydrogens are reduced to 0.2 A as they become dummy atoms to 

help smooth the switch and to pull them inside the influence of the methane molecule. The 

water-methane resides in an periodic, orthorhombic box of 1679 TIP4P molecules. 

Both the TIP4P water and the OPLS methane are rigid-molecule models. Consequently, 

for this calculation, the vacuum leg of the calculation from figure 5.4 will give a llF of zero awl 

can be discounted. The calculation now consists of a single perturbation and the free energy 

difference is now due to the solvent rearrangement only. This is useful as a free energy method 

can be assessed solely on its ability to evaluate solvent rearrangment and solute-solvent inter­

actions. 

The solvated water to methane perturbation may display a decrease in entropy due to ex-

cluded volume effects of the hydrophobicity of the methane [Hernandez-Cobos et al. (2001 )HernandcII­

Cobos, Mackie & Vega]. It may be possible that as the water-methane molecule becomes 

methane the surrounding water forms a rigid shell around it and loses entropy. In terms of 

the IHO cases discussed in chapter 4, this perturbation may display characteristics of cases 

C and D, as the number of degrees of freedom explored in the methane system may be less 
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than the non methane system, so the sizes of phase space when A is 0 and 1 will differ. Also, 

the overall structure of the system will change as the solvation shells of the two systems dif-

fer. Neutron diffraction results for a methane system show peaks for both hydrogen-methane 

and oxygen-methane radial distribution function (RDF) at 3.5 A [Dejong et al.(1997)Dejong, 

Wilson, Neilson & Buckingham]. As the hydrogen peak is broader than the oxygen peak it is 

thought that the waters orientate themselves with hydrogens towards the methane. The results 

for pure water show a sharp oxygen-oxygen RDF peak at 2.8 A with a second shell at 4.5 A 

and a third at 6.8 A. This change in structure is likely to cause FG calculations to display some 

level of hamiltonian lag where TI equilibrium calculations would not. Also, as the b.F is mainly 

due to solvent rearrangement, it is likely that this solvated water to methane perturbation will 

display a smooth potential energy change. This will allow TI calculations to integrate over the 

free energy gradient with a good level of accuracy. 

Water-methane simulation parameters used by Woods et al. for all simulations are set out 

in table 5.2. The present study used the same parameters, although as ProtoMS 2.1 Moute 

Carlo simulation software [Woods & Michel(2005)] was used rather than MCPRO 1.5 [Jor-

gensen(1996)]' a small adjustment was required. ProtoMS 2.1 is unable to force volume moves 

every 10375 MC trials. Instead volume moves are made with a probability relative to solute 

and solvent moves. The MC trial probability ratios used for water-methane simulation in the 

present study are volume 2:solute 13:solvent 20800. This is very close to the MC trial proba-

bilities used by Woods et al. 

Parameter description Setting 
Ensemble NPT 

Temperature 25°C 
Pressure 1 atm 

Boundary conditions Orthorhombic periodic 
Non-bonded cutoff 15 A 

Solute/solvent trials ratio 1/1600 
frequency of volume trials 1 every 10375 trials 

Max solute translation/rotation 0.1 A/ 5.0 ° 
Max solute translation/rotation 0.1 A/ 2.5 ° 

Maximum volume change 830 A3 
Preferential sampling centre Oxygen/CH4 of the solute 

Preferential sampling parameter 200 

Table 5.2: Simulation parameters for relative hydration free energy of water and methane 
simulations. 
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Woods et al. equilibrated the water-methane system, at /\ = 0 for 2 million IVIC trials. 

For the methods employing fixed A simulations, FEP, FDTI, PTTI (parallel tempering ther­

modynamic integration), RETI, and REFEP (replica-exchange free energy perturbation), 21 

uniformly spaced windows were used, starting with the final configuration from the equilibration 

run. 10 million MC trials were allowed in each window, split into 3 million for A equilibration 

and 7 million for calculation data. This protocol uses a total of 212 million MC trials. 

Woods et al. were able to show the improved performance of RETI and REFEP compared 

to the established non-enhanced methods, FDTI and FEP [Woods et aL(2003a)Woods, Essex 

& King]. The addition of replica-exchange moves over A reduced the random sampling error 

and the statistical error. Also, RETI performed consistently better than REFEP and W<1,s ill 

very good agreement with experiment. 

When designing an FG protocol for this water-methane calculation, it is important to COll­

sider the results of chapter 3. Thus, owing to the nature of the water-methane perturbatioll, a 

switch splitting protocol is advisable, to attempt to minimise any hamiltonian lag. Also, results 

from chapter 3 suggest that the longest switching trajectories and smallest A increments possi­

ble should be used to increase efficiency. All FG calculations use as close as possible the scul\(~ 

number of MC trials as the RET I protocol of Woods et al. (total MC trials used will be noted ill 

brackets the first time each method/protocol is mentioned) [Woods et oL(2003a)Woods, Ess('x 

& King]. 

The advantages of a A swap move in FDTI and FEP protocols is clear [Woods et al.(2003a)Woods, 

Essex & King], [Woods et al.(2003b)Woods, Essex & King]. A A swap move can also be applied 

across a series of FG calculations which traverse A (REFG). It makes sense to conduct replica 

exchanges between the equilibrium simulations used to produce FG starting configurations (seed 

simulations) which are adjacent on the A coordinate. As the seed simulations can differ in size 

depending on the FG protocol (i.e. the number of MC trials between starting configurations), 

for REFG it may be worthwhile to choose a protocol which maximises seed simulation sampling 

at the expense of switch length and thus allows more exchange of replicas. 
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5.3.2 Water-methane results 

Figure 5.5 shows water-methane results for non-replica exchang (non-RE) m th d 

four repeated calculations, which all started with the sam quilibrat d tru tur and ar join d 

by a line, using FEP, T I and various protocols of FG. In figur 5.5 the al ulati n prot 

labeled FG-BY10, FG-BY10-Bwd and FG-BY20 are explain d b low. Black lin -

culations where ).. is being incremented from 0 to 1 and red lin s where ).. is b ino' in r m nt d 

from 1 to 0 with cyan lines represent ing BAR calculat ions. The dash d bla k lin 11l.ark th 

experimental relative hydration free energy of 8.31 kcal.mol- 1 ± 0.5 and the da hed r od lin 

marks t he recent ly exhaustively calculated relat ive hydration free energy of . kcal.l1l 1- 1 ± 

0.1 using RETI with randomly chosen).. swap moves, as discussed below [Woo Is(2007)]. 

''0 18 
a 
] 16 
~ r 

- Forward 
- BAR 
- Backwards 
- FD Fwd 

Figure 5.5: Relative hydration free energy of water and methane, estimat d 1. y f ur rep­
etit ions for each non-RE method. Each set of four estimate is link d with a lin and 
labeled with the method abbrieviation. These est imates are compar d t o th exp rim -n-
t al value of 8.31 kcal.mol- 1 which is the black dashed line and t h ac urat al ulat d 
free energy difference of 8.8 kcal.mol- 1 [Woods(2007)]. 

FG protocol Switches 6.AS Me trials A Total Me Equilibrium Me 
per 6.A Split trials (millions) trials/ ).. swap 

FG-BY1 400 1000 375 1 196 100000 
FG-BY10 400 1000 375 10 207 100000 
FG-BY20 800 500 375 20 235 100000 

Table 5.3: Table describing non-RE FG protocols used in figure 5.5 

FEP estimates display a hysteresis of 0.5 to 1 kcal.mol- 1 . T he problem of choosing a sam-

pIing direction may be solved by application of BAR to the FEP results, which would find t h 
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optimum estimate due to the variance of the data. However, more of an issue is the spread of 

FEP estimates in a single direction which is around 2 kcal.mol- 1 . This large spread is despite 

the relatively simple system and the common equilibrated starting structure for each calculation 

repetition. Each FEP calculation repetition probably samples different areas of configurational 

phase space giving these different results. This problem can be called the random sampling 

error, as discussed by Woods et al. [Woods et al.(2003a)Woods, Essex & King]. FDTI shows 

very low levels of hysteresis, however this is obviously a poor measure of the level of possible 

error as the random sampling error is comparable to that of FEP. 

The results labelled FG-BY1 use an FG protocol (196 million MC trials) with uninter­

rupted switches from).. = 0 to ).. = 1 and numbers of switches, ).. increments and MC trials 

per).. increment listed in table 5.3. The hysteresis of the FG estimates is very large at around 

13 kcal.mol- 1 . However, the BAR estimates from the same switches is of similar quality to 

FEP and TI. Owing to the hamiltonian lag experienced by uninterrupted FG water-methane 

switches, the addition of extra work values to a Jarzynski calculation seems to make little dif­

ference, as can be seen by the relative lack of improvement in Jarzynski estimates in figure fiJi 

a). The Gore bias correction seems to offer some improvement in accuracy, especially in with 

forwards switches. Owing to the size of the bias in the J arzynski estimates the bias is calculat(~d 

accurately using equation 3.30. 

The FD estimator with forward switches (starting as water) seems to offer improved pcr­

formance compared to the Jarzynski estimator and similar accuracy to the estimators usiug 

switches in both directions shown clearly in figure 5.5. Forward FD estimates seem to go 

through large fluctations although they do seem to converge as more switches are used (figure 

5.6 b). FD estimates with backwards switches seem to fluctuate less than their forwards COUll­

terparts but give less accurate estimates. These results demonstrate that although forwards 

and backwards jarzynski estimates have similar inaccuracy, forwards and backwards switches 

contain different levels of bias for this system. 
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Figure 5.6: f1F estimates against numbers of FG switches for the FG-BYI pI' to 01 (tab1 
5.3) i.e. where switches are from A = 0 to A = 1 and various estimators. 

FG-BYIO (207 million MC trials) uses t he same switching protocol as as FG-BYl. How v r , 

as the A coordinate is split into ten , the effective length of switche is ten tim long -r (tabl 

5.3). The use of a FG-BYlO protocol massively lowers the hyster sis of!J.F t imat s. BAR 

estimates due to the FG-BYIO protocol are not improved over BAR estimates wi th unin t r-

rupted switches. 

The FG-BYIO-Bwd results are where another four FG-BYIO repetit ions w rani d ut , 

but with the system equilibrated at A = 1 (methane) as opposed to /\ = 0 (wat r). From 

the eight FG-BYIO and FG-BYIO-Bwd estimates reported h re it is possible that t h or is no 

advantage in equilibrating in one start ing system over the other and t hat both s ts of £ ur 

estimates are fully equilibrated. 

The FG-BY20 (235 million MC trials) protocol splits th A coordinate into 20 with ff tiv 

length of switches which are the same as FG-BYIO (table 5.3) i.e. twi e as many witch s 

are used with each individual switch being half the length of those in th FG-BYlO protocol. 

This protocol produces quite similar estimates to t he FG-BYIO protocol (figure 5.5). FG-BY20 

estimates are in general slight ly closer to t he, t hought to be accurate, value of 8.8 kcal.mol- 1 

of Woods et al. [Woods(2007)]. However, FG-BY20 seems to produce slight ly more hysteresis 

between forwards and backwards calculations. 

For FG, FG-BYIO and FG-BY20 BAR estimates could be picked according to t he estimator 

rules described in the previous chapter ; where a BAR estimate is used if it is placed between 

the forwards and backwards J arzynski estimates, otherwise t he J arzynski estimates are chosen 
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with regard to the relative ent ropy measures of I ofke et al. In t h ofth (figur 5.5) F 7 

calculations BAR would be used for every estimate according to t h 

the set of estimates closest to the accurate value. BAR estimates ar not alwa mo t a urat 

although as estimates for each FG calculation are in general very clo (Ii ttl 

may be due entirely to random sampling error. 
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Figure 5.7: Relative hydration free energy 9f water and met han , e timat d by four r ·p­
etitions for each RE method. Each set of four estimates is link d with a lin and lab l ·d 
with the method abbrieviation. These estimates are compared to th experim ntal valu 
of 8.31 kcalmol - 1 which is the dashed line. 

FG protocol Switches 6.AS Me trials A Total Me Equilibrium Me 
per 6.A Split trials (millions) tr ials/ A swap 

REFG1 800 1000 200 10 217 50000 
REFG2-BY10 800 1000 200 10 240 100000 

REFG2-BY20A 1600 500 200 20 267 100000 
REFG2-BY20B 1600 1000 200 20 427 100000 

Table 5.4: Table describing REFG protocols used in figure 5.7 

Methods involving A swap moves display significantly more consistent b.F stimat s . As 

shown by Woods et al. RETI b.F estimates show very low random sampling error and ex-

tremely good agreement with experiment [Woods et al.(2003a)Woods, Essex & King]. REFEP 

has slighty larger levels of hysteresis and random sampling error. Both REFEP and RETI show 

a flipping of the relative positions of forwards and backwards estimates in comparison to FEP 

and FDTI, this will be discussed in full later. 

The four RETI estimates of figure 5.7 although in very good agreement with experim nt 
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may not be properly converged and accurate. These four RETI calculations were performed 

with MCPRO [Jorgensen(1996)] and a A swap scheme where configurations adjacent in /\ nre 

swapped in alternate directions as is the case with REFG1 in figure 5.8. The dashed red line 

marks the more recent RETI estimate performed with ProtolVIS 2.1 [\Voods & Michel(2005)] 

and using a A swap scheme were configurations adjacent in A are swapped in random directions 

(RETI-random) unlike all the other RE free energy protocols discussed here [Woods(2007)]. 

The RETI-random estimate uses the same protocol as the four RETI estimates in aU other 

ways. It is difficult to interpret these results without further investigation but it may be that 

this new RETI-random estimate is more accurate than the original four RETI estimates of 

Woods (2003a). 

REFG1 (217 million MC trials) is a replica-exchange FG protocol, as discussed in the FG 

background chapter, where configurations of equilibrium seed simulations, adjacent in A, are 

intermittently swapped (A swap move) on the basis of a dual metropolis test. A swap moves 

can only be attempted on alternate pairs of simulations, as described in figure 5.8, any more 

and configurations could undergo more than one A swap at once. Switches are performed illl­

mediately after a set of A swap moves have been made. 

Figure 5.8 describes REFG1 with a BY3 (A coordinate is split into three) set of FG calcll­

lations, to save space. In figure 5.8 each thick, black, straight, arrowed line represents a sectioll 

of equilibrium seed simulation. The circles represent system A and squares represent syst(~lIl 

B, filled with cyan these systems are equilibrated while if filled with red they are not. Each 

thinner dashed line represents the use of one system configuration to start multiple simulatiolls 

across A. Very thick blue lines with arrows at either end represent A swap moves and thin wavy 

red lines are FG switches. 

As shown in figure 5.8 REFG1 starts with the same system equilibration as other FG meth-

ods described in the FG background chapter. The equilibrated structure is then used to start 

simulations at 11 uniform intervals across A as with FG-BY10. These simulations are thelJ 

stopped at prespecified intervals to attempt A swap moves and then perform FG switches frolf! 

each equilibrium A simulation, in both directions to the next equilibrium A simulation. 

REFG1 estimates use a switching protocol, described in table 5.4, which has twice as mallY 

switches of almost half the length compared with the protocol used for FG-BYlO estimaks. 

This change is an attempt to allow wider sampling of equilibrium seed simulations. All REFG 
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estimates use the same switching protocol as REFGl (t abl 5.4) ex ep t REFG2-B 20. 
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Figure 5.8: Diagram describing the REFG 1 protocol. Black lines represent equilibrium 
simulations, thick blue lines represent A swap moves, black dashed lines repr sent the 
proliferation of a single syst em configuration and thinner red wavy lines represent FG 
switches. 

REFGl estimates in figure 5.7 seemed to show higher levels of random sampling error 

compared to FG-BYIO, and larger statistical errors. REFGl also dislays a flipping of relative 

placement of forward and backward estimates as seen with FG-BY20, REFEP and RET!. How-

ever , unlike FG-BY20 the BAR estimates have moved to be very similar to backward Jarzynski 
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estimates and consequently forward J arzynski estimates may be hos n rath r than B R ti-

mates according to the estimator rules previously stated in chapt r 4. 

REFG2 is similar to REFGl , the difference being that A wap m v ar mad in b th 

directions between each set FG switches. Figure 5.9 shows that for REFG2 a ;\ . wap m v 

is attempted between all seed simulations adjacent in A befor th n xt t f FG witch 

started. 
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Figure 5.9: Diagram describing the REFG2 protocol. Black lines represent equilibrium 
simulations, thick blue lines represent A swap moves, black dashed lines represent the 
proliferat ion of a single system configuration and thinner red wavy lines repr sent FG 
switches. 
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REFG2-BY10 (240 million l'VIC trials) estimates in figure 5.7 have less random sampling 

error than the other FG protocols but slightly more than RET!. It seems that forward Jarzyn­

ski REFG2-BY10 estimates are more accurate and consistent than BAR. BAR estimates seem 

hampered by the less consistent backwards data. REFG2-BY10 forwards Jarzynski estimates 

seem to have converged slightly above the RETI-random value of 8.8 kcal.mol- 1 while being as 

consistent as the four RETI estimates while using approximately half the MC configurations. 

Although this REFG2-BY10 protocol uses the same alternate direction A swap scheme as the 

four original RET I estimates it is closer to the RETI-random estimate. 

REFG2-BY20A (267 million MC trials) is a REFG2 protocol with 20 FG calculations over 

the A coordinate rather than 10. REFG2-BY20A estimates in figure 5.7 display estimates with 

less random sampling error compared to FG-BY20. Again for REFG2-BY20A, BAR estimates 

are all above the forwards and backwards Jarzynski estimates which are very similar. Jarzyuski 

REFG2-BY20A estimates display less hysteresis than REFG2-BY10, although there is a chance 

this is a random effect. REFG2-BY20 calculations display a higher A swap acceptance rate th11.11 

REFG2-BYlO calculations owing to the equilibrium seed simulations being closer to each oth('r 

across A. REFG2-BY20 typically has A swap acceptance rates of 80 % while REFG2-BYlO is 

65 %. For all REFG calculations replicas were able to move freely across A from 0 to l. 

REFG2-BY20B (427 million MC trials) is similar to REFG2-BY20A but the length of 

switches are doubled in an attempt to find a consistently high level of convergence. Hcn~ 

Jarzynski estimates are all extremely similar with levels of hysteresis similar to the four RET I 

estimates but random sampling error is still significantly larger than that seen for RETI (figure 

5.7) even though many more configurations are used. 

The relative entropy measures of Wu and Kofke (i.e. the W di.s.s) can help us to choose 

whether forwards or backwards FG calculations are more likely to be accurate [Wu & Kofke(200Ga)]. 

The switching direction which gives rise to the largest W diss should originate from a system 

with the larger important phase space. Hence, in theory the Jarzynski estimate with the largest 

Wdiss will give a more accurate D.F. However, this method of predicting the most accurate 

D.F estimate is far from fool proof and in cases where the amount of bias in each direction is 

similar (such as this study of the relative free energy of hydration of water and methane) ran­

dom factors can result in an incorrect prediction. The Kofke bias measure described in the FG 
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background chapter may offer a more reliable prediction of the best estimate as this measure 

attempts to give an idea of the over all bias present. 

FG protocols such as REFG2-BYlO discussed above have a number of small FG calcula­

tions across A rather than one calculation relating the A and B systems. This means there are 

a number of ways estimates of the full free energy difference can be found from the individual 

FG calculations across A, here we will test three: 

1. Independently chosen relative entropy measure: In the case of these multi FG 

calculation protocols each individual FG calculation can be treated independently and 

a particular estimator chosen for each, with the result being that different estimators 

are used for different parts of the perturbation (independently chosen relative entropy 

measure) . 

2. Independently chosen Kofke bias: Same as above except the Kofke bias is used to 

pick the most accurate estimator. 

3. Totalled relative entropy measure: The relative entropy measure can be totalled 

across the A coordinate and a direction chosen from these totals, so the same estimator 

is used for each individual FG calculation across A (totalled relative entropy measure). 

This method may help to choose the correct estimator when using few, very long switches 

and calculations are well behaved as relative entropy measures are likely to be similar ill 

the forwards and backwards direction. Consequently random fluctuations could have all 

impact. 

Table 5.5 shows the Kofke bias measures and free energy estimates for each individual 

calculation of the first REFG2-BYIO repetition in figure 5.7. For the three sections of the 

A coordinate between 0 and 0.3 the forwards Kofke bias measure is negative, predicting that 

these forwards Jarzynski estimates are not converged. The KOfke bias measure suggests that 

in general the backwards J arzynski estimates are more converged than the forwards J arzynski 

estimates. These are trends seen in all repetitions of these REFG2-BYIO calculations suggest­

ing the initial portion of the A coordinate is difficult to converge in the forwards direction and 

overall the backwards direction may provide converge faster. However, these suggestions do 
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not fit with observation that the forwards J arzynski estimates seem more internally consistent 

than the backwards estimates. 

A Fwd Koike Bwd Koike Fwd Jarz Bwd Jarz BAR 
0-0.1 -0.977 1.429 4.600 4.552 4.447 

0.1 - 0.2 -0.738 0.550 2.048 1.858 2.182 
0.2 - 0.3 -0.216 2.383 1.115 0.943 1.083 
0.3 - 0.4 0.195 0.009 0.486 0.608 0.590 
0.4 - 0.5 0.074 13.550 0.333 0.372 0.383 
0.5 - 0.6 0.572 2.189 0.240 0.143 0.247 
0.6 - 0.7 1.624 1.133 0.050 0.079 0.071 
0.7 - 0.8 1.622 1.245 0.048 0.061 0.057 
0.8 - 0.9 0.510 5.727 0.035 0.040 0.047 
0.9 - 1 1.947 1.618 0.017 0.009 0.029 

Table 5.5: Table of Kofke bias measure values and free energy difFerences for each in­
dividual calculation of the first repetition of the REFG2-BYIO protocol (all free energy 
differences in kcal.mol- 1 ). Fwd Kofke and Bwd Kofke denote the Kofke bias measure in 
the forwards and backwards direction respectively. Also, Fwd Jarz and Bwd Jarz denotes 
the J arzynski estimator in the forwards and backwards directions respectively. 

FG protocol Repetition Fwd Wdiss Bwd Wcliss Fwd Jarz Bwd Jarz BAR 
REFG2 1 1.81 1.63 8.97 8.67 9.13 
REFG2 2 1.73 1.38 9.29 D.14 9.7 
REFG2 3 1.36 1.23 9.19 7.87 8.92 
REFG2 4 1.74 1.86 9.20 9.59 9.62 

Table 5.6: Table of relative entropy measure values and relative hydration free energy of 
water and methane estimates (kcal.mol- 1

) for FG-BYIO and REFG2 methods. 

Relative entropy measures totalled across ,\ for the REFG2-BYlO calculations given in this 

study are in table 5.6. Finding estimates using the totalled relative entropy mea:sure for the 

REFG2-BYlO repetitions we pick the forwards direction in all but repetition 3 where the BAR 

estimate is placed between the two J arzynski estimates. While the estimate chosen is not al-

ways the closest to the RETI-random estimate of 8.8 kcal.mol- 1 (red dashed line), the chosen 

estimates, labelled "Wdiss Pick total" in figure 5.10, are consistently very close to the RETI-

random estimate. 
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Figure 5.10: Relative hydration free energy of water and methane, Th - timat 801" -

compared to the experimental value of 8.31 kcalmol- 1 which i th dash -d lin . 

Finding estimates 'using the independently chosen relative entropy measure for t h - RE, 2-

BY10 repeats (labelled "Wdiss Pick" in figure 5. 10) produces estimates of a similar quaJit 

to the totalled relative entropy measure but possibly slightly less consistent. Again I roeIu jug 

estimates using the independently chosen Kofke bias measure (labelled "Kofle Pi Ie" in figur 

5.10) gives similar estimates but even less consistent than the methods using th r lativ n-

tropy measure. 

In theory finding an free energy difference estimate using th ind p nd ntly ho n K fl<e 

bias measure should produce the best results as it should find th estimat with the 1 ast bias. 

In this test it is difficult to see which method is the best, possibly due to t he fact that rand m 

factors may be the main source of error in these calculations. Th totalled r lative ntropy 

measure ("Wdiss Pick total" in figure 5.10) seems to produce t he most constantly accur'te 

results although it is possibly the most arbitrary. 

From the results discussed above it is clear that in general it is advisable to u e RE free 

energy methods as opposed to non-RE methods. REFG2-BY10 is able to produce consistently 

more accurate results than FG-BYlO. The improvement in convergence between similar FG-

BYlO and REFG2-BYlO protocols is again demonstrated in figure 5.13. The REFG2-BY10 

PMFs are more consistent than the FG-BY10 equivalents. 
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Figure 5.11: Plots of the PMF across A of 4 FG-BY10 and 4 REFG2-BY10 al ulati n . 

There was evidence, discussed in chapter 4, to suggest that configurational bia -d F 

more efficient than other FG methods with cases C and D. Cases C and D may hav imilar 

barriers to sampling as the relative hydration free energy of water and m thane al ulation in 

the present study. Thus, it was deemed worthwhile to investigate the performan of confi . ]-

rational bias-d relative to original FG with our water to methane system. Figur 1::. 12 hows 

estimates for three configurational bias-d protocols, which are listed in table 5.7, com par 1 t 

FDTI and FG-BYlO estimates discussed earlier. The configurational bias-d stimat · -' s In t 

display higher levels of hysteresis between the forwards and backwards J arzynski st imat . 

Although, especially for Confbias-d-;l estimates seem more consistent leading to mor accura t 

BAR estimates. 
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Figure 5. 12: Relative hydration free energy of water and methane, estimated by four 
repetitions for each method. Each set of four estimates is linked with a line and labeled 
with the method abbrieviation. These estimates are compared to the experimental valu 
of 8.31 kcal.mol- 1 which is the black dashed line and the RETI-random calculated value 
of 8.8 kcal.mol- 1 . 
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FG protocol Switches 6AS MC trials Split 
Confbias-d-1 400 500 800 10 
Confbias-d-2 400 100 4000 10 
Confbias-d-3 400 10 40000 10 

Table 5.7: Table describing configurational bia -d FG protocol u din figur 1::. 12 

5.3.3 Water-methane conclusions 

The addit ion of replica exchange moves to FG calculation of th l' lativ hydrati n fr 

of water and methane improves accuracy and precision. REFG2 is abl to I rodu stimat 

of similar quality to RET!. However, for free energy calculation su h as th r la tiv hydrati n 

free energy of water and methane RETI should be t he method of choic . Th PMF of th 

change in hydration free energy between water and methane is very mooth. This m all that 

method which makes more evaluations at less discrete points across lambda will produc mol' 

easily converged results t han a method which makes fewer evaluation at many [ int' a r s 

lambda. 

F igure 5.13 compares t he P MF of four RETI and four REFG2-BYlO forwards J arzyn ki 

calculations. REFG2-BY10 compares well with RETI in this cas , specially as half a many 

configurations are used to produce t he REFG2-BY10 forwards estimate as the RETI t imat , 

although the RETI repeats are slight ly more consistent. However , as can b en from figur 

5.7 other REFG protocols and estimators display less reproducible b haviour. 
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Figure 5.13: Calculated PMF of relative hydration free energy of water and methane. 
From 4 repetit ions of a RET I calculation and 4 repetitions of a REFG2-BY10 calcualtion 
using t he forwards Jarzynski estimator. RET I data suplied by C. Woods, taken from 
[Woods(2003)] 

The four RETI calculations of Woods (2003) (figure 5.7) are consistently close to the ex-
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perimental value of 8.31 kcal.mol- 1 ± 0.5. This may, unfortunately, be due to chance. A more 

recent RETI-random calculation gives a value with slightly higher precision, of 8.S kcal.mol- 1 ± 

0.1 [Woods(2007)]. REFG-BY10 estimates are close to the RETI-randolll value. It may be that 

the highly consistent four RETI estimates give a false idea of the level of reproducibility of the 

RET I protocol, by chance. There is the possibility that there is an issue with the periodicity of 

,\ swap moves in RETI causing differing efficiencies in convergence, although more investigation 

is required to clear this up. The REFG1 protocol is the same as the REFG2-BYlO protocol 

except REFG2-BY10 has two ,\ swaps between eacll switch starting configuration and REFG1 

has only one. Also, REFG1 has 50,000 Me trials between ,\ swaps whereas REFG2-BYlO hn.,> 

100,000. The difference in performance between REFG1 and REFG2-BYlO (see figure 5.7) 

must be attributed to some combination of the extra ,\ swaps and equilibrium seed simuiatioll 

Me trials. 

When forwards and backwards Jarzynski BAR FG estimators do not give the same value 

it may be difficult to choose the most accurate estimate. A good method tested here and pos­

sibly the most simple is to use the totalled relative entropy measure of Wu and Kof1m (200fic) 

(effectively the W diss) to find the J arzynski estimator which is most likely to be accurate, ill 

the case of a BAR estimate not being between forwards and backwards Jarzynski estimai;cs. 

Alternatively, it may be even simpler to just use BAR on all occasions. 

For free energy calculations on chemically and biologically relevant systems, where the PMF 

from system A to B is smooth and has no sharp curvature or sudden fiuctations, RETI may 

perform more efficiently than any FG protocol. It is not clear whether these large biological 

systems do experience sufficiently sharp changes in free energy to cause a problem for TI ba"s(~d 

methods. 

If the limiting parameter to calculations is not the number of Me trials but instead is tile 

wall clock time, then FG methods may have an advantage. This being the case and dependillg 

on the number of computers used for FG, more Me trials could be used in an FG calculation 

than for a TI calculation taking the same amount of time. As REFG2 has been shown to give 

similar performance to RETI with this extra computational advantage both RETI and REFG 

methods may be equally suitable for calculations similar to the relative hydration free energy 

of water and methane. 



Chapter 6 

Protein Ligand Binding Free 

Energies: Neuraminidase 

6.1 Introduction 

Neuraminidase is a glycoside hydrolase enzyme and is found on the surface of the influenza virus 

(EC 3.2.1.18, [Bairoch(2000)]). It is thought that neuraminidase aids in the efficiency of virus 

release from cells. Thus, neuraminidase has been a major target for drug design programnws 

and inhibiting compounds in current use as treatments are zanamivir (Relenza) and oseltamivir 

(Tamiflu). 

Neuraminidase inhibitors have been the subject of a recent binding free energy study llsillg 

RETI with both implicit and explicit solvation [Michel et al.(2006)Michel, Verdonk & Essex]. 

Michel et al. used a structure of N9 neuraminidase (PDB code IBJI) and attempted to pn~­

dict the binding affinity of 10 ligands originally investigated by Wall et al. using LIE [Wall 

et al.(1999)Wall, Leach, Salt, Ford & Essex]. Unfortunately the results of Wall et o,l. aJl(1 

Michel et al. cannot be fairly compared as differing receptor structures were used, with Mic:lwl 

et al. having the advantage of a newer, possibly more appropriate receptor. Michel et oJ 

produced predictions of ligand binding affinities which showed excellent quantitative agreement 

with experiment using both implicit and explicit methodologies. 

Here the reproduction of the explicitly solvated neuraminidase results of Michel et al. using 

FG is investigated. How well do FG methods compare with RETI and experimental analyses? 



CHAPTER 6. PROTEIN LIGAND BINDING FREE ENERGIES: 
NEURAMINIDASE 155 

6.2 The neuraminidase system in vivo 

Influenza is a wide-spread disease amongst humans with infe tion aff ting 20 o/c of th w rld 

population annually [Moscona(2005)]. Influenza can al 0 b extr m ly virul nt . Fr m 191 t 

1920 a pandemic due to the deadly strain H1N1 of influenza A virus kill d 50-100 milli 11 p opl 

worldwide. With the parallels between the recent H5N1 strain and that of th 191 pand mi 

the threat posed by nfluenza is clear [Kamps et al.(2006)Kamp , Hoffmann & Pr i r] . Thr u 'h 

vaccination we can prevent infection and this is the main strategy used to ta kl th - pr bl m. 

However, vaccine programs can fail due to antigenic drift , inadequate va in upply an I th 

slow nature of present methods of vaccine production. Ther for , anti-viral drugs ar imp rtant 

for pandemic strategies and the treatment of individual cases. 

The neuraminidase protein has a mushroom shaped head of four co-planar pherical subunit 

projecting from the virus membrane and a hydrophobic trans-membrane r gion. N uraminidas 

disconnects the influenza viron from cell surface receptors which attach newly r 1 ased vir 11 

to an infected cell (figure 6.1). The neuraminidase active site binds the terminal j' Ii a id of 

these cell surface receptors and cleaves the glycosidic linkag betw en th jaIi acid and th -

adjoining saccharide (EC 3.2.1.18, [Bairoch(2000)]). Without this action the virus i eff t iv Jy 

unable to reproduce and the infection is halted. 

A 

Host 
cell Neuraminidase cleaves receptor 

Halted 
viral 

repliutlon 

Figure 6.1: The action of neuraminidase in the replication of influenza virons. Taken 
from [Moscona(2005)] 
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Effective neuraminidase inhibitors were designed when the three dimensional structure of 

the enzyme was produced and the position of the active site found [Colman et al.(1983)Collllan, 

Varghese & Laver]. Zanamivir and Oseltamivir both closely mimic the natural substrate, sialic 

acid, but bind more favourably. Current neuraminidase inhibitors have very little toxicity COlll-

pared to alternatives and are effective against all strains of influenza [IVloscona(2005)]. 

The binding site of neuraminidase is solvent exposed and water molecules playa role in bind-

ing of the sialic acid substrate. Figure 6.2 shows the binding site of the x-ray crystal structure 

of N9 neuraminidase with PDB code 1BJ1 [Taylor et al.(1998)Taylor, Cleasby, Singh, SkarzYll-

ski, Wonacott, Smith, Sollis, Howes, Cherry, Colman & Varghese]. The sialic acid substrate is 

placed correctly in the binding site, although this structure has not undergone any minimisa-

tion or equilibration. The slightly enlarged green spheres in figure 6.2 are the oxygen atoms of 

the crystallographic water molecules present in the binding site. At least one of these bOllud 

waters is thought to mediate binding for some inhibitors, including DANA types and amiIlo 

types [Smith et al.(1996)Smith, Sollis, Howes, Cherry, Vobley, Taylor, Whitington, Skarzyuski, 

Cleasby, Singh, Varghese & Colman], [Wall et al.(1999)Wall, Leach, Salt, Ford & Essex]. The 

general protein-ligand interactions seen in figure 6.2 and for all cornplexcs are as follows: the car-

boxylic acid of the ligand interacts with arginines 118, 292 and 371 through charge-charge bas(~d 

hydrogen bonds, including a possible planar salt bridge to 371 [Varghese et al.(19~)2)Varglwse, 

McKimm-Breschkin, Caldwell, Kortt & Colman], [Taylor et al.(1998)Taylor, Clea.sby, Sillgh, 

Skarzynski, Wonacott, Smith, Sollis, Howes, Cherry, Colman & Varghese]. The acctamic\o 

fragment placed in the middle, lower region of figure 6.2 has hydrogen bonds to Arg 152 and a 

bound water. The methyl associated with this acetamido fragment makes favourable hyclrop]lO-

bic contact with two residues Trp 178 and Ile 222, which are slightly lower in the binding sit(~ 

than Arg 152. The two more terminal hydroxyl groups of the glycerol moiety have a bidentatc 

interaction with Glu 276. The hydroxyl group on the left of the sialic acid molecule in figun~ 

6.2 experiences hydrogen bonding with residues Glu 119 and Asp 151 which is facilitated by 

a bound water [Varghese et al.(1992)Varghese, McKimm-Breschkin, Caldwell, Kortt & Colmall]. 
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/ 

Figure 6.2: The substrate binding site of N9 neuramindase from influ nza A (pdb IBJI 
[Taylor et al.(199S)Taylor , Cleasby, Singh, Skarzynski Wona ott , Smith, Solli , How- , 
Cherry, Colman & Varghese]) with sialic acid bound. Binding site wat r oxyg n atom 
are enlarged and in green. Sidechain hydrogens are removed for clarity. Th po ition f 
the sialic acid molecule is modelled in the binding sit e with reference to th siali a id 
analogue (ligand 10 in this study) of the IBJI structure. 

Figure 6.3 is a schematic of t he basic scaffold for all ligand' used in thi, ' tudy, whi hi ' 

based on the substrate sialic acid. The scaffold posit ions Rcis, Rtrans (r ferring to t h is and 

trans pockets described above) and Rpol are filled by different sub'titu nt for the diff r nt 

ligands list ed in table 6.1. 

o 0 

o 

Rpol 
NH 0 

-\ 

Rcis 
I 
N ....... 

Rtrans 

Figure 6.3: 2D chemical structure diagram of the basic scaffold for all neuramindas 
ligands used in this study. 
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Compound Rtral1S R cis Rpol leGo (ItI'd) 
1 I'de H NHt 190 
2 Et H NHr 13 
3 Me IVIe NHr 2.4 
4 Et Et NHr 0.003 
5 Me H NHC(NH2 )+ 7 
6 Me Me NHC(NH2 )+ 0.025 
7 Et Et NHC(NH2 )+ 0.001 
8 (CH2hPh PI' NHC(NH2)+ 0.005 

9 (CH2hPh H NHt 12 
10 (CH2hPh PI' NHt 0.005 

Table 6.1: Experimental activity of the sialic acid analogues against neuraminidase [Wa.ll 
et al.(1999)Wall, Leach, Salt, Ford & Essex] 

From the IC50 data in table 6.1 it seems that it is favourable for binding to fill both the (,j" 

and trans pockets. There is little difference between binding affinities of ligands 4, 7, 8 and 10 

suggesting there is little profit in bulkier groups than Et for both the trans and cis pockets. Tlw 

difference between binding affinities of ligands 4, 7, 8 and 10 are within experimental errors of 

approximately half an order of magnitude [Wall et al.(1999)Wall, Leach, Salt, Ford & Essex]. 

The positioning of the (CH2hPh and Pr groups in the substrate binding site is shown in figuw 

6.4. The phenethyl group is placed between Ile222 and Ala246 (the trans pocket), while tlw 

propyl is between the Glu276 and Arg224 residues (the cis pocket). 
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Arg271 / 
ArgllS 

Figure 6.4: The substrate binding site of N9 neuramindase from influenza A (pdb IBJI 
[Taylor et al.(1998)Taylor, Cleasby, Singh, Skarzynski , Wonacott, Smith, Solli , H w , 
Cherry, Colman & Varghese]) with the amino, sialic acid analogue, ligand 10 bound. 
Binding site water oxygen atoms are enlarged and in green. Sidechain hydrog n al' ­
removed for clarity. 

The substitution of an amino group at position Rpol for a guanadino group i al trono'ly 

favourable (compare ligand 3 and 6 in table 6.1). This is due to the displacem nt of a boun 1 

water by the guanadino group , which would be present with ligands 1 to 4 ,9 and 10, [Taylor 

et al.(1998)Taylor , Cleasby, Singh, Skarzynski, Wonacott, Smith, Sollis, Howes, Ch ny, olman 

& Varghese]. 



CHAPTER 6. PROTEIN LIGAND BINDING FREE ENERGIES: 
NEURAMINIDASE 160 

Figure 6.5: The substrate binding site of N9 neuramindase from influenza A (pdb IBJI 
[Taylor et a·l.(1998)Taylor , Cleasby, Singh, Skarzynski, Wonacott , Smith, Solli How-s, 
Cherry, Colman & Varghese]) with the guanadino, sialic acid analogue, ligand 7 bound. 
Binding site water oxygen atoms are enlarged and in green. Sidechain hydrogen. ar 
removed for clarity. 

6.3 The neuraminidase system in silico 

This study is concerned with calculating relative binding free energies (b..b.. P) of a. t f il1-

hibitors for neuraminidase. This allows the ranking of ligands to find those whi h r th 

strongest binders. To find b..b..Fs for protein-ligand systems it is necessary to run two fr 

energy calculations which are part of a t hermodynamic cycle as shown in figure 6.6. 6.b..Fs ar 

then calculated through equation 6.2. 

~F perturb(water) 

~F perturb(lig1) ~F perturb(lig2) 

~F perturb(protein) 

Figure 6.6: Thermodynamic cycle used in the calculation of the relative binding free 
energy of neuraminidase inhibitors 
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flFpert(proiein) - flFpert(waier) (6.1) 

(6.2) 

The model system used in this study is identical to that of Michel ei al. in their recent 

study [Michel et al.(2006)Michel, Verdonk & Essex]. All system setup information is described 

for completeness. A 2 A resolution PDB structure of N9 neuraminidase (PDB code 1BJI) was 

used as the receptor model for all calculations. Missing hydrogen atoms were added to 1BJI 

using Reduce [Word et al.(1999)Word, Lovell, Richardson & Richardson]. The experimental 

studies on these ligands were done at a pH of 6.5 so all histadine residues were protonated unless 

evidence of an available hydrogen bonding interaction was found. All ligands were placed in 

the binding site with the bonding mode of ligand 10 in the crystal structure 1BJI. 

The AMBER99 forcefield was used for the protein and GAFF was used to parametrise the 

ligands [Pearlman et al.(1995)Pearlman, Case, Caldwell, Ross, Cheatham, Debolt, Ferguson, 

Seibel & Kollman]. Partial charges were produced using the AM1/BCC method as implemented 

in AMBER 8 [Case(2004)] [Jakalian et al.(2002)Jakalian, Jack & Bayly]. 

The complex of protein and ligand 10 was then put through a short minimisation using the 

Sander simulation program of AMBER 8 with Generalised Born (GB) solvation [Case(2004)]. 

This minimisation consisted of 100 steps of steepest descent followed by 400 steps of conjugate 

gradient and was intended only to remove bad contacts. 

All residues outside 15 A from any heavy atom of the ligand (ligand 10) were removed to 

give a protein scoop for all subsequent simulations. The system was solvated with a 22 A sphere 

of TIP4P waters centered on the geometric centre of the ligand. A similar sphere of water was 

used to solvate ligand-only simulations. The system was neutralised by removing the charge of 

lysine residues 273 and 432 which are both not close to the binding site. 

All sampling was carried out using a version of ProtoMS 2.1 [Woods & Michel(2005)] mod-

ified to run any extra FG methods. All backbone atoms were kept rigid for all simulations. 

The solvent was constrained using a half-harmonic potential of 1.5 kcal.mol- 1 .A -1 applied to 

water oxygen atoms which go beyond 22 A from the geometric centre of the starting position 

of ligand 10. Residues with all heavy atoms further than 10 A from all the ligand heavy atoms 
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were rigid and not sampled. The neutralised lysine residues were in this frozen region. Also, a 

non-bonded cut off of 10 A was imposed to increase the efficiency of sampling. This setup gives 

a belly simulation with a moving core surrounded by a frozen shell. \Vithin the moving core 

bond angles and torsions of sidechains were sampled except for those which are part of a ring 

structure. The ligand was sampled in a similar way with the addition of rigid body translations 

(0.03 A) and rotations (0.1°). 

Simulations were run at a temperature of 37°C in agreement with experiment [Taylor 

et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smith, Sollis, Howes, Cherry, Col-

man & Varghese]. For simulations of protein-ligand complexes, solvent, protein and ligand 

moves were attempted 85.7 %, 12.8 % and 1.4 % of the time. For ligand-only simulations, 

solvent and ligand moves were attempted 98.4 % and 1.6 % of the time. In preparation for 

equilibrium simulations the solvent was equilibrated for 20 million moves, with the protein held 

rigid, in an attempt to remove any repulsive contacts with the protein or ligand. Then the 

whole system was equilibrated for another 20 million moves at one extreme of the coupling 

parameter which corresponds to the largest ligand. The equilibrated system configuratioll is 

then used to start all simulations, at different A values, needed for a particular protocol. The 

RETI analysis of Michel et al. equilibrated each A window simulation for 10 million MC trials 

before any data was collected. The FG protocols of this study equilibrated each A window 

seed simulation for 2 million MC trials. This reduction in the size of the A equilibration for 

FG protocols was made to save time. The smaller size of these equilibrations was found to he 

sufficient through studying the energy fluctuations of these equilibrations and the fact that test 

~Fs were consistent with protocols with longer equilibrations. 

The perturbations used were picked to close four thermodynamic cycles shown in figure 6.7. 

This allowed the calculation of hystereses of different paths to the same ~~Fs giving an idea 

of the consistency of the calculations. Also, the averaging of ~~Fs from different perturbation 

paths gives more precise results. 
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Figure 6.7: Closed perturbation pathways used to find hystereses for consistency 
Ligand numbers are in black and closed cycle numbers are in red. 

Perturbations were performed using a single topology method in a similar styl to th wat r 

to methane perturbation of chapter 5. The growth of large groups uch as b nz n ring w' 

made possible by hiding all atoms of the larger group to be grown behind th mall r grauf 

from which it is growing. All bonds and atoms in the larger group to be grown w r s t t 0.2 

A and dummies, respectively, in the end state without the larger group (i.e. not n by th 

rest of the system). For example, the perturbation from ligand 2 to 9 grow a b nz n ring 

from a hydrogen. The end state with ligand 2 has a benzene ring of dummy atom. with bon Is 

0.2 A long. Even with the benzene ring in its shrunken state, it is unable to hid completely 

behind the influence of the hydrogen atom from which it grows. However , it is important that 

as the dummy atoms of the ring are turned on they are not close to any other atoms thi.' 

will possibly cause extremely large energies and lead to issues of free energy converg nc 

TI calculations carried out by J . Michel used 12 >. windows with 11 spaced uniformly every 

0.1 and one at 0.95. Each>. window simulation was equilibrated for 10 million MC trials and 

then>. measurements were collected for 30 million MC trials. The FDTI 6>. used in every cas 

was 0.001. 

FG protocols for this study were devised with the results and conclusions of chapters 3 

and 4 in mind. After experimentation the FG-BYlO protocol was deemed most suitable for 

this and possibly all protein ligand systems and was therefore tested for original FG , REFG2 
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and configurational bias FG. Again, FG protocols with few, long switches were employed, as 

discussed in chapters 3 and 4. 

6.4 RETI Results 

Table 6.2 shows RETI protein-ligand (.6.Fprot ) and solvent-ligand (.6..6.Fwat ) free energies which 

give the relative binding free energies (.6..6.Fbind) which can be compared to the experimental 

(Exp) relative binding free energies. Also, vacuum free energies (.6.Fvac) are shown, which en-

able the calculation of solvation free energies (.6..6.Fsolv), Errors were calculated using the block 

variance method described earlier in the main introduction. 

Pert Exp t1t1Gbind t1t1Gsolv t1GpTot t1Gwat t1Gvac 

It2 -1.63 1.44 ± 0.41 1.24 ± 0.32 1.87 ± 0.29 0.43 ± 0.29 -0.81 ± 0.14 
It3 -2.67 -5.25 ± 0.62 -1.58 ± 0.67 21.87 ± 0.34 27.12 ± 0.52 28.70 ± 0.43 
2t3 -1.04 -7.19 ± 0.77 -2.52 ± 0.78 19.74 ± 0.43 26.93 ± 0.64 29.45 ± 0.45 
3t4 -4.09 -4.14 ± 0.69 1.46 ± 0.54 -8.78 ± 0.51 -4.64 ± 0.47 -6.10 ± 0.27 
5t6 -3.45 -5.61 ± 0.58 -1.62 ± 0.62 20.69 ± 0.27 26.30 ± 0.51 27.92 ± 0.35 
5t7 -5.15 -7.34 ± 1.18 0.10 ± 1.04 15.12 ± 0.78 22.46 ± 0.88 22.36 ± 0.56 
2t4 -5.13 -9.32 ± 1.06 -2.53 ± 1.08 12.04 ± 0.65 21.36 ± 0.84 23.89 ± 0.68 
2t9 0.08 -2.56 ± 1.21 0.84 ± 0.93 -7.30 ± 0.80 -4.74 ± 0.91 -5.58 ± 0.20 
6t7 -1.70 -1.36 ± 0.66 1.14 ± 0.53 -4.54 ± 0.49 -3.18 ± 0.44 -4.32 ± 0.29 
7t8 0.65 -3.97 ± 1.39 3.07 ± 1.04 -4.62 ± 0.99 -0.65 ± 0.97 -3.72 ± 0.37 

4t10 0.25 -5.46 ± 1.38 2.34 ± 1.09 -3.12 ± 0.90 2.34 ± 1.04 0.00 ± 0.31 
9t10 -4.80 -11.86 ± 1.33 -1.49 ± 1.32 13.33 ± 0.81 25.19 ± 1.06 26.68 ± 0.78 

Table 6.2: Experimental and calculated relative binding free energies with the protein­
ligand and solvent-ligand free energies used in their calculation. Also, relative solvatioll 
free energies calculated with the vacuum-ligand free energies used in their calculatiOlI. 
Experimental free energies are calculated with the formula tJ.tJ.G = tJ.G2 - tJ.G1 = 
RTln(Kd K 2 ) assuming that the ratio of the 1C50s is equal to the dissociation constants 
[Cheng & Prusoff(1973)]. All free energies in this table are in kcal.mol- 1 , were foulld 
with RETI and taken from the PhD thesis of J.Michel [Michel(2006)]. 

The trends in the calculated .6..6.Fbinds in table 6.2 are similar to those seen from experi-

ment. The calculated .6..6.Fbinds are in general slightly overestimated. 

Table 6.3 shows the changes taking place at the cis and trans positions and compares this 

with the inaccuracy in .6..6.Fbind and the percentage of .6..6.Fbind made up by .6..6.Fsolv. In the 

cis and trans columns the groups listed before and after the" -" is present are at ). = 0 and ). 

= I, respectively. The same/diff column has "Both diff" and "Both same" if changes at the 

cis and trans positions are different or the same, respectively. It is interesting that the two 
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most accurate!::.b..Fbind estimates have fvIe-Et changes at both the cis and trans positions. All 

b..b..Fbind estimates which grow a (CH2hPh at the trans position are lllore inaccurate than the 

mean unsigned error of 3.39 kcal.mol- 1 . The Et-(CH2hPh change of perturbation 2t9 gives a 

relatively small inaccuracy of 2.64 kcal.mol- 1 . This suggests that it may be the Et-Pr change 

which is the source of the relatively high inaccuracies in perturbations 7t8 and 4t10. It is inter-

esting that perturbation 2t3 is very inaccurate as perturbations with similar sized changes in cis 

and trans groups do not show such large inaccuracies. Hence, the large error for perturbation 

2t3 may be due to random sampling error issues. 

Pert trans cis same/cliff !::.!::.Fbind error 
It2 Me-Et H -3.07 
It3 Me H-Me 2.58 
2t3 Et-Me H-Me Both cliff 6.15 
3t4 Me-Et Me-Et Both same 0.05 
5t6 Me H-Me 2.11 
5t7 Me-Et H-Et Both cliff 2.19 
2t4 Et H-Et 4.19 
2t9 Et-(CH2hPh H 2.64 
6t7 Me-Et Me-Et Both same -0.34 
7t8 Et-(CH2hPh Et-Pr Both cliff 4.62 

4t10 Et-(CH2hPh Et-Pr Both cliff 5.71 
9t10 (CH2hPh H-Pr 7.06 

Table 6.3: Table showing the perturbations taking place at the cis and trans positions 
from figure 6.3 and the error of calculated llFs compared to experiment. Also, the 
percentage of the llllFbind value which is contributed by the llllF.solv is listed in the last 
column. 

The hystereses of the 4 thermodynamic cycles made by the neuraminidase perturbatiowi 

are listed in table 6.4. Cycle 2 has a relatively large b..b..Fbind hysteresis of 2.01 kcal.mol- 1 . 

However, the total level of error in cycle 1 is larger than cycle 2 as can be seen from table G.;) 

and so it could be argued that the large error in perturbation 2t3 has given cycle 1 a high level 

of consistency, fortuitously. If the possibly random error in perturbation was more in line with 

errors in other similar perturbations it would be cycle 1 with the high hystereses and not cycle 2. 
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Cycle pathway hystbil1d hystsolv 
1 (1,2,3) 0.50 ±1.07 0.30 ± 1.08 
2 (2,3,4) 2.01 ± 1.48 1.47 ± 1.43 

3 (2,4,9,10) 0.88 ± 2.50 0.46 ± 2.23 
4 (5,6,7) 0.37 ± 1.47 0.58 ± 1.32 

Table 6.4: Hystereses of 4 thermodynamic cycles for relative binding (hystbind) and solva­
tion (hystsolv) free energies of the neuraminidase ligands. All hystbind and hystsolv values 
in kcal.mol- 1 . 

Table 6.5 shows the free energy difference of each of the ligands relative to ligand 1. The 

perturbation 3t6 in table 6.5 is not listed in tables 6.2 and 6.3 above. This is because perturba-

tion 3t6 is problematic due to the necessary expulsion of a water molecule from the binding site 

as explained earlier [Taylor et al.(1998)Taylor, Cleasby, Singh, Skarzynski, Wonacott, Smith, 

Sollis, Howes, Cherry, Colman & Varghese]. Attempts to tackle this perturbation with relatively 

simple methods were not successful [Michel(2006)]. The proper treatment of this perturbation 

would require more complex methodology, outside of the scope of this study. Barillari et al. 

studied this neuraminidase system with the same AMBER99 force field and a more rigonrons 

simulation set up including periodic boundary conditions and protein backbone movement [Bar-

illari et al.(2006)Barillari, Taylor, Viner & Essex]. Barillari et al. investigated a very similar 

perturbation with the same water expulsion through the growth of a guanadino group from all 

amino group. The perturbation consisted of an annihilation of crystallographic bound wat(~ni 

using a double decoupling method [Gilson et al.(1997)Gilson, Given, Bush & McCammon] fol-

lowed by the mutation of ligand 3 to 6. With a non-bonded cut off of 30 A Barillari et al. foulHl 

a relative binding energy of -3.4 ± 1.1 kcal.mol- 1 which is close to the experimentally measured 

value of -2.78 kcal.mol- 1 . Owing to the complexity of the Barillari et al. methodology and tlw 

problems of applying this large cutoff (30 A) with the water droplet methodology of the present 

study Michel opted to use the relative binding energy value of Barillari et al. [Michel(2006)]. 

Hence, the value of -3.4 ± 1.1 kcal.mol- 1 will be used for the perturbation of 3t6 through out 

this study. 

Table 6.5 shows whether this RET I analysis has predicted the ranking, from best binder to 

worst, correctly. Overall most ligands are in the correct order. Ligands 8 and 10 are incorrectly 

predicted to be better binders than ligands 4 and 7. Also, ligand 4 is predicted to have almost 

the same l:!..l:!..Fbind as ligand 6, whereas experimental l:!..l:!..Fbind show that it is a better binder. 
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Interestingly the large error of perturbation 2t3 discussed above is quenched by the combined 

error of an opposite sign in perturbations 1t2, giving a flflFbi.nd for ligand 2 which is in line 

with the general trend. Again this may be fortuitous. 

Figure 6.8 again compares the calculated and experimental flflFbind of each ligand relative 

to ligand 1. Here again, it is clear that the prediction suffers from the large over estimation 

ofligand 8 (NHt ,(CH2hPh,Pr) and 10 (NHC(NH2)+ ,(CH2hPh,Pr) flflFbind' Figure 6.8 also 

shows a predictive index (PI) score. PI is a quantitative measure of how useful a predicted 

set of protein-ligand flflHindS are [Pearlman & Charifson(2001)]. PI is calculated using the 

formula, 

with, 

and, 

Wij = IE(j) - E(i)1 

if E(j) - E(i)j P(j) - P(i) < 0 

if E(j) - E(i)j P(j) - P(i) > 0 

if P(j) - P(i) = O. 

(6.3) 

(6.4) 

(6.5) 

In equations 6.3, 6.4 and 6.5 P(i) is the calculated binding affinity of ligand i and Ee;,) 

is the experimental binding affinity of the same ligand. Thus, a PI of 1.0 for a set of ligand::; 

means that all ligands are in the correct rank order with respect to the experimental order. A 

PI of -1.0 means that the predicted rank order of the ligand is the opposite of the experimental 

order and a PI of 0 means the predicted order is random. 

The PI score of the set of estimates shown in figure 6.8 is 0.93. This is a very good score 

and suggests that the prediction has a near correct rank order and would be very useful in 

deciding which ligands to investigate further. The mean unsigned error (MUE) of this analy::;i::; 

is 3.37 kcal.mol- 1 , which is quite high. This high error is obviously largely due to the over cs-

timation of ligands 8 and 10. Figure 6.8 also shows the coefficient of determination which is 0.82. 
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Compound Perturbation pathway Calc f::J.f::J.Fbind Expl f::J.f::J.Fbind 
7 [1 t3+3t6+6t7] -10.01 ± 1.42 -7.15 
4 [lt3+3t4];[lt2+2t4] -8.64 ± 1.03 -6.76 
8 [1 t3+3t6+6t7 + 7t8] -13.98 ± 1.99 -6.51 

10 [1 t2+ 2t9+9t10]; [1 t3+3t4+4t10] -13.92 ± 1.75 -6.51 
6 [lt3+3t6] -8.65 ± 1.26 -5.45 
3 [lt3] -5.25 ± 0.62 -2.67 
5 [1 t3+3t6+6t5] -3.04 ± 1.39 -2.00 
9 [lt2+2t9] -1.12 ± 1.28 -1.71 
2 [lt2]; [lt3+3t2] 1.69 ± 0.70 -1.63 
1 0 0 

Table 6.5: Experimental and RETI calculated binding free energies with respect to ligand 
1. All free energies in this table are in kcal.mol- 1 . 
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Figure 6.8: Comparison of calculated and experimental b..b..Fs for 10 Neuraminidase 
ligands. Data points are labelled with the chemical groups at the trans and cis positions 
from table 6.1. Taken from J.Michel et al. 2006 [Michel et al.(2006)Michel, Verdonk & 
Essex]. 

6.5 FG Results 

Table 6.6 shows the FG-BYI0 calculated and experimental tl.tl.Fbinds, calculated tl.tl.Fsolvs and 

the tl.Fprots, tl.Fwats and tl.Fvacs needed for their calculation. This FG-BYI0 analysis used 400 

switches of 750 Me trials between each of 1000 tl.As with 71300 Me trials of seed simulatioll 

between each starting configuration (400x1000x750). This adds up to 318 million Me trials 

to obtain a tl.Fprot or tl.Fsolv which is similar to the 360 million Me trials used for the same 

calculation in the RETI analysis above. Errors in table 6.6 were calculated using the block 

variance method described earlier in the main introduction with 2 blocks. 
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Pert Exp 66Hind 66Fsolv 6Fp 1'ot 6F"'llt 6Ft 'llc 

It2 -1.63 1.61 ± 0.21 -0.68 ± 0.20 -0.03 ± 0.13 -1.6-1 ± 0.17 -0.96 ± lUI 
It3 -2.67 -4.64 ± 0.19 -1.32 ± 0.15 22.60 ± 0.11 27.2-1 ± 0.15 28.57 ± 0.01 
2t3 -1.04 -2.67 ± 0.32 -3.54 ± 0.17 23.25 ± 0.27 25.92 ± 0.17 29.46 ± 0.01 
3t4 -4.09 -4.48 ± 0.23 -0.10 ± 0.12 -11.11 ± 0.20 -6.63 ± 0.11 -6.53 ± 0.03 
5t6 -3.45 -4.53 ± 0.15 -2.72 ± 0.13 20.56 ± 0.08 25.09 ± 0.12 27.81 ± 0.01 
5t7 -5.15 -5.28 ± 0.26 -3.17 ± 0.20 13.69 ± 0.17 18.98 ± 0.19 22.15 ± 0.06 
2t4 -5.13 -7.38 ± 0.34 -4.83 ± 0.31 10.97 ± 0.14 18.35 ± 0.31 23.18 ± 0.01 
2t9 0.08 -5.99 ± 0.56 0.58 ± 0.52 -1.17 ± 0.22 4.82 ± 0.51 4.24 ± 0.03 
6t7 -1.70 -2.83 ± 0.21 1.64 ± 0.18 -6.00 ± 0.17 -3.17 ± 0.13 -4.81 ± 0.12 
7t8 0.65 -5.17 ± 0.53 1.53 ± 0.45 2.24 ± 0.29 7.41 ± 0.G5 5.88 ± 0.04 

4t10 0.25 -4.41 ± 0.28 -1.23 ± 0.21 4.68 ± 0.21 9.09 ± 0.19 10.32 ± 0.09 
9tlO -4.80 -9.83 ± 0.38 -3.93 ± 0.33 13.23 ± 0.19 23.06 ± 0.3:3 26.98 ± 0.04 

Table 6.6: Experimental and calculated relative binding free energies with the protein­
ligand and solvent-ligand free energies used in their calculation. Also, relative solvation 
free energies calculated with the vacuum-ligand free energies used in their calculation. 
Experimental free energies are calculated with the formula 6.6.G = 6.G2 - 6.G1 = 
RTln(Kd K 2 ) assuming that the ratio of the 1C50s is equal to the dissociation consta,nts 
[Cheng & Prusoff( 1973)] . All calculated free energies in this table were found using 
FG-BY10 and BAR with 400 switches of 750 MC trials between each of 1000 6.).s (FG­
BY10-BAR-400x1000x750). 

Pert Cis Trans same/diff 66Fbind TI error 66Fbind FG error 
It2 Me-Et -3.07 -3.24 
It3 H-Me 2.58 1.97 
2t3 HeMe Et-Me Both diff 6.15 1.63 
3t4 Me-Et Me-Et Both same 0.05 0.39 
5t6 H-Me 2.11 1.08 
5t7 H-Et Me-Et Both diff 2.19 0.13 
2t4 H-Et 4.19 2.25 
2t9 Et-(CH2 h Ph 2.64 6.07 
6t7 Me-Et Me-Et Both same -0.34 1.13 
7t8 Et-Pr Et-(CH2hPh Both diff 4.62 5.82 

4t10 Et-Pr Et-(CH2 h P h Both diff 5.71 4.66 
9tlO H-Pr 7.06 5.03 

Table 6.7: Table showing the perturbations taking place at the cis and trans positions 
from figure 6.3 and the error of calculated 6.Fs compared to experiment for TI and 
FG-BY10-BAR-400x1000x750. 

The FG-BYIO calculated D..6.Fbinds are relatively similar to those of the RETI analysis in 

table 6.2 and show very similar trends. Table 6.7 shows that errors in D..D..Fbinds compared 

with experiment are very similar to those found with the RETI analysis above (table 6.3). The 

biggest differences are in perturbations 2t3 and 2t9. The large error seen in perturbation 2n 

with RETI is not present with FG-BYIO, however, FG-BYIO shows a large error in perturbatioll 

2t9 not seen with RET!. These differences suggest possible occasional large random errors. The 

average unsigned error of the D..D..Fbinds in table 6.6 is 2.30 kcal.mol- 1 which is lower than t]w 
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RETI equivalent of 3.39 kcal.mol- 1 . However, the consistency of these FG-BYlO results set'Il1S 

much worse than the RETI results as shown in table 6.8. The closed thennodYlll.unic cycles 

which showed a very low hystereses for the RET I analysis show much larger hystereses with 

FG-BYI0. Only cycle 2, which showed a hysteresis of hystbind of 2.01 kcal.mol- 1 for RETI, is 

relatively accurate with a low hystbind of 0.23 kcal.mol- 1 . This relative inaccuracy in hystereses 

for FG-BYlO may not show any real lack of consistency as the underlying changes causing it 

are simply due to the differences in perturbations 2t3 and 2t9 and slightly higher accuracy of 

perturbations 5t6 and 5t7 (table 6.7). 

Cycle pathway hystbind hystsolv 
1 (1,2,3) 3.58 ± 0.43 2.9 ± 0.30 
2 (2,3,4) 0.23 ± 0.52 1.19 ± 0.37 

3 (2,4,9,10) 4.03 ± 0.80 2.71 ± 0.72 
4 (5,6,7) 2.08 ± 0.37 2.09 ± 0.30 

Table 6.8: Hystereses of 4 thermodynamic cycles for relative binding (hystbind) and sol­
vation (hystsolv ) free energies of the neuraminidase ligands found using FG-BYIO-BAR-
400xlOOOx750 protocol. All hystbind and hystsolv values in kcal.mol- 1

. 

The underlying fj.Fprots and fj.Fwats of table 6.6 display significant differences from their 

RETI counterparts. The FG-BYI0-BAR-400xl000x750 fj.Fprot , fj.Fwat and fj.Fvac values for 

perturbations 2t9, 4tl0 and 7t8 show significant differences from their RETI counterparts b1lt 

strangely the differences seem to be much smaller when comparing RETI and FG-BYlO-BAR-

400xl000x750 fj.fj.Fbinds and fj.fj.Fso1vs. It is not coincidence that each of these perturbatiolls 

showing the largest discrepancies between FG-BYI0-BAR-400xlOOOx750 and RETI involve tbe 

growth of a phenyl into the trans pocket. In investigating this discrepancy it was convenient to 

concentrate on vacuum perturbations as simulations are faster and more accurate than proteill 

and water perturbations. Figure 6.9 shows the PMF across the>. coordinate for perturbation 

2t9 with black vertical lines marking the points at which FDTI >. window simulations are run. 

The large disparity in the PMFs of FG-BYI0-BAR-400xl000x750 and RETI for perturbation 

2t9 in a vacuum is clear. The FG-BYI0-BAR-400xl000x750 PMF undergoing a large peak 

between>. = 0 and>' = 0.1 which is missed by TI. 
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Figure 6.9: Comparison of RETI and FG-BYIO PMFs of perturbati n 2t9 in a va uum. 

Figure 6.9 also suggests the reason for the disparity seen in perturbations 2t9 , 4tlO and 7t; . 

The large peak in the BAR PMF between ,\ = 0 and ,\ = 0.1 is not present in t he RETI P1/1F. 

Apart from this the two PMFs seem relatively similar. From this it can be d duc d that th 

RETI calculation misses this large peak seen with BAR due to the discret and non-di r t; na-

ture of sampling with RETI and FG-BYI0-BAR-400x1000x750 respectively. F igur - 6.10 h w' 

the same comparison as figure 6.9 but with 30 RETI 6. /\ sampling windows b tween ,\ = 0 an l 

,\ = 0.3 rather than 3. The difference between figures 6.10 and 6.9 is v ry clear and v rifies 

the idea that the disparity seen between RETI and FG-BYlO for perturbations 2t9 , 4tlO an I 

7t8 is because of a large error in the RETI calculation due to its discrete nature and a lack f 

necessary 6.'\ sampling windows. 
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Figure 6.10: Comparison of TI with extra 6A sampling windows and FG-BYIO P iF. 
of perturbation 2t9 in a vacuum. The TI analysis has 30 6A ampling windows betw n 
A = 0 and A = 0.3. 

The large peak in the PMF in figure 6.10 is due to very larg intra-molecular L nnar I-J n 

(LJ) and Coulombic forcefield energies. These large LJ and Coulombic en rgies ar - produc d by 

the very close proximity of the atoms of the phenyl ring as they are turn d on at t h b · ginning 

of the perturbation (they are 0.2 A apart at A = 0) . This means the larg p ales ill figure 6.1 

are an artefact of the perturbation method and would not b exp cted to be s en mm nly 

in protein-ligand perturbations. The use of larger bond distances for t h ph nyl group in its 

shrunken state removes this artefact although increases t he risk of clashes wit h oth r mol cul-

as the non-bonded terms are turned on. This suggests t hat th use of a soft cor I ten-

tial [Zacharias et al.(1994)Zacharias, Straatsma & McCammon], [Beutl r et al. (1994)B utl-r, 

Vanschaik, Gerber & van Gunsteren] for perturbation involving the growth a large group may 

produce a more favourable path. However, the discovery of t his error with FG do s highlight 

the importance of sampling across the whole A coordinate. As the disparity is an internal sollte 

non-bonded effect , it is very well behaved and , as it is present in both protein and wat r pertur-

bations, is cancelled out in the resulting 6.6.Fbind values . The PMFs in figure 6.10 st ill do not 

fully converge. There seems to be a small difference between FG-BY10-BAR-400x1000x750 and 

RETI at the A = 1 end . This smaller disparity is again t he result of the discrete nature of RET!. 

Table 6.9 and figure 6.11 compare the calculated and experimental 6.6.Fbind of each ligand 

relative to ligand 1. The rankings of the ten ligands for FG-BY10-BAR-400x1000x750 and 

RETI are very similar. The major difference is t hat the amino, Et , H and amino, (CH2hPh, H 
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ligands have both moved down the Y axis in the FG analysis with one of these ligand moving 

back into the correct rank order and one moving out. The movement of these two data points 

can be attributed to the extra overestimation of perturbation 2t9 and the large improvement 

in perturbation 2t3. The FG-BYIO-BAR-400xlOOOx750 PI score is 0.95 which is only slightly 

more than the RETI analysis. The FG and RETI lVIUE and r2 values are also both very similar. 

Compound Perturbation pathway Calc 66Fbi.nd Expl 66Fbind 
7 [1 t3+3t6+6t7] -10.87 ± 1.14 -7.15 
4 [lt3+3t4]; [lt2+ 2t4] -7.45 ± 0.25 -6.76 
8 [1 t3+3t6+6t7 + 7t8] -16.04 ± 1.25 -6.51 

10 [lt2+2t9+9tlO];[lt3+3t4+4t10] -13.87 ± 0.41 -6.51 
6 [lt3+3t6] -8.04 ± 1.12 -5.45 
3 [lt3] -4.64 ± 0.19 -2.67 
5 [1 t3+3t6+6t5] -3.51 ± 0.37 -2.00 
9 [lt2+2t9] -4.38 ± 0.60 -1.71 
2 [lt2]; [lt3+3t2] -0.18 ± 0.43 -1.63 
1 0 0 

Table 6.9: Experimental and FG-BYI0-BAR-400xl000x750 calculated binding free en­
ergies with respect to ligand 1. All free energies in this table are in kcal.mol- 1. 
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Figure 6.11: Comparison of calculated and experimental f1f1Fs for 10 Neuraminidase 
ligands using FG-BYI0-BAR-400xl000x750. Data points are labelled with the chemical 
groups at the trans and cis positions from table 6.1. 

The variation seen between the RETI and FG-BYlO-BAR-400xlOOOx7,50 analyses seen by 

comparing figures 6.11 and 6.8 is enough to suggest repeating the FG protocol to check on the 

possible sensitivity of results. The FG-BYIO-BAR-400xlOOOx750 analysis described here WeL'S 
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therefore repeated another 3 times. These repeats were started with the equilibrated system 

structure and so all A equilibrations were included in the repeats. As seen in chapter 5, the 

statistical errors give a very poor idea of the actual reproducibility of an analysis. Figure 6.12 

shows that despite the relatively high r2 and PI scores of the first FG-BYlO-BAR-400x1000x750 

analysis discussed above, in general, this protocol may not produce results of high quality. The 

PI scores of the four repeated analyses range from 0.95 to 0.44. 

12.-~---.--~-'r-~--.---~-.--. 

10 

'] ~ 
«i 4 
J;l 2 
;;:: 0 
~ -2 

al -4 
ro -6 
[i -S 
tii -10 
0_12 

AE(,Et 

Me. 

r
2

0.S8 .1 
MUE 3.50 kcaI.mol 
PI 0.95 

-14 'c-~_Q:....>.C=,)P""h,:.;.Pr-,-----"C-.~_--'c-_~--:'---.J 
~ ~ 4 ~ 0 

Experimental MF I kcal.mor
l 

(a) Repeat 1 

12 
10 

'7 S "0 a 6 Q:CH,)Ph.Pr 
«i 4 
u 

.!<i 2 OEI.H 

..... 

~ 
0 

-2 
'0 -4 
~ -6 
'S -S /0.50 .1 () 

tii-IO 
0_ 12 

~CH,)l'h.Pr MUE 4.S2 kcal.mol 
PI 0.62 

-14 
-S -6 -4 -2 0 

Experimental .<1.<1F I kcal.morl 

(c) Repeat 3 

10 

'] 
«i 5 
J;l 

~ 0 

'0 

~ -5 
'S 
() 

tii-IO o 

-1~S 

12 
10 

'7 S "0 a 6 
«i 
u 4 

.!<i 
2 

~ 0 
-2 '0 

Q) -4 ro 
'S -6 
() 

tii -S 
0_10 

-12 
-S 

Q:CH,)Ph.Pr 

'1CH,)l'h.H 

2 
r 0.47 .1 
MUE 4,02 kcal.mol 
PI 0.44 

~ 4 ~ 0 
Experimental .<1.<1F I kcal.mor

l 

(b) Repeat 2 

'1CH,)l'h.H 

OEI.1l 

~CH2)Ph,Pr 

2 
r 0.69 .1 
MUE 3.20 kcal.mol 

~CH2)Ph,Pr 
PI 0.76 

-6 -4 -2 0 

Experimental .<1.<1F I kcal.morl 

(d) Repeat 4 

Figure 6.12: Four repeated comparisons of calculated and experimental /j./~.Fs for 10 
Neuraminidase ligands using FG-BY10-BAR-400x1000x750. 

Figure 6.13 shows the PI scores of the 4 repeated FG-BY10-BAR-400x1000x750 analyses 

throughout the calculation. The x-axis shows the number of Me trials for one calculation leg as 

shown in figure 6.6. Hence figure 6.13 shows the convergence of PI score through the calculatioll 

when all simulations are run in parallel. The RET I PI data points are every 100,000 Me trials 

for each simulation. The FG-BY10-BAR-400x1000x750 PI data points are only calculated every 

750,000 Me trials for each simulation, as a new PI can only be found after a set of switches 

is completed. In the legend of figure 6.13 FG Rep X refers to FG-BY10-BAR-400x1000x7GO 
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repeat X. 

Figure 6.13 shows that the predictive accuracy of the 4 FG-BY10-BAR-400 ' 1000x750 anal-

yses does not change much through the calculation. Hen th 3 poor l' FG r p at ar p r 

through out. The FG-BY10-BAR-400x1000x750 analysis which show omparabl pr di ti 

accuracy to RETI (FG Rep 1) seems to converge to a high PI core aft r a similar numb r f 

Me trials have been used . 

Figure 6.14 is the same as figure 6.13 but for MUE. The RETI MUE h minimum f ab ut 

2.3 kcal.mol- 1 around a third of the way through the simulation. The final MUE f FG R p 1 

Rep 4 and RETI are all very close at around 3.2 to 3.5 kcal.mol- 1 . This ugge t t hat MUE i a 

less sensitive measure of the predictive accuracy of an analysis as FG Rep 4 had a significantl 

lower PI score than FG Rep 1 and RET!. 
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Figure 6.13: Comparison of PI scores for 4 FG-BY10-BAR-400x1000x750 and 1 RETI 
Neuraminidase analyses. 
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Figure 6.14: Comparison of the MUE for 4 FG-BY10-BAR-400x1000x750 and 1 RETI 
Neuraminidase analyses. 

It is clear that the FG-BY10-BAR-400x1000x750 protocol used here i unabl to pr lu 

consistently accurate free energies. Although, the first FG-BY10-BAR-400x1000x750 data t 

discussed above is of similar quality to t he RETI data set , the subsequent 3 FG-BY10-BAR-

400x1000x750 repeats are all of a lower and far less useful quality. The poor pr di tiv qu li ty 

of the 3 extra FG-BYlO-BAR-400x1000x750 repeats is due to a subset of th per tur bat ion 

carried out in this neuraminidase analysis. Figure 6.15 compares the individual p rt urbation 

t::.t::.Fs for the 4 FG-BY10-BAR-400x1000x750 repeats. Figure 6.15 makes it clear that in th 

three poorer FG-BY10-BAR-400x1000x750 repeats , perturbations 2t9 and 4t10 diff r th m st 

from RETI and FG-BY10-BAR-400x1000x750 repeat 1 and are th major sourc of th po r 

predictive accuracy in repeats 2,3 and 4. It is worth note that perturbations 2t 9 and 4t10 b th 

involve the growth of a phenyl ring as discussed above. 

The repeat of the FG-BY10-BAR-400x1000x750 analysis is also instructive to test th ta-

tistical errors found t::.t::.FbindS in table 6.6 , as they are extremely low both in absolut terms 

and in comparison to t heir RETI counterparts in table 6.2. These errors have been calculated 

by finding the standard error between blocks of meas urements. As discussed in chapt r 3, 

varying the number of blocks used to calculate statistical errors can affect the size of t hese 

errors . In general, the number of blocks is decreased unt il decreasing them further result s in 

little change in the size of the errors . The small number of measurements used in the FG-

BY10-BAR-400x1000x750 protocol allows for only a small amount of adjustment of the error 

calculation method where as t here is much room for adjustment with the many measurements 
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of the RETI analysis. Even considering t his problem th mall !Tor in tabl .6 ma ignify a 

low coverage of system phase space for the FG-BY10-BAR-400x1000x71:: 0 al ulati n r lativ 

to the RETI simulations of t able 6.2. Also, t here i a very larg incon i t n y b tw n t h -

general range in 6.6.Fbind seen in figure 6.15 and t he stati t ical error found in tabl 6.6. 
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Figure 6.15: Comparison of f:J.f:J.FbindS for 4 FG-BY10-BAR-400x1000x750 r -I ted u-
raminidase analyses. 

Considering the improved consistency displayed by the REFG2 protocol in hal te l" 5, a 'im-

ilar REFG2 protocol was used to see if a similar improvement is found wit h the neuraminidas 

system. Table 6.10 shows the results from a neuraminidase analysis using an REF G2 prot ' 1 

with SOO switches of 375 MC trials between each of 1000 6.As with 50000 MC t rials f s ed 

simulation between each starting configuration and the BAR estimator (REFG2-BY10-BAR-

SOOx1000x375). This protocol uses 31S million MC t rials to obtain a 6.GpTot or 6.Gsolv which is 

the same as the FG-BY10-BAR-400x1000x750 analysis above and similar to t he 360 million M 

trials used for the same calculation in the RETI analysis. Errors in tabl 6.6 wer calculated 

using the block variance method described earlier in the main introduction wit h 4 blocks . 

Comparison of the REFG2-BY10-BAR-SOOx1000x375 results of table 6. 10 to the FG-BY10-

BAR-400x1000x750 results of table 6.6 shows no major differences. The MUE of t he 6.6.Gbinds 

found using the REFG2-BY10-BAR-SOOx1000x375 protocol is 2.7S kcal.mol- 1 which is very 

similar to the equivalent figure for the FG-BY10-BAR-400x1000x750 results of table 6.6 which 

was 2.30 kcal.mol- 1 . The highlighted differences, in per turbations 2t3 and 2t9, between the 
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FG-BY10-BAR-400x1000x750 and RETI analyses of tables 6.6 and 6.2 are not as marked for 

the REFG2-BYIO-BAR-800x1000x375 analysis of table 6.10. The closed thermodynamic cycles 

which showed relatively large hystereses with FG-BY1O-BAR-400x1000x750 are smaller with 

this REFG2-BY10-BAR-800x1000x375 and of a similar standard to the RETI hystereses in 

table 6.4. 

Pert Exp !'::!.!'::!.Gbind !'::!.Gprot !'::!.Gwa.t 

It2 -1.63 1.81 ± 0.21 0.67 ± 0.18 -1.14 ± 0.12 
It3 -2.67 -5.53 ± 0.19 22.28 ± 0.07 27.81 ± 0.18 
2t3 -1.04 -4.32 ± 0.3 22.21 ± 0.22 26.53 ± 0.19 
3t4 -4.09 -3.84 ± 0.43 -9.61 ± 0.36 -5.77 ± 0.23 
5t6 -3.45 -5.25 ± 0.22 21.04 ± 0.06 26.29 ± 0.22 
5t7 -5.15 -7.52 ± 0.46 12.62 ± 0.36 20.15 ± 0.28 
2t4 -5.13 -8.95 ± 0.28 10.13 ± 0.1 19.08 ± 0.26 
2t9 0.08 -3.93 ± 0.4 -1.54 ± 0.16 2.39 ± 0.37 
4t10 -1.70 -6.2 ± 0.64 4.08 ± 0.37 10.28 ± 0.52 
6t7 0.65 -2.53 ± 0.24 -6.78 ± 0.14 -4.25 ± 0.19 
7t8 0.25 -6.16 ± 0.4 -0.5 ± 0.25 5.66 ± 0.3 

9tlO -4.80 -11.84 ± 0.78 12.86 ± 0.71 24.70 ± 0.33 

Table 6.10: Experimental and calculated relative binding free energies with the proteill­
ligand and solvent-ligand free energies used in their calculation. All free energies ill 
this table are in kcal.mol-1 and were found with the REFG2-BY10-BAR-800x1000x375 
protocol. 

Cycle pathway hystbind 
1 (1,2,3) 3.02 ± 0.41 
2 (2,3,4) 0.79 ± 0.59 

3 (2,4,9,10) 0.62 ± 1.12 
4 (5,6,7) 0.26 ± 0.56 

Table 6.11: Hystereses of 4 thermodynamic cycles for relative binding (hystbind) and 
solvation (hystsolv) free energies of the neuraminidase ligands found using REFG 2-BY1 0-
BAR-800x1000x375 protocol. All hystbind and hystsolv values in kcal.mol- 1 . 

Again the REFG2-BY10-BAR-800x1000x375 analysis was repeated four times with the data 

in tables 6.10 and 6.11 above being for repetition 1. Figure 6.16 shows REFG2-BY10-BAR-

800x1000x375 predicted 6.6.Fs compared to experiment. In general the four REFG2-BY10-

BAR-800x1000x375 analyses have a similar PI score to the RETI analysis discussed above. 

Also, all of the r2 values of the REFG2 analyses are higher than that of the RETI analysis. 

This suggests that this REFG2 protocol is at least as predictive as the RET I protocol. 



CHAPTER 6. PROTEIN LIGAND BINDING FREE ENERGIES: 
NEURAMINIDASE 179 

2 

0 
";-

0 
6 

-2 

oj -4 
u 

-6 "'" 
o -8 

~-!O 
"0 
,El-12 
C1l 
"3-14 
() 

8-16 

-IS 

EI.E? ~ Me.Me 

C\:CH,)Ph.Pr 

'iCH,)Ph.Pr 

2 
r 0.S8 -I 
MUE 3.95 kcal.mol 
PI 0.93 

-2~~S--~--_L6--~--~_4--~--~_2~~---0L-~ 

2 

Experimental MG / kcal.morl 

(a) Repeat 1 

2 

0 
";-

0 
6 

-2 

oj -4 
u 

-6 "'" 
o -S 

~-IO 
"0 
,El-12 
C1l 
"3-14 
() 

(ij -16 
() 

-IS 

6. 6. .6, Mc,Mc 
EI.E~I.E? (CH,)l'h.Pr 

° (CH,)Ph.I'r 

2 
r 0.94 I 
MUE 2.06 kcnl.ll1of 
PI 0.91 

-2~~S--J---_~6--~--~_4--~--~-2~~--~0~~ 

Experimentall1l1G / kcal.morl 

(b) Repeat 2 

2.-~---.--.---,---r-~--~---.~ 

0 c.H 0 
";-

0 
6 

-2 

oj -4 
u 

-6 "'" 
o -8 

~-IO 
"0 
,El-12 
C1l 

"3 -14 
() 

(ij-16 
() 

-IS 

° Et,Et 
DoMe,Me 

~EI.EI 

C\:CH,)Ph.Pr lO.94 -I 
MUE 4.62 kcal.mol 
PI 0.97 

-2~~S--~---~6--~--~-4--~--~-2~~--~0~~ 

Experimentall1l1G / kcal.mor
l 

(c) Repeat 3 

o -2 
6 
~ -4 
"'" -6 

o -S 

~-!O 
"0 '* -12 
"3 -14 
() 

(ij -16 
() 

-18 

EI.EI~ 0EI.EI 
/:l.Me.Mc 

.6,(CH
1
)Ph,Pr 

C\.CH
2
)Ph,Pr 

2 
r 0.90 .1 
MUE 3.5 kcnl.ll101 
PI 0.95 

-20_~8 ----'----_L6----'---~_4,---~---'-2~~---0~~ 

Experimental MG / kcal.ll1or
l 

(d) Repeat 4 

Figure 6.16: Four repeated comparisons of calculated and experimental l:1l:1Fs for 10 
Neuraminidase ligands using REFG2-BY10-BAR-800xlOOOx375. 

Interestingly repeat 2 in figure 6.16 has a comparatively low MUE of 2.06 kcal.mol- 1 . This 

is due to the fact that, compared with all other neuraminidase analyses, the two (CH2hPh,Pr 

data points have moved closer to their experimental values. In turn, the difference in the 

(CH2hPh,Pr data point is due to differing 6.F values for perturbations 4t10, 6t7, 7t8 and 9t1O, 

seen clearly in figure 6.17. This improvement seen only in one repeat is most likely a fortuitolls 

error although the possibility of it being an example of slightly better predictive accuracy with 

a higher level of convergence remains. 
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Figure 6. 17: Comparison of 6.6.Fs for 4 REFG2-BY10-BAR-800x1000x375 r p at 
Neuraminidase analyses. 

Figure 6.18 shows the PI score of t he four REFG2-BY10-BAR-800x1000x375 analys 

throughout the calculations compared to that for the RETI analysis. It is fair to say all ar 

fairly similar in figure 6.18. RETI seems to take slightly long r to converg to a high P I . 'or , 

t his may be due to the fact that t he RETI analysis did not include A swap mov . dur ing th 

equilibrat ion of the A window simulations. Figure 6. 19 shows t he MUE of th f ur REF 2-

BY10-BAR-800x1000x375 analyses t hroughout t he calculat ions compared to that for th RETI 

analysis. REFG2-BY10-BAR-800x1000x375 repeat 2 starts low arid doe not flu tuat a mu h 

as the other analyses. Again it is interesting how a low MUE does not necessarily translat t 

a comparatively high PI score, and visa-versa, as seen with repeats 2 and 4. 
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Figure 6.19: Comparison of the MUE for 4 REFG2-BY10-BAR-800x1000x375 and 1 
RET I Neuraminidase analyses. The number of MC trials on the x-axis reprents the 
number of MC trials from one pertyrbation leg i.e. all protein and water simulations are 
run in parallel. 

In previous chapters the idea of picking an FG estimator, for each protein and solvent 

calculation, from the relative t::.F values has been discussed. If the BAR estimate is between 

the forwards and backwards Jarzynski estimates, the BAR estimate is chosen. Otherwise the 

Jarzynski estimate with the largest relative entropy measure as defined by Wu and Kofke [Wu 

& Kofke(2005a)] is used . Figures 6.20 and 6.21 show t he four repeated REFG2-BY10-BAR-

800x1000x375 analyses, PIs and MUEs found using t hese estimator picking rules with a das hed 
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line, PIs and MUEs found with BAR only have unbroken lines . Figure 6.21 how that analy 

where estimators are picked are very similar to those using only BAR. T h picked analy hav 

slightly lower PI scores in two of the repeats with the other two having th anl PI ore . 

Again, figure 6.20 shows that the MUEs of all four repeats are very similar , although for all 

four repeats the analyses with picked estimates have slightly lower MUEs. For th yst m un-

der study here there seems to be little difference between results from th differ nt e t imator , 

although for other systems this may not be the case as seen for the calculation of th r -Iativ 

hydration free energy of water and methane in the previous chapter. 

0.98 

0.96 

~0.94 
o 
() 

en 0.92 
0-. 

0.9 

0.88 

0.86 

0.0 

,- - - - - - - -r-~---=I , , , 

I 
I 

... ... 

- FG Rep 1 
- FG Rep 2 
- FG Rep 3 
- FG Rep4 

5.0x10
7 

1.0x l0
8 

1.5x l 0
8 

2.0XI0
8 

2.5x 10
8 

3.0x10
8 

Me trials 

Figure 6.20: Comparison of PI scores for 4 REFG2-BYIO-BAR-800x lOOOx375 analy 
where llF est imators have been picked . The number of MC t rials on t he x-axis r pr nt 
t he number of MC trials from Qne pertyrbation leg i.e. all protein and wat er simulation ' 
are run in parallel. 
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As these FG analyses discussed above are completed in a relatively low wall lock time 

(around 10 hours on 100 condor nodes for each calculation, including A window quili brati n) 

it is possible to investigate any possible improvement found by incr asing th number of M 

trials used. A REFG2 protocol with three times the sampling of the analyses above (918 million 

MC trials for each protein and water D.F ) was devised. This longer protocol has 800 switches of 

1125 MC trials between each of 1000 D.AS with 100000 MC trials of seed simulation between each 

starting configuration and the BAR estimator (REFG2-BYlO-BAR-800x1000x1125). This more 

expensive protocol can still be completed in approximately 20 hours using 100 condor nod s 

for each calculation in parallel. In figure 6.22 the new label FG x3 corresponds to th new 

REFG2-BY10-BAR-800x1000x1125 analysis. Figure 6.22 shows the comparison of calculated 

D.D.Fbinds with experiment , suggesting that the extra sampling gives little advantage. 
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. Figure 6.23 compares REFG2-BYlO-BAR-800x1000x1125 predicted neuraminidas fl flFbind 

to experiment. Again comparing figure 6.23 to figure 6.16 above suggests that th extra sam-

pIing in this new analysis offers little predictive improvement . 
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ligands using REFG 2-BYl 0-BAR-800xl 000x1125. 

6.6 Conclusions: Does FG offer any thing new? 

The FG-BY10-BAR-400x1000x750 analysis was shown to have a large range of predictive per-

formance for this neuraminidase relative binding free energy analysis. T he PI scores ranged 
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from 0.95 for repetition 1 to 0.44 for repetition 2 in figure 6.12. The REFG2-BYlO-BAR-

SOOx1000x375 protocol displayed a high level of constancy with PI scores ranging from 0.93 to 

0.97 (figure 6.16). The consistently high predictive power of the REFG2-BY10-BAR-SOOx1000x:n5 

protocol compared favourably with the RETI analysis shown in figure 6.S. Indeed all REFG2-

BY10-BAR-SOOx1000x375 r2 and PI scores were equal to or improvements on the RET I PI 

score of 0.93 and r2 of O.S1. 

One of the four repeated REFG2-BY10-BAR-SOOx1000x375 (repetition 2) analyses pro-

duced a MUE of 2.06 kcal.mol- 1 which is significantly lower than all other neuraminidase 

analyses in this study. This was due to the two (CH2hPh,Pr data points having moved closer 

to their experimental values. It is difficult to tell whether this improvement in repetition 2 of 

figure 6.16 is due to a lack of proper convergence in the other REFG2-BY10-BAR-SOOx1000x~n5 

repetitions or a lack of convergence in repetition 2. As the REFG2-BYlO-BAR-SOOxlOOOx~175 

repetition 2 is the only example of this improvement compared to experiment and the REFG2-

BY10-BAR-SOOx1000x1125 analysis was unable to show this improvement, it may be that this 

is a chance movement of calculated free energies to give the overall effect in REFG2-BY10-

BAR-SOOx1000x375 repetition 2. 

The large error found in RETI perturbations involving the growth of a phenyl ring highlights 

one deficiency of any free energy method based on TI. TI is unable to accurately calculate the 

free energy of PMFs with a high curvature if insufficient A window simulations are performed. 

It is generally thought that for bio-systems such as the one under study here, a PMF of high 

curvature is relatively unlikely. The large peak in the PMF seen in figures 6.9 and 6.10 is an 

artefact and not a real property of the perturbation or the system. However, the unearthing of 

this large discrepancy does highlight the importance of evaluating the whole perturbation path 

even if just in an exploratory capacity. Also, it may be that TI and RETI lose accuracy with 

PMFs of medium curvature as seen in figure 6.10 and discussed by Shirts and Pande [Shirts & 

Pande(2005)J. 

The statistical errors for the FG-BY10-BAR-400x1000x750 analysis listed in table 6.6 and 

the REFG2-BY10-BAR-SOOx1000x375 analysis listed in table 6.10 are much smaller than the 

levels of variation of b..b..Fbinds seen in figures 6.15 and 6.17. This suggests that statistical 

errors cannot be used reliably to give an idea of the possible range of variation in binding free 

energy analyses. Thus, it may be important to repeat calculations especially when testing new 
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protocols or challenging systems. 

When considering which method to use for calculations such as this neuraminidase relatin~ 

binding free energy analysis, it is clear that FG type methods offer something new and useful. 

Here the REFG2-BY10-BAR-800x1000x375 protocol has been shown to perform at least as 

well as RET!. Also, FG discovered some very large errors which were missed with the initial 

RETI analysis due to its discrete nature. Although, as these errors were present in both protein 

and water perturbations they were fortuitously cancelled out. Another advantage of FG type 

methods realised in this study is the possible use of extreme parallelisation. The REFG2-BYIO-

BAR-800x1000x375 protocol is able to produce a single ~~Fbind result in around 10 hours on 

100 condor nodes while RETI takes around 24 hours on 12 2.2 Ghz Opterons. Owing to the 

parallelisation of FG the REFG2-BY10-BAR-800x1000x1l25 protocol was generally completed 

in around 20 hours on 100 condor nodes. This is a slightly unfair comparison as the REFG2-

BY10-BAR-800x1000x375 protocol involved 2 million MC trials of).. window equilibration while 

the RETI protocol used 10 million MC trials of ).. window equilibration. However, it is clear 

that FG methods have a large advantage in being able to utilise large clusters of processors. 

This advantage may become larger as an era of powerful computer processors with many indc-

pendent processing cores is realised. 



Chapter 7 

Protein Ligand Binding Free 

Energies: Cyclooxygenase-2 

7.1 Introduction 

Cyclooxygenase (COX) is a target for nonsterlodal anti-inflammatory drugs (NSAID) which in­

hibit the synthesis of prostaglandins by blocking the COX mediated cyclooxygenation of arachi­

donic acid (AA) to prostaglandin G2 (PGG2 ) (EC 1.14.99.1, [Bairoch(2000)]). PGG2 is a pre­

cursor of many prostaglandins which can possess analgesic, anti-pyretic and anti-inflammatory 

properties and protection for the gastric mucosa. 

The existence of another COX isoform, COX-2 has recently been described and subse­

quently the crystal structures of both forms elucidated [Picot et al.(1994)Picot, Loll & Gar­

avito], [Kurumbail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gilde­

haus, Miyashiro, Penning, Seibert, Isakson & Stallings]. COX-2 is encoded by a different gelle 

to COX-I, is thought to be expressed specifically in inflammatory tissues and is not implicated 

in production of gastrointestinal tolerability prostaglandins, unlike COX-l [Xie et al.(1991)Xic, 

Chipman, Robertson, Eriksont & Simmons]. This explains the ulcerogenic side effects of estab­

lished NSAIDs asprin, ibuprofen and naproxen as these drugs inhibit both COX-l and COX-2 

isoforms [Hawkey(1999)]. A new set of NSAIDs which selectively inhibit COX-2 and therefore 

display a decreased level of ulcerogenic side effects have been developed. One of the best of 

these new NSAIDs, celecoxib 1 has been used in treatments for rheumatoid arthritis and oste­

orarthritis, although is the subject of recent controversy. Celecoxib 1 has also been approved 

for clinical use against familial adenomatous polyposis in the UK and as the USA. 

Celecoxib 1 like, inhibitors have been the subject of two recent binding free energy studies 
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using RETI and FEP [Michel et al.(2006)Michel, Verdonk & Essex], [Price & Jorgensen(2000h)]. 

Both studies assessed the same set of inhibitors using different free energy methods, force fields 

and amounts of computation producing binding affinities which showed excellent quantitative 

agreement with experiment. Here again the results of analysis with FG methods will be COlll-

pared to more established methods, RETI and FEP. 

7.2 The COX-2 system in vivo 

Prostaglandins are autocrine and paracrine lipid mediators which ligate a subfamily of G-

protein-coupled receptors. These receptors are quite varied, and hence prostaglandins have a 

range of actions which include: 

• the constriction or dilation in vascular smooth muscle cells 

• the aggregation or disaggregation of blood platelets 

• the constriction of smooth muscle 

• the regulation of calcium movement 

• the regulation of hormone regulation 

• the control of cell growth 

• the regulation of inflammatory mediation 

• the production of pain in spinal neurons 

COX facilitates the conversions of AA to PGG2 using the cyclooxygenase site and PGG2 

to prostaglandin H2 (PGH2) through a heme site with peroxidase activity. These COX steps 

are the rate limiting steps in all prostaglandin biosynthesis. Presently there are three known 

COX isoenzymes COX-I, 2 and 3. COX-3 is a splice variant of COX-I, while as previously 

described COX-2 is coded by a separate gene [Chandrasekharan et al.(2002)Chandrasekharan, 

Dai, Lamar Turepu Roos, Evanson, Tomsik, Elton & Simmons]. COX-I is considered a consti-

tutive enzyme being found in the majority of mammalian cells. COX-2 has not been detected 

in most tissues and expression is thought to be induced in cells at sites of inflammation. 
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The non-specific NSAID COX inhibitors have adverse effects such as peptic ulceration ami 

dyspepsia. These adverse effects may be due to direct irritation of the gastric mucosa as mall)' 

non-specific NSAIDs are acids, as well as reducing production of the protective prostaglandills 

in the gastrointestinal tract [Price & Fletcher(1990)]. NSAIDs selective for COX-2 are thought 

to halve the risk of peptic ulceration. However, COX-2 selectivity does not help other possible 

side effects of NSAIDs such as the increased risk of renal failure [Malhotra et al. (2004)Malhotra, 

Shafiz & Pandhi]. 

Very recent studies have suggested COX-2 selective NSAIDs increase the risk of myocardial 

infarction, even with short term use [Kearney et al.(2006)Kearney, Baigent, Godwin, Ha.lls, 

Emberson & Patrono]. Also, courses of large doses of traditional NSAIDs have been associated 

with a similar increased risk of vascular events. Rofecoxib, a NSAID which is strongly COX-2 

selective, was taken of the market in 2004 due to these concerns, while celecoxib with a lower 

selective strength remains but is the subject of an FDA alert in the US and is prescribed with 

care [Chan(2006)]. New selective COX-2 inhibitors have been produced and are in use aroulld 

the world although none have been approved in the US. Also, it has been found that neuroblas-

tomas have abnormal expression levels of COX-2. COX-2 seems to reduce the action of the pG:1 

tumour suppressor. Thus, celecoxib has been shown to help restore p53 function and reduce 

tumour growth [Johnsen et al.(2004)Johnsen, Lindskog, Ponthan, Pettersen, Elfman, Orrego & 

Sveinb j ornsson]. 

COX-l and 2 have a similar size and make up and with 599 and 604 residues respectively 

and 65% amino acid sequence homology. The COX-l and 2 active sites are very similar with 

the most significant difference being the substitution of isoleucine 523 in COX-l for valine ill 

COX-2. The smaller Val residue in COX-2 opens up a hydrophobic pocket in the active site 

which the Ile residue obscures. 

The COX2 active site is a hydrophobic channel stretching from the membrane bound portion 

of the protein. There is a relatively small entrance area at one side of the binding site which is 

gated by Arg120, Glu524, Tyr355, and Arg513 forming hydrogen bonds, which is marked with 

a dashed orange circle in figure 7.1. 
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Figure 7.1: The substrate binding site of murine COX-2 (pdb 1CX2 [Kurum­
bail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gill hau , 
Miyashiro , Penning, Seibert , Isakson & St allings]) with compound SC558 (cele oxib) 
bound. The structure is oriented to show the entrance area of the binding it - high­
lighted in orange. Much of the protein backbone has been removed for larity. 

The residues of COX-2 which have important interactions with binding ompounds can 

be seen in figure 7.2. The t rifluromethyl group of celecoxib interacts with t h guanid inium 

group of Arg120 [Kurumbail et al.(1996)Kurumbail, Stevens, Gierse, McDonald , St geman, 

P ak, Gildehaus, Miyashiro, Penning, Seibert , Isakson & Stallings]. T his is a weakly favourabl 

interaction when compared to the salt bridge formed by many tradit ional NSAIDs in this ar a 

of the binding site and may contribute towards COX-2 selectivity [Grieg et al.(1997)Gri g, 

Francis, Falgueyret , Ouellet, Percival, Roy, Bayly & O'Neill] . In the COX-2 binding sit the 

sulphonamide group is able to reside in t he relatively polar pocket made by r sidu s Va1523, 

Arg513, Gln192 and His90. There has, however , been ambiguity over t he orientation of t h 

sulphonamide with two crystal structures from the same group (l CX2 and 6COX) showing dif-

ferent sulphonamide positions. Figure 7.2 show the sulphonamide posit ion of structure l CX2. 

In lCX2 an oxygen of t he sulphonamide seems to interact unfavourably with the carbonyl oxy-

gen of Gln192. In structure 6COX the sulphonamide is rotated and hydrogen bonds can form 

between the sulphonamide NHs and the Gln192 carbonyl oxygen. T he docking and FEP anal-

yses of the posit ioning of this sulphonamide group carried out by P rice and Jorgensen suggest 
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that the 6COX orientation is the correct alternative [Price & Jorgensen (2000b)]. Th ph nyl-

bromine group of celecoxib resides in a hydrophobic pocket at the top of figur 7.2, mad - up 

of 8er530, Phe381 , Leu384, Tyr385, Trp385 and Met522. 

Figure 7.2: The substrate binding site of murine COX-2 (pdb l CX2 [Kurum­
bail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gi.ld h· u , 
Miyashiro, Penning, Seibert, Isakson & Stallings]) with compound SC558 (cele oxil ) 
bound. The structure is oriented to display as many of the residue-ligand int ractions as 
possible. Much of the protein backbone has been removed for clarity. 

The series of ligands evaluated in this study have the same scaffold as celecoxib in figur 7.2 

and vary only at the position of the bromine atom (highlighted in purple). This common scaffold 

is displayed in figure 7.3 and the ten R group substitutions with corresponding experimental 

binding affinities is listed in table 7.1. Table 7.1 shows a larger range of binding affinities than 

the neuraminidase series of t he previous chapter, from nanomolar to hundreds of micromolar . 

It is clear that placing polar hydrogen bonding groups at position R reduces binding affini ty 

(ligands 4, 7 and 8) for COX-2, electron donating groups increase affinity (ligands 5 and 6) and 

larger groups also decrease affinity (ligand 3). This makes sense considering the nature of the 

environment in which the R group will reside, discussed above. 
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Figure 7.3: Common structure of the series of celecoxib analogues under study. 

Ligand R Je5Q (JLM) 
1 CH3 0.040 
3 CH2CH3 0.86 
4 CH20H 93.3 
5 SCH3 0.009 
6 OCH3 0.008 
7 CF3 8.23 
8 OH >100 
9 Cl ·0.01 
10 F 0.041 
11 H 0.032 

Table 7.1: Experimental activity of the celecoxib analogues against COX-2 

7.3 The COX-2 system in silico 

The structure of murine COX-2 complexed with celecoxib, 1CX2, was the starting point for 

the model system [Kurumbail et al.(1996)Kurumbail, Stevens, Gierse, McDonald, Stegeman, 

Pak, Gildehaus, Miyashiro, Penning, Seibert, Isakson & Stallings]. The 1CX2 structure had 

the advantage of hydrogen atoms being pre-assigned by the crystallographic study authors. 

The position of the sulphonamide group of each of the ligands in the binding site was changed 

as detailed by Price and Jorgansen and discussed in the in vivo section above [Price & Jor-

gensen(2000b)]. The heme of the second binding site of COX-2 was removed as it does not 

interact directly with the COX binding site under study and would have required specific p<1-

rameterisation. Histidines were visually inspected in order to select an appropriate protonation 

state and His90, 95, 133, 204, 207, 214, 226, 232, 242, 278, 309, 320, 351, 356, 386, 388 and 417 

were assigned 6-tautomer status with others being charged. The ethyl analogue, ligand 3 was 
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posit ioned in the COX-2 binding site on the basis of the binding mod of I oxib in 1 .1 2. 

Other ligands with extra degrees of freedom in the substit uted R group w r 

observations from Price and Jorgensen [Price & Jorgensen (2000b)]. 

The COX-2 system was set up using the same protocol and forcefield as' n uraminidas in 

the previous chapter. Thus, these details will not be reproduced here. Free nergy p rturba-

tions were designed to close two thermodynamic cycles shown in figure 7.4 to allow th analy i 

of cycle hystereses and calculation of path averaged b..b..Fs . TI and FG proto 01 u ed h r ar 

also the same as those in t he previous chapter . 

Figure 7.4: Closed perturbation pathways used to find hystereses for consist ency ch des . 
Ligand numbers are in black and closed cycle numbers are in red. 

7.4 RETI Results 

Table 7.2 shows RETI protein-ligand (b..FpTot ) and solvent-ligand (b..Fwat ) free nergies whi 'h 

give t he relative binding free energies (b..b..Fbind) which can be compared to the experim ntal 

(Exp) relative binding free energies. Also, vacuum free energies (b..Fvac) are shown, which en-

able the calculation of solvation free energies (b..b..Fsolv)' All errors in table 7.2 were calculated 

using the block variance method described earlier in t he main introduction. 
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Pert Exp ~~Fbind ~Fprot ~Fwat ~~FsolI' ~Fvac 
It3 1.82 2.24 ± 0.36 3.56 ± 0.27 1.32 ± 0.24 0.58 ± 0.26 0.74 ± 0.09 
It7 3.16 3.90 ± 0.25 20.71 ± 0.26 16.81 ± 0.23 0.39 ± 0.24 16.42 ± 0.07 
3t5 -2.70 -1.75 ± 0.44 -3.19 ± 0.36 -1.49 ± 0.26 -0.46 ± 0.:34 -0.50 ± 0.22 
4t3 -2.78 -2.18 ± 0.45 0.8 ± 0.26 2.98 ± 0.37 6.39 ± 0.38 -3.91 ± 0.09 
5t6 -0.07 -1.75 ± 0.52 -6.56 ± 0.38 -4.81 ± 0.36 -1.18 ± 0.64 -3.66 ± 0.53 
8t1 < -4.64 -2.90 ± 0.37 15.03 ± 0.15 17.93 ± 0.34 4.39 ± 0.35 13.53 ± 0.08 
8t6 < -5.59 -3.68 ± 0.75 9.35 ± 0.39 13.03 ± 0.64 4.03 ± 0.73 8.91 ± 0.035 
8t9 < -5.46 -3.49 ± 0.31 17.12 ± 0.11 20.61 ± 0.29 5.20 ± 0.29 15.40 ± 0.02 
10t9 -0.84 -1.33 ± 0.18 -0.19 ± 0.08 1.14 ± 0.16 -0.08 ± 0.16 1.22 ± 0.01 
11t8 > 4.77 1.66 ± 0.29 -21.47 ± 0.10 -23.13 ± 0.27 -4.49 ± 0.27 -18.65 ± 0.02 

11tlO 0.15 0.01 ± 0.17 -3.47 ± 0.05 -3.48 ± 0.18 0.95 ± 0.16 -4.45 ± 0.02 

Table 7.2: Experimental and calculated COX-2 relative binding free energies with the 
protein-ligand and solvent-ligand free energies used in their calculation. Also, relative 
solvation free energies calculated with the vacuum free energies used in their calculatioll. 
All free energies in this table are in kcal.mol-1, were found with RETI and taken frolll 
the PhD thesis of J. Michel [Michel(2006)J. 

The calculated tltlFbinds of table 7.2 are in good agreement with the experimental values. 

They are also very close to the calculated tltlFbinds of Price and Jorgensen which were calcll-

lated with FEP and the OPLS force field [Price & Jorgensen(2000b)]. The MUE of tltlFbinds 

in table 7.2 is 1.25 kcal.mol- 1 which is very low. The hystereses of the closed cycles of per-

turbation detailed in figure 7.4 are listed in table 7.3. Despite these two cycles containing 4 

and 5 perturbations the respective hystereses of binding energies (hystbinds) of 0.43 and O.IG 

kcal.mol- 1 and hystereses of solvation energies (hystsolvS) of 0.70 and 0.16 kcal.mol- 1 are very 

low, suggesting all these RET I calculations are consistent and well converged. 

Cycle pathway hystbind hystsolv 

1 (8,11,10,9) 0.43 ± 1.14 0.70 ± 1.12 
2 (3,1,8,6,5) 0.51 ± 0.49 0.16 ± 0.27 

Table 7.3: Hystereses of 2 thermodynamic cycles for relative binding (hystbind) and sol­
vation (hyst so1v ) free energies of the COX-2 ligands. All hystbind and hystsolv values in 
kcal.mol-1 . 

Table 7.4 shows the relative free energies of each ligand with respect to ligand 1. The MUE 

of tltlFbinds from table 7.4 is 0.76 kcal.mol- 1 , which is extremely low. The data from table 7.4 

are plotted in figure 7.5 which show the calculated and experimental results to be very similar. 

The r2 of 0.85 and PI of 0.96 show this RETI analysis to be highly predictive. 

It is interesting to compare these RETI results to those of Price and Jorgensen on the same 

system using FEP and the OPLS forcefield [Price & Jorgensen(2000b )]. Price and Jorgensen 
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produced results which agreed with experiment slightly better than these RETI results, with a 

r2 of 0.96 and an MUE of 0.40 kcal.mol- 1 . This improvement was achieved with significantly 

less computation than used here. Considering the variation in results seen in previous chapters, 

especially chapter 6, it is possible that this improvement is entirely fortuitous. However, it 

could also be rationalised by other factors. It is possible that the OPLS forcefield and CMIA 

atomic partial charges may hold some advantage over the AMER99 forefield and AMI/Bee 

atomic partial charges used here. Price and Jorgensen solvated there COX-2 system in such a 

way that water molecules were present in the binding site bridging Ser530 and Tyr385 and for 

some perturbations hydrogen bonded to Met522 [Price & Jorgensen(2000b)]. These waters were 

not present in the RETI simulation of Michel and could contribute to any differences [Michl'! 

et al.(2006)Michel, Verdonk & Essex]. 

Perturbation of 11 tl0 is particularly interesting as the water interacting with Met522 1Il 

the simulations of Price and Jorgensen also interacted with the substituted R group of the pl~r-

turbed ligand. This was investigated by Price and Jorgensen, by running an extra simulatiOll 

without this Met522 interacting water and found that the 6.6.F changed to 1.52 kcal.mo!- I 

from -0.15 kcal.mol- 1 with the Met522 interacting water [Price & Jorgensen(2000b)]. As call 

be seen from table 7.2 the result of 0.01 kcal.mol- 1 for perturbation 11tl0 found by Michd 

is closer to the experimental value than both of the Price and Jorgensen results without the 

Met522 interacting water being present [Michel et al. (2006)Michel, Verdonk & Essex]. It is 

difficult to come to a conclusion over the probable in vivo occupancy of these binding site water 

molecules and the comparison of results with and without these waters needs the addition of a 

number of repeated calculations to check their reliability. 
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Compound Pertur bation pathway Calc :6..:6..Fbind Expl :6..:6..Fbind 
6 [1 t8+8t6]; [1 t3+3t5+5t6] -0.99 ± 0.81 -0.95 
5 [1t3+3t5] 0.54 ± 0.57 -0.88 
9 [1t8+8t9] -0.58 ± 0.48 -0.82 

11 [1 t8+8t9+9t10+ 10t11]; [1 t8+8t11] 0.99 ± 0.51 -0.13 
1 0 0 
10 [1 t8+8t9+9t10]; [1 t8+8t11 + 11 t10] 1.00 ± 0.51 0.01 
3 1t3 2.25 ± 0.36 1.82 
7 1t7 3.90 ± 0.25 3.15 
4 [1t3+3t4] 4.42 ± 0.58 4.59 
8 1t8 2.90 ± 0.37 4.63 

Table 7.4: Experimental and RETI calculated binding free energies with respect to ligand 
1. All free energies in this table are in kcal.mol- 1 . 
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Figure 7.5: Comparison of calculated and experimental fj.f~.Fs for 10 COX-2 ligands. 
Taken from J.Michel et al. 2006 [Michel et al.(2006)Michel, Verdonk & Essex]. 

7.5 FG Results 

Table 7.5 shows protein-ligand (flFprot ) and solvent-ligand (flFwat ) free energies, found with 

the REFG2-BYIO-BAR-800xlOOOx375 protocol of the previous chapter, which give the relative 

binding free energies (flflFbind). Also, vacuum free energies (flFvac) are shown, which enable 

the calculation of solvation free energies (flflFsolv). Errors in table 7.5 were calculated using 

the block variance method described earlier in the main introduction with 4 blocks. 
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Pert Exp b..b..Gbind b..GpTot b..Gwat b..b..Gso1v b..G"ac 
It3 1.82 2.48 ± 0.13 3.44 ± 0.08 0.96 ± 0.10 0.24 ± 0.10 0.72 ± 0.002 
It7 3.16 4.15 ± 0.08 20.70 ± 0.03 16.55 ± 0.07 0.20 ± 0.07 16.35 ± 0.003 
3t5 -2.70 -3.04 ± 0.14 -3.06 ± 0.13 -0.01 ± 0.06 0.49 ± O.OG -0.50 ± 0.003 
4t3 -2.78 -4.03 ± 0.17 -0.35 ± 0.09 3.68 ± 0.15 7.59 ± 0.15 -3.91 ± 0.003 
5t6 -0.07 -1.85 ± 0.14 -5.96 ± 0.08 -4.11 ± 0.12 -0.45 ± 0.12 -3.66 ± 0.008 
8t1 < -4.64 -2.71 ± 0.13 14.98 ± 0.04 17.70 ± 0.12 4.17 ± 0.12 13.53 ± 0.00:1 
8t6 < -5.59 -1.66 ± 0.25 9.12 ± 0.11 10.79 ± 0.22 1.88 ± 0.22 8.91 ± 0.005 
8t9 < -5.46 -4.01 ± 0.17 16.84 ± 0.04 20.85 ± 0.17 5.45 ± 0.17 15.40 ± 0.001 
10t9 -0.84 -2.05 ± 0.06 -0.60 ± 0.02 1.45 ± 0.06 0.23 ± 0.06 1.22 ± 0.OOD1 
11t8 > 4.77 1.78 ± 0.12 -22.11 ± 0.03 -23.88 ± 0.12 -5.23 ± 0.12 -18.65 ± 0.0009 
11tlO 0.15 0.23 ± 0.07 -3.51 ± 0.01 -3.74 ± 0.07 0.71 ± 0.07 -4.45 ± 0.002 

Table 7.5: Experimental and calculated relative binding free energies with the proteill­
ligand and solvent-ligand free energies used in their calculation. All free energies ill 
this table are in kcal.mol-1 and were found with the REFG2-BYIO-BAR-800xlOOOx375 
protocol. 

Again the calculated b..b..FbindsS found using the REFG2-BY10-BAR-800x1000x375 prot.o-

col are in good agreement with experiment (table 7.5). The MUE of these b..b..FbindsS is loGl 

kcal.mol-1 which is slightly more than the equivalent MUE for the RETI results above. The 

hystereses of the closed cycles of perturbations detailed in figure 7.4 are listed in table 7.G. 

These hystereses are not as low as those produced from the RETI analysis above since tlw 

hystbind and hystsolv of cycle 1 are significantly larger than the RETI equivalent and the other 

REFG2-BY10-BAR-800x1000x375 hystereses. This suggests an error or possible lack conver-

gence in the REFG2-BY10-BAR-800x1000x375 b..b..Fsolvs in table 7.5. This indication of a 

lack of convergence conflicts with the indication from the forwards and backwards J arzynski 

estimates of all of the perturbations in cycle 1, which are all very close, suggesting convergence. 

The average difference between forwards and backwards J arzynski estimates from cycle 1 is 

0.25 kcal.mol-1 . 

Cycle pathway hystbind hystsolv 
1 (8,11,10,9) 0.53 ± 0.23 0.72 ± 0.16 
2 (3,1,8,6,5) 3.46 ± 0.37 2.09 ± 0.30 

Table 7.6: Hystereses of 2 thermodynamic cycles for relative binding (hystbind) and sol­
vation (hystsolv) free energies of the COX-2 ligands. All hystbind and hystsolv values in 
kcal.mol-1 . 

Table 7.5 lists the error, in relation to experimental values, of the calculated b..b..Fbinrls 

for the RETI and REFG2-BY10-BAR-800x1000x375 analyses above (columns headed b..b..Fbinrl 

RETI/REFG error) and the difference between RETI and REFG2-BY10-BAR-800xlOOOx37G 
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b..Fwat values (columns headed b..Fwat RETI - REFG). In the column labelled R the grollpti 

listed before and after the "-" is present are at A = 0 and A = 1, respectively. The errnrti 

in b..b..Fbind values relative to experiment are very similar for RETI and REFG2-BY10-BATI-

800x1000x375, with the only really significant difference found in perturbation 8t6, where the 

error in REFG b..b..Fbind compared to experiment is 2.02 kcal.mol- 1 greater than the RETI 

error. This difference in perturbation 8t6 is almost entirely due to the difference in b..Fwat val-

ues and causes the larger hystbind hystsolv in table 7.6. The REFG2-BY10-BAR-800x1000x~nG 

8t6 perturbation in water does seem to be well converged as forward and backward Jarzyntiki 

estimates are very close, being 10.17 and 10.09 kcal.mol- 1 respectively. Thus, this differeJl(,(~ 

between RETI and REFG calculations may either be caused by random sampling error or a 

methodological difference, which is not clear. 

Pert R IJ.IJ.Fbind RETI error IJ.IJ.Fbind REFG error IJ.Fwat RETI - REFG 
It3 Me-Et 0.42 0.66 -0.36 
It7 Me-CF3 0.74 0.99 -0.26 
3t5 Et-SCH-3 0.95 -0.34 1.48 
4t3 CH2 OH-Et 0.60 -1.25 0.70 
5t6 SCH3-OCH3 -1.68 -1.78 0.70 
8t1 OH-Me 1.74 1.93 -0.23 
8t6 OH-OCH3 1.91 3.93 -2.24 
8t9 OH-CI 1.97 1.45 0.24 
10t9 F-CI -0.49 -1.21 0.31 
llt8 H-OH -3.11 -2.99 -0.75 

llt10 H-F -0.14 0.08 -0.26 

Table 7.7: Table showing the perturbations taking place at the R position from figure 
7.3 and the error of calculated 66Fs compared to experiment for RETI and REFG2-
BYIO-BAR-800xlOOOx375. 

Table 7.8 shows the relative free energies of each ligand with respect to ligand 1 calculated 

with the REFG2-BY10-BAR-800x1000x375 protocol. The data from table 7.8 is plotted in 

figure 7.6 which show good agreement between calculated and experimental results. The r2 of 

0.76 and PI of 0.94 show this REFG2-BY10-BAR-800x1000x375 analysis to be slightly less prc-

dictive than the RETI analysis presented above. It is possible that this difference in predictive 

quality, which can be attributed to the overestimation of b..b..Fbinds for ligands 10 (F) and 4 

(CH20H), is a random effect. 
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Compound Perturbation pathway Calc l:J.l:J.Fbind Expl l:J.l:J.Fbind 
6 [1 t8+8t6]; [1 t3+3t5+5t6] -0.68 ± o. -0.95 
5 [lt3+3t5] -0.56 ± o. -0.88 
9 [Its+8t9] -1.30 ± o. -0.82 

11 [1 t8+8t9+9t10+ 10tll]; [1 t8+8tll] 0.72 ± O. -0.13 
1 0 0 

10 [1 t8+8t9+9tl0]; [1 t8+8tll + 11 tl0] 2.50 ± O. 0.01 
3 It3 2.48 ± O. 1.82 
7 It7 4.14 ± O. 3.15 
4 [It3+3t4] 6.50 ± O. 4.59 
8 Its 2.70 ± O. 4.63 

Table 7.8: Experimental and REFG2-BYI0-BAR-800xl000x375 calculated binding free 
energies with respect to ligand 1. All free energies in this table are in kcal.mol- 1

. 
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Figure 7.6: Comparison of REFG2-BYI0-BAR-800xlOOOx375 calculated and experimen­
tal ~~Fs relative to ligand 1 for 10 COX-2 ligands. 

Protocol REFG2-BYIO-BAR-800xlOOOx1125 described in the previous chapter was applied 

to investigate any predictive improvements possible by increasing the computational time given 

to the calculation. Table 7.9 shows .6.Fprot and .6.Fwat free energies, found with the REFG2-

BYIO-BAR-800xlOOOx1125 protocol, which give the relative binding free energies (.6..6.Fbind). 
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Pert Exp 66Gbind 66Gprot 6G wat 

It3 1.82 2.13 ± 0.13 3.13 ± 0.09 1.00 ± 0.10 
It7 3.16 4.10 ± 0.25 20.66 ± 0.24 16.56 ± 0.06 
3t5 -2.7 -3.15 ± 0.13 -3.64 ± 0.12 -0.49 ± 0.06 
4t3 -2.78 -3.28 ± 0.13 0.29 ± 0.09 3.56 ± 0.10 
5t6 -0.07 -1.69 ± 0.13 -6.15 ± 0.08 -4.46 ± 0.10 
St1 < -4.64 -3.28 ± 0.12 14.73 ± 0.04 18.01 ± 0.11 
St6 < -5.59 -3.1S ± 0.19 9.54 ± 0.11 12.71 ± 0.16 
St9 < -5.46 -4.14 ± 0.11 16.75 ± 0.03 20.90 ± 0.11 
10t9 -0.84 -1.75 ± 0.06 -0.53 ± 0.02 1.22 ± 0.06 
lltS > 4.77 0.95 ± 0.11 -21.98 ± 0.03 -22.94 ± 0.11 

11t10 0.15 0.16 ± 0.05 -3.48 ± 0.01 -3.65 ± 0.05 

Table 7.9: Experimental and calculated relative binding free energies with the proteill­
ligand and solvent-ligand free energies used in their calculation. All free energies ill 
this table are in kcal.mol- 1 and were found with the REFG2-BY10-BAR-800x1000x112G 
protocol. 

The MUE of the 6.6.Fbinds in table 7.9 is 1.24 kcal.mol- 1 which is just lower than the 

equivalent MUE for the RETI results above. The major difference between the RETI awl 

REFG2-BY10-BAR-800x1000x375 analyses above was perturbation 8t6. Perturbation 8t6 ill 

table 7.9 is more similar to the RETI analysis with the difference being 0.5 kcal.mol- 1 . Tlw 

hystereses of the closed cycles of perturbations detailed in figure 7.4 are listed in table 7.10. 

These hystereses are still higher than the RETI analysis above while cycle 1 is lower than the 

REFG2-BY10-BAR-800x1000x375 analysis above and cycle 2 is higher. 

Cycle pathway hystbind 

1 (3,1,8,6,5) -2.81 
2 (8,11,10,9) -1.24 

Table 7.10: Hystereses of 2 thermodynamic cycles for relative binding (hystbind) and 
solvation (hystsolv) free energies of the COX-2 ligands. All hystbind and hystsolv values in 
kcal.mol-1 . 

Table 7.11 shows the relative free energies of each ligand with respect to ligand 1 calculated 

with the REFG2-BY10-BAR-800x1000x1125 protocol. Figure 7.11 compares REFG2-BY10-

BAR-800x1000x1125 calculated with experimental relative binding free energies. This more 

costly REFG2-BY10-BAR-800x1000x1125 analysis has a MUE of 6.6.Fbinds relative to ligand 

1 of 0.89 kcal.mol-1 , an r2 of 0.79 and a PI of 0.94 which is a slight improvement over the 

REFG2-BY10-BAR-800x1000x375 analysis above. 
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Compound Perturbation pathway Calc l:!,.l:!,.Fbilld Expl l:!,.l:!,.Fbillri 

6 [1 t8+8t6]; [1 t3+3t5+5t6] -1.31 ± o. -0.95 
5 [It3+3t5] -1.02 ± o. -0.88 
9 [Its+8t9] -0.86 ± O. -0.82 

11 [1 t8+8t9+9t10+ lOtI 1] ; [1 t8+8t11] 1.53 ± O. -0.13 
1 0 0 

10 [1 t8+8t9+9tIO]; [1 t8+8tI1 + 11 t10] 2.48 ± O. 0.01 
3 It3 2.12 ± O. 1.82 
7 It7 4.10 ± O. 3.15 
4 [It3+3t4] 5.40 ± O. 4.59 
8 Its 3.23 ± O. 4.63 

Table 7.11: Experimental and REFG2-BY10-BAR-800x1000x375 calculated binding free 
energies with respect to ligand 1. 
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Figure 7.7: Comparison of REFG2-BY10-BAR-800x1000xl125 calculated and experi­
mental ~~Fs relative to ligand 1 for 10 COX-2 ligands. 

It is important to study the level of predictability throughout the analyses presented above 

as this may fluctuate to some extent. Figures 7.8 and 7.9 shows the fluctuations in PI and MUE 

through the calculations of the COX-2 analyses of this chapter. The number of MC trials of 

one perturbation leg (protein or water) from figure 7.4 are on the x-axis, as if all perturbation 

legs are run in parallel. In the legend of figures 7.8 and 7.9 REFG-375 and REFG-1l25 refers 

to the REFG2-BYlO-BAR-800xlOOOx375 and REFG2-BYIO-BAR-800xlOOOx1125 protocols rc-

spectively. Also, REFG-375-pick and REFG-1l25-pick refers to the same protocols where the 

FG estimator to be used with each perturbation at each data point is chosen according to the 

rules stated in previous chapters-: If the BAR estimate is between the forwards and backwards 

Jarzynski estimates, the BAR estimate is chosen. Otherwise the Jarzynski estimate with the 
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largest relative entropy measure as defined by Wu and Kofk [Wu & Kofk (2005a)] i u d . 

Figure 7.8 shows that the RETI analysis cony rges to a high PI cor mol' quickly than th 

REFG analyses. Also, the REFG analyses where estimators ar pi k d m to off l' lightl 

higher PI scores than the BAR-only and RETI analyses, but se m to fiu t uat. Figur 7.9 

shows that the RETI analysis has a lower MUE than the REFG analy s at all point of 

the calculations. The REFG analyses with picked estimators offer an slight impr v 11 nt in 

MUE for the REFG2-BYlO-BAR-800xlOOOx375 protocol but almost no improv m nt for th 

REFG2-BYI O-BAR-800xlOOOx1125 protocol. This lack of improv ment in th REFG2-BYlO-

BAR-800xlOOOx1125 protocol suggests this set of calculations are more fully conv-rg d. 

Q) 
'-o 
u 
en 

8 
2.0xlO 

- REFG-375 
- REFG-11 25 
- REFG-375-pick 
- REFG-11 25-pick 
- RETI 
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8 8 

8.0x lO 
Me trials 

Figure 7.8: Comparison of P I scores for COX-2 analyses. The number of MC trials on 
the x-axis represents the number of MC trials from one perturbation 1 g i.e. all protein 
and water simulations are run in parallel. 
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Figure 7.9: Comparison of t he MUE for COX-2 analyses. The numb r of lVIC trial ' on 
the x-axis represents the number of MC t rials from one perturbation leg i. e. all prot -in 
and water simulations are run in parallel. 

7.6 Conclusions: Do FG methods offer anything new? 

All the COX-2 binding free energy analyses discussed above are very similar and of good 1 r .-

dictive quality with regards t o experimental measurements. Thus, again the REFG protocols 

used in this chapter and t he previous chapter have been shown to be useful in t h drug d 'ign 

process. The MUE of binding free energies relative to a ligand from th seri bing evalu-

ated for COX-2 is significantly lower than that found for neuraminidase, being 1.25 versu. 3.48 

kcal.mol-1 found with the REFG2-BYIO-BAR-800x lOOOx1125 protocol. This diff' renc is al-

most certainly relat ed t o t he difference in t he complexity of the individual perturbations wit h 

some neuraminidase perturbations growing large phenyl groups. 

The only real disparity between t he RETI and REFG analyses was the relatively large dif-

ference (2.02 kcal.mol- l) in 8t6 perturbations in the water environment. This disparity was not 

present in the extra REFG2-BYlO-BAR-800x lOOOx1125 analysis. It is not clear whether t his 

improvement is found because of the extra sampling of t he REFG2-BYI O-BAR-800x lOOOx1125 

analysis or it is just a random effect . The RETI and REFG COX-2 analyses need to be repeat ed 

a number of times to clarify any possible differences. 

The RETI protocol discussed here seemed to converge to a high P I score and low MUE 

using fewer MC trials than the REFG protocols (figure 7.8) . RETI converges to a P I score 

above 0.9 at around 2.46xl07 MC t rials while REFG2-BYIO-BAR-800x lOOOx375 reaches a PI 
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above 0.9 at around 1x10s MC trials. It could be argued that this slower convergence of REF(~2 

protocols is because of the smaller A equilibration of the REFG2 protocols compared to till' 

RETI protocol. However this advantage of RETI over the two REFG analyses could easily 1w n 

random effect. This possible advantage should be tempered by the fact that the REFG2-BYlO-

BAR-800x1000x375 protocol is generally completed much faster than it is possible to complete 

the RET I protocol. Using 100 condor processors and the REFG2-BY10-BAR-800xlOOOx37fi 

protocol, COX-2 perturbations are generally completed in ca. 10 hours, whereas RETI cnl-

culations are limited in terms of paralellisation and the protocol discussed here takes aroulld 

24 hours on 12 2.2 Ghz Opterons. Again, it should be noted that the RETI protocol used 10 

million MC trials for A window equilibration while REFG protocols used 2 million MC trials 

for the same equilibrations. 



Chapter 8 

Discussions and Conclusions 

8.1 The findings of this study 

This study set out with the aim of investigating the use of FG techniques and finding methods 

which are of use in calculating accurate protein-ligand binding energies for the drug design pro­

cess. Jarzynski's original FG study triggered the start of an extraordinary torrent of diffewllt 

and powerful FG associated methods [Jarzynski(1997b)]. During the course of the investigatioll 

many new methods appeared as work proceeded and the selection of a subset appropriate for 

our goal of using large scale distributed computing was essential. 

Here the results of the investigations into the methods chosen to be investigated are dis­

cussed. The implications of these results to the applicability of free energy calculations to 

rational drug design will then be discussed as a conclusion to this work. 

8.1.1 Harmonic oscillator study 

The Rosenbluth FG methods of Wu and Kofke were found to offer advantages over original FG 

sampling only in specific cases and with specific switching protocols. When the possibility of 

all switching protocols are taken into account there is little efficiency advantage to be found 

by using these Rosenbluth methods over original FG. In most cases original FG sampling with 

switching protocols of many small ). increments was found to perform best. However, ). bias 

may have potential if it can be developed further. This development must be such that the final 

). increment is not forced to unity (not constrained by the number of ). increments) and the 

size of ). increments is made proportional to the suitability of the present configuration for the 

increment, regardless of the size of previous increments (see figure 4.13). Configuration bia.'3 rc-
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quires large amounts of sampling between A increments in order that a configuration favourabll' 

for the A increment may be found. This necessity can make it computationally costly. 

Overall, testing with harmonic oscillator systems suggested that BAR is the most efficil'nt 

FG estimator. Certain cases where found where the larzynski estimator was found to be mOl"(' 

accurate. Specifically, in the case of a slight subset relation, the larzynski estimator using 

switches starting with the system of larger important phase space to smaller phase space will 

be more accurate (figure 4.14 d)). This deficiency of BAR originates in the relatively poor 

behaviour of switches starting with the system of smaller important phase space due to the in­

accessibility of the destinations phase space from the starting system. This is a view supported 

by the work of Shirts et al. [Shirts & Pande(2005)]. 

Owing to the possibility of different FG estimators being more accurate in different situa­

tions, it is necessary to find a method to pick between estimators without a p'riori knowledge 

of the free energy. An estimator picking scheme was investigated where BAR is chosen when 

its result lies between that of the forwards and backwards larzynski estimates, otherwisl~ a 

larzynski estimate is chosen using either the relative entropy or bias measures of Wu and Kolle 

(2005c). Although seemingly arbitrary, these estimator rules are reasonably successful at pre­

dicting the most accurate estimate. Alternatively BAR could be used in every situation, as in 

the cases where BAR is not the most accurate it is generally close, and the loss of accuracy 

would be negligible within the complex calculations. involved in finding protein-ligand bindillg 

free energies. 

Harmonic oscillator test systems were shown to be more tractable when the A coordinate 

is split into a number of smaller sections which are evaluated using FG separately. This tech­

nique is used routinely with FEP calculations. Also, as shown in various previous studies, in 

general fewer longer switches were found to be more efficient than more shorter switches [Gore 

et al.(2003)Gore, Ritort & Bustamante], [Ytreburg & Zuckerman(2004)]. 

8.1.2 Solute-solvent test systems 

The methods found to be most applicable for the study of harmonic oscillators were then ap­

plied to two simple solute-solvent test systems. 
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The study of the hydration free energy due to sodium charging 

Here the FG estimators used in this study were further validated successfully. Specifically 

for this test system, the FD estimator performs with significantly greater efficiency than the 

Jarzynski estimator due to the linear response nature of the free energy change. Also, thl' 

symmetric estimators and BAR perform well for this system. 

The configuration bias-d method displayed no efficiency improvement for extra computa­

tional expense while the FG-BYIO protocol was shown to improve the efficiency of the .Tarzynski 

estimators such that the performance of all estimators is very similar. 

The study of the relative hydration free energy of water and methane 

This study was designed to investigate and overcome the problems found in calculating fr(,l~ 

energy differences for systems with large solvent conformational changes. It can be difficult to 

obtain consistently accurate free energy differences for these important systems due to randolll 

sampling error. 

REFG2 was shown to improve the reproducibility of accurate results compared to nOll­

RE FG methods. REFG2 also displays comparable consistent accuracy to RETI [Woods 

et al.(2003a)Woods, Essex & King]. However, when the number of Me trials used for a calc1\­

lation such as this is limited, RET I should be the method of choice as convergence is generally 

found more quickly and easily. It may be important with REFG calculations that equilibrium 

seed sampling is maximised possibly at the expense of switch sampling. This was highlight(~d 

by the difference in performance of REFGl and REFG2-BYIO calculations figure 5.7. Also, 

there may be need for an investigation of any possible differences between the performance 

of RETI-random and RETI as some difference in precision has been uncovered by Woods et 

al. (2003), (2007). An interesting study of this issue has found a method of choosing pairs of 

replicas for a ). swap which are not adjacent which may be of use for methods such as RETI 

and REFG [Brenner et al.(2007)Brenner, Sweet, VonHandorf & Izaguirre]. 

Another issue with these FG calculations is finding the appropriate estimator for optimum 

accuracy. A number of methods of picking between forwards and backwards .T arzysnki esti­

mates and BAR were investigated. All of the estimator picking methods gave similar results. 

However, the method which gave the most consistent and accurate results was the totalled 
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relative entropy measure. This method of picking uses BAR when a BAR estimate is plan'd 

between the forwards and backwards Jarzynski estimates; when this is not the Ci::1Se the Jarzyn­

ski estimate with the highest total \V diss summed over all FG calculations across A is chosl'll. 

The use of BAR alone is also relatively accurate. Hence, these two estimator picking methods 

were used in the subsequent protein-ligand studies. 

Here it has been shown that REFG methods have the possibility of similar levels of accuracy 

to RETI when a limit is placed on the number of MC trials used in a calculation. It is difficult 

to compare the speed of RETI and REFG calculations as these RETI calculations were carried 

out on a small number of dedicated, fast, processors while REFG calculations were carried out 

on a large number (100) of condor nodes (see appendix D). However, it is clear that REFG 

methods may be able to run calculations faster than RETI when sufficient computational l'C­

sources are available. 

8.1.3 Study of the binding free energy of a set of inhibitors for 

Neuraminidase 

The neuraminidase analysis of Michel et al. (2006) was shown to be relatively demanding awl 

is in some ways, beyond the limits of the present methodology. 

The ligands of the group under study which contain an amino group at position Rpol (see 

figure 6.3) utilise a mediating water to help binding. This mediating water is not used by the 

ligands with a guanadino group at position Rpol. Thus, in perturbing from an amino ligalld 

to a guanadino ligand the mediating water must be displaced from its buried position in the 

binding site, something beyond the present methodology. Consequently a free energy from a 

more complex study of a similar system was used for the perturbation of ligand 3 to ligalld 

6 [Barillari et al.(2006)Barillari, Taylor, Viner & Essex]. This problem highlights one of a nUlfl­

ber of limitations of using free energy calculations in drug design. 

This analysis contained a number of perturbations (namely perturbations of ligands 2 to 

9, 4 to 10, 7 to 8 and 9 to 10) which include the growth of large chemical groups where much 

smaller groups were originally. Owing to the relatively large numbers of atoms affected by these 

perturbations they can be difficult to converge. It has been shown that the number of switches 

required to obtain converged free energies is proportional to the number of atoms involved ill 
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the work process [Kofke(2006)J. 

Owing to the complexity of some of the perturbations in this neuraminidase analysis, it IS 

probable that the converged calculated binding free energies differ significantly from the exper­

imental values. Although the exact nature of these disparities is not clear they are possibly duc 

to deficiencies of the model. 

The FG-BY10 protocol was shown to be unreliable in evaluating this set of inhibitors for 

neuraminidase. PI scores ranged from a very low 0.44 to very high 0.95 and r2s from 0.47 to 

0.88. This suggests that FG-BY10 is unable to produce converged results in within the 11l1lnbcr 

of MC configurations used due to the challenging nature of some of the perturbations of this 

analysis. 

REFG2 was shown to compare favourably with RETI in producing results of a repeatedly 

high predictive standard. PI scores ranged from 0.91 to 0.97 and r2s from 0.88 to 0.94 with the 

RET I analysis producing a PI of 0.93 and r2 of 0.81. These results suggest that RE free energy 

methods should always be used for protein-ligand binding free energy calculations and that the 

REFG2 protocol is at least as good as RETI for this purpose. 

One advantage ofFG methods was highlighted as large inaccuracies were found in SOllIC 

perturbations of the original RETI analysis of Michel et al. (2006). A large peak in the PMF 

of FG perturbations 2 to 9, 4 to 10 and 7 to 8 in both the water and protein environmellts 

were not present in the RET I equivalents (figure 6.9). This sudden change in the free energy 

originates from very large intra-molecular LJ and Coulombic forcefield energies produced hy 

the close proximity of the atoms of the phenyl ring of the cis group at the early stages of these 

perturbations. These phenyl ring atoms start as dummy atoms but as their non-bonded terlllS 

are switched on these atoms are too close and a large energy is produced. This large change ill 

the free energy was not detected by the RETI analysis as it came between the discrete simula­

tion points across A. Also the large errors in the water and protein leg perturbations was not 

discovered in the original RETI analysis as this large energy artefact is a very similar size in 

both water and protein legs resulting in its effective cancelation. This example may serve to 

highlight the exploratory use of FG methods in analyses such as this or the need for extreme 

care in the use of TI based methods. 

This study also highlighted the limitations of statistical error bars in predicting the repro-

ducibility of free energy calculations on large complex systems. In future it may be importaIlt 
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to routinely reproduce calculations to be sure of the results they give. 

The totalled relative entropy measure estimator picking rules were used in this study awl 

compared to using BAR alone. This method of FG estimator picking was shown to give wry 

similar results to using BAR alone, mainly due to the fact that BAR estimates were generally 

placed between forwards and backwards J arzynski estimates for these neuraminidase perturba­

tions. 

The major result of this neuraminidase study is that REFG has shown significant illl-

provements in calculation wall clock time compared to the established RETI method while 

maintaining high levels of accuracy. REFG calculations were completed in around 10 homs 

using 100 condor nodes while RETI calculations took around 24 hours on 122.2 Ghz Otperolls. 

8.1.4 Study of the binding free energy of a set of inhibitors for 

COX-2 

This set of COX-2 perturbations were in general much less demanding than the neuraminidase 

analysis discussed above. These COX-2 perturbations involve changes to a single group which 

often consists of one atom only. This means that these COX-2 calculations require a smaller 

number of MC trials to give a converged free energy estimate. Indeed a similar study of the 

same system by Price and Jorgensen (2000a) used FEP calculations with around one third of 

the MC trials of the protocols used in this study and found comparable if not better results. 

This COX-2 analysis again demonstrated that REFG2 is able to produce results of a Silll­

ilar predictive quality to RET!. However, for this COX-2 analysis RETI seems able produce 

converged and accurate results using fewer MC trials than REFG2 (see figures 7.8 and 7.!J). 

The seeming efficiency advantage of RET I may be tempered by the possibility of running Me 

trials faster using FG methods and many computers in parallel. 

Again, the totalled relative entropy measure estimator picking rules were used and gave very 

similar results to BAR alone. Also a wall clock time advantage of REFG over RETI similar to 

that found for the neuraminidase study was found for these COX-2 calculations. 
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8.2 FG Best practice 

As can be seen in the FG background chapter (chapter 3) there have been many interestillg 

developments in the area of nonequilibrium work free energy methods over recent years. Hl'n' 

we have picked some particularly interesting methods for investigation with the idea of large 

scale parallelisation of calculations in mind. Of the methods chosen for investigation some ha\'(~ 

been found to be more suitable than others for use in rational drug design. 

It is clear from the results of this work that overall the BAR estimator is the most d­

ficient. This estimator is able to produce results of very good accuracy in all cases studi('d 

here. This is a view shared by other studies in the literature [Shirts & Pande(2005)], [Ytreburg 

et al.(2006)Ytreburg, Swendsen & Zuckerman]. There are cases were the Jarzynski estimator 

may outperform BAR but differences in accuracy are small. For the case of demanding proteiIl­

ligand binding studies BAR is a suitable choice. 

Although seeming to have potential, the Rosenbluth sampling FG methods of Wu and Kon«~ 

were found, in general, to be less efficient than original FG [Wu & Kofke(2005c)]. REFG pro­

tocols were found to perform best for the relative hydration free energy of water and mcthall(~ 

and binding free energy studies of neuraminidase and COX-2 systems. REFG was able to show 

similar levels of accuracy to the established RETI method with the possibility of wall clock 

time saving through the use of large distributed computational resources. 

A series of FG bias calculations methods have been discussed and investigated in this 

work [Gore et al.(2003)Gore, Ritort & Bustamante], [Wu & Kofke(2005a)], [Jarzynski(2006)]. 

In general these methods rely on a Gaussian distribution of work values, something which is 

not always possible especially for the large protein-ligand systems of interest here. Hence, these 

method were found to be less reliable. It may be that in future more generally applicable alld 

reliable methods are developed. 

8.3 Free energy calculations in rational drug design 

The central purpose of this work was to investigate a relatively new set of free energy methods 

to test whether they can help further the applications of free energy methods in rational drug 

design. As discussed earlier the reasons for the as yet low levels of use of these methods by 
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the pharmaceutical industry are as follows: free energy calculations on protein-ligand systellls, 

although significantly faster than previously, are still relatively slow to carry out and compu­

tationally demanding, For use in rational drug design it should be possible to run analyses of 

around 10 drug targets overnight, These calculations are also limited in applicability as th(' 

sets of inhibitors under study must be very similar with low levels of system confonnatioJ1nl 

change (requiring single topology methods). Dual topology methods may be able to speed up 

the process of system set-up and increase the range of applicable systems. However, dual topol­

ogy methods are more computationally demanding again. Thus, large increases in efficiency of 

free energy calculations may be able to increase the usability of these methods in rational drug 

design. 

Here it has been shown that FG based methods are able to produce protein-ligand bindillg 

free energy results of a similar quality to the established RETI method in significantly shori('1" 

time through the use of a large distributed computer. Here REFG calculations were able to 

use 3 times more Me trials than RETI in around the same amount of wall clock tirne. How­

ever, this sampling speed improvement did not offer any improvements in predictive a.ccuracy. 

Further, dual topology calculations may need many lOs of times more sampling than the single 

topology calculations performed here. Hence extremely large computational resources would be 

needed to make these sorts of calculations viable in the time frames needed. This study has also 

highlighted the advantage of FG based methods in being able to find unexpected occurrenc(~s 

in a perturbation that would be missed by TI based methods. In this way FG methods arn 

more reliable. 

As more research into the use of free energy calculations in protein-ligand binding studies 

is carried out, the limitations of these methods will become clearer. This should lead to the 

gradual increase in use of these methods in drug design. Also, as the power of computational 

resources continues to increase, the reliability and applicability of these methods will become 

better. 
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Mar kav chains 

A Markov chain, named after Andrey Markov, is a sequence of discrete random variables or 

states where production of the next state (N) is independent of all states except the most recent 

(0) (known as the Markov property). The changes in state are called transitions, and brought 

about by application of a particular Markov process or a trial. Hence, the transition probability 

1T( 0 ---t N) can be interpreted as the conditional probability, 

1T(0 ---t N) = P(Xn = NIXn- 1 = 0), (A.I) 

where Xn is the present state and X n- 1 is the immediately previous state. When at 0 the 

probabilities of arriving at all possible N states make up a row of a matrix called the transition 

matrix (IT) the sum of each row must be equal to one. Also, 1T( 0 ---t N) must be ergodic as 

discussed later. 

This definition of a Markov process has a special property. A clear way to show this property 

starts with consideration of the probability P(Xn = N) that at step n (the present step) tIle 

system is in state N: 

P(Xn = N) = P(Xn = NIXn- 1 = O)P(Xn-l = 0) = 1T(0 ---t N)P(Xn- 1 = 0), (A.2) 

Therefore the master equation, which considers the change in this probability over repeated 

realisations of the Markov process (change in n, where n is continuous rather than discrete ie. 

P(Xn = N) = P(N,n) can be, 

dP(N,n) 
dn 

L 1T(0 ---t N)P(N, n) + L 1T(N ---t O)P(O, n). 
(O--->N) (N--->O) 

(A.3) 
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This identifies the evolution of the system as a continuous-time Markov process [Landau(2000)]. 

As long as the two terms on the right hand side of A.3 are kept equal the probability of a stall' 

being conserved is, 

dP(N,n) _ 
---'---'- = O. 

dn 
(A .. I) 

Also, owing to the Markov property, the state at step n in the process will completely detl'r-

mine the future evolution. Thus, property of such a Markov process is that through mallY 

applications of IT it will converge to a unique limiting distribution regardless of the state ill 

which it begins. The resulting expression of equation A.3 is known as "detailed balance". To 

satisfy detailed balance the probability of leaving 0 for N must be the same as the probabilit.y 

of leaving N for 0 (7r(O --7 N) = 7r(O --7 N)). 

It is important to note that not all systems have properties compatible with equation A.:i. 

For this to be the case it is important that the Markov chain produced is ergodic. To be ergodic 

a Markov chain must be: 

aperiodic: A state 0 has a period J if any return to state 0 must/may occur in a multiple of 

J applications of the process. For example, if it is only possible to return to state 0 in an even 

number of steps then 0 is periodic with a period (J) of 2. If J is 1 the state 0 is aperiodic aJld 

the process can return to 0 without a specific period. A Markov chain is aperiodic if all its 

states are aperiodic. To be aperiodic a state must also be irreducible, able to reach any poillt. 

in configuration space from any other in a finite number of transitions. 

positive recurrent: A Markov chain is positive recurrent if starting in each state the chain 

can return to this state in a finite number of applications of the process. If the probability the 

chain will never return to a given state is non-zero that state is said to be transient. 

Another important note is that it is possible to produce a conserved limiting distribution with-

out detailed balance, where equation A.4 is satisfied with the terms on the right hand side of 

equation A.3 not being equal. However, this is extremely difficult and would need knowledge 

of IT, which is not easily obtainable. 



Appendix B 

Monte Carlo moves 

B.l Basic moves 

The basic Metropolis MC method entails the construction of a symmetric transition matrix 

through finding a trial configuration N at random. As discussed before this is generally achieved 

through the localised perturbation of the present configuration 0 according to preset parame­

ters. This has the advantages that if configuration 0 is a member of the Boltzmann limitillg 

distribution then N has a good chance of being a member too and that new total energy evaJuil­

tions may not be necessary. In the interests of keeping the acceptance rate of new configuratiolls 

high and the range of possible moves as big as possible, the size of this perturbation is adjusted 

to an appropriate level which is kept constant, as changing it may violate detailed balance. 

With these ideas in mind, in the case of condensed phase simulations, it can be shown that; 

it is generally most efficient to perturb only one particle at a time [Frenkel & Smit(1996)]. Oil 

average, a trial move will be rejected if the change in the potential is more than kET. Thus, 

if more than one particle is moved at a time, the time taken to evaluate the new potential is 

larger and the move is likely to be rejected. 

The range in size of any translational move of particles (.6.) is a parameter which is gen­

erally set through trial and error. .6. is set such that the acceptance rate of a simulation is a 

target figure which according to the literature is around 50% [Frenkel & Smit(1996)]. Whell 

considering this problem, it may be worth considering that the speed with which a MC code can 

perform trials has a large effect on possible target acceptance rates. If displacement per CPU 

time is the term to be optimised, then the faster the code the lower the possible acceptanc(~ 

rate target. For example for MC on hard core systems where a moves can be rejected much 

faster (as soon as an overlap is detected), optimum acceptance rates may be as low as 20 %. 
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A size range parameter for rotational movement of particles (e) is also necessary if partici(':-; 

are molecules. The optimum e can be found with the same considerations as for translational 

moves above. 

In the case of non-rigid molecules then moves of the internal degrees of freedom must also 

be undertaken. The range of size parameter for moves of the internal coordinates of each atom 

can be individual to that atom depending on its environment, with similar considerations to 

those discussed above for translational moves. 

B.2 Biased moves 

When choosing a sampling method for molecular simulations, perhaps the majority of investiga­

tors employ MD. All other efficiency issues being relatively equal, MD is able to offer informatioll 

on the time linked dynamic behaviour of a system. However, in specific cases, where MD gct:-; 

trapped in local energy minima and is too slow to allow convergence of calculations in feasible 

time scales, specifically biased MC methods can offer important advantages. 

Biased MC methods bias the normally random production of new configuratiolls (N) sllch 

that they have an increased probability of being accepted into the average being acclllllulatcd. 

This can be an extreme time saving strategy in some cases. Clear examples of this possibil­

ity are ensembles where molecules must be inserted as part of a move and the probability of 

a random move being accepted is very small. Slightly less clear maybe are cases of proteiu 

simulations which are directly related to this study. There are however good examples of Me 

methods which can bias protein back-bone moves and increase the speed of protein sampliug, 

which is notoriously slow and difficult due to large energy barriers between possible conforma­

tions [Ulmschneider & Jorgensen(2003)J. Also, a bias may be introduced relatively easily to 

increase the number of moves performed on molecules close to a point of interest (preferential 

sampling) [Owicki(1977)J; the most relevant example is biasing moves for water molecules close 

to a protein binding site. 

The basis of biased MC lies in introducing bias into the transition matrix, TI, described 

earlier and then correcting for this bias in the acceptance test probabilities. If a method of 

producing state N conducive to a high acceptance rate is found, which uses a function of the 

potential of the current configuration, the transition probabilities will be: 
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a(O -t N) = f(UN), a(N -t 0) = f(Uo). (B.l) 

In order that detailed balance and the Boltzmann distribution be preserved, these same prob-

abilities must be introduced into the acceptance test: 

. f(UN) 
PaccN = mm(l, f(Uo) exp{ -,S[Uo - UN]}). (B.2) 

Thus, it is necessary to know the probabilities of a(O -t N) and a(N -t 0) = f(Uo) which 

may not always be easily found. 
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C.6 A bias: case D 
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C.8 Configurational bias-d: case D 
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Appendix D 

FG and Distributed computing: The 
use of Condor 

The power of computer processors has been increasing at an astonishing rate ever since the ear­

liest computers of the 1940s. The rate of increasing power is so steady that the term Moore's 

Law was coined around 1970 describing the tendency for the number of transistors (which call 

be loosely converted to computational power) on a commodity computer processor to double 

every 24 months [Intel(2007)J. In recent times there has been discussion by the major computer 

processor producers that the limit of this law may soon be reached as the size of transistors 

approaches the atomic scale. 

Despite the speed with which computer processors are increasing in power, such is the thirst 

for computer power of calculations like those discussed in this study, that methods for increas­

ing power are always sought. The most common method for increasing computer power is to 

use many cheap yet powerful commodity computers in parallel, connected by a local high spe(~d 

network in a "high performance computer cluster" (HPC). The use of multiple computers in a 

single calculation is termed "distributed computing" which is a type of "parallel computing" 

with the latter term generally referring to calculations run on multiple processors which are part 

of the same computer. These HPCs are often used with the Linux operating system (OS), as 

this as is free and a good environment for developing software, in a set up termed a "Beowulf 

cluster" . 

In order that a calculation can be used on a computer cluster, it must be split into smaller 

calculations which can be distributed across the processors. This limits the efficient use of 

computer clusters to those calculations which can be parallelised (split up into suitable smaller 

calculations). Parallel computer program codes (parallel codes) are sometimes able to allocate 
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jobs to different processors automatically (implicit parallelism). The majority of implicit pnr-

allel codes require that all processors and computers included in a calculation are of the SaIlll' 

or similar architecture (homogeneous cluster) which can limit the make up of a useful cluskr. 

Also, the number of processors a parallel calculation can use efficiently is in general not llll-

limited (the scalability of a calculation). This is because the overheads such as the processors 

communicating with each other over the network slow the calculation [Allan(1999)]. 

Some calculations are such that they naturally break up into many smaller calculatiolls 

which can be run independently on single processors of many computers (coarsely parallelis('d 

calculations). One example of such a calculation is FG where each switch of a FG calculatioI\ 

can be run on a separate computer, with the work value from each switch combined at the el\(l 

to give an estimate of the free energy difference. 

Coarsely parallelised calculations can be run efficiently with grid computing as there is 

no necessity for high speed communication between the processors involved. A grid can be a 

heterogeneous group of computers connected with some level of network to run ca.lculatiolls. 

The network is often the internet but can be a large non-local network. Grid computing is 

normally thought to be between computers which are geographically distributed. SOUle grid 

clusters are set up to use the unused compute of idle computers in officcs and homes. Exal1lpl(~s 

of this are the folding@home project [Shirts & Pande(2000)] which runs molecular siwulatiOlIS 

on thousands of computers around the world when they are idle. 

Condor [Litzkow et al.(1988)Litzkow, Livny & Mutka] is workload managel1lcnt software, 

able to distribute computer jobs within large heterogeneous networks. It is able to idcutify idle 

computers (target machines) on the network and distribute jobs to them where the predefined 

parameters of the computer and jobs fit. Users of Condor submit individual jobs which are thcll 

matched to an idle machine which receives the job, completes it and sends the output back to 

the user. This can effectively produce a large amount of computation that would otherwisc 

be wasted. A good example, which was the case for this study, is a university library which 

contains many old low specification computers used intermittently by students. Other examples 

of similar software which is more oriented towards security is Globus [Foster(2006)] and United 

Devices Virtual Cluster software [UnitedDevices(2007)]. 

Using Condor with a heterogeneous network of in-use computers can be a delicate and COI1l-
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plex task, and thought must be given to producing optimum performance. Here some basic 

ideas and concepts will be explained from the point of view of the individual user: 

First, the code used must be compiled so it can run on the target machines. In the case of 

this study the majority of the Condor pool used the IVlicrosoft \iVindows XP operating system 

(OS), so the code was compiled for Windows. 

Each job submission must have a set of parameters defining its target machines on the 

network. The architecture and OS of the target machines must be given. The memory needs of 

the individual calculations must be assessed and parameters set such that only machines with 

enough memory are used. Other possible parameters include, location in the network, disk 

space and cpu speed. 

For each job submitted to a Condor pool the required input files and executables nlUst 1)(' 

transferred to the target machine. Depending on the size of the files to be transferred, tbis 

limits the number of jobs a single submit node can service at one time. For the protein-lig<UHj 

calculations run in this study it was found that 100-150 jobs could be easily serviced hOlll 

one submit node. This meant that multiple submit nodes were needed to run a whole sd ()f 

protein-ligand calculations. 

Consideration must be given to the length of jobs submitted to a Condor pool. A Condor 

pool can be set up such that when a user starts using a Condor pool computer which is runniJlg 

a Condor job, this job is either deprioritised or stopped and given back to the Condor pool 

controller to reassign. Also, sometimes a Condor job can fail and not be returned to the submit 

node. Either way, the longer a job is, the more chance it has of taking longer than it should (jJ' 

of failing. 

However, if jobs are too small the computer from which jobs are submitted to the Condor 

pool (submit computer) will be unable to finish uploading all the input files for the requested 

jobs, to the condor pool, before the results of some jobs start to be returned to the submit corn-

puter. This issue can effect the efficiency of the calculation as the submit computer is unable to 

get the requested number of jobs running in the Condor pool. Thus, a balance, must be fOUlld 

allowing the submit computer time to upload all requested jobs, minimising the possibility of 

jobs slowing or failing, and the demands of the calculations at hand. In this study it was found 

that FG jobs were at optimum length at around 2-3 hours. Also, it may be advisable to pIau 

for any possible slow or failing jobs by starting a few more than are actually needed. 
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Using a large Condor pool for free energy calculations has advantages and disadvantages: 

The speed at which calculations are completed can be unpredictable. If the Condor POOll'Oll\-

puters are undergoing heavy use by non-Condor users calculations will be very slow. Hence, usc 

overnight and at the weekend can be more efficient. On the other hand, as only coarsely parnl-

lelised jobs can be run on Condor and often a large Condor pool is used by only a few project s. 

extremely large calculations can be run which would be unfeasible on a often oversubscribed 

dedicated Beowulf clusters. Of course, it would be preferable to run large parallelised FG cnl-

culations on large, fast, dedicated clusters as this could produce extremely fast calculatiolls. 

For large pharmaceutical companies, the use of Condor or Globus pools can be a extremely 

cost effective solution as they often have large offices full of suitable under-used computers. 
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