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Abstract 

Direct numerical simulations of both axisymmetric and three-dimensional highly swirling 

flows are conducted to study the vortex breakdown phenomenon and the onset of helical 

instabilities. 

The enduring debate on the physical reasons underlying the breakdown of slender vor

tices has widely involved theoretical, experimental and computational studies. In the present 

investigation, we are motivated by the necessity to evaluate the range of applicability of re

cent studies which have correlated the global response of this class of flows to their local 

stability characteristics. In synthesis, the dynamics of the unsteady structures developing 

in swirling flows are explained according to simplified theories which assume the flow to 

be locally parallel. These results, which might be considered as the natural extension of 

concepts well established for two-dimensional jets and wakes, appear to be quite surpris

ing if applied to swirling flows in breakdown configuration. In fact, the presence of one or 

more large regions of recirculating flow (the vortex bubbles) renders the assumption of near 

parallelism strongly violated. 

Inspired by this observation, we have carried out a numerical investigation in order 

to study the evolution of self-sustained oscillations. For this purpose, a finite difference 

code has been developed and later adapted to perform linear analysis around a given paral

lel swirling flow. Successively, a comparative study between the global and local analysis 

methodologies has been conducted. The novelty of the work is represented by the use of 

simple filtering techniques which can be implicitly activated if the cylindrical coordinates 

are employed. These have made possible to focus on the nonlinear evolution of higher order 

modes. Following this strategy, we have identified an instability mechanism which cannot 

be explained by the local theory and whose existence is clearly associated with the pres

ence of recirculating flow. The result is considered important since it provides a further 

contribution to the general understanding of the global modes. 

Throughout this thesis we have followed a bottom-up approach in terms of the assump

tions undertaken. The general stability properties of swirling flows are initially revisited 

based on 1D models. The hypothesis of one-dimensionality has been later replaced by that 

ofaxisymmetry. Real swirling flows are examined in the final chapter for Reynolds numbers 

in the range of those generally employed in the physical experiments. 
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Chapter 1 

Literature review 

1.1 Introduction 

Swirl is known to drastically affect the dynamics of jets and wakes, and is encountered 

in a variety of technical applications as well as in natural conditions. Due to its practical 

relevance, it is highly desirable to have a full understanding of how the different physical 

mechanisms characterising such a configuration can combine, modify and eventually com

pensate each other. We define a "swirling flow" as the superposition on a pure jet or wake of 

a vortex with axis parallel to the jet direction. The velocity profile of the swirling flow can 

induce shear instabilities, i.e. Kelvin-Helmholtz instabilities similar to those encountered 

in non-rotating jets. The introduction of swirl may result in the development of centrifugal 

instabilities, or even enhance Kelvin-Helmholtz instabilities associated with the additional 

presence of the azimuthal shear. Finally, under certain conditions, a swirling flow can evolve 

into what is called "vortex breakdown", i.e. a sudden axial velocity decay occurring in the 

vortex core, resulting in a region with recirculating fluid. 

The recent experimental investigation of Liang and Maxworthy [65] offers an interest

ing picture for possible dynamical evolutions of the vortical structures arising in a swirling 

jet at low Reynolds numbers. They analyse the plug flow emerging from a long rotating tube 

in a stationary enviroment. Depending on the intensity of the swirl, four different regimes 

are identified: non-rotating jets, weakly swirling flows, strong swirling flows prior to vortex 

breakdown and breakdown state. In the absence of rotation, the axial shear generated at the 

interface between the jet emerging at the inlet and the still fluid, originates a sequence of 

axisymmetric vortex rings. These structures are seen to move downstream from the inlet, 

amplifying and pairing before evolving into a full turbulent state. When a moderate swirl 

is applied, the vortex rings preserve their axisymmetric structure for some axial extent in 
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proximity of the inlet, before being tilted downstream in the direction opposite to that of 

the rotation of the jet. The last regime preceeding breakdown is found to be very unsteady 

and irregular. The vortex rings, which dominate the flow field at lower swirl, are replaced by 

several helical waves coexisting with small scale vortices. The more the flow approaches the 

breakdown condition, the more it becomes chaotic and the coherent structures difficult to 

visualise. At a threshold level of swirl, the vortex core of the jet "bursts": the flow stagnates 

and forms near the nozzle exit an axisymmetric bubble. The flow field becomes suddenly 

more regular, helical structures with azimuthal wavenumber In = 1 and In = 2 become more 

visible in the rear of the bubble, with the bending spiral In = 1 being the dominant. 

This thesis consists in a computational study on swirling flows at low Reynolds num

bers. As detailed later, the relation between vortex breakdown and vortex stability is quite 

unclear. Several attempts have been undertaken to regard vortex breakdown as a manifes

tation of vortex instability. The partial successes which have been obtained, mostly in the 

axisymmetric framework, cannot provide an explanation for a very simple fact: swirling 

'flows are highly unstable to helical disturbances, whereas the most robust breakdown is 

found to be axisymmetric. In this introduction, we assume the perspective of Escudier et 

al. [26], and consider a clear separation between the two concepts. The evolution towards 

a breakdown state determines the base character of the flow, while instabilities represent an 

important, superimposed detail. 

1.2 Vortex breakdown 

In one of the first experimental works on vortex breakdown, Harvey [40] describes the phe

nomenon as the formation of a well confined region of reversed flow, with a shape of a body 

of revolution located on the axis, imposing the approaching flow to move around it. Figure 

1.1 reports the vortex breakdown obtained in the experiment of Sarpkaya [93]: the flow is 

streaming from the left side, and under the effect of a very intense swirl develops a nearly 

axisymmetric bubble, acting as a solid obstacle which induces in the rear the distinctive 

vortex shedding of a wake. 

The possibility to generate and eventually control a localised region with reversed flow 

offers interesting benefits in many industrial applications. For example, the technique can be 

used as flame-holder in order to stabilise combustion. On the other hand, vortex breakdown 

can result in undesiderable consequences: for example, over delta wings, the presence of 
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Figure 1.1: Experimental observation of an axisymmetric bubble followed by spiral breakdown. From lhe 
gallery of fluid mechanics, Cambridge University. 

stagnating fluid at high pressure leads to a deterioration of lift chracteristcs and to a poor 

controllability [23] . 

Despite four decades of theoretical, experimental and numerical studies, a universa lly 

accepted explanation of vortex breakdown is still lacking. Among the proposed theories, 

Ludweig [70] in the early sixties seems to be the first to suggest that breakdown occurs 

as a consequence of hydrodynamic instabilities, arguing that the formation of the internal 

stagnation point results from the sensitivity of the vortex core to helical disturbances. In 

his view, helical instabilities are those responsible for the axial flow decay by means of a 

trahsfer of energy: vortex breakdown is therefore seen as an asymmetric process, although 

it may manifest predominant axisymmetric features. The initial idea of Ludweig was seeded 

by the consideration that the class ic linear theory highlights a tendency of hi ghly sw irling 

flows to helical instabilities more than to axisymmetric ones, but it was later moderated 

when the first numerical simulations of swirling jets proved that breakdown can occur even 

on axisymmetric models [35 , 53]. 

Although the numerical results were not exempt from criticism, this induced theOI"eti

cians to consider the possibility that the breakdown process cannot be fully described in 

the framework of a linear stability analysis, but that other more sophi sticated mechanisms 

should be accounted for. In this context, the work of Leibovich [57] , Leibovich & Randall 

[58] and Kribus & Leibovich [55] is relevant. They formalised an idea originally proposed 

by Squire [96] . According to these lines of thought, the fundamental nature of vortex break

down is similar to other well known fluid dynamic phenomena like shock waves and the 

hydraulic jump. In all these systems waves propagate, and all are based on the concept of 

critical state. In a swirling flow, even if the stability of the base flow is guaranteed, the 

restoring effect of the Coriolis force generates longitudinal inertial waves. They are the so 
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Figure 1.2: Typical bifurcation diagrams of an axisymmetric swirling flow. 

called Kelvin waves [66, 90] associated with the presence of a core in a solid body rotation: 

in the absence of axial velocity, the vortex core behaves as a wave guide for axisymmetric 

disturbances which propagate marginally in the upstream and downstream direction sym

metrically. These waves have a specific group velocity depending on the intensity of the 

rotation: when the axial velocity is not zero, but bigger than the speed of the inertial waves, 

any perturbation is convected downstream by the main flow. For a given axial velocity, 

there exists a critical level of swirl for which an axisymmetric standing wave can be sus

tained from the base flow [6]. Below the critical level the flow is supercritical and waves 

can only propagate downstream; upstream propagation of energy becomes possible above 

the critical level, when the flow is said to be subcritical. 

The critical state is defined referring to a swirling flow which is assumed to be colum

nar, extending to infinity both uptream and downstream. In real situations the flow is never 

uniform, but, due to geometrical constraints and viscous diffusion, it has conditions slowly 

evolving which may lead an initial supercritical flow towards criticality. Whereas if a criti

cal condition is reached, perturbations spreading from the subsequent subcritical region will 

accumulate and amplify to large value resulting in a possible breakdown. Leibovich [57], 

using a weakly nonlinear analysis, derives the evolution of waves of finite amplitude in an 

inviscid vortex core. The wave amplitude is governed by a Korteweg-de Vries equation, 

whose solutions are the well known solitons, waves of permanent form arising from the 

nonlinear interaction of dispersive waves. The resulting finite wave presents a dependence 

of the velocity on the amplitude: as it grows it becomes faster and therefore can penetrate the 

supercritical region, inaccessible for small perturbations. In this scenario, a steady config

uration becomes possible only if a mechanism extracting energy from the big wave arises. 
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Experimental works [26, 93] have revealed a very weak sensitivity to viscosity for high 

Reynolds numbers. Kribus and Leibovich [55] suggest that non-axisymmetric feautures can 

replace viscosity as the most dissipative effect helping to stabilise the wave. Thus, Kribus 

and Leibovich arrive at the opposite conclusion to that of Ludweig: the energy transfer 

goes from the axisymmetric wave toward the helical ones and represents the mechanism by 

which the 'positional instability' [59] of the growing axisymmetric bubble is stopped. 

The wave theory of Leibovich finds support in two important considerations: first, a 

tendency of vortex breakdown to migrate upstream during its formation has been observed 

in numerical [35] as well as in experimental studies [73]. Furthermore, both Sarpkaya [931 

and Harvey [40] report in their experiments that if the conditions are assigned trying Lo 

minimise the development of vortex instabilities, then the flow morphology may resemble 

a wave train, with the formation of less intense breakdown states created in the wake or the 

first bubble. In Leibovich's view, the secondary breakdowns are the 'tail' of the develop

ing soliton. Since they are sequentially smaller, as soon as three-dimensional asymmetries 

develop, any characteristics of the wave train would be lost, and this explains why even 

the most recent experiments [9, 32, 65] do not report this flow configuration: depending on 

differences in the velocity profile of the underlying swirling jet, helical vortex instabilities 

can develop for values of swirl lower than that needed for a breakdown state. In this case, 

as in the revisited experiment of Liang and Maxworthy, the possibility to identify the wave 

train is inhibited. Computational fluid dynamics offers the opportunity to study separately 

axisymmetric and three-dimensional effects and to analyse their interaction. 

The wave theory of Leibovich would also provide some insights into the hysteresis 

loop that some unsteady axisymmetric simulations have revealed for large Reynolds num

bers (Re~300) [1, 7, 41,69]: some quantities, like the minimum axial velocity, when repre

sented as function of the swirl level, show multiple steady solutions. Figure 1.2 illustrates 

a schematic representation of the minimum axial velocity W obtained for different values 

of the swirl. Here we remark that W :::;0 indicates breakdown. Starting from a condition 

with low swirl the solution moves along the branch (I), corresponding to a quasi-columnar 

configuration until the first folding point 8 1 is reached. For 8 > 8 1 the solution evolves 

towards branch (II) and a stagnation point appears. At this stage, a successive reduction of 

swirl below the critical value 8 1 is unable to restore the initial quasi-columnar configuration 

until a second folding point 8 2 is reached. 

This behaviour is connected to bifurcating solutions of the steady Navier-Stokes equa-
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dL .. 

Figure 1.3: Production of axial circulation gradient due to the radial flow divergence in an axisymmetric 
swirling flow with dLldr > O. 

tions. Wang and Rusak [101] have applied a global variational approach to the inviscid 

Rankine vortex in a pipe, deriving a bifurcation diagram which resembles the viscous re

sults found by numerical computations. In particular they prove the existence of the two 

limit points 51 and 52 such that for 51 < 5 < 52 three solutions exist: solutions on branch 

(I) representing a columnar flow; solutions on branch (II) representing a well localised re

gion of separated flow; there exists a third branch (III), connecting the two folding points, 

which describes waves developing in the main now. This branch is unstabIc and cannot 

be obtained as steady solution of a time marching calculation, but could be found using a 

steady state case in combination with continuation techniques [7,101]. 

The numerical computations of Beran [7], Lopez [69] and Herrada et al. [41] are seen 

as a viscous correction of these results. 51 is the critical point for infinitesimal disturbances, 

while 52 is suggested to be a critical state for .finite amplitude waves. When the Reynolds 

number is high enough, the flow becomes locally critical, nonlinear waves interact and 

propagate upstream; in the inviscid limit the only mechanism which may trap the large 

wave is due to the boundary conditions fixed at the inlet. For moderate Reynolds numbers 

the dissipative effect of viscosity is no longer negligible, and the large wave can come to 

rest before approaching the inlet. The corresponding bifurcation diagram is modified, the 

third branch becomes shorter and eventually disappears, suggesting a relation between the 

excursion of the breakdown and the multiple steady solutions found. 

More recently, Brown and Lopez [12] have proposed an explanation of vortex break-
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down based on simpler vorticity considerations. According to these authors, breakdown 

results from the tilting of axial vorticity into negative azimuthal vorticity. In the vortic

ity equation, this process is modelled by ~z BJz" where ~z is the axial vorticity and Vo the 

azimuthal component of velocity. If it is enough intense, the appearance of negative az

imuthal vorticity can start a positive feedback by vortex stretching. This would reinforce 

the production of negative ~o leading ultimately the flow to stagnate. Darmofal [19] points 

out that what is initially necessary to start the process is the establishment of a signitlcant 

negative axial gradient of circulation. For an open jet, this is achieved by the diffusion of 

the vortex tube as depicted in figure 1.3. The approaching swirling flow starts blowing in 

the positive radial direction by vortex diffusion. In accordance with the Kelvin theorem, a 

loop of particles moves radially preserving the circulation L = rVe. If the circulation of the 

swirling flow increases outward, a negative axial gradient of L is established due to radial 

divergence of the flow. The mechanism is clearly enhanced when the viscous diffusion is 

higher. As a consequence, for a given level of swirl, the initial production of azimuthal vor

ticity would be bigger in magnitude and the positive feedback of Brown and Lopez easier 

to be activated. The modification of the bifurcation diagram with the Reynolds number is 

consistent with this theory. 

In a completely different approach, much work on breakdown has been done using the 

boundary layer analogy [7, 39,41]: from the axisymmetric Navier-Stokes equations, the 

quasi-cylindrical approximation can be derived by making the assumptions that the How 

is steady, the centrifugal force is balanced by the radial pressure gradient, and neglecting 

the axial derivatives in the viscous terms. The resulting equations are parabolic, and can he 

integrated marching in the streamwise direction. Similarly to boundary layers calculations, 

there exists a critical level of swirl for which the system of equations fails to converge. It 

is found that the critical value obtained in the quasi-cylindrical equations agree very well 

with that of 51 found by numerical solutions of the axisymmetric Navier-Stokes equations. 

Rather than a theory, the boundary layer analogy has to be regarded as a tool, which how

ever is unable to provide information about the structure of the vortex bubble. It has to be 

pointed out however, that some works [54] report as vortex breakdown state a morphology 

of the flow resembling the separation occurring in the boundary layer under the effect of an 

adverse pressure gradient. In that case, it is likely that any wave theory is pointless: vortex 

breakdown may just be a consequence of the excess of the pressure gradient on the axial 

momentum flux, as also suggested by Mahesh [72]. 
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1.3 Physical mechanisms of vortex instability 

A columnar (lD) swirling flow is defined by functional dependency of the form 

VII VII(r) , (1.1 ) 

Depending on the velocity profiles described in (l.l), different physical mechanisms may 

trigger different responses of the main flow to an external perturbation. When Vo = 0, 

(1.1) identifies a cylindrical jet (or wake) without rotation. The presence of a strong shear 

layer can then originate Kelvin-Helmholtz instabilities. The well known inflection Rayleigh 

criterion [24] provides a necessary condition for the case of an inviscid, incompressible 

planar jet l . When the finite shear layer is replaced by a 2D vortex sheet, the growth rate of a 

perturbation with wave vector k is ~k· ~ V [24] where ~ V is the shear vector. In the case of 

a cylindrical plug flow, for very short waves the axisymmetric mode follows the same law 

(see, for example, Batchelor and Gill [5]) but the helical modes m ± 1 are more unstable. 

In terms of vorticity, the Rayleigh criterion says that a necessary condition is the exis

tence of a local extremum. Stated like this, it is easily extended to circular geometries, i.e. 

to a pure vortex Veer) in the absence of axial velocity. In that case, the existence of a local 

extremum in the axial vorticity represents a necessary condition for instabilities to two di

mensional disturbances of the form eimll [24]. These are the spectacular dipoles and tripolcs 

revealed in the experments of Carnevale and Kloosterziel [13]. 

In the absence of the destabilising effect produced by the shear, the pure vortex VO(T) 

can however be unstable by virtue of centrifugal instability. If an axisymmetric perturbation 

takes place, particles from an inner anulus will move out conserving the angular momen

tum. When the initial circulation decreases outward, particles will be SUbjected to a lower 

pressure gradient unable to balance the centrifugal force and the initial perturbation am

plifies. Linear theory provides the following criterion, also known as Rayleigh criterion: a 

necessary and sufficient condition for the flow to be unstable is that the square of the circu

lation L = TVa decreases with the radius [24]. A generalisation of this result to the swirling 

jet with non-zero axial velocity is given by Howard and Gupta [44], but it is necessary al

though not sufficient and refers to the single axisymmetric centrifugal mode. Conversely, 

ILuo and Sandham [71] have extended the Rayleigh's criterion to a compressible flow. showing that insta
bility can exist even when there is no inflection point. 
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for a swirling flow one may have helical centrifugal instabilities m =I- 0 developing in a 

sloped plane. A sufficient condition has been provided by the asymptotic analysis Iml > > 1 

of Leibovich and Stewartson [61]. Emanuel [25] shows that the condition of Leibovich and 

Stewartson can be regarded as that of Howard and Gupta in the sloped plane containing all 

the shear components. Thus, the centrifugal instability pertains to helical waves, and can 

develop even if the pure vortex flow Ve(r) (without the axial flow support) is centrifugally 

stable. 

The idea of considering this generalised form of centrifugal instability was originally 

motivated by the following observation: intuitively, if the destabilising mechanism was a 

tilted shear effect, accounting for the axial and the azimuthal contribution, the most unstable 

modes would be expected to be those having the wave vector k more aligned with the shear. 

In most of the circumstances, the behaviour has been found to be different, as revealed by 

the majority of the experiments on vortex breakdown [26, 65, 73, 93] and by the linear 

analysis of several authors [48,49,63, 74]. 

This scenario, however, lacks completeness, because it does not consider the effect of 

the swirl on the Kelvin-Helmholtz instabilities. The indications provided by the studies of 

Loiseleux et al. [67] and Gallaire at al. [30] are that under the effect of the rotation, the ax

isymmetric Kelvin-Helmholtz instabilities modify producing helical waves. When the axial 

shear is particularly intense, these waves follow a behaviour similar to that of the gener

alised centrifugal instabilities. In other words, as also suggested by Liang and Maxworthy 

[65], the two different physical mechanisms (shear and centrifugal) combine inducing a 

similar mode selection. Conversely, if the azimuthal shear dominates, the behaviour may be 

the opposite, and the most unstable modes are actually those more aligned with the shear. 

The main concern regarding these results is that they have been obtained on discontin

uous models, and their applicability to real velocity profiles may be questionable. 

1.4 Concepts of linear analysis 

The classic linear stability analysis of shear flows deals with instabilities developing in a 

parallel flow, i.e. a flow containing only one inhomogeneous spatial direction. For a given 

two-dimensional (x, y) base flow, if y represents the inhomogeneous cross-stream direction, 

the standard procedure consists in regarding infinitesimal perturbations as a superposition 

of elementary waves of the form ¢(y)exp{ i(kx - wt)} with ¢ standing for any perturbation 
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variable. In the above wave form, k is the complex wavenumber, w is the complex fre

quency and ¢(y) is the eigenfunction representing the distribution of the perturbation over 

the cross-stream direction. The evolution of small waves is studied linearising the governing 

equations around the given base flow. This leads writing for the eigenfunction a single ordi

nary differential equation, which in most of the cases is of Sturm-Liollville type. For simple 

base flows, enforcing two boundary conditions can allow to write a dispersion relation of 

the form 

F(k,w,R) = 0, 

where R represents a typical control parameter, for example the Reynolds number. The 

existence of the eigenfunction ¢ implies that k and w have to satisfy the dispersion relation. 

In a temporal framework, one considers the evolution of waves with prescribed real values 

of k so that the base flow is unstable if there exists at least one value of k for which w(l.;, R) 

has a positive imaginary part. In contrast to the temporal analysis, the spatial approach refers 

to the development in space of waves generated by a localised time-harmonic forcing, thus 

instability is reached when for a prescribed real frequency w, the dispersion relation admits 

a solution k = k(w, R) with negative imaginary part. 

The above considerations should be complemented with the concepts of absolute and 

convective instabilities, a distinction originated by plasma physics [8] and formalising the 

competition between the dispersion mechanism induced by the instability, and the advec

tion due to the base flow. For parallel flows, following the definition of Chomaz [161, the 

instability is absolute when the response to a localised initial impulse grows indefinitely at 

any axial station x in the laboratory frame; the instability is said to be convective when the 

response goes to zero in the laboratory frame, but there exists at least one Galilean frame in 

which the response grows. In other words, the pulse response of an unstable flow originates a 

wave packet moving in the streamwise direction and confined between two spatio-temporal 

rays x/t = V± representing the edges of the packet (see fig. 1.4). If the velocity of the two 

edges has opposite sign, the instability is absolute because a mode with zero-group velocity 

grows along the ray x/t = 0, i.e. at the source station. 

As reviewed by Huerre [46], when the initial pulse is replaced by a continuous har

monic small forcing, the response of a convectively unstable medium consists of a periodic 

steady state left everywhere and beating at the forcing frequency. Following a generally 

adopted terminology, these flows behave as spatial amplifiers because the amplitude of the 
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Figure 1.4: Schematic representation of the impulse response of an unstable medium. Left: convective insta
bility. Right: absolute instability. 

periodic forcing grows exponentially in space. Conversely, when the flow becomes abso

lutely unstable, the mode with zero group velocity gives rise to self-sustained oscillations 

tuned at a well defined natural frequency. The self-sustained oscillations overshadow the 

forcing response, and maintain their natural frequency independently of the forcing applied. 

If the forcing is suddenly turned off, in the medium which is only convectively unstable the 

response relaxes to zero, whereas the oscillations in the absolutely unstable flow are pre

served (self-sustained). 

There exist two methods to determine the nature of a given velocity profile. One pos

sibility is the application of the "pinching criterion" [45]. The dispersion relation is studied 

in the spatial framework, i.e. assigning a real frequency wand seeking complex values of k. 

The locus of complex k is made of two distinct branches, solutions corresponding to waves 

propagating in both the upstream and downstream direction of the forcing station. It can be 

proved [45] that when the instability becomes absolute, the two branches pinch. Therefore, 

one has to examine the morphology of the two spatial branches as the control parameter is 

changed. Alternatively, it is possible to remain in the physical space and evaluate by nu

merical simulation the flow response to a localised perturbation. Following the evolution of 

the disturbance along different spatio-temporal rays if = Vg , one can measure the growth 

rate along each ray, i.e. the absolute growth 0' = O'(Vg). If it is positive at Vg = 0, the per

turbation grows at the initial disturbance location, and the instability is absolute. The two 

methods have been shown to produce the same results by Olendraru and Sellier [821. 

The applicability of the above concepts to non-parallel flows may be considered 

straightforward when the inhomogeneity in the streamwise direction (measured by d~l~) 
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where J(x) is a typical local length scale) is very small: in that case, the global response is 

affected by the local stability characteristics. The amount of studies confirming this result is 

extremely wide, and the reader is referred to the paper of Huerre and Monkewitz [45] for a 

review of them. Heated jets [79], or bluffbody wakes [80] are typical flows presenting self

sustained oscillations. The classic example is the vortex shedding past a two-dimensional 

cylinder. If the Reynolds number exceeds a critical value, the wake of the solid obstacle is 

seen to distort according to synchronised oscillations. Examples of convectively unstable 

flows are mixing layer, non-rotating jets and flat plate wakes [45]. 

In a slowly developing flow, a necessary condition for a global mode to be self

sustained, is the existence of local absolute instability, as first recognised by Koch [51 I for 

wakes, and later confirmed by Chomaz et af. [17] on the one-dimensional evolution model 

described by the Ginzburg-Landau equation. The condition, however, is not sufficient: the 

localised region of absolute instability can be unable to trigger a global mode if it is of 

limited axial extent [17]. 

In the present discussion, the recent work of Pier and Huerre [85] assumes particular 

relevance: considering a family of slowly varying developing 2D wakes, they show that a 

nonlinear self-sustained vortex shedding (the global mode) is associated with the existence 

of a front located at the stream wise station where the transition from convective to absolute 

instability occurs. The front acts as wave-maker, in the sense that nonlinear waves are sent 

out with a frequency given by the local absolute frequency at the transition station. It is im

portant to notice that the analysis of Pier and Huerre [85] is fully nonlinear, and it shows that 

nonlinear effects do not modify either the instability threshold or the frequency of oscilla

tion predicted by the linear absolute instability. This important result, sometimes referred as 

theory of Pier and Huerre for the generality of the assumptions undertaken (slowly varying 

flow, strongly nonlinear) relies on the concepts of front selection, as detailed in the work of 

Delbende and Chomaz [22]. In their computational study on 2D wakes, the localised per

turbation is seen to grow initially according to the linear theory. When it is big enough, the 

growth is compensated by the nonlinear terms and the wave packet saturates. At this point, 

Delbende and Chomaz find that the edges of the packet are 'linearly selected' [22J, that 

is, even after saturation, they travel at a speed equal to that of the precursor linear packet. 

This condition, which the authors warn to be not universal, excludes the possibility that 

this class of flows might be absolutely unstable with respect to nonlinear perturbations, and 

only convectively unstable with respect to linear ones. The above conclusion would explain 
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a posteriori why the linear theory has accounted so well for the onset of self-sustained 

oscillations in the wake dynamics. 

The distinction between absolute and convective instability may be regarded as a gener

alisation of the concept of criticality introduced for the neutral Kelvin waves. In spite of this 

consideration, it appears natural to attempt to interpret vortex breakdown as a manifestation 

of absolute instability of the axisymmetric mode m = o. Loiseleux et al. [67] evaluated the 

instability character of a swirling jet made of the Rankine vortex superimposed on a plug 

flow. Applying the pinching criterion, they demonstrated that the swirl promotes absolute 

instability, but the transitional helical mode (the first to become absolutely unstable) was 

found to be m = 1. The same analysis predicts higher modes to be "more absolutely" unsta

ble as the swirl is increased. Adopting the same procedure, Yin et a!. [103] have shown that 

the absolute instability of the Batchelor vortex succeeds in predicting the Strouhal number 

measured in the experimental breakdown state of Garg and Leibovich [34]. 

More recently, Gallaire and Chomaz [29] have analysed by direct numerical simula

tion the velocity profiles modelling the jet used in the experiment of Billant et a!. I9/. The 

experiment reveals the presence of double-helical structures in the pre-breakdown stage, 

suggesting the onset of a self-sustained global mode with azimuthal wavenumber 111 = 2. 

The analysis of Gallaire and Chomaz shows that under the same conditions of the exper

iment, the inlet velocity profile is absolutely unstable to Tn = 2. Increasing the swirl, the 

same analysis should have revealed absolute instability for the axisymmetric mode to ac

count for the breakdown; conversely, the results reveal a sequence of transitional modes 

m = 1..5. Absolute instability of the axisymmetric mode has been determined by Loiselcux 

et a!. [68], but for a jet with an azimuthal velocity profile centrifugally unstable. The eval

uation of these results leads to the conclusion that the concepts of absolute and convective 

instabilities appear to be unable to explain the onset of vortex breakdown, although they 

capture quite well the dynamics of the unsteady structures developing in swirling flows. 

1.5 Present research 

In this work we have carried out a fairly extensive numerical investigation on vortex break-" 

down in compressible swirling jets. In a first part, we have tried to gain more physical 

insights into the base mechanisms present under the effect of the rotation. For this purpose, 

the stability of parallel swirling flows has been studied by direct numerical simulations 
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of the linearised Navier-Stokes equations. Selecting appropriate velocity profiles, we have 

tried to isolate as much as possible the role played by centrifugal instabilities, shear insta

bilities and the neutral Kelvin waves. The study, presented in chapter 3, has later served as 

a guideline for the successive spatial simulations, where the assumption of parallelism has 

been relaxed. 

Axisymmetric simulations have been conducted with the specific purpose to determine 

numerically the bifurcation diagram and to see how it correlates with the now-field com

puted. What appears quite unclear is the meaning of the limit point 52 (err. fig. 1.2). The 

theoretical analysis of Wang and Rusak [10 I], conducted for the inviscid straight Rankine 

vortex, suggests 52 is associated with a full expulsion from the computational domain of the 

axisymmetric wave. Existing numerical studies [7,41,69] have computed the diagram for 

swirling flows in a nozzle and, possibly due to the pressure gradients imposed by the geom

etry, they do not show the wave excursions predicted by the analysis of Wang and Rusak. 

We have therefore deemed important to derive the bifurcation diagram for an open jet. A 

large number of parametric studies have also been conducted and we have tried to find out 

which of the elements predicted by the theories of Leibovich [57] and Brown & Lopez [121 

are captured by the viscous calculations. 

Finally, in the last chapter, we report what we consider the main contribution of the 

work. The starting point of the analysis is the DNS conducted by Ruith et af. [881. show

ing that in the breakdown state, helical and double-helical structures can actually be sel f

sustained, i.e. generated in a numerical simulation without the introduction of a continuous 

forcing. In a more recent paper, Gallaire et at. [33] apply a local linear analysis to the results 

of Ruith et at.. They consider a base axisymmetric vortex breakdown state, that the DNS has 

revealed to evolve into a limit cycle with a global mode m = 1, and solve the equations 

linearised around velocity profiles extracted at different streamwise stations. The results 

seem to confirm the validity of the steep-front theory of Pier and Huerre [85J, since they 

show that the frequency of oscillation revealed in the nonlinear DNS is given by the local 

absolute frequency at the transition station from convective to absolute. The conclusions of 

Gallaire et at. have also been corroborated by a similar study conducted by Hen'ada et af. 

[42] on a swirling flow with different velocity profiles. In light of what previously discussed, 

this should guarantee that swirling flows, in general, behave like the 2D wakes studied by 

Del ben de and Chomaz [22], with the front dynamics linearly selected. 

The numerical simulations of Ruith et aI., which certainly represent the most complete 
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computational study on vortex breakdown, leave open the question about the origin of the 

global mode m = 2. It has to be pointed out that their DNS show a notable propensity to 

the onset of a double-helix. Although the local analysis of Loiseleux et al. [67, 68] and 

that of Gallaire et ai. [29, 30] do not exclude the possibility of absolute instability for the 

helical mode m = 2, this behaviour seems qualitatively inconsistent with the experimental 

observations and with other recent computations of three-dimensional vortex breakdown 

[42, 52]. In most of the cases, the dominant unstable mode in a swirling wake is found to 

be m = 1, a feature considered a well established result in the swirling wake dynamics2. 

In addition, under some conditions, the double-helical structures of Ruith et al. show an 

interesting "axisymmetric unsteadiness", which the authors report as a three-dimensional 

effect, not observed in the axisymmetric calculations. 

The questions that we have tried to address are the following: are those double-helical 

structures actually a manifestation of a global mode caused by a localised small perturha

tion? If so, do they follow the steep-front theory, like the bending mode TIL = 1, i.e., are 

they associated with a region of local absolute instability? If the answer to these questions 

were positive, another issue would then arise. Extending the range of control parameters, is 

it possible to obtain self-sustained global modes with higher azimuthal wavenumber? 

Analysing the response of forced and self-sustained swirling jets, and performing local 

analysis, we have encountered a mechanism which may partially explain the results of Ruith 

et al .. We suggest the existence of self-sustained structures of convective nature: these arc 

associated with the presence of the recirculating region which, if the initial perturbation 

is introduced ad hoc, can dictate the entire dynamics sending out wave packets which are 

eonvectively amplified. 

The details of the numerical code developed are presented in chapter 2. The code is 

in cylindrical coordinates, and the computational techniques employed are quite standard. 

Some care has been required for the axis treatment, and two different methods have been 

tested. We have also adapted the the Poinsot-Lele method [86] for the boundary conditions 

treatment on curvilinear grids. 

2In section 1.3, we cited the double-helix revealed in the experiment of Billant et at. [9]. It is not relevant in 
this context, as it has been obtained in the pre-breakdown state, when the flow configuration is that of a swirling 
jet. 
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Numerical method 

2.1 Governing equations 

2.1.1 Navier-Stokes equations in cylindrical coordinates 

Using as state variables density p, momentum pV and energy per unit volume pE, the 

time-dependent, compressible Navier-Stokes equations can be written as 

ap 
at + V· (pV) 

a(~~) + V. [(pV)V + p!J 

a(~~) + V. [(pE)V + q + pV] 

o 

(2.1 ) 

V· (;;;;. V), 

where the stress tensor;;;; and the heating flux q are defined according to the Newton and 

Fourier laws: 

q 

2p{(~V)~(~Vf _ V~V!} 

-kVT. 

(2.2) 

Equations (2.1) can be made dimensionless introducing characteristic values for length 

Lr. velocity Vr. density Pr and temperature Tr. Their exact expression will be discussed 

later in the context of the specific problem studied. The convective time scale is then Lr /Vr 

and the characteristic pressure Pr is chosen to be twice the reference dynamic pressure 

Pr = Pr Vr
2

• In a cylindrical frame of reference (r, fJ, z), the above non-dimensionalisation 

leads to the following system of equations: 

aw + aF z + aF r + ~ aF e + ~ = 0 
at az ar r ae r 

(2.3) 

16 
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where the non-dimensional state vector W is [p, pVr , pVo, pVz , pElT and the fluxes F and the 

source term S are given by: 

pVz pV;, 

pVr Vz - ~e Tzr v:2 1 P l' + p - Re Tn' 

pVO Vz - ~e TzO pVO Vr - ~e TrO 
Fz = V2 1 P z + p - Re Tzz 

Fr = 
pVz Vr - ~e Trz 

{ pHV - --L 

} { 
pHV, - --L 

} z Re l' Re 
(TzrVr + TzO Vo + Tzz Vz) + (TrrVr + TrOVO + TrzVz) + 

+ qz + qr 
(-y-l)ReM2Pr (l'-l)ReWPr 

PVO pVr 

pVr Vo - ~e TOr pVr
2 

- pVl- ~e(Trr - TOO) 

V;2 1 P 0 + p - Re TOO 2pVr Vo - ~e TrO 
Fo = 

pVz Vo - ~e TOz 
s= 

pVz Vr - ~e Trz 

{ pHVO - ~e } { pHVr - ~e } (TOr Vr + TOO Vo + TOz Vz) + (TrrVr + TrOVO + TrzVz) + 
+ qo + qr 

(1'-1)ReM2Pr (-y-l)ReWPr 

In the above equations we have introduced the total enthalpy H = E + pip, and the usual 

similarities parameters Re, M, Pr defined as: 

Re (P~L)r 
M (V~T )1' 
Pr (Cr)r ' 

The individual components of the viscous stress-tensor are explicitly obtained from (2.2): 

TrO = ft [~8i1 + r :1' (Jf ) ] Trr = 2ft m::r. _ .sz:.V] 
81' 3 

1.Q}i + Vr _ .sz:.V] 
l' 80 l' 3 

8Vz _ .sz:.V] 
8z 3 'T - /I [Q}i + 1. m:::..] Oz - fA' 8z l' 80 

with the divergence of velocity given by: 
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The pressure is obtained from the non-dimensional equation of state 

pT 
p = "(M2 . (2.4) 

Finally, to close the system of equations, the molecular viscosity is computed according to 

the power law: 

fl(T) = TO. 76 . 

From a mathematical point of view, the Navier-Stokes equations are hyperbolic in the conti

nuity equation and parabolic in the momentum and energy equations. This makes it possible 

to solve (2.3) using a method of lines approach, in which a spatial discretisation is first intro

duced giving an approximate solution of all the spatial derivatives. A time integration is then 

performed to update the solution to a new time level. The main elements to analyse are the 

spatial derivatives, the time integration technique and the boundary conditions treatment. 

2.1.2 Linearised Navier-Stokes around a ID base flow 

Linearisation of Navier-Stokes equations is derived decomposing all variables into a base 

state (j) value and a disturbance variable if>'. Subtracting the base flow equations (which 

are implicitly satisfied), and neglecting all products containing more than one disturbance 

variable, the resulting equations govern the evolution of small perturbations on a given base 

flow. Following this procedure, one has: 

a / 
~ + \7 . (P'Y + pV/) 

a(p-v/ + p'Y) [ - - / - - !J ---::---- + \7. -VV/ + -V/V + P VV + /1 at - p p p-

a(p/ E + p-E') [ - - - - /] 
at + \7. pHV' + pH'V + p'HV + q 

where 

T/ 2p(\7V/)o + 2M' (\7Y)o 

q/ - k \7T' - k'\7T ) 

o 

with (\7a)g representing the symmetric part with zero trace (the strain) of (\7a). 

(2.5) 

If we consider a base axisymmetric (to = 0), one-dimensional (tz = 0), parallel (Vr = 

0) flow, system (2.5) becomes: 

aw aA aB 1 ac D 
-+-+-+--+-=0 at az ar r a() r 

(2.6) 
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pV; + p'Vz 

-v.' V 1, P r z - Re Tzr 

p'Ve V; + ,iWJVz + pVe V; - ~e T~e 

A= -if V' + 'V V + -V'V +' 1, P z z P z z P z z P - Re Tzz 

1 
p' fIvz + pH'Vz + pfIv; 

I 1('- ,- '-) 
- Ri. T:r Vr ,+ T=-e Ve ;- T~z VZ; 
- Re (Tzr v;. + Tze Ve + Tzz ~) 

q' 
+ b-1)R'eM2Pr 

pV; 

+' 1, P - Re Trr 

-t/i v:' 1, per - Re Tre 

B= -V v.' 1, P z r - Re Trz 

{ 
-fIv.' 

I 
p r 

1('- ,- '-) 
- ~e ~rr V~ + ~re V~ + ~rz Vz, 
- Re (Trr Vr + Tre Ve + Trz Vz) 

q' 
+ b-1)rfeM2pr 

pVJ + p'Ve 
-TT'V;- 1, pVr e - Re Ter 

p'Ve Ve + pVJVe + pVe VJ + p' - ~e T~e 

C = p'V; Ve + pV;Ve + pVz VJ - ~e T~z 

{ 

p' fIVe + pH'Ve + pfIvJ } 
- ~e (~~r V~ + ~~e ~ + ~~z Vz) 
- Re (Ter v;. + Tee VB + Tez Vz) 

q' 
+ b-1)~eM2Pr 

- (p'Ve Ve + pVJVe + pVe VJ) - ~e (T:r - T~e) 

2 -TT'V;- 2, pVr e - Re Tre 

D= -TT'V- 1, pVr z - ReTrz 
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In the linearised code, all the derivatives of the base flow are initially computed and stored. 

Equation (2.6) is integrated in time to give the conservative variables: 

pi 

pV: 
pVJ + P'Ve 
pV; + p'Vz 
pE' + piE 

Note that the integration time step has to be evaluated according to the general stability 

criterion of the numerical scheme (cfr. §2.4.1) but referring to the base flow, so it can be 

calculated only once. After the state vector W has been updated, the primitive disturbance 

quantities are deduced from the conservative variables: 

p' 
11:' r 
1/,' e 
Vi 

z 
T' 

WI 
W2 /p 

(W3 - WI Ve)/p 
(W4 - WI VJ/p 

"Ib - 1)M2 {(Ws - EWI ) - (VeU3 + Vz U2 )} /p 

Then, the linearised pressure, viscosity and total enthalpy are calculated using the linearised 

state equation and the linearised power law: 

pi 

f-L' 

H' 

pT' + piT 
"1M2 

wTw-IT' , 
T' - I - I 

b - 1)1\1£2 + (Ve Ve + Vz Vz ) . 

Since the base flow is assumed to be one-dimensional, direct numerical simulations of the 

linear equations employ periodic boundary conditions in the streamwise direction. Solutions 

of (2.6) describe the evolution of small perturbations which need to be explicitly introduced 

to initiate the state vector W. In the literature this is referred to as temporal stability analysis 

by DNS and we will label in this work as Linear Temporal Simulation (LTS) to distinguish 

from the spatial cases solved by the full nonlinear code (hereafter simply denoted as DNS). 

LTS results are expected to match with those obtained by solving the dispersion relation of 

the corresponding problem. Note that the nonlinear code itself may be adapted to carryon 
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stability analysis in a temporal framework, introducing a body force which compensates the 

diffusion of the base flow (see, for example Luo and Sandham [71]). However, for highly 

receptive flows it is problematic to discriminate between linear and nonlinear effects, and 

some quantities (real and imaginary frequencies) may not be clearly evaluated. 

2.2 Spatial discretisation 

The code designed for this work is a finite difference code, with spatial discretisation per

formed using a spectral method in the homogeneous directions and compact methods for 

the non-homogeneous directions. For spatial calculations, the periodic direction is the az

imuthal one e, whereas for temporal calculations also the streamwise direction z is assumed 

to be periodic. 

2.2.1 Non-homogeneous directions 

The compact schemes used were first introduced by Lele [62], and belong to the Pade's 

scheme family [43]. Let Ii be the value of a function on N points Xi and h the distance 

between two consecutive points. We solve a system of equations composed of a linear com

bination of the values Ii of the function and the unknown values of its derivatives II. For 

example we may write (but it's not the only possible choice): 

A Taylor expansion for Ii and II can be written as: 

f ' ' 
i±d = 

00 (2n-l) 00 (2n) 
r ± """"' Ii d2n-lh2n-l + """"' Ld2nh2n 

2 6 (2n _ 1)! 6 (2n)! ' 
n=l n=l 

00 (2n) 00 (2n+l) 
l' ± """"' Ii d2n-lh2n-l + """"' Ii d2n h2n. 

2 6 (2n - 1)! 6 (2n)! 
n=l n=l 

Substituting expressions (2.8) in (2.7) and omitting the index i we get: 

(1 + 2a)!' + 
00 I(2n+l) h2n 

2a ~ (2n)! = 

= - 2a """"' + 2b """"' -,----,-,--
1 [ 00 I(2n-l)h2n-1 00 I(2n-l)(2h)2n-l] 

h ~ (2n - 1)! ~ (2n - 1)! 

(2.7) 

(2.8) 

(2.9) 

For different values of n, eq (2.9) can be explicitly developed and the coefficients a, b, a can 

be determined imposing the largest number of terms in each equation equal to zero. The 
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first non zero term will give the truncation error of the final formula. For n = 1,2,3 this 

leads to the following relations: 

n 1 ::::} 2a = 2a + 4b - 1 
aj(3)h2 

E= 
I! 

2aj(5)h4 
E= 

4! 
(2.10) n 2::::} 3a = a + 8b 

2aj(7)h6 

E= n = 3::::} lOa = 2a + 64b 
6! 

Coefficients obtained from set (2.10) are then substituted in (2.7) resulting in a sixth order 

formula which can be used in all the points except for the first two close to the boundaries 

(i = 1,2 and i = N - I, N) for which the initial linear combination has to be different. More 

precisely, for i = 2 and i = N - 1 we can assume 

(2.11 ) 

and, applying the same procedure, we get 

k I::::} 1 + 2a = 2 
2aj(3)h2 

E= 
2! 

(2.12) 

k 2::::} 3a = a 
2aj(5)h4 

= E= 
4! 

whereas the points on the boundaries need a one-side discretisation formula like: 

1 
h [adl + hh + ed3 + dd4] , (2.13) 

1 
h [aN jN + bN jN-I + eN jN-2 + dN jN-3] 

The system obtained in this case is 

k 1::::}a+b+e+d=2 

k 2 ::::} [1 + a] = ±b ± 2e ± 3d 
aj(2)h 

E=---
I! 

(2.14) 

k 
1 22 32 aj(3)h2 

3 ::::} ±a = -b + -e + -d E= 
2! 2! 2! 2! 

k 
1 1 23 33 aj(4)h3 

4::::} -a = ±-b ± -e ± -d E= 
3! 2! 3! 3! 3! 

where positive signs hold for i = 1 and negative for i = N. The final formula is of third 

order accuracy. System (2.14) is undetermined, meaning that a fourth order accuracy may be 

reached imposing an additional relation. However, as also reported by Carpenter et at. [14], 

we have found that when used in conjunction with (2.7) and (2.11) the fourth order formula 
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for the boundary points is unstable. Equations (2.7), (2.11) and (2.13) can now be used for 

all the points i = 1...N resulting in a three-diagonal set of equations which can be quickly 

inverted by a Thomas algorithm to give the unknowns f{) f~ ... f'rv. The above procedure can 

be applied in the same way to get compact schemes for the second derivatives. 

Formally, higher order accuracy can be reached by extending the stencil in (2.7), (2.11) 

and (2.13), resulting in an increased bandwidth of the final matrix. This by itself would not 

represent a problem, since the matrix may be inverted in a preliminary stage by a lowcr

upper decomposition, and derivatives can then be calculated by simple matrix multiplica

tion. The lower-upper decomposition preserves the banded structure, that is, if A has band

width p, then we have LV = A with the bandwidth of L equal to (p + 1)/2 and that of 

V equal to (p - 1)/2; the derivative calculation on a stencil of N points would consist in 

O[(p + 1)/2] do-loops to perform from 1 to N. For p = 5, this is the same as what is required 

by the Thomas algorithm. However, in agreement with the numerical study of Kim [50J, 

in our tests using the 10th order Lele's scheme (p = 5) we did not observe any significant 

improvement! , thus the formula set by default in the code is the 6th order scheme, for which 

we report here the three-diagonal system that needs to be solved. 

U sing the compact notation 

we have for the first derivative 

1 2 

A= 

1 
4 1 

1 
"3 

1 
4 
1 1 

"3 

Ax=F 

1 
"3 1 

1 
4 

1 
"3 
1 
2 

1 
4 
1 

(2.15) 

(2.16) 

IThe performance was measured evaluating which of the two schemes could guarantee a faster grid conver-
gence for a given axisymmetric calculation. . 
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and the right hand side is 

F= 

(-~h + 212 + !h) /h 
~(h-h)/h 

[l6Ui+2 - fi-2) + ~Ui+l - fi-d] /h 

[l6Ui+2 - fi-2) + ~Ui+l - fi-l)] /h 
~ UN - fN-2) /h 

(~fN - 2fN-l - !fN-2) /h 

whereas for the second derivative 

A= 

1 11 
11 1 11 

'121 1 ?1 

121 1 ?1 
11 1 11 

11 1 

and the right hand side is 

F= 

(13h - 2712 + 1513 - f4) /h2 

i~ (13 - 212 + h) /h2 
[,!Ui+2 - 2fi + fi-2) + i~Ui+l - 2fi + fi-d] /h2 

[,!Ui+2 - 2fi + fi-2) + i~Ui+l - 2fi + fi-l)] /h2 
i~ UN - 2fN-l + fN-2) /h2 

(13fN - 27fN-l + 15fN-2 - fN-3) /h2 

24 

(2. I 7) 

(2.18) 

(2.19) 
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fO cO 

f2=fO cl 

fI c2 

D=f1 c3 

Figure 2.1: Butterfly algorithm of the Fast Fourier Transform. 

2.2.2 Homogeneous directions 

Given the values of a function f (x) on the sequence of points x _ .!Y. , X _.!Y. -1 ". xo ". X+.!Y._1 
2 2 2 

such that X_.!Y. = 0 and X+.!Y._1 = L = (N - l)h the discrete Fourier transform of the 
2 2 

sequence {h} is defined as: 

.!Y.-I 
1 2

k' " f -I2n:-1. Ck = N ~ i e N 

i=-.If 

N N 
k = -- --1 2 ". 2 (2.20) 

where I denotes the imaginary unit. The inverse transform of (2.20) gives the Ud as a 

function of the spectral coefficients: 

.If-I 
2: 

. N N 
z = -2"'2 -1. 

k=-.If 

Values of derivatives can then be evaluated from (2.21) as 

with 

.If-I 
IF) = 2: Zkj

) eI2n:~ 
k=-.If 

N N 
i = -- --1 2 ". 2 

(2) _ k27r 
( )

2 

zk - - Nh Ck· 

(2.21 ) 

(2.22) 

The procedure is therefore straightforward: we first evaluate the spectral coefficients Ck ac

cording to (2.20), then we calculate the cefficients zij) and finally we derive f?) from (2.22). 

The transformation operations is made by a base 2 FFf algorithm reducing the number of 

operations from O(N2) to O(Nlog2N). 
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The use of the spectral technique has proven to be essential throughout this study. First of 

all, as detailed later (cfr. §2.3) it provides the opportunity to calibrate easily the spectral 

accuracy of the calculation during run-time. Another advantage is its straightforward appli

cation as a diagnostic tool for stability analysis. Even more interestingly, although the code 

is not spectral/pseudospectral where specific modes can be deliberately excited or removed 

(see, for instance, an interesting application given by Sandberg [91] for stability analysis 

of supersonic wakes), due to the special symmetry of the butterfly algorithm we can main

tain a similar benefit: it is possible to introduce disturbances confined in a specific range of 

frequencies. We clarify this last point in more detail. 

In order to render any calculation effectively three-dimensional, the use of the spec

tral differentiation requires the introduction of an initial disturbance exciting some of the 

azimuthal wavenumbers. In the absence of any perturbation, if the initial flow field is per

fectly axisymmetric (either defined analytical or resulting from a previous axisymmetric 

run) the 3D calculation will continue to produce axisymmetric results. One possibility is the 

introduction of a small perturbation on every meridional plane at the same location (TO, :::0), 

that is, a random signal f = fCTo, () = O ... 27r, zo) is superimposed on one of the flow vari

ables. In the attempt to detect self-sustained dynamics, this operation must be performed 

just for the first iteration and has to be distinguished from the application of continuous 

forcing. 

As discussed in the introductory chapter, swirling flows are characterised hy the ex

istence of self-excited global modes. According to most of the existing studies, these arc 

generally bending modes m = 1, associated with the rotation of the vortex tuhe aroLlnd its 

axis. Our interest is however mainly focused on the examination of superimposed dynamics 

driven by self-sustained modes with higher azimuthal wavenumber. When the disturhances 

are small, the assumption of linearity holds, and each mode can be thought to evolve inde

pendently. Conversely, when these modes reach a large amplitude, nonlinearity produces a 

transfer of energy from low to high wavenumbers which continues until the growth of the 

global modes is fully compensated (saturation). This mechanism renders problematic the 

identification of the "long-term" behaviour of higher modes, because it's not possible to 

discriminate between linear and nonlinear effects. 

The nonlinear interactions are described by algebraic identities of the form 

. . 1. p+q p-q 
sm p + sm q = "2 sm -2- cos -2- . 
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According to the above formula, the nonlinear interaction of two modes, say III) and III~, 

produces wavenumbers p = m) + m2 and q = m) - m2. It turns out that if III) and 111'2 are 

both multiples of a certain integer, the nonlinearly generated wavenumbers are multiples of 

the same integer. 

In figure 2.1 it is reported a schematic of the butterfly algorithm working on a sequence 

of 4 points. In the diagram it has been indicated W}y = exp(127rk/N). To remain in the context 

of our applications, the sequence can be thought as the perturbation introduced at (/'0,2'0) 

during a calculation performed with no = 4 meridional planes. Consider a signal obtained 

by duplication: {fo, h, h = fo, 13 = ilL now, due to the duplication in the physical space, 

the corresponding Fourier coefficients will be zero for k = 1 and k = 3. If performed by 

FFT, these values will result exactly zero at whatever precision one may work. Indeed, after 

the binary reversal swap [18] has been performed, the samples are stored according to the 

first line on the left side of the butterfly. Following the diagram, the computed value for the 

coefficients c) and C3 will be: 

Cl (fo - W~ fo) + W~(h - W~ h) , 

C3 (fo - W~ fo) - W~ (f1 - W~ h) . 

These values will be exactly zero, independently of the machine precision, because the op

erations that need to be performed (the evaluation of W~ = 1 and the algebraic summation 

x - x = 0) are not subjected to round-off error. When used for a higher number or sam

ples, the result remains unchanged, because the binary reversal swap orders the sequence 

in such a way that equal samples are always coupled to form an elementary unit or the but-

terfly (this actually represents an efficient and easy way to implement the binary reversal 

algorithm [18]). 

The importance of these considerations relies on the fact that exciting an axisymmetric 

flow with a small perturbation obtained by duplication of a random signal, one ensures that 

all the azimuthal odd modes are filtered out during the calculation: nonlinearity does not 

modify this condition, since the product of two signals obtained by duplication is still a 

duplicated signal with all the odd modes exactly zero. Following the same reasoning, if the 

original signal is made by a quadruplication, during the calculation the only excited modes 

will remain mUltiples of m = 4. We have deliberately used this idea in order to isolate the 

growth of unstable modes with azimuthal wavenumber m = 2,4 and to discriminate their 

evolution from that of the bending mode. 
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2.3 Time advancement 

In the code two different techniques of time integration have been implemented: an explicit 

Runge-Kutta scheme, and a Dual Time Stepping method. The latter was introduced to cir

cumvent the difficulty of the time step restriction, which becomes particularly severe in the 

DNS at high Reynolds numbers (Re::::SOO). 

2.3.1 Explicit method 

The explicit time integration is performed using the classic explicit 4th order Runge-Kutta 

method. After the discretisation of the spatial operators, we write eq. (2.3) in the compact 

notation: 

a;: = R(W). 

The form of the scheme implemented to update from temporal level n to n + 1 is 

W(1) W n 

W(2) W n + t1t IY2 R(W(l») 

W(3) W n + t1t IY3 R(W(2») 

W(4) W n + t1t IY4 R(W(3») 
4 

W n+1 W n + t1t 2:: ,8jR(W(j») , 
j=l 

where the coefficients are: 

1 1 
IY2 = - IY3 = -

2 2 
1 1 

,81 = (3 ,82 = ,83 = 3 ,8 = ~ . 
6 

(2.23) 

(2.24) 

In the linear case of a scalar model problem we have R(W) = OW with 0 complex. A 

recursive substitution in (2.24) gives 

1 
(1 + 2"0t1t) W n 

, 

[1 + ~Ot1t + l(0t1t)2] W n 
, 

[1 + Ot1t + ~(0t1t)2 + l(0t1t)3] W n 

and 

w n+1 = i W n = [1 + Ot1t + (0t1t)2 + (0t1t)3 + (0t1t)4] W n (2.25) 
2 6 24 ' 
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Figure 2.2: Stability region of the Runge-Kutta 4-th order scheme, visualised by isocontour of the amplifi 
cation factor Iii for Ii i = 1,2 ... 10. Blue regions are the most damped. Red regions are the less damped. 

where i = i (06.t) is the root of the characteristic polynomial (also known as the amplifi 

cation factor) providing the main information about the numerical scheme. In particu lar, the 

formula is fourth -order accurate, since .i is the Taylor expansion of the exact amplification 

e( rlt>.t) up to the fourth order. Furthermore, the linear stability condition requires Ii i :::; 1, 

defining a stability region lRA in the complex plane shown in fig. 2.2. 

In order to study the stability condition for the scheme applied to (2.3), we assume a 

scalar linear equation model of the form: 

(2.26) 

According to Von Neumann theory, the overall stability will be guaranteed if the spectrum 

of the spatial discretisation operators is contained within the stability region lRA. If the 

periodic direction e is discretised by a spectral method, then the eigenvalues assoc iated 

with e differentiation can be straightforwardly derived from (2 .22): 

Ik27r 127f "#- _ IifJk { .} 
N 6.8 Ck e - 6.8 W~ k ) 

(2.27) 

( 
k27r ) 2 127f ilE. ifJ% 

- N6.e Ck e N = - 6.82 {Wi}/c ) 

with the phase ifJk = 2;/ varying from -7r to 7r since the Di screte Fourier Transform 

accounts for wavenumbers k in the range - N /2 · .. N / 2. 

For the z and r directions, supposing they are discretised by compact schemes, eigen

values can be obtained introducing the usual shift operator E 
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Figure 2.3: Fourier symbol obtained keeping constant the values CFL~~ = 0.3, CFL~l ) = 0.4, CFLb2) = 
0.1, and increasing the CFLW from 0.4 (blue curve) to 0.9 (red curve) . The linear stabi lity is los t bacause some 
frequencies lie outside 'the stability region of the Runge Kutta 4-th order. 

and recalling its property to have eigenvalues of the form e1ipk with correspond ing eigen

functions e1 iipk
. Substituting into the standard formula giving the first and second compact 

derivatives for internal points (2. 16)-(2. 19), we get: 

I [ls sin(2<1?k) + 194 sin(<1?k)] 
h [1 + ~ COS( <1?k)] {Wd k , 

(2.28) 

~ [COS(2<1?k) - 1] + if (cos<1?k - 1) { .} 
h2 [1 + 141 COS(2 <1? k) ] W

t 
k . 

We can therefore write eq. (2.26) for a single mode k on the node i as 

~t ~~ = [2; (1) + 2; (2) ] w , (2.29) 

with the Fourier symbols 2;(1), 2;(2) given by 

2;(1) (1) (1) ls sin(2<1?) + 194 sin( <1?) 
(2.30) -CFLo I<1? - CFLzr I 2 

1 + 3 cos( <1?) 

2;(2) -CFL(2) <1?2 + CFL(2) 2
3
2 [cos(2<1?) - 1] + ii (cos<1? -1) 

o zr 1 + A cos(2<1?) 

and 

CFL (1) a ~t CFL(l) a [;z + ;r] ~t , -- (2.31 ) 0 r~e zr 

CFL (2) /.I ~t CFL (2) 
/.I [~~2 + ~~2 ] ~t. - --

0 r2 ~e2 zr 

The Fourier symbol associated with the right hand side of (2 .29) depends on the four CFL 

parameters and different combinations of these parameters can be used to preserve the sta-
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Figure 2.4: Plot of the modified phase vs the real phase for first derivatives approximations: spectral method 
(black curve), sixth-order compact method (red curve) and second-order central differences (blue curve) . 

bility. For example, figure 2.3 shows how the stability is lost when CFL~~) is increased keep

ing constant the others. In (2.30) the coefficients multiplying the four CFL parameters are a 

function of the phase <P. They measure how good the numerical scheme approximates the 

spatial derivative. They are called modified phases or modified (scaled) wavenumbers. For 

the' spectral differenti ation, real and modified phase coincide, i.e. when working within the 

range <P = -7r ... 7r the only error generated by spectral differenti ation is given by round-off. 

For finite difference schemes, the modified phase is a more complicated function of <P. F ig

ure 2.4 shows the modified phase for the sixth-order compact scheme used here, and , for 

comparison, the modified phase of the classic explicit central second-order scheme. A the 

. modified phase deviates from the true one, the dispers ive error of the scheme is produced. 

As a consequence of the higher spectral accuracy offered by the spectra l differentiation, 

it can be verified that the two terms which multiply CFL~~ and CFL~;') in (2.30) are in mag

nitude always smaller than 7r and 7r2 • Therefore, in order to strengthen the stability of the 

scheme and to reduce the control parameters within the code, we can adopt a more stringent 

condition assuming in our analysis that all the derivatives are performed spectrally2. In this 

case, the Fourier symbols of the modal equation (2.29) become 

20bserve that in spite of these considerations the di scussion about whether or not a higher accuracy discreti 
sation scheme should be a priori preferred is not trivial at all. 
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Figure 2.5: Fourier symbol Iz( l) + Z(2) I calculated for CFL (1) = 0.5, CFL (2) 0.05 (green curve) , 
CFL (1) = 0.6, CFL (2) = 0.1 (blue curve) and CFL (1) = O.S, CFL (2) = 0.2 (red curve). 

with 

CFL (1) 
[

1 1 1 1 ] 
a D. z + D.r + -:;: D.B D.t , 

CFL(2) 
[ 

1 1 1 1] 
1/ D. z2 + D.T2 + r2 D.B2 D.t . 

Figure 2.5 shows that adopting fo r example the value CFL (1) = 0.8 and CFL (2) = 0.2 the 

spectrum of the spatial operators lies completely within the stabi lity region of the Runge

Kutta ~A, i.e. linear stability is ensured. Therefore the time step has to be calculated as 

{
CFL(1)" [ 1 1 1 1 ]-1 CFL(2) [ 1 1 1 1 ]-l} 

D.t = min - a- D. z + D.r + -:;: D.B j -1/- D.z2 + D.r2 + r2 D.B2 (2.32) 

Application' of the criterion to the full set of equation (2.3) is not direct. In that case, a is not 

uniquely defined because the acoustic wave propagation is not isotropic. The spectral radii 

of the Jacobian matrices associated with the Eulerian fluxes , namely Wz + el, Wr + el and 

We + el have to replace a and be divided by the grid size of the corresponding direction in 

the definitions of the two CFL parameters. The value to choose for 11 is problem dependent. 

Assuming 11 = h- l)~2 RePr' the most stringent limitation in the subsonic regime would be 

given by viscous diffusion. However, this is not always the case, since unless there are 

sources of energy and strong thermal effects, the stiffness of system (2.3) is represented by 

the acoustic wave propagation. Numerical tests have confirmed this conclusion, thus the 

value selected in this study is 11 = fe. 
Time step restriction imposed by (2.32) is too severe in the three-dimensional simul a

tions because of the dependence on rand r2. A widely adopted procedure [10, 81 , 87, 91] 
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to allievate this condition is to drop the number of azimuthal modes when approaching 

the axis. We define a limit point l' such that for l' :::; l' the number of modes accounted in 

the reconstruction of the azimuthal derivatives by FFf is decreased keeping the quantity 

b..s = 27fT/No constant and equal to 27f1' / No. The linear scaling in the number of azimuthal 

modes is therefore: 

1 l' 
m(1') = 2 f Ne· 

For a given number of points, resolution becomes dependent also on the choice ofF whose 

value should be always reported when presenting results. 

In spite of these considerations, in the code we assume, as a natural extension in the 

definition of the two CFL parameters, the following expressions 

[
IVz+cl IVr+cl m(1') ITT I] A -d A .6. + .6. + -- ve + c ut - Cl ut , 

Z l' l' 

CFL(2) J.l [1 1 m
2

(1')] 
Re .6.z2 + .6.1'2 + ~ .6.t = dC2 .6.t , 

and the time step is calculated as 

_ . [CFL(l) CFL(2)] 
.6.t - mm d ' d 

Cl C2 
(2.33) 

The great advantage offered by the technique of dropping the number of modes is the pos

sibility to modify the resolution during run-time. As discussed in the introduction, the main 

elements characterising swirling flows are vortex breakdown and vortex stability. At least 

at low Reynolds number, we will show that there exists a causal relation between them, 

i.e. the loss of stability occurs as a consequence of the vortex breakdown. Since the vortex 

breakdown itself represents a pure axisymmetric phenomenon developing on time scales 

relatively long, the use of a high resolution in the azimuthal direction (here measured by a 

small value of f), is not necessary. By monitoring the growth of azimuthal unstable modes, 

one can calibrate 1', reducing its values if necessary. 

The technique has proved to be robust and efficient for low Reynolds number cases. 

For high Reynolds numbers (Re2800), resolution requirements have forced us to maintain 

the number of modes nearly constant when moving along the radius. For these specific 

cases, therefore, to circumvent the difficulty of the time step restriction, a dual time stepping 

approach was introduced. 
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2.3.2 Dual Time Stepping 

In a dual time step approach the base idea is to introduce a temporal discretisation of eq. 

(2.23) using an A-stable integration scheme, where for A-stable we mean an integration 

formula whose stability region ~A coincides with the entire negative complex plane [431. 

Among all the A-stable formulae, the most accurate is the trapezoidal, but it's well docu

mented [37] that it can generete spurious oscillations in the solution. For our applications, 

a second order backward scheme is preferred. Equation (2.23) is discretised as follows: 

(2.34) 

The scheme is implicit, since the rhs is a function of the unknown variables, and as a conse

quence of the A-stability, the time step ,0.t becomes an user-input parameter to be choosen 

based only on accuracy constraints. To solve the nonlinear equation (2.34), solution wn-t-l 

is computed as the steady solution of the initial v~lue problem: 

~W=R*(W) 
dT 
W(T = 0) = Wo, 

(2.35) 

where T is a non-physical variable ad hoc introduced, Wo is an arbitrary solution of first 

guess, and the R * (W) is the so-called unsteady residual, given by: 

with 

R*(W) = - ~ W + R(W) + Q(W n' Wn-d 
2ut 

(2.36) 

(2.37) 

A steady solution of (2.35) is also the desired physical solution Wn-t-l in the (2.34). In prac

tice, to update the physical solution from level n to level n + 1 equation (2.35) has to be 

integrated in the dual variable T, until a steady solution is reached. The integration in the 

dual variable can be performed using the Runge-Kutta described in previous subsection, 

and will be similarly subjected to stability constraints. The great difference is that now the 

integration represents a pure iterative process, thus one may use techniques which reduce 

the accuracy of the transient solution but accelerate the convergence toward a steady state. 

Among these, the simplest one, but very likely the most efficient, is the Local Time Step

ping: the stability restriction imposed on the time step becomes local and the solution on any 
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grid point is updated according to a local integration time step. Formally, it's like solving 

instead of (2.35) the following equation: 

1 ~W=R*(W). 
0:(1', e, z) dT 

(2.38) 

It's obvious that (2.35) and (2.38) have the same steady solution. 

With regard to the stability condition of the dual integration, one has to follow the 

analysis of previous subsection applied to the linear scalar form of (2.35). The term Q can 

be omitted because it represents a constant during the integration. The modal equation (2.29) 

is modified in: 

6.T dw = [_ 36.T + i(1) + i(2)] w . 
dt 26.t 

(2.39) 

The Fourier symbol of the unsteady residual is made of two contributions, one is defined by 

(2.30) and corresponds to the steady counterpart of (2.36); the additional term is a constant, 

real, negative value, so that the whole Fourier symbol is shifted on the left (ref. to fig. 2.5) 

in the complex plane. This may create numerical instability if the time step is evaluated ac

cording to (2.32) without further restrictions. To overcome this difficulty, a possible solution 

is to treat implicitly the unsteady term - ~~; w. We first recast the integration scheme (2.24) 

applied to (2.35) in the form: 

(2.40) 

m=4 k=1. .. 4. 

Observe that the integration scheme (2.40) coincides with (2.24) if the new coefficients are: 

1 1 
0:2 =-

3 
0:3 =-

2 

Then, following Melson et at. [76], the unsteady term contained into R* is evaluated at level 

n + ~, obtaining: 

36.T [ ] W n+~ = W n - O:k"2 f:J.t W n+~ + O:k6.T +R(W n+\;;l) + Q , 

k = 1 ... m . (2.41 ) 

Arranging for W n+~ on the left hand side, this gives: 
m 

Wn+~= 13.6.7 {Wn+O:k6.T[+R(Wn+k-I)+Q]} , 
m 1 + O:k '2 .6.t m 

k=l. .. m. (2.42) 
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It can be easily shown [76] that the above modification leads to an adaptive enlargement of 

the stability region atA , and the condition (2.32) can now be safely used within the dual time 

integration. 

The great advantage offered by Dual Time Stepping is the simplicity of its implemen

tation within a pre-existing code, its flexibility and robustness. Some concern is associated 

with the stopping criterion chosen for the dual time integration. The definition of steady so

lutions requires the introduction of a norm. Theoretical analysis can be done starting from 

the requirement that the difference between the converged solution W or the dual solver 

and the exact steady solution Wes should have second order accuracy, in order to preserve 

the order of the backward difference. It can be proved that a sufficient condition to achieve 

this is that a norm of the unsteady residual R*(W) (easily computed after any step of inte

gration) has to be of order 6.t. Unfortunately the condition is not necessary, and is generally 

more severe than what is really needed. A general procedure adopted (Turkel, personal co

munication) is to fix a number of sub-iterations, and eventually calibrate it according to the 

dynamics of the flow, similarly to what was previously discussed about the radial scaling of 

the azimuthal wavenumbers used in the FFf. 

2.4 Boundary conditions 

The specification of boundary conditions for swirling flow is particularly challenging, due 

to the ability of this class of flow to support travelling waves. This renders the flow partic

ularly sensitive to small perturbations which may eventually be introduced in the boundary 

condition treatment. 

In a multi-dimensional domain, the number and type of conditions at a boundary de

pend on the eigenvalue spectrum of the Jacobian associated with the direction normal to the 

boundary. This defines local quasi one-dimensional propagation properties, which can be 

expressed by the characteristic variables, or equivalently, by the Riemann invariants [43]. 

To deal with a boundary normal to direction z, in compact form the so-called compatibility 

relations [43] for the characteristic variables are 

ami ,\ . ami _ s at + ~ az - z, (2.43) 

representing the transport of variables mi along the characteristic curve (~:) i Ai plus 

the additional effect of a source term, accounting for Eulerian derivatives in the directions 

normal to z, for all the viscous derivatives, and for the source terms appearing in (2.3). 
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From eq. (2.43), when the sign of Ai is such that the variable Ini is entering the domain. 

a physical boundary condition has to be imposed, whereas if mi is leaving the domain 

then a numerical boundary condition is required. Most techniques used for the treatment 

of boundary conditions differ in the way in which the numerical boundary conditions are 

derived, but the above mentioned procedure is universally applied in the framework of the 

unsteady compressible Navier-Stokes equations. 

The method we have implemented was first developed by Poinsot and Lcle [86], and 

we summarise here the main elements. Let Wand U be the conservative and primitive 

variables vectors: 

W = [p, pVr , pVe, pVz , pElT, U = [p, Vr , Ve , Vz , plT (2.44) 

and R = ~'0 the Jacobian associated with the transformation U ---+ W. Equation (2.3) can 

be written putting on the right hand side all the terms except the unsteady and the convective 

derivative normal to the boundary: 

(2.45) 

then we can write 

aW aU aF~e) aWaU 
aU at + aW aU az = rhs (2.46) 

and, with 

!:\F(e) 
B = R-l_U_z_R aW (2.47) 

we derive 

aU + B aU = R-1rhs 
at az (2.48) 

which represents the Navier-Stokes equations written for the primitive variables. Now, a 

matrix T can be defined that will diagonalise the matrix B 

therefore eq. (2.48) gives 

aU aU 
T at + AT az = TR-1rhs (2.49) 
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which coincides with (2.43) having assumed dM = TdU. A comparison between (2.49) and 

(2.45) gives: 

(2.50) 

Thus we have obtained an expression relating the normal derivative of F z (e) to the normal 

derivative of the characteristic variables. Now, matrices A and T are easily obtained by 

determining eigenvalues and corresponding eigenvectors of B; vector L, defined by (2.50), 

can be written explicitly as: 

(~~ - pc 8;;" ) (Vz - c) 

~V 8z z 

~V 8z z 

(
8P _ c2 {!£) V 
8z 8z z 

(~~ + pc
8;;z ) (Vz + c) 

The set of equations (2.51) can be inverted giving 

aU 
az 

a 
az 

1 (~+~) ~ 2C2 Vz+c Vz-c - VzC2 
L2 
Vz 

bi 
Vz 

1 (~ Ll) 
2pc Vz+c - Vz-c 

~ (ltc + l~c) 

(2.51 ) 

(2.52) 

and the relations obtained can be used to write physical boundary conditions in terms of L i . 

To clarify the procedure, we explicitly write the set (2.48) for the primitive variables: 

{!£ + V {!£ + pQY.. = [R-1rhs] 8t z 8z 8z 1 

8~r + Vz8~ = [R-1rhs]2 

~ + V ~ = [R-1rhs] at Z 8z 3 (2.53) 

8Vz + V 8Vz + l8p = [R-1rhs] 
8t Z 8z p 8z 4 

£E + V £E + pc2 QY.. = [R-1rhs] at Z& & 5 

Let's formulate the same equations using relations (2.52). We get: 
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Type a Typeb 

o z 

Figure 2.6: Boundary type definition. 

~ + 2~2 (L1 + L5) - }2 L4 = [R-1rhsL 

8~r + L2 = [R-1rhsL 

~ + L3 = [R-1rhsL 

~ + 2~c(L5 - Lr) = [R-1rhs]4 

~~ + ~(L1 + L5) = [R-1rhs]5 ' 

39 

(2.54) 

and it's now possible to exploit this set of equations to obtain relations that single compo

nents Li have to satisfy in order to reflect the physical boundary condition required. Most 

of the results presented in this work have been obtained imposing subsonic inflow bound

ary conditions with constant mass rate and subsonic non-reflective conditions for the opcn 

boundaries. For the inflow boundary, the physical conditions to impose are: 

Vr = 0 ; Vz = const ; Vo = const ; p = const . (2.55) 

From (2.51) L1 [L5] has to be calculated from the interior points on a boundary type a [h I 

because it is associated with an outcoming characteristic. The first [fifth] of (2.51) has to bc 

used, with the derivatives given by a spatial discretisation scheme on the boundary points. 

Moreover, since the inflow velocity profile used is a steady solution of the Euler equations 

(cfr. §4.1), the rhs of (2.53) is zero if we neglect the contribution of viscosity. From (2.54), 

the physical conditions (2.55) then require that 

L1 + L5 = 2L4, 
L2 = 0, 
L3 = 0, 
L1 = L5 . 

(2.56) 

On a boundary type a, L1 is known and L2 , L3 , L4, L5 are obtained by (2.56). On a boundary 

type b, L5 is known and L 1, L 2 , L3 , L4 are analogously derived. 
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For a non reflective boundary condition, following Thompson [97], we impose that the 

amplitudes of the incoming waves are constant in time. On a boundary type b this leads to 

the following conditions: 

( ATOU) 
OZ i 

(2.57) 

with 

1 if Vz 2: 0 , 

i 1,2,3,5 if Vz < 0 . 

In conclusion, the procedure can be summarised in the following steps: 

• Calculate the rhs without the convective derivatives normal to boundary. 

• Evaluate vector L according to (2.51). 

• Modify L imposing the physical boundary conditions. Use (2.56) for an inflow, and 

(2.57) for a non-reflective boundary. 

• Calculate the convective derivative normal to boundary as RT- 1 L and add to rhs. 

The treatment has turned out to be very accurate and up to Re= 1200 there was no need to 

supplement the physical domain with additional sponge layers or buffer zones to damp the 

amplitude of outcoming waves. Results presented in chapter 5 also indicate a clear absence 

of feedback instability, since the growth found is in many cases perfectly exponential. How

ever, a buffer zone was found necessary for calculations at Re= 1200. We followed the idea of 

Visbal and Gaitonde [100], coupling a grid coarsening in the axial direction with a numerical 

low-pass filter (in the same direction). In their analysis it is shown that propagation of a I D 

pulse through a sudden mesh coarsening generates a wave packet of reflected energy prop

agating upstream. The reflected solution is characterised be spurious high-frequency modes 

which may eventually contaminate the genuine solution, and should therefore be removed 

by numerical filters. Furthermore, since the mesh is stretching rapidly in the buffer zone, the 

energy propagating downstream is also quickly dissipated by filtering, since the wavenum

ber range supported by the grid is narrowed. Note that for the numerical scheme used here, 

central differences with no artificial dissipation at the level of spatial discretisation, the use 
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of filtering is necessary to activate the damping in the buffer zone. The computational vari

able 0 ::; ~ ::; 1 is mapped onto the physical one z by the following relations: 

z(~) = (Lz ~*LbUj) ~ V ~ ::; C , 

z(~) = (Lz - Lbuj) + b [ea(~-c) -1] V ~ > C, 

where Lz is the length of the whole computational domain in the axial direction, LbltJ the 

length of the buffer zone; the coefficient a is a user-input parameter measuring the coarsen

ing, C is the grid point where the buffer zone begins and b is: 

The filter used is given in [62] (formula (C.2.4) pag. 40), and is a compact filter fourth 

order accuracy, constructed imposing that the asscocited transfer function T(w) has T(Jr) = 

~~ (Jr) = O. 

2.5 Axis treatment 

The presence of terms containing factors l/r in the set of equations (2.3) leads to singular

ities at the centerline of the cylindrical coordinate system. These singularities are a conse

quence of the coordinate mapping; since the flow field does not have any singularity, the 

axis has to be treated as a numerical boundary condition. 

Different options exist to deal with the problem, and what appears immediately clear 

from the literature review is that a variety of methods exist, depending essentially on the 

kind of code used (finite difference/finite volume/spectral). 

In the context of the finite difference codes, Jiang & Luo [38] and Griffin et at. [36 [ 

used the L'Hopital rule to write on the axis a new set of equations without singularities. 

Freund [28] and Boersma & Lele [10] in their studies on compressible jets introduce a 

Cartesian coordinate system for the points on the axis. The axis of the Cartesian system 

are arbitrarily chosen, and the multi-valued variables (11", Vg ) are then obtained by a simple 

rotation. Another possibility is the use of a staggered mesh, with a grid distribution in the 

radial direction spanning form - Lr to + Lr and the first two points off the axis located at 

±b.r/2. This is the method proposed by Mohseni and Colonius [78]. 

In our study, we decided to adapt a method initially introduced for spectral/pseudo 

spectral codes [83] and recently used in linear stability analysis by Sandberg [91]. The 
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main idea is to reconstruct the values on the axis using polynomial expansions in the radial 

directions for the coefficients of an azimuthal Fourier decomposition; these expansions are 

obtained by imposing special symmetry constraints which guarantee the solution to be well 

posed on the axis. 

Consider a transformation between Cartesian coordiantes (x, y, z) and cylindrical coor

dinates (r, 8, z) defined by: 

x = l' cos 8, (2.58) 

y = r sin 8 . 

In what follows, z doesn't play any role and will be omitted in the notation. Transformation 

(2.58) is invariant under a change of variable (r,8) ---+ (-r, 8 + 71") meaning that these two 

cylindrical coordinates identify the same physical point in the Cartesian reference. In the ro

tating frame, we have to discriminate between single-valued and multiple-valued variables: 

single-valued variables (thermodynamic quantities and the axial velocity component) are 

those for which 

¢(1', 8) = ¢( -r, 8 + 71") , (2.59) 

that is, they are unique functions of points in the Cartesian system. Radial and azimuthal 

components of velocity are multiple-valued variables, since for them this uniqueness is lost. 

Formally we have: 

¢(1',8) = -¢( -1',8 + 7r) . (2.60) 

In the cylindrical frame of reference, consider the Fourier series representation with respect 

to 8: 

+00 
¢(1',8) = L am(1')eime . (2.61) 

m=-ex; 

For a single-valued variable, substitution of (2.61) in (2.59) readily leads to: 

+00 +00 
L am(1')eime = L (-l)mam( _r)eime . (2.62) 

m=-oo m=oo 

In the limit, when r ---+ 0, condition (2.62) written for a generic mode m means that if m is 

even, then am(O+) = am(O-); conversely, if m is odd it has to be am(O+) = -am(O-). In 

other words, the polynomial expansions am (r) of a single-valued variable are even functions 
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for even modes and odd functions for odd modes. Following Lewis and BeHan [64], the 

dependence of am on l' can be more rigorously formalised: 

+00 +00 ( ) I I +00 ( ) 
¢(r, e) = L am(r)eime = L a1~~' [1'e±ie] m = L a;~~n:; [:r + iyj1ml . 

m=-oo m=-oo m=-oo 

(2.63) 

For a single-valued variable we can require the ¢ to be analytical at the origin (analytical 

means differentiable and with derivative independent on the path of differentiation). Now, 

the complex function (x+iy)lml is analytical because it satisfies the Cauchy-Riemann condi

tions. In order to be ¢(r, 8) regular, am(r)/r lml must not be singular in the origin. Therefore 

am(r) rv rlml when l' -* O. This leads to writing: 

¢ single - valued: 

dam (1' = 0) 
d1' 

0 Vm even, (2.64) 

am(1' = 0) 0 Vm odd. 

For a multiple-valued variable, the parity of the above condition is swapped. Lewis and 

BeHan [64] give a rigorous proof of this, but for an intuitive explanation we can substitute 

again (2.61) into (2.60) obtaining: 

+00 +00 
L am(1')eime = - L (-l)mam( _1')eime . (2.65) 

m=-oo m=oo 

For a single mode m, the new condition requires that if m is even, then am(r) has to be odd, 

whereas if m is odd, then am(r) has to be even. Schematically: 

¢ multiple - valued: 

dam (1' = 0) 
dr 

0 Vm odd, (2.66) 

am(1' = 0) 0 Vm even. 

Relations (2.64) and (2.66) represent the first constraints that need to be accounted in the 

reconstruction process of any variable on the centerline. 

As previously mentioned, the single-valued variables are uniquely defined at the origin, 

thus, an additional constraint can be written as: 

fJ¢ 
fJe (1' = 0) = 0 . (2.67) 
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Among the even modes, relation (2.67) is satisfied only by m = 0, thus, for a single-valued 

variable we have reached the conclusion that the non-zero mode on the axis is only the 

mean, which has to be calculated imposing the first of (2.64). 

Condition (2.67) can no longer be used for a multiple-valued variable, but it can still 

be applied for a Cartesian velocity component (which is single-valued). So we consider the 

quantity: 

Vy = 11;. sin e + Ve cos e . (2.68) 

Imposing that the derivative with respect to e is equal to zero, we can write: 

[
aVr ] . [aVe ] ae - VB sm e + ae + Vr cos e = 0 . 

r=O r=O 

(2.69) 

Since equation (2.69) holds for any e, it has to be: 

aVr ae (r = 0) Ve(r = 0) , (2.70) 

aVe ae (r = 0) 

II II 
Denoting by V () and V r the Fourier coefficients for a generic azimuthal ~ode m, this means: 

/\ 
im Vr-

/\ 

Ve, 
1\ /\ 

im Ve - Vr 

(2.71 ) 

Conditions (2.71) can be satisfied only by m = ±1. These two modes need to be calculated 

according to the first of (2.66). All the other modes have to be zeroed. 

Summarising the method, once the solution is updated at all the points (except the axis), 

a Fourier decomposition in the azimuthal direction is performed in some points off the axis. 

The number of points depends on the stencil of the one-sided finite difference formula 

selected to discretise dam(r)/dr. We used a fourth order accuracy requiring 5 points. Then, 

for the state variables which are single-valued, namely p, pVz and pE, ao(r = 0) has to 

be evaluated imposing dao/ dr = O. This will provide readily the required values on the 

axis (there's no need of an inverse FFT). For the remaining state variables pll,., pVo, one 

has to calculate a+l(r = 0) and a-l(r = 0) imposing da±ddr- = 0 and then pV,.,pVo are 

reconstructed by inverse FFT. 

The method has the advantage of not introducing any extra equation for the pole. For 

spectral/pseudo spectral codes, the method is widely used, eventually with some small vari

ants; some authors report problems when using the method for finite difference codes (it 
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is a personal communciation reported in reference [83], so it's not clear whether or not the 

azimuthal derivatives are performed spectrally) and we may advance the hypothesis or some 

numerical instability if the azimuthal differentiation were not performed spectrally. We did 

not experience any difficulty and the method was also validated against the technique (or 

easier implementation) of Mohseni and Colonius [78] which avoids placing points on the 

polar axis. In the test-case used for the comparison (linear stability calculation reported in 

chapter 3) the difference was negligible, but the polynomial expansion method seems to he 

closer to the nature of the spectral differentiation. 

2.6 Coordinates transformation 

In the final chapter we will present a few cases of vortex breakdown developing in a varying

section pipe with frictionless walls. For this purpose, the code was upgraded to handle 

simple but non trivial cylindrical geometries by means of a coordinate transformation. 

A non-uniform, non-orthogonal region in the meridional plane (z, r) is transformed to 

a uniform rectangular grid in the computational space (~, 1]) by functional dependencies of 

the form: 

TJ = TJ(z,r) . (2.72) 

Using the chain rule, it is possible to evaluate derivatives in the physical space after differ

entiation in the computational space: 

(2.73) 

The basic set of equations (2.3) can then be recast in the form: 

(2.74) 

In practical computations one has to determine the metrics coefficients ~z, ~r' 1]z, 1]n through 

the inverse relation of (2.72): 

x = x(~,TJ) , y = Y(~,TJ) . (2.75) 

For complex geometries the functional dependencies in (2.75) are unknown, since the grids 

are obtained by grid generation algorithms. In that case, the metric coefficients are calcu-
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lated as: 

[ 

~x 

TJx 

(2.76) 

Note however that relation (2.76) is obtained by linearisation of (2.75), therefore it is of 

second order accuracy, and its application to higher order methods may be questionable. 

With the cylindrical coordinates, the geometries handled can generally be described analyt

ically, and the use of (2.76) is not necessary. For example, in our work, following references 

[7,41, 69], we have considered a pipe whose radius R varies with the axial coordinate 

according to a functional dependency (cfr. §5.5): 

R = R(z) (2.77) 

The grid used is algebraically defined by the simple scaling law 

z ~L, 

r TJR(z) , 

and the metrics can be analytically calculated. 

The derivatives of the inviscid fluxes are obtained calculating the value of the fluxes at 

each node, and differentiating by compact schemes. For the viscous fluxes, one may choose 

to store the viscous stress tensor, and calculate its divergence by successive application of 

the first derivatives. In curvilinear coordinates, this approach would be cheaper than employ

ing directly the second derivatives, but it's well known that in this way the representation of 

high wavenumbers is much less accurate [92]. In the code, we adopted the second strategy, 

so all the viscous terms requiring evaluation of successive derivatives, for example the term 

have been expanded and evaluated as: 

When the grid transformation is active, formulae for the second derivatives similar to (2.73) 

are used. These are defined as 
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with i,j = 1,2 and Xi = Z,Xj = r. 

Some care needs to be taken to extend the boundary condition treatment discussed in 

§2.4, because the grid obtained algebraically does not preserve the orthogonality between 

the radial and axial directions. We have seen that the key-point of the Poinsot-Lele method 

is the evaluation of Eulerian derivatives normal to the boundary after the imposition of 

physical constraints through relations of the form 

8Fn = RT- 1 [ AT 8U] , 
8n 8n 

(2.78) 

where n indicates a generic direction identified in the orthogonal reference (r, z) by the unit 
1\ 1\ 

vector in = iznz + irnr. Consider the inviscid counterpart of equation (2.3); the derivatives 

in the azimuthal direction do not play any role, and can be omitted in what follows: 

8W 8F z 8Fr S 
-+-+-+-=0. 
8t 8z 8r r 

(2.79) 

The above formulation is weakly-conservative, since the source term Sir accounts also for 

. the decomposition of ~ a(~~r). In this way, the meridional plane (r, z), where the boundary 

conditions have to be imposed, can be considered as purely two-dimensional, and we may 

write 

with 

8W S 
-+V'·F= --
8t - r 

1\ 8 1\ 8 
V' = ir 8r + iz 8z 

and F a second order tensor defined in in the (r, z) plane as: 

(2.80) 

(2.81 ) 

(2.82) 

We need to express the normal derivative aI,;' in terms of ~ and ~. In the weakly

conservative formulation adopted, this is immediate. Indeed we have: 

8Fn 8Fn 
= nr 8r + nz 8 z . 

(2.83) 

Applying the chain rule (2.73), this leads to: 

(2.84) 
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The final step is to write F n in terms of F T and F z. Since it is 

(2.85) 

substituting (2.85) into (2.84), after a few elementary manipulations one obtains: 

(2.86) 

The rhs of (2.86) is now completely computable and has to be subtracted from the entire 

rhs on the boundary points. After this operation has been performed, one has to reconstruct 

the normal Eulerian derivatives using the rhs of (2.78) where it is understood that vector 

L = AT~~ is given by (2.51) replacing z with n (normal direction to the boundary) and T 

with t (tangential direction to the boundary). 

In the calculations presented here, the radial boundary R(z) is treated as a stream sur

face. From (2.51), the condition 

(2.87) 

guarantees the impermeability condition Vn = O. L5 is associated with the only outcoming 

characteristic and has to be calculated from the interior as 

(
ap aVn) 

L5 = at + pc an (Vn + c) 

Calculation of Ll requires a further physical condition. We have considered a constant tem

perature wall, for which 

aT =0 
at 

Substitution of (2.54) into (2.88) leads quickly to writing the final condition: 

(2.88) 
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Vortex core dynamics 

3.1 The Batchelor vortex 

The objective of this section is to understand the effect of the swirl on the stability charac

teristics of jets and wakes at low Mach numbers. For the sake of this, we analyse the three

dimensional response of a parallel swirling flow induced by a localised small perturbation. 

It will be shown how the underlying dynamics of a free shear-layer is significantly modi

fied by the addition of the swirl. The base flow considered here is the Batchelor vortex, for 

which a large amount of analytical and numerical studies has been produced [21,48,61,631. 

Comparison with existing results will provide a validation of the linear code developed. This 

velocity l?rofile, sometimes refe'rred to as a q-vortex, was first introduced to describe aircraft 

trailing vortices and it is often used to model experimental jets, for its well known capability 

to capture features common to many swirling flows. 

3.1.1 Formulation and diagnostic tools 

In a cylindrical frame of reference (r, e, z), the dimensional Batchelor vortex is defined as 

follows: 

Ve(r) 

o 
1 - e-cn 2 

08 (rI8) 

(3.1 ) 

where Voo is the free-stream axial velocity, Vc is the centerline axial velocity and !j is the 

vortex core edge. In the limit r ---> 0 one has Ve(r) rv nr, then n is the angular velocity of 

the solid body rotation for this limit. Non-dimensionalisation can be obtained assuming !j 

49 
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Figure 3.1: Axial velocity profile of the Batchelor vortex, corresponding to equation (3.2) with (a): a = 0 
(jet) and (b): a = -1.2 (wake). 

and v;, - Voo as length and velocity scale, respectively. Therefore, one easily obtains 

Vz(r) 
_ 2 

a+ e r 

Vr(r) 0 (3.2) 
1 _r2 

Ve(r) 
-e 

q 
r 

with 

q = Vc - Voo . 

The two parameters a and q identify fully the Batchelor vortex: q is the swirl number! and 

a describes the external flow. We will focus on the condition of a jet without external flow, 

a = 0 (see fig. 3.1-a), and on a full wake at a = -l.2. Note however, that when a < -J, 

the axial velocity Vz is a wake pointing to the negative axial direction (see fig. 3.I-b) and 

consequently misaligned with the axial unit vector iz ' This means that any result of the 

spectral analysis should be evaluated by symmetry in order to recover the conventional 

alignment. To avoid any possible source of confusion, we preferred to study the wake type 

profile a = -l.2 implementing the first of (3.2) with opposite sign. 

The linearised code described in section 2.1.2 has been used to study the evolution of 

the Batchelor vortex after the introduction of a small perturbation. Linear temporal simu

lations (LTS) have been conducted using periodic boundary conditions in both stream wise 

and azimuthal directions. The use of the periodic boundary conditions in the axial direction 

converts any physical problem to a closed system, where the perturbation cannot leave the 

'Throughout this thesis, we will often make reference to a swirl number defined differently (for example 
cfr. §4.!) and denoted by S. Here we comply with the literature. 
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domain. As a consequence, convective instabilities, which in spatial simulations would hc 

expelled from the computational domain under the advection of the base flow, in the tempo

ral approach remain in the system and the possibility of monitoring their growth is offered. 

Axial modal decomposition can then be strictly applied to perform a rigorous stability anal-

ysis. 

L z L1' n z 71,1' no I f I br I 
20 7 128 120 32 

1
0 I 0.6 I 

Table 3.1: Numerical parameters used for linear calculations LTS on the Batchelor vortex. 

Numerical parameters used for LTS are given in table 3.1. The computational domain is 

Lz x L1' x 27f discretised by n z x 71,1' x no. A coordinate transformation is adopted to stretch 

radially the region near the axis. The transformation adopted is 

with b1' user-input parameter. It is convenient to maintain br < 1 in order to preserve a 

smooth stretching. Since stability test-cases require particular precision, we put f = 0, that is 

the radial dropping of azimuthal modes was not applied. This leads to very small integration 

time steps, a condition which however doesn't represent a big problem for this specific 

study, as the non-dimensional time to simulate is quite limited. We point out that the length 

of the box Lz gives the resolution in the axial wavenumber dk, while the grid resolution 

n z fixes kco giving the cut-off frequency. For the parameters reported in table 3.1, we have 

dk = 27f/Lz = 0.31 and kco = (nz/2 -l)dk = 19.5. 

Following Delbende et al. [21], the stability analysis was conducted on the axial veloc

ity component Vz (r, fJ, z, t) of the perturbation. First, we consider its corresponding analyti

cal representation obtained by convolution: 

Vz(r, 0, z, t) = [t5(z) + :z] * VAr, 0, z, t) . 

In (3.3), J(z) is the Dirac function, i the imaginary unit and the term 

1 - * Vz(r, 0, z, t) 
7rZ 

(3.3) 

is the Hilbert transform [18] in the z direction of the signal Vz , whose fundamental property 

is to shift by -90 degrees all the positive frequencies, and by +90 degrees all the negative 
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ones. In the frequency space, this means 

FT [~ * Vz] = G(k) = -i· sgn(k) FT [Vz] , 
7rZ 

where FT designates the linear operator of Fourier transformation. For the analytical repre

sentation one has: 

(3.4) 

According to (3.4), the demodulated signal Vz has zeroed all the negative k-modes. In this 

way, one recovers the usual notation of temporal stability analysis [45], where the wavenum

ber k is assumed real and positive. Then, a double Fourier transform in the azimuthal and 

axial direction gives 

A 1+00 127r V (r m k t) = iT (r e.z t)e-i(mB+kz) de d" z , , , z , 7 , - • 

-00 0 
(3.5) 

The amplitude of each Fourier component pair (m, k) is measured by an appropriate integral 

along the radial direction r 

(3.6) 

where f is a radial station to be taken outside the vortex core where the whole dynamics is 

expected to develop. On the other side, the phase associated with the Fourier pair is given 

by: 

¢(m,k,t) = arg [VAro,m,k,t)] . (3.7) 

In the last expression ro is the radial position where the initial disturbance is introduced. We 

decided to initiate the perturbed flow field assigning small random values to the azimuthal 

velocity component at Zo = 2, ro = 0.3 and for e = 0 ... 27r. The temporal stability properties 

of each pair (m, k) are described by the growth rate (the imaginary part of w in a normal 

mode decomposition, cfr. §1.4) and by the temporal frequency (the real part of w). In our 

analysis, these quantities are evaluated as follows: 

(3.8) 

The values of t l , t2, t3 and t4 in (3.8) have to be chosen with some care. If [1, i2 are too 

small, different modes may not achieve their asymptotic behaviour, and non-physical con

tamination due to Gibbs phenomenon [18] may be present. In practice tl, t2 have to be large 
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Figure 3.2: Response of the perturbed Batchelor vortex at Re=667 , q = o. , a = O. lsosurfaces of radial 
velocity component at Time=30. Vr = ±0.0002. The arrow Vz indicates the direction of the base fl ow. 
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Figure 3.3: Response of the perturbed Batchelor vortex at Re=667 q = 0.8, a = O. Cross sectional contours 
of radial velocity component at z = 19 and different times. Contours levels are in the range [-0.0008,+0.0007]. 

enough to guarantee that an initial transient is ended. On the other hand , t3 and t4 fo r the 

phase calculation have to be close because the phase function has a typical saw-tooth shape 

due to its intrinsic discontinuity at 27r. The time instants selected have to be confined within 

a range where the jump is not occurring. This range is differe nt depending on the pair (m, k) 

considered. Therefore, for the growth rate we have assumed the values h = 25 and t2 = 30, 

while the values t3, t4 for the phase were not uniquely fixed . 

3.1.2 Validation: results at Re=667, q=O.8 

With a Mach number M = 0.3 we expected results to be very similar to the incompressible 

ones of Delbende et al. [21], obtained with identical technique2 . In light of the invisc id 

study of Khorrami [49] , the effect of compressibility at this Mach number is negligible. The 

Reynolds number is Re=667, and we consider the case with swirl q = 0.8 and a = O. The 

non-dimensional time simulated is Time=30; the whole calculation lasted 20 hours running 

2The specification of the initial thermodynamic field , leading to a preci se definition of the Mach number is 
detai led in §4.1. 
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on 32 CPUs of a PC cluster. 

The localised small perturbation introduces a small amount of energy in all thc az

imuthal wavenumbers. The flow response is to originate a growing wave packet with a 

spatial distribution evolving in time. The wave packet can be identified by the isosurfaces of 

a single perturbation velocity component. Figure 3.2 refers to Time=30 and shows a multi

armed structure revealing the existence of helical waves with high azimuthal wavenumber. 

The wave packet is convected downstream from the location where the initial disturbance 

was placed (zo = 2) but the streamwise periodicity prevents the growing disturbance leav

ing the computational domain. Of course, what in the figure are labelled as leading and 

trailing edges provide just a qualitative indication of the packet ends, which at this level of 

description depend on the values selected for the isosurfaces. 

Results of the spectral analysis are summarised in fig. 3.4: for each azimuthal mode III, 

we plot the computed temporal growth rate Wi against the axial wavenumber k (fig. 3.4-a), 

and the real part of frequency Wr over the range of unstable wavenumbers (fig. 3.4-h). A 

broad range of negative azimuthal modes -12 :::; Tn :::; -1 are found to be unstable. The 

highest growth rate is that of Tn = -4 in competition with that ofm = -:3 and 11/, = -5. 

Due to its exponential growth, mode Tn = -4 seems to dominate the response at Time=30, 

as clearly shown in figure 3.3, where the cross sectional contours reveal 4 pairs of peaks 

with alternating signs. The axisymmetric mode Tn = 0 and all the positive modes III > () arc 

stable. As an example, figure 3.5 shows the temporal evolution of the amplitude A (III , k, t.) 

defined by (3.6) for the azimuthal modes Tn = ±3 and several values of 1.:. The positive 

modes are damped whereas the negative ones grow exponentially. Note also that the slope 

of the different curves remains constant, ensuring that a calculation over 30 temporal units 

is sufficient for our analysis and that the computed values of Wi do not depend on the two 

instant times tl and t2 chosen in (3.8). 

Convergence and domain independence have been evaluated performing a higher reso

lution case, doubling the length of the box, L z = 40, and with 17,2 = 512, 1Ly = ](jO, no = (j!J 

grid points. Figure 3.6-a shows the perfect agreement between the two solutions: the higher 

resolution case produces smoother curves due to the halved value of dk, but the computed 

Wi match over all the axial wavenumbers. In addition, the present test-case has been used 

to compare two strategies for the axis treatment: the default method based on the spec

tral reconstruction of the value in the centre (cfr. §2.6) against the method of Mohseni and 

Colonius [78], which avoids placing grid points on the axis. The comparison, reported in 
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Figure 3.4: Temporal stability properties of the Batchelor vortex at Re=667, q = 0.8, a = 0, retrieved by 
LTS. (a); Temporal growth rate Wi (k). (b); Real part of the frequency wr(k). 

fig. 3.6-b, shows a good agreement for the most unstable azimuthal modes, while some dif

ference is noticed for the less unstable m = -12. The method of Mohseni and Colonius 

yelds a higher growth rate for m = -12 which is also localised on a narrower range of axial 

wavenumbers: although we believe that the difference is negligible, as the energy level of 

the m = -12 mode is very small, the results of Delbende et at. suggest that the technique of 

the spectral reconstruction is slightly more precise. Their results were obtained by direct nu

merical simulation of the linearised incompressible Navier-Stokes with a solver in Cartesian 

coordinates. The comparison is reported in table 3.2: the growth rate of the most amplified 

wav~number is in a very good agreement. In the same table are reported the inviscid results 

of Lessen et at. [63], obtained by numerical solution of the Howard-Gupta equation [44]. 

The viscous calculations provide slightly smaller values than the inviscid counterparts of 

Lessen et at.. As in the current study, these authors have found that each unstable mode 
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Figure 3.5: Response of the perturbed Batchelor vortex at Re=667, q = 0.8, a = O. Time evolution of the 
amplitude A associated with different Fourier pairs (m, k). Top: m = +3. Bottom: m = -3. 

remains amplified in a range of axial wavenumbers whose limits increase with m. The main 

difference between these viscous and inviscid studies is that in the latter case the maximum 

growth rate over all axial wavenumbers increases with m: the asymptotic analys is of Lei

bovich and Stewartson [61] developed on the same Batchelor vortex predicts that in the 

inviscid case {Wi}max approaches a limiting value as m -7 00. 

To proceed with the discussion of the real frequency wr , it is convenient to describe 

in detail the sign convention adopted here. The temporal stability characteristcs obtained 

following the procedure described in §3.1.1 are complying with the classic normal mode 

decomposition. Consequently, results have to be evaluated with reference to a wave form 

exp{ i(kz + me - wrt)} with k > O. In this context, the sign of the azimuthal wavenumbers 



Chapter 3: Vortex core dynamics 57 

0.4 (a) 0.4 (b) 

m=·3 m=·5 

Figure 3.6: Numerical comparisons of growth rate measured by LTS . (a): Grid convergence: the default res
olution (black) of table 3.1 vs the higher resolution case (red) reported in the text. (b): Different axis treatments: 
default method based on the spectral reconstruction on the axis (black) vs the method using a staggered grid 
(red). 

m is given by the Fourier decomposition In the e direction and defines the winding sen e 

of the helical wave: when m < 0 the wave vector kiz + mio points clockwise if seen from 

downstream; the wave front, mathematically defined as the line with constant phase and 

graphically identified by the isosurfaces of fig. 3.2, represents therefore a helix which rolls 

counterclockwise when extending toward the positive z direction. These modes are said 

to be cowinding, whereas the term counterwinding is used for helical modes with m > o. 

The waves revealed in our computations are cowinding, as clearly shown in figure 3.2. It 

often happens (generally in experimental works or in spatial DNS) that such cowinding 

modes are defined positive with reference to the observation that they are spirals winding 

in the same direction of the base flow ; this may create some confusion in comparing results 

with those described here: in our convention, positive (negative) modes are counterwinding 

(cowinding). 

The real frequency provides information about how these unstable modes move in time. 

Now, the wave form exp{ i(kz + me - wrt)} propagates in the z direction according to the 

sign of the product kwr . When it is positive, the single Fourier pair (k , m) moves in the 

positive axial direction, i.e. downstream. Note however that, by dispersion, propagation 

of the wave packet follows the sign of the group velocity dw,.jdk and can be different. 

Following the same reasoning, the sense of rotation in a cross sectional plane is given by 

the sign of the product Wrm. When it is positive, the wave rotates in the positive direction, 

i.e. counterclockwise. In our study, the dominant modes are negative and have negative 

frequency for all the range of unstable k. These waves are said to be corotating, in the sense 

that their temporal rotation is in the same direction of the base swirling flow, a circumstance 
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which may erroneously appear obvious: the existence of counter-rotating modes has been 

proved experimentally [9] and it can also be noted in fig. 3A-b that m = -1 and In = -2 

have positive values for some axial wavenumbers. 

I m II -1 -2 -3 I -4 I -5 I -6 I -9 I· 
DCH 0.14 0.27 0.31 0.31 0.30 0.28 ~0.7 

AL 0.14 0.28 0.305 0.31 0.30 0.29 0.7 

LSP 0.17 0.31 0.36 0.37 0.39 0040 -

I m II -1 I -2 3 -4 -5 I -6 I -9 I 
DCH 0.54 l.l8 1.68 2.17 2.68 3.22 ~7 

AL 0.62 1.25 1.72 2.19 2.67 3.29 6.78 

LSP 0.61 1.22 1.66 2.14 2.65 3.20 -

Table 3.2: Comparison of growth rates with previous computations. DCH: Delbende el al., AL: current 
study, LSP: Lessen el at.. Top table reports the maximum growth rate {W;}max. Bottom table reports the most 
amplified axial wavenumber kmax . 

3.1.3 Effect of the swirl 

The validation based on the reference case Re=667, q = 0.8, a = 0 provides confidence in 

the code developed and offers the possibility to conduct a parametric study to evaluate the 

effect of the swirl on the stability characteristics of a pure jet. For this purpose, we consider 

LTS in the range of the swirl number 0 ::; q ::; 1.6. 

Figure 3.7 reports the temporal growth rates found. At q = 0, the base flow reduces to 

a fully developed jet and presents only two unstable modes m = ±1 with identical charac

teristics. Higher azimuthal modes Iml :::: 2 as well as the axisymmetric mode m = 0 remain 

stable for all the axial wavenumbers. Velocity profiles with a shear layer thickness smaller 

than that of (3.1) may present a competition between the bending modes and the axisym

metric one, or even the destabilisation of m = ±2. An example of this condition is found 

in the calculations of Gallaire and Chomaz [29], or in that of Michalke [77]. It is however 

recognised as a well established result that an axisymmetric nonrotating jet is dominated by 

unstable disturbances with azimuthal wavenumber m = -1,0,1. 

The radial distribution of azimuthal velocity given by the third of (3.2) defines a pure 

rotational flow. According to the Rayleigh criterion for centrifugal instability [24], the vor

tex flow will be unstable to axisymmetric small perturbations if and only if the square of 
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Figure 3.7: Temporal growth rate Wi retrieved by LTS for the Batchelor vortex at Re=667, Q. = 0 and 
different swirl levels. (a): Non-rotating jet q = 0 (b): q = 0.2 (c): q = 0.4 (d): q = 1 (e): q = 1.2 U): q = 1.4 

the circulation has negative radial gradient anywhere. Similarly, the generalisation of the 

two-dimensional inflection criterion (also known as Rayleigh criterion) to circular geome

tries ensures that a necessary condition for instability to pure two-dimensional disturbances 

with k = 0 ( i.e., those existing in a cross sectional plane and associated with the azimuthal 

shear), is that the axial vorticity presents a local extremum. It can be easily verified that our 

rotational flow (0, Ve(r), 0) is stable to both centrifugal and shear instabilities: the present 

study will therefore highlight what is the result of combining a vortex flow which is rota

tionaIIy stable on a shear flow unstable by itself to modes m = ± 1. 

As soon as a small amount of swirl is introduced, q = 0.2, we have an immediate 

stabilisation of the positive mode, accompanied by a destabilisation of the negative modes 

-5 :::; m :::; -1. This result is again consistent with the inviscid analysis of Lessen at at. [63], 
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Figure 3.8: Effect of the swirl on the temporal growth rate Wi of negative azimuthal modes. (a): m = -} 
(b): m = -2 (c): m = -3 (d): m = -4. 

showing that a full stabilisation of positive modes occurs at q = 0.08. At this small level of 

swirl the bending mode is dominant but a further increase to q = 0.4 leads to a competi

tion between m = -2 and m = -3. For each azimuthal mode, the range of unstable axial 

wavenumbers is gradually enlarged. The reference case studied in the previous subsection 

has shown the most unstable response: at q = 1 the azimuthal wavenumber 111 = - 12 is 

stabilised, and the maximum growth rate is always below the value 0.3. The stabilisation 

process becomes more evident at q = l.2 and q = 1.4. At q = 1.6 the Batchelor vortex 

becomes totally stable. The same results are reproduced in fig. 3.8 in a form which syn

thetically highlights the effect of the swirl on each single mode m. For the higher modes 

m = -2, -3, -4, the curves modify in such a way that a common behaviour can be identi

fied: during the stabilisation occurring for q > 0.8, the most amplified wavenumber remains 

approximately constant. The process appears to be less evident for the bending mode, which 

on the other hand begins to stabilise for q > 0.4. The asymptotic analysis Iml > > 1 of Lei

bovich and Stewartson [61] shows that the most unstable of the axial wavcnumbers has to 

satisfy the relation 

1 kmax 1 
-q < -- <-
2 m q 

determining as condition for the instability of the incompressible Batchelor vortex that 
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Figure 3.9: Representation of the sloped plane where the centrifugal instability occurs for the Batchelor 
vortex in jet configuration. k is the wave vector. 

q < v'2. In addition, the above relation indicates that when q ----+ v'2, it has to be 

k max ----+ v'2m. Although the computed values to which k max converge are a bit smaller 

than those predicted by Leibovich and Stewartson, the overall behaviour of kma;c converg

ing for q ----+ v'2 is captured by our viscous computations. These authors suggest that this 

class of modes are centrifugal, that is of the same kind as those for which the Rayleigh cri

terion guarantees stability with respect to axisymmetric perturbations. The works of Pcdlcy 

[84] and Emanuel [25] corroborate this view showing that the same mechanism can indeed 

be responsible of instability but in the sloped frame of reference which locally contains 

all the shear components. When the azimuthal velocity is positive everywhere, as for the 

Batchelor vortex, the Rayleigh condition for centrifugal instability reduces to the existence 

of a radial position where the axial vorticity is negative. In the cylindrical frame of ref

erence (r, e, z), the local components of the shear for a swirling flow (0, VoCr), Vz Cr)) are 

(dr. §2.1.1) 81 = a;,:= and 82 = r tr (~H). Then, a new frame of reference Cr, e', z') can be 

obtained rotating the original around the radial direction of an angle (see fig. 3.9) 

81 
Q; = arctg- . 

82 

In the new frame, the angular velocity has a vertical component to the plane (r, e') which 

contains all the shear. Emanuel [25] shows that instability arises if the vorticity component 

perpendicular to this plane becomes locally negative, which is the equivalent of the cylin

drical Rayleigh criterion for the particular case Va > O. If this condition is fulfilled, there 
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Figure 3.10: Temporal stability characterist ics of the Batchelor vortex at Re=667, q = 0.8, a = - 1.2 
modified changing the sign of Vz in the first of (3.2). (a): Tempora l growth rate w·i.(k) of positive azimuthal 
modes (black curve). For comparison, the red curve is the one of fig . 3.4, pertai ning to the negati ve modes fo r 
the jet-like profile with a = O. (b): Real part of the frequency wr(k) . 

exist unstable modes with wave vector directed along z'. From these considerations one 

may deduce the sign of the unstable azimuthal modes according to the sign of the two shear 

components. For the Batchelor vortex (see fig. 3.9) both 81,82 are negative (82 is generally 

negative for any swirling flow driven by a vortex core in a solid body rotation), therefore 

for k > 0 it has to be m < 0 and this provides the explanation for the winding sense of these 

helical waves. 

Note however that if those modes were of Kelvin-Helmholtz type, rather than cen

trifugal, the situation may not be necessarily different. As described by the ' tilting shear 

model ' of Gallaire and Chomaz [30] , for a high wavenumber di sturbance with wave vector 

k = kiz + mi() , shear instabilities would lead to a growth rate ~ Ik · 81 (Kelvin-Helmholtz 

instability of a plane vortex sheet) because the effect of the curvature of the vortex sheet on 
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Figure 3.11: Response of the perturbed Batchelor vortex at Re=667, q = 0.8 , a = - 1.2 modified changing 
the sign of Vz in the first of (3.2). Isosurfaces of radial velocity component at Time=30. Vr = ± 0.0002. The 
arrow Vz indicates the direction of the base flow. 

high wavenumbers modes is expected to be negligible, and the disturbance should develop 

as two-dimensional. Following this reasoning, positive modes m > 0 are more unstable than 

negative ones, because the corresponding wave vector k is more aligned with the shear vec

tor S = sl iz + s2io. In this case, the mode selection depends on the competition between the 

centrifugal and the shear destabilising mechanisms. 

For disturbance with small wavenumber, the planar approximation can no longer be 

considered valid, and the effect of the swirl ·on the development of the shear instabilities 

is controlled by a more sophisticated mechanism. The important results of Loiseleux et 

al. [67] , revisited in section 3.3, suggest that under the effect of the rotation, the Kelvin

Helmholtz waves can interact with the neutral Kelvin waves discussed in the introduction 

and detailed in §3.2. This interaction leads to a damping effect, which is generally more 

intense with the positive modes. As a results , negative modes would be more unstable than 

their positive counterparts. In terms of mode selection, in this case the generalised cen

trifugal instabilities would be combined with the Kelvin-Helmholtz instabilities. For the 

Batchelor vortex, both axial and azimuthal shear are very weak, as suggested by the ob

servation that at q = 0 the axisymmetric mode m = 0 is stable, and that whatever sw irl is 

applied the wavenumber k = 0 is never destabilised. We can therefore assume with some 

confidence that the main destabilising mechanism is the generalised centrifugal effect. 

To conclude this section, it is of interest to examine results of the Batchelor vortex 

when changing the axial velocity distribution from a jet-like into a wake-like profile. This 

can be achieved by letting a < - 1 in (3 .2). Theoretically, the temporal stability properties 
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of the new profile can be recovered by simple frequency shift WI' -; WI' - ok, associated 

with the consideration that the profile is invariant in a frame of reference moving with 

velocity a L Consequently, the growth rate of each Fourier pair (171,1.:) remains unchanged 

and preserves the same spectrum of negative unstable modes. As mentioned previously, 

under this condition the base flow is pointing in the negative axial direction, that is the 

swirl is negatively aligned with the downstream axial flow direction. The negative azimuthal 

modes 171 < 0 are therefore associated with negative values of /':, and by symmetry they 

correspond to positive pairs (171, k). Conversely, considering the profile - Vz (r) with a < 1, 

that is changing the sign in the first of (3.2), one recovers a swirl which is positively aligned 

with the axial flow. The magnitude of the two shear components is invariant under this 

modification, thus the growth rate has to be unaffected. We decided to run this case as a 

further internal check about the validity of the whole method. Results are reported in Ilg. 

3.10 for the set of parameters q = 0.8, a = -1.2. The unstable modes are all positive and 

their growth rate is identical to those pertaining to the negative ones for the reference case 

a = O. Their temporal frequencies are positive (note that due to the modification introduced, 

the values of Wr cannot be deduced by frequency shift); according to the sign of m and w'" 

these waves are corotating and counterwinding. The wave front has to be a spiral rolling in 

the opposite direction to the base flow, a circumstance which is confirmed by the isosurfaces 

in fig. 3.11. 

3.2 Kelvin waves 

There is no unanimous consensus on the idea that Kelvin waves are those responsible for 

the breakdown of slender vortices. In the attempt to give an autonomous interpretation, in 

this section we review some results obtained on parallel flows. A linear stability analysis 

is rigorously conducted on a base flow consisting of the Rankine vortex. For the sake of 

simplicity, the analysis considers an incompressible fluid. A clear advantage of the Rankine 

vortex is that the dispersion relation can be obtained analytically in terms of trascendental 

functions. This will render it possible to identify fundamental properties associated with the 

core and common to all swirling flows. Simple experiments using DNS are presented and 

comparisons are discussed. The same analytical model will be later completed to account 

for the introduction of the axial shear. 
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3.2.1 Linear analysis 

In the cylindrical frame of reference (r, (), z), the Rankine vortex is defined by: 

Ve 

o (3.9) 

with D the angular velocity of the solid body rotation and J the vortex core radius. The 

base flow can therefore be described as a plug profile for the axial vorticity ~z assuming the 

constant value ~z = 2D for r < J and ~z = 0 for r > J. 

The evolution of small perturbations (vr' Ve, vz,p) is studied linearising around the base 

flow the Euler equations within the vortex core, and considering the Laplace equation for 

the outer region, where the flow is potential. Thus, for r < J, the linearised equations of the 

disturbance are: 

[:t + D :0] Vr 

[:t + D :0] Ve 

[:t + D :0] V z 

V·v 

18p --- + 2Dve 
p8r 

_~ 8p _ 2Dv 
pr80 r 

18p 

p8z 

O. 

(3.10) 

Following the standard procedure described in chapter I, a normal mode decomposition is 

performed. A generic variable of perturbation ¢ is represented by: 

¢(r, 0, z, t) = (2!)3 J J 1:00 

¢(r)ei(kz+me-wt)dk dm dw . (3.11 ) 

The equation for a single mode is readily obtained from (3.10)-(3.11): 

DVr 
1 df; D' --- + 2 Ve 
pdr 

(3.12) 

Dve im, 2D' --p- Vr 
pr 

(3.13) 

Dvz 
ik, 

(3.14) --p 
P 

dVr + vr im, 'k' 0 (3.15) - - + -Ve + ~ Vz = , 
dr r r 

where D = Zt + imD. The linear set of equations (3.12)-(3.15) govern the modal evolution of 

a small perturbation introduced into the given base flow. Some algebraic manipulations are 
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now required to reduce the system to a single equation. Differentiating (3.14) with respect 

to r and comparing with the radial pressure derivative in (3.12) gives: 

~Ddvz _ D' _ ?n' ·k d - Vr ~~ GV(} • 
Z ~ r 

(3.16) 

Now, applying the operator D to (3.16), replacing DDo by (3.13) and afterwards the pressure 

with its expression in (3.14), one obtains: 

2, 2, 1 2 dvz 20m , 
D Vr + 40 Vr = -:-k D -d + -k-Dvz. z ~ r "r 

(3.17) 

The above equation has the form ADr = BDz with the linear operator given by the ditTer

entials. We need to write something similar between Do and Dz . Comparison between (3.13) 

and (3.14) leads to: 

(3. 18) 

Again, applying D to (3.1S) and replacing DDr with the expression given by (3.12), it comes 

out: 

m 2, D2' 20 dp n2' -D V Z = V(} - -- + 4H V(}. 
kr p dr 

(3. I 9) 

Now, differentiating (3.14) with rispect to r and substituting the resulting expression for 

(3.20) 

which is another relation of the form ADo = BD z . We can now exploit the continuity equation 

(3.15) to get from (3.17) and (3.20) one single equation for Dz . Indeed (3.15), (3,17) and (3.20) 

are a set of equations in which the pressure is not appearing. Applying (D2 + 402
) to the 

continuity equation, an expression for (D2 + 402)Do is obtained; this can be introduced in 

(3.20) giving: 

1 d [2 2, ] kr 2 2, m 2, 20 dvz 
- im dr (D + 40 )(rvr ) - m (D + 40 )vz = krD V z - ikDd;" . (3.21 ) 

Finally, using (3.17) for (D2 + 402)(rVr)' after some elementary manipulations one obtains 

2 [ d
2 

1 d 2 m2], 2 2, 
D dr2 + -;;: dr - k - -:;:2 V z = 4k 0 Vz . (3.22) 

Since we are looking for solutions harmonic in time, we write 

D -iw+ imO 
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and (3.22) explicitly reads 

d
2 
AId A [2 m2] A 0 

-Vz + - -Vz + "( - - V z = 
dr2 r dr r2 

(3.23) 

with 

2 2 [402 
] 

"( = k (w _ mO)2 - 1 , (3.24) 

representing the eigenvalue problem for the internal flow field. Equation (3.23) is widely 

studied since it often describes wave propagation within cylindrical geometries. A general 

solution [102] is Cdmbr)+C2 Ymbr) , where Jm and Ym are the ordinary Bessel functions 

of first and second kind of order m. Since Ym is singular at r = 0, it follows that C2 = 0, and 

a particular solution of (3.12)-(3.15) is recovered: 

v (r e z t) = C J ('"Vr)ei(kz+me-wt) z , , ,1m I (3.25) 

with Jm(r) identifying the eigenfunction corresponding to the m-th azimuthal mode of the 

perturbation V z . The other components of perturbation are quickly obtained by (3.12)-(3.15). 

In particular, the eigenfunctions are: 

p(r) 

v(r) (3.26) 

Ve(r) = 

For the external field, the potential of perturbation <I> = <I>(r, e, z, t) has to satisfy the Laplace 

equation: 

(3.27) 

As before, the normal mode decomposition gives the modal equation 

(3.28) 

which is a modified Bessel equation whose general solution is Clm(kr) + BKm(kr) and 

1m, Km are the first and second modified Bessel functions. Since 1m is singular for r -+ 

+00, imposing the perturbation to be evanescent in the far-field requires that C = 0, and a 

particular solution of (3.28) is: 

<I> = BKm(kr)ei(kz+me-wt) . (3.29) 
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Figure 3.12: Complex frequency plane: line intersections between red and green curves represent solutions 
of the dispersion relation (3 .34) with k = 2, m = O. 

The velocity is calculated by v = V'~ giving the following expressions for the e igenfunc-

tions 

im BKm(kr) 
r 

ikBKm(kr) , 

while the pressure is obtained by the linearised Bernoulli theorem: 

~ [ 81>]. [ 08
2

] P = P -v· V - at = ~p W - --:;Tm BKm(kr). 

(3.30) 

(3.3 1 ) 

The existence of such modes, and the evaluation of their nature (stable/unstable) can now be 

investigated by enforcing a second boundary condition at the vortex core edge {). The general 

dynamic condition requires the balance of pressure at the interface, whereas the kinematic 

condition (at leading order) imposes the equality of the radial velocity perturbation. Using 

(3.26), (3.30) and (3.31) this leads to 

(3.32) 

consisting in an algebraic system in the unknowns A and B. There will exist non-trivial so

lutions if and only if the matrix of coefficients has zero determinant. The condition requires 
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Figure 3.13: Axisymmetric Kelvin modes sustained by the pure Rankine vortex. (a): Dispersion diagram. 
(b): Normalised eigenfunctions of the axial velocity perturbation corresponding to the first 4 modes. at k = 3/2. 

that: 

(3.33 ) 

Equation (3.33) is the dispersion relation F(k, m, w) = 0 providing information about the 

stability of the pure Rankine vortex. In a temporal framework, the wavenumbers (k, m) 

are assumed real and complex eigenfrequencies ware looked for. Much analytical work has 

been done in seeking solutions of (3.33) (see for instance the asymptotic analysis of Saffman 

[90] or that of Le Dizes & Lacaze [56]). Here we study (3.33) numerically, calculating 

the values of F(k,m,w) at each point of a mesh in the complex plane R(w), 8'(w). The 

intersections of the curves R(F) = 0 and 8'(F) = 0 give the solutions of (3.33). The usc of 

the standard MATLAB routines renders the operations very simple. 

3.2.2 The bulging mode 

For the current study it is convenient to non-dimensionalise using the vortex core radius 6 

as reference length and n6 as reference velocity. The dispersion relation becomes 

(3.34) 

with 

2 2 [4 ] 'Y = k (w _ m)2 - 1 . 

In this section we focus on the axisymmetric (bulging) mode m = O. Following the numer

ical procedure in the complex plane, it is found that only real values of w exist: they are 

associated with neutral inertial modes (the Kelvin waves) propagating longitudinally. For 

example, fig. 3.12 shows in the complex plane the isolines R(F) = 0 and 8'(F) = 0 for 
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k = 2. Note that due to the oscillatory character of the Bessel functions, the detection of the 

intersections points becomes problematic especially for w,- -> 0 and much depends on the 

resolution used to discretise the complex plane. We have checked by a direct solver of (3.34) 

that in this limit solutions yelding a non-zero value of Wi are false. The results are shown 

in fig. 3.13-a: for a given real wavenumber k, there is a countable sequence {} /I of infinite 

neutral waves with temporal eigenfrequencies -2 < {w(k)}n < +2. Figure 3.I3-a shows the 

dispersion curve for the first 4 modes of the sequence {w }n. Each mode has a corresponding 

eigenfunction (fig. 3.13-b) given by 

T ::; 1 

T ~ 1, 
(3.35) 

where it is understood that 11 refers to the dependence on the n-th mode of the sequence. 

Note that the cut-off on the frequency can easily be checked noting that when Tn = 0, W > 2, 

from the second of (3.34) ,2 is negative and the perturbation (3.35) is purely imaginary. 

In other words, the axisymmetric Kelvin waves have a specific range [-2,2] of temporal 

frequencies. 

Inspired by the numerical calculation of Melander and Hussain [75], we have per

formed direct numerical simulations of the perturbed Rankine vortex. Note that Melander 

and Hussain do not discuss the possible relation of their results with Kelvin waves. The 

results of the current study should be evaluated with some care: first, the base flow presents 

a discontinuity in the axial vorticity at T = 1 which renders the test-case not very suitable 

for a direct numerical simulation; in addition, the difficulty in matching analytical results 

when dealing with marginal stability is well known. Despite of these considerations, we 

believe that the case is worth being presented, because it will help to interpret on a physical 

ground the critical state of Benjamin [6], very relevant in the theoretical studies on vor

tex breakdown, and because it will provide the opportunity to develop interesting vorticity 

considerations. 

We consider a vortex defined by the non-dimensional form of (3.9) extending on a com

putational domain of size Lz = 25, Lr = 10; conditions at infinity are simulated using the 

non-reflective techniques discussed in the previous chapter, while the axis treatment implic

itly provides conditions of symmetry at T = 0 when the calc~lation runs axisymmetric. The 

perturbation introduced is easily expressed in terms of axial vorticity: 

~~p) = E sin[k(z - zc)] (3.36) 



Chapter 3: Vortex core dynamics 7 1 

Time=5.14 

Time=7.72 

D 
20 25 

Time=12.06 

Time=16.32 

c 
25 

Figure 3.14: Response of the perturbed Rankine vortex at Re=500, excited by an ax isym metric pertu rbati on 
with wavenumber k = 27r. Contours of azimuthal vorticity revealing the propagation of waves within the 
vortex core. 

z E z - _ ·z +-[ 
Ak Ak] 

c 2 ) C 2 

r E [0 ; 1] ) 

where E is a small amplitude parameter E = 0.01, Zc is the center of the vortex tube and Ak is 

the wavelength associated with the wavenumber k of the linear theory by the simple relation 

k = ~: . In words, the perturbation consists of a narrow region localised around the center, 

where the local angular velocity varies sinusoidally. Since we expected a globa ll y stable 

response, for the current case there was no need to use the linearised code, which would 

have required some modifications of the base fl ow to account for the di scountinuity at the 

core radius. We used the nonlinear code but suppressed the base diffusion: in the absence of 

radial velocity and with the pressure distribution which balances the centrifugal fo rce, the 
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Figure 3.15: Response of the perturbed Rankine vortex at Re=500, excited by an axisymmetric perturbation 
with wavenumber k = 27T. Evolution of the axial distribution of azimuthal vorticity at different radial locations 
within the vortex core. 

governing Navier-Stokes equations reduce to a pure diffusion equation for (pVo) and (pVz ). 

By adding a body force to the rhs of the governing equations one can compensate for the 

viscous diffusion and avoid significant changes in time of the base flow, a procedure which 

has been already adopted for stability analysis [71]. When the perturbation remains small, 

there's no difference between this approach and the use of the linearised Navier-Stokes. 

Figure 3.14 shows the temporal evolution of the azimuthal vorticity ~() for the vortex 

at Re=500, excited by a perturbation with wavenumber k = 27T. The Mach number is AI = 

0.3 thus the effect of compressibility can be considered nearly negligible. The unperturbed 

vortex has zero azimuthal vorticity, since there's no axial shear in the initial flow field. 

After the perturbation has been introduced, a periodic oscillation in the centre induces a 

symmetrical wave propagation in both the directions. As the wave train moves away from 
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Figure 3.16: Response of the perturbed Rankine vortex at Re=500, excited by an axisymmetric perturbation 
with wavenumber k = 21f (dash) and k = 1f (solid). Radial velocity registered in the center of the vortex tube 
at r = 0.3. 

the source in zc, the amplitude of the oscillation in the center gradually reduces until all the 

energy of the initial disturbance is partially dissipated by viscosity, and partially transfered 

to the wave train. The value of k = 21f was chosen on purpose in order to give graphic 

evidence that as the time goes on, the oscillation in the center of the tube preserves a h: = 27f 

structure (corresponding to a unit wavelength). This is even better evaluated in figure :t [5, 

where the axial evolution of ~(J is plotted at different radial positions within the corc. Thc 

figure highlights the peculiar formation of the wave train and indicates that its axial structure 

remains nearly unchanged at Zc. In some sense, this circumstance renders the current case 

suitable for a stability analysis in a temporal framework, because It: is given by the initial 

perturbation, while w is looked for. 

The frequency w was then measured monitoring the radial velocity component at Ze 

and r = 0.3. Figure 3.16 reveals a period b..T = 3.8 corresponding to an angular frequency 

w = 1.65. The dispersion diagram (see fig. 3.13-a) shows that the value obtained is closc to 

the predicted frequency for k = 21f and n = 1 (the precise value by linear theory is 1.7G). 

In the same figure 3.16 it is reported the analogous curve obtained introducing an initial 

disturbance with k = 7f: the angular frequency found is again in good agreement with that 

of the first mode in 3.13-a ([.45 vs [.48 of the theory); in the latter case, however, the period 

of oscillation tends to reduce with time, a behaviour that we found to become more and 

more evident as k --+ O. The result is somehow elusive, because on the one hand it confirms 

the low-pass filtering of the core -2 < w < 2, on the other the computed eigenfrequencies 

do not seem to account for the higher cylindrical modes. 

As mentioned earlier, the signal was registered in the center of the tube Zc: moving 



Chapter 3: Vortex core dynamics 74 

Re=200 

Re=500 

D 
20 25 

Re=800 

25 

Re=1100 

Figure 3.17: Effect of the Reynolds number on the response of the Rankine vortex excited by an ax isym
metric perturbation with wavenumber k = 27r. Contours of az imuthal vorticity at Time=7 .76 

away from Zc the period of oscillation decreases, consistently with the observation that the 

spatial structure of the wave train undergoes an axial stretching, clearly visible from fig. 

3.14. A non-negligible contribution to this deformation is surely provided by viscosity, but 

the analytical work of Arendt et al. [3] based on the purely inviscid model (3 .34) shows a 

similar behaviour, and they suggest that it is the result of a dispersion mechanism which can 

be recognised by the diagram of fig . 3.13. It is argued that since for a fixed wavenumber k 

there exist infinite modes, each of them travelling with a different phase velocity w/ k, the 

propagation at different speeds rapidly leads the wave to stretch. The resulting wave packet 

will then move with a velocity which is given by the group velocity dJ..u / dk : the di spersion 

diagram reveals that the group velocity at lower k is bigger than that at higher k. It turns out 

that as the packet is formed, it has to propagate faster leaving the slower modes behind, a 
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Figure 3.19: Effect of the initial perturbation on the response of the perturbed Rankine vortex. Top: Per
turbation defined by (3.36). Bottom: Perturbation defined by (3.37) . ln both cases the excited wavenumber is 
k=2 

behaviour which seems quite evident in fig. 3.14. 

To evaluate the role of viscosity in this specific context, In figure 3.17 we compare 

responses obtained at different Reynolds numbers . The contour levels are left unchanged, 

and the damping effect on the amplitude appears evident. However, the spatial distributi on 

of the wave train doesn't seem to be modified and this supports the idea of Arendt et at.. 

Inspired by this consideration, we were prompted to carryon another experiment: in the 

initial disturbance we replaced expression (3.36) with the following 

v}p) = {vzh(r) sin[k(z - zc )] 

Z E [zc - ~k; Zc + A2k] ) 

(3.37) 
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where {flz h (r) is given by (3.35). That is, we are now giving as input a perturbation having 

as radial distribution the eigenfunction provided by the linear theory and associated with 

the first mode of the sequence (n = 1). In this attempt, we aimed to isolate as much as 

possible a single mode: according to the theory of linear systems [18], the eigenfunction or 

the disturbance has to remain invariant; in addition, if the dispersion mechanism discussed 

above is valid, we should expect that the stretching of the wave train would be hlI'gely 

reduced under these new conditions. 

Figure 3.18 reports the computed normalised eigenfunctions along the spatio-temporal 

ray 6.z/6.t = 1: considering that the analytical solution is based on an inviscid model, the 

result is satisfactory, as the shape of the perturbation deviates from the intial one just a little. 

This provides confidence that the waves revealed by our DNS are actually Kelvin modes. In 

figure 3.19 we compare the spatial structure of the wave train generated imposing the difTer

ent perturbations (3.36) (top) and (3.37) (bottom): the global structure of the perturbation is 

very similar, and this leaves open the question about whether or not the deformation of the 

wave train might be explained in terms of the dispersion discussed above. 

3.2.3 Vorticity considerations 

The physical origin of the Kelvin waves' propagation can be explained considering the vor

ticity equation. In the cylindrical frame of reference, the three vorticity components are 

aVe 
az 

aVr avz 
----

az ar 
1 a(1'Ve) 
l' ar 

(3.38) 

where it is understood that axisymmetric conditions have been assumed. By taking the curl 

of the momentum equation in the incompressible Euler equations, the evolution of the vor

ticity components reads [4]: 

D~r 
Dt 
D~e 
Dt 
D~z 
Dt 

c aVr t: aVr 
<"r a1' + <"z az 
~r aVe + ~z aVe _ Ve~r + Vr~e 

ar az l' l' 

C avz c avz 
<"r a1' + <"z az 

(3.39) 

Terms on the right hand side of (3.39) can be denoted as "tilting" or "stretching". The stretch

ing terms are those for which a component remains produced (in magnitude) by the effect of 
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the flow field on itself, namely ~1' a;;:, V,,%" and ~z ad;' in the first, second and third of CU9) 

respectively. The structure of the term \"/" is different and its physical interpretation may 

be less recognisable. It derives from the use of the cylindrical coordinates and shows that if 

positive (negative) azimuthal vorticity is present, a positive (negative) feedback exists due 

to the radial flow divergence (lI;. > 0). All the other terms on the rhs of CU9) arc tilting, and 

they are associated with a gyroscopic effect: rotation around two axes produces vorticity on 

the third axis. 

Let's now analyse in detail the early evolution of the perturbed Rankine vortex in light 

of (3.39). We consider the case where the initial disturbance is defined by (3.36) with k = 2, 

consisting of a sinusoidal variation of ~z (see the first of figure 3.20 showing the axial vortic

ity distribution of perturbation). In terms of velocity, the disturbance is simply a differential 

rotation Ve imposed upon the centre of the vortex tube. Now, differential rotation means a 

gradient of azimuthal velocity; integrating the third of (3.38) leads to 

thus, the sign of a,;;," follows that of ~. 

In the azimuthal vorticity equation, the second of (3.39), the stretching term is initially 

zero; note also that all the tilting terms can be made compact using the expressions given 

by (3.38), obtaining 

(3.40) 

where L = rVe represents the circulation. Equation (3.40) highlights that the axial gradient 

of Ve generates azimuthal vorticity by vortex tilting. The ~e produced will be positive where 

a;: > 0 (that is where ~ > 0) and negative where a~! < O. The second of lig. 3.20 

is consistent with these observations: the curves refer to different radial positions in the 

core, with the amplitude growing in modulus from the axis toward the edge. The tilting 

effect generates an axial distribution of ~e which advances in phase by )..,,:/4 that of ~z. 

The axial velocity induced by ~e (the third of fig. 3.20) has an axial distribution which 

is in phase with that of ~e, therefore advancing ~z of )..J,:j4: it turns out that ~,rz' will be 

counter phase with respect to ~z. At this point the stretching term ~z a,;;" in the third of 0.39) 

becomes important, but due to the established phase delay the axial vorticity will be reduced 

where it was initially bigger, while it will be increased where it was initially smaller. In 

other words, where ~z is negative in the first of fig. 3.20 (recall that it is the axial vorticity 
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Figure 3.20: Early evolution of the perturbed Rankine vortex; axial distribution of different perturhation 
quantities within the core. For the azimuthal vorticity, the maximum amplitude is reached at vortex edge; for 
the axial vorticity (bottom), the maximum amplitude is near the axis. 

of the perturbation, to be added to the constant value 2 to get the axial vorticity of the 

total flow field) the axial velocity accelerates (the third of 3.20) and the total axial vorticity 

has to increase by stretching. Exactly the opposite occurs where ~z is initially positive: by 

stretching, the total axial vorticity has to reduce. A restoring mechanism is therefore created 

due to the coupling between the tilting and the stretching. This acts on the vortex tube as 

a sort of radial elasticity which causes the propagation of the axisymmetric Kelvin modes. 

It's important to point out that the wave propagation described is due to pure inertial effects, 

and it would be completely absent without axial vorticity. 
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3.2.4 The critical state 

Let's consider the superimposition of the pure Rankine vortex with a uniform flow field 

izVz oriented along the axis. In a frame of reference (r',8',z') = (r,8,z - Vzt) moving 

with iz Vz, the base flow will appear as a pure vortex, and a single perturbation component 

¢(r')ei(kz' +mO' -wt) will exist if the dispersion relation (3.33) admits non-trivial solutions. 

The observer in the laboratory frame, will see the perturbation as 

¢(r)ei(kz+me-wt) = ¢(r/)ei(kz'+kVzt+me'-wt) = ¢(r/)ei(kz'+me'-(w-kVz)t) , 

which is the same as in the moving frame, but with frequency w - k Vz • It turns out that the 

addition of the base flow corresponds to a frequency shift w -+ w - k\lz. The dispersion 

relation will still be given by (3.33) provided that w is replaced by w - k\lz: 

(3.41 ) 

In order to introduce the swirl number, it is convenient to non-dimensionalise assuming now 

6 as reference length, and Vz as reference velocity. The resulting relation is: 

(3.42) 

with 

s (3.43) 

It can be noticed that when S = 1, (3.42) reduces to (3.34) with w - k replacing w. We arrive 

at the (maybe trivial) conclusion that in the case S = 1 the dispersion diagram correspond

ing to (3.42) is given by that of (3.34) rotated by 7r/4. For the bulging mode Tn = 0, the 

first branches of the infinite sequence are reported in figure 3.21. The other branches (not 

shown) lie between these lower and upper curves. Under these conditions, the sign of the 

group velocity, given by the slope of these curves, is everywhere positive, meaning that up

stream propagation of energy is not possible: any perturbation introduced will be convected 

downstream from the base flow. In this case the flow is said to be supercitical. 

For lower level of swirl, the lower branch of the dispersion diagram may have a range 

of axial wavenumbers (close to zero) where the group velocity is negative. In this case the 
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Figure 3.21: Axisymmetric Kelvin modes sustained by a swirling flow defined by a Rankine vortex super
imposed on an uniform axial flow field. S = 1. 

flow is said to be subcritical and Kelvin waves can propagate upstream. The critical case 

marks the interface between the two states: the group velocity is zero for J,; -+ 0 and an 

infinitesimal standing wave with infinite wavelength can be sustained by the base flow. The 

corresponding value of the swirl ratio S represents the critical swirl number first introduced 

by Squire [96] and Benjamin [6]. Criticality represents therefore a pure theoretical concept 

based on a local analysis in which the flow is assumed infinitely long and parallel. 

Squire [96] was the first to associate the onset of vortex breakdown to the concept of 

criticality. In his view, when inhomogeneities are introduced, a critical state can be locally 

reached somewhere and eventually divide a supercritical flow from a subcritical one. In 

that case, an unstable global mode would be constructed as a superposition of waves prop

agating upstream. The section where the critical conditions are reached would then act as 

a barrier where disturbances grow to large amplitUde. The linear analysis docs not model 

this process, and one should rather refer to the nonlinear theory of Leibovich [57, 58, 591 

discussed in the introduction. It's interesting to note that Benjamin [6 J started from a com

pletely different perspective than Squire, although he finally reached the same definition 

of criticality. In his analysis he shows that supercritical flows (those which do not sustain 

waves) are characterised by an excess of flow force, defined as 

and representing an integral measure of the axial momentum flux. A transition from super

critical to subcritical should be accompanied by a reduction of flow force and Benjamin 
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Figure 3.22: Bending Kelvin modes sustained by the pure Rankine vortex. Dispersion diagram for (a): 

m = +1 and (b): m = -1. 

identifies the vortex breakdown as the formation of a wave train which accounts for such a 

reduction of flow force [6]. 

3.2.5 The bending modes 

Figure 3.22 shows the computed dispersion diagram corresponding to relation (3.34) with 

m = +1 and m = -1. According to these results, the symmetry between lower and upper 

branches is no longer valid for the bending modes. In particular, the positive bending modes 

m = + 1 increase their frequency of ~ + 1 while the negative bending mode m = - 1 are seen 

to reduce their frequency of ~ -1. As for the bulging mode, the cut-off on the frequency can 

be again recovered from the expression for I in (3.34): when Iw - ml > 2, I is negative and 

the eigenfunctions become purely imaginary. Saffman [90] suggests classifying the bending 

modes according to the sign of the frequency w - m observed in a frame moving with the 

vortex core. Cograde modes are those for which w - m > 0 (the upper branches in fig. 3.22) 

while retrograde modes have w - m < 0 (the lower branches). 

In analogy to the previous study of the bulging mode, DNS was used to evaluate the 

response of the Rankine vortex to a bending perturbation defined as: 

~~p) = E sin [k( z - zc) + me] (3.44) 

z E z - -·z +-[ 
Ak Ak] 

c 2' c 2 

r E [0; 1] . 

The axial wavenumber excited is k = 27r. Fig. 3.23-3.24 show results relative to an initial 

perturbation with m = +1 and with m = -1. Consistent with the dispersion diagrams, in 

each case the wave propagation is no longer symmetric. On the other hand, the flow field 

generated by an initial disturbance with m = -1 is symmetric to that generated by a dis

turbance with m = +1. A perturbation with m = -1 corresponds to a cowinding spiral, a 
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Figure 3.23: Response of the perturbed Rankine vortex, exicited by a wavenumbers pair (m, k) = (1 , 271"). 
Azimuthal vorticity contours on the meridional plane () = 0 at Time=20. 
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Figure 3.24: Response of the perturbed Rankine vortex, exicited by a wavenumbers pair (m, k) = (1 , 271") . 
Iso-surfaces of radial velocity component: Vr = ±O.0004. Time=20. 

spiral twisting counterclockwise if advancing along z. In a frame of reference moving with 

the base flow, such an initial perturbation will appear axisymmetric: the flow response to 

the initial perturbation has to be a wave train of the same kind as that produced by an ax

isymmetric perturbation m = 0, but moving along a helical path. This is c learly confirmed 

in figure 3.24 which shows the iso-surface of the radial velocity component. Note that the 

helix is extending in both directions, but the energy level of the packet propagating upstream 

is smaller, and it cannot be seen in the figure . According to the indications of fig . 3.22, for 

m = -1, the lower branches correspond to waves propagating upstream w < 0 and have 

higher frequency (in magnitude) than those moving downstream. This means that their en

ergy level has to be smaller, because the wave train , whose formation absorbes energy from 

the disturbance, develops on a faster scale. For an initial disturbance m = + 1 every thing is 

swapped; the Kelvin modes propagate on a counterwinding helix, and due to their hi gher 

frequency, waves propagating downstream are attenuated faster. 
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3.3 Kelvin-Helmholtz instabilities 

The analytical model previously used to identify the Kelvin waves is generalised to account 

for the introduction of axial shear. The model, representing the superposition of the Rankine 

vortex on a plug flow axial velocity profile, offers the possibility to evaluate the the effect 

of the swirl on the evolution of the Kelvin-Helmholtz instabilities. 

3.3.1 Formulation 

Let's consider a base flow defined as: 

VII { Or 0::;r<8 
£182 1'>8 r 

Vr 0 (3.45) 

Vz { Voo 0::;1'<8 
0 r > 8. 

In the present model the axial shear is generated at the interface between the vortex core and 

the external potential flow. The linear analysis has to be conducted following the same steps 

undertaken in §3.2.1, with the external and internal flow field studied separately, and a dis

persion relation obtained imposing an appropriate interface condition. Compared to the pure 

Rankine vortex, the external flow field remains unchanged, therefore the eigenfunctions of 

perturbations are still given by (3.30)-(3.31). 

For the internal flow field, linearisation of the base equations and subsequent modal 

decompositions lead to a set of equations preserving the same formal structure of (3.12)

(3.15) provided that the differential operator D is now given by 

D = :t +imO+ikVoo· (3.46) 

Hence, all the manipulations performed to reduce the set (3.12)-(3.15) to the single equation 

for Vz remain unaffected, and one has again 

D2 [ d
2 ~~ _ k2 _ m2], = 4k2n2' 

d 2 + d 2 V z H V z , r r. r r 
(3.47) 

with 

and Wj = W - kVoo . The eigenvalue problem for solutions harmonic in time is 

d
2

, 1 d , [2 m2], 0 
dr2 V z + -:;. d1' V z + 'Y - ---;;:'2 V z = (3.48) 

2 2 [402 
] 

'Y = k (Wj _ mO)2 - 1 . 
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Consequently, the eigenfunctions are those defined by (3.25)-(3.26) but with Wj replacing w. 

For the boundary conditions at the interface, one has to consider the surface IJ = IJ(O, z, t) 

defining the cylindrical vortex sheet. After the introduction of the disturbance, the sheet will 

move with velocity given by its material derivative: 

(3.49) 

For the external and internal field respectively, (3.49) is evaluated at the interface neglecting 

the products of linear terms: 

Dry 
Dt 
Dry 
Dt 

(3.50) 

Following the analogy of Drazin [24] for the planar vortex sheet, we suppose that a local 

displacement of the sheet occurs with velocity given by V r . That is: 

(3.51) 

Assuming now a Fourier decomposition for T) 

ry(r,e,z) = ijei(kz+mB-wt) , 

the two equations (3.51) are used to explicitly determine the amplitude f]: 

(mn - w)iij 

(mn + kVoo - w)iij . (3.52) 

Continuity of the particle displacement finally implies that 

w-mn w - mn - kVoo ' 
(3.53) 

which reduces to the equality of the two radial components in the case of the pure Rankine 

vortex. As before, the constraint on the balance of pressure together with (3.53), consist 

of a system of two homogeneous equations whose solvability condition gives the desired 

dispersion relation: 

(w-mn)2 [2nm r5J:n(')'r5)] 
(w - kVoo - mn)2 w - mn - kVoo - ')' Jmbr5) 

(3.54) 
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Figure 3.25: Complex frequency plane: line intersections between red and green curves represent solutions 
of the di spersion relation (3.55) with S = 1, k = 2, m = O. 

Then, following the usual lines, the swirl ratio S is introduced by non-dimensionalisation 

using 5 and Voo as reference quantities. The final di spersion relation that needs to be studied 

in the compex plane is written: 

"12 K:n(k) (w - mS)2 [ 2mS J:nh) ] 
k Km(k) = (w - k - mS)2 w - k - mS - "1 Jmh) 

(3.55) 

[ 
4S2 ] "12 = k2 2 - 1 

(w - k - mS) 

3.3.2 Analytical results 

As mentioned earlier, the effect of the curvature at r = 5 may be considered negligible for 

axisymmetric perturbations with high wavenumber k. For such di sturbances, we can there

fore estimate that the evolution is that of a pure two-dimensional planar shear developing in 

a meridional plane, with growth rate [24]: 

1 
Wi = - k Voo 2 . (3 .56) 

Figure 3.25 shows in the complex plane the solutions of the dispersion re lation (3.55) found 

at S = 1, k = 2, m = O. As for the isolated Rankine vortex, there are infini te so lutions on the 

real axis representing the extension of the inertial Kelvin modes to the current sw irling jet. 
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Figure 3.26: Temporal stability properties of Kelvin-Helmholtz axisymmetric mode for levels of swirl ratio 
S = 0,0.2,0.6,0.8, 1. (a): Real part of frequency. (b): Imaginary part of frequency. 
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ratio S = 0.2,0.4,0.6,1. (a): Real part of frequency. (b): Imaginary part of frequency. 

The novelty here is the existence of a single unstable mode which has to be associated with 

the additional presence of the axial shear at the core edge. 

The temporal stability properties of this unstable axisymmetric mode ar~ reported in 

figure 3.26 for different values of the swirl ratio. At S = 0 (pure cylindrical jet), the imag

inary part is seen to have a constant slope for wavenumbers higher than k ~ 0.6. Its value 

at k = 2 is wi(k = 2) = 0.96, in agreement with the value predicted by the non-dimensional 

form of (3.56); increasing the swirl, any axial wavenumber remains unstable, but the growth 

rate is reduced, so the effect of the swirl on the development of the axisymmetric Kelvin

Helmholtz mode is clearly stabilising. At higher wavenumbers all the curves tend to be

come parallel and to increase linearly in accordance with the planar approximation (3.56). 

The value of k above which the slope remains constant increases with S, that is, the higher 

is the swirl applied, the wider is the range of low wavenumbers sensitive to the rotation. 

Results relative to the negative bending mode m = -1 are reported in figures 3.28 and 

3.29. There exist two ranges of swirl with different behaviours. A first one, S ::; 0.4, in which 

the effect of the swirl is stabilising at low axial wavenumbers and slightly destabilising at 
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S = 0.4, 0.6, 0.8, 1. (a): Real part of frequency. (b): Imaginary part of frequency. 

higher wavenumbers (see fi g. 3.28-b ). Outside this range, S > 0.4, increasing the swirl de

creases the temporal growth rate at all the axial wavenumbers (fi g. 3.29-b) . At low swi rl the 

real frequency is positive for all wavenumbers (fig. 3.28-a) . Increasing gradually the sw irl, 

Wr reduces and a range of low wavenumbers k with negative frequency appears visible. For 

S > 0.6, Wr becomes negative for all the range of unstable wavenumbers (fig. 3.29-a) . These 

negative modes consist therefore of winding corotating spirals. With regard to the positive 

bending mode m = + 1, fi g. 3.27 shows that the swirl has a stabili sing influence quali tative ly 

similar to that encountered for the negative mode in the range S > 0.4. Note, however, 

that the reduction in the growth rate due to the swirl is enhanced, leading to the important 

conclusion that the positive bending modes are less unstable than the negative ones. 

A similar behaviour occurs for higher modes m < - 1 (see fi g. 3.30), the difference be

ing that as Iml increases, the value of S beyond which the swirl begins having a stabili sing 

effect, becomes bigger. This result is strongly reminiscent of the behaviour revealed in the 

study of the Batchelor vortex, and one may consider the diagrams of fig . 3.30 as the equ iva

lent of fi g. 3.8 adapted to the current model ; the discontinuity in the velocity profi le studied 
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Figure 3.30: Temporal growth rate of Kelvin-Helmholtz modes (a) m = -2 and (b) m = -5 for different 
levels of swirl. 

here replaces the finite shear layer of the Batchelor model; this introduces a cut-off marking 

the upper limit of unstable axial wavenumber k. A further analogy can be recognised from 

fig. 3.31, where the growth rate of several negative modes is compared at the same level of 

swirl. As Iml increases, the stabilising effect in the low wavenumber regime is enhanced 

but at higher axial wavenumbers k higher azimuthal modes remain more unstable. This is 

consistent with the inviscid studies of the Batchelor vortex [63], according to which the 

maximum growth rate over all the axial wavenumbers increases with Iml. 

Thus, some properties of the Batchelor vortex are captured by the current model: in 

particular, the mode selection follows the same trend, with negative waves dominating and 

presenting an opposite behavior in two ranges of swirl. In both cases these waves are coro

tating and cowinding, and the frequency increases with k. The main difference is observed in 

the absence of swirl. The present model reveals instability of all the azimuthal modes. These 

have to be necessarily shear instabilities, which come gradually modified when moderate 

swirl is introduced. The stabilisation of the shear layers modes due to the swirl has been 

found in several circumstances by different authors [48, 74] but a systematic study aiming 

to elucidate the interaction between axial shear and the core effect is relatively recent. In 

particular, Loseleux et al. [67] have pointed out that the stabilising role of the swirl occurs 

through a coupling between the Kelvin waves and the axial Kelvin-Helmholtz modes. They 

show that in the low wavenumber range (where full stabilisation takes place) the existence 

of direct resonance between the unstable Kelvin-Helmholtz modes and the neutral inertial 

modes. The same reasoning can be used to explain why negative modes are more unstable 

than the positive: we have noticed that the real frequency of the helical Kelvin-Helmholtz 

modes has always positive slope. A comparison with the frequency of the neutral bending 

modes sustained by the pure vortex (fig. 3.22) suggests that the interaction can affect pos-
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Figure 3.31: Growth rate of Kelvin-Helmholtz modes m = -1, -2, -3, -4 at the level of swirl S = 1. 

itive modes more than negative. The damping effect of this coupling may therefore render 

the negative modes more unstable. 

3.3.3 Numerical results 

The analytical model discussed has provided some indications about the role of the swirl 

on the development of shear instabilities. In particular, the study suggests that axisymmet

ric Kelvin-Helmoholtz modes, i.e. those responsible for the generation of the classic vortex 

rings in jets, appear to be stabilised by the addition of the rotation. The analysis on the 

Batchelor vortex could not highlight this mechanism, since at q = 0, we found unstable 

only the azimuthal modes m = ±1, and with a very small value of Wi. It appears natu

ral, therefore, to extend the Batchelor model to a velocity profile with smaller shear layer 

thickness, in order to evaluate the applicability of the results of previous subsection to a 

continuous model. 

For this purpose, we present here the stability analysis obtained by LTS performed on 

the following swirling flow: 

1 

1 + (exp(r2In(2)) - 1)3 

o 

r 

(3.57) 

The azimuthal velocity profile is the same as the Batchelor vortex, whereas the new ax

ial velocity distribution (introduced by Billant [9] to model his expermintal jet) presents a 

reduced value of the shear layer thickness: 

e = 100 

Vz(r) [1 - Vz(r)] dr = 0.13 . 



Chapter 3: Vortex core dynamics 90 

0.3 (a) 0.4 (b) 

m=-1 

CD; 

0.1 
0.1 

4 5 6 4 5 6 

0.4 (e) (d) 
m;-8 

m;-6 m;-7 m;-9 
0.8 m;-S ;-10 

"1;-4 ~-J-~2 
m;-13 

0.6 m;-14 

CD ; 
0.4 

0.1 
0.2 

4 5 6 
K 

Figure 3.32: Temporal growth rate W 'i retrieved by LTS for the model (3.57) (a): Non-rotating jet q = 0 (b): 
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The Reynolds and Mach numbers are set equal to Re=667, and 111 = 0.3. The range of sw irl 

under investigation is 0 ::; q ::; 2.4. 

As expected, in the absence of rotation, (see fig. 3.32-a) the axisymmetric mode is unsta

ble, together with the azimuthal mode m = ±1, m = ±2, m = ±3 (for the non sw irling case 

positive and helical modes have the same growth rate). The stability analysis of Michalke 

[77] , on the model Vz(r) = ~ [1 +tgh((~ - r)/48)] shows that for 8 ~ 0.2 the most unsta

ble mode is m = ±1, replaced by m = 0 for 8::; 0.1. In the range 0.1 ::; 8 ::; 0.2 Michalke's 

results reveal a close competition between m = 0 and m = 1, consistent with the current 

study. 

The symmetry between positive and negative helical modes is broken when the swi rl 

is introduced; positive modes reduce their growth rate but m = +1 remains unstable up to 

q = 0.4. This is in contrast to the Batchelor vortex, where the positive bending mode are 

subjected to an immediate stabilisation. Conversely, higher negative modes become un stable 

and, when a high level of swirl is applied, q = 2, the curve resembles the ones obtained for 

the Batchelor vortex, with the two limits of the unstable axial wavenumber range increasing 

with m. 

The effect of the swirl on each single mode is better illustrated in fig. 3.33. Beside 
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the stabilisation of the axisymmetric mode, the LTS results also confirm that for the lower 

modes m ::::; 3, it is possible to identify the existence of two ranges of swirl with opposite 

behaviour. The transition occurs at a value of swirl which increases with Iml. Higher modes 

do not stabilise, but the reason seems to be the limited extent of the range of swirl under 

investigation. Following this trend, we should expect a full stabilisation taking place for 

some value of q far beyond the value q = 2.4, in analogy with the Batchelor vortex. 



Chapter 4 

Axisymmetric vortex breakdown 

4.1 Problem formulation 

The assumption of parallel flow, which has permitted the study of the general instability 

mechanisms arising in a swirling flow, is relaxed in the present chapter. The base flow is 

allowed to develop axial gradients under the effect of viscous diffusion. When the swirl ap

plied is particularly intense, the flow is seen to evolve into vortex breakdown. This evolution 

is analysed in the present chapter under the hypothesis ofaxisymmetry, i.e. based on a model 

which is unable to capture helical instabilities. It is important to recall the general theoretical 

view [26,57,59,60] according to which vortex breakdown is essentially axisymmetric, hut 

many of its manifested features may be eventually modified or even overwhelmed hy sec

ondary asymmetries. The axisymmetric assumption must not be considered as a limitation, 

but as the proper tool for the current investigation. 

We discuss the evolution of a swirling flow initially one-dimensional and exhibiting a 

zero radial velocity everywhere. The axial and azimuthal velocity components are defined 

piecewise for the regions inside and outside a characteristic radius it, respectively. Here

after dimensional quantities are indicated by a tilde. Assuming as reference length the core 

radius R and as reference velocity the free-stream axial velocity Vz,oo , the non-dimensional 

velocity profiles have the following analytical expressions: 

{ 
Sr(2 - r2) O:S: r :s: 1 

VB 
Sir r2:1 

o 

{
a + (1 - a) r2(6 - 8r + 3r2) O:S: r :s: 1 
1 r2:1, 

where the swirl number S and the coflow parameter a are defined as: 

S = 

92 

(4.1) 
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a = 

The swirl number, which is different from the q parameter of the Batchelor vortex, repre

sents the ratio between the azimuthal velocity at the edge of the vortex core and the axial 

free-stream velocity. The coflow parameter is the ratio between the axial velocity at the axis 

and the axial free stream velocity. Properties of these profiles are shown in figure 4.1: ba

sically the first of (4.1) describes a vortex core embedded into an irrotational flow with the 

swirl number S representing a measure of the vortex strength. Setting a greater or less than 

one in the third of (4.1), one obtains ajet-like or a wake-like behaviour for the axial velocity 

support. Same velocity profiles have been first investigated by Grabowski and Berger [35 J 

and more recently by Ruith at at. [88] for incompressible flows. As discusseed in the intro

duction, our choice was motivated by the interest in a further investigation into some of the 

results obtained by Ruith et at. [88]. 

For our compressible code, we need to specify two thermodynamic initial conditions. 

We assume density constant in all the domain and pressure is fixed to satisfy the radial mo

mentum equation. The reference density is the constant density p, the reference pressure is 

twice the free-stream dynamic pressure pV~ and the reference temperature is the temper

ature on the axis. Thus, exploiting the state equation (2.4), the thermodynamic conditions 

initially assigned are 

p 1 

T(r) 1 + "1M2 r VB
2 

ds 
io s (4.2) 

T(r) 
"I~M2 ' 

p(r) = 

where M is the Mach number on the axis. In all the cases presented, the Mach number is 

kept constant in all the simulations and equal to M = 0.5. The chosen value represents a 

good compromise to get a relatively small integration time step remaining well below the 

transonic regime. 

Direct Numerical Simulations of axisymmetric, highly swirling flows are widely avail

able in the literature, but the Reynolds numbers studied are always quite moderate (Re 

:::; 5000). In addition, most of the computational studies refer to swirling flows in inviscid 

pipes and nozzle, where geometrical contraints and flow divergence strongly affect the de

velopment of vortex breakdown [1, 7, 19,41, 69]. Fewer results analyse the phenomenon in 

the absence of an externally-imposed pressure gradient, where the breakdown results from 
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the diffusion and convection of vorticity away from the vortex core. In our study, we mainly 

focus on open jets and wakes, as we believe it's a better way to detect the fundamental 

mechanism, and in particular to show properly wave characteristics which otherways would 

be less recognisable [59]. 

Following reference [88], the computational domain has been chosen with streamwise 

and radial extent Lz = 20 and Lr = 10, respectively. To reflect the physical situation of a jet 

in an open domain, density and velocity are kept constant at the inflow boundary according 

to (4.1) and the first of (4.2); non-reflective conditions are applied at the open sides and 

a symmetric boundary is imposed on the axis. In agreement with what was reported by 

Lopez [69], we have found that the level of resolution required drastically increases when, 

for a fixed Reynolds number, the flow evolves into breakdown. The region of reversed flow 

manifests large gradients in both axial and stream wise directions, which may not be fully 

resolved, as often evidenced by the presence of "wiggles" in the flow field. Table 4.1 reports 

the number of grid points adopted for different Reynolds number cases. 

The adopted resolution is higher than that employed in previous studies, and it has 

been found more than sufficient to guarantee a good grid convergence. 

Table 4.1: Grid resolution used for spatial axisymmetric DNS at different Reynolds numbers. 
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4.2 Physical observations 

In this section we present results related to 111 = 0.5, Re=200, S = 0.95 and a = 1. This 

case will be later used as a reference for successive parametric studies. The axisymmetric 

columnar initial conditions described by (4.1)-(4.2) are a solution of the steady Euler equa

tions. The initial evolution of the flow is therefore triggered by viscous diffusion, which 

reduces the axial vorticity producing a negative axial gradient of azimuthal velocity close to 

the inflow, where all the velocity components are kept constant (see fig. 4.2-a). This is the 

mechanism breaking the one-dimensionality. In these preliminary stages the axial gradients 

are much less than the radial, thus the interaction between pressure and swirl can still be ex

amined considering the balance of the centrifugal acceleration and the restraining pressure 

force [39]: 

ap pvj 
ar r 

(4.3) 

The pressure is constant in the far-field, hence, differentiating along z, integrating from 

r = 0 to r = Lr. and neglecting the compressibility effects, we find: 

(ap ) _ l'=Lr 1 aVe
2 _ ['=Lr a (£2) - --p --dr--p --az ,=0 ,=0 r az . ,=0 az r3 

dr- . (4.4) 

An adverse pressure gradient must therefore be established on the axis near the inf10w (fig. 

4.2-b) due to negative gradient of circulation L = rVa. As a consequence, the axial velocity 

has to decay, and this is clearly shown in fig. 4.2-c. Note that the term go ~~ in (4.4) repre

sents the production of azimuthal vorticity by vortex tilting (eI'r. equation (3.40) of previous 

chapter). 

Figure 4.3 shows the temporal evolution of the azimuthal vorticity ~o. Since a = 1, the 

initial columnar vortex doesn't exihibit azimuthal vorticity. At Time=2 localised negative 

vorticity appears near the inflow and grows in mangnitude as the calculation goes on. This 

negative vorticity has to be associated with the established gradient of circulation and ac

counts for the same gyroscopic effect discussed when we have studied the response of the 

perturbed Rankine vortex (cfr. §3.2.3). In that case, the subsequent decay of axial veloc

ity was found to offset the initial circulation gradient by mean of vortex stretching and the 

resulting balance gave rise to a periodic oscillation in the center of the tube. Here this mech

anism cannot take place because the inlet conditions preserve the initial circulation and the 
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Figure 4.2: Early' evolution of the Re=200 S = 0.95 case. Stream wise evolution at Time=2 of (a): azimuthal 
velocity near the axis, (b): pressure on the axis, (e): axial velocity on the axis, (d): radial velocity near the axis. 

wave motion is inhibited. Conversely, the production of negative azimuthal vorticity causes 

the core to expand locally_ To satisfy mass conservation, a significant amount of radial flow 

has to develop (fig. 4.2-d)- Following the "positive feedback" discussed in Brown and Lopez 

[12], the local expansion reinforces the whole process, because fluid with less circulation is 

carried to larger r, producing a larger negative gradient of Ve. In the vorticity equation, this 

process is modelled by the stretching term v,/,". 

In addition, the viscous diffusion becomes effective for a larger axial extent, produc

ing an extended distribution of negative vorticity ~!I throughout the domain (see fig. 4.3). 

When sufficient ~e has been produced, the upstream velocity induced becomes so strong 

that a stagnation point appears on the axis. The flow separates and a region with recircu

lating fluid is formed. Figure 4.4 shows the instantaneous streamlines computed at different 

times: at Time=20, the small amount of negative vorticity produces a negligible expansion 

of the core, so that the stream surfaces appear essentially cylindrical. At Time=60 the How 

is nearly stagnating and a pronounced bulge is visible between z = 2 and z = 5. In order 

to establish a precise criterion, the breakdown is identified by the existence of a stagnation 

point, and under this condition the flow is said to be globally subcritical, where the term 

"globally" is used to indicate the difference from Benjamin's critical state which represents 
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Figure 4.3: Re=200 S = 0.95 case. Time evolution of azimuthal vorticity. Time=400 corresponds to the 
final steady solution. 

a local concept (§3.2.4). Once the breakdown has occurred, the recirculating region grows 

in size and undergoes a small upstream excursion. The flow slowly evolves toward a steady 

solution, with the vortex bubble anchoring its position at some distance from the inlet. 

It is now of interest to analyse in more detail the flow field corresponding to the final 

steady solution reached. Figure 4.5 reports the streamwise evolution of the velocity compo

nents and pressure. The circumferential velocity is very low within the vortex bubble. This 

low level of circulation is a consequence of the large radial outflow. The local reduction of 

swirl is associated with a local peak of pressure on the axis. It can be noted, however, that the 

adverse pressure gradient in the recirculating region is very small . Therefore, due to their 

inertia, particles which move over the bubble are subjected to an inward motion (see the 

negative radial velocity between z = 3 and z = 5). In order to preserve angular momentum, 

this inward motion must be associated with a local increase of azimuthal velocity, and, to 

satisfy continuity, with an axial acceleration. The whole process tends to restore in the wake 
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the final steady solution. 

of the bubble conditions similar to those ahead of the bubble. Indeed, starting from z r::: 5, 

viscous diffusion of axial vorticity again becomes important; an adverse pressure gradient 

is established, enhancing axial decay with subsequent outward motion. This should account 

for the concentrated positive vorticity located under the vortex bubble and revealed in the 

third of fig. 4.3. In some sense, the phenomenon tends to repeat itself on a smaller scale. The 

key-point is that, although viscous diffusion represents the driving force responsible for the 

pressure gradient, the basic mechanism is inviscid and related to pure inertial effects. It 

is then expected that increasing the Reynolds number or the swirl number would lead to 

possible wave trains, with the existence of more than one region of recirculating flow. In 

all these observations, it is remarkable that basic concepts of vorticity can be used to get 

a qualitatively phenomenological description, in accordance with what previously done for 

the linear Kelvin waves. 
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4.3 Effect of the swirl 

A first parametric study was conducted in order to elucidate the effect of the swirl. A series 

of calculations was performed increasing the swirl number in the initial solution (4.1 )-(4.2) 

up to S = 1.9. The other parameters were held constant and equal to those prescribed in 

previous section for the case S = 0.95. We remark that the initial flow field assumed for any 

calculation is described by (4.1). The response to a sequential increase of the swirl ratio will 

be discussed in section 4.5. 

All the computations have reached a final steady solution; convergence was checked moni

toring the rms, a global measure for the right hand side of the continuity equation, defined 

as 

(4.5) 

where the summation is extended to all the grid points N. The rms is the Holder mean value 

of the L2 norm. Although it does not strictly represent a norm, it is generally preferred since 

it is monotonically decreasing with the number of points. In addition, the minimum axial 

velocity reached in the flow field was also considered to measure the unsteadiness of the 

flow. Figure 4.6 reports the convergence histories of rms and (Vz )min for some of the cases 
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studied. 

The flow field of the corresponding final steady solutions are reported in figure 4.7. 

The critical value for the flow to stagnate has been found S = 0.88. Under this condition, 

however, negative axial velocity is reached only on the centerline, and no counterf~ow is 

found (not shown). The recirculating region appears visible at S = 0.89 when the breakdown 

is manifested in its weakest form. 

As the swirl increases to S = 0.92, the recirculating region is enlarged and moves 

upstream. The process is continued by further increasing to S = 0.95 first and then to 

S = 1.1: vortex breakdown becomes more intense (note also the minimum axial velocity 

which slightly decreases in fig. 4.6) and its upstream location moves closer to the inllow; 

unable to move further upstream, the vortex bubble starts to shift radially, a behaviour which 

becomes even more evident at S = 1.3. In the latter case, it can also be noted how the flow 

blows in the negative axial direction below the bubble. According to Spall et at. [94], the 

inlet boundary conditions force the vortex breakdown which in physical situations would 

continue to propagate upstream, emphasising the fact that the inflow conditions may be 

already highly subcritical at this level of swirl. We agree on this point, but it's worth men

tioning that the experiments reported by Sarpkaya [93] show a similar behaviour, with the 

fluid that does not enter in the front of the bubble but moves over it before entering from the 

back. The inflow boundary does not permit upstream wave propagation, but as also pointed 

out in [88], the need for prescribing inflow conditions is not a prerogative of numerical 

simulations only. 

Convergence histories reported in figure 4.6 reveal the different time scales on which 

the phenomenon takes place when varying the swirl. In all the cases studied, a satisfactory 
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steadiness is reached after 200 non-dimensional time units (fig. 4.6 -a), a result consistent 

with a simple non-dimensional analysis based on characteristic quantities: the time nec

essary for the viscous effects to be active on a length scale i5 is t d = O(?), whereas a 

characteristic time scale for convection is tc = O( f ); the ratio between these two quantities 

gives ~ = 0('5;: = Reb). As pointed out by Leibovich [60], the characteristic viscous length 

appropriate to any swirling flow is the vortex radius (note indeed that the inlet conditions 

defined by (4.1) are close to describing an axial vorticity distribution with a plug profile) so 

that tc = 0(1). It turns out that in order to let viscous diffusion develop fuIIy, it has to be 

td = O(Reb). 

On the other side, the breakdown process occurs on a time scale which depends on the 

swirl (fig. 4.6-b). Increasing the swirl produces a much more rapid burst of the vortex core. 

At S = 1.1 and S = 1.3 the flow stagnates before Time=50, and the minimum axial veloc

ity quickly settles on a constant value. The remaining unsteadiness is therefore associated 

with the diffusion of the vortex tube, and not with the vortex breakdown phenomenon. Con

versely, for the critical case S = 0.89, breakdown and diffusion occur on the same temporal 

scale, a result which highlights how, even working with the simpler axisymmetric model, 

detection of the critical level becomes quite demanding at high Reynolds numbers unless 

other factors are introduced to support viscous diffusion in its role. This can be achieved 

for example by imposing a free-stream adverse pressure gradient. In that case the total ax

ial pressure gradient would be the sum of a vortex tilting contribution and the free-stream 

contribution; equation (4.4) has to be replaced by: 

(Op) (op) l r
=Lr 0 (L2) d7". 

o Z r=O = + 0 Z r=oo - P r=O 0 Z 7"3 
(4.6) 

, 
In the absence of any additional driving force, if the inlet conditions are already locally 

subcritical in the sense of Benjamin, an arbitrarily small flow divergence induces localised 

negative azimuthal vorticity stagnating the flow. If the inlet conditions are locally supercrit

ical, it's necessary to wait for the viscous diffusion to render the flow field 10caIIy critical 

somewhere, in order to get a global subcriticality. Considerations developed in the previous 

section regarding the inertial effects of the fluid assume particular relevance here. Together 

with a more intense breakdown, higher swirling cases present a second expansion of the 

stream surfaces. At S = 1.3, this leads to breakdown the flow again, generating another 

recirculating region, which however appears to be morphologically very different. In ad-
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Figure 4.8: Steady solution obtained at S = 1.9 presenting multiple breakdown (two corotating vortices) 
with a double-celled structure (two counter-rotating vortices) of the first breakdown. 

dition to the multiple breakdown configuration, i.e. the formation of corotating vortices, 

larger swirl may be characterised by vortex breakdown with a double cell structure. Figurc 

4.8 shows the steady state corresponding to S = 1.9: a counter-rotating vortex is formed 

below the first bubble at z ~ 2. Double-celled structures have also been found numerically 

in references [88, 95], and in the experiment of Faler and Leibovich [27]. Ruith et al. [88J 

advance the hypothesis that it might be a manifestation of centrifugal instability, but they 

do not provide strong evidence for this. Application of the Rayleigh criterion based on the 

radial circulation distribution shows that instability should occur also at lower swirl levels. 

It is possible that it is merely a shear effect, also enhanced by the presence of the second 

vortex bubble, the one with bigger axial extent in fig. 4.8. 

4.4 Effect of Reynolds number 

Results of the present section need to be supplemented by those of §4.5, when the de

scription of the bifurcation diagram will provide a more complete understanding about 

the dependence on the Reynolds number. Figure 4.9 shows steady solutions obtained at 

S = 0.95, M = 0.5,0: = 1 varying the Reynolds number. The results confirm the tendency of 

the swirling flow to burst in a series of bubbles sequentially smaller in size. The appearance 

of these bubbles corresponds to successive solutions bifurcating as the control parameter Rc 

is increased. At Re=50, the final steady solution doesn't show any stagnation point; solution 

at Re=200, has been previously discussed and shows a well defined region of recirculating 

flow followed by a very light swelling in the lee. The swelling becomes a further break

down at Re=400 while the first vortex bubble remains anchored at the same axial position 

z ~ 2, but its morphology undergoes a light clockwise rotation together with a radial shift. 

The same characteristic with the flow starting to enter the bubble from the back, has been 
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previously when describing the effect of the swirl, but in that case it was enforced by the up

stream motion ofthe bulge entering in competition with the inlet boundary conditions. Such 

a mechanism is absent here, and seems to be associated to the pressure gradient imposed by 

the second breakdown growing in the wake. Indeed it seems to repeat for the second bubble, 

as soon as a third bulge, already visible at Re=800, gives rise to a third recirculating region 

at Re=1600. 

The non-dimensional time for each simulation was fixed Time=Re; the convergence 

was satisfactory for Re <800 while in the higher Reynolds number cases the rms could 

be reduced by only two order of magnitude. Chen [15] reports temporal periodicity in his 

axisymmetric incompressible calculations at Re=IOOO. Up to Re=800 the convergence diffi

culties are deemed inherent to the use of DNS at these Reynolds numbers. However, some 

unsteadiness has been found at Re= 1600, with the second and third recirculating regions 

unable to anchor completely their position, and experiencing small axial excursions. 

Indications given by the present results are that in the inviscid limit, a possible solu

tion of the axisymmetric Navier-Stokes equations consists in a wave train superimposed on 

the base flow. Experimental evidence of the existence of wave trains is quite problematic: 

we will see in the next chapter that as soon as the Reynolds number is increased, three

dimensional instabilities in the wake of the bubble start to develop on a time scale which 

is comparable, if not shorter, than that of breakdown. They can strongly modify the ax

isymmetric structure, so that, using the words of Sarpkaya [93], 'only the rudiments of the 

wave train can be observed'. It is also of interest that these waves are sequentially smaller 

in size, and this recalls the dispersion mechanism which we have analysed for the linear 

Kelvin waves (cfr. §3.2.2). In that case we found that the fastest modes are those with less 

radial structure and a lower group velocity competes to higher wave-number k. An exten

sion of this property to large amplitude waves, would provide a scenario where a bigger 

wave packet can propagate faster followed by slower, smaller packets. The major difliculty 

of this wave theory, originally poposed by Leibovich [59, 60], is the fact that the multi

ple breakdown does not develop as a single unified event, but is manifested as sequence of 

events associated with the evolution of the base flow. In other words, as will be shown in 

next section, each vortex breakdown appears to be created as a consequence of the structural 

change generated by the precursor breakdown state. 
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Figure 4.10: Computed bifurcation diagram at Re=IOOO (squares), Re=400 (triangles) and Re;"'200 (circles). 

4.5 Bifurcation diagram 

Results presented so far have been obtained considering the evolution of a swirling flow 

which is initially columnar (tz = 0). During the study, we were mainly focused on analysing 

the conditions corresponding to the different steady solutions obtained by our computa

tions. In the present section; we discuss the dynamical evolution of the flow subsequent to 

a sequential variation of the swirl ratio. Following Herrada et at. [41] , this will serve to 

determine numerically the bifurcation diagram discussed in the introduction, and to find out 

whether or not possible hysteresis loops exist. In what follows we will make reference to fi g. 

1.2 of chapter 1: by 51 we denote the level of swirl necessary to get breakdown (i.e. when. 

the minumum axial velocity is negative); the critical point 52 will denote the value of swirl 

when the flow "recovers" columnar conditions starting from a breakdown state. We discuss 

results relative to Re=200, Re=400 and Re=lOOO, as we consider these cases representative of 

the three different conditions in which breakdown may evolve. For each case treated, branch 

(I) of the bifurcation diagram is obtained by increasing the swirl number until a stagnation 

point appears. Branch (II) is then derived assuming the steady state reached at the critical 

level 5 = 51 as initial condition for a new run with a slightly smaller value of 5. The process 

is then iterated until the quasi columnar configuration is established again . 

The computed bifurcation diagram is presented in figure 4.10. At Re=200, as the swirl is 

increased, the flow field presents a very gradual change with a localised perturbation which 

develops in the core. The stagnation point is reached at 5 = 0.89, and the corresponding 

flow field was found to match perfectly the one reported in the top of fi g. 4.7. The situation 

is very different at Re=400, where the critical level 51 assumes the meaning of threshold 
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solutions found on branch (II). 

value between two completely different flows: for 8 < 8 1 the flow is quasi-columnar with 

negligible axial gradients, while, for 8 2 Sl a drastic and sudden change in structure 

takes place. This is clearly highlighted in fig. 4.1 I-a, reporting the flow evolution when the 

value 8 1 = 0.9 is reached: at Time=200 (here Time=O is when the change of swirl from 

8 = 0.89 to 8 = 0.9 has been applied at the inflow) a perturbation arises close to the 

outflow boundary, then it moves upstream growing in amplitude and leading to a region of 

separated flow at appoximately Time=300. A final steady state is reached at Time=500 with 

the bubble located near the inflow and a swelling visible in the wake. A similar process 

develops at Re=IOOO (fig. 4.12-a). Here, as the first wave moves upstream, another wave 

leads to a second breakdown: the final quasi-steady configuration presents the wave train. 

In light of this behaviour, and also considering the results of section 4.4, we can deduce 

important conclusions. First, at high Reynolds numbers the breakdown always manifests 

itself as a wave train, independently of the fact that the swirl adopted is far from the critical 

level. 

The critical point at Re=lOOO is 8 1 = 1 vs a value S\ = 0.9 found at Re=400. On the 

other hand, the definition of the breakdown state employed here leads to the observation that 

Re=400 and Re=200 have approximately the same critical value. This evidence, which may 
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appear as an inconsistency, is actually the consequence of a subtle role played by viscosity: 

if viscosity has to drive toward criticality, the expected trend should be that manifested at 

higher Reynolds, and the fact that the wave initially develops far downstream is a further 

confirmation of this. The key-issue is that at Re=200, 51 does /lot represent a real threshold, 

but it's a just a definition. Localised disturbances are already present at S < .'J'r, as can be 

understood from the simple observation that the corresponding branch in fig. 4. I 0 goes to 

zero gradually. In practice, these results suggest that a perturbation which at high Reynolds 

number would grow and breakdown the flow, at low Reynolds number remains "trapped" 

by viscosity. 

Now we investigate the flow behaviour when the swirl is sequentially decreased below 

the critical value. For the Re=400 case, (see fig. 4.1 I-b), the bubble becomes smaller and 

moves slightly upstream at 5 = 0.88. The region of reversed flow disappears at S = 0.87, 

however, a well pronounced swelling of the streamlines is still present, indicating that, al

though there's no breakdown, a wave of finite amplitude is still localised. The wave under

goes a small shift of its axial position before disappearing. The Re= I 000 case is more inter

esting because it clearly shows the wave convected downstream from the main flow. When 

the second folding point 5 = 0.82 is reached, a light swelling is located exactly at the outlet, 
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thus the re-establishment of the columnar configuration is associated with the expulsion of 

the wave from the computational domain. We believe this case to be quite well representa

tive of the inviscid limit analysed theoretically by Wang and Rusak [10 I]. When the swirl is 

decreased below the critical value 51, the main flow reduces its capability to sustain waves 

and the vortex bubble is pushed away weakened. In a process where the dissipative effects 

of viscosity are negligible, one expects the wave resulting from the downstream migration 

to be located where it was originated when the first point 51 had been reached. Although 

not rigorously proved, this idea seems to be supported by the Re=lOOO case: the instanta

neous streamlines at Time=180 and Time=350 present an interesting resemblance with the 

steady streamlines at 5 = 0.82 and 5 = 0.9, respectively. The unsteady solutions are soli

tons growing in the main flow and moving upstream while the steady solutions represent 

waves of approxiamtely the same amplitude standing at approximately the same position 

because of the reduced level of swirl. Viscosity renders the process irreversible: for inter

mediate Reynolds numbers (Re=400 case) the bubble can reach the inlet at 5 = 51 but not 

the outlet at 5 = 52 while at low Reynolds numbers (Re=200 case) the viscous diffusion is 

so high that the wave is trapped where it develops. 

These differences are perfectly reflected in the way the bifurcation diagram is modi fed: 

the existence of multiple steady solutions presented by the bifurcation diagram in the range 

52 < 5 < 51 is associated with the existence of developing solitons, and disappears when 

such dynamics are absent (low Reynolds). Different solutions on branch (II) represent a 

standing wave positioned at different axial positions. The meaning of 51 is associated with 

the critical level first introduced by Benjamin [6] while numerical simulations identify 52 

as a critical point for finite ampitude waves. 

4.6 Effect of the coflow 

A further parametric study was conducted to analyse the effect of the eoflow parameter D:. 

In particular, two experiments were conducted, guided by the consideration that the coflow 

parameter measures the excess or defect of axial velocity inside the vortex core; hence, a 

wake-like profile is expected to enhance the capability of the base flow to sustain waves 

(i.e. driving a globally subcritical flow toward criticality), whereas a jet-like profile should 

activate the inverse tendency. 

In the first experiment we considered a combination of parameters known to produce 
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a large recirculating region, namely S = 1.1, Re=200, Q = 1, and started to increase the 

coflow. Calculations were not performed sequentially, but results of section §4.5 guarantee 

the independence on the initial conditions at the Reynolds numbers employed here. Results 

are reported in figure 4.13. It appears evident that as the coflow is increased, the vortex 

bubble moves downstream and reduces in amplitude. A radial drift can also be observed at 

o = 1.4 and Q = 1.6, a behaviour which is quite surprising, considering that this effect has 

been always associated with a strengthening of the vortex bubble. At Q = 1.8 the bubble 

is again near the axis, and positioned in the center of the computational domain. Finally, at 

o = 2, the streamlines become slightly diverging but no stagnation point exists. 

In the second experiment we carried out the opposite operation. We considered a case 

for which no breakdown was detected, namely S = 0.84, Re=200, 0 = 1, lI1 = 0.5 and 

evaluated the final steady solutions obtained reducing o. As expected, (sec fig. 4.14), the 

defect of axial velocity leads to breakdown of the flow. Note however, that the size of the 

bubble remains very small, a result qualitatively consistent with the consideration that a 

non-uniform distribution of axial velocity renders the concept of criticality local also in the 

radial direction [59, 60]. Reducing 0', the centerline axial velocity is decreased, but for the 

family of profiles used here the axial flow rapidly approaches the free-stream value within 

the vortex core. The base flow may be therefore susceptible to breakdown on a reduced 

radial scale. 

4.7 Testing a simple criterion 

There have been several attempts in the past to establish simple criteria for the onset of 

breakdown. In many cases, they aimed to determine critical values of the swirl ratio or even 

the helix angle of velocity (see the criteria of Spall et at. [94] based on the local Rossby 

number or the even simpler Mahesh's condition based on a ID momentum equation [72]). 

Vortex breakdown appears to be a too complicated phenomenon and dependent on too many 

parameters to have a general criterion. In particular, the experimental and numerical profiles 

useful for any comparison are available only upstream and downstream of the breakdown. 

Ideally, one should require profiles that would have been at the breakdown region, had 

the breakdown not occurred, which is clearly something impossible to obtain. In addition, 

Lopez [69] remarks that the existence of multiple solutions in a specified range of swirl 

number renders the whole question meaningless, since the state of the vortex flow depends 
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also on its history. 

In the present analysis, we focus on the criterion first suggested by Jumper et al. [47); 

the reason of this choice is two-fold. First, in some sense it appears to be more global, as 

the derived conditions require knowledge of the state of the flow upstream and downstream 

of the vortex flow; moreover, it is more inherent with what we believe to be the mcchanism 

of an incipient breakdown: wave propagation associated with the twisting of the vortcx 

tube. Jumper et al. consider a simple inviscid model made of a vortex tube defined by 

the Rankine velocity profile (cfr. §3.2.1) superimposed on a uniform distribution of axial 

velocity. The swirling flow evolves from an upstream vortex radius a to a downstream 

vortex radius b, with b > a. In the model, both the asymptotic conditions are described by 

the Rankine vortex with the same angular velocity n, the only difference being the edge of 

the core. Following the analysis of Batchelor [4], the divergence of the vortex tube Icads 

the axial and the tangential velocity components to evolve as 

Vz(r) 
Vz(z = 0) 

Vg(r) 
rlr 

(4.7) 

where k = 2nlvAz = 0) and Jo, .h are Bessel functions. Vortex breakdown is postulated to 

occur when the centerline axial velocity approaches zero. This leads to write the following 

simple condition between the radius ratio bla and the vortex strength (here measured by k): 

~ -J - 2J1 (kb) 
b - 1 kb' (4.8) 

The above criterion has been tested a posteriori using the results of our DNS. Specifically, 

the inlet velocity profile at z = 0 is modelled as Rankine vortex assuming n = [Vol",,,, 
r,n/i.1 

where rmax represents the radial location where the azimuthal velocity achieves its max

imum [Velmax at the inlet (this corresponds to a in (4.7». Similarly, b is evaluated as the 

radial position where Ve is maximum at the outlet. All the terms in (4.7) can then be easily 

calculated. 

Application of the criterion is reported in fig. 4.15 for a low Reynolds number Rc=200 

and for a high Reynolds number case Re=1000. Note that when no breakdown occurs, the ra

tio alb in (4.8) exceeds the right hand side, hence the evaluation of the criterion requires that 
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Figure 4.15: Application of the vortex breakdown criterion to the Re=IOOO case (squares) and Re=200 case 
(circles). 

their difference, hereafter named q becomes negative if criticality is reached when moving 

in the swirl number space. The result provides interesting information. For the high Rey

onlds number case q becomes negative at S = 0.99, while the DNS has found breakdown at 

S = 1: the difference can be considered very small, considering also that the velocity pro

files used for simulations differ from the Rankine vortex. The comparison is much worse 

for the Re=200 case. Indeed, the value of q is already negative at S = 0.84 whereas com

putations have revealed the first appearance of the stagnation point at S = 0.88. The resull, 

only partially satisfactory, can however offer a link with previous observations. The inviscid 

model used here accounts for the diffusion of the vortex tube by means of the two edges {/" b, 

but it does not account for the effect of viscosity on the wave evolution. At higher Reynolds 

numbers, as soon as the threshold is reached, the wave evolves to generate breakdown. At 

lower Reynods numbers, the wave is trapped, in accordance with the resulls discussed in 

4.5. It turns out that the model of Jumper et at. may "read" the condition at S=0.8 as critical, 

because the trapping mechanism is completely invisible to it. 

Lopez [69] appears one of the few who arose the question of a proper definition for 

breakdown. The appearance of a stagnation point may not be the best classification in spite 

of the elusive role of viscosity, which, if on the one hand drives toward criticality, on the 

other does not permit the vortex bubble to be fully manifest. 



Chapter 5 

Three-dimensional direct numerical 
simulations 

5.1 Results at Re=200 

We begin describing low Reynolds number cases, Re=200, for which other numerical results 

are available [88]. This will serve to validate the code and to illustrate the sequence of 

events characterising the whole process. The inflow velocity profile is still given by (4.1). 

If not specifically stated, the Mach number is kept constant and equal to M = 0.5, while 

the coflow parameter is a = 1 corresponding to a uniform axial velocity profile without 

axial shear. Calculations were performed using the explicit time integration method with 

the numerical parameters reported in table 5. I. 

5.1.1 Helical vortex breakdown 

Figure 5. I shows the temporal evolution of the flow field for the case S = 1.1. The flow field 

is visualised by means of streaklines obtained by releasing particles (without mass) from 

six positions located at the inflow boundary (left side), on a circle of radius T = 0.1. The 

particles are coloured according to their emission time. As synthetically illustrated in the 

bifurcation diagram of fig. 4.10, the amount of swirl introduced is far above the critical level, 

i.e. the inflow profile is already subcritical to axisymmetric perturbations. Consequently, the 

initial columnar swirling jet rapidly decelerates in the vortex core near the inflow and the 

vortex bubble is formed in quite a short time. 

In order to render the computation effectively three-dimensional, a small random per

turbation in the azimuthal component of velocity is superimposed on the initial conditions. 

The perturbation is located on a circle of radius TO = 0.2 in the cross sectional plane Zo = 0.5 

and feeds energy into all the azimuthal wavenumbers compatibly with the cut-off fixed by 

115 
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Lz Lr no '11,- no I b,. I f' I 
20 10 256 95 64 I 0.8 I 0.3 I 

Table 5.1: Numerical parameters used for spatial DNS at Re=200. 

Table 5.2: Linear growth rates measured at S = 1.1 and S = 1.3. Note the dependence (;J,n ~ m WI. 

the () discretisation. Each component of perturbation does not exceed the value 10-4 . 

The temporal evolution of streaklines (fig. 5.1) reveals that the flow remains axisym

metric until the breakdown has fully developed. Then, once the bubble has formed, a quasi

steady state is slowly reached before the wake behind the bubble becomes unstable to helical 

disturbances. Further confirmation of this is provided by the comparison of the rms history 

relative to the axisymmetric and the 3D calculations (fig. 5.4). For the case under investiga

tion, S = 1.1, the two curves are approximately the same until Time=220 when the instability 

starts growing. Analogous diagrams are plotted for other swirl number cases. The effect of 

the swirl is clearly destabilising: At S = 0.95 the axisymmetric and 3D solutions are the 

same until Time=400; conversely, increasing the swirl to S = 1..3 anticipates the transition 

toward unsteadiness indicating a higher receptivity of the axisymmetric breakdown state. 

The flow remains helically stable at S = 0.89: a snapshot of the streaklines at Timc=XOO 

is reported in fig. 5.2 and shows that the axisymmetric breakdown state remains unperturbed. 

Loss of stability has also been found at S = 0.9, although with an extremely small growth 

rate, so we have to assume that for this set of parameters (Re=200, M = 0.5, n = I) the 

critical point for three-dimensional instabilities to arise is in the range 0.89 < .') < 0.9. 

Ruith et at. [88] have found an identical result for the incompressible case. Above this value 

the flow field evolves toward a limit cycle represented by the saturated state; these global 

modes are self-sustained, i.e. obtained in the absence of external forcing. The limit cycle is 

therefore a manifestation of a HOPF bifurcation [24]. 

In the axisymmetric calculations the recirculating region was found at S = 0.89: this 

suggests a causal relation between the appearance of localised reversed flow and the ori

gin of the global mode. Tromp and Beran [99] have found a similar behaviour at higher 

Reynolds numbers, when the axisymmetric bifurcation diagram is already composed of 
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Figure 5.1: Re=200 S = 1.1 case. Evolu tion of the axisymmetric vortex breakdown toward a spiral break
down state. 
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Figure 5.2: Re=200 S = 0.89 case. The axisymmetric vortex breakdown remains helically stable. 

multiple branches. Their numerical simulations suggest that the limit point S1 is c lose to 

that associated with the loss of stability to 3D disturbances. 

Figure S . S~a shows the time history of the first four azimuthal harmonics for each ve

locity component at a control station fixed in the wake of the bubble, namely z = 5, r = 0. 2. 

The plot is on semi-log scale to highlight the exponential growth rate. We have deliberately 

chosen this local diagnosis rather than monitoring integral measures because it provides in

formation to 10caHse the axial position where the instability originates. The linearly unstable 

mode is m = 1; at Time=300 its amplitude is big enough to render the nonlinear interactions 

with itself no longer negligible, and higher m odes start growing in a cascade process. Satu

ration is reached at approximately Time=420. At this stage, the dominant mode sti ll remains 

m = 1 and the corresponding snapshot of the streaklines (the 3rd of fig. 5.1) reveals a flow 

field perturbed up to the vortex bubble, which, however, remains well confined within an 

axisymmetric region. 

The global character of the instability is illustrated in figure S.S-b , which shows the 

temporal evolution of mode 1 at different axial positions. The growth rate is identical but 

the perturbation seems to originate in the proximity of the bubble, where the ax ial shear is 

stronger. The definition of growth rate for the generic azimuthal mode m is given by 

where qm is the generic m Fourier coefficient of any variab le, while tl and t2 are different 

times taken within the linear regime. For this specific case we have fo und WI = 3.9 . 10- 2 . 
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Figure 5.3: Re=200 S = 1.3 case. Spiral breakdown state with the appearance of double-helical slruclures. 
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Figure 5.4: Unsteadiness of the flow. Comparison between axisymmetric (dash line) and three-dimensional 
(solid) simulations. (a): S = 0.95 (b): S = 1.1 (c): S = 1.3 (d): S = 1.5. 

Ruith et al. [14] found WI = 6.63· 10-2 with the same velocity profiles but for an incom

pressible flow. The period of oscillation agrees very well, T=5.5, and the streaklines reveal 

a very similar spatial structure with an axial wavelength,=" 7. A parametric study conducted 

on the Mach number (cfr. §5.6) suggests that the difference in the growth rate has to he 

attributed to the damping effect of compressibility. Note that the growth rate for the mode 

m = 2 is approximately double, ensuring that it is caused by a nonlinear interaction, and all 

higher harmonics m > 1 reach lower saturation levels. 

Additional information can be retrieved by considering the vorticity amplitude iso

surface (fig. 5.7). In the proximity of the bubble, there is a strong background shear which 

renders problematic the detection of the tubular vortex in that region. In the wake, the vortex 

tube is better identified and is seen to revolve around its axis while the instability grows. 

If seen from downstream, the spiral is revolving in the clockwise direction, which is the 

opposite direction of the base flow. However, the perturbation rotates in time with the base 

flow. This is confirmed by the cross section contours of radial velocity (fig. 5.8), which 

clearly indicate an advection in the counterclockwise direction. The instability is therefore 

produced by corotating, counterwinding modes. 

Increasing the swirl number to S = 1.3 leads to a higher growth rate (see fig. 5.6) but 
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Figure 5.5: Re=200 S = 1.1 case. (a): Temporal evolution of azimuthal Fourier coefficients for axial 
velocity (solid), radial velocity (dash) and azimuthal velocity (dash-dots) at the probe z = 5, r = 0.3. (b): 
Temporal evolution of the first azimuthal mode m = 1 for the axial velocity measured at different axial 
positions: z = 5 (solid), z = 10 (dash), z = 15 (dash-dots). 
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Figure 5.6: Re=200 S = 1.3 case. Refer to caption of fig. 5.5. 

other significant differences have not been encountered: the bending mode is linearly un

stable while higher modes are generated only due to nonlinear interaction. This conclusion 

is corroborated by the data reported in table 5.2: in both the circumstances (8 = 1.1 and 

S = 1.3) the fundamental amplitude ql grows with a specific rate WI while higher harmonics 

qm are "slaved", growing with wm ':::: m WI. The saturated state at S = 1.3 is however char-

acterised by an increased energy level of higher harmonics, and the streaklines (see fig. 5.3) 

reveal the transient appearance of double-helical structures superimposed on a dominant 

helical mode. 

5.1.2 Double-helical vortex breakdown 

A substantial change in the three-dimensional response has been found at S = 1.5: the 

axisymmetric breakdown state evolves initially toward a spiral, but at later stage switches 

into a double-helical breakdown state (fig. 5.9). The vortex bubble becomes bigger in size 
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Figure 5.7: Re=200 S = 1.1 case. Iso-surface of vortici ty magni tude. I~I = 1.57. 
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Figure 5.8: Re=200 S = 1.1 case. Cross sectional contour of the radial veloci ty component at different axial 
positions. 

and the particles move in it before being ejected. At S = 1.3, the partic les were already seen 

to enter the bubble fro m the back, but their behaviour appeared more regul ar. 

The growth rates are reported in fig . 5.1 0: it can be noted that mode I grows regularl y 

and smoothly while higher modes present a more complicated behaviour. H igher resolu

tion has not changed this trend: the same calculati on was conducted using all the parame

ters reported in table 5.1, with if = 0.15 which corresponds almost to avoiding the fa ll of 

wavenumbers in computing the azimuthal derivatives, bu t no difference was detected . 

Referring to both the S = 1.1 and S = 1.3 cases (fig. 5.5 and 5.6) , it can be seen that 

the growth of m = 2 becomes visible in the scale adopted when the ampli tude of mode 1 

is approx imately ql = 0(10- 4), whereas m = 3 becomes visible when q l = 0(10- 3 ) and 

q2 = 0(10-5 ). The same mechanism seems to be refl ected for the current case S = 1.5: the 

indications provided by fi g. 5.10 are actually that modes 1 and 2 are those linearly unstable. 

At Time=2 LO we have ql = 0(10- 3 ), q2 = 0(10- 5 ) and the growth of mode 3 begi ns. Modes 

1 and 2 grow wi th approximately the same rate until Time=230, then the growth rate for 

m = 2 suddenly increases. This transition occurs because the nonlinear production of mode 
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Figure 5.9: Re=200 S = 1.5 case. The axisymmetric breakdown ultimately evolves toward a double-heli cal 
breakdown mode. 
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(b) 

Figure 5.10: Re=200 S =1.5 case. Temporal evolution of azimuthal Fourier coefficients for axial velocity 
(solid), radial velocity (dash) and azimuthal velocity (dash-dots) at different axial positions. (a): z = 5, r = 0.3. 
(b): z = 10, r = 0.3. 
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Figure 5.11: Re=200 S = 1.5 case. Temporal evolution of a single azimuthal Fourier coefficient for the axial 
velocity measured at different axial positions: z = 5 (solid), z = 10 (dash), Z = 15 (dash-dots). (a):m = 1. 
(b):m = 2. 

2 becomes dominant on its linear selection. A careful inspection of figure 5.10 also reveals 

that the irregular character at z = 10 is more pronounced than at z = 5. Moreover, the 

growth rate of mode 1 remains unchanged when moving downstream (fig. S.ll-a), whereas 

it is reduced and anticipated for mode 2 (fig. S.ll-b). In the author's view, this is a symptom 

of the coexistence of different dynamics rendering the whole response less global. 

Surprised by this result, we conducted a new simulation at S = 1.5, but perturbing the 

initial condition with a random signal obtained by duplication (hereafter simply labelled as 

"even" perturbation). As explained in §2.2.2, this allows us to focus on the evolution or the 

even azimuthal modes, which are the only ones initially excited. Since the odd modes are 

automatically excluded from the calculation, the technique permits us to evaluate properly 

whether mode 2 is effectively linearly unstable. From the new run, we also expected indi

cations of the irregular behaviour previously encountered: a possible competition between 

linear and nonlinear effects should now be absent. In addition, assuming as initial flow field 
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Figure 5.12: Re=200 S = 1.5 case excited by an "even" perturbation. Temporal evolution of the azimuthal 
Fourier coefficient m = 2 at different axial positions: z = 4 (solid), z = 6 (dash), z = 8.5 (dash-dot), Z = 11 
(dotted), Z = 14 (long dash), Z = 16 (dash-dot-dot). 

the converged axisymmetric solution, we also exclude the possibility that some irregular

ity might be caused by the evolution of the base flow which gradually changes its stability 

properties. 

Results are reported in fig. 5.12-5.13. A double-helix develops and contaminates the 

whole domain in the rear of the bubble. This confirms that the double-helix revealed in the 

previous computation, obtained exciting all the azimuthal modes, is a manifestation of a 

linear instability and not just caused by nonlinear interactions. Fig. 5.12 reports the growth 

rate of m = 2 measured at several axial stations. At z = 4 the growth is perfectly linear. 

As the probe location is shifted downstream, it is possible to recognise a sort of periodicity; 

each curve consists of different "lobes", representative of transient periods during which 

the disturbance undergoes an amplification followed by a reduction. In this process, the 

envelope of the lobes seems to maintain a linear growth. 

Also in light of results which will be presented later, we advance the hypothesis that 

this phenomenon results from the competition of two distinct global modes. There is a first 

instability mode whose behaviour is perfectly linear: it represents the natural extension of 

the global mode m = 1 examined at lower swirl levels. We will see that this global mode 

satisfies the theoretical prediction of Pier and Huerre [85], according to which it consists 

of a front located at the most upstream border of the absolutely unstable domain. In other 

words, there exists a specific section acting as wave-maker, i.e. giving the local absolute 

frequency to the global response. This section is the one which marks the transition from a 
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Figure 5.13: Re=200 S = 1.5 case perturbed by an "even" perturbation. A double-helical mode contam i
nates the whole domain. 
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local "convective" instability to a local "absolute" instability. There exists a second global 

mechanism which is responsible for the periodicity revealed in fig. 5.12. This is caused by 

the formation of wave packets which are irregularly sent out from the vortex bubble. These 

waves may be convectively amplified in the wake, and give rise to a global mode even in 

the absence of local absolute instability. 

It is worth mentioning the result obtained by Ruith et al. at S = 1.3. The final break

down state is defined as 'pulsant double-helical breakdown mode' and presents an axisym

metric periodicity developing on a period of about 100 non-dimensional units. Their result 

is somehow reminiscent of the mechanism discussed here. 

5.1.3 Local stability analysis 

The spatial simulations suggest that at least up to S = 1.1 the loss of stability to helical 

perturbations is a consequence of the structural change in the flow field generated by vortex 

breakdown. An indication of this scenario is provided by the convergence history given in 

fig. 5.4. To further confirm this hypothesis, a new 3D run was conducted at S = 1.1 assuming 

as initial condition the corresponding converged axisymmetric solution; a comparison be

tween the temporal evolution of azimuthal modes reveals that the growth rate is the same for 

both cases (see fig. 5.14). With this premise, it remains of interest to find possible links be

tween the global response shown by the spatial simulations and the local stability properties 

of the base axisymmetric flow. 

A local stability analysis by linear temporal simulations (LTS) was conducted extracting 

velocity profiles from the axisymmetric solutions at different axial stations z. To enforce the 

assumption of strict parallelism the radial velocity is set equal to zero, while density, axial 

and azimuthal velocity components are explicitly read into the code. A new radial pressure 

distribution is obtained imposing the radial momentum balance, which, under the above 

assumptions, reduces simply to eq. (4.3). In the same spirit of the analysis conducted for 

the Batchelor vortex (cfr. §3.1), Navier-Stokes equations linearised around the new defined 

columnar flow are solved to evaluate the response to a localised perturbation. 

The procedure and the diagnostic tools used are the same as those illustrated in chapter 

3. Table 5.3 reports the numerical parameters employed for the LTS: the number of points in 

the streamwise and azimuthal directions were halved compared to the nonlinear counterpart; 

the radial scaling of azimuthal modes was not performed, and the radial discretisation was 

slightly increased to balance a reduction in the stretching factor br • The initial perturbation 
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Figure 5.14: Independence on the initial condition for the Re=200 S = 1.1 case: temporal evolution of the 
azimuthal modes m = 1 and m = 2 for axial velocity (solid), radial velocity (dash) and azimuthal velocity 
(dash-dots). Solution starting from the axisymmetric base flow begins at Time=360. 

is the same as used in the nonlinear spatial simulations and located at l 
20 = 2, TO = 0.3, 

Details of the base flow under investigation are given in fig. 5.15-5.16. The radial dis

tribution of axial vorticity presents local extrema at z = 2,3,4. This region may eventually 

show instability to two-dimensional disturbances of the form eime . Throughout the domain 

the circulation L increases outward, thus we expect the flow VeCr) to be centrifugally sta

ble to axisymmetric perturbations everywhere. The recirculating now is located between 

z = 1 and 2 = 2.5: in this region the flow rapidly accelerates on the centerline, so that the 

approaching wake-like profile VzCr) switches into a jet-like profile at 2 = 2, before recov-

ering the wake character at 2 = 3. On the other hand, the circulation reaches its minimum 

between z = 1 and z = 2, thus this region is expected to be dominated by the axial shear, 

with eventually the generation of axisymmetric unstable modes via the classic vortex rings. 

In the lee of the bubble (z > 4), the wake is gradually attenuated and a slight reduction of 

the circulation accounts for the diffusion of the vortex tube, 

As for the Batchelor vortex, the response of the flow to the localised perturbation con

sists in the formation of helical waves travelling within the vortex core. The spatial distri

bution of the wave packet can be appreciated in fig. 5.17, where are reported isocontours on 

the meridional plane e = 0 of the radial velocity perturbations. The figure refers to Time=30, 

when the wave packet has already crossed the right boundary and its leading edge is rapidly 

approaching the trailing edge. 

The analysis relative to velocity profiles extracted at the sections 2 = 4 and 2 = 8 

'The homogeneous streamwise coordinate used in the local stability analysis must not be confused with its 
inhomogeneous counterpart of the spatial simulations. 
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Lz Lr 112 I nr I no I bl' I F 

20 10 128 I 120 I 32 I 0.4 I 0 

Table 5.3: Numerical parameters used for linear calculations LTS on velocity profiles extracted by DNS. 

reveals the development of similar structures and has to be considered representative or the 

general behaviour found for all the other stations far away from the bubble. For the profiles 

extracted at z = 3.5, the axial structure of the perturbation is enriched, while for those 

extracted at z = 2, even the radial structure appears to be modified, indicating a substantial 

change in the underlying dynamics. 

The temporal stability properties Wi = wi(k) and WI' = wl'(k) are evaluated according 

to (3.8) with the selected times tl and t2 chosen appropriately to ensure that the unstable 

modes have been clearly selected after an initial transient period, and to circumvent the 

difficulty associated with the discontinuity of the phase function (cfr. §3.1.1). Figure 5.18 

presents the growth rate Wi of the unstable modes as a function of the axial wavenumber. 

The inflow profile, without axial shear, is found to be stable (not shown). In the recirculating 

region (z = 2), the first 4 modes are unstable. These are positive modes, sharing the most 

amplified axial wavenumber kmax = 1.57. The dominant mode is m = 2 with a maximum 

growth rate w'i(kmax ) = 0.405. All the negative modes as well as the axisymmetric mode 

are found to be stable. In addition, all the modes are stable at k = O. The curves obtained 

resemble qualitatively well those of the Batchelor vortex at q = 0.2 with the lower azimuthal 

modes dominant over the higher modes. Following this analogy, moving to z = :~ in the 

base flow, the swirl locally increases, and the growth rate of the bending mode is strongly 

reduced; mode 2 is also (slightly) reduced, and higher positive modes are destabilised. The 

dominant mode becomes m = 3 in close competition with m = 2 with a maximum growth 

rate wi(kmax ) = 0.39. The curves become similar to those relative to the Batchelor vortex 

for q > 0.4. In the latter case, however, we found destabilisation up to Iml = 12, but the 

Reynolds number was higher. The stability properties remain approximately unchanged 

for all the other sections downstream, consistent with the fact that the /low recovers the 

configurations of a quasi-columar vortex. 

In the wake of the bubble the maximum growth rate always remains below the value 

0.3, leading to the conclusion that the region with recirculating flow (where the effect of the 

swirl is less important) is the most unstable in a local analysis. This represents the major 

difference with the analysis conducted on the Batchelor vortex, where the effect of the swirl 
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Figure 5.15: Base flow used for LTS. Top: streamlines. Bottom: centerline axial velocity (solid) and az
imuthal velocity (dash) at r = 0.5. 
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Figure 5.16: Base flow used for LTS: radial distribution of (a): axial velocity, (b): axial vorticity. (c): circLI
lation. at differet axial stations z. Solid: z = 2; dash: z = 3; dash-dot: z = 4; dotted: z = 8. 

was found destabilising up to q = 0.8, and stabilising for q > 0.8. In that case, however, 

the axial shear was constant whereas in the current study it is more intense in the region 

of the bubble. This suggests that the centrifugal destabilising mechanism dominates the 

response in the wake of the bubble, while within the recirculating region there may be a 

higher contribution of Kelvin-Helmholtz instabilities enhanced by thc stronger axial shear; 

this conclusion should also explain the differences revealed in the isocontours of fig. 5.17. 

The question that now should be addressed is to understand the range of validity of 

the local analysis to our spatially developing swirling flow. Figure 5.19 shows the temporal 

frequency Wr of the unstable modes for the sections z = 2 and z = 4. All the modes are 

positive and have a positive frequency, thus they rotate in time with the base flow but wind 

in space in the opposite direction. This is in agreement with the observations found in the 

spatial DNS. Conversely, a clear inconsistency is the evidence that the local linear analysis 

predicts higher modes m > 1 to be the most unstable at any station, whereas the helical 
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Figure 5.17: Response of the perturbed 10 swirling flows obtained extracting velocity promes at different 
streamwise positions z from the converged DNS axisymmetric solution. Isocontours of radi al velocity pertur
bation. Time=30. 

breakdown found in the nonlinear spatial simulations has to be associated with a dominant 

bending mode. In other words, the local linear analysis, as currently performed, fails to 

account for a proper mode selection. 

For slowly varying flows , the difference is generally explained in terms of the con

vective/absolute nature of the instability. As discussed in the introductory chapter, even if 

higher modes are subjected to a higher spatial amplification , they may be unable to trigger 

a global mode when they are only convectively unstable, since they require a continuous 

external forcing in order to remain in the region of interest. However, in our case the as

sumption of parallelism is strongly violated where the flow is recirculating, and we don' t 
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at different axial stations z. 
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know a priori to what extent these concepts can be applied. 

In spite of these considerations, we proceeded as follow: results of figure 5.18 provide 

a quantitative indication of the convective amplification produced by the base flow for each 

azimuthal mode. By theoretical considerations [45] it can be shown that for each mode, the 

maximum growth rate over all the axial wavenumbers {Wi }max corresponds to the abso

lute growth O"max "observed" along the spatio temporal ray f = Vg where the amplification 

is highest. Therefore, we can use spatial DNS and perform experiments of convective am

plification, measuring the spatial amplification produced on disturbances introduced at the 

inflow. We can compare these values with those obtained by the local linear analysis: if the 

two results show agreement, we gain confidence that the local analysis is actually suitable 

to describe the global response of our base flow. 

5.1.4 Response to controlled perturbations 

We evaluate here the global response of the base flow under investigation (S = l.l) sub

jected to controlled perturbations applied at the inflow. The disturbance consists of small 

amplitude waves superimposed on the azimuthal velocity component. The analytical ex

pression is the following: 

m 
Ve(p)(r, e, t) = EVe(r, z = 0) L sin(me - wmt) (5.1 ) 

m=l 

The radial shape of the perturbation is somehow arbitrary since the streamwise inhomogene

ity of the base flow does not permit identification of principal eigenfunctions. We preferred 

to express the perturbation as a percentage of the inflow profile by means of the amplitude 

parameter E. A number of different cases were carried out by varying the number of modes 

exicited in (5.1) and their corresponding frequency wm . 

A first run was conducted assuming a nonlinear value for the amplitude (E = 10- 2
). 

Based on the results of the linear temporal analysis the modes excited were chosen m = 1...5 

with frequencies Wm = m. Results are shown in figure 5.20-5.21. Simulation restarts from 

the axisymmetric solution at Tirne=460 and runs until Tirne=500. From figure 5.17, we can 

estimate a speed of propagation of the perturbation applied at the inflow. Indeed, in the local 

analysis previously described, each velocity profile is initially disturbed at the axial location 

Zo = 2, and the wave packet reaches the right boundary after,::::: 30 time units. We should 

therefore expect that the application of the continuous forcing at the inflow would generate 

after a time interval 6.T = 40 a flow field fully perturbed and dominated by modes 2,3 in 
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Figure 5.20: Re=200 S = 1. 1 case subjected to nonlinear forcing (€ = 10- 2
) , exciting modes m = 1...5 

with frequency Wm = m. Time=500. Top: vorticity isosurface. Bottom: Cross sectional contours of radial 
velocity component at different axal positions. 

competition. In this short time, the global mode m = 1, should not overwhelm the response 

because its growth Wi = 3.9.10-2 is too small compared to the absolute growth of the wave 

packets m = 2,3. 

Results however reveal a different scenario: the most amplified wavenumber is 11'/, = 2, 

followed by mode 1 and then mode 3 (see fig. 5.21). The indication given by the growth 

monitored along the axis, is that the amplitude of disturbance applied is too big; the wave 

packets quickly saturate, and no spatial amplification is recognised. Even this nonlinear 

effect however, does not explain the big amplification of modes 1 and 2. 

To investigate further, we carried out a similar case imposing this time a linear pertur

bation (I: = 10- 6). Adopting this value, the nonlinear code is expected to provide a linear 

response, with each mode evolving independently. In addition, with the purpose of running 

the calculation on a longer time, we removed from (5.1) mode 1, which in this way would be 

excited only by round-off error. We have monitored that its value never exceeded 0(10- 6) , 

and its effect can therefore be considered meaningless in the di scussion . Results are reported 

in figure 5.22. The convective nature of mode 3 is now very well visible, since a steady state 

signal is everywhere left and the amplitude is seen to grow in space. The spatial ampli

fication is reduced when moving downstream, and its order of magnitude compares well 
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Figure 5.21: Re=200 S = 1.1 case subjected to nonlinear (E = 10-2
) forcing exciting modes m = L_5 

with frequency Wm = m_ Time=500_ Time history of modes m = 1 (top) m = 2 (center) and m = 3 (bottom) 
at different axial stations_ 



Chapter 5: Three-dimensional direct numerical simulations \36 

(a) z=16 (al 

z=12 

460 520 540 

(c) 1E-O (d) 

BE-O 

>6E-O 

a 
~ 4E-O 

2E-O 

0.2 0.4 
f 

0.6 0.8 

Figure 5.22: Re=200 S = 1.1 case perturbed by linear forcing (E = 10-6) exciting modes m = 2 .. 5 with 
frequencis (Wm = m). (a): Time history of mode m = 2 at different streamwise positions. (b): Time history 
of mode m = 3 at different streamwise positions. (c): Radial velocity component recorded at z = 10, T = 
0.3, () = O. (d): Corresponding power spectrum density. 

with the results of the local analysis: from 5.18 it can be noted that the maximum absolute 

growth rate relative to mode 3 remains almost constant for velocity profiles extracted be

tween z = 4 and z = 8_ In particular, its value is (J'max ~ 0.28, thus the corresponding spatial 

amplification produced from the base flow on a disturbance with wavenumber m = 3 should 

be eamnxb.z = 3.06; in our DNS experiment the amplitude settles on l]:l(Z = 8) = I1.D . IO-(i 

and 1]3(Z = 4) = 1.9 - 10-6 whose ratio is 2.57. In the recirculating region, the value of (J'nw:r 

is more variable, so we may estimate the value at z = 2, namely (J'max = 0.:3, leading to an 

amplification between z = 0 and z = 4 equal to 3.32. In the spatial simulation, the ampli

tude ratio calculated between these two locations is exactly 3. Therefore, a first interesting 

conclusion is that the evolution of mode m = 3 follows quite well the predictions provided 

by the local theory_ We have also verified that similar results occur for mode m = 1, and we 

can confidently assume that this holds for all higher modes m :::: :3. 

The behaviour of mode 2 is very different (see fig. 5.22-a): it still seems to be of convec

tive nature, because it is spatially amplified, but at any axial station the amplitude undergoes 

strong variations_ developing on a period of 50 time units. The ratio between the maximum 

value registered at z = 8 and that at z = 4 indicates an amplification of (J'max = 0_34, 
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Figure 5.23: Re=200 S = 1.1 case. Temporal evolution of mode m = 2 at different streamwise positions. 
(a): Inflow perturbed by linear forcing E = 10-6 exciting mode m = 2 with frequency W2 = 4 and modes 
m = 3 .. 5 with frequencies Wm = m. (b): Self-sustained case obtained by an initial "even" perturbation. 

which is again in good agreement with the value estimated by the local theory (":::' O.2H). 

The anomalous behaviour is between z = 0 and z = 4 (corresponding to the recirculating 

region), where mode 2 increases by almost two orders of magnitude rendering the global 

response completely dominated by mode 2. The radial velocity component registered at 

z = 10, r = 0.3 reveals a spectral peak at f = 0.34. Now, we conducted two other calcu

lations: one was identical but obtained forcing mode 2 in (5.1) with a frequency W2 = ;1 

(based on fig. 5.19 this value is out of the unstable range); another was performed removing 

the inflow forcing, and considering a self-sustained case initiated by superposing an "even" 

perturbation on the base flow. Time history of mode 2 is reported in figure 5.23: in both cases 

the behaviour is very similar, and again shows strong oscillations. The amplitude however, 

settles on values which are much smaller compared to the former case. Even more inter

estingly, the radial velocity component reveals a dominant frequency at the identical value 

f = 0.34. The result is very important, because it indicates a manifestation of an intrinsic 

dynamics: the value obtained has to be considered a natural frequency, and not associated 

with the external forcing. 

The strong oscillations of mode 2 are reminiscent of the behaviour previously encoun

tered when discussing the higher swirl case S = 1.5. In that situation, however, the ampli

tude was seen to increase "driven" by a global mode originating ncar the vortex bubble and 

growing linearly. Here, even if the global mode m = 2 is absent, wave packets beating at a 

specific internal frequency are irregularly generated and spatially amplified in the wake of 

the bubble. When left self-sustained, the amplitude of these waves oscillates around a value 

which remains small and grows in space in reasonable agreement with the results predicted 

by the local analysis. Conversely, if forced close to their natural rotation rate, the strong 
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oscillations are preserved but the amplitude rapidly increases in the recirculating region. 

following a mechanism which is invisible to the local analysis, and clearly associated with 

the presence of the vortex bubble. We suspect that this is the mechanism accounting for 

the "puis ant" breakdown state found by Ruith et al. [88]: their calculations are reported as 

self-sustained, but the possibility that some small source of error (even round-oft) might 

produce the same effect of the inflow forcing applied here is not excluded. 

We try now to summarise the considerations that need to be retained from the present 

discussion: according to the local linear theory higher modes are the most unstable in the 

wake of the bubble where the flow resembles well a parallel swirling flow. Lower modes are 

the most unstable in the recirculating region, where the swirl is less important. Therefore, 

the effect of non-parallelism is expected to be more important on lower modes. In the ex

periments reported here, we actually find that for higher modes (m ~ 3) the assumption of 

near parallelism can be considered valid everywhere, that is, the presence of recirculating 

region does not modify a behaviour whieh is pretty weIl explained in the parallel context. 

The reason why they do not appear in the spatial DNS must be their convective nature: in 

the absence of continuous forcing, they leave the computational domain. 

For mode m = 2 the discussion is more complicated. The presence of the vortex bubble 

leads to the formation of self-sustained waves. These waves, which show a certain degree 

of irregularity, in the spatial DNS are unable to trigger a global mode and on a long time 

scale are completely overwhelmed by the bending mode m = 1. However, these waves do 

not playa completely passive role, because they remain spatially amplified downstream fol

lowing the predictions of the local analysis. If the receptivety of the base flow is augmented, 

for example increasing the Reynolds number, we expect that the convective amplification 

produced on these wave packets may lead to a saturated state. In that case self-sustained 

structures of convective nature may become well visible: in section §5.3 we present spatial 

results at Re=800 which seem to match this scenario. 
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5.2 Results at Re=400 

The aim of this section is to demonstrate that the spiral vortex breakdown is associated with 

the existence of local absolute instability for the bending mode m = 1. For reasons which 

will be clearer later, the analysis has been performed at Re=400, S = 0.95. For this set of 

parameters, axisymmetric results (cfr. fig. 4.9) reveal the existence of a second stagnation 

point formed in the wake of the first bubble. In what follows, we will first describe results 

of spatial DNS and later present the wave packet analysis as recently conducted by Gallaire 

et al. [33]. 

5.2.1 Spatial DNS 

Direct numerical simulations were still performed using the numerical parameters of tahle 

5.1. Figure 5.24 shows the evolution of the flow field. The sequence of events is not changed: 

the recirculating region is generated close to the inflow, then the flow slowly evolves toward 

a quasi-steady axisymmetric configuration which ultimately becomes helically unstable. 

Unlike the situation occurring at Re=200, the helical perturbation arising in the wake re

mains confined in the region downstream of a specific axial station for a considerably large 

time interval. At Time=250 the flow field reveals the existence of a front separating a nearly 

axisymmetric region upstream, from a fully three-dimensional region downstream. This 

configuration represents an axisymmetric vortex bubble followed by a spiral hreakdown, 

and corresponds to the experimental breakdown state of Sarpkaya, reported in the introduc

tion (fig. 1.1). At later time (Time=2S0), when the mean flow has heen widely modified by 

the saturated perturbation, the instability contaminates the whole domain moving up to the 

first bubble. 

According to the analysis of chapter 4, the second smaller breakdown is the result of 

the axial acceleration developed immediately after the bubble, responsible for the recovery 

of local supercritical conditions with respect to the marginal axisymmetric Kelvin modes. It 

is possible that a similar mechanism takes place with respect to the helical unstable modes. 

In other words, the negative radial velocity generated in the lee of the first bubble, well 

visualised by the inward motion of particles moving around it, locally increases axial and 

azimuthal velocity components. This can result in a local stabilisation of the flow with 

respect to the helical modes. Application of the local analysis should provide interesting 

information for this specific case, since the front of the wave is quite well identified and 
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Figure 5.25: Re=400 S = 0.95, 0: = 2 case, Streamwise evolution of the axial velocity profile in the 
converged axisymmetric solution, 

located in the proximity of the second smaller recirculating region. 

Before proceeding, it is convenient to illustrate an example of evident convective in

stability. We examine the flow response obtained at the same level of swirl, S = 0.95, but 

with 0: = 2. As clearly shown in fig. 5.25, with this value of the coflow parameter the con

verged axisymmetric solution presents a jet inlet velocity profile which becomes gradually 

flattened by viscous diffusion. No breakdown is observed. The analysis of Loiseleux ef (1/. 

[67] suggests that jet profiles are less susceptible to absolute instability; any localised dis

turbance is expected to be swept away even if the flow may be locally unstable. Under the 

effect of continuous forcing, however, the behaviour has to be different, as discussed in the 

introduction (cfr. § 1.4). 

Following a widely adopted procedure [85,91], we have applied an inflow forcing and 

left it active for the time interval 400 <Time< 440 (the 3D simulation restarts at Timc=4(0). 

The forcing is then turned off in order to evaluate if the perturbation persists. The inflow 

perturbation is still made of superimposed small waves according to (5.1), with c = I O-G, 

m = 1..5 and Wm = m. Figure 5.26 shows the temporal evolution of the first three modes 

monitored along the streamwise direction. All the azimuthal modes follow an analogous 

trend. While the forcing is active, the disturbance grows almost everywhere, i.e. the base 

flow is a spatial amplifier for the inflow perturbation. Modes m = 2,3 are more ampli

fied than m = 1, consistently with the indications given by the local analysis. We did not 

perform local stability analysis for this case, but it is now clear that the destabilisation of 

higher modes is a typical effect of the swirl. The absence of breakdown renders the stability 

characteristics well described by the curves obtained for the Batchelor vortex. It can also be 

noted that the amplitude of mode m = 3 experiences a spatial decrease starting by z = 14. A 

similar trend has been observed for all the higher modes m = 3,4,5, which therefore appear 
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Figure 5.26: Re=400 S = 0.95, a = 2 case subjected to a transient linear forcing (E = 10- 6
), exciting 

modes m = 1...5 with frequency Wm = m. Temporal evolution of azimuthal Fourier coefficients for the axial 
velocity measured at different axial positions. (a): m = 1. (b): m = 2. (c): m = 3. 

to be more sensitive to the reduction of circulation associated with the streamwise evolution 

of the base flow. 

When the inflow forcing is turned off, all modes relax to zero, and self-sustained oscil

lations are not observed. What we wish to point out here is that the irregular behaviour found 

in the analogous forced experiment carried out at Re=200 S = 1.1 (cfr. §5.1A) is in this case 

completely absent. This supports the conjecture that the phenomenon was associated with 

the presence of the recirculating region. 
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5.2.2 Wave packet analysis 

The local analysis performed in §S.1.3 is repeated in a modified form for the azimuthal 

wavenumbers m = 1,2. The objective is to detect the nature (convective or absolute) of these 

instability modes. Following the procedure of Gallaire et af. [33], the idea is to evaluate the 

growth rate of the wave packet "observed" along different spatio-temporal rays T = v:". 
Similarly to what is described in §3.1.1, we consider the analytical representation of the 

axial velocity component Vz = Vz(r, e, z, t) and perform a single Fourier transform in the 

azimuthal direction: 

(5.2) 

We define the amplitude associated with the wave packet m, and its corresponding phase 

functions as: 

- 1/2 

(for IV z(r, m, z, t) 12 rdr) (5.3) 

q?m(Z, t) arg [Vz(z,ro, t)] . 

From the LTS, it is possible to measure the absolute growth rate and the corresponding 

frequency as a function of the group velocity according to the simple expressions: 

(5.4) 

These quantities are labelled as "absolute" [45] because their temporal evolution accounts 

for the dispersion mechanism which can make the disturbance grow in the same place where 

it is introduced. If the sign of U m at Vg = 0 is positive, the instability is absolute because the 

perturbation is able to withstand the advection due to the base flow. The corrcsponding local 

absolute frequency WO,r = wmo(Vg = 0) is extremely important: following the theory of Pier 

and Huerre [85], for slowly varying flows the global response should beat at a frequency 

given by the value of WO,r computed where the flow locally switches from the condition of 

convective instability to that of absolute instability. 

Although simple in principle, some of the operations to carry out are particularly subtle. 

In practice we need to determine the edges of the travelling wave packet as depicted in 

fig. 104. This corresponds to looking for the rays along which one has marginal stability. 

From the computational point of view, dealing with marginal stability is quite complicated, 
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Figure 5.27: Streamwise distribution of the wave packet amplitude Al(Z, t) as defined by (5 .3). (a): LTS 
performed on velocity profiles extracted at (a) : Z = 4. (b): Z = 2. 

because the amount of energy that needs to be monitored is small , and easi ly subjected 

to background noise. It is therefore important to ensure that all the spurious osci ll at ions 

initially given by the Gibbs phenomenon are well damped. Typically this has required ~ 

20 time units. It turns out the LTS results presented in §5.1.3 , and relative to Re=200, are 

not suitable for this analysis. The computational domain is too small ; after Time=20 the 

growth of the leading edge of the packet contaminates the growth at the trailing edge. To 

avoid this, we were obliged to adopt a box length Lz = 80 sampled by nz = 512 poi nts in 

the streamwi se direction. Such discretisation did not allow a complete analysis for all the 

azimuthal modes, so we simply focused on m = 1,2, fixing no = 8. The other parameters of 

table 5 .3 were left unchanged. 

Figure 5.27 illustrates the evolution of the amplitude Al (z, t) retrieved by LTS on the 

velocity profiles extracted at z = 4 and z = 2. The red vertical line marks the ax ial location 
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Figure 5.28: Re=400 S = 0.95 case. Absolute growth rate cr(Vg) of helical modes m = 1,2 retrieved by 
LTS for velocity profiles extracted at different axial stations z. 

where the initial disturbance has been placed; in the first case (velocity profile extracted at 

z = 4) the instability is convective because the amplitude decreases at the location of the 

initial disturbance. Conversely, the velocity profile extracted at z = 2 exhibits an absolutc 

instability since the amplitude is seen to increase at that location. 

Figure 5.28 shows the absolute growth O"m as a function of the group velocity computed 

for several velocity profiles. The first of (5.4) has been evaluated selecting 11 = 20 and as

suming for t2 three different values t2 = 25,30,40, in order to check the convergence of the 

whole procedure. The results show that mode m = 2 is only convectively unstable for most 

of the velocity profiles; at z = 2 it is cr2 (0) c::: 0 so we can expect that there may exist some 

local stations where the instability is absolute. For the bending mode m = 1 we have a clcar 
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Figure 5.29: Streamwise evolution of the local absolute frequency WO ,r of the helical mode m = 1 re
trieved by LTS . Blue symbols are used for stations where the intability is convective. Black symbols where lhe 
instability is absolute. The horizontal red line represents the frequency measured in the spatia l DNS . 

absolute instability at (z = 2); then the instability becomes convective before recovering the 

absolute character at z = 5. A synthetic view of the overall behav iour for mode m = 1 is 

given in figure 5.29 where we display the streamwise evolution of the computed local abso

lute frequency. The blue symbols are adopted fo r the ax ial stations where the instabili ty has 

been found convective, whereas the black ones identify local absolute instability. The hori 

zontal red line corresponds to the frequency obtained in the spati al DNS; in the reci rculating 

region, the fl ow is absolutely unstable but the local abso lute frequency appears quite distanl 

from the red hori zontal line, and this suggests that the fi rs t vortex bubble doesn' t play any 

role in the development of the global mode m = 1. This conclusion is consistent with the 

results of the spatial DNS, where the instability was seen to develop ini tially behind a fro nt 

located downstream (see fi g. 5.24). As suggested by Gallaire et al. , one possibili ty is that 

the absolutely unstable region is too small to be acti ve, bu t any conclusion on this point ha 

to be taken with some care, because of the strong non-paralle li sm of that region. 

For 3 < z < 5, that is between the fi rst and the second bubble, the fl ow is seen to 

stabilise while a further transition from convective to absolute occurs fo r 4.5 < z < 5. Abso-

lutely unstable conditions are then preserved for all the other stati ons z > 5. The important 

result is that where this transition takes place, the local absolute frequency approaches the 

value of the global frequency measured in the spatial DNS. In other words, the current 

results show a good agreement with the steep front theory of Pier and Huerre [85]. The 

self-sustained global helical mode m = 1 is associated with the presence of a large region 
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of local absolute instability and is driven by a front which sends out waves beating at the 

local absolute frequency. 

5.3 Results at Re=800 

The diagnostic tools adopted to identify the global mode m = 1 at Re=400 will be now used 

to examine the flow response at Re=800. In the spatial DNS we will observe a surprising 

behaviour with respect to the wavenumber m = 2: it represents the extension to a more 

receptive flow of what was previously encountered when discussing results at Rc=200, S = 

1.1. Self-sustained wave packets are spatially amplified initiating a global mode which is 

essentially different from the global bending mode m = 1. 

5.3.1 Evolution from a columnar vortex 

The resolution adopted at Rc ::::: 800 is much higher compared to the lower Reynolds num

ber cases. The number of grid points in the radial direction was nearly doubled while in the 

streamwise direction the grid increase was approximately of 20%. In the azimuthal direction 

the number of points was left unchanged but an increased resolution was obtained reducing 

the value of f, the radial position from which the drop of azimuthal modes is applied in 

the FFf. The precise value for each numerical parameter is reported in table 5.4. The use 

of the Dual Time Stepping (DTS) method for the time advancement was necessary in order 

to overcome the difficulty of the CFL time step restriction, which otherwise would he too 

severe for the resolution adopted. 

20 10 I 320 I 170 64 1.3 I 0.1 I 0.02 I 38 

Table 5.4: Numerical parameters used for spatial DNS at Re=800. 

Three-dimensional direct numerical simulations of highly swirling flows are not many at 

this Reynolds number: Tromp and Beran [98, 99] have studied at Re=IOOO the Batchelor 

vortex confined in an inviscid nozzle. The resolution reported in their work is of the same 

order as that used here. Recently Broadhurst [11] has extended the study of the Batchelor 

vortex to open domains. At Rc=IOOO his results show three-dimensional instabilities devel

oping faster than vortex breakdown, that is the presence of axial shear in the velocity profile 
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leads the flow to break into small scale turbulence. In the paper of Ruith et al. (2003), the 

maximum Reynolds number simulated is Re=500. 

Using the DTS, the time step integration becomes an input parameter. For this specitlc 

case we chose 6.t = 0.02 and the number of subiterations in the dual variable was fixed at 

Nsub = 38. This has guaranteed a reduction of the unsteady residual by almost two orders 

of magnitude (see fig. 5.30) during the iterative procedure in the dual variable. The result 

is assumed satisfactory, considering that in the corresponding axisymmetric calculations 

(obtained by marching explicitly in time) steadiness was reached with the same reduction 

of the residual. 

Due to the increased computational cost, we couldn't perform a complete investigation 

in swirl number space, but we have focused on the S = 0.95 case. The value was chosen 

considering that according to our axisymmetric results, at this level of swirl simulations are 

expected to reveal the wave features of vortex breakdown, eventually modified by three

dimensional effects. This is an important point which has been generally underestimated 

in previous computational studies. Large eddy simulations of Muller and Kleiser [8 I L for 

example, are conducted at Re=5000. For this value, the wave propagation should be very 

well visible if the swirl employed is not too high. Conversely, by adopting a massive swirl 

the flow immediately stagnates near the inflow and helical disturbances grow so rapidly that 

they completely dominate the flow visualisation of the phenomenon. 

Figure 5.31 shows the temporal evolution of the streaklines. The tlgure is divided in 

three sequences highlighting the main points. Despite the higher Reynolds number em

ployed, the flow remains axisymmetric during the breakdown process. From the first se

quence a localised expansion of the vortex core accompanied by a large upstream excursion 

can be seen. According to Leibovich's theory [58, 59, 60] this is representative of the main 

features of vortex breakdown: an axisymmetric wave growing in amplitude and moving 
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upstream. When the first bubble is formed (see the second sequence of fig. 5.31), the now 

behind it undergoes an inward acceleration due to inertial effects, and, by continuity, the ax

ial velocity increases, similarly to the Re=400 case discussed in the previous section. At this 

point a second wave starts growing and propagating upstream. The evidence that the second 

wave originates after the first one has reached a large amplitude, suggests that vortex break

down in its basic nature is not multiple. The existence of more than a single recirculating 

region cannot be explained either in terms of the dispersion of Kelvin waves (err. §3.2.2) or 

considering Benjamin's conjecture [6] of a now-force defect balanced by a wave train. It is 

more likely the consequence of the temporal evolution of the base now which recovers in 

the rear of the bubble the same conditions existing ahead of it. 

At Time=220, the streaklines begin to reveal three-dimensional instabilities located im

mediately behind the second vortex bubble. In the three-different probes considered to mon

itor the perturbation amplitude (see fig. 5.32), the behaviour is quite regular. The growth rate, 

however, is not perfectly uniform along the axis but is bigger at z = 7.5, closer to the second 

vortex bubble. It can also be noted a change in the slope of the curve relative to the bending 

mode at approximately Time=200. It is probably associated with the evolution of the base 

axisymmetric flow which is modifying its stability properties. The bending mode is linearly 

unstable while higher harmonics are excited at a later stage only by nonlinear effects. The 

measured growth rate for mode I at the axial station z = 7.5 is WI r:= 2.9· 10- 1 whereas that 

of mode 2 is W2 r:= 5.6 . 10- 1
, thus the second harmonic grows as approximately the second 

power of the first one. 

At Time=230 the now field in the wake of the second bubble is fully perturbed by 

a helical structure with axial wavelength r:= 5. According to the curves of !lg. 5.32, the 

perturbation is now saturating, and although the energy level of higher harmonics is quite 

high, the dominant mode remains m = 1, as also revealed by the power spectral density 

of the registered azimuthal velocity component (fig. 5.33). The PSD has been computed 

over all the time interval simulated and it shows a dominant peak at w = 1.19U = 0.18) 

corresponding to the angular frequency of mode I. 

It is worth noting the analogy with the Re=400 case: the second recirculating region 

delimits the upper border of the fully three-dimensional region. When the strong interaction 

with the helical waves takes place, the size of the second bubble is greatly reduced and 

a very interesting behaviour is highlighted in the last frame where it can be seen that the 

axial extent of the axisymmetric region is slightly increased. At this Reynolds number the 



Chapter 5: Three-dimensional direct numerical simulations 151 

Time : 115 

~ ----L 
~-

"-

Time : 130 

I' -

~ 
-------L 

- Time: 149 .98 
- . 

~ 
~ 

~ -----L 



Chapter 5: Three-dimensional direct numerical imul atioll s 

Time : 169 .98 

~~ 
Ii 

-. -
~ 

~ ~ 

L 

Time : 199.98 

L 

Time :220.98 , 

L 



Chapter 5: Three-dimensional direct numerical simul ations 153 

Time :22 3 .98 

L 

Time :230.98 

L 

Time :249.98 

L 
Figure 5.31: Re=800 S = 0.95 case starting from a columnar vortex. Formation of a double breakdown 
followed by helical instabilites. 
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(a): z = 7.5 (b): z = 13 (e): z = 19 and (d): Comparison between the growth observed for mode m = 1 at 
different axial stations. 

corresponding axisymmetric calculation has not experienced any fluctuation of the second 

vortex bubble. It rather appears to be a three-dimensional effect, and we may speculate 

that it could be a possible consequence of the 'positional instability' [591 discussed in the 

introduction of this thesis. If we consider the breakdown bubble as a manifestation of IInite 

amplitude waves, instabilities to three-dimensional perturbations can generate an energy 

transfer from such waves. In the inviscid, weakly nonlinear model of Leibovich 157 J, as the 

axisymmetric wave grows, it becomes faster and therefore able to penetrate the supercritical 

region, inaccessible to small perturbations. We have seen that viscosity works to trap the 

large amplitude wave where it grows, reducing its upstream excursion and modifying the 

corresponding bifurcation diagram. Three-dimensional instabilities may offer the possibility 

of an alternative form of dissipation; when their interaction with the vortex bubble is not 

negligible, as clearly shown in fig. 5.31 for the current case, the vortex bubble may be pushed 

downstream due to its reduced amplitude. 

Now, the observation that following this downstream motion the flow seems to become 

less three-dimensional for some partial extent, may be a further indication of the existence 

of a front (the wave-maker) for the helical waves. This would be located in the proximity 
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Figure 5.33: Re=800 S = 0.95 case starting from a columnar vortex. (aJ: Azimuthal velocity component 
registered at z = 19, r = 0.3, () = 0 and (b): Corresponding power spectrum density. 

of the second bubble and sensitive to variations of the base flow caused by the interaction 

between vortex breakdown (axisymmetric) and helical instabilities (3D). 

5.3.2 Evolution from the axisymmetric breakdown state 

We now proceed to describe the three-dimensional response obtained by starting the 3D run 

from a steady axisymmetric solution. At Re=200 we didn't find any dependence on the initial 

conditions, whereas significant differences have been encountered for the current case. 

Simulation restarts at Time=360, and the perturbation quickly contaminates the whole 

region behind the second vortex bubble (fig. 5.37). The streaklines reveal a different spatial 

structure: the axial wavelength is reduced, and the presence of a double helical structure is 

visible at Time=425. Note also the small downstream motion of the second vortex huhhle, in 

accordance with what was described in previous suhsection. The different character of the 

instability is better appreciated in fig. 5.34 which shows the azimuthal velocity component 

registered at the probe z = 19, T = 0.3, e = O. The signal clearly reveals the development 

of more than one harmonic and the PSD presents two peaks corresponding to the angular 

frequencies w = 1.44 and w = 2.38. 

Time evolution of different modes is reported in fig. 5.35. In the proximity or the second 

recirculating region (z = 7.5), the dominant mode is m = 1 but its growth widely deviates 

from a linear trend. Higher modes are characterised by a strong irregular behaviour. It can 

also be noted that a transition occurs at approximately Time=41 0 when modes 1 and 2 begin 

to saturate while modes 3 and 4 increase their rate. In the second axial station considered, 

z = 19, the behaviour is more regular and closer to be linear. Modes 1 and 2 grow with 

the same rate until saturation, while modes 3 and 4 show a clear transition, very likely 
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Figure 5.34: Re=800 S = 0.95 case starting from the axisymmetric converged solution at Time=360. (a): 

Azimuthal velocity component registered at z = 19, r = 0.3, () = 0 and (b): Corresponding power spectrum 
density. 

associated with nonlinearity. Figure 5.36 displays on the same diagram the ditTerent evolu

tions of modes 1 and 2 along the axis. Regarding the bending mode, the instability seems 

to be initiated at z = 7.5 since the curves related to z = 13 and z = 19 show some de-

lay. The comparison for mode 2 is more interesting: in this case the amplitude measured at 

z = 7.5 initially grows, then it temporarily settles on a constant value before growing again 

at Time=390. The amplitudes at z = 13 and z = 19 have a similar growth, but at z = 1:3 

the curve seems to saturate first and on a smaller value. This represents an indication or 
convective instability for mode 2, and we believe that the behaviour reflected in lig. 5.35 is 

the result of a strong convective amplification of 111, = 2 which becomes gradually masked 

(due to nonlinearity) by the growth of the global mode m = 1. In other words, this context 

is characterised by the existence of the global mode 111, = 1 superimposed on wave packets 

with 111, = 2 which are convectively unstable. 

A further indication of this is given in fig. 5.38-5.39 where the wave packets are better 

visualised by means of the radial velocity contours on a meridional plane (fig. 5.38), and on 

cross sectional planes (fig. 5.39). For clarity, the flow field related to the initial axisymmetric 

solution at Time=360 is also shown. This helps to identify the large amplitude axisymmet

ric waves in order to distinguish them from the helical instabilities. For the contour levels 

adopted, a first packet is visualised at Time=408 extending from the second vortex bubble up 

to z ~ 12. In the wake, at approximately z ~ 18, another perturbation is visible and seems to 

develop independently from the first. At Time=414, the first packet increases its amplitude 

and its spatial extent. Inspection of the cross sectional contours (see fig. 5.39) reveals that 

this is the bending mode, which, starting from the axial position where it has originated, is 

rapidly perturbing the whole domain behind the vortex bubbles. 
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Figure 5.36: Re=800 S = 0.95 case starting from the axisymmetric converged soluti on at Time=360. 
Temporal evolution of the first (a) and second (b) azimuthal Fourier coeffici ents for the velocity component Vo 

measured at different axial positions: z = 7.5 (black), z = 13 (red), z = 19 (blue). 

Before this contamination has fully completed, the region c lose to the outfl ow (see 

the sectional iso-contours at z = 19) shows the presence of mode 2, thus the fl ow fi e ld at 

Time=414 is characterised by an incipient global mode m = 1 coexisting with the mode 

m = 2. The radial velocity contours highlight very well the di fference of the ir nature: the 

former grows locally and spreads downstream (a manifestation of absolute instabi lity), on 

the other hand m = 2 is convectively amplified (refer again to the spati al amplification 

provided by fi g. 5.36-b) , and consequently it appears visible in fi g. 5.38 only close to the 

outflow boundary. 

The question which now arises is whether or not mode 2 is self-sustained. Indeed, 

one possibility that we cannot a priori exclude is that this result is nothing e lse th an a 

transient associated with the advection of the disturbance initially introduced. Running the 

calculation for longer would be pointless for this purpose, since the dynamics becomes 

rapidly dominated by the global bending mode. The easiest way to solve the problem is 
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Figure 5.37: Re=800 S = 0.95 case starting from the ax isymmetric converged solution. 
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to repeat the calculation perturbing the initial axisymmetric breakdown state by an "even" 

perturbation. Thus, as the calculation goes on, all the odd modes remain zero: the global 

bending mode is therefore suppressed and the instability of the even harmonics cannot be 

disguised by nonlinear effects. Since no external forcing is applied, if mode 2 is not self

sustained it has to relax to zero after the disturbance has left the computational domain. The 

outcome of this run is of crucial importance to understanding the nature of mode 2. 

The result is unequivocal: a double-helical mode is clearly identified by the vorticity 

iso-surfaces (fig. 5.42) and by streaklines (fig. 5.43). The peculiar structure of multiple break

down remains perfectly preserved as the three-dimensionality develops on a large scale at 

a streamwise position far away from the two vortex bubbles. The non-dimensional time 

simulated is f'::l.t = 152, enough to guarantee that the response cannot be a transient effect. 

Conversely, a periodic quasi-steady state is left (see fig. 5.4 I), synchronized at the natural 

frequency f = 0.44 (w = 2.76). The value is slightly greater than what we have found for 
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In = 2 exciting all the modes, suggesting that the previous result was actually the compe

tition of two self-sustained global modes. The first one develops downstream of a certain 

axial position (the wave-maker), and following the scenario depicted by Pier and Huerrc 

[85] is associated with the presence of absolute instability. It is the same global mode which 

dominated the response at Re=200 and Re=400. The double-helical mode 171 = :2 is clearly of 

different nature: the growth measured locally (see 5.40 ) shows distinctly a spatial amplifi

cation representative of convective instability. What is important to notice is that although 

the large scale periodicity observed at Re=200, S = 1.1 is here absent, a certain level of 

irregularity is detected in fig 5.41. We therefore believe that the current case results from the 

same discussed mechanism associated with the presence of the recirculating region. 

5.3.3 Wave packet analysis 

To corroborate the conclusions developed in previous subsection, we show here the results 

of the wave packet analysis. We want to examine whether the differences revealed in the de

velopment of the two global modes In = 1,2, are reflected in a local analysis. In particular, 

the spatial amplification exhibited by In = 2 is expected to correspond to a local convec

tive instability, whereas the bending mode In = 1 should be a manifestation of absolutc 

instability, as for the analogous case studied at Re=400. 

The absolute growth was calculated according to the procedure discussed in §5.2.2. 

Results are reported in fig. 5.44 and confirm that the azimuthal wavenumberm = I is more 

susceptible to absolute instability. In the present case, we found that whenm = I is unstahle, 

the instability is always of absolute nature. In the spatial DNS, the glohal hending mode 

develops behind the axial station where the second smaller bubble is located. This has heen 

observed considering both the evolution from the axisymmetric hreakdown state or from the 

columnar vortex. The local analysis predicts that between the two bubhles, at z = tI, mode 

In = 1 is fully stabilised. There is no doubt that this local stabilisation, developing in the 

wake of the bubble, is reflected in the DNS, and is the reason why the helical instabilities 

are initiated outside of the first vortex bubble. We point out that at Rc=400 the hehaviour 

has been observed to be similar, but mode In = 1 was never found to he completely stahle. 

This means that a more intense breakdown may effectively induce a stronger stabilisation. 

Mode In = 1 becomes again absolutely unstable at z = 5, and preserves this character in 

the wake. As expected, the streamwise evolution of mode In = 2 is different. It exhihits 

absolute instability only within the two recirculating regions. For z > 6, it remains always 
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convectively unstable, a result confirming that the two global mode m = 1,2 revealed in the 

spatial DNS, are of different nature. 

5.4 Higher wavenumber structures 

Before proceeding, it appears convenient to summarise the main points of the present dis

cussion. In agreement with most of the existing studies, we have found that vortex break

down is characterised by a self-sustained dominant mode with azimuthal wavenumher 

m = 1. However, double-helical structures may also be present; these may eventually he 

enhanced by nonlinear interactions, but their identification hased on streakline visualisation 

(as done in physical experiments) becomes generally problematic as they are overwhelmed 

by the more unstable bending mode. 

If the disturbance is ad hoc introduced, but not exciting m = 1, douhle-helical hreak

down can be clearly revealed, as testified by the cases (Re=200, S = 1.5) and (Rc=800, 

S = 0.95). The two cited examples are representative of two distinct glohal modes. In the 

former one, low Reynolds high swirl, the unsteadiness concerns the overall wake, following 

the analog behaviour of the bending mode m = 1. The latter case, conversely, is representa

tive of a self-sustained convective amplification developing in the wake. 

It is of interest now to examine the possibility of activating self-sustained higher modes, 

increasing one (or both) the control parameters. The study is relevant to the present investi

gation since our initial purpose was to establish to what extent results of local analysis can 

be manifested for this class of spatially developing flow. The study of Loiseleux ef al. 1671 

and that of Gallaire et al. [29], performed on parallel flows, show that a further increase of 

the swirl leads to absolute instability of higher modes. 

The question has been investigated adopting the usual procedure: introducing high or

der disturbances. The DNS presented so far has been ohtained with an azimuthal discrcti

sation no = 64. Since no is a multiple of 4, we can introduce an initial noise obtained hy 

quadrupling a random signal. The corresponding spectrum has non-zero modes only for 

m = 4k with k = O ... S. Hereafter such a perturbation will be labelled "m4" perturhation, 

to distinguish it from the "even" perturbation introduced earlier. Following this procedure, 

we have found that a further increase of the swirl number does not activate the global mode 

m = 4. At Re=200, the flow field has been observed to remain perfectly axisymmetric up 

to a swirl level S = 1.9. An analogous operation was performed keeping constant the swirl 



Chapter 5: Three-dimensional direct numerical simulations 165 

Time : 1056.068 

L 
Figure 5.45: Re= 1200 S = 0.95 case excited by an "even" perturbati on. 

and increasing the Reynolds number. At S = 0.95, we moved up to Re= 1600: if the initi al 

disturbance is an "even" perturbation, the behaviour obtained resembles what was discussed 

at Re=800. Double-helical wave packets saturate in the wake after a spati al amplifi cation. 

For example, figure 5.45 refers to the Re=1200 case and shows a snapshot of the streaklines 

at Time=1056 (restart from the axisymmetric solution is at Time=900). Conversely, if lhe 
-

initial disturbance is given by a " m4" perturbation, the solution remains helica ll y slable. 

At Re=1600, we also increased the amplitude of the initial disturbance, but the perturbalion 

was seen to leave the computational domain. Figure 5.46 shows the temporal evolution of 

mode m = 4 measured at different axial stations. The amplification of the dislurbance is 

evident, because the flow is actually highly unstable, but the global mode does not develop. 

In a final attempt, we performed a calculation increasing both the swirl and the Reynolds 

number. The set of parameters was chosen as Re=1600, S = 1.4. Under these conditions, the 

flow field reveals three big vortex bubbles (see fig. 5.48). Some unsteadiness is observed and 

correlated to the second and third bubble which are periodically "emptied" at their down

stream end. Beside this feature, which is mainly axisymmetric, in the region close to the 

outlet structures revealing the existence of a mode m = 4 can be identified by the vorticity 

isosurfaces (fig. 5.47). These structures are very irregular, and for large transient t~ey are 

damped before reappearing again. The large degree of irregularity may be a consequence of 

the axisymetric unsteadiness, but the obseravtion that those modes develop far away from 

the recirculating regions suggest they are of convective nature. 
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In the present section we present some results concerning the development of vortex break

down in an inviscid pipe with a contraction. More precisely, we have considered a pipe 

whose radius R varies with the axial coordinate as: 

R(z) = { Roll - ,6(1 - cos(27rzj Ld)] 0::; z ::; L1 
Ro L1 ::; Z ::; L , 

(5.5) 

representing a convergent-divergent nozzle followed by a straight pipe. L) is the length of 

the convergent-divergent part, whose contraction is measured by ;3 (;3 = 0 corresponds to 

the case of straight pipe). L is length of the whole pipe, and Ro is the inlet radius. 

Figure 5.49 shows the flow field of the converged axisymmetric solutions obtained at 

Re=200, M = 0.5 and several values of swirl. Streamlines are superimposed on axial velocity 

contour maps which clearly show the initial acceleration and the subsequent decay due to 

the geometrical constraints. The inlet velocity profile is given by (4.1) with IV = 1, while the 

parameters defining the geometry of the pipe are L = 20, L1 = 10, Ro = 5 and ;J = 2. Up to 

S = 0.77 the streamlines appear essentially cylindrical but a localised axial velocity decay 

is present outside the constriction; consistent with the analysis carried out in chapter 4, even 

if the flow does not stagnate, the breakdown is in some sense already existing, but due to 

the low Reynolds number employed, it is manifested as a trapped localised perturhation, 

undetectable by the streamlines. 

At S = 0.8 the flow field reveals a large recirculating region in the divergent part or 

the nozzle. Thus the critical point for the flow to stagnate is in the range 0.77 < S' < O.H. 

For the open jet studied in chapter 4, under the same set of parameters the critical level or 

swirl has been found to be S = 0.89: this result highlights how the additional presence or 

the adverse pressure gradient renders the flow more susceptible to stagnate. Conversely, the 

inlet contraction, which ensures a favorable pressure gradient and a positive contribution to 

the azimuthal component of vorticity, appears to reduce the upstream excursion or the vortex 

bubble (it may be useful to compare fig. 5.49 with those of 4.7). A further calculation was 

conducted at S = 0.89 and ,6 = 0, that is for an entirely straight pipe. The result was very 

similar to the corresponding open jet case, demonstrating that replacing the non-reflective 

boundary condition at the radial outflow with an inviscid wall does not produce significant 

modifications. 

Figure 5.50 shows the three-dimensional evolution computed at ,s' = 0.8 and oS' = 0.85. 

Self-sustained global modes with azimuthal wavenumbers rn = 1, 2 develop and interact 
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Figure 5.49: Swirling flow in pipe: steady axisymmetric solutions obtained at different swirl num bers. 
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Figure 5.50: Swirling flow in pipe: Saturated unstable states. Re=200 Nf = 0.5, Q = 1. 

with the vortex bubQle similarly to the open jet cases. At S = 0.77, when no stagnation 

point exists, the flow has been found helically stable. Thus, as for the open jet case (efr. 

§5.3.1), the limit point S1 and that associated with the loss of stability to 3D disturbances 

are close. This confirms a clear relation between the exi stence of recirculating fl ow and lhe 

helical global modes. 



Chapter 5: Three-dimensional direct numerical simulations 171 

0.8 

0.6 
N 

> 0.4 
\ 

\ 

0.2 ~ 
:::0.,.. 

\ , 
0 \ 

.... -::~:::,/ , 
0 2 4 z 6 8 10 

Figure 5.51: Effect of compressibility on the axisymmetric vortex breakdown. Centerline axial velocity at 
M = 0.3 (solid), M = 0.6 (dash-dotted) and M = 0.7 (dotted). Re=200, S=l.l. 

[ M II 0.3 I 0.4 I 0.5 I 0.6 I 0.7 I 
[ WI II 0.059 I 0.051 I 0.039 I 0.028 I 0.014 I 

Table 5.5: Linear growth rate of mode m = 1 measured for different Mach numbers. 

5.6 Effect of compressibility 

A last parametric study was conducted to evaluate the effect of compressibility on the de

velopment of helical instabilities. The analysis has been performed on the open jet case at 

Re=200, S = 1.1 by varying the Mach number in the range 0.3 ::; M ::; 0.7. Computations 

with Mach numbers outside this range become problematic for the compressible code uscd 

here, due to the absence of both low Mach preconditioning and filtering techniqucs for the 

treatment of shock waves. 

Among the previous studies, the effect of compressibility has been investigated hy 

Khorrami [49] in the parallel context, and by Herrada et at. [411 for the axisymmetric vor

tex breakdown in pipes. According to these results, compressibility reduces the value of the 

critical point SI [41] and enlarges the stability region of a parallel swirling jet [491. 

In our analysis, in order to distinguish between three-dimensional and purely axisym

metric effects, we preferred to compute the 3D evolution starting from converged axisym

metric solutions. Results discussed in previous sections (cfr. §5.1.3) have demonstrated that, 

at the low Reynolds number employed here, the growth rates of unstable helical modes do 

not depend on the initial condition adopted. 

The steady solutions corresponding to the axisymmetric cases reveal a very small sen

sitiveness to the Mach number, with the flow field preserving a very similar spatial structure. 



Chapter 5: Three-dimensional direct numerical simulations 172 

-1 (a) -1 (b) 

M=0.3 M=O.~/~~~ 
-2 M=0.5 -2 

//M=g.4/·/ 

E-3 E-3 . M=0.5 
0- M=0.6 

0-

~~~ ci-4 J-4 
.Q 

-5 
.Q 

-5 ...-----. 
-6 

______ ---- M=0.7 

450 500 
t 

550 600 650 500 
t 

550 600 650 

Figure 5.52: Effect of compressibility on the development of helical instabilities. Temporal evolution of 
mode m = 1 at different axial positions. (a): z = 4, T = 0.3. (b): z = 16, l' = 0.3. Re=200 S = 1.1. 

Figure 5.51 shows the centerline axial velocity obtained at !II = 0.3, !II = O.G and 1\/ = 0.7 

(streamlines are not reported since they do not allow us to detect any difference). The com

pressibility has therefore a negligible effect on vortex breakdown, although it slightly re

duces the acceleration in the wake of the vortex bubble. This observation renders more 

interesting the comparison made on the 3D calculations, since any difference can be at

tributed with more confidence to a pure effect of compressibility, and not associated with a 

structural change in the base flow. The three-dimensional DNS reveal a clear damping effect 

on the growth of helical instabilities. Figure 5.53 shows the time history of the first harmonic 

for the axial velocity component (all simulations restart at Time=400). In order to stress the 

global character of the instability the temporal evolution of mode m = j has been monitored 

at two distinct positions, namely z = 5 and z = 16. The growth rates have been found to he 

equal at both the stations, and their values are reported in table 5.5, The maximum growth 

rate, obtained at M = 0.3, is WI = 5.9,10-2, The result is consistent with the value predicted 

by Ruith et at. [88] who have found, for the incompressible case, WI = 6.63.10-2
• 



Conclusions 

A DNS code in cylindrical coordinates has been developed to carry out a comprehensive 

theoretical and numerical study of vortex breakdown and instability of swirling flow. Our 

computations have revealed the main features of the phenomenon, i.e. large amplitude ax

isymmetric waves and instability to small helical perturbations. A linearised version LTS of 

the code has allowed the discussion of the elements in relation to the general dynamics of 

swirling flows. The main achievements are summarised as follows: 

• The formation of a large region of recirculating flow (the vortex bubble) is seen to 

be related to the ability of a vortex core to sustain axisymmetric waves gencrated 

by a localised perturbation. These are inertial waves, whose propagation has been 

explained analysing the response of the perturbed Rankine vortex and in terms of 

vorticity considerations (eI'r. §3.3). In synthesis, the wave motion is provided hy a 

coupling mechanism between the tilting and the stretching o/" axial vorticity. When 

the base vortex flow is strictly one-dimensional, the inertial waves can propagate in 

the upstream and downstream direction marginally, i.e. no amplilication is observed. 

When streamwise inhomogeneities are introduced, an un stahle mode can he gener

ated as a superimposition of waves propagating upstream. This mechanism has been 

observed in the axisymmetric DNS for an incipient vortex breakdown (err. fi4.2J. The 

introduction of physical boundary conditions breaks the one-dimcnsionality or the 

flow. By diffusion, negative axial circulation gradient is created, and plays the role 

of a continuous localised forcing. At this point, the flow evolves into breakdown if, 

for any mechanism, the wave motion in the upstream direction is inhibited. This may 

be caused by two different reasons: the existence of inlet boundary conditions where 

the velocity is kept constant, or a streamwise dynamical evolution of the base flow 

which switches from a supercritical condition (when any perturbation is convected 

downstream by the axial velocity support) to a subcritical one (when the base axial 
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support is slower than the marginal waves). 

• In the axisymmetric framework, several parametric sudies have been conducted and 

special emphasis has been given to illustrate the dependence on the Reynolds number. 

More precisely, we have tried to explain the hysteresis loop found at high Reynolds 

numbers in terms of the vortex bubble motion. Our results (dr. §4.4) support the idea 

that multiple steady solutions exist when the vortex bubble is so strong as to be able to 

migrate downstream when the level of swirl is sequentially reduced under the critical 

point Sl. In this case, solutions on branch (II) of the bifurcation diagram represent 

standing waves localised at different axial positions. The critical point S~ (//I\'(/.\'s 

represents a small wave. It will be located in the proximity of the outlet boundary 

if the Reynolds number is high enough, while its axial position moves away from it 

as the dissipative effect of viscosity increases. The minimum Reynolds number such 

that the vortex bubble is unable to move downstream represents the limit point when 

the bifurcation diagram loses branch (II) and multiple steady solutions disappear. 

• In the three-dimensional DNS, the breakdown regime has been shown to be charac

terised by the onset of self-sustained global modes with low azimuthal wavenumbers 

m = 1,2. In most of the cases, computations suggest a causal relation between vortex 

breakdown and helical instabilities, i.e. the loss of stability appears to be a conse

quence of the structural change generated by vortex breakdown itselL Arter the vor

tex bubble has formed, the flow field evolves into a limit cycle represented by the 

saturated state. 

Solving the Navier-Stokes equations linearised (LTS) around one-dimensional veloc

ity profiles extracted from converged axisymmetric solutions, we have examined pos

sible correlations between the response obtained by the global nonlinear DNS and the 

local stability characteristics of the base flow. The local analysis of swirling /lows 

(cfr. §3.1) indicates the destabilisation of higher azimuthal modes 11111 .::> 2 as a typi

cal effect of the swirl. Now, examining the response to controlled perturbations (dr. 

§5.1.4), we have actually found that the spatial amplification produced by an axisym

metric swirling flow in breakdown configuration on higher helical modes In . .::> :1 is 

quite well predicted by the local analysis. However, due to their convective nature, 

these higher modes are unable to trigger a global mode in the spatial DNS because in 

the absence of a continuous forcing they leave the computational domain. Conversely, 
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the bending mode 171 = 1, although "less unstable" in a local analysis, gives rise to 

self-sustained oscillations completely independent on the forcing applied. This global 

mode is initiated following the scenario predicted by the theory of Pier and Huerre 

[85], i.e it is determined by an extended region of local absolute instability whose 

upstream border represents the wave-maker. This station acts as a front imposing the 

local frequency to the global response (efr. §5.2.2) and delimiting (at \cast initially) 

the region where unsteadiness develops. For the Re=200, S = O.D5 case, the wave

maker has been identified behind the vortex bubble, which on the other side does not 

partake in the frequency selection revealed in the nonlinear DNS. The reason appears 

to be related to a local stabilisation caused by the inward motion in the \ce of the 

bubble. 

The discussion is more complicated for mode 171 = 2. The local analysis highlights 

that only localised regions of absolute instability exist, and they arc located within the 

recirculating regions (cfr. §5.2.2 and §5.3.3). It should be noted that currently avail

able weakly non-parallel formulations do not provide theoretical indications for such 

a non-parallel object. An important result, obtained however in the parallel frame

work, is that the absolute instability region can be too small to be active 1171. Our 

study suggests that the vortex bubble, limited, strongly non-parallel, region or ahso

lute instability, does not playa completely passive role: wave packets are irregularly 

sent out beating at a specific internal frequency. A second kind of glohal mode can 

then be observed at higher values of the control parameter (the swirl or the Reynolds 

numbers) (cfr. §.5.3). In fact, the wave packets are subjected to a spatial amplillca

tion in the wake leading to a saturated state. The local analysis (cfr. §5.3.3) conlirms 

that the instability developing in the wake is purely convective, demonstrating a clear, 

substantial difference from the predictions of Pier and Huerre. 



Future work 

During our investigation, we have continually made reference to a collection of results pro

duced by theoretical studies on the forced Ginzburg-Landau (GU) equation, the simplest 

system exhibiting absolute instability. In the last decade, it has been common practice to 

apply these results to different physical situations. In most of the circumstances, the gener

ality of these concepts has been validated regardless of the physical context in which they 

were analysed. 

The second kind of global mode revealed in our computations (Re=800, S' = 0.9S, III = 

2) may be interpreted as a counter-example. It is important to notice, however, that it does 

not represent the first case in which the indications given by the GU equation are not fulfilled 

(Davies and Carpenter [20] have shown some discrepancies for the rotating-disc boundary 

layer, although the nature of their results is very different from what is discussed here). 

We are aware that spurious numerical effects, feedback instability and, more generally, an 

improper simulation of conditions at infinity represent possible sources of error leading to 

equivocal conclusions in DNS. This eventuality is here moderated by the observation that 

careful inspections of other numerical studies on vortex breakdown [88] seem to identify 

similar dynamics. 

The question which should now be addressed is to understand which clement renders 

the transitional behaviour of a swirling flow in the breakdown regime not fully describable 

by the Ginzburg-Landau model. Guided by this objective, some considerations offer the 

possibility of interesting future work. 

In our discussion, we have implicitly assumed that the linear absolute stability repre

sents a sufficient condition for the nonlinear absolute stability. Under this working hypothe

sis, we have assumed valid a result which has been numerically confirmed by Delbende and 

Chomaz [22] for a family of two-dimensional wakes. If this condition is not satisfied for 

swirling flows, the existence of the second kind of global mode might be explained in terms 

of local absolute instability with respect to nonlinear perturbations. There are good reasons 
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to believe that this is not the case: first, the structure itself of this global mode demon

strates features of convective instability also in the nonlinear DNS (cfr. §S.3.3); in addition, 

how could be then explained the difference with the behaviour revealed by the first kind of 

global mode? 

In order to remove any doubt, we believe it may be worth extending the nonlinear wave 

packet analysis of Delbende and Chomaz to the current swirling flow. Alternatively. one may 

conduct direct numerical simulations of the complete linearised Navier-Stokes equations 

around a base flow given by an axisymmetric vortex breakdown state. The latter approach 

is particularly recommended, as it would also provide a complete set of information about 

the role played by nonlinearity. It should tell us whether the frequency selection is affectcd 

and would clarify the presence and nature of convective wave packets. 

The irregular self-sustained structures giving rise to the second kind of global mode arc 

seen to be initiated in the vortex bubble. This region is strongly non-parallel, whereas the 

Ginzburg-Landau equation provides indications only for slowly developing flow. Despite 

this simple evidence, we cannot be sure that our resuiLs are a manifestation of a pure non

parallel effect. In fact, there exist other physical situations which arc similar to the context 

studied here. Flows over cylindrical bluff bodies are a typical class of' now characterised by 

large regions of recirculating now and strong non-parallelism, but instability mechanisms 

of this kind are not reported in the literature. The application of the same Ii Itering technique 

adopted in this work, to three-dimensional wakes (for example over a sphere) may provide 

interesting answers. If the same elements are captured, WG gain confidence that they ac

tually result from a complicated non-parallel effect whose analysis has to be sent back to 

theoretical studies. Conversely, the complete absence of these dynamics would suggest a 

more intimate relation to the physical context in which they have emerged. 

In this latter case, the starting point should be the scenario arising from the Rc=200 

S = 1.1 case (cfr. §3.1.3) regarding the transient growth characterising the evolution of 

mode m = 2. This is self-sustained, of short duration and with a convective long-term 

character. The transient growth is reminiscent of a typical non-normal crfect, occurring 

when the linear operators are actually stable but support solutions exhibiting large transient 

energy growth. Our local analysis does not show any sign of algebraic growth, and there 

is no reason to believe that this effect might be invisible to LTS, since no assumption is 

undertaken regarding the orthogonality of the eigenmodes expansion. However, a secure 

guarantee on this argument can be provided only comparing the LTS results with those 
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obtained by a matrix formulation of the stability analysis. 

We believe that the non-normal effect retrieved in the DNS has more likely a global 

origin, in the sense that it might be caused simply by a too limited extension of local absolute 

instability. On this point, the analogy with three-dimensional wakes over bluff bodies ceases 

to exist, because the stabilisation encountered behind the vortex bubble is an inertial effect 

associated with the swirl. On the other hand, the theoretical predictions based on the GU 

model would be closer to this condition, since the appearance of local absolute instability is 

only a necessary condition for the onset of a global mode. In this direction, further numerical 

studies should be conducted in order to determine a more precise correlation between the 

base morphology of an axisymmetric breakdown state (so much dependent on parameters 

like the Reynolds and the swirl) and the details of the convective wave packet produced. 
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