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Improved direct estimators for small area estimation (SAE) are investigated and extended in

this thesis.

Unbiased direct estimators for small area quantities are usually considered too variable to
be of any practical use. In this thesis we described a class of model based direct (MBD)
estimators for small area quantities that appears to overcome this objection, in the sense that
these estimators are comparable in efficiency to the indirect model-based small area
estimators (e.g. empirical best linear unbiased predictors, or EBLUPs) that are now widely
used. There are many practical advantages associated with such MBD estimators, arising from
the fact that they are computed as weighted linear combinations of the actual sample data
from the small areas of interest. In this case the weights ‘borrow strength’ via a model that
explicitly allows for small area effects. One particular advantage that we explore in this thesis
is that estimation of mean squared error (MSE) is then straightforward, using well-known
methods that are in common use for population level estimates. Empirical results show that
the MBD estimator represents a real alternative to the EBLUP, with the simple MSE
estimator associated with the MBD estimator providing good coverage performance. Further,
our results indicate that the MBD estimator may be more robust than the EBLUP when the
small area model is incorrectly specified.

We extended the MBD approach to multipurpose SAE. Our results indicate these
multipurpose weights are efficient across a range of variables, including variables that are ill-
suited to EBLUP, e.g. variables that contain a significant proportion of zeros. We also show
that these multipurpose weights remain efficient across a wide range of variables, even
variables that have not been used in the definition of the multipurpose weights. We also
extended the MBD approach to SAE for skewed data where the linear model provides poor fit
and standard methods of small area estimation are inefficient. The proposed method based on
the log-log transform model with random effects show significant gains in small area

estimation.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Small area estimation plays a prominent role in survey sampling due to growing
demands for reliable small area statistics from both public and private sectors. The use
of small area statistics have existed for a long time. The existence of the Domesday
Book in eleventh century England and in the seventeenth century Canadian small area
data based on the 1666 census is described in Brackstone (1987). In those early days
the small area statistics were based either on a census or on administrative records. In
either case the process relies on the complete enumeration of the domain of interest,
no sampling is involved. However, for the past 40 years, sample surveys have been
recognised as a mean for providing efficient and cost-effective national and sub-
national estimates at frequent intervals and consequently, for most purposes, have

replaced the complete enumeration.

Sample surveys, whether they are conducted by government organisations or by
private entities, aim to produce reasonably accurate direct estimators, not only for the
characteristics of whole population but also for a variety of subpopulations or
domains. These direct estimators are based on domain specific sample data. However,
many policymakers and researchers also want to obtain statistics for small domains. A

domain is regarded as ‘small’ if the domain-specific sample is not large enough to



support a direct estimator of adequate precision. In other words, the estimator is likely
to have a large standard error due to the small size of the sample in the domain
(Ghosh and Rao, 1994). These small domains are also called small areas, so called
because the sample size in the area or domain from the survey is small. Thus, we need
special methods to estimate the characteristics of these small areas, referred to as the

small area estimation techniques.
1.2 Small Area Problem and Associated Estimators

Each small area typically denotes a subset of the population for which very little
information is available from the sample survey. These subsets refer to a small
geographic area (e.g., a county, a municipality, a census division etc.) or a
demographic group (e.g., a speciﬁc‘age—sex—race group of people within a large
geographical area) or a cross classification of both. A small area can be any part of the
population defined by any method of stratification. The statistics related to these small
areas are often termed as small area statistics. The term small area and small domain

are interchangeably used in the literature.

In recent years, many countries in the world are transferring the responsibilities for
many social and economic policies from national governments to the local
governments. Policy planners want to make sure that resources are targeted
effectively and efficiently at the areas most in need and for the evaluation of the
success of this targeting at a local level, they need reliable small area statistics. The
private sector also needs small area statistics for policy making since many businesses

and industries rely on local socio-economic conditions. Feasibility studies, for



example, require the use of small area statistics. Small area estimates can be made
available from various censuses of population, businesses, housing and agriculture.
However, the demand for small area estimate also exists for the intercensal period

when data usually come from sample surveys.

Due to the increasing demand, survey organizations are faced with producing the
small area estimates from existing sample surveys. Unfortunately, sample sizes in
small areas tend to be too small, sometimes non-existent, to provide domains specific
reliable direct estimates for these small areas. In other words, for small domains
(small in terms of sample size), the domain specific usual design-based direct
estimates (see section 2.2) are too unstable to be used for planning and policy-making
purposes as they are likely to produce unacceptably large standard errors due to the
small sample size. Accurate direct estimates for small areas would require a
substantial increase in the overall sample size which in turn could overwhelm an
already constrained budget and which could further lengthen the data processing time.
Consequently, there has been growing interest in developing a range of estimation
techniques to answer this need for small area statistics without further burdening the

resources of already constrained survey organizations.

Small area estimation (SAE) methods look at producing estimates with adequate
precision for such small areas or domains, through an estimation procedure that
‘borrows strength’ from related areas or time periods (or both) and thus increase the
overall (effective) sample size and precision. These estimation procedures are based

on either implicit or explicit models that provide a link to related areas or time periods



(or both) through the use of supplementary data (auxiliary information) such as recent

census counts and current administrative records, see Pfeffermann (2002).

The traditional estimation techniques based on implicit linking models are synthetic
and composite estimation methods. In these methods, an unbiased estimator for a
large area is used to derive estimators for smaller areas under the assumption that
these small areas exhibit the same structure (with regard to the phenomenon being
studied) as the initial large area. If this condition is not met, the result could be biased

estimators.

We notice that the usual design-based direct estimators based on the area-specific
sample data are unbiased but in general not very precise. The traditional indirect
(synthetic) estimators obtained through the use of auxiliary information have smaller
variance but are generally biased. Statistical theory of SAE proposes a way of
combining both estimators in a linear fashion so that the resulting estimator represents
a compromise between the absence of bias and minimal variance. The resulting
- composite estimator is the linear combination of the direct and indirect estimators that

minimises the mean squared error (Ghosh and Rao, 1994).

The traditional indirect estimators such as synthetic and composite estimates have the
advantage of being simple to implement. In addition, these estimation techniques
provide a more efficient estimate than the corresponding design-based direct estimator
for each small area through the use of implicit models which ‘borrow strength’ across
the small areas. These models assume that all the areas of interest behave similarly

with respect to the variable of interest and do not take into account the area specific



variability. However, we can find situations where validity of assumed model fails
leading to a biased estimator. Consequently, explicit linking model which incorporate
random area-specific effects that account for between area variation beyond that
explained by the auxiliary variables included in the model provides a better approach
to SAE. These random area effects in the mixed model capture the dissimilarities
between the areas. In general, estimation methods based on an explicit models are
more efficient than traditional methods based on an implicit model. The explicit
models used in SAE are a special case of the linear mixed model and are very flexible
in formulating and handling complex problems in SAE. However, availability of good
auxiliary information and the determination of a suitable linking model is crucial. In
this thesis, our emphasis will- be on mixed model based SAE methods. See Saei and
Chambers (2003) and Jiang and Lahiri (2006), among others, for an extensive review
of SAE based on mixed models. The related references for comprehensive review on
SAE methods are Ghosh and Rao (1994), Pfefferman (2002) and Rao (1999, 2003). In
chapter 2 we shall return with a brief outline of some of the important SAE techniques
existing in the literature. In this chapter we shall also elaborate some analytical

expressions to illustrate different SAE methods.

1.3 Motivation and Aim of the Thesis

Several methods for SAE have been proposed in the literature. However, research is
still continuing on the important problem of identifying SAE techniques that are
efficient and also simple to implement, with estimation of mean squared error (MSE)
a particular problem. The model-based predictive approach or empirical best linear

unbiased (EBLUP) approach under mixed effect models is very common and proven



to be efficient for the SAE. Prasad and Rao (1990) using results obtained from Kackar
and Harville (1984) developed approximations to the MSE of the EBLUP which
account for variability due to estimation of the variance components. They also
obtained nearly unbiased MSE estimators under normality. However, in this EBLUP
approach, survey weights have got little or no relevance. Consequently, many
practical advantages of weighted linear estimation are lost. Perhaps the most
important of these is the simplicity of the estimation process. The calibrated
weighting approach to SAE introduced in Chambers (2005) defines the model-based
direct estimator for small area quantities, with a simple estimator of the mean squared
error of this estimator. The simplicity and ease of implementation of this approach

motivated us to undertake this detailed study.

The main aim of this thesis is to study the model based direct (MBD) estimation
method of Chambers (2005) and compare it with the EBLUP method (Prasad and
Rao, 1990), and to extend the MBD approach to multipurpose small area estimation

and to small area estimation for skewed data.

1.4 Outline of the Thesis

This thesis is organised in seven chapters. The present chapter has provided an
overview of the importance and need for small area statistics. It has also indicated
issues and challenges in SAE. In addition, our motivations and the aims of our
research topic have been summarized in previous section. The remaining part of this

thesis is organised as below.



Chapter 2 of the thesis presents the review of some of the important SAE techniques,
emphasis has been given to the mixed model based SAE methods. Further, a brief
discussion on some recent developments in SAE methods is outlined. In addition, the
gaps existing in the literature that this thesis study intends to address are discussed.

This chapter prepares the foundation for the other chapters.

Chapter 3 introduces the calibrated weighting approach in SAE. The model-based
direct (MBD) estimators for small areas are defined. This approach uses sample
weights derived from a population level version of the mixed effects model to define
weighted linear small area estimators as well as a simple expression for their mean
squared error. An empirical result using Australian Agricultural and Grazing Industry
Survey (AAGIS) data is reported, which evaluates the performance of the empirical
best linear unbiased predictor (EBLUP) and the MBD methods of SAE. Further,
robustness of these SAE methods under model misspecifications is examined.
Furthermore, some discussion on practical issues to provide an argument that supports
our empirical results is included. The results of this chapter also appear in Chandra

and Chambers (2005, 2006c, 2006d) and Chambers and Chandra (2006).

Chapter 4 presents the SAE techniques in context of multivariate surveys. The
multipurpose sample weights for SAE are introduced. The MBD estimators for small
areas using multipurpose weights are described. Theoretical aspects on how such
multipurpose sample weights can be constructed when small area estimates of more
than one survey variable are required is discussed. An empirical result using AAGIS
data is reported to examine the performance of proposed multipurpose SAE method.

In addition, an empirical illustration is presented to see how much efficiency (if any)



is Jost if the linear assumption based MBD estimation is applied to the categorical
variables. The suitable estimator in this case is the indirect estimator under a
generalized linear mixed model. Application of the MBD method to categorical data
is examined and the performance is evaluated against the indirect estimator via
simulation studies. The main results of this chapter are also reported in Chandra and

Chambers (2006b).

In chapter 5 and 6 we have addressed the issues related to SAE for business surveys
where the data are skewed, and linear models provide a bad fit. Chapter 5 focuses on
theoretical development for SAE methods with skewed data. A transform variable
based SAE method is develop for skewed data that is linear on the log-log transform
scale. The MBD estimators for small areas are derived under a log-log linear mixed
model. In deriving these methods both normal and gamma distribution for the random

errors are assumed.

Chapter 6 is devoted to simulation studies that evaluate the performance of the
different methods of SAE for skewed data proposed in chapter 5. Two types of
simulation studies are considered. The first type of study uses model-based simulation
to generate data. These data are then used to contrast the performance of proposed
MBD estimators for skewed data derived under a log-log linear mixed model with the
MBD and EBLUP under a linear mixed model. The robustness of these SAE methods
is also examined under the model misspecification. The second type of simulation
study was carried out using real data (AAGIS data) and design-based simulations to

test these methods in the context of a real population and realistic sampling methods.



The results from chapter 5 and chapter 6 also appear in Chandra (2006) and Chandra

and Chambers (2006a).

Finally, chapter 7 provides the summary of main findings and conclusions of this

research. In addition, some possible further research topics are suggested.



CHAPTER 2

OVERVIEW OF SMALL AREA ESTIMATION TECHNIQUES

2.1 Introduction

In chapter 1 we briefly described the need of small area data and the problem of small
area estimation (SAE). In this chapter we review some of the important and
commonly employed methods of SAE existing in the literature. This chapter prepares
a foundation for the proceeding chapters. The chapter is organised as follows. The
direct, synthetic and composite methods of small area estimation are illustrated in
sections 2.2-2.4 respectively. Section 2.5 is devoted to the application of mixed effect
models in small arca estimation with attention to unit level random effects model. In
section 2.6 and 2.7 we introduce and discuss some recent developments in small area
estimation such as the pseudo-EBLUP approach and model-based direct estimation.
Section 2.8 elaborates some further extensions of the mixed effect model to small area

estimation. Finally, section 2.9 summarizes the key points from this chapter.

2.2 Direct Estimators

As noted in the previous chapter, in many cases existing large national sample surveys
are also used to produce estimates for domains (these can be planned or unplanned) of
the population. When sample sizes are small these domains are called small areas.

That is an area is regarded as small if the sample drawn from the area is not large

10



enough to yield direct estimates of adequate prevision. The estimation method defined
for large domain or population level quantities becomes impossible to apply, mainly
because sample sizes are typically small or even zero in some small areas of interest,
so the direct estimates (i.e. domain-specific estimates) tend to be quite unstable. The
direct estimates use the data on the survey variable from the domain of study and time

of interest. For example, suppose a linear estimator based on sample weights

{w;;je s} is used to make inference about population level quantities. Here, s

denotes the sample of size n drawn with sampling design p(s) from a population

U={l,..,N}of size N. Further, if Ejzzjap(s) are the first order inclusion

probabilities then w, =7Z';l defines the design weight of element j. Under simple

'. Let a subscript of i denote restriction to

. : _ -1 AT—
random sampling, 77, =nN " and w; = Nn
small area i(i=1,...,m) . We assume that the population consists of m non-

overlapping domains or small areas U, each with population of size N, such that

U= U::'] U, and N = Z::l N, . Let s, be the part of the sample of size », that falls in

m

small area i and n= ) _n . We denote by y; the value of 7" population unit in

small area i for the characteristic of interest Y. The population mean of Y in the area i,

Y = N,.’lzjeui ¥, could be then estimated using the same weights leading to estimator

i

Q2.1

)%,»H"jek = (Z,,-e.y,. W )71 (Zja-,. w; ij

or, if the population size N, of the small area / is known,

}%HT _ Ni_l (Zjai Wj)’j) (2.2)

The estimators (2.1) and (2.2) are sometimes referred to as direct estimators of small

area i mean Y,. More precisely, the estimator (2.1) is referred as the Hiajek type of the
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direct estimator, and (2.2) as the Horvitz-Thompson (HT) type of the direct estimator.
These names refer to alternative approaches to estimating finite population means in
the classical sampling literature, see Cochran (1977) and Sirndal, Swensson and
Wretman (1992). Irrespective of which form of direct estimator is used, it is easy to

see that its variance can be large when the area sample size n, is small. For example,
under simple random sampling, with no auxiliary information, a design-based direct

estimator of the mean of Y for small area i (¥, = Ni_lz v Vi )is

i

0 otherwise

: {y,. if n 21 (2.3)

where ¥, :Z& ijj/z& w, :ZJY Nn"yj/zjb Nn™' :n;lzm y, is sample mean

of Yin area i. The estimator (2.3) is conditionally unbiased for a fixed n, 21 since

E/) (Z):Ep()_)l): E‘lz,» [E{)(yl lni):len,» ()_/;) )71 :

The conditional variance of (2.3) is

Var, ()%, In)y=~1-£)S}/n, (2:4)
with f,=n,/N, and S7 = (N, —1)"211(% —¥)%, N, 22. Here E, and Var, denotes
the expectation and variance respectively under the design-based' approach. An

unbiased estimator for S? is s,.z=(rzl.—l)‘lzl,ﬂ(yl.—)7,.)2 . Thus, an unbiased

estimator for variance (2.4) is given by v()%,. In)=n"(1-f)s’ when N, is known.

" In the design-based approach, an estimator 7 of ' is said to be design-unbiased (or p-
unbiased) if the design expectation of 7 equals to 7 ie., E,(7)=Y p(s)T,=T , where the
summation is over all possible samples s under the specified design and 7 is the value of 7

for the sample s. In this approach, the population is fixed and the only randommness or
stochastic process involved is the selection of random samples. No distribution and no model
is involved, and expectation is over all possible samples from the population.
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For unknown N;, the sampling fraction f, =n, /N, is replaced by f =n/N and then

the estimator for variance (2.4) is v(¥ 1n,)= (1— f)s? /n, .

From (2.4) it is obvious that for small sample size n,, the variance will be larger
unless the variability of the ¥ values is sufficiently small. Suppose that in addition to
survey variable Y, values of p-auxiliary variables are also known. Let us denote by x;
a pxl vector of auxiliary variable X for the unit j in area i. Then with known
auxiliary information, a more efficient design-based direct estimator for the i" small

area mean Y, is the regression estimator defined as

=3 (X -X) B, @

where S is the vector of regression coefficients in area i, X, = n.'lz ~ x, and
i i i jes; T J

= _ N, . . . .

X, =N, IZ,-:1 x, are the sample mean and population mean of auxiliary variable X in

the area i respectively. The variance of (2.5) is

(2.6)

Var, (fiw In)=n" (1= f)S? (1-pH)=1-p} )Va",,()%,« In)

where p, is the multiple correlation between survey variable ¥ and auxiliary variables

X in area i. An estimate of variance (2.6) is then v()%,.”’g In)=(1-p)Y1-f)s?[n; .

From (2.6) we notice that by use of auxiliary variables, the variance is reduced by the
factor (1— p7). This indicates that use of good auxiliary information, in the sense of

high correlation with survey variable ¥, increases the accuracy in SAE. However, the
problem with the regression estimator (2.5) is that in practice the regression

coefficients /3, are seldom known. Replacing f by its ordinary least square (OLS)

13



estimates [, is not effective because of small sample sizes in each area i. See Cochran

(1977) and Sérndal, Swensson and Wretman (1992). A large enough sample size to
support direct estimation for all areas of interest rarely exists. Budget and other constraints
usually prevent drawing sufficiently large samples from each small area. Often these small
areas are defined after the survey has been carried out. The problem is therefore how to
produce reliable estimates of characteristics of interest for small areas and how to assess the
estimation error with these small sample sizes. This sensitivity to sample size has led
many researchers to refer to the theory that has been developed to overcome this
problem as the theory of small area estimation (SAE). SAE is based on model-based
methods. The idea is to use statistical models to link the variable of interest with

auxiliary information, e.g. census and administrative data, for the small areas.

Note that in the case of a design-based estimator, the estimate produced is unique to
each individual small area under consideration. The estimate is unbiased for that area,
in the sense that, under repeated sampling the mean of successive estimates will tend
towards the true value. In contrast, a model-based” estimator utilises auxiliary
information to produce an estimate of the target variable that is applicable to all small
areas that share similar characteristics. Thus, if two small areas have exactly the same
auxiliary information, exactly the same estimate will be produced for each by the

model-based procedure.

? In the model-based approach, the population is random and expectation is under the model
i.e., over all possible populations drawn from an assumed model. Here, only one sample is
drawn from each population but every time we generate one new population from the model.

An estimator 7 of 7 is said to be model-unbiased (or &-unbiased) if E,(7-T)=0. In this
approach 7 is also a random variable, not fixed like the design based approach, so expectation
is taken for (7 -T) under the model, i.e. we cannot write E;.(TA)zT. However, in the design-
based approach we can also write E,(7~T)=0, since 7 is fixed quantity in this case. Further,
model based SAE methods depend on assumptions e.g., normality and these should be tested.
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When the sample size for each small area is sufficiently large to give reasonably
accurate estimates, the design-based direct estimator is the most desirable. However,
as the sources of data are usually sample surveys designed to produce larger or higher
level statistics, sample sizes for the small areas are usually small. Consequently, the
associated variances of these estimators are likely to be unacceptably large. Therefore,
for estimating the small areas, it is necessary to employ the estimation methods that
‘borrow strength’ from related areas. These estimators are often referred as the
indirect estimators since they use values of survey variables (and auxiliary variables)
from other small areas or times, and possibly from both. They borrow information
(data) from other small areas or times (or both) by use of statistical models either
based on impliciF or explicit models that link related small areas through auxiliary
information. This auxiliary information can be values of the variable of interest in
other similar areas, values of this variable in the same area in the past, or values of
other variables that are related to the variable of interest. However, the effectiveness
of the approach depends on the strength of the relationship between the survey
variables and the auxiliary variables, and the closeness in the behaviour of the data
between different areas or over time. A good model is important but the availability of
auxiliary information related to the survey variable is also crucial for small area
estimation. Further, the smaller the small area sample size, the more important is the
auxiliary variables. Furthermore, model diagnostics are very important for the model-
based methodologies since misspecification of the model may induce bias, see

Pfeffermann (2002).
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2.3 Synthetic Estimators

In producing the synthetic estimates for small areas, availability of direct estimates for
a set of larger domains of the population is assumed. Appropriate weights or
proportions are then applied to these large population domain estimates to obtain the
desired small area estimates. This class of estimators implicitly assumes that small
areas which are being considered are similar, in some sense, to some larger areas
which contain them and for which the reliable direct estimate is available. The
synthetic estimation procedure was first used by the United States National Centre for
Health Statistics (NCHS) for estimation of long and short-term physical disabilities

based on the National Health Interview Survey (1968).

Over time, several definitions and descriptions of synthetic estimation have been

given in the literature.

Gonzales (1973) described synthetic estimator as one in which an unbiased estimator
of a large area is used to derive estimates for subareas under the assumption that the
small areas have the same characteristics as the larger areas. Holt, Smith and
Tomberlin (1979) defined it as the method of borrowing information from related sub-
areas in order to increase the effective sample size for estimation and hence the
accuracy of the resulting estimates. Pfeffermann (2002) stated that the term
‘synthetic’ refers to the fact that an estimator computed from a large domain is used
for each of the separate areas comprising that domain, assuming that the areas are
‘homogeneous’ with respect to the quantity that is estimated. Thus, synthetic

estimators already borrow information from other ‘similar areas’.
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Gonzalez and Waksberg (1973) and Levy and French (1977) developed the statistical
properties of the synthetic estimator such as its variance, bias and mean squared error
and methods of estimation for these parameters. Purcell and Linacre (1976) in their
empirical studies developed synthetic estimates of income and work force status for
Australian Census Statistical Divisions at the Australian Bureau of Census. Synthetic
estimation has extensively been used and found wide acceptance because of its
simplicity and intuitive appeal. However, at the same time it was recognised that it is

a crude method for SAFE and needs further improvement.

In synthetic estimation (a scale down approach), we assume availability of reliable

m

direct estimates TA)A :ZmTAyw for the totals of larger group or class g(g =1,....,G)

that encompass the small areas i(i =1,....,m) for a given survey, where fy‘" is the
estimate of population total (T}‘u- :Zl‘l Y, ) of Y in the (i,g)" cell with population
of size N,,. Here y,, is the value of unit j(j=1,....,N,) for variable of interest ¥ in

the cell (i,g) . From the available estimates for population fy} , estimates of

population means for group g are obtained as }%g = (ZLYA} )/(Z:Zl Nig) =7A"y‘g IN,.

A suitable auxiliary information available from a census or some other source is used

to compute a series of weights or proportions w,, such that Zg w,, =1. The weights
w,, are then applied to the group means to derive the synthetic estimator for the i"
syn

= 53 G > . . . .
small area mean Y, as Y, =Zg=l w, Y, . This estimator is referred to as the design-

based synthetic estimator. See Gonzales and Hoza (1978). Skinner (1993) referred to

this approach as simple synthetic estimation.
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The synthetic estimator proposed by Gonzales and Hoza (1978) and elaborated by

Holt, Smith and Tomberlin (1979) uses the weights w, . from the census or some other

sources of accurate information. They suggested the weights based on the population

size and assumed that the population size N, and weights w, =N, /N,,
N, :Z[N,.g with Z‘ w, =1, are known from a previous census or some other

source. Then the synthetic estimator for the mean of Y in small area i is

|>

» =%"% (N,/N,)Y, . Purcell and Kish (1979) and Ghosh and Rao (1994)

g=l

propose a different series of weights w,.ngAx‘,/T; such that Ziwigzl but
Zg w, #1. Here f = Zj’:‘l x;, and T: = Z:Zl TA\K are the estimates of population
total of X in cell (i,g) and the totals of X in larger group g respectively. The

synthetic estimator of the mean of ¥ for small area i is ¥;"" = Z;zl (f‘x / T: ))7 e

Rao and Choudry (1995) suggested the use of a ratio synthetic estimator, a

modification of the earlier method used by Gonzales and Hoza (1978). The ratio

synthetic estimator for the population total of ¥ in small area i is YA‘;""R = IéiTx. They
. . . N; Rl
assumed that area i population ratios R; =T /TX T, _,Zj:l y; and T, —ijlxj

respectively being the population total of the characteristic of interest ¥ and covariate

X for the i small area, are homogeneous. Thus,R =R, =T, /T., where R, T, and

T. are the values for the whole population. Here R, is estimated by I%U =y/x,
where ¥ and X are the overall sample means. We use a subscript of U to denote the

population level quantities.
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The design-variance (or p-variance) of a synthetic estimator7>" of the population

Yi
total of Y in small area i (of order O(1/n)) will be small relative to the p-variance of a
direct estimator fv‘” (of order O(1/n;)) because it depends on the precision of direct
estimators at a large area level. This variance can be estimated using standard design-
based methods but it is more difficult to estimate the MSE of YA’;”” because it is hard to

estimate the bias. See Ghosh and Rao (1994). The mean squared error (MSE) of

design-based synthetic estimators Tl?" for the population total of Y in small area i is

MSE, (TA;;"”) =E, (T o —TA) ” ) - Var, (TA;,""” —TA;’ )+Var, (7:;;"”) @7
where YA’)" is a design unbiased direct estimator for the i small area population total
of Y and subscript of p denotes the operation under the design, see Rao, 2003, page
52. Under the assumption of Covp(f“;’ ,TA;’”)=O, an approximately design-unbiased
(or p-unbiased) estimator of (2.7) is

(") = (5" <1 —v(T =T+ (D)) &9

i

5 syn Sd N2 Sd
~ (1" =T)) = w(T})
where v(7') is a design-unbiased estimator of Var, (TAf) . The variance Var, (TA),‘")

can be readily estimated by v(fy") , but it is difficult to estimate bias of 7°*". This MSE

Yi
estimator is approximately p-unbiased, but is very unstable and can take negative
values (since v(f;y”)<< v(fy”) ). Consequently, it is customary to average these
estimators over different small areas belonging to large area to obtain a global

estimator of MSE, (YA’;"”)(GonzaleZ, 1973). This average MSE estimator is expected

to be stable, but it is not an area-specific measure of accuracy (Rao, 2003, chapter 4).

" The variance estimator v(7)is design-unbiased (or p-unbiased) for Var(T)if E,[v(@)1=V, ().
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We now turn to model-based synthetic estimation. Let us consider the regression
model of the form
v =X B+e; (2.9)
where y, Is value of variable of interest for the j"(j=1,...,n) unit in the small area
i(i=1, ..,m) and x;is the pxI1 vector of auxiliary variables, § is a px1 vector of

regression coefficients. The error term e is often assumed to be normally distributed

with mean zero and variance ¢ . With this notation, and under model (2.9), two

indirect estimators for small areas are defined.

The regression synthetic estimator for the mean of ¥ in small area i is defined as

éS}’nREG =3+ ()?i _-Y,')/IB (2.10)

where X, :n.‘lz_ x;and X, =N7'Z, x, are the sample and population means
! i jes J ! i Jjeu, J

for the auxiliary variables X in area i. Here /;’ is the full sample estimate, i.e.
calculated using data from entire areas. The regression synthetic estimator (2.10) uses
the same value of /;’ in all small areas and thus the different from direct regression
estimator (2.5). However, the regression synthetic estimator (2.10) can be calculated

only when a small area has sample data.

For the areas with no sample data, the model-based synthetic estimator of the mean of

Y for small area i, Y; is defined as

s _ %p 2.11)

The estimator (2.11) will be very efficient when small area i does not exhibit strong

individual effect with respect to the regression coefficient. For a single auxiliary
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variable (under model (2.9) with no intercept), the estimator (2.11) is the same as the
ratio-synthetic estimator ¥ = X (¥, /X,) =X,(3/%), where ¥, and X , are the

estimators for the population total of ¥ and X respectively.

The model (2.9) uses unit level auxiliary information at small area level, but one can
use the area-level regression models when only at small area level auxiliary
information is available. See Skinner (1993). Erickson (1974) applied the area level
regression methods for the estimation of local area population change. This approach
has been referred as ‘the sample regression method’ in Purcéll and Kish (1979). Holt,

Smith and Tomberlin (1979) incorporating the implicit assumption of the synthetic

estimators ¥, derived the modified synthetic estimator under a simple one-way

i

fixed effect analysis of variance model, referred as the prediction-synthetic estimators.

For N, >>n,, , this estimator leads to a design-based synthetic estimator. Laake

(1979) showed that the variance of the prediction synthetic estimator is smaller than

that of the design-based synthetic estimator.

Synthetic estimation, apart from the ease of calculation, addresses the issue of the
small sample size by borrowing the strength from larger areas, and has prominent
advantage due to its variance reduction. However, it can sometimes lead to severe bias
if the assumption of homogeneity within the larger domain is violated or the structure
of the population changed since the previous census. Also, unless the grouping
variables are highly correlated with the variable of interest, the synthetic estimators

fail to account for local factors.
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2.4 Composite Estimators

Gonzalez and Waksberg (1973) and Schaible, Brock and Schnack (1977) compared
the synthetic and design-based direct estimator for small areas and concluded that
when area sample sizes are relatively small the synthetic estimator outperformed the
simple direct, whereas, when the sample sizes are large the direct estimator
outperformed the synthetic. Thus, as the sample size in a small area increases, a direct
estimator becomes more desirable than a synthetic estimator. This is true whether or
not the sample was designed to produce estimates for small areas. These results
motivated the use of a weighted sum of direct estimator (with small or no bias but
larger variance) and synthetic estimator (with small variance but possibly large bias)
as a desirable alternative than choosing one over the other. This weighted estimator is

termed as the composite estimator.

The composite estimators are of interest because they permit trade-off among the
advantages and disadvantages of direct and synthetic estimators through their
weighted combination. In fact, many estimators both design-based and model-based
referred to by different terminology can also be regarded as composite estimators. See

for example Battese, Harter and Fuller (1988).

In general, the composite estimator for the population total of Y in small area i is
defined as

T =gT! + (- )T (2.12)
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where TA),’f is the direct estimator and 7" is the synthetic estimator for the population

¥
total of Y for small area i, and @ (0 < ¢ <1) is a suitably chosen weight. The estimator
(2.12), a weighted sum of two component estimators can have a mean squared error
(MSE) smaller than that of either component estimator when an appropriate weighting
scheme is used. However, deriving the optimal weighing has generally been a
challenging problem in SAE since these estimators are surprisingly sensitive to poor
estimates of the optimum weight. Ideally, the weights should be selected as to
minimise the MSE but this is problematic since the MSE of the synthetic estimator is

generally unknown because of its bias (Pfeffermann, 2002).

Several methods of weight selection have been proposed in the literature. Schaible
(1978) assigned the weights of each component proportional to the inverse of its MSE
and then the two component weights normalised so that they sum to unity. Purcell and
Kish (1979) suggested the use of a common weight which minimizes the average
MSE. However, use of a common weight is not recommended when the individual
variances vary considerably. Drew, Singh and Choudry (1982) proposed a sample size
dependent (SSD) estimator that has the form of the composite estimator with ratio
type direct and ratio type synthetic estimator, with simple weights, dependent on
domain counts. An alternative estimator termed as the “Dampened regression
estimator” was suggested by Sirndal and Hidiroglou (1989). Lui and Cumberland
(1989, 1991) proposed a model-based approach to derive the optimal weight. See
Ghosh and Rao (1994), Marker (1999), Rao (2003) and Schaible, (1978) for several

possible weight choices proposed in the literature of SAE.
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2.5 Mixed Models in Small Area Estimation

The traditional indirect estimators such as synthetic and composite commonly lead to
more efficient estimators than the corresponding design-based direct estimator for
small areas through the use of the implicit models which ‘borrow strength’ across the
areas. These models assume that all the areas of interest behave similarly with respect
to the variable of interest and do not take into account the area specific variability.
However, in the situation where the validity of the assumed model fails, it leads to a
biased estimator. That is area specific variability typically remains even after accounting
for the auxiliary information. This limitation is handled by an alternative estimation
technique based on an explicit linking model, which provides a better approach to
SAE by incorporating random area-specific effects that account for the between area
variation beyond that is explained by auxiliary variables included in the model. An
area effect indicates how different one area is from another after allowing for
differences in their auxiliary variable distributions. Estimating the effect for a
particular area requires using data from all areas and not just the data from the
particular area and thus increases the effective sample size for that area (this is known
as borrowing strength across the areas). Consequently, the estimators based on such
models are more efficient than traditional indirect estimators. The mixed effect model
based SAE has received a considerable importance in the last two decades due to a
number of advantages. These methods make specific allowance for local variation
through complex error structures, models can be validated from the sample data and
methods can handle complex cases such as cross-sectional, time series and

multivariate data. Note that use of these model dependent methods overcomes the
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problems encountered with design-based methods but at the expense of making

further assumptions that need to be tested carefully.

Several methods for SAE based on the nested error regression model (Battese, Harter
and Fuller, 1988), the random regression coefficients model (Dempster, Rubin and
Tsutakawa, 1981) and the simple random effects model (Fay and Herriot, 1979) as
special cases of the mixed model have been proposed in the literature. The estimators
based on such models, include empirical best linear unbiased prediction (EBLUP),
empirical Bayes (EB) and hierarchical Bayes (HB) estimators. Based on the level of
auxiliary information available and utilised, two types of random effects model for
SAE are described in the literature. The area level random effect model which uses
area-specific auxiliary information (Fay and Herriot, 1979) and unit level random
effect model which uses the unit level auxiliary information (Battese, Harter and
Fuller, 1988). These are special cases of the linecar mixed model, usually referred as
area level and unit level small area models. See Pfefferman (2002), Rao (1999, 2003)

and Saei and Chambers (2003).

2.5.1 Unit Level Random Effect Models

Battese, Harter and Fuller (1988) proposed and applied a nested error unit level
regression model in the context of predicting mean acreage under corn and soybean
crops in 12 counties (small areas) of the state of Iowa in the United States using

LANDSAT satellite data in conjunction with survey data. Their model is of the form

i :x;ﬂ-i-ui-i-ei/. (2.13)
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where as in (2.9) y; denotes the value of variable of interest for F"G=1n)

sampled unit in area i(i=1,...,m), x; is a pXxl vector of unit level auxiliary

variables, S isa pxlvector of the unknown fixed effects, n, is the number of sample

units in area i, u, is the area specific random effect associated with area { with mean

zero and variance o, and e; is individual level random error with mean zero and

variance o . The two error terms are mutually independent. The random error
represents the joint effect of small areas that are not accounted for by the auxiliary

variables, also known as the model error for area i. The normality of u, and ¢; is

often assumed. The model (2.13) assumes that samples are drawn independently
across small areas according to a specified sampling design so sample design within
small areas is ignorable. The model (2.13) also holds for non-sampled units and for

the whole population, in the other words model (2.13) applies with »n, replaced by N,.

In matrix notation, model (2.13) is expressed as
Y,=XB+ul, +e (2.14)
where ¥, = (3,0 ¥ ) 5 X, = (X5 X, ) 18 @ n, X p matrix and e, =(e,,....,e, ) .

The covariance matrix of Y, is Var(¥,)=V, =01, +0.1,1, , which depends on a

3
e woon

2

vector of fixed parameters 8 =(0.,07), usually called the variance components of

the model. Here 1, is the unit vector of length », and 7, is a identity matrix of order
n;. The model (2.13) is also referred as a random intercept model since with x;, =1

and f, =, wecan write ¢, = &+, as the random intercept.
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Assuming model (2.13) holds, population mean of the survey variable Y in area i is
Y,=XB+u,+¢, where X, = N;[Z_},tl x;, 1s assumed to be known. For sufficiently
large N,, g, = N Zjvzl e; =0 and then mean of the survey variable ¥ in small area i is
approximated by u = X/f+u, = E(Y,1 X,,u,). This involves the prediction of the sum
of a known linear function of unknown fixed parameters and unbiased random effects
u, . This is a special problem in predicting a linear combination of fixed effects and a
realised value of random effects. There are a variety of approaches that deal with the

estimation problem in mixed models, see Harville (1977), Henderson (1975), Kackar

and Harville (1984) and Peixoto and Harville (1986).
2.5.1.1 Empirical Best Linear Unbiased Predictor

For known 6 =(o?,07), under model (2.13), following the proposal of Henderson
(1975) the best linear unbiased predictor (BLUP) for the mean of Y for small area i, )_’,
(Rao, 2003, chapter 7 page 141 and Royall, 1976) is
7 =Ny v Y B
= £y +(-f){X, p+i} (2.15)
=13+ U= SX B+ 7 G-TP)
where s, and #, denote the sample and non-sample part of the population respectively
in small area i, f; =n, /N, are sampling fractions, ¥, and ¥, are the sample means of y
and x for small area i, X, =(N,X,-nX)/(N,—n), is the mean of x for (N, —n,)
non-sampled units for small area i, 4= (Zin.'V;lX,)_l (3, xv'Y,) is the best linear

unbiased estimate (BLUE) of £ and %, =0'u2(0'5+n;10'f)_1 .We can also obtain the

results (2.15) from the general result given by theorem 3.1 in chapter 3.
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For sufficiently large N,, f, =(n,/N,)— 0 and then the approximate BLUP of the

i

mean of Y for small area 7, ¥; is given by

B=XB+%(3,-%B) =5 {3 +(X, -xY B} +1-7)X/B. (2.16)

The weight % (0<% <1) called ‘shrinkage factor’, provides a trade off between the
approximately design-unbiased regression estimator (2.10) and the synthetic estimator

(2.11) and measures the model variance o, relative to total variance (o +n'0?).

For a small value of ”, weight % will be small and consequently the synthetic part
in (2.16) get more weight and vice versa. For n, =0, ie. areas with no samples,
% —0 and f, = X/ For large n,, ie. as n, increases, 7 —1 and then it tend to

regression estimator.

Further, f and f depends on variance components ¢ that define the covariance

matrix V, =¢-1, +021 1 . In practice the variance components are unknown and

estimated from sample data using standard method of estimation such as ANOVA,
maximum likelihood (ML) or restricted maximum likelihood (REML) methods of
estimation (Harville, 1977). We use “hat” to denote an estimate and then, a two stage
estimators known as the empirical best linear unbiased predictor (EBLUP) of the

mean of Y for small area i is

L = 54 (- X B+ 5,6, -5 D)) 2.17)

where 7 and ,Z? are the estimates of ¥ and ,E respectively obtained by replacing 0

~

by 4.
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For sufficiently large NV, , the approximate EBLUP of the mean of ¥ for small area i is

L=Xp+7G-%p. 2.18)
Note that the EBLUP given in (2.18) is an approximate EBLUP for sufficiently large

population sizes. In finite population sampling the EBLUP for the mean Y, of area i is

given by (2.17).

Another popular application of a mixed effect model to the small area problem is
provided by Fay and Herriot (1979) in the context of estimating per capita income for
small places (population less than 1000) from the 1970 census of population and
housing in the United States. The proposed model is known as the Fay-Herriot model
in the literature. In this model auxiliary information are assumed to be available at the
area level. Prasad and Rao (1990) working on this model, using BLUP concepts,
showed that Fay and Herriot’s estimator is a combination of direct survey estimator
and regression estimator at area level. An advantage of the area model is that the
survey weights are accounted for through the direct estimators while this is not the
case for unit level model. Further, in the EBLUP approach for SAE, normality of
random errors is not needed for the point estimation, but it is assumed for getting
accurate MSE estimate. However, the MSE estimator for the Fay-Herriot model
remains valid under non-normality of random effects (Prasad and Rao, 1990 and

Lahiri and Rao, 1995).

2.5.1.2  Mean Squared Error of EBLUP

The mean squared error (MSE) of the EBLUP is evaluated to observe the variability

in the estimator, but no closed form of MSE exists except in some special cases. Thus,

29



MSE estimation has got lot of attention in the SAE literature in recent years. Here we
describe some approximations for the MSE of the EBLUP proposed in the literature.
For analytical simplicity, we start with the MSE of an approximate EBLUP (2.18) and

then we write down MSE for the EBLUP (2.17).

For known 8 =(o?,0.), following Henderson (1975), the MSE of the approximate

u’ e

BLUP (2.16) is

2

MSE (@)= g,,(0.,02)+ g,,(c2,07) (2.19)
where

8:(0,.0.)=(1=1,0, =70 [n,), and

u? e

802,00 = (X -7 (X, XVx,) (X[ -7%Y.

Here g, (0.,07)is the leading term in (2.19) whereas in MSE of the simple
regression estimator leading term is o /n, . This shows that the BLUP is superior to
the simple regression estimator in terms of MSE if the shrinkage factor ¥, is small.

This first term g,,(o.,07) in (2.19) shows the variability of the BLUP (2.16) when all

T84

the parameters are known and is of order o(1). The second term g,,(c:,07) due to

estimating the fixed effects £ is of order o(m™) for large m. See Henderson (1975).

The MSE of the BLUP (2.16), Y ***" is evaluated as

MSE(F""") = (1- £)*{MSE (&)} + N (- f)o? (2.20)

2

where MSE (fi) is same as MSE (ji,) except that X, replaced by X, in g,,(0”,07)

and denoted by g3,(07,0%) = (X, -3%) (Y. XV 'x, )" (X, -¥%) .

i
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The naive approximation to the estimate of MSE of EBLUP f;, is obtained by

replacing 6 = (¢?,6) by 0 =(62,67) in (2.19) as

u?
mseuﬂive (1[21) = gli (OA-UZ’ 6-92) + gZi (OA-)?’ OA-L2) (221)
However, this approximation to MSE seriously underestimates the true MSE because
the BLUP assumes known variances and hence the MSE estimator obtained by

replacing the unknown variances by their sample estimates 6 fails to account for the

error resulting from variance estimation.

Kackar and Harville (1984) proposed the correction for this underestimation in the

MSE estimator. The MSE of the approximate EBLUP (2.18), [ is

2

MSE(,[Z,) = E(ﬁ, _ﬂi) = E(,[[, _,u,‘)2 +E(ﬁ[ _,[[i)z
+2E{(/[[; —,u,‘)(,[z,‘ _,[[[)}

= MSE(BLUP)+ E(, = )" + 2E{(f1, - 1)(f1, - 22}
(2.22)

The cross-product term in (2.22) vanishes under the assumption of translation

mvariance of € and normality of two errors terms. An approximation to the second

term on the right-hand side of (2.22) using the “Delta method” is

~ ~ N2 7. A 2 . a#
E(ii—i)y =FE{d. — hd.(8)=—
(- ) = E{d.(6)(8-6)"} withd,(6) o

Under the approximate independence of 6 and d,(8), they proposed a further

approximation of this term as

E(f, - 1) = zr[A(e)E{(é— 9)(9‘—9)’}] (2.23)
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where A(9) = Var[dl.(ﬁ)] and E{(é - 9)(5 - 9)'} = Var(é) is the asymptotic

covariance matrix of 8. Note that & is estimated from all data in all small areas

whereas computation of d,(8) = % is based on the data in only a single small area i.

Prasad and Rao (1990) justified the approximate independence of 6 and d;(8), and
concluded that for the method of fitting constants (MFC) estimate 6 of 6 (also called
Henderson’s Method-III) , the neglected term in the Kackar-Harville approximation is
order of o(m™'), which is of smaller order than the order of the term retained. They

proposed a further approximation to the second term of (2.22) as

(2.24)

E([[’.—[ji)z =tr (%JV’[%) Var(é) :gSi(O-uz’O-j)

where b/ =7%,. They used the well known method of fitting of constant (MFC) to

estimate o and o . Neglected terms in (2.24) are of the lower order.

Bringing together these approaches, the Prasad-Rao mean squared error
approximation for the approximate EBLUP (2.18) is

MSE() = 8,,(0,.07)+ 8,,(0,,0.) + 85,(0,.07) (2.25)
with bias of order o(m '), where m is the number of small areas. Similarly, the mean

squared error of the EBLUP )? EBLUP s

MSE (7 ) = (1= £, MSE (&) + N, (1 f.)" (2:26)

where MSE (Z) is obtained from MSE(2, ) replacing g, (c2,62) by g, (c2,62).
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Prasad and Rao (1990) proposed an approximately model-unbiased estimator for the
mean squared error (2.25) as

mse () = §,(6,,6.)+ 8,(67,67)+2¢,,(8;,67) (2.:27)
2 2

where g,,(6.,8)), g,(6.,6}) and g, (6},6]) are obtained from g, (¢2,07),

2, (c2,0%) and g,,(c?,67) respectively, replacing 8 = (62,62) by 6 =(62,67). The
order of the bias being o(1/m) since g,(67,87) and g, (87,57) have biases of
order o(1/ m) . This is an approximately model unbiased estimator in the sense that its
bias is of order o(m™) and therefore considered as a second order approximation.
This estimator is valid for both the MFC and REML method of estimating variances

under certain regularity conditions and under the normality of random errors u, and

e; » but not for the maximum likelihood (ML) estimator (Datta and Lahiri, 2000).

Datta and Lahiri (2000) derive the estimator for mean squared error of the EBLUP

A

when ML estimates 8,, =(8;,,,8.,,) of variance components 8= (c,,0.) are

used. Their expression for mean squared error estimate includes one extra term for

bias correction that arises due to the use of ML estimates given as

mse (i)~ 8,6+ 821 Gn) + 283 G1) B0,V 8, (G (2.28)
where Vgn(ém) is the first order derivative of g ,(6,,) with respect to & at 8= éML,
20D 1 -1, A - - i . . .
and Bi(HML):z—{I 1(6?,‘414)001151,51”17[(Z,X,.'V,. lX,.) I(Z,Xl.'\/i(”X,.)}} is the bias in
m i I

estimating the variances of 0,, , with V=0V /08, =—v,"(9V,/06,)V,” and

I_I(éML) is the inverse of information matrix I(HAML) .
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The estimator for the MSE of the EBLUP )%, FBLUP oiven in (2.26) is expressed as

mse (V,2P%y = (1= £ ) mse (L) + N7 (1— £)67 (2.29)

where mse (/1) is obtained from mse (&) by replacing g,,(67,87) by g,.(62,67).

2.6 Pseudo-EBLUP

The model (2.13) assumes that samples are drawn independently across areas
according to a specified sampling design such that the sample design within small
areas is ignorable or alternatively selection bias is absent. The estimation based on
such models do not make use of unit level survey weights and the corresponding
estimators are not design consistent unless the sampling design is self weighting
within small areas (Prasad and Rao, 1999). In contrast, the design-based direct
estimators are design consistent but fail to borrow strength from the related areas. In
recent years, some methods proposed in the literature make use of survey weights in

model-based small area estimation.

Kott (1989) proposed a design consistent estimator, also model unbiased under the
simple random effect model with the same assumption of random errors as in (2.13).
He showed that this estimator is robust with respect to model failure under certain
conditions and derived an estimator of mean squared error without including the
random effect component. Empirical results show the mean squared error estimates
are quite unstable and even take negative values. Consequently, this approach cannot
be used to the compare proposed design-consistent small area estimator and the

conventional design-based direct estimator.
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Prasad and Rao (1999) proposed a model assisted estimator for small area estimation
called the pseudo empirical best linear unbiased predictor (pseudo-EBLUP), which
depends on the survey weights and remains design consistent as the sample sizes in
the small areas increased. Using the Prasad and Rao (1990) approach they also
derived the mean squared error of this estimator. Their results indicate this estimator
of mean squared error performs well even under moderate deviations of the linking
model and often more stable than Kott (1989). The pseudo-EBLUP approach is

described below.

As noted earlier, the EBLUP (2.18) does not depend on the unit level survey weights,

w, attached toy,(j=1,..,n; i=1,...,m), so that design consistency as the sample
size n, increases is forsaken except when the design is self weighting within areas (i.e.
Wi Yig»

w,; =w,). A design-based direct estimator for the mean of Yin area i, y,, = Z

Jes
with w, =w, / Zjex,» w; , uses sampling weights and is therefore design consistent but

fails to borrow strength. Under the model (2.13), let us define

-)_)iw = ZjEA‘; waJ = Zjes‘ ‘X}J (x;ﬂ+ui +ej) = 'Z’wﬂ—}_ ui + Ei\v (230)

with E(e,

w

y=0and Var,) =02 (Y. #!)=0267, where X, =3 W,x, . This is
an aggregated (survey-weighted) area-level model, equivalent to the well known area
level Fay-Herriot model (Fay and Herriot, 1979) so the usual results of this model are

applicable. Assuming an aggregated area level model (2.30) holds, for given ¢ and
a? , the BLUP for the mean of ¥ for small area i (Prasad and Rao, 1999) is

e

l[liw = X—I’BW + %w()_)iw - fi’wBW) (231)
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where 7, =02 (02 +6262) and B, = (Y, 7,55, ) (3 7T.5. ) with E(B,) =5

it

~ -1
and Var(8,) =02 (Y, %,%,%.) =®,. Note that the BLUP f,, in (2.31) is different

from the BLUP g, given in (2.16). The variance components &= (0'“2 ,0':) are
unknown in practice and they are estimated under the full model (2.13). Using these
estimates, a weighted estimator of £ is B‘ = ﬂv(é) and the EBLUP for the mean of

Y for small area i is

ﬁiw = X_i, BW + fli\v()—)iw _'fi'wlB\v) - (232)

Note that the pseudo-EBLUP given in (2.32) depends on the survey weights and
satisfies the design consistency property. The estimator (2.32) is model-assisted and

approximately model and design unbiased even if the sample design is nonignorable.

From Prasad and Rao (1999), the approximate MSE of the EBLUP (2.32) is

MSE(lL,) = 8,,,(0)+ £3,,(6) + £,,,(6) (2.33)

w

where

gliw(g) = (1_ }/nv)o-uz ’
v’ — — -\l =, —
g2iw (9) = O-u2 (XA - }/i\vxi\v) (Zz }/iwxiwxiw) (Xl - }/i\vxi\v) ’ and
83,0 = 7, (1= %, 070, {(0}Var(67) +(07)*Var(8}) - 20,67 Cov(6, 67}

An approximately model-unbiased estimator of the MSE (2.33) is

nlse(ﬂf\v) = gliw (é) + gZIW(é) + 2g3iw(é) (234)

where g“w(é) s gziw(é) and gm(é) are obtained from g, (0), g,, (&) and g, (&)

respectively by replacing 6 with 6.
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You and Rao (2002) indicated that ,ZA?W based on the aggregated area level model

suffers significant efficiency loss compared to the estimates based on the unit level
model. This could in turn lead to some efficiency loss in the estimation of small area
means. They proposed an iterative weighted estimating equation approach to estimate

B using the sampling weights w; but they used the same estimate of the variance

components as used in Prasad and Rao (1999). Consequently, You and Rao (2002)
suggested the modified pseudo-EBLUP. Unlike EBLUP (Prasad and Rao, 1990), the
modified pseudo-EBLUP is design consistent like pseudo-EBLUP (Prasad and Rao,
1999) as n; becomes larger. Further, this estimator satisfies the benchmarking property
without any adjustment when aggregated over small areas i. Furthermore, they
showed that their estimator benchmark to the direct survey estimator of Y, in contrast

to the EBLUP and pseudo-EBLUP.

As noted earlier, You and Rao (2002) proposed an iterative weighting estimating
equations to estimate the fixed effects. You, Rao and Kovacevic (2003) proposed an
extension of You and Rao (2002). They extended this approach to estimate both the
fixed effects and the variance components in a random intercept model using
sampling weights. Their approach updates the estimates of the fixed effects and
variance components alternatively until convergence is achieved. Their approach
produces simultaneous sampling weighted estimates of fixed effects and variance

components.

Militino et al (2007) applied SAE to agricultural data. In their application of SAE,
they used design weights and weights to account for heteroscedasticty (they named as

model weights) in the pseudo-EBLUP method. They considered weighted estimation
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of the variance components and the fixed effects. These authors argued that by
combining both type of weights, models can be very useful for practitioners because
the within error variance heterogeneity is accounted for and design consistency is
achieved, providing protection against model failures as the small area sample sizes
increase. We note that although the pseudo-EBLUP uses the survey weights in SAE,

implementation of the approach is not straightforward, especially for MSE estimation.

2.7 Model-Based Direct Estimators

Chambers (2005) introduced the calibrated weighting based approach in SAE and
defined the model-based direct (MBD) estimator for small area means. This approach
uses the calibrated sample weights derived under a population level version of the
linear mixed model to define weighted linear small area estimators as well as a simple
expression for the MSE. In contrast to design-based direct estimators, these estimators
borrow strength from other areas via the linear mixed model used in defining the
weights. There are many practical advantages associated with this approach, arising
from the fact that the estimators are computed as weighted linear combinations of the
actual sample data from the small areas of interest. Perhaps the most important of
these are the simplicity of both the estimation process and the estimation of the MSE.
Further, the MBD estimator is easy to interpret and to build into a survey processing
system. This motivates the use of the MBD approach in SAE. Consequently, in this
thesis we study the MBD approach to SAE outlined in Chambers (2005) and proposed
several extensions of his work. The next chapter of the thesis is devoted to the MBD

method of small area estimation.
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2.8 Extension of Mixed Models in Small Area Estimation

Stukel and Rao (1999) considered a two-way nested error regression model to derive
the EBLUP and associated approximately unbiased second order MSE estimator,
appropriate for two-stage sampling within small areas. Some further extensions to this
model include a multi-level extension in which regression coefficients are assumed to
be random and depend on area level auxiliary information (Moura and Holt, 1999)

and multivariate models (Kleffe and Rao, 1992 and Datta et al, 1999).

The models considered so far assume that the random area effects are independent
between areas, but in practice, it would be reasonable to assume that area effects
associated with ‘neighbouring areas by some distance measure (not necessarily
geographical) are correlated, and correlation decays to zero as distance increases.
Such models are very common in spatial analysis (Cressie, 1993), but are not in wide
use in SAE. An improvement in the EBLUP method can be achieved by including
spatial structure in the random area effects. See Petrucci and Salvati (2004) and
Pratesi and Salvati (2005) for the spatial-EBLUP approach in SAE. Petrucci, Pratesi
and Salvati (2005) described SAE under spatially correlated random area effects
model using geographic information. Chambers, Pratesi, Salvati and Tzavidis (2006)
considered spatially correlated random effects model and defined the spatial M-
quantile method of SAE. Pfefferman (2002) noticed that the loss in efficiency from
using a model with independent area effect is small unless the correlations between
the areas are large. There is a drawback in the spatial model since it depends on how
the neighbourhoods are defined which introduces some subjectivity (Marshall, 1991

in Rao, 2003).
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As noted earlier, in order to increase the overall sample size in SAE, we borrow the
information from other data sets. This information can be borrowed from ‘similar’
areas or from a previous occasion. In the time series modelling approach, we exploit
information in data over time (e.g., repeated surveys) in order to obtain further
improvement in efficiency of estimators. In general, empirical studies show that small
arca estimates that draw upon information across time are more efficient than those
that drawn upon information across area since the time series data usually represent
the same information about the target variable from the past. Related references are
Pfeffermann et al (1998), Pfeffermann and Burck (1990), Tiller (1992), Ghosh et al

(1998) and Datta et al (1999).

Sometimes cross sectional and times series data are combined to obtain further
improvement in efficiency of the small area estimators. In general, empirical studies
show that for repeated surveys considerable gain in efficiency can be achieved by
borrowing strength across both small areas and time. See Rao and You (1994), Datta
et al (2002) and Rao (2003). Singh et al (2005) used spatial-temporal models in small
area estimation. They used spatial models for exploitation of spatial auto-correlation
amongst the small area units and a spatial temporal model fitted via Kalman filtering
for the time series data. Chambers and Tzavidis (2006) introduced the M-quantile
approach to SAE whereas Pratesi et al (2006) considered the nonparametric M-

quantile small area estimation via penalized splines.
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2.9 Summary

In this chapter we summarized several SAE methods proposed in the literature. The
merits and limitations of each approach is discussed. The SAE method based on
mixed models, particularly the unit level nested error regression model, is discussed in
detail. We notice that the EBLUP based approaches (Prasad and Rao, 1990) are the
most popular model-based approach under the unit level random effect model.
However, these approaches do not use the unit level survey weights. The pseudo-
EBLUP approach (Prasad and Rao, 1999) proposed in the literature uses survey
weights, but is complicated to work with, particularly with respect to MSE estimation.
The MBD approach of the Chambers (2005) uses calibrated sample weights and the
small area estimator is a weighted linear estimator with a simple MSE expression. The
motivation of this approach lies in its simplicity. In the next chapter of the thesis we

return with details on the MBD approach of small area estimation.
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CHAPTER 3

MODEL BASED DIRECT ESTIMATION FOR SMALL AREAS

3.1 Introduction

Unit level random effect models are often used in small area estimation (SAE). The
empirical best linear unbiased prediction (EBLUP, Prasad and Rao, 1990) is then the
widely used approach for the estimation of small areas under such models. However, this
approach does not lead to small area estimators that are a weighted linear function of the
sample data from these areas. As a result, several practical advantage of using such
weighted estimators are lost, with probably the most important being the relative
simplicity of their mean squared error estimation. The calibrated weighting based
approach introduced in Chambers (2005) overcomes some of these limitations. This
approach uses calibrated sample weights derived from a population level version of the
linear mixed effects model to define weighted linear small area estimators and a simple
expression for their mean squared error. The associated small area estimators are the
model-based direct (MBD) estimators because they depend on area specific sample data.
However, the sample weights defining the MBD estimator are function of the data from
the entire sample. Therefore, this method ‘borrows strength’ from other areas via the
mixed model that defines the weights. Hereafter we refer to this approach as the MBD

method of small area estimation.
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In this chapter we evaluate the empirical performance of EBLUP and MBD methods of
SAE. Our empirical evidence is based upon data from Australian broadacre farms that
participated in the annual Australian Agricultural and Grazing Industries Survey
(AAGIS) in the late 1980s. We also examine the robustness of these two methods under
wrong model choices. In addition, we study some properties of these two methods of

SAE. The rest of the chapter is organised as below.

In the following section we describe the calibrated weighting approach in survey
sampling for population estimation. We elaborate both the design-based (Deville and
Sdrndal, 1992) and the model-based (Chambers, 2005) perspective of calibration
weighting. In section 3.3 we illustrate the sample weights derived under a linear mixed
model for SAE. Then we define the EBLUP and MBD estimators for small area means
and their corresponding mean squared error estimators. Empirical results are reported and
discussed in section 3.4. Finally, in section 3.5 we present some concluding remarks and

further extensions of the MBD methods of SAE.

3.2 Calibrated Sample Weighting for Population Estimation

In this section we briefly review calibrated sample weighting for estimation of population
level quantities. Calibration is now a widely used approach for population estimation in
survey sampling. This is, basically, a method to improve estimation in survey sampling
when auxiliary information is available. Here auxiliary information is included at the

estimation stage to produce efficient estimates. In this approach, survey weights are
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modified so that known population characteristics, in practice totals (or means), are
reproduced from the sample data. Therefore, for variables in the survey correlated with the
auxiliary variables, higher precision estimates are obtained by these new weights. The
efficiency of the estimate depends on how well the auxiliary variables explain the
variability in the survey variable. Kott (2003) described calibration weighting as a
methodology under which probability sample weights are adjusted in such a way that when

applied to survey data they can produce model unbiased estimators for a number of

different target variables.

Let ¥, denote an N-vector of population values of a characteristic ¥ of interest, where U
denote the population of size N. Suppose that we are interested in the estimation of the
population total 7, = ZU y; (or population mean Y,=N ’IZU y; ) of Y. In order to assist
us in this objective, we shall assume that we have ‘access’ to X, , an N X p matrix of
values of p auxiliary variables that are related, in some sense, to the values in Y, . In
particular, we assume that the individual sample values in X, are known. The non-
sample values in X, may not be individually known, but are assumed known at some
aggregate level. At a minimum, we know the population totals 7, of the columns of X/, .

Given this set up, it is standard to estimate the total and mean of the values in ¥, by

fr=3,wy) @

and

(3.2)

Uw = wajyj /Zy wj
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respectively. The sample weights {w;; j€ s} reflect the relationship between the values

of ¥ and X, typically via some form of statistical model. Here s is a probability sample

of size n from a population of size N with the probability p(s). The inclusion

probabilities 7, = Zjap(s) are known for all j (j=1,...,N). Further, we assume that

the design is such that 7, >0 for all elements ;. Let d; = 75}7] denote the design weight of
element j. The original idea of calibration is to modify the design weights &, so that

known totals are reproduced from the sample data. A set of calibrated sample weights is

then produced. More precisely for known total 7. we calibrate by constructing new

weight w, such that

T T (3.3)

The new weights w, are as close as possible to the old weightsd;. In other words, we
want to replace old weights &, with more efficient weights w, determined by using

available auxiliary information. There are two basic approaches proposed in the literature
to construct the calibration sample weights, design-based and model-based calibration

weighting, see Chambers (1996, 1997, 2005), Chambers and Skinner (1999) and Deville
and Samdal (1992).

3.2.1 Design Based Calibration Weighting

Design-based calibration weighting is based on the concept of ‘“closest” calibrated

weights. Deville and Sérndal (1992) first introduced the notation of a calibration
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estimator. They proposed the calibration estimator for population total 7, as the linear
combination of the observations, fy = Zjeswf Vs with calibration weights w; 's chosen
to minimise their average distance from the basic design weights, d, = 7[}1, that are used
by the Horvitz-Thompson estimator, 7A“)HT :Zjad ;¥; - Here minimization of average

distance is subject to the calibration constraint Zja WX, = 7:;’ =T.. Alternative distance

measures can also be used. See Deville and Sédrndal (1992). All resulting estimators are
asymptotically equivalent to the one obtained from minimising the chi-squared distance

function:

Q= Zjes(wf —d;)’ /djqj 3.4
where w;'s are known positive weights unrelated to &; and g;’s are constants. The
existence of initial design weights ; is assumed and these are the inverse of inclusion

probabilities of the sample units. These weights do not always have to be the inverse of
inclusion probabilities (Chambers, 1996). Minimisation of quadratic distance measure
(3.4) leads to new set of weights called calibrated weights:

w,=d;(1+q,x’A) (3.9)
where A=T"(T. —fX”T) and YA"XHT :Zja d x; is the Horvitz-Thompson (HT) estimator
for the population total of X. Here existence of the inverse of 7, = Zjexa’ 9% J.x;. is

assumed. Using the calibrated sample weight (3.5) in (3.1), the calibration estimator of

population total 7, is

7-;'“/ = Zjex nyj = TyHT + (Tr —ferT )’l} (36)
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where B = T (Ziﬂ d;q,x;y;). The calibration estimator given by (3.6) is equivalent to a

generalized regression (GREG) estimator, which is derived as model assisted estimator
assuming a linear regression model, with variance structure provided by the diagonal

matrix with elements (1/ q;). See Deville and Sirndal (1992) for examples on the role of

the constants given by the g;’s.

In matrix notation, we denote the set of initial weights by d ={d; j€ s} and then we find

a set of calibrated sample weights w that minimises the quadratic distance measure

O=(w-d)YQ(w-d), where Q is a known positive definite matrix. The minimisation of

quadratic distance measure, ( subject to (3.3) leads to sample weights of the form
wo(d)=d+H, (X1, -X.d) (3.7

with H, =(X/Q'X,)"'X/Q"and 1, is a vectors of 1’s of order N. This is the design-

based interpretation of the calibration approach. The model-based perspective of the

calibration approach is described as below.

3.2.2 Model Based Calibration Weighting

In model-based calibration we assume that survey variable Y and auxiliary variable X

are related by some model and then the calibrated sample weights are derived under the

model to satisfy the calibration constraints (3.3). Let us assume that ¥, and X, are

related by the linear regression model
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Y, =X, f+e, (3.8)
where £ is a px1 vector of unknown regression parameters, &, is random error vector of
dimension N with E(g,)=0 and Var(e,)= 0"V, , where V, is a known positive definite

matrix of order N and ¢* is some constant. Without loss of generality, we arrange the

vector Y, so that its first n elements correspond to the sample units. We can then

partition ¥, , X,, and V, according to sample and non-sample units as

Y)‘ XS ‘/ss ‘/sr'
Y,=| |, X, = and V = .

Yr Xr ‘/TS ‘/IT
Here Y, is the nx1 vector defined by the sample values in Y,,, X, is the corresponding
nX p matrix of sample values of the auxiliary variable and V_ is the nxn component
of V associated with Y, . A subscript of r is used to denote corresponding quantities
defined by the N—n non-sample units, e.g. V. is the (N —n)xn matrix defined by
Cov(Yr,YJ): o’V,. We denote 1,,, 1, and 1,_, as vectors of I’s and 1, I, and I,_, as

identity matrices of order NV, n and N —n respectively.

Given this set-up, and assuming (3.8) holds, the Best Linear Unbiased Predictor (BLUP)

of population total of ¥ can be derived from the following Theorem (Royall, 1976).

Theorem 3.1 Among linear prediction unbiased estimators fy of 7, satisfying

E(fy —T,) =0, the error variance E(fy —Ty)2 is minimised by

T,=1Y,+1 {XB+V. V. (", - X, B)} where B=(XV;'X,)' X V'Y,

N-n rs’ sy
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Then error variance of Ty is

Var(f‘)’ _T\') = l;\/—n (Vlr -V V_l‘/l':')lN—/l +

58y

+1,_ (X, -V.V'X (X

rsooys §

VX)X, -V VXL,

When sample and non-sample units are uncorrelated (i.e.V_ =0) the BLUP of T, is obtained
simply adding to the sample sum the BLUP 1,_ X ,5’ of the expected value of the non-
sample sum 7, = I, ,Y,. Further, under a special case of model (3.8), the BLUP of small

area mean of Y given in (2.15) can be derived from this result. See section 2.5.1.1.

Proof: Proof of this theorem is given in Royall (1976).

Given this result, it can be seen that the BLUP of population total of ¥'is given by (3.1) with
weights defined by

WBLUP = 1;1 + H;LUP (Xl,/ 1N - X’ln ) + ([n - H;LUPX:)VJ;ler 1N—n (39)

5
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of orderO(Nn™"). Here H,,,, =(XV.'X,)"'XV.'. These are the BLUP weights and
calibrated on X, in the sense that they exactly reproduce the known population totals
defined by the columns of X, . That is X w,,,, = X, 1, =T.. Further, these weights define

an unbiased predictor of 7, since

E(fyw _Ty) = E(W;LUPYS _1;\’YU) = E(W;LUPXs _I;V Xy )IB:O' (3.10)

Furthermore, any linear estimator with weights that are calibrated on X, will be unbiased
under (3.8), and conversely, any linear estimator that is unbiased under (3.8) will have

weights that are calibrated on X,, (Chambers, 2005).
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The weights (3.9) ifnplicitly rely on the assumption that the survey variable Y and the
auxiliary variables X are linearly related. However, if the underlying regression model is
non-linear then these weights can be inefficient. For example, if the variable ¥ and X are
not linear on themselves but they are linear on some transform scale (e.g. in case of
skewed data), then the weights (3.9) based on linear model lead to inefficient estimates.
In these situations, Wu and Sitter (2001) proposed a model calibration approach as a
generalisation of the calibration procedure under a general model. We shall discuss this

approach in chapter 5 in context of small area estimation for skewed data.

The reasons for calibration vary. There is the largely intuitive argument that such
weights, because they are ‘perfect’ for key known population quantities, should be good
for estimating other population quantities for which only sample data are available. In
other words, estimates are ‘consistent” with known information. The consistency means
that the calibrated weights reproduce exactly the known population total for each
auxiliary variable. Further, the variance of a calibrated estimator tends to decrease as
more variables and their known totals are brought into the calibration. In fact, the more
auxiliary totals we use in the calibration, the ‘better’ we expect the resulting weight
system to be. However, one of the serious problems of the approach is the negative
weights which sometimes appear. Modification is possible at the expense of a more
complicated procedure. Huang and Fuller (1978), Bardsley and Chambers (1984) and
Chambers (1996) described the methods for dealing with negative weights. Park and

Fuller (2005) discussed the procedurés for constructing the non-negative weights in
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which initial weights are the inverse of the approximate conditional inclusion

probabilities.

3.3 Small Area Estimation Based on a Linear Mixed Model

3.3.1 The Small Area Models

A commonly used class of models in small area inference is the class of linear mixed

models. Let ¥, be the N, x1 vector of values of variable of interest in small area 7 and let
X, be the N, X p matrix of associated values of the auxiliary variables. Here a subscript
of i denotes restriction to small area i. We consider the following linear mixed model for
the distribution of Y, given X, :

Y=X[+Zu +e,. (3.11)
Here N, is the number of the population units in small area i, £ isa p X1 vector of fixed

effects, Z, is a N,xg matrix of known covariates characterising differences between

h

small areas, u, is a gx1 random area effect associated with the {” small area and ¢, is a

N, x1 vector of individual level random errors. Normality of these two random variables
is often assumed. The random vectors u, and ¢, are assumed to be independently
distributed, with zero means and with variances Var(u,)=X and Var(e,)=0.1 N,
respectively. The covariance matrix of Y, is Var(Y,)=V, = o’1 n, T ZXZ], depends on a

vector of parameters & =(0.,X) usually called the variance components of the model.
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Finally, it is usually assumed that sampling is uninformative given the values of the

auxiliary variables, so the sample data also follow the population model (3.11).

By aggregating the area-specific models (3.11) over the m small areas, we are led to the
population level model

Y, =X,f+Z,u+e (3.12)
where Y, = (¥},.... Y. ), X, =(X|,eeen X2, Zy = diag(Z;1<i<m), u=(u],...,u,) and
e=(¢,....,e,) . Under (3.12), the covariance matrix of ¥, is V,, =diag(V;1<i<m).
This is the general linear mixed model. This model includes most of the small area
models used in the literature (Rao, 2003, page 107). As mentioned after equation (3.8) we
again consider the sample and non-sample decomposition of ¥,, X,, Z, and V,,. We
use similar notation at the small area level by introducing an extra subscript i to denote
small area. For example, we denote by s, the set of n, sample units in area i, r the

corresponding N, —n, non-sampled units in the area and put V,, = 0.1, +Z,XZ/ and

‘/Ilw‘ = ZIAZZI,I *

In practice the variance components that define V,, are unknown and must be estimated

from the sample data using suitable estimation methods such as Maximum Likelihood

(ML), Restricted Maximum Likelihood (REML) or methods of moment. We use a “hat”
to denote an estimate and put {7U =diag (l%;l <i<m), with l7, = 5’311\,[ + Zi)iZ,.'. Empirical
studies presented in section 3.4 uses both ML and REML methods for the estimation of

variance component parameters.
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3.3.2 Sample Weights for Small Area Estimation

The sample weights (3.9) are typically based on models for ‘population level variability’
and small area effects are assumed to average out over the population. This assumption
fails when population level weights are used for small area estimation since small area
effects do not average out at small area level. That is sample weights (3.9) are appropriate
for estimation of population level quantities, while using these weights for small area
estimation can lead to inefficient estimates for small area level quantities. Consequently
some form of local weighting is required if weighted estimators are going to be used for
small area estimates - i.e. weights must differentiate between the small areas that make up
the population. The most common class of models that includes random area effects (i.e.
differentiate between areas) are the mixed effect models. In this section, we describe the

sample weights (3.9) which are derived via a linear mixed model suitable for small area

estimation.

Under the population level version of the linear mixed model (3.12), the sample weights

(3.9) that define the BLUP for the population total of Y are

Warup = 1n +H;LUP (XLI/IN - X1 )+(Ir _HII?LUPXSI)V:EI‘/srlN—n (3.13)

sTn i

where Hy,,, = (X:VS;]XX)_I xv =( :11 Xi:.‘/,;.lXiJ.)_l (ZL X;VH‘JI) . The weights (3.13)

are special case of the weights (3.9) and so calibrated on the same population level

guantities.
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Replacing the estimates of unknown variance components in (3.13), the empirical version

of the BLUP weights (3.13) that define the EBLUP for the population total of Y are

WEBLUP = 1rL + H;‘BLUF (Xl,/ 1N - Xs,ln ) + ([n - H;‘BLUPX;)VJII‘}.W‘lN~n (314)

m

5 -1 3 m ’y5- -1 ’ry5—
where  Hpy,p =(XVIX,) XV = (30 X0V5%,) (30, %V5). The EBLUP
weights (3.14) are the special case of weights (3.10) and so they are calibrated on X, ,

i.e. X/wpy,» =X, 1, and define an unbiased linear predictor of the population total of ¥

(Royall, 1976). Furthermore, since they only depend on the random area effects structure
of the mixed model (3.12) via the covariance structure in the sample/population,

extension to more complex covariance structures (e.g. spatial correlation between
population units) only requires V' and V, to be computed under these more complex

models. We do not pursue this extension in this thesis however.
3.3.2.1 Calibrated Weighting Based Estimator for Small Areas

The model-based direct (MBD) estimator of the mean of Y for small area i,

Y = Ni‘IZ;V;[ y; is the direct estimator of this quantity based on the EBLUP weights

(3.14). That is, it is defined as

I%fMBD :ZJ-, ijf/Z:,, Wi

where the weights used in (3.15) are those associated with the sample units in small area i

(3.13)

in (3.14). Note that we refer to (3.15) as a direct estimator because it is a weighted mean

of the sample data from the small area of interest. However, this does not mean that it can
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be calculated just using these data. The EBLUP sample weights (3.14) will be a function
of the data from the entire sample. That is, they ‘borrow strength’ from other areas

through the model (3.12).

3.3.2.2  Estimation of Mean Squared Error

An important consideration in small area estimation is estimation of the mean squared
error (MSE) of the small area estimators. We can easily adapt straightforward methods of
MSE estimation for population level estimators to estimation of the MSE of (3.15). Well

known results (see Royall and Cumberland, 1978 and Valliant et al, 2000, chapter 5)
indicate that robust MSE estimators are of the form Var()%u):zjﬂwf(yj—f)j):
+lower order terms , where ¥, denotes the fitted value for y, under the linear model

implied by the calibration constraints.

In order to estimate the MSE of (3.15), we note that the implied population level model
(3.12) includes random area effects and so one needs to consider whether it is appropriate

to condition on these effects u, when estimating this MSE. For example, the rather

complicated MSE estimator of the EBLUP does involve this conditioning (Prasad and
Rao, 1990). On the other hand, estimation of the MSE of (3.15) is straightforward if we
do not condition on random area effects, treat the EBLUP weights (3.14) as fixed and use
standard methods for estimating the MSE of a weighted linear estimator of a domain
mean under the population model (3.8). See Royall and Cumberland (1978). The choice

between these two approaches is largely philosophical and depends on how much one
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‘believes’ the linear mixed model (3.12). In particular, here we treat this model as a
vehicle for genefating estimation weights, but then base inference on (3.8), which is
consistent with the way MSEs are estimated at population level. Following Royall and
Cumberland (1978) and Chambers (2005), we can write the prediction variance for the

area | weighted mean (3.15) as
SMBD B -l
Var(¥,”" =¥ =VW{(ZS, Wf) (Zs,. ijj)_Nf (Zx, Y +Z,,, yj)}
=N2 (Y aVary)+Y  Var(y))) (3.16)

where a; Z(N,W,- —desi We )/(dexi Wé’)'

A robust model-based estimate of prediction variance (3.16) is obtained by substituting
the squared residual (y, —x;ﬁ)z for Var(y;) in the first (leading) term on the right hand

side of (3.15). If these squared sample residuals are also used to estimate the second term,

the resulting estimator of (3.16) is

WE) =Y Ay, =B (3.17)

where A4, = N7 [ajz. +(N,=n)/(n, —1):|. Using (3.17) to estimate the prediction MSE of

A

Y, implicitly assumes that this weighted mean is unbiased for ¥, . However, this is not

generally the case, since E()%MBD—)?)z()?IMBD—Z)',B under (3.12), where )?iMBD
denotes the weighted average of the sample values of the auxiliary variables in area i.

Further, calibration on X ensures that this term vanishes at population level, but not

necessarily at small area level. In other words, this bias correction arises due to fact that
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the sample weights used to define the MBD estimator are not locally calibrated at area
level. The result (C.5) in appendix C presents some explicit expression for this bias under
a special case of model (3.11). The magnitude and order of this bias in result (C.5) clearly

shows this bias cannot be ignored. A simple estimate of this bias is

b()%iMBD) _ (}?iMBD _}?i),ﬁ,‘ (3.18)

A robust’ estimator of the mean squared error of (3.15) is therefore

-~ ~ ~ 2 3.19
n'lse()/iMBD):V(KMBD)+{b()/’-MBD)} . ( )

MBD MBD

Obviously, one could alternatively ‘bias correct’ )7, directly using b(¥,""”). However,
this is not recommended since this correction increases the variability of our estimator

much more than it reduces its bias. Using it in (3.19) is a more conservative, and safer,

-

approach. Further, use of the square of the unbiased estimator (3.18) of the bias of ¥,**”

in the MSE estimator (3.19) can be criticised because this term is not itself unbiased for

~ 2
the squared bias term in the MSE. This can be corrected by replacing by {b(KMBD )} by

~ 2, ~ ~ ~
{b(KMBD)} —Var{b(Y,.MBD)} in (3.19), where Var{b(KMBD)} is the estimator of the

variance of (3.18). However, small area sample sizes may lead to (3.19) becoming quite
unstable, and thus it is preferable to use (3.19) with square of (3.18). The MSE estimation
for linear predictors for domains described in Chambers, Chandra and Tzavidis (2007)

shows the estimator (3.19) is consistent for the MSE of the MBD estimator (3.15).

* The estimator (3.17) is called a robust model-based estimator because it does not depend on the second
order moments assumptions and thus robust to misspecification of the second order moment of the working

model. Consequently we referred (3.19) as a robust MSE estimator
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3.3.3 Empirical Best Linear Unbiased Predictor

With the above notation, and assuming (3.11) holds, the EBLUP for the mean of Y for

small area 7, Y, is

A

YEYE = Y+ (- R, B+ 22 2V, - X )] (3:20)

1 is T iss i=I is CissTis

where f3 = (Z:Z X, \7.'IX,.:J_I (Z’.n X' V', ), f,=n,/N, is sampling fraction (assumed

to be non-negligible) and X, and Z, are vectors of mean values for the N, —n; non-

sampled units in small area i. In chapter 2 we defined the EBLUP (2.17) which is
particular case of (3.20) when underlying model is a random intercept model, a special
case of model (3.11). However, in this chapter we are dealing with a general form of the
linear mixed model. Therefore, we define the EBLUP and associated MSE estimator
under this model. In our empirical studies in section 3.4 we have considered four special

cases of model (3.11).

An approximate mean squared error estimator for the EBLUP (3.20) is

MSE (YAiEBLUP) = (l_fi)z{gli(a)—‘r 8 (0)+ g3f(‘9)}+ 84(0) (3:21)

where

8 N=Z(Z-3Z.v.'z 2)Z

is 7 iss s ir?

’

e ®)= (X, 0%, ) (X x0vix,) (X -5%, ) .

84,(0) =1r{(VB)V,,(Vb)Var(f)} , and g,,(0)=N;'(1- f.)o?
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with b =Z,XZ V!, Vb =0bh//00 and Var(f) is asymptotic covariance matrix of
estimates of variance components 6. For Maximum Likelihood (ML) or Restricted
Maximum Likelihood (REML) estimates of variance components, Var() is given by the

inverse of the relevant information matrix, see Rao (2003, page 107-110).

For ML estimates of variance components 6= éML the elements of the information matrix

1 m R ‘/,‘55 - a‘/ixs
1,(6y,)= ) Zi:l ir {[VM agj ]{V"] 08, ]} '

~ A~

For REML estimates of variance components, & = 6,,,,, the elements of the information

are given by

matrix are given by

1 m aV aV
Ijk (HREML) = EZFI tr {[ij a—;] [Pim a—é::]} >
f 2

where P, ={V,.;,' -VIXx, (XV]X, )_l X,.'A,Vi‘;,l} . Asymptotically, Var(8,,)=Var(Buy,) »

provided p is fixed. The neglected terms in this approximation are of the order 0(m™),

where m is the number of small areas.

An approximately unbiased estimator of the MSE of EBLUP (3.20) is
mse(V, ) = (1= £){ 8, (0) + 82, (0) +28,,(0) - B(0)Vg, (D)} + 5,0y B2
where Vg“(é) is first derivative of g (0) with respect to @ at & :é, B'(é) is bias in

estimating 6 and B'(é)Vg”(GA) is the bias correction term. For the method of fitting

constant (MFC) and REML estimates of variance components, the bias B'(é) is zero and
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consequently the bias correction in (3.22) vanishes. However, for the ML estimates of

variance components, the bias is given by

. 1|, . mooray Ve . [ OV
B ) =5 (1" Ow) lgﬂf,tr[(zfrlex Vi, {me“{a;}x”” (3.23)

-1
where %:—K;ﬁ[%‘gfjmi. Further, replacing 8 by 0 in g,(0), g,,(6) , g,(0)and
' j

8,:(0) we get g”(é) 2 &a; (é) , g3i(é) and gm.(é) respectively. See Datta and Lahiri (2000)

and Prasad and Rao (1990) for further detail of the MSE estimator (3.22).

The MBD estimator (3.15) is not the same as the EBLUP (3.20) even though both sum to
the same population level EBLUP. This is because there is no unique representation of
(3.20) as a weighted means of the sample data values from small area i. Appendix C
presents some analytical expressions to compare EBLUP, MBD and design-based direct
(DBD) estimators. Here we show in general that the MBD (3.15) and the EBLUP (3.20)

are not same. However, in certain special cases the two methods are equivalent.

A major advantage of MBD methods (3.15) is the relative simplicity of estimation. In
particular, we can calculate an estimator of the mean squared error of (3.15) via a
straightforward generalisation of the standard robust estimator of the prediction variance
of the EBLUP of the population mean of Y. This is in sharp contrast to the rather
complicated estimator of the conditional prediction variance of (3.20). However, this
does not mean that the MBD estimator (3.15) is superior to the EBLUP (3.20). As noted

earlier, both (3.15) and (3.20) sum to the population EBLUP under the linear mixed
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model (3.11). Furthermore, under this model it is clear that the EBLUP must be more
efficient asymptotically, since it approximates the best linear predictor when (3.11)

actually holds. For example, in the special case where X, =2Z,=1,, the weight

associated with sampled unit j in area [ under the MBD approach is

w, :E{H ! {(N, —n)p+ N:ﬁ}}
n I+ng n

where ¢=5/67, N=Y N,(1+ng)"'/> (1+ng)™" and i is defined similarly. That

is, MBD (3.15) reduces to the area { sample mean. In contrast, EBLUP (3.20) is then a
linear combination of the overall sample mean and the area i sample mean. Appendix C

compares the weights used in EBLUP and MBD for the estimation of i small areas.

These results indicate that weights for the EBLUP of small areas are w'***" ~ O(N,n™)

while weights for the MBD are w!”” ~O(Nn'"); j€s,,i=1,...,m. In other words, the

sample weights used to define MBD estimator are of order O(Nn™') and the EBLUP
(3.20) is defined as the indirect linear predictor using n-vector of sample weights that are
O(N,n”™"). This indicates that variance of the EBLUP will be lower order that the MBD.

Thus, we expect the EBLUP to be more efficient, if the model holds.

It is sometimes claimed that a disadvantage of any direct estimator (including the MBD

estimator) is that it is not defined when there is no sample in small area i. In contrast, the
EBLUP (3.20) then equals the synthetic estimator X ,',B . However, no sample data in an

area also means that the validity of any estimator for that area is completely model-

dependent. In particular, we cannot check to see if (3.11) holds. There is also the problem

61



that different areas are then treated unequally in estimation. Areas with sample data have
their means estimated via EBLUP, while those without have their means estimated via
synthetic estimators. Furthermore, in such a case the weighted average of these estimates
across all small areas does not equal the EBLUP of the population mean. A standard
work-around when this occurs is to rescale all the small area estimates to sum to this
population estimate (or some other acceptable value). However, this is rather arbitrary.
For example, if most of the small areas have no sample, then such a rescaling exercise
could substantially change the final predicted value of the area i mean of Y for a ‘sample
area’ relative to its EBLUP value (3.20), in which case one has to wonder about the

efficiency of the final result.

In contrast, direct estimators like (3.15) are easy to interpret and to build into survey
processing systems. Furthermore, they do not allow the prediction for areas where there
are no sample data, which, in light of the discussion in the previous paragraph, may be
considered to be a good thing. However, choice of the weights in this approach is very
crucial and the wrong choice of the weights can result in an inefficient direct estimator.
The model-based direct estimator (3.15) based on the linear mixed model (3.11) with the
sample weights (3.14) for small areas that possesses some of the efficiency properties of
the EBLUP (3.20) seem to be appropriate. In Appendix D we present some empirical
results which contrast the efficiency of the BLUP with direct estimators for small areas.
Here we consider both usual design-based direct (DBD) and the modél based direct
(MBD) estimators of small areas. These results show the MBD provides an improvement

over a design-based direct approach and can compete with the BLUP method.
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Like the EBLUP itself, the EBLUP sample weights (3.14) used in MBD estimator (3.15)
are variable specific since they depend on the estimated variance components of a
particular variable (i.e., estimated variance components for Y, via the matrices \7” and
\7“) and efficient for estimation related to the variable on which they are based. This can
be a limitation if a true ‘multipurpose’ approach to small area estimation is required.
Development of ‘multipurpose’ weights (i.e. not variable specific) can be more useful if
there is more than one response variable in a survey (which is very common in practice).

In chapter 4 we shall return with details on multipurpose sample weighting.

3.4 An Empirical Study

Simulation studies use computer intensive procedures to assess the appropriateness and
accuracy of a variety of statistical methods in relation to the known truth. These
techniques provide empirical estimation of the sampling distribution of the parameters of
interest that could not be achieved from a single study and enable the estimation of
accuracy measures, such as the bias in the estimates of interest, as the truth is known.
Therefore, simulation studies should be designed with similar rigour to any real data
study, since the results are expected to represent the results of simultaneously performing
many real studies. See for example Morgan (1984) and Lewis and Orav (1989). In this
section we illustrate the design-based simulation studies using real data to contrast the
performance of the MBD (3.15) and the EBLUP (3.20) methods of SAE. We also
examine the robustness of these methods under model misspecifications. The results from
this study are also reported in Chandra and Chambers (2005, 2006c, 2006d) and

Chambers and Chandra (2006).
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3.4.1 Simulated Data

Our basic data come from the same sample of 1652 Australian broadacre farms that
participated in the annual Australian Agricultural and Grazing Industries Survey
(AAGIS) in the late 1980s and were used in the simulation study reported in Chambers
(1996). This survey was carried out by the Australian Bureau of Agricultural and
Resource Economics. Here we use these sample farms to generate a target population of
81982 farms by sampling with replacement from them with probabilities proportional to
their sample weights. We then drew 1000 independent stratified random samples from
this (fixed) population, with total sample size in each simulation equal to the original
sample size (1652) and with strata defined by the 29 different Australian broadacre
agricultural regions. Sample sizes within these strata were fixed to be the same as in the
original sample. Note that these varied from a low of 6 to a high of 117, allowing an
evaluation of the performance of different small area estimation methods across a range

of realistic small area sample sizes. Table 3.1 shows the various parameters for this

population.

As noted earlier, we considered the 29 regions as small areas. The total cash costs (A$) of
the farm business over the surveyed year (TCC), is our variable of interest (y). Our aim is
to estimate average total cash costs (A$) in these regions. In doing so, we used the fact
that these regions can be grouped into three zones (Pastoral, Wheat-Sheep or Mixed
farming, and Coastal or High rainfall), with farm size (hectares) known for each farm in
the population. Figure 3.1 shows the map of these 29 farming regions (or small areas) and
zones where they are located. The numbers shown in the map are the regions codes. The

auxiliary variable total farm size (hectares) is referred to as Size in what follows.
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Table 3.1 Regional characteristics of simulation population.

Region Population size Sample size  Average farm area Average farm costs
1 79 6 297958 467964
2 115 10 55731 171414
3 189 30 359383 670926
4 330 25 178355 186984
5 388 36 108038 208142
6 465 19 16717 130316
7 604 36 131544 302583
8 729 40 21976 242836
9 737 30 23083 179112
10 964 30 23712 180467
11 1586 51 2213 116965
12 1778 62 891 114442
13 1984 55 1066 96162
14 2182 47 4398 233171
15 2607 79 1239 97839
16 2683 60 581 93202
17 2689 60 701 84790
18 2847 34 373 36979
19 3056 74 799 101101
20 3139 51 3200 87919
21 3910 73 563 78509
22 4486 117 4635 164889
23 4550 80 960 86218
24 4587 95 1862 184153
25 5368 83 1838 198156
26 5528 103 1013 105151
27 6489 108 1403 134169
28 6980 81 812 95617
29 10933 77 360 66285

Population 81982 1652 5475 118997
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Figure 3.1 Map of Australian broadacre zones and farming regions.

I'st digir: State .
2nd digit: Zone

[] Zone digit 1: Pastoral zone
 Zone digit 2: Wheatsheep zone
B Zone digit 3: High rainfall zone
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Figure 3.2 Relationship between total cash costs (TTC) and farm sizes in AAGIS data.
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The overall linear relationship between the total cash costs (TCC) and Size is rather weak
in the original sample data, however this improves when separate linear models are fitted
within six post-strata as shown in Figure 3.2 and 3.3. These post-strata are defined by
splitting each zone into small farms (farm area less than zone median) and large farms
(farm area greater than or equal to zone median). These six SizeZone Strata are

1 = Pastoral zone and area of 50000 hectares or less

2 = Pastoral zone and area of more than 50000 hectares

3 = Wheat-sheep zone and area of 1500 hectares or less

4 = Wheat-sheep zone and area of more than 1500 hectares

5 = High rainfall zone and area of 750 hectares or less

6 = High rainfall zone and area of more than 750 hectares
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Figure 3.3 Relationship between total cash costs and farm sizes in six post-strata.
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In the scatter plot of original sample data in Figure 3.2 we notice the presence of two
outlier data points. The linear relationship between TCC and farm size improves if these
two points are discarded from the analysis. Further, the values of R? (and root mean
square error) increases (and decrease) from 0.05 (and 970358.4) to 0.236 (and 410043.8)
if we do not include these two data points in the model fitting. In our simulation studies
we include these two data points. The purpose is to see the performance of different SAE

methods in presence of these outlying points. Anyway, these are the true data values.

Figure 3.4 presents the average total cash costs and average farm size in the 29 regions.
Figure 3.5 illustrates the relationship between total cash costs and farm size in each of
these six post-strata. This plot indicates the presence of zone effects in the data and shows
that the data are extremely heteroskedastic. The matrix X of auxiliary variable values in
(3.11) was then defined so as to include an effect for Size, effects for the post-strata and
effects for interactions between Size and the post strata. Two different specifications for
X (corresponding to whether an intercept was included or not) and two different
specifications for Z (corresponding to whether a random slope on farm size was included
or not) were then used to specify (3.11) and hence the EBLUP and MBD estimators
based on this model. These four special cases of (3.11) are set out in Table 3.2 and shown
graphically in Figure 3.6. For the farm data, models I and II are appropriate (with II
~ fitting marginally better, see Appendix A) while models III and IV are badly specified.
We use ML and REML estimates of random effects parameters, obtained via the lme
function in R (Bates and Pinheiro, 1998). For each model, two different estimators (ML
and REML) of the 29 regional means are computed, along with corresponding estimators
of their mean squared error. These are the EBLUP (3.20) with MSE estimator (3.22),
referred to as EBLUP below; the MBD estimator (3.15) based on sample weights (3.14)

and with MSE estimator (3.19), referred to as MBD below.
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Figure 3.4 Average total cash costs and average farm sizes in different regions.
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Figure 3.5 Relationship between total cash costs and farm sizes in six post-strata.
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Table 3.2 Different mixed model specifications considered in the simulations.

Model Model Type X Z
I Random Intercepts Intercept included Intercept only
1I Random Slopes Intercept included Intercept + Size
1II Random Slopes with Intercept included Size only

fixed intercept
v Random Slopes with  Intercept excluded Size only

zero intercept

Figure 3.6 Four different model specification considered in the simulation.

Model-II (Random Slope)

a Model-I (Random Intercept) 1

>

v

‘r Model-III (Random Slope and Fixed Intercept) X Model-VI (Random Slope and Zero Intercept)
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3.4.2 Performance Indicators

We use the following criteria to evaluate the performance of different methods :

e The percentage relative bias (RB), defined as

RB(A) =17 (R"Y" T, ~T)x100,

r=11
where f, is the estimator (e.g. of the mean) for the i*(i=1,....... ,m) small area for

parameter 7, and T, is the specific outcome of 7; obtained in simulation run r

(r=1,...,R =1000).

o The average percentage relative bias (ARB), averaged over m small areas is

m

ARB=m™">" RB(T)).

i=1

o The percentage relative root mean squared error (RRMSE), defined as

RRMSE(T)=T" {\/(R"Zf_l ., —Ti)z)}XIOO.

e The average percentage relative root mean squared error (ARRMSE), averaged

over m small areas is

m

ARRMSE =m™ " RRMSE(T).

i=1

8 The coverage rate (CR), defined as

CR(T) = R"Z’Ll(Ti € {T:(,_) 2, /mse(TA,.(,,) )}j )

Here mse(TA,(,_)) is the estimate of the MSE of TAM for the r™ simulation.

o The average coverage rate (ACR), averaged over m small areas is

ACR=m™"3"" CR(T).
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3.4.3 Simulation Results

Three measures of estimation performance define in section 3.4.2 are computed using the
estimates generated in the simulation study. These are the relative bias or relative mean
errors and the relative root mean squared error (RMSE), both expressed as percentages,
of regional mean estimates and the coverage rate of nominal 95 per cent confidence
intervals for regional means. Table 3.3 presents the average and median values of these
measures (all computed over the 29 regions) generated by EBLUP and MBD under
models I-IV for the variable of interest TCC using ML and REML estimates for the

random effects.

These results indicate the relative performance of the two SAE methods (EBLUP and MBD)
do not change due to ML and REML estimates of variance components (Table 3.3).
However, results generated by using REML estimates of variance components provide better
performance than those by using ML estimates. Besides REML estimates, we use ML
estimates of random effects to see how the MSE estimate of EBLUP (3.22) with a bias
correction due to MLE compare with the simple MSE estimate of MBD (3.19). What follows
next, we do refer only the results generated by using REML estimate of random effects to

compare the EBLUP and the MBD methods.

In Table 3.3 we note that the average relative biases under MBD are smaller than those
under EBLUP for all models except model IV. However, the average root mean square
errors for MBD are marginally higher than those for EBLUP under models I and II and

smaller for models III and IV. Average coverage rates (which should nominally be
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around 95 percent) for MBD are relatively higher than those for EBLUP under all
models. Although neither approach dominates, it seems clear that MBD is more robust to

model misspecification than EBLUP.

Figures 3.7-3.9 show the region-specific performances generated by EBLUP and MBD
methods (ordered by increasing population size) under REML estimates of random
effects. Similar results generated by ML estimates of random effects are shown in Figures
B.1 to B.3 in Appendix B. Figure 3.7 (and Figure B.1) shows the better relative bias
performances of both EBLUP and MBD under model I and II and their worse relative
bias performance under model IV. Figure 3.8 (also Figure B.2) shows that the relative
RMSE:s of regional estimates generated by MBD are comparable with those generated
under EBLUP, with neither approach dominating. Overall, with the exception of two
regions (3 and 21), it seems that MBD under model II performs marginally better overall.
As indicated earlier in the AAGIS data, the regional sample sizes vary from 6 to 117
(Table 3.1). However, performances of the two methods (i.e. EBLUP and MBD) have not
shown any pattern with sample sizes. That is relative performances of the EBLUP and

MBD does not depend on small area sample sizes. See Figures 3.7 to 3.9.
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Table 3.3 Average (ARB) and median (MRB) values of relative bias (%), average
(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%) and
average (ACR) coverage rate generated by MBD and EBLUP using ML and REML

estimates of random effects under model I-IV. All averages and medians are over the 29

regions of interest.

Model Estimator ARB MRB ARRMSE  MRRMSE ACR

REML 1 EBLUP 4.24 1.55 19.92 1574 0.90
MBD -249 82 20.56 14.45 0.92

1I EBLUP 2.98 0.61 19.87 16.40 0.85

MBD 213 47 20.15 1316 0.93

III EBLUP 4.52 1.95 23.89 19.94 0.69

MBD -3.84 0.13 21.14 14.44 094

IV EBLUP 117 263 2338 19.73  0.65

MBD 220 206 22.35 2061 0.97

ML 1 EBLUP 4.58 1.66 20.28 1593 0.90
MBD -276 .89 20.49 1438 092

11 EBLUP 327 091 20.29 16.84 0.85

MBD 253 061 20.18 13.08 093

I EBLUP 4.69 1.03 24.05 2003 0.70

MBD -3.94 0.12 21.10 14.48 0.93

v EBLUP 134 505 23.50 1988 0.67

MBD 2.08 1.85 22.30 2052 0.97
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In the two regions (3 and 21) where MBD fails, inspection of the population and sample
data indicated that this is because of a few outlying estimates. In fact, the outlying values
of MBD for region 21 are all caused by the presence of a single massive outlier (TCC >
A$30,000,000) in the original sample (see Figure 3.2). This outlier was included in the
simulation population (twice) and then selected (in one case, twice) in 37 of the 1000
simulation samples. If we discard the outlier driven estimates in regions 3 and 21 then the
MBD approach seems the method of choice for regional estimation in our simulation
study. This is confirmed when we return to Table 3.3 and now consider the columns

containing the median values of relative bias and relative RMSE.

Figure 3.9 (and Figure B.3) summarizes region-specific variation in the nominal 95
percent confidence interval coverage rates generated by EBLUP and MBD. If we ignore
the outlier driven results for regions 3 and 21, the results displayed in Figure 3.9 show
that MBD approach gives marginally better coverage rates under Models I and II. A close
look at these results also indicates that in the event of model misspecification (e.g. under

Models III and IV) the MBD coverage rate is more robust.

As mentioned earlier MBD is more robust to model misspecification. We can apply the
MBD method of estimation more appropriately in many situations, where the EBLUP
approach is not well suited. For example, for estimation of small areas of categorical
survey variables, the EBLUP (3.18) based on a linear mixed model (3.11) is not
appropriate and in such cases the suitable model is a generalised linear mixed model
(GLMM). However, MBD methods still work well for such data. Empirical results

(Appendix E) show no efficiency loss by using MBD estimator based on linear
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assumption in this case. In chapter 4 we further discuss some other situations when

EBLUP is unstable and MBD performs reasonably well.

3.5 Conclusions

Our empirical results indicate that the MBD estimator (3.15) performs well and
represents a real alternative to the EBLUP (3.20), with the associated easy to calculate
MSE estirﬁator (3.19) providing good coverage performance. The MBD estimator under
random slopes model II perform marginally better overall. Further, the MBD approach
appears to be more robust than EBLUP in the realistic situation where (3.11) is a working
model, rather than the (unknown) true model underpinning the data. However, this does
not mean that the MBD is always preferable. Note that EBLUP, which approximates the
best linear estimator when (3.11), actually holds, would be expected to dominate MBD in
such a case. Further, for SAE of the categorical variables the EBLUP (3.20) based on a
linear mixed model (3.11) is not appropriate and the adequate method is based on a
generalised linear mixed model (GLMM). However, MBD methods still perform
reasonably well in such cases. See Appendix E for some empirical results related to

categorical survey variable.

We noticed some issues that influence the utility of the mixed model-based direct
estimator (3.15) that remain unresolved. The negative weights, which occurred in some
regions in the simulation study reported above, lead to impossible (i.e. negative)

estimates. Since such values are easily identified, they should not cause problems in real
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life. However, the problem remains of how to modify the weights (3.14) to ensure they
are strictly positive. A related issue that has already been noted is the impact of outlier Y-
values on (3.15). Certainly, this estimator since it is a linear combination of just the small

area data values is more susceptible to outliers in these values than the EBLUP (3.20).

The MBD estimators discussed in this chapter are essentially based on the variable
specific weights and efficient for estimation of the variable on which they are based.
Development of “multipurpose” weights (i.e. not variable specific) can make the method
even more useful. Furthermore, the data used in the simulation studies reported in section
3.4 are heteroskedastic in nature and the relationship between the survey and the auxiliary
variables are not linear (Figure 3.4 and 3.5). Thus, the extension of MBD approach for
the small area estimation with skewed data seems to be essential. In the proceeding

chapters we shall consider these two issues.
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Figure 3.7 Region-specific percentage relative biases for EBLUP (dashed line) and MBD
(solid line) under model I (top left), model II (top right), model III (bottom left) and

model IV (bottom right) with REML estimates.
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Figure 3.8 Region-specific percentage relative RMSE for EBLUP (dashed line) and
MBD (solid line) under model I (top left), model IT (top right), model III (bottom left)

and model IV (bottom right) with REML estimates.
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Figure 3.9 Region-specific coverage rate for EBLUP (dashed line) and MBD (solid line)

under model I (top left), model II (top right), model III (bottom left) and model IV

(bottom right) with REML estimates.
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CHAPTER 4

MULTIPURPOSE SMALL AREA ESTIMATION

4.1 Introduction

The MBD method of small area estimation (SAE) described in chapter 3 uses sample
weights derived under a population level linear mixed model to define the estimator for
small areas. The weights that define the best linear unbiased predictor (BLUP) for the
population total of a variable of interest (see Royall, 1976) depend on the population
level conditional variance/covariance matrix for that variable. Unless this matrix is
always proportional to a known matrix, this optimality is variable specific (Valliant et al,
2000, chapter 2). However, most surveys are multivariate, and it is often an advantage to
have a common weight for all response variables. This is especially true where linear
estimates are produced using the survey data. In what follows we refer to such weights as
‘multipurpose’. Further, these multipurpose weights facilitate the production of linear
estimates using computer software so that we do not need to use a different weight for
each variable. Consequently, development of multipurpose sample weight has potential to

make the MBD method of SAE more useful.
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When a sufficiently rich set of auxiliary variables exist, and response variables can be
assumed to be conditionally uncorrelated given these variables, multipurpose weights can
be constructed by fitting a linear model for each response variable in terms of the
complete set of auxiliary variables, as in Chambers (1996). An essentially equivalent idea
is to use a calibrated set of sample weights, where the calibration is with respect to these

auxiliary variables, as in Deville and Sdrndal (1992).

Small area estimation is now widely used in sample surveys. Many of the methods
currently in use are variable specific and based on the application of mixed models (Rao,
2003). Weighted direct estimation for small areas based on these models is described in
chapter 3, where we refer to this approach as the model-based direct (MBD) method of
small area estimation. Since the weights used in MBD estimation are based on the second
order properties of linear mixed models fitted to the survey variables, they are variable
specific. However, as noted above, there are obvious practical advantages from having a
single multipurpose weight that can be used for small area estimation for all the survey

variables.

In this chapter we introduce the ‘multipurpose’ weights, optimal in some sense for a
range of variables in multivariate surveys. Then we propose the multipurpose small area
estimation. In particular, we extend the MBD approach for SAE for multivariate surveys
using ‘multipurpose’ weights. In section 4.2 of this chapter we replace the variable
specific BLUP optimality criterion that underlies the mixed model weights used in the

MBD approach by a modified ‘total variability’ criterion that leads to a single set of
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optimal multipurpose weights for use in MBD estimation for small areas. Section 4.3
then presents empirical results on the performance of this approach. Finally, in section

4.4 we summarise our empirical results,

4.2  Optimal Multipurpose Sample Weighting

In section 3.2 of the previous chapter, we define the sample weights for population
estimation with single a response variable under the general linear model (3.8). Under the

model (3.8) and following the notation given in section 3.2, it is known (see Royall,

1976) that among linear prediction unbiased estimators Yi = w;Y of T ,» the variance of

the prediction error Var(fy —T,) is minimised by weights of the form

w, =1 +H (X1, -X1)+(1,-HX)V'V 1, . 4.1)

k) Ay

Here H = (X;V“TIXX)_l xXv.!, 1,is a vectors of ones of order g(g =n,N, N-n) and I,
is the identity matrix of order n. We refer to the weights (4.1) as the BLUP weights for Y.
By definition, these weights are calibrated on the variables in X, and so exactly
reproduce the known population totals defined by the columns of this matrix. In other
words X'w, = X, 1, =T.. Furthermore, under the assumption that a linear mixed model
can be used to specify the covariance matrix components V, and V,, in (4.1), the MBD

approach to small area estimation introduced in chapter3 uses these weights, with V and

V., replaced by suitable estimates, to define direct estimates of small area quantities.
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4.2.1  Optimal Multipurpose Weighting for Uncorrelated Variables

Suppose we have K response variables and a common set of auxiliary variables with

values defined by the population matrix X, , and that model (3.8) holds for each of them

(although with different parameter values). Suppose further that these variables are

mutually uncorrelated. We use an extra subscript k (k=1,...,K) to denote quantities
associated with the & response variable, for example V,, and w,, denote respectively
the nXn covariance matrix and n X1 vector of sample weights that are associated with

the nx 1 vector Y, of sample values of the k" response variable. With this notation, our
aim is to derive an optimal set of multipurpose weights w, ={w,;je s} for the K
response variables measured in the survey. Let 7, =1, Y, denote the population total of
Y, , with estimator ﬁ =wY, based on these multipurpose weights. The weights w_ are
then said to be ¢ -optimal if

(a) E(TAA, —T,) =0 for each value of k, and

(b) the ¢-weighted total prediction variance Zk ¢kVar(TAk —7,) is minimised at w, .
Here ¢, is a user-specified non-negative scalar quantity that reflects the relative

importance attached to the k" response variable, with =1.
p % + Pk

We now define the vector a, =w, —1 . Then the estimation error for the estimator

I, =wY, of T, =1,Y, is T, =T, = (WY, ~1, ¥) = @¥,, ~ 1, ,%,) .
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In order to derive an explicit expression for the ¢@-optimal multipurpose weights we first
note that under (a)

EX, -T)=E@Y, -1, Y )=E@X, -1, X)f=0= aX, =1, X, &2
Furthermore, the prediction variance for estimator T w, Y is then

Var(T, -T,)= E(T, -T,)’ =E(a@Y, —1\_,Y, )

=Var(@Y, -1y Y, +{E@Y, -1, Y. )}.

L ks
The second term on the right hand side above vanishes under (4.2), so that
Var(T, —T,) = aVar(Y,)a, —2a.Cov(Y, ,Y ), _, + 1, Var(Y, )1, .

=aV,a ~2aV, 1, +1 Vi le,- (4.3)

We use the method of Lagrange multipliers to minimise (4.3) subject to (4.2). The

corresponding Lagrangian loss function is

®(l) Z;\ l¢" {a A:s s 2a V 1N -n 1N -n ' krr N n}+2(a X ;\’—n,Xr)ﬂ" (44)

ksr
The third term on right hand side of (4.4) is independent of a, so we discarded it and
consider the Lagrange function as
®(l) Z;\ ]¢k {a Lrs 5 2a ‘/I\ArlN n }+ 2(a.:X: - 1;\’~n Xr)ﬂ' (45)

where A is a vector of Lagrange multipliers. Differentiating (4.5) with respect to a_ and

setting the result equal to zero leads to

acp“)
_ZL 1¢k{2 kssPs L:; N ,l}+2X/1 0

= Xﬁ' Z,\ 1¢A{ ksr N/z_ 1\5.\ .\}

= Xﬂ' Z,\ ]¢A ksr N n ZL 1¢" ksss
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(s S a1 ] -

Multiplying both sides of (4.6) on the left by X and using (4.2), we see that

~1

Xa,= x5 0v) (S5 oty )-S5 av.) x4

= X:lN—n = X;UI_IWIIN—n - X;UI_IXJ//{’

= a=(xu’x,) fxuiw, - x4, @7

where U, = Z; #V,, and W, = Z;gﬁkvm . Substituting (4.7) in (4.6) then yields the
optimal value of a:
aV =UW1,_ -U'X A= [U]’IWI Ui, (xupx,) fxurw, - x: }}1N_"

-1

= UI_IXS (XS’UI'IXJ‘ )—l (XI; 1N _X:ln)+l:1n _Ul_lXx (X;UI_]XJ') X_::,Ul_lvvl 1N—n N

That is, the optimal multipurpose sample weights are given by

’1 )+[1n _H;X;]U]_l“/llN—n (48)

8

WJ('I) :111 +H|’(X(; 1N _X

n

-1

sy -1 L ’, K -! B ’, K
Where Hl = (XSUI XJ) XSUI = Xx (Zk:l ¢k‘/km) XS X-Y (Zk:l ¢/\'Vkm)
Observe that the analytical form of the optimal multipurpose weights (4.8) is similar to
the variable specific BLUP weights (4.1) except that V,_and V, are replaced by the
weighted sums U, = Zk;i)kvm and W, = Zkgfﬁka respectively. Clearly (4.8) reduces to

(4.1) for K =1. The choice of weight or importance @, attached to k" variable is more

or less subjective, and can to chosen depending on the nature of the data. When there is

no reason to choose one variable over other then we can give equal weight to all
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variables, meaning ¢, = K'; Vk . For example, we can assign the weight proportional to

residual variances of the response variables.
4.2.2  Optimal Multipurpose Weighting for Correlated Variables

The multipurpose weights (4.8) are derived assuming that variables are mutually
uncorrelated. However, in general survey variables are correlated. We now define the
sample weights exploiting the correlations among the survey variables. For any two
variables ¥, and Y, (k,l=1,..,K), let C, =C, =Cov(Y,,Y)). The obvious generalization
of the ¢ -weighted total prediction variance to this case leads to the loss function

’ 4.9)

()

where elements of the matrix A= {A,} are given by

Al

- Var(T, -T)) if k=1
Cov(T, -T,,T,-T) if k#l

and we now have
Cow(T, ~T,.1,~T)) = Cov(@¥, ~1; ¥, ,a¥, ~1,_Y,)
=a.Cov(Y,,,Y,)a, —2a.Cov(Y,,,Y,)1,_, +1y_, Cov(¥, Y )1,_,
=dC,.a,—24/Cy 1, +1, Cyl, .

s kiss s

Var(j—\;\' _7—;\) = a:'vl\ Ay — Za;V 1N—n +1;V—Vlvkl‘l‘1N—H

kss s ksr

Var(f; _77) = ax,vvlmas - ZQ;V 1N—n +1:\’—n Vvlrrlen .

Isr
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The Lagrange function to be minimized in this case is

SO = (BB ) A (VBB onfBe ) +2 X, -1, X, )2

_Z¢AVar(T ~T)+ > S\ Cov(@, ~T,, T, ~T)) + 2(a! X, 1}, X )A

ko I#k

- Z¢I\ {a I\JA‘ s 2a ‘/I\JFIN -n + 1;\/»11 ‘/krrlN—n}

+ZZM\/—{a I\Zxx 5 2a C’\/JI N-n 1N n " klrr N n} +2(a X —an)/l . (410)
k 1=k
Differentiating (4.10) with respect to a, and setting the result equal to zero yields
{Z ¢A kss + ZZ M\/alcklxs} {Z ¢I\ ksr + ZZ\/?]{\/%Cklsr}lN—n + Xx/l = 0

kK Izk kK Izk

=  Uga -Wil, +X1=0

=  a,=U'Wl,  -XA1) (4.11)
where U, Zgbk ss +ZZM\/—CMJ and W, = Z@ AN+ZZ\/E\/Z,CH” .
kI#k k I#k

Proceeding as in the uncorrelated case then leads to the optimal multipurpose weights for
correlated survey variables as

w =1 +H, (X1, - X1)+[I,- H;X |U;'W,1,_, (4.12)
where H, = (X;U; 'X, )_] XU;'. As in the uncorrelated variables case, we note that the

weights defined by (4.12) have the same analytic form as the BLUP weights (4.1), except

that in this case V. and V|, are replaced by U, Z@ ,(H+ZZ\/¢T_ \/ECH” and

k 12k

W, = Zgbk or +ZZM\/Z,CMN respectively. Between multipurpose weight (4.8) and

k l=k
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(4.12), the weight (4.12) includes extra terms in their variance components that arise due

to correlation among the variables given by C,,. WhenC,, =0, the weight (4.12) reduces

to (4.8).

4.3. Application to Small Area Estimation

In section 4.2 we discussed three types of sample weights, the variable specific weights
(4.1), the multipurpose weights (4.8) based on uncorrelated and (4.12) based on
correlated survey variables respectively. These weights are derived under the model
appropriate for population estimation (i.e. using a model that explains population level
variability and small area effects are averaged out) and using these weights for SAE can
lead to inefficient estimates. The most commonly used class of models in small area
inference is the class of linear mixed models (see section 3.3, chapter 3). This is also true
when we have more than one variable. In this section we first recall the linear mixed
model and MBD estimation and then define them for the multivariate case to derive the

multipurpose weights and associated estimators for small areas.

Following the MBD estimation elaborated in chapter 3, we use the multipurpose weights
(4.8) and (4.12) to construct model-based direct (MBD) estimates for small area means.
In this case we assume that the population can be partitioned into m non-overlapping
small areas or domains, indexed by 7 in what follows. Thus, for example, the population

size of area i is denoted by N, and so on. The variable-specific MBD estimate of the

mean of the k" response variable with values y,; inarea i is then
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5 MBD _ (4.13)
N = Zja,, w"fy‘j/zjexi Wi
where s, denotes the sample (of size n,) in area i and the weights w, are calculated

using (4.1), substituting estimated values \7k_m_ and \%ﬁ for the corresponding components
of the covariance matrix of the population values of this variable. Here model (3.11) and
interpretation of different terms apply directly with inclusion of one extra subscript & for
K" variable, however, we redefined the mixed linear model (3.11) by introducing the
subscript k, just for shake of continuity. In order to define these estimates, we assume that
these population values follow the linear mixed model

Yo =X, 0. +2Z,u, ey (4.14)
where Y,, = (Yk,,w--ka,,m),’ X, =(X,..X.), Z, =diag(Z;1<i<m), u, = Uy ety )

m

and ¢, =(e,,,...,e, ) denote partitioning into area ‘components’. Here u,, is a gxI1
vector of the random effect associated with area i, with Var(u,,)=%, ,, and ¢, is the
vector of individual level random effects for small area i, with variance
Var(e,)=%,,1y . 1t follows that Var(Y, )=V, =L, I, +ZX, Z/. The variance
components X, , and ¥, , can be estimated from the sample data using standard methods
(maximum likelihood, restricted maximum likelihood, i.e. REML, or method of
moments). Substituting these estimated variance components back into the definition of
V., and noting that V,,, = diag(V,;;1<i<m) then leads to a corresponding estimate of
this population level covariance matrix. This can be appropriately partitioned into sample

and non-sample components to give the estimated values \7m and V,, . We refer to the
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weights (4.1) with these estimated values substituted as the (variable specific) EBLUP

weights (just as in chapter 3).

In order to use the multipurpose weights (4.8) and (4.12) in MBD estimation, we assume
that the survey variables all follow the linear mixed model (4.14), with normal random
effects. Furthermore, for any two variables of interest, say the k” and [, area and
individual random effects remain uncorrelated but now

(uk'} ~MVN(O,Z,) with ¥, = (Var(u“) Cov(uy,u, )] _ (ZuZow) @ 15)

u, Cov(u,,u,;) Var(u,) B EoaZon
and
[%-] MVN(O.L) withE, = (Var(ekij) Cov(e,;,e;)) _ [Ze,kk 0 - (4.16)
ey Cov(ey,e,;) Var(e,) EowZou
Hence
Vi=Var(Y, ) =L, ,1, +ZE, .2
V,=Var(¥,)=X, 1, + ZE 7z
and

Cy, =Cov(Y, .Y, = Ze,k/]Ni +Zizu,klzi’ .

Given these definitions, we put U, = diag(U,;;1<i<m) and W, = diag(W,;;1<i<m) in

(4.8) and U, = diag(U,;;1<i<m) and W, = diag(W,,;1 £i < m) in (4.12). Here

U, = Z OV isi = Z ¢ (Zf»"""]”f * ZJ*iZ“""‘Z;’i)
k k

W, = Z ¢kvksr,i = Z¢A (Zs,iz’u,kkz:,i)
3 x
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and

U, = Z ¢kvkn,i + Z Z \/&:\/Zlck[::‘i

k Ik

= Z &, (Ze,kkln, + Z.r,izu,kkz.:,i ) + Z Z \/;5:\/5 (Ze,klln,» + Z.v,izu,klz.:,i )
.

ko Ik

W, = Z ¢kvlm,i + Z Z Mﬂcklsr,f

k I#k

= Z ¢k (Z,y,izu,kkz:,i ) + Z Z \/%:\/%(Z:,izu,klz:vi ) .

k I1#k

In practice, the bivariate variance components X, ,.,%, ,,X, , and X, , see (4.15) and
(4.16), are unknown and must be estimated from the survey data. For example, in the
empirical study described in the next section, these components were estimated using the
method of moments. In any case, substituting estimates for these components in the
formulae above then enables us to compute U,, W,, U, and W,, and hence the
multipurpose weights (4.8) and (4.12). Computation of MBD estimates for the small area
means of the different survey variables is then straightforward using (4.13), with these

multipurpose weights replacing the variable specific EBLUP weights there.

As noted earlier, the multipurpose weights (4.8) and (4.12) are essentially EBLUP type
weights based on ‘importance averaging’ of the variance and covariance components
associated with the different survey variables. This motivates us to consider a second
approach to deriving multipurpose weights based on corresponding ‘importance

averaging’ of the variable specific EBLUP sample weights (4.1) for these variables. That
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is, we simply define our multipurpose weights as the importance-weighted average of the

variable specific weights (4.1) across all K survey variables. This leads to weights
w = Z Wy “.17)
k

where w, denotes the value of (4.1) for the k" survey variable and @, denotes the
relative importance of this variable, with Zk(z)k =1. The two approaches of deriving the

‘multipurpose’ weights based on averaging the variance-covariance components and

averaging the variable specific weights are referred as the approach I and II respectively.

Mean squared errors for the EBLUP are estimated using the approach of Prasad and Rao
(1990), while mean squared errors for the various MBD estimators are estimated using
the robust method described in section 3.3.2 in chapter 3, which itself is an application of
the heteroskedasticity robust method of prediction variance estimation in Royall and
Cumberland (1978). That is, estimation of the mean squared errors of the MBD
estimators (4.13) defined via multipurpose weights (4.8), (4.12) and (4.17) follows the
approach described in section 3.3.2, and treats these estimators as simple weighted
domain mean estimates. Under this approach the sample weights derived under mixed
effect model are treated as fixed and the prediction variance of corresponding estimators

are estimated using a standard robust variance estimator. In particular, the mean squared

error estimator for the MBD estimators ¥;"*” of ¥, given in (4.13) is

mse(FH5PY) = w(F 5P 4 b2 (F V) (4.18)

where v(Y,"5”) =ZA~,. 4,0, —x;. ,3)2 is the estimate of the prediction variance of ¥**”

with
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A =N (@l +(N,=n) [(n,=1)),

J

a,=(2, Wf)_] (Mo, =%, 1),

A

and b()%MBD) = (X" —)?,)',3 is the estimate of the bias of l%iMBD. Here )?,.MBD denotes

the weighted average of the sample values of the auxiliary variables in area i. The sample

weights used in (4.18) are the multipurpose weights (4.8), (4.12) and (4.17), depending
the estimators. However, ,B used in (4.18) are variable specific and estimated from the
variable of interest. Appendix F shows some other options for estimating £ in context of

multipurpose SAE.

We described two approaches for deriving multipurpose weights based on small area
models, the first based on the weighted average (or sum) of the variance-covariance
components associated with a select group of variables and the second based on weighted
average (or sum) of the variable specific sample weights generated for these variables.
Using these two approaches, we defined three types of multipurpose weights and
corresponding small area estimators and their mean squared error. In the next section we
carry out simulation studies to evaluate the empirical performance of these estimators as
well as variable specific weighting based MBD and EBLUP. We also examine the utility
of multipurpose weights for SAE of an arbitrary variable from same survey, not included

in the definition of the multipurpose weights.
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4.4 An Empirical Evaluation

In this section we report on a design-based simulation study that illustrates the
performance of small area MBD estimation combined with multipurpose weights. The
basis of this study is the same target population of N = 81982 farms, the same 1000
independent replications of a stratified random sampling design with overall sample size
n=1652 and the same m = 29 small areas of interest (defined by agricultural regions)
that underpin the simulation results reported in chapter 3. Note that regional sample sizes
in this design are fixed from simulation to simulation but vary between regions, ranging
from a low of 6 to a high of 117, and hence allowing an evaluation of the performance of
the different methods considered across a range of realistic small area sample sizes. See
section 3.4 for more details. Here we consider K = § variables of interest. These are

(1) TCC = total cash costs (A$) of the farm business over the surveyed year,

(i) ~ TCR =total cash receipts (A$) of the farm business over the surveyed year,

(iii)  FCI = farm cash income (A$), defined as TCR — TCC,

(iv)  Crops = area under crops (in hectares),

(v) Cattle = number of Cattle on the farm,

(vi)  Sheep = number of sheep on the farm,

(vii)  Equity = total farm equity (A$), and

(viii) Debt = total farm debt (AS$).
Our aim is to estimate the average of these variables in each of the 29 different regions.
In doing so, we use the fact that these regions can be grouped into three zones (Pastoral,

Mixed Farming, and Coastal), with farm area (hectares) known for each farm in the
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population. This auxiliary variable is referred to as Size in what follows. Therefore, we

have a single auxiliary variable for all § target variables.

Although the linear relationship between the eight target variables and Size is rather weak
in the original sample data, this improves when separate linear models are fitted within
six post strata. These post-strata are defined by splitting each zone into small farms (farm
area less than zone median) and large farms (farm area greater than or equal to zone
median). The mixed model (4.14) is therefore specified so that the matrix X of auxiliary
variable values included an effect for Size, effects for the post-strata and effects for
interactions between Size and the post strata as in chapter 3. Two different specifications
for Z (corresponding to whether a random slope on Size was included or not) were
considered. We refer to these as model I and as model II respectively below. These are
random intercepts and random slopes model as in chapter 3. We use REML estimates of
random effects parameters, obtained via the /me function in R (Bates and Pinheiro, 1998)
when fitting (4.14) to individual survey variables. When fitting the multivariate mixed
models defined by (4.15) and (4.16) we use the method of moments (Rao, 2003). See

Appendix G for definition and expressions for the method of moment estimation.

4.4.1 Description of Estimators

The simulation study investigates the empirical performance of five different estimators

of the 29 regional means, along with corresponding estimators of their mean squared

error. These are

97



(i) the variable specific EBLUP under (4.14), referred to as EBLUP (see section
3.3.3, chapter 3);

(ii) the MBD estimator (4.13) based on variable specific EBLUP weights (4.1)
under (4.14), referred to as MBDO;

(iii)  the MBD estimator (4.13) based on multipurpose weights (4.8) under (4.14),
referred to as MBD1-A;

(iv)  the MBD estimator (4.13) based on multipurpose weights (4.12) under (4.14),
referred to as MBD1-B, and

(v) the MBD estimator (4.13) based on multipurpose weights (4.17) under (4.14),

referred to as MBD?2.

4.4.2 Description of Simulation Studies

The simulation study is carried out in five stages. In the first stage, model I is assumed
and the performance of the three estimators MBDO, MBD1-A and MBDI-B for two
variables (TCC and TCR) is investigated to see if there are gains to be had from
exploiting correlations among the survey variables. In this case we use method of
moments (Henderson’s method 3) to estimate the model parameters (see Appendix G).
Results from the first stage of simulation are set out in Table 4.1. For this stage of
simulations, we also carried out the model-based simulations to contrast the performance
of different estimators for the population generated under the model. A description of the
model-based simulations and corresponding results are shown in Appendix H. In the

second stage of the study we compare the performance of the four estimation methods
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EBLUP, MBDO, MBD1-A and MBD2 under models I and II for the 5 response variables
(TCC, TCR, FCI, Cattle and Sheep) where both models can be fitted. Results from this

stage are presented in Tables 4.2-4.3 and in Figure 4.1-4.5.

Note that three of the eight target variables in the study (Crops, Equity and Debt) are not
suited to linear modeling via (4.14) under model II because of large numbers of zeros, so
the multipurpose weights used in MBD1-A and MBD2 are based on the K = 5 remaining
variables (TCC, TCR, FCI, Cattle and Sheep) in the simulations evaluating the
performance of different methods under the model I and II. Consequently, in the third
stage of the study, we use the multipurpose weights derived in the second phase (i.e.
weights based on the K = 5 variables TCC, TCR, FCI, Cattle and Sheep) in MBDI-A to
evaluate the performance of this estimator for the three variables Crops, Equity and Debt
that are impossible to model using model II. That is we evaluate the performance of
different methods for three target variables (Crops, Equity and Debt) that contain a large
number of zeros and which are not included in the multipurpose weights. In this stage,
our purpose is to investigate the utility of multipurpose weights to the variables not
included in the weight. Results from this stage are shown in Table 4.4 and in Figures 4.6

to 4.8.

In the fourth stage we use the fact that model I can be fitted to all eight variables to define
multipurpose weights that we then use in MBDI1-A. That is we consider all the K = 8
response variables under model I. In this stage we investigate the effect of number of

target variables included in the multipurpose weights. Results from this stage are
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presented in Tables 4.5 and in Figures 4.6-4.8. Note that in all four of these simulation

stages, we assign equal importance to all variables included in derivation of the
multipurpose weights, i.e. ¢ =1/K,Vk. However, in the final simulation studies (stage
five) we replicate the stage two simulations for MBD1-A, but this time we assign weights
to each variable proportional to its variability, i.e. @ =1/ o‘jk or ¢, =1/total variance.

Results from this stage are reported in Tables 4.6. We assign an equal importance to the
variables included in defining the multipurpose weights if there no reason to prefer one to
the other. However, for a given data set, depending on the nature of the variables we
identify some criterion to assign relative importance. For example, in AAGIS data,
variability of some of the variables is different from the others. Thus, in simulation set

five we decide to assign importance proportional to the variability of different variables.

4.4.3 Results of the Simulation Studies

We computed three measures of estimation performance using the estimates generated by
different estimation methods in various simulation studies. These are the relative bias
(RB) or relative mean errors and the relative root mean squared error (RRMSE), both
expressed as percentages, of regional mean estimates and the coverage rate of nominal 95
per cent confidence intervals for regional means. Further, the average and median values
of these performance measures are calculated over all the regions. See section 3.4.2 for

the definition of these measures.
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4.43.1 First Stage Simulations

Table 4.1 presents the average and median values of various measures of estimation
performance for the first stage simulations (all computed over the 29 regions) generated
by four methods MBD(O, MBD1-A and MBD1-B under model I for the two variable TCC
and TCR. As mentioned earlier, this stage of simulations use the method of moment

(Henderson’s method-3) for the estimation of random effect parameter (Appendix G).

For the variable TCC, we note that the average and median relative biases under MBDO
are larger than both MBDI-A and MBDI1-B. However, with equal average coverage
rates, the average and median relative RMSEs for MBDO are marginally lower than both
MBDI1-A and MBDI1-B. In contrast, for the variable TCR, the average and median
relative biases under MBDQ are small than both MBD1-A and MBD1-B. However, with
the same average coverage rate, the average and median relative RMSEs for MBDO are
marginally higher than both MBD1-A and MBD1-B. We have not presented the regional
estimates generated by these methods since there are no significant differences between
them. These results show that neither approach dominates the other. Between MBD1-A
and MBD1-B it seems clear that both methods perform equally well. This is evidence that
the MBD method based on the multipurpose weights (4.8) is not sensitive to correlations
between the target variables. Although not presented here, results from model-based
simulations of target variables with different levels of correlation support this conclusion.
The results from model-based simulations are presented in Appendix H. Consequently

the simulation results presented below focus on MBD1-A.
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Table 4.1 Average (ARB) and median (MRB) values of relative bias (%), average
(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and
average (ACR) coverage rate generated by MBDO, MBD1-A and MBDI-B for TCC and

TCR under model I. All averages and medians are over the 29 regions of interest.

Variables  Criterion MBDO MBDI-A MBDI1-B
TCC ARB -2.99 -2.67 -2.71
ARRMSE 20.32 20.39 20.39
ACR 0.92 0.92 0.92
MRB -0.92 -0.85 -0.86
MRRMSE 14.29 14.36 14.35
TCR ARB -2.38 -2.62 -2.67
ARRMSE 21.21 21.13 21.12
ACR 0.92 0.92 0.92
MRB -0.52 -0.56 -0.57
MRRMSE 13.28 13.27 13.27
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4432 Second Stage Simulations

In the second stage of the simulation study, we compared the two variable specific
methods EBLLUP and MBDOQ with the two multipurpose methods MBD1-A and MBD2.
Tables 4.2 and 4.3 show the summary performances generated by these four methods for
the five variables TCC, TCR, FCI, Cattle and Sheep under the ‘reasonably specified’
models I and II respectively. These results show that under the better fitting Model II
(Table 4.3), there is little, if any, difference in the average relative biases of the
multipurpose methods MBD1-A and MBD2 compared with the average relative bias of
the variable specific estimator MBDO, with all three often substantially better than
EBLUP (Table 4.2-4.3). Under Model I, the two multipurpose estimators MBD1-A and
MBD?2 are substantially better than MBDO and EBLUP. In terms of relative RMSE, the
results are more equivocal. Under Model I there is little to choose between MBDO,
MBDI-A and MBD?2 in terms of average relative RMSE, with the corresponding
performance of EBLUP rather more fragile. When one turns to the better fitting Model II,
however, it is clear that the better multipurpose approach is MBDI1-A. By considering
median, rather than average, values of relative bias and relative RMSE, we also see that
the estimation performances of the multipurpose estimators MBD1-A and MBD2 appear
to be more robust than those of the variable specific estimators MBDO and EBLUP.
Finally, we note that the average coverage rates of all three direct estimators are quite
similar under both Models I and II and dominate the corresponding average coverage
performance of EBLUP. Overall it seems clear that the multipurpose estimator MBD1-A

is the estimator of choice for these five variables.
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Table 4.2 Average (ARB) and median (MRB) values of relative bias (%), average

(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and

average (ACR) coverage rate for the five variables best suited to linear mixed modelling.

All averages and medians over the 29 regions of interest. Model I is assumed.

Criterion Method TCC TCR FCI Cattle Sheep
ARB EBLUP 4.24 5.48 6.93 138.48 304.24
MBDO -2.49 -9.25 -13.80 -15.05 -1.33
MBDI-A -1.54 -1.30 -0.50 -1.78 0.69
MBD2 -1.29 -1.02 -0.04 -1.35 0.98
MRB EBLUP 1.55 0.55 -2.08 0.95 -0.23
MBDO -0.82 -3.87 -2.83 -4.79 -4.48
MBDI-A -0.61 -0.42 -0.56 -0.97 -0.35
MBD2 -0.52 -0.39 -0.54 -0.75 -0.30
ARRMSE EBLUP 19.92 21.76 63.93 304.74 906.18
MBDO 20.56 23.34 54.42 37.45 24.88
MBDI-A 20.86 21.77 59.72 33.29 30.24
MBD2 20.85 21.77 60.07 33.36 30.64
MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00
MBDO 14.45 16.20 35.85 30.34 15.50
MBDI1-A 14.69 13.41 42.09 30.55 14.67
MBD2 14.74 13.46 42.45 30.56 14.67
ACR EBLUP 0.90 0.88 0.87 0.86 0.91
MBDO 0.92 0.91 0.94 0.93 0.94
MBDI1-A 0.92 0.92 0.94 0.95 0.96
MBD2 0.92 0.92 0.94 0.95 0.96
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Table 4.3 Average (ARB) and median (MRB) values of relative bias (%), average
(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and
average (ACR) coverage rate for the five variables best suited to linear mixed modelling.

All averages and medians over the 29 regions of interest. Model 1I is assumed.

Criterion Method TCC TCR FCI Cattle Sheep
ARB EBLUP 2.98 2.85 16.70 131.66 2.63
MBDO -2.13 -1.25 0.50 -0.29 3.66
MBDI1-A -1.67 -1.29 0.74 -1.95 1.10
MBD2 -1.30 -0.72 3.17 -1.29 0.93
MRB EBLUP 0.61 1.37 3.98 0.62 0.00
MBDO -0.47 -0.51 0.35 -0.31 0.00
MBDI1-A -0.65 -0.50 0.24 -0.30 -0.15
MBD2 -0.52 0.01 0.53 -0.22 -0.09
ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01
MBDO 20.15 21.46 65.43 30.80 37.82
MBDI-A 19.06 21.03 64.03 30.09 32.04
MBD2 27.13 34.84 129.29 45.16 34.99
MRRMSE EBLUP 16.40 15.61 33.89 22.64 11.73
MBDO 13.16 12.39 37.64 28.79 14.68
MBDI-A 12.84 12.18 37.92 24.84 14.77
MBD2 12.84 12.71 37.62 24.93 14.72
ACR EBLUP 0.85 0.86 0.84 0.86 0.89
MBDO 0.93 0.93 0.90 0.95 0.96
MBDI1-A 0.93 0.93 0.94 0.95 0.96
MBD?2 0.93 0.93 0.94 0.95 0.96
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Figure 4.1 to 4.5 show the regional level performances of EBLUP, MBDO0, MBD1-A and
MBD?2 for the five variables TCC, TCR, FCI, Cattle and Sheep respectively under model
I and model II. Note the relatively better performance -of all methods under model II. A
considerable reduction in relative biases under multipurpose weighting can also be seen
in most regions for all variables. These results further show significant gain in efficiency
due to multipurpose approach in terms of relative RMSEs as well as coverage rates in

different regions and for the different variables.

Figure 4.1, which shows the region-specific performance for the variable TCC, indicates
that in two regions (region 3 and 21) the weighting methods (MBDO, MBD1-A and
MBD?2) fail, in general. Inspection of data indicates that this is the consequence of a few
outlying estimates as noted in chapter 3. When we discard these outlying estimates as in
chapter 3, the weighting methods, particularly MBD1-A and MBD2, perform well for

TCC across all regions.

Figure 4.2 indicates that the root mean squared errors for the variable TCR under
weighting methods are relatively higher in two regions (region 3 and 21). Again similar
to the TCC, in these two regions results are contaminated by a few outlying estimates.
The outlying estimates for region 21 are all caused by presence of a single massive
outlier (TCR=A$ 33,031,486) from the original sample that was included in the
simulation population (twice). This also affects the coverage rate of TCR under
weighting methods in region 21 (Figure 4.2). If we discard the outlier driven estimate in

region 21 (i.e. see the median performance measures generated by these methods, Table
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4.2 and 4.3) then weighting methods, particularly the MBD1-A and MBD?2 seems to be
appropriate for regional estimation for the variable TCC and TCR under models T and 1L
Similarly, the results generated by all methods (EBLUP, MBD0, MBD1-A and MBD2)
for FCI are influenced by outlier contaminated estimates in two regions (3 and 15). See

Figures 4.3.

The unstable performance of EBLUP for the Cattle and Sheep variables in Table 4.2 and
4.3 is noteworthy. Upon investigation we found that the anomalous results for Cattle are
caused by the presence of negative estimates (a negative estimate is really unexpected
and surprising) for this variable in two regions (11 and 14), which are themselves the
result of zero values in the data (Figure 4.4). In particular, in region 11 there are 1283
zeros in the simulated population of 1586 values (in original sample of size 51, there are
39 zeros). This resulted in 185 negative estimates out of the 1000 simulated for this
region. Similarly in the region 14, there are 1972 zeros in the 2182 values in the
simulated population (there are 43 zeros out of 47 in original sample), leading to 354
negative estimates. However, in region 6 the MBDO is affected due to presence of one
massive outlier (cattle= 33154) which was selected four times in the simulated population
and the EBLUP is affected due to repetition of zero value. In region 6, in a sample of size

19, there are two zero observations.
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Figure 4.1 Region-specific performances of EBLUP (dashed line), MBDO (thin line),
MBDI-A (thick line) and MBD2 (dotted line) for TCC under model I (left) and model II
(right).
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Figure 4.2 Region-specific performances of EBLUP (dashed line), MBDO (thin line),
MBD1-A (thick line) and MBD?2 (dotted line) for TCR under model T (left) and model IT

(right).
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Figure 4.3 Region-specific performances of EBLUP (dashed line), MBDO (thin line),

MBD1-A (thick line) and MBD2 (dotted line) for FCI under model I (left) and model II

(right).
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Figure 4.4 Region-specific performances of EBLUP (dashed line), MBDO (thin line),

MBD1-A (thick line) and MBD2 (dotted line) for Cattle under model I (left) and model 11

(right).
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Figure 4.5 Region-specific performances of EBLUP (dashed line), MBDO (thin line),
MBD1-A (thick line) and MBD?2 (dotted line) for Sheep under model I (left) and model 11

(right).
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A similar reason lay behind the EBLUP results for Sheep (Figure 4.5). In this case,
however, the regions where the zeros occurred were 3 and 18. In particular, in region 3
there were only 11 non-zero values for Sheep in a simulated population of size 189,
leading to 223 negative estimates, while in region 18 a majority of zero values for Sheep
lead to 323 negative estimates. Further, we noticed that in region 6 all methods are
unstable for estimation of Sheep. In this region (region 6) where all procedure fails, in a
sample of size 19 all observations are zero expect one which is selected five times in the
simulated population of size 465. This non-zero observation is of order 1200, which is
like an outlying value. This results in 494 negative estimates for the EBLUP out of 1000

samples and several outlying estimates with weighting methods (MBDO0 and MBD1-A).

4.43.3 Third Stage Simulations

As noted earlier, our results suggest that multipurpose estimation based on MBD1-A is
preferable to that based on MBD2. Consequently, in the third stage of simulations we
contrast the performances of the variable specific estimators EBLUP and MBDO with the
multipurpose estimator MBD1-A for the three variables (Crops, Equity and Debt) that
contain a large number of zeros and are not included in calculation of multipurpose'
weights (Table 4.4). Note that the results in this simulation stage are based on model I,
since model II cannot be fitted to these variables (and also in the stage second we notice
no difference in performance of the different methods under model I and II). In this stage
of the simulation our purpose is to investigate the applicability of multipurpose weights

to variables not included in defining the multipurpose sample weights. Here we examine
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how much efficiency will be lost if we apply these multipurpose weights to arbitrary
variables from the same survey not included in the definition of the multipurpose

weights.

Table 4.4 sets out the average and median relative bias (%), average and median relative
root mean squared error and average coverage rate generated by three estimators
(EBLUP, MBDO and MBD1-A) for the three target variables (Crops, Equity and Debt),
not included in the multipurpose weights (averaged over the 29 areas). As indicated
earlier, the MBD1-A for Crops, Equity and Debt is based on applied multipurpose

weights derived using five other variables (TCC, TCR, FCI, Cattle and Sheep).

From Table 4.4 we see that MBD1-A performs marginally better overall. The superior
performance of MBD1-A is obvious, as is the poor performance of EBLUP for these
variables. The average relative biases under MBDI1-A are smaller than MBDO and
EBLUP for Equity and Debt while it is small under MBDO for Crops. However, the
average relative root mean squared error under MBD1-A are lower for the Crops and
Equity while for Debt it is lower under MBDO. For Crops and Debt, the average coverage
rates of the MBDI-A and MBDO are same (96 and 93 per cent) but higher than the
EBLUP. However, for Equity MBDI-A has the highest coverage rate (94 per cent)
overall. These results clearly indicate that the multipurpose weighting based method for
small area estimation is the obvious choice for regional estimation, even though the

variable is ill-suited for other methods (like EBLUP).
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Table 4.4 Average (ARB) and median (MRB) values of relative bias (%), average

(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and

average (ACR) coverage rate for EBLUP, MBDO and MBDI-A for variables with many

zeros (Crops, Equity and Debt) under model 1. All averages are over the 29 regions of

interest.

Criterion Methods Crops Equity Debt
ARB EBLUP 90.31 4.36 8.39
MBDO 0.00 -9.32 -4.94
MBDI-A -0.21 -1.20 -0.96
MRB EBLUP 0.00 -0.28 1.16
MBDO -0.84 -3.51 -2.36
MBDI1-A 0.00 -0.32 -0.61
ARRMSE EBLUP 123.96 18.51 26.02
MBD0 23.53 19.14 27.71
MBDI1-A 22.92 17.05 28.57
MRRMSE EBLUP 15.10 12.32 21.49
MBDO 15.76 16.18 23.70
MBDI-A 15.80 13.52 24.88
ACR EBLUP 0.95 0.88 0.91
MBDO 0.96 0.92 0.93
MBD1-A 0.96 0.94 0.93
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Figure 4.6-4.8 shows the region-specific performance measure for Crops, Equity and
Debt respectively generated by three methods (EBLUP, MBDO and MBD1-A). These
region-specific results show some abnormalities in the estimates in few regions. For
example, for Crops, the EBLUP method seems to fail in four regions (2, 6, 9 and 18). In
these regions we observed the presence of large number of zeros, which gives the
negative estimates or under estimates for these regions. As noted earlier, in such cases the
EBLUP method is very unstable. In contrast, weighting based methods work reasonably

well.

Note that Equity and Debt variables take negative values (also was the case with FCI),
and our simulation results examine the application and suitability of different methods
with such type of data. For Equity, in three regions (4, 6 and 14) the EBLUP procedure
fails, inspection of data indicate the presence of negative values in these regions. For
example, in region 4, there are two negative values in original sample and repeated 68
times (first observation 4 times and second 62 times) in the simulated population, which
results in negative and under estimates for some of the samples. For Debt, in two regions
(3 and 17) only EBLUP and in one region (region 1) all methods are worst, observation
of result shows that these are due to under estimation in these regions for most of the
sample, due to presence of zero values and outlying. In region 1, where all estimation
procedures are affected, in original sample of size 6, there are 5 zeros and one non-zero
(y = 19928), which seems to be outlier. In simulated population of size 79, this point was
repeated 15 times. Thus, EBLUP method was affected by presence of zeros and the

weighting based methods due to outlier. The median relative biases and median relative
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RMSE (Table 4.4) show that the dominance of weighting approach and gain due to
multipurpose weighting. In regional estimation, multipurpose weighting approach seems

to perform well.
4434 Fourth Stage Simulations

In the results presented so far, the multipurpose weights used in the MBDI-A method
have been based on the K = 5 target variables that are ‘suited’ to linear mixed modeling
with the model II specification. However, if a model I specification is used, we can use
all K = § target variables to define these weights via (4.8). The aim of this stage is to
examine the effect of number of variables in the weight multipurpose. We derived the
multipurpose weights based on K = 8 variables and compare with those based of K =5
variables. Let us denote by MBD1-A-8Y and MBD1-A-5Y, the MBDI1-A estimators

based on based on eight and five variables respectively.

Note that the MBD1-A-5Y based on K =5 variables (TCC, TCR, FCI, Cattle, Sheep) are
already evaluated for these five variables and also for the rest three variables (Crops,
Equity, Debt) with applied weights. At this end, we calculate MBD1-A-8Y estimator
based on variables for the entire KX = § variable set (TCC, TCR, FCI, Cattle, Sheep,
Crops, Equity, Debt). In Table 4.5 therefore we compare the performance of the MBD1-
A method under model I with weights obtained by using both the limited (K = 5) and full
(K = 8) set of target variables in (4.8). Table 4.5 indicates that the relative biases of the

MBD1-A-8Y are marginally smaller than the MBDI1-A-5Y for all variables except

117



Sheep. However, the average relative root mean squared errors of the MBDI1-A-5Y are
marginally lower than the MBDI1-A-8Y. The average coverage rates of both the

estimators are same.

Table 4.5 Average (ARB) values of relative bias (%), average (ARRMSE) values of
relative root mean squared error (%), and average (ACR) coverage rate for multipurpose

weighting (MBD1-A) based on original K = 5 and extended K = 8 variable sets under

model I
Variable K=5 K=8

ARB ARRMSE ACR ARB ARRMSE ACR
TCC -1.54 20.86 0.92 -1.08 20.91 0.92
TCR -1.30 21.77 0.92 -0.80 21.83 0.92
FCI -0.50 59.72 0.94 0.21 60.22 0.94
Cattle -1.78 33.29 0.95 -1.05 33.49 0.95
Sheep 0.69 30.24 0.96 1.24 31.06 0.96
Crops -0.21 22.92 0.96 -0.20 22.97 0.96
Equity -1.20 17.05 0.94 -0.72 17.14 0.94
Debt -0.96 28.57 0.93 -0.68 28.74 0.93

These results in Table 4.5 show that there is little change in the average performance of
MBDI1-A when the set of variables determining the multipurpose weights used by this
estimator is extended from the original K = 5 variable set (TCC, TCR, FCI, Cattle,
Sheep) to the entire K = 8 variable set (TCC, TCR, FCI, Cattle, Sheep, Crops, Equity,
Debt). Again, note that this extension is only possible under Model I. Moreover, it is

worth noting that for last three variables (Crops, Equity and Debt), not included in the
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weight under MBD1-A-5Y and included in weights under MBD1-A-8Y. Overall, this
result shows that these weights are quite insensitive to this choice. The almost
imperceptible regional difference between the estimates defined by these two sets of
weights (see Figure 4.6-4.8) reinforces this observation for these variables (Crops, Equity

and Debt).

Figure 4.6-4.8 shows that region-specific performance measure generated by EBLUP,
MBD0O, MBDI-A-5Y and MBDI1-A-8Y methods for Crops, Equity and Debt
respectively. As indicated earlier, in Figure 4.8 we show the overall region-specific
superior performance of MBDI1-A (under either K = 5 or K = 8) for the variable Debt.

Similar region-specific performances were observed for Crops and Equity as well.

4.43.5 Fifth Stage Simulations

So far, when computing the multipurpose weights, we have assigned equal importance to
all K target variables that are used to define them. However, a reasonable alternative
approach would be to assign importance factors based on the intrinsic variability of these
variables (see section 4.4.2, page 100). Two natural options in this regard are @, =1/%,,

and ¢, =1/V,, where £, and V, are the individual and total variability of the K" target

variable. In this stage, we examine the effect of assigning relative importance of the
variables included in the multipurpose weights. Here we denote by MBDI-A

(¢, =1/%,,) and MBDI-A (¢, =1/V, ) as the MBDI1-A methods with relative weight

¢, =1/%,, and ¢, =1/V, respectively.
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Table 4.6 provides summary details of the performance of the MBD1-A method when the
multipurpose weights (based on TCC, TCR, FCI, Cattle and Sheep) are computed using
these alternative importance weighting factors. These results show that the average
relative bias increases for all variables except Sheep, the average relative root mean
squared error reduces and the average coverage rate remains same for all variables by
incorporating the variability of the target variables in the multipurpose weights. Overall
we see that, for the population considered in the simulation study, there is little to choose

between these different importance weighting factors.

Table 4.6 Average (ARB) values of relative bias (%), average (ARRMSE) values of

relative root mean squared error (%), and average (ACR) coverage rate for multipurpose
weighting (MBD1-A) under ¢, =1/K, ¢, :l/af’k and ¢, =1/V, for K = 5 target

variables (TCC, TCR, FCI, Cattle, Sheep) under model 1.

Criterion & TCC TCR FCI Cattle Sheep
ARB K -1.54 -1.30 -0.50 -1.78 0.69
2
O, -1.69 -1.48 -0.82 2.03 0.52
Vi -1.64 -1.42 -0.70 -1.95 0.57
ARMSE K 20.86 21.77 59.72 33.29 30.24
oL, 20.83 21.71 58.00 33.19 29.99
v, 20.85 21.75 58.15 33.25 30.11
ACR K 0.92 0.92 0.94 0.95 0.96
2
O-e k
* 0.92 0.92 0.94 0.95 0.96
V.
¢ 0.92 0.92 0.94 0.95 0.96
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Figure 4.6 Regional performances of EBLUP (dashed line), MBDO (thin line), MBDI-A

under K = 5 (thick line) and MBD1-A under K = 8§ (dotted line) for Crops under model L.
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Figure 4.7 Regional performances of EBLUP (dashed line), MBDO (thin line), MBDI1-A

under K = 5 (thick line) and MBD1-A under K = 8 (dotted line) for Equity under model L.
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Figure 4.8 Regional performances of EBLUP (dashed line), MBDO (thin line), MBD1-A
under K = 5 (thick line) and MBD1-A under K = 8 (dotted line) for Debt under model I.
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4.5 Conclusions

In this chapter we develop two loss functions that can be used to compute optimal
multipurpose weights suitable for use in SAE using MBD estimators. The first (4.8)
ignores the correlations between the survey variables, while the second (4.12) takes these
into account. For the population considered in our simulation studies the performance of
the corresponding multipurpose weighting based MBD1-A and MBD1-B estimators are
almost identical, i.e. there are no real gains from taking account of the correlations
between the survey variables when constructing the multipurpose weights. We also
investigated an alternative approach to constructing multipurpose weights for use in
MBD methods of SAE by suitably averaging the variable specific EBLUP weights. Here
again, our empirical results demonstrate that this method is somewhat less efficient than
the loss function based MBD1-A method. We also show that these multipurpose weights
remain efficient across a wide range of variables, even variables that have not been used
in the definition of the multipurpose weights. This can be important in some situations
(e.g. where variables have many zero values) where standard mixed models cannot be
fitted and the usual EBLUP methods do not work. An alternative in such cases is extend

the EBLUP approach to mixtures of linear mixed models.
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CHAPTER 5

SMALL AREA ESTIMATION FOR SKEWED DATA

5.1 Introduction

Commonly used methods for small area estimation (SAE) assume that a linear mixed
model (3.11) can be used to characterize the relationship between the survey variable ¥
and an auxiliary variable X in the small areas of interest. In particular, empirical best
linear unbiased prediction (EBLUP, see Prasad and Rao, 1990) and model-based direct
(MBD, see chapter 3-4 and Chandra and Chambers, 2005) estimation are typically based
on the linear model assumptions. However, when the data are skewed, as is often the case
in business surveys, the relationship between Y and X may not be linear in the original (or
raw) scale, but can be linear in a transformed scale, e.g. the logarithmic scale. In such
cases we would expect estimation based on a linear model for Y to be inefficient, and an
appropriate technique for SAE should then be based on a linear mixed model for a
transformed version of Y. See Hidiroglou and Smith (2005). Choice of an appropriate
transformation function plays an important role in the transformed variable based
estimation methods. Practically, it should be selected by examining the data for possible
model relationship. The use of transformed variables for survey estimation with skewed
data has been investigated by Carroll and Ruppert (1988), Chen and Chen (1996),

Karlberg (2000) and Chambers and Dorfman (2003).
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In this chapter we explore the use of transformed variable based estimation when carrying
out small area estimation for skewed data, focussing on the widely used log-log
transformation. Implementation of the EBLUP approach under transformation to a linear
mixed model is complicated. However, this is not the case with the MBD approach. In
particular, we extend the MBD approach described in chapter 3 to small area estimation
for skewed data using sample weights derived via model calibration (Wu and Sitter,

2001). Our approach assumes a log-log transform linear model with random area effects.

In the next section we summarize the model calibration approach for the estimation of
population level quantities. In section 5.3 we introduce the concept of an ‘expected value’
(or ‘fitted value’) model derived from a transformed linear mixed model. In section 5.4
we derive optimal model-based survey weights based on this ‘expected value’ model and
use them in an MBD estimator for SAE. A simple MSE estimator for weighted SAE is
also described. We also relax the usual normality assumption for the random area effects
in order to examine robustness with respect to this assumption. Finally, section 5.5

presents some concluding remarks.

5.2 Model Calibration Weighting for Population Estimation

The calibrated sample weights described in section 3.2 of chapter 3 implicitly assume that
the survey variable Y and auxiliary variables X are linearly related. If the underlying
model is non-linear, the calibration estimator derived under linearity assumption can be

inefficient. In such cases, Wu and Sitter (2001) proposed the model calibration approach
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which generalizes the calibration procedure under a general model. In this section we

briefly review the model calibration for the estimation of population level quantities.

To start, we fix our notation. Let U denote a population of size N and let ¥, denote the
N-vector of population values of a characteristic ¥ of interest. Suppose that our primary

aim is estimation of the total T, =ZU y; of these population values (or their mean
Yu = N"ZU y;)- Let X, denote the Nx p matrix of population values of p-auxiliary
variables X that are related, in some sense, to the values in Y, . We assume that the

individual sample values of X, are known. The non-sample values of X, may not be

individually known, but are assumed known at some aggregate level. At a minimum, we

know the vector of population totals 7. of the columns of X,. Given this set up, Deville

and Sarndal (1992) define an X, -calibrated linear estimator of T, as YA") = Zjeij Yo

where s denotes the n sample units, and the calibrated weights {wj; j€ s} satisfy
Zja w,x; =T,. Assuming that 5 is a probability sample based on first order inclusion

probabilities 7, , they recommend that the vector of calibrated weights be chosen so as to

minimise an appropriate measure of its distance from the corresponding vector of design

weights d; =7r;', subject to the constraint Z w.x. =T.. Their justification for this
jes ) x

approach is based on an implicit assumption that the population values of ¥ and X are

linearly related, in which case the calibration constraint is equivalent to ensuring that the

estimator f) is an unbiased predictor of 7, under a linear model for the regression of ¥

on X in the population.
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If the underlying population model is non-linear, the calibration estimator ffy can be

model-biased, and hence inefficient. In particular, suppose that the relationship between Y
and X in the population is of form

E(y;Ix;))=h(x;n) and Var(y,|x;) = 012. ;j=L.L,N 6.1
where 71 (typically vector-valued) and Jf are unknown model parameters and the mean
function A(x;;77) is a known function of x; and 7. Let Y, denote the N-vector of

population values of Y and suppose that the population units are mutually uncorrelated.
We can then express (5.1) in matrix form as

E(Y,1X,)=h(X,;n) and Var(Y, | X)) =L =diag(c};j=1,...,N) (5.2)
where it is understood that A(X,;77) is the N-vector with components A(x;;77). The
model (5.2) is quite general and includes linear, non-linear, and generalized linear models

as special cases. In this context, Wu and Sitter (2001) propose the use of sample weights

derived via model calibration, where they define the model-calibrated estimator of the

mc

population mean of ¥ as ¥, =N (Z wiy j) with the vector of weights w* again

Jjes
minimising distance from the vector of design weights, but this time subject to the
constraints

SWIO=Nand YL with(xsn) =) h(ag,) (5.3)

where 77, is a design consistent estimator of 77. Note that unlike standard calibration, the

model calibration constraints (5.3) typically require that we know the individual

population values of X. The calibration is performed with respect to the population total

of the fitted values h(x;;7,)= h ; of h(x;;m). The key idea behind this approach is that
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provided the model (5.2) is a reasonable one, y; is then (at least approximately) a linear
function of its “fitted values’ h(x,;7,) under this model and so we can carry out linear

estimation using the population values of these fitted values as auxiliary information. The
calibration constraints (3.3) consist of p-equations, where p is the number of components
in Xy, whereas constraint (5.3) has only one equation involving the single data reduction

variable h(x;;77). Under this set-up, the model calibration estimator for the population
mean )7U = N"ZU Y is

5.4

NI ey = ET N I3 hin) =3 dhixn)) B

JjES

where
R A — . — _ .
B=(X . dja,0h=1) {X . d,a,(h, =)y, - P} with
- _ -1 ~
y:(zj'esdjqf) (Zje_rdjquj)’ h =(Zjesdjqj) (Zjeydjqjhj) ;
and YA_UHT =N _lzjad ;¥, is the Horvitz-Thompson (HT) estimator for the population

mean )7U , q;’s are known positive weights unrelated to d .

If the constraint Zjaw}"”:N is dropped, with single calibration constraint

Zja w;.”“h(x 5 n,)= Zjeu h(xj. ;77.) , the calibration estimator for population mean )7(, is

)%Umc :)%UHT +N—1{ZjEU h(xj;ﬁﬂ)_zjejdjh(xj;ﬁﬂ)} ég (55)

where

B, = (Zjadjqjﬁfz)_l (Zfexdquﬁfyj) '
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The above discussion represents what might be referred to a design-based interpretation
of model calibration. A corresponding model-based perspective on the model calibration

follows directly. See Chambers (2005). Let 77 denote a ‘model-efficient’ estimator of 7
in (5.2) with associated fitted values h(x;;7). In general, these fitted values will not be

unbiased. However, there will still be a systematic relationship between the actual values
of Y and their corresponding fitted values that we can approximate. Although there is
nothing to stop us looking at more complex approximations, a linear model for the

relationship between the population values y; of ¥ and the fitted values J, =h(x 1)
seems a reasonable starting point. We therefore replace (5.1) by a linear model of the
form

E(y;19,)=a,+a3, and Cov(y,;,y 13,,5,) =0, (5.6)
We refer to (5.6) the ‘fitted value’ or the ‘expected value’ (interchangeably used) linear
model defined by (5.1). Setting &, =0 in (5.6) corresponds to a ratio specification for
this fitted value linear model. Generally, estimation bias implies ¢, # 0, in which case
(5.6) corresponds to a regression specification for this model. Let J, denote the
population ‘design matrix’ defined by (5.6) under either of these specifications. Without
loss of generality, we arrange the vector Y, so that its first n elements correspond to the

sample units, and then partition Y, , J, and Q, =[w,] according to sample and non-

sample units as
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Here a subscript of s denotes components defined by the n sample units while a subscript
of r is used to denote corresponding components defined by the remaining N —»n non-
sample units. In practice the variance components that define Q are unknown and so
need to be estimated from the sample data. We use a ‘hat’ to denote such an estimate

below. Also, we use 1,,, 1, and 1, to denote vectors of 1’s of the appropriate size, and
I,, I, and I, to denote identity matrices of order N, n and N —n respectively. We also

assume that sampling is uninformative, so the sample data follow the population model.

Given this notation, the sample weights that define the Empirical Best Linear Unbiased
Predictor (EBLUP) for population total of ¥ under the general linear ‘fitted value’ model
(5.6) are

e EBLUP _ (vvz?zL‘,EBLUP) =1 T H (‘]l/] 1, _JS/IS) +( _H JT)Q;erlr 5.7)

7 mc me- s

where H, =(J/Q17)" 1’0" See Royall (1976). It is easy to see that the weights (5.7)

mc &y S

are model-calibrated under (5.6) since J/w"™ " =J/1,. That is, if a regression

specification is used for (5.6) then

D W =N and 3 w9 =09
Note that the weights (5.7) are not the same as the weights that define the standard |
EBLUP for the population total of ¥ under a linear model for the regression of ¥, on X,
in the population described in chapter 3. These weights are given by

WwEBLUP _ (WEBLUP) _ ]x +H’(X;] ]U —X;lx)+(15 —HX:,)\}_I ‘7 1 (5.8)

J raw,ss  raw,sr - r
where H=(XV.! X)'X¥V —and V_ denotes an estimate of Var(¥,|X,)=V,_, .

80 oraw,sy 8 oraw, sy raw

Here a subscript ‘raw’ is used to denote the variance matrix related to raw-scale linear
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model as defined in chapter 3. The sample weights (5.8) define the EBLUP for the

population total of Y and calibrated on X, in the sense that they exactly reproduce the

known population totals defined by the columns of X, . Thatis X w™"" =Xx/1, =T..

5.3 Small Area Estimation under Transformation

Direct linear estimators for small areas, i.e. estimators that are defined as weighted sums
of the sample data from the small areas of interest, have a number of practical
advantages, including simplicity of construction and aggregation consistency. In chapter
3, we used the EBLUP weights (5.8) to construct the model-based direct (MBD)
estimators for small areas when a linear model assumption is appropriate for the
population as a whole. Unlike the design-based weights used in more conventional direct
estimators, the weights used in an MBD estimator are based on assuming that a linear
mixed model with random area effects holds in the small areas of interest. In this section
we extend this approach, exploring the use of MBD estimators based on the model-
calibrated EBLUP weights (5.7) for SAE, given that the population data are skewed, but

can be transformed to linearity.

5.3.1 A Log-Scale Linear Mixed Model

Linear mixed models (3.11) are popular in SAE. Here we consider the situation where
such a model is inappropriate for Y in its original scale, but is appropriate for a suitably

transformed version of this variable. In particular where both ¥ and X are scalar and
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strictly positive, with highly skewed population marginal distributions and clear evidence
of non-linearity in their relationship, e.g. as in many business surveys applications, but

where a linear mixed model holds for the regression of log(¥Y) on log(X). That is, we
assume that

I, =log(y,) = B, + B log(x,) +Gu, +e, (5.9)
where y;, and x; are the values of Y and X respectively for population unit
J(j=1..,N,) in small area i(i=1,...,m), G, denotes a covariate of dimension ¢, u,
denotes a random effect for area i also of dimension g and e; is a scalar individual

random effect. Here N, is the population size for area i and m is the total number of areas.

As usual with this type of model, we assume that all random effects are normally

distributed and mutually uncorrelated, with zero expected values, Var(u,)=X(8) and
Var(e,:,.):of. Here X(#) is a known matrix-valued function of an unknown vector-
valued parameter 6. It follows that Cov(l,.l, 1 x;,x,) =G XZ(O)G, +1(j =k)o’ and so
the covariance matrix of the vector /, =(/;) defined by the N, values of [, in area i is
V,=GE(0)G/+0/1, , where G, is the N,xg matrix defined by the covariates G in
areaiand I, is the identity matrix of order N,. The model (5.9) is identical to the model

(3.11) defined in section 3.3 of chapter 3. However, the model (5.9) is defined on
transformed scale and used in slightly different context (e.g. derivation of bias adjustment

due to transformation etc) so to maintain continuity we sometimes repeat some of these

expressions.
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Let log(X,) denote the vector of N, values of log(X) in area i. Put W, =[1, log(X,)],
where 1, denotes a vector of 1s of dimension N,, and denote ¢, = (e,). By aggregating

the area-specific model (5.9) over the m small areas that make up the population, we are
led to the population level linear mixed model on log-scale
I, =W, 6+G,u+te (5.10)

u=(@,....u,) and e=(e,...,e,) . Note that under (5.10), the covariance matrix of [, is

V, =diag(V;1<i<m).

The model (5.10) includes most of the small area models used in the literature (Rao,
2003, page 107). In practice the variance components & and o that define the
covariance matrix V,, are unknown and have to be estimated from the sample data, e.g.

via maximum likelihood (ML), restricted maximum likelihood (REML) or method of

moments (Harville, 1977). Using a ‘hat’ to denote such estimates, we can then estimate

V, by VU =diag (V,.;l <i<m) with V, = V1= G,.Z(é)G,.'+ oAfINi . We can also decompose

l,, W,, G, and VU into sample and non-sample components within each small area. If
we introduce an extra subscript of i to indicate small area (e.g. we denote by s, the set of
n, sample units in area i, r the corresponding N, —n, non-sampled units in the area), the
empirical best linear unbiased estimator (EBLUE) of £ under (5.10) is then

(5.11)

m

Il

B waiw, ) (2 wvi,)

where V,, =G, X(0)G, +671, and V,, =G, X(6)G,. Here I, is the identity matrix of

order n,, the number of sample units in area i. Note that when the variance components
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6 and o are known, the EBLUE (5.11) becomes the BLUE for . Consequently, for

P P m - |l S .
large sample sizes we can write E(f)= f and Var(ﬂ)z(zizlmswmlws) . The g in
(5.11) is different from one used in chapter 3 since here underlying model (5.10) is linear

on transformed scale. Put 45, = (éj) = Wﬁ. Then E(é) =W, and

~ m ’ S -1 ’ P ’
Var(g) = A =la, | =W, (3" WiV W, | W/=W,Var(BW,

g=1 & &% &S
where, as n — oo, a,.jk:W.;Var(,B)Wk —=0@G=1..,m; jk=1,.,N,). We denote by

a; =(a,,...a,,) and v,=(v,.v,.), the vectors of diagonal elements of the

covariance matrices Var(é’.) and Var(l,) respectively.

5.3.2 An Expected Value Model for Small Area Estimation

In order to use the MBD method for SAE we require sample weights that reflect the
population heterogeneity induced by the small area effects. For skewed data that follow a
non-linear mixed model, these weights can be derived via (model-based) model
calibration. Consequently, we first define an appropriate fitted value model for our data
(see section 5.2). From the development in the previous section it is clear that such a
model should be based on fitted values derived from the log-scale linear mixed model
(5.10). In particular, we need the first and second order moments of these fitted values

before we can use (5.7) to define an appropriate set of model-calibrated weights.
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A simple method of defining the fitted values under (5.10) is one where we use the
parameter estimates derived under this model to obtain predicted values on the log scale
and then back-transform to get the predicted values of Y. Unfortunately, this approach is
biased (Chambers and Dorfman, 2003). We therefore now develop the first and second
order moments of an appropriate bias-corrected fitted value model based on (5.10). To
derive the ‘fitted value’ model from transform scale linear mixed model (5.9) it is
important to specify the distribution of random errors. Here we consider both normal and

non-normal distributions for these random errors.
5.3.2.1 Normal Distribution for Random Errors

Assuming that random errors are normally distributed, we note that under (5.9)

E(y,;lx;)= E{exp(l,.j) | x,j} =Pl E(e‘a"'w’”/z) (5.12)

which shows that a simple bias correction based on the marginal lognormal distribution
of Y is inadequate. That is the naive-lognormal predictor is biased. We need a more
sophisticated bias correction procedure. Let 7, = ( B, V)" be an estimate of 7, = (5,v;)
Wiy 2

such that E(7, —7,) =0 for large n. Put z(7,)=¢ . Using a second order Taylor

series approximation we can write
~ ~ I 1 ~ ’ ~
2, =2+ @, -1,z () 5y =) 2P, —m,)
and so

E{z)} = 2+ 5[ EL® @), ~m), -}
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Here

an o o, g

i i

7O (77,-j) = aZ(?]U) = [az(ﬂij’) aZ(ﬂ,-j )] = (W’e“ﬁfﬁ’f"w/z %emfﬂ”w/zj

and
s Wiz WiB+vy [2
9%z(m. W;Wye SWe /
) 2(1;) 2
COD=T57 T 1w
;971 waemjﬂ"'"ijiﬂ Z‘ewifﬂ*"w/z

are the vector and matrix respectively containing the first and second order derivatives of

A

z(n,;) with respect to 77,. Since [ and ¥, are independent (McCulloch and Searle,

2001), we have

ir| E{2® @)@, 1)@, )} | = 1| 22 @ E{G, 1), -1 } ]

r Wity [2 l Wi B+vy /2 A
e 2 e VB o J
iwj’ewifﬂ+vijj/2 iewjﬂ+vﬁi/2 O v(ﬁljj)
2 4

=tr

leﬂ*% , m ’5-1 -1 l -
=e R W (T WIVAW, ) W Var()

ij g= s ' gss' | gs
L] A
=E(y; 1 x;)| a; +ZVar(vUj)

5 P 5 P " "5- - .
where @, =W;Var(f)W, and Var(f) = (Zile 1% 1W..) is the usual estimator of

is sy TS

Var( ,5’ ). Collecting these expressions we can see

if g=1 83 gss'lgs

A Jﬂ"’vl 1 ,,)ﬁ"'vi , m P -1 N ]
E[Z(U'J’)]:ew 2 +0+§ew 2 {W’ ( A ) wj+iVar(vw)J
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v Vi
W‘/ﬂ*i 1

. i 1
_ i ’ v 751 ~
=2 {1+E{Wﬁ( W, Wj+ZVar(vU.j.)}}

» €W,~}ﬁ+‘% - E[Z(nf/):l

Our fitted values are therefore defined by the second order bias corrected estimator of
E(y;1x;) as

5),']' — h(w]sﬁ,]) — ]’(\l;lewﬂﬂww/z (513)

~ 1]. 5o . . . PP .
where £ =1+5{a,,jj+%V(vW)} is the bias correction and Var(v;) is the estimated

asymptotic variance of v,;. Under the ML and REML estimation of the variance
components of (5.10), this estimated asymptotic variance can be obtained from the
inverse of the relevant information matrix. Note that the bias adjustment described in

Karlberg (2000) is a special case of (5.13). Appendix J elaborates the evaluation of

Var(ﬁw) under a random slope specification of model (5.9).

In order to use (5.6) and (5.7) to define the model-calibrated sample weights, we also
need an expression for the second order moments, under a log scale linear mixed model
(5.10), of the population values of Y given these fitted values. A first order approximation
to these moments is defined by the conditional moments of Y given X under (5.10). In

particular, assuming normality of the random effects vectors u, and e, the covariance
between y; and y, in small area i is

W, B+Glu. +e., ' TR
xik) = COV(€ B+ Gyitey , ekaﬂ*ka“;‘“’xk )

Cov(yy, yu | X,

i
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— e(wry"wfk Y8 {E(EG';u" ey oGt vy y— E(eGi'j"i"”f/ )E(eGil“f +ey )}

|
W, Y —(vy tvieg) » . .
e(wl,*'wm)ﬂ[ez i ik (e"uk _1)] lf j *k

2"";}15[@".7/ e —1)] if j=k. (5.14)

e
The expression (5.14) uses a well known result that for a normal random variable ¢,

E(I)+%Vur(r)

E(e')= . See Casella and Berger (1990), page 628.

We therefore define our estimate @, of Cov(y,,y, | ;. 3,) by substituting estimates for

unknown quantities in (5.14) as

o
) e(W;j*Wm)'ﬂ[ef(v’”‘ﬂ"“‘)(e"r:ik -D1 if j#k

ezw,,jfﬁ[eﬁ,»,, (" —1)] if j=k.

ik

(5.15)

Note that we can then write Q, = (@, 1= EA E , where E, = diag{ew’f’é ;1< 5 < N,'} and

A, = [5%] is the N, x N, positive definite matrix with 5,.jk = i) (eﬁ”" -1.

Under the random intercept specification of model (5.9), we have:

Var(u)=0,, Var(e)=0 and V,=[v,]1=0,1,I}, +o.I, with v;=0;+0; ,
vy =0, . This leads to Q, =E, [e(”‘””’”{exp(o‘fl,\,il',\,f +‘731N,»)_1N‘.1;\/,,H E/. A similar

analytical expression under the random slope specification of model (5.9) is presented in

Appendix L
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In order to compute the model-calibrated weights (5.7) under the log-scale linear mixed

model (5.10) we finally need to define the design matrix J,, and the estimated covariance
matrices f)w and Q. Under a ratio specification J,, is just the population vector Y, of

fitted values (5.13), while under a regression specification J, =[1,, YU]. In both cases,

A

s 2 ,vx,.;ISiSm}, where Q. and €, are

f)m =diag {f) ;1<i< m} and er =diag {f)

defined by the sample/non-sample decomposition of fl,., where .(AZ[ is defined below

(5.15).
5.3.2.2  Non-Normal Distribution for Random Errors

The bias corrected predictor (5.13) and the covariance (5.14) are derived assuming
normality of log-scale random effects. However, there is no good reason (beyond
convenience) to assume that with skewed data these random area effects should be
normal. In such cases, random effects with non-normal (non-symmetric) distribution may
describe the data well. One alternative, given a scalar area effect in (5.9), is to assume
that the random effects in (5.9) are drawn from the gamma family of distributions. We
consider gamma family of distribution since most of the skewed distributions (e.g.
exponential, chi-square etc) are special case of this family. Similar to normal distribution
(see section 5.3.2.1) we shall derive first and second moments under gamma distribution

of random effects. Before deriving these moments, we recall some common results to be

used.
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If a random variable ¢ follows a gamma distribution with shape parameter « and rate
parameter b (or scale parameter 1/b), which is denoted by f~ Gamma(a,b) then their
mean, variance and moment generating function are defined as: E(t)=ab™, V(1) = ab‘z‘
and M,(x)=E(e*)=(1—-xb")",b>x respectively. Further, sum of two independent

gamma variables is also a gamma variable. See Casella and Berger (1990).

We first consider two independent gamma distributed random variables as:
u: ~ Gamma(a,b) and e,.* ~ Gamma(c,d) with means E(u:) =ab™' and E(e?)zca’_l
and variances Var(y;)=ab” =X and Var(e ) =cd” = o’ respectively. Then we define
two centred mean gamma distributed random variables u, = u: -E (u,.*) and
e = e, —E(e’) such that
E(,) =Elu; —E@;)] =E@, —ab™)=0 and Var(u,) =Var(y, —ab™") =X,
E(e)=Ele; —E(e;)) =E(e, —cd™)=0 and Var(e,)=Var(e;, —cd™) =0.
That is we defined two random errors: u, ~ Gamma(0,L) and e, ~ Gamma(0, 0':). These
two random errors are independent. There is no loss of generality in taking
E(u;)=0=E(e;) that is in making adjustment for zero mean (McCulloch and Searle,
2001, page 157) in defining the model (5.9). Let us consider model (5.9) assuming that
two random effects », and e follow gamma distribution. In particular, we consider the

random intercept specification of model (5.9). -

From the properties of gamma distribution and using binomial and exponential

expansions (ignoring higher order terms) we then have
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E(y,‘j | XU.) = E (eW,»/"/B-W,'-fE,_‘,‘ ) — eW,J'ﬂ {E{eui —}j E[e%‘gj}

=t BB =t e d0-bTy -y
w5 a la a 1a 14ad°
=e " 1—'—+——T 1+—+——2+_—7 X
b 2'b b 216 2'b
c 1¢? ¢ 1 ¢ 1 ¢?
I | LSRR
d 2'd d 2'd> 21d*
W B ] a ] C W' B ’a‘z Lz
~e ! 1+—— || 14+—— =g eZb eZd
2b7)

Ifa ¢ 1
Wy, ’[_ﬁ_z] wip 5Varty) W, vy, (2
= //5621) d =e //3@2 i = e B+ :Z(nu)

This expression is identical to the (5.13) derived under the normal distribution of the
random effects. Therefore rest of derivation follows from (5.13). This indicates that MBD
estimators based on the normal theory fitted value model defined by (5.13) and (5.14) can

be expected to possess some robustness with respect to the distribution of the random

effects in (5.9).

5.4 Small Area Estimation under Model-Calibration

Given an appropriate design matrix J, defined by the fitted values (5.13) and estimated

A

covariance matrices Q_ and flﬂ, defined by (5.15), we can compute a set of model-

calibrated weights (5.7). These weights depend on the random area effects in the log-

scale linear mixed model (5.9) and are thus suited to SAE. Here we use them to define
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MBD estimators for small area means (see chapter 3). In particular, we consider two
forms of the MBD estimator for a small area mean. The first is the Hajek form of the

MBD estimator, defined as a weighted mean of the sample data from the small area of

/7

interest. Given a set of weights w, =(wj, w),...w, )}, where w,=(w,;jes,) are the
model-calibrated weights for the », units making up the sample s, from small area i, this

estimator is

rre ZZJEA-i WUyU/Zje:,. Wi - (5.16)

An alternative MBD estimator when the population size N, of the small area is known is

the Horvitz-Thompson form

i :N,-_lzjﬂi WYy - (5.17)

In chapter 3 we only considered the Héjek form of the MBD estimator for small areas
using the sample weights (5.8) derived via a linear mixed model (3.11). However, the
sample weights (5.7) are derived via model calibration where estimator is defined as the

HT form (see section 5.2). Therefore, we consider both forms of the MBD estimators.

Both estimators (5.16) and (5.17) depend on how the ‘fitted value’ model (5.6)
underpinning the model calibration weights (5.7) is specified. In particular, we consider
two different specifications for the fitted value model (5.6) that is two types of
specification for J,, the ratio and regression specifications for this model (see below
equation 5.6). This leads to four different MBD estimators set out in Table 5.1. Note that
all four use the same predicted values (5.13) and the same estimated covariance structure

(5.15).

143



Table 5.1 Different MBD estimator configurations

Estimator Estimator type Model specification
TrMBD1 Héjek type Ratio specification
TrMBD2 Horvitz-Thompson type Ratio specification
TrMBD3 Hijek type Regression specification
TrMBD4 Horvitz-Thompson type Regression specification

Estimation of mean squared error of (5.16) and (5.17) follows the approach described in
section 3.3.2 of chapter 3, which tréats these estimators as simple weighted estimators of
a domain mean. Under this approach the sample weights derived from (5.7) are
considered as fixed and the prediction variance of (5.16) and (5.17) is estimated using a
standard heteroskedasticity robust variance estimator that only assumes the first order
moments defined by (5.6). See Royall and Cumberland (1978). A “plug-in” estimate of
the squared bias of (5.16) and (5.17) under (5.6) is added to this estimated prediction
variance to finally define a simple estimate of the mean squared error of these estimators.
Under this approach the sample weights underlying (5.16) and (5.17) “borrow strength”
via the log-scale linear mixed model (5.9), but this model is not used in inference. In
particular, since the mean squared error estimators for small area means only assume the
first order moments specified by (5.6), we ensure consistency with the way mean squared

errors are estimated at population level. See Chandra and Chambers (2005). In particular,
the mean squared error of the weighted estimator )%l N ()%,. Haiek or }? #T'y for the population

mean of Yin small area i, Y, is

!

MSE(f‘“):var(f‘”—f)+32(f‘V) (5.18)
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where Var(f“" - )7,.) = N,.'2 {Z}a afVar(yj) + Zja_‘ Var(yj)] is the prediction variance of

weighted estimators (5.16) and (5.17) with

- (Niwj_zga, wg)/(zgesiwg) for Hdjek form
! w, -1 for HT form

and B(f‘”):E(l_zm)—lZ is the bias of (5.16) and (5.17). Here h and h, denotes the

population mean and weighted average of the fitted values fzy =h(Wij;ﬁU) in area i

respectively.

A robust estimator of the mean squared error of (5.16) and (5.17) is

mse(f»k/):v(fmx/)_f_éfl(ﬁw) (519)

c(y; —h,)", with ¢; = N7 {al +(N,—n)(m, =)'}, and

EJ]

where v(Y‘“) Z

ij 2

B(Y”) h —h w1thh N; Z and

. (Z},ﬂ w,}jﬁ,,.)/(zjaiw,j) for Hdjek form
T L i) N, for HT form

Besides these four MBD estimators (TrMBD1-TrMBD4, Table 5.1) defined by (5.16)
and (5.17), we also define an Empirical Best Predictor (EBP) for the mean of Y for small

area i (denoted by TrEBP) under the ‘fitted value’ model define by (5.13) as
EEBP = Ni—l {Zjexi y’} + Zjer; 5)17]
— ! p-1 WiBriy 2
T {Zm Vi +Zjer;~ (kff' € )} (5.20)
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where k,.j; jes, 1s define below equation (5.13). Unlike MBD estimators, the MSE

estimation of the EBP (5.20) is not straightforward. We do not pursue the MSE estimation

of (5.20). See Appendix L.

5.5 Conclusions

In this chapter we developed the SAE techniques for skewed data when standard methods
for the SAE based on linearity assumption are inappropriate. In particular, we derived the
SAE methods for the survey variables which are linear on log-log scale. We defined the
MBD estimators for small area means based on normality assumption of random errors.
However, for skewed data random effects are not always normal and the estimation
procedure based on non-normal random effects seem suitable. We also consider the
gamma distribution for random effects. Our results show method is robust with respect to

distribution of random effects.

In this chapter we proposed four different types of MBD estimators for small means for
skewed data and their mean squared error estimate. However, it remains to evaluate the
empirical performance of these estimators. In chapter 6 we shall examine the
performance of these methods using a Monte Carlo simulation study and application to
real population data. We also study an empirical best predictor (EPB) for small means
under the ‘fitted value’ model. Some empirical results related the EBP (5.20) are

presented in Appendix L.
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CHAPTER 6

MONTE CARLO EVALUATIONS

6.1 Introduction

In chapter 5 we proposed the small area estimation (SAE) techniques for skewed data.
However, it remains to assess the performance these methods of SAE. In this chapter we
evaluate these techniques of SAE by designing a series of Monte Carlo simulation
experiments. The use of simulation techniques in statistics has its origins in the beginning
of the 20" century (Morgan, 1984). Lewis and Orav (1989) define simulation as a
controlled statistical procedure (experiment) based on repeated sampling carried out on a
computer. We present in this chapter the characteristics and results of simulation studies,
which has the main objective of evaluating the comparative performance of different

methods of SAE.

In the next section we introduce the different estimators investigated in the simulation
studies. In section 6.3 and 6.4 we provide illustrative information on how these
simulation studies is implemented, associated population and criterion used to assess the
performance of different estimators. Section 6.5 is devoted to reporting the results and
their explanations. Finally, section 6.6 presents summary of the major findings from the

empirical studies and a discussion of some outstanding issues.
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6.2 Description of Simulation Studies

In this section we illustrate different methods of SAE considered and the population data

used in the empirical studies.

6.2.1 Estimators Investigated in Simulation Studies

In our empirical evaluations, we investigate the comparative performance of the seven

different estimators for SAE. These are

I. The proposed model-based direct estimators for skewed data based on the model-
calibrated EBLUP weights for skewed data calculated via (5.7) under a fitted value
model derived from the log-scale linear mixed model (5.9) (section 5.4, Table 5.1)

1. Haéjek type estimator under ratio specification: TrMBDI1
2. Horvitz-Thompson (HT) type estimator under ratio specification: TrMBD2
3. Hajek type estimator under regression specification: TrMBD?3

4. HT type estimator under regression specification: TrMBD4

II. The MBD estimators based on the sample weights (5.8) derived under ‘standard’ raw-
scale linear mixed model (3.11) (section 3.3.2)
5. Hajek type estimator: MBDI1

6. HT type estimator: MBD2
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II1. The EBLUP derived under the same raw-scale linear mixed model as that used to
calculate the weight (5.8) (Prasad and Rao, 1990)

7. EBLUP

We note that first six estimators are the model-based direct (MBD) estimator defined as

weighted linear estimator of the form either given by )?.w = (Zm w.y,) / (Zja[ w;) for

!

Hajek type estimator, or v = (Zm w;y;) /N,. for HT type estimator. In the first four

estimators, the sample weights used (corresponding to small areas) to define the
estimators for small areas are derived under the population version of ‘expected value’
model via ‘model calibration’ approach. In the next two estimators, the sample weights
are derived from a population version of raw-scale linear mixed model, referred as the
sample weights via ‘standard calibration’ approach. The seventh estimator is the standard
EBLUP, an indirect estimator under the raw-scale linear mixed model. Besides these
seven estimators we also examine the performance of an empirical best predictor (EBP)
for small areas (5.20) under a log scale linear mixed model (5.9), denoted by TrEBP. See
chapter 5. We do not pursue this estimator in details. Appendix L presents some of the

empirical results related to the TTEBP method of SAE.

The mean squared errors for the MBD estimators (that is for first six estimators) are
estimated using the method described in chapter 3 and 5, while the mean squared error of

the EBLUP is estimated using the method described in Prasad and Rao (1990), discussed

in chapter 3.
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6.2.2 Types of Simulation Studies

We consider two types of simulation studies. The first type of study uses the model-based
simulation to generate artificial population and sample data. These data are then used to
compare the performances of the different estimators. We carry out three sets of model-
based simulations, labelled by sets A, B and C respectively. In the first set of simulations
(denoted by Set-A), we investigate the performance of these estimators given population
data generated using the log-scale linear mixed model (5.9). In second set of simulations
(denote by Set-B), we examine the robustness of these estimators to misspecification of
this model. In simulation Set A and B we assume that the random effects have normal
distribution. In the third set of the simulation (denoted by Set-C) we study the
performance of these estimators given population data generated under the same log-scale
linear mixed model (5.9) identical to set-A except that random effects have non-normal
distribution. We consider a gamma distribution for these random effects. The second type
of simulation study is the design-based. Here we evaluate the empirical performance of
these estimators in the context of repeated sampling from a real population using realistic

sampling methods.

6.3 The Model Based Simulation Study

In this section we describe the model-based simulations to contrast the performance of

different estimators used for SAE with skewed population data.
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6.3.1 Simulated Data

In our model-based simulations we set a population size of N =15,000 with m=30

small areas and randomly generated the small area population sizes N,, i=1,...,30 from
a chi-square distribution with 750 degree of freedom so that ZiN,. =N. We used an

overall sample size of n=600 with small area sample sizes set so that they were

proportional to the corresponding small area population sizes. That is n, =N,(n/N) so
that Z’_ni =n. The average small area population and sample sizes are 500 and 20

respectively. These area-specific sample sizes were kept fixed in all our simulations (Set-

A, B and C).

6.3.1.1 Simulation Set-A

In Set A of our model-based simulations the population values y, are generated using the
multiplicative model y, :5.0x,fu,.e,j, with random samples then taken from each small

area. The generated population is skewed on raw scale and linear on log-scale. We used

six different values of parameter 4 (0.5, 0.8, 1.0, 1.3, 1.5 and 2.0). These are denoted by

ParAl to ParA6. Here the values of covariate x, are independently drawn from the log-
normal distribution LN(6, o, ), while the individual effects e; and the area effects u; are
independently drawn from the LN(0, o,) and LN(0, o, ) distributions respectively. The

values of o, and o, are chosen so that the intra-area correlation (Rho =o’ / (o +0'22))
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in the population varied between 0.20 and 0.25. Table 6.1.a sets out the six different sets
of parameter values that are used in the simulation Set A. These ensured that the

simulated populations contained a wide range of variation.

Using the sample data in each case, parameter values are estimated using the /me function
in R (Bates and Pinheiro, 1998), and estimates for the small area means then calculated,
along with appropriate nominal 95% confidence intervals. The process of generating
population and sample data, estimation of parameters and calculation of small area
estimates are independently replicated 1000 times. The results from this part of the

simulation study are set out in Table 6.2.

Table 6.1.a Parameters of the simulation set-A.

Parameter B o, o, o,
ParAl 0.5 0.30 0.50 3.00
ParA2 0.8 0.35 0.60 2.50
ParA3 1.0 0.40 0.70 2.25
ParA4 1.3 0.45 0.80 1.75
ParAS 1.5 0.50 0.90 1.50
ParA6 2.0 0.60 1.00 1.20

6.3.1.2 Simulation Set-B

In Set B of the model-based simulations, population data are generated using the model

y; =5.0x; [exp(logz(xif))]yu,,e,j . The generated population is non-linear on raw scale and
quadratic on log-scale. Here the individual effects ¢, and the area effects wu, are

independently drawn from the LN (0, 1.0) and LN (0, 0.5) distributions respectively,
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while the covariate values x; are drawn from a LN (3, 0.2) distribution. Five different

values for the parameter y (-1.0, -0.5, 0.0,.0.5 and 1.0) are investigated, thus generating
population data with different degrees of curvature. These parameter sets are denoted by
ParB1-ParB5. Table 6.1.b shows different parameters of this simulated population. All
other aspects of these simulations, including the estimators considered, are the same as in

Set A. Table 6.3 presents results from this component of the simulation study.

Table 6.1.b Parameters of the simulation set-B.

Set 4 o, o, o,
ParB1 -1.0 0.5 1.0 0.2
ParB2 -0.5 0.5 1.0 0.2
ParB3 0.0 0.5 1.0 0.2
ParB4 0.5 0.5 1.0 0.2
ParB5 1.0 0.5 1.0 0.2

6.3.1.3 Simulation Set-C

In Set C of the model based simulations, the model y, :exp{a’+ﬁlog xU+ui+eU}is

used to generate the population data. This population data is skewed on raw scale and
linear on log-scale. Here random effects are generated from gamma distribution. We

fixed @ =5.0 and chosen six different values of the parameter £ (0.5, 0.8, 1.0, 1.3, 1.5
and 2.0) which corresponds to six different parameter sets denoted by ParC1 to ParCé,
shown in Table 6.1.c. We first generate independent random errors e;. from a gamma
distribution with shape parameter a and rate parameter b (scale parameter 1/b), that is

e; ~ Gamma(a,b) with mean ab 'and variance ab™ and then get the independent
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random effects e; = (e;. —E(e;)) = (e;. —ab") with mean zero and variance 0'62 =ab™.

Similarly we first generated random errors ui* ~ Gamma(c,d) then get the random area

effects u, =(u; —cd™") with mean zero and variance o =cd™. The covariate values x,

are generated from LN (6,0, ) distribution. The values of parameter ofzab'2 and

o’ =cd™ are fixed up so that intra-area correlation varies between 0.20-0.25. The rest of

the process is identical to the Set-A. The results from this set of the simulation study are

presented in Table 6.4.

Table 6.1.c Parameters of the simulation set-C.

r=1 i)

r=1 70

Parameter a Ji) o, o, o,
ParCl1 5.0 0.5 0.30 0.50 3.00
ParC2 5.0 0.8 0.35 0.60 2.50
ParC3 5.0 1.0 0.40 0.70 2.25
ParC4 5.0 1.3 0.45 0.80 1.75
ParC5s 5.0 1.5 0.50 0.90 1.50
ParC6 5.0 2.0 0.60 1.00 1.20
6.3.2 Performance Indicators
We use following measures to assess the performance of different estimators for SAE:
e The percentage relative bias, defined as
R -1 R~
RET)=(R"Y" T, {(R"Z_T )-(r'Y )}xloo 6.1)



where TA, is the estimator (e.g. for the mean or total ) for the i (i =1,..,m) small area -

for parameter 7, and TAM is the specific outcome of 7, obtained in the simulation

r(r=1,....,R=1000).

The average percentage relative bias (averaged over m small areas), defined as
ARB=m"Y"" RB(T) | (6.2)

The percentage relative root mean squared error, defined as

RRMSE(T) =(R"" T,-m)_] {\/R“ZL (T ~Ti) }XIOO 6.3)

The average percentage relative root mean squared error (averaged over m small

areas), defined as

m

ARRMSE =m™ " RRMSE(T) (6.4)

i=1

The coverage rate, defined as

CR(T) = R-lzf:11{T,. e (Tj(,) +2,/mse(T, ) )} . (6.5)

Here mse(TA,.(r)) is the estimate of the MSE of TA,.(,,) .
The average coverage rate (averaged over m small areas), defined as
ACR=m">" CR(T) (6.6)

The 2-sigma confidence interval width, defined as

wa’(YA;) =R i]{44/mse(f;(r))} 6.7

The average 2-sigma confidence interval width (averaged over m areas), defined as

Awd =m™ " wd(T)) (6.8)
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This section is similar to section 3.4.2 of chapter 3 where we have already described these
performance criterions. However, section 3.4.2 defines various performance indicators in
context of design-based simulations where population is fixed. In contrast, this section
defines these criterions for the model-based simulations where population is not fixed and
changes over the simulations (i.e. population is random over the simulation and drawn
under the model). Further, the equations defining the averages over small areas are same

as in section 3.4.2 but these are repeated just to bring continuity.

6.4 The Design Based Simulation Study

In this section we describe the design-based simulations to test the different methods of

SAE using real data. That is an application of the proposed SAE methods to real

population data.

6.4.1 Simulated Data

In design-based simulations, our basic data come from the same sample of 1652
Australian broadacre farms from the Australian Agricultural and Grazing Industries
Survey (AAGIS) data that were used for the empirical evaluations reported in chapter 3
and 4 and also used in simulation study reported in Chambers and Chandra (2006) and
Chandra and Chambers (2005). In particular, we use the same target population of 81982

farms (obtained by sampling with replacement from the original sample of 1652 farms
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with probabilities proportional to their sample weights). The same 1000 independent
stratified random samples as in chapter 3 were then drawn from this (fixed) population,
with total sample size in each draw equal to the original sample size (1652) and with the
small areas of interest defined by the 29 Australian agricultural regions represented in this
population. Sample sizes within these regions were fixed to be the same as in the original
sample (varied from a low of 6 to a high of 117). Various characteristics of this simulated
population are described in Table 3.1 in chapter 3. The aim is to estimate average annual
farm costs (TCC, measured in A$) in each region using farm size (hectares) as the
auxiliary variable. The same mixed model specification as in chapter 3 and Chandra and
Chambers (2005) is used. This includes an interaction term (zone by size) in the fixed
effects and a random slope specification for the area effect. In its linear form the model
does not fit the AAGIS sample data terribly well. This fit is improved (albeit marginally)

when a log-scale linear specification is used. Our results are summarized in Table 6.5.

6.4.2 Performance Indicators

To evaluate the comparative performance of different estimators in design based simulation
studies we use the criteria of percentage relative bias, percentage relative root mean
squared error and coverage rate defined in section 3.4.2 in chapter 3 for design based

simulations.

157



6.5 Results of the Simulation Studies

6.5.1 Model Based Simulations

Table 6.2 sets out the average relative biases (%), average relative root mean squared errors
(%), average coverage rates and average width of 2-sigma confidence intervals generated

by different estimators for the Set-A.

The most striking feature of Table 6.2 is the extremely large values of the average
relative bias of the Hdjek-type estimators (TrMBD1 and TrMBD3) under model-
calibrated weighting. In contrast, the HT-type MBD estimators based on model-calibrated
weights (TrMBD2 and TrMBD4) are almost identical in their performance, which
improves markedly on that of the Héjek type estimators. An investigation of the reason
for this anomaly revealed that summing the model-calibrated EBLUP weights (5.7)
within small areas produced extremely variable estimates of the small area population
sizes, implying that these weights cannot be considered as ‘multipurpose’ — they function
well when used with variables that are reasonably correlated with the variable that defines
the fitted value model, but can fail with other, less well correlated, variables (e.g. the
indicator variable for small area inclusion). We further note that this problem does not
arise with the ‘standard’ EBLUP weights (5.8), as the Hdjek type (MBDI1) and HT type
(MBD2) MBD estimators derived under a raw-scale linear mixed model are very close in
their performances across all six of the scenarios explored in Table 6.2. From now on we

therefore focus our discussion on the three estimators, TrMBD2, MBD1 and EBLUP.
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Table 6.2 shows that the average relative biases and the average relative RMSEs for
TrMBD2 are consistently lower than those generated by MBDI1 and EBLUP.
Furthermore, average coverage rates and interval widths for TrMBD?2 are better than
those generated by MBD1 and EBLUP. In comparison, for same order of RB, the
RRMSE of EBLUP is smaller than that of MBD1, and, although both estimators generate
very similar coverage rates, confidence intervals generated via EBLUP tend to have
smaller average widths than those generated via MBD1. The plots in Figure 6.1 and 6.2
display the region-specific performance measures generated by these three estimators
(TrMBD2, MBD1 and EBLUP) for the Set A simulations. These show that the RB and
the RRMSE values generated by TrMBD2 are smaller than corresponding values for
MBD1 and EBLUP in all regions (Figure 6.1). Further, the RB and the RRMSE of
MBD1 and EBLUP increase as the non-linearity in the data increases (ParAl to ParA6).
We also see that TTMBD?2 generates better coverage rates across all regions compared

with the coverage rates generated by EBLUP and MBD1(Figure 6.2).

Overall, these results show that when the model for the underlying population is non-
linear there can be significant gains from the use of HT-type MBD estimators for small
area means (TrMBD?2) based on the model-calibrated weights (5.7) compared with
standard linear mixed model-based estimators like MBD1 and EBLUP. They also show

that EBLUP performs relatively better than MBD1 in these situations.
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Table 6.2 Average (ARB) values of relative bias (%), average (ARRMSE) values of
relative root mean squared error (%), average (ACR) coverage rate and average (AW) 2-

sigma confidence interval width for simulation set-A.

Criterion Estimator ParAl ParA2 ParA3 ParA4 ParA5S ParA6
ARB (%) TrMBD1 -86.02 -96.54 -98.43 -08.58 -98.45 -99.06
TtMBD2 -0.01 -0.05 0.27 0.09 -0.43 0.76
TtMBD3 -75.2 -95.97 -97.97 -08.55 -98.12 -98.66
TtMBD4 0.02  -0.07 0.28 0.11 -0.39 0.75
MBD1 10.98 4.11 -0.29 -6.28 -7.81 -9.59
MBD?2 12.63 547 0.48 -5.91 -7.58 -9.5
EBLUP 12.65 5.44 0.49 -5.85 -7.68 -9.32
ARRMSE (%) TtMBD1 092 1.13 1.2 1.29 1.43 1.56
TT™MBD2 0.15 0.29 0.39 0.52 0.7 0.88
TrMBD3 798 1.25 1.22 1.3 1.44 1.59
TrMBD4 0.15 0.29 0.39 0.52 0.7 0.88
MBD] 1.03 147 1.79 1.89 1.98 2.78
MBD?2 1.16 1.6 1.83 191 1.99 2.79
EBLUP 076  0.69 0.61 0.75 0.98 1.29
ACR TrMBD1 0.99 0.98 0.96 0.95 0.94 0.92

TrMBD2 094 0091 0.89 0.89 0.89 0.89
TrMBD3  0.99  0.98 0.96 0.95 0.94 0.92
TtMBD4 0.94  0.91 0.89 0.89 0.89 0.89

MBDI 0.87 0.85 085 0.87 0.88 0.87

MBD?2 0.87 085 0.85 0.87 0.88 0.87

EBLUP 085 0.85  0.85 0.87 0.87 0.87
AW TrMBD1 1265 22389 140563 27x10* 35x10°  44x10°

TtMBD2 208 4326 33228  7.0x10* 11x10° 15x10°
TrMBD3 1753 22487 141001 27x10* 35x10°  43x10°
TrtMBD4 220 4426 33722 8.0x10* 11x10°  16x10°
MBD1 1007 19318 139346 28x10*  38x10°  56x10°
MBD2 1033 19677 140626 28x10*  38x10°  56x10°
EBLUP 380 7253 55498  13x10* 20x10° 31x10°

160



Figure 6.1 Region-specific percentage relative biases and percentage relative RMSEs for

simulation set-A.
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Figure 6.1 (Continued) Region-specific percentage relative biases and percentage

relative RMSEs for simulation set-A.
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Figure 6.2 Region-specific coverage rates and confidence interval widths for simulation

set-A.

e TYMBD2_CR ---A---MBDl _CR ——EBLUP_CR
O T MED2_Width ---A--- MBDl_Width —<—EBLUP_Width
1.00 2000
0.95 1750
0.50 E4
1500 f
0.85 2
4 0.80 1250 EX
b a. a & A B
30.75 A B g Ay e TR 'A‘~A..¢-'A'"A,_A,.-" ““.‘A . “a-.x-a | 1000 g
B -
s i
070 750
0.65 E
I s00
0.60 —o— ——— Ot
055 OO e S e e e e e e st et e et e e et e e et e st et e e e D) 250
0.50 4
4 3 6 9 12 15 18 21 2% 27 30
Region Number
0.95 40000
Para-2
0.9 ‘-‘W—\) 25000
0.85 i - s <
=
30000
0.80 ?
25000
: |
0.75
a
AL LA .8, [ T N 20000 g
§°-70 pen ST 8 aeacaeal T aedT 8 Sat Tw gy ?
15000
0.65 g
00 | 10000 &
0.55 5000
0.50 - 0
4 3 6 [ 12 15 18 21 2% 27 30
Region Namber
0.95 290000
0.0 L 260000
0.85 1 | 230000 F
g
0.80 200000 %
n
4 b
2 0.75 a | 170000 3
g A. .a A S g
. i a8, Bl Cd-. S~ S RN 5
30700 &% e a Paa « A"AA.n-'A Boay wean e, [140000 g
0.65 L 110000 g
0.60 80000
055 50000
0.50 +— r 20000
0 3 6 0 12 15 18 21 % 27 30

Reglon Namber

163



Figure 6.2 (Continued) Region-specific coverage rates and confidence interval widths

for simulation set-A.
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The MBD (MBD1 and MBD?2) estimators and the EBLUP are based on raw-scale linear
mixed model, while the MBD estimators (TrMBDI1-TrMBD4) derived using model-
calibrated EBLUP weights for skewed (5.7) is based on log-scale linear mixed model.
These results show under linearity on log-scale, the proposed method for skewed data
leads to efficient sets of small area estimate. In Set B of the model-based simulations we
investigate the robustness of model-calibrated MBD estimation (TrMBD1-TrMBD4) to
misspecification of the non-linear model. The results from Set-B correspond to
population data that are non-linear both on the raw and log transform scale. Table 6.3
shows average relative biases (%), average relative root mean squared errors (%), average

coverage rate and average 2-sigma confidence interval width for simulation Set-B.

The results in Table 6.3 show that in this case the biases generated by TrMBD?2 increase
as the actual non-linear model deviates more from the assumed non-linear model ( y =0.0
in the Table). However, these biases are offset by small variability, so in terms of average
RRMSE TrMBD?2 still performs as well or better than EBLUP and continues to dominate
MBDI. The biases generated by MBD1 and EBLUP are of the same order, while the
average RRMSE of EBLUP dominates that of MBDI. Average coverage rates for
EBLUP are marginally better than those of MBD1 and TrMBD?2, but the average widths
of the confidence intervals underpinning these rates tended to be smallest for TrMBD?2,

followed by EBLUP and then MBD1.

Figure 6.3 and 6.4 summarize the region-specific performance measures generated by

three methods (TrMBD2, MBDI1 and EBLUP) for Set-B. Figure 6.3 shows that relative
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biases of TrMBD?2 are larger than MBD1 and EBLUP for parameter set ParB1 and ParB5

(i.e. ¥=-1 and +1 respectively). However, it is nearly same for all methods when values
of ¥ (0.5, i.e. near to zero) are small. The relative RMSEs of TrMBD?2 are lower than

both MBD1 and EBLUP in most of the areas for all parameter sets except ParB2 and
ParB3, where EBLUP is marginally better. Figure 6.4 demonstrates that although
coverage rates of TrMBD?2 are marginally lower for ParB2-ParB5, widths of the
confidence intervals are consistently smaller for all parameter choices (ParB1- ParB5).
Our model-based simulation results for Set B indicate that although MBD-based SAE
with model-calibrated weights is susceptible to model misspecification bias, the overall
performance of this approach appears relatively unaffected by slight deviations from the

assumed non-linear model.

As mentioned earlier the model-based simulation Set-C is similar to Set-A except the
distribution of the random effects. In Set-A of the simulations, the random effects are
generated from normal distribution while in Set-C these are generated from the gamma
distribution. Table 6.4 reports the average relative biases (%), average relative root mean
squared errors (%), average coverage rate and average interval width generated by different
SAE methods for Set-C. The results generated by different methods of SAE in Set-C are
identical to the results in the Set-A (Table 6.2 and 6.4). This indicates that the proposed
method of SAE is robust with respect to distribution of these random effects. The region-
specific performance measure generated by these methods (TTMBD2, MBD1 and EBLUP)

for Set-C is presented in Appendix K (Figure K.1 and K.2).
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Table 6.3 Average (ARB) values of relative bias (%), average (ARRMSE) values of

relative root mean squared error (%), average (ACR) coverage rate and average (AW) 2-

sigma confidence interval width for simulation set-B.

Criterion Estimator ParB1 ParB2 ParB3 ParB4 ParB5S
ARB (%) TrMBDI -57.67 134 3.6 -44.6 -83.46
TrMBD2 3.46 0.37 0.14 -0.9 7.54
TrMBD3 126.41 1.45 0.26 -98.36 724
TrMBD4 492 0.66 0.15 -1.54 -8.74

MBDI -0.21 0.04 0.12 0.16 -0.85

MBD2 0.21 0.04 0.12 0.17 -0.84

EBLUP 0.19 0.04 0.13 0.17 -0.77
ARRMSE (%) TtMBD1 0.69 0.34 0.32 0.56 0.99
TrMBD2 0.35 0.33 0.33 0.34 0.39
TrMBD3 71.16 0.39 0.34 49 47 7.06
TrMBD4 0.39 0.35 0.34 0.37 0.42

MBDI1 0.56 0.36 0.34 0.53 1.2

MBD2 0.56 0.36 0.34 0.53 1.2

EBLUP 0.38 0.3 0.29 0.36 0.56

ACR TrMBD1 0.96 0.91 0.91 0.93 0.92
TrMBD2 0.93 0.92 0.92 0.91 0.86
TrMBD3 0.95 0.92 0.92 0.92 0.92
TrMBD4 0.94 0.92 0.92 0.91 0.86

MBDI 0.91 0.92 0.92 0.92 0.9

MBD2 0.91 0.92 0.92 0.92 0.9

EBLUP 0.93 0.94 0.94 0.93 0.92

AW TrMBDI1 0.09 2.6 206 5%10° 14x10°
TrMBD2 0.04 2.4 207 2x10* 5%x10°
TrMBD3 0.4 2.7 214 20x10* 19%10°
TrMBD4 0.04 2.5 211 3x10* 5%10°

MBDI1 0.06 2.7 214 4x10* 13x10°

MBD?2 0.06 2.7 214 4x10* 13x10°

EBLUP 0.05 2.6 214 3x10* 10x10°
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Figure 6.3 Region-specific percentage relative biases and percentage relative RMSEs for
simulation set-B.
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Figure 6.3 (Continued) Region-specific percentage relative biases and percentage

relative RMSEs for simulation set-B.
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Figure 6.4 Region-specific coverage rates and confidence interval widths for simulation

set-B.
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Figure 6.4 (Continued) Region-specific coverage rates and confidence interval widths

for simulation set-B.
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Table 6.4 Average (ARB) values of relative bias (%), average (ARRMSE) values of
relative root mean squared error (%), average (ACR) coverage rate and average (AW) 2-

sigma confidence interval width for simulation set-C.

Criterion Estimator ParC1 ParC2  ParC3  ParC4 ParC5 ParC6
ARB (%) TrMBD1 -85.96 -96.52 9846 -98.56 -98.46 -99.08
TrMBD2 -0.08 -0.16 0.11 0.29 0.34 -0.31
TrMBD3 -86.89 -95.79  -98.72 -98.28  -100.10 -98.92
TrMBD4 0.02 -0.20 0.14 0.29 0.40 -0.24
MBDI 1130 5.27 -1.90 -3.65 -6.67 -7.36
MBD2 13.55 6.38 -1.11 -3.38 -6.42 -7.24
EBLUP 13.51 6.34 -0.96 -3.39 -6.64 -7.18

ARRMSE (%) TrMBDI1 096 1.18 132 1.36 1.59 1.78
TrtMBD2 042 0.39 0.55 0.65 0.91 1.16
TrtMBD3  3.09 1.52 1.49 1.45 2.08 1.79
TrMBD4 0.44 0.40 0.56 0.65 0.92 1.17
MBDI 1.48 1.68 1.90 2.70 2.61 4.03
MBD?2 175 1.76 1.95 2.69 2.64 4.05
EBLUP 1.06 0.70 0.82 1.08 1.21 1.80

ACR TrMBD1 097 0.96 0.94 0.93 0.91 0.90
TrtMBD2  0.85 0.89 0.88 0.87 0.88 0.87
TrMBD3 097 0.96 0.94 0.93 0.91 0.90
TrMBD4 0.85 0.90 0.88 0.87 0.88 0.87
MBDI 0.85 (.84 0.84 0.86 0.87 0.87
MBD?2 0.84 0.84 0.84 0.86 0.87 0.87
EBLUP 0.88 0.87 0.87 0.88 0.88 0.87

AW TrMBD1 1881 30x10° 21x10* 78x10° 53x10°  6.4x10’
TrMBD2 493  7x10°  6x10*  26x10° 20x10° 27x10’
TrMBD3 2180 34x10° 21x10* 78x10° 54x10° 64x10’
TrMBD4 517  8x10°  6x10°  26x10° 20 x10° 28x10’
MBDI 1797 32x10°  22x10* 97x10°  68x10° 98x10’
MBD?2 1860 32x10°  23x10* 97x10°  68x10° 98x10’
EBLUP 784 14x10° 10x10* 50x10° 38x10° 59x10’
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6.5.2 Design Based Simulations

In section 6.5.1 we noticed that the estimator of choice for skewed data is TrMBD2.
Therefore in the design-based simulations using real data from AAGIS survey we compare
the performance of TrMBD2 with MBD1 and EBLUP. In previous section under model-
based simulations we used a random intercept specification of model (5.9). In the design-
based simulations we consider the random intercept and random slope specification of
model (5.9). That is the model I and II respectively described in chapter 3. Both model I
and II describes the AAGIS data, however model II (random slope model) fit is relatively
better (see chapter 3). We notice that linear model fit is not very well for this data, althongh
log-linear is slightly better, not very good (see Figure 3.2). It is interesting to see how log-
log transformation based method work with this data. We used ZoneSize*FarmSize for
fixed effects specification and random intercept and random intercept + random slopes for
random effects specification for linear mixed model (5.9). Description on model fitting for

AAGIS data is briefed in chapter 3.

Table 6.5 presents the percentage average relative biases, the percentage average relative
root mean squared errors and the average coverage rates (averaged over 29 and 28 regions)
generated by different estimators. Figure 6.5 and 6.6 displays the region-specific
distribution of the relative biases, relative RMSEs and coverage rates under the random
intercept and random slope model respectively. These results indicate relatively better
performance under model II since this model is relatively better fit. Further these results

show the average relative bias of TrMBD2 is smaller than EBLUP but larger than MBD1,
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while the average RRMSE of TrMBD?2 is marginally larger (with high average coverage
rate) than the corresponding values for MBD1 and EBLUP. Inspection of Figure 6.5 and
6.6 shows that high relative bias and relative RMSE of TrMBD?2 is essentially due to one
region (21) in the original AAGIS sample that contained a massive outlier as noted in
chapter 3. This leads to completely unrealistic estimates for region 21 being generated by
the TrMBD2 and MBD1 methods. The right-hand column in Table 6.5 therefore shows the
average performances of the different methods when this region is excluded. Here we see
that now TrMBD2 and MBD1 are essentially on a par, with both dominating EBLUP.
Region-specific results show the TrMBD2 dominates in some areas not in all (Figure 6.5
and 6.6). The fact that the TTMBD2 does not provide significant gains over the MBD1 in
this case reflects the fact that the raw-scale and log-scale linear mixed models used in these

estimators both provide relatively poor fits to the AAGIS data.

The TrMBD?2 estimator provides significant gain under the linearity on transform model.
However, gain may not be significant if linearity does not hold. At the same time, we
noticed when transform model is approximately linear then it is safer to use TrMBD2
method. We recall that AAGIS data is extremely heteroskedastic and analysis of original
sample data indicates a week linear relationship between Y (annul farm cost) and X (farm
size) which improves when we fit a log-lincar models (Figure 3.2). However, fitted
model on log-transform is not exactly linear (although linear on log scale in few areas).
Therefore, the TrMBD?2 performs marginally better and provides a gain in those regions

where linearity holds, not in all regions.
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Table 6.5 Average (ARB) values of relative bias (%), average (ARRMSE) values of
relative root mean squared error (%) and average (ACR) coverage rate for design based

simulation using AAGIS data.

Model Criterion Estimator Average of 29 regions Average of 28 regions
I ARB (%) TrMBD2 3.00 2.54
MBDI1 -2.49 -2.58
EBLUP 424 4.74
ARRMSE (%) TrMBD2 22.00 17.15
MBDI 20.55 17.33
EBLUP 19.92 19.40
ACR TrMBD2 0.99 0.99
MBDI1 0.92 0.93
EBLUP 0.90 0.90
1I ARB (%) TrMBD2 2.35 2.24
MBDI1 -2.13 -2.21
EBLUP 298 3.36
ARRMSE (%) TrMBD2 21.31 17.13
MBD1 20.15 16.91
EBLUP 19.87 19.30
ACR TrMBD2 0.90 0.92
MBD1 0.93 0.95

EBLUP 0.85 0.85
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Figure 6.5 Region-specific percentage relative biases and percentage relative RMSEs and

coverage rates for AAGIS data under model-I.
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Figure 6.6 Region-specific percentage relative biases and percentage relative RMSEs and

coverage rates for AAGIS data under model-II.
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6.6 Conclusions

We now summarize the main points from the evaluation of methodology presented in
chapter 5. The simulation results discussed in the previous sections show that combining
model-calibrated weights with MBD estimation can bring significant gains in SAE
efficiency if the population data are clearly non-linear. As one would expect, these gains

are less when the assumed non-linear model is misspecified.

In chapter 5 we noticed that the proposed method of SAE is robust with respect to
distribution of the random effects. We investigated the proposed method of SAE under
normal and gamma distribution of random effects via simulation studies. Our conclusions
are essentially unaffected when we carry out similar simulations using gamma distributed
random effects. The application of the proposed SAE techniques to real data from
AAGIS provides a satisfactory performance. The proposed method is advisable for
skewed data but identification of appropriate transform model is crucial in application
this method, otherwise results can be misleading. We also examine the performance of an
empirical best predictor under a log-scale linear mixed model (TrEBP). The results

generated by TrEBP are presented in Appendix L.

Our main caveat concerning the use of model-calibrated weights for SAE is their
specificity. These weights do not appear to have the same ‘multipurpose’ characteristics
as standard EBLUP weights based on the linear mixed models (see chapter 4). Further

research is therefore required on how to build model-calibrated weights for SAE that are
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less specific in the way they work. It is to be expected that such weights would not be as
efficient as the variable specific weights (5.8), but hopefully this will be more than offset
by their increased utility. A further issue that is extremely important in practice is that
positively skewed survey variables can also take zero (or even negative) values.
Consequently, the log-scale linear mixed model that underpins the model-calibration

weighting considered in chapter 5 and 6 needs to be suitably generalised.
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CHAPTER 7

SUMMARY AND FURTHER RESEARCH

7.1 Introduction

In this chapter we summarize the research work presented in different chapters of this
thesis, highlighting the major points. We identify related topics and outstanding issues
that require further attention. In section 7.2 we present the principal results and
conclusions from different chapters of this disserfation. Finally, section 7.3 addresses

the potential further research topics.
7.2  Summary

The purpose of the research presented in this thesis is to develop methodology for
small area estimation (SAE) that is simple and also easy to implement. Further, using
the real data set we investigated several existing methods for SAE and proposed a few
new approaches to SAE that overcomes the problem identified in the existing
techniques. We focused on weighted linear estimators for small areas and their mean
squared error estimation. In particular, we used the calibrated weighting approach
introduced in Chambers (2005). In this thesis we referred this approach as the model
based direct (MBD) method for SAE. We compare the performance of the MBD
method of SAE with the standard empirical best linear unbiased prediction (EBLUP)

via empirical studies. Then we extended the MBD method of small area estimation for

180



multivariate and business surveys. In a broad sense, we can subdivide this thesis into
three major topics:

(a) study the properties of the model-based direct estimators for small area
quantities and compare with the EBLUP (in chapter 3) method, and some further
application of MBD estimation, e.g. estimation of small areas for categorical
survey variables.

(b) illustrate loss functions that can be used to compute optimal multipurpose
weights suitable for use in small area estimation using MBD estimators for
multivariate surveys (in chapter 4), and

(c) develop small area estimation methods for skewed data e.g. business surveys,
where data are typically skewed and linear model assumptions are questionable
(in chapter 5 and 6).

In this section we now summarize our basic findings from the different chapter and

give some directions for future research in next section.

In chapter 2 we reviewed some of the important small area estimation methods
existing in literature, identified some gaps existing in the present research and pointed
out the problem to be addressed in this thesis. This chapter prepared a foundation for
the rest of the thesis. Consequently, in chapter 3 we focus on small area estimators
that are a weighted linear function of the area specific sample data that we referred to
as MBD estimation. The EBLUP method is widely used approach for the estimation
of small areas under unit level mixed effect models. However, this approach does not
lead to small area estimators that are a weighted lincar function of the sample data
from these areas. As a result, several practical advantage of using such weighted

estimators are lost, with probably the most important being the relative simplicity of
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their mean squared error estimation. In this chapter we studied the properties of the
MBD. This approach uses weights derived from a population level version of the
random effects model to define weighted linear small area estimators and a simple
expression for their MSE. The associated small area estimator appears to be a direct
estimator based on the sample data from each area. However, it is not true in general.
The sample weights are a function of the data from the entire sample. Note that unlike
design based direct estimation, MBD weights borrow strength via random effects

model that defines the weights.

In general, unbiased direct estimators for small area quantities are usually considered
too variable to be of any practical use. In this chapter we observed that the MBD
estimator for small area quantities appears to overcome this objection, in the sense
that these estimators are comparable in efficiency to the indirect model-based small
area estimators (e.g. EBLUPs) that are now widely used. There are many practical
advantages associated with such MBD estimators, arising from the fact that they are
computed as weighted linear combinations of the actual sample data from the small
areas of interest. Note that in this case the weights ‘borrow strength’ via a model that
explicitly allows for small area effects. One particular advantage that we explore in
this chapter is that estimation of mean squared error is then straightforward, using
well-known methods that are in common use for population level estimates. Empirical
results reported in this chapter show that the MBD estimator represents a real
alternative to the EBLUP, with the simple MSE estimator associated with the MBD
estimator providing good coverage performance. We also report results that indicate
that the MBD estimator may be more robust than the EBLUP when the small area

model is incorrectly specified.
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An application of MBD estimation to the categorical variable that takes 0 and 1 value
shows a satisfactory performance of the methods. In particular, we observed no loss in
efficiency by using a linearity assumption based MBD for the binary variable.
Further, the method is comparable with usual indirect method of SAE based on a
generalized linear mixed model. In contrast, on many occasions a standard EBLUP
based on a linear mixed model generated estimates that are greater than 1. However,

this is not the case with the MBD estimator.

Sample surveys are generally multivariate, in the sense that they measure more than
one response variable. In theory, each variable can then be assigned an optimal weight
for estimation purposes. However, it is often a distinct practical advantage to have a
single weight that is used with all variables collected in the survey. In chapter 4 we
consider SAE for a multivariate survey and introduce two loss functions that can be
used to compute optimal multipurpose weights suitable for use in SAE using MBD
estimators. We consider two case: (a) we ignore the correlations between the survey
variables; and (b) we take these correlations between the survey variables into
account. From the results generated under design-based simulations (using real
population data) and model based simulations (using generated data under the model),
we see that the performance of the corresponding multipurpose weighting based
estimators under (a) and (b) are almost identical. That is, there are no real gains from
taking account of the correlations between the survey variables when constructing the
multipurpose weights. We discuss two methods of constructing multipurpose weights
for use in MBD small area estimation based on: (i) weighted average of the variance
components; and (ii) suitably averaging the variable specific EBLUP weights.

Empirical results show that method (ii) is somewhat less efficient than the method (i).
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Our results also show that these multipurpose weights remain efficient across a wide
range of variables, even variables that have not been used in the definition of the
multipurpose weights. This can be important in some situations (e.g. where variables
have many zero values) where standard mixed models cannot be fitted and the usual
EBLUP methods do not work. Further, in defining the multipurpose weights we can
also assign importance factors based on the intrinsic variability among of the
variables. In our empirical studies, we use two options for importance factors:

¢, =1/X,, and @, =1/V,, where £, and V, are the individual and total variability

of the k™ target variable. These results show that, for the population considered in the
simulation study, there is little to choose between these different importance

weighting factors.

The central theme of chapter 5 and 6 is SAE for skewed data. In business surveys,
data typically are skewed and the standard approach for SAE based on linear mixed
models lead to inefficient estimates. In chapter 5 we introduced SAE techniques for
skewed data that are linear following a suitable transformation, focusing on the
widely used log-log transformation. In particular, we extended the MBD approach
described in chapter 3 and 4 to skewed data using a model with random area effects
that is linear in the log scale and sample weights derived via model calibration. We
presented the theoretical developments in this chapter. In chapter 6 we then provided
illustrative empirical results that contrast the proposed MBD estimator for skewed

data with the EBLUP and the MBD method under a linear mixed model.

The simulation results reported in chapter 6 show that combining model-calibrated

weights with MBD estimation can bring significant gains in SAE efficiency if the
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population data are clearly non-linear in the raw scale, but linear in the log scale. As
one would expect, there are smaller gains when the assumed non-linear model is
misspecified. Furthermore, our conclusions are essentially unaffected when our
simulations use gamma, rather than Gaussian, distributed random effects. That is the
proposed method is robust with respect to the usual normality assumption for the area
effects. An application to real life business survey data (AAGIS data) provides a
further demonstration of the satisfactory performance of the proposed MBD method.
The proposed method is advisable for skewed data, however examination of
appropriate model relationship is very crucial in application of this method, otherwise

results can be misleading.
7.3  Further research

In chapter 3 we described the MBD estimation and simple mean squared error
estimation for this estimator. This approach treats these estimators as simple Qeighted
estimators of a domain mean. Under this approach the sample weights are considered
fixed and the prediction variance is estimated using a standard heteroskedasticity
robust variance estimator. A ‘plug-in’ estimate of the squared’bias is then added to
this estimated prediction variance to define a simple estimator of the mean squared
error of these estimators. Chambers (2005) advocated the use of this MSE estimator
with the justification that method is consistent with the way mean squared error is
estimated at the population level. Empirical results reported in chapter 3 based on
AAGIS data, show that the simple MSE estimator associated with the MBD estimator
provides good coveragé performance. Further, these results indicate that this estimator

may be more robust than the EBLUP when the small area model is incorrectly
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specified. Although this method of MSE estimation seems to be working reasonably
well, however it remains to develop its theoretical proof and justifications. Further,
generalization of this method of MSE estimation for any weighted direct or indirect
(e.g., EBLUP or M-quantile methods, Chambers and Tzavidis, 2006) small area

estimators is interesting and demanding as well.

Negative weights impact on the utility of the MBD method and this remains
unresolved and needs further attention. For example, negative weights, which
occurred in some regions in the simulation study reported in chapter 3, can lead to
impossible (i.e. negative) estimates. Since such values are easily identified, they
should not cause problems in real life. However, the problem remains of how to
modify the weights to ensure they are strictly positive. A related issue that has already
been noted is the impact of outlier Y-values on (3.15). Certainly this estimator,
because it is a linear combination of just the small area data values, is more
susceptible to outliers in specific areas than the EBLUP. Methods for dealing with
negative weights under ‘standard’ regression models have been discussed in the
literature (Huang and Fuller, 1978; Bardsley and Chambers, 1984; Deville and
Sarndal, 1992; Chambers, 1996) but their application in the context of mixed models

remains to be explored.

Throughout this thesis we assume that random area effects are independent between
arecas. However, we can extend the MBD approach under spatially correlated random
area effect model (spatial-MBD) similar to the spatial-EBLUP (Singh, Shukla and
Kundu, 2005, Petrucci and Salvati, 2004 and Pratesi and Salvati, 2005) and spatial M-

quantile (Chambers, Pratesi, Salvati and Tzavidis, 2006) method of SAE. Further, it is
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interesting to see the performance of Spatial MBD with spatial-EBL.UP and spatial M-
quantile methods of SAE for spatially correlated population data. Furthermore, we
can extend nonparametric methods to MBD estimation, see for example Opsomer et
al (2005). In chapter 4 we concluded that the MBD approach based on multipurpose
weights can be important in some situations (e.g. where variables have many zero
values) where standard mixed models cannot be fitted and the usual EBLUP methods
do not work. In such cases, we can extend the EBLUP approach under the mixtures of

linear mixed models.

In chapters 5 and 6 we proposed a method of SAE for skewed data based on the log-
scale linear model where survey variables can have only strictly positive values. In
practice positively skewed survey variables can also take zero (or even negative)
values. Consequently, the log-scale linear mixed model that underpins the model-
calibration weighting neéds to be suitably generalised. Karlberg (2000a) and Fletcher
et at. (2005) illustrate the application of a mixture model for skewed data with zeros.
Further, one can use a generalized linear mixed model with Gamma or Poisson (for

count data) or other class of distributions for skewed data with zeros. Joe, Chris, and
Mark (2005) described the neglog transformation for skewed data with negative
values. A further issue concerning the use of model-calibrated weights for SAE is
their specificity. These weights do not appear to have the same ‘multipurpose’
characteristics as standard EBLUP weights based on linear mixed models. Further
research is therefore required on how to build model-calibrated weights for SAE that
are less specific in the way they work. It is to be expected that such weights would not
be as efficient as the variable specific weights, but hopefully this will be more than

offset by their increased utility.
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APPENDIX A

COMPARING RANDOM EFFECTS SPECIFICATION FOR

THE MIXED MODEL IN CHAPTER 3

In chapter 3 for judging the best-fitted model to the AAGIS data we use the Akaike
Inf01‘1nation Criterion (AIC) evaluated as AIC =-2log Lik + 2k , where k is the number
of parameters in the model and LogLik is log-likelihood of the model. Under this
definition, smaller the value of AIC is the better. In addition, we use the likelihood ratio
(LR) test as criteria to find the best model. The values of test criterions obtained from
ANOVA function in R for the random intercept and random slope model (i.e. models I

and II in chapter 3) using AAGIS data are set out in Table A.1.

Table A.1 Analysis of variance (ANOV A) results for comparing two models.

Model degree of freedom AlC logLik LR p-value
I 14 49992 -24982
II 16 49989 -24979 6.43 0.04

The small p-value for the test statistics indicates the model II is better than the model I.
The AIC criterion is nearly same for both models (but marginally smaller for model II).

Consequently we conclude that model 11 is relatively better than model 1 for this data.
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APPENDIX B

REGION-SPECIFIC RESULT USING ML ESTIMATES OF
VARIANACE COMPONENTS IN CHAPTER 3
Figure B.1 Region-specific percentage relative biases for EBLUP (dashed line) and

MBD (solid line) under model I (top left), model II (top right), model III (bottom left)

and model IV (bottom right) with ML estimates.
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Figure B.2 Region-specific percentage relative RMSE for EBLUP (dashed line) and
MBD (solid line) under model I (top left), model II (top right), model III (bottom left)

and model IV (bottom right) with ML estimates.
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Figure B.3 Region-specific coverage rates for EBLUP (dashed line) and MBD (solid

line) under model I (top left), model II (top right), model III (bottom left) and model IV

(bottom right) with ML estimates.
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APPENDIX C

BLUP, MBD AND DBD ESTIMATOR FOR SMALL AREAS

We present an analytical comparison of the BLUP, MBD and design based direct (DBD)
estimators for the small area estimation (SAE). Let us consider the random intercept

specification of linear mixed model (3.11) as

v, =B+ Bx;tu +e; (C.1)
where y, and x; are the values of Y and X respectively for population unit
Jj(j=L1..,N,) in small area i(i=1..m). Let E(ui)zE(eU)ZO, Var(uf)zaf,
Var(eij)zaf , Cov(y,j,yik):a,f, and Var(y,j)zaf+(7“2, We defined different terms

defined similar to as below equation (3.11) in chapter 3 except that X is now scalar.

Assuming model (C.1) holds with a special case of . =0, the sample weights defining

the BLUP of the population total of ¥, T, = Z]‘EU y; are
T)’ :Zjexyj-i-zj‘sr&f =ZjeA~yf+Zje,,(lBO+llej)
=2+ 2, G BEA B

=Ny, +(N-n)B (X, -X,)

:Ni+(N—n)(37,.—fx)Zja %, TR —Zjeswjyj (C.2)

Zjex (xj — 2)2 =
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N (N -n)F -, - %)
where W, =—+ >
n (n—1)s;

with (n=D)s} =3 _ (x;~%)’
Ee | - _ -l - _ -1
and y =n Zjayj, X, =n ngxj, x, =(N—n) Zje,.xj'

If we use these BLUP weights (C.2) to define the MBD estimator at small area level for

the population total of Y for small area i then
E(, ~T,)= Zjex‘. WiY; —ZjeUi Y
= Z/ w; (f, +/3.xj)—szU{ By + Bx;)
SO RUBLALY I DINRTEED Yy 3

where s, and U, (i =1,....m) respectively denote the set of sample and population unit in

the small area i. Let us write the weights in (C.2) as

w; :E(ng), (C.4)
n

where g, z[l—%j[ilj[(f’ —zfs)J(xj —X,) then
n— s

x

A N N
ET, -T,) =5 |iZja-,.;(1+gf)_Ni:I+ﬂl {Z_;Esi’;(prgj)xj_Z,-eu,,xj}

5, [ﬁn,‘ —Nij—i_ﬂl (ﬁn,‘fx. _Ni)?i]‘*’ﬁ(z , gj(,Bo +ﬁ1xj)) (C.5)
n ! n E5i

n

Var(TAyi —Tyi)ZVar(ZjEJi Wy, —ZjEU, yj) :Var(zjﬂi (w, =Dy, —Zjai yj)

=Y =D Var(y)+ Y Var(y)-2Cov(Y v, =Dy, Y, ¥)
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ZS (w; —1)> +(N, - )} o’ , since covariance term is zero

S[i(l—kgj)—l] +(N,,—n,.)}of
n

-{

——1 +(N —n)+2N[E—1](2sigj)+N—;(Zsigf)}af (C.6)

C.1 Expansion Weights and Regression Weights for Small Area Estimation
Let ffcg and f“f"’ respectively denote the regression weighted and expansion weighted

estimator for the population total of ¥ in small area i, defined as

N

’f‘)fr‘f’ = Z,ies; ijj - _(Z/ES; yj) (C7)

n

B -T) =2 (Y Bt i) =20, (B )
:ﬁo[iv—n’.— }4—,6’]{ X, —NXJ (C.8)
n

£ Ey N N
Var(T.:p _T)"f) :Var(;Zx, yf - U; y/] B Var[(;_ljzﬁ yj —Zr, y/:|

n

={(ﬁ_1] n+ (N _n,>} o (C.9)
n

:[ﬁ_llz Var(ZSi yj)+Var (Z,} yj)
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SRe 7S Ex, N
E(Y;:{ ! _Y;’i ) = E(Y;fp _TYI)+;(ZjEA'i gj(ﬂo +/81x])) (Clo)

e . N(N N?
Var(f** -1,y =Var(f ‘T.>n~)+{2",1‘[7‘1](2i gj.)+n—2(zxi gj)}aj (C.11)

From (C.4) we can write

Z,-a,.gj 2[1—%](,1’11][@’;@}%@, -X,) (C.12)

2
DI R
X

[ - j(i(z—z—-X) Zd‘-(xf_fff-i-fxi_fx)z

(C.13)

Il
TN
o
|
z|x
—
TN
]
]
o
3N
—
~~~
>
R
e |
Rl )
Rl
o
L. 1
[ 3]
1
)
=
|
o
S’
)
PR Y
+
B
~~~
Rl
|
Rl
p
(=]
| —

=
|| =
—
~
1
e
Ral
“o| |
(]
Rall
~—
|
1]
\Q.
s -
N
|
=
—
ol
+
¢
m
& .
Bl
|
Ral
—
s
——

It follows

ZS’_ gj(/BO +/81xj) = {1_%](’1’11}(:(2 _zfj)}{”l(fal =X)(fy +/813?x,.)+(”i _1)/81Si.2x}

(i) For s, =s,1e. n, =n

FReg ~Reg S Ex) N
E(T T, )= E(I[* -T,) = E(T"" _Ty)+72x,~ g.(B)+Bx;)
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= E(T* —T,)+ﬁ[l __n,] (L]{MJ
’ o N \n-1 s?

{nG -x)B,+Bx )+ -1 s}

_pREw N nY n ) (x-%) B )
= E(T, Ty)+n[l N]{ ][7s2 J{(n 1),Bls_r}

n—1

X

=E(T" -T)+ B (N-n)X, -¥,) (C.15)
(ii) For x, =X,
AReg A Ey _ _ (n-Ds
ET =T )Y=ET " =T, )+ B, (N-n)x, -X,)———, and
Yi Yi Yi Vi L (n—l)Sx
. . (N - n)* (x,-x) st |
Var(T =T, ) =Var(T™ =T )+ ——5-(n, - 1)~———=2 " L 57
( Yi )i) ( Yi ),') { (n_l)l ( 1 ) Sf Sf e
If we also have s_ =’
~Reg r~ Ex, - — (n" _1)
ET; -T)=ET;7"-T )+ [ (N-n)X, —xx)(’—l) (C.16)
; ; ; ; "
_ 2 T _7\2
Var(T;*¢ =T,) =Var(T,”" -T, ) +{((—N—%)2(n[ —-1) w} o’ (C.17)
! - ' ' n— K

C.2 BLUP for Small Area Population Total

We denote by TZ , the BLUP for the population total of ¥ for small area i as
f‘;’i = Zjesi yf +Zjer,. (’BO +’B]xf) = Zjesi yf +Zjeri (yﬁ _’Blff +’lef)
- Z,-a,. y,+ (N, =n)y, +(N, -n)X, ~%)f

_ 1 Zjex(fn—fs)(xj_fs)yj
—Zjexé‘ffyf-'-(Ni_ni) ;Zjesyf-'- (}’l—l)Sf
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| &%), -%)
_Zjes{é‘if_F(Ni_ni)I:;_i_ (n—l)sf J}y, s

L i e
where &, = e . Then
" 10 otherwise
i (N, —n,) (x, =X,) _
Wj)BLUP 5,/"' +(N,; - i)(n—l)sf( T o)
) (x —X.)
=g -]+ D4 - n] T -X
[" n] n[ { N,.}(n—l s (%, = %)
:[@j—ﬁ}ﬁ(ng,j), (C.18)
n n

We observe that w; ~ O(Ej given in (C.4) while w),, ., ~ 0££j given in (C.18), so
n n
we expect the BLUP to be more efficient.

(l—ﬂ]+—]&(l+gij), jei
n n

(9 _
W BLup =

A Nigrey ei
n o on
Under what conditions are the MBD and BL.UP ‘close’?
Z e, ViYiT Z jes Wik,
=2 e =W e}y = D Wi, (C.19)
Suppose that X =X. Then, to first order g, =g, and, to the same order of

approximation, (C.19) equals
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N N, ~ N,
Z:f{;am,)—;mg,)}y, 2, 18y,

N-N, N «
A Z (1+g,)y, —72_ (1+g,)y,

n

N-N, 1 N, 1
_[ . ]ni[zxini(l-f-gj)yjj n(n n,.)[zx_%—n_ni(ngj)yj} (C.20)

Suppose the two averages in square brackets in (C.20) are same, equal to A, say. Then

(C.20) reduces to

[[N_N"]ni—&(n—ni)}A ={En,.—N,}A:N{ﬂ—&}A.
1 n n n n N

Hence sufficient conditions for equivalence of the MBD and BLUP are

i X=X

.
i

. n,
11. —_— =
n

z|=

1 1
111. n-isz(Hg")y":rniz““*(l-kg")yj'
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APPENDIX D

EFFICIENCY OF BLUP AND DIRECT ESTIMATORS FOR

SMALL AREA ESTIMATION

The efficiency of the BLUP and direct estimator for the population total of Y in small

area i, T, 1s studies via empirical example using AAGIS data described in chapter 3.

Besides the MBD estimator, we also considered two design-based direct estimators for

the population total of Y for small area i, defined as

7";?31)1 _ Z, w,y; =(N, /ni)(zm yj) ) (D.1)
177 =Yy =N (X ) (D2)

These are expansion type estimators defined by area specific weights w, =N, /n, and
population level weights w, = N/n, denoted by DBD1 and DBD?2 respectively, see Rao

(2003), page 19.

In our empirical study under the random intercept model (model I in chapter 3), we fix
the values for parameter £ and o’ (obtained from original sample of AAGIS data), and
then choose different values for the o>. Table D.1 shows the average of ratios of the

mean squared error (MSE) between DBD and MBD and between MBD and BLUP.

These results in Table D.1 and Figure D.1 indicate between the DBD and MBD methods,
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efficiency of the MBD increases with area effect. The MBD incorporates area effect

while DBD does not. The gains due to the MBD are more significant when area specific

sample sizes are smaller. At population level too, the MBD is consistently more efficient

than the DBD (Figure D.2). In general, the BLUP is efficient than the MBD if model

holds. The BLUP and MBD have equivalent performance if either area effect or small

area sample sizes or both are large. The MBD provides an improvement over design-

based methods and competes with BLUP.

Table D.1 Ratio of mean squared errors (MSEs).

Ratio of MSE Averaged over areas

Intra area effect

00 0.1 02 0.3 04 05

29 areas 043 086 1.02 . 1.17 132 144

DBDI/MBD 7 areas (n, <30) 0.08 0.67 1.12 1.6 213 257
22 areas (n, >30) 0.54 093 099 1.04 1.07 1.08

Population 1.32 1.05 1.04 1.03 1.03 1.03

28 areas 1.79 10.10 22.15 35.46 51.40 69.67

DBD2#*/MBD 6 areas (n, <30) 1.22 9.16 22.87 42.07 68.99101.06
22 areas (n, >30) 1.94 10.36 21.96 33.66 46.60 61.10

Population 17.48 15.78 1776  20.33 24.02 29.06

29 areas 514 244 171 141 129

MBD/BLUP 7 areas (n, <30) 1476 574 329 231 192
2.08 1.39 1.2 1.13 1.09

22 areas (n >30)

* One area is dropped due to high value in of DBD2
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Figure D.1 Average ratio of MSEs. Averaged over 29 regions (solid line), 7 regions with
sample size less or equal to 30 (dashed line) and 22 regions with sample size greater than

30 (thin line). For DBD?2 only 28 regions are taken.
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Figure D.2 Ratio of MSE of DBD1 and MBD (up) and MSE of DBD2 and MBD (down)

at population level.
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APPENDIX E

AN APPLICATION OF MBD METHOD OF SMALL AREA

ESTIMATION TO THE BINARY VARIABLES

In chapter 3 and 4 we noticed that MBD estimators, whether they are based on variable-
specific weights or multipurpose weights, are effectively linear estimators, and implicitly
assume that variable of interest follows a linear mixed model. For categorical survey
variables, it is well known that the indirect estimation methods based on a generalized
linear mixed model (GLLMM) can be used (Rao, 2003). Therefore, it is interesting to see
how much efficiency is lost if the MBD under the linear assumption is used in this case.
We examine this issue via empirical studies using the AAGIS data. In AAGIS data we
created a binary (0-1) variable, Zero Debt, which takes value 1 if Debt (the response

variable Farm Debt) is zero for the given farm and value 0 otherwise.

E.1 Small Area Estimation under Generalized Linear Mixed Models

Many often variables of interest in small area estimation (SAE) are not normally
distributed, and therefore cannot be adequately modelled via linear mixed model. In such

cases an appropriate model is GLMM. Under this type of model, distribution of the
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values of the variable of interest Y is assumed to depend on 77 that is related to regression

covariates and random component through the model of form
n;=g(m,)= x,.'j,B+Z,.ju,. (j=Leunsi=1.,m). (E.1)

Here notation used is similar to one described in chapter 3, see Saei and Chambers
(2003). Under a random intercept specification of model (E.1), 77, = g(ﬂij)=x;.,5+u,,.
The linear predictor 77, is connected to y, via a known function h (inverse of g) as
E(y; lu)=m; =h(1,). This is the expectation of the conditional distribution of the
outcome given the random effects. The predicted values of y, are given as 3, = A(7};)
with 7, = x; IB +1u, . For a binary variable, the function g(.) is logit or logistic function of
the probability 7, that a population unit j in area [ is a “success”. In other words,
7, =Pr(y; =1, j=L...,n;i=1,..,m. The empirical best predictor for population mean
of Y for small area i (denoted by EBP) is

exp(x,:',.,bA’ +i.)

| — . (B2)
"1+exp(x; [ +1i,)

}?’EBP = NF‘(ZA, Y +Zr,. J) =N in Vit

In empirical evaluation we consider four different types of estimators:
1) the EBLUP (3.20) under linear mixed model, denoted by EBLUP
ii) the empirical best predictor (E.2), denoted by EBP
iii) the MBD (3.15) based on variable specific weights for Zero Debt under the linear
mixed model, denoted by MBD
iv) the MBD (3.15) based on multipurpose weights under the linear mixed model,

denoted by MBD.MP.
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The multipurpose weights used in MBD.MP estimator are based on five variables (TCC,
TCR, FCI, Cattle and Sheep) other than Zero Debt from AAGIS data. See chapter 4. For
EBLUP, MBD and MBD.MP, we followed the procedure described in chapter 3 and 4.

However, EBP (E.2) we fit generalized linear mixed model via penalized quasi-
project.org, Results from the design-based simulation studies are reported in Table E.1.

These results show the average relative biases of MBD.MP and average RRMSE of MBD
are smaller overall. The MBD (MBD and MBD.MP) method is performing well. In this
case EBLUP under the linear mixed model is ill-suited. Overall we do not observe any
efficiency loss if the MBD based on the linear assumption is used. Figure E.1 shows the
regional performances generated by these methods. We notice relatively better
performance of MBD approach in regional estimation. In few regions, both EBLUP and
EBP are very unstable. In particular, in two regions (1 and 6) both EBLUP and EBP
produce unstable results, inspection of the population and sample data indicated that this
is because of a few outlying estimates. In region 1 with sample size 6 there is one zero
and rest (5 observations) 1's, and in population of 79 there are 15 zeros and rest (64
observations are) 1's. Further, out of 1000 samples there are 9 samples with no zeros and
16 sample only one zeros, this generated the number of outlying estimates. Similarly in
region 6 of size 19, there are 13 zero and rest 1's in original sample. In population 465,
there are 407 zero, which created lot of outlying estimates. However, MBD being direct

estimator is still working well in such cases.
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Table E.1 Average (ARB) relative biases (%) and average (ARRMSE) relative root
mean squared errors (%) generated by different methods under the random intercept

specification of mixed model for Zero Debt. The average is over 29 small areas.

Criteria EBLUP EBP MBD MBD.MP
ARB 6.56 4.57 -1.92 0.29
ARRMSE 57.59 29.02 21.77 22.36

Figure E.1 Regional performances of EBLUP (dashed line), EBP (dotted line), MBD
(thin line) and MBD.MP (thick line) for Zero Debt.

Relative Bias

130

“I
I
1
hial
i
]
100 £
Z
]
2 s
&
&
§ 0 e 5=
-50
100
0 3 6 9 12 1 18 21 2% 27 30
Region( ordered by Population size)
Relative RMSE
250 —
[
! 1
i 1
| |
1 1
200 ' \
| 1
b i
1 i ]
I3
7 ) | 1
- )
& f [ l
T 150 N i
= ! [ |
3 L4 ) Vox I
5 f [ \
& Voo I
& v Voo i
£ [ [ '
5 100 Vo v )
g 1 : |
3 L 1] | M
i [ X
s | %
- R e e e )
0 - - -

L] 3 6 9 12 15 18 21 24 27 30

Reglon( ordered by Populution size)

206



APPENDIX F

ESTIMATES FOR p USED IN MSE ESTIMATION FOR

THE MBD METHODS IN CHAPTER 4

The estimate of £ used in the MSE estimate (4.18) under the multipurpose weighting
methods is evaluated as below.

1. When multipurpose weights defined by the first approach, i.e. via (4.8) or (4.12),

~

there can be three possible options for using /5
a) Use variable specific estimate, ,Bk
b) Use weighted average of variable-specific f estimates, ﬁ’ = Zk @, ﬁ’k

c) Use estimate of f evaluated from the weighted average of variances used in
deriving the sample weights (4.8) or (4.12).

Empirical results indicate use of option (a) or (c) does not make any substantial

difference. However, option (b) seems to be less appropriate.

2. When the multipurpose weights defined by the second approach via (4.17), there can
be two possible ways (a) and (b) to calculate the estimate of £. Our results show
method (a) is more appropriate in this case.

In chapter 4, the design-based simulation studies use option (a). However, results with
option (b) and (c) are illustrated below. These results (Table F.1 and F.2) hardly show any

difference in the performance of the MBD method by using option (a), (b) or (c).
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Table F.1 Average coverage rate (ACR) and average interval width (AW) for five

variables best suited to the linear mixed modelling under MBD1-A and with equal

relative weights (¢, =1/ K ) to all variables.

TCR

Model Criteria Options TCC FCI Cattle Sheep
I ACR a 0.92 0.92 0.94 0.95 0.96
b 0.91 0.9 0.97 1.00 1.00

c 0.92 0.92 0.94 0.95 0.96

AW a 142754 186619 91641 1622 2705

b 131848 160107 112934 85824 85664

c 143250 186502 90742 1622 2689

I ACR a 0.93 0.93 0.94 0.95 0.96
b 0.92 0.91 0.98 1.00 1.00

c 0.93 0.93 0.95 0.95 0.96

AW a 173451 238140 111223 1873 4014

b 136333 166732 138622 118127 117962

c 174943 238456 113517 1877 3669

Table F.2 Average coverage rate (ACR) and average interval width for five variables

best suited to the linear mixed modelling under MBD2 method and with equal relative

weights (¢, =1/ K ) to all variables.

Model Criteria ~ Option TCC TCR FCI Cattle Sheep
I ACR a 0.92 0.92 0.94 0.95 0.96

b 0.91 0.91 0.97 1.00 1.00

AW a 142328 186212 91950 1617 2713

b 132132 160943 113217 85868 85724

II ACR a 0.93 0.93 0.94 0.95 0.96

b 0.92 0.92 0.98 1.00 1.00

AW a 184598 254392 116304 2010 4325

b 142649 175450 145350 128111 128111
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APPENDIX G

THE METHOD OF MOMENT ESTIMATION USED IN

CHAPTER 4

We describe the method of moment estimation (also called Henderson’s III method) for

the variance components of the model (2.13). Here various terms used are defined similar
to as below equation (2.13). A simple method of estimating o’ and o’ involves
performing two ordinary least squares (OLS) regression and then using the method of

moments to get unbiased estimators of ¢ and o . An unbiased estimator of ¢~ (using

‘hat’ to denote an estimate) is

A _ -1 m n; A2

6.=D"Y" > " & (G.1)

where {€;} are the residuals from the OLS regression of y, =(y, — ;) on X, =(x; —X;),

with y, = nT’Z"” y, and X, = n._]Z"" x, are the sample means in the small area i. That
i i j=171 i i j=170

is & =5, =% Bos) = (3, ~ 3,)—(x, = %) B,y . Here B, is the OLS estimate of 3 and

D=(n-m—p+a) with a=0 if the model (2.13) has no intercept term in fixed

component of the model and a =1 otherwise.

An unbiased estimator of o is

&= YY" == p6E = | Y nG - FBos) - (1= 167 | (G2)
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m —— —_ ’ -1 — . .
where n, = n—z‘r[(X'X)_l i n,.zx,.xiJ :zin,. {1—n,.x,. (Zizjn,jxijxﬁ) x,} is function of

x; with X' =(x,.,%,); XX =Y xx/= zizjxi.x; and {é,} are the residuals from the

7
OLS regression of y, on x;, i.e. ¢, =y, —x,.'jﬁ’ow. Here 6. can also take negative
values so a truncated estimator of ¢ is obtained as 6, = max(0,8”). Note that 67 is no
longer unbiased, but it is consistent as m, the number of small areas, increases. The
estimators & and & are equivalent to those found by using the well-known method of
fitting of constants (F-C) due to Henderson (1953). The moment estimators 8. and 6!

are, therefore, also referred to as fitting-of-constants (MFC) estimators (Prasad and Rao,

1990).

Once o, and o are estimated, then we can also get an improve estimates of /4 using an

iterative generalized least squares (IGLS) method to estimate the fixed regression

parameter £ and the variance components (Goldstein, 1995). The IGLS method involves
two applications of the generalized least square (GLS). The first step is to obtain the GLS
estimate of £ assuming ¢’ and o, known. The second step is to use the GLS estimate
of S to form the “raw” residuals. Then the estimation of ¢’ and o involves an

application of GLS on the vector form of the cross-product matrix of the residuals,

assuming normality. The IGLS method involves iterative updating between the GLS
estimate of £ and the GLS estimates of ¢” and ¢ until the procedure converges. We

do not pursue this iterative procedure in this thesis.
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When we have K variables, we introduce an extra subscript & (k =1,..,K) to denote
quantities with respect to the k" variable. For any two variables, above method leads to

following estimates:

=D Y 8 =D Y Y Gy = E B
DY Y & =D Y Y Gy F )
6h=D" Y D 88 =D Y D Gy = F Bions) Fay — X Brors) = 6
T DI WA e EE DI WP PRt

0' =max(0, 5 )

o =n [Z l Z &, —(”—P)OA':J =n, [ZLZ:ZI()’ZU =X Prors)’ —(n—p)é‘fzJ

67, =max(0,67,)

A 71 a2
ulZ [Z, 12]1 IueZU (n_p)ael2:|
_] n n
l:z Z_l(ylu “\qﬁlom)(yzg ’\u 70LS) (n-p) elZ:I 6,21

G, =0 if either 5’31 =0= 5’32 or either of them is zero.
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APPENDIX H

MODEL-BASED SIMULATIONS FOR MULTIPURPOSE

SMALL AREA ESTIMATION IN CHAPTER 4

In the model-based simulations we choose a population of size N =15,000 and then
randomly generated small area population sizes N,, i =1,...,m =30, so that Z’_Ni =N.
We consider n= 600 and then generated small area sample sizes as n, = N,(n/N) so
that Zf”f =n and kept fixed throughout the simulations. We generated a multivariate
normal (MVN) population for K =2 response variables. Two response variables y, and
y, are generated under a multivariate linear mixed model of form

Vi = O+ X, +u +e and Yoy = B, + ,B,x,j +tu, te,,.
We fixed ¢, =5, =1,5,=5 and B =3. The covariate values x, are generated from

x°(50) distribution. The random area effects u,, and u,, are generated from a MVN

z z u,,
with zero mean vector and covariance I, :( ! "’IZJ. Thatis | " |~MVN,(0,Z,)
Lo o U,

T

with between area correlation p, |, = Zu,m/(,/Zu,1 \Z.2)= P, - The individual random

errors el,i/

€L O, O .
and e, . generated from ~MVN,(0,Z,), where £, = ' , |, with

eZ.rj e,21 O-e,2

Pz :0'6’12/(1/0'31,1/0'3,2):,0&21. We choose seven different values of p,, and p,,,
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corresponding to setl-set7. The values of X£,,, £, and X |, as well as of’l,oﬁ2 and

0,,, are fixed up so that intra-area correlations with respect to first and second variables

are (Zu,l/(Zm1 +0'Z,)) =0.20 and (Z,,,z/(z,,‘z +0':",2)) =~0.10 respectively. Table H.1 sets

out the results from this simulation study. These results indicate identical performance of

MBDI1-A and MBD1-B methods of SAE.

Table H.1 Performance measures generated by MBDO, MBD1-A and MBD1-B (see
chapter 4) for two variables under model I. Method of Moment estimate for variance

components are used. All averages are over the 30 small areas.

Variables Criterions Setl Set2 Set3 Setd SetS5 Set6 Set7
P 0.50 050 050 050 000 025 095

P 0.00 025 050 0.75 050 050 0.50

1 MBDO ARB 0.00 0.01 0.00 0.00 0.00 0.00 -001
ARMSE 4.10 4.09 409 410 4.11 412 4.10

ACR 09 097 096 097 097 096 096

MBDI1-A ARB 0.00 0.01 0.00 0.00 000 0.00 -0.01

ARMSE 410 4.09 4.09 410 4.11 412 4.10

ACR 096 097 097 097 097 096 096

MBDI1-B ARB 0.00 0.01 0.00 0.00 000 0.0 -0.01

ARMSE 410 4.09 4.09 410 4.10 412 4.10

ACR 096 097 097 097 097 096 0.96

2 MBDO ARB 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ARMSE 422 421 420 422 422 423 421

ACR 075 076 076 0.75 075 075 0.75

MBDI1-A ARB 0.00 0.00 000 0.00 000 0.00 0.00

ARMSE 422 421 420 422 422 423 421

ACR 094 094 094 093 093 094 094

MBD1-B ARB 0.00 0.00 000 0.00 0.00 000 0.00

ARMSE 422 421 420 422 422 423 421

ACR 094 094 094 093 094 094 0.94
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APPENDIX I

COVARIANCE MATRIX UNDER RANDOM SLOPE

SPECIFICATION OF MODEL (5.9) IN CHAPTER 5

Under model (5.9) the covariance matrix of /, =log(Y)) is
V.= O-:IN, +GX(6)G; with Vi = of](j =k)+ GI;Z(H)GU .

The covariance matrix of ¥, given by (5.15) is Var(Y)) =Q, = [@,] with

|
LAWY — (v +vie) ” P
e(u,’f+u"")ﬂ[e2 P =D if j#k

e”"r‘fﬂ[e"m (evl‘fj _ 1)] lf j =k

@Dy =

1.2 2
. —(0; +G ()G, +0. +G (G,
(WU+W,.k)/i[ 2( L +GL(6)G,; +0, +GiL(6)Gy)

0% ] i =k

o, +G;L(6)Gy (eo';+G,.j):(€)Gij _1)] lf ] — k

W
e ”ﬂ[e

We can rewrite

Q =% [EA, E]] with E, =diag{ew5ﬁ 1< < N,.} and

A=A A, :exp{of],vi NN Af.f’} exp {%Af}’ LAy } where

B . . , 1. . ‘o
eo’f+26i'l):(}il eE(GiE):Gi2+Gil):Gil+?‘Gil):Gi2) eE(G(IEGil+GiN;):GI;Vi +2G\ZGy,)

1. , ’
E(GiIEGiI +GHZGp +2G,1G;y) 60.3 +2GHEG;s

Py . . [P . ,
(GG +Giy EGy, +2G) LGy, ) E(Gil):cv”l +Gin ZGyy, +2G1LGy,) 02 +2G/y Gy,
- € . € ' !

A
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1 .
_ exp{ofINi lapelap +Ag;>} with

G,5G, GIG, ..G\IG, | [G:EG,
Gi’ZEGr’Z Gl"ZEGiZ e Gi’ZEGfZ Gi’ZZGiZ

m _ >
fal
Gi,N LGy G:,N ):GiN, "G:’N LGy G,;v G,y
—G;]ZGI'] Gi’ZZGIZ "'Gl;V,ZGiN,—
GG, G.XG., .G LG ’
A =| T P T 2y [GIEG, GREGy, « Gy EGy, |
Gi’IZGil GI,ZZGI'Z"' G.;V,,):‘Gwi
—GI',]EGII Gi,IZGiZ GV,IZGIN, 1
GG GG, .G, G
Aflj) — i2 il i2 i2 i2 iN; =GI.ZGI-,
G, %G, G\ £G,.Gy 3G,y |
and
B [ . 1 , 7
eG"I);G“ eE(GEZXG|2+GiIZG|l) eE(G|IXG|l+Gi{\‘;ZGiNi)
1 .. ,
LG 56, +G6L36,) ,
5 Gt +0nshy G{,EG; 1 1
A,=|® ¢ =expi =AY +=AY b
2 2
%(G;|ZG|1+G;NEXGiN,) e%(G:ZZGiZ +G:N,XGZNi) eG;‘\‘iEGINx

We consider the sample and non-sample partition of covariance matrix as

o’ ’ Qim‘ Qixr o’ Ei:x O Am Ai:r Ei:x 0 ,
Q, =" [EAE]= =e”
Q' Q O Eirr Airx Airr O Eil'r

irs rr

a,

— ¢

2 EiA‘.YAiA‘J'Ei:‘: Ei:xAix:;Ei,l‘l‘
' ) 1 so that
E A E._EAE

nr irs 188 wr irr

Q. =e" [E AL E, ] with E, =diag{e" ;1< j<nfand A, = (A, —A,,).

iss iss Tiss sy
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iss2

1 .
Here A, , =exp< 0.1, +1A9) +—A® + AP Land A, =ex lAQ? +1A§,2\’ with
iss1 e n 2 iss| 2 iss1 iss] p 2 iss] 2 issl

G.ZG,

A:(\]\)1 = Gk G [ A:(xz\)l =1, |:G;12Gn G.ZG, ~-~G;,,ZG,',.,.:| and A.(::\-)l =G,XG,.
Gi’n,EGin,

Similarly,

Q.= e [EinAieri,rr] with E, = diag{ew""ﬂ;ni +1<j< Ni} and A, =A,,, —A,,,, where

1
Aisrl =eXxp {5 Al(sljl + %Afszr)l + A,('j,—)l} and AiJr2 =¢Xp {% AI(JIZI + %Afxzr)l} WIth

G.ZG,
AP = CXGin 1, A =1, [Gi’n,+lZGi11,+l G;n,+2ZGin,+2 "'GIIN,EGW,] » ALy =G,IG, -
Gi’n,ZGin,
o-uzl 0-1112
We assume that Var(u,)=X = , | then
o-ullo-uZ _
G EG, 1 G 16, T [o2+2G,0,,+Gic?
1=l i1 il ul i1“u12 i1%u2
’ 2 2 2 2
GiZZGr'Z _ 1 Giz . Ounz 1 Giz _ o-ul+2Gi20-ulZ+Gi20-u2
2
: 0,210,
/

Gm,.ZGin,. 1 Gin,- _1 Gfﬂ; o-uz[ +2Gin,- o-u12 + Gii,- 0-32

2

G, G

G-

_ 2 i2 2 i2

o-ul ln +2 0-1112 +o_u2
2
G"“, Gin
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This indicates that

2 2
Gil Gil Gil Gil
2 G2
W _| 452 i2 2 i2 N ’ i2 |4 P 2 |4r
Ai,w'l - O-ul 1;1, +2 Oun2 + Ou2 lN,»-n, O ln,lN[»n, + 20—1412 1N,»-u,» + O-u?_ lNFn,
2 2
Gi"r Gini Gi”i Gin,
4 i 4
2 2
G}/in, +1 Gin‘ +1 G,‘,.' +1 Ginﬁl
2 G2
2y _ 2 in+2 2 in,+2 _ 2 ’ in;+2 2 in,+2
Aixrl - 1n, O—ul lN,-n, + 2 0-1412 + 0-142 - O-ul 1n,1N,»ni + 20-“121,;, + O-u21n;
2 2
GN: GiN,, GiN, GiN,.
/ —
1 G,'] 1 ani+l i1 1 Gin,-+1
1G, | o o.,|!G .
3) _ _ i2 ul ul2 in;+2 _ 2 ’ i2 2 N/ ing+2
AiJrl - GisZGir - 2 - ln,»(o-ulo-ulZ) + (o-uzlo-ul)
o o-uzlo-uz
1 G, ,
n; 1 GiN,v G’"n‘ B 1 GiN,»
’ ~ ’
Gini+l G,'| in;+1
_ 1 217 + Gini+2 GiZ 1/ 2 Girl,~+2
Ty o-ul N;-n; Oun2 + 021 Ni-n; +o_u2
G
GiN,» 1 _GiN,-

The last term in ‘fitted value’ model (5.6) based model calibration weights (5.7) is

Ni-n,

i

-1 _ 00! ’ _ 60"}
QiinsrlN,-—n[ =e Qim (Eim‘AiJ‘rEirr)lNi—m =e QissEinAierir . Here
v, i+ vvy'n'+2 VV. i M
A =E 1, =(" Bl g ”'ﬂ)' is a vector of order (v, - ») . Consequently

Aier‘ir = (Aixrl - AiA'rZ)Eir = AisrlE‘ir _AierEir = Dl - D2 ¢ NOte that

2

il Gil

, : G

_ _ 2 ’ i2 ’ 2 i2

Dl - AixrlEir - o-ul 1n,-1Nf~n,, +20—u12 1Ni-n,» +o—u2
Gin G2
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and

in;+1

_ _ 2 ’ in;+2 2
- A E =0 1rL,»ll‘v’,.m,- + 20—1112 1n,» + 0-112111,»

ul

GiN»

i

are the vectors of order n, and thus can be easily evaluated.
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APPENDIX J

COVARIANCE MATRIX OF THE ESTIMATED VARIANCE

COMPONENTS IN CHAPTER 5

We shall illustrate the expressions to obtain covariance matrix of the estimated variance

components under random the slope specification of model (5.9). From section 5.3, we

write
ul2 ) A A2 2
s ](1 G,J.) -0'“1+20',112G1.j+0'u20[j

1
O—uZlo-nZ

>
>

2
u

G,X(O)G, =1 G U.)[
Var(s,,) = Var(6? + G,Z(6)G,) =Var(6? + 62, +26,,,G, + 6.,G})
=Var(8})+Var(6., +26,,,G, + 6.,G; ) +2Cov(6., 62, +26,,,G, + 6,,G;)

where
3.12G, +6.,G) = Var(6;)+4G;Var(6,,,)+G,Var(62,) +

Var(62 +26,,
A2 A 2 A2 A A~ ~
+4G,Cov(6},,6,,,)+2G;Cov(B,,,6;,)+4G Cov(8,,,,6,,)

and Cov(67,6), +28,,,G; +6.,G}) = Cow(8},62) +2G,Con(6?,6,,,) + G;Cov(6,6;,) »

A2 A
o, O-uIZ

ul
N

A and denote the vector of estimated variance components as
O-u210-112

Let X(8) :{

’

6‘3} . Then covariance matrix of estimated variance components is
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a2 2 a2 A2 oA A2 A2
Var(c Cov(6,,,6,,) Cov(6,,,6,,) Cov(d,,0,)

ul u

COV(OA-uzzoA-fl) Var(6;,) COV(OAszA-:lz) Cov(8,,8,)

e

Var(8) = =17().

y 2~ ~2 oS ~2 2 A ~2
COV(O_([Z’O- ) COV(O_ulZ’O-uZ) Var(o_ulz) COV(O_MIZ’O-e )

[z ul

A2 Al A2 Al A2 a2 ~2
Cov(6,,6,,) Cov(o,,6,,) Cov(b,,6.,) Var(o,)
To evaluate covariance matrix Var(0), we need to solve inverse of Fisher information
ss°

matrix 1(8), is defined as S = {S;} with §, zétr(ﬂ:ViP V.). Here,

P =V -V X (XV X)XV, ", with

EA) 58y s 55

2
2 ’ 2 O-ul O-uIZ ’
V,=0.1 +GX(O0)G =0,1 +G, , |G, ,and
0-11210-142
3 . when o’ =0’
V.= ngz ax i ,i=1,...,4.
d0; G, ~ |G, otherwise
d0;

This leads to

10, 0 00|, oV, 01] .,
v an._G[ JG“ V2=L: Gs[ }Gm V3=~_¢_:GS[ :IG“

:8051 “vloo do’, 01 90, 10
0
V4_ VS’J) n?
oo,
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=1'(5)=5".

~

Collecting the terms we get Var(d)
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APPENDIX K

REGION-SPECIFIC PERFORMANCE MEASURES FOR

SIMULATION SET-C IN CHAPTER 6

Figure K.1 Region-specific percentage relative biases and percentage relative RMSE for
simulation set-C
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Figure K.2 Region-specific coverage rates and confidence interval widths for simulation
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APPENDIX L

EMPRICAL BEST PREDICTOR OF SMALL AREA MEANS

We use the model based simulations to compare the performance of Empirical Best
Predictor (5.20, denoted by TrEBP) based on a log-scale linear mixed model (5.9) to the
TrMBD2, MBD1 and EBLUP methods of sméll area estimation. See chapter 5 and 6. The
set up of simulation experiment is similar to the simulations Set-A in chapter 6. In
particular, we choose N=15000 (and n=600) and randomly generated the small area
population (and sample) sizes N, (and n.=N,(n/N), izl,...,m=30),) so that
ZiN,, =N (and Zinf =n) and kept fix throughout the simulations. Similar to Set A,
population values of y, are generated for 30 areas from a multiplicative model
Vi = 5.0fo we; and then draw random samples of sizes n; from these areas. We choose
six values of £ (0.5, 0.8, 1.0, 1.3, 1.5 and 2.0). The random errors e, are independently
generated from a LN (0, 0, ). The random area effects u, are generated from LN (0,0, ).

The covariate values x; are generated from LN (6, 0, ). Remaining part of the simulation

is identical to simulation Set A. The results generated from these simulations (average

relative bias and average relative RMSE) are reported in Table L.1.
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Table L.1 Simulation results for Empirical Best Predictor (5.20).

y/i TrEBP TrMBD2 MBDI1 EBLUP
Average Relative Bias 0.5 -0.031 -0.026 11.897 13.762
0.8 0.156 0.100  5.503 6.767
1.0 0.132 -0.062  0.829 1.990
1.3 0.650 0.321 -4.611 -4227
1.5 0.714 0.563 -6.457 -6.263
2.0 1.492 1.523 -6.595  -6.466
Average Relative RMSEs 0.5 0.307 0.146  1.066 0.873
0.8 0417 0.263 1474 0.611
1.0 0.579 0.449 2.211 0.825
1.3 0.686 0513 2120 0.859
1.5 0.765 0.618 2.121 0.891
2.0 1.033 0.853  3.260 1.400

These results show the TrEBP for skewed data under the log-transform model dominates
the MBD1 and EBLUP. However, the TrMBD?2 method is superior overall. The average
relative biases of TrEBP are nearly same as the TrMBD2, however, average relative
RMSEs of TrMBD2 are consistently smaller than the TrEBP. Although the TrEBP
seems an alternative method to TrMBD2 but the mean squared error estimation is not
straightforward like TrMBD2. In terms of efficiency, the TrMBD?2 is more efficient. We

do not carry forward this approach in our thesis.
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