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IMPROVED DIRECT ESTIMATORS FOR SMALL AREAS 

by Hukum Chandra 

Improved direct estimators for small area estimation (SAE) are investigated and extended in 

this thesis. 

Unbiased direct estimators for small area quantities are usually considered too variable to 

be of any practical use. In this thesis we described a class of model based direct (MBD) 

estimators for small area quantities that appears to overcome this objection, in the sense that 

these estimators are comparable in efficiency to the indirect model-based small area 

estimators (e.g. empirical best linear unbiased predictors, or EBLUPs) that are now widely 

used. There are many practical advantages associated with such MBD estimators, arising from 

the fact that they are computed as weighted linear combinations of the actual sample data 

from the small areas of interest. In this case the weights 'borrow strength' via a model that 

explicitly allows for small area effects. One particular advantage that we explore in this thesis 

is that estimation of mean squared error (MSE) is then straightforward, using well-known 

methods that are in common use for population level estimates. Empirical results show that 

the MBD estimator represents a real alternative to the EBLUP, with the simple MSE 

estimator associated with the MBD estimator providing good coverage performance. Further, 

our results indicate that the MBD estimator may be more robust than the EBLUP when the 

small area model is incorrectly specified. 

We extended the MBD approach to multipurpose SAE. Our results indicate these 

multipurpose weights are efficient across a range of variables, including variables that are ill

suited to EBLUP, e.g. variables that contain a significant proportion of zeros. We also show 

that these multipurpose weights remain efficient across a wide range of variables, even 

variables that have not been used in the definition of the multipurpose weights. We also 

extended the MBD approach to SAE for skewed data where the linear model provides poor fit 

and standard methods of small area estimation are inefficient. The proposed method based on 

the log-log transform model with random effects show significant gains in small area 

estimation. 
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CHAPTER! 

INTRODUCTION 

1.1 Introduction 

Small area estimation plays a prominent role in survey sampling due to growing 

demands for reliable small area statistics from both public and private sectors. The use 

of small area statistics have existed for a long time. The existence of the Domesday 

Book in eleventh century England and in the seventeenth century Canadian small area 

data based on the 1666 census is described in Brackstone (1987). In those early days 

the small area statistics were based either on a census or on administrative records. In 

either case the process relies on the complete enumeration of the domain of interest, 

no sampling is involved. However, for the past 40 years, sample surveys have been 

recognised as a mean for providing efficient and cost-effective national and sub

national estimates at frequent intervals and consequently, for most purposes, have 

replaced the complete enumeration. 

Sample surveys, whether they are conducted by government organisations or by 

private entities, aim to produce reasonably accurate direct estimators, not only for the 

characteristics of whole popUlation but also for a variety of sUbpopulations or 

domains. These direct estimators are based on domain specific sample data. However, 

many policymakers and researchers also want to obtain statistics for small domains. A 

domain is regarded as 'small' if the domain-specific sample is not large enough to 
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SUpp0l1 a direct estimator of adequate precision. In other words, the estimator is likely 

to have a large standard error due to the small size of the sample in the domain 

(Ghosh and Rao, 1994). These small domains are also called small areas, so called 

because the sample size in the area or domain from the survey is small. Thus, we need 

special methods to estimate the characteristics of these small areas, referred to as the 

small area estimation techniques. 

1.2 Small Area Problem and Associated Estimators 

Each small area typically denotes a subset of the population for which very little 

information is available from the sample survey. These subsets refer to a small 

geographic area (e.g., a county, a municipality, a census division etc.) or a 

demographic group (e.g., a specific age-sex-race group of people within a large 

geographical area) or a cross classification of both. A small area can be any pat1 of the 

population defined by any method of stratification. The statistics related to these small 

areas are often termed as small area statistics. The term small area and small domain 

are interchangeably used in the literature. 

In recent years, many countries in the world are transferring the responsibilities for 

many social and economic policies from national governments to the local 

governments. Policy planners want to make sure that resources are targeted 

effectively and efficiently at the at-eas most in need and for the evaluation of the 

success of this targeting at a local level, they need reliable small area statistics. The 

private sector also needs small area statistics for policy making since many businesses 

and industries rely on local socio-economic conditions. Feasibility studies, for 
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example, require the use of small area statistics. Small area estimates can be made 

available from various censuses of population, businesses, housing and agriculture. 

However, the demand for small area estimate also exists for the intercensal period 

when data usually come from sample surveys. 

Due to the increasing demand, survey organizations are faced with producing the 

small area estimates from existing sample surveys. Unfortunately, sample sizes in 

small areas tend to be too small, sometimes non-existent, to provide domains specific 

reliable direct estimates for these small areas. In other words, for small domains 

(small in terms of sample size), the domain specific usual design-based direct 

estimates (see section 2.2) are too unstable to be used for planning and policy-making 

purposes as they are likely to produce unacceptably large standard errors due to the 

small sample size. Accurate direct estimates for small areas would require a 

substantial increase in the overall sample size which in turn could overwhelm an 

already constrained budget and which could fm1her lengthen the data processing time. 

Consequently, there has been growing interest in developing a range of estimation 

techniques to answer this need for small area statistics without further burdening the 

resources of already constrained survey organizations. 

Small area estimation (SAE) methods look at producing estimates with adequate 

precision for such small areas or domains, through an estimation procedure that 

'borrows strength' from related areas or time periods (or both) and thus increase the 

overall (effective) sample size and precision. These estimation procedures are based 

on either implicit or explicit models that provide a link to related areas or time periods 
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(or both) through the use of supplementary data (auxiliary information) such as recent 

census counts and current administrative records, see Pfeffermann (2002). 

The traditional estimation techniques based on implicit linking models are synthetic 

and composite estimation methods. In these methods, an unbiased estimator for a 

large area is used to derive estimators for smaller areas under the assumption that 

these small areas exhibit the same structure (with regard to the phenomenon being 

studied) as the initial large area. If this condition is not met, the result could be biased 

estimators. 

We notice that the usual design-based direct estimators based on the area-specific 

sample data are unbiased but in general not very precise. The traditional indirect 

(synthetic) estimators obtained through the use of auxiliary information have smaller 

variance but are generally biased. Statistical theory of SAE proposes a way of 

combining both estimators in a linear fashion so that the resulting estimator represents 

a compromise between the absence of bias and minimal variance. The resulting 

composite estimator is the linear combination of the direct and indirect estimators that 

minimises the mean squared error (Ghosh and Rao, 1994). 

The traditional indirect estimators such as synthetic and composite estimates have the 

advantage of being simple to implement. In addition, these estimation techniques 

provide a more efficient estimate than the corresponding design-based direct estimator 

for each small area through the use of implicit models which 'borrow strength' across 

the small areas. These models assume that all the areas of interest behave similarly 

with respect to the variable of interest and do not take into account the area specific 
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variability. However, we can find situations where validity of assumed model fails 

leading to a biased estimator. Consequently, explicit linking model which incorporate 

random area-specific effects that account for between area variation beyond that 

explained by the auxiliary variables included in the model provides a better approach 

to SAE. These random area effects in the mixed model capture the dissimilarities 

between the areas. In general, estimation methods based on an explicit models are 

more efficient than traditional methods based on an implicit model. The explicit 

models used in SAE are a special case of the linear mixed model and are very flexible 

in formulating and handling complex problems in SAE. However, availability of good 

auxiliary information and the determination of a suitable linking model is crucial. In 

this thesis, our emphasis will be on mixed model based SAE methods. See Saei and 

Chambers (2003) and Jiang and Lahiri (2006), among others, for an extensive review 

of SAE based on mixed models. The related references for comprehensive review on 

SAE methods are Ghosh and Rao (1994), Pfefferman (2002) and Rao (1999, 2003). In 

chapter 2 we shall return with a brief outline of some of the important SAE techniques 

existing in the literature. In this chapter we shall also elaborate some analytical 

expressions to illustrate different SAE methods. 

1.3 Motivation and Aim of the Thesis 

Several methods for SAE have been proposed in the literature. However, research is 

still continuing on the impOliant problem of identifying SAE techniques that are 

efficient and also simple to implement, with estimation of mean squared error (MSE) 

a pmiicular problem. The model-based predictive approach or empirical best linear 

unbiased (EBLUP) approach under mixed effect models is very common and proven 
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to be efficient for the SAE. Prasad and Rao (1990) using results obtained from Kackar 

and Harville (1984) developed approximations to the MSE of the EBLUP which 

account for variability due to estimation of the variance components. They also 

obtained nearly unbiased MSE estimators under normality. However, in this EBLUP 

approach, survey weights have got little or no relevance. Consequently, many 

practical advantages of weighted linear estimation are lost. Perhaps the most 

important of these is the simplicity of the estimation process. The calibrated 

weighting approach to SAE introduced in Chambers (2005) defines the model-based 

direct estimator for small area quantities, with a simple estimator of the mean squared 

error of this estimator. The simplicity and ease of implementation of this approach 

motivated us to undertake this detailed study. 

The main aim of this thesis is to study the model based direct (MBD) estimation 

method of Chambers (2005) and compare it with the EBLUP method (Prasad and 

Rao, 1990), and to extend the MBD approach to multipurpose small area estimation 

and to small area estimation for skewed data. 

1.4 Outline of the Thesis 

This thesis is organised in seven chapters. The present chapter has provided an 

overview of the impOltance and need for small area statistics. It has also indicated 

issues and challenges in SAE. In addition, our motivations and the aims of our 

research topic have been summarized in previous section. The remaining Palt of this 

thesis is organised as below. 
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Chapter 2 of the thesis presents the review of some of the important SAE techniques, 

emphasis has been given to the mixed model based SAE methods. Fm1her, a brief 

discussion on some recent developments in SAE methods is outlined. In addition, the 

gaps existing in the literature that this thesis study intends to address are discussed. 

This chapter prepares the foundation for the other chapters. 

Chapter 3 introduces the calibrated weighting approach in SAE. The model-based 

direct (MBD) estimators for small areas are defined. This approach uses sample 

weights derived from a population level version of the mixed effects model to define 

weighted linear small area estimators as well as a simple expression for their mean 

squared error. An empirical result using Australian Agricultural and Grazing Industry 

Survey (AAGIS) data is rep0l1ed, which evaluates the performance of the empirical 

best linear unbiased predictor (EBLUP) and the MBD methods of SAE. Further, 

robustness of these SAE methods under model misspecifications is examined. 

Fm1hermore, some discussion on practical issues to provide an argument that supp0l1s 

our empirical results is included. The results of this chapter also appear in Chandra 

and Chambers (2005, 2006c, 2006d) and Chambers and Chandra (2006). 

Chapter 4 presents the SAE techniques in context of multivariate surveys. The 

multipurpose sample weights for SAE are introduced. The MBD estimators for small 

areas using multipurpose weights are described. Theoretical aspects on how such 

mUltipurpose sample weights can be constructed when small area estimates of more 

than one survey variable are required is discussed. An empirical result using AAGIS 

data is rep0l1ed to examine the performance of proposed multipurpose SAE method. 

In addition, an empirical illustration is presented to see how much efficiency (if any) 
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is lost if the linear assumption based MBD estimation is applied to the categorical 

variables. The suitable estimator in this case is the indirect estimator under a 

generalized linear mixed model. Application of the MBD method to categorical data 

is examined and the performance is evaluated against the indirect estimator via 

simulation studies. The main results of this chapter are also reported in Chandra and 

Chambers (2006b). 

In chapter 5 and 6 we have addressed the issues related to SAE for business surveys 

where the data are skewed, and linear models provide a bad fit. Chapter 5 focuses on 

theoretical development for SAE methods with skewed data. A transform variable 

based SAE method is develop for skewed data that is linear on the log-log transform 

scale. The MBD estimators for small areas are derived under a log-log linear mixed 

model. In deriving these methods both normal and gamma distribution for the random 

errors are assumed. 

Chapter 6 is devoted to simulation studies that evaluate the performance of the 

different methods of SAE for skewed data proposed in chapter 5. Two types of 

simulation studies are considered. The first type of study uses model-based simulation 

to generate data. These data are then used to contrast the performance of proposed 

MBD estimators for skewed data derived under a log-log linear mixed model with the 

MBD and EBLUP under a linear mixed model. The robustness of these SAE methods 

is also examined under the model misspecification. The second type of simulation 

study was carried out using real data (AAGIS data) and design-based simulations to 

test these methods in the context of a real population and realistic sampling methods. 
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The results from chapter 5 and chapter 6 also appear in Chandra (2006) and Chandra 

and Chambers (2006a). 

Finally, chapter 7 provides the summary of main findings and conclusions of this 

research. In addition, some possible further research topics are suggested. 
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CHAPTER 2 

OVERVIEW OF SMALL AREA ESTIMATION TECHNIQUES 

2.1 Introduction 

In chapter 1 we briefly described the need of small area data and the problem of small 

area estimation (SAE). In this chapter we review some of the important and 

commonly employed methods of SAE existing in the literature. This chapter prepares 

a foundation for the proceeding chapters. The chapter is organised as follows. The 

direct, synthetic and composite methods of small area estimation are illustrated in 

sections 2.2-2.4 respectively. Section 2.5 is devoted to the application of mixed effect 

models in small area estimation with attention to unit level random effects model. In 

section 2.6 and 2.7 we introduce and discuss some recent developments in small area 

estimation such as the pseudo-EBLUP approach and model-based direct estimation. 

Section 2.8 elaborates some further extensions of the mixed effect model to small area 

estimation. Finally, section 2.9 summarizes the key points from this chapter. 

2.2 Direct Estimators 

As noted in the previous chapter, in many cases existing large national sample surveys 

are also used to produce estimates for domains (these can be planned or unplanned) of 

the population. When sample sizes are small these domains are called small areas. 

That is an area is regarded as small if the sample drawn from the area is not large 
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enough to yield direct estimates of adequate prevision. The estimation method defined 

for large domain or population level quantities becomes impossible to apply, mainly 

because sample sizes are typically small or even zero in some small areas of interest, 

so the direct estimates (i.e. domain-specific estimates) tend to be quite unstable. The 

direct estimates use the data on the survey variable from the domain of study and time 

of interest. For example, suppose a linear estimator based on sample weights 

{ W j ; j E s} is used to make inference about population level quantities. Here, s 

denotes the sample of size n drawn with sampling design pes) from a population 

v ={1, .... ,N} of size N. Further, if lr =". pes) are the first order inclusion 
) ~JES 

probabilities then Wj = lrjl defines the design weight of element j. Under simple 

random sampling, lrj = nN-1 and Wj = Nn- I 
• Let a sUbscript of i denote restriction to 

small area i (i = I, .... , m) . We assume that the population consists of m non-

overlapping domains or small areas V; each with population of size N; such that 

V = U;:I U; and N = I::I N; . Let s; be the part of the sample of size n; that falls in 

small area i and n = I::I n; . We denote by Yij the value of /h population unit in 

small area i for the characteristic of interest Y. The population mean of Y in the area i, 

Y = N- 1
". y. could be then estimated using the same weights leading to estimator 

I I ~JEUi ) 

A.. ( )-1 ( ) Y
-H(ljek _ 

. - W W . 
I IjES; J IjES; JYJ 

(2.1) 

or, if the population size N; of the small area i is known, 

Y =N W . -"'-HT -I (I ) 
I I jE~ JYJ 

(2.2) 

The estimators (2.1) and (2.2) are sometimes referred to as direct estimators of small 

area i mean r; . More precisely, the estimator (2.1) is referred as the Hajek type of the 
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direct estimator, and (2.2) as the Horvitz-Thompson (HT) type of the direct estimator. 

These names refer to alternative approaches to estimating finite popUlation means in 

the classical sampling literature, see Cochran (1977) and Sarndal, Swensson and 

Wretman (1992). Irrespective of which form of direct estimator is used, it is easy to 

see that its variance can be large when the area sample size n; is small. For example, 

under simple random sampling, with no auxiliary information, a design-based direct 

estimator of the mean of Y for small area i (Y = N- 1 
'" y. ) is 

I I LjEu
i 

.I 

if n; ~ I 

otherwise 

(2.3) 

where y. = '" w.y./'" w = '" Nn-1y./'" Nn- I =n~I'" y. is sample mean 
t LSI ) J LSi J LSI ) LSi I L jEsi J 

of Y in area i. The estimator (2.3) is conditionally unbiased for a fixed n; ~ 1 since 

E (Y) = E (-)1.) = E [E (y- In)] = E (Y) = Y . 
pip I III P I I III I I 

The conditional variance of (2.3) is 

(2.4) 

with F = nlN and 52 = (N _1)-1'" N, (y. - y-.)2, N ~ 2. Here E and Varl) denotes 
J i I I I I L I=-l ) I f P 

the expectation and variance respectively under the design-based! approach. An 

unbiased estimator for 5;2 is S;2 = (n; _1)-1 I jES; (Yj - YY . Thus, an unbiased 

estimator for variance (2.4) is given by v(~ I n) = n;-I (1- J: )S;2 when N; is known. 

1 In the design-based approach, an estimator T of T is said to be design-unbiased (or p

unbiased) if the design expectation of T equals to T i.e., Ep (f) = I p(s)i; = T, where the 

summation is over all possible samples s under the specified design and T, is the value of T 
for the sample s. In this approach, the popUlation is fixed and the only randomness or 
stochastic process involved is the selection of random samples. No distribution and no model 
is involved, and expectation is over all possible samples from the population. 
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For unknown M, the sampling fraction h = nj / N j is replaced by f = n/ N and then 

the estimator for variance (2.4) is v(~ I nj) = (1- 1) Sj2/ nj . 

From (2.4) it is obvious that for small sample size n j , the variance will be larger 

unless the variability of the Y values is sufficiently small. Suppose that in addition to 

survey variable Y, values of p-auxiliary variables are also known. Let us denote by xij 

a p x I vector of auxiliary variable X for the unit j in area i. Then with known 

auxiliary information, a more efficient design-based direct estimator for the ith small 

area mean ~ is the regression estimator defined as 

y reg _ - (X - )' R 
j - Yj + j - Xj pj 

(2.5) 

where /3, is the vector of regression coefficients III area i, x = n:-I". xJ' and 
I I ~JESi 

X = H.-I" N, x. are the sample mean and population mean of auxiliary variable X in 
I 1 ~J:;;::;l } 

the area i respectively. The variance of (2.5) is 

(2.6) 

where Pj is the multiple conelation between survey variable Yand auxiliary variables 

X in area i. An estimate of variance (2.6) is then v(~reg I n) = (I - pj2 )(1- h) Sj2 / nj . 

From (2.6) we notice that by use of auxiliary variables, the variance is reduced by the 

factor (I - pj2). This indicates that use of good auxiliary information, in the sense of 

high conelation with survey variable Y, increases the accuracy in SAE. However, the 

problem with the regression estimator (2.5) is that in practice the regression 

coefficients /3, are seldom known. Replacing /3, by its ordinary least square (OLS) 
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estimates ~ is not effective because of small sample sizes in each area i. See Cochran 

(1977) and Sarndal, Swensson and Wretman (1992). A large enough sample size to 

support direct estimation for all areas of interest rarely exists. Budget and other constraints 

usually prevent drawing sufficiently large samples from each small area. Often these small 

areas are defined after the survey has been canied out. The problem is therefore how to 

produce reliable estimates of characteristics of interest for small areas and how to assess the 

estimation enor with these small sample sizes. This sensitivity to sample size has led 

many researchers to refer to the theory that has been developed to overcome this 

problem as the theory of small area estimation (SAE). SAE is based on model-based 

methods. The idea is to use statistical models to link the variable of interest with 

auxiliary information, e.g. census and administrative data, for the small areas. 

Note that in the case of a design-based estimator, the estimate produced is unique to 

each individual small area under consideration. The estimate is unbiased for that area, 

in the sense that, under repeated sampling the mean of successive estimates will tend 

towards the true value. In contrast, a model-based2 estimator utilises auxiliary 

information to produce an estimate of the target variable that is applicable to all small 

areas that share similar characteristics. Thus, if two small areas have exactly the same 

auxiliary information, exactly the same estimate will be produced for each by the 

model-based procedure. 

2 In the model-based approach, the population is random and expectation is under the model 
i.e., over all possible populations drawn from an assumed model. Here, only one sample is 
drawn from each population but every time we generate one new population from the model. 

An estimator T of T is said to be model-unbiased (or ~-unbiased) if EqcT-T)=O. In this 

approach T is also a random variable, not fixed like the design based approach, so expectation 

is taken for (T - T) under the model, i.e. we cannot write E,(T) = T . However, in the design-

based approach we can also write Ep(T - T) = 0, since T is fixed quantity in this case. Further, 

model based SAE methods depend on assumptions e.g., normality and these should be tested. 
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When the sample size for each small area is sufficiently large to give reasonably 

accurate estimates, the design-based direct estimator is the most desirable. However, 

as the sources of data are usually sample surveys designed to produce larger or higher 

level statistics, sample sizes for the small areas are usually small. Consequently, the 

associated variances of these estimators are likely to be unacceptably large. Therefore, 

for estimating the small areas, it is necessmy to employ the estimation methods that 

'borrow strength' from related areas. These estimators are often referred as the 

indirect estimators since they use values of survey variables (and auxiliary variables) 

from other small areas or times, and possibly from both. They borrow information 

(data) from other small areas or times (or both) by use of statistical models either 

based on implicit or explicit models that link related small areas through auxiliary 

information. This auxiliary information can be values of the variable of interest in 

other similar areas, values of this variable in the same area in the past, or values of 

other variables that are related to the variable of interest. However, the effectiveness 

of the approach depends on the strength of the relationship between the survey 

variables and the auxiliary variables, and the closeness in the behaviour of the data 

between different areas or over time. A good model is important but the availability of 

auxiliary information related to the survey variable is also crucial for small area 

estimation. Further, the smaller the small area sample size, the more important is the 

auxiliary variables. Furthermore, model diagnostics are velY important for the model

based methodologies since misspecification of the model may induce bias, see 

Pfeffermann (2002). 
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2.3 Synthetic Estimators 

In producing the synthetic estimates for small areas, availability of direct estimates for 

a set of larger domains of the population is assumed. Appropriate weights or 

proportions are then applied to these large population domain estimates to obtain the 

desired small area estimates. This class of estimators implicitly assumes that small 

areas which are being considered are similar, in some sense, to some larger areas 

which contain them and for which the reliable direct estimate is available. The 

synthetic estimation procedure was first used by the United States National Centre for 

Health Statistics (NCHS) for estimation of long and short-term physical disabilities 

based on the National Health Interview Survey (1968). 

Over time, several definitions and descriptions of synthetic estimation have been 

given in the literature. 

Gonzales (1973) described synthetic estimator as one in which an unbiased estimator 

of a large area is used to derive estimates for subareas under the assumption that the 

small areas have the same characteristics as the larger areas. Holt, Smith and 

Tomberlin (1979) defined it as the method of borrowing information from related sub

areas in order to increase the effective sample size for estimation and hence the 

accuracy of the resulting estimates. Pfeffermann (2002) stated that the term 

'synthetic' refers to the fact that an estimator computed from a large domain is used 

for each of the separate areas comprising that domain, assuming that the areas are 

'homogeneous' with respect to the quantity that is estimated. Thus, synthetic 

estimators already borrow information from other 'similar areas'. 
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Gonzalez and Waksberg (1973) and Levy and French (1977) developed the statistical 

properties of the synthetic estimator such as its variance, bias and mean squared error 

and methods of estimation for these parameters. Purcell and Linacre (1976) in their 

empirical studies developed synthetic estimates of income and work force status for 

Australian Census Statistical Divisions at the Australian Bureau of Census. Synthetic 

estimation has extensively been used and found wide acceptance because of its 

simplicity and intuitive appeal. However, at the same time it was recognised that it is 

a crude method for SAE and needs further improvement. 

In synthetic estimation (a scale down approach), we assume availability of reliable 

direct estimates T
Yf 

= '2.~~/y,g for the totals of larger group or class g(g =1, .... ,G) 

that encompass the small areas i (i = 1, .... , m) for a given survey, where T, is the 
}'f 

estimate of population total (Ty" = '2. ~=1 Yiig ) of Y in the (i, g Y" cell with population 

of size N ig • Here Yjig is the value of unit j(j = 1, .... , N ig ) for variable of interest Yin 

the ceIl (i, g) . From the available estimates for population Tv ' estimates of ., 

population means for group g are obtained as Yg = ('2.::1 ~,g )/('2.::1 Nig ) = Tyg 1 Ng . 

A suitable auxiliary information available from a census or some other source is used 

to compute a series of weights or proportions Wig such that '2. g Wig = 1. The weights 

Wig are then applied to the group means to derive the synthetic estimator for the til 

small area mean Y as ysyn = ",G W Y . This estimator is referred to as the design-
I 1 ~g=l 19.9 

based synthetic estimator. See Gonzales and Hoza (1978). Skinner (1993) referred to 

this approach as simple synthetic estimation. 
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The synthetic estimator proposed by Gonzales and Hoza (1978) and elaborated by 

Holt, Smith and Tomberlin (1979) uses the weights Wig from the census or some other 

sources of accurate information. They suggested the weights based on the population 

size and assumed that the population Size Nig and weights Wig = Nig I Ni., 

N = '" N with '" w = 1, are known from a previous census or some other 
l. Li Ig ,L..;g 19 

source. Then the synthetic estimator for the mean of Y in small area i is 

~'}Il = 2:~)Nig I NJYg • Purcell and Kish (1979) and Ghosh and Rao (1994) 

propose a different series of weights Wig = t,g Ifr, such that 2:i Wig = 1 but 

'" w ::1= 1. Here f = '" N" x.. and fx .... = "',I~_'I f.,.,., are the estimates of population Lg 19 -'if; Lj~l Jig ~ L 

total of X in cell (i, g) and the totals of X in larger group g respectively. The 

synthetic estimator of the mean of Y for small area i is ~SYIl = L~=I (ix,g Ifx, ) Yg . 

Rao and Choudry (1995) suggested the use of a ratio synthetic estimator, a 

modification of the earlier method used by Gonzales and Hoza (1978). The ratio 

synthetic estimator for the population total of Y in small area i is i~YIlR = RT . They 
); 1 Xi 

assumed that area i population ratios R = T. IT , Ty = '" N, Y and Tx = '" N, XJ' 
I ); ~ i LJ=l } i LJ=1 

respectively being the population total of the characteristic of interest Yand covariate 

X for the i'h small area, are homogeneous. Thus, Ri = Ru = Ty IT" where Ru ' Ty and 

T, are the values for the whole population. Here Ru is estimated by Ru = 51 IX: , 

where 51 and x are the overall sample means. We use a subscript of U to denote the 

population level quantities. 

18 



The design-variance (or p-variance) of a synthetic estimatori)~YIl of the population 

total of Y in small area i (of order O(1/n)) will be small relative to the p-variance of a 

direct estimator i\~' (of order O(l/n;)) because it depends on the precision of direct 

estimators at a large area level. This variance can be estimated using standard design-

based methods but it is more difficult to estimate the MSE of i211 because it is hard to 

estimate the bias. See Ghosh and Rao (1994). The mean squared error (MSE) of 

design-based synthetic estimators i;'YIl for the population total of Y in small area i is 

MSE (is)'ll) = E (is),1l _ i d )2 _ Val' (is)'1l _ i d ) + ~ (is)'ll) 
P)'/ P)'/)'I P)'I y/ arp Yi 

(2.7) 

where ~~: is a design unbiased direct estimator for the {h small area population total 

of Y and subscript of p denotes the operation under the design, see Rao, 2003, page 

52. Under the assumption of Cov" (i;: ,i;,'/) = 0, an approximately design-unbiased 

(or p-unbiased) estimator of (2.7) is 

m e(iS}Il) = (is)'1l i d )2 _ v(i s)'1l _ i d ) + (iSYIl) 
S Yi )'/ Yi Yi Yi V Yi 

(2.8) 

"" (is)'1l _ i d )2 _ v(i d ) 
y, y, )" 

where v(i;') is a design-unbiased estimator of Val'" (~~) t. The variance Val'" (~~:) 

can be readily estimated by v(iy~') , but it is difficult to estimate bias of ~~Yll . This MSE 

estimator is approximately p-unbiased, but is very unstable and can take negative 

values (since v(i)~YIl)« v(i)~) ). Consequently, it is customary to average these 

estimators over different small areas belonging to large area to obtain a global 

estimator of MSE
p 

(i)~YIl )(Gonzalez, 1973). This average MSE estimator is expected 

to be stable, but it is not an area-specific measure of accuracy (Rao, 2003, chapter 4). 

t The variance estimator vCTJ is design-unbiased (or p-unbiased) for VarCT) if EplvCTJ] '" VpCTJ . 
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We now turn to model-based synthetic estimation. Let us consider the regression 

model of the form 

(2.9) 

where Yij is value of variable of interest for the /' (j = 1, ... , n) unit in the small area 

i(i=l, .. ,m) and xijis the px1 vector of auxiliary variables, jJ is a px1 vector of 

regression coefficients. The error term eij is often assumed to be normally distributed 

with mean zero and variance (52. With this notation, and under model (2.9), two 

indirect estimators for small areas are defined. 

The regression synthetic estimator for the mean of Y in small area i is defined as 

(2.10) 

where x = n-:-l" x. and X = N-1" x. are the sample and population means 
I I ~jESi ) I I L,.;jEUi J 

for the auxiliary variables X in area i. Here J; IS the full sample estimate, i.e. 

calculated using data from entire areas. The regression synthetic estimator (2.10) uses 

the same value of J; in all small areas and thus the different from direct regression 

estimator (2.5). However, the regression synthetic estimator (2.10) can be calculated 

only when a small area has sample data. 

For the areas with no sample data, the model-based synthetic estimator of the mean of 

Y for small area i, ~ is defined as 

Y MSYIl = X 'fJA 
, I 

(2.11) 

The estimator (2.11) will be very efficient when small area i does not exhibit strong 

individual effect with respect to the regression coefficient. For a single auxiliary 
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variable (under model (2.9) with no intercept), the estimator (2.11) is the same as the 

ratio-synthetic estimator ~SYI1R = 5( (~ / Xu) = 5( Cy / x), where ~ and Xu are the 

estimators for the population total of Y and X respectively. 

The model (2.9) uses unit level auxiliary information at small area level, but one can 

use the area-level regression models when only at small area level auxiliary 

information is available. See Skinner (1993). Erickson (1974) applied the area level 

regression methods for the estimation of local area population change. This approach 

has been referred as 'the sample regression method' in Purcell and Kish (1979). Holt, 

Smith and Tomberlin (1979) incorporating the implicit assumption of the synthetic 

estimators Y;'YI1 derived the modified synthetic estimator under a simple one-way 

fixed effect analysis of variance model, referred as the prediction-synthetic estimators. 

For N ig »l1ig , this estimator leads to a design-based synthetic estimator. Laake 

(1979) showed that the variance of the prediction synthetic estimator is smaller than 

that of the design-based synthetic estimator. 

Synthetic estimation, apart from the ease of calculation, addresses the issue of the 

small sample size by borrowing the strength from larger areas, and has prominent 

advantage due to its variance reduction. However, it can sometimes lead to severe bias 

if the assumption of homogeneity within the larger domain is violated or the structure 

of the population changed since the previous census. Also, unless the grouping 

variables are highly correlated with the variable of interest, the synthetic estimators 

fail to account for local factors. 
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2.4 Composite Estimators 

Gonzalez and Waksberg (1973) and Schaible, Brock and Schnack (1977) compared 

the synthetic and design-based direct estimator for small areas and concluded that 

when area sample sizes are relatively small the synthetic estimator outperformed the 

simple direct, whereas, when the sample sizes are large the direct estimator 

outperformed the synthetic. Thus, as the sample size in a small area increases, a direct 

estimator becomes more desirable than a synthetic estimator. This is true whether or 

not the sample was designed to produce estimates for small areas. These results 

motivated the use of a weighted sum of direct estimator (with small or no bias but 

larger variance) and synthetic estimator (with small variance but possibly large bias) 

as a desirable alternative than choosing one over the other. This weighted estimator is 

termed as the composite estimator. 

The composite estimators are of interest because they permit trade-off among the 

advantages and disadvantages of direct and synthetic estimators through their 

weighted combination. In fact, many estimators both design-based and model-based 

referred to by different terminology can also be regarded as composite estimators. See 

for example Battese, Harter and Fuller (1988). 

In general, the composite estimator for the population total of Y in small area i is 

defined as 

i c = EfIrd + (1- EfI. )i SYIl 

h ~ ~ ~ ~ 
(2.12) 
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where f~l is the direct estimator and f:YIl is the synthetic estimator for the population 
), ., 

total of Y for small area i, and ¢{ (0 S; ¢{ S; 1) is a suitably chosen weight. The estimator 

(2.12), a weighted sum of two component estimators can have a mean squared error 

(MSE) smaller than that of either component estimator when an appropriate weighting 

scheme is used. However, deriving the optimal weighing has generally been a 

challenging problem in SAE since these estimators are surprisingly sensitive to poor 

estimates of the optimum weight. Ideally, the weights should be selected as to 

minimise the MSE but this is problematic since the MSE of the synthetic estimator is 

generally unknown because of its bias (Pfeffermann, 2002). 

Several methods of weight selection have been proposed in the literature. Schaible 

(1978) assigned the weights of each component proportional to the inverse of its MSE 

and then the two component weights normalised so that they sum to unity. Purcell and 

Kish (1979) suggested the use of a common weight which minimizes the average 

MSE. However, use of a common weight is not recommended when the individual 

variances vary considerably. Drew, Singh and Choudry (1982) proposed a sample size 

dependent (SSD) estimator that has the form of the composite estimator with ratio 

type direct and ratio type synthetic estimator, with simple weights, dependent on 

domain counts. An alternative estimator termed as the "Dampened regression 

estimator" was suggested by Sarndal and Hidiroglou (1989). Lui and Cumberland 

(1989, 1991) proposed a model-based approach to derive the optimal weight. See 

Ghosh and Rao (1994), Marker (1999), Rao (2003) and Schaible, (1978) for several 

possible weight choices proposed in the literature of SAE. 
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2.5 Mixed Models in Small Area Estimation 

The traditional indirect estimators such as synthetic and composite commonly lead to 

more efficient estimators than the corresponding design-based direct estimator for 

small areas through the use of the implicit models which 'borrow strength' across the 

areas. These models assume that all the areas of interest behave similarly with respect 

to the variable of interest and do not take into account the area specific variability. 

However, in the situation where the validity of the assumed model fails, it leads to a 

biased estimator. That is area specific variability typically remains even after accounting 

for the auxiliary information. This limitation is handled by an alternative estimation 

technique based on an explicit linking model, which provides a better approach to 

SAE by incorporating random area-specific effects that account for the between area 

variation beyond that is explained by auxiliary variables included in the model. An 

area effect indicates how different one area is from another after allowing for 

differences in their auxiliary variable distributions. Estimating the effect for a 

particular area requires using data from all areas and not just the data from the 

particular area and thus increases the effective sample size for that area (this is known 

as borrowing strength across the areas). Consequently, the estimators based on such 

models are more efficient than traditional indirect estimators. The mixed effect model 

based SAE has received a considerable importance in the last two decades due to a 

number of advantages. These methods make specific allowance for local variation 

through complex error structures, models can be validated from the sample data and 

methods can handle complex cases such as cross-sectional, time series and 

multivariate data. Note that use of these model dependent methods overcomes the 
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problems encountered with design-based methods but at the expense of making 

further assumptions that need to be tested carefully. 

Several methods for SAE based on the nested elTor regression model (Battese, Harter 

and Fuller, 1988), the random regression coefficients model (Dempster, Rubin and 

Tsutakawa, 1981) and the simple random effects model (Fay and HelTiot, 1979) as 

special cases of the mixed model have been proposed in the literature. The estimators 

based on such models, include empirical best linear unbiased prediction (EBLUP), 

empirical Bayes (EB) and hierarchical Bayes (HB) estimators. Based on the level of 

auxiliary information available and utilised, two types of random effects model for 

SAE are described in the literature. The area level random effect model which uses 

area-specific auxiliary information (Fay and HelTiot, 1979) and unit level random 

effect model which uses the unit level auxiliary information (Battese, Harter and 

Fuller, 1988). These are special cases of the linear mixed model, usually refelTed as 

area level and unit level small area models. See Pfefferman (2002), Rao (1999, 2003) 

and Saei and Chambers (2003). 

2.5.1 Unit Level Random Effect Models 

Battese, Harter and Fuller (1988) proposed and applied a nested error unit level 

regression model in the context of predicting mean acreage under corn and soybean 

crops in 12 counties (small areas) of the state of Iowa in the United States using 

LANDSAT satellite data in conjunction with survey data. Their model is of the form 

(2.13) 
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where as in (2.9) Yij denotes the value of variable of interest for j'h (j = 1, .... , nJ 

sampled unit in area i(i = 1, .... , m) , xi) is a p x 1 vector of unit level auxiliary 

variables, /3 is a p x I vector of the unknown fixed effects, ni is the number of sample 

units in area i, ui is the area specific random effect associated with area i with mean 

zero and variance (l,; , and eij is individual level random error with mean zero and 

variance (l~. The two error terms are mutually independent. The random error ui 

represents the joint effect of small areas that are not accounted for by the auxiliary 

variables, also known as the model enor for area i. The normality of ui and ei) is 

often assumed. The model (2.13) assumes that samples are drawn independently 

across small areas according to a specified sampling design so sample design within 

small areas is ignorable. The model (2.13) also holds for non-sampled units and for 

the whole population, in the other words model (2.13) applies with ni replaced by N i • 

In matrix notation, model (2. 13) is expressed as 

The covanance matrix of Y, is Var(r;) = v: = (5~ Ill, + (5,; I nY., ' which depends on a 

vector of fixed parameters f) = ((5,; , (5~), usually called the variance components of 

the model. Here 1 is the unit vector of length nand 1 is a identity matrix of order 
~ I ni 

ni • The model (2.13) is also refened as a random intercept model since with Xi)I = I 

and /31 = a , we can write ai = a + ui as the random intercept. 
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Assuming model (2.13) holds, population mean of the survey variable Y in area i is 

f; = X;/3 + u; + e" where X; = N;-I I ~~I Xi' is assumed to be known. For sufficiently 

large N, e: = N~I '" Ni e. '" 0 and then mean of the survey variable Y in small area i is 
I I I L,...; j=i J 

approximated by ,u; = X;/3 + ui = E(~ I X;, ui) . This involves the prediction of the sum 

of a known linear function of unknown fixed parameters and unbiased random effects 

U;. This is a special problem in predicting a linear combination of fixed effects and a 

realised value of random effects. There are a variety of approaches that deal with the 

estimation problem in mixed models, see Harville (1977), Henderson (1975), Kackar 

and Harville (1984) and Peixoto and Harville (1986). 

2.5.1.1 Empirical Best Linear Unbiased Predictor 

For known e=(O"I~'O":), under model (2.13), following the proposal of Henderson 

(1975) the best linear unbiased predictor (BLUP) for the mean of Y for small area i, ~ 

(Rao, 2003, chapter 7 page 141 and Royall, 1976) is 

yBLUP=N~I['" y+'" (x~jJ+u.)J 
I I ~jES, J L..,;jElj J I 

= fj'i + (1 .o{ X;'jJ + uJ (2.15) 

= J;5i; + (1- J;){ X;'jJ + 'Yi(y; - X;jJ)} 

where Si and r; denote the sample and non-sample part of the population respectively 

in small area i, J; = 11; / Ni are sampling fractions, y; and X; are the sample means of y 

and x for small area i, Xir = (NiX; - niX; )/(N; - n), is the mean of x for (Ni - n) 

non-sampled units for small area i, jJ= (Iixy-1x;t (IiXi~-I~) is the best linear 

unbiased estimate (BLUE) of /3 and 'Yi = o:~ (0": + n;-IO": ( .We can also obtain the 

results (2.15) from the general result given by theorem 3.1 in chapter 3. 
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For sufficiently large N i , J; = (n i / N i ) -7 0 and then the approximate BLUP of the 

mean of Yfor small area i, r; is given by 

(2.16) 

The weight 'Yi (0 ~ 'Yi ~ 1) called 'shrinkage factor', provides a trade off between the 

approximately design-unbiased regression estimator (2.10) and the synthetic estimator 

(2.11) and measures the model variance (J2 relative to total variance ((J'2 + n:-l(J'2). 
u U 1 e 

For a small value of (J,; , weight 'Yi will be small and consequently the synthetic part 

in (2.16) get more weight and vice versa. For ni = 0, i.e. areas with no samples, 

'Yi -70 and fli = X;/J. For large ni , i.e. as ni increases, ri -71 and then it tend to 

regression estimator. 

Further, jJ and fli depends on variance components e that define the covariance 

matrix"" = (J'~ IlIj + (J',;l l1j ('j . In practice the variance components are unknown and 

estimated from sample data using standard method of estimation such as ANOV A, 

maximum likelihood (ML) or restricted maximum likelihood (REML) methods of 

estimation (Harville, 1977). We use "hat" to denote an estimate and then, a two stage 

estimators known as the empirical best linear unbiased predictor (EBLUP) of the 

mean of Y for small area i is 

~ EBLUP = J; Y; + (1 - J;) { X Jj + ~ (Vi - x'jJ)} (2.17) 

where ~ and /J are the estimates of 'Yi and jj respectively obtained by replacing e 

bye. 
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For sufficiently large N; , the approximate EBLUP of the mean of Y for small area i is 

(2.18) 

Note that the EBLUP given in (2.18) is an approximate EBLUP for sufficiently large 

population sizes. In finite population sampling the EBLUP for the mean ~ of area i is 

given by (2.17). 

Another popular application of a mixed effect model to the small area problem is 

provided by Fay and HelTiot (1979) in the context of estimating per capita income for 

small places (population less than 1000) from the 1970 census of population and 

housing in the United States. The proposed model is known as the Fay-Herriot model 

in the literature. In this model auxiliary information are assumed to be available at the 

area level. Prasad and Rao (1990) working on this model, using BLUP concepts, 

showed that Fay and Herriot's estimator is a combination of direct survey estimator 

and regression estimator at area level. An advantage of the area model is that the 

survey weights are accounted for through the direct estimators while this is not the 

case for unit level model. Further, in the EBLUP approach for SAE, normality of 

random errors is not needed for the point estimation, but it is assumed for getting 

accurate MSE estimate. However, the MSE estimator for the Fay-Herriot model 

remains valid under non-normality of random effects (Prasad and Rao, 1990 and 

Lahiri and Rao, 1995). 

2.5.1.2 Mean Squared Error of EBLUP 

The mean squared elTor (MSE) of the EBLUP is evaluated to observe the variability 

in the estimator, but no closed form of MSE exists except in some special cases. Thus, 
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MSE estimation has got lot of attention in the SAE literature in recent years. Here we 

describe some approximations for the MSE of the EBLUP proposed in the literature. 

For analytical simplicity, we start with the MSE of an approximate EBLUP (2.18) and 

then we write down MSE for the EBLUP (2.17). 

For known (J=((7',;,(7':), following Henderson (1975), the MSE of the approximate 

BLUP (2.16) is 

MSE (fiJ = gu ((7',;, (7':) + g2i ((7'~, (7':) (2.19) 

where 

Here gu((7',;,(7';) is the leading term in (2.19) whereas In MSE of the simple 

regression estimator leading term is (7': /ni • This shows that the BLUP is superior to 

the simple regression estimator in terms of MSE if the shrinkage factor 'Yi is small. 

This first term gu((7',;,(7':) in (2.19) shows the variability of the BLUP (2.16) when all 

the parameters are known and is of order 0(1). The second term g 2i ((7'~ , (7';) due to 

estimating the fixed effects f3 is of order o(m- I
) for large m. See Henderson (1975). 

The MSE of the BLUP (2.16), ~BLUP is evaluated as 

(2.20) 

where MSE (P;) is same as MSE (Pi) except that J( replaced by Xir in g 2i ((7'~ , (7':) 

and denoted by g;i ((7',;, (7':) = (X~ - 'Yix;') (Ii xiy;-I XJI (X;'. - 'Yix;')' . 
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The naive approximation to the estimate of MSE of EBLUP Ai IS obtained by 

replacing e=(a,~,a~) by e=(B,~,B~) in (2.19) as 

(2.21) 

However, this approximation to MSE seriously underestimates the true MSE because 

the BLUP assumes known variances and hence the MSE estimator obtained by 

replacing the unknown variances by their sample estimates e fails to account for the 

error resulting from variance estimation. 

Kackar and Harville (1984) proposed the correction for this underestimation in the 

MSE estimator. The MSE of the approximate EBLUP (2.18), Ai is 

(2.22) 

The cross-product term in (2.22) vanishes under the assumption of translation 

invariance of fJ and normality of two errors terms. An approximation to the second 

term on the right-hand side of (2.22) using the "Delta method" is 

Under the approximate independence of e and d i (fJ) , they proposed a further 

approximation of this term as 

(2.23) 
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where A(8) = Var[di (8)] and E{(8-8)(8-8/} = Var(8) is the asymptotic 

covariance matrix of 8. Note that 8 is estimated from all data in all small areas 

whereas computation of dice) = ~ is based on the data in only a single small area i. 

Prasad and Rao (1990) justified the approximate independence of e and di(e) , and 

concluded that for the method of fitting constants (MFC) estimate e of e (also called 

Henderson's Method-III) , the neglected term in the Kackar-Harville approximation is 

order of o(m- I
), which is of smaller order than the order of the term retained. They 

proposed a further approximation to the second term of (2.22) as 

(2.24) 

where b; = y;. They used the well known method of fitting of constant (MFC) to 

estimate O'l~ and O'~ . Neglected terms in (2.24) are of the lower order. 

Bringing together these approaches, the Prasad-Rao mean squared error 

approximation for the approximate EBLUP (2.18) is 

(2.25) 

with bias of order o(m- I
), where m is the number of small areas. Similarly, the mean 

squared error of the EBLUP ~ EBLUP is 

(2.26) 
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Prasad and Rao (1990) proposed an approximately model-unbiased estimator for the 

mean squared error (2.25) as 

(2.27) 

order of the bias being 0 (11 m) since g 2i (0',: ,0':) and g 3i (0',: ' 0':) have biases of 

order 0 (1/ m) . This is an approximately model unbiased estimator in the sense that its 

bias is of order o(m-I) and therefore considered as a second order approximation. 

This estimator is valid for both the MFC and REML method of estimating variances 

under certain regularity conditions and under the normality of random errors ui and 

eij' but not for the maximum likelihood (ML) estimator (Datta and Lahiri, 2000). 

Datta and Lahiri (2000) derive the estimator for mean squared error of the EBLUP 

used. Their expression for mean squared error estimate includes one extra term for 

bias correction that arises due to the use of ML estimates given as 

(2.28) 

where Vgli(BML ) is the first order derivative of gli(()ML) with respect to () at () = BML , 

and B~(BML)=-l-{rl(BML)COII<'< tr[(".xV-Ix.)-I(".XV(j)X)]}iS the bias in 
1 2m _)_111 ~l I I I ~l I I I 

estimating the variances of eML , with v,U)=ov,-I/O()j=_v,-I(OV,jO()j)V,-1 and 

rl(BML ) is the inverse of information matrix J(eML ). 
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The estimator for the MSE of the EBLUP ~EBLUP given in (2.26) is expressed as 

(2.29) 

where mse (f1i*) is obtained from mse (f1i) by replacing g 2i (6"~ ,6";) by g;i (6",; ,6";) . 

2.6 Pseudo-EBLUP 

The model (2.l3) assumes that samples are drawn independently across areas 

according to a specified sampling design such that the sample design within small 

areas is ignorable or alternatively selection bias is absent. The estimation based on 

such models do not make use of unit level survey weights and the corresponding 

estimators are not design consistent unless the sampling design is self weighting 

within small areas (Prasad and Rao, 1999). In contrast, the design-based direct 

estimators are design consistent but fail to borrow strength from the related areas. In 

recent years, some methods proposed in the literature make use of survey weights in 

model-based small area estimation. 

Kott (1989) proposed a design consistent estimator, also model unbiased under the 

simple random effect model with the same assumption of random errors as in (2.l3). 

He showed that this estimator is robust with respect to model failure under certain 

conditions and derived an estimator of mean squared error without including the 

random effect component. Empirical results show the mean squared error estimates 

are quite unstable and even take negative values. Consequently, this approach cannot 

be used to the compare proposed design-consistent small area estimator and the 

conventional design-based direct estimator. 
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Prasad and Rao (1999) proposed a model assisted estimator for small area estimation 

called the pseudo empirical best linear unbiased predictor (pseudo-EBLUP), which 

depends on the survey weights and remains design consistent as the sample sizes in 

the small areas increased. Using the Prasad and Rao (1990) approach they also 

derived the mean squared error of this estimator. Their results indicate this estimator 

of mean squared error performs well even under moderate deviations of the linking 

model and often more stable than Kott (1989). The pseudo-EBLUP approach is 

described below. 

As noted earlier, the EBLUP (2.18) does not depend on the unit level survey weights, 

Wij attached tOYij(j=I, ... ,ni ; i=I, .... ,m), so that design consistency as the sample 

size ni increases is forsaken except when the design is self weighting within areas (i.e. 

w = w ). A design-based direct estimator for the mean of Y in area i, y- = '" w y .. , 
IJ 1 lW ~jESi 1) lj 

with w = wi"'. w, uses sampling weights and is therefore design consistent but 
lj U L....; jES

I 
Ij 

fails to borrow strength. Under the model (2.13), let us define 

Y- = '" wy. = '" w.(x~p+u. +e.) = x p+u +e. 
lIV L jE Si J } L jE SJ } J I J IW I lIV 

(2.30) 

an aggregated (survey-weighted) area-level model, equivalent to the well known area 

level Fay-Herriot model (Fay and Herriot, 1979) so the usual results of this model are 

applicable. Assuming an aggregated area level model (2.30) holds, for given (J'; and 

(J': ' the BLUP for the mean of Y for small area i (Prasad and Rao, 1999) is 

- - £'P- (- --: P- ) flnv - i IV + ~w Yiw - Xiw IV 
(2.31) 

35 



and Var(/J,J = O"I~ (I; rilV::t;,XIV f == ¢IV· Note that the BLUP it;w in (2.31) is different 

from the BLUP i1; given in (2.16). The variance components e = ((}I~ , O"?) are 

unknown in practice and they are estimated under the full model (2.13). Using these 

estimates, a weighted estimator of fJ is /JIV = fJlV(B) and the EBLUP for the mean of 

Y for small area i is 

A j(' R A (- ---' R ) 
f1iw = i Pw + liw Yiw - Xiwl-'w . 

(2.32) 

Note that the pseudo-EBLUP given in (2.32) depends on the survey weights and 

satisfies the design consistency property. The estimator (2.32) is model-assisted and 

approximately model and design unbiased even if the sample design is nonignorable. 

From Prasad and Rao (1999), the approximate MSE of the EBLUP (2.32) is 

(2.33) 

where 

An approximately model-unbiased estimator of the MSE (2.33) is 

(2.34) 

respectively by replacing e with e. 
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You and Rao (2002) indicated that Pw based on the aggregated area level model 

suffers significant efficiency loss compared to the estimates based on the unit level 

model. This could in turn lead to some efficiency loss in the estimation of small area 

means. They proposed an iterative weighted estimating equation approach to estimate 

fJ using the sampling weights wij but they used the same estimate of the variance 

components as used in Prasad and Rao (1999). Consequently, You and Rao (2002) 

suggested the modified pseudo-EBLUP. Unlike EBLUP (Prasad and Rao, 1990), the 

modified pseudo-EBLUP is design consistent like pseudo-EBLUP (Prasad and Rao, 

1999) as ni becomes larger. Further, this estimator satisfies the benchmarking property 

without any adjustment when aggregated over small areas i. Furthermore, they 

showed that their estimator benchmark to the direct survey estimator of Y, in contrast 

to the EBLUP and pseudo-EBLUP. 

As noted earlier, You and Rao (2002) proposed an iterative weighting estimating 

equations to estimate the fixed effects. You, Rao and Kovacevic (2003) proposed an 

extension of You and Rao (2002). They extended this approach to estimate both the 

fixed effects and the variance components in a random intercept model using 

sampling weights. Their approach updates the estimates of the fixed effects and 

variance components alternatively until convergence is achieved. Their approach 

produces simultaneous sampling weighted estimates of fixed effects and variance 

components. 

Militino et al (2007) applied SAE to agricultural data. In their application of SAE, 

they used design weights and weights to account for heteroscedasticty (they named as 

model weights) in the pseudo-EBLUP method. They considered weighted estimation 

37 



of the variance components and the fixed effects. These authors argued that by 

combining both type of weights, models can be very useful for practitioners because 

the within error variance heterogeneity is accounted for and design consistency is 

achieved, providing protection against model failures as the small area sample sizes 

increase. We note that although the pseudo-EBLUP uses the survey weights in SAE, 

implementation of the approach is not straightforward, especially for MSE estimation. 

2.7 Model-Based Direct Estimators 

Chambers (2005) introduced the calibrated weighting based approach in SAE and 

defined the model-based direct (MBD) estimator for small area means. This approach 

uses the calibrated sample weights derived under a population level version of the 

linear mixed model to define weighted linear small area estimators as well as a simple 

expression for the MSE. In contrast to design-based direct estimators, these estimators 

borrow strength from other areas via the linear mixed model used in defining the 

weights. There are many practical advantages associated with this approach, arising 

from the fact that the estimators are computed as weighted linear combinations of the 

actual sample data from the small areas of interest. Perhaps the most important of 

these are the simplicity of both the estimation process and the estimation of the MSE. 

Further, the MBD estimator is easy to interpret and to build into a survey processing 

system. This motivates the use of the MBD approach in SAE. Consequently, in this 

thesis we study the MBD approach to SAE outlined in Chambers (2005) and proposed 

several extensions of his work. The next chapter of the thesis is devoted to the MBD 

method of small area estimation. 
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2.8 Extension of Mixed Models in Small Area Estimation 

Stukel and Rao (1999) considered a two-way nested error regression model to derive 

the EBLUP and associated approximately unbiased second order MSE estimator, 

appropriate for two-stage sampling within small areas. Some further extensions to this 

model include a multi-level extension in which regression coefficients are assumed to 

be random and depend on area level auxiliary information (Moura and Holt, 1999) 

and multivariate models (Kleffe and Rao, 1992 and Datta et aI, 1999). 

The models considered so far assume that the random area effects are independent 

between areas, but in practice, it would be reasonable to assume that area effects 

associated with neighbouring areas by some distance measure (not necessarily 

geographical) are correlated, and correlation decays to zero as distance increases. 

Such models are very common in spatial analysis (Cressie, 1993), but are not in wide 

use in SAE. An improvement in the EBLUP method can be achieved by including 

spatial structure in the random area effects. See Petrucci and Salvati (2004) and 

Pratesi and Salvati (2005) for the spatial-EBLUP approach in SAE. Petrucci, Pratesi 

and Salvati (2005) described SAE under spatially correlated random area effects 

model using geographic information. Chambers, Pratesi, Salvati and Tzavidis (2006) 

considered spatially correlated random effects model and defined the spatial M

quantile method of SAE. Pfefferman (2002) noticed that the loss in efficiency from 

using a model with independent area effect is small unless the correlations between 

the areas are large. There is a drawback in the spatial model since it depends on how 

the neighbourhoods are defined which introduces some subjectivity (Marshall, 1991 

in Rao, 2003). 
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As noted earlier, in order to increase the overall sample size in SAE, we borrow the 

information from other data sets. This information can be borrowed from 'similar' 

areas or from a previous occasion. In the time series modelling approach, we exploit 

information in data over time (e.g., repeated surveys) in order to obtain further 

improvement in efficiency of estimators. In general, empirical studies show that small 

area estimates that draw upon information across time are more efficient than those 

that drawn upon information across area since the time series data usually represent 

the same information about the target variable from the past. Related references are 

Pfeffermann et al (1998), Pfeffermann and Burck (1990), Tiller (1992), Ghosh et al 

(1998) and Datta et al (1999). 

Sometimes cross sectional and times series data are combined to obtain further 

improvement in efficiency of the small area estimators. In general, empirical studies 

show that for repeated surveys considerable gain in efficiency can be achieved by 

borrowing strength across both small areas and time. See Rao and You (1994), Datta 

et al (2002) and Rao (2003). Singh et al (2005) used spatial-temporal models in small 

area estimation. They used spatial models for exploitation of spatial auto-correlation 

amongst the small area units and a spatial temporal model fitted via Kalman filtering 

for the time series data. Chambers and Tzavidis (2006) introduced the M-quantile 

approach to SAE whereas Pratesi et al (2006) considered the nonparametric M

quantile small area estimation via penalized splines. 
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2.9 Summary 

In this chapter we summarized several SAE methods proposed in the literature. The 

merits and limitations of each approach is discussed. The SAE method based on 

mixed models, particularly the unit level nested error regression model, is discussed in 

detail. We notice that the EBLUP based approaches (Prasad and Rao, 1990) are the 

most popular model-based approach under the unit level random effect model. 

However, these approaches do not use the unit level survey weights. The pseudo

EBLUP approach (Prasad and Rao, 1999) proposed in the literature uses survey 

weights, but is complicated to work with, particularly with respect to MSE estimation. 

The MBD approach of the Chambers (2005) uses calibrated sample weights and the 

small area estimator is a weighted linear estimator with a simple MSE expression. The 

motivation of this approach lies in its simplicity. In the next chapter of the thesis we 

return with details on the MBD approach of small area estimation. 
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CHAPTER 3 

MODEL BASED DIRECT ESTIMATION FOR SMALL AREAS 

3.1 Introduction 

Unit level random effect models are often used in small area estimation (SAE). The 

empirical best linear unbiased prediction (EBLUP, Prasad and Rao, 1990) is then the 

widely used approach for the estimation of small areas under such models. However, this 

approach does not lead to small area estimators that are a weighted linear function of the 

sample data from these areas. As a result, several practical advantage of using such 

weighted estimators are lost, with probably the most important being the relative 

simplicity of their mean squared enor estimation. The calibrated weighting based 

approach introduced in Chambers (2005) overcomes some of these limitations. This 

approach uses calibrated sample weights derived from a population level version of the 

linear mixed effects model to define weighted linear small area estimators and a simple 

expression for their mean squared error. The associated small area estimators are the 

model-based direct (MBD) estimators because they depend on area specific sample data. 

However, the sample weights defining the MBD estimator are function of the data from 

the entire sample. Therefore, this method 'bonows strength' from other areas via the 

mixed model that defines the weights. Hereafter we refer to this approach as the MBD 

method of small area estimation. 
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In this chapter we evaluate the empirical performance of EBLUP and MBD methods of 

SAE. Our empirical evidence is based upon data from Australian broadacre farms that 

participated in the annual Australian Agricultural and Grazing Industries Survey 

(AAGIS) in the late 1980s. We also examine the robustness of these two methods under 

wrong model choices. In addition, we study some propel1ies of these two methods of 

SAE. The rest of the chapter is organised as below. 

In the following section we describe the calibrated weighting approach in survey 

sampling for population estimation. We elaborate both the design-based (Deville and 

Sarndal, 1992) and the model-based (Chambers, 2005) perspective of calibration 

weighting. In section 3.3 we illustrate the sample weights derived under a linear mixed 

model for SAE. Then we define the EBLUP and MBD estimators for small area means 

and their corresponding mean squared error estimators. Empirical results are reported and 

discussed in section 3.4. Finally, in section 3.5 we present some concluding remarks and 

further extensions of the MBD methods of SAE. 

3.2 Calibrated Sample Weighting for Population Estimation 

In this section we briefly review calibrated sample weighting for estimation of population 

level quantities. Calibration is now a widely used approach for population estimation in 

survey sampling. This is, basically, a method to improve estimation in survey sampling 

when auxiliary information is available. Here auxiliary information is included at the 

estimation stage to produce efficient estimates. In this approach, survey weights are 
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modified so that known population characteristics, in practice totals (or means), are 

reproduced from the sample data. Therefore, for variables in the survey correlated with the 

auxiliary variables, higher precision estimates are obtained by these new weights. The 

efficiency of the estimate depends on how well the auxiliary variables explain the 

variability m the survey variable. Kott (2003) described calibration weighting as a 

methodology under which probability sample weights are adjusted in such a way that when 

applied to survey data they can produce model unbiased estimators for a number of 

different target variables. 

Let Yu denote an N-vector of population values of a characteristic Y of interest, where U 

denote the population of size N. Suppose that we are interested in the estimation of the 

population total Ty = Iu Y j (or population mean fu = N- 1 Iu Y j ) of Y. In order to assist 

us in this objective, we shall assume that we have 'access' to Xu' an N x p matrix of 

values of p auxiliary variables that are related, in some sense, to the values in Yu . In 

paIiicular, we assume that the individual sample values in Xu are known. The non-

sample values in Xu may not be individually known, but are assumed known at some 

aggregate level. At a minimum, we know the population totals Tx of the columns of Xu. 

Given this set up, it is standard to estimate the total and mean of the values in Yu by 

fw = '\' w Y 
y ~s j j 

(3.1) 

and 

Yuw = '\' wy./'\' w. Ls ) J Ls J 

(3.2) 
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respectively. The sample weights {Wj ; j E s} reflect the relationship between the values 

of Y and X , typically via some form of statistical model. Here s is a probability sample 

of size n from a population of size N with the probability p(s). The inclusion 

probabilities Ji = ~. pes) are known for all j (j=I, .... ,N). Further, we assume that 
J ~JES 

the design is such that Jij > 0 for all elements j. Let d j = Jijl denote the design weight of 

element j. The original idea of calibration is to modify the design weights d j so that 

known totals are reproduced from the sample data. A set of calibrated sample weights is 

then produced. More precisely for known total T
t 

we calibrate by constructing new 

weight Wj such that 

fw =2: =T ,. . wJxJ. Y' -' .IES .~ 

(3.3) 

The new weights Wj are as close as possible to the old weights d j' In other words, we 

want to replace old weights dj with more efficient weights Wj determined by using 

available auxiliary information. There are two basic approaches proposed in the literature 

to construct the calibration sample weights, design-based and model-based calibration 

weighting, see Chambers (1996, 1997,2005), Chambers and Skinner (1999) and Deville 

and Sarndal (1992). 

3.2.1 Design Based Calibration Weighting 

Design-based calibration weighting is based on the concept of "closest" calibrated 

weights. Deville and Sarndal (1992) first introduced the notation of a calibration 
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estimator. They proposed the calibration estimator for population total T as the linear 
y 

combination of the observations, f = ~. w. y. , with calibration weights w
J
.' s chosen 

y LJES J J 

to minimise their average distance from the basic design weights, d j = 7[-/ ' that are used 

by the Horvitz-Thompson estimator, f,~T = ~. d. y .. Here minimization of average 
/ LJEs J J 

distance is subject to the calibration constraint LjES WjXj = tlV = T,. Alternative distance 

measures can also be used. See Deville and Sarndal (1992). All resulting estimators are 

asymptotically equivalent to the one obtained from minimising the chi-squared distance 

function: 

Q = ~ (w -d.)2/dq. 
S LjEs J J J J 

(3.4) 

where wj's are known positive weights unrelated to dj and q/s are constants. The 

existence of initial design weights d j is assumed and these are the inverse of inclusion 

probabilities of the sample units. These weights do not always have to be the inverse of 

inclusion probabilities (Chambers, 1996). Minimisation of quadratic distance measure 

(3.4) leads to new set of weights called calibrated weights: 

(3.5) 

for the population total of X. Here existence of the inverse of T = ~ dqxx~ is 
S LjEs J J J J 

assumed. Using the calibrated sample weight (3.5) in (3.1), the calibration estimator of 

population total Ty is 

flV = ~ wy = fHT + (T _ fHT)'iJ 
y LjEs J J Y x x 

(3.6) 

46 



where iJ = T-1
(" dq xy). The calibration estimator given by (3.6) is equivalent to a 

s L,ES j j j j 

generalized regression (GREG) estimator, which is derived as model assisted estimator 

assuming a linear regression model, with variance structure provided by the diagonal 

matrix with elements (1/ q). See Deville and Sarndal (1992) for examples on the role of 

the constants given by the q/s. 

In matrix notation, we denote the set of initial weights by d = {d j; j E s} and then we find 

a set of calibrated sample weights w that minimises the quadratic distance measure 

Q = (w-d)'.Q(w-d), where .Q is a known positive definite matrix. The minimisation of 

quadratic distance measure, Q subject to (3.3) leads to sample weights of the form 

(3.7) 

withHQ = (X;.Q-IX,rlX;.Q-Iand IN is a vectors of l's of order N. This is the design-

based interpretation of the calibration approach. The model-based perspective of the 

calibration approach is described as below. 

3.2.2 Model Based Calibration Weighting 

In model-based calibration we assume that survey variable Y and auxiliary variable X 

are related by some model and then the calibrated sample weights are derived under the 

model to satisfy the calibration constraints (3.3). Let us assume that Yu and Xu are 

related by the linear regression model 
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(3.8) 

where J3 is a px1 vector of unknown regression parameters, Cu is random error vector of 

dimension N with E(cu ) = 0 and Var(£u) = ()2Vu ' where Vu is a known positive definite 

matrix of order Nand ()2 is some constant. Without loss of generality, we arrange the 

vector Yu so that its first n elements correspond to the sample units. We can then 

partition Yu ' Xu and Vu according to sample and non-sample units as 

Here Ys is the n x 1 vector defined by the sample values in Yu ' Xs is the corresponding 

n x p matrix of sample values of the auxiliary variable and v's is the n x n component 

of V associated with Ys ' A subscript of r is used to denote cOlTesponding quantities 

defined by the N - n non-sample units, e.g. v's is the (N - n)x n matrix defined by 

identity matrices of order N, nand N - n respectively. 

Given this set-up, and assuming (3.8) holds, the Best Linear Unbiased Predictor (BLUP) 

of population total of Y can be derived from the following Theorem (Royall, 1976). 

Theorem 3.1 Among linear prediction unbiased estimators Ty of Ty satisfying 

E(~, - y;,) = 0, the error variance E(~, - Ty)2 is minimised by 
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Then error variance of Ty is 

~ r(T - T ) - l' (V - V V- IV')1 + a y y - N-!l rr rS!iS rs N-n 

When sample and non-sample units are uncOlTelated (i.e. Vrs = 0) the BLUP of Ty is obtained 

simply adding to the sample sum the BLUP 1~_1l xjJ of the expected value of the non-

sample sum Ty, = 1~_n Yr. Further, under a special case of model (3.8), the BLUP of small 

area mean of Y given in (2.15) can be derived from this result. See section 2.5.1.1. 

Proof: Proof of this theorem is given in Royall (1976). 

Given this result, it can be seen that the BLUP of population total of Y is given by (3.1) with 

weights defined by 

(3.9) 

calibrated on Xu' in the sense that they exactly reproduce the known population totals 

defined by the columns of Xu. That is X;WBLUP = X~IN = Tr . Further, these weights define 

an unbiased predictor of Ty since 

(3.10) 

Furthermore, any linear estimator with weights that are calibrated on Xu will be unbiased 

under (3.8), and conversely, any linear estimator that is unbiased under (3.8) will have 

weights that are calibrated on Xu (Chambers, 2005). 
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The weights (3.9) implicitly rely on the assumption that the survey variable Y and the 

auxiliary variables X are linearly related. However, if the underlying regression model is 

non-linear then these weights can be inefficient. For example, if the variable Y and X are 

not linear on themselves but they are linear on some transform scale (e.g. in case of 

skewed data), then the weights (3.9) based on linear model lead to inefficient estimates. 

In these situations, Wu and Sitter (2001) proposed a model calibration approach as a 

generalisation of the calibration procedure under a general model. We shall discuss this 

approach in chapter 5 in context of small area estimation for skewed data. 

The reasons for calibration vary. There is the largely intuitive argument that such 

weights, because they are 'perfect' for key known population quantities, should be good 

for estimating other population quantities for which only sample data are available. In 

other words, estimates are 'consistent' with known information. The consistency means 

that the calibrated weights reproduce exactly the known population total for each 

auxiliary variable. Further, the variance of a calibrated estimator tends to decrease as 

more variables and their known totals are brought into the calibration. In fact, the more 

auxiliary totals we use in the calibration, the 'better' we expect the resulting weight 

system to be. However, one of the serious problems of the approach is the negative 

weights which sometimes appear. Modification is possible at the expense of a more 

complicated procedure. Huang and Fuller (1978), Bardsley and Chambers (1984) and 

Chambers (1996) described the methods for dealing with negative weights. Park and 

Fuller (2005) discussed the procedures for constructing the non-negative weights in 
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which initial weights are the inverse of the approximate conditional inclusion 

probabilities. 

3.3 Small Area Estimation Based on a Linear Mixed Model 

3.3.1 The Small Area Models 

A commonly used class of models in small area inference is the class of linear mixed 

models. Let Y; be the N; x 1 vector of values of variable of interest in small area i and let 

X; be the N; x p matrix of associated values of the auxiliary variables. Here a subscript 

of i denotes restriction to small area i. We consider the following linear mixed model for 

the distribution of Y; given X;: 

(3.11) 

Here N; is the number of the population units in small area i, f3 is a p x 1 vector of fixed 

effects, Z; is a N; x q matrix of known covariates characterising differences between 

small areas, u; is a qxl random area effect associated with the it" small area and e; is a 

N; x 1 vector of individual level random errors. Normality of these two random variables 

is often assumed. The random vectors u; and ei are assumed to be independently 

distributed, with zero means and with variances Var(u) = I, and Var(e) = (J'~ IN; 

respectively. The covariance matrix of Y; is Var(Y;) = V; = (J'; IN; + Z;~::Z: ' depends on a 

vector of parameters e = ((J'~, I,) usually called the variance components of the model. 
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Finally, it is usually assumed that sampling is uninformative given the values of the 

auxiliary variables, so the sample data also follow the population model (3.11). 

By aggregating the area-specific models (3.11) over the m small areas, we are led to the 

population level model 

Yu=Xuf3+Zuu+e (3.12) 

whereYu = Cr;', ...... ,y;;,)', Xu = (X;, ...... ,X;,Y,Zu =diag(Zj;l:S:i:S:m), u=(u;, .... ,u;jand 

e=(e;, ..... ,e;,Y· Under (3.12), the covariance matrix of Yu is Vu =diag(V;;I:S:i:S:m). 

This is the general linear mixed model. This model includes most of the small area 

models used in the literature (Rao, 2003, page 107). As mentioned after equation (3.8) we 

again consider the sample and non-sample decomposition of Yu ' Xu, Zu and Vu. We 

use similar notation at the small area level by introducing an extra subscript i to denote 

small area. For example, we denote by Sj the set of nj sample units in area i, 1f the 

corresponding N j - nj non-sampled units in the area and put V;ss = a~ Illj + ZjsL,Z~ and 

In practice the variance components that define Vu are unknown and must be estimated 

from the sample data using suitable estimation methods such as Maximum Likelihood 

(ML), Restricted Maximum Likelihood (REML) or methods of moment. We use a "hat" 

to denote an estimate and put Vu = diag (~; 1 :s: i :s: m) , with ~ = a-~ I N
j 
+ Z}:z; . Empirical 

studies presented in section 3.4 uses both ML and REML methods for the estimation of 

variance component parameters. 
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3.3.2 Sample Weights for Small Area Estimation 

The sample weights (3.9) are typically based on models for 'population level variability' 

and small area effects are assumed to average out over the population. This assumption 

fails when population level weights are used for small area estimation since small area 

effects do not average out at small area level. That is sample weights (3.9) are appropriate 

for estimation of population level quantities, while using these weights for small area 

estimation can lead to inefficient estimates for small area level quantities. Consequently 

some form of local weighting is required if weighted estimators are going to be used for 

small area estimates - i.e. weights must differentiate between the small areas that make up 

the population. The most common class of models that includes random area effects (i.e. 

differentiate between areas) are the mixed effect models. In this section, we describe the 

sample weights (3.9) which are derived via a linear mixed model suitable for small area 

estimation. 

Under the population level version of the linear mixed model (3.12), the sample weights 

(3.9) that define the BLUP for the population total of Yare 

(3.13) 

( 
I -1 )-1 I -J ( m I -J )-J ( m I -J) . 

where H BLUP = XsVss Xs XsYss = Li=J X)~ss Xis Li=J X)~ss . The weIghts (3.13) 

are special case of the weights (3.9) and so calibrated on the same population level 

quantities. 
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Replacing the estimates of unknown variance components in (3.13), the empirical version 

of the BLUP weights (3.13) that define the EBLUP for the population total of Yare 

(3.14) 

where = X' -I X I -I _ X' -I I -I ( A )-1 A (Im A )-1 (I"l A) 
H EBLUP s Vss s X s v"s - i=1 is''''sS Xis i=l Xis Y';ss • The EBLUP 

weights (3.14) m·e the special case of weights (3.10) and so they are calibrated on Xu' 

i.e. X;WEBLUP = X~lN and define an unbiased linear predictor of the population total of Y 

(Royall, 1976). Furthermore, since they only depend on the random area effects structure 

of the mixed model (3.12) via the covariance structure in the sample/population, 

extension to more complex covariance structures (e.g. spatial correlation between 

population units) only requires Vs~1 and V,., to be computed under these more complex 

models. We do not pursue this extension in this thesis however. 

3.3.2.1 Calibrated Weighting Based Estimator for Small Areas 

The model-based direct (MBD) estimator of the mean of Y for small area i, 

Y; = Ni-
I I ~~I Y j is the direct estimator of this quantity based on the EBLUP weights 

(3.14). That is, it is defined as 

"'-MBD I II Y = wy W 
I Si J } 51 } 

(3.15) 

where the weights used in (3.15) are those associated with the sample units in small area i 

in (3.14). Note that we refer to (3.15) as a direct estimator because it is a weighted mean 

of the sample data from the small area of interest. However, this does not mean that it can 
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be calculated just using these data. The EBLUP sample weights (3.14) will be a function 

of the data from the entire sample. That is, they 'borrow strength' from other areas 

through the model (3.12). 

3.3.2.2 Estimation of Mean Squared Error 

An important consideration in small area estimation is estimation of the mean squared 

error (MSE) of the small area estimators. We can easily adapt straightforward methods of 

MSE estimation for popUlation level estimators to estimation of the MSE of (3.15). Well 

known results (see Royall and Cumberland, 1978 and Valliant et aI, 2000, chapter 5) 

indicate that robust MSE estimators are of the form Var(Y,;) = LjE< w~(Yj _ y)' 

+lower order terms, where Yj denotes the fitted value for Yj under the linear model 

implied by the calibration constraints. 

In order to estimate the MSE of (3.15), we note that the implied population level model 

(3.12) includes random area effects and so one needs to consider whether it is appropriate 

to condition on these effects ui when estimating this MSE. For example, the rather 

complicated MSE estimator of the EBLUP does involve this conditioning (Prasad and 

Rao, 1990). On the other hand, estimation of the MSE of (3.15) is straightforward if we 

do not condition on random area effects, treat the EBLUP weights (3.14) as fixed and use 

standard methods for estimating the MSE of a weighted linear estimator of a domain 

mean under the population model (3.8). See Royall and Cumberland (1978). The choice 

between these two approaches is largely philosophical and depends on how much one 
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'believes' the linear mixed model (3.12). In particular, here we treat this model as a 

vehicle for generating estimation weights, but then base inference on (3.8), which is 

consistent with the way MSEs are estimated at population level. Following Royall and 

Cumberland (1978) and Chambers (2005), we can write the prediction variance for the 

area i weighted mean (3.15) as 

Var(yMBD-y)=var{('" W)-l(", wy)-N-:-1(", y+" y.)} 
I I L,..; Sf j L s; } ) 1 L s, } L...; fj J 

(3.16) 

A robust model-based estimate of prediction variance (3.16) is obtained by substituting 

the squared residual (Yj - x/l) 2 for Var(y) in the first (leading) term on the right hand 

side of (3.15). If these squared sample residuals are also used to estimate the second term, 

the resulting estimator of (3.16) is 

.!:O..MBD L 1 'fJ~ 2 v(Y )= /l,(y-x) 
I Sf .I J } 

(3.17) 

where Aj =Ni-2[a~+(Ni-n)/(ni-l)J. Using (3.17) to estimate the prediction MSE of 

~MBD implicitly assumes that this weighted mean is unbiased for f; . However, this is not 

denotes the weighted average of the sample values of the auxiliary variables in area i. 

Further, calibration on X ensures that this term vanishes at population level, but not 

necessarily at small area level. In other words, this bias correction arises due to fact that 
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the sample weights used to define the MBD estimator are not locally calibrated at area 

level. The result (C.S) in appendix C presents some explicit expression for this bias under 

a special case of model (3.11). The magnitude and order of this bias in result (C.S) clearly 

shows this bias cannot be ignored. A simple estimate of this bias is 

(3.18) 

A robust t estimator of the mean squared error of (3.15) is therefore 

mse(~MBD) = V(~MBD) +{b(~MBD)}2 (3.19) 

~MBD ~MBD 
Obviously, one could alternatively 'bias correct' ~ directly using b(~ ). However, 

this is not recommended since this correction increases the variability of our estimator 

much more than it reduces its bias. Using it in (3.19) is a more conservative, and safer, 

approach. Further, use of the square of the unbiased estimator (3.18) of the bias of ~MBD 

in the MSE estimator (3.19) can be criticised because this term is not itself unbiased for 

the squared bias term in the MSE. This can be corrected by replacing by {b(~MBD) r by 

variance of (3.18). However, small area sample sizes may lead to (3.19) becoming quite 

unstable, and thus it is preferable to use (3.19) with square of (3.18). The MSE estimation 

for linear predictors for domains described in Chambers, Chandra and Tzavidis (2007) 

shows the estimator (3.19) is consistent for the MSE of the MBD estimator (3.15). 

t The estimator (3.17) is called a robust model-based estimator because it does not depend on the second 

order moments assumptions and thus robust to misspecification of the second order moment of the working 

model. Consequently we referred (3.19) as a robust MSE estimator 

57 



3.3.3 Empirical Best Linear Unbiased Predictor 

With the above notation, and assuming (3.11) holds, the EBLUP for the mean of Y for 

small area i, 1'; is 

yEBLUP = J,Y (1- F){X'fJ
A z'i Z'V·l(y - X'fJ

A

)} 
i i is + J i ir + ir is iss is is 

(3.20) 

to be non-negligible) and Xir and Zir are vectors of mean values for the Ni - ni non-

sampled units in small area i. In chapter 2 we defined the EBLUP (2.17) which is 

particular case of (3.20) when underlying model is a random intercept model, a special 

case of model (3.11). However, in this chapter we are dealing with a general form of the 

linear mixed model. Therefore, we define the EBLUP and associated MSE estimator 

under this model. In our empirical studies in section 3.4 we have considered four special 

cases of model (3.11). 

An approximate mean squared error estimator for the EBLUP (3.20) is 

(3.21) 

where 
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with b; = Zi:LZ: Vi;~' "VV = dbJaO and Var(O) is asymptotic covariance matrix of 

estimates of variance components O. For Maximum Likelihood (ML) or Restricted 

Maximum Likelihood (REML) estimates of variance components, Var(B) is given by the 

inverse of the relevant information matrix, see Rao (2003, page 107-110). 

For ML estimates of variance components 0 = 0ML the elements of the information matrix 

are given by 

I (0 ) =! ",m r{(v- I d~ss )(V- I dV;ss)} 
jk ML 2 L....,i=1 t iss dO

j 
iss dO

k 
. 

For REML estimates of variance components, B = BREML the elements of the information 

matrix are given by 

I (0 ) =! ",111 r{(p dV;ss ](p d~ss)} 
jk REML 2 L...., i=1 t iss d OJ iss d Ok ' 

where P = {V- I - V-I X (X' V-IX )-1 X'V-I} A . lIlT (OA ) 17 (OA ) iss iss iss is is iss is is iss . symptohca y, var ML == var REML ' 

provided p is fixed. The neglected terms in this approximation are of the order O(m-I) , 

where m is the number of small areas. 

An approximately unbiased estimator of the MSE of EBLUP (3.20) is 

(3.22) 

where "Vgli(O) is first derivative of gli(O) with respect to 0 at B=e, B'(e) is bias in 

estimating e and B'(e)"Vgli(e) is the bias correction term. For the method of fitting 

constant (MFC) and REML estimates of variance components, the bias B'(e) is zero and 
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consequently the bias correction in (3.22) vanishes. However, for the ML estimates of 

variance components, the bias is given by 

B'(B )=_1 {(rI(B ») cottr[(II1l X' V·IX )-I(Im X~ (av;~:Jx JJ} 
ML 2,n ML ]';'j';'q ;=1 IS ISS IS ;=] IS a fJ. IS 

} (3.23) 

where aa~;; = -yo;; (~~:' Jv,;;. Further, replacing 0 by Ii in g,;(O), g,;(O) , g,;CO) and 

A A" " 

g 4; (() we get gI; (() , g 2; (fJ), g3;C() and g4; (() respectively. See Datta and Lahiri (2000) 

and Prasad and Rao (1990) for further detail of the MSE estimator (3.22). 

The MBD estimator (3.15) is not the same as the EBLUP (3.20) even though both sum to 

the same population level EBLUP. This is because there is no unique representation of 

(3.20) as a weighted means of the sample data values from small area i. Appendix C 

presents some analytical expressions to compare EBLUP, MBD and design-based direct 

(DBD) estimators. Here we show in general that the MBD (3.15) and the EBLUP (3.20) 

are not same. However, in certain special cases the two methods are equivalent. 

A major advantage of MBD methods (3.15) is the relative simplicity of estimation. In 

particular, we can calculate an estimator of the mean squared error of (3.15) via a 

straightforward generalisation of the standard robust estimator of the prediction variance 

of the EBLUP of the population mean of Y. This is in sharp contrast to the rather 

complicated estimator of the conditional prediction variance of (3.20). However, this 

does not mean that the MBD estimator (3.15) is superior to the EBLUP (3.20). As noted 

earlier, both (3.15) and (3.20) sum to the population EBLUP under the linear mixed 
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model (3.11). Furthermore, under this model it is clear that the EBLUP must be more 

efficient asymptotically, since it approximates the best linear predictor when (3.11) 

actually holds. For example, in the special case where Xu = Zu = IN' the weight 

associated with sampled unit} in area i under the MBD approach is 

N{ 1 [ ~ N -n]} Wj =- 1+--~ (N;-nJrJH-_-
n l+n;¢ n 

is, MBD (3.15) reduces to the area i sample mean. In contrast, EBLUP (3.20) is then a 

linear combination of the overall sample mean and the area i sample mean. Appendix C 

compares the weights used in EBLUP and MBD for the estimation of ilh small areas. 

These results indicate that weights for the EBLUP of small areas are wjEBLUP) ~ O(N;n- l
) 

while weights for the MBD are W7BD ~ O(Nn- I
); j E s;,i = 1, .... , m. In other words, the 

sample weights used to define MBD estimator are of order O(Nn -I) and the EBLUP 

(3.20) is defined as the indirect linear predictor using n-vector of sample weights that are 

O(N;n- I
). This indicates that variance of the EBLUP will be lower order that the MBD. 

Thus, we expect the EBLUP to be more efficient, if the model holds. 

It is sometimes claimed that a disadvantage of any direct estimator (including the MBD 

estimator) is that it is not defined when there is no sample in small area i. In contrast, the 

EBLUP (3.20) then equals the synthetic estimator x;/3. However, no sample data in an 

area also means that the validity of any estimator for that area is completely model-

dependent. In particular, we cannot check to see if (3.11) holds. There is also the problem 
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that different areas are then treated unequally in estimation. Areas with sample data have 

their means estimated via EBLUP, while those without have their means estimated via 

synthetic estimators. Furthermore, in such a case the weighted average of these estimates 

across all small areas does not equal the EBLUP of the population mean. A standard 

work-around when this occurs is to rescale all the small area estimates to sum to this 

population estimate (or some other acceptable value). However, this is rather arbitrary. 

For example, if most of the small areas have no sample, then such a rescaling exercise 

could substantially change the final predicted value of the area i mean of Y for a 'sample 

area' relative to its EBLUP value (3.20), in which case one has to wonder about the 

efficiency of the final result. 

In contrast, direct estimators like (3.15) are easy to interpret and to build into survey 

processing systems. Furthermore, they do not allow the prediction for areas where there 

are no sample data, which, in light of the discussion in the previous paragraph, may be 

considered to be a good thing. However, choice of the weights in this approach is very 

crucial and the wrong choice of the weights can result in an inefficient direct estimator. 

The model-based direct estimator (3.15) based on the linear mixed model (3.11) with the 

sample weights (3.14) for small areas that possesses some of the efficiency properties of 

the EBLUP (3.20) seem to be appropriate. In Appendix D we present some empirical 

results which contrast the efficiency of the BLUP with direct estimators for small areas. 

Here we consider both usual design-based direct (DBD) and the model based direct 

(MBD) estimators of small areas. These results show the MBD provides an improvement 

over a design-based direct approach and can compete with the BLUP method. 

62 



Like the EBLUP itself, the EBLUP sample weights (3.14) used in MBD estimator (3.15) 

are variable specific since they depend on the estimated variance components of a 

patticular variable (i.e., estimated variance components for Yu via the matrices Vsr and 

Vss ) and efficient for estimation related to the variable on which they are based. This can 

be a limitation if a true 'multipurpose' approach to small area estimation is required. 

Development of 'multipurpose' weights (i.e. not variable specific) can be more useful if 

there is more than one response variable in a survey (which is very common in practice). 

In chapter 4 we shall return with details on multipurpose sample weighting. 

3.4 An Empirical Study 

Simulation studies use computer intensive procedures to assess the appropriateness and 

accuracy of a variety of statistical methods in relation to the known truth. These 

techniques provide empirical estimation of the sampling distribution of the parameters of 

interest that could not be achieved from a single study and enable the estimation of 

accuracy measures, such as the bias in the estimates of interest, as the truth is known. 

Therefore, simulation studies should be designed with similar rigour to any real data 

study, since the results are expected to represent the results of simultaneously performing 

many real studies. See for example Morgan (1984) and Lewis and Orav (1989). In this 

section we illustrate the design-based simulation studies using real data to contrast the 

performance of the MBD (3.15) and the EBLUP (3.20) methods of SAE. We also 

examine the robustness of these methods under model misspecifications. The results from 

this study are also reported in Chandra and Chambers (2005, 2006c, 2006d) and 

Chambers and Chandra (2006). 
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3.4.1 Simulated Data 

Our basic data come from the same sample of 1652 Australian broadacre farms that 

participated in the annual Australian Agricultural and Grazing Industries Survey 

(AAGIS) in the late 1980s and were used in the simulation study reported in Chambers 

(1996). This survey was carried out by the Australian Bureau of Agricultural and 

Resource Economics. Here we use these sample farms to generate a target population of 

81982 farms by sampling with replacement from them with probabilities proportional to 

their sample weights. We then drew 1000 independent stratified random samples from 

this (fixed) population, with total sample size in each simulation equal to the original 

sample size (1652) and with strata defined by the 29 different Australian broadacre 

agricultural regions. Sample sizes within these strata were fixed to be the same as in the 

original sample. Note that these varied from a low of 6 to a high of 117, allowing an 

evaluation of the performance of different small area estimation methods across a range 

of realistic small area sample sizes. Table 3.1 shows the various parameters for this 

popUlation. 

As noted earlier, we considered the 29 regions as small areas. The total cash costs (A$) of 

the farm business over the surveyed year (TCC), is our variable of interest (y). Our aim is 

to estimate average total cash costs (A$) in these regions. In doing so, we used the fact 

that these regions can be grouped into three zones (Pastoral, Wheat-Sheep or Mixed 

farming, and Coastal or High rainfall), with farm size (hectares) known for each farm in 

the population. Figure 3.1 shows the map of these 29 farming regions (or small areas) and 

zones where they are located. The numbers shown in the map are the regions codes. The 

auxiliary variable total farm size (hectares) is referred to as Size in what follows. 
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Table 3.1 Regional characteristics of simulation popUlation. 

Re~ion POEulation size SamEle size A vera~e farm area A vera~e farm costs 
1 79 6 297958 467964 
2 115 10 55731 171414 
3 189 30 359383 670926 
4 330 25 178355 186984 
5 388 36 108038 208142 
6 465 19 16717 130316 
7 604 36 131544 302583 
8 729 40 21976 242836 
9 737 30 23083 179112 
10 964 30 23712 180467 
11 1586 51 2213 116965 
12 1778 62 891 114442 
13 1984 55 1066 96162 
14 2182 47 4398 233171 
15 2607 79 1239 97839 
16 2683 60 581 93202 
17 2689 60 701 84790 
18 2847 34 373 36979 
19 3056 74 799 101101 
20 3139 51 3200 87919 
21 3910 73 563 78509 
22 4486 117 4635 164889 
23 4550 80 960 86218 
24 4587 95 1862 184153 
25 5368 83 1838 198156 
26 5528 103 1013 105151 
27 6489 108 1403 134169 
28 6980 81 812 95617 
29 10933 77 360 66285 
POEulation 81982 1652 5475 118997 
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Figure 3.1 Map of Australian broadacre zones and farming regions. 

1 Sf digit: Sta te 

2nd d igit: Zone 

o Zone digit 1: Pastora l zone 

r -- Zone digit 2: Wheat-sheep zone 
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Figure 3.2 Relationship between total cash costs (TTC) and farm sizes in AAGIS data. 
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The overall linear relationship between the total cash costs (TeC) and Size is rather weak 

in the original sample data, however this improves when separate linear models are fitted 

within six post-strata as shown in Figure 3.2 and 3.3. These post-strata are defined by 

splitting each zone into small farms (farm area less than zone median) and large farms 

(farm area greater than or equal to zone median). These six SizeZone Strata are 

1 = Pastoral zone and area of 50000 hectares or less 

2 = Pastoral zone and area of more than 50000 hectares 

3 = Wheat-sheep zone and area of 1500 hectares or less 

4 = Wheat-sheep zone and area of more than 1500 hectares 

5 = High rainfall zone and area of 750 hectares or less 

6 = High rainfall zone and area of more than 750 hectares 
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Figure 3.3 Relationship between total cash costs and farm sizes in six post-strata. 
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In the scatter plot of original sample data in Figure 3.2 we notice the presence of two 

outlier data points. The linear relationship between TCC and farm size improves if these 

two points are discarded from the analysis. Further, the values of R2 (and root mean 

square error) increases (and decrease) from 0.05 (and 970358.4) to 0.236 (and 410043.8) 

if we do not include these two data points in the model fitting. In our simulation studies 

we include these two data points. The purpose is to see the performance of different SAE 

methods in presence of these outlying points. Anyway, these are the true data values. 

Figure 3.4 presents the average total cash costs and average farm size in the 29 regions. 

Figure 3.5 illustrates the relationship between total cash costs and farm size in each of 

these six post-strata. This plot indicates the presence of zone effects in the data and shows 

that the data are extremely heteroskedastic. The matrix X of auxiliary variable values in 

(3.ll) was then defined so as to include an effect for Size, effects for the post-strata and 

effects for interactions between Size and the post strata. Two different specifications for 

X (corresponding to whether an intercept was included or not) and two different 

specifications for Z (corresponding to whether a random slope on farm size was included 

or not) were then used to specify (3.l1) and hence the EBLUP and MBD estimators 

based on this model. These four special cases of (3.l1) are set out in Table 3.2 and shown 

graphically in Figure 3.6. For the farm data, models I and II are appropriate (with II 

fitting marginally better, see Appendix A) while models III and IV are badly specified. 

We use ML and REML estimates of random effects parameters, obtained via the lme 

function in R (Bates and Pinheiro, 1998). For each model, two different estimators (ML 

and REML) of the 29 regional means are computed, along with corresponding estimators 

of their mean squared error. These are the EBLUP (3.20) with MSE estimator (3.22), 

referred to as EBLUP below; the MBD estimator (3.l5) based on sample weights (3.14) 

and with MSE estimator (3.19), referred to as MBD below. 
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Figure 3.4 Average total cash costs and average farm sizes in different regions. 
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Figure 3.5 Relationship between total cash costs and fann sizes in six post-strata. 

" 

u 
u 0.j 
I-
C5) 
0 

= 

Red=Pastoral zone 
Green= Wheat-sheap zone 
Blue=Hi gh rai nfall zone 

x= Small farm 
o = Large farmx 

x 
* 

x 

4 6 

x 

x 

8 

o 

10 

10g(F arm Size) 

70 

o 

00 cP 
ypo 0 

t inear FarmGroup 1 
Linear FarmGroup 2 
Linear FarmGroup 3 
Linear FarmGroup 4 
Linear FarmGroup 5 
Linear FarmGroup 6 

12 14 



Table 3.2 Different mixed model specifications considered in the simulations. 

Model Model Type X Z 
I Random Intercepts Intercept included Intercept only 
II Random Slopes Intercept included Intercept + Size 
III Random Slopes with Intercept included Size only 

fixed intercept 
N Random Slopes with Intercept excluded Size only 

zero intercept 

Figure 3.6 Four different model specification considered in the simulation. 

Model-II (Random Slope) 
Model-I (Random Intercept) 

Model-III (Random Slope and Fixed Intercept) Model-VI (Random Slope and Zero Intercept) 
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3.4.2 Performance Indicators 

We use the following criteria to evaluate the performance of different methods: 

• The percentage relative bias (RB), defined as 

RB(i)=rl(R-1,,\,R T()-T)XI00, 
I I ~r=l 1 r I 

where f; is the estimator (e.g. of the mean) for the it" (i = 1, ....... , m) small area for 

parameter T; and fer) is the specific outcome of f; obtained in simulation run r 

(r = 1, .... ,R = 1000). 

• The average percentage relative bias (ARB), averaged over m small areas is 

• The percentage relative root mean squared error (RRMSE), defined as 

• The average percentage relative root mean squared error (ARRMSE), averaged 

over m small areas is 

ARRMSE = m-
I I::I RRMSE(f)· 

• The coverage rate (CR), defined as 

Here mse ( f(r») is the estimate of the MSE of fer) for the r t
" simulation. 

• The average coverage rate (ACR), averaged over m small areas is 
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3.4.3 Simulation Results 

Three measures of estimation performance define in section 3.4.2 are computed using the 

estimates generated in the simulation study. These are the relative bias or relative mean 

errors and the relative root mean squared elTor (RMSE), both expressed as percentages, 

of regional mean estimates and the coverage rate of nominal 95 per cent confidence 

intervals for regional means. Table 3.3 presents the average and median values of these 

measures (all computed over the 29 regions) generated by EBLUP and MBD under 

models I-N for the variable of interest TCC using ML and REML estimates for the 

random effects. 

These results indicate the relative performance of the two SAE methods (EBLUP and MBD) 

do not change due to ML and REML estimates of variance components (Table 3.3). 

However, results generated by using REML estimates of variance components provide better 

performance than those by using ML estimates. Besides REML estimates, we use ML 

estimates of random effects to see how the MSE estimate of EBLUP (3.22) with a bias 

correction due to MLE compare with the simple MSE estimate ofMBD (3.19). What follows 

next, we do refer only the results generated by using REML estimate of random effects to 

compare the EBLUP and the MBD methods. 

In Table 3.3 we note that the average relative biases under MBD are smaller than those 

under EBLUP for all models except model IV. However, the average root mean square 

errors for MBD are marginally higher than those for EBLUP under models I and II and 

smaller for models III and N. Average coverage rates (which should nominally be 
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around 95 percent) for MBD are relatively higher than those for EBLUP under all 

models. Although neither approach dominates, it seems clear that MBD is more robust to 

model misspecification than EBLUP. 

Figures 3.7-3.9 show the region-specific performances generated by EBLUP and MBD 

methods (ordered by increasing population size) under REML estimates of random 

effects. Similar results generated by ML estimates of random effects are shown in Figures 

B.1 to B.3 in Appendix B. Figure 3.7 (and Figure B.l) shows the better relative bias 

performances of both EBLUP and MBD under model I and II and their worse relative 

bias pelformance under model N. Figure 3.8 (also Figure B.2) shows that the relative 

RMSEs of regional estimates generated by MBD are comparable with those generated 

under EBLUP, with neither approach dominating. Overall, with the exception of two 

regions (3 and 21), it seems that MBD under model II performs marginally better overall. 

As indicated earlier in the AAGIS data, the regional sample sizes vary from 6 to 117 

(Table 3.1). However, performances of the two methods (i.e. EBLUP and MBD) have not 

shown any pattern with sample sizes. That is relative performances of the EBLUP and 

MBD does not depend on small area sample sizes. See Figures 3.7 to 3.9. 
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Table 3.3 Average (ARB) and median (MRB) values of relative bias (%), average 

(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%) and 

average (ACR) coverage rate generated by MBD and EBLUP using ML and REML 

estimates of random effects under model I-IV. All averages and medians are over the 29 

regions of interest. 

Model Estimator ARB MRB ARRMSE MRRMSE ACR 

REML I EBLUP 4.24 1.55 19.92 15.74 0.90 

MBD -2.49 -0.82 20.56 14.45 0.92 

II EBLUP 2.98 0.61 19.87 16.40 0.85 

MBD -2.13 -0.47 20.15 13.16 0.93 

III EBLUP 4.52 1.95 23.89 19.94 0.69 

MBD -3.84 0.13 21.14 14.44 0.94 

IV EBLUP 1.17 -2.63 23.38 19.73 0.65 

MBD 2.20 2.06 22.35 20.61 0.97 

ML I EBLUP 4.58 1.66 20.28 15.93 0.90 

MBD -2.76 -0.89 20.49 14.38 0.92 

II EBLUP 3.27 0.91 20.29 16.84 0.85 

MBD -2.53 -0.61 20.18 13.08 0.93 

III EBLUP 4.69 1.03 24.05 20.03 0.70 

MBD -3.94 0.12 21.10 14.48 0.93 

IV EBLUP 1.34 -2.95 23.50 19.88 0.67 

MBD 2.08 1.85 22.30 20.52 0.97 
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In the two regions (3 and 21) where MBD fails, inspection of the population and sample 

data indicated that this is because of a few outlying estimates. In fact, the outlying values 

of MBD for region 21 are all caused by the presence of a single massive outlier (TCC > 

A$30,000,000) in the original sample (see Figure 3.2). This outlier was included in the 

simulation population (twice) and then selected (in one case, twice) in 37 of the 1000 

simulation samples. If we discard the outlier driven estimates in regions 3 and 21 then the 

MBD approach seems the method of choice for regional estimation in our simulation 

study. This is confirmed when we return to Table 3.3 and now consider the columns 

containing the median values of relative bias and relative RMSE. 

Figure 3.9 (and Figure B.3) summarizes region-specific variation In the nominal 95 

percent confidence interval coverage rates generated by EBLUP and MBD. If we ignore 

the outlier driven results for regions 3 and 21, the results displayed in Figure 3.9 show 

that MBD approach gives marginally better coverage rates under Models I and II. A close 

look at these results also indicates that in the event of model misspecification (e.g. under 

Models III and N) the MBD coverage rate is more robust. 

As mentioned earlier MBD is more robust to model misspecification. We can apply the 

MBD method of estimation more appropriately in many situations, where the EBLUP 

approach is not well suited. For example, for estimation of small areas of categorical 

survey variables, the EBLUP (3.18) based on a linear mixed model (3.11) is not 

appropriate and in such cases the suitable model is a generalised linear mixed model 

(GLMM). However, MBD methods still work well for such data. Empirical results 

(Appendix E) show no efficiency loss by using MBD estimator based on linear 
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assumption in this case. In chapter 4 we further discuss some other situations when 

EBLUP is unstable and MBD performs reasonably well. 

3.5 Conclusions 

Our empirical results indicate that the MBD estimator (3.15) performs well and 

represents a real alternative to the EBLUP (3.20), with the associated easy to calculate 

MSE estimator (3.19) providing good coverage performance. The MBD estimator under 

random slopes model II perform marginally better overall. Further, the MBD approach 

appears to be more robust than EBLUP in the realistic situation where (3.11) is a working 

model, rather than the (unknown) true model underpinning the data. However, this does 

not mean that the MBD is always preferable. Note that EBLUP, which approximates the 

best linear estimator when (3.11), actually holds, would be expected to dominate MBD in 

such a case. Further, for SAE of the categorical variables the EBLUP (3.20) based on a 

linear mixed model (3.11) is not appropriate and the adequate method is based on a 

generalised linear mixed model (GLMM). However, MBD methods still perform 

reasonably well in such cases. See Appendix E for some empirical results related to 

categorical survey variable. 

We noticed some issues that influence the utility of the mixed model-based direct 

estimator (3.15) that remain unresolved. The negative weights, which occurred in some 

regions in the simulation study reported above, lead to impossible (i.e. negative) 

estimates. Since such values are easily identified, they should not cause problems in real 

77 



life. However, the problem remains of how to modify the weights (3.14) to ensure they 

are strictly positive. A related issue that has already been noted is the impact of outlier Y

values on (3.15). Certainly, this estimator since it is a linear combination of just the small 

area data values is more susceptible to outliers in these values than the EBLUP (3.20). 

The MBD estimators discussed in this chapter are essentially based on the variable 

specific weights and efficient for estimation of the variable on which they are based. 

Development of "multipurpose" weights (i.e. not variable specific) can make the method 

even more useful. Furthermore, the data used in the simulation studies reported in section 

3.4 are heteroskedastic in nature and the relationship between the survey and the auxiliary 

variables are not linear (Figure 3.4 and 3.5). Thus, the extension of MBD approach for 

the small area estimation with skewed data seems to be essential. In the proceeding 

chapters we shall consider these two issues. 
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Figure 3.7 Region-specific percentage relative biases for EBLUP (dashed line) and MBD 

(solid line) under model I (top left), model II (top right), model III (bottom left) and 

model N (bottom right) with REML estimates. 
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Figure 3.8 Region-specific percentage relative RMSE for EBLUP (dashed line) and 

MBD (solid line) under model I (top left), model II (top right), model III (bottom left) 

and model IV (bottom right) with REML estimates. 
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Figure 3.9 Region-specific coverage rate for EBLUP (dashed line) and MBD (solid line) 

under model I (top left), model II (top right), model III (bottom left) and model IV 

(bottom right) with REML estimates. 
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CHAPTER 4 

MULTIPURPOSE SMALL AREA ESTIMATION 

4.1 Introduction 

The MBD method of small area estimation (SAE) described in chapter 3 uses sample 

weights derived under a population level linear mixed model to define the estimator for 

small areas. The weights that define the best linear unbiased predictor (BLUP) for the 

population total of a variable of interest (see Royall, 1976) depend on the population 

level conditional variance/covariance matrix for that variable. Unless this matrix is 

always proportional to a known matrix, this optimality is variable specific (Valliant et aI, 

2000, chapter 2). However, most surveys are multivariate, and it is often an advantage to 

have a common weight for all response variables. This is especially true where linear 

estimates are produced using the survey data. In what follows we refer to such weights as 

'multipurpose'. Further, these multipurpose weights facilitate the production of linear 

estimates using computer software so that we do not need to use a different weight for 

each variable. Consequently, development of multipurpose sample weight has potential to 

make the MBD method of SAE more useful. 
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When a sufficiently rich set of auxiliary variables exist, and response variables can be 

assumed to be conditionally uncorrelated given these variables, multipurpose weights can 

be constructed by fitting a linear model for each response variable in terms of the 

complete set of auxiliary variables, as in Chambers (1996). An essentially equivalent idea 

is to use a calibrated set of sample weights, where the calibration is with respect to these 

auxiliary variables, as in Deville and Sarndal (1992). 

Small area estimation is now widely used in sample surveys. Many of the methods 

currently in use are variable specific and based on the application of mixed models (Rao, 

2003). Weighted direct estimation for small areas based on these models is described in 

chapter 3, where we refer to this approach as the model-based direct (MBD) method of 

small area estimation. Since the weights used in MBD estimation are based on the second 

order properties of linear mixed models fitted to the survey variables, they are variable 

specific. However, as noted above, there are obvious practical advantages from having a 

single multipurpose weight that can be used for small area estimation for all the survey 

variables. 

In this chapter we introduce the 'multipurpose' weights, optimal in some sense for a 

range of variables in multivariate surveys. Then we propose the multipurpose small area 

estimation. In particular, we extend the MBD approach for SAE for multivariate surveys 

using 'multipurpose' weights. In section 4.2 of this chapter we replace the variable 

specific BLUP optimality criterion that underlies the mixed model weights used in the 

MBD approach by a modified 'total variability' criterion that leads to a single set of 
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optimal multipurpose weights for use in MBD estimation for small areas. Section 4.3 

then presents empirical results on the performance of this approach. Finally, in section 

4.4 we summarise our empirical results. 

4.2 Optimal Multipurpose Sample Weighting 

In section 3.2 of the previous chapter, we define the sample weights for population 

estimation with single a response variable under the general linear model (3.8). Under the 

model (3.8) and following the notation given in section 3.2, it is known (see Royall, 

1976) that among linear prediction unbiased estimators ~,= W;r:, of Ty ' the variance of 

the prediction error Var(fy - Ty) is minimised by weights of the form 

1 '(' ') ( , ') -I ws= n+ H XulN-Xs1n + In-HXs Vss Vsr lN_n· (4.1) 

Here H = (X:v,,~1 Xs r X:Vs~l, Ig is a vectors of ones of order g(g = n, N, N - n) and In 

is the identity matrix of order n. We refer to the weights (4.1) as the BLUP weights for Y. 

By definition, these weights are calibrated on the variables in Xu and so exactly 

reproduce the known population totals defined by the columns of this matrix. In other 

words X; WS = X~ IN = T,. Furthermore, under the assumption that a linear mixed model 

can be used to specify the covariance matrix components v"s and Vsr in (4.1), the MBD 

approach to small area estimation introduced in chapter3 uses these weights, with v's and 

V,., replaced by suitable estimates, to define direct estimates of small area quantities. 
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4.2.1 Optimal Multipurpose Weighting for Uncorrelated Variables 

Suppose we have K response variables and a common set of auxiliary variables with 

values defined by the population matrix Xu' and that model (3.8) holds for each of them 

(although with different parameter values). Suppose further that these variables are 

mutually uncOlTelated. We use an extra subscript k (k = 1, .... , K) to denote quantities 

associated with the kth response variable, for example Vkss and wks denote respectively 

the n x n covariance matrix and n x 1 vector of sample weights that are associated with 

the n x 1 vector ~s of sample values of the k t
" response variable. With this notation, our 

aim is to derive an optimal set of multipurpose weights Ws = {wj ; j E s} for the K 

response variables measured in the survey. Let ~ = 1~ Yk denote the population total of 

~ , with estimator ~ = w;~s based on these mUltipurpose weights. The weights Ws are 

then said to be ¢ -optimal if 

(a) E(~ - ~) = 0 for each value of k, and 

(b) the ¢ -weighted total prediction variance Lk ¢k Var(Tk - Tk) is minimised at ws' 

Here ¢k is a user-specified non-negative scalar quantity that reflects the relative 

importance attached to the k
t
" response variable, with Lk ¢k = 1. 

We now define the vector as = Ws - 1 s' Then the estimation error for the estimator 
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In order to derive an explicit expression for the ¢ -optimal multipurpose weights we first 

note that under (a) 

( AT.) E( 'Y, l' Y,) E( 'X l' X) R 0 a'X = l' X. (4.2) E I: - k = a, ks - N-Il kr = as s - N-Il r fJk = =? s S N-Il r 

Furthermore, the prediction variance for estimator Tk = w:~s is then 

The second term on the right hand side above vanishes under (4.2), so that 

= a'V - 2 'V 1 + l' V 1 s kssas as hr N-n N-n krr N-n· 

(4.3) 

We use the method of Lagrange multipliers to minimise (4.3) subject to (4.2). The 

corresponding Lagrangian loss function is 

The third term on right hand side of (4.4) is independent of as so we discarded it and 

consider the Lagrange function as 

(4.5) 

where /L is a vector of Lagrange multipliers. Differentiating (4.5) with respect to as and 

setting the result equal to zero leads to 

X /L- ",K d. 1 ",K d. 
s - L... k=1 'f'k V ksr N-n - L... k=1 'f'k Vkssas 
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(4.6) 

Multiplying both sides of (4.6) on the left by X; and using (4.2), we see that 

X'I = X'U-IW } - X'U-I X A 
r N-n s 1 1 N-n sis 

A = (X'U-I X )-1 {X'U-IW - X'}l 
sis s I I r N-n 

(4.7) 

optimal value of as : 

=u-IX (X'U-IX )-1 (X'I -X'} )+[1 _U-IX (X'U-IX )-1 X'JU-WI . 
1 s sIs U N S 11 11 1 s sIs s I I N-n 

That is, the optimal multipurpose sample weights are given by 

(4.8) 

Observe that the analytical form of the optimal multipurpose weights (4.8) is similar to 

the variable specific BLUP weights (4.1) except that Vkss and Vksr are replaced by the 

(4.1) for K = 1. The choice of weight or importance rA attached to k'" variable is more 

or less subjective, and can to chosen depending on the nature of the data. When there is 

no reason to choose one variable over other then we can give equal weight to all 
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variables, meaning (A = K- 1
; 'Vk . For example, we can assign the weight proportional to 

residual variances of the response variables. 

4.2.2 Optimal Multipurpose Weighting for Correlated Variables 

The multipurpose weights (4.8) are derived assuming that variables are mutually 

uncorrelated. However, in general survey variables are correlated. We now define the 

sample weights exploiting the correlations among the survey variables. For any two 

variables ~ and ~ (k, 1= 1, ... , K) , let Ckl = Clk = Cov(~, ~) . The obvious generalization 

of the ¢ -weighted total prediction variance to this case leads to the loss function 

(4.9) 

where elements of the matrix L1 = {L1 k/ } are given by 

if k =1 

and we now have 

- ' C - 2 'c 1 + l' C 1 - as kiss as as klsr N-11 N-11 klrr N-n' 

Var(~ - I;,) = a;Vkss as - 2a;Vksr 1 N -11 + 1~ -11 Vkrr 1 N-11 
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The Lagrange function to be minimized in this case is 

<p(2) = (P:, J¢;, .... J¢;) ~ (P:, J¢;, .... J¢;)' + 2(a;X s -l~_n X r)2 

= I¢k Var(t: -Tk)+ IIP; P:Co V (fk -~,~ -7;) + 2(a;Xs -1~_nXr)2 
k k 1# 

= I¢k {a;Vhsas - 2a;Vks)N_n + l~_n VkrrlN-n} 
k 

+ I I P; Ii {a;Cklssas - 2a;Ckls,lN-n + l~_n CklrrlN_n} + 2(a;Xs -1~_n Xr)2. (4.10) 
k 1# 

Differentiating (4.10) with respect to a, and setting the result equal to zero yields 

(4.11 ) 

where U2 = I¢kVkSS+ IIJ?J:Iicklss and Wz = I¢kVksr+ II Jfi:J¢;Cklsr . 
k k 1# k k I*k 

Proceeding as in the uncorrelated case then leads to the optimal multipurpose weights for 

correlated survey variables as 

(4.12) 

where Hz = (X;U;! Xs r X;U;! . As in the uncorrelated variables case, we note that the 

weights defined by (4.12) have the same analytic form as the BLUP weights (4.1), except 

that in this case Vbs and Vksr are replaced by Uz = I ¢k Vkss + I I J?J: J¢; Cklss and 
k 1# 

W2 = I¢kVksr + IIJ?J: J?j;Cklsr respectively. Between multipurpose weight (4.8) and 
k 1# 
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(4.12), the weight (4.12) includes extra terms in their variance components that arise due 

to correlation among the variables given by Ckl • When Ckl = 0, the weight (4.12) reduces 

to (4.8). 

4.3. Application to Small Area Estimation 

In section 4.2 we discussed three types of sample weights, the variable specific weights 

(4.1), the multipurpose weights (4.8) based on uncorrelated and (4.12) based on 

correlated survey variables respectively. These weights are derived under the model 

appropriate for population estimation (i.e. using a model that explains population level 

variability and small area effects are averaged out) and using these weights for SAE can 

lead to inefficient estimates. The most commonly used class of models in small area 

inference is the class of linear mixed models (see section 3.3, chapter 3). This is also true 

when we have more than one variable. In this section we first recall the linear mixed 

model and MBD estimation and then define them for the multivariate case to derive the 

multipurpose weights and associated estimators for small areas. 

Following the MBD estimation elaborated in chapter 3, we use the multipurpose weights 

(4.8) and (4.12) to construct model-based direct (MBD) estimates for small area means. 

In this case we assume that the population can be partitioned into m non-overlapping 

small areas or domains, indexed by i in what follows. Thus, for example, the population 

size of area i is denoted by Ni and so on. The variable-specific MBD estimate of the 

mean of the e" response variable with values Ykj in area i is then 
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(4.13) 

where s; denotes the sample (of size n;) in area i and the weights wkj are calculated 

using (4.1), substituting estimated values Vkss and Vksr for the corresponding components 

of the covariance matrix of the population values of this variable. Here model (3.11) and 

interpretation of different terms apply directly with inclusion of one extra subscript k for 

kth variable, however, we redefined the mixed linear model (3.11) by introducing the 

subscript k, just for shake of continuity. In order to define these estimates, we assume that 

these population values follow the linear mixed model 

(4.14) 

and ekU =(e~.I,···,e;,/,)' denote partitioning into area 'components'. Here Uk,; is a qxI 

vector of the random effect associated with area i, with Var(uk) = L,lI,k ' and ek,; is the 

vector of individual level random effects for small area i, with variance 

components L,e,k and LlI,k can be estimated from the sample data using standard methods 

(maximum likelihood, restricted maximum likelihood, i.e. REML, or method of 

moments). Substituting these estimated variance components back into the definition of 

Vk,i and noting that Vku = diag (Vk ,;; 1 ::; i ::; m) then leads to a corresponding estimate of 

this population level covariance matrix. This can be appropriately partitioned into sample 

and non-sample components to give the estimated values lIkss and " ksr ' We refer to the 
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weights (4.1) with these estimated values substituted as the (variable specific) EBLUP 

weights (just as in chapter 3). 

In order to use the multipurpose weights (4.8) and (4.12) in MBD estimation, we assume 

that the survey variables all follow the linear mixed model (4.14), with normal random 

effects. Furthermore, for any two variables of interest, say the kt" and It'', area and 

individual random effects remain uncorrelated but now 

(4.15) 

and 

(4.16) 

Hence 

and 

Given these definitions, we put VI = diag(Vli ;1:::; i:::; m) and WI = diag(WIi ;1:::; i:::; m) in 

(4.8) and V 2 = diag(V2i ; 1:::; i:::; m) and W2 = diag(W2i ;1 :::; i:::; m) in (4.12). Here 

VIi = I (AVkss,i = I (A (Le,kJll
j 
+ Zs,iLu,kkZ;,i ) 

k k 

~i = I (AVksr,i = I (A (Zs,iLU,kkZ;,i ) 
k k 
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and 

U2; = I (AVkss ,; + I I.Ji: .fA Ck/ss ,; 
k k /*k 

= I¢k (I.e,kJnl +zs,;I.u'kkz;,i)+ IIJ¢;.fA (I.e'k/nl +zs,;I.u,k/z:,;) 
k k /# 

W2; = I ¢k Vksr ,; + I I J¢; .fA Ck/sr ,; 
k k /*k 

= I ¢k (zs,;I.u,kk z ;,; ) + I I J¢; .fA (Zs,;I.u,kIZ ;,; ) , 
k k ~k 

In practice, the bivariate variance components I.u,kk,I.u,kpI.e,kk and I.e,kl' see (4.15) and 

(4,16), are unknown and must be estimated from the survey data. For example, in the 

empirical study described in the next section, these components were estimated using the 

method of moments. In any case, substituting estimates for these components in the 

formulae above then enables us to compute U j , W j , U2 and W2 , and hence the 

multipurpose weights (4.8) and (4.12). Computation of MBD estimates for the small area 

means of the different survey variables is then straightforward using (4.13), with these 

multipurpose weights replacing the variable specific EBLUP weights there. 

As noted earlier, the mUltipurpose weights (4.8) and (4.12) are essentially EBLUP type 

weights based on 'importance averaging' of the variance and covariance components 

associated with the different survey variables. This motivates us to consider a second 

approach to deriving multipurpose weights based on corresponding 'importance 

averaging' of the variable specific EBLUP sample weights (4.1) for these variables. That 
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is, we simply define our multipurpose weights as the importance-weighted average of the 

variable specific weights (4.1) across all K survey variables. This leads to weights 

(3) - '" do W 
Ws - L..., 'f'k sk 

k 

(4.17) 

where wsk denotes the value of (4.1) for the kth survey variable and ¢k denotes the 

relative importance of this variable, with Lk ¢k = 1 . The two approaches of deriving the 

'multipurpose' weights based on averaging the variance-covariance components and 

averaging the variable specific weights are refelTed as the approach I and II respectively. 

Mean squared errors for the EBLUP are estimated using the approach of Prasad and Rao 

(1990), while mean squared errors for the various MBD estimators are estimated using 

the robust method described in section 3.3.2 in chapter 3, which itself is an application of 

the heteroskedasticity robust method of prediction variance estimation in Royall and 

Cumberland (1978). That is, estimation of the mean squared errors of the MBD 

estimators (4.13) defined via mUltipurpose weights (4.8), (4.12) and (4.17) follows the 

approach described in section 3.3.2, and treats these estimators as simple weighted 

domain mean estimates. Under this approach the sample weights derived under mixed 

effect model are treated as fixed and the prediction variance of corresponding estimators 

are estimated using a standard robust variance estimator. In particular, the mean squared 

error estimator for the MBD estimators ~MBD of Y; given in (4.13) is 

(4.18) 

where vcyMBD) = '" XCY._X~jJ)2 is the estimate of the prediction variance of ~MBD 
I L....Si J J J 

with 
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a.=('" w)-I(NW_'" W), } L.,; Sj J I J ~ Sj J 

~MBD ~MBD -, ~ ~MBD ~MBD 
and b(~ ) = (Xi - X) j3 is the estimate of the bias of ~ . Here Xi denotes 

the weighted average of the sample values of the auxiliary variables in area i. The sample 

weights used in (4.18) are the multipurpose weights (4.8), (4.12) and (4.17), depending 

the estimators. However, /J used in (4.18) are variable specific and estimated from the 

variable of interest. Appendix F shows some other options for estimating j3 in context of 

multipurpose SAE. 

We described two approaches for deriving mUltipurpose weights based on small area 

models, the first based on the weighted average (or sum) of the variance-covariance 

components associated with a select group of variables and the second based on weighted 

average (or sum) of the variable specific sample weights generated for these variables. 

Using these two approaches, we defined three types of multipurpose weights and 

corresponding small area estimators and their mean squared error. In the next section we 

carry out simulation studies to evaluate the empirical performance of these estimators as 

well as variable specific weighting based MBD and EBLUP. We also examine the utility 

of multipurpose weights for SAE of an arbitrary variable from same survey, not included 

in the definition of the multipurpose weights. 
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4.4 An Empirical Evaluation 

In this section we report on a design-based simulation study that illustrates the 

performance of small area MBD estimation combined with mUltipurpose weights. The 

basis of this study is the same target population of N = 81982 farms, the same 1000 

independent replications of a stratified random sampling design with overall sample size 

n = 1652 and the same m = 29 small areas of interest (defined by agricultural regions) 

that underpin the simulation results reported in chapter 3. Note that regional sample sizes 

in this design are fixed from simulation to simulation but vary between regions, ranging 

from a low of 6 to a high of 117, and hence allowing an evaluation of the performance of 

the different methods considered across a range of realistic small area sample sizes. See 

section 3.4 for more details. Here we consider K = 8 variables of interest. These are 

(i) TCC = total cash costs (A$) of the farm business over the surveyed year, 

(ii) TCR = total cash receipts (A$) of the farm business over the surveyed year, 

(iii) FCI = farm cash income (A$), defined as TCR - TCC, 

(iv) Crops = area under crops (in hectares), 

(v) Cattle = number of Cattle on the farm, 

(vi) Sheep = number of sheep on the farm, 

(vii) Equity = total farm equity (A$), and 

(viii) Debt = total farm debt (A$). 

Our aim is to estimate the average of these variables in each of the 29 different regions. 

In doing so, we use the fact that these regions can be grouped into three zones (Pastoral, 

Mixed Farming, and Coastal), with farm area (hectares) known for each farm in the 
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population. This auxiliary variable is referred to as Size in what follows. Therefore, we 

have a single auxiliary variable for all 8 target variables. 

Although the linear relationship between the eight target variables and Size is rather weak 

in the original sample data, this improves when separate linear models are fitted within 

six post strata. These post-strata are defined by splitting each zone into small farms (farm 

area less than zone median) and large farms (farm area greater than or equal to zone 

median). The mixed model (4.14) is therefore specified so that the matrix X of auxiliary 

variable values included an effect for Size, effects for the post-strata and effects for 

interactions between Size and the post strata as in chapter 3. Two different specifications 

for Z (corresponding to whether a random slope on Size was included or not) were 

considered. We refer to these as model I and as model II respectively below. These are 

random intercepts and random slopes model as in chapter 3. We use REML estimates of 

random effects parameters, obtained via the lme function in R (Bates and Pinheiro, 1998) 

when fitting (4.14) to individual survey variables. When fitting the multivariate mixed 

models defined by (4.15) and (4.16) we use the method of moments (Rao, 2003). See 

Appendix G for definit.ion and expressions for the method of moment estimation. 

4.4.1 Description of Estimators 

The simulation study investigates the empirical performance of five different estimators 

of the 29 regional means, along with corresponding estimators of their mean squared 

error. These are 
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(i) the variable specific EBLUP under (4.14), referred to as EBLUP (see section 

3.3.3, chapter 3); 

(ii) the MBD estimator (4.13) based on variable specific EBLUP weights (4.1) 

under (4.14), referred to as MBDO; 

(iii) the MBD estimator (4.13) based on multipurpose weights (4.8) under (4.14), 

referred to as MBD1-A; 

(iv) the MBD estimator (4.13) based on multipurpose weights (4.12) under (4.14), 

referred to as MBD1-B, and 

(v) the MBD estimator (4.13) based on multipurpose weights (4.17) under (4.14), 

referred to as MBD2. 

4.4.2 Description of Simulation Studies 

The simulation study is carried out in five stages. In the first stage, model I is assumed 

and the performance of the three estimators MBDO, MBD1-A and MBD1-B for two 

variables (TCC and TCR) is investigated to see if there are gains to be had from 

exploiting correlations among the survey variables. In this case we use method of 

moments (Henderson's method 3) to estimate the model parameters (see Appendix G). 

Results from the first stage of simulation are set out in Table 4.1. For this stage of 

simulations, we also carried out the model-based simulations to contrast the performance 

of different estimators for the population generated under the model. A description of the 

model-based simulations and corresponding results are shown in Appendix H. In the 

second stage of the study we compare the performance of the four estimation methods 
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EBLUP, MBDO, MBDl-A and MBD2 under models I and II for the 5 response variables 

(TCC, TCR, FCI, Cattle and Sheep) where both models can be fitted. Results from this 

stage are presented in Tables 4.2-4.3 and in Figure 4.1-4.5. 

Note that three of the eight target variables in the study (Crops, Equity and Debt) are not 

suited to linear modeling via (4.14) under model II because of large numbers of zeros, so 

the multipurpose weights used in MBDl-A and MBD2 are based on the K = 5 remaining 

variables (TCC, TCR, FCI, Cattle and Sheep) in the simulations evaluating the 

performance of different methods under the model I and II. Consequently, in the third 

stage of the study, we use the multipurpose weights derived in the second phase (i.e. 

weights based on the K = 5 variables TCC, TCR, FCI, Cattle and Sheep) in MBD1-A to 

evaluate the performance of this estimator for the three variables Crops, Equity and Debt 

that are impossible to model using model II. That is we evaluate the performance of 

different methods for three target variables (Crops, Equity and Debt) that contain a large 

number of zeros and which are not included in the multipurpose weights. In this stage, 

our purpose is to investigate the utility of multipurpose weights to the variables not 

included in the weight. Results from this stage are shown in Table 4.4 and in Figures 4.6 

to 4.8. 

In the fourth stage we use the fact that model I can be fitted to all eight variables to define 

mUltipurpose weights that we then use in MBD1-A. That is we consider all the K = 8 

response variables under model I. In this stage we investigate the effect of number of 

target variables included in the multipurpose weights. Results from this stage are 
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presented in Tables 4.5 and in Figures 4.6-4.8. Note that in all four of these simulation 

stages, we assign equal importance to all variables included in derivation of the 

multipurpose weights, i.e. (A = 11 K, "Ilk. However, in the final simulation studies (stage 

five) we replicate the stage two simulations for MBDI-A, but this time we assign weights 

to each variable proportional to its variability, i.e. (A = 11 a;,k or (A = 11 total var iance . 

Results from this stage are reported in Tables 4.6. We assign an equal importance to the 

variables included in defining the multipurpose weights if there no reason to prefer one to 

the other. However, for a given data set, depending on the nature of the variables we 

identify some criterion to assign relative importance. For example, in AAGIS data, 

variability of some of the variables is different from the others. Thus, in simulation set 

five we decide to assign importance proportional to the variability of different variables. 

4.4.3 Results of the Simulation Studies 

We computed three measures of estimation performance using the estimates generated by 

different estimation methods in various simulation studies. These are the relative bias 

(RB) or relative mean errors and the relative root mean squared error (RRMSE), both 

expressed as percentages, of regional mean estimates and the coverage rate of nominal 95 

per cent confidence intervals for regional means. Further, the average and median values 

of these performance measures are calculated over all the regions. See section 3.4.2 for 

the definition of these measures. 
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4.4.3.1 First Stage Simulations 

Table 4.1 presents the average and median values of various measures of estimation 

performance for the first stage simulations (all computed over the 29 regions) generated 

by four methods MBDO, MBD1-A and MBD1-B under model I for the two variable TCC 

and TCR. As mentioned earlier, this stage of simulations use the method of moment 

(Henderson's method-3) for the estimation of random effect parameter (Appendix G). 

For the variable TCC, we note that the average and median relative biases under MBDO 

are larger than both MBD1-A and MBD1-B. However, with equal average coverage 

rates, the average and median relative RMSEs for MBDO are marginally lower than both 

MBD1-A and MBD1-B. In contrast, for the variable TCR, the average and median 

relative biases under MBDO are small than both MBDI-A and MBD1-B. However, with 

the same average coverage rate, the average and median relative RMSEs for MBDO are 

marginally higher than both MBDI-A and MBDI-B. We have not presented the regional 

estimates generated by these methods since there are no significant differences between 

them. These results show that neither approach dominates the other. Between MBD1-A 

and MBD1-B it seems clear that both methods perform equally well. This is evidence that 

the MBD method based on the multipurpose weights (4.8) is not sensitive to correlations 

between the target variables. Although not presented here, results from model-based 

simulations of target variables with different levels of correlation support this conclusion. 

The results from model-based simulations are presented in Appendix H. Consequently 

the simulation results presented below focus on MBD1-A. 

101 



Table 4.1 Average (ARB) and median (MRB) values of relative bias (%), average 

(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and 

average (ACR) coverage rate generated by MBDO, MBD1-A and MBD1-B for TCC and 

TCR under model I. All averages and medians are over the 29 regions of interest. 

Variables Criterion MBDO MBD1-A MBD1-B 

TCC ARB -2.99 -2.67 -2.71 

ARRMSE 20.32 20.39 20.39 

ACR 0.92 0.92 0.92 

MRB -0.92 -0.85 -0.86 

MRRMSE 14.29 14.36 14.35 

TCR ARB -2.38 -2.62 -2.67 

ARRMSE 21.21 21.13 21.12 

ACR 0.92 0.92 0.92 

MRB -0.52 -0.56 -0.57 

MRRMSE 13.28 13.27 13.27 
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4.4.3.2 Second Stage Simulations 

In the second stage of the simulation study, we compared the two variable specific 

methods EBLUP and MBDO with the two mUltipurpose methods MBDI-A and MBD2. 

Tables 4.2 and 4.3 show the summary performances generated by these four methods for 

the five variables TCC, TCR, FCI, Cattle and Sheep under the 'reasonably specified' 

models I and II respectively. These results show that under the better fitting Model II 

(Table 4.3), there is little, if any, difference in the average relative biases of the 

multipurpose methods MBDI-A and MBD2 compared with the average relative bias of 

the variable specific estimator MBDO, with all three often substantially better than 

EBLUP (Table 4.2-4.3). Under Model I, the two multipurpose estimators MBDI-A and 

MBD2 are substantially better than MBDO and EBLUP. In terms of relative RMSE, the 

results are more equivocal. Under Model I there is little to choose between MBDO, 

MBDI-A and MBD2 in terms of average relative RMSE, with the corresponding 

performance of EBLUP rather more fragile. When one turns to the better fitting Model II, 

however, it is clear that the better multipurpose approach is MBD I-A. By considering 

median, rather than average, values of relative bias and relative RMSE, we also see that 

the estimation performances of the multipurpose estimators MBDI-A and MBD2 appear 

to be more robust than those of the variable specific estimators MBDO and EBLUP. 

Finally, we note that the average coverage rates of all three direct estimators are quite 

similar under both Models I and II and dominate the corresponding average coverage 

performance of EBLUP. Overall it seems clear that the multipurpose estimator MBDI-A 

is the estimator of choice for these five variables. 
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Table 4.2 Average (ARB) and median (MRB) values of relative bias (%), average 

(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and 

average (ACR) coverage rate for the five variables best suited to linear mixed modelling. 

All averages and medians over the 29 regions of interest. Model I is assumed. 

Criterion Method TCC TCR FCl Cattle Sheep 

ARB EBLUP 4.24 5.48 6.93 138.48 304.24 

MBDO -2.49 -9.25 -13.80 -15.05 -7.33 

MBDI-A -1.54 -1.30 -0.50 -1.78 0.69 

MBD2 -1.29 -1.02 -0.04 -1.35 0.98 

MRB EBLUP 1.55 0.55 -2.08 0.95 -0.23 

MBDO -0.82 -3.87 -2.83 -4.79 -4.48 

MBDI-A -0.61 -0.42 -0.56 -0.97 -0.35 

MBD2 -0.52 -0.39 -0.54 -0.75 -0.30 

ARRMSE EBLUP 19.92 21.76 63.93 304.74 906.18 

MBDO 20.56 23.34 54.42 37.45 24.88 

MBDI-A 20.86 21.77 59.72 33.29 30.24 

MBD2 20.85 21.77 60.07 33.36 30.64 

MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00 

MBDO 14.45 16.20 35.85 30.34 15.50 

MBD1-A 14.69 13.41 42.09 30.55 14.67 

MBD2 14.74 13.46 42.45 30.56 14.67 

ACR EBLUP 0.90 0.88 0.87 0.86 0.91 

MBDO 0.92 0.91 0.94 0.93 0.94 

MBDI-A 0.92 0.92 0.94 0.95 0.96 

MBD2 0.92 0.92 0.94 0.95 0.96 
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Table 4.3 Average (ARB) and median (MRB) values of relative bias (%), average 

(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and 

average (ACR) coverage rate for the five variables best suited to linear mixed modelling. 

All averages and medians over the 29 regions of interest. Model II is assumed. 

Criterion Method TCC TCR FCI Cattle Sheep 

ARB EBLUP 2.98 2.85 16.70 131.66 2.63 

MBDO -2.13 -1.25 0.50 -0.29 3.66 

MBD1-A -1.67 -1.29 0.74 -1.95 1.10 

MBD2 -1.30 -0.72 3.17 -1.29 0.93 

MRB EBLUP 0.61 1.37 3.98 0.62 0.00 

MBDO -0.47 -0.51 0.35 -0.31 0.00 

MBD1-A -0.65 -0.50 0.24 -0.30 -0.15 

MBD2 -0.52 0.01 0.53 -0.22 -0.09 

ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01 

MBDO 20.15 21.46 65.43 30.80 37.82 

MBD1-A 19.06 21.03 64.03 30.09 32.04 

MBD2 27.13 34.84 129.29 45.16 34.99 

MRRMSE EBLUP 16.40 15.61 33.89 22.64 11.73 

MBDO 13.16 12.39 37.64 28.79 14.68 

MBD1-A 12.84 12.18 37.92 24.84 14.77 

MBD2 12.84 12.71 37.62 24.93 14.72 

ACR EBLUP 0.85 0.86 0.84 0.86 0.89 

MBDO 0.93 0.93 0.90 0.95 0.96 

MBD1-A 0.93 0.93 0.94 0.95 0.96 

MBD2 0.93 0.93 0.94 0.95 0.96 

105 



Figure 4.1 to 4.5 show the regional level performances ofEBLUP, MBDO, MBD1-A and 

MBD2 for the five variables TCC, TCR, FCI, Cattle and Sheep respectively under model 

I and model II. Note the relatively better performance ·of all methods under model II. A 

considerable reduction in relative biases under multipurpose weighting can also be seen 

in most regions for all variables. These results further show significant gain in efficiency 

due to multipurpose approach in terms of relative RMSEs as well as coverage rates in 

different regions and for the different variables. 

Figure 4.1, which shows the region-specific performance for the variable TCC, indicates 

that in two regions (region 3 and 21) the weighting methods (MBDO, MBD1-A and 

MBD2) fail, in general. Inspection of data indicates that this is the consequence of a few 

outlying estimates as noted in chapter 3. When we discard these outlying estimates as in 

chapter 3, the weighting methods, particularly MBD1-A and MBD2, perform well for 

TCC across all regions. 

Figure 4.2 indicates that the root mean squared errors for the variable TCR under 

weighting methods are relatively higher in two regions (region 3 and 21). Again similar 

to the TCC, in these two regions results are contaminated by a few outlying estimates. 

The outlying estimates for region 21 are all caused by presence of a single massive 

outlier (TCR=A$ 33,031,486) from the original sample that was included in the 

simulation population (twice). This also affects the coverage rate of TCR under 

weighting methods in region 21 (Figure 4.2). If we discard the outlier driven estimate in 

region 21 (i.e. see the median performance measures generated by these methods, Table 
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4.2 and 4.3) then weighting methods, patiicularly the MBDI-A and MBD2 seems to be 

appropriate for regional estimation for the variable TCC and TCR under models I and II. 

Similarly, the results generated by all methods (EBLUP, MBDO, MBDI-A and MBD2) 

for FCI are influenced by outlier contaminated estimates in two regions (3 and 15). See 

Figures 4.3. 

The unstable performance of EBLUP for the Cattle and Sheep variables in Table 4.2 and 

4.3 is noteworthy. Upon investigation we found that the anomalous results for Cattle are 

caused by the presence of negative estimates (a negative estimate is really unexpected 

and surprising) for this variable in two regions (11 and 14), which are themselves the 

result of zero values in the data (Figure 4.4). In particular, in region 11 there are 1283 

zeros in the simulated population of 1586 values (in original sample of size 51, there are 

39 zeros). This resulted in 185 negative estimates out of the 1000 simulated for this 

region. Similarly in the region 14, there are 1972 zeros in the 2182 values in the 

simulated population (there are 43 zeros out of 47 in original sample), leading to 354 

negative estimates. However, in region 6 the MBDO is affected due to presence of one 

massive outlier (cattle= 33154) which was selected four times in the simulated population 

and the EBLUP is affected due to repetition of zero value. In region 6, in a sample of size 

19, there are two zero observations. 
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Figure 4.1 Region-specific performances of EBLUP (dashed line), MBDO (thin line), 

MBDI-A (thick line) and MBD2 (dotted line) for TCC under model I (left) and model II 

(right). 
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Figure 4.2 Region-specific performances of EBLUP (dashed line), MBDO (thin line), 

MBDI-A (thick line) and MBD2 (dotted line) for TCR under model I (left) and model II 

(right). 
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Figure 4.3 Region-specific performances of EBLUP (dashed line), MBDO (thin line), 

MBDI-A (thick line) and MBD2 (dotted line) for FCl under model I (left) and model II 

(right). 
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Figure 4.4 Region-specific performances of EBLUP (dashed line), MBDO (thin line), 

MBDI-A (thick line) and MBD2 (dotted line) for Cattle under model I (left) and model II 

(right). 
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Figure 4.5 Region-specific performances of EBLUP (dashed line), MBDO (thin line), 

MBDI-A (thick line) and MBD2 (dotted line) for Sheep under model I (left) and model II 

(right). 
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A similar reason lay behind the EBLUP results for Sheep (Figure 4.5). In this case, 

however, the regions where the zeros occurred were 3 and 18. In particular, in region 3 

there were only 11 non-zero values for Sheep in a simulated population of size 189, 

leading to 223 negative estimates, while in region 18 a majority of zero values for Sheep 

lead to 323 negative estimates. Further, we noticed that in region 6 all methods are 

unstable for estimation of Sheep. In this region (region 6) where all procedure fails, in a 

sample of size 19 all observations are zero expect one which is selected five times in the 

simulated population of size 465. This non-zero observation is of order 1200, which is 

like an outlying value. This results in 494 negative estimates for the EBLUP out of 1000 

samples and several outlying estimates with weighting methods (MBDO and MBDl-A). 

4.4.3.3 Third Stage Simulations 

As noted earlier, our results suggest that multipurpose estimation based on MBD I-A is 

preferable to that based on MBD2. Consequently, in the third stage of simulations we 

contrast the performances of the variable specific estimators EBLUP and MBDO with the 

multipurpose estimator MBDl-A for the three variables (Crops, Equity and Debt) that 

contain a large number of zeros and are not included in calculation of multipurpose 

weights (Table 4.4). Note that the results in this simulation stage are based on model I, 

since model II cannot be fitted to these variables (and also in the stage second we notice 

no difference in performance of the different methods under model I and II). In this stage 

of the simulation our purpose is to investigate the applicability of multipurpose weights 

to variables not included in defining the multipurpose sample weights. Here we examine 
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how much efficiency will be lost if we apply these multipurpose weights to arbitrary 

variables from the same survey not included in the definition of the multipurpose 

weights. 

Table 4.4 sets out the average and median relative bias (%), average and median relative 

root mean squared error and average coverage rate generated by three estimators 

(EBLUP, MBDO and MBDl-A) for the three target variables (Crops, Equity and Debt), 

not included in the multipurpose weights (averaged over the 29 areas). As indicated 

earlier, the MBDl-A for Crops, Equity and Debt is based on applied multipurpose 

weights derived using five other variables (TCC, TCR, FCI, Cattle and Sheep). 

From Table 4.4 we see that MBDl-A performs marginally better overall. The superior 

performance of MBDl-A is obvious, as is the poor performance of EBLUP for these 

variables. The average relative biases under MBDl-A are smaller than MBDO and 

EBLUP for Equity and Debt while it is small under MBDO for Crops. However, the 

average relative root mean squared error under MBDl-A are lower for the Crops and 

Equity while for Debt it is lower under MBDO. For Crops and Debt, the average coverage 

rates of the MBDl-A and MBDO are same (96 and 93 per cent) but higher than the 

EBLUP. However, for Equity MBDl-A has the highest coverage rate (94 per cent) 

overall. These results clearly indicate that the multipurpose weighting based method for 

small area estimation is the obvious choice for regional estimation, even though the 

variable is ill-suited for other methods (like EBLUP). 
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Table 4.4 Average (ARB) and median (MRB) values of relative bias (%), average 

(ARRMSE) and median (MRRMSE) values of relative root mean squared error (%), and 

average (ACR) coverage rate for EBLUP, MBDO and MBD1-A for variables with many 

zeros (Crops, Equity and Debt) under model I. All averages are over the 29 regions of 

interest. 

Criterion Methods Crops Equity Debt 

ARB EBLUP 90.31 4.36 8.39 

MBDO 0.00 -9.32 -4.94 

MBD1-A -0.21 -1.20 -0.96 

MRB EBLUP 0.00 -0.28 1.16 

MBDO -0.84 -3.51 -2.36 

MBD1-A 0.00 -0.32 -0.61 

ARRMSE EBLUP 123.96 18.51 29.02 

MBDO 23.53 19.14 27.71 

MBD1-A 22.92 17.05 28.57 

MRRMSE EBLUP 15.10 12.32 21.49 

MBDO 15.76 16.18 23.70 

MBD1-A 15.80 13.52 24.88 

ACR EBLUP 0.95 0.88 0.91 

MBDO 0.96 0.92 0.93 

MBD1-A 0.96 0.94 0.93 
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Figure 4.6-4.8 shows the region-specific performance measure for Crops, Equity and 

Debt respectively generated by three methods (EBLUP, MBDO and MBDI-A). These 

region-specific results show some abnormalities in the estimates in few regions. For 

example, for Crops, the EBLUP method seems to fail in four regions (2, 6, 9 and 18). In 

these regions we observed the presence of large number of zeros, which gives the 

negative estimates or under estimates for these regions. As noted earlier, in such cases the 

EBLUP method is very unstable. In contrast, weighting based methods work reasonably 

well. 

Note that Equity and Debt variables take negative values (also was the case with FCI), 

and our simulation results examine the application and suitability of different methods 

with such type of data. For Equity, in three regions (4, 6 and 14) the EBLUP procedure 

fails, inspection of data indicate the presence of negative values in these regions. For 

example, in region 4, there are two negative values in original sample and repeated 68 

times (first observation 4 times and second 62 times) in the simulated population, which 

results in negative and under estimates for some of the samples. For Debt, in two regions 

(3 and 17) only EBLUP and in one region (region 1) all methods are worst, observation 

of result shows that these are due to under estimation in these regions for most of the 

sample, due to presence of zero values and outlying. In region 1, where all estimation 

procedures are affected, in original sample of size 6, there are 5 zeros and one non-zero 

(y = 19928), which seems to be outlier. In simulated population of size 79, this point was 

repeated 15 times. Thus, EBLUP method was affected by presence of zeros and the 

weighting based methods due to outlier. The median relative biases and median relative 
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RMSE (Table 4.4) show that the dominance of weighting approach and gain due to 

multipurpose weighting. In regional estimation, mUltipurpose weighting approach seems 

to perform well. 

4.4.3.4 Fourth Stage Simulations 

In the results presented so far, the multipurpose weights used in the MBD1-A method 

have been based on the K = 5 target variables that are 'suited' to linear mixed modeling 

with the model II specification. However, if a model I specification is used, we can use 

all K = 8 target variables to define these weights via (4.8). The aim of this stage is to 

examine the effect of number of variables in the weight multipurpose. We derived the 

multipurpose weights based on K = 8 variables and compare with those based of K = 5 

variables. Let us denote by MBD1-A-8Y and MBD1-A-5Y, the MBD1-A estimators 

based on based on eight and five variables respectively. 

Note that the MBD1-A-5Y based on K =5 variables (TCC, TCR, FCI, Cattle, Sheep) are 

already evaluated for these five variables and also for the rest three variables (Crops, 

Equity, Debt) with applied weights. At this end, we calculate MBD1-A-8Y estimator 

based on variables for the entire K = 8 variable set (TCC, TCR, FCI, Cattle, Sheep, 

Crops, Equity, Debt). In Table 4.5 therefore we compare the performance of the MBD 1-

A method under model I with weights obtained by using both the limited (K = 5) and full 

(K = 8) set of target variables in (4.8). Table 4.5 indicates that the relative biases of the 

MBDI-A-8Y are marginally smaller than the MBD1-A-5Y for all variables except 
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Sheep. However, the average relative root mean squared errors of the MBD1-A-5Y are 

marginally lower than the MBD1-A-8Y. The average coverage rates of both the 

estimators are same. 

Table 4.5 Average (ARB) values of relative bias (%), average (ARRMSE) values of 

relative root mean squared error (%), and average (ACR) coverage rate for multipurpose 

weighting (MBD1-A) based on original K = 5 and extended K = 8 variable sets under 

model I. 

Variable K=5 K=8 

ARB ARRMSE ACR ARB ARRMSE ACR 

TCC -1.54 20.86 0.92 -1.08 20.91 0.92 

TCR -1.30 21.77 0.92 -0.80 21.83 0.92 

FCl -0.50 59.72 0.94 0.21 60.22 0.94 

Cattle -1.78 33.29 0.95 -1.05 33.49 0.95 

Sheep 0.69 30.24 0.96 1.24 31.06 0.96 

Crops -0.21 22.92 0.96 -0.20 22.97 0.96 

Equity -1.20 17.05 0.94 -0.72 17.14 0.94 

Debt -0.96 28.57 0.93 -0.68 28.74 0.93 

These results in Table 4.5 show that there is little change in the average performance of 

MBD1-A when the set of variables determining the mUltipurpose weights used by this 

estimator is extended from the original K = 5 variable set (TCC, TCR, FCl, Cattle, 

Sheep) to the entire K = 8 variable set (TCC, TCR, FCl, Cattle, Sheep, Crops, Equity, 

Debt). Again, note that this extension is only possible under Model I. Moreover, it is 

worth noting that for last three variables (Crops, Equity and Debt), not included in the 
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weight under MBD1-A-5Y and included in weights under MBD1-A-8Y. Overall, this 

result shows that these weights are quite insensitive to this choice. The almost 

imperceptible regional difference between the estimates defined by these two sets of 

weights (see Figure 4.6-4.8) reinforces this observation for these variables (Crops, Equity 

and Debt). 

Figure 4.6-4.8 shows that region-specific performance measure generated by EBLUP, 

MBDO, MBD1-A-5Y and MBD1-A-8Y methods for Crops, Equity and Debt 

respectively. As indicated earlier, in Figure 4.8 we show the overall region-specific 

superior performance of MBD1-A (under either K = 5 or K = 8) for the variable Debt. 

Similar region-specific performances were observed for Crops and Equity as well. 

4.4.3.5 Fifth Stage Simulations 

So far, when computing the multipurpose weights, we have assigned equal importance to 

all K target variables that are used to define them. However, a reasonable alternative 

approach would be to assign importance factors based on the intrinsic variability of these 

variables (see section 4.4.2, page 100). Two natural options in this regard are (A = 1/Le,k 

and rA = 1 I Vk ' where Le k and Vk are the individual and total variability of the kth target 

variable. In this stage, we examine the effect of assigning relative importance of the 

variables included in the mUltipurpose weights. Here we denote by MBD1-A 

(fA = 1/ Le,k) and MBD 1-A (rA = 1 I Vk ) as the MBD 1-A methods with relative weight 

(A =1/Le,k and rA =l/Vk respectively, 
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Table 4.6 provides summary details of the performance of the MBDI-A method when the 

multipurpose weights (based on TCC, TCR, FCr, Cattle and Sheep) are computed using 

these alternative importance weighting factors. These results show that the average 

relative bias increases for all variables except Sheep, the average relative root mean 

squared error reduces and the average coverage rate remains same for all variables by 

incorporating the variability of the target variables in the mUltipurpose weights. Overall 

we see that, for the population considered in the simulation study, there is little to choose 

between these different importance weighting factors. 

Table 4.6 Average (ARB) values of relative bias (%), average (ARRMSE) values of 

relative root mean squared error (%), and average (ACR) coverage rate for multipurpose 

weighting (MBDI-A) under (A = 1/ K, (A = 1/ O"~,k and (A=lIVk for K = 5 target 

variables (TCC, TCR, FCr, Cattle, Sheep) under model 1. 

Criterion ¢-l 
k TCC TCR FCr Cattle Sheep 

ARB K -l.54 -l.30 -0.50 -l.78 0.69 

2 
O"e,k -l.69 -1.48 -0.82 -2.03 0.52 

Vk -1.64 -1.42 -0.70 -1.95 0.57 

ARMSE K 20.86 21.77 59.72 33.29 30.24 

2 
O"e,k 20.83 21.71 58.00 33.19 29.99 

Vk 20.85 21.75 58.15 33.25 30.11 

ACR K 0.92 0.92 0.94 0.95 0.96 
2 

O"e,k 
0.92 0.92 0.94 0.95 0,96 

Vk 0.92 0.92 0.94 0.95 0.96 
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Figure 4.6 Regional performances ofEBLUP (dashed line), MBDO (thin line), MBDI-A 

under K = 5 (thick line) and MBDI-A under K = 8 (dotted line) for Crops under model I. 
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Figure 4.7 Regional performances of EBLUP (dashed line), MBDO (thin line), MBD1-A 

under K = 5 (thick line) and MBD1-A under K = 8 (dotted line) for Equity under model I. 
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Figure 4.8 Regional performances ofEBLUP (dashed line), MBDO (thin line), MBDl-A 

under K = 5 (thick line) and MBD1-A under K = 8 (dotted line) for Debt under model I. 
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4.5 Conclusions 

In this chapter we develop two loss functions that can be used to compute optimal 

multipurpose weights suitable for use in SAE using MBD estimators. The first (4.8) 

ignores the correlations between the survey variables, while the second (4.12) takes these 

into account. For the population considered in our simulation studies the performance of 

the corresponding multipurpose weighting based MBD1-A and MBD1-B estimators are 

almost identical, i.e. there are no real gains from taking account of the correlations 

between the survey variables when constructing the multipurpose weights. We also 

investigated an alternative approach to constructing mUltipurpose weights for use in 

MBD methods of SAE by suitably averaging the variable specific EBLUP weights. Here 

again, our empirical results demonstrate that this method is somewhat less efficient than 

the loss function based MBD1-A method. We also show that these mUltipurpose weights 

remain efficient across a wide range of variables, even variables that have not been used 

in the definition of the multipurpose weights. This can be important in some situations 

(e.g. where variables have many zero values) where standard mixed models cannot be 

fitted and the usual EBLUP methods do not work. An alternative in such cases is extend 

the EBLUP approach to mixtures of linear mixed models. 
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CHAPTERS 

SMALL AREA ESTIMATION FOR SKEWED DATA 

5.1 Introduction 

Commonly used methods for small area estimation (SAE) assume that a linear mixed 

model (3.11) can be used to characterize the relationship between the survey variable Y 

and an auxiliary variable X in the small areas of interest. In particular, empirical best 

linear unbiased prediction (EBLUP, see Prasad and Rao, 1990) and model-based direct 

(MBD, see chapter 3-4 and Chandra and Chambers, 2005) estimation are typically based 

on the linear model assumptions. However, when the data are skewed, as is often the case 

in business surveys, the relationship between Y and X may not be linear in the original (or 

raw) scale, but can be linear in a transformed scale, e.g. the logarithmic scale. In such 

cases we would expect estimation based on a linear model for Y to be inefficient, and an 

appropriate technique for SAE should then be based on a linear mixed model for a 

transformed version of Y. See Hidiroglou and Smith (2005). Choice of an appropriate 

transformation function plays an important role in the transformed variable based 

estimation methods. Practically, it should be selected by examining the data for possible 

model relationship. The use of transformed variables for survey estimation with skewed 

data has been investigated by CalToll and Ruppert (1988), Chen and Chen (1996), 

Karlberg (2000) and Chambers and Dorfman (2003). 
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In this chapter we explore the use of transformed variable based estimation when carrying 

out small area estimation for skewed data, focussing on the widely used log-log 

transformation. Implementation of the EBLUP approach under transformation to a linear 

mixed model is complicated. However, this is not the case with the MBD approach. In 

particular, we extend the MBD approach described in chapter 3 to small area estimation 

for skewed data using sample weights derived via model calibration (Wu and Sitter, 

2001). Our approach assumes a log-log transform linear model with random area effects. 

In the next section we summarize the model calibration approach for the estimation of 

population level quantities. In section 5.3 we introduce the concept of an 'expected value' 

(or 'fitted value') model derived from a transformed linear mixed model. In section 5.4 

we derive optimal model-based survey weights based on this 'expected value' model and 

use them in an MBD estimator for SAE. A simple MSE estimator for weighted SAE is 

also described. We also relax the usual normality assumption for the random area effects 

in order to examine robustness with respect to this assumption. Finally, section 5.5 

presents some concluding remarks. 

5.2 Model Calibration Weighting for Population Estimation 

The calibrated sample weights described in section 3.2 of chapter 3 implicitly assume that 

the survey variable Y and auxiliary variables X are linearly related. If the underlying 

model is non-linear, the calibration estimator derived under linearity assumption can be 

inefficient. In such cases, Wu and Sitter (2001) proposed the model calibration approach 
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which generalizes the calibration procedure under a general model. In this section we 

briefly review the model calibration for the estimation of population level quantities. 

To start, we fix our notation. Let U denote a population of size N and let Yu denote the 

N-vector of population values of a characteristic Y of interest. Suppose that our primary 

aim is estimation of the total Ty = Iu Yj of these population values (or their mean 

fu = N-1Iu Yj ). Let Xu denote the Nxp matrix of population values of p-auxiliary 

variables X that are related, in some sense, to the values in Yu . We assume that the 

individual sample values of Xu are known. The non-sample values of Xu may not be 

individually known, but are assumed known at some aggregate level. At a minimum, we 

know the vector of population totals T, of the columns of Xu. Given this set up, Deville 

and Sarndal (1992) define an Xu -calibrated linear estimator of Ty as fy = IjEsWjYj' 

where s denotes the n sample units, and the calibrated weights {w j ; j E s} satisfy 

". wx· = T.. Assuming that s is a probability sample based on first order inclusion 
L...J}ES J} X 

probabilities JC
j

, they recommend that the vector of calibrated weights be chosen so as to 

minimise an appropriate measure of its distance from the cOlTesponding vector of design 

weights d. = JC~I, subject to the constraint" wx· = T . Their justification for this 
J J ~ jES J J x 

approach is based on an implicit assumption that the population values of Y and X are 

linearly related, in which case the calibration constraint is equivalent to ensuring that the 

estimator fy is an unbiased predictor of Ty under a linear model for the regression of Y 

on X in the population. 
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If the underlying population model is non-linear, the calibration estimator ~, can be 

model-biased, and hence inefficient. In particular, suppose that the relationship between Y 

and X in the population is of form 

(5.1) 

where lJ (typically vector-valued) and O'J are unknown model parameters and the mean 

function h(xj ; 77) is a known function of Xj and 77. Let Yu denote the N-vector of 

population values of Y and suppose that the population units are mutually uncorrelated. 

We can then express (5.1) in matrix form as 

where it is understood that h(Xu;lJ) is the N-vector with components h(xj;lJ). The 

model (5.2) is quite general and includes linear, non-linear, and generalized linear models 

as special cases. In this context, Wu and Sitter (2001) propose the use of sample weights 

derived via model calibration, where they define the model-calibrated estimator of the 

population mean of Y as ~nc = N- 1 
("'. wmc y.) with the vector of weights w

J

mc again L...- JES J J 

minimising distance from the vector of design weights, but this time subject to the 

constraints 

'" w
lnC = Nand"'. w

mc
h(X.;77_) = "'. h(x;f;_) L...- JES J L...- JES J J" L...- JEU J ,. 

(5.3) 

where f;J[ is a design consistent estimator of lJ. Note that unlike standard calibration, the 

model calibration constraints (5.3) typically require that we know the individual 

population values of X. The calibration is performed with respect to the population total 

of the fitted values h(xj;f;J[) = ';j of h(xj;lJ). The key idea behind this approach is that 

128 



provided the model (5.2) is a reasonable one, Y j is then (at least approximately) a linear 

function of its 'fitted values' h(xj;T;,,) under this model and so we can carry out linear 

estimation using the population values of these fitted values as auxiliary information. The 

calibration constraints (3.3) consist of p-equations, where p is the number of components 

in Xu, whereas constraint (5.3) has only one equation involving the single data reduction 

variable h(xj ; 71). Under this set-up, the model calibration estimator for the population 

where 

Bl =(". d.q.(h._h)2)-I{". dq(h-h)(y.-y)} with L jES j j j L jES j j j j 

and Y. HT = N-1
" d .y. is the Horvitz-Thompson (HT) estimator for the population 

U LjEs j J 

mean Yu ' qj 's are known positive weights unrelated to d j . 

If the constraint " w"'" =N 
LjEs J 

IS dropped, with single calibration constraint 

". w""h(x.; T;~) = ". h(x.; T;l[) , the calibration estimator for population mean fu is 
LjES j j" LjEU J 

(5.5) 

where 
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The above discussion represents what might be referred to a design-based interpretation 

of model calibration. A corresponding model-based perspective on the model calibration 

follows directly. See Chambers (2005). Let ij denote a 'model-efficient' estimator of 7J 

in (5.2) with associated fitted values h(xpl). In general, these fitted values will not be 

unbiased. However, there will still be a systematic relationship between the actual values 

of Y and their corresponding fitted values that we can approximate. Although there is 

nothing to stop us looking at more complex approximations, a linear model for the 

relationship between the population values Y j of Y and the fitted values Y j = h(xj ; ij) 

seems a reasonable starting point. We therefore replace (5.1) by a linear model of the 

form 

(5.6) 

We refer to (5.6) the 'fitted value' or the 'expected value' (interchangeably used) linear 

model defined by (5.1). Setting ao = 0 in (5.6) corresponds to a ratio specification for 

this fitted value linear model. Generally, estimation bias implies ao "* 0, in which case 

(5.6) corresponds to a regression specification for this model. Let J u denote the 

population 'design matrix' defined by (5.6) under either of these specifications. Without 

loss of generality, we arrange the vector Yu so that its first n elements correspond to the 

sample units, and then partition Yu ' J u and Q u = [mjk ] according to sample and non

sample units as 
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Here a subscript of s denotes components defined by the n sample units while a subscript 

of r is used to denote conesponding components defined by the remaining N - n non-

sample units. In practice the variance components that define Q are unknown and so 

need to be estimated from the sample data. We use a 'hat' to denote such an estimate 

below. Also, we use lu' Is and 1,. to denote vectors of 1 's of the appropriate size, and 

1 U' 1 sand 1,. to denote identity matrices of order N, nand N - n respecti vel y. We also 

assume that sampling is uninformative, so the sample data follow the population model. 

Given this notation, the sample weights that define the Empirical Best Linear Unbiased 

Predictor (EBLUP) for population total of Y under the general linear 'fitted value' model 

(5.6) are 

IIlc,EBLUP = ( IIlc,EBLUP) = 1 + H' (J' 1 - J ' l ) + (1 - H' J')A-IA 1 (5.7) 
W ltv) s me U U s s s me s ~i!.ss ~Gsr r 

where Hmc = (J:Q~sIJJ-I J:Q~}. See Royall (1976). It is easy to see that the weights (5.7) 

are model-calibrated under (5.6) since J: Wmc,EBLUP = J~ lu' That is, if a regression 

specification is used for (5.6) then 

"\' mc,EBLUP = N ad"\' mc,EBLUP h = "\' h 

~jEs Wj n ~jES Wj Yj ~jEU Yj . 

Note that the weights (5.7) are not the same as the weights that define the standard 

EBLUP for the population total of Yunder a linear model for the regression of Yu on Xu 

in the population described in chapter 3. These weights are given by 

EBLUP = ( EBLUP) = 1 HI(X'l - X'I) (1 - H'X/)V- I V 1 
W Wj s + u u s s + s s raw,ss raw,sr r 

(5.8) 

Here a subscript 'raw' is used to denote the variance matrix related to raw-scale linear 
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model as defined in chapter 3. The sample weights (5.8) define the EBLUP for the 

population total of Y and calibrated on X, in the sense that they exactly reproduce the 

known population totals defined by the columns of Xu. That is X; W EBLUP = X~ 1u = ~ . 

5.3 Small Area Estimation under Transformation 

Direct linear estimators for small areas, i.e. estimators that are defined as weighted sums 

of the sample data from the small areas of interest, have a number of practical 

advantages, including simplicity of construction and aggregation consistency. In chapter 

3, we used the EBLUP weights (5.8) to construct the model-based direct (MBD) 

estimators for small areas when a linear model assumption is appropriate for the 

population as a whole. Unlike the design-based weights used in more conventional direct 

estimators, the weights used in an MBD estimator are based on assuming that a linear 

mixed model with random area effects holds in the small areas of interest. In this section 

we extend this approach, exploring the use of MBD estimators based on the model

calibrated EBLUP weights (5.7) for SAE, given that the population data are skewed, but 

can be transformed to linearity. 

5.3.1 A Log-Scale Linear Mixed Model 

Linear mixed models (3.11) are popular in SAE. Here we consider the situation where 

such a model is inappropriate for Y in its original scale, but is appropriate for a suitably 

transformed version of this variable. In particular where both Y and X are scalar and 
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strictly positive, with highly skewed population marginal distributions and clear evidence 

of non-linearity in their relationship, e.g. as in many business surveys applications, but 

where a linear mixed model holds for the regression of 10g(Y) on 10g(X). That is, we 

assume that 

(5.9) 

where Yij and xij are the values of Y and X respectively for population unit 

j(j=l, ... ,N) in small area i(i=l, ... ,m), Gij denotes a covariate of dimension q, uj 

denotes a random effect for area i also of dimension q and eij is a scalar individual 

random effect. Here N j is the population size for area i and m is the total number of areas. 

As usual with this type of model, we assume that all random effects are normally 

distributed and mutually uncorrelated, with zero expected values, Var(u) = L(e) and 

Var(eij) = (J";. Here L(e) is a known matrix-valued function of an unknown vector-

the covariance matrix of the vector lj = (lij) defined by the N j values of lij in area i is 

v = GL(e)G~ + (J"2 IN ' where G is the N x q matrix defined by the covariates G in 
f f / e i I I I) 

area i and IN; is the identity matrix of order N j • The model (5.9) is identical to the model 

(3.11) defined in section 3.3 of chapter 3. However, the model (5.9) is defined on 

transformed scale and used in slightly different context (e.g. derivation of bias adjustment 

due to transformation etc) so to maintain continuity we sometimes repeat some of these 

expressions. 
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Let log(X) denote the vector of Ni values of log(X) in area i. Put ~ = [IN, log(X)], 

where IN, denotes a vector of Is of dimension N i , and denote ei = (eij). By aggregating 

the area-specific model (5.9) over the m small areas that make up the population, we are 

led to the population level linear mixed model on log-scale 

(5.10) 

u = (u;, ... ,u;j and e = (e;, ... ,e~J'. Note that under (5.10), the covariance matrix of lu is 

Vu = diag(V;;l ~ i ~ m). 

The model (5.10) includes most of the small area models used in the literature (Rao, 

2003, page 107). In practice the variance components e and G~ that define the 

covariance matrix Vu are unknown and have to be estimated from the sample data, e.g. 

via maximum likelihood (ML), restricted maximum likelihood (REML) or method of 

moments (Harville, 1977). Using a 'hat' to denote such estimates, we can then estimate 

Vu by Vu = diag (~; 1 ~ i ~ m) with ~ = [V'jk ] = G)2( 8)G,' + (J? IN, . We can also decompose 

lu, Wu ' Gu and Vu into sample and non-sample components within each small area. If 

we introduce an extra subscript of i to indicate small area (e.g. we denote by Si the set of 

ni sample units in area i, 'i the corresponding Ni - ni non-sampled units in the area), the 

empirical best linear unbiased estimator (EBLUE) of fJ under (5.10) is then 

(5.11) 

Here I is the identity matrix of n, 

order ni , the number of sample units in area i. Note that when the variance components 
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e and (J': are known, the EBLUE (5.11) becomes the BLUE for jJ. Consequently, for 

large sample sizes we can write E(/J) "'" jJ and Var(/J) "'" (2.:;:1 W;;~;;1W;s r . The /J in 

(5.11) is different from one used in chapter 3 since here underlying model (5.10) is linear 

on transformed scale. Put ¢i = (¢ij) = W;/J . Then E(~) "'" W;jJ and 

where, as 11-7 00 , aijk=W;;Var(/J)W;k-70(i=1, ... ,m; j,k=l, ... ,N). We denote by 

ai = (ai11····aiN,Nj)' and Vi = (Vi11 ... ViN,N,)', the vectors of diagonal elements of the 

covariance matrices Var(¢) and Var(l) respectively. 

5.3.2 An Expected Value Model for Small Area Estimation 

In order to use the MBD method for SAE we require sample weights that reflect the 

population heterogeneity induced by the small area effects. For skewed data that follow a 

non-linear mixed model, these weights can be derived via (model-based) model 

calibration. Consequently, we first define an appropriate fitted value model for our data 

(see section 5.2). From the development in the previous section it is clear that such a 

model should be based on fitted values derived from the log-scale linear mixed model 

(5.10). In pcu1icular, we need the first and second order moments of these fitted values 

before we can use (5.7) to define an appropriate set of model-calibrated weights. 

135 



A simple method of defining the fitted values under (S.lO) is one where we use the 

parameter estimates derived under this model to obtain predicted values on the log scale 

and then back-transform to get the predicted values of Y. UnfOliunately, this approach is 

biased (Chambers and Dorfman, 2003). We therefore now develop the first and second 

order moments of an appropriate bias-corrected fitted value model based on (S.10). To 

derive the 'fitted value' model from transform scale linear mixed model (S.9) it is 

important to specify the distribution of random errors. Here we consider both normal and 

non-normal distributions for these random errors. 

S.3.2.1 Normal Distributionjor Random Errors 

Assuming that random errors are normally distributed, we note that under (S.9) 

E(Yi) I xi)) = E {exp(li)) I xi)} = eWijf3+Vij}/2 =f. E (e~j+V'}d2) (S.12) 

which shows that a simple bias correction based on the marginal lognormal distribution 

of Y is inadequate. That is the naIve-lognormal predictor is biased. We need a more 

sophisticated bias correction procedure. Let fli) = (/J, vijj)' be an estimate 9f 'lu = (/3, vij/ 

such that E(flij -TJij) Z 0 for large n. Put z(TJi)) = ew
,;f3+

vw/
2

. Using a second order Taylor 

series approximation we can write 

and so 
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Here 

(1)( ) __ aZ(Tfij) = (aZ(Tfij) aZ(Tfij)J' = (W' W,;f3+vw/2 1 Wijf3+ Vijj / 2)' 
Z Ire -e 

lj a% afJ aVijj lj 2 

and 

are the vector and matrix respectively containing the first and second order derivatives of 

Z(Tfij) with respect to Tfij. Since /J and vijj are independent (McCulloch and Searle, 

2001), we have 

, ,...,... ,.. '" In I A 1 

( )

-1 

where ClUj = W;j Var(fJ)W;j and Var(fJ) = Li~1 W;Y,,~ W;s is the usual estimator of 

Var(/J). Collecting these expressions we can see 
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'fJ Vijj { 1 [ -II]} _ wij +2 ' 111 I A_I A 

- e 1 + - W (" w V W ) W + - Var(v ... ) 2 /j L." g=1 gs gss gs /j 4 I]] 

Our fitted values are therefore defined by the second order bias corrected estimator of 

A = heW . A ) = kA 

-I wijiJ+vwj2 Yij ij,lJu ij e 
(5,13) 

asymptotic variance of vijj' Under the ML and REML estimation of the variance 

components of (5.1 0), this estimated asymptotic variance can be obtained from the 

inverse of the relevant information matrix. Note that the bias adjustment described in 

Karlberg (2000) is a special case of (5.13). Appendix J elaborates the evaluation of 

Var(vijj) under a random slope specification of model (5.9). 

In order to use (5.6) and (5.7) to define the model-calibrated sample weights, we also 

need an expression for the second order moments, under a log scale linear mixed model 

(5,10), of the population values of Y given these fitted values. A first order approximation 

to these moments is defined by the conditional moments of Y given X under (5.10). In 

particular, assuming normality of the random effects vectors ui and ei , the covariance 

between Yij and Yik in small area i is 
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if j *- k 

if j = k. (5.14) 

The expression (5.14) uses a well known result that for a normal random variable t, 

E(t)+..lVar(t) 

E(e t
) = e 2 • See Casella and Berger (1990), page 628. 

We therefore define our estimate !4jk of Cov(Yij' Yik I Yij' Yik) by substituting estimates for 

unknown quantities in (5.14) as 

(5.15) 

Note that we can then write Q; = [!4jk] = E/1; E; , where E; = diag {eWij/J ; 1 S j S N;} and 

L1 = [J ] is the N x N positive definite matrix with J = e(\;ijj+Vikk )/2 (/Uk -1) . 
i uk / / uk 

Under the random intercept specification of model (5.9), we have: 

with 

analytical expression under the random slope specification of model (5.9) is presented in 

Appendix 1. 
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In order to compute the model-calibrated weights (5.7) under the log-scale linear mixed 

model (5.10) we finally need to define the design matrix J u and the estimated covariance 

matrices 0.,s and 0.sr. Under a ratio specification J u is just the population vector Yu of 

fitted values (5.13), while under a regression specification Ju =[IN Yu ]. In both cases, 

0. = diag {0. ·1 ~ i ~ m} and 0. = diag {0. ·1 ~ i ~ m} where 0.'·'.s and Q,·sr are 55 ISS' sr Isr ' , ., 

defined by the sample/non-sample decomposition of Qi' where Qi is defined below 

(5.15). 

5.3.2.2 Non-Normal Distribution for Random Errors 

The bias cOlTected predictor (5.13) and the covariance (5.14) are derived assuming 

normality of log-scale random effects. However, there IS no good reason (beyond 

convenience) to assume that with skewed data these random area effects should be 

normal. In such cases, random effects with non-normal (non-symmetric) distribution may 

describe the data well. One alternative, given a scalar area effect in (5.9), is to assume 

that the random effects in (5.9) are drawn from the gamma family of distributions. We 

consider gamma family of distribution since most of the skewed distributions (e.g. 

exponential, chi-square etc) are special case of this family. Similar to normal distribution 

(see section 5.3.2.1) we shall derive first and second moments under gamma distribution 

of random effects. Before deriving these moments, we recall some common results to be 

used. 

140 



If a random variable t follows a gamma distribution with shape parameter a and rate 

parameter b (or scale parameter lib), which is denoted by t - Gamma(a,b) then their 

mean, variance and moment generating function are defined as: E(t) = ab-I , vet) = ab-2 

and M/x)=E(eX')=(l-xb-Ira,b>x respectively. Further, sum of two independent 

gamma variables is also a gamma variable. See Casella and Berger (1990). 

We first consider two independent gamma distributed random variables as: 

u; rv Gamma(a,b) and ei* '" Gamma(c,d) with means E(ui*) = ab- I and E(e;) = cd- I 

and variances Var(ui*) = ab-2 = E and Var(e;) = cr2 = (J"~ respectively. Then we define 

two centred mean gamma distributed random variables ui = ui* - E(ui*) and 

e
i 
= ei* - E(ei*) such that 

E(u) =E[u; -E(u;)] =E(ui* -ab-I)=O and Var(u) = Var(u; -ab-I) =E, 

E(e)=E[ei* -E(ei*)] =E(e; -crI)=o and Var(e)=Var(ei* -cd-I) =(J"~. 

That is we defined two random errors: ui - Gamma(O,r.) and ei - Gamma(O,(J"~). These 

two random errors are independent. There is no loss of generality in taking 

E(ui ) = 0 = E(ei ) that is in making adjustment for zero mean (McCulloch and Searle, 

2001, page 157) in defining the model (5.9). Let us consider model (5.9) assuming that 

two random effects ui and ei follow gamma distribution. In particular, we consider the 

random intercept specification of model (5.9). 

From the properties of gamma distribution and using binomial and exponential 

expansions (ignoring higher order terms) we then have 
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This expression is identical to the (5.13) derived under the normal distribution of the 

random effects. Therefore rest of derivation follows from (5.l3). This indicates that MBD 

estimators based on the normal theory fitted value model defined by (5.13) and (5.14) can 

be expected to possess some robustness with respect to the distribution of the random 

effects in (5.9). 

5.4 Small Area Estimation under Model-Calibration 

Given an appropriate design matrix Iu defined by the fitted values (5.13) and estimated 

covariance matrices D.ss and Qsr defined by (5.15), we can compute a set of model-

calibrated weights (5.7). These weights depend on the random area effects in the log-

scale linear mixed model (5.9) and are thus suited to SAE. Here we use them to define 
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MBD estimators for small area means (see chapter 3). In particular, we consider two 

forms of the MBD estimator for a small area mean. The first is the Hajek form of the 

MBD estimator, defined as a weighted mean of the sample data from the small area of 

interest. Given a set of weights Ws = (W;1 W;2 ... w;m)', where wsi = (wij; j E Si) are the 

model-calibrated weights for the ni units making up the sample s, from small area i, this 

estimator is 

yHajek = "\' w .. y .. /"\' w . 
I ~jESi Ij l) L..JjESj lJ 

(5.16) 

An alternative MBD estimator when the population size Ni of the small area is known is 

the Horvitz-Thompson form 

-HT -II Y =N wy. 
1 I jES

j 
fJ IJ 

(5.17) 

In chapter 3 we only considered the Hajek form of the MBD estimator for small areas 

using the sample weights (5.8) derived via a linear mixed model (3.11). However, the 

sample weights (5.7) are derived via model calibration where estimator is defined as the 

HT form (see section 5.2). Therefore, we consider both forms of the MBD estimators. 

Both estimators (5.16) and (5.17) depend on how the 'fitted value' model (5.6) 

underpinning the model calibration weights (5.7) is specified. In particular, we consider 

two different specifications for the fitted value model (5.6) that is two types of 

specification for J u' the ratio and regression specifications for this model (see below 

equation 5.6). This leads to four different MBD estimators set out in Table 5.1. Note that 

all four use the same predicted values (5.13) and the same estimated covariance structure 

(5.15). 
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Table 5.1 Different MBD estimator configurations 

Estimator Estimator type Model specification 

TrMBD1 Hajek type Ratio specification 

TrMBD2 Horvitz-Thompson type Ratio specification 

TrMBD3 Hajek type Regression specification 

TrMBD4 Horvitz-Thompson type Regression specification 

Estimation of mean squared error of (5.16) and (5.17) follows the approach described in 

section 3.3.2 of chapter 3, which treats these estimators as simple weighted estimators of 

a domain mean. Under this approach the sample weights derived from (5.7) are 

considered as fixed and the prediction variance of (5.16) and (5.17) is estimated using a 

standard heteroskedasticity robust variance estimator that only assumes the first order 

moments defined by (5.6). See Royall and Cumberland (1978). A "plug-in" estimate of 

the squared bias of (5.16) and (5.17) under (5.6) is added to this estimated prediction 

variance to finally define a simple estimate of the mean squared error of these estimators. 

Under this approach the sample weights underlying (5.16) and (5.17) "borrow strength" 

via the log-scale linear mixed model (5.9), but this model is not used in inference. In 

particular, since the mean squared error estimators for small area means only assume the 

first order moments specified by (5.6), we ensure consistency with the way mean squared 

errors are estimated at population level. See Chandra and Chambers (2005). In particular, 

A A 

the mean squared error of the weighted estimator ~w (~Hajek or ~ HT) for the population 

mean of Y in small area i, ~ is 

(5.18) 
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where Var(~W -~) = N i-
2 
{". aJ

2Var(YJ) + ". Var(y)} is the prediction variance of ~JESi ~)E~.) 

weighted estimators (S.16) and (S.17) with 

a) = {(Ni w) - L 8ES, wg ) / (L gES, wg ) for Hajek fonn 

Wj -1 for HT form 

and B(~W)=E(~lV)-~ is the bias of (S.16) and (S.17). Here ~ and hilV denotes the 

population mean and weighted average of the fitted values hu = h(H'u; flu) in area i 

respectively. 

A robust estimator of the mean squared error of (S.16) and (S.17) is 

(S.19) 

where vCYW) = ". c .(y .. - h)2 , with c. = N~2 {a 2 + (N - n.)(n. _l)-I}, and 
1 ~ JES

j 
} IJ 1J ) I J 1 1 1 

A {(" wh)/(" w) Ii = ~ jE.Si IJ IJ L.J jESj IJ 

/IV A / wh N L)ES,( Ij ,) , 

for Hajek form 

for HT form 

Besides these four MBD estimators (TrMBDI-TrMBD4, Table S.l) defined by (S.16) 

and (S.17), we also define an Empirical Best Predictor (EBP) for the mean of Y for small 

area i (denoted by TrEBP) under the 'fitted value' model define by (5.13) as 

(S.20) 
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where kij; j E s; is define below equation (5.13). Unlike MBD estimators, the MSE 

estimation of the EBP (5.20) is not straightforward. We do not pursue the MSE estimation 

of (5.20). See Appendix L. 

5.5 Conclusions 

In this chapter we developed the SAE techniques for skewed data when standard methods 

for the SAE based on linearity assumption are inappropriate. In particular, we derived the 

SAE methods for the survey variables which are linear on log-log scale. We defined the 

MBD estimators for small area means based on normality assumption of random errors. 

However, for skewed data random effects are not always normal and the estimation 

procedure based on non-normal random effects seem suitable. We also consider the 

gamma distribution for random effects. Our results show method is robust with respect to 

distribution of random effects. 

In this chapter we proposed four different types of MBD estimators for small means for 

skewed data and their mean squared error estimate. However, it remains to evaluate the 

empirical performance of these estimators. In chapter 6 we shall examine the 

performance of these methods using a Monte Carlo simulation study and application to 

real population data. We also study an empirical best predictor (EPB) for small means 

under the 'fitted value' model. Some empirical results related the EBP (5.20) are 

presented in Appendix L. 
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CHAPTER 6 

MONTE CARLO EVALUATIONS 

6.1 Introduction 

In chapter 5 we proposed the small area estimation (SAE) techniques for skewed data. 

However, it remains to assess the performance these methods of SAE. In this chapter we 

evaluate these techniques of SAE by designing a series of Monte Carlo simulation 

experiments. The use of simulation techniques in statistics has its origins in the beginning 

of the 20th century (Morgan, 1984). Lewis and Orav (1989) define simulation as a 

controlled statistical procedure (experiment) based on repeated sampling carried out on a 

computer. We present in this chapter the characteristics and results of simulation studies, 

which has the main objective of evaluating the comparative performance of different 

methods of SAE. 

In the next section we introduce the different estimators investigated in the simulation 

studies. In section 6.3 and 6.4 we provide illustrative information on how these 

simulation studies is implemented, associated population and criterion used to assess the 

performance of different estimators. Section 6.5 is devoted to reporting the results and 

their explanations. Finally, section 6.6 presents summary of the major findings from the 

empirical studies and a discussion of some outstanding issues. 
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6.2 Description of Simulation Studies 

In this section we illustrate different methods of SAE considered and the population data 

used in the empirical studies. 

6.2.1 Estimators Investigated in Simulation Studies 

In our empirical evaluations, we investigate the comparative performance of the seven 

different estimators for SAE. These are 

I. The proposed model-based direct estimators for skewed data based on the model

calibrated EBLUP weights for skewed data calculated via (5.7) under a fitted value 

model derived from the log-scale linear mixed model (5.9) (section 5.4, Table 5.1) 

1. Hajek type estimator under ratio specification: TrMBD1 

2. Horvitz-Thompson (HT) type estimator under ratio specification: TrMBD2 

3. Hajek type estimator under regression specification: TrMBD3 

4. HT type estimator under regression specification: TrMBD4 

II. The MBD estimators based on the sample weights (5.8) derived under 'standard' raw

scale linear mixed model (3.11) (section 3.3.2) 

5. Hajek type estimator: MBD1 

6. HT type estimator: MBD2 
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III. The EBLUP derived under the same raw-scale linear mixed model as that used to 

calculate the weight (5.8) (Prasad and Rao, 1990) 

7. EBLUP 

We note that first six estimators are the model-based direct (MBD) estimator defined as 

weighted linear estimator of the form either given by ylV = ("'. w y. )/("'. w.) for 
I ~)ESi} ) ~JESi } 

HaJ'ek type estimator, or ylV = ("'. wy)/N for HT type estimator. In the first four 
I ~ JES

j 
) } I 

estimators, the sample weights used (corresponding to small areas) to define the 

estimators for small areas are derived under the population version of 'expected value' 

model via 'model calibration' approach. In the next two estimators, the sample weights 

are derived from a population version of raw-scale linear mixed model, referred as the 

sample weights via 'standard calibration' approach. The seventh estimator is the standard 

EBLUP, an indirect estimator under the raw-scale linear mixed model. Besides these 

seven estimators we also examine the performance of an empirical best predictor (EBP) 

for small areas (5.20) under a log scale linear mixed model (5.9), denoted by TrEBP. See 

chapter 5. We do not pursue this estimator in details. Appendix L presents some of the 

empirical results related to the TrEBP method of SAE. 

The mean squared errors for the MBD estimators (that is for first six estimators) are 

estimated using the method described in chapter 3 and 5, while the mean squared error of 

the EBLUP is estimated using the method described in Prasad and Rao (1990), discussed 

in chapter 3. 
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6.2.2 Types of Simulation Studies 

We consider two types of simulation studies. The first type of study uses the model-based 

simulation to generate artificial population and sample data. These data are then used to 

compare the performances of the different estimators. We carry out three sets of model

based simulations, labelled by sets A, Band C respectively. In the first set of simulations 

(denoted by Set-A), we investigate the performance of these estimators given population 

data generated using the log-scale linear mixed model (5.9). In second set of simulations 

(denote by Set-B), we examine the robustness of these estimators to misspecification of 

this model. In simulation Set A and B we assume that the random effects have normal 

distribution. In the third set of the simulation (denoted by Set-C) we study the 

performance of these estimators given population data generated under the same log-scale 

linear mixed model (5.9) identical to set-A except that random effects have non-normal 

distribution. We consider a gamma distribution for these random effects. The second type 

of simulation study is the design-based. Here we evaluate the empirical performance of 

these estimators in the context of repeated sampling from a real population using realistic 

sampling methods. 

6.3 The Model Based Simulation Study 

In this section we describe the model-based simulations to contrast the performance of 

different estimators used for SAE with skewed population data. 
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6.3.1 Simulated Data 

In our model-based simulations we set a population size of N = 15,000 with m = 30 

small areas and randomly generated the small area population sizes N;, i = 1, ... ,30 from 

a chi-square distribution with 750 degree of freedom so that L;N; = N. We used an 

overall sample size of n = 600 with small area sample sizes set so that they were 

proportional to the corresponding small area population sizes. That is n; = N;Cnl N) so 

that L; n; = n. The average small area population and sample sizes are 500 and 20 

respectively. These area-specific sample sizes were kept fixed in all our simulations (Set

A, B and C). 

6.3.1.1 Simulation Set-A 

In Set A of our model-based simulations the population values Yij are generated using the 

multiplicative model Yij = 5.0X:u;eij' with random samples then taken from each small 

area. The generated population is skewed on raw scale and linear on log-scale. We used 

six different values of parameter f3 (0.5, 0.8, 1.0, 1.3, 1.5 and 2.0). These are denoted by 

ParAl to ParA6. Here the values of covariate xij are independently drawn from the log

normal distribution LN(6, (jx)' while the individual effects eij and the area effects u; are 

independently drawn from the LN(O, (je) and LN(O, (j,,) distributions respectively. The 

values of (je and (j" are chosen so that the intra-area correlation (Rho = (j: / ((jt: + (j;) ) 
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in the population varied between 0.20 and 0.25. Table 6.1.a sets out the six different sets 

of parameter values that are used in the simulation Set A. These ensured that the 

simulated populations contained a wide range of variation. 

Using the sample data in each case, parameter values are estimated using the Ime function 

in R (Bates and Pinheiro, 1998), and estimates for the small area means then calculated, 

along with appropriate nominal 95% confidence intervals. The process of generating 

population and sample data, estimation of parameters and calculation of small area 

estimates are independently replicated 1000 times. The results from this part of the 

simulation study are set out in Table 6.2. 

Table 6.1.a Parameters of the simulation set-A. 

Parameter j3 (Ju (Je (Jx 

ParA! 0.5 0.30 0.50 3.00 
ParA2 0.8 0.35 0.60 2.50 
ParA3 1.0 0.40 0.70 2.25 
ParA4 1.3 0.45 0.80 1.75 
ParA5 1.5 0.50 0.90 1.50 
ParA6 2.0 0.60 1.00 1.20 

6.3.1.2 Simulation Set-B 

In Set B of the model-based simulations, population data are generated using the model 

Yij =5.0xij [exp(log2(xij ))Yu;f;j. The generated population is non-linear on raw scale and 

quadratic on log-scale. Here the individual effects eij and the area effects u i are 

independently drawn from the LN (0, 1.0) and LN (0, 0.5) distributions respectively, 
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while the covariate values xij are drawn from a LN (3, 0.2) distribution. Five different 

values for the parameter r (-1.0, -0.5, 0.0, 0.5 and 1.0) are investigated, thus generating 

population data with different degrees of curvature. These parameter sets are denoted by 

ParB 1-ParB5. Table 6.1.b shows different parameters of this simulated population. All 

other aspects of these simulations, including the estimators considered, are the same as in 

Set A. Table 6.3 presents results from this component of the simulation study. 

Table 6.1.b Parameters of the simulation set-B. 

Set r (J'u (J'e (J'x 

ParBl -1.0 0.5 1.0 0.2 
ParB2 -0.5 0.5 1.0 0.2 
ParB3 0.0 0.5 1.0 0.2 
ParB4 0.5 0.5 1.0 0.2 
ParB5 1.0 0.5 1.0 0.2 

6.3.1.3 Simulation Set-C 

In Set C of the model based simulations, the model Y ij = exp { a + j3log xij + ui + eij} is 

used to generate the population data. This population data is skewed on raw scale and 

linear on log-scale. Here random effects are generated from gamma distribution. We 

fixed a = 5.0 and chosen six different values of the parameter j3 (0.5, 0.8, 1.0, 1.3, 1.5 

and 2.0) which corresponds to six different parameter sets denoted by ParCl to ParC6, 

shown in Table 6.1.c. We first generate independent random errors e; from a gamma 

distribution with shape parameter a and rate parameter b (scale parameter lib), that is 

ei~ rv Gamma(a,b) with mean ab- I and variance ab-2 and then get the independent 
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random effects eu = (e~ - E(e;)) = (e; - ab- J
) with mean zero and variance (J~ = ab-2 

• 

Similarly we first generated random errors ui* ~ Gamma(c,d) then get the random area 

effects ui = (u i* - cd- J
) with mean zero and variance (J,~ = cd-2 

• The covariate values Xu 

are generated from LN (6, (JJ distribution. The values of parameter (J~ = ab-2 and 

(J~ = cd-2 are fixed up so that intra-area correlation varies between 0.20-0.25. The rest of 

the process is identical to the Set-A. The results from this set of the simulation study are 

presented in Table 6.4. 

Table 6.1.c Parameters of the simulation set-C. 

Parameter a. fJ (Ju (Je (Jx 

ParC1 5.0 0.5 0.30 0.50 3.00 
ParC2 5.0 0.8 0.35 0.60 2.50 
ParC3 5.0 1.0 0.40 0.70 2.25 
ParC4 5.0 1.3 0.45 0.80 1.75 
ParC5 5.0 1.5 0.50 0.90 1.50 
ParC6 5.0 2.0 0.60 1.00 1.20 

6.3.2 Performance Indicators 

We use following measures to assess the performance of different estimators for SAE: 

• The percentage relative bias, defined as 

(6.1) 
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where ~ is the estimator (e.g. for the mean or total) for the it" (i = 1, ... , m) small area. 

for parameter ~ and ~(r) is the specific outcome of ~ obtained in the simulation 

r (r = 1, .. ... ,R = 1000). 

• The average percentage relative bias (averaged over m small areas), defined as 

(6.2) 

• The percentage relative root mean squared error, defined as 

A (-1 R )-1 { -1 R (A )2} RRMSE(~) = R Lr=I~(r) R Lr=1 ~(r) -~(r) x 100 (6.3) 

• The average percentage relative root mean squared error (averaged over m small 

areas), defined as 

(6.4) 

• The coverage rate, defined as 

(6.5) 

Here mse(~(r)) is the estimate of the MSE of ~(r) • 

• The average coverage rate (averaged over m small areas), defined as 

(6.6) 

• The 2-sigma confidence interval width, defined as 

(6.7) 

• The average 2-sigma confidence interval width (averaged over m areas), defined as 

l",m A 

Awd = m- L..i=1 wd(~) (6.8) 

155 



This section is similar to section 3.4.2 of chapter 3 where we have already described these 

performance criterions. However, section 3.4.2 defines various performance indicators in 

context of design-based simulations where population is fixed. In contrast, this section 

defines these criterions for the model-based simulations where population is not fixed and 

changes over the simulations (i.e. population is random over the simulation and drawn 

under the model). Further, the equations defining the averages over small areas are same 

as in section 3.4.2 but these are repeated just to bring continuity. 

6.4 The Design Based Simulation Study 

In this section we describe the design-based simulations to test the different methods of 

SAE using real data. That is an application of the proposed SAE methods to real 

population data. 

6.4.1 Simulated Data 

In design-based simulations, our basic data come from the same sample of 1652 

Australian broadacre farms from the Australian Agricultural and Grazing Industries 

Survey (AAGIS) data that were used for the empirical evaluations reported in chapter 3 

and 4 and also used in simulation study reported in Chambers and Chandra (2006) and 

Chandra and Chambers (2005). In particular, we use the same target population of 81982 

farms (obtained by sampling with replacement from the original sample of 1652 farms 
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with probabilities proportional to their sample weights). The same 1000 independent 

stratified random samples as in chapter 3 were then drawn from this (fixed) population, 

with total sample size in each draw equal to the original sample size (1652) and with the 

small areas of interest defined by the 29 Australian agricultural regions represented in this 

population. Sample sizes within these regions were fixed to be the same as in the original 

sample (varied from a low of 6 to a high of 117). Various characteristics of this simulated 

population are described in Table 3.1 in chapter 3. The aim is to estimate average annual 

farm costs (TCC, measured in A$) in each region using farm size (hectares) as the 

auxiliary variable. The same mixed model specification as in chapter 3 and Chandra and 

Chambers (2005) is used. This includes an interaction term (zone by size) in the fixed 

effects and a random slope specification for the area effect. In its linear form the model 

does not fit the AAGIS sample data terribly well. This fit is improved (albeit marginally) 

when a log-scale linear specification is used. Our results are summarized in Table 6.5. 

6.4.2 Performance Indicators 

To evaluate the comparative performance of different estimators in design based simulation 

studies we use the criteria of percentage relative bias, percentage relative root mean 

squared error and coverage rate defined in section 3.4.2 in chapter 3 for design based 

simulations. 
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6.S Results of the Simulation Studies 

6.5.1 Model Based Simulations 

Table 6.2 sets out the average relative biases (%), average relative root mean squared errors 

(%), average coverage rates and average width of 2-sigma confidence intervals generated 

by different estimators for the Set-A. 

The most striking feature of Table 6.2 is the extremely large values of the average 

relative bias of the Hajek-type estimators (TrMBDI and TrMBD3) under model

calibrated weighting. In contrast, the HT-type MBD estimators based on model-calibrated 

weights (TrMBD2 and TrMBD4) are almost identical in their performance, which 

improves markedly on that of the Hajek type estimators. An investigation of the reason 

for this anomaly revealed that summing the model-calibrated EBLUP weights (5.7) 

within small areas produced extremely variable estimates of the small area population 

sizes, implying that these weights cannot be considered as 'multipurpose' - they function 

well when used with variables that are reasonably correlated with the variable that defines 

the fitted value model, but can fail with other, less well correlated, variables (e.g. the 

indicator variable for small area inclusion). We further note that this problem does not 

arise with the 'standard' EBLUP weights (5.8), as the Hajek type (MBDI) and HT type 

(MBD2) MBD estimators derived under a raw-scale linear mixed model are very close in 

their performances across all six of the scenarios explored in Table 6.2. From now on we 

therefore focus our discussion on the three estimators, TrMBD2, MBDI and EBLUP. 
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Table 6.2 shows that the average relative biases and the average relative RMSEs for 

TrMBD2 are consistently lower than those generated by MBDI and EBLUP. 

Furthermore, average coverage rates and interval widths for TrMBD2 are better than 

those generated by MBD1 and EBLUP. In comparison, for same order of RB, the 

RRMSE of EBLUP is smaller than that of MBD 1, and, although both estimators generate 

very similar coverage rates, confidence intervals generated via EBLUP tend to have 

smaller average widths than those generated via MBD 1. The plots in Figure 6.1 and 6.2 

display the region-specific performance measures generated by these three estimators 

(TrMBD2, MBD 1 and EBLUP) for the Set A simulations. These show that the RB and 

the RRMSE values generated by TrMBD2 are smaller than corresponding values for 

MBD1 and EBLUP in all regions (Figure 6.1). Further, the RB and the RRMSE of 

MBD1 and EBLUP increase as the non-linearity in the data increases (ParAl to ParA6). 

We also see that TrMBD2 generates better coverage rates across all regions compared 

with the coverage rates generated by EBLUP and MBD1(Figure 6.2). 

Overall, these results show that when the model for the underlying population is non

linear there can be significant gains from the use of HT -type MBD estimators for small 

area means (TrMBD2) based on the model-calibrated weights (5.7) compared with 

standard linear mixed model-based estimators like MBD1 and EBLUP. They also show 

that EBLUP performs relatively better than MBD1 in these situations. 
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Table 6.2 Average (ARB) values of relative bias (%), average (ARRMSE) values of 

relative root mean squared error (%), average (ACR) coverage rate and average (A W) 2-

sigma confidence interval width for simulation set-A. 

Criterion Estimator ParA 1 ParA2 ParA3 ParA4 ParAS ParA6 
ARB (%) TrMBD1 -86.02 -96.54 -98.43 -98.58 -98.45 -99.06 

TrMBD2 -0.01 -0.05 0.27 0.09 -0.43 0.76 
TrMBD3 -75.2 -95.97 -97.97 -98.55 -98.12 -98.66 
TrMBD4 0.02 -0.07 0.28 0.11 -0.39 0.75 
MBD1 10.98 4.11 -0.29 -6.28 -7.81 -9.59 
MBD2 12.63 5.47 0.48 -5.91 -7.58 -9.5 
EBLUP 12.65 5.44 0.49 -5.85 -7.68 -9.32 

ARRMSE (%) TrMBD1 0.92 1.13 1.2 1.29 1.43 1.56 
TrMBD2 0.15 0.29 0.39 0.52 0.7 0.88 
TrMBD3 7.98 1.25 1.22 1.3 1.44 1.59 
TrMBD4 0.15 0.29 0.39 0.52 0.7 0.88 
MBD1 1.03 1.47 1.79 1.89 1.98 2.78 
MBD2 1.16 1.6 1.83 1.91 1.99 2.79 
EBLUP 0.76 0.69 0.61 0.75 0.98 1.29 

ACR TrMBD1 0.99 0.98 0.96 0.95 0.94 0.92 
TrMBD2 0.94 0.91 0.89 0.89 0.89 0.89 
TrMBD3 0.99 0.98 0.96 0.95 0.94 0.92 
TrMBD4 0.94 0.91 0.89 0.89 0.89 0.89 
MBD1 0.87 0.85 0.85 0.87 0.88 0.87 
MBD2 0.87 0.85 0.85 0.87 0.88 0.87 
EBLUP 0.85 0.85 0.85 0.87 0.87 0.87 

AW TrMBD1 1265 22389 140563 27x104 35xlOs 44x106 

TrMBD2 208 4326 33228 7.0x104 11x105 15x106 

TrMBD3 1753 22487 141001 27x104 35x105 43x106 

TrMBD4 220 4426 33722 8.0x104 11 X 105 16x106 

MBD1 1007 19318 139346 28x104 38x105 56x106 

MBD2 1033 19677 140626 28x104 38x105 56x106 

EBLUP 380 7253 55498 13x104 20x10s 31x106 
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Figure 6.1 Region-specific percentage relative biases and percentage relative RMSEs for 

simulation set-A. 
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Figure 6.1 (Continued) Region-specific percentage relative biases and percentage 

relative RMSEs for simulation set-A. 
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Figure 6.2 Region-specific coverage rates and confidence interval widths for simulation 

set-A. 
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Figure 6.2 (Continued) Region-specific coverage rates and confidence interval widths 

for simulation set-A. 
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The MBD (MBD1 and MBD2) estimators and the EBLUP are based on raw-scale linear 

mixed model, while the MBD estimators (TrMBD1-TrMBD4) derived using mode1-

calibrated EBLUP weights for skewed (5.7) is based on log-scale linear mixed model. 

These results show under linearity on log-scale, the proposed method for skewed data 

leads to efficient sets of small area estimate. In Set B of the model-based simulations we 

investigate the robustness of model-calibrated MBD estimation (TrMBD1-TrMBD4) to 

misspecification of the non-linear model. The results from Set-B correspond to 

population data that are non-linear both on the raw and log transform scale. Table 6.3 

shows average relative biases (%), average relative root mean squared errors (%), average 

coverage rate and average 2-sigma confidence interval width for simulation Set-B. 

The results in Table 6.3 show that in this case the biases generated by TrMBD2 increase 

as the actual non-linear model deviates more from the assumed non-linear model (y= 0.0 

in the Table). However, these biases are offset by small variability, so in terms of average 

RRMSE TrMBD2 still performs as well or better than EBLUP and continues to dominate 

MBDl. The biases generated by MBD1 and EBLUP are of the same order, while the 

average RRMSE of EBLUP dominates that of MBD 1. Average coverage rates for 

EBLUP are marginally better than those of MBD 1 and TrMBD2, but the average widths 

of the confidence intervals underpinning these rates tended to be smallest for TrMBD2, 

followed by EBLUP and then MBD 1. 

Figure 6.3 and 6.4 summarize the region-specific performance measures generated by 

three methods (TrMBD2, MBD1 and EBLUP) for Set-B. Figure 6.3 shows that relative 
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biases of TrMBD2 are larger than MBD 1 and EBLUP for parameter set ParB 1 and ParB5 

(i.e. r= -1 and + 1 respectively). However, it is nearly same for all methods when values 

of r (±O.5, i.e. near to zero) are small. The relative RMSEs of TrMBD2 are lower than 

both MBDI and EBLUP in most of the areas for all parameter sets except ParB2 and 

ParB3, where EBLUP is marginally better. Figure 6.4 demonstrates that although 

coverage rates of TrMBD2 are marginally lower for ParB2-ParB5, widths of the 

confidence intervals are consistently smaller for all parameter choices (ParB 1- ParB5). 

Our model-based simulation results for Set B indicate that although MBD-based SAE 

with model-calibrated weights is susceptible to model misspecification bias, the overall 

performance of this approach appears relatively unaffected by slight deviations from the 

assumed non-linear model. 

As mentioned earlier the model-based simulation Set-C is similar to Set-A except the 

distribution of the random effects. In Set-A of the simulations, the random effects are 

generated from normal distribution while in Set-C these are generated from the gamma 

distribution. Table 6.4 reports the average relative biases (%), average relative root mean 

squared errors (%), average coverage rate and average interval width generated by different 

SAE methods for Set-Co The results generated by different methods of SAE in Set-C are 

identical to the results in the Set-A (Table 6.2 and 6.4). This indicates that the proposed 

method of SAE is robust with respect to distribution of these random effects. The region

specific performance measure generated by these methods (TrMBD2, MBD 1 and EBLUP) 

for Set-C is presented in Appendix K (Figure K.I and K.2). 
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Table 6.3 Average (ARB) values of relative bias (%), average (ARRMSE) values of 

relative root mean squared error (%), average (ACR) coverage rate and average (A W) 2-

sigma confidence interval width for simulation set-B. 

Criterion Estimator ParBI ParB2 ParB3 ParB4 ParB5 
ARB (%) TrMBDI -57.67 -13.4 -3.6 -44.6 -83.46 

TrMBD2 3.46 0.37 0.14 -0.9 -7.54 
TrMBD3 126.41 1.45 0.26 -98.36 -72.4 
TrMBD4 4.92 0.66 0.15 -1.54 -8.74 
MBDI -0.21 0.04 0.12 0.16 -0.85 
MBD2 -0.21 0.04 0.12 0.17 -0.84 
EBLUP -0.19 0.04 0.13 0.17 -0.77 

ARRMSE (%) TrMBDI 0.69 0.34 0.32 0.56 0.99 
TrMBD2 0.35 0.33 0.33 0.34 0.39 
TrMBD3 71.16 0.39 0.34 49.47 7.06 
TrMBD4 0.39 0.35 0.34 0.37 0.42 
MBDI 0.56 0.36 0.34 0.53 1.2 
MBD2 0.56 0.36 0.34 0.53 1.2 
EBLUP 0.38 0.3 0.29 0.36 0.56 

ACR TrMBDI 0.96 0.91 0.91 0.93 0.92 
TrMBD2 0.93 0.92 0.92 0.91 0.86 
TrMBD3 0.95 0.92 0.92 0.92 0.92 
TrMBD4 0.94 0.92 0.92 0.91 0.86 
MBDI 0.91 0.92 0.92 0.92 0.9 
MBD2 0.91 0.92 0.92 0.92 0.9 
EBLUP 0.93 0.94 0.94 0.93 0.92 

AW TrMBDI 0.09 2.6 206 5x104 14x106 

TrMBD2 0.04 2.4 207 2xl04 5x106 

TrMBD3 0.4 2.7 214 20xl04 19x106 

TrMBD4 0.04 2.5 211 3x104 5x106 

MBDI 0.06 2.7 214 4x104 13x106 

MBD2 0.06 2.7 214 4x104 13x106 

EBLUP 0.05 2.6 214 3x104 lOx 106 
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Figure 6.3 Region-specific percentage relative biases and percentage relative RMSEs for 

simulation set-B. 
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Figure 6.3 (Continued) Region-specific percentage relative biases and percentage 

relative RMSEs for simulation set-B. 
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Figure 6.4 Region-specific coverage rates and confidence interval widths for simulation 

set-B. 
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Figure 6.4 (Continued) Region-specific coverage rates and confidence interval widths 

for simulation set-B. 
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Table 6.4 Average (ARB) values of relative bias (%), average (ARRMSE) values of 

relative root mean squared error (%), average (ACR) coverage rate and average (A W) 2-

sigma confidence interval width for simulation set-Co 

Criterion Estimator ParCl ParC2 ParC3 ParC4 ParC5 ParC6 

ARB (%) TrMBDl -85.96 -96.52 -98.46 -98.56 -98.46 -99.08 
TrMBD2 -0.08 -0.16 0.11 0.29 0.34 -0.31 
TrMBD3 -86.89 -95.79 -98.72 -98.28 -100.10 -98.92 
TrMBD4 0.02 -0.20 0.14 0.29 0040 -0.24 
MBD1 11.30 5.27 -1.90 -3.65 -6.67 -7.36 
MBD2 13.55 6.38 -1.11 -3.38 -6042 -7.24 
EBLUP 13.51 6.34 -0.96 -3.39 -6.64 -7.18 

ARRMSE (%) TrMBDl 0.96 1.18 1.32 1.36 1.59 1.78 
TrMBD2 0.42 0.39 0.55 0.65 0.91 1.16 
TrMBD3 3.09 1.52 1.49 1.45 2.08 1.79 
TrMBD4 0.44 0.40 0.56 0.65 0.92 1.17 
MBD1 1048 1.68 1.90 2.70 2.61 4.03 
MBD2 1.75 1.76 1.95 2.69 2.64 4.05 
EBLUP 1.06 0.70 0.82 1.08 1.21 1.80 

ACR TrMBDl 0.97 0.96 0.94 0.93 0.91 0.90 
TrMBD2 0.85 0.89 0.88 0.87 0.88 0.87 
TrMBD3 0.97 0.96 0.94 0.93 0.91 0.90 

TrMBD4 0.85 0.90 0.88 0.87 0.88 0.87 
MBD1 0.85 0.84 0.84 0.86 0.87 0.87 
MBD2 0.84 0.84 0.84 0.86 0.87 0.87 

EBLUP 0.88 0.87 0.87 0.88 0.88 0.87 

AW TrMBDl 1881 30x103 21x104 78x105 53x106 6.4x107 

TrMBD2 493 7x103 6x104 26x105 20x106 27x107 

TrMBD3 2180 34x103 21x104 78x105 54x106 64x107 

TrMBD4 517 8x103 6x104 26x105 20 x106 28x107 

MBD1 1797 32x103 22x104 97x105 68x106 98x107 

MBD2 1860 32x103 23x104 97x105 68x106 98x107 

EBLUP 784 14x103 lOx104 50x105 38x106 59x107 
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6.5.2 Design Based Simulations 

In section 6.5.1 we noticed that the estimator of choice for skewed data is TrMBD2. 

Therefore in the design-based simulations using real data from AAGIS survey we compare 

the performance of TrMBD2 with MBD1 and EBLUP. In previous section under model

based simulations we used a random intercept specification of model (5.9). In the design

based simulations we consider the random intercept and random slope specification of 

model (5.9). That is the model I and II respectively described in chapter 3. Both model I 

and II describes the AAGIS data, however model II (random slope model) fit is relatively 

better (see chapter 3). We notice that linear model fit is not very well for this data, although 

log-linear is slightly better, not very good (see Figure 3.2). It is interesting to see how log

log transformation based method work with this data. We used ZoneSize*FarmSize for 

fixed effects specification and random intercept and random intercept + random slopes for 

random effects specification for linear mixed model (5.9). Description on model fitting for 

AAGIS data is briefed in chapter 3. 

Table 6.5 presents the percentage average relative biases, the percentage average relative 

root mean squared errors and the average coverage rates (averaged over 29 and 28 regions) 

generated by different estimators. Figure 6.5 and 6.6 displays the region-specific 

distribution of the relative biases, relative RMSEs and coverage rates under the random 

intercept and random slope model respectively. These results indicate relatively better 

performance under model II since this model is relatively better fit. Further these results 

show the average relative bias of TrMBD2 is smaller than EBLUP but larger than MBDl, 
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while the average RRMSE of TrMBD2 is marginally larger (with high average coverage 

rate) than the corresponding values for MBDI and EBLUP. Inspection of Figure 6.S and 

6.6 shows that high relative bias and relative RMSE of TrMBD2 is essentially due to one 

region (21) in the original AAGIS sample that contained a massive outlier as noted in 

chapter 3. This leads to completely unrealistic estimates for region 21 being generated by 

the TrMBD2 and MBDI methods. The right-hand column in Table 6.S therefore shows the 

average performances of the different methods when this region is excluded. Here we see 

that now TrMBD2 and MBDI are essentially on a par, with both dominating EBLUP. 

Region-specific results show the TrMBD2 dominates in some areas not in all (Figure 6.S 

and 6.6). The fact that the TrMBD2 does not provide significant gains over the MBDI in 

this case reflects the fact that the raw-scale and log-scale linear mixed models used in these 

estimators both provide relatively poor fits to the AAGIS data. 

The TrMBD2 estimator provides significant gain under the linearity on transform model. 

However, gain may not be significant if linearity does not hold. At the same time, we 

noticed when transform model is approximately linear then it is safer to use TrMBD2 

method. We recall that AAGIS data is extremely heteroskedastic and analysis of original 

sample data indicates a week linear relationship between Y (annul farm cost) and X (farm 

size) which improves when we fit a log-linear models (Figure 3.2). However, fitted 

model on log-transform is not exactly linear (although linear on log scale in few areas). 

Therefore, the TrMBD2 performs marginally better and provides a gain in those regions 

where linearity holds, not in all regions. 

174 



Table 6.S Average (ARB) values of relative bias (%), average (ARRMSE) values of 

relative root mean squared error (%) and average (ACR) coverage rate for design based 

simulation using AAGIS data. 

Model 

I 

II 

Criterion 

ARB (%) 

Estimator 

TrMBD2 
MBDI 

EBLUP 

ARRMSE (%) TrMBD2 

MBDI 

EBLUP 

ACR TrMBD2 

ARB (%) 

MBDI 

EBLUP 

TrMBD2 

MBDI 

EBLUP 

ARRMSE (%) TrMBD2 
MBDI 

EBLUP 

ACR TrMBD2 

MBDI 

EBLUP 

A verage of 29 regions Average of 28 regions 

3.00 2.54 
-2.49 -2.58 

4.24 4.74 

22.00 17.15 

20.55 17.33 

19.92 19.40 

0.99 0.99 
0.92 0.93 

0.90 0.90 

2.35 2.24 

-2.13 -2.21 

2.98 3.36 

21.31 17.13 

20.15 16.91 

19.87 19.30 

0.90 0.92 

0.93 0.95 

0.85 0.85 
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Figure 6.5 Region-specific percentage relative biases and percentage relative RMSEs and 

coverage rates for AAGIS data under model-I. 
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Figure 6.6 Region-specific percentage relative biases and percentage relative RMSEs and 

coverage rates for AAGIS data under model-II. 
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6.6 Conclusions 

We now summarize the main points from the evaluation of methodology presented in 

chapter 5. The simulation results discussed in the previous sections show that combining 

model-calibrated weights with MBD estimation can bring significant gains in SAE 

efficiency if the population data are clearly non-linear. As one would expect, these gains 

are less when the assumed non-linear model is misspecified. 

In chapter 5 we noticed that the proposed method of SAE is robust with respect to 

distribution of the random effects. We investigated the proposed method of SAE under 

normal and gamma distribution of random effects via simulation studies. Our conclusions 

are essentially unaffected when we carry out similar simulations using gamma distributed 

random effects. The application of the proposed SAE techniques to real data from 

AAGIS provides a satisfactory performance. The proposed method is advisable for 

skewed data but identification of appropriate transform model is crucial in application 

this method, otherwise results can be misleading. We also examine the performance of an 

empirical best predictor under a log-scale linear mixed model (TrEBP). The results 

generated by TrEBP are presented in Appendix L. 

Our mam caveat concerning the use of model-calibrated weights for SAE is their 

specificity. These weights do not appear to have the same 'multipurpose' characteristics 

as standard EBLUP weights based on the linear mixed models (see chapter 4). Further 

research is therefore required on how to build model-calibrated weights for SAE that are 
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less specific in the way they work. It is to be expected that such weights would not be as 

efficient as the variable specific weights (5.8), but hopefully this will be more than offset 

by their increased utility. A further issue that is extremely important in practice is that 

positively skewed survey variables can also take zero (or even negative) values. 

Consequently, the log-scale linear mixed model that underpins the model-calibration 

weighting considered in chapter 5 and 6 needs to be suitably generalised. 
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CHAPTER 7 

SUMMARY AND FURTHER RESEARCH 

7.1 Introduction 

In this chapter we summarize the research work presented in different chapters of this 

thesis, highlighting the major points. We identify related topics and outstanding issues 

that require further attention. In section 7.2 we present the principal results and 

conclusions from different chapters of this dissertation. Finally, section 7.3 addresses 

the potential further research topics. 

7.2 Summary 

The purpose of the research presented in this thesis is to develop methodology for 

small area estimation (SAE) that is simple and also easy to implement. Further, using 

the real data set we investigated several existing methods for SAE and proposed a few 

new approaches to SAE that overcomes the problem identified in the existing 

techniques. We focused on weighted linear estimators for small areas and their mean 

squared error estimation. In particular, we used the calibrated weighting approach 

introduced in Chambers (2005). In this thesis we referred this approach as the model 

based direct (MBD) method for SAE. We compare the performance of the MBD 

method of SAE with the standard empirical best linear unbiased prediction (EBLUP) 

via empirical studies. Then we extended the MBD method of small area estimation for 
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multivariate and business surveys. In a broad sense, we can subdivide this thesis into 

three major topics: 

(a) study the properties of the model-based direct estimators for small area 

quantities and compare with the EBLUP (in chapter 3) method, and some further 

application of MBD estimation, e.g. estimation of small areas for categorical 

survey variables. 

(b) illustrate loss functions that can be used to compute optimal multipurpose 

weights suitable for use in small area estimation using MBD estimators for 

multivariate surveys (in chapter 4), and 

(c) develop small area estimation methods for skewed data e.g. business surveys, 

where data are typically skewed and linear model assumptions are questionable 

(in chapter 5 and 6). 

In this section we now summarize our basic findings from the different chapter and 

give some directions for future research in next section. 

In chapter 2 we reviewed some of the important small area estimation methods 

existing in literature, identified some gaps existing in the present research and pointed 

out the problem to be addressed in this thesis. This chapter prepared a foundation for 

the rest of the thesis. Consequently, in chapter 3 we focus on small area estimators 

that are a weighted linear function of the area specific sample data that we referred to 

as MBD estimation. The EBLUP method is widely used approach for the estimation 

of small areas under unit level mixed effect models. However, this approach does not 

lead to small area estimators that are a weighted linear function of the sample data 

from these areas. As a result, several practical advantage of using such weighted 

estimators are lost, with probably the most important being the relative simplicity of 
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their mean squared error estimation. In this chapter we studied the properties of the 

MBD. This approach uses weights derived from a population level version of the 

random effects model to define weighted linear small area estimators and a simple 

expression for their MSE. The associated small area estimator appears to be a direct 

estimator based on the sample data from each area. However, it is not true in general. 

The sample weights are a function of the data from the entire sample. Note that unlike 

design based direct estimation, MBD weights borrow strength via random effects 

model that defines the weights. 

In general, unbiased direct estimators for small area quantities are usually considered 

too variable to be of any practical use. In this chapter we observed that the MBD 

estimator for small area quantities appears to overcome this objection, in the sense 

that these estimators are comparable in efficiency to the indirect model-based small 

area estimators (e.g. EBLUPs) that are now widely used. There are many practical 

advantages associated with such MBD estimators, arising from the fact that they are 

computed as weighted linear combinations of the actual sample data from the small 

areas of interest. Note that in this case the weights 'bOlTOW strength' via a model that 

explicitly allows for small area effects. One particular advantage that we explore in 

this chapter is that estimation of mean squared error is then straightforward, using 

well-known methods that are in common use for population level estimates. Empirical 

results repOlted in this chapter show that the MBD estimator represents a real 

alternative to the EBLUP, with the simple MSE estimator associated with the MBD 

estimator providing good coverage performance. We also report results that indicate 

that the MBD estimator may be more robust than the EBLUP when the small area 

model is incorrectly specified. 
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An application of MBD estimation to the categorical variable that takes 0 and 1 value 

shows a satisfactory performance of the methods. In particular, we observed no loss in 

efficiency by using a linearity assumption based MBD for the binary variable. 

Further, the method is comparable with usual indirect method of SAE based on a 

generalized linear mixed model. In contrast, on many occasions a standard EBLUP 

based on a linear mixed model generated estimates that are greater than 1. However, 

this is not the case with the MBD estimator. 

Sample surveys are generally multivariate, in the sense that they measure more than 

one response variable. In theory, each variable can then be assigned an optimal weight 

for estimation purposes. However, it is often a distinct practical advantage to have a 

single weight that is used with all variables collected in the survey. In chapter 4 we 

consider SAE for a multivariate survey and introduce two loss functions that can be 

used to compute optimal multipurpose weights suitable for use in SAE using MBD 

estimators. We consider two case: (a) we ignore the correlations between the survey 

variables; and (b) we take these correlations between the survey variables into 

account. From the results generated under design-based simulations (using real 

population data) and model based simulations (using generated data under the model), 

we see that the performance of the corresponding multipurpose weighting based 

estimators under (a) and (b) are almost identical. That is, there are no real gains from 

taking account of the correlations between the survey variables when constructing the 

multipurpose weights. We discuss two methods of constructing multipurpose weights 

for use in MBD small area estimation based on: (i) weighted average of the variance 

components; and (ii) suitably averaging the variable specific EBLUP weights. 

Empirical results show that method (ii) is somewhat less efficient than the method (i). 
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Our results also show that these multipurpose weights remain efficient across a wide 

range of variables, even variables that have not been used in the definition of the 

multipurpose weights. This can be important in some situations (e.g. where variables 

have many zero values) where standard mixed models cannot be fitted and the usual 

EBLUP methods do not work. Further, in defining the multipurpose weights we can 

also assign importance factors based on the intrinsic variability among of the 

variables. In our empirical studies, we use two options for importance factors: 

fA = 1/ L e.k and fA = 1/ Vk ' where Le,k and Vk are the individual and total variability 

of the eh target variable. These results show that, for the population considered in the 

simulation study, there is little to choose between these different importance 

weighting factors. 

The central theme of chapter 5 and 6 is SAE for skewed data. In business surveys, 

data typically are skewed and the standard approach for SAE based on linear mixed 

models lead to inefficient estimates. In chapter 5 we introduced SAE techniques for 

skewed data that are linear following a suitable transformation, focusing on the 

widely used log-log transformation. In particular, we extended the MBD approach 

described in chapter 3 and 4 to skewed data using a model with random area effects 

that is linear in the log scale and sample weights derived via model calibration. We 

presented the theoretical developments in this chapter. In chapter 6 we then provided 

illustrative empirical results that contrast the proposed MBD estimator for skewed 

data with the EBLUP and the MBD method under a linear mixed model. 

The simulation results reported in chapter 6 show that combining model-calibrated 

weights with MBD estimation can bring significant gains in SAE efficiency if the 
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population data are clearly non-linear in the raw scale, but linear in the log scale. As 

one would expect, there are smaller gains when the assumed non-linear model is 

misspecified. Furthermore, our conclusions are essentially unaffected when our 

simulations use gamma, rather than Gaussian, distributed random effects. That is the 

proposed method is robust with respect to the usual normality assumption for the area 

effects. An application to real life business survey data (AAGIS data) provides a 

further demonstration of the satisfactory performance of the proposed MBD method. 

The proposed method is advisable for skewed data, however examination of 

appropriate model relationship is very crucial in application of this method, otherwise 

results can be misleading. 

7.3 Further research 

In chapter 3 we described the MBD estimation and simple mean squared error 

estimation for this estimator. This approach treats these estimators as simple weighted 

estimators of a domain mean. Under this approach the sample weights are considered 

fixed and the prediction variance is estimated using a standard heteroskedasticity 

robust variance estimator. A 'plug-in' estimate of the squared bias is then added to 

this estimated prediction variance to define a simple estimator of the mean squared 

error of these estimators. Chambers (2005) advocated the use of this MSE estimator 

with the justification that method is consistent with the way mean squared error is 

estimated at the population level. Empirical results reported in chapter 3 based on 

AAGIS data, show that the simple MSE estimator associated with the MBD estimator 

provides good coverage performance. Further, these results indicate that this estimator 

may be more robust than the EBLUP when the small area model is incorrectly 
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specified. Although this method of MSE estimation seems to be working reasonably 

well, however it remains to develop its theoretical proof and justifications. Further, 

generalization of this method of MSE estimation for any weighted direct or indirect 

(e.g., EBLUP or M-quantile methods, Chambers and Tzavidis, 2006) small area 

estimators is interesting and demanding as well. 

Negative weights impact on the utility of the MBD method and this remains 

unresolved and needs further attention. For example, negative weights, which 

occurred in some regions in the simulation study reported in chapter 3, can lead to 

impossible (i.e. negative) estimates. Since such values are easily identified, they 

should not cause problems in real life. However, the problem remains of how to 

modify the weights to ensure they are strictly positive. A related issue that has already 

been noted is the impact of outlier Y-values on (3.15). Certainly this estimator, 

because it is a linear combination of just the small area data values, is more 

susceptible to outliers in specific areas than the EBLUP. Methods for dealing with 

negative weights under 'standard' regression models have been discussed in the 

literature (Huang and Fuller, 1978; Bardsley and Chambers, 1984; Deville and 

Sallldal, 1992; Chambers, 1996) but their application in the context of mixed models 

remains to be explored. 

Throughout this thesis we assume that random area effects are independent between 

areas. However, we can extend the MBD approach under spatially correlated random 

area effect model (spatial-MBD) similar to the spatial-EBLUP (Singh, Shukla and 

Kundu, 2005, Petrucci and Salvati, 2004 and Pratesi and Salvati, 2005) and spatial M

quantile (Chambers, Pratesi, Salvati and Tzavidis, 2006) method of SAE. Further, it is 
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interesting to see the performance of Spatial MBD with spatial-EBLUP and spatial M

quantile methods of SAE for spatially correlated population data. Furthermore, we 

can extend non parametric methods to MBD estimation, see for example Opsomer et 

al (2005). In chapter 4 we concluded that the MBD approach based on multipurpose 

weights can be important in some situations (e.g. where variables have many zero 

values) where standard mixed models cannot be fitted and the usual EBLUP methods 

do not work. In such cases, we can extend the EBLUP approach under the mixtures of 

linear mixed models. 

In chapters 5 and 6 we proposed a method of SAE for skewed data based on the log

scale linear model where survey variables can have only strictly positive values. In 

practice positively skewed survey variables can also take zero (or even negative) 

values. Consequently, the log-scale linear mixed model that underpins the model

calibration weighting needs to be suitably generalised. Karlberg (2000a) and Fletcher 

et at. (2005) illustrate the application of a mixture model for skewed data with zeros. 

Further, one can use a generalized linear mixed model with Gamma or Poisson (for 

count data) or other class of distributions for skewed data with zeros. Joe, Chris, and 

Mark (2005) described the neglog transformation for skewed data with negative 

values. A further issue concerning the use of model-calibrated weights for SAE is 

their specificity. These weights do not appear to have the same 'multipurpose' 

characteristics as standard EBLUP weights based on linear mixed models. Further 

research is therefore required on how to build model-calibrated weights for SAE that 

are less specific in the way they work. It is to be expected that such weights would not 

be as efficient as the variable specific weights, but hopefully this will be more than 

offset by their increased utility. 
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APPENDIX A 

COMPARING RANDOM EFFECTS SPECIFICATION FOR 

THE MIXED MODEL IN CHAPTER 3 

In chapter 3 for judging the best-fitted model to the AAGIS data we use the Akaike 

Information Criterion (AIC) evaluated as Ale = -210g Lik + 2k , where k is the number 

of parameters in the model and LogLik is log-likelihood of the model. Under this 

definition, smaller the value of AIC is the better. In addition, we use the likelihood ratio 

(LR) test as criteria to find the best model. The values of test criterions obtained from 

ANOY A function in R for the random intercept and random slope model (i.e. models I 

and II in chapter 3) using AAGIS data are set out in Table A. I. 

Table A.1 Analysis of variance (ANOYA) results for comparing two models. 

Model 

I 

II 

degree of freedom 

14 

16 

AIC 

49992 

49989 

10gLik LR 

-24982 

-24979 6.43 

p-value 

0.04 

The small p-value for the test statistics indicates the model II is better than the model I. 

The AIC criterion is nearly same for both models (but marginally smaller for model 11). 

Consequently we conclude that model II is relatively better than model I for this data. 
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APPENDIXB 

REGION·SPECIFIC RESULT USING ML ESTIMATES OF 

V ARIANACE COMPONENTS IN CHAPTER 3 

Figure B.1 Region-specific percentage relative biases for EBLUP (dashed line) and 

MBD (solid line) under model I (top left), model II (top right), model III (bottom left) 

and model IV (bottom right) with ML estimates. 
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Figure B.2 Region-specific percentage relative RMSE for EBLUP (dashed line) and 

MBD (solid line) under model I (top left), model II (top right), model III (bottom left) 

and model IV (bottom right) with ML estimates. 
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Figure B.3 Region-specific coverage rates for EBLUP (dashed line) and MBD (solid 

line) under model I (top left), model II (top right), model III (bottom left) and model IV 

(bottom right) with ML estimates. 
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APPENDIXC 

BLUP, MBD AND DBD ESTIMATOR FOR SMALL AREAS 

We present an analytical comparison of the BLUP, MBD and design based direct (DBD) 

estimators for the small area estimation (SAE). Let us consider the random intercept 

specification of linear mixed model (3.11) as 

(Col) 

where Yij and xi) are the values of Y and X respectively for population unit 

j(j=I, .... ,NJ in small area i(i=I, .... m). Let E(ui)=E(eu)=O, Var(u)=O"~, 

defined similar to as below equation (3.11) in chapter 3 except that X is now scalar. 

Assuming model (C. 1 ) holds with a special case of 0",; = 0, the sample weights defining 

the BLUP of the population total of Y, Ty = LjEU Yj are 

f = '" Y + '" yA. = '" Y + '" ( Ro + fJAJX ) Y L..jEs J L..jEr J L..jEs } L..jEr PI } 

= NYs +(N -n)~(xr -x,) 

L (x-x)y 
= NYs + (N - n)(xr - x,.) I ES 

} ~ / = "'. wjYj (C.2) 
(x.-x) L..JES. 

jES J S 
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N (N -n)(xr -xJ(x
j 
-xJ 

where w, =-+ 2 
j n (n-1)sx 

with (n _1)S2 = "', (x
j
' - X)2 

X ~JES J 

d - -II - -II - (N )-II an Ys = n 'Yj' , Xs = n ,xj' , xr = - n ,xj' . jES JES jEr 

If we use these BLUP weights (C.2) to define the MBD estimator at small area level for 

the population total of Y for small area i then 

E (T - T ) = '" W ,Y - '" Y 
Yi Yi ~jESi } } ~jEUi } 

=RO('" w-N)+[JI('" wx-'" x,) jJ{ ~ jes
j 

J I L..J jES
j 

J J L...,; JEUi ) (C.3) 

where Si and UiCi = 1, .... m) respectively denote the set of sample and population unit in 

the small area i. Let us write the weights in (C.2) as 

N 
w =-(1+g), 

j n j 
(CA) 

( n)( n )[(X -x )] where g} = 1- N n-1 r s; s (x) -xJ then 

E(T), - Tv) = J30 ['" , , N (l + gj)- Ni]+ J31 ["" N (1 + gj,)Xj - '" , u Xj'] 
1·1 ~JESi n L...J.lESj n ~)E i 

Var(T" - Ty) = Var('" Wj'Y j - '" , U Yj') = Var("', (Wj -1)y j, - "', Y j ) 
d I ~JESi ~)E i ~JESi ~JE'i 
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={Is
i 
(Wj _1)2 +(Ni -nJ} 0'"; ,since covariance term is zero 

C.I Expansion Weights and Regression Weights for Small Area Estimation 

Let f)~Cg and f~xp respectively denote the regression weighted and expansion weighted 
I )i 

estimator for the population total of Y in small area i, defined as 

(e.7) 

(e.S) 

(e.9) 
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From (CA) we can write 

(C.12) 

" 2=(1_~J2(_n J2[(Xr- Xs)]2" (X.-X)2 
L.s.gj N 1 2 L.s j S 

I n- S I 
x 

=(1_~)2(_n J2[Cx;-x,)]2" (x.-X +X _X)2 
N n-l S2 L.s; j s; s; S 

x 

(C.13) 

(1 nJ( n J[(Xr-x')]{I ( -) I (- -) } = -- - x -x x + x. -x x N n -1 s_~ jES j ) Sj) jESj jj S } 

It follows 

(i) For Si = s, i.e. ni = n 

E(fRcg_T )=E(fRCg_T)=E(fEXP_T)+N" g.(R +R x .) 
Y. Y; Y Y Y Y n L. S; j Po PI j 
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~ E(f;"' -T,)+ ~ (1- ; t~ J[ (X,~X,)] 
{n/xs, - xJ(fJo + Axs,) + (n; -1)As~"} 

(C.lS) 

A A (n -1)s2 
E(T Rcg - T ) = E(TExP - T ) + R (N - n)(x - X ) i ;x and 

)' )" )' )" PI ,. S ( 1) 2 ' " , , , n- s 
x 

If we also have Si~ == s; 

A A (n -1) 
E(TRcg -T ) = E(TEXP -T )+ R (N -n)(x -x )_i_ 

y, y, y, y, PI r s (n -1) (C.16) 

(C.I7) 

C.2 BLUP for Small Area Population Total 

We denote by Ty, ' the BLUP for the population total of Y for small area i as 

= "', y+(N-n)y-+(N-n)(x _x)/JA
I ~ JES

i 
} I f S I 1 If S 

= g.y +(N -n) _ y +_,,---JE_S -' ---:------I [
II I (X,.-x,.)cxj-x,.)Yj] 

jES I} J I I n jES J (n -l)s; 
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where J = . Then {
I if j E i 

1J 0 otherwise 

(i) _ s: (Ni -n) (N ) (x,; -xs) ( -) 
W' BLUP -u.+ +-n. 2 x-x. 

J, 1J , I ( 1) J S n n- s 
x 

(C.I8) 

( n. J( n ) (Xc, - xs> where g = 1 __ ' -- ' (x -x). 
'J N n -1 S2 J S 

I X 

We observe that Wj ~ o( ~) given in (CA) while Wj~~LUP ~ o( :i) given in (C.I8), so 

we expect the BLUP to be more efficient. 

l( 
n.) N 1---'- +-' (l + gij)' j E i 

(i) _ n n 
Wj,BLUP -

ni Ni (1 ) .. --+- +gi' JEI n n j 

Under what conditions are the MBD and BLUP 'close'? 

=" {w _wei) }y. -" w(i) y. 
L..J·ES J J,BLUP J L.. s- s J,BLUP J 

) , 
(C.19) 

Suppose that x,; == x" Then, to first order gij = g j and, to the same order of 

approximation, (C.19) equals 
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N-N" N" = 1 L..,(l+g)Yi--' L..
s
-, (l+gi)Yi n' n' 

=(N - N; In; [" ~(l+ g)Yi]- N; (n-nJ [I_ .. -1
-C1+ g)Yi] n L.. 'j n. n S s, n - n. J 

1 1 

(C.20) 

Suppose the two averages in square brackets in (C.20) are same, equal to A, say. Then 

(C.20) reduces to 

Hence sufficient conditions for equivalence of the MBD and BLUP are 

1. 

11. 
n. N 
-1.....=_1 

n N 

iii. 
1 1 
-" (l+g)y =-" .. (l+g)y. n. L..Sj J J n-n. L..s-'j J J 

1 1 
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APPENDIXD 

EFFICIENCY OF BLUP AND DIRECT ESTIMATORS FOR 

SMALL AREA ESTIMATION 

The efficiency of the BLUP and direct estimator for the population total of Y in small 

area i, Ty; is studies via empirical example using AAGIS data described in chapter 3. 

Besides the MBD estimator, we also considered two design-based direct estimators for 

the population total of Y for small area i, defined as 

fDBD! = '" w.y. =(Nln)('" y.), 
J'i ~jESi J } 1 / ~jE5i } 

(D.1) 

fDBD2 = '" wy. =(N In)('" y.). 
J'i L....jEsi J J ~jEsi J 

(D.2) 

These are expansion type estimators defined by area specific weights wij = N; I n; and 

population level weights wij = N In, denoted by DBDI and DBD2 respectively, see Rao 

(2003), page 19. 

In our empirical study under the random intercept model (model I in chapter 3), we fix 

the values for parameter fJ and (J; (obtained from original sample of AAGIS data), and 

then choose different values for the (J:. Table D.l shows the average of ratios of the 

mean squared error (MSE) between DBD and MBD and between MBD and BLUP. 

These results in Table D.l and Figure D.l indicate between the DBD and MBD methods, 
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efficiency of the MBD increases with area effect. The MBD incorporates area effect 

while DBD does not. The gains due to the MBD are more significant when area specific 

sample sizes are smaller. At population level too, the MBD is consistently more efficient 

than the DBD (Figure D.2). In general, the BLUP is efficient than the MBD if model 

holds. The BLUP and MBD have equivalent performance if either area effect or small 

area sample sizes or both are large. The MBD provides an improvement over design

based methods and competes with BLUP. 

Table D.l Ratio of mean squared errors (MSEs). 

Ratio ofMSE A veraged over areas Intra area effect 

0.0 0.1 0.2 0.3 0.4 0.5 

29 areas 0.43 0.86 1.02 1.17 1.32 1.44 

DBDI/MBD 7 areas (ni ::; 30) 0.08 0.67 1.12 1.6 2.13 2.57 

22 areas (n, > 30) 0.54 0.93 0.99 1.04 1.07 1.08 

Population 1.32 1.05 1.04 1.03 1.03 1.03 

28 areas 1.79 10.10 22.15 35.46 51.40 69.67 

DBD2*/MBD 6 areas (ni ::; 30) 1.22 9.16 22.87 42.07 68.99101.06 

22 areas (n, > 30) 1.94 10.36 21.96 33.66 46.60 61.10 

Population 17.48 15.78 17.76 20.33 24.02 29.06 

29 areas 5.14 2.44 1.71 1.41 1.29 

MBD/BLUP 7 areas (ni ::; 30) 14.76 5.74 3.29 2.31 1.92 

22 areas (11, > 30) 2.08 1.39 1.2 1.13 1.09 

* One area is dropped due to high value in of DBD2 
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Figure D.l Average ratio of MSEs. Averaged over 29 regions (solid line), 7 regions with 

sample size less or equal to 30 (dashed line) and 22 regions with sample size greater than 

30 (thin line). For DBD2 only 28 regions are taken. 
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Figure D.2 Ratio of MSE of DBDI and MBD (up) and MSE of DBD2 and MBD (down) 

at population level. 
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APPENDIXE 

AN APPLICATION OF MBD METHOD OF SMALL AREA 

ESTIMATION TO THE BINARY VARIABLES 

In chapter 3 and 4 we noticed that MBD estimators, whether they are based on variable

specific weights or multipurpose weights, are effectively linear estimators, and implicitly 

assume that variable of interest follows a linear mixed model. For categorical survey 

variables, it is well known that the indirect estimation methods based on a generalized 

linear mixed model (GLMM) can be used (Rao, 2003). Therefore, it is interesting to see 

how much efficiency is lost if the MBD under the linear assumption is used in this case. 

We examine this issue via empirical studies using the AAGIS data. In AAGIS data we 

created a binary (0-1) variable, Zero Debt, which takes value 1 if Debt (the response 

variable Farm Debt) is zero for the given farm and value 0 otherwise. 

E.1 Small Area Estimation under Generalized Linear Mixed Models 

Many often variables of interest in small area estimation (SAE) are not normally 

distributed, and therefore cannot be adequately modelled via linear mixed model. In such 

cases an appropriate model is GLMM. Under this type of model, distribution of the 
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values of the variable of interest Y is assumed to depend on TJ that is related to regression 

covariates and random component through the model of form 

(E.1) 

Here notation used is similar to one described in chapter 3, see Saei and Chambers 

(2003). Under a random intercept specification of model (E.1), TJij =g(Tti)=X~j3+Ui' 

The linear predictor 1lu is connected to Yij via a known function h (inverse of g) as 

E( Yij I u;) = Ttij = h(TJij)' This is the expectation of the conditional distribution of the 

outcome given the random effects. The predicted values of Yij are given as Yij = h(ilij) 

with ill} = xJi + it; . For a binary variable, the function g(.) is logit or logistic function of 

the probability Tt; that a population unit j in area i is a "success". In other words, 

Ttl} = Pr(Yij = 1), j = 1, ..... ,n;;i = 1, ... ,m. The empirical best predictor for population mean 

of Y for small area i (denoted by EBP) is 

(E.2) 

In empirical evaluation we consider four different types of estimators: 

i) the EBLUP (3.20) under linear mixed model, denoted by EBLUP 

ii) the empirical best predictor (E.2), denoted by EBP 

iii) the MBD (3.15) based on variable specific weights for Zero Debt under the linear 

mixed model, denoted by MBD 

iv) the MBD (3.15) based on multipurpose weights under the linear mixed model, 

denoted by MBD.MP. 
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The multipurpose weights used in MBD.MP estimator are based on five variables (TCC, 

TCR, FCI, Cattle and Sheep) other than Zero Debt from AAGIS data. See chapter 4. For 

EBLUP, MBD and MBD.MP, we followed the procedure described in chapter 3 and 4. 

However, EBP (E.2) we fit generalized linear mixed model via penalized quasi

likelihood (PQL) using 'glmmPQL' function in MASS library in R. See blU2.:!lv,,~.~y"''ij.r:: 

projecLorg. Results from the design-based simulation studies are reported in Table E.I. 

These results show the average relative biases of MBD.MP and average RRMSE of MBD 

are smaller overall. The MBD (MBD and MBD.MP) method is performing well. In this 

case EBLUP under the linear mixed model is ill-suited. Overall we do not observe any 

efficiency loss if the MBD based on the linear assumption is used. Figure E.I shows the 

regional performances generated by these methods. We notice relatively better 

performance of MBD approach in regional estimation. In few regions, both EBLUP and 

EBP are very unstable. In particular, in two regions (1 and 6) both EBLUP and EBP 

produce unstable results, inspection of the population and sample data indicated that this 

is because of a few outlying estimates. In region 1 with sample size 6 there is one zero 

and rest (5 observations) l's, and in population of 79 there are 15 zeros and rest (64 

observations are) 1 'so Further, out of 1000 samples there are 9 samples with no zeros and 

16 sample only one zeros, this generated the number of outlying estimates. Similarly in 

region 6 of size 19, there are 13 zero and rest l's in original sample. In population 465, 

there are 407 zero, which created lot of outlying estimates. However, MBD being direct 

estimator is still working well in such cases. 
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Table E.1 Average (ARB) relative biases (%) and average (ARRMSE) relative root 

mean squared errors (%) generated by different methods under the random intercept 

specification of mixed model for Zero Debt. The average is over 29 small areas. 

Criteria 

ARB 

ARRMSE 

EBLUP 

6.56 

57.59 

EBP 

4.57 

29.02 

MBD 

-1.92 

21.77 

MBD.MP 

0.29 

22.36 

Figure E.1 Regional performances of EBLUP (dashed line), EBP (dotted line), MBD 

(thin line) and MBD.MP (thick line) for Zero Debt. 
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APPENDIXF 

ESTIMATES FOR P USED IN MSE ESTIMATION FOR 

THE MBD METHODS IN CHAPTER 4 

The estimate of f3 used in the MSE estimate (4.18) under the multipurpose weighting 

methods is evaluated as below. 

1. When multipurpose weights defined by the first approach, i.e. via (4.8) or (4.12), 

there can be three possible options for using /l: 

a) Use variable specific estimate, /lk 

b) Use weighted average of variable-specific f3 estimates, /J = Lk (A/lk 

c) Use estimate of f3 evaluated from the weighted average of variances used in 

deriving the sample weights (4.8) or (4.12). 

Empirical results indicate use of option (a) or (c) does not make any substantial 

difference. However, option (b) seems to be less appropriate. 

2. When the multipurpose weights defined by the second approach via (4.17), there can 

be two possible ways (a) and (b) to calculate the estimate of f3. Our results show 

method (a) is more appropriate in this case. 

In chapter 4, the design-based simulation studies use option (a). However, results with 

option (b) and (c) are illustrated below. These results (Table F.1 and F.2) hardly show any 

difference in the performance of the MBD method by using option (a), (b) or (c). 
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Table F.l Average coverage rate (ACR) and average interval width (A W) for five 

variables best suited to the linear mixed modelling under MBDI-A and with equal 

relative weights (rA = II K) to all variables. 

Model Criteria Options TCC TCR FeI Cattle Sheep 

I ACR a 0.92 0.92 0.94 0.95 0.96 

b 0.91 0.9 0.97 1.00 1.00 

c 0.92 0.92 0.94 0.95 0.96 

AW a 142754 186619 91641 1622 2705 

b 131848 160107 112934 85824 85664 

c 143250 186502 90742 1622 2689 

II ACR a 0.93 0.93 0.94 0.95 0.96 

b 0.92 0.91 0.98 1.00 1.00 

c 0.93 0.93 0.95 0.95 0.96 

AW a 173451 238140 111223 1873 4014 

b 136333 166732 138622 118127 117962 

c 174943 238456 113517 1877 3669 

Table F.2 Average coverage rate (ACR) and average interval width for five variables 

best suited to the linear mixed modelling under MBD2 method and with equal relative 

weights (rA = 1 I K ) to all variables. 

Model Criteria Option TCC TCR FCI Cattle Sheep 

I ACR a 0.92 0.92 0.94 0.95 0.96 

b 0.91 0.91 0.97 1.00 1.00 

AW a 142328 186212 91950 1617 2713 

b 132132 160943 113217 85868 85724 

II ACR a 0.93 0.93 0.94 0.95 0.96 

b 0.92 0.92 0.98 1.00 1.00 

AW a 184598 254392 116304 2010 4325 

b 142649 175450 145350 128111 128111 
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APPENDIXG 

THE METHOD OF MOMENT ESTIMATION USED IN 

CHAPTER 4 

We describe the method of moment estimation (also called Henderson's III method) for 

the variance components of the model (2.13). Here various terms used are defined similar 

to as below equation (2.13). A simple method of estimating CJ'; and CJ': involves 

performing two ordinary least squares (OLS) regression and then using the method of 

moments to get unbiased estimators of CJ'; and CJ':. An unbiased estimator of CJ'; (using 

'hat' to denote an estimate) is 

~2 = D-1I IIl I"' ~2 CJ' C 
e i~l j~l Ij 

(G.1) 

where {iij} are the residuals from the OLS regression of Yij = (Yij - Yi) on xij = (Xi) - X;) , 

with y. = n:-l 'V"' Y and x = n:-l 'V"' x are the sample means in the small area i. That 
I 1 ~ j=l fJ 1 I ~ j=l I] 

is iij = (Yij - xij' POLS) = (Yij - Yi) - (xij -:x;)' POLS' Here POLS is the OLS estimate of P and 

D = (n - m- p + a) with a = 0 if the model (2.13) has no intercept term in fixed 

component of the model and a = 1 otherwise. 

An unbiased estimator of CJ': is 

(G.2) 
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where n* = n -tr[ (X'xrl I;:l n: X; X; ] = Ii ni {1- niX; (Ii Ijnijxijx~ r X;} is function of 

xij with X '= (xl"" xl1J ; X X = I i XiX; = I i I j XijX~ and {eu} are the residuals from the 

OLS regression of Yu on xu' i.e. eu = Yu - X~/JOLS' Here 6~ can also take negative 

values so a truncated estimator of a,~ is obtained as 6~ = max(O, 6~). Note that 6~ is no 

longer unbiased, but it is consistent as m, the number of small areas, increases. The 

estimators 6? and 6~ are equivalent to those found by using the well-known method of 

fitting of constants (F-C) due to Henderson (1953). The moment estimators 6~ and 6~ 

are, therefore, also referred to as fitting-of-constants (MFC) estimators (Prasad and Rao, 

1990). 

Once a? and a,~ are estimated, then we can also get an improve estimates of f3 using an 

iterative generalized least squares (IGLS) method to estimate the fixed regression 

parameter f3 and the variance components (Goldstein, 1995). The IGLS method involves 

two applications of the generalized least square (GLS). The first step is to obtain the GLS 

estimate of f3 assuming a? and a~ known. The second step is to use the GLS estimate 

of . f3 to form the "raw" residuals. Then the estimation of a? and a~ involves an 

application of GLS on the vector form of the cross-product matrix of the residuals, 

assuming normality. The IGLS method involves iterative updating between the GLS 

estimate of f3 and the GLS estimates of a~ and a,~ until the procedure converges. We 

do not pursue this iterative procedure in this thesis. 
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When we have K variables, we introduce an extra subscript k (k = 1 , .. ,1<) to denote 

quantities with respect to the eh variable. For any two variables, above method leads to 

following estimates: 

A2 -I [",m ",", A2 ( ) A2 ] -I [",m ",n, ( , R 2 ( ) A2 ] 
(}ul =n* L..i=lL..j=lel.ij- n-p (}el =n. L..i=lL..j=1 YI,ij-Xijl-'l,OLS) - n-p (}el 

-I[,\,m ,\,n, ( 'R)( 'fl') ( ) '2 ] ' = n" L..i=1 L..j=1 YI,ij - Xijf-'I,OLS YZ,ij - Xu 2,OL5 - n - P (jell = O"u21 

6uI2 = 0 if either 6:1 = 0 = 6:2 or either of them is zero. 
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APPENDIXH 

MODEL-BASED SIMULATIONS FOR MULTIPURPOSE 

SMALL AREA ESTIMATION IN CHAPTER 4 

In the model-based simulations we choose a population of size N = 15,000 and then 

randomly generated small area population sizes Ni' i = 1, ... , m = 30, so that Li Ni = N . 

We consider n = 600 and then generated small area sample sizes as ni = Ni (n / N) so 

that Lini = n and kept fixed throughout the simulations. We generated a multivariate 

normal (MVN) population for K =2 response variables. Two response variables Yl and 

Y2 are generated under a multivariate linear mixed model of form 

YI .. = ao + alx + ul + el ·· and Y2 = Ao + Al x + u2 . + eo ... ,Il U ,I ,I) ,IJ IJ,1 -,Il 

We fixed ao = 5, a l = 1, /30 = 5 and f1. = 3. The covariate values Xu are generated from 

X2(50) distribution. The random area effects ulJ and u2,i are generated from a MVN 

with zero mean vector and covariance 1: = ( 1:u
,1 

It 1: u,21 
;,12J. That is [UIJ J ~ MVN2 (0)2J 

u,2 u2 ,i 

with between area correlation Pu,12 = 1:u,12/ (;r::: .jf:;) = Pu,21' The individual random 

( J [ 
2 

elJj (Je I 
errors e1 .. and e2 ·· generated from ~ MVN2 (0, 1: ), where L = ' 

,lj ,I] e .. e e (J 
2.1] e,21 

(Je,12J with 
2 ' 

(Je,2 

Pe,12 = (Je,12/ (~(J;'I ~(J;'2) = Pe,21' We choose seven different values of P u ,12 and P e,12 
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corresponding to set1-set7. The values of L",l' L",2 and Lu,l2 as well as 0';,1'0';,2 and 

O'e,l2 are fixed up so that intra-area correlations with respect to first and second variables 

are (L"'l / (L",l + O':l) ) "" 0.20 and (Lu,2 / (L",2 + 0':2) ) "" 0.10 respectively. Table H.1 sets 

out the results from this simulation study. These results indicate identical performance of 

MBD1-A and MBD1-B methods of SAE. 

Table H.I Performance measures generated by MBDO, MBD1-A and MBD1-B (see 

chapter 4) for two variables under model 1. Method of Moment estimate for variance 

components are used. All averages are over the 30 small areas. 

Variables Criterions Set1 Set2 Set3 Set4 SetS Set6 Set7 

Pu,l2 0.50 0.50 0.50 0.50 0.00 0.25 0.75 

Pe,l2 0.00 0.25 0.50 0.75 0.50 0.50 0.50 

I MBDO ARB 0.00 0.01 0.00 0.00 0.00 0.00 -0.01 

ARMSE 4.10 4.09 4.09 4.10 4.11 4.12 4.10 

ACR 0.96 0.97 0.96 0.97 0.97 0.96 0.96 

MBD1-A ARB 0.00 0.01 0.00 0.00 0.00 0.00 -0.01 

ARMSE 4.10 4.09 4.09 4.10 4.11 4.12 4.10 

ACR 0.96 0.97 0.97 0.97 0.97 0.96 0.96 

MBD1-B ARB 0.00 0.01 0.00 0.00 0.00 0.00 -0.01 

ARMSE 4.10 4.09 4.09 4.10 4.10 4.12 4.10 

ACR 0.96 0.97 0.97 0.97 0.97 0.96 0.96 

2 MBDO ARB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ARMSE 4.22 4.21 4.20 4.22 4.22 4.23 4.21 

ACR 0.75 0.76 0.76 0.75 0.75 0.75 0.75 

MBD1-A ARB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ARMSE 4.22 4.21 4.20 4.22 4.22 4.23 4.21 

ACR 0.94 0.94 0.94 0.93 0.93 0.94 0.94 

MBD1-B ARB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ARMSE 4.22 4.21 4.20 4.22 4.22 4.23 4.21 

ACR 0.94 0.94 0.94 0.93 0.94 0.94 0.94 
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APPENDIX I 

COVARIANCE MATRIX UNDER RANDOM SLOPE 

SPECIFICATION OF MODEL (5.9) IN CHAPTER 5 

Under model (5.9) the covariance matrix of li = log(Y;) is 

The covariance matrix of Y; given by (5.15) is Var(Y;) = Q i = [01j k] with 

We can rewrite 

if j *k 

if j=k 

A _ A A _ {21 1 A (I) 1 A (2) A (3)} {1 A (I) 1 A (2)} h lJ. i - lJ.n - lJ. i2 - exp (Je N; + 2"lJ.i1 + 2" lJ. il + lJ. il - exp 2"lJ.i1 + 2"lJ.i1 ' were 

~(C:2L-Gil +C:1LCj1 +2C':1 L.C; 2 ) 

e 
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and 

[

G')2Gd G)2Gd , .. G)2G,] 1 [G;ILGiI 

~;~) = ~~~LG'2 G:2LG,2'" G:2LGi2 = ~:~L. Gi2 

G,~, LG'N, G:N, LG,N, "G~, LG,N, G~, LGiN, 

G;ILGiI G;2 LGi2 .. .G;N, LGiN, 

G;ILGil G;2LGi2 .. ,G;'v,LGiN, 
~;;) = 

G~N LG1 G~N LG2 .. ,G'N LGN I, I I, I I I I I 

= GiLG; 

l' ' N, 

= exp{~~(I) +~~(2)}, 
2 II 2 II 

We consider the sample and non-sample partition of covariance matrix as 

o [Q. Q. = e6
; [E~E~] = ISS 

I 1 I I Q. 
Irs 

Q - 6';[E.i1 E'] 'hE -d' {YlVl'l< '< } d.i1 -(~ -~ ) iss - e iss iss iss WIt iss - lag e ,- ] - ni an iss - issl iss2' 

215 



_ {2 1 (I) 1 (2) (3) } _ { 1 (1) 1 (2) } . Here ~iSSI -exp crel" +-~issl +-~issl +~issl and ~iss2 -exp -~issl +-~issl wIth 
; 2 2 2 2 

l
G:I LGil 

,:l(I) = G:2LG;2 
IS,d 

l' , ,:l;~;1 = In, [G:1LGjJ G;2LG;2 ••• G;'" LG;n; J and ,:l;.~/I = G;sLG~ . 
n, 

G~ LG 
In, In, 

Similarly, 

_ { 1 (I) 1 (2) (3) } _ { 1 (I) 1 (2) } • ~iSri - exp 2" ~isrl + 2" ~iSri + ~iSri and ~isr2 - exp 2" ~iSri + 2" ~isrl wIth 

We assume that Var(u i ) = L = [cr~1 cr~12l' then 
cru21cru2 

GiILG;1 1 Gil 1 Gil 

G i2 LG;2 1 Gi2 
[' 1 

1 Gi2 crul crul2 

cr"21 cr,;2 

G LG' 1 Gill; 1 G 
Inj In i lIli 

cr~1 + 2Gil cr,,12 + Gi~cr~2 

cr~1 + 2Gi2 cr,,12 + Gi22cr~2 

Gil 

2 Gi2 
crul In; + 2 
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This indicates that 

[

G'Y;n'+1 I 
') Gill,+2 2 

a,:1 INi.n, +2~. a,,12 +a,,2 

I,V, 

1 Gil 

L1(3) = G r.G = 1 Gi2 
IsrI lS lr 

1 Gini +l 

1 Gill,+2 

GN I, 

+ 

Gil 

Ill, (0-';lo-uI2)' + 
Gi2 

(o-u210-~2)' 

Gin, 

Gil Ginj +1 

Gi2 
0- l' + 2 

u21 N i -l1j cru2 

Gilli +2 

G 
111i GiN, 

The last term in 'fitted value' model (5.6) based model calibration weights (5.7) is 

Gil 

Gi2 
o-~I 1I1,I~'.Il' + 20-ul2 
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G2 
in,+2 

G2
N , i 

1 Gilli +1 

1 Gini +2 

1 GiN, 



and 

ON I, 

2 1 
+(},,2 11, 

are the vectors of order n
i 
and thus can be easily evaluated. 
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APPENDIXJ 

COVARIANCE MATRIX OF THE ESTIMATED VARIANCE 

COMPONENTS IN CHAPTER 5 

We shall illustrate the expressions to obtain covariance matrix of the estimated variance 

components under random the slope specification of model (5.9). From section 5.3, we 

write 

where 

Va r (8';1 + 281112 Gij + 8:2Gi~) = Var(8:1) + 4GJVar(81112 ) + Gi;Var(O;;2) + 

+ 4GijCov( 8:1, 8u12 ) + 2Gi~COV( 8:1,8';2) + 4G~Cov( 8 ul2 ' 8:2) 

[ 

~ 2 ~ J ~ O"UI O"ul2 
Let L(e) = ~ ~2 and denote the vector of estimated variance components as 

O"u21 0"u2 

J = [ 8';1' 8:2 , 8u12 ' 8~ J . Then covariance matrix of estimated variance components is 
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To evaluate covariance matrix Var(g), we need to solve inverse of Fisher information 

matrix l(g), is defined as S = {Sij} with Sij = ~tr(~s""p,y). Here, 

p -V -I_V -IX (X'v -IX )-IX'v -I w' h 
ss - ss ss s s ss s s ss ,It 

{

I 
d /l 

"" = d;~ = G ( dE )G1 

I S a 2 s 
(Ji 

otherwise 
,i=1, ... ,4. 

This leads to 

v: = dVss =G [1 0]G1 

I d(J2 s ° Os' 
ul 

dV [0 0] I 

V2 = d ~ = Gs ° 1 Gs ' 
(Ju2 
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v = dVss =G [0 1]G1 

3 ':\ s 1 ° s' o (Ju12 



s - ~ r{p (avss)p (avss)} - ~ {[P I ]2} 
44 - 2 t S5 a 0"; ss a 0"; - 2 tr ss n ' 

S =s -~ {p (avss)p (aV5S)}_~ r{p (c [1 °lc']p (c [0 °lc']} 
12 21 - 2 tr S5 aO"~1 55 a 0"':2 - 2 t 55 S ° ° 5 5S 5 ° 1 5 ' 

Collecting the terms we get Var(J) = rl(J) = S-I. 
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APPENDIXK 

REGION-SPECIFIC PERFORMANCE MEASURES FOR 

SIMULATION SET-C IN CHAPTER 6 

Figure K.l Region-specific percentage relative biases and percentage relative RMSE for 
simulation set-C 
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Figure K,2 Region-specific coverage rates and confidence interval widths for simulation 
set-C 
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APPENDIXL 

EMPRICAL BEST PREDICTOR OF SMALL AREA MEANS 

We use the model based simulations to compare the performance of Empirical Best 

Predictor (S.20, denoted by TrEBP) based on a log-scale linear mixed model (S.9) to the 

TrMBD2, MBD 1 and EBLUP methods of small area estimation. See chapter Sand 6. The 

set up of simulation experiment is similar to the simulations Set-A in chapter 6. In 

particular, we choose N=lS000 (and n=600) and randomly generated the small area 

population (and sample) sizes N; (andn; =N;(nIN), i=1, ... ,m=30),) so that 

I; N; = N (and I; n, = n) and kept fix throughout the simulations. Similar to Set A, 

population values of Yij are generated for 30 areas from a multiplicative model 

Yij = S.Ox&u;eij and then draw random samples of sizes ni from these areas. We choose 

six values of f3 (O.S, 0.8, 1.0, 1.3, 1.S and 2.0). The random errors eij are independently 

generated from a LN (0, (Je)' The random area effects u; are generated from LN (0, (Ju ). 

The covariate values x are generated from LN (6, (J ). Remaining part of the simulation u x 

is identical to simulation Set A. The results generated from these simulations (average 

relative bias and average relative RMSE) are reported in Table L.1. 
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Table L.1 Simulation results for Empirical Best Predictor (5.20). 

fJ TrEBP TrMBD2 MBDl EBLUP 

A verage Relative Bias 0.5 -0.031 -0.026 11.897 13.762 
0.8 0.156 0.100 5.503 6.767 
1.0 0.132 -0.062 0.829 1.990 
1.3 0.650 0.321 -4.611 -4.227 
1.5 0.714 0.563 -6.457 -6.263 
2.0 1.492 1.523 -6.595 -6.466 

Average Relative RMSEs 0.5 0.307 0.146 1.066 0.873 
0.8 0.417 0.263 1.474 0.611 
1.0 0.579 0.449 2.211 0.825 
1.3 0.686 0.513 2.120 0.859 
1.5 0.765 0.618 2.121 0.891 
2.0 1.033 0.853 3.260 1.400 

These results show the TrEBP for skewed data under the log-transform model dominates 

the MBD1 and EBLUP. However, the TrMBD2 method is superior overall. The average 

relative biases of TrEBP are nearly same as the TrMBD2, however, average relative 

RMSEs of TrMBD2 are consistently .smaller than the TrEBP. Although the TrEBP 

seems an alternative method to TrMBD2 but the mean squared error estimation is not 

straightforward like TrMBD2. In terms of efficiency, the TrMBD2 is more efficient. We 

do not carry forward this approach in our thesis. 
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