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For a chain complex C. a Dold-Puppe complex is a complex of the form

NFT(C), i.e. the image of C. under the composition of the functors F,

F and N; here F and N are the functors given by the Dold-Kan corre-

spondence and F is a not-necessarily linear functor between two abelian

categories. When C. is a projective resolution of a module the ith homology

of this Dold-Puppe complex is the ith derived functor of the functor F.

The definition of F is quite abstract and combinatorial. The first half

of the first chapter of this thesis gives an algorithm that streamlines the

calculation of F(C.). The second half of the first chapter gives algorithms

that allow the explicit calculation of the Dold-Puppe complex in terms

The second chapter produces a partial proof of Kock's predictions of

the derived functors of the third symmetric power functor Sym3. This is

achieved by comparing certain cross-effect modules of the predictions and of

the derived functors.
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Introduction 1

Introduction

Let R and S be rings. The construction of the left derived functors LfcF :

R -mod —> S -mod of any covariant right-exact functor F : R -mod —•

S -mod is achieved by applying three functors. The first functor constructs

a projective resolution P. of the i?°-module M that we wish to calculate the

derived functor of. Then the functor F is applied to the resolution P. giving

the chain complex F(P.). Lastly the kth derived functor L^F is defined to

be Hk(F(P.)), the kth homology of the chain complex F(P.). However for a

given module M the projective resolution of M is unique only up to chain-

homotopy equivalence, so this contruction crucially depends on the fact that

F preserves chain-homotopies. In general this fact does not hold when F is

a non linear functor such as the Ith symmetric power functor, Sym', or the

Ith exterior power functor, A'. In the paper [DP] Dold and Puppe overcome

this problem and define the derived functors of non-linear functors by passing

to the category of simplical complexes using the Dold-Kan correspondence.

The. Dold-Kan correspondence gives a pair of functors T and N that

provide an equivalence between the category of bounded chain complexes

and the category of simplicial complexes; under this correspondence chain

homotopies correspond to simplicial homotopies. Furthermore in the simpli-'

cial world all functors preserve simplicial homotopy (not just linear functors).

Because of this the above definition of the derived functors of F becomes well

defined for any functor when F(P.) is replaced by the complex NFT(P.).

We call chain complexes of the form NFT(C.) Dold-Puppe complexes, for

any bounded chain complex C..

Let R be a Noetherian commutative ring and let / be an ideal in R

that is locally generated by a non-zero divisor. If P. is the length 1 R-

projective resolution of a projective R/I -module V then the homology of the

Dold-Puppe complex N Symfc T(P.), k > 1, has been explicitly computed in

[K6]. These computations yield a yery natural and new proof of the classical

Adams-Riemann-Roch theorem for regular closed immersions and hence a
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new approach to the seminal Grothendieck-Riemann-Roch theorem avoiding

the comparatively involved deformation to the normal cone, see [K6].

The purpose of this thesis is two-fold. In Chapter 1 we shed some light on

the combinatorial structure of Dold-Puppe complexes in general. In Chapter

2 we study the homology of the Dold-Puppe complex TVSym3 F(P.) when /

is an ideal which is locally generated by a regular sequence of length 2 and

when, as above, P. is a projective resolution of a projective i?/7-module V.

We now describe Chapter 1 in more detail.

If C. is a chain complex of length > 2 then the calculation of the Dold-

Puppe complex NFT(C.) is normally too complicated to be performed on

a couple of pieces of paper, and the nature of the calculation means that

errors easily creep in. The purpose of Chapter 1 is to develop an algorithm

that computes such Dold-Puppe complexes in a manner that is both efficient

and easy to check. We hope that the explicit description of the Dold-Puppe

complex that the algorithm provides will help later work in calculating its

homology.

In section 1.1 we introduce an ordering in the set Mor([n], [k]) of order

preserving maps between [n] := {0 < 1 < . . . < n} and [k] := {0 < 1 <

. . . < k}. We show that composition with the face maps <5, : [n — 1] —> [n]

and degeneracy maps at : [n] —>" [n — 1] is "well-behaved" with respect to

this ordering.

The simplicial complex F(C.) is defined by

so we have a copy of the direct summand Ct for each surjective order preserv-

ing map (j, : [n] —> [k]. The face and degeneracy operators in the simplicial

complex F(C.) are defined in terms of composition of [i with the maps 5i

and <7j. In section 1.2 we show how the results in section 1.1 can be used

to streamline the calculation of the the face and degeneracy operators in the
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simplicial complex T(C.).

In section 1.3 we summarise the results on cross-effect functors that are

needed for the sections that follow.

The Dold-Puppe complex NFT(C.) is constructed by modding out the

images of the degeneracy operators in FT(C.). To calculate this we apply

the theory of cross-effect functors to decompose both the numerator and de-

nominator into the direct sum of cross-effect modules; the non-degenerate

modules correspond to the terms that appear in the numerator but not in

the denominator. However the decomposition produces many, many terms

and seeing which are non-degenerate is far from obvious. In section 1.4 we

introduce a criterion to distinguish between the non-degenerate and the de-

generate terms; this criterion is defined in terms of the ordering we introduced

in section 1.1. Later we introduce an algortithm that constructs all terms

that satisfy this criterion; thus avoiding the need to check each of the many

terms one by one.

In section 1.5 we calculate the Dold-Puppe complex N Sym2 T(C —> B —*•

A), where C —> B —> A is a complex of length 2 concentrated in degrees 0, 1

and 2. The purpose of this calculation is to elucidate how the results of this

paper can be applied to calculate virtually any other Dold-Puppe complex.

We now 'describe Chapter 2 in greater detail.

In [K6] Kock made predictions for the derived functors of Sym3. In

section 2.7 we give a partial proof of these predictions. To produce this partial

proof we use a method Kock discovered which tells us that two functors are

isomorphic if they agree on certain data given by their cross-effect functors

(see section 2.6) i.e. we show that some of the preconditions of the relevant

theorem holds. The earlier sections of Chapter 2 introduce the various tools

we use in this calculation.

Section 2.1 introduces a spectral sequence for the functor hypertor, which

allows us to calculate the homology of the tensor product of two chain com-

plexes that we know the homology of. Section 2.2 introduces Koszul com-

plexes which we use both as projective resolutions and also to define Schur
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functors of hook type. Schur functors are introduced in section 2.3, they are

important because Kock's predictions are given in terms of Schur functors

and also because of their role in the Cauchy decomposition of Sym3(F ® G).

In [ABW] a nitration is put on Symn(F <g> G), the successive quotients of

which are isomorphic to modules of the form L\(F) (g) L\(G) where A is a

partition of weight n, and L\ is the Schur functor of shape A. This is known

as the the Cauchy decomposition of Symn(F (g) G). This decomposition

gives us a number of short exact sequences that allow us to calculate the

information that we need about the first cross-effect functor of the derived

functors of Sym3.

In section 2.4 we introduce the Eilenberg-Zilber Theorem and extend it

to suit our needs. The Eilenberg-Zilber theorem gives a suprising homotopy

equivalence between the diagonal of a bisimplicial complex and the total

complex of the associated double complex. We will use it extensively in our

calculations in section 2.7.

In section 2.7 we perform the calculations that give us our partial proof.

Let R be a Noetherian commutative ring and let / be an ideal in R which

is locally generated by a regular sequence of length 2. Let Gk be the kth

derived functor of Sym3 .

In [K6] Kock made the following predictions about the functor Gk, if V

is a finitely generated projective R/I-module then:

Sym3(F) k = 0

L{2,i)(V) <g> I/I2 k = 1

Gk(V) = L{2A)(V)®I/I2®A2{I/I2) k = 3

D3(F)(g)A2(7/J2)®2 k = 4

0 k > 5
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and for the case when k = 2 he suggests that there exists an exact sequence:

0 -> D2(V) <g> V <g> A 2 (7 / / 2 ) -> H2NSym3 T(R(V))

-> A3(V) <g> Sym2(7/72) -> 0,

where Z)1 is the ztfe divided power functor. For any non-negative integer fc

that is not equal to 2 we let Fk be the functor that Kock predicted for Gk

to be. We let F2 be any functor that fits in a short exact sequence

0 -> D2(V) ® V ® A2(7/72) -> F2(V) -> A3(F) <g> Sym2(7/72) -> 0.

Provided that 7 is globally generated by a regular sequence we prove that

Gk{R/I) = Fk(R/I) i.e. that these predictions hold if V = R/I. Moreover,

regardless of whether 7 is globally generated or not, we prove a similar

statement for the higher cross-effects of Gk and Fk namely that for all k

and I > 1 we have

cn(Gk)(R/I,..., R/I) = cn(Fk)(R/I,..., R/I).

These results are a major step toward allowing us to apply Theorem 2.6.2

to the functors Fk and Gk, which will show that the predictions are true in

general.

Notations

Let A be the category whose objects are the finite totally ordered

sets [n] := {0 < 1 < ... < n} where n G N and the set of morphisms,

Mor([n], [k]), between [n] and [k] consists of all the order preserving maps

between them. Recall for each- i E {0,... ,n} the face map 5, : [n — 1] —» [n]

is the unique injective order preserving map with S^l(i) — 0 and for each

i £ {0 , . . . , n — 1} the degeneracy map Oi : [n] —> [n — 1] is the unique

order preserving surjective map with a~1(i)-= {i,i + 1}. For a category
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A, a simplicial object A in A is a contravariant functor A : A —»• .4. We

write An for A([n]), dj for the /ace operator A(5i) : An —»• An_i, Sj for

the degeneracy operator A{pi) : An_i —> An and Sur([n], [k]) for the set of

surjective morphisms between [n] and [k].



Chapter 1

An Algorithmic approach to

Dold-Puppe complexes

1.1 Partitions and composition with face

maps and degeneracy maps in A

For the whole of this section let us fix the natural numbers n and k. In

this section we introduce an ordering on Mor([n], [k]), investigate the maps

x i—> xSi and y t-* yoi between Mor([n], [k]) and Mor([n — 1], [k]) and

show that these maps behave in a nice way with respect to the ordering on

Mar([h],[fc]).

This ordering will be used again throughout this paper. In chapter 1.2

it will allow us to describe algorithms that streamline the calculation of the

face and degeneracy operators in the simplicial complex T(C.). In chapter 4

the ordering will be used to define the notion of honourability, and thereby

to help us give a description of the Dold-Puppe complex NFT(C.).

Definition 1.1.1. Let an n-tuple x := (xi,...,xn) G Nn be called a par-

tition of m of length n if ^™=1 xi = m. If each X{ ̂  0 we call it a proper

partition, otherwise we call it an improper partition. We write Xj for the zth

entry of x.
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A function / : [n] —• [k] is determined by the following sets f~1{0),

/ " x ( l ) , • • •, f~l(k). If / is a monotonically increasing function then the sets

/~1(0), /~1(1), . . . , f~l(k) consist of consecutive elements of [n]. Because

of this it is sufficient to know the sizes of these sets to determine an element

of Mor([n], [k]). Hence we can think of a morphism / : [n] —> [k] as a

partition of n + 1 of length k + 1. A surjective morphism would correspond

to a proper partition and a non-surjective morphism would correspond to an

improper partition.

Notation 1.1.2. For a morphism / in Mor([n], [k]) we write /* to denote

the following partition obtained from / , d/"1^)! , l/"1^)!, • • •, l/"1^)!) •

Note that /* = \f-\i-l)\.

Lemma 1.1.3. | Sur([n], [k])\ = ©

Proof. If / : [n] —> [k] is a surjective morphism then the sets /~1(0),

/~1(1), . . . , f~x(k) -are non-empty, disjoint, .their union is [n] and each

set consists of consecutive elements of [n]. So if we know the smallest ele-

ments of /~x(l) > / - 1(2) , • • • i /~1(fc) then we have determined / . Since we

know 0 6 /~1(0) the smallest elements are in the set {1,..., n} . So there are

as many elements of Sur([n], [k]) as there are ways of choosing k elements

from a set of size n. D

Notation 1.1.4. For i e {0, . . . ,n} define Si : Mor([n], [k]) -» Mor([n -

1], [k]) by x \—>• x<5j and for z G {0,.. . , n — 1} define aj : Mor([n — 1], [&]) —»•

Mor([n], [k]) by ?/ H» ̂ 0"̂ . (See diagram below). By abuse of notation we

write Im(<7i) for CTj(Sur([n], [k])).

Note we will ocassionally extend these functions to partitions in the ob-

vious way.
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Lemma 1.1.5. For all % G {0 , . . . , n — 1} we have 'bfii = id, and hence ~Oi

is injective and Si is surjective; also 8n is surjective.

Proof. Result follows directly from Oi5i = id for i G {0 , . . . , n — 1} and from

an-i5n — id •

Since knowing the effects of <Sj and cFj are essential in calculating di and

Si it is useful to have a quick way of working out (x5i)* and (xoi)* from x* .

Lemma 1.1.6. (a) For each % G {0 , . . . , n — 1} we have (xa^ = x\ unless

Em=l X*m < i + 1 < E L l Xm in which CaSe {X°i)*l = X* + 1 •

/or eac/i i E {0 , . . . , n} we have (x5i)i = xi unless X)m=i x*m <

i + 1 < 5Zm=i xm ^n which case (x6i)i = x* — 1.

Proof. Recall for every / we have /,* = If-1 (I - 1)| and (xai)-\l - 1) =

o"i"
1x~1(/ — 1). Recalling â  is the unique surjective map [n — 1] —> [n]

with cri~
1(z) = {i,i + 1} we see \{xai)~l{l — 1)| = \x~l(l — 1)| if and only

if i £ x~\l - 1). If i 6 x-^Z - 1) then (xa^ = {{xa^il - 1)| =

|a;~1(Z — 1)| + 1 = Xi + 1. Remembering that i is the (i + l ) t h element of

[n] we get our result concerning ~cfi.

We similarly get our results for 5i. D

Corollary 1.1.7., For all i and for all x € Sur([n], [k]) the map x5t is not

surjective if and only if there is some I e [k] with x~l(l) = {i} .

Proof. Obvious. •

Lemma 1.1.8. Let x € Sur([n],[fc]) and let i e {0,...,n}. Suppose that

xSi is not surjective. Then write xSi = 5jX for some x G Sur([n — 1], [k — 1])

and some j G {0 , . . . , k} . We have i = 0 if and only if j = 0

Proof. Suppose x50 = SjX for some x G Sur([n — 1], [A; — 1]) and some

j ^ 0, then the above corollary tells us that x~1(0) = {0}, so we see that

xS0{0) = x(l) = 1. But because x is surjective SJX(0) = Sj(O) = 0, So we

have contradiction.
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Suppose x5i = 60x with i ^ 0 then, recalling x is surjective x5i(0) =

x(0) = 0. But Sox(0) = S0(0) = 1, so we have a contradiction. •

Definition 1.1.9. Let a be a partition of length k. If x is a partition of

length I < k with Zj = a* for 1 < i < I then we call x an initial partition

of a. We write a = (x,y) where y is the partition of length k — I defined

by t/j = cii+i for 1 < i < k — I. (Note we may allow either x or y to be the

empty partition, so a is an initial partition of itself).

If a and b are both partitions of the same number over the same number

of places and x is an initial partition of both then we call x a common initial

partition of a and b. Because a and b are of finite length there must be some

longest common initial partition (even if it is of length 0, or it is equal to a) .

Definition 1.1.10. If x is the longest common initial partition of a = (x, y)

and b = (x, z) then we say o < b if and only if y\ < Z\.

This gives the lexicographic ordering on the partitions and we use it to

define an order on Mor([n], [k]) also.

Proposition 1.1.11. For each i € {0 , . . . ,n — 1} the map cfj : Mor([n —

"*• Mor([n], [k]) is strictly order preserving.

Proof. Suppose x,y G MorQn — ,l],[fc]) and x < y. Let a be the longest

common partition of x* and y* and set x* = (a, b) and y* = (a, c). Lemma

1.1.6 tells us that {xa^ = x\ for all I except one and for that I we have

{xo^)\ = x\ + 1. Let L stand for the / for which we have (xa^ = x^ + 1.

We will show that whatever the value of L we have (XCTJ)* < (T/CTJ)* . Let p

be the length of a.

If L < p then we have (z<Tj)* = {a',b) and (yoi)* = (a',c) for some a'.

Since we know &i < c\ we have {xoij* < (yoi)* •

If L > p then we have {xoi)* = (a, b') and {yo~i)* = (a, c') for appropriate

b' and d.

If L > p + 1 then ^ = h < cx < c[ so (rroi)* < (y<7i)*.
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If L — p + 1 then we have b[ = b\ + 1 Let m be the number a is a

partition of. We have m < i < m + bi < m + Ci, thus the value of I we have

{y<Ji)i = Vi + 1 for is also p + 1. Therefore b[ = bx + 1 < cx + 1 = c[ and so

we get {xoi)* < {yoi)*. U

Notation 1.1.12. For i e { 0 . . . , n} let Sf := {x e Sur([n], [k])\x* has an

initial partition of i + 1} and for a a partition of i + 1 let 5"o := {a; €

Sur([n], [k]) : x* 'begins with a} .

Obviously 5"a C S™ and UaS1^ = S™ where a ranges over all partitions

of i + 1 of whatever length.

Lemma 1.1.13. For each i £ {0 , . . . , n — 1} we Ziawe |S7| = QlJ) • 4̂feo /or

eac/i i € { 1 , . . . ,n — 1} roe Ziave lUz^Tfzi)! = C-D w^ere z ranges over

all partitions of i and finally IUz^n(zi) l = (fc-i) where z ranges over all

partitions of n.

Proof. For i £ {0 , . . . , n — 1} if a; G 5" then, for some I, we have % is the

maximal element of x~1(l). Furthermore we know that n is the maximal

element of x~1(k), therefore choosing an element x of S™ amounts to the

same as choosing the maximal elements for all but one (since we already

know one meximal element must be i) of the sets x"1^),. / . , x'1(k — 1)

from the n — 1 remaining elements of [n]. Therefore \S™\ = (£l}) •

For i G { 1 , . . . , n— 1} if x € (J2 S™,z ̂  then for some Z we have i — 1 is the

maximal element of x~l(l) and also i is the maximal element of x~l(l + 1),

i.e. choosing an element x of \JZ S™, ̂  amounts to the same as choosing the

maximal elements for all but two of the sets x~1(0) , . . . , x~1(k — 1) from the

n — 2 remaining elements of. [n]. Therefore | |JZ S™,z XJ = Qlj) •

For the remaining statement we merely observe that Uz^n(zi) = ^n-\

and use the first result. D

Theorem 1.1.14. For each i € {0, . . . ,n — 1} the set Sur([n], [k]) is the

disjoint union of 51™ and Imcf; :
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Note S% = Sur([n], [k]) and there is no map ~an.

Proof. First we prove S™ and Imcfj are disjoint. Let x G Sur([n], [k]).

The partition x* has an initial partition of i + 1 if and only if there is

some I such that i is the maximal element of x~l(l) (remember i is the

(i + l ) t h element of [n]J. If i is the maximal element of x"1^) then i + 1

is the minimal element of x~l(l + 1) which means x(i) ^ x(i + 1). But

x G ImcTj means that for some y 6 Sur([n — 1], [k]) we have x = yat. So

a?(z) = yoiii) = y(i) = ya^ii + 1) = x(i + 1) therefore x cannot be both in

Sf and aiSur([n-l],[fc]).

Now we prove that the union of 5" and Im?; form the whole of

Sur([n], [k]) by using a counting argument. We know that S'fnlmaj = 0 so

/Sf U Imtfjl = |<S71 + | Imcfil. Lemma 1.1.5 tells us that Wi is injective, from

this we see that \S?\ + \ Ima^ = \Sf\ + \ Sur([n - 1], [k])\ and by Lemmas

1.1.3 and 1.1.13 we see that |5f | + | SurQn- 1], [k])\ = (n
kZ{) + ("fc1) = ffl =

Proposition 1.1.15. For all i € {0, . . . ,n — 1} we have 5j is strictly order

preserving on both Imcrj and S™, also Sn is strictly order preserving on

Sur([n],[A:]) = SS.

Note that while Si is order preserving on these two complementary sets

of Sur([n], [A;]) it is not order preserving on the whole of Sur([n], [k]), for an

illustration of this look at the calculation in section 1.2.

Proof. That <5j is order preserving on Imcr, follows from directly Lemma

1.1.5 and Proposition 1.1.11.

Let x,y G S™ with x < y, a be the longest common partition of x* and

y*, set x* — (a, b), y* = (a, c). Lemma 1.1.6 tells us that (ySi)i = y* for all

I except one and for that 1 we have {yS^ = y\ — 1. Let L stand for the /

for which we have {y5i)\ = y\ — 1. We will show that whatever the value of

L we have (xSi)* <-(ySi)*. Let p be the length of a.
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If L < p then for appropriate a' we have x* = (a', b), y* = (a', c), so

since we know bi < c\ we have (x5i)* < (ySi)*.

If L > p then for appropriate b' and d we have x* =• (a, b'), y* — (a, c').

Let m be the number a is a partition of. If L > p + 1 then i + 1 >

m + Ci > m + b\ so the i for which we have (x5i)* = x* — 1 is also greater

than p + 1. So since c'x = Ci > b\ = b[ we have (a:^)* < (ySi)*.

If L = p + 1 then by Lemma 1.1.6 we see that m < i + 1. Recalling

y* begins with a partition of i + 1 and using Lemma 1.1.6 again we see

i + 1 = m + Ci. We know &i < c\ so z + 1 = m + C\ > m + b\, so

the I for which we have (xSi)* = x\ — 1 is greater than p + 1. Therefore

b[ = bi < ci = c[ + 1, so &i < 4 + 1, i.e. b[ < c[.

If b[ < c[ we have (x5i)* < (y5i)*.

If b[ = c[ then 6i = b[ = c[ — c\ — 1 = [i + 1 — m) — 1 = % — m, recalling

x* begins with a partition of i + 1 we see 62 = 1. Therefore by Lemma 1.1.6

b'2 = 0 < c2 = c'2 so we see (z<5j)* < (t/(5i)*. • D

1.2 The face and degeneracy operators in the

simplical object F(C.)

For an abelian category A the Dold-Kan correspondence gives two mutually

inverse functors V and jV between the category of bounded chain complexes,

Ch>0(«4), and the category of simplicial objects in A, SA. For a chain

complex C. G Ch>o(*4) the functor F(C.) is usually defined, by T(C.)n =

0 L o ®a€Sur([n],[fc]) Ck • So r(C.) contains | Sur([n], [fc])| copies of Cfe and

these copies are indexed by elements of Sur([n], [k]).

The effect of the degeneracy operator Sj : r ( C ) n _ i —»• r ( C ) n on the

copy of Cfe indexed by // G Sur([n — 1], [fc]) is to identify it with the copy of

Ck E T(C.)n indexed by aj(ju) (c.f. Notation 1.1.4).

The effect of the face operator di : T(C.)n —• r ( C ) n _ i on the copy of Ck

indexed by /J, G Sur([n], [k]) depends on the nature of 'Si(fj) (c.f. Notation
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1.1.4):

If 5j(/i) is surjective then C*. is identified with the copy of C& indexed

by Si(fi);

if Si(fi) is not surjective and 5j(/x) = Sjp, for some (i G Sur([n— 1], [A; —

1]) and for some j ^ 0 then C^ is mapped to 0;

• if Si(fj,) is not surjective and Si(fi) = Soft for some fi G SurQn — 1], [A; —

1]) then di maps the copy of Ck indexed by fj, to the copy of Ck-\

indexed by /t with the same action as the differential of C..

This can be expressed more concisely in symbols rather than in words. For

ix E Sur([n], [k]) we write Cfc;/i to denote the copy of Ck in ©crgSurUnUfc]) C*

that is contributed by /i and also, for m £ C t , w e write (m,/x) to denote
m ^ Cfc,M- The face and degeneracy maps in F(C.) are denned as follows:

(m, Si(fx)) if Si(fi) is surjective

(d(m), p) if <5j(/i) = Sop, with /i G SurQn — 1], [A; — 1])

0 if Si(fj) = 6jp with p G SurQn - 1], [Jfc - l]),j ^ 0

The object of this section is to rewrite these expressions using results

from the previous section and thereby make the calculation of these operators

simpler.

Lemma 1.1.3 tells us that for natural numbers n and k

(note this is always a finite sum, since if k > n then (^) = 0 ) again each

copy of Ck indexed by the element of SurQn], [k]) that contributes it. But

now we can use the ordering defined in Section 2 on SurQn], [k]) to order

the copies of Ck • Because of this we will tend to use the ordinal associated
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to /j, G Sur([n], [k]) instead of fj, to index a copy of C\~, i-e. if \i is the mth

element of Sur([n], [k]) we will usually write Ck,m instead of C ^ .

Combining various results from the previous section we get the following

proposition which allows us to simplify the cases. We write Ac for the

complement of A in the set SurQn], [k]).

Proposition 1.2.1. For n,k>0 the following statements hold:

(a) . (i) for each i G {0, . . . ,n - 1} the sets SurQn - 1], [k]) and (S?)c

have the same cardinality;

(ii) for each i e { l , . . . , n } the sets S™^1 and S™ \ \JZ S^zl^ have the

same cardinality (where z ranges over all partitions of i of length

k or less);

(Hi) the sets SQ and SurQn — 1], [k — 1]) have the same cardinality.

(b) For each i G {0 , . . . , n — 1} the map ai : Sur([n — 1], [k]) —> Sur([n], [k])

sends the Ith element of SurQn - 1], [k]) to the Ith element of (S?)c .

(c) (i) For each i G {0 , . . . , n} and x G Sur([n], [k]) the morphism Si(x)

is a non-surjection if and only if x G |J2 S^z ^ where z ranges

over all partitions of i of length k or less.

(ii) If x G SQ then for some x G SurQn — 1], [k — 1]) we have ~SQ(X) =

5QX . Moreover the map x i—»• x acts on SQ by sending the Ith

element of SQ to the Ith element of SurQn — 1], [k — 1]).

(in) For each i G {0 , . . . , n — 1} the map <5j : SurQn], [k]) —> Mor([n —

1], [k]) acts on the set (S?)c by sending the Ith element of (S?)c

to the Ith element of SurQn — 1], [k]).

(iv) For each i G { l , . . . , n } the map 5j : SurQn], [k]) —• MorQn —

1], [k]) acts on the set S^\\JzS^zl^ by sending the Ith element of

S? \ \JZ S£(Zil) to the Ith element of SJ^ 1 .

Proof. Part (a) of this proposition ensures that the later statements are

well defined. Part (a) (i) follows from Theorem 1.1.14 and the injectivity
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of ~Gi (Lemma 1.1.5). Lemma 1.1.13 tells us that for i € { l , . . . , n — 1}

we have |S?| = (n
kZ\) and that | I J 2 ^ , i ) l = G-3> a n d therefore

\S? \ U % , ! ) ! = (T-l) - CIS = Cli) = \S?-il\ (the final.step is given by

Lemma 1.1.3). Furthermore 5" = Sur([n], [A;]) and by Lemma 1.1.13 we see

that iu,s£(,,i)l = CiD so isnusiW)! = G) - G:S = G*1) = IS3I
(the final step is given by Lemma 1.1.3). So we have shown part (a) (ii) of

the second half of this theorem for all i G {0 , . . . , n} . The remaining part of

part (a) follows from Lemmas 1.1.3 and 1.1.13.

Part (b) is seen by applying Proposition 1.1.11 to part (a) (i).

Let i € {0 , . . . , n} and a be a partition of i + 1 of length p. Define d'

by a[ = ai for I < p and a[ = at — 1 for I = p. Lemma 1.1.6 tells us that

if x = (a, 6) then Si(x) = (a',b). So if ap > 1 then ^(x) ' e S^ (note

that this case never occurs for i = 0 since if i = 0 then a = (1)). On the

other hand we have <5j(x) = {a',b) is a non-surjection if and only ap = 1,

and hence we have part (c) (i). of this proposition.

If we take x € Sfi we have (by Lemma 1.1.8) 50(x) = <50£ for some

x G Sur([n — 1], [k — 1]). For any morphism y we see that 50(y(l)) = y(l) + 1

so (Soy)* = ((0), y*). So the map x i—• x takes a morphism whose associated

partition is of the form (l,x) to a morphism whose associated partition is

x and thus this map is strictly order preserving. So using (a) (iii) we get

(c) (ii).

By applying l>fii — id (Lemma 1.1.5) to part (b) we get part (c) (iii).

Now the remaining statement follows by applying the fact that for all

i G { 1 , . . . ,n} !>i is strictly order preserving on S™ (Proposition 1.1.15) to

part (a) (ii) of this statement. •

Theorem 1.2.2. Let n > 0.

(a) Let % G {0 , . . . ,n - 1} and let c = (cfc,Ofc=o,...,n-i;J=i,...,(n;-1) e T(C.)n-i.

Write Si(c) = {bk,i)k=0 n. /=1 (*) € T(C.)n then we get the following

relations:
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(i) If the Ith element of Sur([n], [k]) is the mth of {S™)c then bkil =

(ii) If the Ith of Sur([n], [k]) is an element of S™ then then bk,i = 0.

(b) Let c = (cfcIj)fc=o,...,n;i=i1...,'(») e r(C.)n •

Write do(c) = (&M)fc=o,...,n-i;i=i,...,(V) e r(c-)n-i then we get the fol-
lowing relation: b)-:i = dfa+ij) + ck (n-n+l •

\K 1 /

(c) Let i E { 1 , . . . , n - 1} and let c = (cfc,0fc=Ol...,n;i=i,...,(^)

Write di(c) = (&fc,z)fc=o...,n-i-z=i . f"-1) e r ( C ) n _ i i/ien we get the fol-

lowing relations:

(i) If the Ith element of Sur([n - 1], [k]) is the mth element of S?~i

then bkj = Ck,a(i) + cfc,/3(m) where a(l) is the ordinal associated to

the Ith element of (S™)c and (3(m) is the ordinal associated with

the mth element of S? \ \JZ S£(Z)1) ;

(ii) If the Ith element of Sur([n — l],[fc]) is an element of (S^)c

then bkti = Ckta(i), where a(l) is the ordinal associated with the Ith

element of {S?)c.

(d) Let C = (Cfc,j)fc=0,:..,n;J=l,...,(»)

Write dn(c) = (bfc,z)fc=o,..,n-i;Z=i,...-,(n-1) G r(C.)n-i then we get the fol-

lowing relation:

If the Ith element of SurQn], [k]) is the mth element of S% \ \JZ S^(zl)

then bk,m = Ck,i •

Proof This is a direct corollary of Proposition 1.2.1. •

When using Theorem 1.2.2 we can instantly describe the action of do

(part b) but to describe the action of the other face operators and the

degeneracy operators we need to do some calculation. For each n that

we are concerned with (the position in the simplicial complex) and each
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k G { 1 , . . . , min(n, I)} (where I stands for the length of the chain complex)

we need to know the sets S? and 5™ \ \JZ S?,z ^ for each i € {0 , . . . , n) .

So for each n and k we draw a table to help us determine these sets (see

Example 1.2.3 below). The columns of the table we label by the possible

values of i (0 through to n) . The rows of the table we label with both the

partition and the ordinal associated with the elements of Sur([n], [k]).

If a cell in the table has its column labelled by i and its row is labelled

by a partition x* that has an initial partition of i+'l then we mark the cell

with a x mark, if that initial partition ends with a 1 then we also mark the

cell with a *. So if a cell is marked with a x mark then the surjection x is

an element of the set 5f, if the cell is also marked with a * then x is an

element of the set \JZ S^z ^ .

Having made the tables for n we can use Theorem 1.2.2 (a), to calculate

the degeneracy operators so,.. • ,'sn-i • r(C.)n_i —> T(C.)n. If we haVe

already made tables for n — 1 then we can use Theorem 1.2.2 (c) to calculate

the face operators dx,... ,dn_i : F(C.)n —> r(C.)n_i and Theorem 1.2.2 (d)

to calculate dn : r(C.)n'—»• F(C.)n_i •

For i = 1 , . . . , n we (obviously) have that i ^ n + 1, but {(n + 1)} =

Sur([n],[0])*. So Theorem 1.2.2 (c) tells us that for each i € { l , . . . , n }

the face operator di acts on the single copy of Co in T(C.)n by sending it

identically to the single copy of Co in F(C.)n_i. Similarly Theorem 1.2.2

(a) tells us that each of the degeneracy operators act on the single copy of

Co in T(C.)n-i by sending it identically to the single copy of Co in T(C.)n.

So often we won't bother to repeat describing the action of di on the copy

of Co when i ^ 0, or the action of any degeneracy operator on Co.

Example 1.2.3. To help elucidate these results we now look at the chain

complex of length 2 C —> B —»• A placed in degrees 0, 1 and 2 with differential

d. For each n G {0,1,2,3,4} we calculate all the degeneracy maps s, :

F(C -» B -»• A)n -> F(C -»• B -> A)n+1 and all the face maps d4 : F(C -*

Observe that Theorem 1.2.2 (c) tells us that for i G { 1 , . . . , n) (i.e. when
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i ± 0) the face operator dj : T(C —> B —• A)n -> r ( C —• 5 —• A)n_i acts by

sending copies of C to copies of C, copies of B to copies of B and copies of

A to copies of A, i.e. the differential d plays no role. So when i 7̂  0 we'll

describe the action of d, on the copies of C, B and A seperately. Theorem

1.2.2 (a) tells us that all the degeneracy operators act similarly. So we'll

describe the action of Sj on the copies of C, B and A separately.

For n — 1 we get the following table:

1(1,1)

0

x

1

So the face operator dx between T(C ^ B ^ A)i = B ® A and NFT(C

B-—> A)o = A acts by:

d\ •• (61) ^ 0.

The face operator dQ between T(C -> B -+ A)x = B®A and NFT(C

B —*• A)o = A acts by:

0 : (h,a) 1-̂  (a

For n = 2 we get the following tables:

1

2
(1,

(2,

2)

1)

•0

X

1

X

2

X

X*
1 (1,1,1)

0

x

2

So the face operators d\, d2 between and T(C —> B —> A)2 = C © B2 ® A
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and T(C -> B -> A)x = B © A act by:

20

d2 : (b1:b2) »->

dx : (c) i-> 0

d2 : (c) i-> 0

The face operator d0 between T(C

r(C -> 5 ^ A)i = B © A acts by:

d0 : (c, 6i, 62, a)

B -^ A)2 = C © B2 © A and

b2, d(h) + a)

The degeneracy operators SQ, S\ between T(C

r(C -»• S -» A)2 = C © B2 © A act by:
A and

: (61 !, 0)

For n = 3 we get the following tables:

1(1,3)

2(2,2)

3(3,1)

0

X

1

X

2

X

3

X

X

X*

1

2

3

(1,

(1,

(2,

1,

2,

1,

2)

1)

1)

0

X

X

1

X*

X

2

X

x*

3

X

X*

X*

So the face operators dx, d2, d3 between T(C —>• B —> A)3 = C3 © B 3 © A
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and T(C -> B - • A)2 = C 0 B2 © A act by:

di : (6i,62,63) ^ (6i + 62, M

d2 : (6i,62,63) ^ (bi,b2 + b3)

ds : {bub2,b3) ^ (61,62)

di : (c1)c2,c3) H^ (c2 + c3)

d2 : (ci,c2,c3) K-> (ci + c2)

d3 : (ci ,c2 ,c3) i-

The face operator d0 between T(C —»• 5 —>• A)3 = C 3 © 5 3 © A and

r ( C -> B -»• A)2 = C © S 2 © A acts by:

d0 : (ci, c2) c3, 61, 62, b3, a) ^ (c3, 9(cx) + b2, d(c2) + b3, d(bi) + a)

The degeneracy operators So, SI, s2 between T(C —> B —>• A)2 = C ©

5 2 © A and r ( C -»• B -»• A)3 = C3 © 5 3 © A act by:

so : (61,62) •-* (0,61,62)

s i : ( 6 i , 6 2 ) ^ ( 6 1 , 0 , 6 2 )

S3 : (61,62) ^ (61., 62,0)

s0 : (cx) »-> (0,0, ci)
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For n = 4 we get the following tables:

1(M)
2(2,3)

3(3,2)

4 (4,1)

0

X

1

X

2

X

3

X

4

X

X

X

X*

1

2

3

4

5

6

(1,

(1,

(1,

(2,

CM
"

(3,

1,

2,

3,

1,

CM
"

1,

3)

2)

1)

2)

1)

1)

0

X

X

X

1

X*

X

X

2

X

X*

X

3

X

X

X*

4

X

X

X*

X

X*

X*

So the face operators du d2, d3, d4 between T(C —> B —>

and T{C -> 5 -»• A)3 = C3 © B 3 © A act by:

d i . : (6i ,62 ,63 ,64) i-> (61 + 62,63;64)

d2 • (61, 62, 63, 64) H^ (61, 62 + 63, 64)

cfe : (61,62,63,64) t-» (&!, 62, 6 3 + 64)

d4 : (61,62,63,64) H^ (61,62,63)

di : (ci, c2, c3, c4, c5, c6) H-> (c2 + c4, c3 + c5, c6)

^2 : (ci, c2, c3, c4, c5, c6) H^ (Cl + c2, c3, c5 + c6)

4 : (ci, c2, c3, c4, c5, c6) H^ (Cl, c2 + c3, c4 + c5)

d4 : (ci, c2, c3, c4, c5, ce) ^ (ci, c2, c4)

= C6 © B4 © A

The face operator d0 between T(C -

r ( C -»• B -» A)3 = C3 © B 3 © A acts by:

A)4 = C6 © f?4 © A and

(C4, c 5 , c 6 , 63, d(c3) + 64, a).

The degeneracy operators s0, si> S2, S3 between T(C —»• -B —>• A)3

C 3 © 5 3 © A and T(C-> B-+ A)4 = C 6 © B4 © A act by:
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so : (61,62,63)

si : (61, 62,63)

s2 : (6i,62,63)

S3 : (6i,62,63)

so : (ci,c2,c3)

si : (ci,c2,c3)

52 : (c i ,c 2 , c 3 )

53 : (c i ,c 2 ) c 3 )

(0,6!, 6,, 63)

(61,0,62,63)

(61,62,0,63)

(61,62,63,0)

(0,0,0,Ci,c2)c3)

(0,ci,c2,0,0,c3)

(^,0,02,0,03,0)

(^,02,0,03,0,0)

For n — 5 we get the following tables:

1(1,5)

2(2,4)

3(3,3)

4 (4, 2)

5(5,1)

0

X

1

X

2

X

3

X

4

X

5

X

X

X

X

X*
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and
-

1 (1,1,4)

2 (1,2,3)

3 (1,3,2)

4 (1,4,1)

5 (2,1,3)

6 (2,2,2)

7(2,3,1)'

8 (3,1,2)

9 (3,2,1)

10(4,1,1)

0

X

X

X

X

1

X*

X

X

X

2

X

X*

X

X

3

X

X

X*

X

4

X

X

X

X*

5

X

X

X

X*

X

X

X*

X

X*

X*

So the face operators di,d2, d3, d4, d5 between T(C —• B

Bb@A and r ( C -» B -»• A)4 = C6 © 5 4 © A act by:

di : (h, h, h, h, h) *-+ (h + b2, h, b4, b5)

d2 : (6x, b2, h, &4, ̂ 5) ^ (&i, ^2 + 63,^4, ^5)

d3 : (b i , &2, ̂ 3 , 64, ̂ 5) ^ (&ii ^2, ̂ 3 + 64> ̂ 5)

d 4 : (&x, &2, &3, ̂ >4, b5) •-»• (61, 62 , 63, 64 + 65)

d 5 : (&x, h, b3, 64, 65) H-> (6x, &2, 635 ̂ 4)

d\ : (ex, c2, c3 , c4 , c5, c6, c7, c8, c9, c10)

rf2 : (ex, c2, c3 , c4 , c5 , c6, c7, c8, c9,

d3 : (ex, c2, c3, c4, c5 , c6, c7, c8, c9,

^4 : (ex, c2, c3 , c4 , c5, c6, c7, c8, c9,

d$ : (ex, c2 , c3, c4 , c5 , c6, c7, c8 , c9,

A)5 = C10

(C2 + C5,C3 +C 6 ,C 4+,C7,C 8 ,C9,C 1 0 )

(cX + C2, C3, C4, C6 + C8, C7 + Cg, Cio)

(ex, c2 + c3, c4, c5 + c6, c7, c9 + c10)

(ex, c2, c3 + c4, c5, c6 + c7, c8 + Cg)

(ex, c2, c3, c5, c6, c8)

We know that T(C •->• B -»• A)5 = (C10 © S 5 © A) and also

that T(C -+ 5 -» A)4 = (C6 © 5 4 © A). The face operator d0 be-

tween T(C —> 5 -^ A)5 and T(C -* B —> A)4 acts by: sending
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the element (cl5 c2, c3, c±, c5, c6, c7, c8, eg, c10, h,b2,b3,b4,b5, a) to the element

(c5, c6, c7, c8, c9, c10, ̂ (c!) + 62, <9(c2) + 63, d(c3) + 64, <9(c4) + 65,9(6i) + a)

The degeneracy operators so, Si, s2, S3, S4 between F(C —> 5 —> A)4 =

C 6 © B 4 e i and r ( C -> 5 -*• A)5 = Cw © 5 5 © A act by:

so : {61, b2, h, b4) i-* (0, 61, 62, 63, 64)

s i : (61, ̂ 2, 63, 64) •-* (61, 0, 62, 63, 64)

s 2 : (61, b2, b3, 64) 1-* Ox, 6 2 ,0 , 63, 64)

s 3 : (61, 62, ̂ 3, h) >-> (61, 62, 63, 0, 64)

s 4 : (&i, &2, 63, 64) ^ (&i, &2, 63, 64, 0)

50 : (ci, c2 , c3 , c4 , c5 , c6) H^ (0, 0, 0, 0, cx , c2 , c3 , c4 , c5 , c6)

51 : (c i ,C2,c 3 , c 4 ,C5,c 6 ) H-> (0, c 1 , c 2 , c 3 , 0 , 0 , 0 , c 4 , c 5 , c 6 )

s 2 : (cx , c2 , c3 , c4 , c5 , c6) H-> (c i , 0, c2 , c3 , 0, c4 , c5 , 0, 0, c6)

53 : (ci, c2 , c3 , c4 , c5 , c6) •-»• ( d , c2 , 0, c3 , c 4 , 0 , c5 , 0, c6 , 0)

54 : (ci , c2 , c3 , c4 , c5 , c6) H-> (ci, c2 , c3 , 0, c4 , c 5 , 0 , c6 , 0 ,0)

1.3 Cross-effect functors

Recall a functor F : A ^> B between abelian categories is called linear

if for all pairs of objects in A, B € A we have the relation F(A © B) =

F(A) ffi F(B). For a nonlinear functor G : A —> £ , with the property

that G(0A) = Og, the theory of cross-effect functors allows us to decompose

G(A © B) into the direct sum of objects in B, and also gives us analogues

of other nice properties of linear functors. In this section I summarise some

results from the paper 'On the groups H(U, n), IF [EM] that are relevant to

my work.

For the rest of this section let G and H be commutative groups and
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/ : G —> H a function.

Definition 1.3.1. We define the composition j on Z[G], the group ring of

G, by saying it acts on elements of G as follows

T : Z[G] x Z[G] -»• Z[G] . (1.1)

(Xl, X2) i-> (xi +G X2) ~Z[G] (Xl) -Z[Gf) M (1-2)

where +G stands for addition in G and —z[G] stands for subtraction in

Z[G]. By requiring j to be distributive we define it on the whole of Z[G]

It can easily be seen that this composition j on Z[G] is associative. The

commutativity of +G means that j is also commutative.

Definition 1.3.2. (a) Extend / to Z[G] linearly i.e. as follows

Z[G] -* fl"

where mj € Z, Xj e G and call this extension / .

(b) The composition f(—j—) is called the first deviation of f and acts on

elements of G2 as follows

x [ ]

(x,y)>-+f(x+Gy)-Hf(x)-Hf(y),

the linearity of / on Z[G] and the distributativity of j means the first

deviation is linear in each variable and is distributive.

The first deviation of / is the zero function exactly when / : G —> H

is a homomorphism, so in some sense the first deviation of / measures how

close / is to being a homomorphism. The commutativity and associativity

of j mean that the first deviation of / is also commutative and associative.
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The associativity of the first deviation of / gives rise to a unique second,

third and further deviations, which will all be associative and symmetric and

linear in each variable. By induction we see that the (n — l)th deviation

/(— j . . . j —) : Z[G]n —> H acts on elements of Gn as follows

E (-ir*/fe+G...+Gl;J (1.3)

its action on the rest of Z[(7]n is given by its multilinearity.

It is easy to see that the nth deviation of a sum of functions is the sum

of their nth deviations.

Rearranging f{xjy) = f(x +G y) -H f(x) -H f(y) we get the following

equation f(x +c y) —f{xjy) +H f(x) +H f(y) and by induction we get the

following:

f(xhJ---JxJk)- (1-4)
fc=iji<-<jfc

Lemma 1.3.3. // /(0) = 0 then f(xij...jxn) = 0 whenever any of

xi,..., xn are 0.

Proof. Without loss of generality we may assume that xn = 0, then using

equation 1.3 we see:

T l - 1

E (-vn-kn*i
i<-.<jfc<n

E {-lf-k-1f(x
..-<jk<n

The first term is zero by assumption, the two double sums are the same except

k=l ji
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for a change of sign, so the sum of these two is zero. Hence f{x\ j . . . j xn) =

0. •

In an abelian category each Horn set is an abelian group. For the rest

of this section we will be applying what we have learned about deviations

to construct cross-effect functors. We let F : A —> B be a functor between

an additive category A and an abelian category B with F(0j) = Og • The

condition F(0^) = 0g is equivalent to the condition that the image of any

zero homomorphism in A under F is a zero homomorphism in B.

If we have / i , . . . , fn G Hom(A, B), then applying the definitions above

we see tha t F(fn...j fn) = E L : £ * < . . . < * ( - 1 ) B - * W * + ••• + / * ) •

The functoriality of F and the distributativity of composition in an

abelian category tells us that for- g £ Hom(5,5') and h G Hom(A',A)

we get the following relations:

F(g)F(f1j...jfn) = F(gf1j...j9fn) (1.5)

F(f1j...jfn)F(h) =

Notation 1.3.4. Let A = Ay @ . . . © An. For each non-empty set

a = {ji < ... < jk} that is a subset of { l , . . . , n } , and each j £ a

we write: Aa = ® f c e a Ak; ia for the canonical injection Aa —»• A;

pa for the canonical projection A —»• Aa; tp"1 for the map Aa —> A a ,

(oti, • • •, Oi J •-» (0, • • •, 0, a-j, 0 . . . , 0 ) .

When (5 is a subset of a we write ^ for the sum Eje/3 ̂  > m particular

we write ip{k}c f° r ̂ n e s u m ^ l + • • • + V'fc + • • • + 4>n •

For convenience when a = { 1 , . . . , n} we suppress the superscript CM on

A a , and Vj* f° r each j e a .

Because each Aa is a direct sum we get the following relations for each

a C { 1 , . . . , n) and i,j € a :
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l>f if i = j

0 Hi 4 j

fcGa

Definition 1.3.5. The nth cross-effect of F is a functor An

on objects by

(1.6)

(1.7)

(1.8)

B. It acts

For morphisms / i : A\ —> Bi,..., fn : An. —> 5 n the morphism

cr n (F ) ( / i , . . . , / n ) is defined to be the following restriction

. . - © / „ ) : c r n (F)(A 1 ; . . . , An) , . . . , £?„)

The action on morphisms is well defined because for each i G { 1 , . . . , n},

the following diagram is commutative:

where 5 = ©"=1i?t and \Xi is the map (6i , . . . , 6n) —»• (0 , . . . , 0, 6j, 0 , . . . , 0),

and hence F ( / i © . . . ffi/n)F(^1 j...jij;n) = F(fix j . . . j Vn)F{h © . . . ®/n) •

The fundamental property of cross-effect functors is the decomposition

they give of F evaluated on a direct sum, as is shown in the following theo-

rem.

T h e o r e m 1.3.6. For each subset a ~ {j\ < ... < j\a\} of { 1 , . . . , n } write

{Aj, j 6 a) for the tuple {Ah,..., Ajla}).
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(a) The restriction

F{ia) : crwCFXAj, j € a) -> F(A, © . . . © An)

/ias kernel zero and image F(t/;j1j...jipjM)F(A); the inverse of this

map is the map induced by F(pa).

(b) The image of the direct sum A under the functor F can be decomposed

into a direct sum by the following isomorphism

ci\a\(F)(Aj,jea)
aC{l n}

more precisely F(A) is the following direct sum

F(Al®...®An)= £P) F{ia)cv{a{F)(Aj\j ea).

Proof Since paia = idAa we see that F{pa)F{ia) = F(idAa). The following

shows that the restriction of the projection F(pa) to F(tpj1 j • • • T i>j

has image crk(F)(Aj,j G a):

T • • • T rl>ik)F(A) = F(pa)F(ia^iP
a
 T • • • T ia^kp

a)F(A)

To see the inverse of F(pa) on crk(F)(Aj,j € a) is F(ia) we apply it to

both sides of the equation:

F(ia) cTk(F)(Ajt j ea) = F(e)F{pa)F^n T .. .
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So we have shown part (a).

We now show part (b) by showing that for every pair of sub-

sets a = {ii,..., ik} , P = {ji • • • ,ji} of { 1 , . . . , n} the composition

F{Ai T • • • T Ak)F{iPh T • • • T V'ii) is zero if a y /3, and is F(V^ j • • • T Ak)

\{ a = (3 (i.e. we show that Ffy^ T • • • T fak) an<i F(tpjx j .. .jtpj^ are or-

thogonal).

When ft^we can, without loss of generality, say there is some element

i E /3\a. Applying equation 1.6 we see that

hij>{i}c T • • • T ̂ h^{i)c)F(^i[ T • • • T ^j[)

h T • • • T^jfc W « c W j j T • • • T^O

i T • • • T ^iJ^(^{i}cV'ii T • • • T il>{i}cil>}>).

By definition i ^ a, so by equation 1.6 one of i/j^ycipj^,... ^{^c*/^ is zero.

Hence Lemma 1.3.3 tells us that this composition is zero.

Now from equation (1.4) we see that

fc=l jl

and using part (a), which we have already shown, we.see that for any {j[ <

. . . < j't} that is a subset of { 1 , . . . , n} we get

fi T... T ty) = F(iPfi T . • • T V

j . . . y tpj')F{ipj1 j . . . j •

fc=l 3\<--<3k

' ~ ' i\ T - - - T ^ i f )
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i.e. the maps

projectors.

j . . . J ipf) form a complete set of pairwise orthogonal

•

Proposition 1.3.7. (a) Whenever any of the objects Aj for j e {1 , . . . , n}

are the zero object then cvn(F)(Ai,..., An) is also the zero object.

(b) For each permutation n in Sn, the group of permuations of n, we get

the natural isomorphism:

Proof For the first part we note that if Aj is the zero object then tpj is the

zero map. Hence by Lemma 1.3.3 the map F(ip\ j ... jipn) is the zero map,

so its image, crn(F)(Ai,..., An), must be the zero object.

Now we prove the second part. For each n G Sn we also write TT for the

ismorphism Ax © . . . @An —* A^^ ©. . .®A^[n) which acts by ( o l 5 . . . , an) >-*

(a^ ( 1) , . . . , a^(n)), and we write n^ for the map An^) © . . . © A^n) —»•

A^i) ©.. .®A%{n) that acts by (a 1 ; . . . , an) >->• (0 , . . . , 0, a ^ ) , 0 , . . . , 0). Then

for each TT G Sn the following diagram is commutative:

A + An{1) © . . . © An{n)

m /T\ A
KV • • • KB -f*-n

And so the following diagram is commutative:

F(TT)

cxn{F){A1,...,An)
F(TT)
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So F(n) induces a homomorphism between cvn(F)(Ai,... ,An) and

crn(F)(A7r(1),..., A^n)) • Because TTTT"1 = id^ we see that F(TV) is actu-

ally an isomorphism. D

Lemma 1.3.8. Suppose crn(F)(A,... ,A) = 0. Let B and C be modules.

Then for any n homomorphisms fi\A—>B we have

F(flJ...jfn) = O

and similarly for any n homomorphisms gi : C —> A

F(glT...jgn)=0

Proof. Let d be the diagonal map A —* An. The morphisms / i , . . . , / n

define a morphism / : An —> B by / ( a i , . . . , an) = / i(ai) + ' . . . + fn{
an) • For

each i 6 { l , . . . , n } let Aj : An —> An be the homomorphism which acts by

(a i , . . . , an) !-»• (0 , . . . , 0, ai, 0 , . . . , 0). Now /j = /Ajd. So we get

T - • T /n) = WAidT • • • T/And) = W ) ^ ( A i T • • • T An

but 0 = crn(F)(A, ...,>!) = F(AX T • • • T An)F(An) = 0 so F(Ai T • • • T An) =

0 hence we see the first part of the result. .

Define the map + n : An —> 'A, ( a i , . . . , an) (-»• ^ " = 1 a^. The other half

follows similarly by noting that gi,....,gn define a map g : C —• An by

p = (px®.. .©<7n)d, and that pj = ,+nXig and following through the argument

given above. D

Theorem 1.3.9. Let n be a non-negative integer. The following are equiv-

alent conditions on the functor F:

(i) the functor crn(F) is the zero functor;

(ii) for every M, M' € A and any morphisms fi, • • •, fn '• M —> M' the

morphism F(fij ... j fn) is the zero morphism;
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(in) for every M G A the object crn(F)(M,..., M) is the zero object.

Proof. The first clearly implies the third part. Given the third part we can

see the second part by using the above Lemma, taking A = M, B = M' and

/i) • • • > /n the maps between them. Given the second part we can see the

first if we take M = M' = A and / i , . . . , fn to be Vi>..., ipn . •

Definition 1.3.10. If F satisfies any of the conditions in Theorem 1.3.9 then

we say that F is a functor of degree less than n + 1. If a functor is of degree

less than n then, because of the iterative way that deviations are defined,

it is also a functor of degree less than n + 1. So every covariant functor

between A and B that sends the zero object in A to the zero object in B

has a well-defined degree. The degree of a functor is either a non-negative

integer or infinity.

Proposition 1.3.11. Let a = {ix,... ,ik} be a subset of {1 , . . . , n} . Let E

be a functor Ak —> B which is zero whenever any of its arguments is zero.

Let ga : E(Ah,..., Aik) —* F(Ai © . . . © An) be a homomorphism which is

natural when both sides are regarded as covariant functors from An to B.

Then we have the following inclusion:

gaE{Ah,..., Aik) C F(Vn T • • • T^

Proof. For each non-empty subset (5 of a and each j e a- define morphisms

Â  : Aj -> Aj by Â  = idA. if j e (5 and A? = 0 if j( £ /?. Then because ga

is natural the following diagram is commutative for each (5.

© . . . © An)

9a
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Because of this commutivity by adding in signs we get the following sum:

(3Ca

Now if /? is a proper subset of a then ^(A^,...,Affc) is zero, as one argument

is zero. If (3 = a then £'(Afi,...,Affc) is the identity as each argument is the

identity. Hence we get ga = F(iph j .. .jtpik)ga, as required. •

Corollary 1.3.12. Let E be a covariant functor between A and B. Let

h : E —• F be a natural transformation. Then the natural homorphism

h{A1 © . . . 0 An) : E(AX © ..: © An) -> F{A1 © ... © An)

induces a natural homomorphism

crn{E)(Au...,An)-*cTn(F)(Au...,An).

Proof. By definition crn(E)(A1,..., An) is a submodule of E{Ai ffi...© An).

Hence the injection of crn(E)(Ai,... ,An) into E(Ai © . . . © An) is a

natural transformation, composing this with the natural homomorphism

h(Ai@.. .@An) : E(Ai@. ..®An) —> F(Ai®.. .®An) we get a natural homo-

morphism between crn(E)(Ai,..., An) and F{AX © . . . ffi An) that satisfies

the conditions of the above Theorem. So by invoking the above Theorem we

get a natural homorphism crn{E)(Ai,..., An) —> crn(F)(yl i , . . . , An). •

The following theorem gives us a characterisation of the cross-effect func-

tors of F by their appearance in a direct sum decomposition as in Theorem

1.3.6.

Corollary 1.3.13. For each subset a = {ji < ... < j\a\} of { l , . . . , n }

write(Aj,j G a) for the tuple (A^,..., AjM), and for each a let Ea be a

covariant functor between A^ and B, which is zero when any of its argu-
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ments is zero. If we have a natural isomorphism:

h:

then the natural transformation h maps each of the Ea(Aj,j € a) isomoph-

ically to Fty^,..., ipj,,)F(Ai,..., An). Hence we get the natural isomor-

phism:

F(pa)h : Ea(Aj, j e a) -> c r w ( F ) ( ^ , j e a)

Proof. Theorem 1.3.6 and our assumptions give us the pair of direct sum

decompositions:

Ea(Ajtj ea) = F{AX ©...©An)

but Theorem 1.3.11 tells us that for each a

hEa{Ai,3 E a ) c % , . • • ,^J

so we see that for each a we have the isomorphism

h : Ea{AjJ ea)^ F(iPh,... , ^ N ) F ( A , . . . , An).

Now applying 1.3.6 (a) get the isomorphism

F(pa)h : Ea(Aj, j € a) -^ cr|a|(F)(A,-, j G a)

D
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1.4 Expressing Dold-Puppe complexes in

terms of cross-effect modules

Let A be an abelian category. Previously we have worked with the functor

F : Ch>0A —• SA, now we will discuss its inverse N : SA —> Ch>0*4. The

normalized chain complex N(X.) of a simplicial object X. in an abelian

category A is given by

with its differential defined by the alternating sum of the face maps of X.

•i=0

for all n > 0. An important application of the Dold-Kan correspondence

is the construction of Dold-Puppe complexes i.e. complexes of the form

NFT(C.) where C. is a bounded below chain complex and F : A —> B

is a functor between abelian categories (that has been extended to the cate-

gory SA in the obvious way).

In his paper 'Computing the Homology of Koszul complexes.' [K6] Kock

used cross-effect functors to give a description of the Dold-Puppe complex of

a chain complex C. = (P —> Q) of length one (i.e. Cn = 0 when n > 1) in

the category Ch>o(v4). Lemma 2.2 of [K6] proved that

NFT(P - Q)n ~ c r n (F) (P , . . . , P) © crn+1(F)(Q, P,...,P)

and gave an explicit description of the differential. The aim of this section

is to generalise this result and give a similar description of Dold-Puppe com-

plexes in terms of cross-effect functors when the original complex is longer.

It will be useful to introduce another way of denoting elements of

Sur([n], [k]), which will be more useful when dealing with the problems in
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this section.

For the rest of this section we fix the value of n to be some positive

integer.

Definition 1.4.1. Let k G {0,. . . , n } . For a surjection / G Sur([n], [k]) we

write / A for its image under the following bijective map:

Sur([n], [k]) -> {x U {n}\x C {0 ,1 , . . . , n - 1} and |x| = k}

f ^ {rnax/"1^), m a x / r ^ l ) , . . . . 1

where max is the function that gives the maximum element of a set.

The reason why n is always in fA is because the surjectivity of / means

max/~1(A;) = n. Let / G Sur([n], [k]) then /* begins with a partition of

i + 1 if and only if i G / A . We will be using this observation extensively to

apply the results in Section 1.2, reading ' i G / A ' whenever it said ' /* begins

with a partition of i + 1'.

We consider the set of sets {x U {n}|x C {0 ,1 , . . . , n — 1} and |x| = k}

to be ordered in the following manner. If x, y G {x U {n}|a; C {0 ,1 , . . . , n —

1} and |x| = k} and we write x U {n} = {xi < . . . < Xf. < n} and y U

{n} = {t/i < . . . < yk < n}, then we say that x < y in the A ordering if

(xi,..., Xfc) < (j/i,..., y^ in the lexicographic ordering described in Notation

1.1.2. It is not difficult to see that for surjections / ,g G Sur([n], [k]) we have

/ A < gA if and only if /* < g*.

Definition 1.4.2. Let a be a subset of the disjoint union II]L0 Sur([n], [k]).

We say a is an honourable index set if and only if U / e a / A = {0,. 1 , . . . , n}.

Notation 1.4.3. Let a C II]L0Sur([n], [k]). For each k G {0,...,ra}

let ctfc = a fl Sur([n], [A;]), and write ctfe = {a/cj < . . . < otk,\ak\) • For

Co, . . . , C n G A we write (Co,Qo,..., Cn^n) for the following |a|-tuple:
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Proposition 1.4.4. Let a C HJL0 Sur([n], [k]) and for each k e {0 , . . . , n}

let ak — OLC\ Sur([n], [k]) then the module cr |a | (F)(Co j a o , . . . , Cn)Q,n) is a di-

rect summand of NFT(C.)n if and only if a is honourable. In other words

NFT(C.)n ^ 0 cT\a\{F){Co,ao,...,Cn,an)
aCUJJ_0 Sur( [n], [fc]), a is honourable

Proof Using the definition of JV and F we see that

1 n - l

)

fc=0 /ieSur([n],[fc]) / i=0

Theorem 1.2.2 (a) tells us Imsj =• ©fc=o ©ue(s^)c ^fc which is a subsum of

the sum 0 £ = o 0MGSur([n],[fe]) Cfc' SO Theorem 1.3.6 tells us that F(ImSj) =

Im F(si). So we get

n - l

i=0

Expanding the numerator in terms of cross-effects we get the following for-

mula

) crN(F)(C0;ao,...,Cn,Qn),
fc=0 AteSur([n],[fe]) aCII£=oSur([n],[fc])

where afc = a n Sur([n], [fc]). Now using Theorem 1.2.2 to give us an expres-

sion for Im(si) we expand the denominator in terms of cross-effects and we

see that:

CfclM) = 0 c r N ( F ) ( C o , a o , . . . ,Cn,aJ,
=0 /i6Sur([n],[fe])\Sf a

where the last sum ranges over all subsets a C II£_0Sur([n], [A;]) where

i £ U / e a / A . Prom this we see that cr|a | (F)(Co,ao , . . . , CniQn) is not a direct

summand of Im F(si) if and only if i G U / e a / A . A module is a direct sum-
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mand of NFT(C.)n if and only if it is not a direct summand of Y^=o ^m F(si)

and hence we see the desired result. . • •

Definition 1.4.5. Let a C II£=0Sur([n], [k]) and let a be honourable. We

say that / € a is superfluous in a (or when context is obvious just superflu-

ous) if- a \ {/} is also honourable. We 'say that a is a minimal honourable

set (or often just minimal) if it contains no superfluous surjections.

I f a C j S C IIjJ=0Sur([n],[fc]) then U / 6 a / A C U / e / 3 / A and hence if a

is honourable then /3 is also honourable. Because of this if we know all the

minimal honourable sets that are a subset of IIJLQ Sur([n], [k]) then it is easy

to find all the honourable sets that are subsets of IIjJ=0 Sur([n], [k]).

Proposition 1.4.6. (a) Let a C II£_0Sur([n], [k]) and let a be honourable.

For each k G {0 , . . . , n} define otk = a C\ Sur([n], [k]). Then we have the

inequality X^^o^l0^! — n-

(b) Conversely let (a0,..., an) G Non+1 with a^ < (^) for each k €

{0 , . . . , n} . Then if X̂ fe=o ^flfc — n then there is some honourable in-

dex set a C Ufc=0 Sur([n], [fc]) with ak = \a D Sur([n], [A;])|.

Note in part (b) the condition requiring ak < Q) is there because

|Sur([n] ,[A:]) |=C).

Proof. Firstly we prove part (a). We know a is honourable, so by definition

Hence we also have U£=o U/GQ/c ( / A \ {n}) = { 0 , 1 , . . . , n - 1} , and so

fc=0 feak

Now if / e Sur([n],[A;]) then / A \ {n} is a subset of {0,..-. , n - 1} of

cardinality k and hence we see our result.
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Now we need to prove part (b). Because |{0 , . . . , n — 1}| = n < Y^i=o ^ai

we can cover the set {0 , . . . , n — 1} using: ai sets of cadinality 1, a% sets of

cardinality 2, . . . , an_i sets of cardinality n — 1 and an sets of cardinality

n. Take such a covering ft and define a := {/ G II£_0Sur([n], [A;]) : / A =

5 U {n} for some g & @}, then a is an honourable set. •

Corollary 1.4.7. Let C. be a chain complex of length I and F a functor

of degree d. The length of the Dold-Puppe complex NFT(C.) is less than or

equal to Id, equality is achieved if crd(F)(Ci,..., Ci) is not the zero module.

Proof. Lemma 1.4.4 tells us that

NFT{C.)n ^ Q 3 cr,Q|(F)(C0,aoo • • •, Cn ,aJ,
a:ClI^=0Sur([Ti],[fc]),a is honourable

if |a| > d then cr|Q,](F)(COjao,..., CnjQ;n) vanishes. Also the properties of

cross-effects tell us if any of the modules are zero then cross-effect modules

involving them will also vanish, in particular any which involve any copies

of Ci> where V > I vanish. So the only non-zero cross-effect modules in

NFT(C.)n are those which correspond'to subsets of IIJ^Q ' Sur([n], [k])

that are honourable and of cardinality d or less.

Proposition 1.4.6 (a) tells us that if a C IIjJ=0Sur([n], [k]), a is hon-

ourable, and if for each k 6 {0 , . . . , n) we write a^ for a D Sur([n], [k]),

then we have the inequality X̂ fc=o \ak\k > n. On the other hand we have

min{n,(} min{k,l} min{k,l}

/_\ \osk\k < 2_] \ak\ min{n, 1} — min{n, 1} 2_] \ak\ = min{n, l}\a\.
fc=0 fc=0 fc=0

So if \a\ < d then E™ioW } \<*k\k < dmm{n,l}. So if n > Id then there

can't be any honourable sets in II^LQ Sur([n], [A;]). So for n > Id we get

NFT(C.)n = 0

To prove equality is achieved if cid(F)(Ci, ...,C{) is not the zero module,

we set n = dl, a\ — d and a^ = 0 if k ^ I. Proposition 1.4.6 (b) tells us

that there is some honourable set a C II£_0Sur([n], [k]) with a^ = \a U
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Sur([n], [k])\ for each k G {0, . . . , n } , this condition on \a U Sur([n], [k])\

tells us that a C Sur([n], [I]). So crN(F)(C0,Qo, • • •, Cn>an) = cr|d |(F)(Q,Qi),

this is non-zero by assumption and non-degerate in NFT(C.)n because of

our choice of a. , •

Honourable index sets are fairly abstract objects, we will now introduce a

way of representing them pictorially in the hope of making the combinatorial

conditions more digestible. We associate a C II/?=0 Sur([n], [k]) to-a table

with n columns. The headings of the columns are 0 , 1 , . . . , n — 1. Each row

will represent one of the surjections in a; if / is in a the row in the table

representing / will contain a mark in the column headed by i whenever

iefA.

Let aA = {{1, 3}, {2, 3}, {0,1, 2, 3}} . We could choose to represent a by

0 1

where the first row represents the set {1,3}, the second row represents the

set {2, 3} and the final row represents the set {0,1, 2, 3} . But we could also

represent a by any of the following tables:

0 1 0 1

However it would be nice if there were a unique table to represent any given

index set. To give this unique representation we require the rows to have a

particular order.

Definition 1.4.8. (a) For each i G { l , . . . , m } let T{ be a subset of
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{ 0 , 1 , . . . , n — 1} with Ti ^ T? whenever i ^ i', then we call the

ordered set T = (Ti , . . . ,T m ) a (formal) table with n columns. For

i £ { l , . . . , m } we say that Ti is the ith row of T. Associated with

this formal table we draw a table with n columns (with headings

0 , 1 , . . . ,n — 1) which has a mark in the (i,j)th cell of the diagram if

j — 1 € Ti (it is j — 1 because the first column is headed by 0)..

(b) If a C H£=o Sur([n], [k]) and {Tx U {n}, . . . . , Tm U {n}} = aA then we

say that the table (Ti , . . . ,Tm) represents a.

(c) Let T = (Ti , . . . , Tm) be a formal table and let i, j € { 1 , . . . ,m} . If

whenever i < j we have either |Tj| > |T,| or T{ U {n} < Tj U {n} (in

the A ordering) then we say that the table T is in normal form.

It ' is easy to see that every table represents some index set a C

IIjL0Sur([n], [k]), moreover for any index set we can easily form a formal

table that represents it as by putting some ordering on the set {/A \ {n} :

f £ a} . We can then reorder the rows of the formal table so that they satisfy

the conditions of being in normal form. Hence we see that for each index set

there is a unique table in normal form that represents it.

Given an arbitrary honourable index set it is not always obvious whether

it is a minimal honourable index set. We are now interested in determining

which tables represent minimal honourable index sets and which don't.

Lemma 1.4.9. Honourable index sets correspond to tables with an entry in

each column.

Proof If (Ti , . . . ,Tm) has an entry in each column, then this is the same as

saying for each i G {0 , . . . , n — 1} there is some row in T containing i. This

means U^0Tj = {0 , . . . , n - 1} , and hence U™ 0(Ti U {n}) = {0,...,n}. D

Let T = (Ti , . . . ,T m ) be a formal table and Tj be one of its rows. If

U^o i^jTi = U^0Tj then the surjection that Tj represents is superfluous in

the index set that T represents; because of this when we have this situation

we say that Tj is superfluous in T.
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We now describe an algorithm that checks whether a table has any su-

perfluous rows.

This algorithm works by using two different kinds of mark when we draw

the table of (Ti,.. . , Tm). As before if i G Tr then we put a mark in the

(r,i — l)th cell of the diagram, but here that cell will either contain a \

mark or a x mark. The rows of the diagram will be constructed one by one.

When putting a new mark in the diagram the \ mark will be used in a cell

when the column it is in has no other marks in it (yet), otherwise a x mark

will be used. If a x mark is put in the diagram then any \ marks in that

same column will be changed to x marks.

If the only marks in a row are x marks (i.e. there are no \ marks) then

that means' that each of the columns it has entries in also have entries in

other rows, i.e. the row with only x marks in it is superfluous.

The program Super (below) should be given a formal table (T\,. . . , Tm)

and a value for n. If the table contains no superfluous rows it will return 0,

otherwise it will return some value % G { 1 , . . . , m) such that T^ is superfluous.

Example 1.4.10. The following examples shows how the algorithm Super
works with different inputs. The diagrams show the different states of the

table at different stages in the running time of the program.

(a) Input: n = 4, T = ({0,1}, {0, 3}, {0}).

0 0

X

X

1

\

2 0

x

x

x

The algorithm terminates after the last table and returns the value 3,

because the third row consists wholly of x marks.
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Algorithm 1 Super: Check (Ti,. . . ,Tm) contains no superfluous rows
1: for r = 1 to m do
2: for all i € Tr do
3: S * - 0
4: repeat
5: S *- S + 1
6: until i E Ts or s = r
7: if s — r then
8: Put a \ mark in the ith column of the rth row
9: else if i e Ts then

10: Put an x mark in the ith column of the sth row and also in the
ith column of the rth row

11: if row s of the table consists wholly of x s then
12: return s
13: end algorithm
14: end if
15: end if
16: end for
17: if row r of the table consists wholly of x s then
18: return r
19: end algorithm
20: e n d if
21: e n d for
22: return 0



CHAPTER 1. Dold-Puppe complexes 46

(b) Input: n = 4,T=({0,l},{l,2},{2,3}).

1

X

X

2 1

X

X

2

X

X

The program stops there (midway through constructing the third row)

and returns 2.

(c) Input: n = 4,T=({0,l ,2},{l,3}).

0 1

x

x

The program returns 0.

We now describe an algorithm designed to work out all of the tables in

normal form that represent a minimal honourable index set.

This algorithm will use two procedures Increment and Complete that

we consider to be simple enough to only describe what they do without

detailing their workings. Increment will take a set / C {0,... ,n — 1} as

input and returns a set O C {0,.. . , n — 1} as output. If / U {n} is not the

largest element of {x U {n} : x C {0,... ,n — 1} and |x| = |/|} under the
A ordering then O U {n} will be the element directly after / U {n} in the
A ordering, otherwise O U {n} will be {0,. . . , |/ | — 2, n} (i.e. the smallest

element of {x U {n} : x C {0,.. . , n — 1} and \x\ = \I\ — 1} under the A

ordering). Complete will take a table as its input, it will return the value

TRUE if the table has a mark in each column, otherwise it will return the

value FALSE.

This program will take two positive integers as input / and n where

I < n. It will produce all tables with n columns whose rows each have at

most / marks in them, that correspond to minimal honourable index sets.
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The main object in this algorithm is a formal table (7\ , . . . ,Tr) that is

in normal form. As the algorithm progresses all tables of interest will be

constructed by gradually making changes to this table. The changes will

either be adjoining new sets to the table or by modifying the existing rows.

It will return as output any table which represents a minimal honourable set.

At first this table will have just one row in it, and as we work through the

algorithm new rows will be adjoined to this table one by one in such a way

that this table is always a table in normal form and never contains superfluous

rows. We ensure that it is always in normal form by making sure that the

row added to the table, say Tr+i, will either satisfy Tr U {n} < Tr+i U {n}

in the A ordering or \Tr\ > \Tr+i\. We use the algorithm Super to ensure

that whenever we add a row to the table it does not cause the new table to

have superfluous rows. If adding a particular row to the table would cause

the table to contain superfluous rows then we try adjoining a different row,

again we test using the algorithm Super and if that row doesn't work we

keep trying new rows and testing with Super until we find an appropriate

row (if it turns out that the only appropriate row is the empty set then we

replace Tr with a different row, see below).

We use the algorithm Complete to determine whether the table repre-

sents an honourable set (the set will also be minimal, because as mentioned

above we ensure the table has no superfluous rows) and if it does then the

table is returned as part of the output of the program.

When (Ti,... ,Tr) represents a minimal honourable set (or when in our

attempts to adjoin a new row to the table we find that the only suitable

row is the empty set) we stop adjoining new rows and instead replace Tr

with a different row. We change the final row Tr to, say Tr', so that either

Tr U {n.} < T'r U {n} or \Tr\ > |Tr'| and also ensuring that the new table has

no superfluous rows. If the only row that we could choose T'r to be is the

empty set then we remove Tr from the table and try to replace Tr_i with an

appropriate row, if the only row we could choose Tr_i is the empty set then

we remove Tr_i from the table and try to replace Tr_2 with an appropriate
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row, etc, etc. If we are ever in the position where we will have to change T\

to the empty set then the algorithm ends.

Algorithm 2 Find min Find all tables with n -columns which correspond
to a minimal honourable index set

1: r <— 1
2: Ti <— {0,. . . , / - 1}
3: repeat
4: if Gomplete(7i , . . . , Tr) = TRUE then
5: return (Ti,. . . ,-Tr)
6: repeat
7: if Increment(Tr) = 0 then
8: r <- r - 1
9: end if

10: Tr <— Increment (Tr)
11: until Super (Ti , . . . , Tr) = 0
12: else if C o m p l e t e ^ , . . . , Tr) = FALSE then
13: if Increment^) ^ 0 then
14: r <- r + 1
15: Tr <-Increment(Tr_i)
16: else if Increment(Tr) = 0 then
17: r <— r - 1
18: Tr <- Increment ( T - r)
19: end if
20: whi l e S u p e r ( T i , . . . , Tr) > 0 do
21: if Increment(T r ) = 0 t h e n
22: r <— r — 1
23: e n d if
24: Tr <— Increment (7;)
25: end while
26: e n d if
27: unti l r = 1 and Increment (1\) = 0

Example 1.4.il. The following example shows how F i n d m i n works when

given the input n = 3 and I — 3 . The diagrams show the different states of

the table at different stages in the running time of the program. Note tha t

if F ind m i n was instead given the input n = 3 and Z = 2. or the input

n = 3 and 1 = 1, the first table it would produce would be the second or

seventeenth (respectively) of the following tables, then it would continue in
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the exactly the same way.

0

x

x

2

x

X

0 1

0 1

0

x

X

0

X

X

0

X

X

0

X

X

0

0 1 2

x
X

2

x

X

End

The 1st, 3rd,4th, 7th,9th, 11 th, 14th and 19tfc tables are all outputted.

If Find min is given input n = n and I = 1 then it will output only
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one table:
0 1 . . . n-1

This means the only minimal honourable subset of Sur([n], [1]) USurQn], [0])

is Sur([n], [1]). So the honourable subsets of Sur([n], [1]) U Sur([n], [0]) are

Sur([n], [1]) and Sur([n], [1]) USur([n], [0]). So if B -+ A is a chain complex,

and recalling that F(B -> A)n = Bn@.A, this means that NFT(B —> A)n =

cin(F)(B,..., B) © c r n + i ( F ) ( S , . . . , B, A). This recovers the description of

each part of the chain complex NFT(B —»• A) given in Lemma 2.2 of [K6].

1.5 The Dold-Puppe complex iVSym2r(C ->

B-> A)

The results from the previous sections can be used to calculate the Dold-

Puppe complex of a chain complex of arbitrary length for any functor which

we know the various cross-effects of. To illustrate this we now give an example

calculation.

Let R be a commutative ring and let A be i?-mod the category of

modules over this ring. Let Sym2 : A —>• A be the second symmetric power

functor. Let C —»• B —> A be a chain complex sitting in degrees 0, 1 and 2

with differential d. We will denote the differential of JVSym2r(C -»• B -*

A) by. A.

The functor Sym2 is of degree two (and cr2(Sym2)(C, C) -^ 0) so Theo-

rem 1.4.7 says that JVSym2 T(C -> B -»• A) will be of length 2 x 2 = 4.

To work out what each place of iVSym2r(C —> B —* A) looks like we

need to find all the minimal honourable sets in U^=0Sur([n][fc]) for each

value of n e { 1 , . . . , 4} . To do this we use Find min.



CHAPTER 1. Dold-Puppe complexes 51

With input n = 1,1 = 1 (we set Z to be 1 here since Find min does not

accept values of I larger than n) Find min gives us the following output:

0

With input n = 2,1 = 2 Find min gives us the following output:

0 1 0 1

With input n = 3,1 = 2 Find min gives us the following output (as

seen before in Example 1.4.11):

0

X

X

1

\

2

V

0

\

l

X

X

2

\

0

\

.1

\

2

\

0

\

1

\

2

x

X

0 1 2 0 1 2 0 1 2

With input n = 4,1 = 2 Find min gives us the following output:

0
X

X

X

1

\

2

\

3 0

X

X

\

1

\

2

\

3 0

X

X

\

1

\

2

\

3 0

\

\

1

X

X

X

2

\
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1

X

X

2

\

3 0

\

\

1

X

X

2

\

3 0

\

\

1

\

2

\

3 0

\

\

1

\

2

\

0

X

X

1

\

2

\

3 0

\

\

1

\

2

X

X

X

3 0

\

\

1

\

2

X

X

3 0

\

\

1

\

2

\

1

\

2

X

X

3 0

\

\

1

\

2

\

3 0

\

\

1

\

2

\

3 0

\ \

1

\

2

\

0 1 3 ,

x

x
X

1

\

2

\

3 0

x \

X

1

\

2

\

3 0

x \
X

1

\

2

\

3 0

\

\

1

X

X

2

\

1

\

2

X

X

3 0

\ \

1

\

2

\

3 0

\ \

1

\

2

\

3 0

X

x \

1

\

2

\ X

The functor Sym2 is of degree 2, i.e. anything past the second cross-

effect of it vanishes, so we are only interested in cross-effect modules with 2
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or less modules as arguments. Hence we are only interested in tables with

2 or fewer rows. So now we discard all tables with with more than 2 rows.

For n = 1 or 2 we keep all the tables. For n = 3 we discard only the last

table. For n = 4 we are left with the following 3 tables:

0 1 0 1 0

From these minimal honorable index sets we now find all of the hon-

ourable index sets. We do this by finding all subsets of II£_0Sur([n], [k])

that have some minimal honourable set as a subset. As explained above we

are only interested in honourable sets with 2 or fewer elements so for n = 3

or 4 we already have all the honourable sets that are relevant.

From the tables for n = 1 we see that the only minimal index set is the set

represented by the table ({0}). The only other subset of II^_0Sur([n], [k])

that contains this is as a subset is represented by the table ({0}, 0).

From the tables for n = 2 we see that the minimal index sets are repre-

sented by the tables ({0,1}) and ({0}, {1}). Obviously there are no sets of

cardinality 2 or less that contain the latter as a proper subset. The subsets

of II|_0Sur([n], [k]) that contains the former as a subset are represented by

the tables ({0,1},0),({0,1},{0}),({0,1},{1}).

Applying Lemma 1.4.4, and again indexing in terms of ordinals rather

than sets, we see that:

N Sym2 T(C -* B -> A)o = Sym2 A

N Sym2 T(C -> B -> A)x = Sym2 Bi®B1®A
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JVSym2 T(C -> B ^ A)2 = Sym2 d © Ci <8> S i © Ci <8) S 2

© Gi ® A © Si <8> S 2

N Sym2 T{C-*B-^ A)3 =CX <g> C2 © d <8> C3 © Cx <8> £ 3

© C2 <8> C3 © C2 ® B2 © C3 ® 5

JVSym2 T(C -* B -+ A)A = C i (8) C6 © C2 ® C5 © C3 <g> C4

Now we show how the differential A = I X ^ - l ) * ^ of NFT(C —• B ->

A) acts on each of the direct summands of each part NFT(C —> S —• A).

We use the face maps we calculated for T(C —> B —• A) in Example 1.2.3

then use the theory of cross-effects described in Section 1.3 to see how they

act on each cross-effect module in each degree of NFT(C —*• B —> A).

In the following + 2 acts on the tensor square of a module M by + 2 :

M <8> M —>• S y m 2 M, mi <g> m2 i—> m1m2 .

The action of A on each summand of N Sym2 T(C —->• S —> A)4 is as

follows.

The face map rfi acts on the Ci as the zero map, so it acts on C\ ® CQ

as the zero map. Similarly since d3 and 0J4 acts on C$ as the zero map they

both act on C\ ® CQ as the zero map. In future any parts of d that act as

the zero map will be suppressed.
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C2 <8> C 5

=9® idc

The action of A on each summand of iVSym2r(C

follows.

A)3 is as



CHAPTER 1. Dold-Puppe complexes 56

do=c Bx <g> B2

Sym2 Cx

do=d<S,idc

C2 <8) C 3 -*• B2

Sym2d
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The action of A on each summand of N Sym2 T(C —> B —> A)2 is as

follows.

c 2 „
Sym C

do=Sym2(d)
2

*• Sym Bx

2

> Sym2

A A
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The action of A on each summand of NSym.2T(C —> B —• A)y is as

follows.

o 2 r> do=Sym2(3) 2

Synr S x : >• Synr A

Si <8> A ^ Sym2 A

Note were we now to calculate the Dold-Puppe complex NFT(C —> 5 —*

A) for a different functor of degree 2 practically all of the above calculation

could be reused unchanged. In the description of each part of the complex

NFT(C —> B —> A) the cross-effect modules would be different, because

the cross-effect functors would be different, but the arguments they take

would be the same. Similarly the action of the face operators on the cross-

effect modules would be different, because the cross-effect modules would be

different, but the actual face operators would be the same.



Chapter 2

Calculation of the derived

functors of the third symmetric

power functor

2.1 Spectral sequences

In this section we recall a couple of spectral sequences taken from section 5

of [W]. We will not be dealing with spectral sequences in any depth, only

applying some results to aid calculations in later sections.

Definition 2.1.1. Let a be an integer. A homology spectral sequence (start-

ing with Ea) in an abelian category A consists of the following data:

1. a family {Er
pq\ of objects of A defined for all integers p, q and r > a;

2. maps d^ : ET
p —> EL*_r +r_1 that are differentials in the sense that

drodr = 0, so that the 'lines of slope — (r + l ) / r ' in the lattice El^ form

chain complexes (we say the differentials go 'to the left');

3. isomorphisms between Ep^1 and the homology of El^ at the spot ET
vq:

59
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Note that E**1 is a subquotient of Epq. The total degree of the term

Epq is n = p + q; the terms of total degree n lie on a line of slope —1, and

each differential dr
p decreases the total degree by one.

There is a category of homology spectral sequences; a morphism f : E' —>

E is a family of maps fpq : E'p
r
q —> Epq is A (for suitably large r ) with

dr fr = frdr such that each /£+1 is the map induced by fpq on homology.

Definition 2.1.2. A homology spectral sequence {Epq}r>a is said to be

bounded if for each n there are only finitely many nonzero terms of total

degree n in ££„. If so, then for each p and g there is an ro such that

Er
pq = E^1 for all r>r0. We write £~g for the stable value of Er

ppq = E^ for all r>r0. We write £ g for the stable value of Epq.

We say that a bounded spectral sequence converges to H* if we are given

a family of objects Hn of A, each having a finite filtration

0 = FsHn C . . . C F p _!# n C F p # n C Fp+1Hn C . . . C F t F n = fl"n

and we are given isomorphisms E1^ = FpHp+q/Fp-iHp+q. The traditional

symbolic way of describing such a bounded convergence is like this:

Lemma 2.1.3. Let {Epq}r>a and {E'p
r
q}r>ai be spectral sequences that con-

verge to H* and H'^. Let g : H* —•»• HI be a morphism compatible with the

filtrations. Let f : {Epq}r>a —> {-E^q}r>a' ^e a morphism of spectral se-

quences such that for some fixed r, fpq: Epq = Epq is an isomorphism for

all p and q. And finally let f and g be compatible with the isomorphisms

between the successive quotients of the filtrations and the E°° terms. Then

for all s > r we have fpq : Epq = Epq and all p and q and Hi = H[ for

every i .

Proof. This is a consequence of the 5-Lemma. •

Let R be a commutative ring.
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Definition 2.1.4. Let A* be a bounded below chain complex consisting

only of projective i?-modules. For an R-module B we define the Hypertor

functor Tor (A*, B) by

If instead 5* is a bounded below chain complex consisting only of projective

modules we define the Hypertor functor Tor (A*, B*) by

Note: We use these more restricted and simpler definitions rather than

the more general definition given on ppl48-149 of [W] to avoid the necessity

of introducing Cartan-Eilenberg resolutions. Our definition of Tor matches

that of [W] (for the modules and chain complexes we have defined it for)

because of the last spectral sequence given in Exercise 5.7.5 on page 149 of

[W].

Proposition 2.1.5. Let A* be a bounded below chain complex consisting

only of projective R-modules. For an R-module B we have the following

spectral sequence:

nE2
p>g = Tovp(Hq(A), B) =* Tor(A,, B).

If B* is instead an R-chain complex, we have the following spectral sequence

11EL- 0 Torp(Hq,(A*),Hq,,(B*)) ^Tov(A*,B*).
q=q'+q"

Proof See Exercise 5.7.5 of [W]. " •

Corollary 2.1.6. Let A*,^,^?* and B'^ be bounded chain complexes, con-

sisting only of projective R -modules, with A* quasi-isomorphic to A'*, and

B* quasi-isomorphic to B'^, then Tot (A* ® B*) is quasi-isomorphic to
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Proof. Proposition 2.1.5 gives us spectrahsequences for Tot(A* ® -B*) and

Tot(A'^ (g) Bl) in terms of the homologies of A*,A'*,B* and B^. The

quasi-isomorphisms between A* and A'+, and between 5* and B^ give

us a morphism between the double complexes that give rise to the hy-

pertor spectral sequences for Tor(A»,I?*) and Tor(A*,.B*) and also be-

tween their respective homologies that is compatible with their nitrations.

We know that the second sheet of these spectral sequences is given by
nEpq = ®g=g ,+? , , Torp(iJq ' (A),iJ?»(£*)), so the morphism between the

spectral sequences is an isomorphism between the E2 -sheets therefore, by

Lemma 2.1.3, it is also an isomorphism between all the higher sheets and also

the homology. Hence Tot(A*®B*) is'quasi-isomorphic to Tot(A' t®5^). •

2.2 Koszul complexes

In this section we introduce Koszul complexes, which are very useful for con-

structing projective resolutions, and in the construction of Schur functors of

hook type in section 2.3. We also recall some results regarding the homology

of complexes related to Koszul complexes which will be useful in the last

section of this chapter.

Let R be a commutative ring, xi,X2, • • • ,xn be elements of R, and I be

the ideal generated by x\, x 2 , . . . , xn.

Definit ion 2 .2 .1 . We say that x\, X2,...,xn are a regular sequence in R,

if R ^ (x i , . . . , xn)R and, for each i G { 1 , . . . n } , the element Xj is not a

zero divisor in R/(x\,..., Xj_i)i2.

Proposition 2.2.2. If R is a Noetherian local ring, and x 1 ; . . . ,xn are in

the maximal ideal of R then the following are equivalent:

(a) .Xi, . . . , xn form a regular sequence in R;

(b) the homomorphism of R/1 -algebras a : R/I[Xi,... ,Xn] —»•

given by a(Xi) = Xi -\- I2 is an isomorphism, where gri(R) denotes

the graded ring of R with respect to the ideal I.
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Proof. See page 154 of [EK] Corollary 5.13. •

Definition 2.2.3. For i G {1 , . . . , n} let the Koszul complex KOS(XJ) be the

following complex (concentrated in degrees 1 and 0)

And let the Koszul complex Kos^i , x2,.... ,xn) be the total complex:

Tot(Kos(xi) <g)... <g> Kos(xn)).

The degree k part of the complex Kos(xi, X2, • • •, xn), which we denote by

Kosfc(xi, X2,..., xn), is isomorphic to AkRn , and we consider the elements

{eix A . . . A eik\l < i\ < ... < ik < n) to be a basis for Kosfc(x1, x2, •. •, xn)

and .for k € { 1 , . . . , n} we define the differential dk : Kosfc(xi, x2, • • •, xn) —*•

Kosfc-^Xi, x2, • • •, xn) to act by

e h A . . . A e i k ̂  E ^ 1 ( - l ) p - 1 x p e i l A . . . A eip A . . . A e i k .

Proposition 2.2.4. / / x i , . . . , x n is a regular sequence then the complex

Kos(xr, x 2 , . . . , xn) forms an R-projective resolution of R/I.

Proof. See pp 113-114 of [W] Corollary 4.5.4 and 4.5.5. •

Proposition 2.2.5. / / R is a Noetherian ring, I an ideal of R which is

locally generated by a regular sequence and m be an integer greater than 1 .

Then for P.(R/I), a projective resolution of R/I, we have the following

isomorphism

and in particular we have

Proof. First we assume that / is globally generated by a regular sequence
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xi,... ,xn. Our choice of projective resolution will not affect the homology

as two different resolutions will be quasi-isomorphic so by Corollary 2.1.6 the

homologies of the total complexes will also be quasi-isomorphic.

Clearly we have

Hk(P.(R/I)®m) = H

by the first spectral sequence in Proposition 2.1.5 we have

Hk{P.(R/I)®{m-1] <g> P.(R/I)) = Hk(P.(R/7)®(m-x) <g> R/I).

If m = 2 this coincides with the definition of Tor^(R/I, R/I) and we cal-

culate this value of Tor by calculating the homology of this complex.

By Proposition 2.2.4 we may take Kos(zi , . . . ,xn) as our resolution of

R/I. The kth place of the Koszul complex Kos(xi, x2, • • •, xn) is Ak(Rn),

so the kth place of Kos(£i, x2, • •., xn)®^m-1' is equal to

So

^m-l) O R/I) - Totfc(Kos(xi, x2,..., xX^-^ <8> R/I)

The differential of the total complex Totfc(Kos(xi, x2,..., a;,,)®^-1) <g> i?/7)

is the sum of the m — 1 maps, each of which reduces one of the m—1 indices

by 1 and leaves all the other m — 2 indices unchanged; on the components

whose indices are unchanged these maps act as the identity; on the remaining

component these maps acts by e^ A . . . A eik >—> 'Epl
=zl( — l)p~1xpei1 A . . . A
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eip A ... A eik , but this is just the zero map since xp E I for each p . So each

component of the differential is the zero map, and hence the differential is

itself the zero map. Therefore

Hk(Kos(x1,x2,..:,xn)'*
m-»®R/I)

but this is just the canonical decomposition

® Afel (R/I)n <g>... ® A*—1 (R/I)n = A1 ((R/I)n © . . . © (R/I)n).

where the sum ranges over all fci,..., fcm_i € {0 , . . . , n} such that E™^1^ =

We have an isomorphism a : (R/I)n —> I/I2, which is the compo-

sition of two isomorphisms, the first being the isomorphism (R/I)n —>

R/I[XU . . . , X n ] / (X i , . . . , Xn)
2, a ^ Xi + (Xi + . . . X n ) 2 and the second

being R/I[X{,..'., Xn]/(XU ..., Xn)
2 r-> / / / 2 , X, i-» x* + I2 (as in Lemma

2.2.2). So we get the isomorphism

and hence we get finally get the desired isomorphism

H k ( P . { R / I ) ® m ) = A ^ 2 1

We now need to show that this isomorphism does not depend on the choice

of regular sequence xi,...,xn. Let yi,. • • ,yn be another regular sequence

which generates I. For appropriate fjti G R we have Xj = Tufj^yi. The

matrix (fjti) defines a homomorphism F : Rn —»• i?" such that the following
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}
diagram commutes:

This homomorphism F : Rn -* Rn induces a map of complexes Kos(F) :

Kos(xi, X2, • • ., xn) —»• Kos(yi, . . . , ?/„) which extends the identity map on

R/I. Tensoring Kos(yi, ...,?/„) and Kos(xi, x2 , . • •, xn) by i?/7 we get

homomorphisms Ak(F) : Ak((R/I)n) -» Ak((R/I)n) for A; > 0 such that the

following diagrams commute:

Ak({R/I)n) AHbh > Afe(7//2)

Ak{(R/I)n) AHa) > Ak(I/P).

This in turn can be extended to a homorriorphism of the tensor powers of

the Koszul complexes.

Therefore the isomorphism constructed above does not depend on the

choice of regular sequence generating / . If / is only generated locally by a

regular sequence we can therefore glue the local isomorphisms constructed

to get the wanted global isomorphism. •

Lemma 2.2.6. Let P be a free R-module. Then the dual of the kth exterior

power of the dual of P is canonically isomorphic to the kth exterior power

of P, i.e.

(Ak{P*))* = Ak(P).

Proof. Let Sk denote the group of permuations on k elements. Let

{e i , . . . , en} be a basis for P, and let {e^, . . . , e*} be the corresponding dual

basis. The module Al(P*) consists of sums of elements of the form / iA. . .Afk

with each ft G P*. We can take {e*x A . . . A e*Jl < i\ < ... < %k < n} as a

basis of Ak(P*).
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We want to show that the following map

fc(P*))*Afc(P) -+ (Afc(P*))*

A . . -. A z f c i-

is an isomorphism that sends the basis {eh A . . . A eik\l < i\ < ... < ik < n}

to the dual of the basis {e^ A . . . A e*Jl < Zi < . . . < ik < n), i.e.

A . . . A e i f c ) =

This map takes the element e^ A . . . A eifc of the basis of Ah(P) to the

map Afc(P*) - » f l , / 1 A . . . A / t H ?aeSfc.sgn(a)n*=1/j(ei<r(0). And this latter

map takes e*x A . . . A e*fc , an element of the basis of Afc(P*), to the value

I f { i l 5 . ' . . , i k } =£ { j i , . . . , j k } t h e n f o r s o m e m w e h a v e j m <£ { i 1 , . . . , i k } .

For this m we have e*m(ej ,()) = 0 for every I £ { 1 , . . . , k} and every a 6 5fc .

Therefore nf=1e*((eia{i)) can only be non-zero if { i l 5 . . . , ife} = { j i , . . . , jfc} .

If {H, ...,ik} = {ju • • • Jk} then if a = id G 5fc we have nf=1e^(ei<r(J)) =

1, for a 7̂  id we have nf=1e*;(eiQ(0) = 0. Hence our result is shown. •

It is not true in general that the analogously defined map

Symfc(P) - (Symfc(-P*))*

Xi . . . Xk ^ ( / i . . . fk .(-+ Y ; ' t t M x ) )

is an isomorphism because the sum would have more than one non-zero term,

since the indices of the elements of the basis of Symfc(P) are not strictly

increasing just increasing. This motivates the following definition.

Definition 2.2.7. Let P be a finitely generated projective Pt-module.. We

define the ith divided power functor of P to be dual of the ith symmetric

power of P , i.e. DZ(P) := (Syml(P*))*. For more information the reader is
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directed to p214-216 of [ABW].

Definition 2.2.8. Let / : P —> Q be a homomorphism between two projec-

tive i?-modules, and nGff . Let Kosn(/) be the Koszul complex

0 _> An(P) % An~\P) ® Q d^ ... % P ® Sym^iQ) % Symn(Q) - 0

where, for k € { 0 , 1 , . . . , n - 1}, the differential dk+1 : Afc+1(P)

> Afc(P) ® Symn-fc(Q) acts by

If we take / to be a map between P* and Q*, the duals of P. and Q,

then the part of the Koszul complex Kosn(/) in the fcth degree is Ak(P*) <g>

Symn~fc(Q*) • The dual of this chain complex is a co-chain complex with the

part in the kth degree being (Afc(P*) <g> Symn-fc(Q*))* ^ Afc(P) ® Dn~k(Q),

i.e.

0 <- An(P) (t^* An-\P) ® Q ( V l } * . . . ( ^ * p ® D " " 1 ^ ) ( ^* £)"(Q) <- 0.

We define the co-Koszul complex, Kos ( / ) , to be the chain complex with

Ak(P)<S)Dn-k(Q) the part in the (fc - n) t h degree, and with differential dk

equal to (dn-k)* in the above diagram, i.e. Kos (/) is the complex

0 - • Dn{P) h Dn~l{P) ® Q d^ ... % P (8) A " - 1 ^ ) ^ An(Q) -> 0.

Remark 2.2.9. When P = Rn,Q = R and f : Rn -^ R, ( e l 5 . . . , en) •-*

exxi + . . . + ena:n then this definition coincides with the above definition of

Koszul complexes i.e. Kosn(/) = Kos(xi, X2, •.., xn).

It is well known that the complexes Kos(/) and Kos(/) are exact if /

is an isomorphism.

The two following isomorphisms will be useful in later calculations.
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Proposition 2.2.10. Let -f ; P —> Q be a homomorphism between two

protective R-modules. If we consider consider P —• Q to be a chain complex

concentrated in degrees 1 and 0 then we have quasi-isomorphisms

and

Kosn(/) s[NAnV{P -> Q),

where T and N are the functors of the Dold-Kan correspondence that we

introduced in Chapter 1.

Proof. See Proposition 2.4 and Remark 3.6 of [K6]. •

2.3 Schur Functors

In this section we describe the construction of Schur functors, both by the

method described in Chapter I of [ABW] and as described in Chapter 2 of

[K6]. Schur functors will be important because Kock's predictions describe

the derived functors of Sym3 in terms of Schur functors of hook type, and

also because they will be used in the Cauchy decompostion of Sym3(P ® Q)

described in section 2.5. Schur functors are functors of modules that are

generalisations of the functors Symn,An and Dn.

Definition 2.3.1. By N°° we mean sequences of elements of N with finite

support (i.e. only finitely many elements of the sequence are non-zero). We

identify Np to a subset of N°° by adding zeroes to the end of the tuple. So

N°° = UP>ONP and we consider (Ai, . . . , Ap) eW and (Ai, . . . , Ap, 0,...) e

N°° to. be the same.

We call A 6 N°° a partition if Ai > A2 > If I!*A/ = n we say that A

is of weight n, or that A is a partition of n. We denote the weight of A by

|A|. We call the number of non-zero elements of A the length of A. (Note

this definition of partitions does not quite match the Definition 1.1.1; from
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here on when we refer to partitions we will mean this sense of partition and

not definition 1.1.1.)

We define the conjugate (or transpose) of A 6 N°° as A = (Ai, A2,...) €

N°° , where Aj is the number of elements of A which are less than or equal to

i. Clearly for any A € N°° the conjugate of A has the property Ai > A2 >

. . . . Also A is the the sequence A with the entries rearranged so they are in

decreasing order. So conjugation in an involution on the set of partitions.

Definition 2.3.2. Let A be a partition. The Young diagram associated

with A is the set of ordered pairs (i,j) (E N with i > 1 and % > j > Xi

and is denoted A\. We use the convention that is used for matrices, i.e.

that % is the row index and j is the column index (see below for a couple

of examples). It is easy see that the diagram for A contains Â  entries in

the ith row. Therefore it is clear that |A| = |A| (i.e. conjugation preserves

weight).

For example, the diagrams for (5, 3, 2,1) and (7, 2,1) look like

respectively. The conjugates of (5,3,2,1) and (7,2,1) are (4,3,2,1,1) and

(3, 2,1,1,1,1,1) respectively, and their diagrams look like

respectively.

Notation 2.3.3. Let F be a projective module over a commutative ring R,
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and A = (Ai, . . . , A&) a partition. We use the following notation

AAF=AA lF<g). . .® AXkF

SymA F = SymAl F <g>... <g> SymAfc F

DxF=DXlF®...®DXkF.

Definition 2.3.4. Let A = (Ai, . . . , Xq) be a partition, and F be aprojective

R-module. The Schur functor of F of shape A will be the image of the

function d\ : k\F —v Sym^ F that we will describe below. We denote this

functor by L\.

We assume that L^ has been defined for all fj, of weight less than

the weight of A and define L\ recursively. Let A' be the partitiion

(Ai — 1 , . . . , Xg — 1), which is the partition associated with the Young di-

agram formed by stripping away the first column of A.

Let S\ be the following composition

AAF = AA lF <g>... ® AA«F m-®A
) F ® AA l"xF <g>... <8> F <g> AX^

. -^ F®F(g).. .(g)F(8)AA l~1F(8).. .(8)AA 9"1F

•^ SymAl F (g) AA l"xF ® . . . <g> AA«-XF = SymAl F ® A ^ ^ ^ . ^

= SymAl F (8) AA,F;

here A : AAi(F) -> A ^ - ^ F ) ® F is the first differential of the Koszul

complex KosAi(idi?) see Definition 2.2.8 ; the function a permutes the copies

of F past the AAi~xF terms; and m is induced by the canonical projection

F <g>... <g> F -> SymAl F that acts by fi® ...® fn^> h-• • fn- Since d\> :

AA/F —> Sym^, F has already been defined we define d\ as the composition

In an analogous way we can define d'x : D\F —>• A^F and we define L\,

the co-Schur functor of shape A, to be the image of this map.

Definition 2.3.5. We say that A partition is of hook type if Aj < 1 for all

i > 2. We say this because the Young diagram of such a partition looks like
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a hook.

Definition 2.3.6. Let k € {0 , . . . , n) and F be a finitely generated projec-

tive R-module. Let dk+1 : Afc+1(F) <g> Symn-fe-1(F) -> Afc(F) ® Sym"-fc(F)

be the Koszul differential in the Koszul complex Kosn(id^) (see Definition

2.2.8). Then

Ln
k(F) := Im(dfc+1) C Ak(F) <g> Symn-fc(F)

is called the Schur functor of hook type (fc + l , l , . . . , l ) . Similarly we define

n-fc-1
L%(F) t h e co-Schur functor of hook type (fc + l , l , . . . , l ) as t h e image of t h e

n-fc-l

Koszul differential dk+l : Dk+l(F) ® An~/c-1(F) -> Dfc(F) ® An"fc(F) in the

co-Koszul complex Kos(idp-).

Since Kosn(id^) is exact the i?-module L%(F) is a finitely generated

projective module for all k G {0 , . . . , n} .

Definition 2.3.6 and Definition 2.3.4 are compatible because of the follow-

ing Lemma.

Lemma 2.3.7. Let X = (k + 1 ,1 , . . . , 1) be a partition of n of hook type.

Then the Schur functor L£ definined in Definition 2.3.6 coincides with the

Schur functor L\ defined in Definition 2.3.4-

Proof. The compatibility of the two definitions comes from the commutativ-

ity of the following diagram:

Afc+1F ® Sym""^ 1 F ± •- AfeF ® Symn-fc F

1
"fe F ® AfcF

F
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On the left hand side of the square the map m is just the canonical projec-

tion F®"-*-1 -H Sym""^ 1 F. The map on the right hand side of the square

between AkF®Symn~k F and Symn~fc F®AkF is the obvious isomorphism.

The map Ak(F) '—> F®fc on the right hand side is the antisymmetrisation map

h A h A • • • A fk .-> Ea sgn(a)fa{1) <g> fa{2) <g>... ® /CT(fc)

where the sum ranges over all elements a of the symmetric group of k

elements.

The map on the bottom of the square Ak+1F <g> F -> Symn~fc F ® F®k is

given by definition 2.3.4; it decomposes into

followed by idsymn-fcF o<5(li !). A simple calculation shows us that the map

<5(ir..,i) : Ak(F) —> F®" is just the the antisymmetrisation map described

above. - D

2.4 The iterated Eilenberg-Zilber theorem

The Eilenberg-Zilber theorem gives a suprising homotopy equivalence be-

tween the diagonal of a bisimplicial complex and the total complex of the

associated double complex. Several times in section 2.7 we will need to calcu-

late the homology of a simplicial complex which can be viewed as the diagonal

of a bisimplicial complex, more precisely of the diagonal of the tensor product

of two simpler simplicial complexes. The Eilenberg-Zilber theorem will let

us turn information about these simpler complexes into information about

the complex we are interested in.

Let R be a commutative ring.

Lemma 2A.I. Let C.,C.',D. and D! he chain complexes in Ch(i?-mod)

with C. and C chain homotopy equivalent, and also D. and D.' chain
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homotopy equivalent. Then the complexes Tot(C. <g> D.) and Tot(C.' (g D.')

are also chain homotopy equivalent.

Proof. First we will prove our result in the case where D.' = D., and then

later show that this entails our desired result. We know that C. and C

are chain homotopic, so we have chain maps fc '• C. —> C, gc • C —> C.

and a chain homotopy sc = {scn '• Cn —»• Cn + i} such that scdc +

9c fc - idc •

The differential of Tot(C.(gi£>.) at Cx®Dy is dv+dh where dh =

and dv = idc ®(—1)X^D- We now consider the map s : Tot(C ® -D.)n —•

Tot(C(g)D.)n+i that acts as sc(g)ido : Cx®Dy —> Cx+i®Dy for all x,^/ G Z.

Look at the following square in Tot(C. <S> D.):

dv=i&c®(-l)xdD

since the signs on the left and right are different we see that the square

anti-commutes, i.e. that sdv + dvs = 0.

Now we see that:

dTot(c.®D.)S = s(dv + dh) + (dv + dh)s = sdv + sdh + dvs + dhs

= sdv + dvs + dhs + sdh = dhS + sdh

= (dc <8> idD)(sc <8> idD) + (sc ® idD)(dc ® idD)

(dcsc + scdc)

{9cfc ~ idc) = 5c/c - id
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Similarly given the chain homotopy sc> = {sc; : C'n —* C'n+l} that

satisfies the relation fcgc ~ idc = scdc + dcSc we can find a map s' :

Tot(C". <g> D.)n -»• Tot(C". ® £>.)„+! such that:

srfTot(c".(g>D.) + dTot(c.®D.)S = gcfc ® id/? - id c <g) id^ .

Hence we conclude that Tot(C.(g>Z).) is chain homotopic to Tot(C".(g>.D.).

Now the twisting homomorphism Tot(C <8>D) —> Tot(D. ®C), cx®dy i—>

(-l)SI/dy ® 4 tells us that Tot(C. ® £).)-= Tot(£». ® C ) . So the above

argument can be used to show that Tot(C. ® D.) is chain homotopic to

Tot(C. ® D.'). Combining this and the previous chain homotopy we get the

desired result. . •

Theorem 2.4.2. The Iterated Eilberg-Zilber Theorem. Let n G N

with n > 2 and let A1,..., An be simplicial complexes. Then the complexes

NAiA1 <g) . . . (8) An) • and To^iVA1 <g>... <g> NAn) are chain homotopic and

(consequently) they are quasi-isomorphic:

HkiNAiA1 ® . . . <g> An)) ^ HkiTotiNA1 <8>... <g> NAn))

Note when n = 2 this is simply the normal Eilenberg-Zilber Theorem.

Proof. We will prove this result by induction on n. The Eilenberg-Zilber

Theorem (see §28 of [M], specifically Corollary 29.6 on pl32) tells us that

NAiA1 <g) A2) is chain homotopic to Tot(A^A1 <£> NA2); this serves as our

inductive base and will be used in the inductive step.

The inductive step that we need to show is: if the chain complexes

NA(Al <g> . . . <g> An~l) and Tot{NAl <g> . . . <g> NA71'1) are chain homotopic

then the chain complexes NA{Al <g>... <g> A""1 (g) A") and Tot(NA1 ® . . . <g>

NAn~1 ® NAn) are also chain homotopic.

Now it is easy to see that

NA(Al ® . . . <8> A71-1 ® A") =
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and by the Eilenberg-Zilber Theorem we know that NA(A(A1®.. .t

An) and Tot(iVA(A1 ® . . . <g> A71'1) <g> A^An) are chain homotopic. By our

inductive assumption and by Lemma 2.4.1 we see that Tot(NA(A1 <g>... <g)

An-l)®NAn) and Tot{Tot(NAl®...(Z)NAn-1)®NAn) are chain homotopic.

But Tot (Tot (N A1®.. .®NAn-l)®NAn) and TotiNA1®.. . ( g iA^" 1 ®^")

are (by definition) equal, so our inductive step, and hence the desried result

is shown. - •

2.5 Cauchy decomposition of Sym3(F ® G)

Let R be a ring. Let F and G be finitely generated projective R-modules.

The following is a summary of the Cauchy decomposition given in chapter

III of [ABW] as it applies to the third symmetric power. This decomposition

of Sym3(F ® G) will be essential in our proof of Theorem 2.7.2.

A three step filtration is put on Sym3(F ® G)

0 C A f ( 3 ) ( S y m 3 ( F ® G ) ) c M M ( Sym3(F ® G))

cM ( M ) 1 )(Sym3(F <g> G)) = Sym3(F ® G).

The M(3)(Sym3(F ® G)) part is defined to be the image of the determinant

map

A / 2 A h ®. 9\ A 92 A 93 >->

A <E> Pi / i <8> 92 / i ® 53

/ i ® Pi /2 <S> p2 /2 <S> P3

/ l ® Pl /3 ® P2 /3 <8) P3

(note this is simply isomorphic to A3F <g) A3G). The M(2,i)(Sym3(F <g) (?))•

part is defined to be equal to the previous part M(3)(Sym3(.F®G)) part plus
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the image of the following homomorphism:

A(2)i)F <g> A(2,i)G -> Sym3(F <8> G)

A ® Pi A ® p2
A A /2®/3®JlA32® P3

A ® Pi A ® P2

The quotients of this.filtration are isomorphic to tensor products of Schur

functors as follows:

M(2!l)(Sym3(F,® G))/M (3)(Sym3(F ® G)) S L(2>1)F ® L(2il)G

and

M(1, l i l}(Sym3(F ® G))/M (2 j l )(Sym3(F ® G)) ^ L{lxl)F <g> Ld,!,!)^1

= Sym3(F)(g)Sym3(G).

Or equivalently we have the two short exact sequences that follow:

. 0 -> A3F ® A3G -»• M(2)i)(Sym3(F ® G)) -> L (2 ;1)F ® L(2,i)G -> 0

and

0 -> M(2j l )(Sym3(F <g> G)) -^ Sym3(F <g» G) -^ Sym3(F) ® Sym3(G) -> 0.

2.6 Characterising functors in terms of their

cross-effects r

In [K6] Kock proved Theorem 2.6.2, a result which shows that two functors

are isomorphic if they agree on certain data given by their cross-effect func-

tors. In this section we introduce this theorem and apply it to show that the

Schur functor L\ and the co-Schur functor L\ are isomorphic. Furthermore

in section 2.7 our partial proof of the predictions made in [K6] for the derived
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functors of Sym3 is obtained by satisfying half the preconditions of Theorem

2.6.2.

Let A be a ring.

Definition 2.6.1. Let I > k > 1, Vi , . . . , Vk e VA , where VA is the category

of projective A -modules, and e = (e^ . . . , ek) 6 { 1 , . . . , l)k with YA=I
 ei = I •

The composition

A£ : crk(F)(Vlt• • •, Vk) ^F)^'-'A\ crk(F)(V?\ . • . ,

of the map crfc(F)(A,..., A) (induced by. the diagonal maps A : V* —»•

V^,i = l , . . . , fc) with the canonical projection' n (according to Theorem

1.3.6) is called the diagonal map associated with e. The analogous composi-

tion

+ e : CTI(F)(VI, . . . , Vi, • • • , Vk, • • •, Vk) <-

> cr fc(F)(Vi,..., vky

is called plus map associated with e. •

The maps Ae and +e form natural transformations between the functors

crk(F) and cr^(F) o (A £ l , . . . , A€fc) from V\ to M.. One easily sees that the

map Ae can be decomposed into a composition of maps A<5 with 8 e {1,2}

such that \S\ = j•+ 1 and j € {fc,..., I — 1}. The same holds for +e •

Theorem 2.6.2. Lei A be a ring, A4 an abelian category, d € N+, and

F, G : (/.g. projective A-modules) —»• .A4

fee ftuo functors of degree < d with F(0) = 0 = G(0). Suppose that there

exist isomorphisms

a i ( A , . . . , A ) : C
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which are compatible with the action of A in each component and which make

the following diagrams commute for i G { 1 , . . . , d — 1} and e £ {1, 2}1 with

\e\ =

cri(F)(A,.. .,

. . . , A)

cr i + 1 (F)(A, . . . , A) — * cri+1(G)(A, ...,A)

,..., A).cn(F)(A, :..,A)

Then the functors are isomorphic.

Proof See Theorem 1.5 of [Kb]. •
We now apply Theorem 2.6.2 to compute the Schur functor L\ and the

co-Schur functor L\.

Proposition 2.6.3.

0 k = 1
A £D A lc — O

/ I KJJ ^T. ft — i-t

A®A k=3

0 k > 4.

The maps A(2) : cri(Lf)(A) -> cr'2{L\){A\A) and + (2) : cx2{L\){A,A) -»

cri(Lf)(A) are zero maps. The other associated maps between the above
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cross-effect modules are as follows:

(1,0) ~ (1,1)

(0,1)^(0,0)

(1,0)-> (0,0)

(0,1) h-t (l,.l)

(1,0)

cr3{Ll){A,A,A)

(1,0)

(0,1)

(1,0)

(1,0)

(0,1)

(0,1).

Proof Let V, W and X be finitely generated A modules. Definition 2.3.6

tells us the Schur functor L\(V) is the image of d2 in the complex Kos3(idy),

since this complex is exact the image of d2 is the same as the kernel of d±.

Sym2(F)

Hence we have the short exact sequence 0 —* L\(V) —>• V ® Sym2(Vr) —»•

Sym3(V) -> 0. In particular this tells us that cri(Lf)(A) = L\{A) = 0.

Next we want to compute cr2(Lf)(A, A). We have the short exact se-
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quence

0 -* L\(V © W) -> (V © W) ® Sym2(V © W) -> Sym3(F © W) -» 0.

Using the canonical decomposition of Symn we see that

{V © WO ® Sym2(\/ © W) =V ® Sym2(y) © ^ ® (V ® W) '

W® Sym2(iy)

and

Sym3(y © W) = Sym3(y) © Sym2(V) <8> W © F <g> Sym2(W/) © Sym3(W/).

So we get the following short exact sequence:

0 ^ cv2(Ll)(V,W)-*

V (8) (V (8) W) © y ® Sym2(W) © W (g) Sym2(y) © W ® (V

-» Sym2(y) ® W © V ® Sym2(W) -y 0.

Therefore cr2(L3)(V, W) = F®2 <g> W © F ® W®2, and in particular
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Next we want to compute cr3(Lf )(A, A, A).

cr2(L?)(V, W © X) ^V®2 ®{W®X)®V®(W® X)®2

> W ©

© F ® W®2

X © V (8> X®2

Hence cr3(L?)(V, VF, X) = V <8> W <8) X © V <g) X ® W, and in particular

Since cri(Li)(yA) is the zero module it is clear that A(2) : cri(L\)(A) —>

cr2(Lf)(yA,A) and +(2) : cr2(Lf)(A, A) —»• cri(Li)(y4) are zero maps.

We now calculate the relevant diagonal maps. Referring back to definition

2.6.1, cr2(Lf)(A(21)) is the composition

cr2(Ll)(V, W) Cr2(LD(Av ' idw)
: cr2(Ll)(V © V, W) ^ cr3(L?)(V; V, W)

We know that cr2(L?)(V, W) = V®2 ® W © ^ ® W®2 , cr2(Lf )(V © V, W) ^

(1/ e v)®2 ®W ®{V®V)®W and cr3(L?)(y[, 1/2, W) = Vx <8» F2 <8> W ©

Vi <8> W <8> V2 • The first part of the composition, cr2(I'f)(Ay,idvi/), acts as

follows

V®2 ®W ®V ® W®2 -^{V® V)®2 ® W © (V © V) <g>
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and the projection, -n, acts by

(V © V)®2 ®W@(V®V)<8> W®2 ->V ®V ®W ®V ®W ®V

((Vi,Vi) (g (V2, V2) <g Wi, (v3, V3) (g) W2 (

Now cr2(L?)(A A) = A® A and cr3(Xi)(A, A, A) = A® A and applying

the above we see that:

, R) -> cr3{Ll)(R, R, R)

(0 ,1)^(0 ,0)

and by symmetry we get our results for A(ij2) •

We now calculate the relevant plus maps. Referring back to definition

2.6.1 we see the map cr2(L\)(+(2,i)) is the composition

cr3(L
3)(l/, V, W) ^ cr2(Ll)(V © V, W) C^m+M) CT2(L3)(v; w)

The first piece of the compostion acts by

V ® V <g W © V <g W (g) V -+{V © \^)®2 (g W © (F © V) (

(ui (g t;2 <g toi, f3 <g t«2 ® ^4) i-K(^i, 0) ® (0) ^2) <S> wi, 0)

and cr2(I/f)(+2, idw), the second piece, acts by

w © (y © y)
1, 0) <g> (0, V2) ®W!,0) ^(Vt (g V2 (g ^ 1 , 0)

((0, ^3) <g> (^4,0) <g> w 2 , 0) ^ ( f 3 <g n <S> w2, 0) .

Applying this to cr3(L?)(A, A, A) = A © A and cr2(L?)(A, A) = A®A we
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see that:

+(2,i) : cr3(Ll)(A,A,A) -> cx3(Ll){A,A)

(1,0)-> (1,0)

(0 ,1) - (1 ,0)

and by symmetry we get our result for +(i,2) • D

Corollary 2.6.4. The co-Schur functor L\ is isomorphic to the Schur func-

tor L\.

Proof. Let V and W finitely generated projective A -modules. Definition

2.3.6 tells us the co-Schur functor L\(V) is the image of di m the complex'

Kos3(idy), since this complex is exact the image of d2 is the same as the

kernel of d\.

D\V) D2(V) ® V V ® A2{V) A3(V)

So we have the short exact sequence 0 -> L\{V) -* V® A2{V) -> A3(V) -+ 0.

In particular this tells us that CTI(LD(A) = L\(A) = 0.

Next we want to compute cr2(Lf)(A, A). We have the short exact se-

quence 0^Ll(V®W)^{V®W)®A2(V®W)^A3{V®W)^0. Using

the canonical decomposition of An we see that

(V © W) ® A2{V © W) =V ® A2(V) ®V-®(V®W)@V® A2(W)

© W <g> A2{V) © W (8> (V ® W) © W ® A2(W)
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and

A3(V © W) =A3(V) © A2(V) <8> W © V ® A2(W) <g> A3(W).

Hence we get the following short exact sequence:

V®(V®W)@V® A2{W) ®W® A2(V) ®W®(V®W)

-> A2(V) ® W © V'® A2(W) -> 0.

Therefore cr2(L?)(V, W) = V®2 ® W © V ® Wm . Prom our previous cal-

culation we know that cx2{L\){V, W) ^ V®2 ® W © V ® W®2 , so cr2(L?)

and cr2(I/f) are isomorphic as bi-functors. Because of the way that higher

cross-effects are calculated from lower cross-effects we see that for k > 2

cik(L\) and cr(Lf) will be isomorphic as A;-functors. We have shown that

cri(L3)(A) = CTI(L\)(A) = 0. From all these isomorphisms it is clear

that we can construct all the maps neccessary to use Theorem 2.6.2, hence

L\ = L\. U

2.7 The derived functors of the third sym-

metric power functor

Let R be a Noetherian commutative ring, let / be an ideal in R which is

locally generated by a regular sequence of length 2 and let VR/J be the cat-

egory of projective R/'I-modules. Let Gk be the functor defined as follows:

Gk : VR/I -> i?-mod

V^HkN Sym3 TP.(V)

where P-{V) is an R-projective resolution of V.
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In Example 6.6 of [K6] Kock made the following prediction about the

derived functor Gk

Gk{V) =

Sym3(V) k = 0

L\{V)®I/I2 k = l

L\(V)®I/I2®k2{I/I2) k = 3

D\V)®K2{I/I2)®2 k = A

0 k > 5

and for the case when k = 2 he suggests that there exists an exact sequence:

0 -> D2(V) <8> V <8> A2(///2)

For any non-negative integer /c that is not equal to 2 we let Fk : VR/I

i?-mod be the functor that Kock predicted for Gk to be. We let F

»• i?-mod be any functor that fits in a short exact sequence

0 A2(///2) -> F2{V) Sym2(///2) -> 0.

Provided that 7 is globally generated by a regular sequence we prove that

Gk(R/I) = Fk(R/I) i.e. that these predictions hold if V = R/I. Moreover,

regardless of whether I is globally generated or not, we prove a similar

statement for the higher cross-effects of Gk and Fk namely that for all k

and I > 1 we have

cn(Gk)(n/I,..., R/I) * cr,(Ffe)(i*/7,..., R/I).

These results axe a major step toward proving the predictions in general.

What remains to be shown is that the diagrams described in Theorem 2.6.2

are commutative.

We first calculate the cross-effects of the predictions made by Kock.
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Proposition 2.7.1. We have the following R/I -module isomorphisms:

R/I

!) k = 2

0 h — ^

A2(7/72)®2 fc = 4

cr2(Fk)(R/I,R/I)

R/I ® R/I k

I/I2 ® I /12 k

A2(7/72) © A2(7/72) © A2(7/72) © A2(7/72) k

7/72®A2(7/72)ffi7/72®A2(7/72) k

A2(7/72)®2©A2(7/72)®2 • k

cr3(Fk)(R/I,R/I,R/I).

R/I

1 /12 ® I/I2

A2(7/72) © (7/72)®2 © A2(7/72) © Sym2(7/72)

7/72 (8) A2(7/72) © 7/72 <8) A2(7/72)

A2(7/72)®2

= 1

= 2

= 3

Jfc= 1

k = 2

A; = 3

Proof. The functor Fo is Sym3. The canonical decomposition of Sym3

gives us that cr2(Sym3)(V, W) = Sym2(^) ® W ® V ® Sym2(W)

and cr3(Sym3)(y,W,X) ^ V ®W ® X. So Sym3(7?/7) ^ 7?/7,

cr2(F0)(7?/7, 72/7) ^ 7?/7 © 7?/7, and cr3(F0)(R/I, R/I, R/I) = R/I.

The functor Fi(-) is L?(-) ® 7/72. Proposition 2.6.3 tells us that:

F1(R/I) = L\{R/I) ® I/12 * 0, ^(F^R/^R/I) = cv2(Ll)(R/I,R/I) ®

7/72 ^ I/I2®!/!2 and ^{F^R/I.R/I.R/I) = cr3(L
3)(i?/7,7?/7, 7?/7)®

7/72 ^ 7/72 © 7/72.
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The functor F 3 ( - ) is l\(-) <8> 7/72 <8> A2(7/72). Proposition 2.6.3 and

Corollary 2.6.4 tell us that F3(R/I) = L\{R/I) <g> 7/72 <8> A2(7/72) =*

0, cr2(F3)(R/I,R/I) = cr2(Ll)(R/I,R/I) ®I/P® A2(//72) ^ 7/72 ®

A 2 ( / / / 2 ) © / / / 2 <8> A 2 ( / / / 2 ) and that cr3(Ll)(R/I,R/I,R/I) <g> I / / 2 <8>

A2(7//2) = J /72 <g) A 2 ( / / / 2 ) © 7 / / 2 <g) A 2 ( / / / 2 ) .

The functor F 4 ( - ) is L»3(-) <8> A2(7//2)®2. Using the canonical de-

composition of £>3 we get cr2(D
3)(V, W) ^ JD

2(F) ® W © F <8) £>2(W)

and cr3{D3){V,W,X) ^ V <8) t ^ <8) X . Hence F4(i2//) = A2(7//2)®2,

cr2(F4)(R/I,R/I) = {R/I © # / / ) (8) A2(//72)®2 ^ A2(//72)®2 © A2(7//2)®2

and cv3(F3){R/I, R/I, R/I) = R/I <8> A2(//72)®2 = A2(//72)®2.

Now for F2 we expect a short exact sequence

0 -> 752(y) ® F ® A2(7/72) -> F2(V) -»• A3(F) ® Sym2(7/72) -+ 0

We let 77 stand for the functor D2(—)<2)— and 77' stand for the functor on

the right hand side. The canonical decomposition of exterior powers gives us

the cross-effects of 77' as follows:

cr2(77/)(V, W) = (A2(V) <8> W © V (8> A2{W)) <8> Sym2(7/72)

cr3(77')(F, W, X) = (y <8> W <8> X) <8> Sym2(7/72).

In particular we note that cr2(77')(7?/7, R/I) is the zero module and

cv3(H')(R/I, R/I, R/I) = Sym2(7/72).

We now calculate H{V © W) so we can calculate the cr2(77)(V, W),

V®V®W®W

V@ D2{W) ® W

hence

y ® w ® w © D2{W)
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v And similarly

cr2(77)(KW © X) =D2(V)-<g> X © D2(V) <8> W

© V (8) W <8> V © V ® X <8> V

© V (g) W (g) W © V (8) X <8) W

(8) y © W (8> X <8> y

therefore

Since cr2(H')(R/I,R/I) = 0we get

cr2(F2)(i?//, i?/7) ^ cv2(H)(R/I, R/I) ® A 2 ( / / / 2 )

^ A2(//72) © A2(7/72) © A2'(7/72). - .

We also find that

cr3(F2)(7?/7,7?/7,72/7) ^cr3(77)(72/7,7?/7,7i!/7) © cr3(77')(7?/7,72/7,72/7)

^ A2(7/72) © A2(7/72) © A2(7/72) © Sym2(7/72).

D

The following theorem shows that if 7 is globally generated by a regu-

lar sequence then the derived functors of Sym3 evaluated on 72/7 matches

Kock's predictions.

Theorem 2.7.2. If I is globally generated by a regular sequence of length 2

then the module Gk(R/I) is a free R/I -module of rank I, for k = 0, 2 or

4 and otherwise of rank 0.
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Proof. Let / , g be a regular sequence in R, and let / be globally generated

by it. Also we let K. denote the Koszul complex . . . —> 0 —• R -^ R and L.

denote the Koszul complex . . . —> 0 -** R -n> R.

By Proposition 2.2.4 we know, that the Koszul complex

Tot(K <g> L.) = Kos(/, g) = Kos2(R © R {H] R)

is a resolution of R/I.

We see that:

Gk{R/I) :=HkN Sym3 T Tot(K. <g> L.)

^/ffcA^ Sym3 T Tot(iVrK <8> NFL.).

Theorem 2.4.2 tells us that Tot(iVTK ® NFL.) is chain homotopic

to A^A(ri^. <g> FL.). Applying F turns the notion of chain homotopy

into simplicial homotopy, all functors preserve homotopy in the simpli-

cial world and N changes the notion of simplicial homotopy into the no-

tion of chain homotopy. So N Sym3 F turns the chain homotopy between

Tot(ATK <g> NFL.) and NA(FK. ® f L.)' into a chain homotopy between

N Sym3 r Tot{NFK. ® 'NFL.) and N Sym3 FNA(FK. ® TL.). Chain ho-

motopic complexes are quasi-isomorphic, so continuing our calculation of

Gk(R/I) where we left off we get:

Gk{R/I) = HkN Sym3 FNA(FK. <8> FL.) ^ HkN Sym3 A(Tk:®TL.)

^ HkNA Sym3(rK ® FL.).

Now we calculate Gk(R/I) by calculating HkNASym3(FK. ®FL.). We

cannot calculate this directly, so instead we will employ the short exact se-

quences detailed in section 2.5 which will allow us to get information about

these homologies from easier to calculate homologies. For any two finitely

generated i?-projective modules P, Q we have the following short exact se-
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quences:

0 -> A3P <g> A3Q -> M(2>1)(Sym3(P <g> Q)) -> L 3 P <g> L3Q -> 0

0 -> M(2,1)(Sym3(P <8> Q)) -> Sym3(P ® Q) -> Sym3(P) <g> Sym3(Q) - • 0.

(Note we are using Lf rather than £(2,1); this is justified by Lemma 2.3.7.)

Hence we get the following short exact sequences of bisimplicial modules

0 -»• A3YK. <8> A3rL. -> M ( 2 ! l )(Sym3(rK ® FL.)) -»• L\TK. ® L\TL. -> 0

0 -> M ( 2 i l )(Sym3(rK ®TL.)) -H- Sym 3 ( rK (g> TL.)

applying A^A to this gives us a short exact sequence of chain complexes. We

can turn the homologies of these into two long exact sequences, this will allow

us to get information about the homologies of M(2>i)(Sym3(rK. ®YL.)) from

the easier to calculate homologies of A3TK. (g) A3TL. and L\YK. <g> L\YL..

This information about the homologies of M(2)i)(Sym3(rii'. ®YL.)) together

with the homologies of the easier to calculate homologies of Sym3(r/C.) <8>

Sym3(TL.) will tell us the ranks of the homologies of Sym 3 ( rK ® YL.).

First we calculate the homologies of L\YK. The definition of L\ gives

us the following short exact sequence for any finitely generated projective

module P

0 -> L\P -> P ® Sym2 P -> Sym3 P -> 0,

which gives us the short exact sequence of simplicial complexes

0 -> L^F^. -» F K ® Sym2 FK. -* Sym3 FiT. -^ 0,

the middle term of this short exact sequence is the simplicial complex whose

A;th term is YKk <g> Sym2 YKk. We think of this middle term instead as
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the diagonal of a bisimplicial complex whose (k, l)th is TKk £§> Sym2

Now applying the functor N turns this into a short exact sequence of chain

complexes

0 -> NL{2,i)TK. -> NA(TK. ® Sym2 TK.) -> AT Sym3 ITf. •-> 0,

and from this we can create a long exact sequence that gives us information

about HkNL\TK./

Applying the Eilenberg-Zilber Theorem, then Proposition 2.2.10 and then

Corollary 2.1.6 we get

HkNA(TK.0 Sym2 TK.) =Hk Tot(NTK. ® AT Sym2 TK.)

= HkTot(K.®Kos2{f)).

Now

Kos2(/) = (A2(i?) -> A\R) ® Sym^i?) -^ Sym2(JR))

= (0 -> i? ̂ > i?) = K,

and therefore

HkNA{TK. ® Sym2 ITf.) =i^fc Tot(K ® K ) = Hk{P.{R/{f))m)

k>\V
with the last step given by Proposition 2.2.5.

Using Proposition 2.2.10 we get
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now

Kos3(/) = (A3(i?) -> A2{R) ® J? -> Ax(i2) (8> Sym2(i?) -.. Sym3(JR))

hence

A; = 0

0

So the long exact sequence of homologies that we get from the short exact

sequence

0 -> NL\TK. -> NA(TK. <8) Sym2 T K) -y Â  Sym3 FiC. -» 0 .

is

> H3NL\TK. 0 0

H2NL\YK. 0 0

HXNL\TK. *• R/U) 0

*R/(f) R/U) 0
and so we get

fo k ^ i
HkNL\TK. 9* {

\R/(f) k = l.
Similarly we get

, 0
HkNL\TL, ^
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Now we work with the short exact sequence of simplicial modules

0 -> A3YK. 0 A3YL: -> M (2)i)(Sym3(rK <g> TL.)) -»• L\TK. <g> L3rL. -» 0

the left and right terms are simplicial modules whose kth terms are A3YKk(E)

A3YLk and L\YKk®L\YLk respectively, but it is more useful for us to think

of them as the diagonals of bisimplicial complexes whose (fc, Z)th term are

A3YKk <g) A3TLi and L\TKk <2> L\YLi respectively. Now when we apply the

functor N to get a short exact sequence of chain complexes we get

0 -> NA(A3VK. (8) A3r\L.) -^ NM{2A)(Sym3(rK. ® TL.))

? 3 -»• 0 .

The Eilenberg-Zilber Theorem tells us that

HkNA(A3TK. <g> A3TL.) = Hk Tot{NA3TK. ® NA3YL.)

and

HkNA{L\TK. ® L\TL.) ^ Hk

Now by Proposition 2.2.10 and Corollary 2.1.6 we get

® NA3YL.) =HkTot(Kos3(f)

Now

Kos3(/) = (D3(R) -*D2{R)®R^R® A2(R) -* A3{R))
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and similarly Kos (g) = L.[—2]. So

Hk Tot(NA3TK. ® NA3TL.) ^Hk Tot (#.[-2] <g> L\[-2])

{0

R/I k = 4.

Now to calculate Hk Tot{NL\TK.®NL\TL.) we note that it is the hyper-

tor functor Tork{NL\TK., NL\TL.) and use the following spectral sequence

given in Proposition 2.1.5

q=q'+q"

taking A* = NL\TK* and 5* - NL\TL*. But since HkNL\TK. and

HkNLlTL. are 0 unless k = 1 (see above) this spectral sequence collapses,

with the only (potentially) non-zero terms being when q' = q" = 1, i.e. when

q = 2. These (potentially) non-zero terms are Tovp(R/(f), R/{g)). Taking

L. as a projective resolution of R/(f) then tensoring throughout by R/(g)

we get the chain complex

(0 - i? ® /?/(<?) -A fl ® i?/(5)) = (0 -

which has homology R/I at the 0th place and 0 everywhere else. And so

Hk(Tot{NL\TK. <g) NL\TL.)) * Torfc_2(J?/(/), /(

So the short exact sequence of chain complexes

0 -> NA(A3TK. (8) A3rL.) -> A^M(2il)(Sym3(rK <g> TL.))

. (g> L\YL.) ->• 0
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gives rise to the following long exact sequence of homologies

0 >• H5NM{2A)(Sym3(TK. <g> TL.)) > 0 •

R/I >- H4NM(2,i)(Sym3(TK. ®TL.)) -*• 0

0 >• if3 iVM ( 2 > 1 )(Sym3(rK <g> TL.)) ^ 0

96

• 0 H2NM{2tl <g> TL.)) R/I

<g> TL.)) 0 •

• 0 - H0NM{2A)(Sym3(TK. ® TL.)) 0 •

and therefore we get

• HkNM{2tl)(Sym3(TK. ® TL.)) =
R/I k = 2,4.

0 otherwise.

Now we work with the short exact sequence of simplicial modules

0 -> M ( 2 i l ) (Sym 3 ( r# . <8> TL.)) -»• Sym3(rA". (8) TL.)

-> Sym3(rJfsr.) <8> Sym3(rL.) -»• 0

the term Sym3(r/C.) ® Sym3(FL.) is a simplicial module whose fcth place

is Sym3(rif f c) <g> Sym3(rL f e) , but as above it is more useful to think

of it as the diagonal of the bisimplicial complex whose (k, l)th place is

Sym3(rK f c) <g> Sym 3 ( rL ; ) . Applying the functor N we get the following
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short exact sequence of chain complexes

2 ! l )(Sym3(r#. <g> TL.)) -»• iVSym3(r#. ®TL.)

-> TV A (Sym3 ( r # . ) <g> Sym3(rL.)) -» 0..

Applying the Eilenberg-Zilber Theorem, Proposition 2.2.10 and Corollary

2.1.6 we see

HkNA(Sym3(TK.) (8) Sym3(.rL.)) -i?fcTot(iVSym3(ri;s:.) ®NSym3{TL.))

^Hk Tot(Kos3(/) ( 3

Earlier in this proof we showed that Kos3(/) = K. and similarly Kos3(#) =

L., so

# fcTot(Kos3(/) <g> Kos3(g)) * Hk{Tot(K. <g) L.)) =

Hence

HkNA(Sym3 T(K.) <8> Sym3 T(L))
0

And so the short exact sequence of chain complexes

0 -> JVM (2i l )(Sym3(r#. ® TL.)) -»• iVSym3(rK <8> TL.)

-> NA{Sym3(TK.) <g> Sym3(rL.)) -^ 0,
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gives rise to the following long exact sequence

••*• 0 H5NA Sym3(F(K)

R/I >• H2NA Sym3(T(K.)

0 •

R/I H4NA Sym3(F(K>® r(L.)) >• 0 •

0 #3JVASym3(r(K)<g>F(L.))

0 •

Sym3(r(K)

0 ••*• H0NA Sym3(r(K) ® T(L.)) ^ R/I *• 0 .

And hence (as we know Gk(R/I)

that:

Gk(R/I) s

as desired.

=• HkNASym3(rK. <8> FL.)) we see

k = 0,2,4

otherwise,

•
The following theorem shows that then the second cross-effect functor

of the derived functors of Sym3 evaluated on (R/I, R/I) matches Kock's

predictions.
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Theorem 2.7.3.

R/I

I/I2® I/I2 fc = l

A2(7/72) © A2(///2) © A2(7/72) © A2(7/72) k = 2

7/72®A2(7/72)ffi7/72®A2(7/72) A: = 3

A2(7/72)®2ffiA2(7/72)®2 •' A; = 4

0 A; > 5.

TYoo/. First we calculate Gfc(F © W), for 7?-modules V, W to give us an

expression for cr2(Gfc)(V, W). To do this we use the fact that P.,T, N and

77fc are linear functors and also the canonical decomposition Symn(V®W) =

Gk{V © W) =HkN Sym3 TP.{V © W)

^HkNSym3(TP.(V) ®TP.(W))

=HkN( Sym3 TP.(V) © Sym2TP.(V) ® TP.{W)

(8) Sym2 TP.{W) © Sym3 TP.(W))

FP.(V)) © 77feA (̂Sym2 rP.(V) ® TP.(W))

© HkN(TP.(V) <8) Sym2 rP.(W)) © HkN Sym3 TP.{W)

=Gk(V) © HkN{Sym2 TP.(V) ® TP.(W))

© 77fciV(rP(F) ® Sym2 TP.(W)) © Gfc(

And hence

2 TP(V) <

HkN(rP(V) ® Sym2

In the above when we wrote Sym2rP.(F) (g> rP.(W) this denoted the

simplicial modules whose nth place is Sym2 FPn(V) (g) rPn(VK), we can con-
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sider this simplicial module to be the diagonal of the bisimplicial modules

whose (n, m) t h place is Sym2 TPn(V) <g> TPm(W). For the rest of the calcu-

lation we write Sym2 TP.(V)®TP.{W) and TR(W) ® Sym2 TP.{W) for the

bisimplical modules and consider cv2(Gk)(V, W) to be

HkNA(Sym2rP.(V)®rP(W)) ® HkNA(TP(V) ® Sym2 TP.(W)).

We will now calculate HkNA(Sym2TP.(V) <g> TP.(W)). Using the

Eilenberg-Zilber Theorem (Theorem 2.4.2) we see that

HkN A{Sym2 (TP.(V) <g> TP.{W)) ^Hk Tot(A^Sym2 TP(V) ® NTP.(W))

• • ^HkTot(NSym2rP.(V)®P.(W)).

So we want to calculate #fcTot(iVSym2rP.(V) <8> P..(W)), but this is just

the definition of the hypertor Torf (JVSym2 TP.{V), W). Proposition 2.1.5

gives us a spectral sequence to calculate hypertor

nE2
pq .= Torp(Hq(A), B) =» Torf+g(A,, B).

Theorem 6.4 of [K6] tells us that

HkN Sym2 T(P(V))^

Sym2(V) Jfc - 0

K2(V)®I/I2 k = l
2 2 k = 2

k > 3.

Now Sym2(i?/I) ^ R/I,D2{R/I) ^ R/I and A2{R/I) ^ 0. Hence the 2n d
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level of our spectral sequence for Torf (iV Sym2 FP.(R/I), R/I) is as follows.

. 0 Tor2{A2{I/I2),R/I) 0 Tor2(R/1, R/1)

• 0 Tori(A2(///2),i2//) 0 To^ {R/I, R/I)

••• 0 Tor0{A2{I/I2), R/I) . 0 Tor0(R/I,R/I).

Now from Proposition 2.2.5 we know that Tork{R/I,R/I) = Ak{I/P) and

hence have Torfc(V, VF) ̂  V(g)W(g)Afc(///2). So the 2nd level of the spectral

sequence looks like this:

0 A2(//72)®2 0 A2(///2)

••• 0 I//2®A2(///2) 0 I/I2

0 " A2(7/72) 0 R/I.

The differentials on this level of the spectral sequence are —2 in the p-

direction and +1 in the q -direction, so each differential either comes from

or goes to a zero module. Hence the differentials are all the zero map i.e. the

spectral sequence has already converged on the second level.
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Therefore

HkNA( Sym2 TP.(Rfl) ® TP.(R/I)) ^

R/I k = 0

I/I2 k = 1

A2(7/72)ffiA2(7/72) fc = 2

7/72®A2(7/72) k = 3

A2(7/72)®2 ' fc = 4

0 Jfc > 5.

By symmetry HkNA(Sym2 TP.(/?//) <g> TP.{R/I)) ^ HkNA(TP.(R/I)

Sym2TP.(R/I)). Hence

R/I® R/I fc = 0

I/I2®!/!2 k = \

A2(7//2) © A 2 ( / / / 2 ) © A2(//72) © A2(7/72) k = 2

7/72 ® A2(7/72) © 7/72 ® A2(7/72) jfe = 3

A2(7/72)®2 © A2(7/72)®2 . /c = 4

0 > 5.

D

The following theorem shows that the third cross-effect functor of the

derived functors of Sym3 evaluated on (R/I, R/I, R/I) matches Kock's pre-

dictions.

Theorem 2.7.4.

cr3(Gfc)(7?/7, R/I, R/I) ^ Afc(7/72- © 7/72)

Proof. We first calculate cr2(Gfc)(^, W®X), for 7?-modules V, W, X to give

us an expression for cv3(Gk)(V, W, X) (compare the following with the above

calculation of cr2(Gfe)(V, W) in Theorem 2.7.3). To simplify our calculation
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of cx2{Gk)(V,W ® X) we split up our expression for cr2{Gk)(V, W ®X) into

HkNA(Sym2rP(V)®rP.(W®X)) and HkNA(rP.(W)®Sym2VP.(W®

X)) , calculate each part separately then add them together afterwards.

HkNA( Sym2 TP{V) <g> TP(W ©

( Sym2 TP. (V) ® FP. (W))

HkNA(rP.(V)® Sym2 rP.(W © X

^ iffcA^ A Trp (F) ® Sym2 (rp. (w) © rp . C-X"))),

the canonical decomposition of Sym2 tells us

(where fP.(W) <8> TP.(X) is the simplicial module whose nth place is

TPn{W) ® TPn{X)) and so we see

{YP.{W) ®YP.{X))\

> S y m 2

Sym2
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This gives us the following expression for cr2(Gfc)(V, W © X)

cv2(Gk)(V, W@X) ^HkNA( Sym2 TP.{V) <g> YP.{W)\

® HkNA(Sym2 TP.(V)®TP.{X)\

Sym2 FP.{W)) .

© HkNA(rp.{v)

#fciVA(rP.(l0 ® Sym2 TP.

iVA( Sym2 rP.(^)

HkN&(rp.(y) ® Sym

© HkNA( Sym2

Sym2

> (rp.(w) ® rp.(x))V

Therefore cv3(Gk)(V, W,X) = /TfciVA(rP.(^)(8)(rP.(W)<8)rP.(X))) . How-

ever we may consider A(rP.(V) (8> (rP.(VF) <8> rP.(X))") to be the diagonal

of the trisimplicial complex TP.(V) (8) TP.(W) <8> FP.(X), so we write

The Iterated Eilenberg-Zilber (Theorem 2.4.2) tells us that

HkNA(rP.(R/I)®rP{R/I)®TP.(R/I)) = HkTot (P.

Proposition 2.2.5 tells us that

Hk Tot (R(R/I) ® P.{R/I) ® P.{R/I)) = Afc(///2 © I/I2),
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hence we see that

R/l k = Q

I/I2 © 7/72 '• • fc = 1

A2(7/72) 0 ((7/72) <g> (7/72)) © A2(7/72) k = 2

A2(7/72) (g, (7/72) e (7/72) ® A2(7/72) Jfe = 3

A2 (I/I2)® A2 (I/I2) k = 4

0 fc > 5.

•



Bibliography

[ABW] K. AKIN, D. A. BUCHSBAUM, and J. WEYMAN, Schur functors

and Schur complexes, Adv. Math. 44 (1982), 207-278.

[DP] A. DOLD and D. P U P P E , Homologie nicht-additiver Funktoren. An-

wendungen, Ann. Inst. Fourier Grenoble 11 (1961), 201-312.

[EK] E. KUNZ, Introduction to Commutative Algebra and Algebraic Ge-

ometry, Birkhauser, Boston (1985).

[EM] S. EILENBERG and S. M A C LANE, On the groups H(U, n), II, Ann.

of Math. 60 (1954), 49-139.

[JM] B. JOHNSON and R. MCCARTHY, Linearization, Dold-Puppe stabi-

lization, and Mac Lane's Q-construction, Trans. Amer. Math. Soc.

350 (1998), 1555-1593.

[K6] B. KOCK, Computing the homology of Koszul complexes, Trans.

Amer. Math. Soc. 353 (2001), 3115-3147.

[L] S. LANG, Algebra, Addison-Wesley,. Reading (1971).

[M] J. P E T E R MAY, Simplicial Objects in Algebraic Topology, The Uni-

versity of Chicago Press, Chicago (1967).

[W] C. A. WEIBEL, An introduction to homological algebra, Cam-

bridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge

(1994).

106


