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For a chain complex C. a Dold-Puppe complex is a complex of the form
NFT(C.), i.e. the image of C. under the composition of the functors T',
F and N; here I' and N are the functors given by the Dold-Kan corre;
spondence and F' is a not-necessarily linear functor between two abelian
categories. When C. is a projective resolution of a module the z'Fh homology
of this Dold-Puppe complex is the ** derived functor of the functor F'.

The definition of T" is quite abstract and combinatorial. The first half
of the first chapter of this thesis gives an algorithm that streamlines the
calculation of T'(C.). The second half of the first chapter gives algorithms
~ that allow the explicit calculation of the Dold-Puppe complex in terms

The second chapter produces a partial proof of Kock’s predictions of
the derived functors of the third symmetric power functor Sym?®. This is
achieved by comparing certain cross-effect ﬁlodules of the predictions and of

the derived functors.
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Introduction 1

Introduction

Let R and S be rings. The construction of the left derived functors L F -
R-mod — S-mod of any covariant right-exact functor F' : R-mod —
S-mod is achieved by applying three functors. The first functor constructs
a projective resolution P. of the K-module M that we wish to calculate the
derived functor of. Then the functor F is applied to the resolution P. giving
the chain complex F(P.). Lastly the k™ derived functor LyF is defined to
be Hy(F(P.)), the k** homology of the chain complex F(P.). However for a
given module M the projective resolution of M is unique only up to chain-
homotopy equivalence, so this contruction crucially depends on the fact that
F' preserves chain-homotopies. In general this fact does not hold when F is
a non linear functor such as the I symmetric power functor, Sym‘, or the
It exterior power functor, Al. In the paper [DP] Dold and Puppe overcome
this problem and define the derived functors of non-linear functors by passing

to the category of simplical complexes using the Dold-Kan correspondence.

The. Dold-Kan correspondence gives a pair of functors I' and N that
provide an equivalence between the category of bounded chain complexes
and the category of éimplicial complexes; under this correspondence chain
homotopies correspond to simplicial homotopies. Furthermore in the simpli-
cial world all functors preserve simplicial homotopy (not just linear functors).
Because of this the above definition of the derived functors of F' becomes well
defined for any functor when F(P.) is replaced by the complex N F T(P).
We call chain complexes of the form NFT'(C.) Dold-Puppe complexés, for

any bounded chain complex C..

Let R be a Noetherian commutative ring and let I be an ideal in R
that is locally generated by a non-zero divisor. If P. is the length 1 R-
projective resolution of a projective R/I-module V' then the homology of the
Dold-Puppe complex N Sym*T'(P.), k > 1, has been explicitly computed in
[K6]. These computations yield a yery natural and new proof of the classical

Adams-Riemann-Roch theorem for regular closed immersions and hence a
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new approach to the seminal Grothendieck-Riemann-Roch theorem avoiding
the comparitively involved deformation to the normal cone, see [Kd].

The purpose of this thesis is two-fold. In Chépter 1 we shed some light on
the combinatorial structure of Dold-Puppe complexes in general. In Chapter
2 we study the homology of the Dold-Puppe complex N Sym®I'(P.) when I
is an ideal which is locally generated by a regular sequence of length 2 and
when, as above, P. is a projective resolution of a projective R/I-module V.

We now describe Chapter 1 in more detail.

If C. is a chain complex of length > 2 then the calculation of the Dold-
Puppe complex NFT'(C.) is normeﬂly too complicated to be performed on
a couple of pieces of paper, and the nature of the calculation means that
errors easily creep in. The purpose of Chapter 1 is to develo}) an algorithm
that computeé such Dold-Puppe complexes in a manner that is both efficient
and easy to check. We hope that the explicit description of the Dold-Puppe
complex that the algorithm provides will help later work in calculating its
homology.

In section 1.1 we introduce an ordering in the set Mor([n], [k]) of order
preserving maps between [n] := {0 <1< ... <n} and [k} := {0 <1<
... < k}. We show that composition with the face maps §; : [n — 1] — [n]

-and degeneracy maps o; : [n] = [n — 1] is “well-behaved” with respect to
this ordering.

The simplicial complex T'(C.) is defined by

rC), = GB 69 Ck,

k=0 peSur([n},[k])

so we have a copy of the direct summand C} for each surjective order preserv-
ing map 4 : [n] — [k]. The face and degeneracy operators in the simplicial
complex I'(C.) are defined in terms of composition of x with the maps 9;
and o;. In section 1.2 we show how the results in section 1.1 can be used

to streamline the calculation of the the face and degeneracy operators in the
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simplicial complex I'(C.).
In section 1.3 we summarise the results on cross-effect functors that are

needed for the sections that follow.

The Dold-Puppe comple_x NFT(C.) is constructed by modding out the
images of the degeneracy opérators in FF(O ). To calculate this we apply
the theory of cross-effect functors to decompose both the numerator and de-
nominator into the direct sum of cross-effect modules; the non-degenerate
modules correspond to the terms that appear in the numerator but not in
the denominator. However the decomposition produces many, many terms
and seeing which are non-degenerate is far from obvious. In section 1.4 we
introduce a criterion to distinguish between the non-degenerate and the de-
generate terms; this criterion is defined in terms of the ordering we introduced
in section 1.1. Later we introduce an algortithm that constructs all terms -
that satisfy this criterion; thus avoiding the need to check each of the many
terms one by one. .

In section 1.5 we calculate the Dold-Pﬁppe complex N Sym2 I'C — B — |
A), where C — B — A is a complex of length 2 concentrated in degrees 0, 1 -
and 2. The purpose of this calculation is to elucidate how the results of this
paper can be applied to calculate virtually any other Doid—Pup_pe complex.

" We now describe Chapter 2 in greater detail.

In [K6] Kock made predictions for the derived functors of Sym®. In
section 2.7 we give a partial proof of these predictions. To produce this partial
proof we use a method Kock discovered which tells us that two functors are
isomorphic if they agree on certain data given by their cross-effect functors
(see section 2.6) i.e. we show that some of the preconditions of the relevant
theorem holds. The earlier sections of Chapter 2 introduce the various tools
we use in this calculation. o

Section 2.1 introduces a spectral sequence for the functor hypertor, which
allows -us to calculate the horﬁology of the tensor product of two chain com-
plexes that we know the homology of. Section 2.2 introduces Koszul com-

plexes which we use both as projective resolutions and also to define Schur
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functors of hook type. Schur functors are introduced in section 2.3, they are
important because Kock’s predictions are given in terms of Schur functors -
and also because of their role in the Cauchy decomposition of Sym*(F®G).

In [ABW] a filtration is put on Sym"(F ® G), the successive quotients of
which are isomorphic to modules of the form L)\(F ) ® Lx(G) where X is a
partition of weight n, and L, is the Schur functor of shape A. This is known
as the the Cauchy decomposition of Sym™(F ® G). This decomposition
gives us a number of short exact sequencés that allow us to calculate the
information that we need about the first cross-effect functor of the derived
functors of Sym3. ‘ ’

In section 2.4 we introduce the Eilenberg-Zilber Theorem and extend it
to suit our needs. The Eilenberg-Zilber theorem gives a suprising homotopy
equivalence between the diagonal of a bisimplicial complex and the total
complex of the associated double complex. We will use it extensively in our
calculations in’éection 2.7. |

In section 2.7 we perform the calculations that give us our partial proof.
Let R be a Noetherian commutative ring and let I be an ideal in R which
is locally genera’ced by a regular sequence of length 2. Let Gj be the &
derived functor of Sym3.

In [K6] Kock made the following predictions about the functor Gy, if V
is a finitely generated projective R/I -modﬁle then:

(

Sym?3(V) k=0
Ley(V)® I/ k=1

Gu(V) = Loy(V) R I/IP@AX(I/1%) k=3
D3(V) @ A%(1/1%)®2 k=4

Lo | - k>5
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and for the case when k& = 2 he suggests that there exists an exact sequence:

0—>D*(V)®V ®A2(1/12) — HyN Sym®T(P.(V))
— A*(V) ® Sym*(I/1%) — 0,

where D? is the " divided power functor. For any non-negative integer k
that is not equal to 2 we let Fj be the functor that Kock predicted for G

to be. We let F, be any functor that fits in a short exact sequence
0— D(V)@V @A (I/I%) — Fy(V) = A¥V) ® Sym*(I/1?) — 0.

Provided that I is globally generated by a regular sequence we prove that
Gi(R/I) = Fx(R/I) i.e. that these predictions hold if V = R/I. Moreover,
regardless of whether I is globally generated or not, we prove a similar
statement for the higher cross-effects of G and F) namely that for all k

and [ > 1 we have
cri(Ge)(R/I,...,R/I) = cr)(Fy)(R/I,...,R/I).

These results are a major step toward allowing us to apply Theorem 2.6.2
to the functors Fj and Gy, which will show that the predictions are true in

general.

Notatibns

Let A be the category whose objects are the finite totally ordered
sets [n]:={0<1<..<n} where n € N and the set of morphisms,
Mor([n], [k]), between [n] and [k] consists of all the order preserving maps
between them. Recall for each. ¢ € {0,...,n} the face map ; : [n — 1] — [n]
is the unique injective order preserving map with §;'(i) = @ and for each
i € {0,...,n — 1} the degeneracy map o; : [n] — [n — 1] is the unique

order preserving surjective map with o;'(i)-= {¢,i + 1}. For a category
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A, a simplicial object A in A is a contravariant functor 4 : A — A. We
write A, for A([n}), d; for the face operator A(d;) - A, — A,_q, s; for
the degeneracy operator A(0;) : An_y — A and Sur([n], [k]) for the set of

surjective morphisms between [n] and [k].




Chapter 1

An Algorithmic approach to
Dold-Puppe complexes

1.1 Partitions and composition with face

maps af;d degeneracy maps in A

For the whole of this section let us fix the natural numbers n and £. In
this section we introduce an ordering on Mor([n], [k]), investigate the maps
z — z6; and y — yo; between Mor([n],[k]) and Mor([n — 1], [k]) and
show that these maps behave in a nice way with respect to the ordering on
Mor([n], [K)).

This ordering will be used again throughout this paper. In chapter 1.2
it will allow us to describe algorithms that streamline the calculation of the
face and degeneracy operators in the simplicial complex I'(C.). In chapter 4
the ordering will be used to define the notion of honourability, and thereby

to help us give a description of the Dold-Puppe complex NFI'(C.).

Definition 1.1.1. Let an n-tuple z := (z1,...,z,) € N be called a par-
tition of m bf length n if > 2 = m. If each z; # 0 we call it a proper
partition, otherwise we call it an improper partition. We write z; for the it}

entry of z.
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A function f : [n] — [k] is determined by the following sets f~1(0),
f7YQ), ..., f7Y(k). If f is a monotonically increasing function then the sets
f710), f71(1), ..., f7!(k) consist of consecutive elements of [n]. Because
of this it is sufficient to know the sizes of these seté to determine an element
~of Mor([n],[k]). Hence we can think of a morphism f : [n] — [k] as a
partition of n+1 of length £+ 1. A surjective morphism would correspond
to a proper partition and a non-surjective morphjsm would correspond to an

improper partition.

Notation 1.1.2. For a morphism‘ f in Mor([n], [k]) we write f* to denote
the following partition obtained from f, (|f~*(0)[,[f~*(1)],...,[f~*(n)]).
Note that f = |f~1(i — 1)].

Lemma 1.1.3. |Sur([n], [k])| = (})

Proof. If f : [n] — [k] is a surjective morphisrﬁ then the sets f~1(0),
f~X1), ..., f~}k)-are non-empty, disjoint, their union is [n] and each
set consists of consecutive elements of [n]. So if we know the smallest ele-
ments of f‘l(i), Y2, e F7Y(k) then we have determined f. Since we
know 0 € f~1(0) the smallest elements are in the set {1, ...,n}. So there are
as many elements of Sur([n],[k]) as there are ways of choosing k elements

from a set of size n. - 0O

Notation 1.1.4. For i € {0,...,n} define 3; : Mor([n], [k]) — Mor([n —
1],[k]) by z — zé; and for i € {0,...,n ~ 1} define 7, : Mor([n — 1}, [k]) —
Mor([n], [k]) by y — yo;. (See diagram below). By abuse of notation we
write Im(7;) for &;(Sur([n], [k])).

Note we will ocassionally extend these finctions to partitions in the ob-

vious way.

ey -1
[n] —— [K] [n] —— k]
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Lemma 1.1.5. Forall i € {0,...,n — 1} we have 0;0; = id, and hence &;

is injective and b; 1s surjective; also 6, is surjective.

. Proof. Result follows directly from ¢;6; = id for i.€ {0,...,n—1} and from
' Un—lén =id i O

Since knowing the effects of 6; and &; are essential in calculating d; and

s; it is useful to have a quick way of working out (z4;)* and (zo;)* from z*.

Lemma 1.1.6. (a) For each i € {0,...,n — 1} we have (zo;); = z} unless
Z::ll zr, <i+1< Zin:l x;, in which case (zo;); =xf + 1.

(b) Also for each i € {0,...,n} we have (z6;); = 'xi* unless S a4k <
i+1<S' . x* in which case (z6;)f =z — 1.

m

Proof. Recall for every f we have f* = |f~'(1 —1)| and (zo;)7'(I-1) =
07 'z7(1 — 1). Recalling o; is the unique surjective map [n — 1] — [n]
with o7 '(3) = {i,5 + 1} we see |(zo;)7 (I — 1)| = |z~(l — 1)| if and only
if i ¢ (1 —1). If i € 27'(1 —1) then (zo3)] = [(xoy)™'(I —1)| =
|z71(l = 1)| + 1 = 2} + 1. Remembering that i is the (i + 1)™ element of
[n] we get our result concerning ;.

We similarly get our results for 9;. ' O

Corollary 1.1.7.. For all i and fof all z € Sur([n], [k]) the map z6; is not
surjective if and only if there is some | € [k] with z71(I) = {z}.

Proof. Obvious. | . O

Lemma 1.1.8. Let z € Sur([n], [k]) and let i € {0,...,n}. Suppose that
xd; 1is not surjective. Then write z6; = ;& for some & € Sur([n—1}, [k —1])
and some j € {0,...,k}. We have i =0 if and only if =0

Proof. Suppose zd8y = §;2 for some Z € Sur([n — 1],[k — 1]) and some
j # 0, then the above corollary tells us that z71(0) = {0}, so we see that
£60(0) = z(1) = 1. But because & is surjective &;3(0) = §;(0) = 0, So we

have contradiction.
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" Suppose zd; = §pz with ¢ # 0 then, recalling z is surjective z6;(0) =
z(0) = 0. But 8,2(0) = 89(0) = 1, so we have a contradiction. O

Definition 1.1.9. Let a be a partition of length k. If z is a partition of
length | < k with z; = a; for 1 < i < [ then we call z an initial bartition
of a. We write a = (z,y) where y is the partition of length k¥ — [ defined
by y; = ai4y for 1 <1<k —1. (Note we may allow either z or y to be the

empty partition, so a is an initial partition of itself).

If ¢ and b are both partitions of the same number over the same number
of places and z is an initial partition of both then we call x a common initial
partition of a and b. Because a and b are of finite length there must be some

longest common initial partition (even if it is of length 0, or it is equal to a).

Definition 1.1.10. If z is the longest common initial partition of a = (z,y)

and b = (z, z) then we say a < b if and only if y; < 2.

This gives the lexicographic ordering on the partitions and we use it to

define an order on Mor([n], [k]) also.

Proposition 1.1.11. For each i € {0,...,n — 1} the map G; : Mor([n —
1], [k]) — Mor([n], [k]) is strictly order preserving.

Proof. Suppose z,y € Mor([n — 1],[k]) and z < y. Let a be the longest
common partition of z* and y* and set z* = (a,b) and y* = (a,c). Lemma
1.1.6 tells us that (zo;)] = z} for all | except one and for that [ we have
(zo;); =z + 1. Let L stand for the ! for which we have (zo;); = 27 + 1.
We will show that whatever the value of L we have (z0;)* < (yo;)*. Let p
be the length of a. ‘

If L < p then we have (zo;)* = (a/,b) and (yai)*': (a/,c) for some a’.
Since we know b; < ¢; we have (z0;)* < (yo;)*. ‘

If L > p then we have (zo;)* = (a,¥) and (yo;)* = (a, ¢') for appropriate
b and c'.

If L>p+1 then b =b <c; <d| so (zo;)* < (yo;)*.
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If L =p+1 then we have b, = b; + 1 Let m be the number a is a
partition of. We have m <i <m+b; < m+c¢;, thus the value of I we have
- (yoi)] =y; +1 for is also p+ 1. Therefore b) = b +1 < ¢;+1=c} and so
we get (zo3)* < (yoi)*. ‘ O
- Notation 1.1.12. For i € {0...,n} let S} := {z € Sur([n], [k])|z* has an
initial partition of 4 + 1} and for a a partition of i +1 let S}, == {z €
Sur([n], [k])  z* ‘begins with a}. |

Obviously 87, C 87" and U,S7, = SP where a ranges over all partitions

of 7+ 1 of whatever length.

Lemma 1.1.13. For each i € {0,...,n—1} we have |S}| = (7-1) - Also for
each i € {1,...,n — 1} we have |, S, | = (1=2) where 2 ranges over
all partitions of i and finally ||, Smnl = (Zj) where z ranges over all
part_z'tz'_ons of n.

Proof. For i € {0,...,n~ 1} if x € S? then, for some {, we .have i is the
maximal element of z7!(l). Furthermore we know that n is the maximal
element of z7!(k), therefore choosing an element z of S amounts to the
same as choosing the maximal elements for all but one (since we already
know one meximal element must be i) of the sets z71(0),...,z7}(k — 1) °
\ from the n — 1 remaining elements of [n]. Therefore |S?| = ()

For i€ {1,...,n—1} if z € |J, 5], ;) then for some [ we have i—1 is the
maximal element of z7!(I) and also 4 is the maximal element of z71(I + 1),
i.e. choosing an element = of U, St (1) amounts to the same as choosing the
maximal elements for all but two of the sets z71(0),...,z7*(k—1) from the
n — 2 remaining elements of [n]. Therefore ||, 57, 1| = (7).

For the remaining statement we merely observe that |J, Sy, ;) = Spy
and use the first result. ]

Theorem 1.1.14. For each i € {0,...,n — 1} the set Sur([n],[k]) is the

disjoint union of S} and_Im'a'i :

Sur([n], []) = S" I Im &,
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Note SJ = Sur([n], [k]) and there is no map @,.

Proof. First we prove S and Im@a; are disjoint. Let z € Sur([n], [k]).
The partition z* has an initial paftition of ¢ + 1 if and only if there is
some ! such that 7 is the maximal element of z7!(I) (remember 7 is the
(i 4+ 1)™ element of [n]). If ¢ is the maximal element of z=({) then i + 1
is the minimal element of z7'(l + 1) which means z(¢) # z(i + 1). But
z € Im7; means that for some y € Sur([n — 1],[k]) we have z = yo;. So
z(i) = yo;(i) = y(i) = yoi(i + 1) = z(i + 1) therefore = cannot be both in
Sp and ; Sur([n — 1], [k]). ’
Now we prove that the union of S and Imo; form the whole of
Sur([n], [k]) by using a counting argument. We know that SPNIma; = 0 so
|SPUImT;| = |SP| + | Im&;|. Lemma 1.1.5 tells us that @; is injective, from
this we see that [SP*| + |Im@;| = |S? + |Sur([n — 1],[k])| and by Lemmas
1.1.3 and 1.1.13 we see that |SP|+|Sur([n—1], (k)| = D)+ (") = () = .
| Sur([n], [K])] - - o

Proposition 1.1.15. For all i € {0,...,n— 1} we have &; is strictly order "
preserving on both Im%; and S*, also &, is strictly order preserving on
Sur([n], [k]) = St

Note that while &; is order preserving on these ‘two complementary sets
of Sur([n], [k]) it is not order preserving on the whole of Sur([n], [k]), for an

illustration of this look at the calculation in section-1.2.

Proof. That §; is order preserving on Imo; follows from directly Lemma
1.1.5 and Proposition 1.1.11.

Let z,y € SI' with z < y, a be the longest common partition of z* and
y*, set z* = (a,b), y* = (a,c). Lemma 1.1.6 tells us that (yd;); = y; for all
[ except one and for that 1 we have (yd:); = y; — 1. Let L stand for the [
for which we have (yd:i); = y; — 1. We will show that whatever the value of
L we have (z6;)* <.(yd;)*. Let p be the length of a.
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If L < p then for appropriate a’ we have z* = (a',b), y* = (d/,¢), so
since we know b; < ¢; we have (z6;)* < (yd;)*.

If L > p then for appropriate b’ and ¢’ we have z* = (a,V), y* = (a,¢).

Let m be the number a is a partition of. If L > p+1 then i+ 1 >
m +c¢; > m + by so the | for which we have (26;); = z; — 1 is also greater
than p+1. So since ¢} = ¢; > by = by we have (zd;)* < (yd;)*.

If L =p+1 then by Lemma 1.1.6 we see that m < 7+ 1. Recalling
y* begins with a partition of ¢ + 1 and using Lemma 1.1.6 again we see
t+1=m+c. Weknow b < ¢ s0o t4+1 =m+c > m+ by, so
the [ for which we have (24;); = 7 — 1 is greater than p + 1. Therefore
bi=bi<ca=c +1,s0b <c;+1,ie b <.

If b < ¢} we have (z6;)* < (yé;)*.

If by =cj then by =bl=cl=c;—1=(i+1—m)—1=1i~—m, recalling
z* begins with a partition of ¢+ 1 we see by = 1. Therefore by Lemma 1.1.6

by =0 < ¢y = ¢y so we see (z6;)* < (yd;)*. . : O

1.2 The face and degeneracy operators in the
simplical object I'(C')

For an abelian category A the Dold-Kan correspondence gives two mutually
inverse functors ' and N between the category of bounded chain complexes,
Chso(A), and the category of simplicial objects in A, S.A. For a chain
complex C. € Chso(A) the functor T'(C.) is usually defined by T'(C.), =
Dr—o Poesur(pry ) Ck- So T'(C.) contains |Sur([n], [k])| copies of C} and
these copies are indexed by elements of Sur([n], [k]).

The effect of the degeneracy operator s; : I'(C.)p-1 — I'(C.), on the
copy of Cj, indexed by u € Sur([n — 1], [k]) is to identify it with the copy of
Cy € T(C.), indexed by &;(u) (c.f. Notation 1.1.4). _

The effect of the face operator d; : I'(C.),, — F(C’.);,,l on the copy of Cj
indexed by u € Sur([n], [k]) depends on the nature of &;(x) (c.f. Notation
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1.14):

e If 6;(1) is surjective then Cj, is identified with the copy of Cy indexed
by 8i(u);

o if §,(u) is not surjective and 8;(u) = ;i for some 1 € Sur([n— 1], [k~
1]) and for some j # 0 then Cj is mapped to 0;

o if (1) is not surjective and 8;() = oft for some i € Sur([n—1],[k—
1]} then d maps the copy of C) indexed by u to the copy of Ck_1
_indexed by /i with the same action as the differential of C. .

This can be éxpressed more concisely in symbols rather than in words. For
p € Sur([n], [k]) we write Cj,, to denote the copy of Ck in €D, esur(n) ) Ck
that is contributed by p and also, for m € Ci, we write .(m, ) to denote

m € C,,. The face and degeneracy maps in I'(C.) are defined as follows:

si(m, p) := (m, ()

(m, 6;(u)) if 0;(p) is surjective
di(m, p) = { (8(m), i) if 8:(p) = o with i € Sur([n — 1], [k — 1])
0 if 8:(1) = 6;/1 with i € Sur(jn — 1), [k — 1]),5 # 0
~ The object of this section is to rewrite these expressions using results
fr(;m the previous section and thereby make the calculation of these operators
simpler. |

Lemma 1.1.3 tells us that for natural numbers n and k

). =cd @l P ..
(note this is always a finite sum, since if k£ > n then (}) = 0) again each
copy of Cj indexed by the element of Sur([n], [k]) that contributes it. But

now we can use the ordering defined in Section 2 on Sur([n], [k]) to order

the copies of C}. Because of this we will tend to use the ordinal associated
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to p € Sur([n], [k]) instead of u to index a copy of Cg, i.e. if u is the m®®

element of Sur([n], [k]) we will usually write Cj, instead of Cj .
Combining various results from the previous section we get the following

proposition which allows us to simplify the cases. We write A® for the

complement of A in the set Sur([n],[k]).

Proposition 1.2.1. For n,k > 0 the following statements hold:

(a) . (i) for each i € {0,...,n — 1} the sets Sur([n — 1],[k]) and (SP)°
have the same cardinality;

(ii) for each i € {1,...,n} the sets S;\' and SP\J, S}, ) have the

same cardinality (where z ranges over all partitions of © of length

k or less);

(i) the sets S§ and Sur([n — 1],[k — 1]) have the same cardinality.

(b) For each i € {0,...,n— 1} the map &; : Sur([n — 1], [k]) — Sur([n], [k])
sends the 1™ element of Sur([n — 1], [k]) to the I element of (S?)C.

(c) (i) For each i € {0,...,n} and z € Sur([n],[k]) the morphism &;(z)
is a non-surjection if and only if x € |, Si(z1) where z ranges
over all partitions of © of length k or less. '

(i) If z € S? then for some % € Sur([n — 1], [k — 1]) we have do(z) =
So& . Moreover the map x ~— % acts on SP by sending the ™

element of ST to the 1™ element of Sur([n — 1], [k — 1]).

(i) For each i € {0,...,n — 1} the map §; : Sur([n], [k]) — Mor([n —
1],[k]) acts on the set (SP)C by sending the I element of (S7)°
to the I element of Sur([n — 1], [k]).

(iv) For each i € {1,...,n} the map &; : Sur([n],[k]) — Mor([n —
1], [k]) acts on the set SP\U, S 1) by sending the I*" element of
S\ U, SP,,y to the I element of SP .

i,(2,1)

Proof. Part (a) of this proposition ensures that the later statements are

well defined. Part (a) (i) follows from Theorem 1.1.14 and the injectivity
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of 5; (Lemma 1.1.5). Lemma 1.1.13 tells us that for i € {1,...,n =1}
we have |SP| = (}Z;) and that [{J, Stenl = (7~2), and therefore
ISTAUL Stenl = (2:1) - (Z:g) = (Z:f) = |S™ ! (the final step is given by
Lemma 1.1.3). Furthermore S? = Sur([n], [k]) and by Lemma 1.1.13 we see
that |U, Sp .l = (i23) so ISTAU, Shenl = () = G2) = ("0) = 1S3
(the final step is given by Lemma 1.1.3). So we have shown part (a) (ii) of
the second half of this theorem for all ¢ € {0,...,n}. The remaining part of

part (a) follows from Lemmas 1.1.3 and 1.1.13.

Part (b) is seen by applying Proposition 1.1.11 to part (a) (i).
- Letie {0,...,n} and a be a partition of ¢+ 1 of length p. Define o
by a;j=a; for I <p and a] =a;— 1 for | = p. Lemma 1.1.6 tells us that
if z = (a,b) then 3§;(z) = (d/, b)i. So if a, > 1 then &;(z) € SP' (note
that this case never occurs for ¢ = 0 since if ¢ = 0 then a = (1)). On the
other hand we have &;(z) = (a’,b) is a non-surjection if and only a, = 1,
and hence we have part (c) (i). of this proposition.

If we take € S} we have (by Lemma 1.1.8) &o(z) = &2 for some
# € Sur([n—1],[k—1]). For any morphism y we see that do(y(l)) = y(I)+1
so (8oy)* = ((0),y*). So the map z — Z takes a morphism whose associated
partition is of the form (1, :i) to a morphism whose associated partition is
% and thus this map is strictly order preserving. So using (a) (iii) we get
(c) (ii).

By applying 8;5; = id (Lemma 1.1.5) to part (b) we get part (c) (iii).

Now the remaining statement follows by applying the fact that for all
i € {1,...,n} &, is strictly order preserving on S (Proposition 1.1.15) to
part (a) (ii) of this statement. | o O

Theorem 1.2.2. Let n> 0.

(a) Let i € {0,...,n—1} and let ¢ = (Ck’l)k=0’m7n_1;l=1,m,(ngl) e T(C)p-1-
Write si(c) = (bki)i—

relations:

nii=1,..,(7) € ['(C.), then we get the following

7777
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(i) If the 1™ element of Sur([n], [k]) is the m™ of (SP)C then by =
Ck,m 5

(i) If the 1™ of Sur([n], [k]) is an element of S* then then by, =0.

() Let ¢ = (eki)co,..mger,.. (z) € D(Cn-

aaaaa k

111111111

lowing relation: by, = O(cpy11) + ¢, L
. k-1

(c) Let i€ {1,...,n—1} andlet c= (Ck,l)k=o,...,n;z=1,...,( ) € I'(C.),.

n
k

:::::::::

lowing relations:

| (z) If the U™ element bf Sur([n — 1], [k]) is the m™ element of S77
then biy = Cra@) + Crpom) Where a(l) is the ordinal associated to
the 1™ element of (S?)¢ and B(m) is the ordinal associated with
the m*™ element of SP\ U, S7,1y5
(i3) If the 1™ element of Sur(jn — 1],[k]) is an element of (S;'')°
then by, = craq), where a(l) is the ordinal associated with the [t
element of (SP)°.
(d) Let c = (ck,l)k:'o,;wn;l=1w(n) ET(Cn.

k

Write dn(c) = (bit)p—o, . n_14=1 ) € [(C.)p-1 then we get the fol-

-1
7777 k
lowing relation:

If the 1™ element of Sur([n], [k]) is the m*™ element of Sy \ U, Sy 1)

then bk:,m = C,l -
" Proof. This is a direct corollary of Proposition 1.2.1. ' a

When using Theorem 1.2.2 we can instantly describe the action of dy
(part b) but to describe the action of the other face operators and the
degeneracy operators we need to do some calculation. For each n that

we are concerned with (thé position in the simplicial complex) and each
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k€ {1,...,min(n,l)} (where [ stands for the length of the chain cbmplex)
we need to know the sets S7' and S7\ U, S}, for each i € {0,...,n}.
So for each m and k& we draw a table to help us determine these sets (see
Example 1.2.3 below). The columns of the table we label by the possible
~values of 7 (0 through to n). The rows of the table we label with both the

partition and the ordinal associated with the elements of Sur([n], [k]).

If a cell in the tablé has its column labelled by 7 and its row is labelled
. by a partition z* that has an initial partition of ¢ +1 then we mark the cell
 with a x mark, if that initial partition ends with a 1 then we also mark the
cell with a *. So if a cell is marked with a x mark then the surjection z is
an element of the set S, if the cell is also marked with a * then z is an
element of the set |J, S,

Having made the tables for n we can use Theorem 1.2.2 (a) - to calculate
the degeneracy operators So,...,8p—1 : I'(C.)p-1 — I'(C.)n. If we have
already made tables for n—1 then we can use Theorem 1.2.2 (c) to calculate
the face operators dy,...,d,—1 : I'(C.), — F(C.)n_l and Theorem 1.2.2 (d)
to calculate d,, : F(C’.)n"’—> I'(C)n-1-

For i = 1,...,n we (obviously) have that 2 # n+ 1, but {(n + 1)} =
Sur([n],[0])*. So Theorem 1.2.2 (c) tells us that for each i € {1,...,n}
the face operator d; acts on the single copy of Cy in I'(C.), by sending it
identically to the single copy of Cy in I'(C.),_;. Similarly Theorem 1.2.2
(a) tells us that each of the degeneracy operators act on the single copy of
Cp in I'(C.)n—1 by sending it identically to the single copy of Cy in I'(C.),.
So often we won’t bother to repeat describing the action of d; on the copy

of Cy when 7 # 0, or the action of any 'degenerécy operator on Cjp.

Ezample 1.2.3. To help elucidate these results we now look at the chain
complex of length 2 C — B — A placed in degrees O, 1 and 2 with differential .
0. For each n € {0,1,2,3,4} we calculate all the degeneracy maps s; :
'C—-B— A), - T'(C - B— A),,; and all the face maps d; : I'(C —
B = A)y1 = T(C = B — A),.

Observe that Theorem 1.2.2 (c) tells us that for 4 € {1,...,n} (i.e. when
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i # 0) the face operator d; : I'(C — B — A), —» I'(C - B — A),_; acts by
sending copies of C' to copies of C, copies of B to copies of B and copies of
A to copies of A, i.e. the differential J plays no role. So when 7 # 0 we’ll
describe the action of d; on the copies of C, B and A seperately. Theorem
1.2.2 (a) tells us that all the degeneracy operators act similarly. So we’ll

describe the action of s; on the copies of C, B and A separately. .

For n =1 we get the following table:

o 1]

1(1,1)}><’><*

So the face operator d; between I'(C — B o A =B A and NFT(C —
B — A)g = A acts by: ‘

dl : (bl) > 0.

The face operator dy between I'(C — B — A); = B®A and NFT(C —
B — A)y = A acts by:

do s (b1,) = (a+O(br)

For n = 2 we get the following tables:

o 1]

X

RTINS
1(1,1,1) | x | x*

?

2 (2,1)

2
X *

X
X

*

X

A

So the face operators di,d, between and F(C’ —+B—-Ay=CoB*’09A
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and I(C — B = A)y = B® A act by:

The face operator dy between I'(C — B — A); = C & B?® A and
I'C—B— A); =B® A acts by:

do - (c,b1, b, ) > (B(c) + by, B(by) + a)

b

The degeneracy operators sg, s; between I'(C' — B — A); = B ® A dnd
" T(C—B— A);=C®B?*® A act by:

s0 - (b1) — (0,by)
s1: (b1) = (b1,0)

For n = 3 we get the following tables:

0111213 101 2 |3
(1,3) | x X 1(1,1,2) | x | x* X
2,2) X X 2(1,2,1) | x X | x*
3,1 X | x* 3(2,1,1) X | x*| x*

So the face operators dy,dy,ds between I'(C — B — A)3 = C*® B9 A
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and I'(C' — B — A); =C® B*® A act by:

dy :
dy :
ds
dy :
dy :
ds :

blab27 b3
b1, by, b3

) by + by, bs)
)
b, by, b3)
c3)
cs)
)

(
(b1, ba + b3)

(b1,ba)
(
(
(

—
I—)
—
>

1, Co + Cg)

27 C3
25 =

c
C1,C9,C3 61+CQ)

(
(
(
(
(
(c1,¢9,¢3) — (c1)

The face operator dy between I'(C — B — A); = C*® B* © A and
I'(C—>B—A)y=C®B?® A acts by:

do : (Cl, Ca, C3, b1, b, b3, CL) — (03, 6(01) + bo, 8(02) + b, 8(b1) + a)

The degeneracy operators sg,s;,s; between I'(C — B — A)s = C @
B2®Aand T'(C— B — A)z3=C*®B3® A act by:

S0 ¢
81 ¢

83 .
8

(

(

(
so: (a1

(

(

S9 1
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For n = 4 we get the following tables:

011 (2 [3 |4

01|23 |4 1(1,1,3) | x | x* x

S 1(1,4) | x | x 2(1,2,2) | x X X
2(2,3) X X 3(1,3,1) | x X | x*
3(3,2) X X 4(2,1,2) X | x* X
4 (4,1) X | x* 5(2,2,1) X X | x*
6 (3,1,1) X | x* | x*

So the face operators di,dy, ds, ds between I'(C — B — A)y;=C° @B A
and I'(C — B — A); =C*® B3® A act by:

~

d; : (bl,bg,bg,b4) — (by + ba, bs; bs)
dy : (b1, b, b3, by) — (by, by + b3, by)
dsz : (by, by, b3, by) + (b1, by, by + by)
dy @ (by, _b2, b3, by) — (b1, by, b3)

d1 : (c1, ca, €3, Ca, C5,C6) > (c2 + €4, 03 + Cs, Ce)

= (
ds : (c1,¢2, €3, 4,05, C6) > (c1 + €2, C3,C5 + Cg)
ds : (61,62,03,64,05,06) > (c1,c9 + €3,¢4 + Cs5)
(

dy : (c1, €2, €3, €4, C5, C5) > (C1, C2, Ca)

The face operator dy between I'(C — B — A)y = C*® B*@® A and
I'(C—B— A);3=C*® B*® A acts by:

dO : (01)62)63704)c5acﬁab1) b2>b3a b4,(l) =

(c4,Cs,¢6,0(C1) + ba, O(ca) + b3, O(cs) + bs, O(b1) + a).

The degeneracy operators sg, s, sz, s3 between I['(C — B — A); =
C*oB*®Aand ['(C— B— A)y=C*@®B*® A act by:




83 °

Sg -
S -
89t
83 .
S -
S1 -

S9!
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(b1, bz, b3) = (0, by, by, by
(b1, b
(by, b
(b,
(c

2,b3)
2,b3

{

b1, be, 0, b3
b b2ab37 )

!

Il

(Cl,Cz, 3

1

(Cl, C2,C3

)
)
)
)
c1,C,¢3)
) =
)
)

(01,02,63 — (c1,¢2,0,c3,0, 0)

For n =5 we get the followihg tables:

)
b 0 bg, 3)‘
)

0 Cl,Cg,O 0 Cg)

(

(

(

( |
(O O 0 01,02,63)
(
(c1,0,¢9,0,c3,0)
(

N =

Gt W N =
TN TN TN N N
Tt o~ W

01123 |4
5) | x
4) | | x
3) X
2) X
1) X

X X X X X |o

23
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and
: 01 2 3 4 5
1(1,1,4) | x | x* X
2 (1,2,3) | x X X
3(1,3,2) | x: X X
4(1,4,1) | x X | x*
5(2,1,3) X * X
6 (2,2,2) X X
7 (2,3,1)< X X | x*
8 (3,1,2) x* X
9 (3,2,1) X X | x*
10 (4,1,1) X | ox* | x*

So the face operators di, dg, ds, d4, ds between I'(C' — B — A)s = Clo
B5® A and I(C —- B — A)y=C®® B*® A act by:

dy : (b1, ba, b3, by, bs) — (by + bs, bs, by, bs)
dy (b b2,b3,b4, bs) — (b1, by + bs, ba, bs)
dz : (b1, b2,b3,b4, bs) — (b1, by, bg + by, bs)
dy : (b, by, ba, by, bs) ~ (by, by, b3, by + bs)
: (b, by, bs, by, bs) — (b1, by, b3, by)

dy : (c1, ¢z, c3, €4, C5, Cg, C7, Cs, Cg, C10 > (Cz + ¢s, ¢3 + Cg, C4 +.C7, C8,Co, C10)
dy : (c1, 02;03,c4,c5, Cs, C7, Cs, C9, C10) > (€1 + €2, C3, €4, C6 + Cg, C7 + Cy, C10)

c1,Cy + C3,C4,C5 + Cg, C7, Cy + ¢10)

ds : (ClaCza03,04,05706,07,'08,097010)
dy : (1, ¢, €3, 4, C5, Cg, Cr, C8, Cg, C10) H

=
— (c1, €2, €3 + ¢4, C5, C6 + C7,C8 + Co) ,.
(

ds : (c1, 2, €3, C4, C5, Cs, C7, C8, Cg, Cr0) > (€1, Ca, C3, Cs, C, Ca)

We know that T'(C — B — A)s = (C*® @& B> ® A) and also
that I(C — B — A)y = (C®°@® B*@® A). The face operator dy be-
tween [(C — B — A); and I'(C — B — A), acts by: sending
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the element (c1, o, ¢3, ¢4, Cs, Cs, €7, Cs, Co, C10, b1, ba, b3, by, bs, a) to the element
(cs, 65 €7, 8, Co, C10, O(C1) + ba, O(c2) + bs, O(c3) + by, I(cs) + bs, A(b1) + a)

The degeneracy operators sg, sy, 82, 83,54 between F(C’ — B — A)y =
C®°6B*® A and T(C — B — A)s = C1% B> ® A act by:

S50 : bl,bz,bg,b4) — (0, by, by, b3, by)
b1, bz, b, ba) — (b1, 0, by, b3, ba)
b1, be, b3, by) — (b1, be, 0, b3, by)
b b2,b3,b4) > (by, b, b3, 0, by)

b b2>b37b4) (blab27b3ab470)

S1 -
S9 .
83 !
S4 -
O 0 0 0 ,C1,C9,C3,C4,Cs,Cq
81 ' \C1,Co,C3,C4,Cs,Cq 0 01,02,03,0 0 0 C4,C5,C6 ‘
So .
53 €1, 62,0, ¢3,¢4,0, c5, 0, cg,

>
C1,C2,C3,C4,C5,Cq)
—

S4: c1,¢2,¢3,0,c4,¢5,0,c6,0,0

(
(
(
(
(
so : (1, ¢, C3, €4, C5, C6)
(
(
(
(

( )
)= ( )

€1, C2, C3, Cy, Cs5, Cg) — (€1, 0, o, 3,0, ¢4, €5, 0,0, cq)
cg) — ( 0)

)= ( )

Cl, Ca2, C3,C4, Cs5, Cp

1.3 Cross-effect functors

Recall a functor F' : A — B between abelian categories is calléd linear
if for all pairs of objects in A, B € ‘A we have the relation F(A @ B) =
F(A) ® F(B). For a nonlinear functor G : A — B, with the property
that G(04) = Og, the theory of cross-effect functors allows us to decompose
G(A @ B) into the direct sum of objects in B, and also gives us analogues
of other nice properties of linear functors. In this section I summarise some
results from the paper ‘On the groups H(II,n), II' [EM] that are relevant to
my work. |

For the rest of this section let G and 'H be commutative groups and
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f: G — H afunction.
Definition 1.3.1. We define the composition T on Z[G], the group ring of
G, by saying it acts on elements of G as follows
T:Z[G] x Z|G] — Z|G] . (1.1)
(1?1,302) — (z1 +¢ 562) —Z[G] (xl) —Z[G) (w2) (1-2)

where +¢g stands for addition in G and —zg stands for subtraction in
Z[G]. By requiring T to be distributive we define it on the whole of Z[G]

It can easily be seen that this composition T on Z[G] is associative. The

commutativity of +g means that T is also commutative.

Definition 1.3.2. (a) Extend f to Z[G] linearly i.e. as follows

where m; € Z,z; € G and call this extension f;

(b) The composition f(— T —) is called the first deviation of f and acts on

elements of G? as follows

Z[G) x Z|G) — H |
(z,y) = fx+cy) ~r f(z) —u F(¥),

the linearity of f on Z[G| and the distributativity of T means the first

deviation is linear in each variable and is distributive.

The first deviation of f is the zero function exactly when f: G — H
is a homomorphism,‘ so in some sense the first deviation of f measures how
close f is to being a homomorphism. The commutativity and associativity

of T mean that the first deviation of f is also commutative and associative.
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The associativity of the first deviation of f gives rise to a unique seconci,
third and further deviations, which will all be associative and symmetric and
linear in each variable. By induction we see that the (n — 1) deviation
f(=T...7T—): Z|G]* — H acts on elements of G™ as follows

flerT...120) = Z Z R flzy, 4 tezi) (1.3)
k=1 j1<...<jk
its action on the rest of Z|G|" is given by its multilinearity.
It is easy to see that the n'* deviation of a sum of functions is the sum
of their n™ deviations. B |
Rearranging f(z1y) = f(z +cvy) —u f(z) —g f(y) we get the following
equation f(z +¢y) =f(zTy)+nm f(z) +u f(y) and by induction we get the

following:

f($1+~-+56n)=z Z fleg 7. T25). (1.4)
k=1 j1<...<Jk : .
Lemma 1.3.3. If f(0) — 0 then f(z1T...T2,) = O whenever any of

Zi,...,Tn are 0.

Proof. Without loss of generality we may assume that z, = 0, then using

equation 1.3 we see:

flziT. Tl'n') = Z Z (- 1)n kf(le tag..- ta xjk)

k=1 1<..<Jk

= (=) flan)+
( S (=) f(zg He - FeT)F

k=1 j1<..<jp<n
-1

Z (—1)n'—k—1f(xj1 +g...+co Zj,. —+a xn))

k=1 j1<..<jp<n

The first term is zero by assumption, the two double sums are the same except
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for a change of sign, so the sum of these two is zero. Hence f (1T ... TTn) =
0. O

In an abelian category each Hom set is an abelian group. For the rest
of this section we will be applying what we have learned about deviations
to construct cross-effect functors. We let F': A — B be a functor between
an additive category A and an abelian category B with F(04) = 0g. The
condition F '(0 4) = Op is equivalent to the condition that the image of any

zero homomorphism in A4 under F' is a zero homomorphism in B.
" If we have fi,..., f, € Hom(A, B), then applying the definitions above
we see that F(fiT...Tfn) = Y pet 2:].1<.__<jk(——1)""“F(fj1 +.o o+ i)
The functoriality of F' and the distributativity of composition in an
abelian category tells us that for- g € Hom(B, B') and h € Hom(4’, A)

we get the following relations:

FO)F(fiT...Tfa) =F(gfiT-..79fn) (1.5)

F(fit- .7 f)F(R) = F(fihT...7 fuh).

Notation 1.3.4. Let A = A, & ... ® A,. For each non-empty set
a = {j; < ... < ji} that is a subset of {1,...,n}, and each j € a
we write: A% = @, Ar; ©* for the canonical injection A% — A;
p® for the canonical projection A — A%; y5 for the map A% — A%,
(@i, - a5) —(0,...,0,a;0...,0). _

When [ is a subset of a we write 1§ for the sum Zje g V5, in particular
we write Ygye for the sum ¢ +... + Y +... + Pn.

For convenience when a = {1,... ,vn} we suppress the superscript a on

Aa, and ¢§ for each j € a.

Because each A® is a direct sum we get the following relations for each

ac{l,...,n} and i,j € a:
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. e
goys = V7 10T (1.6)
0 ifitj
S Y =ida (1.7)
ko
Wy = P%Pop° | (1.8)

Definition 1.3.5. The n'® cross-effect of F is a functor A" — B. It acts
on objects by v

crn(F)(A1, ..., An) = F(Y1 7. T90)F(A).

For morphisms f; A1. — Bi,..., fa ‘:_ A, — B, the morphism
ctn(F)(f1,- .-, fn) is defined to be the following restriction

F(fi®...® fa): cta(F)(Ay, ..., An) — crn(F)(By, . .., By).

The action on morphisms is well defined because for each i € {1,...,n} -

the following diagram is commutative:

®D..Bfn
A f1 f B
Ys : i
A fl@m@fn B

where B = ©F_B; and u; is the map (by,...,b,) — 0,...,0,b;,0,...,0),
and hence F(fi ®.. .@'fn)F(wl;r.'..szn) =Flu 1. T F(1®... B fn)-

The fundamental property of cross-effect functors is the decomposition
they give of F' evaluated on a direct sum, as is shown in the following theo-

rem.

Theorem 1.3.6. For each subset o = {j1 < ... < jjq} of {1,...,n} write
(Aj,7 € a) for the tuple (A, ..., Aj,)-
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( a) The restriction
F(%) rerp(F)(A4j,j € a) > F(AL®... & Ay)

has kernel zero and image F(v;, T...Ttbj,a,-')F(A) ; the inverse of this
map 1is the map induced by F(p*).

(b) The image of the direct sum A under the functor F can be decomposed

into a direct sum by the following isomorphism

FAi®..0A,)= EB cr|a|(F)(Aj,j € a)

more precisely F(A) is the following direct sum

FlAi@..04,)= @ F@)cru(F)(4;,]€ ).

Proof. Since p*i® = id,, we see that F(p®)F(i%) = F(idA;). The following
shows that the restriction of the projection F(p*) to F(v;, T...T%;.)F(A)
has image cry(F)(4;,7 € a):

F@*)F (%5 1. T¥3)F(A) = F(p*)F(i*Y5p* 7. T} p*) F(A)
= F(p*)FE*)FW5 1. T45)F () F(4)
=F@5 1. 1Y) F(p™)F(A)
= F(5, 1. TY5)F(A%) = ene(F)(4;,] € @)

To see the inverse of F(p®) on crx(F)(4;,7 € @) is F(i*) we apply it to
both sides of the equation:

F(i%) cri(F) (45,7 € a) = FE*)F(p*)F (%, T-- - T¥3.)F(4)
= F(i"‘pai’ﬂj1 T...Tp%Y; ) F(A)

= F(j, 7-. . T¥3)F(4)
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So we have shown part (a).

We now show part (b) by showing that for every pair of sub-
sets a = {i1,...,i}, B = {j1...;5} of {1,...,n} the composition
Fiu 1. 7Y )F(W;, 7-..T¥;,) is zero if a'# B, and is F(¢y, ... T¥i,)
if o = (@ (i.e. we show that F'(¢;, T...T%;,) and F(¢;, T...T%;,) are or-
thogonal). ’_ ,

When o # 3 we can, without loss of generality, say there is some element

i € 8\ a. Applying equation 1.6 we see that

Fu 7 T¥) Py 7. T5)
= F(Ypvae T - T F(y 1. T¢5)
= F(u T T ) F (o) F by T T¥y)
=F(j, T T¥3) F(buyetby 1. T ety

By definition i ¢ a, so by equation 1.6 one of ey, ... s Yoy s zero.
Hence Lemma 1.3.3 tells us that this composition is zero.

Now from equation (1.4) we see that

F(ida) = F@r+ ...+ ) =3 Y Fl T---T5).

k=1 j1<...<Jk

and using part (a), which we have already shown, we. see that for any {j1 <

... < jj} that is a subset of {1,...,n} we get

Fy 1. T;) = F(y 7. T¥) Fida)

k::l ]1<<]k

ZZ Z Fbu 1. T F (s T+ T¥5)

k=1 j1<...<jk

= F(y 1. T F(y T Ty)




CHAPTER 1. Dold-Puppe complexes 32

i.e. the maps F(ur... T%’l’) form a complete set of pairwise orthogonal

projectors. O

Proposition 1.3.7. (a) Whenever any of the objects A; for j € {1,... ,n}

are the zero object then crp(F)(Ai,...,A,) is also the zero object.

(b) For each permutation m in Sy, the group of permuations of n, we get

the natural isomorphism:
CI‘n(F)(Al, - ,An) = CI‘n(F)(Aw(I), ce ,A'/r(n))-

Proof. For the first part we note that if A; is the zero object then 1; is the
Zero map.' Hence by Lemma 1.3.3 the map F(¢1 T7...T%n) is the zero map,
so its image, cr,(F)(Ay, ..., As), must be the zero object. :
Now we prove the second part. For each 7 € S, we also write 7 for the
ismorphism A;®... @A, — Arq)®. .. Ann) which acts by (ay,...,a,) —
(%(1), - ,0n(m)), and we write i) for the map A 1) & ... D Az —
Ar)D...®Axm that acts by (a1,...,an) — (0,...,0,83),0,...,0). Then

for each m € S, the following diagram is commutative:

AD.. DA, il Aﬂ(l)@...@A.,r(n)
i ' | Hr(s)
A®...®A, - Ay ® ... & Arn)

And so the following diagram is commutative:

£(m) F(Arq) ® . - ® Ar(ny)

FAi®...9A,)

F(%1 T..- T¥n) Fitn)y T T Ba(n))

cro(F)(As,. .., An)
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So F(m) induces a homoxhorphism between cr,(F)(A4s,...,A,) and
crn(F)(Ary, - - -, An(n)) - Because 7m~! = id4 we see that F(r) is actu-

ally an isomorphism. ' (I

Lemma 1.3.8. Suppose crp(F)(A,...,A) =0. Let B and C be modules.

Then for any n homomorphisms f; : A — B we have

FlAiT..Tfa)=0

and similarly for any n homomorphisms g; : C — A

FlgrT---Tgn) =0

Proof. Let d be the diagonal map A — A™. The morphisms fi,..., f,
define a morphism f : A" — B by f(a1,...,an) = fi(a1)+...+ fa(an). For
each ¢ € {1,...,n} let \;: A" — A" be the homomorphism which acts b};
(a1,...,an) — (0,...,0,0,0,...,0). Now f; = fAd. So we get

F(fiT...Tfa) = F(f-)‘.ldT---va)‘nd) =F(f)FMT-..TA)F(d)

but 0 =crp(F)(A4,...,A)=FM\T...T\)FA") =0s0 F(MT...TA) =
0 hence we see the first part of the result.

Define the map +, : A™ — A4, (a1,...,a,) — Y., a;. The other half
follows similarly by noting that ¢;,...,g, define a map g : C — A™ by
9= (1®...®9g,)d, and that g; = +,\ig and following through the argument

given above. . : o

Theorem 1.3.9. Let n be a non-negative integer. The following are equiv-

alent conditions on the functor F :

(i) the functor cr,(F) is the zero functor;

(i1) for every M,M' € A and any morphisms f1,...,fn : M — M" the

morphism F(fiT...T fa) is the zero morphism;
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(111) for every M € A the object crp(F)(M, ., M) is the zero object.

Proof. The first clearly implies the third part. Given the third part we can
see the second part by using the above Lemma, taking A = M, B = M’ and
fi,--., fn the maps between them. Given the second part we can see the
first if we take M = M' = A and f1,..., f, tobe ¥1,...,¢,. O

Definition 1.3.10. If F' satisfies any of the conditions in Theorem 1.3.9 then
we say that F' s a functor of degree less than n+ 1. If a functor is of degree
less than n then, because of the iterative way that deviations are defined,
it is also a functor of degree less than n + 1. So every covariant functor
between A and B that sends the zero é)bject in A to the zero object in B
has a well-defined degree. The degree of a functor is either a non-negative

integer or infinity.

Proposition 1.3.11. Let o = {i1,...,4} be a subset of {1,...,n}. Let E
be a functor A* — B which is zero whenever any of its arguments is zero.
Let gy : BE(4;,,...,Ay) — F(A1®...® A,) be a homomorphism which is
- natural when both sides are regarded as covariant functors from A" to B.

Then we have the following inclusion:
9E(Ay,...,Ai) CFWi, T... T )F(A)

Proof. For each ndn—empty éubset 08 of a and each j € a. define morphisms
X A;— A; by X =idy, if j€ B and X =0 if j & 8. Then because g,

is natural the following diagram is commutative for each .

E(A, ..., Ay) g F(AL®...®A)
B, A)) . F(Sie5%5)
E(A;, ..., A) ™ FAi®...94,)
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Because of this commutivity by adding in signs we get the following sum:

9o Z(‘Il)lahlﬂlE(AZa T Afk) = Z(_1)|0|—|ﬂ|F(Z wj)ga

BCo _ BCa JEB

=F(i, 7. T%i)%

Now if 3 is a proper subset of o then E()\f1 yoee ,)\ﬁ ) is zero, as one argument
is zero. If 8 = o then E ()\f1 ey )\fk ) is the identity as each argument is the
identity. Hence we get go = F(¢i; T--. T i, )Ja» a8 required. O

Corollary 1.3.12. Let E be a covariant functor between A and B. Let

h: E— F be a natural transformation. Then the n_atuml homorphism
hA1®...0 A : E(Al.ea..:@An) - FA®...0A)
induces a natural homomorphism
crp(E)(AL, ..., Ay) = crp(F) (A, ... ,A,;).

Proof. By definition cr,; (E)(A1, ..., Ay) is asubmodule of E(A;®...®A,).
Hence the injection of crn(E)(Al, ., Ap) into E(A1 ® ... @ A,) is a
natural transformation, composing this with the natural homomorphism
h(A1@...®A,) : E(A1®...®A,) - F(A1®.. . ®A,) we get anatural homo-
morphism between cr,(E)(Ay,...,A,) and F(A; © ... ® A,) that satisfies
the conditions of the above Theorem. So by invoking the above Theorem we
get a natural homorphism cr,(E)(A1, ..., A,) — crp(F)(A;1,..., 4,). O

The following theorem gives us a characterisation of the cross-effect func-
tors of F' by their appearance in a direct sum decomposition as in Theorem
1.3.6.

Corollary 1.3.13. For each subset o = {j1 < ... < jioi} of {1,...,n}
write(Aj,j € a) for the tuple (A;, ..., 4;,,), and for each a let Ey be a

covariant functor between Al®l and B, which is zero when any of its argu-
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ments is zero. If we have a natural isomorphism:
h: @ Eoldjjca)XF(Ao... ®A)
' ac{l,...,n}
then the natural transformation h maps each of the E,(A;,j € o) isomoph-
s ) F(Ar, ..., An). Hence we get the natural 1somor-

ically to F(vy, ..
phism:
F(p*)h : Eo(Aj,j € a) — crio(F)(4;,7 € a)

Proof. Theorem 1.3.6 and our assumptions give us the pair of direct sum

decompositions:
. h '
P E4jjca)2FlAo.. &A)
ac{l,..,n}
. 13.6 . '
2 P FMy,. ) F(AL. ., AR)
ac{l,..,n}
but Theorem 1.3.11 tells us that for each «
hEa(Aj,j € O!)CF(ijl, ,lbjlal)F(Al, e ,An)
so we see that for each o we have the isomorphism
LAY

h: Ea(A]a] € a) - F(d}ju R )¢j|a|)F(A1’

Now applying 1.3.6 (a) get the isomorphism
F(p*)h: Eox(Aj, 5 € a) — crjq(F)(4;,7 € a)
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1.4 Expressing Dold-Puppe complexes in

terms of cross-effect modules

Let A be an abelian category. PreViously we have worked with the functor
I': Chyo A — SA, now we will discuss its inverse N : SA — ChsgA. The
normalized chain complex N(X.) of a simplicial object X. in an abelian

category A is given by
: : n-1 '
N(X)n =X, / D Ims;
i=0
with its differential defined by the alternating sum of the face maps of X.
8= (~1)di: Xp — Xn
i=0

for all n > 0. An important application of the Dold-Kan correspondence
is the construction of Dold-Puppe complexes i.e. complexes of the form
NFT(C.) where C. is a bounded below chain complex and F' : A — B
is a functor between abelian categories (that has been extended to the cate- -
gory SA in the obvious way). ' .

In his paper ‘Computing the Homology of Koszul complexes’ [K6] Kock
used cross-effect functors to give a description of the Dold-Puppe complex of
a chain complex C. = (P — @) of lenigth one (i.e. C, =0 when n > 1) in
the category Chso(A). Lemma 2.2 of [K6] proved that

NFT(P — Q)p Z crp(F)P,...,P)®crp1(F)(Q, P, ..., P)

and gave an explicit description of the differential. The aim of this section

is to generalise this result and give a similar description of Dold-Puppe com-

plexes in terms of cross-effect functors when the original complex is longer.
It will be useful to introduce another way of denoting elements of

Sur([n], [k]), which will be more useful when dealing with the problems in

K
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this section.

For the rest of this section we fix the value of n to be some positive

integer.

Definition 1.4.1. Let k € {0,...,n}. For a surjection f € Sur([n], [k]) we

write f2 for its image under the following bijective map:

Sur([n], [k]) = {z U {n}|z C {0,1,...,n — 1} and |z| = k}
f — {max f71(0), max f71(1), ..., max f ' (k)}

where max is the function that gives the maximum element of a set.

The reason why n is always in f2 is because the surjectivity of f means
max f~1(k) = n. Let f € Sur([n],[k]) then f* begins with a partition of
i+ 1 if and only if ¢ € f&. We will be using this observation extensively to
apply the results in Section 1.2, reading ‘i € f© whenever it said * f* begins
with a partition of ¢ + 1. ‘ ‘ , _ |

We consider the set of sets {z U {n}|z.C {0,1,...,n — 1} and |z| = k}
to be ordered in the following manner. If z,y € {z U {n}|z C {0,1,...,n —
1} and |z| = k} and we write z U{n} = {z; < ... <z < n} and y U
{n} = {y1 < ... < yr < n}, then we say that x < y in the 2 ordering if
(z1,...,2k) < (¥1,...,Yx) in the lexicographic ordering described in Notation
1.1.2. Tt is not difficult to see that for surjections f,g € Sur([n], [k]) we have
fA < ¢g® if and only if f* < g*. ‘

Definition 1.4.2. Let o be a subset of the disjoint union ITf_, Sur([r], [k]).

We say a is an honourable index set if and only if Ureaf® ={0,1,...,n}.

Notation 1.4.3. Let a C II?_,Sur([n],[k]). For each k € {0,...,n}
let ar =aNSur([n],[k]), and write ar = {ar1 < ... < Qo). For
Co,...,C, € A we write (Co.ags - - -, Cnoay,) for the following |ca|-tuple:
(Co015- -+ Coa0ag17 - -+ Crsanis -+ 1 Onur ) ’
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~ Proposition 1.4.4. Let o C I}_,Sur([n], [k]) and for each k € {0,...,n}
let ay, = oM Sur([n], [k]) then the module crio)(F)(Coag;---)Cnan) 5 a di-

rect summand of NFTU(C.), if and only if o is honourable. In other words

NFT(C.), | D cro/(F)(Com0; - - - Crnsan)

aCly_, Sur([r),[k]), & is honourable

Proof. Using the definition of N and I'" we see that

NFT(C _F(EB D Ck) Slmﬁ(si).

k=0 peSur([n],[k])

Theorem 1.2.2 (a) tells us Ims; = @p_, @D .c(spyc Cx which is a subsum of
the sum Dy_o D esur (n1,(k) C» 0 Theorem 1.3.6 tells us that F(Ims;) & .
Im F(s;). So we get

n

n—1
NFT(C.)n = F(@ @ ck) 3" F(lms,).

| k=0 peSur([n], k) i=0
Expanding the numerator in terms of cross-effects we get the following for-

mula

F@® @ 6)- @  cualF)Com . Cra

k=0 peSur([n],[k]) aClE_, Sur([n],(k])

where oy = aNSur([n], [k]). Now using Theorem 1.2.2 to give us an expres-
sion for Im(s;) we expand the denominator in terms of cross-effects and we

see that:

F(Ims;) = F(@ Ck ) @ch COaO:---aCn,an)a

k=0 peSur((n], K)\ST

where the last sum’ ranges over all subsets o C Ij_,Sur([n], [k]) where
i € Useof®. From this we see that crjq|(F)(Coags - - - Cnia,) is not a direct

summand of Im F(s;) if and only if 4 € Useof©. A module is a direct sum-
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mand of NFT'(C.),, if and only if it is not a direct summand of Zin:_ol Im F(s;)

and hence we see the desired result. _ . : O

Definition 1.4.5. Let o C I}_,Sur([n], [k]) and let o be honourable. We
say that f € a is superfluous in o (or when context is obvious just superflu-

ous) if '\ {f} is also honourable. We'say that a is a minimal honourable

set (or often just minimal) if it contains no superfluous surjections.

If @« Cc B CUp_,Sur([n],[k]) then Useaf® C Usepf® and hence if «
is honourable then (3 is also honourable. Because of this if we know all the
minimal honourable sets that are a subset of I?_, Sur([n], [k]) then it is easy
to find all the honourable sets that are subsets of 117 _, Sur([n], [K]).

Proposition 1.4.6. (a) Let oo C II}_, Sur([n], [k]) and let o be honourable.
For each k € {0,...,n} define ay, = aNSur([n],[k]). Then we have the
inequality > p_o klaw| > n.

(b) Conversely let (ag,...,an) € No™™ with ar, < (}) for each k €
{0,...,n}. Then if 3 p_okar > n then there is some honourable in-

dex set o C Hp_, Sur([n], [k]) with a; = |a N Sur([n], [k])] -

Note in part (b) the condition requiring a; < (}) is there because

| Sur([n], [K])] = (}) -
Proof. Firstly we prove part (a). We know « is honourable, S0 by definition
Up_o Usea, 2 =1{0,1,...,n}..

Hence we also have UF_y Useq, (f2\ {n}) ={0,1,...,n — 1}, and so
DDA\ = oL n =1} =0
k=0 fea v

Now if f € Sur([n],[k]) then f&\ {n} is a subset of {0,...,n — 1} of

cardinality £ and hence we see our result.
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Now we need to prove part (b). Because |{0,...,n —1}=n <3 la
we can cover the set {0,...,n — 1} using: a; sets of cadinality 1, a, sets of
cardinality 2, ..., an—1 sets of cardinality n — 1 and a, sets of cardinality
n. Take such a covering B and define a := {f € IIf_,Sur([n], [k]) : f& =
g U {n} for some g € 3}, then « is an honourable set. . O

Corollary 1.4.7. Let C. be a chain complex of lengfh l and F a functor
of degree d. The length of the Dold-Puppe complex NFT'(C.) is less than or

equal to ld, equality is achieved if cry(F)(Cy, ..., Cy) is not the zero module.

Proof. Lemma 1.4.4 tells us that

NFI(C.), = & eIl (F)(Coags - - > Cran )

aClI}_, Sur([n],[k]}, o is honourable

if |a| > d then crio)(F)(Coag;--->Cna,) vanishes. Also the properties of
cross-effects tell us if any of the modules are zero then cross-effect modules
involving them will also vanish, in particular any which involve any copies
of Cy where I’ > [ vanish. So the only non-zero cross-effect modules in
NFT(C.), are those which correspond to subsets of Hmm{nl} Sur([n], [k])
that are honourable and of cardinality d or less.

Proposition 1.4.6 (a) tells us that if « C L}_,Sur([n], [k]), a is hon-
ourable, and if for each k € {0,...,n} we write a, for a N Sur(n], [£]),
then we have the inequality > 7 |ax|k >n. On the other hand we have

min{n,!} min{k,l} min{k,l}
Z lag |k < Z |ag| min{n, 1} = min{n, [} Z |ak| = min{n, l}|a|.
k=0 k=0

So if |a| < d then me{" 1 lax|k < dmin{n, Z}. So if n > Id then there
can’t be any honourable sets in IT™%™" Sur([n], [k]). So for n > Id we get
NFT(C)a=0

To prove equality is achieved if crg(F)(C’l, ..., C}) is not the zero module,
we set n=dl, ay = d and ar = 0 if k # [. Proposition 1.4.6 (b) tells us
that there is some honourable set o C H}_, Sur([n], [k]) with ar = |a U
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Sur(|n], [k])| for each k € {0,...,n}, this condition on |a U Sur([n], [k])|
tells us that o C Sur([n], [I]). So crjo(F)(Coags- - > Cnian) = crig(F)(Cra,)
this is non-zero by assumption and non-degerate in NFT'(C.), because_of

our choice of a. ) O

Honourable index sets are fairly abstract objects, we will now introduce a
way of representing them pictorially in the hope of making the combinatorial
conditions more digestible. We associate a C IIf_, Sur([n], [k]) to-a table
with n columns. The headings of the columns are 0,1,...,n —1. Each row
will represent one of the surjections in «; if f is in & the row in the table
representing f will contain a mark in the column headed by ¢ whenever
i€ fo. .

Let o® = {{1,3},{2,3},{0,1,2,3}}. We could choose to represent o by

0]1]2
N
N
NN N

where the first row represents the set {1,3}, the second row represents the
set {2,3} and the final row represents the set {0,1,2,3}. But we could also

represent o by any of the following tables:

0]1]2 ol1}l2 of1]2 0]1]2
N NN IN N N
\ \ NI ANIAN

NANANEENANAN N RN

However it would be nice if there were a unique table to represent any given
index set. To give this unique representation we require the rows to have a

particular order.

~Definition 1.4.8. (a) For each i € {1,...,m} let T; be a subset of
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{0,1,...,n — 1} with T; # Ty whenever i # ', then we call the
ordered set T = (Tl,....,Tm) a (formal) table with n ‘columns. For
i € {1,...,m} we say that T} is the ¢** row of 7. Associated with
this formal table we draw a table with n columns (with headings
0,1,...,n — 1) which has a mark in the (¢,7)" cell of the diagram if
j—1€T; (it'is j — 1 because the first column is headed by 0).

(b) If o C II}_, Sur([n], [k]) and {T7 U {n},..., T, U{n}} = a® then we
say that the table (T3, ...,Ty,) represents o. : ' )

(‘c) Let T = (Ty,...,T;n) be a formal table and let 4,5 € {1,...,m}. If
whenever 7 < j we have either |T;| > |Tj| or T; U{n} < T; U {n} (in

the © ordering) then we say that the table T is in normal form.

It is easy to see that every table represents some index set o C
7_, Sur([n], [k]), moreover for any index set we can easily form a formal
table that represents it as by putting some ordering on the set {f*\ {n} :
- f € a}. We can then reorder the rows of the formal table so that they satisfy
the conditions of being in normal form. Hence we see that for each index set
there is a unique table in normal form that represents it. |

Given an arbitrary honourable index set it is not always obvious whether
it is & minimal honourable index set. We are now interested in determining

which tables represent minimal honourable index sets and which don’t.

Lemma 1.4.9. Honourable index sets correspond to tables with an entry in

each column.

Proof. If (T1,...,Ty) has an enﬁry in each column, then this is the same as
saying for each i € {0,...,n — 1} there is some row in T’ containing 7. This
means U T; = {0,...,n — 1}, and hence U (T, U{n})={0,...,n}. O

Let T = (Ty,...,Tn) be a formal table and 7} be one of its rows. If
Uiloiz; i = UZoT; then the surjection that T; represents is superfluous in
the index set that 7" represents; because of this when we have this situation

we say that T; is superfluousin 7.
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We now describe an algorithm that checks whether a table has any su-
perfluous rows.

This algorithm works by using two different kinds of mark when we draw
the table of (T3,...,T,,). As before if ¢ € T, then we put a mark in the
(r,i — 1)% cell \of the diagram, but here that cell will either contain a \
mark or a x mark. The rows of the diagram will be constructed one by one.
When putting a new mark in the diagram the \ mark will be used in a cell
when the column it is in has no other marks in it (yet), otherwise a x mark
will be used. If a x mark is put in the diagram then any \ marks in that
same column will be changed to x marks.

If the only marks in a row are X marks (i.e. there are no \ marks) then
that means that each of the columns it has entries in also have entries in
" other rows, i.e. the row with only x marks in it is superfluous.

The program Super (below) should be given a formal table (T3, ...,T)
and a value for n. If the table contains no superfluous rows it will return 0,

otherwise it will return some value ¢ € {1,...,m} such that T; is superfluous.

Example 1.4.10. The following examples shows how the algorithm Super
works with different inputs. The diagrams show the different states of the

table at different stages in the running time of the program.

(a) Input: n=4,T = ({0,1},{0, 3}, {0}).

0123 01)2]3 0123
N I\ | IR
- X | N X N
X

The algorithm terminates after the last table and returns the Value‘3,

because the third row consists wholly of x marks.
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Algorithm 1 Super: Check (Ti,...,T,,) contains no superfluous rows
1: for r=1 to m do ‘
2 for all i € T, do
3 s«— 0
4 repeat
5: s+—s+1
6 until 2 € T, or s=7r
7 if s =r then
8 Put a \_mark in the i*® column of the r** row
9: else if 1 € T, then :
10: Put an x mark in the 5" column of the st row and also in the
i** column of the r** row v
11: if row s of the table consists wholly of x s then
12: return s :
13: end algorithm
14: end if
15: end if
16: end for _
17:  if row r of the table consists wholly of xs then
18: return r
19: end algorithm
20: end if
21: end for

22: return 0
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(b) Input: n=4,T = ({0,1},{1, 2},{2,3}).

011]2(3 0]1]2]3 0]1]2)3
NN N | X N | X
— x|\, — x| x

The program stops there (midway through constructing the third row)

and returns 2.

(c) Input: n=4,T = ({0,1,2},{1,3})'.

The program returns 0.

We now describe an algorithm designed to work out all of the tables in

normal form that represent a minimal honourable index set.

- This algorithm will use two procedures Increment and Completé that
we consider to be simple. enough to only describe what they do without
‘detailing their workings. Increment will take a set I C {0,...,n — 1} as
input and returns a set O C {0,...,n — 1} as output. If 7 U {n} is not the
largest element of {zx U{n} : x C {0,...,n — 1} and |z| = |I|} under the
& ordering then O U {n} will be the element directly after I U {n} in the
2 ordering, otherwise O U {n} will be {0,...,|I| —2,n} (i.e. the smallest
element of {z U {n} : 2 C {0,...,n — 1} and |z| = |I| — 1} under the
ordering). Complete will take a table as its input, it will return the value
TRUE if the table has a mark in each column, otherwise it will return the
value FALSE.

This program will take two positive integers as input ! and n where
I < n. It will produce all tables with n columns whose rows each have at

most | marks in them, that correspond to minimal honourable index sets.
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The main object in this algorithm is a formal table (T1,...,T;) that is
in normal form. As the algorithm progresses all tables of interest will be
constructed by gfadually making changes to this table. The changes will
either be adjoining new sets to the table or by modifying the existing rows.

It will return as output any table which represents a minimal honourable set.

At first this table will have just one row in it, and as we work through the
algorithm new rows will be adjoined to this table one by one in such a way
that this table is always a table in normal form and never conﬁains superfluous
rows. We ensure that it is always in normal form by making sure that the
row added to the table, say T,,;, will either satisfy T, U {n} < T,41 U{n}
in the & ordering or |T,| > |T,41|. We use the algorithm Super to ensure
that whenever we add a _rbw to the table it does not cause the new table to
have superfluous rows. If adding a particular row to the table would cause
the table to contain superfluous rows then we try adjoining a different row,
again we test using the algorithm Super and if that row doesn’t work we
keep trying new rows and testing with Super until we find an appropriate
row (if it turns out that the only appropriate row is the empty set then we
replace 7, with a different row, see below).

We use the algorithm Comp\lete to determine whether the table repre-
sents an honourable set (the set will also be minimal, because as mentioned
above we ensure the table has no superfluous rows) and if it does then the
fable is returned as part of the output of the program.

When (T3,...,7T,) represents a minimal honourable set (or when in our
attempts to adjoin a new row to the table we find that the only suitable
row is the empty set) we stop adjoining new rows and instead replace 7,
with a different row. We change the final row T, to, say T;f, so that either
T.U{n} < T'U{n} or |T;| > |T’| and also ensuring that the new table has
no superfluous rows. If the only row that we could choose T, to be is the
empty set then we remove 7, from the table and try to replace T,_; with an
appropriate row, if the only row we could choose T,_; is the empty set then

we remove T,_; from the table and try to replace T,_, with an appropriate
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row, etc, etc. If we are ever in the position where we will have to change T}

to the empty set then the algorithm ends.

Algorithm 2 Find min Find all tables with n-columns which correspond
to a minimal honourable index set

1: r—1 ‘
2: Tle—{O,,l—l}
3: repeat !
4: if Complete(Ty,...,7,) = TRUE then
5: return (7y,...,7T;)
6: repeat
7: if Increment(7,) =0 then
8: rer—1
9: end if
10: T, «— Increment(T,)
11: until Super(7;,...,7,) =0
12:  else if Complete(Ty,...,T,) = FALSE then
13: if Increment(T,) # 0 then '
14: re—r+1 .
15: T, «— Increment(7,_;) v
16: else if Increment(7;) = § then
17: r—r—1
18: T, < Increment (T — 1)
19: end if _
20: while Super(T3,...,T,) >0 do
21: if Increment(7,) = { then
22: re—7r—1
23: end if
24: T, — Increment(T,)
25: end while
26: end if

27: until r = 1 and Increment(7}) = 0

Ezample 1.4.11. The following example shows how Find min works when
giVen the input n =3 and ! = 3. The diagrams show the different states of
the table at different stages in the running time of the program. Note that
if Find min was instead given the input n = 3 and [ = 2 or the inpﬁt
n =3 and ! = 1, the first table it would produce would be the second or

seventeenth (respectively) of the following tables, then it would continue in
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the exactly the same way.

01112 0]1]2 012 0]1]2
\\_}\»\ . N\ _)\X -
X AN .><\
112 0 2 01112 012
X |\ . X RN _é\ N
X AN
01 112 . 0]1]2 0|12
AN ., X \_)\ NN X
N | % X AN X
0l112 0112 0 2 0|12
NN NN I\ Nx
AN X x
012 0l1]2 0112 012
AN N N
AN
0] 112 0l 1] 2 0|12
AN , \’_) \_)End
AN

The 15t 374 4th 7th gth 11th 14th and 19" tables are all outputted.

If Find min is given input n = n and [ = 1 then it will output only
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one table:

AN

This means the only minimal hondurable subset of Sur([n],[1]) USur([n], [0]) |
is Sur([n], [1]). So the honourable subsets of Sur([n],[1]) U Sur.([n], [0]) are
Sur([n],[1]) and Sur([n], [1]) USur([n],[0]). So if B — A is a chain complex,
and recalling that ['(B — A), = B"® A, this means that NFT'(B — A), =
cr,(F)(B,...,B) ®crpu1(F)(B,...,B, A). This recovers the description of
each part of the chain complex NFT'(B — A) given in Lemma 2.2 of [Kd].

1.5 The Dold-Puppe complex N Sym?T(C —
B — A) |

The results from the previous sections can be used to calculate the Dold-
Puppe complex of a chain complex of arbitrary length for any functor which
we know the various cross-effects of. To illustrate this we now give an example A
calculation. | v

Let R be e;::ommutative ring and let 4 be R-mod the category of
modules over this ring. Let Sym?: 4 — A be the second symmetric power
functor. Let C — B — A be a chain complex sitting in degrees 0, 1 and 2
with differential 8. We will denote the differential of N Sym?’T'(C — B —
A) by A. | |

The functor Sym? is of degree two (and cry(Sym?)(C, C).# 0) so Theo-
-rem 1.4.7 says that N Sym®T(C — B — A) will be of length 2 x 2 =4.

To work out what each place of NSym?*T'(C — B — A) looks like we
need to find all the minimal honourable sets in 1I}_, Sur([n][k]) for each

value of n € {1,...,4}. To do this we use Find min.
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With input n = 1,1 =1 (we set [ to be 1 here since Find min does not -

accept values of [ larger than n) Find min gives us the following output:

0
AN

With input n = 2,1 = 2 Find min gives us the following output:

0|1 0]1

NN N

N

With input n = _3,l — 2 Find min gives us the following output (as

seen before in Example 1.4.11):

o172 oOof1(2 O 1|2 O0]1
X |\ N x| NN N X
X N X |\ AN N | X

2 0
NN AN N ANERAN
NN \
\

With input n =4,/ =2 Find min gives us the following output:

X X X o
/
X
/.
/
/

/s
X
/
X
/s
X X X =
/
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0 213 011213 Oof(12}|3 0O0|11213
N N | X NN RN
x|\ x N NN N :
N N N
11213 01123 0|1 3 01|23
x N x N x N N
x N N | % N | % N N
N < |\ N
o(1/2{3 o123 o123 0]1}'21]3
N x N\ N N NN\ x
x |\ N NN N x
x N N N | %
ol11213 o0{1{2{3 O011(2]|3 O 213
N N X\ N RN
N x \ | % N X N
N N N N
011 3 01123 0O0]|1]2 011213
NI NNERN N X N | %
X [\0 N\ N N
N NN N
0111213
N
N
N
1\

The functor Sym? is of degree 2, i.e. anything past the second cross-

effect of it vanishes, so we are only interested in cross-effect modules with 2
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or less modules as arguments. Hence we are only interested in tables with
2 or fewer rows. So now we discard all tables with with more than 2 rows.
For n =1 or 2 we keep all the tables. For n = 3 we discard only the last
table. For n =4 we are left with the following 3 tables:

\

0j14y213 01123 0|1{2,3
NN\ AN AN AN AN
NN AN AN NN

From these minimal honorable index sets we now find all of the hon-
ourable index sets. We do this by finding all subsets of II}_,Sur([n], [k])
that have some minimal honourable set as a subset. As explained above we
are only interested in honourable sets with 2 or fewer elements so for n = 3
or 4 we already have all the honourable sets that are relevant.

From the tables for n = 1 we see that the only minimal index set is the set
represented by the table ({0}). The only other subset of II}._,Sur([n], [k])
that contains this is as a subset is represented by the table ({0}, 0).

From the tables for n = 2 we see that the minimal index sets are repre-
sented by the tables ({0,1}) and ({0}, {1}). Obviously there are no sets of
cardinality 2 or less that contain the latter as a proper subset. T.he subsets
of I12_, Sur([n], [k]) that contains the former as a subset are represented by
the tables ({0,1},0),({0,1},{0}),({0,1},{1}).

Applying Lemma 1.4.4, and again indexing in terms of ordinals rather

than sets, we see that:

N Sym? [(C—B— A= Sym? A

NSym?’I'(C - B — A); =Sym’B, @B, ® A
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NSmeP(C—%B%A)g =Sym201 6901(8)31@01@32
| ®Ci@ADB; ® B

NSym2F(C~—>B—>A)3=C1®0269C'1®C’3€BC'1®B3
: @sz®03€902®32@03®31

NSymZF(C—>B—>A)4 =Cl®06@02®05@03®04

Now we show how the differential A = Y io(=1)'d; of NFT(C' — B —
A) acts on each of the direct summands of each part N FI‘(C — B — A).
We use the face maps we calculated for I'(C — B — A) in Example 1.2.3
then use the theory of cross-effects described in Section 1.3 to see how they
act on each cross-effect module in each degree of NFT'(C — B — A).

In the following +, acts on the tensor square of a module M by +; :
M ® M — Sym? Mm1®m2+—>m1m2 |

The action of A on each summand of N Sym? F(C — B — A)4 is as
follows.

The face map d; acts on the C; as the zero map‘, so it acts on Cy ® Cg
as the zero map. Similarly since d; and d4 acts on Cg as the zero map they
both act on C; ® Cg as the zero map. In future any parts of 9 that act as

the zero map will be suppressed.

C1 & Cé do=0®ide B ®Cs
®
Ci®Cs -
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do=0®idc

Cy®Cs B, ® Cy

1=—id¢ ®ide

dz=idg ®ide

—ds=—id¢ ®ide

Cy ® Cs

C;®Cy To08e B; ® C,

C, ®Cs

The action of A on each summand of NSym?T(C — B — A);z is as

follows.




do=0R9

B; ® By
| Ci®C,

Sym? C1

Bl®01
Cy ® Cs

B ® By
C1 ® Bs

C1 ® By

do=0Qid¢

Bz®c1
Cy,®Cs

Sym2 Cl

o6
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dp=0®idp

Cy® By

1=—ido ®idp -

d2=idg ®idp

Ci1®B; .

dp=0R0

C3®Bl 01®A

1=—idc ®idp

Ci® B

The action of A on each summand of N Sym’T(C — B — A); is as

follows.

dp=Sym?(d)

Sym?C Sym® B;
Ci® B D=0 Bi®A

Cy ® By do=+2(0®idg) Symg B,
Cr®A DZ9eda Bi®A




CHAPTER 1. Dold-Puppe complexes . | 58

do=0Ridpg

| B, ® B,

A® B,

.

Sym? B

The action of A on each summand of N Sym’I'(C — B - A) is as

follows.

' do=Sym?2(d
Sym231 0 ym()

Sym? A

do=42(0®ida)

Bl ®A SyfnZA

Note were we now to calculate the Dold-Puppe complex NFT'(C — B —
A) for a différent functor of degree 2 practically all of the above calculation
could be reused unchanged. In the desvcription of each part of the complex
NFT(C — B — A) the cross-effect modules would be different, because
the cross-effect functors would be different, but the arguménts they take
would be the same. Similarly the action of the face operators on the cross-
effect modules would be different, because the cross-effect modules would be

different, but the actual face operators would be the same.




Chapter 2

Calculation of the derived
functors of the third symmetric

‘power functor

2.1 Spectral sequences

In this section we recall a couple of spectral sequences taken from section 5
of [W]. We will not be dealing with spectral sequences in any depth, only

applying some results to aid calculations in later sections.

Definition 2.1.1. Let a be an integer. A homology spectral sequence (start-

ing with E*) in an abelian category A consists of the following data:

1. a family {E;,q} of objects of A defined for all integers p,q and 7 > a;

2. maps dpy + Epy — Ep_,.r—1 that are differentials in the sense that
drod, = 0, so that the ‘lines of slope —(r+1)/r’ in the lattice E, form

chain complexes (we say the differentials go ‘to the left’);

3. isomorphisms between E;}ng and the homology of E:’* at the spot E;’q;
Byt = ker(dy )/ Tm(dp g pi)-

59
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Note that E[,fgl is a subquotient of Ej . The total degree of the term
E, . is n=p+g; the terms of total degree n lie on a line of slope —1, and
each differential dj, , decreases the total degree by one.

_There is a category of homology spectral sequences; a morphism f: E' —
E is a family of maps f;, : EJ, — E}, is A (for suitably large r) with
d" fr = f'd" such that each f;qul is the map induced by f;, on homology.

Definition 2.1.2. A homology spectral sequence {E;,q}rza is said to be
bounded if for each n there are only finitely many nonzero terms of total
degree n in Ey,. If so, then for each p and g there is an 1o such that
By = E;;;l fO'I" all 7 > ro. We write Ep¢ for the stable value of Ey .

We say that a bounded spectral sequence converges to H, if we are given

a family of objects H, of A, each having a finite filtration
0=FH,C...C Fp-lHn - FpHn ng-}—lHn c...C hH,=H,

and we are given isomorphisms ESS = FyHpyg/Fy 1Hpi . The traditional
symbolic way of describing such a bounded convergence is like this:
E;, = Hpyy
Lemma 2.1.3. Let {E] }r>a and_ {E] }rsar be spectral sequences that con-
verge to H, and H.. Let g : H, — H' be a morphism compatible with the
filtrations. Let f : {E} }r>a — {Ep;}r>a be a morphism of spectral se-
_ ~ s ‘ .

quences such that for some fized T foq t Eng = EJ, is an isomorphism for
all p and q. And finally let f and g be compatible with the isomorphisms
between the successive quotients of the filtrations and the E® terms. Then
for all s > r we have f;,: E; = EF and all p and q and H; = H] for

every .
Proof. This is a consequence of the 5-Lemma. ' O

Let R be a commutative ring.
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Definition 2.1.4. Let A, be a bounded below chain complex‘consisting
only of projective R-modules. For an R-module B we define the Hypertor
functor Tor(A., B) by

Torl(A,, B) = H;(A.® B).

If instead B, is a bounded below chain complex consisting only of projective
modules we define the Hypertor functor Tor(A,, B.) by

Tor (A, B.) = H; Tot(A, ® B,).

Note: We use these more restricted and simpler definitions rather than
the more general definition given on pp148-149 of [W] to avoid the necessity
of introducing Cartan-Eilenberg resolutions. Our definition of Tor matches |
that of [W] (for the modules and chain complexes we have defined it for)
because of the last spectral sequence given in Exercise 5.7.5 on page 149 of
[W]. |
Proposition 2.1.5. Let A, be a bounded below chain complex consisting
only of projective ‘R -modules. For an R-module B we have the following -

spectral sequence:
i E?, = Tor,(H,(A), B) = Tor(A,, B).
If B, is z'nstea'd an R-chain complex, we have the following spectral sequence
g = @ Tor,(Hy(A.), Hy(B.)) = Tor(A,, B.).
9=q'+q"

Proof. See Exercise 5.7.5 of [W]. _ O

Corollary 2.1.6. Let A,, A, B, and B. be bounded chain complezes, con-
sisting only of projective R-modules, with A, quasi-isomorphic to A, , and
B, quasi-isomorphic to B,, then Tot(A. ® B.) is quasi-isomorphic to
Tot(A, ® B.).
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Proof. Proposition 2.1.5 gives us spectral sequences for Tot(A. ® B,) and .
Tot(A, ® B.) in terms of the homoiogies of A,,A,,B, and B.. The
quasi-isomorphisms between A, and A’ , and between B, and B, give
us a morphism between the double complexes that give rise to the hy-
pertor spectral sequences for Tor(A., B.) and Tor(A,, B,) and also be-
tween their respective homologies that is compatible with their filtrations.
We know that the second sheet of these spectral sequences is given by
Hg? = .®q=q’ +qn Torp(Hy(AL), Hy(B.)), so the morphism between the
spectral sequences is an isomorphism between the E?-sheets therefore, by
Lemma 2.1.3, it is also an isomorphism between all the higher sheets and also

the homology. Hence Tot(A.® B,) is'quasi-isomorphic to Tot(A,®B,). O

2.2 Koszul complexes

In this section we introduce Koszul complexes, which are very useful for con-
structing projective resolutions, and in the construction of Schur functors of
hook type in section 2.3. We also recall some results regarding the homology
. of complexes related to Koszul complexes which will be useful in the last

section of this chapter.

Let R be a commutative ring, zi, s, ..., Z, be elements of R, and I be
the ideal generated by z;,zs, ..., z,.
Definition 2.2.1. We say that z,,zs,...,x, are a regular sequencé n R,

if R # (z1,...,2,)R and, for each i € {1,... n}, the element z; is not a

zero divisor'in R/(z1,...,z;-1)R.

Proposition 2.2.2. If R is a Noetherian local rz'hg,v and zy,...,Z, are in

the mazimal ideal of R then the following are equivalent:

- (a) z1,...,zn form a regular sequence in R;

(b) the homomorphism of R/I-algebras o« : R/I[Xy,...,Xn] — gri(R)
gwen by o(X;) = z; + I? is an isomorphism, where gry(R) denotes

the graded ming of R with respect to the ideal I.
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Proof. See page 154 of [EK] Corollary 5.13. - | O

Definition 2.2.3. For i € {1,...,n} let the Koszul complezx Kos(z;) be the

following complex (concentrated in degrees 1 and 0)
R R
And let the Koszul compler Kos(zy, %, ...,%,) be the total complex:
Tot(Kos(z1) ® . .. ® Kos(z,)).

The degree k£ part of the complex Kos(zy,zs,...,2Z,), which we denote by

Kosy(z1, %9, - .., T,), is isomorphic to' A¥R™, and we consider the elements
{ea, Ao Ne |1 <4y < ... <ir <n} to be a basis for Kosg(xy,za,...,Zn)
and for k € {1,...,n} we define the differential dj, : Kosg(z1, 9, ..., T,) —
Kosg_1(z1, %2, ..., %,) to act by
e, A /\elk»—>2 (=P mpe AL NG AL Ny,

Proposition 2.2.4. If zq,...,2, is a reqular sequence then the complex
Kos(zy, 23, ...,2,) forms an R-projective resolution of R/I .

- Proof. See pp 113-114 of [W] Corollary 454 and 4.5.5. | O

Prop051t10n 225. If R is a Noetherian mng, I an ideal of R which is
locally genemted by a regula'r sequence and m be an integer greater than 1. 1
Then for P.(R/I), a projectiwe. resolution of R/I, we have the following

tsomorphism

Hi(P.(R/1)®™) = A*((I/1%)™7Y),

and in particular we have
Torf(R/I,R/I) = A*(I/1?).

Proof. First we assume that I is globally generated by a regular sequence




CHAPTER 2. The derived functors of Sym® | 64

Z1,...,Zn. Our choice of projective resolution Wiﬂ not affect the homology
as two different resolutions will be quasi-isomorphic so by Corollary 2.1.6 the

homologies of the total complexes will also be quasi-isomorphic. -

Clearly we have
Hy(P.(R/I)®™) = Hy(P(R/1)®*™ Y ® P.(R/I));
by the first spectral seciuence in Proposition 2.1.5 we have

H(P.(R/D®™ YV @ P(R/I)) = Hy(P.(R/1)®™ Y @ R/I).

If m = 2 this coincides with the definition of Tory'(R/I, R/I) and we cal-

culate this value of Tor by calCulating the homology of this complex.

By Proposition 2.2.4 we may take Kos(zy,...,z,) as our resolution of
R/I. The k™ place of the Koszul complex Kos(z1,Zs,...,z,) is A¥(R),

so the k** place of Kos(zy, T, ...,2,)®™ Y is equal to

&b AMRY®...® )\km—l(R").

k1,..skm—1€{0,...n}, T Yk, =k

So

Tot(P.(R/I)®™ Y @ R/I) = Totg(Kos(zy, z3, . . ., 22)®™ D @ R/T)

:( @ 'Akl(Rn)®...®Akm_l(Rn))®R/I
Kt yoskm—1€{0,...,n}, T Yhs=k : '
= [4>) AR ((R/ D™ ®...® AF»-1((R/I)™).

B1yeokm—1€{0,...,n}, 50 Yk =k

The differential of the total complex Toty(Kos(z1, za,...,zn)®™ Y @ R/T)
is the sum of the m —1 maps, each of which reduces one of the m—1 indices
by 1 and leaves all the other m — 2 indices unchanged; on the components
whose indices are unchanged these maps act as the identity; on the remaining

component these maps acts by e; A... Nej, — E’;’zl(—l)p‘lmpeil Ao A
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€i, \... N\ €y, » but this is just the zero map since z, € I for each p. So each
component of the differential is the zero map, and hence the differential is

itself the zero map. Therefore

Hy(Kos(zy, o, ..., 2,)2™ Y @ R/I) |
=3 - AR ((R/D™) ® ... @ Af»1((R/I)™)

ki, km—1€{0,....n} 7  ky=k '

=

but this is just the canonical decomposition
P AR/ ®...@ Nm3 (R/D)" = A(R/D)" & ... & (R/I)").

where the sum rdnges over all ki,...,kn_1 € {0,...,n} such that Z*7'k; =
k

We have an isomorphism a : (R/I)® — I/I?, which is the compo-
sition of two isomorphisms, the first being the isomorphism (R/I)" —
R/I[Xy,. .., Xl / (X1, ..., Xn)? e = X+ (X1 + ... X,)? and the second

being R/I[X1,...,X,]/(X1,...,Xn)? = I/I?, X; — z; + I? (as in Lemma
2.2.2). So we get the isomorphism

A(R/D"®...e (R/D") A (I/P)e...0{/T?)
and hence we get finally get the desired isomorphism
Hy(P.(R/I)®™) = AM((I/1?)™7).

We now need fo show that this isomorphism does not depend on the choice
of regular sequence z1,...,Z,. Let yi,...,y, be another regular sequence
which generates I. For appropriate f;; € R we have z; = X;f;,y;. The
matrix (f;;) defines a homomorphism F : R* — R" such that the following

H
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.diagram commutes:

- R" R
& H
Rn (Y15--yn) R '\

- This homomorphism F : R® — R" induces a map of complexes Kos(F) 3
Kos(z1,zg,...,2,) — Kos(y1,...,yn) which extends the identity map on
R/I. Tensoring Kos(yi,...,y,) and Kos(z1,zs,...,2,) by R/I we get
homomorphisms A*(F) : Ak((R/I)") — A*((R/I)") for k > 0 such that the

- following diagrams commute:

AF(b) .

A*(R/T)™) AM(I/1?)
T
AF((R/TY) —22 s AR (1 1%).

This in turn can be extended to a homomniorphism of the tensor powers of
the Koszul complexes. ’

" Therefore the isomorphism constructed above does not depend on the
choice of regular sequencé generating 1. If [ is only generated locally by a
regular sequence we can therefore glue the local isomorphisms constructed

to get the wanted global isomorphism. O

Lemma 2.2.6. Let P be a free R-module. Then the dual of the k' exterior
power of the dual of P is canonically isomorphic to the k™ exterior power
of P, ie. |

(AH(P7))" = A5(P).

Proof. Let S denote the group of permuations on k elements. Let |
{e1, .. ,en} be abasis for P,andlet {e},...,er} be the corresponding dual

basis. The module A*(P*) consists of sums of elements of the form fiA...Af

with each f; € P*. We can take {ej A.. . Aef |1 <dé <... <4 < n} as a

basis of A*¥(P*). r
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We want to show that the follbWing map

AR(P) = (A*(PY))"

TN AT (AN A fi Soes, sgn(o) 1L fi(Zo())

isan isomorphism that sends the basis {e;; A... Ae;, |1 <ip<...< i < n}
to the dual of the basis {ej, A ... Aef |l <4 <... <ip <n},ie

e 0 {in,...,in} # {J1r- - Jx}
(e, Ao ne e A Neyy) =

1 (jl,..‘.,jk)Z(il,...,ik).

This map takes the element e, A ... Ae;y of the basis of A*(P) to the
map AF(P*) — R, fiA... A fi = Toes, sgn(o)IT}, fi(es, ,,) . And this latter

map takes ej A...Aej , an element of the basis of A%(P*), to the value

_ Jk?
Yioes, sgn(a)Hlee;l(eiam). .
- I {4y, .- i} # {1, .- -, Jk} then for some m we have j,, & {31,...,i}-

For this m we have €} (e; ) =0 forevery [ € {1,...,k} and every o € Sk.

Therefore H{“zle;l(eia(l)) can only be non-zero if {iy,... ,ik} = {j1,. -, Jr}-
If {i1,... 3} = {j1,. .., Jx} thenif o = id € Sy, we have H;;le;(eia(l)) =
1, for a # id we have H{“zle;fl (€iyy) = 0. Hence our result is shown. O

It is not true in general that the analogously defined map

Sym*(P) — (Sym*(#*))"
Ty...Tp — (f1 . Jr Eaesknlefi(wa(i)))

is an isomorphism because the sum would have more than one non-zero term,
since the indices of the elements of the basis of Sym*(P) are not strictly

increasing just increasing. This motivates the following definition.

ﬁeﬁnition 2.2.7. Let P be a finitely generated projective R-module.. We
define the " divided power functor of P to be dual of the i*" symmetric

power of P,ie. D*P):= (Sym‘(P*))*. For more information the reader is
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directed to p214-216 of [ABW].

Definition 2.2.8. Let f: P — @ be a homomorphism between two projec-
tive R-modules, and n € N. Let Kos™(f) be the Koszul complex '

0—AYP) BA P ®Q ™S ... B P @ Sym™(Q) L Sym™(Q) — 0

where, for k£ € {0,1,...,n — 1}, the differential dy,; : A" (P) ®
Sym"™*71(Q) — A¥(P) ® Sym™*(Q) acts by

PIA - APy 1®Gky2-Gn — St (1) i AL ABA. L ADE1® f (Di)Gkb2- G-

If we take f to be a map between P* and Q*, the duals of P and @,
then the part of the Koszul complex Kos"(f) in the k' degree is A*(P*) ®
Sym™ *(Q*). The dual of this chain complex is a co-chain complex with the
part in the k™ degree being (A¥(P*) ® Sym™ *(Q*))” = A*(P) ® D" *(Q),

Le.
0= AP AP e LW pe (@) 'Y DrQ) 0.

We define the co-Koszul complex, Kos' (f), to be the chain complex with
A¥(P) ® D" *(Q) the part in the (k — n)™ degree, and with differential dy

equal to (d,-)* in the above diagram, i.e. K~osn( f) is the complex

0 DP) B D I(P)0Q ™ ... 5 PoA™I(Q) B AMQ) — 0.

Remark 2.2.9. When P = R",(Q = R and f : R* — R,(ey,...,en) —
€1T1 + ...+ e,x, then this definition coincides with the above definition of
Koszul complezes i.e. Kosh(f) = Kos(z1, xz; ce S T - |

It is well known that the complexes Kos(f) and Kos(f) are exact if f

is an isomorphism.

The two following isorﬂorphisms will be useful in later calculations.
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Proposition 2.2.10. Let f : P — @ be a homomorphism between two
projective R-modules. If we consider consider P — @ to be a chain compler

concentrated in degrees 1 and 0 then we have quasi-isomorphisms
Kos™(f) = NSym"I'(P — Q)

and
Kos' (f) = NA"T(P — Q),

where I' and N are the functors of the Dold-Kan correspondence that we

introduced in Chapter 1.

Proof. See Proposition 2.4 and Remark 3.6 of [Kd]. | O

2.3 Schur Functors

. In this section we describe the construction-of Schur functors, both by the
method described in Chapter I of [ABW] and as described in Chapter 2 of
[K6]. Schur functors will be important because Kock’s predictions describe
the derived functors of Sym? in terms of Schur functors of hook type, and
also because they will be used in the Cauchy decompostion of Sym?*(P ® Q)
described in section 2.5. Schur functors are functors of modules that are

' generalisations of the functors Symn,Ah and D™.

‘Definition 2.3.1. By N* we mean sequences of elements of N with finite
support (i.e. only finitely many elements of the sequence are non—zero).i We
identify NP to a subset of N*° by addiﬂg zeroes to the end of the tuple. So
N* = U,>oN? and we consider (A1,...,A,) € N? and (A1,...,Ap,0,...) €
N to.be the same. |

We call A € N® a partition if \y > Ao > .... If ;A =n we say that A
s of weight n, or that A is a partition of n. We denote the weight of A by
IAl. We call the number of non-zero elements of A the length of A. (Note

this definition of partitions does not quite match the Definition 1.1.1; from
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here on when we refer to partitions we will mean this sense of partition and
not definition 1.1.1.)

We define the conjugate (or transpose) of A € N® as X = (A, Ay,...) €
N where ); is the number of elements of A which are less than or equal to
i. Clearly for any A € N the conjugate of A has the property A; > Ay >
.... Also 5\ is the the sequence A with the entries rearranged so they are in

decreasing order. So conjugation in an involution on the set of partitions.

Definition 2.3.2. Let A be a partition. The Young dz'.agmm associated
with A is the set of ordered pairs (i,7) € N with ¢ > 1 and i > j > A
and is denoted A). We use the convention that is used for matrices, i.e.
that ¢ is the row index and j is the column index (see below for a couple
of examples). It is easy see ﬁhat‘ the diagram for A contains \; entries in
the 1" row. Therefore it is clear that |A| = |A] (i.e. conjugation preserves

weight).

For example, the diagrams for (5,3,2,1) and (7,2,1) look like

L]

HEEE

L] LI

respectively. The conjugates of (5,3,2,1) and (7,2,1) are (4,3,2,1,1) and
(3,2,1,1,1,1,1) respectively, and their diagrams look like

respectively.

Notation 2.3.3. Let F be a projective module over a commutative ring R,
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and A = (Ay,...,\;) a partition. We use the following notation

MF=AMF® .. @ AF
Sym, F =Sym™ F ® ... ® Sym* F'
D\F =DMF®...Q D*F.

Definition 2.3.4. Let X\ = (\1,...,\;) be'a partition, and F be a projective
R-module. The Schur functor of F' of shape A will be fhe image of the
function dy : AyF' — Symj F' that we will describe below. We denote this
functor by L. ‘ | .
We assume that L, has been defined for all u of weight less than
the weight of A and define L, recursively. Let )\ be the partitiion
(A1 = 1,...,X; — 1), which is the partition associated with the Young di-
agrarri formed by stripping away the first column of X. .

Let §, be the following composition

MF=AF®.. @A F 228 popa-lFg . @ F@ A LF
LFRF®.. @ FRAIF®. @A F
m SymM F@ AMTIF @ ... @ AN7IF = Sym™ F @ Ay -1, a1 F
‘ = SymS‘1 F®AyF;

here A : AM(F) — AY"Y(F) ® F is the first differential of the Koszul
complex Kos™ (idr) see Definition 2.2.8; the function ¢ permutes the copies
of F past the A*-1F terms; and m is induced by the canonical projection
F®...®F — Sym™ F that acts by fi®...® fu— fi...fs. Since dy :
Ay F — Symj, F has already been deﬁhed we define d, as the composition
(idsymx1 »®dy)ody.

In an analogous way we can define d} : D\ F — A5 F' and we define Ly,

the co-Schur functor of shape A, to be the image of this map.

. Definition 2.3.5. We say that \ partition is of hook type if X; <1 for all
¢ > 2. We say this because the Young diagram of such a partition looks like
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a thk.

Definition 2.3.6. Let k € {0,...,n} and F be a finitely generated projec-
tive R-module. Let dy. : A (F) @ Sym™ % Y(F) — A*(F) ® Sym™ *(F)
‘be the Koszul differential in the Koszul complex Kos"(idr) (see Definition
2.2.8). Then d

LY (F) :=Im(dyy1) € A*(F) @ Sym™*(F)

is called the Schur functor of hook type (k+1,1,...,1). Similarly we define
o

L}(F) the co-Schur functor of hook type (k+1,1,...,1) as the image of the
‘ ' k-1
n—k—

Koszul differential dy,1 : D¥(F) ® A *1(F) — D*(F) ® A" *(F) in the

co-Koszul complex Kos(idr) .

" Since Kos"(idr) is exact the R-module LP(F) is a finitely generated
projective module for all k € {0,...,n}. »
Definition 2.3.6 and Definition 2.3.4 are compatible because of the follow-

ing Lemma.

Lemma 2.3.7. Let A = (k+1,1,...,1) be a partition of n of hook type.
Then the Schur functor L} definined in Definition 2.8.6 coincides with the
Schur functor Ly defined in Definition 2.3.4.

Proof. The compatibility of the two definitions comes from the commutativ-

ity of the following diagram:

dk+1
AMIF @ Sym™ 1 F——"— AP F ® Sym™ ¢ F

|

idykt1p ®m Symn_k F &® AkF

|

Symn——k‘ F ® F®k

dk41,1,...,1)

Ak+1F ® F®n—k—1
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On the left hand side of the square the map m is just the canonical projec-
tion F®~*~1 _ Sym™ *~1 F'. The map on the right hand side of the square
between A*F ®S»ym’f_'c F and Sym™ * F®A*F is the obvious isomorphism.

The map A*(F) < F®F on the right hand side is the antisymmetrisation map

SinNfa AN fio 2a880(0) fo1) ® fo) @ -+ @ fory:

where the sum ranges over a}l elements ¢ of the symmetric group of k
elements. '
" The map on the bottom of the square A¥*'F ® F — Sym™ * F @ F® is

given by definition 2.3.4; it decomposes into

Sy, AMMFRAF®...®AF - Sym™ F F @ A'F

,,,,,

.....

above. _ : - O

2.4 The iterated Eilenberg-Zilber theorem

The Eilenberg-Zilber theorem gives a suprising hombtopy equivalence be-
tween the diagonal of a bisimplicial complex and the total complex of the
associated double complex. Several times in section 2.7 we will need to calcu-
late the homology of a simplicial complex which can be viewed as the diagonal
of a bisimplicial complex, more precisely of the diagonal of the tensor product
of two simpler simplicial complexes. The Eilenberg-Zilber theorem will let
us turn information about these simpler complexes into information about, -

the complex we are interested in.

Let R be a commutative ring.

Lemma 2.4.1. Let C.,C/,D. and D. be chain complezes in Ch(R -mod)

with C. and C. chain homotopy equivalent, and also D. and D. chain
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homotopy equivalent. Then the complexzes Tot(C. ® D.) and Tot(C. ® D.")

are also chain homotopy equivalent.

Proof. First we will prove our result in the case where D.” = D., and then
later show that this entails our desired result. We know that C. and C.
are chain homotopic, so we have chain maps foc: C. — C., go: C. — C.
and a chain homotopy s¢ = {s¢, : C, = Cr41} such that scdc + dese =
gcfc —ide. . - 4

The differential of Tot(C.®D.) at C,®D, is d,+d, where d, = de®idp
and d, = ide ®(—1)*dp. We now consider the map s : Tot(C. ® D.), —
Tot(C.®D.)n41 that acts as s¢®idp : C,®Dy — Cp1®D, forall z,y € Z.
Look at the following square in Tot(C.® D.): '

/

sc®idp
dy=idc ®(~1)*+1dp " | dy=id¢ ®(-1)%dp
sc®idp y
C:z:+1 ® Dy—l C:c 02 Dy—l

since the signs'on the left and right are different we see that the square
anti-commutes, i.e. that sd, + d,s = 0.

Now we see that:

sdrov(c.op.) + dTot(C.@D.)SV = s(d, +dp) + (dy + di)s = sdy, + sdy, + dys + dps
= sd, + dys + dps + sdp, = dps + sdp
= (de ® idp)(s¢ ® idp) + (s¢ ® idp)(de ® idp)
. =dgsc ®idp +s¢cde ®idp-
= (dcsc + scde) ® idp
= (9ofe —ide) ®idp = chc ®idp —ide®idp
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Similarly given the chain homotopy scr = {s¢: : C, — C,,} that
satisfies the relation fecge — ide = sgrder + derser we can find a map s :
Tot(C'. ® D.),, = Tot(C". ® D.), 41 such that:

sdrot(cr.@p.) + Arot(cr.9p)S = gofo ®idp —ide ®idp .

Hence we conclude that Tot(C.®D.) is chain homotopic to Tot(C".®D.).
Now the twisting homomorphism Tot(C.® D) — Tot(D.®C.),c, ®dy, —
(—=1)*¥d, ® d, tells us that Tot(C. ® D.).= Tot(D. ® C.). So the above
argument can be used to show that Tot(C’. ® D.) is chain homotopic to
Tot(C. ® D."). Combining this and the previous chain homotopy we get the
desired result. : . | |

Theorem 2.4.2. The Iterated Eilberg-Zilber Theorem. Let n € N
with n > 2 and let AY,..., A" be simplicial complexes. Then the complexes
NA(A'® ... ® A")- and Tot(NA'-® ... ® NA"™) are chain homotopic and

(consequently) they are quasi-isomorphic:
H(NAA'®...®@ A™)) = Hy(Tot(NA' ® ... ® NA™))

Note when n = 2 this is simply the normal Eilenberg-Zilber Theorem.

Proof. We will prove this result by induction on 7. The Eilenberg-Zilber
Theorem (see §28 of [M], specifically Corollary 29.6 on p132) tells us that
NA(A! ® A?) is chain homotopic to Tot(NA! ® NA?); this serves as our
inductive base and will be used in the inductive step.

- The inductive step that we need to show is: if the chain complexes
NA(A'® ...® A"1) and Tot(NA'® ... ® NA™ ') are chain homotopic
then the chain complexes NA(A'®...® A"1 ® A") and Tot(NA'® ... ®
NA"1 ® NA™) are also chain homotopic.

Now it is easy to see that

NAA'®...® A" g A"™) = NAA(A'®...® A" 1) @ A™)
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and by the Eilenberg—Zilbér Theorem we know that NA(A(A'®...9A4A" H)®
A") and Tot(NA(A'® ... ® A" 1) ® NA") are chain homotopic. By our
inductive assumption and by Lemma 2.4.1 we see that Tot(NA(A'® ... ®
A" H®NA") and Tot(Tot(NA'®...® NA"" 1)@ NA") are chain homotopic.
But Tot(Tot(NAl®...@ NA" 1 )QNA") and Tot(NA'®.. . @ NA™ QN A™)
are (by definition) equal, so our inductive step, and hence the desried result

is shown. .0

2.5 Cauchy decomposition of Sym?*(F @ G)

Let R be aring. Let F' and G be finitely generated projective R-modules.
The following is a summary of the Cauchy decomposition given in chapter
III of [ABW] as it applies to the third symmetric power. This decomposition
of Sym*(F ® G) will be essential in our proof of Theorem 2.7.2. '

A three step filtration is put on Sym*(F ® G)

0C M(3)(Sym3(F ® G)) C M SymS(F ®G))
' CM('Llyl)(Syma’(F ®G)) = Sym*(F ® G).

The M) (Sym®(F ® G)) part is defined to be the image of the determinant

map

ANF®AG - Sym?(F® Q)

i®wg iR¥vge Qg3
HINRANBROARNAG—| ivg fr®9 @4
1i®a fi®90 [384g

(note this is simply isomorphic to A3F ® A3G). The Ms1)(Sym?(F ® G)):
part is defined to be equal to the previous part M3 (Sym®(F®G)) part plus
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the image of the following homomorphism:

ApyF@AenG —Sym*(F®G)

Hheag fLi®g

® g3).
f1®g1 f2® 9o (s _93)

N300 A0 ®gs—

The quotients of this filtration are isomorphic to tensor products of Schur

functors as follows:
M1)(Sym*(F ® G))/M(3)(Sym3(F ®G)) = LonF ® LG
and

M1, (Sym?*(F @ G)) /M) (Sym® (F ® G)) = LaanF ® LaanG
= Sym?*(F) ® Sym?(G).

Or equivalently we have the two short exact sequences that follow:

A

. 0— A3F & ABG — M(Q,l)(Syms(F & G)) - L(271)F &® L(g,l)G — 0
and

0 — M1)(Sym*(F ® G)) — Symsy(F ® G) — Sym®*(F) ® Sym*(G) — 0.

2.6 Characterising functors in terms of their

cross-effects =~ |

In [K6] Kéck proved Theorem 2.6.2, a result which shows that two functors
are isomorphic if they agree on certain data given by their cross-effect func-
tors. In this section we introduce this theorem and apply it to show that the
Schur functor L3 and the co-Schur functor L? are isomorphic. Furthermore

in section 2.7 our partial proof of the predictions made in [K&] for the derived
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functors of Sym? is obtained by satisfying half the preconditions of Theorem
2.6.2. |

Let A be a ring.

Definition 2.6.1. Let { > k >'1,V},..., Vi € P4, where P, is the category
of projective A-modules. and € = (y,...,¢) € {1,...,{}* with Zle € =1.

The composition

Az erg(F)(WVh, .., Vi)

of the map crg(F)(A,...,A) (induced by. the diagonal maps A : V, — |
Vi = 1,...,k) with the canonical projection’ T (according to Theorem
1.3.6) is called the diagonal map associated with €. The analogous composi- .
tion

2

+v€ . crl(F)(Vl, .. .,Vl, . .,Vk, .. .,Vk) — CI‘k(F)(‘/fl, .. .,Vkek)

DO, e (F) Vi i)

is called plus map associated with €.

The maps A, and +, form natural transformations between the functors
crp(F) and cr(F)o(Ay, ..., A,,) from PX to M. One easily sees that the
map A, can be decomposed into a composition of maps As; with ¢ € {1,2}
such that |§] =j+1 and j € {k,..., I —1}. The same holds for +..

Theorem 2.6.2. Let A be a ring, M an abelian category, d € N, , and
F,G : (f.g. projective A—mbdules) — M

be two functors of degree < d with F(0) = 0 = G(0). Suppose that there

exist isomorphisms

(A, A en(F)A, ..., A er(G)A,...,A), i=1,....d,
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which are compatible with the action of A in each component and which make
the following diagrams commute for i € {1,...,d — 1} and € € {1,2}" with
lefl=i+1: '

Cen(F)(A, ..., A) ——cri(G)(4, ..., A)

. Iy

CI'H_l(F) (A, SN ,A) —— CI'H_l(G)(A, e ,A)

cris1(F)(A, ..., A) —> crip1(G)(4, ..., A)

| -

cri(F)(A,. .., A) ——cr;(G)(4,..., A).
Then the functors are isomorphic.

Proof. See Theorem 1.5 of [Ko). ' | 8

We now apply Theorem 2.6.2 to compute the Schur functor L3 and the -

co-Schur functor L3.

Proposition 2.6.3.

4
1o k=1
' A9 A k=2
crp(L3)(A, ..., A) = <
ADA k=3
L0 k> 4.

The maps Agy @ cri(L3)(A) — cra(L3)(A; A) and +@) @ cra(Li)(4,4) —

cri(L3)(A) are zero maps. The other associated maps between the above
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cross-effect modules are as follows:

— cr3(L3)(A4, A, A)

(1,1)

;A)
0) —
) = (0,0)
)
)=

’

A(g,l) : CI'Q( )(A
A

— crz(L3)(4, A, A)
> (0,0)

0,1) — (1,1)

0

(1

(0,1) —

A,z era(L3)(A, A

(1,0) —
K

+iz t era(L)(A, 4, A) — cra(L7) (A, A)

(1,0) — (1,0)

| ~ (0,1) = (1,0)

+ag) ter3(L3)(A, A, A) — crz(L3) (A4, A)

) —(0,1) |

) — (0,1).

(1,
0,
‘Proof. Let VW and X be ﬁnitély generated A modules. Definition 2.3.6
tells us the Schur functor L3(V) is the image of dy in the complex Kos®*(idy),

since this complex is exact the image of dy is the same as the kernel of d; .

(V)= N(V) @V V ® Sym?(V) — Sym*(V)

| \L%(V)/
0/ \0

Hence we have the short exact sequence 0 — L3(V) — V ® Sym*(V) —
Sym®*(V) — 0. In particular this tells us that cri(L$)(A) = L}(A) = 0.
Next we want to compute cro(L3)(A, A). We have the short exact se-
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quence
0= L3(VeWw)—-(VeW)eSym*(VeWw) - Sym* (Ve Ww) - 0.
Using the canonical décomposition of Sym™ we see that

(VeW)®Sym(Ve W)=V eSym*(V)e Ve (VeWw)
@V ®Sym?(W) @ W ® Sym?(V)
@W@(V@W}@W@Symz(W)

and
SymS(V e W) =Sym*(V) & Sym*(V) @ W & V ® Sym*(W) @ Sym*(W).
So we get the following short exact sequence:

0 — cro(LHY(V, W) — .
Vo(VeW)oVeSym*W)e W eSym*(V)eW e (Ve W)
— Sym?(V) @ W & V ® Sym*(W) — 0.

Therefore cra(L3)(V,W) = V2@ W &V ® W®2, and in particular

(LA, A) 2 Ae A
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Next we want to compute crs(L3)(4, A4, A).

c(LHV, W X) 2V (WoX)aV e (W e X)®?
2V /W eVl X
VWX oVeWeX
BVRIXOW OV @ X®?
VW eV oW
@V®2®X@V®X®2
DVRIWRIXOVRXW.

Hence cr3(L3)(V,W, X) = VW ®X &V ® X ® W, and in particular
cr3(L3)(A4,A,A) = AQ A.

Since cry(L3)(A) is the zero module it is clear that A : cri(L})(A) —
cro(L3)(A, A) and +(g) : cra(L3)(A, A) — cry(L3)(A) are zero maps.

We now calculate the relevant diagonal maps. Referring back to definition
2.6.1, cra(L3)(Ae)) is the composition

erz (L) (Av,idw
- 5

era(L3)(V, W) ), eIV & V, W) T ens(LY)(V, V, W)

We know that cra(L3)(V,W) 2 VEIQW @V @ W2, cry(L3) (VO V, W) =
VoV®2gWao(VeV)®W and c(L3)(V, Vo, W) X Vi@V, W&
Vi@ W ® V,. The first part of the composition, crg(L‘;")(Av, idw), acts as

follows

VEQWoVeW® - (Ve V)W e (Vo V) we?

(11 ®@ V2 ® Wy, V3 @ we ® w3) — ((v1,v1) ® (v2, V2) ® wi, (V3,3) @ Wa ® ws).
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and the projection, 7r; acts by -

VoV)®2eWe(VeV)aW2 s VeVeWaeVeWweV
((v1,v1) ® (vg,v3) ® wi, (v3, v3) @ wa ® ws) '—>l(01 ® vy Q@ wn, V1 Q@ W1 Q va)

Now cra(L3)(A4,A) 2 A® A and cr3(L3)(A, A, A) 2 A® A and applying

the above we see that:

Ay : cra(L3)(R, R) — ors(L3)(R, R, R)
(1,0) ~ (1,1)
(0,1) — (0,0)

and by symmetry we get our results for A ).
We now calculate the relevant plus maps. Referriﬁg back to definition
2.6.1 we see the map cra(L3)(+(21)) is the composition

) ’ cra{L3 i
era(L3)(V, V, W) — ery(L3)(V @ V, W) Stizidw),

crz(L)(V, W)
The first piece of the compostion acts by

VRVIWaVIWwWeV VeV 2oWo (Ve V) We?
(01 ® V2 ® w1, 3 ® Wy ® vs) —((v1,0) ® (0,v2) @ wy, 0)
+ ((0, v3) ® (v4,0) ® ws,0)

and cro(L3)(+2,idw ), the second piece, acts by

VeV)B2Wa(VaV)oWe2 V2w oV @ W®?
((v1,0) ® (0,v9) ® w1, 0) —(v1 @ v2 ® wy,0)
((0,v3) ®.(v4,0) ® wa, 0) —(v3 ® V4 @ we, 0).

Applying this to' crs(L3)(A, A, A) 2 A® A and cry(L3)(A4,A) = Ad A we
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see that:
+) : ora(L)(4, A, A) — crs(LY)(4, A)
| (1,0) = (1,0)
(0,1) = (1,0)
and by symmetry we get our result for +(; 9. O

Corollary 2.6.4. The co-Schur functor f/é s isomorphic to the Schur func-

tor L.

Proof. Let V and W finitely generated projective A-modules. Definition
2.3.6 tells us the co-Schur functor L3(V) is the image of dy in the complex"
Kos®(idy ), since this complex is exact the image of d, is the same as the

kernel of d;.

D¥V)—=DXV)®V V @A (V) — A¥(V)
0

L}(v)
So we have the short exact sequence 0 — L3(V) = VQA%(V) — A3(V) — 0.
In particular this tells us that cry(L3)(A4) = L3(A4) = 0.
Next we want to compute cra(L3)(A, A). We have the short exact se-

quence 0 — L3 (VW) - (VoW)®A2(VeW) - A*(VeW) — 0. Using

the canonical decomposition of A" we see that

VeW)A (VoW) 2V A (V)e Ve (VeW)oV e A (W)
‘ OWRNV)oWe(VOW)e W o A2(W)
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and

NVeWw)2ABV)e A (V)W eV @ A2(W)® A3(W).

Hence we get the following short exact sequence:

0 —>cr2(f/i’)(V, W) —
VoVeW)aVeANW)eWeAN(V)eWe (Ve W)
- AV)eWaeV A (W) — 0.

Therefore cry(L3)(V,W) =X V2 @ W @ V ® W®?. From our previous cal-

culation we know that cry(L3)(V,W) X VE2@ W &V @ W2, so cry(L?)
and cry(L3) are isomorphic as bi-functors. Because of the way that higher
cross-effects are calculated from lower cross-effects we see that for k > 2
crp(L3) and cr(L?) will be isomorphic as k-functors. We have shown that
cri(£3)(A) = ory(L3)(A) = 0. From all these isomorphisms it is clear
that we can construct all the maps neccessary to use Theorem 2.6.2, hence
[3~13, | O

2.7 The derived functors of the third sym-

metric power functor

Let R be a Noetherian commutative ring, let I be an ideal in R which is
locally generated by a regular sequence of length 2 and let Pgr/; be the cat-
egory of projective R/I-modules. Let Gy be the functor defined as follows:

Gk : PR/] — R-mod
V + HyN Sym*TP.(V)

where P.(V) is an R-projective resolution of V.
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In Example 6.6 of [K6] Kock made the following prediction about the

derived functor Gy,

(Sym*(v) k=0
By 11 k=1
GuV) = (V) @ I/ 0 NI/ 1) k=3
D3(V) @ AX(I/12)% k=4
L}O v k>5

and for the case when k = 2 he suggests that there exists an exact sequence:

0— D*(V)®V ®A¥I/I?) — HyN Sym®*'(P.(V))
— A3(V) ® Sym*(I/1%) — 0.

For any non-negative integer k that is not equal to 2 we let Fj : Pg/y —
R-mod be the functor that Kéck predicted for ‘Gy to be. We let F; :

Pr1 — R-mod be any functor that fits in a short exact sequence
00— D*(V)®V A(I/I?) — F(V) - A*(V) ® Sym*(I/1*) — 0.

Provided that I is globally generated by a regular sequence we prove that
Gr(R/I) = Fy(R/I) i.e. that these predictions hold if V = R/I. Moreover,
regardless of whether I is globally generated or not, we prove a similar
statement for the higher cross-effects of G and Fj namely that for all &

and [ > 1 we have
crl(Gk)(R/I,,R/I) gCI‘l(Fk)(R/[,,R/[)

These results are a major step toward proving the predictions in general.
What remains to be shown is that the diagrams described in Theorem 2.6.2

are commutatizre.

We first calculate the cross-effects of the predictions made by Kock.
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~ Proposition 2.7.1. We have the followmg R/I -module isomorphisms:

4

R/I k=0
0 k=1
Fe(R/T) = § A2(I/1?) k=2
0 k=3
| A2(1/1%)%2 K =4

cra(Fx)(R/I, R/T)

(ryre R | B k=0
)& I/1? k=1
= QA1) @ NI/ 1?) & AX(I/1?) @ A(I/T?) k=2
I/ @ AX(I/I?) @ I/1% @ NX(I/?) k=3
| a2(1/1%)%2 @ 21/ 1282 k=1
cro(Fo)(R/1, B/TR/T)
| (R/1 o k=0
jrerr k=1
= LANI/T) @ (I/12)%2 @ A2(I/12) ® Sym?(I/1?) k=2
[/ ® N(I)1%) @ I/1° ® N*(I/ 1) k=3
| A2(1/1%)% - k=4

Proof. The functor Fp is Sym®. The canonical decomposition of Sym?®

gives us that crp(Sym®)(V,W) = Sym*(V) @ W @ V ® Sym*(W)
and cr3(SymH(V\W,X) =~ Ve W ® X. So Sym*(R/I) = R/I,
cro(Fo)(R/I,R/I) =2 R/I® R/I, and crs(Fo)(R/I,R/I,R/I) = R/I.

The functor Fj(—) is L:;’(—) ® I/I?. Proposition 2.6.3 tells us that:

F(R/I) = L3(R/I) @ I/I* = 0, cro(F)(R/I, R/I) = cra(L3)(R/I,R/T) ®

I/P=/I?®I/I? and cr3(Fy)(R/I,R/I,R/I) = cr3(L3)(R/I,R/I,R/I)®
jRr=i/reljr:. ' .
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The functor F3(—) is L3(=) ® I/1> @ A% (I/I?). Proposition 2.6.3 and
Corollary 2.6.4 tell us that F3(R/I) = L3(B/I) ® I/I? ® A2(I/I?) =
0, cro(E3)(R/I,R/I) = crp(L3)(R/I,R/I) ® 1)1 @ N2(I/1?) = I/I* ®
ANI)1?) @ I/I* ® AX(I/I?) and that crs(L3)(R/I,R/I,R/I) ® I/I? ®
NI/ = T/IP@ A (I/1%) @ 1/ @ A2(I)1?).

The functor Fy(—) is D3*(—) ® A*(I/I?)®?. Using the canonical de-
composition of D* we get cry(D3)(V,W) = D*(V)@ W @ V ® D*(W)
and crs(D3)(V,W,X) = V@ W ® X. Hence Fy(R/I) = AX(I/[%)%2,
cro( Fy)(R/1,R/I) = (R/I & R/I) @ A*(I/I%)®? = A*(I/1?)®* @ A*(1/1?)%*
and cry(F3)(R/I, R/, R/I) = R/I © AX(I/12)%% = AX(1/12)%%.

Now for F, we expect a short exact sequence
0— D}(V)®V @AYI/I?) — Fy(V) = A3(V) @ Sym?(I/1?) — 0

We let H stand for the functor D?(—)® — and H’ stand for the functor on
the right hand side. The canonical decomposition of exterior powers gives us

the cross-effects of H' as follows:

e (H)(V,W) = (A(V) @ W @ V © A2 (W) @ Sym?(I/I?)
cry(H )V, W, X) = (VoW ® X) ® Sym?(1/1?).

In particular we note that cro(H')(R/I,R/I) is the zero module and
ers(H')Y(R/I,R/I,R/I) = Sym?*(I/I?).
We now calculate H(V & W) so we can calculate the cro(H)(V, W),

DAV eW)® (Ve W) =D V)V & DAV)o W
OVIWRIVaeaVRIWRQW

eD*W)V e D)(W)eW
. hence

ey YV, W) 2 D)(V)QWeVWeVeVeWeaWae D (W) V.
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<And similarly

cro(H)(V,W @ X) =D* (V)@ X @ DX(V) @ W
VIWRVeVeXeV
BVRIWIWaVIXaW
PVOIWRXDVRX®X
@D%ﬁ@V@W@X@V
D} X)W

therefore
(HV,W,X)2VeXeWeVeWeXoWaXeV.
Since cro(H')(R/I,R/I) = 0 we get

cro(F2)(R/1, R/T) = cxo(H)(R/1,R/T) ® A*(1/17)
=AY I/ @ A*(1/1?) © A¥(1/1?). -

We also find that

cxs(F) (R/T, BT, R/T) ero(H)(R/T, RIT, R/T) @ cra(H') (R/L, R/T, R/ 1)
=~ AX(I/1%) @ AX(I/1?) @ A*(I/1%) & Sym*(I /%),

0O

The following theorem shows that if I is globally generated by a regu-
lar sequence then the derived functors of Sym® evaluated on R/I matches

Kock’s predictions.

Theorem 2.7.2. If I s globally generated by a regular sequence of length 2
then the module Gy(R/I) is a free R/I-module of rank 1, for k ='0,2 or

4 and otherwise of rank 0.
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Proof. Let f, g be a regular sequence in R, and let I be globally generated
by it. Also we let K. denote the Koszul complex ... - 0 — R ER R and L.

denote the Koszul complex ... - 0> R R.

By Proposition 2.2.4 we know. that the Koszul complex -

Tot(K. ® L.) = Kos(f,g) = Kos’(R® R L9 R)
is a resolution of R/I.

We see that:

Gr(R/I) :=HyN Sym*I Tot(K. ® L.)
> N Sym® I Tot(NTK. ® NTL.).

Theorem 2.4.2 tells us that Tot(NI'K. ® NTL.) is chain homotopic
to NA(TK. ® I'L.). Applying T' turns the. notion of chain homotopy
into simplicial homotopy, all functors preserve homotopy in the simpli-
cial world and N changes the notion of simplicial homotopy -into the no-
tion of chain homotopy. So N Sym®T' turns the chain homotopy between
Tot(NTK. ® NTL.) and NA(I'K. ® TL.) into a chain homotopy between
NSym®TI' Tot(NT'K. ® NTL.) and NSym*TNA(I'K. ® TL.). Chain ho-
motopic complexes are quasi-isomorphic, so continuing our calculation of
Gy (R/I) where we left off we get: |

Gy(R/I) = HyNSym* TNA(TK.®T'L.) = H,N Sym* A(TK.®TL.)
~ I,NASym*(TK.®TL.).

Now we calculate Gy(R/I) by calculating HyNASym*(TK.®T'L.). We

cannot calculate this directly, so instead we will employ the short exact se-

quences detailed in section 2.5 which will allow us to get information about
these homologies from easier to calculate homologies. For any two finitely

generated R-projective modules P, we have the following short exact se-
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quences:
0= A°P@AQ — Mpy(Sym*(P®Q)) — LIP® LIQ — 0

0 — My (Sym*(P® Q) — Sym*(P ® Q) — Sym®*(P) ® Sym*(Q) — 0.

(Notel we are using L} rather than L(s;); this is justified by Lemma 237)

Hence we get the following short exact sequences of bisimplicial modules

0 — A’TK. ® ASTL. — My (Sym*(TK. ® TL.)) — L3TK. ® L3TL. — 0

0 — M1 (Sym*(T'K. ® 'L.)) — Sym*(I'K. ® T'L.)
' Sym*(TK.) ® Sym*(T'L.) — 0,

applying NA to this gives us a short exact sequence of chain complexes. We
can turn the homologies of these into two long exact sequences, this will allow
us to get information about the homologies of M(z,l)(Sym3 (TK.®TL.)) from
the easier to calculate homologies of AT K. ® A’I'L. and L3T'K. ® L3TL..
This information about the homologies of M(z1)(Sym*(TK.®T'L.)) together
with the homologies of the easier to calculate homologies of Sym*(I'K.) ®
. Sym?(I'L.) will tell us the ranks of the homologies of Sym*(T'K. ® I'L.) .
First we calculate the homologies of L3T'K. The definition of L? gives
us the following short exact sequence for any finitely vgenerated projective
module P ’ »
0— L3P - P®8Sym? P — Sym® P — 0,

which gives us the short exact sequence of simplic.ial complexes
0 — LK. - T'K. ® Sym?TK. — Sym®*T'K. — 0,

the middle term of this short exact sequence is the simplicial complex whose

k™ term is 'K, ® Sym?T'K). We think of this middle term instead as
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the diagonal of a bisimplicial complex whose (k, )" is TK; ® Sym?TK;.

Now applying the functor N turns this into a short exact sequence of chain

complexes

0 — NLp K. — NA(TK. @ Sym?TK.) — N Sym® K. — 0,

and from this we can create a long exact sequence that gives us information

about H,NL3TK..’

Applying the Eilenberg-Zilber Theorem, then Proposition 2.2.10 and then

Corollary 2.1.6 we get

H,NA(TK.® Sym?TK.) 2H, Tot(NTK.® N Sym?T'K.)
~ H, Tot(K. ® Kos*(f)).

Now

Kos®(f) = (A*(R) — A'(R) ® Sym'(R) — Sym*(R))
~(0—-RLR) =K,

and therefore

HyNA(TK. ® Sym®>TK.) =H, Tot(K. ® K.) = Hy(P.(R/(f))%?)
R/(f) k=01
0 k>1

1

=N ((£)/(F)?)

with the last step given by Proposition 2.2.5.
Using Proposition 2.2.10 we get

HeN Sym3TK. & Hy(Kos®(f))
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now

Kos*(f) = (A3(R) — A*(R) ® R — AL(R) ® Sym’(R) — Sym’(R))

=(0——>0—>R1>R):K.,

hence

R/(f) k=0

H,NSym®T'K. =
0 k +# 0.

So the long exact sequence of homologies that we get from the short exact

sequence
0 — NLTK. - NATK. ® Sym’TK.) » NSym®’TK. — 0 _

18

----------- - HyNLITK. 0— 0 )
_L>H2NL{’I‘K. 0 0 )

H,NLiTK. —> R/(f) 0 D

HyNLiTK. — R/(f) — R/(f) —>0

and so we get

H.NLT'K. = 0 k?él
| R/(f) k=1

Similarly we get
0 kE#1

HNLTL. =
: R/(g) k=1
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NOW we work with the short exact sequence of simplicial modules

0 — A’TK. ® A’TL: — My 1(Sym*(TK. @ TL.)) — L3TK. ® L3TL. — 0

the left and right terms are simplicial modules whose k™ terms are ASTK,®
A3T'L; and L3T K, ® L3T L, respectively, but it is more useful for us to think
of them as the diagonals of bisimplicial complexes whose (k,1)*™ term are
- ATK, ® A’TL; and L3TK) ® L3T'L; respectively. Now when we apply the

functor N to get a short exact sequence of chain complexes we get

0 — NA(A’TK. @ A’TL.) — NM51)(Sym*(TK. @ T'L.))
— NA(LTK. ® L3TL.) — 0.

The Eilenberg-Zilber Theorem tells us that
H NA(ATK. @ A°’TL.) = H, Tot(NA’TK. ® NA’TL.)

and ,
H NA(L’TK.® L3TL.) = H, Tot(NLITK. ® NLT'L.).

Now by Proposition 2.2.10 and Corollary 2.1.6 we get

o\

Hy Tot(NA*TK. @ NASTL.) 22H,, Tot(Kos' () ® Kos' (g)).
Now

Kos'(f) = (D*(R) — D*(R)® R— R® A*(R) — A*(R))
= (RLR-0-0)=K[-2,
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and similarly K~os3(g) =‘L.[—2]. So

H; Tot(NATK. ® NA’TL.) 2H, Tot(K.[-2] ® L.[-2])
~H,(Tot(K. ® L.)[—4)])
0 k#4
R/I k=4

112

=Hy_4(P.(R/I))

Now to calculate Hy Tot(NL3TK.® NL3TL.) we note that it is the hyper-
tor functor Tory(NL3T'K., NL3T'L.) and use the following spectral sequence

given in Proposition 2.1.5

"El,= €P Tor,(H,(A.), Hy(B.)) = Tor(A,, B,)
9=q'+q" ‘ ' N
taking A, = NLI'K, and B, = NL3['L,. But since HyNL}['K. and
HyNL3TL. are 0 unless k = 1 (see above) this spectral sequence collapses,
with the only (potentially) non-zero terms being when ¢’ = ¢” = 1, i.e. when
g = 2. These (potentially) non-zero terms are Tor,(R/(f), R/(g)). Taking
L. asa projective resolution of R/(f) then tensoring throughout by R/(g)

we get the chain complex

(0~ R@R/(g) > R® R/(a) = (0~ /() & R/(s)

which has homology R/I at the 0* place and 0 everywhere else. And so

k#2

Hi(Tot(NLSTK. ® NLIT'L.)) = Tory—2(R/(f), R/(g9)) =
R/I k=2

So the short exact sequence of chain hcomplexes

0 — NA(A’TK.® A’TL.) — NM91)(Sym*(TK.®TL.))
— NA(LSTK. ® LiTL.) — 0
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gives rise to the following long exact sequence of homologies

______________ >0 —— HsN M5,)(Sym*(TK. ® T'L.)) 0

~

R/I — H;NM;31(Sym*(TK. ® TL.)) ——0

0 —— HsN Mz (Sym*(TK. ® TL.)) —>0

J UL

0 ——> HyN My 1)(Sym®*(PK. ® T'L.)) R/I

NI AN

0T

(e

and therefore we get

oo R/ k=24
 H,NM(Sym*(TK. @ T'L.))

0 otherwise.
Now we work with the short exact sequence of simplicial modules

0 — Mz (Sym*(TK. ® TL.)) — Sym*(TK. ® I'L.)
— Sym*('K.) ® Sym*(T'L.) — 0

the term Sym?(I'K.) ® Sym®(T'L.) is a simplicial module whose k" place
is Sym3(T'K}) ® Sym?(T'L;), but as above it is more useful to ‘think
of it as the diagonal of the bisimplicial complex whose (k,1)* place is
Sym?(T Kk). ® Sym*(T'L;). Applying the functor N we get the following




- CHAPTER 2. The derived functors of Sym® ‘ 97

short exact sequence of chain complexes

0 — NM@y(Sym*(TK. ® TL.)) —» NSym*(I'K. ® T'L.)
— NA(Sym?*(T'K.) ® Sym*(T'L.)) — 0.

Applying the Eilenberg-Zilber Theorem, Proposition 2.2.10 and Corollary

2.1.6 we see

HyNA(Sym®*(I'K.) ® Sym*(T'L.)) =2Hj, Tot(N Sym*(I'K.) ® N Sym*(T'L.))
>~ H; Tot(Kos®(f) ® Kos®(g)).

Earlier in this proof we showed that Kos®(f) = K. and similarly Kos?(g) =
L., so

H;, Tot(Kos?(f) ® Kos?*(g)) & Hg(Tot(K.® L.)) = Hy(P.(R/I)).

Hence

HyNA(Sym® I'(K.) ® Sym® T'(L.)) =

R/I k=0
0 k#0.

And so the short exact sequence of chain complexes

~0— NMpy(Sym*(TK.®'L.)) —» NSym*(TK.® 'L.)
— NA(Sym*(TK.) ® Sym*(T'L.)) — 0,
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gives rise to the following long exact sequence

-------------- =0 ——> HsNA Syrﬁ3(F(K-) ® (L)) 0 )
& R/1 —s H,NA Sym*(I'(K.) ® T'(L.)) 0 ' >
L» 0 H3;NASym*(T'(K.) ® T'(L.)) 0— >
C»R/I-—»HQNA Sym*(I'(K.) @ T'(L.)) 0 )

0 —— H\NA Sym*(I(K.) ® [(L.)) — 0 — )

[

0 — HoNA Sym*(T(K.) ® T(L.)) — R/I

e

And hence (as we know Gr(R/I) = H,NASym*(TK. ® TL.)) we see
that: . A

» R/T k=0,2,4
“ Gr(R/I) = .

0 otherwise,
as desired. _ O

The following theorem shows that then the second cross-effect functor
of the derived functors of Sym® evaluated on (R/I, R/I) matches Kock’s

predictions.




CHAPTER 2. The derived functors of Sym?® 99

Theorem 2.7.3.

cra(G)(R/I, R/T) = <

(R/TeR/I k=0
/Pel/r k=1
A2(1/12) @ A2(I/12) ® N2(1/1%) @ N>(I/1%) k=2
/PR N(I/1?) & I/I? @ AXI/I?) k=3

| A2(1/12)%2 @ A2(1/12)%? k=4
0 k>5

\

-.Proof. First we calculate Gp(V @ W), for R-modules V,W to give us an
expression for cra(Gy)(V, W). To do this we use the fact that P.,I’, N and
Hj, are linear functors and also the canonical decomposition Sym™(V @W) =
D, Sym™ (V) ® Sym'(W). '

Gi(V & W) =H,N Sym*TP.(V & W)
~H.N Sym*(TP.(V) @ TP.(W))
- szN( Sym® T'P.(V) & Sym?TP.(V) ® TP.(W)

& TP.(V) @ Sym? TP.(W) @ Sym® FP.(W))

~H,N(Sym®*TP.(V)) @ H,N(Sym*TP.(V) ® fP.(W))

® H,N(TP.(V) ® Sym® TP.(W)) @ HyN Sym* T P.(W)

~G(V) ® H,N(Sym? T P.(V) @ T P.(W))

And hence

® H.N(CP.(V) @ Sym? TP.(W)) ® Gx(W).

crz'(Gk)(V, W) 2H,N(Sym’TP.(V) ® FP.V(W))

@ HiN(TP.(V) @ Sym? "P.(W)).

In the above when we wrote Sym?I'P.(V) ® I'P.(W) this denoted the
simplicial modules whose n'® place is Sym? I'P, (V) ® ' B, (W), we can con-
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sider this simplicial module; to be the diagonal of the bisimplicial modules
whose (n,m)™ place is Sym® 'P,(V) ® T'B,,(W). For the rest of the calcu-
lation we write Sym®* I'P.(V) ® TP.(W) and FP(W) ®Sym? 'P.(W) for the
bisimplical modules and consider cry(Gy)(V, W) to be

HyNA(Sym’TP.(V) ® FP.(Wj) ® H,NA(TP.(V) ® Sym® PP.(W)).

We will now calculate HiNA(Sym? FP.(V) ® I'P.(W)). Using the
Eilenberg-Zilber Theorem (Theorem 2.4.2) we see that S

H.NA(Sym*(TP.(V)  TP.(W)) =H, Tot(N Sym*T'P.(V) ® NI P.(W))
>, Tot(N Sym?T'P.(V) @ P.(W)).

So we want to calculate Hy, Tot(N Sym?T'P.(V) ® P.(W)), but this is just
the definition of the hypertor Tor?(N Sym?T'P.(V),W). Proposition 2.1.5
gives us a spectral sequence to calculate hypertor
HE2 = Tory(H,(A), B) = Tor?, (A,,B).

p+q

Theorem 6.4 of [K&)] tells us that

,
Sym?(V) k=0
AX(VY @ I/I? k=1

HiN Sym? T(P.(V)) = { Vel
; DXV) @ A2(I/1%) k=2
0 | k>3,

\ —

Now Sym*(R/I) = R/I,D*(R/I) = R/I and A?>(R/I) = 0. Hence the 2™
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level of our spectral sequence for Tor?(N Sym? T'P.(R/I), R/I) is as follows.

0 0 0 0
0 Tor2(A2(I/IZ),R/f) 0  Toro(R/I,R/I)

0 TOI‘l(Az(I/I2),R/I) 0 TOI'l(R/I, R/I)

vo TorO(A2(1/12), R/I) 0  Toro(R/I, R/I).

Now from Proposition 9.2.5 we know that Tory(R/I,R/I) & A*¥(I/I?) and
hence have Tory(V, W) = V@W ®AF(I/I?). So the 2" level of the spectral

sequence looks like this:

0 0 0 0
0 AP0 A/
0 I/IPQANI/I?) 0 1/1?

o T AX(I/1?) 0 R/I.

The differentials on this level of the spectral sequence are —2 in the p-
direction and +1 in the g-direction, so each differential either comes from
or goes to a zero module. Hence the differentials are all the zero map i.e. the

spectral sequence has already converged on the second level.
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Therefore
(R/I | k=0
AT/ @ A (I/1?) k=2
HNA(Sym? TP(R/T) @ TP(R/D) = 4 T &/
| | 1/1?® A*(1/1?) k=3
A2(1/12)®2 k=4
0 k>5.

By symmetry HyNA(Sym?TP.(R/I)® TP.(R/I)) = HyNA(TP.(R/I) ®
Sym®T'P.(R/I)). Hence '

’R/I ® R/ o

I/IPe1/1? -

(G (R/1, Ry1y = | TP @MU/ S MU/ © NUIE) k=2
- I/P@N(I/1?) @ 1/I* @ AX(I/1%) L 3

A2 (I/17)82 @ A*(1/1%)%* k=4

. k> 5.

g

The following theorem shows that the third cross-effect functor of the
derived functors of Sym® evaluated on (R/I, R/I, R/I) matches Kock’s pre-

dictions.

Theorem 2.7.4.
crs(Gy)(R/I,R/I,R/I) = AF(I/ 1> @ I/ 1?)

Proof. We first calculate cro(Gi)(V, W@ X), for R-modules V, W, X to give
us an expression for crs(Gy)(V, W, X) (compare the following with the above

calculation of cry(Gy)(V, W) in Theorem 2.7.3). To simplify our calculation
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of cra(Gy)(V, W @ X) we split up our expression for cry(Gy)(V, W & X) into
HyNA(Sym’TP.(V)®TP.(Wa X)) and HiNA(TP.(W)®Sym* 'P.(W &
X )) , calculate each part separately then add them together afterwards.
" H,NA ( Sym?TP.(V) ® TP.(W & X)) |
o HkNA(_Sym2 TP(V)® (TP.(W) @ TP, (X)))
~H,NA ( Sym?TP.(V) ® FP.(W))
& HkNA(Sym2 TP(V)® I‘P.(X)).

HNA (FP.(V)® Sym*TP.(W & X )) |

~ H,NA (FP.(V) ® Sym? (TP.(W) & FP.(X))),
the canonical decomposition of Syn.l2 tells us
Sym*TP.W @TP.X) = Sym’ TP.(W)& (IP.(W)®TP.(X)) ®Sym? T P.(X)

- (where T'P.(W) ® fP.(X ) is the simplicial module whose nf® place is
IP,(W)®TI'P,(X)) and so we see
H,NA (PP. (V)® Sym? (TP.(W) & FP.(X)))
=H,NA (PP.(V) ® Sym? FP.(W)))
‘@ HiNA (rp. (V)® (TP.(W)® TP, (X)))
® HNA(TP.(V) ® Sym* TP.(X)). |
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This gives us the following expression for cry(G)(V, W @ X)

er2(Ge)(V, W @ X) 2H NA(Sym*TP.(V) ® FP.(W))
& HiNA ( Sym?T'P.(V) @ TP. (X))
©.H,NA (FP-.(V) ® Sym? ' P.(W))
® HiNA (FP.(V) ® (TP.(W)® TP, (X)))
& HyNA (rp.(V) ® Sym? TP, (X))
~H,NA ( Sym?TP.(V) @ T'P. (W))
® HiNA (FP.(V) ® Sym2 " P.(W )
@ HkNA<Symé TP.(V)®P.(X )
® HiNA (FP.(V) ® Sym2 I P.(X )
& H,NA (FP.(V) ® (TP(W) ® TP.(X )))
- =Zena(Gr)(V, W) ® cra(Ge)(V, X)
& HeNA(TP.(V) @ (TP(W) @ TP. (X)))-

Therefore cr3(Gy)(V, W, X) & HyNA (FP.(V)®(PP.(W)®FP.(X))) . How-

ever we may consider A(FP.(V) ® (TP.(W)®TI'P.(X))} to be the diagonal
of the trisimplicial complex T'P.(V) @ TP.(W) @ I'P.(X), so we write

crs(Ge)(V, W, X) & HyNA(TP.(V) ® CP.(W)@TP. (X)).

The Iterated Eilenberg-Zilber (Theorem 2.4.2) tells us that

H.NA(TP.(R/I)®TP.(R/T)®T'P.(R/I)) = Hy Tot (P.(R/13®P.(R/I)@P.(R/I))

Proposition 2.2.5 tells us that

Hy Tot (P.(R/I)® P.(R/I) ® P.(R/I)) = A¥(I/I* & 1/1?),
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hence we see that

crs(Gx)(R/1, R/1, R/T) = §

(

\

R/I
/1P I/I?

NI/ P e (1)) ® (1/17) & AY(I/1?)
ANI/IP?) @ (I/I1?) @ (I/1%) @ A*(I/I?)
A2(I/1%) ® A*(I/1?)

0
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