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Benchmarking corresponds to a combination of two sources of information on a given 

variable. In many situations, the problem consists of combining a series of frequent 

data with a series of less frequent but more accurate data for producing more accurate 

estimates of the former series. For example, estimates of population characteristics are 
derived from the last census and researchers re-estimate the values for the time gap 
between two censuses using more regular information. In what follows we focus in the 

problem of benchmarking monthly data with annual estimates; then, the benchmarking 

consists of forcing the sum of the monthly signals to equal the signal of the benchmark. 

Alternative estimators have been proposed in the literature for benchmarking. When 

the adjusted series agrees exactly with these benchmarks, the benchmarking is called 
binding. The binding process is implemented by setting the variance of the annual 

survey errors to zero. However, it is necessary to account for the variance of the 

annual survey errors when computing the variances of the benchmarked estimators. 
In this thesis, we develop the theoretical expression of the correct variance as well as 

an expression for the excess in the variance due to the binding process. The results 

are extended to the most known benchmarking methods proposed in the literature. 

An application to business surveys used for official statistics in the UK is presented, 
illustrating some paxticular issues regarding the state space modelling. Finally, the 

problem of how to prepare tabular data classified by attributes as columns and points 
in time as rows is analyzed. This multivariate extension of the benchmarking problem 
distinguishes two basic type of problems: when only marginal totals are available 
(contemporaneous disaggregation) and when the aggregates do not correspond with 
the sum of the disaggregated values by year and/or by attributes (reconciliation). The 

scope of this thesis is based basically in a state space model approach. 
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Chapter I 

Introduction 

1.1 The Benchmarking Problem 

Repeated surveys are widely used in many statistical offices to obtain estimates for 

a set of variables at regular intervals of time and to follow their level through time. 

For instance, official business surveys are carried out to estimate monthly production, 

monthly sales or quaxterly capital expenditure (National Statistics, 2004; DANE, 2006); 

labour force surveys are also conducted monthly to estimate the number of employed 

and the rate of unemployment (Holt and Skinner, 1998; National Statistics, 2001; 

Bureau of Labor Statistics, 2005) and, as an additional example, monthly surveys are 

conducted at regular intervals to measure vote preferences (Freeman, Houser, Kellstedt 

and Williams, 1998; Erikson and Wlezien, 1999; Chanley, Rudolph and Rahn, 2000; 

Yang, Goldstein and Heath, 2000). 

These type of surveys are designed mainly to estimate finite population parameters 

such as totals and changes in totals and means over time. According to Skndal, 

Swensson and NVretman (1992), page 279, remark 9.9.2, the "design and estimation for 

such surveys may require special methods, for example, the use of time-series analysis 

combined with design or model based survey sampling tools. ". The application of 

time series methods to repeated surveys was proposed with the aim of improving 

estimates in these surveys. Bell and Hillmer (1987a) and Binder and Hidiroglou (1988) 

make a distinction between two approaches: thq "classical sampling approach" and the 
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"time se7ies approach". Regarding the "classical sampling approach" (Tikkiwal, 1979; 

Wolter, 1979), the parameter of study is assumed to be an unknown constant and 

all the variability comes from the sampling. On the other hand, in the "time series 

approach", the parameter is assumed to be a random quantity produced by a stochastic 

process and this gives an additional "source of variability"; see for example Blight and 

Scott (1973); Scott and Smith (1974); Scott, Smith and Jones (1977); Jones (1980); 

Bell and Hillmer (1987b); Binder and Hidiroglou (1988); Duncan and Kalton (1988) 

and Pfeffermarm (1991). 

We will denote the value of the unobserved population true series (signal) at the time 

t as 77t. Using the time series approach, Smith (1978, page 208) justifies the approach 
thus; "... how strong is the assumption that (the parameter) 77t is an unknown constant. 
It implies that i7t cannot be predicted in any way from knowledge of the previous values 

77t-I i 77t-2, etc. Surely in most repeated surveys the parameter would change only 

moderately with time, and hence knowledge of 77t-1 would be very useful in predicting 

77t. To ignore this information seems very wasteful". 

Scott and Smith (1974) combined time series and sampling by considering the decom- 

position 

Yt = 77t + ft t=1, ---, n (1.1.1) 

where 77t is the signal at time t, tt is the sampling error associated with yt representing 

the survey estimate of 77t at time t. Therefore, the equation above decomposes fhe 

observed series yt into the signal 77t plus a noise ft with t denoting the repetition of the 

survey in n periods. 

The estimate yt based on the data at time t may be adjusted to increase the ac- 

curacy of the estimation of 77t. The most common adjustments made to the peri- 

odic observations are signal extraction (smoothing), interpolation, extrapolation and 
benchmarking (Dagum, Cholette and Chen, 1998). Signal extraction methods aim 
to improve the precision in the estimation of 77t (Bell and Hillmer, 1990; Pfeffermann 

and Bleuer, 1993; Binder, Bleuer and Dick, 1993) and interpolation (extrapolation) 

methods are commonly used if there are missing values within (outside) the period of 
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observation (Chow and Lin, 1971). In this thesis, we will focus specifically on bench- 

marking. 

Benchmarking corresponds to the optimal combination of two sources of information 

on a variable (two different set of estimates, one of which, the benchmark, is more 

accurate than the other). In many situations, the problem consists in combining a 

series of high-frequency data (e. g. monthly data) and a series of less frequent data (e. g. 

annual data) to produce more accurate estimates of a time series for some specific flow 

variable. For instance, yearly estimates of population are derived from the last census 

and researchers re-estimate the flows for the time gap between two censuses using 

monthly or quarterly regional, subregional and inter-regional information (Dagurn and 
Cholette (2006), page 3). 

In the UK, as another example, results of the Annual Business Inquiry (ABI), produced 
by the Office for National Statistics (ONS) are normally used to improve monthly 

estimates from business surveys; although it is usually over a year, after the year in 

question, before the estimates become available. The monthly estimates are often 

assumed as biased due to coverage deficiencies in the sampling frame. Undercoverage 

is caused since new businesses are normally included in the frame with some delay. 

The improvement after benchmarking is achieved by assuming that the information 

contained in ABI is more accurate than the monthly data. 

Figure 1.1 illustrates the benchmarking process using a fictitious example. The series 
in red corresponds to the series of original estimates coming from a monthly survey; 

vertical lines in black correspond to the exact date when benchmarking methods are 

applied using the new available information from an annual survey; and series in green 

corresponds to the adjusted series after benchmarking. Given this situation, it is nec- 

essary to combine the information in both series to obtain more precise estimates 

reflecting the true behaviour of the unknown original series (estimates axe represented 
by the green series in Fig. 1.1). The most common aim is to improve high frequency 

series (e. g. monthly or quarterly), when there are low frequency (e. g. annual) bench- 

marks available from another more reliable survey. Typically, the low frequency series 
I 
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Figure 1.1. Graphical Description of the Benchmarking Problem 

is more reliable than the high frequency series, because it originates from a larger 

sample or even a census. The. more reliable measurements are then considered as 

benchmarks (Bloem, Dippelsman and Maehle, 2001). In most cases, the annual totals 

of the monthly estimates are not equal to the benchmarks. For this reason, bench- 

marking has been commonly considered as the process of adjusting the less reliable 

monthly series to make it consistent with the annual benchmarks. When the adjusted 

series agrees exactly with these benchmarks, the benchmarking is called "binding". 

However, in the presence of annual survey errors, "benchmarking can be defined more 

broadly as the process of optimally combining two sources of measurements in order 

to achieve improved estimates of the signal under investigation" (Dagum et al., 1998). 

We will refer to the benchmarking estimation under the last definition as non-binding 

estimation. 

A related problem, using the time series approach, has been named the "disaggrega- 

tion of univariate time series" and studied by authors such as Chow and Lin (1971), 

Ginsburgh (1973), Fernandez (1981), Rossi (1982), Guerrero (1990), Wei and Stram 

(1990), Guerrero and Martinez (1995), Guerrero (2003) and Di Fonzo and Marini 

(2005), among others. The main purpose of this approach is to combine low frequency 

data from the series of study with high frequency data of auxiliary variables in or- 
der to obtain high frequency estimates of this series. For example, biennial census 
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of manufacturers are used to estimate annual estimates of national income in the US 

(Friedman, 1962). The problem of combining low frequency data from a given series 

with high frequency data coming from auxiliary variables is out of the scope of this 

thesis. 

Benchma, rking will be referred to in this thesis as the more general problem of improv- 

ing subannual estimates derived from one source using annual estimates obtained via a 

second source, both including survey errors (Hillmer and Trabelsi, 1987; Cholette and 

Dagum, 1994; Laniel and Fyfe, 1990; Chen, Cholette and Dagum, 1997; Durbin and 

Quenneville, 1997). The benchmarking problem has also been called ex-post estimation 

from the point of view that the low frequency estimates are produced after (post) ob- 

serving the benchmarks. Another different problem, called ex-ante estimation is how 

to do these adjustments before (ante) the most recent benchmark becomes available 
(Nieto, 1998; Nieto, 2007). In business surveys, for example, the annual total estimates 

are obtained only in the middle or the end of the following yeax. Then, the problem 

consists in how the estimation in the last few data points, in the paxtial year at the 

end of the series, can be improved before the benchmark estimate is obtained. Durbin 

and Quenneville (1997) have proposed an "online procedure", where it is not necessary 

to have the benchmark for the last year of study. 

Another common problem, which can be seen as a multivariate extension of the bench- 

marking problem, is how to improve estimation in the cells of a table of data (for exam- 

ple, months by rows and industrial subsectors by column). The problem arises when 
the information is available in an aggregate form only (annually and/or by industrial 

sectors) or when the aggregates do not correspond with the sum of the disaggregated 

values because, for example, aggregate and disaggregate values come from different 

surveys or sources of information. For instance, aggregated estimates are available in 

National Accounts in two forms (Guerrero and Nieto, 1999): temporally (e. g. annu- 

ally) and contemporaneously (e. g. by economic sector at a given time) but there is a 

necessity to get disaggregated estimates to carry out econometric modelling and for 

making decisions about some particular sectors or regions. Telser (1967), Zellner and 
Mornmarquette (1976), Abraham (1982), Lfltkepohl (1984), Wei and Stram (1990), 
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among others, discuss the problems of drawing conclusions from econometric analyses 

at disaggregated levels when the data are temporally aggregated. 

Two special cases of the multivariate problem may be distinguished: 

1. Reconciliation of time series corresponds to the multivariate problem when a set 

of preliminary series obtained from a source subject to survey error is available 
for each subperiod and every subsector. Dagum and Cholette (2006), chapters 12 

and 14, refer to this problem as reconciling one-way or two-way classified systems 

of time series. The aggregates by row and columns do not correspond with the 

sum of the preliminary series because the aggregate series could come from a 
different survey. The aim is to make this information consistent using both the 

auxiliary information contained in the history of the series and the information 

contained in the marginals. 

2. Contemporaneous and Temporal Disaggregation corresponds to the multivaxiate 

problem when no prior auxiliary information about the subsectors or the subpe- 

riods is available; the only available information is the annual and sector totals. 

Dagum and Cholette (2006), chapter 13, refer to this problem as reconciling 

marginal two-way systems and set up the problem as a contingency table with 
for example "type of industry" in the rows vs "province" in the columns with 

available marginal totals but missing information in the inner cells. In this thesis, 

the same problem is studied but considering one of the dimensions as an index 

over "time"; 

In the first case, (Zaier and Trabelsi, 2007) have proposed a method to estimate the 

inner cells. However, this method does not provide any estimation of the standard 

error of the estimates and does not produce estimates for the first year of observation. 
Also, an adaptation of the Iterative Proportional Fitting (IPF) method (Deming and 
Stephan, 1940) is considered for this problem. In the second case, some alternatives 
(Di Fonzo, 1990; Guerrero and Nieto, 1999; Quenneville and Rancourt, 2005; Dagurn 

and Cholette, 2006) have been recently studied but they either use auxiliary informa- 

tion from other highly correlated sources or make use of difficult assumptions such 
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as knowing the autocovariance matrices of the stochastic processes involved. In this 

thesis, new alternatives axe proposed to obtain the estimates under the problem being 

described above through state space models in Chapters 5 and 6. The advantages and 

shortcomings of these proposed methods will also be discussed later on. 

1.2 Aims of the Thesis 

There axe some desirable characteristics that a benchmarking method should have 

apart from the natural one as a solution to the consistency of high frequency series 

with low frequency benchmaxks. The first one, which was mentioned above, is the 

capacity to deal with situations where the indicator series extends into a period for 

which there is no benchmark yet available; but also, preserving as much as possible 

the short term movements in the signal and ensuring that the sum of the sub-periods 

of the current year are as close as possible to the annual benchmarks. We will consider 
the problem of benchmarking as how to improve subannual estimates derived from one 

source by using annual estimates obtained from a second source, with both estimates 
(annual and subannual) subject to survey errors. In practice, it is also important 

to deal with specific problems such as incomplete or not available standard error of 
the survey estimates and specific issues under the state space model approach such 

as optimal specification of trends, seasonalities and ARMA modeling of the survey 

errors; maximum likelihood estimation of hyperparameters; goodness of fit tests and 

estimation of the variance of the estimators. Other problems not considered in this 

thesis and possible axeas of further work are: missing data; multiplicative structure of 
the data when for example, the amplitude of the seasonal cycles increases or decreases 

jointly with_the trend; specification of trading days/calendar effects and estimation of 
the survey bias. 

Regarding the multivariate case, a first problem of estimating a set of monthly series 
for some specific subsectors of a whole industry is considered by using yearly totals for 

each subsector and monthly values of the total sector of industry. The estimated high 

frequency time series must fulfill temporal (by year or columns) and contemporaneous 
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(by sector or rows) aggregation constraints in the binding case; but also it is relevant 

to study the case when the totals are obtained from different sources subject to sur- 

vey errors. Regaxding the second problem in the multivaxiate case, Quenneville and 

Rancourt (2005, page 1) refer to this situation as "restoring the additivity of a system 

of time series, with the objective of balancing a table of seasonally adjusted series 

benchmarked to the corresponding annual totals from the raw series". When auxiliary 

disaggregated information exists, it is preferable to employ a disaggregation procedure 

that combines all available (aggregated and disaggregated) information rather than 

working only with aggregated data. The main aim is to restore the additivity to the 

table in order to keep the implied constraints by row and columns. Again, data can 

be considered from sample surveys and it is necessary to introduce the survey errors 

into the model. 

1.3 Outline of the Thesis 

The thesis is structured as follows. Chapter 2 reviews the available benchmarking 

methods that have been proposed in the literature. Specifically, some theoreticaJ de- 

velopments from three main benchmarking methods due to Denton (1971), Cholette 

and Dagurn (1994) and Hillmer and Trabelsi (1987) are presented along with their main 

advantages and disadvantages being highlighted. Chapter 3 introduces basic concepts 

in structural time series and state space models and some additional sections referring 

to special issues about the KaJman filter, maximum likelihood estimation, initialization 

of the recursions and diagnostic checking. In addition to the other benchmarking meth- 

ods presented in Chapter 2, two alternative state space model based methods due to 

Durbin and Quenneville (1997) are presented. The last sections of this chapter concen- 

trate on the use of binding and non-binding estimators (they were introduced in page 4 

above). It will be shown, at the end of the chapter, that the use of binding estimators, 
in the case of non-zero variance annual estimates, adds an additional component to the 

variance of the benchmarked values. The theoretical expression of the correct variance 
in this case is presented as well as an expression for the excess in the vaxiance due 

to the binding. In particular for the two stage benchmarking model and under some 
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specific conditions, the estimates after binding could be even worse than the smoothed 

estimates without benchmarking. The results are extended to the other benchmark- 

ing methods presented in the previous chapters. Chapter 4 presents an overview of 

the main business surveys used in official statistics in the UK and describes the cor- 

responding main parameters of study, the sampling designs and the need to apply 
benchmarking methods in this paxticular kind of surveys. At the end of the chapter, 

state space models axe applied in order to benchmark the two main business surveys in 

the UK: the MPI, Monthly Production Inquiry. and the ABI, Annual Business Inquiry. 

The information is available for most of the industrial sectors in the economy but some 

particular issues require to be solved before benchmarking. One particular problem is 

the non-availability of measures of precision for some periods of study in the survey 

and then generalised vaxiance functions (GVF, Wolter (1985)) are used to overcome 

this problem. Other recommendations in terms of the specification of the trend and 

the seasonalities of the model are suggested and compaxed with those proposed by 

Durbin and Quenneville (1997) accordingly to the assumptions of the respective mod- 

els. Additional issues such as initial values and constraints in the maximum likelihood 

estimation; initialisation methods for the filter; diagnostic tests over the innovations 

and the auxiliary residuals (Kohn and Ansley (1989), Durbin and Koopman (2001)) 

and Monte Carlo simulation of state space models are also considered. 

Chapters 5 and 6 consider the multivariate extension of the benchmarking problem. 
The concern here is how to produce tabular data in a consistent and efficient way to 

get publishable values complying with both annual and contemporaneous restrictions. 
Two different situations are studied: the contemporaneous disaggregation with missing 

values case and the reconciliation case (as they were introduced in pages 5 and 6 above). 
The solutions for these two problems are presented using State Space Models (SSM); 

the reconciliation problem in Chapter 5 and the contemporaneous disaggregation case 
in Chapter 6. Additionally, a simulation has been carried out in both cases by an 

underlying model for the high frequency series that follows a random walk plus noise 
(RNVN) process. In the reconciliation problem an AR(1) model is assumed to the 

survey errors. The results axe presented for the binding case to check the consistency 

of the results. However, the method deals with both binding and non-binding cases. A 
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comparison of the estimates in both situations using the proposed methods and others 

proposed in the literature is presented in chapters 5 and 6. Chapter 7 presents some 

conclusions, a general overview of the final results of the thesis and possible directions 

for areas of future work. 
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Chapter 2 

Benchmarking Methods 

2.1 Preliminaries 

This chapter presents some of the available benchmaxking methods in the statistical 
literature and analyses their strengths and deficiencies. The chapter is structured as 
follows: firstly, some basic notation to be used throughout this dissertation will be given 

and then a review of the existing methods. The benchmarking problem, as described 

in the methods in this chapter, assumes the existence of two different series for the 

same variable but measured in different frequencies in time. The aim is the optimal 

combination of the information in the two series. Considering the most common case, 

the low frequency series will be considered as an annual series and it will be assumed 

that the high frequency series is observed over time periods of which there are K per 

year, (e. g. K=4 or K= 12 depending on whether it is *quarterly or monthly data 

respectively). 

Let n be the length of the observed subannual series and m be the length of the 

series of annual benchmarks. When a benchmark is available for the last subannual 

observations, n= mK. Considering the most general case when the information for 

the last year is not necessarily complete, m= [n/K] is the number of complete years 

with [x] denoting the integer part of x. For instance, consider the situation when 
n= 24 quarterly observations (K = 4), this implies that m=6 and n- mK; but 
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if, for example, n= 26 quarterly observations, m will denote the number of complete 

years being equal to [26/4], which is also equals to 6 years. The last year in this 

case is incomplete and the last two observations in the series do not have an available 

corresponding benchmark. In what follows we consider monthly and yearly estimates. 

The values of the monthly estimates will be represented by the column vector y= 
[Y1vY2,... 

'y, 
J' and the values of the annual estimates will be represented by x= 

[X 1) -T2 i ... I xml'. Let ri = [771, ***7 77,, ]' denote the underlying signal (the true time series 

without survey errors). The annual series x is generally obtained from a different source 
(survey or administrative record) than the monthly series. Treating y as., q subject to 

error; the benchmarking problem is how to adjust the vector y= [Y1 
I Y21 ... I Y"J' to 

obtain a new more reliable vector of estimates ý= [ý,, ý2,. . .' using the information 

contained in x= [XI 
i X2 i ... I xm]'. In this chapter, we will consider the series y as the 

subannual values from a flow series. In other words, the yearly values of x should 

correspond to the yearly sums of the values in y for the corresponding year (we will 

refer to this kind of estimation where the annual sums of the monthly values will 

correspond exactly to the yearly values as binding estimation). 

2.2 Quadratic Minimization Approach 

Denton (1971) proposed a numerical benchmarking method according to the "principle 

of movement preservation" (Bloern et al., 2001, section 6. A1.6). This principle requires 

a benchmarking method with the following conditions: 

(a) the variations in the subannual adjusted series will be close to those obtained in 

the subannual observed series, and 

(b) the sums of the K subannual values by year are equal to the observed annual 
benchmarks in the corresponding year 

Denton (1971) expressed mathematically condition (a) as the problem of minimising 
the differences between the adjusted subannual series (ý) and the observed suban- 
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nual series (y). On the other hand, condition (b) can be expressed by the restriction 
iK 
E ýt = xi with i-1, m. 

(i-I)K+l 

One way to fulfill the latter condition is to equally distribute the difference between the 

annual value and the sum of the subannual values for the corresponding year among 

the subannual periods. Another possibility is to distribute the value of the annual 

benchmark across the subperiods as follows: 

Xi 
77t = yt x -, K =yt x wi t= 1,. -- n 

E yt 
(i-I)K+l 

with i being the corresponding year for the observation t; i=1, ---, m. The bench- 

marking procedure applying Equation 2.2.1 is known as "prorata". Notice that from 

Equation 2.2.1 is also possible to write wi - 121. For this reason, the factors wi's are Yt 
commonly called the "Benchmark to Indicator (BI) ratios" (Maitland-Smith, 2002) 

and they could be used as a measure of "bias". 

The prorata method is a good choice to benchmark the monthly series when it is pos- 

sible to assume that the observed series and the target series have similar behaviours, 

i. e. close variations in the subperiods and similar seasonalities. This method is also 

acceptable when the BI ratio is approximately constant from year to year. If, however, 

BI ratios for consecutive yeaxs are very different and the prorata method is used, a dis- 

continuity in the growth rate from the last subannual period in one year to the first in 

the next year will be introduced. This is known in the literature as "the step problem" 
(Bloem et al., 2001, section 6.16). A simple situation illustrating this problem will be 

illustrated in example 2.1 in the next subsection. 

2.2.1 Denton's Method 

Denton's (1971) method uses least squares optimization as a method to benchmark 

a monthly series according to annual totals for the same variable. The problem is 

formulated mathematically as minimizing a penalty function of the differences between 

the adjusted monthly series and the observed monthly series subject to the benchmaxk 
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constraints. Using the notation at the beginning of this chapter, and assuming f (ý - y) 

is the function to be minimized; the problem consists of estimating ý in such a way 
that f (ý - y) is minimized subject to 

iK 

E ýt = Xi i=1, --- 'm 

The latter restriction can be written in a matrix form as L4 =x where 

1K OK OK 

OK 1K OK 
Lnxm Im 0 1K 

OK OK 1K 

(2.2.2) 

(2.2.3) 

where 1K and OK are Kx1 column vectors in which each element is I or 0 respectively, 
L' is the transpose of L and E) represents the Kronecker product. The elements of the 

Kronecker product M1 G M2 of matrices M, and M2 of dimension axb arid cxd, 

respectively, are given by MIijM2 with mlij being the elements of matrix M1. The 

resulting product has dimension ac x bd. The results of the Denton's method are 

summarized in Proposition 2.2.1. 

Proposition 2.2.1. Let f(ý-y) be the quadratic form represented by (ý-y)'A(ý-y) 

with A being a non-singular symmetric matrix of order n. The minimum of f y) 
subject to the restriction 2.2.2 is obtained when 

ý=Y+cr 

where C= A-'L(LIA-'L)-' and r=x- Vy. 

(2.2.4) 

Denton (1971) sets up a Lagrangian expression to achieve this result. All the mathe- 

matical details not included in Denton (1971) are shown in Appendix A. 1. 

The consideration of different matrices A produces different solutions. For instance, the 

choice of A=I,, minimizes the differences between 4 and y according to the restriction 
2.2.2, with I,, the identity matrix of dimension n, and then C= (11K)L, which 

means the solution coincides with the method of equally distributing the discrepancies. 

Another alternative is, for example, to minimize the distance between the first or higher 
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order differences of the original and adjusted series. In that case, the penalty function 

can be expressed as (Denton, 1971) 

nn 
Y) = 

E(A% 
_ Ldyt)2 =E [Ad(& 

_ yt )]2 (2.2.5) 
t=l t=l 

where A is the backward difference operator A yt = yt -7yt-, and Ad denotes the 

application of this operator d times. 

The vector of first backward differences may then be expressed as D(ý - y), where D 

is the nxn matrix given by 

0 0 ... 0 0 

1 0 ... 0 0 

-1 1 ... 0 0 (2.2.6) 

0 0 

If d=1, a restricted minimization is done over the distance of the first differences 

and the quadratic form to be minimized, subject to the annual constraints, is now 
(4 - y)'D'D(4 - y) where A= D'D. In general, one could consider a more general 

quadratic form as for example (4 - y)D'MD(4 - y) with M an arbitrary matrix. It is 

also possible to specify the penalty function in terms of the distances between higher- 

order differences of the original and adjusted series making A= P'D'- D'D ... DD. 
h times h times 

In all the cases, the benchmarked estimates are obtained by replacing the corresponding 

value of A in Equation 2.2.4. 

Denton's method is considered as a pure numerical method. Even though the annual 

and monthly information could be obtained through periodic surveys, this method 
does not include any information about the survey errors. In other words, only binding 

estimators axe considered. Later on, in this chapter, other benchmarking methods such 

as Hillmer and 'Rabelsi (1987), Cholette and Dagurn (1994), Durbin and Quenneville 

(1997) will account for survey errors permitting the calculation of binding and non- 
binding estimates and their respectiv6 confidence intervals. 
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Regarding the "step problený'; i. e. the appeaxance of big discontinuities in the BI ratios 

from one year to the next, Denton (1971) proposed an alternative solution applying 

proportional differences. These alternative methods will be explained in section 2.2.1. 

Example 2.1 shows an example of the application of the prorata and Denton methods 

and highlights the presence of the step problem. 

Example 2.1 

Table 2.1 shows a fictitious example of series consisting of two years of values: 300 

is the annual estimate for the first year and 500 for the second one. The example is 

similar to the one appearing in Denton (1971) but it has been constructed in a way 

which permits to appreciate more clearly sonie problems in the estimation. In this new 

example, the quarterly estimates for the first year in the third column do not add to 

300. 

Annual 
Totals 

Quaxter Original 
y 

Prorata. Equal Distr 
A=I 

1st Diff 
A= D'D 

2nd Diff 
A= D'D'DD 

1 80 48 30 45 57 
(0-60) (0-38) (0.56) (0.71) 

Year 1 2 100 60 50 45 51 
(300) (0.60) (0.50) (0.45) (0.51) 

3 190 114 140 130 125 
(0.60) (0.74) (0.68) (0.66) 

4 130 78 80 80 67 
(0.60) (0.62) (0.62) (0.52) 

1 80 80 80 57 34 
(1-00) (1.00) (0.71) (0-42) 

Year 2 2 100 100 100 97 82 
(500) (1-00) (1-00) (0.97) (0.82) 

3 190 190 190 200 205 
(1.00) (1.00) (1-05) (1-08) 

4 130 130 130 146 179 
(1-00) (1-00) (1-12) (1.38) 

Table 2.1. Application of prorata and Denton's Method for three different penalty 
functions. BI ratios in parentheses. 
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The prorata and Denton methods were applied to benchmark the original series in 

the third column to the benchmarks of 300 and 500 using different penalty functions. 

In the fourth column, a prorata method was applied using Equation 2.2.1. It can be 

observed that the use of A=I in the fifth column makes the difference 300-500 

-200 for the first year (the second year has not got any change in the third column) to 

be equally distributed in the corresponding four periods. The step problem becomes 

evident in the prorata (fourth) column as the BI ratios show a big discontinuity from 

the last period in the first year to the first value in the second year. In fact, they have 

approximately the same adjusted value, even though they come from very different 

original values. The same happened in the fifth column using A=L The alternatives 
A= DD and A= D'D'DD produce more smoothed BI ratios according to the plots 
in Figure 2.2. 

2.2.2 Proportional Denton Method 

Discrepancies from one year to the next could be smoothed using proportional dif- 

ferences as proposed in Denton (1971). This alternative is still a numerical method 

rather than a statistical one because it does not consider the survey errors, but is a 

good alternative to deal with the "step problem". In fact, according to Cubman and 
Burck (2005), this is the method most applied by statistical agencies around the world 
due to its simplicity. 

The proportional Denton Method considers a penalty function in terms of propor- 

tionate differences between the adjusted and the observed series instead of arithmetic 
differences. The proportionate difference in period t is defined as (ýt - yt)/yt. Defining 

the "subannual BI ratios" as &/yt, the idea of preserving the proportional changes in 

the series is equivalent to preserve the subannual BI ratios. This is because 

- Yt &-i - yt-l 
-& 

&-1 
(2.2.7) 

Yt Yt-i Yt Yt-i 
Defining Y as the nxn diagonal matrix with the elements of the vector y in the diagonal, 

the function to minimise can be expressed in the form y)A(ý - y) with A 

Y-'A*Y-' for some non-singular matrix A*. 
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2.2. QUADRATIC MINIMIZATION APPROACH 

From Proposition 2.2.1., we follow that 

4=+ YA*-'YL(LYA*-'YL)-lr (2.2.8) 

is obtained. In 2.2.4 the adjustment was independent of the values in the observed 

series being adjusted, in 2.2.8 the adjustment depends on the original values. Bloem 

et al. (2001, Annex 6.1, section B2) propose some extensions to the proportional Denton 

technique. 

Example 2.1 (continued) 

Table 2.2 summarizes the results for the data in Example 2.1 using the Proportional 

Denton Method. The results in table 2.2, in this very particular case, suggest that 

the application of a second order proportional difference seems to ameliorate the step 

problem and make the variations in the adjusted series closer to those in the original 

one. 

Annual 
Totals 

Quarter Original 
y 

Prop. Diff 
A=I 

1st Diff(Prop. Diff) 
A= D'D 

2nd Diff(Prop. Diff) 
A= DD'DD 

1 80 62 61 68 
(0.78) (0.76) (0.85) 

2 100 71 61 65 
Year 1 (0.71) (0-61) (0.65) 
(300) 3 190 86 100 100 

(0-45) (0.52) (0-53) 
4 130 81 78 67 

(0.62) (0.60) (0.52) 
3 1 80 80 63 50 

(1-00) (0.79) (0.63) 
2 100 100 94 82 

Year 2 (1.00) (0-94) (0.82) 
(500) 3 190 190 200 200 

(1.00) (1.05) (1.05) 
4 130 130 143 108 

(1-00) (1-10) (0.83) 

Table 2.2. Application of Proportional Denton Method for three different penalty 
functions. BI ratios in parentheses. 
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Figure 2.1. Plots of Original and Benchmarked Data in Example 2.1 under the 
Denton Method 
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2.2. QUADRATIC MINIMIZATION APPROACH 

Figure 2.1 shows a plot of the original and benchmarked series under the different 

variations of the Denton's method in Example 2.1. Quarterly BI ratios were also 

calculated and plotted in Figure 2.1 for each method applied in this example. The 

step problem becomes apparent for the BI ratio plots corrqsponding to the methods 
(a) Prorata, (b) Equally Distributed Differences and (e) Proportional Differences. The 

adjustments in these plots were done sepaxately every year and there is big jump from 

the last quarter in year one and the first quaxter in year two. Particularly plot (a) looks 

exactly as the mathematical step function. The remaining plots, related to methods 

using differences (absolute and proportional), show smoother changes from one year 

to the next. 

However, some difficulties with the Denton method have been remarked in the statisti- 

cal literature. The main difficulty is that this method does not calculate the standard 

error of the estimates. Besides, Cholette (1984) stated that using a predetermined 

value for the backward difference operator in Equation 2.2.5 could cause distortions to 

the benchmarked series. As an alternative, Bloern et al. (2001, Equation 6.3) consid- 

ers the minimization of a function over the differences of the quarterly (or monthly) 
BI ratios from t=2. Additionally, although the Denton method is a numerical pro- 

cedure without any statistical criteria to be evaluated, Laniel and Fyfe (1990) have 

presented the proportional Denton method in statistical terms. They assume the model 

+ vt, equivalent to 
Yt Yt-I 

- yt 
- 

&-i - yt-l + vt (2.2.9) 
Yt Yt-i 

according to Equation 2.2.7 and vt being a sequence of uncorrelated and identically 

distributed errors with mean zero and constant variance and & values subject to the 

restriction in Equation 2.2.2. This formulation let them to conclude that assuming 

that a relative bias follows a random walk process and assuming that the subannual 

and annual data are observed without sampling errors is a condition unlikely to be 

satisfied by economic time series. Finally, the big difficulty with this method is that it 

is set up only in a binding scenaxio (see page 4) and one cannot calculate the variance 

of 
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Figure 2.2. Plots of quarter BI ratios ýtlyt for the benchmarking methods applied 
to data in Example 2.1 
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2.3. REGRESSION APPROACH 

2.3 Regression Approach 

Denton (1971) is more concerned that the variations (e. g. month-to-month changes and 

seasonal patterns) of the original series are not very badly affected after the adjustment 

is made. A problem with this method is that it does not include any information 

regarding the survey errors and cannot produce any estimates of the standard errors 

of the estimates. 

When monthly and annual data axe obtained from repeated surveys, it is desirable 

to account for their corresponding survey errors. Therefore, benchmarking methods 

should capture not only the properties of the survey errors associated with the es- 

timated time series but also the special characteristics of the survey design. Bloern 

et al. (2001, section 6. A1.39, page 106) state that "... the survey design may provide 
identifiable information about paxts of the stochastic properties of the series. Clearly, 

incorporating any such information, if available, in the estimation procedure may po- 

tentially improve the estimates". 

Specifically, in repeated surveys, overlapping of the samples generates autocorrelated 

errors. It is also common in repeated surveys that the coefficients of variation (i. e. the 

ratio of the standard error of the estimator to its expected value) are nearly constant 

over time. This implies, in many cases, heteroscedastic survey errors. Other issues 

such as presence of bias, non-response, births and deaths in the sample frame must be 

also considered during the modelling (Cholette and Dagum, 1994). 

The annual benchmarks axe generally assumed more precise and less biased than the 

monthly estimates, because they are coming from censuses or surveys of bigger sample 

size. In business surveys, for example, the sub-annual estimates are often biased due 

to undercoverage in the sampling frame. This is caused by the delay in the inclusion of 

new businesses in the sampling frame monthly. This problem is less common in annual 

surveys (Laniel and Fyfe, 1990). Cholette and Dagum (1994) introduce a benchmarking 
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2.3. REGRESSION APPROACH 

method which extends Denton's method. Their method not only takes into account 

the subannual and annual survey errors, not considered by Denton's method, but also 

considers special characteristics of the survey data such as the presence of bias in the 

original series and presence of autocorrelations and heteroscedasticity in the survey 

errors. 

The Cholette and Dagum's method consists of the generalised regression model with 

autocorrelated survey errors given by 

yt =a +, qt +ft, t 'n 
W 

Xi =E 77t + ej, m 
(i-l)K+l 

The first equation in 2.3.1 coincides with Equation 1.1.1 in the last chapter plus an 

additional constant term a to denote a bias paxameter to be estimated. The estimates of 

77t will correspond to the benchmaxked series. The consideration of this bias paxameter 

as a constant term will be discussed later on this section. Using the same notation from 

the first chapter, the tt's represent the monthly survey errors affecting the observations 

and they may have a general covaxiance structure resulting from the overlapping of the 

samples. Also, it is assumed that E(tt) =0 for all t=1, ---, n. The second equation 

in 2.3.1 coincides with the Denton's restriction in Equation 2.2.2 with the addition of 

the term et denoting the corresponding annual survey error. 

Using the notation in page 12 and denoting by I and e the subannual and annual 

survey error vectors, respectively; we also denote q the monthly vector of parameters 
(considered as fixed non-stochastic quantities). Then, the model in Equation 2.3.1 can 
be written in a matrix form as follows 

y]=1,,., 1. a+fa+ tj 

x e] 
=XI 

x0L, 

] [T7] 

III e (2.3.2) 

0, E(e) = 0, E(, e£') = E�, E(ee') = E�e, E(e£') =0 

where 1,, is a vector n-dimensional of ones, On is a vector m-dimensional of zeroes, L 
is the nxm design matrix in Equation 2.2.3, a is a bias parameter and X is a (n + m) 

x (n + 1) matrix. In the last equation, the vectors I and e are assumed mutually 
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2.3. REGRESSION APPROACH 

independent as the monthly and annual data come from two independent separate 

surveys. Cholette and Dagum (1994) expressed the model in Equation 2.3.2 as 

-r = Xß + u, E(u) = 0, E(uu') = Zu (2.3.3) 

where -r' = [y', x], P' = [a, rl'], u' = [t', e'], Eu is a block diagonal matrix with 
blocks E, and Ee, although Ej and E,,, are not necessarily diagonal matrices. The 

benchmarked estimator of this method is given in Proposition 2.3.1. 

Proposition 2.3.1. The BLUE estimators of the parameters a and 77 are respectively 
given by 

a= -oa21'L(LEtL + E,, )-'(x - L'y) (2.3.4) 

and 
ý=Y*+EeL(L'EeL+E,, )-'(x-L'y*), y*=y-l,, a (2.3.5) 

with respective variances 

o, a2 = 11[1'L(L'EeL + (2.3.6) 

and 

Ei =[El + (2.3.7) 
+ EiL(L'E, L ++ 

The proof is achieved using standard results for GLS and partitioned matrices and all 
the details are included in Appendix A. 2. 

As noted before the survey errors may be heteroscedastic. Cholette and Dagum. (1994) 

dealt with this problem by expressing ft as 

ktf* t (2.3.8) 

where the k-t's are weights representing heteroscedasticity over time and it is assumed 
that the It"s follow an ARNIA model and they have the associated covariance matrix 
Et. (McLeod, 1975). Then, the covariance matrix of ft can be expressed as 

Ef = wEt-W (2.3.9) 

where TV is a diagonal matrix of the weights kt. A possibility is to consider El. as 
the autocorrelation matrix of the standardized survey errors- and then the kt's will be 
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- 2.4. ARIMA MODEL BASED APPROACH 

equal to the standard deviations. We will get back to this representation in section 3.5 

when introducing a state space approach for benchmarking. 

All the equations used in this method assume knowledge of the autocovariance matrices 

of the annual and subannual survey errors. Additionally, considering the heteroscedas- 

tic case, it is necessary to consider an ARMA model of the standardized survey errors. 

This regression method is one of the core methods included in the software BENCH 

produced by Statistics Canada (Cholette, 1994; Bloem et al., 2001). The software 

makes the strong assumption that the survey errors follow an AR(1) model. The main 

difficulty in the application of the Cholette and Dagum method is that although statis- 

tical agencies sometimes produce reports with estimates of the variances of the survey 

errors, they rarely report either autocorrelations or the specification of the relevant 

ARINIA models (see Guerrero (1990, page 30)). 

Repeated surveys usually use rotation sampling designs which can produce different 

expected values for estimates of the same characteristics from different rotation groups. 
The phenomenon has been called rotation group bias (Bailar, 1975). The regression 

method presented here includes a constant bias component in its formulation; however, 

response bias in the data can be at different magnitude over time, due to for exam- 

ple, conditioning of the respondent or familiarity with the survey after a long period 
(Ghangurde, 1982). 

2.4 ARIMA Model Based Approach 

Hillmer and Trabelsi (1987) formulate the benchmarking problem using time series 

analysis techniques. Their method provides a way to take into account the stochastic 

properties of the time series being benchmarked, the statistical properties of the sam- 

ple survey from which the original estimates of the time series were derived and the 

properties of the errors of the benchmarks. The method was proposed in the context of 
improving subannual estimates using annual information and the stochastic properties 

of the subannual series itself. 
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2.4. ARIMA MODEL BASED APPROACH 

This approach is naturally represented in terms of Equation 1.1.1 shown in Chapter 

1, yt = 77t + it. It is assumed that the two components 77t and it in Equation 1.1.1 are 

mutually independent processes with known first and second order moments and also 

that 77t and it follow the autoregressive integrated moving average (ARIMA) models 

0,7 (B) (i7t - p) = 0,7 (B) bt; Var (bt) = ab2 

OI(B)(ft) = OI(B)ct; Var(ct) = oc2 

where eadi of the pairs of polynomials (0,, (B), 0,7 (B)) and (Ot (B), Ot (B)) have no com- 

mon zeros; OJB) is a polynomial in the backshift operator B having its zeros lying 

on or outside the unit circle; 0,, (B), Ot(B) and OI(B) are polynomials with all zeros 

outside the unit circle, It is the mean of the process 77t and the processes bt and ct are 

uncorrelated white noise processes. 

Using equation 1.1.1, the APJMA model for yt is 

q5(B)(yt - p) = O(B)dt; Var(dt) = od2 (2.4.2) 

where O(B) = 0,, (B). Oj(B) and O(B) and od' can be obtained using the results from 

Hillmer and Tiao, (1982). Let y= (yj, ---, y,, )', 77 = (771, --- 77,, )' and t= (ti, ---, fn); 

it is assumed that the random vectors 77 and e have multivariate normal distributions: 

77 is N(ji, E, 7) and e is N(O, Et) where the parameters ti, E, 7 and Ee can be derived 

from the respective ARIMA models. 

The aim of the method is to develop the appropriate modifications to the minimum 

mean squared error estimate when additional (annual) external information about i7t 

becomes available. From Equation 2.3.2 in the last section and considering no bias 

term, 

77+f 

L'77 +e 
(2.4.3) 

where x is an observed column vector of dimension m, L is an nxm matrix, and e is 

an error vector of dimension mx1. It will be assumed that e has a multivariate normal 
distribution N(OE, ý) and is independent of 77 and E. Like the Cholette and Dagum 

method, Hillmer and Trabelsi (1987) consider the vector 7' = (y', x') containing both 
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2.4. ARIMA MODEL BASED APPROACH 

the monthly and annual observations; a vector of errors u' = (f', e') containing the 

corresponding monthly and annual errors. The vector of parameters consists of the 

annual benchmarked values to be estimated (without bias) and the matrix X in 2.3.3 

takes now the form X' = [I, L]. 

Proposition 2.4.1. Consider the model 

T= X17 +u 

Assuming that 71 has a N(. u, E,, ) distribution and u has a N(O, E. ) distribution, where 
E,,, = diag(El, E, ); the minimum mean squared error estimate of 71 given -r is 

17 = E(i7 I -r) ýo + i7c 

where i)o is the minimum mean squared error linear estimate of 17 given y 

ýO = E(i7 I y) 
(Et-1 + E, 7-1)-l x (Et-ly + if 17 is stationary 
(E, e_l + if 17 is non-stationary ARIMA 

and 77,, is the comction factor term 

77c = JU (L'12L + E, ) -1 (x - L'ýO) 

where 

f2 = COV(77 I Y) = (Ef-' + 

and 

Ei = Cov(il I -r) = 12 - DL(L'f2L + 

In the last proposition stationarity implies that all the zeros of the autoregressive part 
lie outside the unit circle, whereas non-stationarity ARIMA implies that all the zeros 

of the autoregressive part lie on or outside the unit circle. The proof of the last result 
is achieved by minimising the mean squared error. This technique is known in the 

time series literature as signal extracti6n. The proof of the property above appears 
in Hillmer and Trabelsi (1987). However, they make the strong assumption that a 

nonstationary series has zero mean according to results in Cleveland and Tiao (1976). 

Durbin and Quenneville (1997) suggest that this assumption is unnecessary and in some 

cases invalid. An alternative brief proof is included in this document in Appendix A. 3. 
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2.4. ARIMA MODEL BASED APPROACH 

Compared with the regression approach, the Hillmer and 'Rabelsi method takes into 

account the information about the stochastic properties of the series being bench- 

marked. Clearly, this information may improve the estimates but the main difficulty 

in the application of the method is that statistical agencies normally do not produce 

either autocorrelations or specification of ARIMA models of the survey errors. Bell 

and Hillmer (1987b) state that the estimation of these autocovariance matrices is the 

same as estimating sampling variances and in particular, Hillmer and Iyabelsi (1987) 

propose the use of the random groups method using survey microdata (Wolter, 1985, 

chapter 2)- 

Scott et al. (1977) refer to the use of survey microdata to estimate the autocovariance 

of the sampling errors as a primary analysis. In spite of that, this is not always possible 
due to the need for confidentiality in the survey or the lack of a record linking data 

in repeated. surveys. Scott et al. (1977) estimate the autocovariance matrix of the 

survey errors using only the published time series data and they called this alternative 

a secondary analysis. Results from Tiao and Hillmer (1978), Bell and Hillmer (1984) 

and Bell and Hillmer (1987b) establishes that there is a fundamental identification 

problem with this second alternative. 

Chen et al. (1997) introduces a non-parametric solution to estimate the covaxiance 

matrix for the stationary part of the signal. Using relative mean squared errors as 

a measure of efficiency, they show that the ARIMA approach is more efficient than 

the regression approach and the non-parametric method gives very close values to the 

ARINIA method (Dagum and Cholette, 2006, page 208). 

Laniel and Fyfe (1990) recommend the use of methods such as those of Cholette and 

Dagum or Hillmer and Týabelsi "for only a small number of very important economic 

indicators". Their reason is that "since ARIMA modelling is being used in this method, 

it would be costly to implement for large scale surveys dealing with hundreds of series" 
(pages 273-274). Another common problem with these two methods is the possible 

oversmoothing of the data due to a bad specification of the ARINIA models. 
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2.5 Conclusions and Further Issues 

The main benchmarking methods available in the literature have been reviewed in this 

chapter. Denton's method is a good alternative when there is no additional information 

about the sampling design or the estimated standaxd errors in the survey and also 

particularly, when it is desirable to have binding estimators. Because this method 

does not include information about the survey errors, an implicit assumption of this 

method is that the variations in the monthly estimates are close to the real variations 

of the paxameters and it is a pure numerical method without any statistical criteria to 

evaluate the precision of the estimates. 

Methods which include the survey errors in the modelling such as those of Hillmer and 

'Rabelsi or Cholette and Dagurn may be more efficient because it is possible to take into 

consideration stochastic features of the time series structure such as the autocorrelation 

and heteroscedasticity of the survey errors and the presence of survey bias. An essential 

characteristic of these methods, making them preferable over the Denton method, is 

the possibility of calculating the variances of the benchmarked estimates. 

Nonetheless, one disadvantage is that sometimes it is not possible to access detailed 

information generated from the sample survey such as autocovariance matrices or asso- 

ciated ARMA models of the survey errors. Regarding to these disadvantages, Guerrero 

(1990, page 30) states that: "these requirements are reasonable for a statistical agency 
in charge of publishing official statistics, but they might be very restrictive for a prac- 
titioner who occasionally wants to disaggregate a time series". Also, they require to 

obtain the annual benchmaxk before the end of a given year to adjust the subperiods 
in the year. That means, if subannual data is obtained before the end of the year, they 

cannot be adjusted until a benchmark is obtained. 

The next chapter will present two additional alternatives for benchmarking using state 

space models proposed by Durbin and Quenneville (1997). These alternatives do not 

require the specification of the autocovariance matrices of the survey errors and in 

particular, one of the methods does not need to have an annual benchmark available 
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at the end of the year to update the estimates. Different components will make up the 

series (trends, seasonalities, cycles, calendar variations, effects of explanatory variables, 

interventions) and they are modeled separately. Also multivariate observations can be 

treated by straightforward extensions of the univariate state space form. A possible 
disadvantage of these models is the relative lack of software and the consideration of 

high dimensional vectors and matrices in the estimation. The methods axe considered 

separately in the next chapter in order to introduce the basic theory of state space 

models and some new thoretical developments referred to the variance of the bench- 

maxked estimates in the binding case which will be extended to all the benchmarking 

methods introduced in Chapter 2. There are other techniques not considered in this 

thesis that use auxiliary information for benchmarking. They are classified under the 

area of "disaggregation of time series" by authors such as Chow and Lin (1971), Fer- 

nandez (1981), Guerrero and Martinez (1995), Guerrero and Nieto (1999) or Di Fonzo 

and Marini (2003). They assume a set of auxiliaxy series highly correlated with the 

original one. Newly available software, ECOTRJM (Barcellan and Buono, 2002), is 

available for the implementation of these methods. Since the application to Business 

Surveys in the UK do not consider the use of auxiliary information, these methods 

were not considered in this thesis. 
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Chapter 3 

State Space Models and 
Benchmarking 

3.1 Preliminaries 

The state space model approach provides a flexible approach to time series analysis. 

There axe many references, including Durbin and Koopman (2001) who provide a 

recent treatment of the approach; also Janacek and Swift (1993), Harvey (1989), Tsay 

(2005) and Shurnway and Stoffer (2006) are some textbooks with related chapters to 

the area. 

The main idea in the use of state space models (SSM) in time series analysis of survey 

data is to extend the general theory of signal extraction by using the Kalman filter 

(Kalman, 1960). Some authors such as Tam (1987), Binder and Hidiroglou (1988), 

Binder and Dick (1989) and Pfeffermann (1991) introduced the idea for survey data. A 

parameter of interest is estimated in each individual survey and then the Kalman filter 

is applied on the series of estimates. The application of the Kalman filter under the 

correct model provides at least the "best linear unbiased prediction (BLUP)" estimates 

of the parameter in every instant (linear optimal). Specifically, when a Gaussian 

distribution is assumed, the estimator is even optimal in the sense of minimising the 

mean square error. 
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The use of state space models and the Kalman filter has also been proposed in the 

area of temporal disaggregation (Harvey and Pierse, 1984; Harvey, 1989, section 6.4.1). 

More recently, Durbin and Quenneville (1997), Harvey and Chung (2000) and Moauro 

and Savio (2002) have considered the temporal disaggregation problem including infor- 

mation about the survey errors. In particular, Durbin and Quenneville (1997) devel- 

oped benchmaxking methodology for the case where monthly estimates are constrained 

to add up to given annual estimates. 

The advantages of the Durbin and Quenneville methods, with respect to the other 

benchmarking alternatives referred in the previous chapter, arise from the properties 

of the state space approach (Durbin, 2000; Durbin and Koopman, 2001, section 3.5). 

Under this approach, the original series is assumed to be decomposed into the unob- 

served components of trend, seasonality and irregular terms. A big difference of this 

method with the others considered above is that one of the methods presented below 

provides a solution to the problem of estimating subannual estimates when there is 

no a benchmark available in the horizon (ex-ante estimation). Another advantage of 

the state space approach is the possibility to introduce innovation terms and calendar 

effects into the model in an easy way. Innovation terms permit the consideration of 

outliers in the series and calendax effects arising due to variations in every specific year. 
For instance, when the activity of an industry vaxies according to the day of the week 

or when the exact days of a holiday change every year. 

In this section, the state space model approach for benchmarking is presented as fol- 

lows; firstly, a brief introduction about structural time series models, state space models 

and the Kalman filter is given and then, two solutions for the benchmarking problem 

are studied in subsections 3.5.1. and 3.5.2. Other issues such as the estimation of the 

survey bias (assumed as a constant parameter) and treatment of multiplicative time 

series data are presented in Durbin and Quenneville (1997) but not considered in this 

overview. Finally, the last section surveys two possible kinds of benchmarked. estima- 

tors (binding and non-binding) and specifically develops the correct variance of binding 
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3.2. STRUCTURAL TIME SERIES MODEL 

estimators when using temporal benchmarks that are subject to survey errors. The 

theory is presented considering each particular case under the benchmarking methods 

introduced in Chapters 2 and 3. 

3.2 Structural Time Series Model 

Structural time series models decompose the series of study into unobservable compo- 

nents which have a direct interpretation. The common decomposition'is to consider 

the series as the sum of trend, seasonal and irregular terms (Harvey, 1989). Suppose 

we regard yt as having the form: 

yt = pt + -yt + Et, t=1, --. (3.2.1) 

where yt is a trend component, -yt is a seasonal component and et is the irregular or 

residual component. In the case of annual series, seasonal effects can be dropped. 

Equation 3.2.1 is known as the additive case. Sometimes, the additive assumption may 

be unrealistic and it is preferable to assume the multiplicative decomposition given by: 

yt=Pt. -Yt. Et, t=. l, --- n (3.2.2) 

This is a more suitable model when the amplitude of the seasonal cycles increases 

or decreases jointly with the trend. In an additive structure, the seasonal effects are 

independent of the evolution of the trend. One simple way to check the adequate 

decomposition for a time series is to overplot segments of the original series over the 

cycle. Seasonal adjustment software, such as X11 or X12ARIMA, include ANOVA and 

non parametric tests to decide what structure is more suitable to use for a particular 

time series (National Statistics, 2005a) It can be noticed that taking logarithms, 

model 3.2.2 reduces to the model 3.2.1. 

Some common structural time series models are: 

-Random Walk plus Noise (RWN, Muth (1960), Durbin and Koopman (2001, page 

9)). Consider Equation 3.2.1 taking tit == at where at is a random walk; without the 
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3.2. STRUCTURAL TIME SERIES MODEL 

seasonal component and all the disturbances are usually assumed to follow a normal 

distribution. These assumptions give the model: 

yt = at + ct, ct - NID (0, or, (3.2.3) 
at = at-, + vt, vt - NID(O, a 2) 

for all t=1, ---, n. We assume that the irregular term Et has constant vaxiance o,, '. This 

model is also called the local level model. The notation NID(0, a 2) denotes a normally 

distributed, serially independent, random variable with mean zero and variance A 

When o,, 2 is zero, the series- follow a random walk and the forecasts are equal to the 

last observation, yn. On the other hand, if o-, I, is zero, the trend is equal to a constant 

and the best forecast of future observations is the sample mean. 

-Basic Structural Model (BSM, Harrison (1965), Harvey (1989, page 172)). A BSM 

follows a structural time series model given by Equation 3.2.1 with the following com- 

ponents. The trend component of a BSM consists of a local linear trend model given 

by 

Pt = lit-i + Ot-i + Ct 
(3.2.4) 

Ot = )3t -1+ Ct 

where pt is known as the adaptive level and j8t is a random walk known as the local 

rate of change or slope. The processes & and (t correspond to uncorrelated white-noise 

terms with variances 2 and a2 respectively. OIZ C 

The seasonal component can be written in two ways, as a dummy variable type or a 

trigonometric type. In the dunnny variable type, considering K subannual periods per 

year (K = '12 if monthly data, K=4 if quarterly), it is assumed that the seasonal 

pattern is constant over time. Then, the seasonal values for the subannual periods can 

be modelled by constants -yt, -yt-1 ... ) lft-(K-1)) where 

K-1 
E 

-Yt-,, = 

V=o 

(3.2.5) 

In practice, it is desirable to allow the seasonal effects to change over time. A simple 

way to achieve changing seasonality using the ideas before is by adding an error term 
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3.2. STRUCTURAL TIME SERIES MODEL 

wt in Equation 3.2.5 and it follows that 
K-1 K-1 

E lyt-V = wt lyt E yt-,,, + wt (3.2.6) 
V=o V=l 

with wt a disturbance term with mean zero. The zero expectation makes these effects 

sum to zero in the forecast function. 

Another alternative to express seasonality is by using a trigonometric form proposed 
by Hannan, Terrell and Mickwell (1970). Assuming constant seasonal, the seasonal 

effect at time t can be expressed as 
[K12] 

-yt =E (-Y,, cos Kt + -Y, ', sin r,, t) (3.2.7) 

V=l 

where r., correspond to the seasonal frequencies, K, = 27rv/K, v=1, - [K121 and 
[x] denotes the integer part of x. 

Equation 3.2.7 may be allowed to evolve over time using results in Harvey (1989, page 
42), according to the model 

where 

[K12] 
E (3.2.8) 

V=l 

-t, t = y,,, t-l cos n,, + -y,, *, t-l sin r., + wt 
(3.2.9) 

-t, *t = --y,,, t-l sin K, + -y, *,, t-l cos n, + w, *, t 

with v=1, ---, [K/2] and with wvt and wv*t white noise processes with mean zero and 

uncorrelated with each other. 

Additional to the trend and the seasonal components (e. g. dummy variable or trigono- 

metric type), the BSNI accounts for an irregular component Et which is assumed to be 

a white noise. The BSNI corresponds then to the sum of these three components. 

Sometimes the BSNI is extended to the more general form 

77t = Pt + 'Yt + Irt + Wt + Et, Et - N(O, a, 2), t= 1,.. - n (3.2.10) 

where 7-t and Vt represent trading day and moving festival components. Trading day 

refers to the modelling of any variation in the series which depends on how many 
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Mondays, Tuesdays, and so on, there axe in the series. For example, if Fridays tend 

to have bigger sales, there is a necessity to account for the number of Fridays in 

the period of reference. On the other hand, certain holidays and religious- festivals 

(most notably Easter, every Jewish festival, Chinese New Year or Ramadan) appear 
in different dates from yeax to year. Then, the addition of moving festival components 

to the model permit to take control over this situation because data from several time 

series (e. g. inaustrial production, retail sales and air traffic series) are affected by the 

date when these events are falling, Harvey (1989, page 335). Dagum, Quenneville and 
Sutradhar (1992) studied general models for trading day and its SSF, whereas Bell 

and Hillmer (1983) and Morris and Pfeffermann (1985) have suggested some models 
for the moving festivals. Also, Cleveland and Devlin (1980a) and Cleveland and Devlin 

(1980b) discussed some special methods to detect calendar effects. 

3.3 State Space Form 

The state space form provides a simple way to deal with structural time series models. 

The "state" of the system represents the unobserved structural components such as 

trends and seasonalities. The basic idea is to write a structural time series model in 

a special form, which will permit the Kalman filter to update the state when new 

observations become available. Additionally, a better estimate of the state is obtained 

using smoothing algorithms at any instant during the period of observation (Anderson 

and Moore, 1979; de Jong, 1988a; de Jong, 1989; Kohn and Ansley, 1989). 

A state-space model (SSM) is a set of two equations related to an unobserved state 

vector at. The first equation states that the observations are linear combinations of 

at and it is known as the observation equation. The second equation represents the 

evolution of at over time and it is known as the transition equation. The set of two 

equations can be written in many ways Durbin and Koopman (2001, page 38) and 

particularly, in this thesis, the observation equation will take the form 

yt = Ztat + ct Et - iid(Op, Ht) t=1, ---, 
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and the evolution of at is given by the transition equation represented by the Markovian 

structure, 

at = Tiat-I + t9t t9t - iid(O,, Qt) t=1, ---, n (3.3.2) 

where fid(ji, E) stands for "independent identically distributed" random variables with 

mean it and covariance matrix E. In the pair of the equations above, yt is the value 

of the observed time series at the instant t, which is a scalar if y is a univaXiate time 

series. Otherwise, yt is considered as aPx1 vector of observations at time t, where P 

represents the number of components in the multivariate time series. at represents the 

rx1 unobserved state vector, Zt and Tt are deterministic matrices of dimension Px 

r and rxr respectively, and c and V are disturbance terms of dimension Px1 and r 

x1 respectively. Also, Ht and Qt denote PxP and rxr known covariance matrices 

respectively. 

It is also assumed in Equations 3.3.1 and 3.3.2 that the initial vector &0 - N(ao, PO); 

et and t9t are serially uncorrelated and additionally; it will also be assumed that ct and 

t9t are mutually independent and uncorrelated with the initial vector ao. In practice, 

however, there axe some unknown elements in the system given by the observation and 

transition equations (e. g. in practice, Ht and Qt are usually unknown). We will refer 

to these unknown parameters as hyperparameters and will discuss their estimation in 

section 3.4.2. 

Having in mind the formulation in SSF of any structural time series model, Harvey 

(1989) highlights that at must be determined by construction. Notice that, in particu- 
lar, if a new state vector at* is obtained making a* = Mat where M is any nonsingular t 
rxr matrix and at is the corresponding state vector in equations 3.3.1 and 3.3.2; a 

new state space formulation is obtained given by 

Yt = Z*a* + Ct tt 

a* = Tt*a* 1+ t9* t t- t 

(3.3.3) 

where Z* = ZtM-', T* = MTtM-' and &= Wt. Thus, there is no unique repre- ttt 
sentation for any particulax model by SSF. 
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The basic idea is to set up a state vector at containing all the information of the system 

at the instant t with the smallest possible number of components. We will now present 

a state space formulation for the structural time series models presented in the last 

section. 

- Random Walk plus Noise. The RWN model was introduced in Equation 3.2.3. The 

state space form (SSF) for this model is straightforward, using Cit to be equal to the 

scalar at, Zt and Tt are constants with value equal to 1, Et and t9t are equal to the 

2 scalars Et and vt. The conditions ct - NID (0, a, ) and vt - NID (0, a, 2, ) agree with 

those of the state space formulation. 

Another possible state space formulation for a RWN model is obtained by defining 

at = (at Ed% Zt = [1 11, Tt = (1 0 ), Et =0 and t9t = [vt Etl'. Finally, in this second 00 
formulation, t9t , NID(02i Qt) with Qt = diag(u, 2,, a. ) and the final SSF is given by 

yt [at ft], 
(3.3.4) 

0 ft :1 ol 
0- 

6tt--ll + vt- 
'Et 

It should be noticed that in this second formulation there is no disturbance term 

in the observation equation and the transition matrix Tt is singular. Authors such as 
Godolphin and Stone (1980) and Kohn and Ansley (1983) have studied the implications 

of singular matrices in state space models. 

-Basic Structural Model. The Basic Structural Model (BSM) was defined in Section 

2.5.1 as a model composed of a local linear trend model defined in Equation 3.2.4; a 
dummy variable (Equation 3.2.6) or trigonometric model for the seasonal component 
(Equations 3.2.7 and 3.2.9) and a white noise irregular term. The transition equation 
in the SSF for the local linear trend can be formulated by setting the following vectors 

and matrices below. These elements conform with the vectors and matrices in Equation 

3.2.4. 
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al, t = 
'l 

, Zi, t = 
[l 0] , ßt 

Ti, t 

11 

0 

and t9l, t 
t 

Ctl 

(3.3.5) 

3 According to the Equation 3.2.6, -yt =-E, =, -yt-, + wt, the transition equation for a 

dummy variable seasonality for quarterly data can be formulated by defining 

Ct2, t 1-- 'Yt-l ) 
Z2, 

t ý 
11 

0 0] 1 
T2, t ý100 

(3.3.6) 
L'it -2 

.1L0101 

and t92, t --': 
[Wt 

0 01 

These elements conform with the dummy variable seasonal model presented in the 

right side of Equation 3.2.6. Following Equations 3.2.7 and 3.2.9 with v=1,2 for 

quarterly data, the trigonometric seasonality can be formulated in SSM by defining 

7it cos(7r/2) sin(7r/2) 0010 

02, t 'yl*t , 
T2, 

t - sin(7r/2) cos(7r/2) 0 -1 00 
(3.3.7) 

^12 t00-100-1 
j 

and Z2, t 
11 

0 1] 
) 

t92, t =ý 
[Wit 

Wit (A)2t] 

These are the vectors and matrices involved in the SSF of a trigonometric seasonal 

model corresponding to the model in Equation 3.2.9. Using Equations 3.3.5 - 3.3.7 

and et = Et , the SSF for the BSM is as follows 

Yt [zl, 
t Z2, tj - [al, t a2, tll + ft 

I't t0 i't-11 + 
ttggl, 

t 
(3.3.8) 

a2, t 

ro" 

T2 
, ti 

a2, t-I 2, t_ 

Another possible state space formulation for the BSM is obtained by including the 
irregular term into the state space vector as follows: 
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Yt [Zl, t Z2, t Z3, t] * [al, t a2, t a3, tlt 
[zl, 

t Z2, t 11 * 
[01, 

t Ct2, t CtIf 

cil't Ti, t 0 0 Cfi, t-i t9i't 
C12, t 0 T2, t 0 Cf2, t-1 + t92, t 

C13, tj 0 0 T3, t 
" 
03, t-lj 

" 
293, tj 

Ti, t 0 0 al't-, tgl, t 
0 T2, 

t 0 a2, t-I + t92, t 

L0 
0 0JL ft-I 

i L 
ft 

i 

(3.3.9) 

The last formulation does not have a disturbance term in the observation equation 

and the transition matrix Tt is singular. For the more general form involving calendar 

effects, Dagum et al. (1992) studied the state space formulation for trading day effects. 

- ARAIA model (Box and Jenkins, 1976; Box, Jenkins and Reinsel, 1994). A stationary 
ARNIA(p, q) model is given by 

ft 
--` 

Olft-I +-*+ Opft-p + Xt + OIXt-I +-+ OqXt-q (3.3.10) 

where Xt - NID(O, ux2) and p and q axe non-negative integers. 

Assuming o= max(p, q+ 1), a SSF representation for the ARMA model is achieved 
by setting the state space vector of length q 

02ft-I ++0,04-60+1 + OlXt ++ 040-IXt-La+2 

Ct4, t : ": 

049-Ift-1 + OLA-2 + Ogp-2Xt + Op-lXt-I 

Ogott-I + OLO-Ixt 

and the remaining vectors and matrices defining the SSF as follows 

Xt 
Oixt Z4, 

t T4, t 294, t and 64, t `0 (3.3.12) 
100-1 

OQ-1 

(YO-1 00-Ixt 
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Using this formulation some of the AR or MA coefficients will be equal to zero unless 

p=q+1. There are many ways to transform such an ARMA model into a state 

space form and the interested reader could be referred to other options as presented in 

Akaike (1975) and Aoki (1987). 

More sophisticated models could be considered in order to exhibit change in variance 

over time. Heteroscedasticity (volatility) models such as the ARCH model (Engle, 

1982) and the GARCH model (Bollerslev, 1986) can be formulated into a state space 

representation with non-normallY distributed disturbances but still providing minimum 

mean squared error linear estimators of the state and future observations (Harvey, Ruiz 

and Shephard, 1994). 

3.4 Kalman Filtering and Smoothing 

The Kalman Filter is a set of recursive equations for calculating optimal estimates 

of the state vector at at time t, using the information available at time t (Kalman, 

1960; Haxvey, 1989; Durbin and Koopman, 2001). Once a model is set up into its 

SSF, it is possible to calculate the expectation and variance of at conditional on the 

observed data Yt = (yl, ---, yt). The "optimality" of the estimator of at refers to the 

property of minimising the mean squared error (MSE). The application of the Kalman 

filter provides at least the "best linear unbiased prediction (BLUP)" estimates of the 

parameter in every instant (linear optimal); when a Gaussian distribution is assumed, 

the estimator is even optimal in the sense of minimising the mean square error. 

3.4.1 Forward and Backward Equations 

Let 5t = 5tIt be the conditional mean of at given the observed data Yt = (yj, -, yt) 

and let also Pt = PtIt be the rxr conditional covariance matrix Pt = Cov(at Yt). 

Taking into account the assumptions in the SSF and assuming normality, the initial 
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vector 60 has a multivariate normal distribution N(ao, Po). 

According to the transition equation 

Tiao + t9i 

Then, a, is multivariate normal with conditional mean &110 = Tlao and covariance 

matrix given by P110 = TIPOr, + Q1. The distribution of a, conditional on yj is 

obtained by writing 

Cil = Cillo + (al -, &iio) 
(3.4.2) 

Yi = Ziäilo + Zi (al - Ölllo) +Ei 

Thevector[d, y'll has also amultivariate normal distribution with mean [&Ijo ZI&Ijol 

and covariance matrix 
P"O P11OZ11 

ZIP11o ZIPIloZ'l + H, 
(3.4-3) 

Using some properties of the multivariate normal distribution (Harvey, 1989, Appendix 

Chapter 3), the distribution of a, conditional on y', is also multivariate normal with 

mean 

&Ilo + PlIoZ'IFI lvi (3.4.4) 

and covahance matrix 
P, = Pilo - PlIoZ', Fl 1Z, Pilo (3.4.5) 

where v, = y, - Zj&Ijo are called the innovations or one-step ahead prediction errors 

and F, = ZIPIOZI + H, represents their covariance matrix. 

Repeating this procedure for t=1, ---, n (Harvey, 1989; Durbin and Koopman, 2001) 

result in the prediction equations 

&tlt-l = Ttat-I 
(3.4-6) 

PtIt-I = TtPt-, Vt + Qt 
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and the updating equations 

at = atit = &tlt-l + Ptlt-, Z'tFt lvt 

Pt = PtIt-I - Ptlt-, Z'tFt 'ZtPtlt-l 
(3.4.7) 

vt = yt - Zt6Ltlt-l 

Ft = ZtPtlt-, Z' + Ht t 

where vt denotes the innovations or one-step ahead prediction errors and Ft denote 

their variances. Equations 3.4.6 and 3.4.7 give the Kalman filter recursions for the 

filtered state, the innovations and their respective variances. 

After applying the Kalman filter, it is possible to take account of the information 

made available after time t, that means updating the Kalman filter estimates using 

the information in the entire sample Y,,. This procedure is called smoothing and the 

corresponding estimator is called a smoother; since the smoother is based on more 

information than the filtered estimator, it will have a smaller MSE. 

The fixed-intemal smoothing algorithm is one of the possible smoothing algorithms, 
being a backward recursion which starts at time n after the Kalman filter is applied. 
Its derivation is obtained by authors such as Anderson and Moore (1979), Jazwinski 

(1970), and Ansley and Kohn (1982). The backward recursions for t=n, 1 axe 

given by 

-1 Pt-lit-17vtptlt-1 

at-, in ý at-, It-, + Jt-, (&tln - Tt&t-llt-, ) (3.4.8) 

Pt-lln --`ý Pt-llt-1 - Jt-I(Ptln - Ptlt-I)Jlt-l 

Other fornis of the same backward recursions have been proposed by de Jong (1988a), 

de Jong (1989), Kohn and Ansley (1989) considering the recursions 
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Kt = Ptlt-IZ'F-1 tt 
Lt = Tt - KtZt 

rt-, = Z' F-lvt + Lrt t-1 tt (3.4.9) 
6tin = d&tlt-1 + Ptlt-lrt-1 

= 
zi Nt-, t-1F-'Zt + L'NtLt tt 

Vtln == Ptit-1 - Ptlt-, Nt-, Pt, t-, 

with r,, = 0,. and N,, = 0, and t=n, ---, 1. This last set of recursions also permit to 

calculate the covariance matrices of the smoothed estimators at different times (de Jong 

and Mackinnon, 1988; de Jong, 1998) as follows 

Cov(, &tl., &t. l. ) = Ptlt-, L'tLt+l --- Lt. 
-, 

(I - Nj-, Pt. It. -, 
) (3.4.10) 

for V=t+1, ---, n. These covariances will be used for benchmarking later on. Durbin 

and Koopman (2001, sections 4.3 and 4.5) show the rationale behind the filtering and 

smoothing equations and also the equivalence between the recursions in Equation 3.4.8 

with the recursions in Equation 3.4.9. 

Finally, the smoothed estimates of the response y and its variance can be obtained 

making 

Pt = ZA1. 
Var%) = ZtVar(&tl,, )Z't 

cov(ýt, ýt. ) = ztcov(&tl,,, 6it-l")Z, t. 

fort=n,. -- land t* =t+l, -. - n. 

An important case to take into consideration is when any of the matrices Ptl,, becomes 

singular. In that case, Harvey (1989), page 154 states that "if Ptl,, is singular for some 
t, it may be replaced by a generalised inverse as suggested by Kohn and Ansley (1983)". 

Particularly, this is the case when the RNVN or the BSM are written in SSF putting the 
irregular term into the state vector. This formulation induces the transition matrix to 
have a row of zeros and then being a singular matrix. 
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3.4.2 Estimation of the hyperparameters 

In the SSF the system matrices usually depend on unknown parameters known as 

hyperparameters. For instance, variance of disturbances or ARMA parameters need 

to be estimated before the Kalman filter is applied. These estimates can be obtained 

using maximum likelihood (ML) estimation. The Kalman filter is used to construct the 

likelihood function and then this function is maximised applying a suitable numerical 

procedure of optimization. However, the traditional assumption of a set of observa- 

tions yl, ---, y,, being independent and identically distributed is not valid for a time 

series model. Denoting the vector of hyperparameters byO and assuming multivariate 

normality for the disturbances in the SSF, the joint density of the observations can be 

expressed by 
n 

L(y, 11 p(yt I Yt-1) (3.4.12) 

t=l 
where p(yt I Yt-1) denotes the distribution of yt conditional in all the information 

available until time t-1. Assuming normality, p(yt I kt-1) is also normal with mean 

Zt&tlt-l and covariance matrix Ft. The likelihood function can be expressed as, 
nn 

1ogL(O) (pn/2) log(27r) - (1/2) 1: log I Ft (1/2) E v'F-'vt (3.4.13) tt 
t=1 t=1 

where vt are the innovations and the matrices Ft are the 'prediction error variance- 

covariance matrices of the innovations as defined in Equation 3.4.7. Equation 3.4.13 is 

sometimes known as the prediction error decomposition form of the likelihood. 

In order to estimate the set of hyperparameters, the likelihood function will be max- 
imised with respect to the vector of unknown parameters 1P using the function nlminb 
in Splus 7.0. This is a function based on numerical maximisation algorithms (Durbin 

and Koopman, 2001, section 7.3.2) such as the Newton-Raphson's method of optimi- 

sation. The details and derivations of the Newton's method can be found in Harvey 

(1990). Other optimisation algorithms such as the functions ms and optim are avail- 

able in R and Splus (Venables and Ripley, 2002). The algorithm used should be able 
to handle constraints, since estimates of variances must be non-negative while ARMA 

parameters must follow restrictions in order to get stationary. and invertible processes. 

45 



3.4. KALMAN FILTERING AND SMOOTHING 

Once the ML estimates are obtained, they are substituted for the unknown hyper- 

parameters in the corresponding formulas of the state predictors and their variances. 
Pfeffermarm and Tiller (2005) point out that this practice results in underestimation of 
the true prediction mean square errors (PMSE) due to ignoring the vaxiability implied 

by the parameter estimation. They developed bootstrap procedures to get valid PMSE 

estimators when the state vector predictors use estimated hyperparameter values. 

3.4.3 Initialization of the Kalman filter 

In order to start the Kalman filter and smoother recursions, it is necessary to have 

initial values of the state ao and the covariance matrix P0. However, it can be shown 
that for models reaching a steady state; the state estimates for large t are not con- 

siderably affected by the choice of initial values, even if the model is non-stationary 
(Janacek and Swift, 1993). 

If these values are not known, which is the common case, there are some alternatives 
to estimate them. If the state vector is stationary, the filter can be started using a 

zero mean and a covariance matrix, PO, representing the mean and covariance matrix 

of the unconditional distribution of the state vector provided that the unconditional 

mean is zero (Gardner, Harvey and Phillips, 1980). 

Following the second line in Equation 3.4.6, PO is considered as the solution of the 

equation 

Po = Tpor +Q (3.4.14) 

which is equivalent to the equation 

vec(Po) - vec(TPoT') = vec(Q) (3.4.15) 

and then using the property vec(ABC) = (C' 0 A)vec(Q), it follows that 

vec(Po) = [I, - To Tj -'vec(Q) (3.4.16) 

where A0B denotes the Kronecker product of A and B and the vec(. ) operator 
transforms a matrix into a vector by stacking its columns one underneath the other. 
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On the other hand, if the state vector is generated by a non-stationary process, some 
different approaches have been considered to initialize the Kalman filter in this case. 
Considering a more general situation where the state vector contains elements in which 
there is no prior information available (say b non-stationary elements) and others with 

a known joint distribution (m -b stationary elements); a general model for the initial. 

state vector ao is 

ao =a+BS+R, \ (3.4.17) 

with a being a known rx1 vector, 8 and A are bx1 and (r - b) x1 vectors of unknown 

quantities, B and R being rxb and rx (r - b) selection matrices, respectively. B and 

R constitute a set of columns of I, and B'R : -- Obx (r-b). The aim is to separate ao into 

a constant part a, a non-stationary part B8 and a stationary part RA. 

Example 2.2 

Consider the decomposition of a time series in Equation 1.1.1. Using this expression, 

the observed sample time series is decomposed as the sum of the unobserved population 

true series plus the sampling error series. Assuming a BSM (Equation 3.2.4) for the 

true series and an AR(1) model for the sampling error series, the state vector will take 

the form of a column vector of dimension 7 given by: 

at= [Pt, A, 76 'Yt- It 'Yt-21 66 ftll (3.4.18) 

and then, this vector has been formed using non-stationary and stationary compo- 

nents (the stationary component corresponds to the last element in the state vector). 
According to Equation 3.4.17, the state vector can be decomposed as 

ao = BS + RA (3.4.19) 

with 

B7x6 ý-- 

16 
66xl 6] 

, A1.1 = it (3.4.20) 
(Y61 '1 

Two alternatives for initializing the Kalman Filter are described below. The first 

assumes that cio is random and nothing is known about the initial state. The second 
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one assumes that the initial state ao is fixed but unknown. Therefore, its elements 

must be estimated by treating them as unknown parameters in the model. 

Diffuse Prior Initialization 

Using some vocabulary of Bayesian inference, an informative prior corresponds to 

specific and definite information about a variable whereas a non-informative prior 

corresponds to vague information. Considering the decomposition of the state vector 

in Equation 3.4.17, we first need to specify the prior distribution of cio to let the 

Kalman filter update that distribution. 

Assuming 8- N(O, KIb) , the Kalman filter is started using as initial conditions ao = 

E(ao) =a and Po = Var(ao) where 

po =, Kp" + p. (3.4.21) 

and r. - oo; P,,. = BB' and P. = RQoR' with Q0 being the covariance matrix of A in 

Equation 3.4.17. A simple approximate technique is to start the Kalman filter at t=0 

with ao =0 and replacing n by an axbitrary large number (S+Finmetrics assumes 

K= 106 x max{1, diag(Q)j. The first b innovations and their associated variances 

are not considered in the prediction error decomposition in Equation 3.4.13. Using 

the notation above, if b represents the number of non-stationary components in the 

state vector and also if a diffuse prior is considered for ao; the first b observations will 

permit to construct ab and Pb as the starting values Harvey and Peters (1990, page 
92). However, this approach could lead to large rounding errors and could complicate 
the numerical optimization if ao is very large (Haxvey (1989, page 128); Durbin and 
Koopman (2001, page 101)). 

More general ways of avoiding the "large n" approximation include the methods due to 

Ansley and Kohn (1985) and de Jong (1988b). The Ansley and Kohn (1985) method 

propose a transformation which eliminates the dependence on initial conditions. A 

modified form of the Kalman filter is then constructed and this enables the likeli- 

hood function to be constructed via the prediction error decomposition (see Section 
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3.4.2). However, when smoothing, the usual backward recursions are applied from 

t=n, -, b+1 and some modifications are required for the initial period t=b, ---, 1- 

Further developments of the Ansley and Kohn (1985) method were given by Koopman 

and Durbin (2003) making the collapse between t=n, ---, b+1 and t=b, ---, 1 to be 

automatic in the smoothing. Time series computational packages such as S+Finmetrics 

use Koopman and Durbin (2003) method for initializing the Kalman filter. The method 

is known as exact diffuse p7ior (Durbin and Koopman, 2001, chapter 5). 

Alternatively, the de Jong (1988b) method is based on an extension of the Kalman 

filter augmenting the observed vector. However, in this approach, it is also necessary 

to modify the initial smoothing in the backward recursions. A recent solution to the 

problem appears in de Jong and Chu-Chun-Lin (2003). Other authors such as Bell and 

Hillmer (1991) and Snyder and Saligaxi (1996) considered the initialization problem for 

the Kalman filter recursion from a diffuse prior point of view. However, they did not 

consider the adaptation of the smoothing recursions under their initialization methods. 

Fixed Initial State Vector 

If it is assumed that all the elements of ao axe fixed, this will imply that PO = 0. As a 

result, the problem of initialization concerns the estimation of ao only. Re-writing the 

observations in Equation 3.3.1 in terms of ao by repeated substitution of the Equation 

3.3.2. It follows that 

Y, = Z, Tlao + Z, t9, + ei 
(3.4.22) 

Y2 :: 2 Z2T2T1Cf0 + Z2 (TA1 + 192) + E2 

and calling X2 =-- Z2T2Tj and 0*2 = 
T2191 + t921 it follows that, in general, 

Yt xtc'o + ztc'*t + Ct 

t 

with Xt = Z, rl Tj and a*t = Tta*t-l + t9t 
j=l 

Equation 3.4.3 is considered as the measurement equation of a multivariate model and 

the GLS estimator of ao is obtained (Wecker and Ansley, 1983). A different method 
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by Rosenberg (1973) considers the estimation of ao by maximum likelihood. The 

method yields identical numerical results to Wecker and Ansley (1983) (see Harvey 

(1989, section 3.4.4. )). 

Pfeffermann (1984) considered a more general problem of optimal prediction of vectors 

of coefficients considered as stochastic regression coefficients. The Kalman filter can 

be considered as a special case of the class of models treated in this paper and optimal 

estimators of the fixed staxting state ao and "future" realizations at are obtained. Using 

a different approach, Shurnway and Stoffer (1982) proposed the use of the EM algorithm 

(Dempster, Laird and Rubin, 1977) to derive a recursive procedure for estimating the 

parameters by maximum likelihood in time invaxiant state space models. Their method 

initialize the procedure by selecting starting values for the parameters ao, Po, T and 
Q and then calculate the likelihood; then perform the E-step, running the traditional 

Kalman filter and obtaining smoothed values of at, Ptl,, and Pt, t-ll,,; finally, perform 

the Al-step updating the estimates ao, PO, Tt and Q. The same iterative procedure 
is repeated to convergence. Further details can be obtained in Shurnway and Stoffer 

(2006, section 6.3). The method finally used for initialization in the state space model 

applied to business survey data in Chapter 4 was a diffuse prior as a better model in 

terms of fitting was achieved under this approach. 

3.4.4 Diagnostic Checking and Goodness of Fit 

In terms of the goodness of fit of the model, in a well-specified model, the standard- 
ized individual elements fit (in the univariate case, vtlvF-t for t=b+1, ---, n) are 

serially uncorrelated and normally distributed with zero mean and constant variance, 
(Harvey, 1989, page 442). This can be checked by means of large-sample diagnos- 

tic tests and graphical procedures. QQ plots, histograms, tests of Shapiro and Wilk 
(1965) and Jarque and Bera (1980) axe some ways to check normality. Additionally, 

autocorrelation plots and tests of serial correlation such as Ljung and Box (1978) (also 

called Portmanteau test) and Box and Pierce (1970) are useful. Harvey (1989, page 
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271) also proposes a F-diagnostic test for heteroscedasticity based on the standaxdized 
innovations iyt which has also been called post-sample prediction test. 

Plots of the cumulative sum (CUSUM) and the cumulative sum of squares are also 

useful to detect stability problems in the parameters (Brown, Durbin and Evans, 1975). 

The CUSUM test is based on the cumulated sum of the standardized innovations 
t 

cusumt =E 
Vi (3.4.23) 

j=b+l 
Olf) 

Brown et al. (1975) show that CUSUMt has mean zero and variance proportional 

to t-b-1 and also that approximate 95% confidence intervals are given by the 

lines ±[0.948vfn- --b + 1.896(t - b)/vfn --b] for a significance level of 5%. If CUSUMt 

wanders outside these limits there is a failure in the stability assumption of the pa- 

rameters. Harvey (1990, page 155) states that the CUSUM plot is also valuable for 

detecting structural breaks and includes an example of this use for the series of road 

accidents in Great Britain (Harvey, 1989, section 7.5.1). A set of statistics which also 

provide useful additional information are the estimates of the irregular disturbance 

term and the estimates of the disturbances in the transition equation, known in the 

literature as auxiliary residuals. For a general model in a SSF in Equations 3.3.1 and 
3.3.2, these quantities are defined by (Durbin and Koopman, 2001) 

2tln Yt - ZAtIn 
(3.4.24) 

btln &tin - Tt&t-lln 

Kohn and Ansley (1989) and de Jong (1988a) developed the recursions to compute 

the disturbances in the observation equation directly during the Kalman filter and 

smoothing recursions without first calculating &t. Koopman (1993) developed the 

recursions for the disturbances in the transition equation. However, they are not 

serially independent (Kohn and Ansley, 1989) but they could be useful to detect outliers 

and structural breaks, respectively. In order to choose one from several candidate 

models, it is necessary to establish some comparison criterion. A possible way is to 

evaluate the value of the loglikelihood for each of the plausible models. In general, 

the larger the number of parameters the larger is the likelihood and then, information 

criteria such as the Akaike information criterion (AIC) and the Bayesian information 
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criterion (BIC) are used in order to penalise models with more parameters than others. 
These criteria are given by the formulae 

AIC = -2 * log-likelihood +2* length(tp) 
(3.4.25) 

BIC = -2 * log-likelihood + log(n) * length(tp) 

In general, big values of the loglikelihood are desirable and therefore, smaller values of 

AIC or BIC. 

3.5 Benchmarking Based on State Space Methods 

Considering the benchmaxking problem presented in Chapter 1, Durbin and Quen- 

neville (1997) propose two alternatives to produce benchmarked estimates using SSM 

that are cast in state space form. The first method (two step method) uses signal ex- 

traction to derive the smoothed estimators of the monthly signals without any bench- 

marking and then the smoothed series and the annual benchmarks are combined in 

order to compute the final adjusted estimates. In their paper, Durbin and Quenneville 

(1997) also consider the inclusion of trading days, treatment of multiplicative series 

and estimation of survey bias which will not be covered in this review. They also pro- 

posed a second method for benchmarking (single step method). The main difference 

from the first one is that instead of performing the estimation in two steps; the method 

incorporates into a single series both monthly and annual values and then axrange a 

suitable state space model for the combined series in order to obtain the benchmarked 

estimators. 

This section describes the two methods proposed by Durbin and Quenneville (1997) 

and considers the special case when the adjusted series is forced to agree exactly 

with the benchmarks (binding estimation). The binding process is implemented by 

setting the variance of the annual survey errors to zero. However, it is necessary to 

account for the variance of the annual survey errors when computing the variances 

of the benchmarked estimators. We develop the theoretical expression of the correct 
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variance as well as an expression for the excess in the variance due to the binding 

process. As it turns out for the two step benchmarking method and under some 

specific conditions, the estimates in the second step after binding could actually be 

less accurate than the estimates obtained without benchmarking. The results are 

extended to the benchmarking methods based on regression and ARIMA model based 

approaches in the last chapter. 

3.5.1 Two Step Benchmarking Method 

Consider again the decomposition of univariate time series data into a signal 77t and a 

survey error tt in Equation 1.1.1. Using the Equation 2.3.8 to represent heteroscedastic 

survey errors, it follows that 

yt = 77t + tt = 77t + kt f* t 

where f* is the standardized survey error and kt is the standard deviation of the t 

survey errors. The idea behind the term kt is that since Var(tt)=Var(ktft*) then 

Var(f*)=V; ar(tt/kt)=Var(tt)/k2 = tt1. Then, the term it* can be assumed as a unit- 

variance stationary AIMIA(p, q) series and the model accounts for the heteroscedas- 

ticity of the survey errors (see Section 2.3). Consequently, it is necessary that all the 

values of kt for t=1, n and also the orders p and q in the survey errors ARMA 

model are known. 

Following the same ideas as in other benchmarking methods it is assumed that there 
is a series of annual values xi, (i = 1, ---, m) available from another source and also 

considered as more accurate than the monthly values yt's. We assume that errors in 

the benchmarks axe independent of errors in the monthly observations. The xi's axe 

assumed to satisfy the benchmarking relations in Equation 2.4.3 introduced in section 
2.4. 

L'71 + e, e- N(O, E, ) 
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where x is an observed mx1 vector of annual estimates, L is an nxm indicator matrix, 

and e is an mx1 annual error vector having a multivariate normal distribution N(O,., 

E,, ) and independent of q and L It is also assumed that E,, is known or can be 

estimated. 

Suppose that the unobserved true series 77t follows a general structural time series 

model given by 

77t --= pt + 'yt + ft (3-5.2) 

where pt, -yt and et are the trend, seasonal and irregular components respectively. It 

follows from Equation 3.5.1 that the observed series yt follows the model 

yt = 77t + ft = pt + ^It + ct + ktf* ,t=1, ---, n (3.5.3) t 
77t tt 

with tt* a unit variance ARMA(p, q) process and kt denoting the standard deviation 

of the survey errors at time t as before. Following the ideas in subsection 2.5.2, the 

structural model in Equation 3.5.3 can be formulated into SSF and then using the 
Kalman filter one can get an estimate of 77t. Notice that we model yt but the aim is to 

produce a preliminary estimate of 77t by signal extraction. We will denote the estimator 

of i7t in this first stage by ýt. 

Proposition 3.5.1. Consider the structural time series model for the observed series 

yt given by Equation 3.5.3, writing this model into a SSF and then combining the 

results of the Kalman Filter and smoother with those in Hillmer and Trabelsi (1987), 

the BL UP estimator for 17 is given by 

ýo + (3.5.4) 

and its corresponding covariance matTix Eý is given by 

Eý = fl - OL(L'OL + (3.5.5) 

.0 withq the vector with single elements &, t = Zt&t; q, = J7L(L'DL+E,, )-'(x-L'ý0) 

and 11 = [wt, t. ] = ZtCov(&t, &t. )ZI. obtained after the application of the Kalman filter t 

and smoother. 
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Proof. Let al, t be the trend component in the state vector, a2, t the seasonal compo- 

nent, a3, t the irregular component and CQ, t the survey error component as they were 

introduced in section 2.5.2. Setting a3, t = Et, implies that the irregular component of 

the observation equation is included in the state vector and it follows that 

Clt ý [Ctl, 
t 02, t Ct3, t 04, tIf --": 

[Cil, 
t 02, t 6t 04, t) 

1 (3.5.6) 

Let 

Zt 
--` 

[Zl, 
t 

Z2, t 
Z3, 

t 
Z4, 

t] 
[Zl, 

t 
Z2, t (3.5.7) Z4, 

t] 

where Z,, t represents the corresponding matrix related to the element a,, t, t=1, ---4 

in Equation 3.5.6 and Z*, = ktZ4, t. Equations 3.5.6 and 3.5.7 permit to write the 4t 

observation equation in the form 

yt == Ztat =-- pt + -yt + ct + kttt* (3.5.8) 

Moreover, using the corresponding elements T,, t and t9,, t (t = 1, - .- 3), it is possible 

to write the transition matrix and the disturbances in the transition equation by 

Tt = diag(T1, t; T2, t; T3, t; T4, t) = diag(T1, t; T2, t; 0; T4, t) (3.5.9) 

tt = [191, t 192, t 193, t 194, tl = [191, t 192, t lEt 194, tl 

to get the transition equation 

at - Ttat-I +, dt (3-5.10) 

Once the model is formulated in SSF, it is possible to use the Kalman filter to get the 

estimate ý0 = E(t7 I y). Using the observation equation yt = 
2tat, then 77t = Ztat 

where Zt has the same form as 2t replacing Z*, t by a suitable vector of zeroes (this 
4 

is because i7t does not contain the survey errors). Once &t = E(at I y) is calculated 
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using the filtering and smoothing recursions analogously to Equations 3.4.11; it follows 

that a preliminary estimator of the signals 77t is &, t = Zt6t with covariance matrix 

fl = [wt, t-I = [Cov(&, t; ýo, t-)] for t, V=1, ---, n. Also, according to the observation 

equation and the fact that the irregular term has been included in the state vector, it 

follows that zut, t- = ZtCov(&t, &t. )Z'.. The recursive expression for the last expression t 
Cov(&t, &t*) can be calculated from Equation 3.4.10. 

The second stage uses the results in Hillmer and Trabelsi (1987) for which theoretical I 

details are included in Appendix A. 3. The final estimate incorporating the annual 
information and its corresponding variance are given by the expressions 

i) = E(i7 1 x, y) = ýo + i7c 

where 

77c = JM(VOL + Z�! )-'(x - L'i)o) 

and covariance matrix 

Ei = Cov(i7 1 X, y) = 17 - nL (VOL + Ej -lL'17 

0 

An example of the application of this method to business surveys in the UK will be 

presented in Chapter 4 where some structural time series model will be considered with 

their corresponding formulation as SSF. 

3.5.2 Single Step Benchmarking Method 

Durbin and Quenneville (1997) proposed a second method of benchmarking. The 
difference from the first one is that instead of performing the estimation in two stages; 
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both series (monthly and annual) axe combined into a single series with the filtering 

and smoothing procedures applied in a single stage. 

The single series containing both the high and low frequency series is arranged as 

Y* = [Y,, --- jYKiXliYK+li*** iY2K)X2)Y2K+li**' iYni(Xm)] 

where (x,, ) signifies that the single series could represent I complete years with the 

final element being x,,, or could represent incomplete years with the final element 
being y,, representing the last available monthly data. Also K represents the number 

of subperiods per year as it was noted before and the elements yt, tn and 

xi, i=1, ---, m follow the equations below 

yt = ? It + it = 77t + ktf* t 
iK (3.5.12) 

xi =Z 77t + ei 

The total length of the series y* will be n+m independently of whether it ends 

with an element y,, or an element xn and s=1, ---, n+m will denote the index of 

each position in the series y*. This characteristic allows the method to be an online 

procedure, i. e. it is not necessary to wait until the next benchmark is available to 

apply the procedure. All the benchmarking methods reviewed before require having 

available the benchmark for the last year before applying the corresponding method. 
This is not the case now and therefore, the single stage benchmarking method is a 

solution of the ex-ante estimation problem presented in pages 4 and 5. 

Proposition 3.5.2. Consider an array containing both the high and low frequency 

series in a single series. After writing the structural model for the new series in an 

appropriate SSF, the smoothed benchmarked estimates and their respective variances 

are given by 

Z*a: + C, * s (3.5.13a) 

Var(&) = Z*P*Z* +sn+m (3.5-13b) 

with n+m the length of the new series and the other components given by the SSF. 
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Proof. Let us assume that the values yt t=1, ---, n in y* follow the same structural 

time series model used in the two stage method and formulated in Equation 3.5.3. It 

follows that 

yt = pt + -yt + ct + ktf*, t=1, ---, t 

Writing this structural time series model for the values yt along with the equation 

Xi = EiK (i-l)K+l 77t + ej for the values xi, i=1, m into SSF, an estimate of 77t can 

be obtained using the Kalman filter. Again the modelling is done over y* to produce 

an estimate of q. Considering a,,,,, a2,, , Ct3,,, and a4,, the corresponding components of 

the trend, seasonality, irregular terms and the, survey errors, respectively. Since every 

term xi in the series y* depends on the last K values, it will be necessary to consider 

the trend, seasonality and irregular components in the state vector each one with a 

subvector of length equal to K. That is not necessary for a4,, as 77t is not affected 

by the survey errors. Then, the length of the vector a4,, is '0 = max(p, q) using the 

notation given in page 33 and p, q denoting the respective orders of the ARMA(p, q) 

model of the survey errors. The total length of the state vector will be equal to 3K +, o 

with K the number of high frequencies per year. In this way, the observation equation 

will refer to two kinds of values: yt, t=1, ---, n and xi, i=1, ---, m according to 

Equation 3.5.12. This is achieved by considering a state space vector given by 

[Ci 
I's Cf2, s Cf3, a CN, s] (3.5.14) 

[Its 
i'**i lls-K+l I ^Is 7"'*i 'Ys-K+l I fai i fa-K+l I Ct4, s] 

with observation matrices as 

[10K-1 I IOK-1 I 1OK-1 I ktO,, 
-, 

], if y, *, = yt t=n 
(3-5.15) 

[1K I 1K I 1K I Ogli if Y. * = Xi i=1, M 

and disturbances 

0, y, * = yt tn 
(3.5.16) 

ei, y, *, = xi i, m 
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with variances given by 

*= yt t 0, ys 
3.5.17) 

C, i2 , ei, yi*, = Xi 

2 
with q;, denoting the variance of the annual survey errors. 

Durbin and Quenneville (1997, page 38) state that it is necessary to assume that 

E, is a diagonal matrix; otherwise, the state vector becomes too large. It can also 

be noted that, more importantly, if this assumption is not made the disturbances in 

the observation equation will become autocorrelated. As an alternative, Pfeffermann 

and Tiller (2006) have developed a new filtering algorithm for state space models 

with correlated disturbances in the observation equation giving a possible solution to 

overcome this problem. 

Equations 3.5.14 to 3.5.17 permit writing the observation equation in the form 

2 Z-, a + c*s s iid(O, aý. ) s=1, ---, n+m (3.5.18) 

which is equivalent to the set of equations 3.5.12. In the binding case 

(3.5.19) 

Also, using the corresponding elements T,,. and t9,,,, t=1, - .. 4, it is possible to 

write the transition equation. The transition equation defines the development of the 

system from one instant to the other. Going over the index s=1, ---, n+m, the 

transition from one element yt to the next is described by the original matrices T,,,. 

At the same time, the transitions have to "jump" the elements xi in order to keep the 

continuity in the series. Then, the transition from the last element in yeax i, denoted 

by YiK ii=11***, m to the next element xi must keep the same state vector in xi as 

for YiK. There is no transition from yt to xi and the identity matrix could be used as 

T*.. Now from xi to YiK+17 it is possible to use the same transition matrix from YiK 

to the next yjK+j as the state vector for xi is the same as the state vector for YiK- 
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Given all these technical considerations the transition matrices and the disturbances 

in the transition equation could be arranged as 

diag(T,,,, T2,,, T3,.,, T4,, ), if Y8* Yt t 1, ---, n (3.5.20) 
13K+r3 

i 
if Yq Xi i 1, M 

[19 I, s 5 192, s i 
03, 

s 7 194, s] 7 
if Y4*! l Yt t= 1,... n 

t9*3 = (3.5.21) 
03K+r4 

7 
if Y* Xi M 

8 

Durbin and Quenneville (1997, page 36) set up a different transition matrix for the ap- 

plication to the Canadian retail sales data leading to the same benchmarked estimates. 

After setting up this SSF, the procedure is implemented by applying the Kalman filter 

and smoother with the specifications before. Finally to obtain ý, it is necessary to 

replace . 
9% by 

*= Yt t= 1t, n 
Z*S = 

[10K-1 I 1OK-1 I 1OK-1 I OL91) if YS (3.5.22) 
[1K I 1K I 1K I Opl) if Y. *, = Xi i= 1'... M 

analogously to what -was 
done in the two stage method above. The filtered and 

smoothed values are 

Z*a* + C. *, (3.5.23a) 
88 

Var(ý, ) = Z*P*Z. *, + o,, ý, sn+m (3.5.23b) 
a3 

with P* obtained during the Kalman filter recursions for the single series y* in Equation 
a 

3.5.11. Notice than after producing the values ý, with s=1, ---, n+m in Equation 

3.5.23a; it is necessary to get the unstacked values ýt with t=1, n corresponding 

to the monthly benchmarked values. 0 

This method has many advantages over the other benchmarking methods. Firstly, it is 

an online procedure, which means that one does not need to wait until the next bench- 

mark is available. Secondly, it does not require any estimation of the autocovariance 
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matrices of the monthly and annual survey errors. This characteristic of the method 

makes easier its application. Nevertheless, it is still necessary to specify an ARMA 

model for the survey errors and estimate its corresponding parameters. Another dis- 

advantage is that the dimensionality of the vectors and matrices involved in the state 

space formulation tends to increase very profoundly. 

0 3.6 Binding and Non-Binding Estimation 

I. - It 

A common practice of time series analysts is to adjust the monthly series such that it 

satisfies exactly the annual benchmarks. Alternative methods such as Denton (1971) 

considered this problem, although it was not possible to get an estimate of the variance 

of the estimates. The other benchmarking methods presented in the last chapter, 

consider the special case when the annual data come from a census or a complete 

enumeration making the covariance matrix of the annual survey errors to be equal 

to zero. The estimation, in this case, is called binding estimation. Sometimes the 

annual restrictions are imposed, even in the case where the annual benchmarks are 

obtained from a survey. In the latter case it is necessary, however, to account for the 

variability (sampling errors) of the benchmarks when computing the variances of the 

monthly benchmarked estimators. Using state space models, Pfeffermarm and Tiller 

(2006) show how to obtain the variance of binding estimators (obtained from a binding 

procedure) when using contemporaneous benchmarks that are subject to survey errors. 

In the next subsections, we develop the correct variance of binding estimators when 

using temporal annual benchmarks that are subject to survey error. The theory is first 

presented for the two-step method using state space models, and then extended to the 

ARINIA and Regression approaches introduced in Chapter 2. 
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3.6.1 Two Step Benchmarking Method 

There are two special situations to be considered when the two stage benchmarking 

method is applied to benchmark monthly data to annual totals. In the first situation, 

after the monthly smoothed values ý are obtained in a first stage, they are benchmarked 

to annual estimates, considering the latter as restrictions (binding estimation). In a 

second situation, the annual estimates are considered as auxiliary information subject 
to survey errors in order to get more precise estimators, but they do not necessarily 

satisfy the annual restrictions (non binding estimation). 

In the second stage, after the filtering and smoothing processes are completed, the 

benchmarked estimates could be obtained using the Hillmer and Trabelsi estimator 

given in Proposition 2.4.1. We will refer to this estimator as the non-binding estimator. 
This estimator corresponds to the nx1 vector 

E(q I x, y) 

and variance given by the matrix 

Ei = Var(i7 1 x, y) = 92 - OL[VnL + E, ]-'L'n (3.6.2) 

with dimension nxn. 

Another possibility to consider is the use of the binding estimator corresponding to 

eB =e nL[L'flL]-' (x - Ve) (3.6.3) 

assuming that the autocovariance of the annual estimates is equal to a zero matrix. 
This assumption implies a complete fulfilment of the benchmark restrictions since 

LI 17B =Vý+x-L'ý =x (3-6.4) 

Using the estimator in Equation 3.6.3, the sum of the monthly estimates per year will 
be exactly the corresponding annual estimates. 

However, the practice of making the variance of the last estimator to be equal to the 

analogue of Equation 3.6.2, replacing E. as a zero matrix and using the formula 
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EýB =0- fIL[L'f2L]-'L'fl (3.6.5) 

is only valid if it is possible to guarantee that the annual values come from a census 

or a complete enumeration. This is because if the sum of the binding estimates is 

considered, then 

Var(x) = Var(VeB) = VEiDL = VnL - VnL = 0�,. �, (3.6.6) 

As it was explained above, binding estimation requires to assume that the variance 

of the annual estimates is zero. This is sometimes assumed even when the annual 

benchmarks are obtained from a survey instead from a census. Then, it is necessary 

to add a new term in the expression of the variance of the benchmarked estimates in 

order to account for the variability of the benchmarks when computing the variances 

of the monthly benchmarked estimators. 

In order to get the correct expression for the variance of the binding estimator subject 

to annual survey errors; the binding estimator will be expressed as a function of the 

non binding estimator writing 

IJB + (ýB 

e Vffi + 
(3.6.7) 

e+ (L! nL + E, )-1] (x - «) 

=ý B*(x - Vffl 

where B* is anxm matrix equals to f2L[(L'f2L)-1 - (VfIL + E, )-I]. Since E, =A 0, 

Equations 3.6.5 and 3.6.6 do not hold. Denoting the variance matrix of the binding 

estimator under the presence of annual survey errors as Ec with the superindex v? B) 

c indicating that the binding variance has been corrected due to E. =7ý 0; the next 

proposition calculates the variance for I 17B 

Proposition 3.6.1. The variance Elý can be decomposed in terms of the variance of qB 

the non-binding estimator plus an additional term as 

Eý (3.6.8) i7B 

with 0 being the autocovariance matrix of the smoothed values ý in the first step. 
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Proof. Using the decomposition of the binding estimator in terms of the non-binding 

estimator in Equation 3.6.7, multivariate properties of the variance and covariance 

operators and some matrix algebra, it follows that 

Eý =Var(ý)+Cov(ý, B*(x-Liý))+Cov(B*(x-Liý), ý)+Var(B*(x-L! ý)) YIB 

= Var(ý) + Cov(ý, x)B*'- Cov(ý, L'ý)B*'+ B*Cov(x, ý) - B*Cov(vý, ý) 

+ B*(E,, + Vf)L)B*' 

= Var(4) + Cov(ý, x)B*'+ Cov(flL[VfIL + E, ]-'(x - L'ý), x)B'* 

- Cov(ý, Vý)B*'- Cov(flL[VfIL + E, ]-'(x - B*Cov(x, ý) 

+ B*Cov(x, M[VOL + E, 1-1(x - Vq)) - B*Cov(Vý, ý) 

- B*Cov(Vý, flL[VOL + E, ]-'(x - L'ý)) + B*(Eý + L! flL)B*' 

= Var(ý) + M[VOL + L'fILIB*- f)LB*' 

+B*[E. +L! f)L][Vf)L +B*(E, +L! flL)B*'- B*L! fl 

= Var(ý) 

+ fIL[(VfIL)-l - (LTIL ++ VfIL)[(L! flL)-l - (LTIL + 

= Var(4) 

+ [f)L(VIIL)-'E. + fIL(LTlL)-l(LAIL) - fILI - [(VfIL)-l - (VOL + 

and then, finally, 

nB = Ei + OL(L fIL)- E. [(L nL)- 
- 

(L M+ TIFIV76 

as it was required. 0 

The last expression permits to decompose the variance of the binding estimator into 
the variance of the non-binding estimator plus an extra term. In the particular case 

when E. = 01 ESjB = E, -- One of the main purposes of benchmarking is to obtain 
better estimates than those used before to the benchmarking process. 

Denoting the expression All ý! M2 to represent that the matrix All - M2 is positive 

semidefinite and, in the same way, considering All > M2 to denote that the matrix 
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MI - M2 is positive definite. The following two propositions address the issue of 

efficiency of binding and non-binding estimators. Firstly, the optimality of the non- 

binding estimator ý against the binding estimator ýB subject to annual survey errors 

is studied. Then, some conditions are determined in order to decide if the binding 

estimator in the second stage ýB is optimal than the smoothed estimates in the first 

stage ý or the other way round. . 

Proposition 3.6.2. The binding. estimator under annual survey errors is less effi- 

cient than the non-binding estimator. In other words, ES > Ej. The excess in 
rIB 

the variance Of ýB with respect to the variance of ý is given by fIL(VOL)-1E, (E, + 

representing the excess due to the presence of a non-zero an- 

nual survey error variance E.. 

Proof. In order to prove that ES > Ej, it is necessary to guarantee that the matrix i7B 

(LML + in the second term of Equation 3.6.8 is 

always positive definite. This is possible to assure if the matrix 

(LIM + E, )-'] (3.6.9) 

is always positive definite (see Harville (1997, theorem 14.2.9)). Using the Woodbury 

matrix identity (Golub and van Loan, 1996, page 50) 

(A+ BDB')-' = A-'- A-lB(D-1 + B'A-'B)-'B'A-1 (3.6.10) 

and taking A= MIL, B=I and D=E., the matrix in Equation 3.6.9 can be 

expressed as 

(VOL)-lE. [(L! flL)-l - (VOL + E, )-'] 

= (Vf)L)-l + 

= (L'L)'Ee[(L'L)'(Ee' + (L'L)')'(L'(ZL)1] 

(3.6.11) 
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Now using that (A+B)-l =A-' (A-' +B-')-'B-1, it follows that the Equation 3.6-11 

can be expressed as 

(L'1lL)'E(L'flL)' [Ee1 + (L'1L)']1 (L'IlL)' 

= (3.6.12) 

= 

Then, 

Eq = Ej + OL(VOL)-lE, (E, ý + (3.6.13) qB 

where the second term is a positive definite matrix as (E,, + VOL) is the sum of 

two positive definite matrices and its inverse is also a positive definite matrix. Then, 

assuming E,, 54 01 E, qB is always greater than Ej and the second term in Equation 

3.6.13 shows how much you lose in variance when considering binding estimators. 0 

Finally, we found conditions under which the binding estimator in the second step 6 

could have a bigger variance than the smoothed estimator in the first step, ý- 

Proposition 3.6.3. The variance of the binding estimator in the case of annual survey 

ermrs is greater than the variance of the monthly smoothed estimator in the first stage, 

if the generalized total variance of E, (the covariance matrix of the annual survey 

er7-ors) is greater than the generalized total variance of MIL (the covariance matrix 

of the sum of the smoothed monthly estimates obtained in the first step). In matrix 

notation, if IVOLI :ý JE,,, l then Ej', > qB 
fl* 

Proof. If the E, ýB is written not in terms of Ei but in terms of fl, which represents the 

variance of the monthly smoothed estimates in the first stage, it follows that 

F, q fl - fIL[VfIL + 

= fl - fILI[VfIL + EI-l - 
(3.6.14) 
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Because the negative sign in Equation 3.6-14, if Evý7B < fl then the matrix 

[V I DL + E. 1-1 -+ Vf)L)-'E, VIIL -1 (3.6.15) 

must be positive definite. 

YjB 
then it can be guaranteed that [VOL + E, ]-l -+ Thus, if Eý' 

is positive definite (1). It can also be proved that if A-B 

is positive definite, then JAI > JBI by using theorem 25 in Magnus and Neudecker 

(1988, page 22). According to this last proposition, it follows that if [MIL + E, 1-1 - 

(Vf2L)-1E, (E, + is positive definite then 

l(L'nL + E, )-ll > 
1 

IMIL 

jEe 12 

(3.6.16) 
MILJ2 lEe + Lf2L1 

=: > JVOL12 > JE 
e 

12 

=: ý- IL'flLl JE, l 

The last result can be summarized as if 

is positive definite then the generalised total variance of MIL is greater than the gener- 

alised total variance of E. (2). From conclusions (1) and (2), it can be concluded that 

nB 
1 then the generalised total variance pf MIL is greater than the generalised if ES 'ýý 1 

total variance of E,, (3). Now using the negation of (3), it follows that if IMILI :ý JE,, l 

then EýB ý: fl as appeaxs in the proposition. 0 
TI 

The last result implies that the actual variance of the binding estimates in the second 

stage could be greater than the variance of the smoothed estimates in the first stage. 
Clearly, in this case, there is no reason for the benchmarking except for consistency 
in publication. All the results in this section can be extended to the ARIMA and 
Regression approaches as it will be shown in the next subsections. This extension is 

done by considering both approaches to be analogous to a "two-step" method type. 
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3.6.2 ARIMA Approach Method 

The ARINIA method is also a "two step method". The first step uses the stochastic 

structure of the monthly data to produce an estimator of the signal and its correspond- 

ing autocovariance matrix 01 = Cov(q I y). In the second step, the annual information 

is incorporated in exactly the same way as the two-step benchmarking method. Re- 

gaxding the variance of the benchmaxked estimates, it follows that fl I= (Et 1+ En 1) 

with Et and E., representing the covariance matrices of the monthly survey errors and 

the underlying true time series, respectively. These covariance matrices are obtained 

from the corresponding ARIMA models in the way that was explained in section 2.4. 

The same results in the last subsection above are obtained with fl replaced by f1j. 

C Then, it can also be concluded that if jL(Ej1 + Eý')-'Lj !ý JE. 1 then EýB ý: 01 and 

the incorporation of the annual restrictions would not make any improvement in the 

estimation when this condition is satisfied. 

3.6.3 Regression Approach Method 

The regression method can also be considered as a "two-step method". An estimator 

of the monthly signal is obtained subtracting the estimated bias in a first step. Then, 

in a second stage, the annual information is incorporated into the estimation in the 

form of a generalized regression model. Hillmer and TYabelsi (1987) method could be 

considered as a particulax case of the Cholette and Dagum (1994) method replacing the 

matrix fl for the covariance monthly survey error matrix Ej, the vector ý for the vector 

y and considering no bias parameter. Therefore, two different cases will be considered 

according to the presence of bias in the estimation. 

Zero bias case 

If it is assumed that the bias is zero, analogous results to those obtained for the two 

stage method axe produced for the binding estimator. The equations below summaxize 
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the main equations for the non-binding and binding estimator under the regression 

approach assuming no survey bias. ýnb denotes the estimator under the no bias as- 

sumption. 

Non-binding Estimator 

.1 
-'(x - L'y) (3.6.17a) ýnb y+ EIL[L'E, L + E, 

E4,,, b =+E, ]-'L'Et (3.6.17b) 

Binding Estimator 

ýB, nb =y+ EjL [LEILI -1 (x - Vy) (3.6.18a) 

Eý = Ej,, b + EjL(VEjL)-'E, -'E, (VEIL) -'VEI (3.6.18b) nB, nb 
(E, + VEIL) 

Equation 3.6.17a gives the expression for the non-binding estimator; Equation 3.6.17b 

the corresponding variance; Equation 3.6.18a the corresponding formula for the bind- 

ing estimator and Equation 3.6.18b the corrected variance for the binding estimator 

with benchmarks being subjected to survey errors. Following the results for binding. 

estimation in the two stage method, it is possible to conclude that if jVEjLj !ý IE, 
-l 

then E, SB ý! E, and the variance of the binding estimator could be greater than the 

variance of the original monthly estimates. 

Non-zero bias case 

According to the results in Proposition 2.3.1., the bias and the benchmarked estimator 

with their respective variances can be obtained using 

et = -aa2l'L(L'EtL + E,, )-'(x - L'y) (3.6.19a) 

4=y*+EtL(L'E, eL+Ee)-I(X-L'Y*), y*=y-ljt (3.6.19b) 

Ca2 11[1'L(L'EtL + Ee)-'L'ln] (3.6.19c) 
n 

En- [El - EIL(VEtL + Ee)-'L'Etl 

+ [I - EtL(L'EtL + Ec)-'L']lnOra3ln + Ee) I [I - (3.6.19d) 
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When considering a survey bias, Cholette and Dagum (1994) method could be consider 

as an analogous case of Hillmer and 'Rabelsi (1987) replacing the matrix rl for the 

covariance matrix E,, and the vector ý for the vector y-1,, a. Now, analogously to the 

other benchmarking methods, the binding estimator could be defined as 

6=y*+EjL(LTeL)-l(x-L'y*), y*=y-l,, a (3.6.20) 

assuming E, = 

Now, considering the difference between the estimator under non-zero bias in Equation 

3.6.19b with the estimator under zero bias in Equation 3.6.17a. It follows that 

(3.6.21) 

Also, considering the differences in the corresponding variances for the two estimators 
in Equations 3.6.19d and 3.6.17b, respectively. It follows that 

(3.6.22) 

That means, when considering binding with E. = 0, the benchmarked estimator could 
be expressed as 

IIB ---: 
ýnb, B + 

with vaxiance given by 

(3.6.23) 

Es '-': Ec- EIL(VEeL)-'V]ln&) + Cov([I - EjL(VEjL)-lV]ln&, ýnb, B) qB Onb + COV(ýnb, B7 [I 

=E'q,. b + COV(ýnb, Bi a)ll [I 
- EIL(LEIL)-'Llj'+ [I 

- EIL (VEIL) -1-V1 lnCOV(&i ýnb, B) n 

+ [I 
- EIL (VEIL) -lVj lnOra3 lnl V 

where COV(ýYtb, B, &) refers to the cross-covariance between two vectors with dimensions 
kx1 and Ix1 according to the definition given by Bickel and Doksum (2001, page 
504, Equation B. 5.8) and specific values of k=n and 1=1. 
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Now since, 

COV(ýnb, Bs &) =-- COV(tli ýnb, B)l 

= Cov(y + EtL[L'EIL + E. ]-'(x - L'y), -oa2l'L[LIEIL + E. 1-1(x - Ly)) 

= -Cov(y, -L'y) [VEIL + E, ] -'L'Jaa2 

- EIL[VEtL + E,, ]-'Var(x - L'y) [VEIL + E, ]-'L'laa2 

= EtL[VEIL + E,, ]-'L'laa2 - EIL[VEIL + E, ]-'L'loa2 = On), l 

it follows that 

r, ý tIB'z-- 
Ecjnb + [I - (3.6.24) 

Replacing Equation 3.6.17d in Equation 3.6.25, it follows that 

Eý = Ej,,, b + EtL(VEIL)-'E, (E, +VEIL) -'F,, (LTIL) -'VEI qB 

Binding Excess 

(3.6.25) n 
Bias Estimýtion Excess 

with the two excess terms being positive definite matrices. This permits us to conclude 

that, also for the regression method, the binding estimator subject to survey errors is 

less efficient than the non-binding estimator. 

3.7 Conclusions and Further Issues 

State space models have been introduced in this chapter. The key advantage of these 

models is that it permits analysing time series in a structural form, that is the de- 

composition of the original estimates into different components as trends, seasonality 

and calendar vaxiations Godolphin and Johnson (2003). This structural form covers 

a wide range of time series with ARIMA or stochastic volatility models as particular 

cases. Some important aspects in the implementation of these models were covered, 

specifically the initialization of the Kalman filter and maximum likelihood estimation 

of the hyperparameters. 
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Regarding the benchmarking problem, it is possible to formulate the problem in this 

context. Two alternative methods have been proposed by Durbin and Quenneville 

(1997) using state space models and they were presented using a more general formu- 

lation than the one presented in their paper. Durbin and Quenneville (1997) considered 

a very specific model to be applied to the Canadian Retail Trade series and this model 
has been extended here in a more general form in order to consider any kind of struc- 
tural time series model. One advantage of the Durbin and Quenneville (1997) methods 
is that one of the methods is an online procedure which means it is no longer necessary 
to have the last annual benchmark available for producing high frequency estimates in 

the last year. 

One criticism of the approach is that "the models are very complex compared to 

those used in the regression methods. Moreover, the smoothing part of the state 

space approach requires the storage of a large number of covariance matrices" (Dagum 

and Cholette, 2006, page 205). In our humble opinion, this is a problem that is not 
impossible to handle by using any of the modern software tools available nowadays. 

Furthermore, a possible way to reduce the dimensionality of the vectors and matri- 

ces involved is by not including the observatiorf errors in the state vector but under 
the cost of producing an autocorrelated measurement model. Pfeffermarm and Tiller 
(2006) proposed a modification to the Kalman filter theory which is able to deal with 
this problem. They proposed a new filter that coincides with the traditional Kalman 

filter when the disturbances in the observation equation are uncorrelated. Another pos- 

sibility in order to reduce the dimensionality is to drop some of the higher frequencies 

in the seasonal term. This is because seasonal patterns change relatively smoothly over 
the year. Abraham and Box (1978) and Anderson (1971, page 106) give an example of 
a model using only one and two frequencies respectively (instead of six in the complete 

model). The first frequency, which corresponds to a period of twelve months, is known 

as the fundamental frequency while the remaining frequencies are harmonic$. (In the 
Anderson example, the second frequency correspond to a period of six months). 
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NVe have also considered two cases of estimators for benchmarking. When the adjusted 

series agrees exactly with the benchmarks, the benchmarking has been called binding. 

This type of estimation is considered even in cases when the annual benchmarks have 

been obtained from a survey rather than a complete enumeration or census. In this 

case, with the benchmarks being subject to annual survey errors, it is necessary to 

account for the variability of the benchmarks when computing the variances of the 

monthly benchmarked estimators. In Section 3.6.1., the correct variance of the binding 

estimators when using temporal annual benchmarks that are subject to survey error 
has been developed. Additionally, some conditions under which the variance of binding 

estimators could be higher than the variance of the obtained estimators after signal 

extraction without the benchmarks have been established. In this latter case, there 

is no reason for binding apart from consistency in publication. The theory has been 

presented for the two-step method (Durbin and Quenneville, 1997) and also extended to 

the ARINIA and Regression approaches outlined in Chapter 2 with similar conclusions 
than those obtained for the benchmarking method using state space models. 
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Chapter 4 

Benchmarking Methods Applied to 
Business Surveys in the U, K 

In this chapter, the benchmarking theory will be applied to real data obtained from 

business surveys in the UK. We will describe the data sources used. Smith, Pont and 

Jones (2003) give an overview of the business surveys carried out in the UK. Approx- 

imately 100 different business surveys are carried out by the ONS and most of them 

adopt different methodologies although some coordination among them has been pro- 

posed. The main characteristics (sampling frame, sampling design, parameters and 

estimators) of the two more important surveys will be explained in the next sections. 

This corresponds to the MPI (Monthly Production Inquiry) and the ABI (Annual Busi- 

ness Inquiry). Finally, the advantages of benchmarking these surveys are highlighted 

through the application in a particulax industrial sector. The precision of the estimates 

of benchmarking methods under the state space models approach is studied using the 

theoretical developments in the last chapters. 

4.1 Preliminaries 

The concept of repeated surveys was introduced in Chapter 1. Repeated surveys 
differ from longitudinal surveys in that the sampling units need not be the same over 

time. Instead, there could be any degree of overlap between the units in two adjacent 

74 



4.1. PRELIMINARIES 

periods. The idea of this partial overlap is to reduce respondent burden, especially in 

smaller businesses and on the other hand to get better estimates of change that take 

into account the correlations that are present (see Wolter (1979) for a more detailed 

explanation) . 

Business surveys are a particular case of repeated surveys with different possible fre- 

quencies: monthly, quarterly or annual surveys. These surveys axe designed with the 

aim of producing estimates of totals, averages, ratios and change between two periods 
in measures of economic activity (Srinath, 1987; Hidiroglou and Srinath, 1993). Addi- 

tionally, results for business surveys are used to construct other official statistics such 

as national accounts. National accounts show the major transactions occurring during 

an economic period. The main user of this information is the government, which uses 

the results to measure how the nation is performing, to propose new policies and to 

evaluate and control the implementation of them (Lewington, 1995). Business surveys 

receive a special consideration in the literature as their design and application are dif- 

ferent from social surveys. Cox and Chinnappa (1995) distinguish between social and 

economic statistics, where "social" refers to "people and their activities as individuals" 

and "economic" refers to "organizational entities" and their economic activities. The 

information is generally collected through "household surveys" and "business surveys" 

respectively. 

Riviere (2002) and Smith et al. (2003) highlight the main conceptual differences be- 

tween household and business surveys. In particular, the obligation to respond (in 

the case of business surveys); the necessity of interviewers and multi-stage sampling 
techniques (in the case of households); among other differences. However, the main 
difference is perhaps the heterogeneity of businesses. Size variables such as turnover 

or number of employees normally have highly skewed distributions. This is because, 

there is a small number of large businesses with a huge contribution to the economy 
(according to the ONS, in 2000, there were around 9000 businesses with more than 
250 employees in the IDBR covering a total of 14 million employees) but there are 
also a very large number of small businesses (there were around 1655000 businesses 

with less than 20 employees covering 5.5 million of employees in the same period). An- 
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other difference valid for business surveys is the availability of alternative data sources 
(administrative records or marketing data) which can be used to validate survey esti- 

mates or for imputation (Cox and Chinnappa, 1995) and for the sampling design and 

estimation. 

Two of the most important business surveys carried out by the ONS in the UK are: 

1. Monthly Production Inquiry (MPI). The MPI is a survey covering the manufac- 

turing industry all over the UK. It is the main source of the monthly Index of 
Production (IoP), it is also used to estimate the change in the total number of 

employees and contributes to the "income measure" and the "output measure" 

of the Gross Domestic Product (GDP). Since 1948, the survey collects monthly 
information from manufacturing industries about turnover and since 1996 about 

employment variables. Currently it covers around 9300 out of a total around 
160000 businesses monthly (National Statistics, 2005b) 

2. Annual Business Inquiry (ABI). This is the main annual survey of businesses, 

covering the same NIPI variables (turnover and employment) but also covering 

purchases, inventories and capital expenditure. The survey covers around 75000 

businesses since 1998 (Jones, 2000; Partington, 2001; National Statistics, 2004). 

The main characteristics of these two surveys (sampling frame, sampling design, pa- 

rameters and estimators) will be presented in the next sections and a summary of the 
key facts is presented in the Appendix C. 

4.2 Sampling R-ame 

Konschnik, Alonsour and Detlefsen (1985) and Hidiroglou and Srinath (1993) point out 
that maintaining a frame of businesses is complicated due to the rapid rate of change of 
the frame. Hidiroglou and Srinath (1993) state that "mergers, acquisitions, changes in 

ownership, reorganizations, and so forth, require setting up rules for handling changes". 
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The sampling frames in business surveys are mainly list frames although it is not un- 

usual to combine area and list frames. In particular, in the UK, the Inter-Departmental 

Business Register (IDBR) is a list established in 1995 consisting about 1.8 million busi- 

nesses undertaking activities in diverse sectors such as agriculture, mining, catering, 

transport, banking, public administration, among others (Perry, 1995). 

The sampling frame is made up of businesses called units. Having in mind the construc- 

tion of the sampling frame some definitional questions arise (e. g. what is a business? ). 

Following the definitions in Smith et al. (2003), the basic statistical unit on the frame 

of businesses is the enterprise (or business) defined as: "the smallest combination of 
legal units that is an organizational unit producing goods or services, which benefits 

from a certain degree of autonomy in decision-making, especially for the allocation 

of its current resources. An enterprise carries out one or more activities at one or 

more locations. An enterprise may be a sole legal unit" (Smith et al., 2003; European 

Legislation Council, 1993, Section III-A). 

In the same context, when regional data is required, the local unit is defined as "an 

enterprise or part thereof (e. g. a workshop, factory, warehouse, office, mine or depot) 

situated in a geographically identified place. At or from this place economic activity 
is carried out for which - save for certain exceptions - one or more persons work (even 

if only part-time) for one and the same enterprise" (Smith et al., 2003; European 

Legislation Council, 1993, Section III-B). 

In order to classify businesses according to their industrial activity and according to 

the goods and services they produce, the standard industrial classificatio n (SIC03) is 

used. This classification corresponds to a hierarchical five digit code system, useful to 
determine the corresponding strata and is relevant in the processes of editing, imputa- 

tion and estimation (National Statistics, 2003). The 17 main sections in the SIC92 are 
denoted by a single capital letter from A to Q and they are summarized in Appendix 

D. Some sections are, in turn, divided into subsections (each denoted by the addition 

of a second letter). The letters of the sections or subsections can be uniquely defined 
by the next breakdown, the divisions (denoted by two digits). There are 17 sections, 
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16 subsections, 62 divisions, 225 groups, 517 classes and 285 subclasses. A new in- 

dustrial classification (SIC2007) is planned to be adopted in January 2008 (National 

Statistics, 2006). 

The IDBR includes information about the SIC classification, location and names of 

the businesses and the register is maintained and actualized by the ONS. The IDBR is 

updated using information from business surveys, registers of VAT (value-added tax) 

and the Department of Employment. Normally there are some delays in registering 
births and deaths of businesses in the IDBR. Hedlin, Pont and Fenton (2001) examined 

lags in recording births and deaths of businesses on the IDBR. The average lag in 

recording births was shorter than recording deaths implying over-coverage in the frame. 

Smith et al. (2003) state that these enterprises opening and closing are smaller than 

the average and thus, the impact over the economy is small. 

There are two vaxiables commonly collected from MPI and ABI (Smith et al., 2003): 

* Turnover: Defined as the amount receivable by the business for services provided 

or goods sold during the period covered by the form and 

9 Employment: Measured as the total number of employees at a certain date. 

4.3 Sampling Design 

The sampling design for business surveys is usually the same in all the statistical 

agencies around the world: simple random stratified (srs) sampling and sometimes 

sampling by probabilities proportional to size (pps). Multistage samples are common 

for household surveys but not for business surveys (Riviere, 2002). In the UK, sys- 

tematic samples were used and also pps relative to the size of the enterprise; but these 

techniques were abandoned due to the difficulties in implementing a new permanent 

random number system for the rotation of the samples (Smith et al., 2003). The two 

surveys considered in this chapter (MPI and ABI) use a stratified srs sampling but they 
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Size Bands Employment Range Sampling Fraction 

1 0-9 employees 1% 

2 10-49 employees 5% 

3 50-149 employees 19% 

4/7 150 or more employees (50 if a Band 7) 100% 

Table 4.1. Employment Size Bands for Stratification in MPI. Source: ONS data 

still have some small differences in the stratification and the rotation of the samples. 

It is well known in the sampling literature that in order to estimate change most 

efficiently from one period to another, it is better to retain the same sample throughout 

all occasions (Cochran, 1977). For estimates of both level and change, partial overlap is 

optimal and this optimum matching proportion depends on the value of the correlation 

between one occasion and the previous one (Finkner and Nisselson, 1978). Additional 

considerations enter into the decision of what matching proportion should be used. For 

instance, due to respondent burden, it may be advisable to replace units in the sample 

more frequently (Hidiroglou and Srinath, 1993). Nevertheless, the cost of introducing 

new units into the sample makes it more attractive to replace units less frequently 

(Finkner and Nisselson, 1978). In the next subsections, sampling designs and rotation 

will be explained in more detailed for MPI and ABI respectively. 

4.3.1 Sampling Design for MPI 

The NIPI uses simple random stratified sampling (National Statistics, 2005b). The 

population is stratified by the 4 digit-SIC code and employment bands within industry. 

In the NIPI, the number of employment size bands (strata) is three or four depending 

on the total number of businesses in the respective industry. Table 4.1 shows the size 
bands used in AIPI with their respective sampling fractions. 

Some industries with small populations are chosen (around 40 of the 4 digit industries) 

to be stratified into only three strata with all businesses with more than 50 employees 
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being sampled. In this case, the strata -are coded as "1-2-7". In the other cases, the 

stratification follows the structure in Table 4.1 with the natural codification "1-2-3-4". 

The sampling fractions were chosen with consideration that if an industry is dominated 

by few very large companies, they are included in each period. This corresponds to 

the forced inclusion band 4/7. 

A rotation scheme is done for strata 1,2 and 3 (1 and 2 only if the population is small). 
The rotation is done in the following way: businesses in the sample from strata 2 and 
3 are selected for 27 consecutive months minimum whereas businesses in stratum 1 are 

selected for a total of 15 consecutive m6nths. Samples are generated from the IDBR 

using a system of Permanent Random Numbers (PRN, Ohlsson (1995)). Firstly, each 

unit on the sampling frame is assigned a random number between 0 and 1. These PRN 

create a new order in the sampling frame (ordering the units by PRN). If the desired 

size of the sample is n,, the sample is selected choosing a random starting point, noted 
by K, and selecting the first n, elements with PRN higher than K. This is the sample 
for the first period. For the following periods, the rotation of successive samples is 

forced by moving the starting point in a way that overlaps in the required proportion 
(for more details, see Ohlsson (1995)). Notice that these numbers are "permanent" as 

there is not a new assignation of random numbers for the next periods. However, if a 

new business appears in the frame a new PRN has to be chosen for this unit. 

The sample is allocated to strata using the Neyman optimum allocation (Neyman, 

1934). Under Neyman's formula, the allocation minimizes the variance of total turnover 

over all the strata. The sample is allocated using as weights the product of the stratum 

size and the stratum standard deviation in each stratum. 

4.3.2 Sampling Design for ABI 

Jones (2000, Annex, pages 55-57) and Partington (2001, Technical note, pages 5-7) 

describe the sampling design for ABI. The ABI questionnaire is divided into two forms: 

ABI/1 is used to collect employment data and ABI/2 is used to collect accounting data. 
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The reason why this division is done is because the time of collection of the data is 

different. Employment data is available from businesses at the end of march while 
accounting data is usually available around six months later. 

ABI/2 is a sub-sample of ABI/1 with some industry sectors not covered by ABI/2 

(Jones, 2000). The sample sizes axe around 78500 businesses for ABI/1 and 75000 

for ABI/2. A stratified srs sample is selected from ABI/1 and the ABI/2 sample is 

obtained by excluding the sectors that are not covered. The population is stratified 
by six employment size bands (1-9,10-19,20-49,50-99,100-249, 

_250+); 
three regions 

(England and Wales combined, Scotland and Northern Ireland) and an hybrid 2/3/4 

digit SIC depending on the region. For instance, for Northern Ireland a2 digit SIC is 

used whereas for England and Wales a 4-digit SIC is used. 

In a similar way to the MPI, a Neyman optimum allocation is used, with the result that 
in some cases some strata of under 250 employees will be also completely enumerated. 
The rotation scheme is as follows (Jones, 2000): businesses in the first stratum of small 
businesses are completely replaced every year; businesses with number of employees 
between 10 and under the cutting point for forced inclusion have a rotation rate of 
50 per cent (i. e. half are replaced each yeax). Other issues as post-stratification, 
estimation, scaling and synthetic estimation are discussed in Partington (2001). 

4.4 Parameters and Estimators 

Estimation of totals corresponding to the variables turnover and employment is usually 

carried out at the ONS using ratio estimators (Cochran, 1977; Sdrndal et al., 1992, 

section 7.3). Generally, turnover is highly correlated with employment size and the MPI 

uses Pay as You Earn's (PAYE) employment as an auxiliary variable for the estimation. 
PAYE is an administrative source from a tax deduction system, introduced in the UK 

in 1944, which takes a certain amount of money from an employee's income when paid 
by the employer. Having in mind the stratified srs sampling design in both surveys; a 

separate ratio estimator (Cochran (1977, page 164), Sdrndal et al. (1992, page 270)) is 
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used to estimate employment and turnover (Smith et al., 2003). This is a special case 

of a ratio estimator given by 

iy, 
R=1: 

iy, 
h, R 

h 

E Yk 
kESh tx, h 

h 
F, Xk 

kESh 

(4.4.1) 

where Yk denotes the value of the variable of interest for sample unit k and Xk the 

corresponding value of the deducted tax. Sh is the selected sample in stratum h and tx, h 

is the population total of the auxiliary variable (PAYE) in the stratum h=1, ---)H. 
According to Smith et al. (2003) such estimates are calibrated to the stratum totals of 

the auxiliaxY variable and the calibration takes place by stratum or groups of strata 

(combined ratio estimation). This last situation is what actually happens most of the 

time in the ABI where the size bands are combined if the sample size is too small. 

Another very important parameter to estimate is the change from one period to the 

next one. This is useful to detect turning-points in time. Business surveys in the UK 

use the method of matched pairs to measure levels in a particular month using the 

estimated level in the month before as auxiliary information by using units that are 

common in consecutive months. Then, an estimate of change is produced by taking 

differences of the estimated levels. 

The calculation of level estimates is done over those common units from one period to 

the next by the formula 

E Yk, t 
iy, 

Mp, t 
kl=-Sh* 

t (4.4.2) 

h 
Fl yklt-l y, h, R, t-1 

kESh* 

where Sý 
= s,,, nSh, t-, and Sh, t denotes the selected sample in the stratum h at the 

instant t. It can be noticed that Equation 4.4.2 is analogous to the Equation 4.4.1. 

Using the estimated total in the last period as the auxiliary variable, Equation 4.4.1 

can be written analogously as follows 

ty, R, t 
iy, 

h, R, t 
h 

1: Yk, t 
kESh* 

ty, h, t-1 
h 

F, Yk, t-1 
kESý 

(4.4.3) 
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Note that because the internal sums are over Sý, both the numerator and the denomi- 

nator inside the sum in Equation 4.4.3 are available. However, because the term ty, h, t-1 
is unknown, it has to be approximated as in Equation 4.4.2. Once a level estimate is 

obtained, differences between successive levels are calculated producing an estimate of 

change. Smith et al. (2003, section 3.7, page 269) points out that measuring successive 
levels and taking differences is not a good alternative as survey errors tend to distort 

the actual difference. 

4.5 Reasons for Benchmarking 

Apaxt from the natural advantage of combining information obtained from a monthly 

survey with more precise annual information for the same variables; other reasons aris- 

ing from the estimation procedures using benchmarking methods for business surveys 

in the UK axe as follows. 

According to results of Kokic and Jones (1998) and Smith et al. (2003), matched 

pairs is a more reliable measure of change in business surveys. However, because the 

method only considers common responses from one period to the next, it cannot take 

into account births and deaths of businesses. Kokic and Jones (1998) and Smith et al. 
(2003) explain the effect of benchmarking on the quality of matched pairs estimates. 
Without benchmarking, the advantages of the matched pairs method are weakened. 
Using simulated data, Kokic and Jones (1998) showed that the variances of the matched 

pairs estimates without benchmarking increase over time and affect the variance of the 

estimate of change (Smith et al., 2003, page 270). In fact, the quality of the estimation 

gets worse "as the distance from the starting benchmark increases". Smith et al. (2003), 

page 270, stated that "because of the delay in introducing any benchmark data, the 

advantages of the matched pairs method cannot be realized in real time". The next 

section will present an application of state space benchmarking methods, which will 

permit to overcome the problems that have been referred to in this section for the main 
business surveys in the UK. 
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4.6 Benchmarking MPI to ABI 

The main aim of benchmarking is to combine the monthly information (estimates 

and their respective standard errors) with auxiliary annual information in order to 

get better monthly estimates which will add up to a new improved annual estimate. 

In this section we will present an application of benchmarking methods using state 

space models applied to business surveys in the UK. Data of turnover in the period of 

January 1998 to December 2003 is obtained from two different sources: the Monthly 

Production Inquiry (MPI) and the Annual Business Inquiry (ABI) survey in the Office 

for National Statistics (ONS). This information was available from the ONS for 215 

industrial sub-sectors in the manufacturing industry in the UK. The application will 

permit to study some practical issues about the specification of structural time series 

models, the initialization of the Kalman filter and the maximum likelihood estimation 

of the hyper-parameters. The goodness of fit of the various models to be considered 

will be evaluated according to sample diagnostic tests and graphical displays of the 

innovations, by checking for outliers and structural breaks based on an analysis of the 

auxiliary residuals (as they were defined in Section 3.4.4. ) and also through the use of 

Monte Carlo experiments. 

The application requires having information in both surveys for the same period of 

observation. 95 sub-sectors, out of the 215, were discarded as they had information 

available from one survey but not the other (monthly but no annual or the inverse 

situation), or because it was not possible to get any standard error information from 

the surveys. In the remaining group of 120 sub-sectors, 73 have got standard errors in 

a higher level (e. g. sector level) but not in the sub-sector level. In total, only 45 sub- 

sectors have all the necessary information available (95+73+45=213). The remaining 

two sub-sectors (Nvith SIC codes 37.1 and 37.2) are a special case conforming to the high 

level sector 37. For these sub-sectors, the information corresponding to the monthly 

estimates and the monthly standaxd errors is available only at the sector level. The 

problem of how to get disaggregated estimates at the sub-sector level corresponds to 

the contemporaneous disaggregation problem studied in the next chapter. 
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Figure 4.1. Monthly Estimates for Turnover of Sawmills 

The industrial sector of wood manufacturing was selected for illustration. The plot 

in Figure 4.1 shows the monthly values of turnover obtained from -NIPI, 
during the 

period of reference, for the industrial sub-sector of sawmills. This corresponds to the 

SIC code 20.1 in the subsection DD - -XIanufacture of wood and wood products. The 

length of the monthly series is n= 72 months whereas the length of the annual series 

is m=6 years. 

It can be noticed in Fiffure 4.1 that the monthly series is seasonal and there is a 0 

significant drop of the turnover values for this industrial sub-sector at the end of each 4: 3 
year. This can be confirmed in the plot in the Figure 4.2, where the values were grouped 

by month and values corresponding to the group --December" (month 12) show lower 

values than the other months. 'Notice also the presence of an outlier in the value of 

July (month 7), corresponding to the big drop in July 2000. In Figure 4.1 the value of 

Turnover for December 2000 is even higher than the value in July 2000, making one 

ask if there were untypical external influences in the year 2000. This will be reflected 

in the benchmarking models used for this application and presented later on. 

Using the Scott and Smith (1974) decomposition in Equation 1.1.1, yt = ? It +ft with 77t 

t lie value of the unobserved population true series and ft the sampling error associated 

xvith t/,. the survey estimate of qt at time t. Considering the series in this application, 
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Figure 4.2. Monthly Estimates for Turnover of Sawmills Grouped by Month 

the monthly series of Turnover for sawmills, yt can be modeled using the signal plus 

noise model. yt = pt - --t + et + ktt7. In this model, the monthly signal series qt has 

it 
been decomposed into a trend. a seasonal, an irregular component and the survey error 

it. In particular. it has been expressed as it = ktf* following the Cholette and Dagum t 
(1994) formula in Equation 2.3.8. 

The term A-, in the survey error component is the standard deviation of the survey errors 

(kt = s. d. (yt) = s. d. (rlt + ft) = s. d. (ft)) assuming the qt's are constant for each instant. 

The value of kt is taken from the standard error information obtained from the NIPI 

survey in the ONS and is incorporated into the model to represent heteroscedasticity 

in the survey errors. 

Although estimates of turnover for the sawmills sub-sector are available with their 

respective annual standard errors (and coefficients of variation) for ABI from 1998 to 

2003. the monthly standard errors are available only in the period from January 2002 

to December 2003. Before the application of the benchmarking methods in section 2.5, 

it is necessarv therefore to estimate these standard error values in order to allow liet- 

eroscedasticity in the survey errors. A generalized variance functions (GVF) approach 

(Wolter. 1985: Johnson and King, 1987: Valliant, 1987) is proposed in the next section-, 
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this is a methodology to estimate variances based upon regression model specifications. 

4.6.1 Generalized Variance Functions 

Wolter (1985, Chapter 5, page 201) discusses the possibility of "a simple mathematical 

relationship between the variance or relative variance of a survey estimator to the 

expectation of the estimator". Then, a possibility is to regress the estimated variances 

of an estimator to the estimated values of the parameter. The estimation of this 

model can be done using data from surveys in the past or from a small subset of the 

elements in the current survey. Variance estimates can be obtained by evaluating the 

model at the survey estimates, rather than by direct computations. This method was 

called the method of generalized variance functions (GVF) (Wolter, 1985; Johnson and 
King, 1987; Valliant, 1987). 

Let ý denote an estimator of the parameter 0 and let 0= E(ý) denote its expectation. 
GVF models axe fitted to predict the relative variance (RV) of the estimator defined 

by 

RV = Var(ý )/02 = or? /02 = CV2(o) (4-6-1) 
0 

where a? denote the variance of 6 and CV(6) its corresponding coefficient of variation. 0 

Some alternative models have been proposed in the literature in order to achieve the 
best fit to relate RV to 0. Apaxt of the case when 0 is a proportion, there is no 

rigorous theoretical justification for any of these models and so, optimum estimators 
of the model parameters are difficult to construct. Wolter (1985, page 206) states that 
"discussions of optimality would require an exact model and an exact statement of the 

error structure of the estimators (9V) and (6). In the absence of a completely specified 

model, we shall simply seek to achieve a good empirical fit to the data (0, RV)". In 

the specific case, when 0 denotes an estimator of a total for a binary variable, some 
justification has been established. In this case, when 0 approaches N, the size of the 

population of study, the variance of 0 approaches zero and then, the relative variance 
RV is a decreasing function of the magnitude of the expectation 0. Wolter (1985), 
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pages 203-205 presents some justification in this specific case in terms of the concept 

of design effects, the application of clustered simple random sampling and considers 

also the specific case of the estimation of proportions. Valliant (1987) studies the 

application of GVF for estimators of totals that are linear combinations of sample 

cluster means from stratified two-stage cluster samples. 

Considering the case of repeated surveys, a subindex t will be added to represent the 

values of the estimator of the signal at different points of time 

RVt = Var ( ýt ) /772 = 0,02t /772 = UY2, /77t2 = CV2 (yt) (4.6.2) tt 

Some alternative models relating RVt to 77t are given by the expressions: 

RVt = Po + 01/77t (4.6.3) 

RVt = '80 
+ #I/77t +, 82/772 (4.6.4) t 

RVt = (Bo + fl, 77t)-l (4.6-5) 

RVt = (Oo + 0177t + 0277t2)-l (4.6.6) 

log(RVt) = Oo +, 3, log(, qt) (4.6.7) 

The parameters flo, P, and 02 are unknown and need to be estimated from all the 

available pair of values (yt, kVt). After that, variance estimates can be obtained 
by evaluating the model at the survey estimates as was mentioned above. This is 
the methodology used by the Current Population Survey (CPS) at the US Census 

Bureau under the assumption that the sample design has not changed during the 

period of reference (Bureau of Labor Statistics, 2002). CPS uses generalized variances 
for estimates of month-to-month changes as well as for estimates of monthly levels 

since 1947 (Hansen, Hurwitz and Madow, 1953; Bureau of Labor Statistics, 2002). In 

a different context, Johnson and King (1987) applied GVF in a US survey of reading 

ability among young adults using a multistage stratified probability sample. 
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Figure 4.3. Scatterplot Standard Error vs. Square of the Estimates. 

Regression Line: Final Model. 

MPI Example 

In this application, data on turnover from the manufacturing sectors in MPI are avail- 

able from January 1998 to December 2003. However, monthly standard error informa- 

tion is only available for the last two years (2002 and 2003) at the ONS. The sub-sector 

20.1 corresponding to the manufacturing industries of wood (sawing and milling) will 

be considered as an example for the application of GVF to estimate the missing stan- 

dard error information. 

A set of models, including Models 4.6.3-4.6.7, were fitted to the 24 available pairs of 

values (ý, kV) from January 2002 to December 2003. However, none of them provided a 

good fit when considering their corresponding residuals. Therefore, models for standard 

errors were studied instead. The model with best fitting to the data (s. e. stands for 

"standard error") was 
2 kt = s. e. (yt) =, 3o +, Olyt +, 62yt (4.6.8) 

The scatterplot appearing in Figure 4.3 shows a moderate positive association between 

the square of the estimates and their standard deviation with a correlation of 0.74. One 

outlier (August 2003) was detected and it was not considered for the fitting. All the 
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Figure 4.4. Series of Predicted Standard Errors. Last 24 Observations are Original 

Values from MPI. 

detailed information about the regression modeling is presented in Appendix E. 

The model used to predict the standard errors before 2003 after considering only the 

significant terms is given by the equation 

10-7) 2+ Ct (4.6.9) kt = s. e. (yt) = 5878.68 + (5.59 x yt 

taking one outlier out of the sample. The R' value for the linear model was 0.55. 

Examination of significance tests and significance of the parameters gives no reason 

to question the adequacy of the model apart from the presence of some influential 

points as presented in the diagnostic plots in Figures E. 7 - E. 10 and test diagnostics in 

Table E. 6 in Appendix E. The first plot corresponds to a histogram of the studentized 

residuals, then the qqplot shows the standardized residuals against the quantiles of the 

appropriate t distribution, with the plot being approximately linear. The third plot 

of studentized residuals against fitted values does not suggest any non-linear relation- 

ships, non-constant variances or outliers. Also, a plot of the autocorrelation function 

of the residuals does not show significant serial autocorrelation among them. Same 

conclusions are obtained after examining Table E. 6 under the column "Model (-lobs)". 

Standard errors for the months before January 2002 were obtained by calculating the 

predicted N-alues according to Equation 4.6.9 and they are plotted in Figure 4.4 with 
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the original estimated values from the survey from January 2002 to December 2003. 

However they originate from different models as the part before January 2002 does not 

include the modeling error. In other words, the values of the standard errors before 

January 2002 obey the model kt=s. e. (yt) = 5878.68 + (5.59 x 10-7)y2 and after January t 
10-7)y2 + 2002 the model kt=s. e. (yt) = 5878.68 + (5-59 xt 

In order to have compatible sets of values, the mean and the variance of the residuals 

were calculated and then 48 values from a normal distribution with this mean and 

variance were randomly chosen and assigned for each one of the values from 1998 - 
2003. The final set of standard errors 6f the estimates to be used for benchmarking 

are plotted in Figure 4.5. It should be noticed that the standard error value for the 

observation which was an outlier was also recalculated according to the final estimated 

model. 

8 

a 

Figure 4.5. Series of Predicted Standard Errors. First 48 Observations Were 

Obtained Plus a Random Error 

4.6.2 State Space Modelling of MPI 

We will consider the same data set in the last subsection corresponding to theLirnover 

of sawmills in the UK for the period January 1998 to December 2003. Once all the stan- 
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dard errors are available; all the required information (annual and monthly estimates 

and the annual and monthly standard errors) is available and ready for benchmarking. 

Under the state space model approach, both the two step and the single step method, 

introduced in section 3.5, will require a suitable structural model for the monthly ob- 

servations. The aim is to get a good model in terms of fitting, with small dimensions 

in the vectors and matrices used in the state space form. 

In this section, a brief review of the modeling for the signal and the sampling error is 

presented. Firstly, a preliminary model considering a Basic Structural Linear Model 

(BSM) (pages 26 and 31) for the monthly signal and an autoregressive model for the 

survey error is implemented. The BSM will permit to formulate the monthly series in 

terms of unobserved components such as trend, seasonality and irregular terms. It is 

possible to consider this model as an extension of a multiple regression approach, letting 

the regression parameters to change stochastically over time (Harvey, 1990, page 31). 

The corresponding results and fitting tests under this basic model are shown. Then, 

different modifications were applied to the model trying to get a better fit to the data. 

The goodness of fit is evaluated in terms of the standardized innovations of the model 

and through Monte Caxlo experiments as it will be explained in the next subsection. 

Finally, the results for a model with a good fit are presented. 

BSM Signal plus Noise Model - Application 

According to Equation 1.1.1, the observed turnover for the sawmill industries in the 

UK, yt, can be represented as the sum of two independent processes; the true popula- 

tion or signal i7t and the sampling error or noise ft using Equation 1.1.1. The signal 77t 

will be represented as a structural time series model in order to obtain a decomposition 

in terms of a trend, a seasonal and an irregular component. Additionally, we consider a 

multiplicative form (Bell and Hillmer, 1990) of the survey error by assuming tt = kttt* 

with it* reflecting the auto-covaxiance structure of an unit variance ARMA process and 
kt representing the standard errors of the survey in order to represent the heteroscedas- 

tic structure of the sampling errors. Non-sampling errors were not considered in this 
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application. 

Modeling an ARAIA process for the standardized survey error f* will require to get t 
information about the auto-covariance matrix structure of the survey errors. A first 

approach is to estimate this structure directly from the survey microdata using the 

sample design information (called primary analysis in page 26). In this particular 

case, this approach is not possible not only because the variance estimation would 

involve complex computations on huge microdata but also because of confidentiality 

reasons that prevent getting the required information at a microdata level. Another 

alternative, modeling the error directly from the aggregate data (secondary analysis in 

page 26) was not considered because as some authors discuss there is a fundamental 

identification problem (e. g. Bell and Hillmer (1987a, page 86)). We will proceed using 

a different approach as follows here. In order to get a model as simple as possible in 

terms of the dimension of the state vector, we consider an AR(1) process for f* first. t 
The incorporation of this model will add an extra term in the state vector as explained 

in page 38 (in order to add an ARMA(p, q) model, the number of extra terms in the 

state vector is equal to max(p, q+ 1)). If the fitting is not satisfactory in terms of 

the significance of the paxameters and the diagnostic tests, we will proceed to increase 

both the size of the state vector and the number of hyper-parameters to be estimated 

in a sequential way. We will consider the sequence of models: AR(1) (an extra term 

in the state vector, one additional hyper-parameter); then MA(1) (two extra terms in 

the state vector, one hyper-paxameter), AR(2), ARMA(1,1) (two extra terms and two 

hyper-parameters), ARMA(2,1) and so on. We will stop this search once we get a good 

fitting to the data after considering different tests of misspecification such as diagnostic 

plots and traditional tests of autocorrelation, normality and heteroscedasticity for the 

standardized innovations. This search is extended not only to the most appropriate 

ARMA model for the survey errors, also for the remaining components in the struc- 

tural time series model. For instance, in a different context, Durbin and Quenneville 

(1997) considered a benchmaxking model for the Canadian retail trade sales using a 

differentiated trend, no slope, seasonal dummy variables and a seasonal SARMA(1,0) 

X (I v 
0) 12 survey error. 
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We will first consider a BSM signal plus AR(1) standardized survey errors model for 

the turnover of sawmills industries. The assumption considering an AR(1) model for 

the noise is a standard assumption followed by authors such as Blight and Scott (1973) 

and Pfeffermann (1991). It implies that the autocorrelations of the sampling error 

decay geometrically as time passes. This is also the model assumed by the software 

BENCH in Statistics Canada under the Cholette and Dagum (1994) method. The 

BS'M model was introduced for quarterly data in Equation 3.2.10 and its state space 

form was presented in page 36. Setting a BSM for the signal and also considering an 

AR(1) model for the standardized survey errors; the following model for the monthly 

turnover of sawmills in the UK was considered 

yt = 77t + tt = pt + yt + ct + kttt* 

77t It 

where each component is given by 

lit pt-, +, Ot-, + Ct; Ct - N(O, or 2) 
IYend 

A-1 + (t; N(O, 0,2) 

E6 -Yt V=1 -YVt 

Seasonality yt = -yv, t-I cos rv + -y, *,, t-l sin n, + w,, t; 

-f1*1t = --Y,, t-l sin KV + 7, v*, t-l COS KV + L, ), *, t; 

2) 
ct - N(O, a, 

(4.6.10) 

w, t -N(0, o,, ' ) 

2 N(O, uý, 

with t=1, ---, n, K,, = 27rv/12 = v7r/6, v=1, ---6 and standardized survey errors 

f* given by Xt - N(O, 1_ 02) 
t 

tt* = Ott*-, + xt; 

The signal i7t is modeled as a structural time series model decomposed in the trend 

pt, the seasonal component ^ft and the irregular white noise component ct. The pro- 

cesses & and Ct correspond to uncorrelated white-noise terms with variances 2 and or 2 

respectively. Also the disturbances wt and w, *t are white noise uncorrelated processes 

with mean zero and common variance a, ',. As part of the modeling, the variances of 

the disturbances ' a' and a2 need to be estimated and then they will constitute ai, CW 
the hyperparameters of the signal. Then, they will be estimated using their maximum 
likelihood estimators. A positive variance for a component implies a stochastic process, 

whereas a zero variance implies deterministic behavior. In particular, the trend com- 
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ponent corresponds to a local linear trend model (see page 32) with the trend shifted 
by 2 and its first difference shifted by 2 In the special case when 'at = 0, the trend ai 01Z - 
corresponds to a simple random walk. Regarding the seasonal component, this corre- 

sponds to the sum of six trigonometric terms associated with a fundamental frequency. 

Because we are considering monthly data, the fundamental frequency corresponds to 

" period of twelve months and its five harmonics (the first harmonic is associated with 

" period of six months and the second one to three months). It is assumed here that 

each trigonometric term has the same variance q, 2, Finally, the irregular term in the 

signal is a residual not explained by the structural time series components. In order to 

estimate the hyperparameters and obtain estimates of the unknown signal we now cast 

the components of the signal plus noise model into state space form. The state vector 
has a dimension equal to 15 (one component for the trend, one for the slope, eleven 

components for the seasonal term, one irregular and one for the AR(1) standardized 

survey error), and it is represented by 

Clt [Pti, 8WYlti 
20 345 -fit v 72t i 73t i 7it 1 

*1 72* * 114t i 74t ) 75t , oYýt i 76t i 6t i 
it (4.6.11) 

with all the fourteen first components considered as non-stationary processes. The 

model in Equation 4.6.10 can be cast into a state space form using the matrices and 

vectors in Equations 3.3.5 - 3.3.12 for monthly data. 

The hyper-parameters corresponding to the variances of the white noise disturbances 

in the signal and the coefficient in the AR(1) noise model are estimated by maximum 
likelihood (see section 3.4.2). The maximum likelihood (ML) estimation of the hyper- 

parameters was implemented by use of the nlminb routine available in R and S+ 

using a quasi-Newton approach. In order to reduce the possibility of obtaining sub- 

optimal local maxima after the numerical optimization procedure, different sets of 

starting values in a grid of positive values for the variances and the range [-1,1] for 

the autoregressive term was used. Because the problem is constrained to positive 

variances and autoregressive terms in a specific range, different transformations were 
tested to convert the constrained problem into one of unconstrained maximization 
(see Durbin and Koopman (2001), pages 143-144). After transformation, the standard 

error of the estimates were obtained from the associated information matrix by using 
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the delta method (Oehlert, 1992). Considering the model in Equation 4.6.10 and after 

an extensive search on a grid of about 3000 different sets of initial values for the five 

hyperparameters; the corresponding estimated values (standard errors in brackets) 

under this initial model were 0.788(0.086), -2 403 01908 (2.785), 3-'= 3580.29101 

(9336.656), &, 2= 127037.06409 (57885.94), 6r2 20.08723 (468.6856). The estimated 

variance of the disturbance in the AR(I) model was equal to &2= 1_ 2= 0.38 (see 

Appendix B2). The hyperpararneters were estimated by maximum likelihood using 

the SsfPack algorithms implemented in the S-Plus module S+Finmetrics version 2.0 

and the function nlminb (Zivot, Wang and Koopman (2004)). The log-likelihood using 

this model was -639.7366. The innovations (one-step-ahead prediction errors) and 

their variances, appearing in the likelihood, were calculated by use of the Kalman 

filter, initiated by a diffuse prior for the first 14 elements (non-stationary components) 

in the initial state vector cio. 
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Figure 4.6. Diagnostic Plots of the Innovations. Initial Model. 

Figure 4.6 shows some diagnostic plots for the innovations. The upper left time series 
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4.6. BENCHNIARKING NIPI TO ABI 

plot of the standardized innovations does riot show any trace of outliers; the quantile 

comparison plot shows all the observed points being within the bootstrapped pointwise 

99% confidence envelope around the normal line (Fox, 2002, page 29) but with long tails 

at the beginning and at the end of the curve of quantiles; the lower left autocorrelation 

plot show significant autocorrelations at lags 9 and 13 outside the 99% confidence 

interval (Iiinits are calculated as ±2.57/vl-5--7 - 0.34). The last plot in tile right lower 

corner corresponds to a CUSUM plot (see section 3.4.4) showing no stability problems 

with this inodel. However, there is a definite downward movement after the observation 

in JulY 2000 (the saine observation which appeared to be an outlier in Figure 4.2). 

Final Model 

Different alternative models were tested before we chose a final inodel according to 

its goodness of fit. Different ARMA models for tile standardized survey error and 

different initial values prior the ML estimation were tested. In order to reduce tile 

diniciision of tile state vector and the number of non-stationary components, it was also 

considered dropping some of the higher order frequencies in the seasonal component. 

Harvey (1989, page 42) justifies the approach arguing that seasonal patterns should 

change smoothly over the year. Also, some authors such as Abraham and Box (1978) 

and Anderson (1971) give examples of structural time series models using only the 

first frequency (twelve months) or the first two frequencies (twelve and six inonths) 

respectively. 

After testing different models in order to achieve good fit in terms of innovations, 

auxiliary residuals and Monte Carlo experiments; the final model for signal extraction 

of the series of MPI turnover in the sawmills industry is as follows: 

Structural Model yt = pt + -yt + Et + Awt + ktC* t ,n t 
fit, et. 

/I I= lit -1+A -I + ýt ; ýt - N(O, a 2) 
Trend: 

31 = 3t- I+ (t; - N(O, 0,2) 
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t 
ý-6 -ýVt 

2) 
-,,,. t-lcosKv+lyl*, t-lslnNv+ýovt; wvt - N(O, aw (4.6.12) 

Y* 0,2) N (0, sin Kp + COS Kv + W* *t 
V, t-l vt; WV 

Survev Error t; + xt-7 
2) 

Xt - N(O, ax 

The extra term Au-, in the signal accounts for the intervention effect due to the outlier 
detected in Figure 4.2 with wt being a pulse variable of the forin 

ICt 
0, t 31 (July 2000) 

(4.6.13) 
1. t 31 (July 2000) 

Harvey ý1969. page 399) considers the state space form and the estimation under this 

inodel -with intervention. The inodel depends oil five hyper-paraineters corresponding 
2222 to the variances o,,, or,, or_, and aE of the disturbances associated with the trend, slope., 

seasonal and irregular terins respectively, and the AR(I) coefficient 01 in the stall- 

dardized survey error iriodel. Considering the model in Equation 4.6.12. and after ail 

extensive search on a grid of about 3000 different sets of initial values for the five hy- 

perparanieters: the corresponding estimated values (standard errors in brackets) under 

this final model were o=0.738(0.079), 6,2 = 36315-503 (543615.5), &2= 1.00 ( 14.833)1 

6,2. = 92026.466 (53880-03), 6,2 = 36315.503 (880569.20). The estimated variance of the 

disturbance in the AR(l) model was equal to &2 = 1_ 2= 
x 

0.455 (see Appendix 132). The 

hyperparameters Nvere estunated by maximum likelihood using the SsfPack algorithnis 

implemented in the S-Plus module S+Fininetrics version 2.0 and the function iilininb 

(Zix-()t et al. (200-1)). Tile log-likelihood using this model was -637.0514. 

We are aware that these variance estimators are highly insignificant. Pfefferinann, 

Feder and Signorelli (1998. pages 344-345) discuss how under series of short length (72 

data points in this case. of which 15 were used for initialization of the Kalman filter) 

the asymptotic standard errors obtained froin the inverse of the inforination (Hessian) 

matrix overestiniate the true variances even though the point estimators could perforin 

satisfactorily in terins of unbiasedness. Through simulations, they shown that the 

estimates of the hyperparanieters becorne significant only with series of about 500 

observations. A simulation study was conducted here in order to check the stability 
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of the maximum likelihood estimates under the particular set of initial values being 

chosen. Different series (300 in total) with the saine length (72 observations) and under 

the final model in Equation 4.6.12. were simulated and a set of inaxilnurn likelillood 

estimates were obtained for the four hyper- parameters in every simulated series in order 

to check the stability and the adequacy of the initial values before the optimization. 
The maximum likelihood estimates using the series of the sawmills industry and the 

mean. median. and standard error (se) of the maximum likelihood estimates ill the 
300 simulated series appear in Table 4.2. The results show good approximation to 

the estimates obtained with the original series of study as they fall in the respective 

confidence intervals of the simulated values. 

Statistic (ý2 (ý2 ý12 

MLE Estimates 36315.503 1.000 22026.466 36315.503 0.1-38 

NILE se 540627.5 1-1.833 53880.03 880569.20 0.079 

Simulated NILE Mean 45686.604 11-567 -16394.223 637304.46 0.690 

, Simulated 
-NILE 

Median 
i 

38520.984 10.602 10564.000 523886.720 0.1-39 

Simulated NILE se 1 
35 7155 4.500 8.479 31786.260 518792.800 0.102 

Table 4.2. Original NILE estimates, standard erors (se) and summary of statistics 

of simulated NILE estimates in 300 series under the final model. 

1-1 iý ýi (ýsul t, shows t lie presence of a very small -,, -alue for the variance of the slope. Given 

the magnitude of the standard errors for the estimates of the hyperparaineters, we used 

the likelihood ratio test (LRT) to evaluate the adequacy of nested models. We tried 
to estimate a simpler model fixing the variance of the slope to zero and then we used 

the LRT test to compare between the two models, one with a random and the other 

one with a fixed slope. respect ively. The LRT is a statistical test of the goodness of fit 

between tx-. -o models used to compare a more complex inodel to a simpler nested one. in 

ordei to see if the more extensive model is required (see Mood, Graybill and Boes (1974. 

sectii)n -5.1 1 and Harvey (1989. section 5.1.1)). The LRT statistic approximately follows 

it chi square distribution with degrees of freedoin equal to the number of additional 

parameters in the more complex model. Using this inforination and because the p-value 
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of the test Nvas not close to zero in this particular case; we decided to use a fixed slope 

in the structural component for the trend. Further LRT checks sequentially fixing the 

other hyperparameters in the model to zero showed significant differences and hence, 

the other components were kept as random components. 

Table 4.3 (at the end of this chapter) summarizes the main results for the models in 

Equations 4.6.10 and 4.6.2., the latter with a fixed slope. -Maximum likelihood estimates 

and their respective standard errors, test statistics of autocorrelation (Ljung-Box and 

Box-Pierce): normality (Shapiro-NNI-ilks and Jarque-Bera) and heteroscedasticity with 

their respective p--, ulues are included in this table. The results for the last column 

correspond to the model after fixing the variance to the slope component to zero. 

-'0 

10 01- .1 S- 

Cýum f ý. " 

'0 00 30 00 0 60 

Figure 4.7. Diagnostic Plots of the Innovations. Final Model. 

testin,, perfornied on the innovations (one-step-ahead predictions) gener- 1ý 
ated from the Kalman filter under both models should lead to conclude that they 

are approximately nornial distributed white noise variables. Examination of the test 
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results gives no reason to question the adequacy of the final model whereas they in- 

dicate the presence of serial correlation, non-normality and heteroscedasticity in the 

innovations for the initial model in page 92. Test procedures based on plots of the 

innovations in Figure 4.7 show no trace of outliers and constant level in the time se- 

ries plot; all points within the bootstrapped pointwise 99% confidence envelope in the 

quantile comparison plot without the long tails at the beginning and at the end of 

the plot; the autocorrelation plot does not show significant autocorrelations and the 

CUSUNI plot does not show any stability problems with this model. ' 

Figure 4.8 shows the smoothed estimates for each of the components of the state vector. 
The first graph shows the filtered estimates of the trend component (series in blue) 

plotted against the original values of turnover in this industrial sector. The trend 

estimates look as an approximate constant trend in the middle of the series of interest 
(series in black). The remaining plots correspond to the estimated seasonal effects (, y 
coefficients) (six in total), then , one component for the irregular term and finally the 
AR(1) standardized survey errors. The sum of these nine processes coincides exactly 
with the values in the original monthly series as the sampling error was included in 

the state vector and there is no disturbance in the observation equation. 

Finally, in order to test the goodness of fit of the model, we consider the final model for 
3000 simulated series under the same model. Then, for each time point, we calculate 
the a% and the (1 - a)% percentile and we overplot the series of turnover with the 

series of percentiles. The model was considered to give a good fit in the model if the 

original series under consideration is approximately between the 5th (lst) and the 95th 
(99th) percentile of the simulated values. Figure 4.9 shows good fitting of the model 
with few points outside the 95% confidence interval, most of them corresponding to 
the lower values in December each year (due to the high seasonality of the series). 
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Figure 4.8. Smoothed Structural Values. Final Model. 

4.6.3 Benchmarked Estimators 

After obtaining the values of the smoothed monthly series with the final model, the 

annual information is used now to benchmark the information. In the second step, 

monthly benclimarked values will be obtained after incorporating the information con- 

tained in the annual total estimates from ABI. There are two possible alternatives to 

obtain the benclimarked values: Binding estimation will refer to the situation when the 

sums of the monthly series per year equal the annual benchmarks exactly and the non- 
binding case is when the estimation takes account for the annual sampling errors. In 

both cases, the corresponding reductions in the standard errors and coefficients of vari- 

ation from theMPI monthly estimates are shown. Figure 4.10 shows the benchmarked 
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I 

Figure 4.9. Simulation of 3000 Series Under the Final Model. Series in Both 

Extremes are 95 and 99% Confidence Limits. 

values by the annual totals for the final model for the data of Turnover in the industrial 

subsector of wood manufacturing (sawing and milling) in Equation 4.6.2 considering 

both binding and non-binding estimation. It should be noticed that, for example, the 

annual estimate for the last vear in the series was 1120000 whereas the sum of the 

original monthly estimates for this specific year is 1164650. The idea of benchinarking 

is to make these two totals more consistent. Then with binding totals, the sum of the 

benchmarked estimates is exactly 1120000 and with non binding totals it is 1071779 

tinder the final model. However, in the non binding case and depending on a good 

specification of the model, it is expected to obtain a better set of monthly estimators 

with the corresponding monthly CV's being lower after benchmarking according to the 

results obtained in section 3.6. 

Figure 4.11 shows a comparison between the original standard errors with those ob- 

tained after benchmarking using the final model in Equation 4.6.2. Series in black 

shows the standard errors kt of the original monthly series, the dotted blue series 

shows the standard errors for the binding estimates (ýB; Equation 3.6.3) being even 

bh-vr than the standard errors of the smoothed estimates (ýO; page 53) ill the first ntý 

103 

0 10 20 30 40 50 60 70 



4.6. BENCHMARKING NIPI TO ABI 

Benchmarked Estimates 

I 

Figure 4.10. Binding and Non-binding Estimates. Final Model 

step. 1)1()tte(I in red. Both smoothed and non-binding estimates (Equation 3.6.1., plot- 

ted in green) look very close. The same conclusions are obtained after examination of 

the estimated coefficients of variation (CVs) for the original series and the alternative 

estimators under consideration. In conclusion, there is a good reduction in the vari- 

ability of the estimates after benchmarking, the reduction being bigger by the use of 

non-binding estimators. It is also noticed that the standard errors and CVs for bind- 

ing estimators could be bigger than those from the smoothed values in the first step, 

confirming the results obtained in the last chapter. The fact that the variability of the 

binding estimators is bigger than the variability of the smoothed values indicates that 

a second step would not be necessary in order to improve the estimation. Table 4.4 

sho, ws a comparison of the corresponding standard errors for each estimator in the last 

six months in the series. 
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Comparisons on St. Errors 
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Figure 4.11. Comparison of Standard Errors. Final Model. 

4.7 Conclusions and Further Issues 

After reviewing the literature on business surveys and studying the part icularities of 

this kind of surveys in the UK, some key points must be highlighted: the sampling 

frame is the same for all business surveys (IDBR) with the statistical units (enterprises) 

being classified according to the SIC92 code; the sampling design is also basically the 

same for all business surveys (a stratified srs sampling) with slight differences in the 

stratification and the rotation schemes. In particular, ABI and MPI use both stratified 

random sampling surveys according to different employment sizebands. Because of the 

use of the matched pairs estimator for measuring change between two periods, it is 

necessary to benchmark the levels according to results of Kokic and Jones (1998). 

One important characteristic was not mentioned here: the estimates that are pub- 

lished in business surveys are normally seasonally adjusted. One important question 

is: when should the benchmarking be applied, before the seasonal adjustment or af- 

terwards'? Gubman and Burck (2005, section 7) state that "the Denton proportional 
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method seems to be the preferable one among the binding benchmarking methods from 

the seasonal pattern preservation point of view", when comparing the benchmarking 

methods of Denton (1971) and Cholette and Dagurn (1994) with a special emphasis 

on seasonal adjustment and quality issues. 

The use of surveys with rotating sampling designs could produce different expected 

values for estimators of the same characteristics from different rotation groups. The 

phenomenon has been called rotation group bias (Bailar, 1975). Possible reasons for 

this bias are chang6s in the survey methodologies from time to time and also non- 

sampling errors (e. g. missclassification and non-response). Some authors such as 
Pfeffermarm et al. (1998) and Pitta and Silva (2004) have studied the use of state 

space models to estimate this bias. However due to the fact that the survey rotation 

schemes for ABI and NIPI are different according to the strata in each survey and 

the stratification is different comparing the two surveys; the rotation scheme was not 

considered into the final state space model. Another aspect to take into consideration 
is what information is completely available from the repeated surveys being analysed. 
For instance, in some cases, - not all the standard error information is available and there 

is a high rate of missing values and outliers. Also, some data and/or their standard 

errors may not be available at lower levels of disaggregation. The outlier problem causes 
instability in the standard errors making necessary to include heteroscedasticity factors 

and intervention terms in the benchmarking model. 

All the examples in the last sections were considered under the application of the two 

step benchmarking method. The final model which has been proposed in the applica- 
tion was obtained in an empirical way, trying different modifications to standard, well 
known models and by checking the assumptions over the innovations, standardised 

smoothing residuals, statistics of goodness of fit, MLE estimates of the hyperparame- 

ters and the reduction in the standaxd errors and coefficients of variation in comparison 
to the original survey estimates. It is not easy to postulate a model for the trend and 

seasonality, particularly since the ideal situation is to have a short state vector as pos- 

sible. One possibility to reduce the dimensionality of the state vector is to exclude the 

observation errors from the state equation, which will produce autocorrelated errors 
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in the observation equation. Pfeffermann and Tiller (2005) proposed a modification 

to the Kalman filter, which can deal with this problem. The GLS filter proposed by 

them could be used in order to compaxe the two approaches but this approach was not 

considered here. 

Most of the series in Business Surveys behave multiplicatively instead of additively. It 

would be necessary to formulate adequate models to deal with this case. The common 

practice using logarithms is not possible in these situations because although yt = 77t - tt, 

the benchmarking relations x= L77 + et are still linear and expressed in terms of 

the values i7t and not in terms of log(77t). Durbin and Quenneville (1997) proposed 

some alternatives using what they called posterior mode estimates (Farmeir (1992) and 
Durbin and Cordero (1993)). Multiplicative models are out of the scope of this thesis 

but they can be considered as an area of further work, specially in the multivariate 

extension of the next chapter. 

This chapter has also proposed to model the monthly ARMA survey errors in an 

empirical way trying different models and checking both the assumptions and some 

empirical results through Monte Caxlo experiments. The initial values are an important 

decision before the maximum likelihood estimation. When there is no knowledge about 

the initial values of the paxameters, it is recommended to perform an extensive search 

considering restrictions on the paxameters such as positive variances and conditions 

of stationarity and invertibility in the ARMA parameters. In this application, some 

transformations were done in order to get the maximum likelihood estimates and the 

delta method was used in order to get the standard errors of the estimates. 

Additionally, in order to reduce the dimensionality of the state vector, some alternatives 
to the seasonal component were considered. Harvey (1989, page 42) states that be- 

cause seasonal patterns change relatively smoothly over the year, it may be sometimes 

reasonable to drop some of the higher-order frequencies in the trigonometric form of 
the seasonality. The first frequency, which corresponds to a period of twelve months is 
knoum as the fundamental frequency while the remaining are harmonics. Since we axe 
benchmarking monthly data, the seasonal term is equal to the sum of the fundamen- 
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tal frequency plus five harmonics. Different models were considered by using different 

number of harmonics. In short, different initializations, different starting values for the 

NIL estimation, different number of frequencies in the seasonal component and differ- 

ent ARMA models for the standardized survey errors were considered before getting 

a final model. Týaditional diagnostics in the innovations and the auxiliary residuals 

were considered to evaJuate the fitting and also some Monte Carlo experiments. 
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Initial Model 

Equation 4.6.10 

Final Model 

Equation 4.6.2 

I. Maximum Likelihood Estimation 

Log-Likelihood -639.737 -637.051 
AR(1) Coefficient(o) 0.788 0.738 

Standard Error (0.086***) (0.081 ** *) 

Trend Variance(&, 2) 403.019 36315.503 

Standard Error (2.785) (543615.5) 

Slope Variance(6, C2) 3580.291 (Fixed) 

Standard Error (9336.656) (Fixed) 

Seasonal Variance(&, 2, ) 127037.1 22026.466 

Standard Error (57885.94) (51650.31) 

Irregular Variance (6r2) 20.087 36315.503 

Standard Error (468.686) (44282.56) 

H. Diagnostic Tests 

Ljung-Box Statistic 52.502 20.2992 

p-Value (HO: No autocorrelation) (0.016**) (0.2592) 

Box-Pierce Statistic 42.873 24.. 4308 

p-Value (HO: No autocorrelation) (0.002***) (0.1082) 

Shapiro-Wilks Statistic 0.947 0.9670 

p- Value (Ho: Normality) (0.04 9 (0.1155) 

Jarque-Bera Statistic 3.571 2.6447 

p- Value (HO: Normality) (0.205) (0.2665) 

Heteroscedasticity Test 0.683 0.4996 

p- I'alue (HO: Homoscedasticity) (0.04 *) (0.1056) 

Table 4.3. Summary of maximum likelihood estimates and diagnostic tests - Initial 

and Final Model 
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Statistic Jan Feb Mar Apr May Juýný 

Original '. %IPI series 10826.72 13570.44 10472.30 11309-91 12681.12 11975.08 

Binding estimates 6289.458 6414.147 6530.867 6629.079 6799.957 7014.555 

Smoothed est. (step 1) 549 . 261 5580.918 5662.305 5730.294 5847.532 5992.906 

Non-bind. estimates 5465.060 5551.342 5631.413 5698.274 5813.503 5956.269 

Statistic Jul Aug Sep Oct Nov Dec 

Original 'MPI series 12432.81 10844.88 9092.28 12989.12 9039.86 8454.807 

Binding estimates 7198.613 7394.963 7589.441 7767.592 8025-776 8325.419 

Smoothed est. (step 1) . 981 6245.678 6372.553 6487.426 6651.676 6839.101 

Non-bind. estimates 6077.036 6204.196 6328.486 6440.927 6601.546 6784.600 

Table 4.4. Standard Errors of Estimators for the Months Corresponding to the 

Last Year (2003) Using the Final Model. 
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Chapter 5 

Benchmarking and 
Contemporaneous Disaggregation 

In the previous chapters, we were interested in how to adjust for discrepancies between 

a high frequency series and aggregated low frequency series (benchmarking problem). 
Another common problem in the analysis of business surveys, and related to bench- 

marking, is how to prepaxe tabular data classified by attributes (e. g in a contingency 

table urith attributes as columns and points in time as rows) when auxiliary informa- 

tion for the variable of study is available not only with annual frequency but also in 

aggregates such as the whole industrial sector. 

Aggregated data corresponds to information obtained during the data collection pro- 

cess which is not accessible at smaller levels (including the micro-level). For instance, 

National Accounts are usually aggregated both in-time (say annually) and contem- 

poraneously (say by economic sector or geographical region). In practice, however, 

prediction and economical planning is often required at sub-annual frequency and 

also disaggregated at sub-sectorial or sub-regional levels. In particular, carrying out 

econometric analysis with temporally aggregated data is far from optimal (Zellner and 
Mornmarquette, 1976; Guerrero and Nieto, 1999). On the other hand, as aggregated 
data normally come from administrative or larger sources, they are particularly useful 

as auxiliary information to improve estimation at disaggregated levels. 
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5.1. PRELIMINARIES 

Quenneville and Rancourt (2005), Fortier and Quenneville (2006) and Quenneville, 

Fortier, Chen and Latendresse (2006) discuss how many surveys publish seasonally 

adjusted (SA) series (following seasonal adjustment by specialized software as X11 

or X12-ARINIA) that must fulfill various aggregation constraints. In particular, the 

Monthly Retail Trade Survey (MRTS) in Statistics Canada publishes SA series by in- 

dustry and region. The SA national total is obtained as the sum of the 19 industries; 

however, this total is not necessarily equal to the sum of the 13 regions. Quenneville 

and Rancourt (2005, page 1) state that: 

""An alternative ( .. 
) is to present the monthly discrepancies openly; however, showing 

explicit discrepancies usually causes confusion among users and criticism or embarras- 

ment to the publishers". 

Two particular problems will be considered in this chapter: firstly, when the aggregates 
(marginal totals) do not correspond with the sum of the disaggregated values because, 

for example, aggregate and disaggregate values were estimated from different surveys 
(Dagurn and Cholette, 2006, chapter 12) and secondly, when data is available in an 

aggregate form only (i. e. only the marginal totals by rows and columns are available) 

and it is desirable to estimate the disaggregated high-frequency data (Dagum and 
Cholette, 2006, chapter 13). These two situations are explained with more detail in 

Table 5.1. Being the most common case, we will assume for this chapter that the 

low-frequency series is observed annually. 

5.1 Preliminaries 

The general structure of the disaggregation problem is presented in Table 5.1. This 

table provides a general overview of the final table of parameters to be estimated as 

presented in Di Fonzo and Marini (2005) with slight changes in notation. In this 

general form, every cell is an unknown parameter to be estimated. Later on, we will 

refer to two particular cases of this table. 
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Letting i=1, ---, m be an index denoting year and j=1, ---, P an index denoting 

subsector; we wish to estimate i7j, --- 71j, ---, i7p, P unknown column vectors each 

of dimension n satisfying both contemporaneous row totals and temporal aggregation 

constraints every year. Using the same notation as in the chapters before, n will denote 

the length of the high frequency series (i. e. total number of quarters or months); K 

denotes the number of high-frequency periods per year (i. e. K=4 if quarters, K= 12 

if months) and m will denote the number of years (m = [n]K, with [X1b denoting the 

integer part of x1b). In the case of monthly data, the problem can be considered as 

m+1 temporal contingency tables with the first m tables having dimension 12 xP 

and their corresponding row and column totals. Throughout this chapter, we will refer 
to the P columns as subsectors adding to the total sector (last column in Table 5.1). 

In the UK, for example, a Standard Industrial Classification (SIC) was first intro- 

duced in 1948 in order to classify business, establishments and other statistical units 

according to their type of economic activity. For instance, considering the sector 15.3 

" "Processing of Ruits and Vegetables", this sector is subdivided into three subsectors: 

* 15.31 Processing and Preserving of Potatoes 

e 15.32 Manufacture of Fruit and Vegetable Juice and 

* 15.33 Processing and Preserving of Ruits and Vegetables 

The sector 15.3 is itself a subsector of the more general sector 15 (Manufacture of Food 

Products and Beverages), with subsectors 15.1 to 15.9. An example of a problem, re- 
lated to the one studied in this chapter, would be how to use monthly information 

collected from the complete sector 15 to obtain monthly disaggregated estimates for 

its P=9 subsectors. After obtaining new or more accurate estimates for the subsec- 
tors, the new estimates for the subsector 15.3 could be disaggregated into its P=3 

subsectors and so on. Suppose the information about businesses in sector 15 is col- 
lected through a monthly survey, so that K=12. If, for example, information for n=70 

months is available, there axe m=[70]12= 5 complete years. The total sector at time t 
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Subsectors 

Year Period T) I ... 17i ... 17P Total i?. 

7711 ... 771j ... 771P 771. 

2 7121 ... 772i ... 772P Th. 

K 7IK1 ... 7IKj ... 77KP 77K. 

Total i7(j) 77.1(1) ... 77J(1) ... 77. p(j) 77-41) 

K(i-l)+l 77K(i-l)+1,1 77K(i-l)+lj 77K(i-l)+l, P 77K(i-l)+l. 

K(i-l)+2 77K(i-l)+2,1 77K(i-l)+2, j 77K(i-l)+2, P 77K(i-l)+2. 

t 77ti 77tj 77tp 77t. 

Ki 7? Ki, l ... 77Ki, j ... 77Ki, P 77Ki. 

Total i7(j) 77.1(i) ... 71. j(i) ... 77. P(i) T1.40 

K(m-l)+l 77K(m-l)+I, l 7]K(m-l)+Ij 77K(m-l)+l, P 77K(m-l)+I. 

K(m-l)+2 77K(m-l)+2,1 77K(m-l)+2, j 77K(m-l)+2, P 77K(m-l)+2. 

m 

Km 77Km, l ... 77Kmj ... 77Km, P Um. 

Total Y7(m) 77.1(m) ... 71. j(m) ... 77. P(M) 77.. (M) 

Km+1 77Km+l, l ... 7IKm+lj ... ? lKm+l, P 77Km+l. 

Km+2 7? Km+2,1 ... 77Km+2, j ... 77Km+2, P 77Km+2. 

(m + 

n 77ni ... 17nj ... NP 77n. 

Table 5.1. Parameters to be Estimated under Multiple Disaggregation 
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9 
is represented as Tit. being equal to 71t. L 77tj and these values correspond to the last 

j=1 
column in table 5.1. In this case, t=1, .. -, 70. 

The auxiliary information to be combined with the monthly data will consist of an 

annual survey (considered as the sum of the monthly values and containing estimates 
for all the subsectors) and also monthly estimates for the sector total. Normally large 

sample surveys are conducted annually, instead of a higher time frequency, because of 

their high costs in the collection of the information. Then, annual surveys will permit 

better sector disaggregation than monthly surveys as they can be prepared with more 

anticipation and they are more precise. However, business and economic data are often 

required in a disaggregated and subannual form and their estimation is the purpose of 

this chapter. 

The problem is displayed in Table 5.1 with the subsector annual totals (subtotals by 

columns) represented by q. j(i) where j corresponds to the index of the subsector and i 

the index of the yeax of observation; i=1, ---, m and j=1, ---, P. Throughout all 

this chapter, we will assume rows are months and columns are subsectors although, of 

course, the problem can be extended into many other applications. 

Using the notation in Table 5.1, in the next paragraphs we will consider the following 

vectors: 

9 71j, j=1, ---, P axe the nx1 vectors consisting of the disaggregated signal, 

i7j = [771j, --- In table 5.1, these vectors correspond to the columns 
(without the stacked total values each year); 

* 77. (n x 1) is the vector of contemporaneously aggregated signals, ti. = 

[ill 77,,. ]' (total sector by month). In table 5.1, this vector correspond 

to the last column (without the stacked total values each year); 

r)(j), i=1, ---, mwill denote the 1xP vectors of annual aggregated data in a 
given year i (stacked vectors in Table 5.1), i7(j) = [77.1(i), - .. 77. j(i), --- 77. p(j)]; 

0 qj(. ); 1, --- P; are mxl vectors of annually aggregated data (or 

115 



5.1. PRELIMINATUES 

another period of reference) by columns, ? 7j(. ) [77-j(i), *** 77-j(i), *** 77-j(m)] I 

Then, the following accounting constraints must hold in order to impose additivity to 

the rows and columns in table 5.1: 
p 

E 17i = IT (5.1.1 a) 
j=l 

L't7j = 1, P (5.1.1 b) 

where L is the nxm aggregation matrix converting high-frequency to low frequency 

data in Equation 2.2.3. Each element of %(. ) can be considered as a non overlapping 

linear combination of i7j, with coefficients given by the Kx1 vector 1, K being the 

temporal aggregation order. Thus, in general, the matrix L' is equal to L' = [I,, oll : 01, 

where 0 is anull mx (n-Km)P matrix added in the matrix L'to consider observations 

without an available benchmark in the horizon (ex-ante estimation) and the symbol 0 

represents the Kronecker product between matrices. 

Two particular problems will be addressed in the next chapters: 

Case 1. Reconciliation Problem. We consider the case where in addition to the annually 
and sectorial aggregated information, p preliminary vectors of survey estimates of the 

vectors i7j are available, j=1, ---, P. Representing these vectors as yj of dimension 
P 

n; the problem now is that 2_'yj 0 q. and yj does not comply with 71(i). Then, it 
j=I 

is necessary to adjust these survey estimates in order to arrive at useful, consistent 

and publishable values that fulfill the constraints by rows and columns. Dagum and 
Cholette (2006, chapter 12) also name this case as one-way classified systems. The 

reconciliation problem is applied in the National Accounts context under the name of 
balancing and also, in a different context, is used for small area estimates which are 

not consistentwith values obtained from corresponding larger areas (Pfeffermarm and 
Bleuer, 1993; Rao, 2003). 

Case 2. Contemporaneous and Temporal Disaggregation. We consider the case where 
the only available information are the vectors of marginal totals 77. and 17(j). In the 

example before, if only the annual totals and the total for the whole sector are available, 
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then the high frequency information inside the tables is missing and it is necessary to 

obtain estimates of the elements of the vectors t7j, i=1, ---, P using the stochastic 

properties of these series. Another case, related with the last one is when the available 

information consists of only the survey estimates of 71. and 71(i) and possibly also, 

measures of precision such as their estimated standard errors or coefficients of variation. 

The aim is how to combine monthly and annual information to get estimates of the 

missing values and more precise annual and sector totals. The situation is similar to the 

problem presented in Dagum and Cholette (2006, chapter 13) where they considered 

information from the Canadian Retail and Wholesale Trade Series which are classified 

by Province and Trade Group and where only the marginal totals are sufficiently 

reliable for publication. They called this two-way classified system as marginal two- 

way systems. The difference with the approach in this chapter is that one of the 

attributes of classification is time (by rows) in order to use the stochastic properties 

of the series of study. If there is more than one attribute to classify the series, all the 

possible combinations between the categories in different attributes could be included 

as columns. 

The two problems presented above have been considered in the literature. Specifi- 

cally for the first problem; Almon (1988) proposes an univariate polynomial method to 

convert annual series to quarterly figures by interpolation. Zaier and Trabelsi (2007) 

proposed a procedure which extends the polynomial method to the multivariate case 

when only the marginal totals are known. However, this procedure does not provide 

estimates for the subperiods in the first year of observation and also not standard 
deviations of the estimators. Dagurn and Cholette (2006, section 13.2.3) propose a 

general analytical solution of the marginal two-way reconciliation model using gen- 

eralised linear models. However, both procedures (Zaier and Trabelsi, 2007; Dagum 

and Cholette, 2006) do not take into account the stochastic properties of the series of 

study and they fail to define an online procedure. That means, they do not produce 

estimates for the months in a year if there is not a benchmark yet available. 
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On the other hand, the reconciliation case could be considered as a special case of 

balancing contingency tables, with time as one of the attributes. This problem has been 

widely studied in the literature; Deming and Stephan (1940) proposed the Iterative 

Proportional Fitting approach, also known as " "raking". However, the use of this 

method could affect the original movements of the series (Dagurn and Cholette, 2006, 

page 266). Regarding the reconciliation case, Di Fonzo and Marini (2003) present a 

multivariate extension of Denton's benchmarking procedure, according to which the 

temporal dynamics of the reconciled series should be as close as possible toý those of 

the preliminary figures. This method does not account for survey errors. Also the 

dimensions of the matrices involved in the calculations can be considerable in practical 

situations, possibly giving rise to computational burden. Guerrero and Nieto (1999) 

developed a benchmarking method which exploits the autoregressive features of the 

preliminary series to determine the unobserved values of multiple time series whose 

temporal and contemporaneous aggregates are known. This method however, does 

not account for survey errors. Guerrero (2005) proposes a discrepancy measure to 

validate empirically the "compatibility" between the benchmarked estimates and the 

preliminary information. 

In another context, Quenneville, Huot, Cholette, Chiu and Di Fonzo (2003), Quen- 

neville and Rancourt (2005), Fortier and Quenneville (2006) and Quenneville et al. 
(2006) studied the problem of reconciling series after the application of seasonal ad- 
justment procedures. The objective is to reconcile these series in order to satisfy some 

aggregation constraints, making sure that the annual totals constraints after seasonal 

adjustment remain satisfied. They use special regression models to perform the nu- 

merical computations for prorating. However, the consistency with the annual totals 

from the raw series is achieved at the expense of the quality of the seasonal adjust- 

ment. For series with significant calendar-related effects of moving seasonality effects, 

the annual totals of a seasonally adjusted series should differ from the unadjusted se- 

ries. All the methods above fail to be online procedures, which is the requirement to 

produce benchmaxked values even when, in the horizon, there is no a benchmark yet 

available. In the next sections, a benchmarking method is proposed for the two situa- 
tions (contemporaneous disaggregation with missing values and reconciliation), which 
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is an online procedure and takes into consideration the survey errors and the stochastic 

structure of the series of study. A simulation has been carried out to illustrate the two 

procedures and evaluate the standard errors of the estimates produced by them. 

The methods proposed in the next chapters require modelling the available information 

by state space structural time series models. We give solutions both for the case when 
there is no preliminary information and the high frequency values are missing for 

the subsectors, and also for the reconciliation case. In the first case, when it is not 

possible to get any preliminary information, the marginal totals (vectors T). and 17(i)) 

are arranged into a special single series and then, Kalman filtering and smoothing is 

applied. In the second case, when there is some preliminary information , Kalman 

filtering and smoothing is applied in a multivariate state space models context. 

5.2 Benchmarking and Contemporaneous Disaggre- 

gation 

5.2.1 Preliminaries and Proposed Method 

A solution for the second multivariate problem in Chapter 1 is presented here. This 
has been called Contemporaneous and Temporal Disaggregation and corresponds to 
the case when the vector q. = [711., - .. 77,,. ]' (last column in Table 5.1 and the M 
stacked vectors 71(j) (i = 1, ---, m) are all the available information. In many cases, this 
information is not even obtainable at the population level and the only available data 

are survey estimates of these vectors. We shall assume that the vector z, of dimension 

n, contains the estimates of the monthly sector totals; and the vectors x(j), of dimension 
P, contain the estimates of the annual subsector totals, x(j) = [xi(i), ---, xp(j)]. 

The initial configuration is similar to the structure presented in Table 5.1, but replacing 
the values i7tj (t = 1, ---, n; i=1, ---, P) in the inner cells by missing values (NA= 
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Year Period 

Subsectors 

171 ... 1)j --- 17p Z 

1 NA ... NA ... NA ZK(i-I)+i 

2 NA --- NA ... NA ZK(i-1)+2 

i ... ... ... ... ... ... ... 

K NA ... NA ... NA ZKi 

Total x(i) xi(i) xxi) ... xp(i) 

Table 5.2. Tabular representation of the contemporaneous disaggregation problem 

for year i, i=1, ---, m. 

"Not M-ailable") and the row totals and column totals by their survey estimates x(j) 

and z. The aim is to predict the unobserved cells 77tj t=1, ---, n; j=1, ---, P 

taking into account both the monthly and the annual survey errors and according 

to the available marginal totals per sector and per year. Table 5.2 shows the initial 

configuration for the year i, i=1, ---, m. 

Considering the row annual total vectors i7(j); i=1, ---, m as stacked vectors of annu- 
ally aggregated data of dimension P, it follows that x(j) = 77(j) + e(j), with the vectors 

x(j) containing the estimates of the annual subsector totals; e(j) are the non-observed 

vectors of annual survey errors by rows in Table 5.1; e(j) = lel(i), ---, ep(j)]. Also, 

E. = [El 
...... 

E,,. ]' will denote the subannual survey errors associated to the sector 

totals. Then, these vectors of survey estimates can be decomposed in the form 

p 
77. + EE i7j+ E 

j=l 

x(j) = il(i) + e(j) (5.2.1) 

The last line in the former equation implies that x. j(j) = 77. j(i) + ej(j) for each j= 

1, ---, P and then x. j(j) = Etei 77tj + ej(j). It is assumed, as in the chapters before, that 

the vector of monthly survey errors E. is independent of the vector of annual survey 

errors e(j) as the information contained in them comes from different independent 

sources. In the binding case, when the inner cells have to add exactly to the marginal 
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totals by row and columns, we will assume that E. and e(j) are null vectors. 

The proposed method consists of building a single series of values for each year as 

follows. In a given year i, 

(ZK(i-l)+17 
i ZKi7X(i)): -" 

(ZK(i-1)+1t 
i ZKii Xl(i)i i XP(i)) M 

(5.2.2) 

putting the sector totals for each period and the stacked annual totals together in each 

yeax and the subindex CD indicating "Contemporaneous Disaggregation" to differen- 

tiate with the series to be used in the next chapter. In the particular case when the 

totals are population values (binding case), the sampling errors are zero and the last 

vector is equivalent to 

(5.2.3) 

After the series y' is built and all the series y' are concatenated, we produce the total 

series of observed values 

(YC'D; '-' ; Y-CD)l 
Y6 

(YCID; ,**; Y7CnD; ZKm+l; 

if n is a multiple of m 

--; z,, ), otherwise 
(5.2.4) 

The length of this new series YC*D is equal to n+ Pm with n the number of observed 
high-frequency periods, P the number of vectors to be estimated and m the num- 

ber of complete years (m = [n]K with K the number of high-frequency periods per 

year). After axranging the available information in this way, standard Kalman filter 

and smoothing is applied to the new series y*. This series has implicitly all the con- 

temporaneous and temporal constraints by row and sub-columns in Table 5.1. The 

application of the Kalman filter requires to express each single element y, * in its state 

space form introduced in Equations 3.3.1 and 3.3.2 given by 

Ys, CD = Zs, 
CDC's, CD + 6s, CD Ic:, CD - N(O, h,, CD) 

S, CD T* - N(O,, Qs, CD) t4 s, CDCls-1, CD + 198, CD S, CD 
(5.2.5) 

with r being the dimension of the state vector. The use of the method requires spec- 
ifying suitable models for the trend, the seasonal effects, trading days effects and the 
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survey errors. A brief illustration of the state space form is presented below for the 

case when P=2 and K=4 and then, the general case for arbitrary values of P and 
K is presented. We have used the subindexes s, CD in order to reduce the formulas 

in the next chapter and to differentiate the SSF for Contemporaneous Disaggregation 

(CD) from the SSF for Reconciliation. 

5.2.2 Binding Estimation for Quarterly Data - Bivariate Case 

In this subsection, we present the proposed method for contemporaneous disaggre- 

gation in a simple scenario considering binding totals (without survey errors, i. e. 

E. =0,,,, 1, e(j) = 01. p for i=1, ---, m) - We will consider the general case in the next 

subsection. The state space form for this simplified case is presented as an illustration. 

Considering the bivaxiate case (P = 2) and data collected by quarters (K = 4); the 

table for the first year takes the form appearing in Table 5.2. The single series Y*CD is 

built by arranging all the available information as follows 

Y*CD : -- (Ys:, 
CD) : -z 

(Zl 
i Z2 i Z3) Z4 iX1 (1) 1 X2(1)) Z5 i Z6 i*'*) 

(5.2.6) 

Subsectors 

Year Period 171 172 Z 

1 NA NA Z, 

2 NA NA Z2 

3 NA NA z3 

4 NA NA Z4 

Total x(, ) Xl(l) X2(1) 

Table 5.3. Tabular representation of the contemporaneous disaggregation problem 

for the first year, P =2 and K=4. 

The length of the new series y* is n+ 2m with n the total number of observations CD 
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in the vector z and m the number of complete years. Considering the respective state 

space models for r1i and 772, 

77tl Zti Citi + Eti 71t2 Zt2 at2 + Et2 

- 
Cft, Tti at-,,, + t9t, 

and 
CtO Tt2 at-1,2 + 19t2 

(5.2.7) 
(0,2) 0,2) Et, N cil Et2 N(O, t2 

119t, 

N(O, Qtj) t9t2 N(O, Qt2) 

Using Equations 5.2.1 and 5.2-7, the values for the single series y* in the first year CD 

are given by 

YI, CD : -": ZI : -": 771.: -- 7711 + 7712 I 

ý ZlICIll + 611 + Z12CI12 + -612 : -- 
fZllCill + Z12CII21 + 

Y2, CD ýý Z2 --z 7h. ý 7721 + Th2 

Z21021 + Ell + Z22022 + E22 " IZ21021 + Z22Cf22j + E2 

Y3, CD Z3 ý-- 773. : 'ý 7731 + 7732 

Z31CI31 + C31 + Z32Cý32 + E32 " JZWC931 + Z32032} + E3 

Y4, CD ý-- Z4 " 774. ýý 7741 + 7742 

Z41a4l + E41 + Z42CQ2 + E42 -` 
JZ41CQ1 + Z42Ci42} + C4 

Y5, CD 1.11 --`ý 7711 + *21 + 7731 + 7741 

"': Z110111 + 611 + Z21CI21 + C21 + Z31CI31 + E31 + Z41CI41 + 641 

'-ý IZ11all + Z21C(21 + Z31031 + Z4lCt4l} + E5* 

Y6, CD = 'C-21 == 7712 + 7122 + 7732 + 7742 

ý'-- Z12CI12 + C12 + Z22a22 + C22 + Z32C232 + C32 + Z42042 + 642 

IZ12C(12 + Z22Ct22 + Z32a32 + Z42CI42} + 66 

(5.2.8) 

and so on for the following years. Now, the idea is to obtain filtered and smoothed 

values of the single series y* . Then, it is necessary to write the last equations into CD 

a state space form given by Equation 5.2.5. However, considering the disturbances 
in Equation 5.2.8, the vector c. * = [ej, c, *, ], is not a vector of serially uncorrelated 

= 0,2 : disturbances. This is because, for example, Cov(cl*, c5*) = E(E*, E; ) 1 7ý 0 and the 
Kalman filter would not yield the conditional mean of the state vector. 
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Instead, considering the analogous state space models in Equation 5.2.7 but including 

the disturbances into the state vector 

77ti = Zti Citi 77t2 = Zt2 CiO 

cit, = Tt, cet-I, l + t9t, and at2 = 
Tt2 at-1,2 + t9t2 (5.2.9) 

t9t, - N(O, Qtl) t9t2 - N(O, Qt2) 

in the way it Nvas done for the RNVN model in Equation 3.3.4 and for the BSM model 

in Equation 3.3.9, the observation equation can be expressed as Y', a*, CD *, CD ý Zs*, 
CD a 

by building the state vector a, *, CD and the observation matrix Z, *, CD in the following 

specific way. 

Analogous to the notation in Chapter 3, we will denote the number of components of 
the state vector atj by rj with i=1,2 and we will let ajI = [a,, j, ---, a, -3, jl to be 

a vector of dimension 4rj. The state vector a* ,, CD in the observation and transition 

equations is expressed as the concatenation of the individual vectors associated with 

each column. In this particular case, the dimension of this new state vector a, *, CD i 8 

equal to 4r x1 with r= ri + r2- 

9; Clsll = IC'sl; Cis-3,1; C(s2; Cis-3,211 (5.2.10) Cl*s, CD == IC"I 
2 

The observation 1x 4r system matrices Z. *,, CD for the first year will be equal to 

Zl, 
CD = 

[Zll; Orl; Orl; Orl; Z12; Or2; Or2; Or21 

Z2, 
CD = 

[Z21; Orl; Orl; Orl; Z22; Or2; Or2; ()121 

Z3, 
CD = [z31; Orl; Orj; Orj; Z32; 07'2; ()"2; ()r21 

Z4*, 
CD = 

[Z41; Orl; Orl; Orj; Z42; ()r2; Or2; ()r2] 

Z5*, 
CD = 

[Z41; Z31; Z21; Zll; Or2; Or2; Or2; Or21 

6, CD =: [Orl; Orl; Orj; Orl; Z42; Z32; Z22; Z121 Z* 

and at the beginning of the second year, Z7*, 
CD --"2 

[Z51; Orl; Orl; Orl; Z52; Or2; Or2; 0r2l 
and 

the saane equations are repeated every six periods (four quarters and two additional 
instants for the number of variables). Notice that the product Z, *, CDO, *, CD produces the 
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values Y,, CD. The formula Y; *, CD 'ý-- 
Z,, 

CDa, 
*, CD corresponds to the observation equation 

for Y*CD- 

Considering now the transition equation, this takes the form ci* Ts s, CD CDOB-1, CD + 

19;, CD. This set of equations can be obtained by skipping the Kalman filter updating 

equations for the SSF Of Y6 at the points related to the values xi(j) and X2(i) with 

i=1, ---, m. This is done to keep the stochastic nature of the vector of sector totals 

z. In this way, the value Y7, CD is related with the value Y4 CD but not with the values 

y, 5*, CD and y6*, CD. Values Y5, CD and Y6, CD are used to update the annual totals during 

the iterative procedure. 

Considering time variant state space models with different transition matrices for the 

values zt (t = 1, ---, n) and the values xj(j) (i = 1, m; j=1,2). The transition 

matrices for the first year can be written as follows 

( T., OIxrl Orlxrl O, Ixrl 
Ts2 O*r2xr2 Or2xr2 Or2xr2 

Ts*, CD diag 
I'-I OIjxrj OIjxrj Orlxrl Ir2 Or2xr2 Or2xr2 Or2xr2 

Orlxrl I'I OIjxrj Orlxrl 012Xr2 Ir2 Or2xr2 Or2xr2 

Orlxrl Orlxrl Irl Orlxrl 

- 

Or2Xr2 Or2xr2 Ir2 Or2xr2_ 
) 

4rx4r 

(5.2.12) 

for s 1, -4 and T, *, CD = 14r for s=5,6 and the same kind of matrices axe 

repeated every six periods (four quarters and two additional instants for the number 

of -. -ariables). For instance, T7*, CD is obtained using T51 and T52 replacing T., and 

T, 2 in Equation 5.2.12. The formulation of the transition equation in the first year is 

complete by setting 

t9 * 
Psj; Orl; Ori; Ori; lds2; Or2; Or2; Ord' 

s=1, - 4 
s, CD = (5.2.13) 

1 

04ri s=5,6 

and this pattern is repeated in the same way every six indices s (at the beginning of 

the next year, 197, CD = [051; Orl; Orl; Orl; 052; Or2; Or2; Or2j). Also, the covariance matrix 
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Q8, 
CD uill be equal to a diagonal block matrix 

diag(QI, Orlxrl I O, Ixrl) OIxrl) Qs2) Or2xr2 
7 

Or2xr2 
7 

Or2xr2)) s=1, 
-4 Qs, CD -"": 04rx4r7 

s=5,6 
(5.2.14) 

Using the last specifications, it is noticed that a,:, CD = Ts;, CDC4s*-I, CD + 19,, CD as re- 

quired in the transition equation in Equation 5.2.5. It is also noticed that start- 

ing from the state vector at time 41ý\\C14*, CD C15*, CD _- C'6*, CD because the tran- 

sition matrix has been defined as T, 14, and the vector o*7, CDýZ5 is directly 

related to ct4*, CD=Z4 through the matrix T. *,, CD in Equation 5.2.12. Using Kalman 

filter and smoothing, the state vector Ct, *, CD ý: = [a"; afl' can be estimated and us- 12 

ing the appropriate components in this vector, disaggregated values for the subsec- 

tors can be obtained. For instance, in this particular case, q., j = ZICI, *, CD and 

17s2 = Z2C, *, CD with Z' = [ZI (2) [1) 031; 04r2l = 
[ZI; Orl; Or,; Orl; Or2; Or2; Or2; 0r2 I 

and Z2 = 

[04ri; Z2 (2) [1 
1 
0311 = [Orl; Orl; Orl; Orl; Z2; Or2; Or2; or2l 

. Also, Varftj) = Z1Ps, 
CD(Z1)1 

and Vax(ý. 
2) = Z2p*, 

CD 
(Z2), with P*, 

CD obtained during the Kalman filter and 

smoother recursions. Then, the values with indexes s that are multiples of 5 or 6 
'S L 

are discarded in order to recover the indexation over t in the original series. 

5.2.3 General Case 

In this subsection we will develop the expressions of the vectors and matrices in the 

state space form for binding or non-binding estimation, for arbitrary number of vari- 

ables and subperiods per year. In the same way as in section 5.2.2, Y, *, CD will denote 

the sth element in the series y* with s=1, n+ mP. Equation 5.2.15 shows the CD 

relationship between the indexes s in Y, *, CD with the indexes t in zt and also with the 

indexes J in x. j(i)- 

z,, -p(i-, ), mod(s, K+ P) = 1, ---, K 
Ys, CD = 

lx. 

j(i), mod(s, K+P)=K+j; j=l,. --, P 
(5.2.15) 
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urith i= [S 
- 1]K+P + 1) i= mod(s, K+ P) -K and mod(a, b) denoting the number 

a- b[a - 
llb- On the other hand, Zt -= Yt*+Pi, CD and x. j(i) = y(*j-P)+(K+P)i, CD* 

The idea behind Equation 5.2.15 is the arrangement of the contemporaneous totals 

as the K first values in the series y* for a given year and also, the annual totals as CD 

the P last values in the same year. This equation also permits to determine which 
kind of total (contemporaneous or annual) is connected with a particular index s, 

s=1, ---, n+ mP and viceversa. 

Now considering the P state space models with the irregular terms included in the 

state vector 

17ti Zti C(ti 77t2 Zt2 CIO 77tp = ztP CtP 

C41 Ta Crt-I'l + t9ti C42 Tt2 Cft-1,2 + t9t2 atp = Ttp at-,, p + t9tp 

t9t, N(O, Qtl) t9t2 N(O, Qt2) t9tp - N(O, Qtp) 
(5.2.16) 

and if a non-binding total sector is considered, z= 17. + E 
.. 

Then, a state space model 

urill be considered for the monthly survey error model in the total sector given by 

Et. = Zt. at. I 

at. = Tt. at-,,. + t9t. (5.2.17) 

t9t. - N(O, Qt. ) 

A formulation of the general state space model for the new series yýD is given by 

the system of equations in Equation 5.2.5 by defining the system vectors and ma- 

trices below. Firstly, the state vector is built concatenating the P state vectors 

Cfj8 = [ai.; ... ; aj, s-K+ll plus an extra term to account for the monthly survey errors 
in the total. 

9; Cls q; 03-11 (5.2.18) Cl:, CD --'ý 
[Cli 

2; CI'P 

p Then, the dimension of the state vector is (rK+, o. ) with rL rj, rj the dimension of 
j=1 

the single state vector aj' and p. being the dimension of the state vector at. in the model 
for survey error (for instance, Lo. = max(p, q+ 1) if an ARMA(p, q) model is considered 
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for E 
. 
). In the following equations, we use the mathematical relationship between 

the indexes t from the original series to the new ones s built for contemporaneous 

disaggregation in Equation 5.2.15, t=s- P(i - 1), i= [S - 1]K+P +1 and j= 

mod(s, K+ P) - K. Then, the observation matrix can be expressed in a partitioned 

form as 

[1Z3-P(i-I), 
I; Zs-P(i-I), P] 0 [1; OK-11; ZS-P(i-I),. II 

Z. 
I< mod(s, K+ P): 5 K, 

s, CD 
[zs-j, l; ZS-j, P1; Oe-I I 

mod(s, K+P) = K+j, 
(5.2.19) 

with Sj being a1xP vector with 1 in the j-th position and zeros elsewhere. Sj is 

called the Kronecker j-th delta vector with single elements Jjj, given by 

iii, =1 
j=jl 

il=i,..., p (5.2.20) 
0 j7ýj 1 

The dimension of the observation matrix Z; is 1x (rK +, o 

In order to include the annual survey errors in the annual subsector totals, we will 
consider the unobserved vector 

0,1 <- mod(s, K+P) <K 
C. 4, CD «-": (5.2.21) 

ej(i), mod(s, K+ P) =K+j 

Consequently, the covaxiance matrix of the disturbances * 'E,, CD is given by the scalars 
(which are assumed as known from the annual survey in each subsector) 

h* 
0,1 < mod(s, K+P) <K 

(5.2.22) a, CD - 
a2 mod(s, K+P) = K+j ej(i), 

In the same way it was assumed by Durbin and Quenneville (1997, page 38), we will 
consider E, (, ) as a diagonal matrix since otherwise the state vector becomes too large. 
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The transition matrix is a rK +, o. diagonal matrix of P+1 matrices given by 

diag 
(T, 

*I, CD T: 1< mod(s, K+P)! ý K 
Ts*, 

CD - 

lIrKi 

aPCD, 
T--P(i-I),. )l 

mod(s, K+ P) >K 

with 

T. 
-P(i-l), j 

T, *j, 
CD 

01 

ri 

rjxrj 

Orjxrj 

Orjxrj Orjxrj Orjxrj 

Orjxrj Orxrj Orxrj 
P 

iri Orjxrj Orxrj 

Or., 
Xrj 

iri Orxrjj 

(5.2.23) 

(5.2.24) 

and T, 
-p(i-, ),. is the transition matrix associated with the series of sector totals. Fi- 

nally, the formulation of the transition equation is complete by arranging the (rK + 

dimensional vector and its corresponding variance matrix given by 

t9s;, CD = 

[1'08-P(i-I), 
l "** 198-P(i-1) A (9 11; 1< mod(s, K+ P) :5K 

OrKi mod(s, K+ P) >K 
(5.2.25) 

and 

diag(Qs-p(i-, ),, IOKrlxKrli*")Qs-P(i-I), PiOKrlxKrl), 1<mod(s, K+P): 5K 
Qs, CD ýý 

04rx4ri mod(s, K+ P) >K 
(5.2.26) 

Equations 5.2.18 - 5.2.26 form the SSF required in Equation 5.2.5. The Kalman filter 

produces the estimates CD and 6i,, 
CD for every sn+ mP. Values of 6, *, s, CD 

are expected to coincide exactly when with the observed values in the series Y* CD 
1< mod(s, K+ P) :! ý K. This is because for these time points, the observation 

equation was written with c. = 0. Now, because the main interest is to estimate the 
disaggregated values qj (j P), the procedure ends by obtaining the estimates 
ki, 

CD = Zjef * 
j, CD 11, P) with Zj = [OKri; OKr2; '*' ; Zi 0 [1031; OKrp] and 

'1ý'rar(kj, CD) = Zjp. *, CD(Zj)' with the matrix P, *, CD obtained during the Kalman filter 

and smoothing recursions. 
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5.3. SIMULATION I 

5.3 Simulation 1 

In our first application, a random walk plus noise model (RWN) will be assumed for 

the series i7j, j=1, ---, P with no consideration of survey errors. The concept of a 

RNVN model was explained in pages 31 and 36. This section reports the results of a 

simulation study in a very simple case, assuming P=2 and K=4. The experiment 

consists on generating one pair of series i7l and 772 from the RWN model defined by 

Equation 3.2.3 

i7tj = lij + atj + ctj, Etj - NID(O, o,, 2) 
t=1, --- 250 (5.3.1) 

0,2) atj = at-ij + vtj, vtj - NID(O, 
I/ 

with parameters M, = 30, P2 = 70, q, 2, =3 and a, 2, = 0.5. The graphs of the simulated 

processes in a single iteration appear in Figure 5.1. The corresponding vector of totals 

10 
IT 

0» lw im 2m 250 

Figure 5.1. Pair of simulated RWN processes. 

z of dimension 250 and the vectors x, and X2 of dimension 62,62 = [250]4 are built. 

Table 5.4 is the analoge of Table 5.1 for this special case in the first year. The idea 

is to the estimate the missing values in Table 5.5. In this case, we are considering no 

survey errors in the row and column subtotals. Using the state space form for a RWN 

in Equation 2.5.14, page 30; the proposed method was applied by building the series 

YS, CD n+ mP = 374) and writing the observation and transition equations 
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Year Period 

Subsectors 

l7i 172 IT 

1 26.87582 64.29220 91.16802 

2 24.33702 58.95520 83.29222 

1 3 19.00001 58.39089 77.39090 

4 18.43571 70.80347 89.23918 

Total x(j) 88.64856 252.44176 341.09032 

Table 5.4. Simulated RV*rN values for the first year 

Year Period 

Subsectors 

171 172 17. 

1 NA NA 91.16802 

2 NA NA 83.29222 

3 NA NA 77.39090 

4 NA NA 89.23918 

Total x(i) 88.64856 252.44176 '341.69'032' 

Table 5.5. Initial values simulation RWN 

using the vectors and matrices below. 

a; 8, CD = [a,,, c. 1; ... ; a, -3,1 , fa-3,1; ; a. 2, f., 2; ***; a, -3,2, C. -3,21 

[11; 00; 00; 00; 11; 00; 00; 00], 

Zs*, 
CD: -- [11; 11; 11; 11; 00; 00; 00; 00], 

[00; 00; 00; 00; 11; 11; 11; 111, 

1< mod(s, 6) <4 

mod(s, 6) =5 

(5.3.2) 

(5.3.3) 

mod(s, 6) =6 

and 

T 02x2 02x2 OW" 

12 OW 02x2 02x2 
Ts*, 

CD = diag 
OW 12 OW OW 

02x2 OW 12 OW 

T 02x2 02x2 02x2 

12 02x2 02x2 02x2 
(5.3.4) 

02x2 12 02x2 02x2 

02x2 02x2 12 02x2 
) 

- 16xl6 
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for 1< mod(s, 6) <4 where 

T= 
[10 0] (5.3.5) 

0 

for j=1,2. T; 116 for 5< mod(s, 6) :ý6. The vector of disturbances t9* is equal 
, CD a 

to 
[1906160611 

--` 
[Vtlftl06jVt2ft2O6jf) 1< mod(s, 6) 4 

t9s, CD 

10116v 

5 raod(s, 6) 6 
(5.3.6) 

urith co-v-ariance matrix 

diag(Qtl, 06A) Qt2 
7 
06x6)) s 11 14 Qs, CD ý (5.3.7) 

1016xl6) 

5,6 

witht=s-P(i- 1) and 
0 (5.3.8) Qtl ý-- Q2 : ': 

r 

Equations 5.3.2. - 5.3.8. form the SSF required in Equation 5.2.5. The Kalman Filter 

was initialised using a diffuse prior. The Kalman filter produces the estimates P, *, CD and 

6i;, CD for every s= 374. Values Of 9, *, CD were expected to coincide exactly with 

the values in the series Y, *, CD due to the fact that the observation equation was written 

with c. * =0 in all cases. Now, because the main interest is to estimate the disaggregated 

values i7l and 172; these values can be obtained from the respective components for each 

subsector in 61* ,, CD as follows 

ZI*= Z2&* kl = 6'8, 
CD = a.,, + e., k2 

s, CD = a. 2 + Es2 (5.3.9) 

uith Z' " [11 110 [LOI 0 [1031 [111001001001100100100100] and Z2 = [1,1] (& [0,1] 0 

[1,0'1 = [001001001001111100100100]. The six first smoothed values for the first year of 3 

ýs and 4-2' were, in this simulation, 4'1' =[25.11428 21-18519 18.21688 24.1322124.13221 

24.132211 and 4=[66.05374 62.10703 59.17402 65.10697 65.10697 65.106971. It can 2 

be noticed than, in the six points associated to the first yeax, the last two values 

are equal to the fourth one. This is because we are skipping the recursion in these 

two points corresponding to the annual totals using the matrix 116 as the transition 

matrix. Then, eliminating these values for each year in the series, we finally get the 

vector of disaggregated estimates ýj and G The information has been disaggregated 
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both contemporaneously and temporally, and the estimates have been obtained with 

their respective standard errors (see) and coefficients of variation (cv). The variances 

of the estimates were calculated by 

Var(ý, j == ZiPs, CD (Zi)f i=1,2 (5.3-10) 

where P' is the covariance matrix-obtained during the Kalman filter and smoother s, CD 

recursions. The simulation was carried out in different steps. Firstly, 1000 series from 

a RNVN model were generated and secondly, the proposed method was applied in order 
to produce 1000 series of estimated values with total length of 250 values. Also, two 

alternative methods (IPF (Deming and Stephan, 1940) and (Zaier and Trabelsi, 2007)) 

were applied in order to be compared with the proposed method. Several statistics 
have been suggested in the literature for evaluating the performance of methods of 

adjusting contingency tables to known marginal totals. Upton (1985) and Wong (1992) 

have proposed what they called the absolute relative error (ARE) to compare matrices 
across different matrix and sample sizes. For a given year i (i = 1, ---, M); AREi 

corresponds to the total absolute error (TAEi) divided by the number of cells in the 

corresponding year and TA& given by 

p 
TAEj E; ptj - qtj; 

tEi j=l 

where ptj and qtj are the corresponding elements of the t-th row and the j-th column 
in the original matrix Pi and the estimated matrix Qi. Then, TAEi corresponds to 

the total deviation of the estimated matrix from the population matrix in a given year 
i. The ARE statistic is preferable when comparing matrices of different sizes (different 

number of instants or sectors) and they were the statistics finally considered to evaluate 
the methods used in this simulation. Notice that ARE is just an average of TAE values, 

which means the term "relative" in its acronym is used under this definition. Also, in 

this simulation, each table per year has eight inner cells in total with exception of the 
last year which has got four cells and it is used to illustrate the problem of ex-ante 

estimation. 

133 



5.3. SIMULATION 1 

5.3.1 Iterative Proportional Fitting - Results 

The method known as iterative proportional fitting (IPF) or raking was proposed 

by Deming and Stephan (1940) as an iterative procedure to estimate the cells in a 

contingency table subject to some known marginal constraints. The main idea is to 

adjust a matrix of any dimension until the totals by rows and columns converge to 

some pre-defined values (Fienberg, 1970). 

IPF is an iterative procedure whereby the original table values are gradually adjusted 
in several iterations to fit the row and column constraints. The final estimated con- 

tingency table after the iterations converge corresponds to the maximum likelihood 

estimates obtained when the values in the cells are convergent within an acceptable 

pre-defined limit (Bishop, Fienberg and Holland, 1975, pages 82-101). Given known 

row and column constraints, IPF can also be used to compute the maximum likelihood 

estimates of a two-dimensional matrix where the values are not known. 

The iterations start by considering an a priori initial table. We will consider two 

possible initial tables in the contemporaneous disaggregation case with missing values. 
One possibility, assuming that the initial table values are constant (i. e. every cell is 

just the grand total divided by the number of cells) (Bishop et. al., 1975, denoted in the 

tables below as Raking 1) or assuming an initial table with statistical independence 

by row and columns (prorata method, denoted in the tables below as Raking 2); by 

this approach the estimates for every cell 77tj with t=1, n and j=1, P are 
computed as 

77. j (i) 77t. 
(5.3.12) 

71.. (i) 

In summary, we have, adapted the Deming and Stephan (1940) method to the contem- 

poraneous; disaggregation case with missing values as follows: 

1. Consider a multidimensional table with initial values (0) for every cell 77tj ý= k. p 

tj; t n; j=1, P in the contingency table associated to every year. 
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2. Adjust the initial values to the first marginal sub-totals (e. g. totals by columns) 
(1)r 

= 
(0) 17. j(i) in each year to derive an estimate: 77ij 77tj *p for every cell tj(t = 

, (0) Z 77t, 
j=1 

1, - n; 1, -P in the contingency table associated to every year with the 

superindex r indicating the r-th adjustment by rows. 

3. Repeat the adjustment to the marginal sub-total in the other dimension (e. g. 

totals by rows) to complete one cycle of s=1, S steps 77(l) = 77 (1)c = 77 (I)r 
ti ti tj 

K. with the superindex c indicating adjustment by columns. 
E 17 

) 

4. In general at the s-th step, we have 77(s) 77 
(S-1) 17j(i) for 

tj tj (? ) 77tj 

S S. 

5. Steps (1)-(4) are repeated until the factors 17t. 1 under P (0) K% (0) 

(E 

77tj 

) (E 

77ti 

) 

j=1 K-(i-l)+l 

some convergence criterion. Since the procedure is proven to converge when the 

marginal sub-totals are consistent with each other (for example add to the same 

overall total), the choice of convergence criterion only affects the number of cycles 

that will be needed before the criterion is met. 

Both alternatives Raking 1 and Raking 2 gave the same results. In other words, 

starting with a constant table in the inner cells makes the iterative procedure converge 

to a tablewith statistical independence by row and columns. Each cell is the product 

of the corresponding marginal totals divided by the grand total of the table. In this 

particular case, with 250 observations, it is impossible to get estimates of the inner 

cells for the last incomplete yeax as raking requires the availability of marginal totals 

by both row and columns. In conclusion, this alternative does not give a solution to 

the ex-ante estimation problem in Chapter 1. 

Tables 5.6 (one iteration) and 5.8 (1000 iterations) show the actual simulated values 

and the corresponding estimates under this method with complete fulfilment of the 

restrictions by row and columns. The application of this method does not permit 
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to produce either estimates for the incomplete last year at the end of the series or 

standard error of the estimates. 

The two first plots in Figure 5.2 show the estimated levels for each subsector through 

time. The graphs show how close are the means of the estimated (raking) values 

after 1000 iterations to the means of the simulated (original) values and also how the 

estimated values preserve the behaviour of the original series. Also, the difference 

between the actual and the estimated value for a given pair of month/subsector were 

calculated and plotted in the plot at the bottom showing values closer to zero for each 

subsector. The plot of the differences shows corresponding mirror images showing the 

strong dependence present in the disaggregated data. 
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Actual Values Total Estimates 

Year Period T) 1 712 77. ý1 ý2 

1 26.87852 64.29220 91.16802 23.69435 67.47367 

2 24.33702 58.95520 83.29222 21.64745 61.64477 

1 3 19.00001 58.39089 77.39090 20.11371 57.27719 

4 18.43571 70.80347 89.23918 23.19305 66.04613 

Total 88.64856 252.44176 341.09032 88.64856 252.44176 

1 30.84828 64.79764 95.64592 29.41833 66.22759 

2 24.84245 70.78847 95.63092 29.41372 66.21720 

2 3 30.83328 77.11675 107.95003 33.20277 74.74726 

4 37.16156 65.74247 102.90403 31.65075 71.25328 

Total 123.68557 278.44533 40ý. f30'90' 123.68557 278.44533 

1 25-52108 59.52836 85.04944 24.47317 60.57627 

2 19.57317 79.39541 98.96858 28.478,13 70.49015 

62 3 39.44022 75.16697 114.60719 32.97848 81.62811 

4 35.21179 82.30659 117.51838 33.81618 83.70220 

Total 119.74626 296.39733 416.14359, 119.74626 296.39733 

63 1 42.35141 - 64.84352 107.19493 NA NA 

2 24.88833 66.51744 91.40577 NA NA 

Table 5.6. Results of Contemporaneous Disaggregation with Missing Values. Rak- 

ing Estimates. Single Iteration. 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 23.48415 27.76307 16.62095 ... 35.62101 NA 

ARE 2.93552 3.47038 2.07762 ... 4.45263 NA 

Table 5.7. TAE and ARE. Raking Estimates. Contemporaneous Disaggregation 

with Missing Values. Single Iteration. Mean(ARE) = 5.36283. 
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Actual Values Total Estimates 

Year Period 711 712 71. ý1 ý2 

1 30.10970 70.57724 100.63694 30.12170 70.51524 

2 30.11886 70.53026 100.64912 30.12354 70.52558 

1 3 30.12508 70.51454 100.63962 30.10587 70.53375 

4 30.12646 70.53522 100.66168 30.12899 70.53269 

Total 120.48010 282.10726 402.58736 120.48010 282.10726 

1 30.14526 70.54183 100.68709 30.15291 70.53418 

2 30.14947 70.53614 100.68561 30.14891 70.53670 

2 3 30.15734 70.54471 100.70205 30.14236 70.55969 

4 30.15508 70.55313 100.70821 30.16297 70.54524 

Total 120.60715 282.17581 402.78296 120.60715 282.17581 

1 30.48211 71.68994 102.17205 30.49690 71.67515 

2 30.49117 71.68520 102.17637 30.48423 71.69214 

62 3 30.49767 71.68915 102.18682 30.47857 71.70825 

4 30.49078 71.70624 102.19702 30.50204 71.69498 

Total 121.96173 286.7053 408.73226 121.96173 286.7053 

63 1 30.48295 71.72075 102.20370 NA NA 

2 30.46696 71.72257 102.18953 NA NA 

Table 5.8. Results of Contemporaneous Disaggregation with Missing Values. Av- 

erages of Raking Estimates. 1000 Iterations. 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 39.47833 39.52109 39.50098 ... 39.45207 NA 

ARE 4.93479 
L- -- 

4.94014 4.93762 ... 4.93151 NA 
I 

Table 5.9. TAE and ARE. Raking Estimates. Contempgraneous Disaggregation 

with Missing Values. 1000 Iterations. Mean(ARE)= 4.95142. 
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Figure 52 Mean of the Disaggregated Raking Estimates for a RWN model in 

1000 Iterations. Contemporaneous Disaggregation. 
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5.3.2 Polynomial Interpolation Method - Results 

Zaier and Trabelsi (2007) propose a procedure which extends the polynomial method 
for disaggregation. of time series (Almon, 1988) to the multivariate case. The Almon's 

method provides a univariate polynomial approach to convert annual series to sub- 

annual figures by polynomial interpolation and it is implemented in the econometric 

package G. The method was proposed only for stock data. Then, the method was 

extended to the multivariate case for flow series by Zaier and Trabelsi (2007). They 

also show how to transform the flow data into stock data before applying the method. 

The basic idea of disaggregating the series is to obtain a smoothed curve between two 

consecutive years in each of the series by sector. This implies that, with this method, 
it is impossible to get estimates for the first year as it will require to have an initial and 

a final point for interpolation. Almon (1988) assumes a cubic polynomial to be fitted 

to each pair of successive years, Additionally, this method is only applicable when n 
is a multiple of m (e. g. n= km), which means that there is still a problem of ex-ante 

estimation and it is required to wait until the end of the year when the next vector 

of benchmarks is available to produce the estimates. The method does not produce 

standard errors of the estimated values either. 

Zaier and Trabelsi (2007) method distinguishes three different cases and solutions: 

1. m= K2=p + 1, which gives a unique solution. K-1 

2. m< R27P + 1, which is not considered in their paper as it coincides with the K-1 

method proposed by Almon (1988), considering arbitrary assumptions on the 

form of the interpolation curve and 

3. m> y2: 
P7 + 1, being the most common case. In this particular case, the polyno- K-1 

mial method fulfills exactly the temporal aggregation but the contemporaneous 

aggregation constraints are just approximated. In this case, it isnecessary to 

adjust the polynomial estimates in a further step, using the Hillmer and Tra- 

belsi (1987) method which was extended to the multivariate case by Ttabelsi and 
Hillmer (1990). 
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5.3. SIMULATION 1 

Tables 5.10 shows the results for the first two and the last two years when applying the 

polynomial method in order to estimate the inner cells of the simulated contingency 

tables according to the procedure described in the last subsection. The two columns 77, 

and 172 correspond to the actual values generated from the RWN model and the column 

q. corresponds to the row totals. The estimated values correspond to the columns .1 77 

and 42- It is seen that the estimated values add perfectly to the row totals. The annual 

totals only coincide after using the multivariate extension of the Hillmer and Trabelsi 

method (Trabelsi and Hillmer (1990)) according to the third solution presented above. 

One big disadvantage of this method in this simulation experiment is that it did not 

produce estimates for the inner cells corresponding to the first and the last year. The 

estimated values in Table 5.10 coincide perfectly in both, rows and columns per year, 

with complete fulfilment of the restrictions (shaded columns and rows). Because the 

impossibility of producing standard error of the estimates, we will consider ARE and 

TAE statistics to compare with other available methods and the proposed method in 

this chapter. 

The same process was repeated in 1000 iterations. Table 5.12 shows the average of 

these results after repeating the process 1000 times. The simulated values do not 

converge to the mean of the process (30 and 70 respectively) at the beginning of the 

series but they do converge at the end of the series. The application of this method 
does not permit to produce either estimates for the initial or the estimates for the 

incomplete last year at the end of the series nor standard errors of the estimates. 
Figure 5.3 shows how far axe the means of the 1000 estimated values at the beginning 

of the series from the original simulated series (with values outside the bounds of 

the graph) and how they stochastically converge to the simulated values after around 

seven years of observations. The difference between the actual and the estimated value 
for a given pair of month/subsector were calculated and plotted in the plot at the 

bottom showing values closer to zero for each subsector. Differences between actual 

and estimated values axe close to zero but again being closer only at the end of the 

series. The plot of the differences shows corresponding mirror images showing the 

strong dependence present in the disaggregated data. 
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5.3. SIMULATION 1 

Actual Values Total Estimates 

Year Period 711 772 17. ýI 

1 26.87852 64.29220 91.16802 NA NA 

2 24.33702 58.95520 83.29222 NA NA 

1 3 19.00001 58.39089 77.39090 NA NA 

4 18.43571 70.80347 89.23918 NA NA 

Total 88.64856 252.44176 341.09032 NA NA 

1 30.84828 64.79764 95.64592 36.90419 58.74173 

2 24.84245 70.78847 95.63092 24.73131 70.89961 

2 3 30.83328 77.11675 107.95003 28.54735 79.40268 

4 37.16156 65.74247 102-90403 33.50272 69.40131 

Total 123.68557 278.44533 402.13090 123.68557 278.44533 

1 25-52108 59.52836 85.04944 21.14424 63.90520 

2 19.57317 79.39541 98.96858 27-55509 71.41349 

62 3 39.44022 75.16697 114.60719 34.94785 79.65934 

4 35.21179 82.30659 117.51838 36.09908 81.41930 

Total 119.74626 296-39733 
, 
416.14359 119.74626 296.39733 

63 1 42.35141 64.84352 107.19493 NA NA 

2 24.88833 66.51744 91.40577 NA NA 

Table 5.10. Results of Contemporaneous Disaggregation with Missing Values. 

Polynomial Estimates. Single Iteration. 

Statistic Year 1 Year 2 Year 3 --- Year 62 Year 63 (incomplete) 

TAE NA 24.22366 74.17148 ... 35.47681 NA 

ARE NA 3.027957 9.27144 ... 4.434601 NA 

Table 5.11. TAE and ARE. Polynomial Estimates. Contemporaneous Disaggrega- 

tion with Missing Values. Single Iteration. Mean(ARE) = 5.46884. 
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5.3. SIMULATION 1 

Actual Values Total Estimates 

Year Period 711 172 77. ý1 ý2 

1 30.10970 70.52724 100.63694 NA NA 

2 30.11886 70.53026 100.64912 NA NA 

1 3 30.12508 70.51454 100.63962 -NA NA 

4 30.12646 70.53522 100.66168 NA NA 

Total 120.48010 282.10726 402.58736' 120.57014 282.1072 

1 30.14526 70.54183 100.68709 40.05056 60.63653 

2 30.14947 70.53614 100.68561 25.94233 74.74328 

2 3 30.15734 70.54471 100.70205 23.10120 77.60085 

4 30.15508 70.55313 100.70821 31.51306 69.19515 

Total 120.60715 282.17581 ý402.78296 120.60715 282.17581 

1 30.48211 71.68994 102.17205 30.49248 71.67957 

2 30.49117 71.68520 102.17637 30.48856 71.68780 

62 3 30.49767 71.68915 102.18682 30.48928 71.69755 

4 30.49078 71.70624 102.19702 30.49142 71.70560 

Total 121.96173 286.7053 '408.73226 121.96S173 286.7053 

63 1 30.48295 71.72075 102.20370 NA NA 

2 30.46696 71.72257 102.18953 NA NA 

Table 5.12. Results of Contemporaneous Disaggregation with Missing Values. 

Polynomial Estimates. Average in 1000 Iterations. 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete)_ 

TAE NA 57.70716 70.30178 ... 38.42159 NA 

ARE NA 7.21340 8.78772 ... 4.80270 NA 

Table 5.13. TAE and ARE. Polynomial Estimates. Contemporaneous Disaggrega- 

tion with Missing Values. 1000 Iterations. Mean(ARE) = 4.88312. 
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Figure 53 Mean of the Disaggregated Polynomial Estimates for a RWN model 

hi 1000 Iterations (First and Last Year are not Considered). Contemporaneous 

Disaggregation. 
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5.3. SIMULATION 1 

5.3.3 Proposed Method - Results 

Tables 5.14 and 5.17 show the results of one single iteration for the two first and the two 

last years (the 63th year was simulated as an incomplete year on purpose). Table 5.14 

corresponds to the application of the Kalman filter and Table 5.17 correspond to the 

smoothed estimates in Equation 3.4.11 for the state space model defined in Equations 

5.3.2 to 5.3.8. In both tables, the columns 7), and 772 are the actual values generated 

according to the RNVN model and the column ri. is the row totals. The estimated values 

are represented by the columns ýj and ý2. From the results, the estimated values add 

perfectly to the row totals in both the filtered and the smoothed cases. The annual 

totals only coincide with the smoothed ones but not in the filtering case. 

Additionally, in the filtered case for the first year (Table 5.14), both subsectors have 

the same estimate. The sum by rows in both sides of the table (actual values and 

estimates) is equal to the shaded column in the middle. The estimated values in 

Table 5.17 coincide perfectly in both rows and columns every year, with complete 
fulfilment of the restrictions (shaded columns and rows). The last two values in the 

series correspond to the two first quarters in year 63, where the annual benchmarks 

have not been observed yet and the filtered and smoothed values are the same. Tables 

5.15 and 5.18 show reduction in terms of the magnitude of the standard errors and 

coefficients of vaxiation when they are compared from one year to the next one with 

the exception of the last two years. According to the magnitude of the coefficients of 

variation, filtered values axe not useful in the first year of observation (possibly not 

useful since the third one). On the other hand, the values for the standard errors 

are relatively small and stable in the Table 5.18 for all the periods of study with the 

exception perhaps of the last incomplete year. Standard errors are exactly the same in 

both subsectors given that the values were simulated with the same variances. Since 

the means are different, the cvs for ý2 are smaller than ý1. The same process was 

repeated 1000 times. Tables 5.20 and 5.22 show the average of these results over all 

the iterations. The means of the simulated values converge to the means of the process 
(30 and 70 respectively) and we obtain the same conclusions as obtained for the single 
iteration case. 
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5.3. SIMULATION 1 

Figures 5.4 and 5.5 show how close are the means of the estimated values after 1000 

iterations to the means of the simulated values and also how the estimated values 

preserve the behaviour of the original series. Figure 5.4 show the results for the fil- 

tered estimates and Figure 5.5 for the smoothed ones. The difference between the 

actual and the estimated value for a given pair of month/subsector were calculated 

and plotted in the plot at the bottom showing values closer to zero for each subsector. 

Differences between actual and estimated values are close to zero in both figures, with 

smaller differences for the smoothed estimates. Again, the plot of the differences shows 

corresponding mirror images showing the strong dependence present in the disaggre- 

gated data. The proposed method has some advantages over the previous methods 

above. The main advantage is the possibility to obtain estimates of the initial and 

the final year (ex-ante estimation) with their corresponding standard errors. However, 

the method makes a big assumption. The application of the method requires prior 

knowledge about the stochastic structure of each of the subsectors. 

5.3.4 Comparison of the Methods 

Table 5.24 and Figure 5.6 compare the ARE values used to evaluate the performance 

of the different methods applied in this simulation. It was mentioned before that the 

ARE values measure the average distance between the original table and the estimated 

one. Figure 5.6 shows the results for different number of simulated series (1,250 and 

1000). In these three cases (polynomial method in red, raking in blue and the proposed 

method in black), the polynomial method appears to be the less precise, particularly 

at the beginning of the series. Values for the first and the last year are missing; the 

same happens for the last year with the raking method. There is an increase in the 

series in black (estimates under the proposed method) in the last year as this year is 

incomplete, affecting the quality of the estimation. However, the two other methods 

do not calculate any estimates for this last year and the proposed method looks as the 

most efficient one based on the ARE measure. 
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5.3. SIMULATION 1 

Actual Values Total Estimates 

Year Period ?I 'q2 77. ý2 

1 26.87852 64.29220 91.16802 45.58401 45.58401 

2 24.33702 58.95520 83.29222 41.64611 41.64611 

1 3 19.00001 58.39089 77.39090 38.69545 38.69545 

4 18.43571 70.80347 89.23918 44.61958 44.61958 

Total 88.64856 252.44176 341.09032, 170.54416 170.54416 

1 30.84828 64.79764 81.63651 27.34885 68.29706 

2 24.84245 70.78847 95.63092 27.34135 68.28956 

2 3 30.83328 77.11675 107.95003 33.50091 74.44912 

4 37.16156 65.74247 102.90403 30-97791 71.92612 

Total 123.68557 278.44533 -402'. 1 , ý090' 119.16903 282.96187 

1 25.52108 59.52836 85.04944 22.64258 62.40686 

2 19.57317 79-39541 98.96858 29.60216 69.36643 

62 3 39.44022 75.16697 114.60719 37.42146 77.18573 

4 35.21179 82.30659 117.51838 38.87705 78.64132 

Total 119.74626 296.39733 '416.14359 128.54326 287.60033 

63 1 42.35141 64.84352 107.19493 32.89890 74.29603 

2 24.88833 66.51744 91.40577 25.00432 66.40145 

Table 5.14. Results of Contemporaneous Disaggregation with Missing Values. Fil- 

tered Estimates. Single Iteration. 
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5.3. SIMULATION 1 

Year Period se (ý, ) se (ý2) CV (ýl) CV (ý2) 

1 707-1101 707.1101 14.0137 14.0137 

2 707.1101 707.1101 14.5806 14.5806 

1 3 707.1102 707.1102 13.1620 13.1620 

4 707.1103 707.1103 12.7075 12.7075 

1 2.4077 2.4077 
'0.1154 

0.0396 

2 2.4335 2.4335 0.1259 0.0411 

2 3 2.4590 2.4590 0.0771 0.0342 

4 2.4843 2.4843 0.0753 0.0341 

1 2.2538 2.2538 0.0793 0.0330 

2 2.2814 2.2814 0.0861 0.0344 

62 3 2.3086 2.3086 0.0734 0.0324 

4 2.3355 2.3355 0.0715 0.0322 

63 1 2.2538 2.2538 0.0810 0.0333 

2 2.2814 2.2814 0.0645 0.0303 

Table 5.15. Standard Errors and Coefficients of Variation. Filtered Estimates. 

Contemporaneous Disaggregation with Missing Values. Single Iteration 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 163.79320 29-69924 16.81079 ... 37.18299 19.13699 

ARE 20.47415 3.71240 2.10135 ... 4.64787 4.78425 

Table 5.16. TAE and ARE. Filtered Estimates. Contemporaneous Disaggregation 

with Nfissing Values. Single Iteration. Mean(ARE) = 5.57298. 
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5.3. SIMULATION I 

Actual Values Total Estimates 

Year Period Th T12 71. ý2 

1 26.87852 64.29220 91.16802 25.11428 66.05374 

2 24.33702 58.95520 83.29222 21.18519 62.10703 

1 3 19.00001 58.39089 77.39090 18.21688 59.17402 

4 18.43571 70.80347 89.23918 24.13221 65.10697 

Total 88.64856 252.44176 341.09032 88.64856 252.44176 

1 30.84828 64.79764 95.64592 28.44144 67.20448 

2 24-84245 70.78847 95-63092 28.44903 67.18189 

2 3 30.83328 77.11675 107.95003 34.64896 73.80107 

4 37.16156 65.74247 102.90403 32.14614 70.75789 

Total 123.68557 278.44533 402.13090 123.68557 278.44533 

1 25.52108 59.52836 85.04944 20.57594 64.47350 

2 19.57317 79.39541 98.96858 27.42185 71.54673 

62 3 39.44022 75.16697 114.60719 35.16538 79.44181 

4 35.21179 82.30659 117.51838 36.58309 80.93529 

Total 119.74626 296.39733 416.14359, 119.74626 296.39733 

63 1 42.35141 64-84352 107.19493 32.89890 74.29603 

2 24.88833 66.51744 91.40577 25.00432 66.40145 

Table 5.17. Results of Contemporaneous Disaggregation with Missing Values. 

Smoothed Estimates. Single Iteration. 
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Yeax Period se (ý, ) se (ý2) CV %) CV (ý2) 

1 1.8667 1.8667 0.0612 0.0265 

2 1.8496 1.8496 0.0648 0.0270 

1 3 1.8500 1.8500 0.0548 0.0251 

4 1.8664 1.8664 0.0523 0.02,17 

1 1.8651 1.8651 0.0890 0.0307 

2 1.8495 1.8495 0.0952 0.0312 

2 3 1.8496 1.8496 0.0578 0.0258 

4 1.8660 1.8660 0.0563 0.0256 

1 1.8649 1.8649 0.0653 0.0274 

2 1.8498 1.8498 0.0694 0.0279 

62 3 1.8495 1.8,195 0.0585 0.0260 

4 1.8657 1.8657 0.0568 0.0258 

63 1 2.2538 2.2538 0.0810 0.0333 

2 2.2814 2.2814 0.0645 0.0333 

Table 5.18. Standard Errors and Coefficients of Variation. Smoothed Estimates. 

Contemporaneous Disaggregation with Missing Values. Single Iteration 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete)_ 

TAE 22.78600 29.68905 15.09291 ... 36.87990 19.13699 

ARE 2.84825 3.71113 
1 

1.88661 
1 ... 1 

4.60999 
1 

4.78425 
11 

Table 5.19. TAE and ARE. Smoothed Estimates. Contemporaneous Disaggrega- 

tion with Missing Values. Single Iteration. Mean(ARE) = 5.14010. 
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Actual Values Total Estimates 

Year Period 711 172 17. ýI k 

1 30.10970 70.52724 100.63694 50.31847 50.31487 

2 30.11886 70.53026 100.64912 50.32456 50.32456 

1 3 30.12508 70.51454 100.63962 50.31981 50.31981 

4 30.12646 70.53522 100.66168 50.33084 50.33084 

Total 120.48011 282.1072 402.58736 201.29368 201.29368 

1 30.14526 70.54183 100.68709 30.14020 70.54689 

2 30.14947 70.53614 100.68561 30.13946 70.54615 

2 3 30.15734 70-54471 100.70205 30.14768 70.55437 

4 30.15508 70.55313 100.70821 30.15076 70.55745 

Total 120.60715 282.17581 402.78296 120.57810 282.20486 

1 30.48211 71.68994 102.17205 30.51350 71.65855 

2 30.49117 71.68520 102.17637 30.51566 71.66071 

62 3 30.49767 71.68915 102.18682 30.52089 71.66594 

4 30.49078 71.70624 102.19702 30.52599 71.67103 

Total 121.96173 286-7053 408.73226, 122.07604 286.65623 

63 1 30.48295 71.72075 102.20370 30.51872 71.68498 

2 30.46696 71.72257 102.18953 30.51163 71.67790 

Table 5.20. Results of Contemporaneous Disaggregation with Missing Values. Fil- 

tered Estimates. Average Values in 1000 Iterations. 

Statistic Year I Year 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 161.62714 47.37955 44-70552 ... 43.57636 21.81447 

ARE 20.20339 
1 

5.92244 
1 

5.58819 ... 5.44704 5.45362 
1 

Table 5.21. TAE and ARE. Filtered Estimates. Contemporaneous Disaggregation 

with Atissing Values. Average Values in 1000 Iterations. Mean(ARE) = 5.68202. 
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Actual Values Total Estimates 

Year Period 711 772 71. ýI k' 

1 30.10970 70.52724 100.63694 30.11510 70.52184 

2 30.11886 70.53026 100.64912 30.12120 70.52792 

1 3 30.12508 70.51454 100.63962 30.11640 70.52322 

4 30.12646 70.53522 100.66168 30.12740 70.53428 

Total 120.48010 282.10726 402.58736 120.48010 282.10726 

1 30.14526 70.54183 100.68709 30.14730 70.53979 

2 30-14947 70.53614 100.68561 30.14650 70.53911 

2 3 30.15734 70.54471 100.70205 30.15505 70.54700 

4 30.15508 70.55313 100.70821 30.15830 70.54991 

Total 120.60715 282.17581 402.78296 120.60715 282.17581 

1 30.48211 71.68994 102.17205 30.48665 71.68540 

2 30.49117 71.68520 102.17637 30.48733 71.68904 

62 3 30.49767 71.68915 102.18682 30.49157 71.69525 

4 30.49078 71.70624 102.19702 30.49618 71.70084 

Total 121.96173 286.77053 408.73226 121.96173 286.77053 

63 1 30.48295 71.72075 102.20370 30-51872 71.68498 

2 30.46696 71.72257 102.18953 30.51163 71.67790 

Table 5.22. Results of Contemporaneous Disaggregation with Missing Values. 

Smoothed Estimates. Average Values in 1000 Iterations. 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incornplete)_ 

TAE 37.03708 37.10982 37.13806 ... 37.34501 21.81447 

ARE 4.62696 4.63873 4.64226 ... 4.66813 5.45362 

Table 5.23. TAE and ARE. Smoothed Estimates. Contemporaneous Disaggrega- 

tion. Average Values in 1000 Iterations. Mean(ARE) = 4.66956. 
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Figure 5.4. Mean of the Disaggregated Filtered Estimates for a RWN model in 1000 

Iterations (First Year was not Considered). Contemporaneous Disaggregation. 
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Figure 5 5. Nlean of the Disaggregated Smoothed Estimates for a RWN model in 

1000 Iterations. Contemporaneous Disaggregation with Missing Values. 
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5.4. CONCLUSIONS AND FURTHER ISSUES 

Method Raking Polynomial Proposed-Filtered Proposed-Smoothed 

ARE - Single Iteration I" 

] 

5.36283 5.46884 5.57298 5.14010 

ARE - 1000 Iterations 
1 

4.95142 4.88312 
1 

5.68202 
1 

4.66956 
11 

Table 5.24. Average of ARE Values. Contemporaneous Disaggregation Methods. 

5.4 Conclusions and Further Issues 

The problem of hoNv to produce tabular data classified by attributes (e. g in a contin- 

gency table urith attributes as columns and points in time as rows) where the only 

ax-ailable information are the vectors of marginal totals by row and columns is studied. 
The high frequency information inside the tables is missing and it is necessary to obtain 

estimates of the elements in the separate vectors 77j, j=1, ---, P using the stochastic 

properties of these series. The aim is to combine monthly and annual information to 

get estimates of the missing values and more precise annual and sector totals. 

The method proposed corresponds to the modelling of the available information by 

state space structural time series models. All the marginal totals (vectors q. and tj(j)) 

are arranged into a special single series and then, Kalman filtering and smoothing is 

applied. Other two methods: IPF (Deming and Stephan, 1940) and the Polynomial 

method (Zaier and Trabelsi, 2007) were applied to a RWN simulated series in order to 

compare these methods with the proposed method in this chapter. 

The ad%-antages of the Proposed Method are: a) the method gives estimates for the 

initial year (this is not possible under the Polynomial method); b) the method gives 

a solution to the ex-ante estimation (when there is not a benchmark available at the 

end of the series, which is a problem under the other two methods); c) the method 

produces estimates of the standard errors of the estimates (which is not possible under 
the other two alternatives). However, it assumes knowledge of the stochastic structure 

of the series involved. 
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5.4. CONCLUSIONS AND FURTHER ISSUES 

Since it is not possible to calculate standard errors in all the methods considered, we 

quantified the quality of the estimation under two possible measures of precision: TAE 

and ARE (Equation 5.3.11). When comparing the averages over 1000 simulated series, 
the polynomial method appears to be less precise, particularly at the beginning of the 

series. On the other hand, the proposed method seems to be the most efficient based 

on the ARE measure. Other measures of precision as those considered in Equations 

E. 2.1 to E. 2.4 (Fair, 1984; Pindyck and Rubinfeld, 1991) in the Appendix E could be 

considered for further experiments. 
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Figure 5.6. Plots of ARE Values. Contemporaneous Disaggregation. 
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Chapter 6 

Reconciliation of Time Series 

6.1 Benchmarking and Reconciliation 

6.1.1 Preliminaries and Proposed Method 

We now consider the case when in addition to the annual and sectorial aggregated 
information, P preliminary vectors of survey estimates of the vectors ? Ij are available', 

j P. Denoting these vectors by yj of dimension n; the problem is that 
P 
2, yj ý6 q. and yj does not comply with i7(j) i=1, m, the vectors of stacked 
j=1 
annual totals. 

In many cases, the population vector of totals 77. and 77(j) cannot be observed and 

only survey estimates z and x(j), respectively, can be obtained as it was discussed in 
P 

equation 5.2.1; but again it is not necessarily true that L yj =z and also yj could 
j=1 

not comply with x(j). Then, it is necessaxy adjust or correct all these survey estimates 

in order to arrive at useful, consistent and publishable values with fulfilment of the 

constraints by row and columns. Also, using a more broad definition of benchmarking; 

we can use the information contained in the more reliable totals by row and columns 

to get more precise disaggregated estimates in the inner cells. 
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6.1. BENCHMARKING AND RECONCILIATION 

Year Period 

Subsectors 

Yl ... Yj ... yp z 

1 YK(i-l)+1,1 - YK(i-l)+li YK(i-l)+I, P ZK(i-l)+l 

2 YK(i-l)+I, l - YK(i-l)+lj YK(i-l)+I, P Zlý(i-l)+2 

K YK(i-l)+1,1 YK(i-l)+lj YK(i-l)+I, P ZKi 

Total x(j) XI(i) ... Xi(i) ... Xp(i) 

Table 6.1. Reconciliation problem for year i, i=I, ---, m. 

The initial configuration is similar to Table 5.1 with the difference that instead of miss- 
ing values, we now have survey estimates without fulfilment of the row and column 

totals. Table 6.1 shows the initial configuration for the year i (i = 1, ---, m). The aim 

is to restore the additivity for each one of these tables with more precise estimates, 

combining all the information available from the monthly and annual estimates, and es- 

timate the respective monthly and annual standard errors (or any measure of precision 

in these surveys). 

According to Equation 5.2.1, it follows that 

I]. + 

x(j) = i7(j) + e(j) (6.1-1) 

Yj = 77i + li 

for i=1, ---, P and j=1, ---, m with yj a vector of dimension nx1, containing the 

preliminary estimates for each cell for each variable in every month and Ij denoting 

the corresponding vectors of monthly survey errors. Notice how, compared with the 

equations 5.2.1 for the contemporaneous disaggregation case, now it is necessary to 

include a third equation to capture the preliminary information. 

Without consideration of the stacked values, all the available information can be or- 

ganized, in a matrix of dimension nx (P + 1), superposing tables that are similar to 

Table 6.1 for the other years. If for each instant t=1, ---, n, we consider the vector 
yt = (ytl, ---, ytp, zt)' of dimension (P + 1) and also consider the vector of annual 
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totals x. (,, = (x., (i), ---, x. p(j))' of dimension P for every year i=1, m; the se- 

ries y' = (YK(i-l)+I; YKi; X. (i)) is constructed juxtaposing the individual series with 

monthly indexes related to the year i=1, ---, m. 

YK(i-1)+2,1 yKij 
X. i(i) 

YK(i-I)+1, P YK(i-1)+2, P YM, P 
ýý 

ZK(i-I)+l 
)ý 

ZK(i-I)+2 
)ý 

ZK j 
X. P(i)7 

i 

Compared with the disaggregation case in the last chapter, now the series to be studied 

is no longer univariate. Now each instant will represent one row in Table 6.1. considered 

as a column vector of dimension (P+ 1) x1 with exception of the last component which 
has dimension Px1. This difference in dimensions of the observations in some instants 

can be handled with the use of appropriate transition matrices. The length of the this 

multi%-ariate series is K+1. Finally, we produce the whole series 

Y-1, if n is a multiple of m 
y 

[YI; 
(6.1.3) 

[YI; YIn; YKm+l i- , Yn], otherwise 

of length n+m, with each single element being a vector of dimension (P + 1) or P. The 

proposed method consists in applying standard Kalman filtering and smoothing to the 

new series y*. This series has all the contemporaneous and temporal estimates by row 

and columns per yeax in Table 5.1. It is necessary to express y* in the state space form 

y, * = Z, *a; + -;, a* = T*a. *, 
-, + t9*. A brief illustration of the state space model for 

reconciliation is presented below for the case of binding totals with P=2 and K=4. 

6.1.2 Binding Estimation for Quarterly Data - Bivariate Case 

The state space form for a simplified case is presented in this subsection as an illus- 

tration. It consists of a system or contingency table with just two variables (P = 2) 

and data collected by quarters (K = 4). The table for the first year appears in Table 

6.2. NN e will consider a binding case here where the. marginal totals are not subject to 

survey error. It means that the only processes including survey errors are the auxiliary 
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information for the subsectors as obtained from a quarterly survey. In this particular 

case, the single series y* is built with the available information as follows 

YII Y21 Y31 Y41 Y51 

Y12 Y22 Y32 Y42 Y52 Y* ý [Ya 
1xx 

. 2(1)_ 
Z1 Z2 Z3 Z4 Z5 

L -1 L -i LJ L- j 

Year Period Y, Y2 z 

1 YI1 Y12 Z1 

2 Y21 Y22 Z2 

3 Y31 Y32 Z3 

4 Y41 Y42 Z4 

Total x(j) X. 1(1) X. 2(1) T.. (1) 

Table 6.2. Tabular representation of the reconciliation data for the first year, P 

=2 and K=4. 

The length of the new series y* is n+m with n defining the total number- of obser- 

vations in the vector z and m the number of complete years. Every component of y* 

has dimension 3x1 with exception of the components in multiples of 5 which have di- 

mension 2x1. Another alternative is to consider the vector 
[X. 

1(1), X. 2(1), X.. (1)], instead 
Of just [X. 

1(1) i X. 2(l)] , in the positions that are multiple of 5. However, this alternative 

gives correlated disturbances in the observation equation with the last element being 

redundant. Now, we will proceed differently than we did in the contemporaneous dis- 

aggregation case by considering the state space models for yj and Y2 considered as 

au-dliary information for t7l and 772. As usual, yj = 77, + tj and Y2 = 772 + 12. Then, 

we will consider different state space models for 171,172,11 and 12, with all the models 

including the irregular terms in the state vector. 

71ti = Zti Cfti ft, 

C'n = Tti Cft-1,1 + 19tj &t, 

t9t, - N(O, Qtj) j-t I 

zt, &tl 
Tt, &t-,,, + i9t, 

- N(O, iQtl) 
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77t2 Zt2 042 42 20 60 

CQ2 Tt2 Cit-1,2 + t9t, 2 642 t2 &t-1,2 + ý0 

t9t2 N(O, Qt2) ýt2 N(O, Ot2) 

Although the terms It, and 42 could be included in the state vector in the models for 

77j, and 77Q, it is better to consider their models separately in order to reduce the size of 

the state vector for the reconciliation model, as will be explained later on. The values 

for the single series y* in the first year are given by 

Yll zlictil + zlicill 

Yll Y12 Z12Cil2 + 212d12 

ZI Zllall + Z12CkI2 

Y21 Z21a2l + Z21a2l 

Y*2 Y22 Z22C(22 + 222622 

Z2 Z21Ct2l + Z22Ci22 

Y31 Z3lCi3l + Z3lCi3l 

Y3 Y32 Z32Ct32 + Z326132 

Z3 
L -j 

Z31Cf3l + Z32Ci32 
LJ 

Y41 Z41CQ1 + Z41CI41 

Y4* = Y42 Z42CQ2 + 242642 

L 
Z4 

-1 L 
Z41CQ1 + Z42a42 

J 

Y5 = , 1(i) 
] 

llall + Z2lCi2l + Z31Ci3l + Z41CQ1 

x 
. 2(i) Z12CQ2 + Z22a22 + Z32a32 + Z42Ct42_ 

and so on for the following years. 

(6.1.6) 

As before, let rj denotes the number of components of the state vector a, j with s= 

1, ---, n+m and j=1,2. Let also ctjs = [a. 9j I, *, i Ci., -3j] 
be a vector of dimension 4rj; 

the state vector a; in the observation and transition equations can be written as the 

concatenation of the individual vectors associated with each column. In this particular 

case, the dimension of this new state vector a* is equal to (4r, + 4r2 + L01 + E02) x1 or a 
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(4r + go) x1 with r= ri + r2 and Lo = Lol + o2- 

9; 6sl; 6.9211 (6.1.7) lal; a2 

[asl; ''*; Cts-3,1; as2; as-3,2; &sl; &a2]f (6.1.8) 

[as;, CD; &sl; &s2ll (6.1.9) 

Notice that this is the same state vector used in the contemporaneous disaggregation 

case in the last section, with the addition of the survey error terms in each subsector. 

Another option would be to include the survey errors t, j in the state vector aj but 

this would make a* to have a bigger dimension with some unnecessary terms. 
3 

The observation or system matrices Z, *, for the first year will be equal to 

ZSI Oill Orl Orl Or2 Or2 Or2 Or2 211 002 

0,1 0,1 0,1 Orl Zs2 Or2 Or2 Or2 OLOI 42 

Zal Orl Orl 0,1 Zs2 Or2 Or2 012 091 002 

i' mod(s, 5) < 4, 

Zs-l, 
l 

Za-2,1 Zs-3,1 Zs-4,1 012 012 012 012 001 00 

0'. 
1 

O'l O'l O'l Zs-1,2 Zs-2,2 Zs-3,2 Za-4,2 001 002 

mod(s, 5) = 5, 
(6.1.10) 

Considering now the transition equation, this takes the form a; = T*a*-, + t9;. In 

the same way as it was done for the contemporaneous disaggregation case, this set of 

equations can be obtained by skipping the Kalman filter updating equations for the 

SSF of y* at the points related to the values x. j(j) and X. 2(i) with i=1, ---, M. This is 

done in order to preserve the stochastic nature of the vector of sector totals z. In this 

way, the state vector of y* is related to the state vector of y* but not with the state 64 

vector of y;. Then, for the first year of observations, it follows that 

diag(T;,, CD, T,,, Ts2), 1<mod(s, 5): 54 
T. = (6.1.11) 

14r+ei mod(s, 5) =5 
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Also, 
[t9s*, 

CD 119.91) t9s2l, 1< mod(s, 5) <4 
(6.1.12) 

04r+, 
o) mod(s, 5) =5 

and 
diag(Q; 1 :5 mod(s, 5): 5 4 s, CD, Qsl)Qs2)1 

- 
0(4r+L))x(4r+e)i mod(s, 5) =5 

6.1.3 General Case 

In this subsection we develop the expressions for the vectors and matrices in the state 

space form for binding and non-binding estimation, any number of variables and sub- 

periods of observation per year. In the same way was done in section 2.5.5. and 5.3.1, 

y, * urill denote each single element in the series y* with s=1, ---, n+M. This time, 

in a different way that was done for the contemporaneous disaggregation case, y, * will 
be a vector of observations with dimension (P + 1) x1 or Px1 according to 

[ytl; ... ; ytp; zt I, mod(s, K+ 1) 1, ---, K 

[X. l(i); ... ; x. p(j)] , mod(s, K+ 1) K+1; 

urith i 1]K+l +1 and mod(a, b) denoting the number a- b[a - 
llb- On the other 

hand, 

[ytl; ... ; ytp; zt]' = yt*+(i-, ) and [x., (i); ... ; X. P(j)l Yi(K+I) 

with t=s- (i - 1). The idea behind Equation 6.1.14 is to consider the vectors of 
annual totals as stacked values at the end of each year. 

Now considering the P state space models with the irregular terms included in the 

state vector 

17ti Za citi 77t2 Zt2 Ctt2 77tp ztp cetp 

all Ttl at-i'l + t9ti Ctt2 Tt2 Ctt-1,2 + t9t2 atp Ttp at-,, p + t9tp 

t9ti N(O, Qtl) t9t2 N(O, Qt2) t9tp N(O, Qtp) 
(6.1.16) 
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and the corresponding P state space models for their associated survey errors, 

In Zil &tl 42 ` Zt2 &t2 etp ztP &tP 

&ti Tti &t-ij + t9ti &t2 = Tt2 &t-1,2 + Ot2 &tP Ttp &t-,, p + Otp 

t9t, N(O, Qtl) 19t2 , N(O, Qt2) t9tp N(O, Qtp) 

(6-1.17) 

If a non-binding total sector is considered, z= il. + Ea state space model will be 

considered for the monthly survey error model in the total sector given by 

Et. = Zt. at. 

at. = Tt. at-,,. + i9t. 

i9t. - N(O, Qt. ) 

A formulation of the general state space model for the new series y* is given by 

the system of equations in Equation 5.2.5 by defining the system vectors and ma- 

trices below. Firstly, the state vector is built concatenating the P state vectors 

ajs = [aj,; ---; aj,, -K+ll plus some extra terms to consider the monthly survey errors 

in each of the subsectors and the total sector. 

C's IC111C182, ; 4; Cls.; 6sl; 6s2; AP]l (6.1-19) 
[Cls, 

CD; 6sl; 61s2; &. 
9p] (6.1.20) 

p 
Then, the length of the state vector is irK + (, o + p. ) with r 2-' rj, rj the dimension 

j=1 
p 

of the single state vector aj, Lo o Qj being the dimension of the state vector &I 'j, j=1 
and Lo. being the dimension of the state vector at. in the monthly survey error model. 

In the following equations, we use the mathematical relationship between the indexes 

t from the original series to the new ones s built for contemporaneous disaggregation 

in Equation 5.2.15, t=S- (i - 1) and i == [S - 11K+1 + 1. Then, the observation matrix 
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can be expressed by 

zt, 0000 zt, 0 

oo... zt, ooo... 

zt, 0 ... ztp 0 zt. 0 ... 0 

z: = mod(s, K= 1) < K, 

Zs-l, l Zs-2,1 Za-3,1 Za-4,1 0000 0(0. +G) 

0000... Za-1, P Zs-2, P Za-3, P Za-4, P O(p. 
+g) 

mod(s, K+ 1) =K+1, 
(6.1.21) 

The dimension of the observation matrix Z* is P+Ix (Kr + g+ if 1< mod(s, K+ 

1) <K or Px (Kr + Ly + Lo. ) if mod(s, K+ 1) =K+1. 

In order to include the annual survey errors in the annual subsector totals, we will 

consider the unobserved vector 

c* = 
0,1 < mod(s, K + 1) 5K 

(6.1.22) 
[el(i); ... ; ep(i)]', mod(s, K+ 1) =K+1 

with i= [S - 1]K+P +1 and j= mod(s, K+ P) - K. Consequently, the covariance 

matrix of the disturbances c* is given by the scalars (which are assumed as known from 
a 

the annual survey in each subsector) 

hs* = 
0,1 < mod(s, K+ 1) <K 

(6.1.23) 

mod(s, K+ 1) =K+1 

with i= [S - 11 K+P +1 and i= mod(s, K+ P) -K according to the index equivalences 

in Equation 5.2.15. In the same way it was assumed by Durbin and Quenneville (1997, 

page 38), Ave will consider E, 
(, ) as a diagonal matrix since otherwise the state vector 

becomes too large. 
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The transition matrix is a diagonal matrix of P+1 matrices given by 

T. * 
diag(T, *, CD; Ts-P(i-1), l; **'; Ts-p(i-, ), p), 1<mod(s, K+1): ýK 

(6.1.24) 
IrK7 mod(s, K+ 1) =K+1 

Finally, the formulation of the transition equation is complete by arranging the vector 

and variance matrix of the disturbances 

1< mod(s, K + 1) :5K (6.1.25) 
04r+e) mod(s, K+ 1) = K+1 

and 

diag(Qs*, CDQs-P(i-1), 11*'*)Qs-P(i-I), P), 1<mod(s, K+1): 5K 
QS = (6.1.26) 

1 

0(4r+g9)x(4r+Lp) 
i mod(s, K+ 1) =K+1 

6.2 Simulation 2 

The theoretical developments of suitable models to predict the actual values in Table 

6.1 are going to be illustrated for a random walk plus noise with binding totals; it means 

when the row and column totals are observed without any survey errors assuming 
ej = 

The RIVN model was presented in Equation 3.2.3. Assuming a RWN model for the 

underlying processes 77tj. A new modification is considered for the model of the aux- 
iliary information ytj. Adding a survey error term in the RWN model, that gives the 

state space model 

ytj = i7tj + itj = atj + etj +itj, etj - NID(O, u2 

fitj (6.2.1) 

atj = at-ij + 'vtj, vtj - NID(O, 012 Vi 

for t=1, ---, n and j=1, ---, P; Etj's and vtj's all mutually independent and inde- 

pendent of ao; and tij representing the distortion to the RWN model corresponding 

167 



6.2. SIMULATION 2 

to the non-observed vector of survey errors for the subsector j at instant t. The un- 
derlying level of the process is assumed to be generated by the random walk, at, but 

like the irregular term, et and the survey errors ftj, they are not directly observable. 

AdditionaRy, assuming the process Itj is an AR(l) process, ftj can be expressed as 

ftj = ojft-ij + Xtj, Xtj - NID (0,0,2 (6.2.2) 
xj 

for j=1, ---, P and t=1, ---, n. This section performs a simulation study in a very 

simple case, assuming P=2 and K=4. The same seed used to generate the values 
in the contemporaneous disaggregation with missing values was used in this case to 

produce comparable results. The experiment consisted on generating one pair of series 

i7l and 172 from the RWN model with initial values ao, = 30, a02 = 70,01 = 02 = 0.7, 
2 a2 q; =3 and v=0.5. 

Their corresponding values will be the same as in Figure 5.1. 

Year Period 171 772 z 

1 28.65669 72.260,18 100.91717 

2 32-33554 64-65780 96.99334 

1 3 24.73287 82.71407 107.44694 

4 42.78914 68.50138 111.29052 

Total 128.51424 288.13373 416.64797 

Table 6.3. Simulated values for reconciliation. RWN model. First year. 

The corresponding vector of totals z with dimension 250 x1 and the vectors x, and 

X2 urith dimension 62 x 1,62 = [25014 are built. Table 6.3 presented above is the 

analogous to the Table 5.1 for this special case in the first year. 

Generating and adding two series of AR(l) survey errors with coefficient 0.7 in both 

cases to the quarter subsector values inside the table, now we produced Table 6.4 which 
does not comply urith the row and column totals. Assuming there are no survey errors 
in these totals (both, by rows and columns), the idea is to disaggregate these totals 

using the information contained in the preliminary survey estimates series. 

The proposed method was applied by building the series y* (s 1, -n+m= 312) 

and writing the observation and transition equations in the form y, * = Z. *a, *, + 
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Year Period Yi Y2 z 

1 27.05718 72.42865 100.91717 

2 30.61360 65.47342 96.99334 

3 26.20821 82.85157 107.44694 

4 45.35098 68.46961 111.29052 

Total 128.51424 288.13373 416.6,1797 

Table 6.4. Simulated values for reconciliation. RWN with AR(1) survey errors. 

First year. 

-1 + t9* with Tsa; 8 

a, == [a.,, c. 1; ---; a,, -3,1 , Cs-3,1; as2) Es2; a, -3,26, -3,2; 
f. 1; 421 

11 01 01 01 10 2626 

01 01 11 01 01, 2626 

11 01 11 01 00 
L26261 

8 

if of of 
882 

Of it of 

-882. 

and 

T 02x2 02x2 02x2 T 

T *= dia 
12 02x2 02x2 02x2 12 

. g OW 12 02x2 02x2 02x2 

OW 02x2 12 OW 
-02x2 

for 1< mod(s, 5) <4 where 

1< mod(s, 5) <4 

mod(s, 5) =5 

(6.2.3) 

(6.2.4) 

02x2 02x2 02x2 

OW 02x2 02x2 

0.7,0.7 
12 02x2 OW 

OW 
J 18X18 

(6.2.5) 

1 0] 

00 

for j=1,2. T, * = 118 for mod(s, 6) = 

(6.2.6) 
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The vector of disturbances v, * is equal to 

t9; : --: 
[Vslfls; 06; V46s2; 06; Xsl; Xs2] 

li 1 :5 mod(s, 5) 4 
8 (6.2.7) 

0118) mod(s, 5) =5 

and 

diag(Q. 
-p(i-, ), 1,06x6iQs-P(i-I), 2iO6x6)Qs-P(i-1), I)Qs-P(i-1), 2)) 1: 5mod(s, 5)<4 

QS 
018xI87 mod(s, 5) =5 

(6.2.8) 

The Kalman Filter was initialised using a diffuse prior. Again, the Moore-Penrose 

inverse was used in the Kalman filter equations obtaining the estimates 9* and 5, * for 
8 

every s=1, --- 312. 

Then, using the vectors 

11 z1 = (119 ll 0 I1(Y3 
2 310 

[l 
1 

01; 02) 

Z2 = (113 110 1'Cý31 0 10) 11; ()t2) 

the estimated values are calculating using 

Z* &2 = Z2, &* 16LS 
a 

and their respective variances 

Var(ý, j) = ZiP, (Zj)' j-1,2 

where P, is the covariance matrix obtained by the Kalman Filter. 

6.2.1 Iterative Proportional Fitting - Results 

(6.2.9) 

(6.2.10) 

(6.2.11) 

(6.2.12) 

The iterative proportional fitting (IPF) or raking method was introduced in the last 

chapter. The main idea is to adjust a matrix of any dimension until the totals by 

row and columns converge to some pre-defined values. The original table values are 

gradually adjusted in several iterations to fit the row and column constraints. The final 
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estimated contingency table after iteration corresponds to the maximum likelihood 

estimates obtained when the probabilities are convergent within an acceptable pre- 

defined limit (Bishop et al., 1975, pages 82-101). 

In summary, the method is implemented as follows: 

1. Take the multidimensional table with initial values t(, 
O) = -- ' for every cell 77 2k-*Up 

tj; t=1, --n; j=1, P in the contingency table associated to every year 

but without adding the marginal totals by row and columns. 

2. Scale the initial values to the first marginal sub-totals (e. g. totals by columns) 
(I)r (0) 17-jo) in each year to derive an estimate: 77tj = 77tj P (0) 

for every cell tj(t 
r, 

I 
77tj 

) 

n; j=1, P in the contingency table associated to every year with the 

superindex r indicating the r-th adjustment by rows. 

3. Repeat the scaling to the marginal sub-total in the other dimension (e. g. totals 
(I)c 

= 
(I)r by rows) to complete one cycle of sS steps 77(l) = 77tj 77tj ti 

Kv 
IT with the superindex c indicating adjustment by columns. 

77tj 

171. 

T 
4. In general at the s-th step, we have 77(s) = 

(8-1) * 17. j(i) for 
tj 77tj P (0) Ks (? ) 

17, j 77tj 

11 'Is. 

5. Steps (1)-(4) are repeated until the factors 
Ks r, -, 1 under 

77tj) 17tj 

3=1 
(0 

ý1)t: 
(0) 

some convergence criterion. Since the procedure is proven to converge when the 

marginal sub-totals are consistent with each other (for example add to the same 

overall total), the choice of convergence criterion only affects the number of cycles 

that %%rill be needed before the criterion is met. 

Tables 6.5 (one iteration) and 6.7 (1000 iterations) show the actual simulated values 

and the corresponding estimates under this method with complete fulfilment of the 

restrictions by row and columns. The application of this method does not permit to 
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produce neither estimates for the incomplete last year at the end of the series nor 

standard error of the estimates. 

The two first plots in Figure 6.1 show the estimated levels for each subsector through 

time. The graphs show how close are the means of the estimated (raking) values 

after 1000 iterations to the means of the simulated (original) values and also how the 

estimated values preserve the behaviour of the original series. The application of this 

method in the reconciliation case shows better performance than when it was applied 

for contemporaneous disaggregation. Also, the difference between the actual and the 

estimated value for a given pair of month/subsector were calculated and plotted in the 

plot at the bottom showing values closer to zero for each subsector. The plot of the 

differences shows corresponding mirror images showing the strong dependence present 

in the disaggregated data and values very close to zero. 
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Actual Values Total Estimates 

Year Period 771 172 77. ýI 

1 26.87852 64.29220 91.16802 26.13927 65.02875 

2 24.33702 58.95520 83.29222 24.54552 58.74670 

1 3 19.00001 58.39089 77.39090 19.27451 58.11639 

4 18.43571 70.80347 89.23918 18.68926 70.54991 

Total 88.64856 252.44176 341'. 09032 88.64856 252.44176 

1 30.84828 64.79764 95.64592 31.35793 64.28799 

2 24.84245 70.78847 95.63092 25.99778 69.63314 

2 3 30.83328 77.11675 107.95003 29.91166 78.03837 

4 37-16156 65.74247 102.90403 36.41822 66.48581 

Total 123.68557 278.44533 402.13090, 123.68557 278.44533 

1 25.52108 59.52836 85.0,1944 26.60833 58.44111 

2 19.57317 79.39541 98.96858 19.35426 79.61433 

62 3 39.44022 75.16697 114.60719 39.01559 75.59160 

4 35.21179 82.30659 117.51838 34.76809 82.75029 

Total 119.74626 296.39733 119.74626 296.39733 

63 1 42.35141 64.84352 107.19493 NA NA 

2 24.88833 66.51744 
I --- 

91.40577 
I 

NA NA 

Table 6.5. Results Reconciliation Case. Ilaking Estimates. Single Iteration. 

Statistic Yeax I Yeax 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 2.94620 6.65988 1.20531 ... 4.34901 NA 

ARE 0.36828 0.83249 0.15066 
I ... 0.54363 

I 
NA 

I 

Table 6.6. TAE and ARE. Raking Estimates. Reconciliation Case. Single Itera- 

tion. Mean(ARE) = 0.56569. 
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Actual Values Tot, --tl Estimates 

Year Period 171 772 77. ýI 

1 30.10970 70.57724 100.63694 30.12782 70.50912 

2 30.11886 70.53026 100.64912 30.12351 70.52560 

1 3 30.12508 70.51454 100.63962 30.13597 70.50365 

4 30-12646 70.53522 100.66168 30.09280 70.56888 

Total 120.48010 282.10726 402-58736 120.48010 282.10725 

1 30.14526 70.54183 100.68709 30.13573 70.55136 

2 30.14947 70.53614 100.68561 30.15971 70.52599 

2 3 30.15734 70.54471 100.70205 30.14422 70.55783 

4 30.15508 70.55313 100.70821 30.16750 70.54071 

Total 120.60715 282.17581 402.78296 120.60715 282.17581 

1 30.48211 71.68994 102.17205 30.47008 71.70197 

2 30.49117 71.68520 102.17637 30.52220 71.65417 

62 3 30.49767 71.68915 102.18682 30.46884 71.71799 

4 30.49078 71.70624 102.19702 30.50063 71.69639 

Total 121.96173 286.7053 '408.73226ý 121.96173 286.7053 

63 1 30.48295 71.72075 102.20370 NA NA 

2 30.46696 71.72257 
1 

102.18953 NA NA 

Table 6.7. Results Reconciliation Case. Raking Estimates. Average 1000 Itera- 

tions. 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 4.18103 4.10984 4.08860 ... 4.28053 NA 

ARE 0.52263 0.51373 0.51108 ... 0.53507 NA 

Table 6.8. TAE and ARE. Raking Estimates. Reconciliation Case. 1000 Iterations. 

Mean(ARE)= 0.52053. 
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Figure 6.1. Mean of the Disaggregated Raking Estimates for a RWN model in 

1000 Iterations (First Year was not Considered). Reconciliation Case. 
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6.2. SIMULATION 2 

6.2.2 Proposed Method - Results 

The results of this second simulation for the RWN model with AR(1) survey errors in 

a reconciliation context axe summarised in Tables 6.9 to 6.12 and Figures 6.2 and 6.3. 

The estimated values add perfectly to the row totals in both the filtered and smoothed 

cases. The annual totals coincide with the original ones after using backward recursions 

in the smootlAng process. 

Tables 6.9 and 6.12 show the results of one single iteration for the two first and the 

two last years (the 63th year was simulated as an incomplete year on purpose). Table 

6.9 corresponds to the application of the Kalman filter and Table 6.12 correspond to 

the smoothed estimates. 

In both tables, the two columns 71, and 712 correspond to the actual values generated 

according to the RNVN model and column 77. corresponds to the row totals. The 

estimated values correspond to the columns ýj and 42. Rom the results, the estimated 

%-alues add perfectly the row totals in both filtered and smoothed cases. The annual 
totals only coincide with the smoothed original ones after using the backward recursions 
but not in the filtering case. 

The sum by ro,. N-s in both sides of the table (actual values and estimates) is equal to the 

shaded column in the middle. The estimated values in Table 6.12 coincide perfectly in 

both, rou-s and columns per year, with complete fulfilment of the restrictions (shaded 

columns and rows). The last two values in the series corresponding to the two first 

quarters in year 63, where the annual benchmark has not been observed yet and being 

exactly the same values in both tables. 

The use of auxiliary information definitely improves the quality of the estimation. 
Tables 6.10 and 6.13 show reduction in terms of the magnitude of the standard errors 

and coefficients of variation from one yeax to the next one with exception of the last 

two years. According to the magnitude of the coefficients of variation, filtered values 

are not useful in the first year of observation (possibly not useful until the third one). 
On the other hand, the values for the standard errors axe relatively small and stable in 
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the Table 6.10 for all the periods of study with exception perhaps of the last incomplete 

year. Standard errors are exactly the same in both subsectors given that the values 

were simulated with the same variances. Since the means are different, the cvs for ý2 

are smaller than ý1. Comparing tables 6.10 and 6.13, there is a big reduction in terms 

of the magnitude of the standard errors and coefficients of variation. These values are 

bigger in earlier years than in the later ones. Filtered values in the first year are now 

better estimated but not enough to use the estimates for the first three quarters in 

the first year. The standard errors and coefficients of variation are relatively stable in 

both tables without considering these three first values. 

The same process was repeated in 1000 iterations. Tables 6.15 and 6.17 show the 

average of these results after repeating the process 1000 times. The simulated values 

converge to the mean of the process (30 and 70 respectively) and practically follow the 

same conclusions obtained in the single iteration case. 

Figures 6.2 and 6.3 confirm that the results for the reconciliation case are better than 

those in the first case of contemporaneous and temporal disaggregation. The two 

series filtered and FS axe very close to the series of original values. These figures show 

how close are the means of the estimated values after 1000 iterations with respect to 

the means of the simulated actual values and also how the estimated values preserve 

the behaviour of each one of the original series. Figure 6.2 show the results for the 

filtered estimates and Figure 6.3 for the smoothed ones. Differences between actual 

and estimated values are close to zero in both figures with less dispersion for the 

smoothed estimates. The range of values of the differences are smaller than those of 

the differences in the first simulation; that means they are closer to zero. 

The proposed method has some advantages over the previous methods above. As 

happened in the contemporaneous disaggregation case and compared with the raking 

method, the main advantage of the proposed method is the possibility to obtain esti- 

mates of the final year (ex-ante estimation) with their corresponding standard errors. 
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Actual Values Total Estimates 

Year Period 171 772 7). ý2 

1 26.87852 64.29220 91.16802 27.14925 64.01877 

2 24.33702 58.95520 83.29222 24.92325 58.36897 

1 3 19.00001 58.39089 77.39090 19.40400 57.98690 

4 18.43571 70.80347 89.23918 18.97550 70.26368 

Total 88.64856 252.44176 ý41.09032 90-45200 250.63832 

1 30.84828 64.79764 81-63651 30.96340 64.68251 

2 24.84245 70.78847 95.63092 26.03952 69.59139 

2 3 30.83328 77.11675 107.95003 30.49359 77.45644 

4 37.16156 65.74247 102.90403 36.37559 66.52844 

Total 123.68557 278.44533 402.13090, 123.87210 278.25878 

1 25.52108 59.52836 85.04944 25.73565 59.31379 

2 19.57317 79.39541 98.96858 19.62171 79.34688 

62 3 39.44022 75.16697 114-60719 39.42992 75.17727 

4 35.21179 82.30659 117.51838 35.72890 81.78948 

Total 119.74626 296.39733 6 '416 14359 120.51618 295.62742 

63 1 42.35141 64.84352 107.19493 42.11710 65.07783 

2 24-88833 66.51744 91.40577 25.03634 66.36943 

Table 6.9. Results Reconciliation Case. Filtered Estimates. Single Iteration. 
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Year Period se (ý, ) se 02) CV WO CV (ý2) 

1 0.70712 0.70712 0.02631 0.01010 

2 0.70542 0.70542 0.02899 0.01197 

1 3 0.70233 0.70233 0.03696 0.01203 

4 0.69857 0.69857 0.03789 0.00987 

1 0.57412 0.57412 0.01861 0.00886 

2 0.62834 0.62834 0.02529 0.00888 

2 3 0.65283 0.65283 0.02117 0.00847 

4 0.66450 0.66450 0.01788 0.01011 

1 0.56881 0.56881 0.02229 0.01007 

9 0.62342 0.62342 0.03185 0.00956 

62 3 0.64778 0.64778 0.01642 0.00785 

4 0.65965 0.65965 0.01873 0.00862 

63 1 0.56881 0.56881 0.01343 0.00877 

2 0.62342 0.62342 0.02505 0.00937 

Table 6.10. Standard Errors and Coefficients of Variation. Filtered Estimates. 

Reconciliation Case. Single Iteration 

Statistic Yeax 1 Year 2 Year 3 ... 
I 

Year 62 Year 63 (incomplete) 

TAE 3.60689 4.87573 4.19792 ... 1.58104 0.76465 

ARE 0.45086 0.60947 0.52474 ... 0.19763 0.19116 

Table 6.11. TAE and ARE. Filtered Estimates. Reconciliation Case. Single Itera- 

tion. Mean(ARE) = 0.70164. 
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Actual Values Total Estimates 

Year Period 171 772 77. ýI ý2 

1 26-87852 64.29220 91.16802 26.64019 64.52783 

2 24.33702 58.95520 83.29222 24.39748 58.89474 

1 3 19.00001 58.39089 77.39090 19.01801 58.37289 

4 18.43571 70.80347 89.23918 18.59288 70.64630 

Total 88.64856 252.44176 341-09032 88.6,1856 252.44176 

1 30.84828 64.79764 95.64592 31.00080 64.64511 

2 24.84245 70.78847 95.63092 26.02879 69.60212 

2 3 30.83328 77.11675 107.95003 30.28763 77.66240 

4 37-16156 65.74247 102.90403 36.36834 66.53569 

Total 123.68557 278.44533 402.13090 123.68557 278.44533 

1 25.52108 59.52836 85.04944 25.92837 59.12107 

2 19.57317 79.39541 98.96858 19.35450 79.61409 

62 3 39.44022 75.16697 114.60719 39.21180 75.39539 

4 35.21179 82.30659 117.51838 35.25160 82.26678 

Total 119.74626 296.39733 416.14359 119.74626 296.39733 

63 1 42.35141 64-84352 107.19493 42.15395 65.04098 

2 24.88833 66.51744 91.40577 25.03634 66.36943 

Table 6.12. Results Reconciliation Case. Smoothed Estimates. Single Iteration. 
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Year Period se (ý, ) se 02) CV 01) CV (ý2) 

1 0.18115 0.18113 0.01584 0.00662 

2 0.10448 0.10448 0.01328 0.00548 

1 3 0.11017 0.11017 0.01747 0.00568 

4 0.16286 0.16286 0.02189 0.00570 

1 0.15649 0.15649 0.01282 0.00610 

2 0.10447 0.10447 0.01301 0.00457 

2 3 0.10469 0.10469 0.01049 0.00420 

4 0.15578 0.15578 0.01062 0.00600 

1 0.16205 0.16205 0.01577 0.00676 

9 0.10950 0.10950 0.01691 0.00417 

62 3 0.10448 0.10448 0.00819 0.00430 

4 0.17804 0.17804 0.01198 0.00513 

63 1 0.31832 0.31832 0.01332 0.00870 

2 0.38865 0.38865 0.02505 0.00937 

Table 6.13. Standard Errors and Coefficients of Variation. Smoothed Estimates. 

Reconciliation Case. Single Iteration 

Statistic Year 1 Year 2 Year 3 ... 
I 

Year 62 Year 63 (incomplete) 

TAE 0.9-1257 5.35547 3.46367 ... 1.78839 0.69095 

ARE 0.11782 0.66943 0.43296 ... 0.22355 0.17274 

Table 6.14. TAE and ARE. Smoothed Estimates. Reconciliation Case. Single 

Iteration. Mean(ARE) = 0.41943. 

181 



6.2. SIMULATION 2 

Actual Values Tot. 11 Estimates 

Year Period 771 712 17. ý1 ý2 

1 30.109 70 70.52724 100.63694 30.12339 70.51355 

2 30.11886 70.53026 100.64912 30.13438 70.51473 

1 3 30.12508 70.51454 100.63962 30.12091 70.51872 

4 30.12646 70.53522 100.66168 30.11316 70.54852 

Total 120.48011 282.1072 402.58736' 120.49184 282.09552 

1 30.14526 70.54183 100-68709 30.12864 70.55845 

2 30.14947 70.53614 100.68561 30.15983 70.52578 

2 3 30.15734 70.54471 100.70205 30.15594 70.54611 

4 30.15508 70.55313 100.70821 30.15645 70.55176 

Total 120.60715 282.17581 402.78296, 120.60086 282.18210 

1 30.48211 71.68994 102.17205 30.44919 71.72286 

2 30.49117 71.68520 102.17637 30-50529 71.67108 

62 3 30.49767 71.68915 102.18682 30.47420 71.71262 

4 30.49078 71.70624 102.19702 30.46804 71.72898 

Total 121.96173 286.7053 408.73226 121.89672 286.83554 

63 1 30.48295 71.72075 102.20370 30.47929 71.72441 

2 30.46696 71.72257 102.18953 30.48089 71.70864 

Table 6.15. Results Reconciliation Case. Filtered Estimates. Average Values in 

1000 Iterations. 

Statistic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 6.51140 6.24243 6.29449 ... 6.34553 3.11674 

ARE 0.81393 0.78030 
1 

0.78681 ... 0.79319 0.77918 

Table 6.16. TAE and ARE. Filtered Estimates. Reconciliation Case. Average 

Values in 1000 Iterations. Mean(ARE) = 0.78249. 
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Actual Values Tot'-III Estimates 

Year Period T) 1 172 71. ýI ý2 

1 30.19970 70-52724 100.63694 30.11953 70.51741 

2 30.11886 70.53025 100.64912 30.13049 70.51862 

1 3 30.12509 70.51454 100.63962 30.11816 70.52147 

4 30.12646 70.53522 100.66168 30.11196 70.54972 

Total 120.5 7014 282.10722 402-58736, 120.57014 282.10722 

1 30.14526 70.54183 100.68709 30.13107 70.55603 

2 30.14947 70.53614 100.68561 30.16298 70.52263 

2 3 30.15734 70.54471 100.70205 30.15787 70.54418 

4 30.15508 70.55313 100.70821 30.15524 70.55297 

Total 120.60715 282.17581 402.78296 120.60715 282.17581 

1 30.48211 71.68994 102.17205 30.46147 71.71058 

2 30.49117 71.68520 102.17637 30.52275 71.65362 

62 3 30.49767 71.68915 102.18682 30.49284 71.69399 

4 30.49078 71.70624 102.19702 30.48468 71.71234 

Total 121.96173 286.77053 '408.73226 121.96173 286.77053 

63 1 30.48295 71.72075 102.20370 30.48002 71.72367 

2 30.46696 71.72257 102.18953 30.48089 71.70864 

Table 6.17. Results Reconciliation Case. Smoothed Estimates. Average Values in 

1000 Iterations. 

StatLstic Year 1 Year 2 Year 3 ... Year 62 Year 63 (incomplete) 

TAE 3.64349 3.45483 3.45785 ... 3.70694 3.12199. 

ARE 0.45544 0.43185 0.43223 ... 0.46337 0.78049 

Table 6.18. TAE and ARE. Smoothed Estimates. Reconciliation Case. Average 

Values in 1000 Iterations. Mean(ARE) = 0.43560. 
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Figure 6.2. Mean of the Disaggregated Filtered Estimates for a RWN model in 

1000 Iterations (First Year was not Considered). Reconciliation Case. 
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Figure 6.3. Mean of the Disaggregated Smoothed Estimates for a RWN model in 

1000 Iterations. Reconciliation Case. 
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6.3. CONCLUSIONS AND FURTHER ISSUES 

6.2.3 Comparison of the Methods 

Table 6.19 and Figure 6.4 compare the ARE values to evaluate the performance of the 

different methods used in this simulation. It was mentioned before that ARE values 

are a measure of the average distance between the original table and the estimated 

one. Figure 6.4 shows the results for different number of simulated series (1 and 

1000). The tuv methods considered in this chapter appear to have similar precision in 

their estimates. However, under 1000 simulations, the raking method (series in red in 

Figure 6.4) appears to be the less precise than the proposed method (series in black 

in Figure 6.4) when ARE values are compared. There is an ascendant droplor the 

series in black (estimates under the proposed method) in the last year as this year is 

incomplete, affecting the quality of the estimation. However, last year values cannot be 

obtained under the raking method and the proposed method (after smoothing) looks 

as the most efficient one using the ARE measure. 

6.3 Conclusions and Further Iswes 

One important issue in the formulation of the state space models in both cases, missing 

values and reconciliation, is dealing with singular matrices in the recursion formulas 

of the Kalman filter. Kohn and Asley (1993) show how the use of any generalised 

inverse, including the Moore Penrose pseudoinverse, produce good estimates. However, 

additional work is needed to avoid the calculation of inverse matrices in the recursion 
formulas in a very similar way to the work done by Pfeffermann and Tiller (2005). 

One possible disadvantage of the use of SSNI is the big dimension of the vectors and 

matrices used in the recursions. There axe two possible ideas to reduce the dimension- 

ality of these elements: the first one is the exclusion of the observation errors I in the 

state vector, which will produce autocorrelated errors in the formulation. Pfeffermann 

and Tiller (2005) haveproposed a modification to the Kalman filter which could deal 

with this problem. 
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Method Raking P roposed- Filtered Proposed-Smoothed 

ARE - Single Iteration 0.56569 0.70164 0.41943 

ARE - 1000 Iterations 0.52053 0.78249 0.43560 

Table 6.19, Average of ARE Values. Contemporaneous Disaggregation Methods. 

Comparison ARE Statistics. Single Iteration. 
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Figure 64 Plots of ARE for each of the methods considered in the simulation. 

Reconciliation Case. 
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Chapter 7 

Conclusions and Possible Areas of 

Further Work 

The problem of combining information from two or more independent sources to derive 

estimates of an unobserved time series has been considered. Three different possibilities 

have been studied: benchmarking, contemporaneous dissagregation with missing values 

and reconciliation of time series data. 

The unh-ariate case was studied trying to incorporate the stochastic properties of the 

series being estimated into the procedure. The aim is to produce benchmark esti- 

mates having smaller mean squared error than the prebenchmarked estimates. A state 

space model approach has been used as this kind of model covers a very wide range of 

models including the APdMA ones. An application to Business Survey Methods has 

shown how important is a correct specification of the components: trends, seasonal- 

ities, trading days and survey errors. Aspects such as the sampling design, rotation 

in the samples, the fact that statistical agencies keep the same coefficient of variation 

during the repeated surveys introduce additional characteristics to take into account in 

the model as, for example, rotation could generate autocorrelated errors; constant co- 

efficients of variation could generate heteroscedasticity; not to mention other problems 

such as non-response, frame deterioration through time, etc. 
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Benchmarking provides better estimates when the annual data provide the most reli- 

able information on the overall level, while the high frequency source provide the only 

available explicit information about the short-term movements in the series. Denton 

Method is a good alternative when there is no additional information about the survey 

or the standard errors of the data. However, signal extraction methods, and particu- 
larly those associated with state space models show better properties as for example, 
they provide standard errors of the estimates. 

Additionally, the use of Generalised Variance Functions to complete the missing stan- 
dard error information, the structural time series modelling of the monthly data and 

the benchmarking process were illustrated for a particular series from Business Surveys 

in the UK. Some warning was done about the considerations to be taken to produce 

standard errors of binding estimates. 

When state space models are used for benchmarking, it is not easy to postulate a 

model for the trend, the seasonalities and the survey errors as they are unobserved 

components of the observed series. Paxticularly, the ideal situation is choosing models 

which produce short length state vectors as much as it possible and they keep the valid 

assumptions in the innovations and standardised smoothing residuals in the model. 

Many series have a structure where the seasonal effects change proportionately with 
the trend. If the trend increases, so do the seasonal effects and if the trend decreases 

the seasonal effects diminish too. This is a characteristic of most of the economic 

series, particularly those referred to as Business Surveys. This structure is known as 

a multiplicative structure, different than the additive one, where the seasonal effects 

remain more or less the same no matter which direction the trend is moving. Then, 

it is necessary to study how the methods applied here must be adapted to treat this 

specific structure of data. 

Regarding the multi%-ariate case, the use of aggregated data permits to eliminate or 

soften some of theweak points of the data collection. When only annual and sector 
totals are available and it is necessary to obtain dissagregated values in months or 

subsectors, a state space formulation presented here shows how to do the estimation 
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of the missing ialues. On the other hand, when additional to the annual and sectorial 

aggregated information, there is a highly correlated information with the missing values 

by sector and month; or even when survey estimates of the same variable disaggregated 

by sector and month are available, a new methodology again using state space models 

was presented. The idea in the second case is to recover the additivity in the tables 

in order to produce consistent and publishable values complying with both row and 

column totals. 

Aspects as the use of generalised inverses in the Kalman filter, addition of survey error 

models and specification of trends and seasonalities are points of focus later on. It is 

also important to consider more challenging structural time series models in the simu- 
lations for the multivariate problems in Chapter 5 and 6. Under the consideration of a 

more general structural model, it is very useful to know how the different components 

of a sectorial time series could be disaggregated for their corresponding subsectors. 
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Appendix A 

Mathematical background - Chapter 2 

Some of the main details to obtain the benchmarked estimates and their variances for 

each one of the methods presented in Chapter 2 are included here. The proofs include 

details not presented in the orienal papers. 

A-1 Quadratic Minimization Approach 

Proposition A. 1.1. Let f (ý - y) be a quadratic forTn (ý - y)A(ý - y) with A being 
a non-singular symmetric nxn matrix. The minimum of f y) subject to the 
restriction 2.2.2 is obtained when 

ý= Y+cr 

where C= A-'L(LA-L)-l and r=x- L'Y. 

Proof. The problem of minimising f (ý - y) = (ý - y)A(ý - y) under the restriction in 
Equation 2.2.2 is a constrained minimisation problem. The "Lagangian expression" 
to be optimized is 

U(ý, A) = (4 - y)A(4 - y) - 2A(x, - L4) 

where A is the vector of Langrange multipliers A= [AI 
j A21 ... ) A,, ]'. If the constrained 

function is optimized, then the final term above will always be equal to zero. Taking 
partial derivatives of f with respect to the elements of 4 andA, equating them to zero, 
and using that 

2A4; L 
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A. 2. GLM REGRMSION APPROACH 

It foHo,. vs that 
! 2u- = 2A(ý - y) + 2LA =0 blý 
au 
,\= -2(x - L'4) =0 

IV 

If r=x- Vy is the vector of discrepancies between the two sets of annual totals, the 
linear system of equations in Equation A. 1.1 can be expressed as 

A4 + LA = Ay, 

L'4 =r+, Uy, 

and its solution as 

xL 0] 
-1 A0 [yj 

0 
IL, 

I] Lrj 
11 

where I is the mxm identity matrix. Obtaining the inverse of this special partitioned 
matrix (FaliN-a and Zoia (2002)), 

L I= r-I 
- A-IL(L'A-IL)-'L'A-1 A-'L(LA-'L)-' [Lý 

01 
- 

(LA-'L)-'VA-' -(LA-lL)-l 

] 

and replacing this matrix in Equation A. 1.2, it follows that 

-A-IL(VA-IL)-IL'+A-IL(LA-IL)-'L' 
(VA-IL)-'L'- (LA-IL)-'L' 

0 
A-IL(LA-ILý-' M 

J 
rA 

Then, the benchmarked estimates can be expressed as 

ý =Y+cr 
where C= A-'L(LA-L)-' as it was required. 

A. 2 GLM Regression Approach 

0 

Proposition A. 2.1. The final BL UE estimators of the parameters a and q are respectively 
given by 

a= -aa2l'L(L'EtL + E,, )-'(x - L'y) 

and 
7', = y' + EL(L'E1L + EeY'(X - L'y), �s =- 

A-'L(L'A-ILý-Ij M 
Lrj 
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A. 2. GLM REGRESSION APPROACH 

with respective variances 

- 1/[1'L(L'EL + EeY'L'1] 

and 
Ej =[Et - EIL(L'EtL + 

EIL(L'EIL + 

Proof. Using the Aitken estimator (Aitken (1935)), this is the BLUE for the model in 
Equation 2.3.3 and can be expressed as 

4= (X, Eu-lx)-IXIEU-I-r 

with coirariance matrix given by 

Cov (ß) = (Xisl�-lx)-1 (A. 2.2) 

where E,,, denotes the true assumed known covariance matrix of the disturbances u. 

Replacing the corresponding values in A. 2.1, it follows that 

L 

10.1. OL 
F, -1] rXI 

0,0 1- 
0ý 

0 IFO E; e 

Thus, 

In -1 [ 1'Ej"LY 

Jx] 

rB 11 ETly 
nrý'VL n 

11 
nn 

1 

16-7. 

[- 

E-11+, 

EZE3L. 

-'L E-ly + LE- D. E-ly + LE, -' Ef 'Lln 
ttet X] 

(A. 2.3) 

nent I-11n t1+ 
LEe 1L', respectively. mrith A= VE-11n, B = 1'E-I, C =E and D=E 

Also, using Equation A. 2.2 it follows that 

i" it A B] nn Cov IEýa 
1; 

[ [C 
D 

(A. 2.4) 

It is easily verified that the inverse of a symmetric partitioned matrix (Anderson (1984), 
Zwillinger and Kokoska, (2000)) can be written as 

[A B] [A-' + A-IB(D - CA-'B)-'CA-1 -A-'B(D - CA-'B)-'l 
CD -(D - CA-'B)-'CA-1 (D - CA-'B)-' j 

(A. 2.5) 
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A. 2. GLM REGRESSION APPROACH 

Combining the results in Equations A. 2.4 and A. 2.5 it follows that 
2 A-' + A-lB(D - CA-'B)-'CA-1 

A-' - A-lB[I + D-'C(-A)-'B]-'D-'C(-A)-l 

Using the matrix identity in Jazwinski (1970), Appendix 7B, Identity 3 

2 A-' - A-'BD-'C(BD-'C - A)-' 
A-'(BD-'C -A- BD-'C)(BD-'C - A)-' 

-(BD-'C - A)-' 

It can be noticed that 

D-1 = (Et + LEe 'L')-l + EeLEe 'L']-'Et 

and using Jaz-. vinski (1970), Appendix 713, Identity 2 

D-1 = E, * - EeL(LEeL + E, )-'L'Et (A. 2.6) 

Replacing the corresponding values, it becomes that 

aa2 = 
-1 

11 E-1 + ntnt 

and finally after some small algebra 

Ca2 =1 1' L(VEtL + 

Now to calculate the variance of the benchmarked estimates, we have 

(D - CA-'B)-l = [I - D-'CA-'B]-'D-1 = [I + D-'C(-A)-'B]-'D-1 
(A. 2.7) 

Again, using Jazwinski (1970), Appendix 7B, Identity 2 

D-1 - D-lC (BD-'C - A)-' BD-1 (A. 2.8) 

-_a2 

replacing Equation A. 2.6 in Equation A. 2.8, it follows that 

Eq = [EI - EJ(VEJ + 
[I - EIL(VEJ + EIL(VEIL + E, )-'LI]' 
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A. 2. GLM REGRESSION APPROACH 

It can be shown that the two blocks not on the diagonal of the matrix in Equation 
A. 2.4. are followed by 

V-= -[A-'B(D - CA-'B)-']'= -(D - CA-'B)-'CA-1 an 

Then, using Equation A. 2.7 

Zýa = [I + D-'C(-A)-'B]-'D-'C(-A)-l 

Using the matrix identity in Jazwinski (1970), Appendix 713, Identity 3 

Eýa = -D-'Caa2 

Finally replacing the appropriate values 

+ EIL(L EIL + E,, )-'L! 

and 

-aa2l' + ua2l,., L(LEjL + 
n 

The estimated bias and the benchmarked estimates are obtained replacing all the boxed 
formulas in Equation A. 2.3 to produce 

a Ua2 + Eý)-ILE, 
+ EJ(VEJ +1 

x 
1'. ri-ly 

11 
,ey+ 

LEJ 

then 

aa2l,,, ET'y + [-aa2l,,, + aa2l,, L(L! EtL 

and after some algebra 

I ti = -qa2l, ",, L(L'E, L + E, )-'(x - 

Now 
ly + EIL(VEIL ++ [y - E,. L(L! EIL + E, )-'L'yl 

EtL(LTIL + E. )-'L! EILE, -lx] 
EEL(L! EIL + E, )-'L! IlnEe-Illn(I - L(LTIL + E. )-lVEtIEe-ly 

+ [I - EeL(VEIL + lnEe-1 1'n[I - L(VEIL + E. )-lVEt]LE. -lx 
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A. 3. ARINIA MODEL BASED APPROACH 

after some algebra 

=y - EtL(LTIL + E, )-'L! y - 1,, aa2l,,, L(VEjL + E,, )-'L'y 
+ EEL(L! EIL + E, )-IVlnUa2l'nL(L'EjL + 

+ 1nqa2l'L(Et-1 - 
(LTIL + 

n 
+ EEL(E, -' - (L'EtL + 

-E, eL(L'EjL+Ee)-lVlnEf-11n nLIE 

but analogously to Equation A. M. 

(VEIL + 

then 

e =y - EJ(LEJ + E�)-lL'y - 1�oa21' L(L'EIL + E, )-lLy 
+ EeL(L'EtL + E, )-lL'InUi2,1'. L(L'ElL + Ej`Vy 
+ 1nOra21' 'nL(L'EtL + E�)-lx + EeL(L'EIL + E, 

, 
)-'x 

- EeL(L'EIL+ Ee)-1V1nEI-111nL(L'EL + Eý, )-lx 

and after more algebra 

ý= (y - 1,, &) EIL(LEIL + E,, )-lx - EtL(L'EIL + E, )-'L! (y - 1,, &) 

to produce 

je = y* EIL(VEIL E, )-1x - EIL(VEIL 

with y* =y-1,., a 

A. 3 ARIMA Model Based Approach 

Proposition A. M. Consider the model 

7- = xyl +u 

0 

Assume q has a N(p, E,, ) distribution and u has a N(O, Eu) distribution, where Eu 
diag(El, E. ). The minimum mean squarrd error estimate of 17 given r is 

i) = E(77 I -r) = i)o + q, 
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A. 3. ARINIA MODEL BASED APPROACH 

where i)o is the minimum mean squared error linear estimate of 17 given y 

(Ef-I +E 71 -1)-' x (Et-y + E, 
7-11A), 

if rl is stationary i)o = E(i7l y) (Et -1 + Ell -1)-Ize-ly if q is not stationary 

and 17, is the correction factor tem 

17c: -z SgL'(LI7L'+ E, )-'(x - Li)o) 

where 
0= COV(71 I Y) = (r-f-' + 

and 
Ej = Cov(, q I -r) =D- f2L'(Lf2L'+ 

Proof. Cleveland and Tiao (1976) (Appendix A. 1) showed that the problem to find 
the minimum squared error linear estimate (NINISE) of 17 given y could distinguish two 
different situations. In the first one, when rh is stationary (all the zeros of 0', (B) lie 

outside the unit circle), it = (p, p ...... u)' = 1,, ji and the MNISE estimate (Cleveland 

and Tiao (1976), Equation AA) is 

E(q I y) = 40 + EtEý I )-'(y + EtEq-114) 
Ir, (Eftl'y 

-1 ) -IEI(El -, y + F"7-10) + EIEl 
- = (El -1 +Ell I) -1 (El-ly + E, 7-114) 

(EI-I +E Irlp-ly +F -11 V- 

On the other hand, they also proved (Cleveland and Tiao (1976), Appendix A. 1, Sit- 
uation 2) that if rh follows a non-stationary ARINIA model (all the zeros of 0,, (B) 
lying on or outside the unit circle) the NINISE estimate (Cleveland and Tiao (1976), 
Equation A. 8) is 

E(j? I y) = 40 + EIEý')-ly 

+ 

In both cases (Cleveland and Tiao, 1976, Equation A. 4 and A. 8) 

I cov(ll I Y) V+ EfFq- 
(EI-I + Ell-irl 

The equations above depend on values of ti and any two of Ey, E, and Ej (the third 
one can be obtained using the relation Ey = Eq + Ee). ji and Ey can be estimated 
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A. 3. ARIMA MODEL BASED APPROACH 

from the ARITNIA modelling on yt and Et could be estimated according to the survey 
experts, the information about the sampling design or using survey microdata. Finally, 
Hillmer and Trabelsi (1987) give an adaptive form to write the benchmarked estimate 
i) , in terms of the prebenchmark estimate i)o and a correction term q,. 

A briefer proof than the one presented in Hillmer and 7ýabelsi (1987) is presented here. 
Sincey =q+t andx =Li7+e then, 

E(x I y) = E(Ltj +eI y) = LE(rj I y) = Lýo 

Also 
ý= E(rj I x, y) = E(rj Ix- Le, y) 

Applying a lemma in multi%-ariate normal regression theory (Durbin and Koopman 
(2001), Appendix 2.13) 

E(x 1 y, z) = E(x 1 y) + E�j-1z 
zz (A. 3.2) 

Cov(x 1 Y, Z) = Cov(x 1 y) + zz zz 

where Evlv2 is the comaxiance matrix EvIv2 = E[(vi- NI) (V2 
- 9,, 2)']. Replacing x= r) 

and z=x- Le in Equations A. 3.2 and A-3.1 

E(q x -Le, y) = E(Y7 I y) +Cov(i7, x -LýO)[Var(x -Le)]-'(x -Le) 
Cov(i7 x- Le, y) = Cov(i7 I y) - Cov(q, x- LýO) [Var(x - Lý0)1`(Cov(q, x- Le))' 

(A. 3.3) 

Given that, 

" E(yj I y) =e 
" COV(17 I Y) = 12 

" Var(x - Le) = Var[L(q - ý0) + e] = Lf2V + E, (A. 3.4) 
" Cov(tl, x - b? ) = E[i? (x - LýO)j - E[i7]E[(x - LýO)] 

= E[il[L(i7 - effl = RV 

and replacing the corresponding expressions of Equations A. 3.4 in Equations A. 3.3, it 
follows that 

lý 
= E(fi ix -Lip, y) = 

%ith q, = IIV(Lf)Ll + E, )-I(x - Lý()) and 

I E4 = Cov(i7 Ix -Le, y) =D- f2L'(LDL'+ 

0 
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Appendix B 

Review of ARMA Model Survey 
Error Variances 

It was discussed in page 73 that Var(ut) = 1. Then, once a model has been chosen 

for the standardised survey errors ut, the discrepancies of this model must follow this 

restriction. In this appendix, the basic ARMA models axe discussed with the respective 

variances of the disturbance term Xt in the model 

Vt 1-- olut-I +"*+ oput-P + xt + Oixt-i +---+ Oat, (B. O. 1) 

B. 1 MA(q) Model 

The AIA(q) model given by 

Ut Xt + OiXt-I +**'+ OqXt-q (B. 1.1) 

is the simplest of the ARMA models. The expectation of ut is zero with variance given 

by 
(U2) + 02 + 02 

7)0,2 -y(O) =Et (B. 1.2) 

Since Var(uj) = 1, it follows that 

aX2 =1 
+ 02 ++ 02 

Iq 
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B. 2. AR(l) MODEL 

The %-alues 01, ---, Oq are hyperparameters being estimated by maximum likelihood 

prior to the filtering and smoothing of the series of study. 

If q=1, then using Equation 3.4.16 and 

T= 
1], Q= 

[10 
or2X 

002 ol 01 

it Mows that 

vec(Po) [I, -T0 Tl-lvec(Q) 

10011 
01000 

OrX2 
00100 

0001 02 

1+02 

0 
OX2 

0 

02 

and then 
-, +w- 

02 

B. 2 AR(1) Model 

The AR(l) process is 

ut'ý-, = out-I + xt; 

The expectation of uj is zero for all t, while its variance is given by 

(B. 1.4) 

(B. 1.5) 

(B. 1.6) 

(B. 1.7) 

(B. 1.8) 

(B. 2.1) 

00 Co 00 

-y(0) = E(u2t) = E(E Oixt-j)2 1: 02jE(x2t-j) = orx2 
Z 02i = ux2l(1 - 02) =1 

j-o j=O j=O 
(B. 2.2) 
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B. 3. AR(2) MODEL 

Then because it is assumed that Var(ut) = 1, 

cr = 1- 452 (B. 2-3) 

The %-alue 0 is a hyperparameter and is estimated using maximum likelihood before to 

start the Kalman filter and the parameter ax2 is a function of 0. Using Equation 3.4.16 

and T and Q= ax2 it follows that Po 1- a2 ;; 7 X 

B. 3 AR(2) Model 

The next model is an AR(2) given by 

? it == OlUt-l + 02Ut-2 + Xt t=1, --. n (B. 3.1) 

Now, the expectation of ut is zero for all t, while 

-t(O) = E(U2) 
= OIE(utut-1) + 02E(utUt-2) + E(Xtut) t (B. 3.2) 
= 01-y(l) + 02-y(2) + cX2 

Also, 

E(utut-1) = OIE(ut-lut-1) + 02E(ut-, Ut-2) + E(u 
I 
t-, Xt) 

(B. 3.3) 
= OlY(O) + 027(l) 

and 

(U2 E(utUt-2) 
= OIE(ut-, Ut-2) + 02E 

t-2) + E(Ut-2Xt) 

(B. 3.4) 
= 0110) + 02-f (0) 

Dividing Equations B-3.2 - B. 3.4 by -y(O), a well known system of equations known as 
the Yule-NN"alker equations is derived with 

2 

OIPI - 02P2 
(B. 3-5) 
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BA AR(P) MODEL 

and the -. -alues of p, and p2 being the solution of the system equations 

PI = 01 + 02PI 
=ý'- 

(1 - 02)P1 = 01 
(B-3.6) 

I 

P2 = 451PI + 02 

I-OIPI+P2 

=02 

e 112 Solving this system of equations, it follows that pi and p2 Then 1 02 1-02 

since Var(ut) = 1, it follows that 

1= 
(1 - 02)17X2 

(B. 3.7) 
(1 + 02)((l - 02)2 - 02 

and then, 
02 (1 + 02)((l _ 02)2 

2 (B. 3.8) 
X 

and a2, is a function of the hyperparameters 01 and 02 following the stationary restric- 

tions (see for example Shurnway and Stoffer (2006), page 97) 

01 + 02 (B. 3.9) 

0'2 - 01 (B-3-10) 

1021 <1 (B. 3.11) 

BA AR(p) Model 

In general, considering the AR(p) model given by 

ut = Olut-, +---+Oput-p+xt t= 1, --- n 

Themariance of ut is given by 

a2 
-Y(O) x (B. 4.2) 

1- OIPI - 02P2 OpPp 

where the values pl, ---, pp are given as the solution of the Yule-NValker equations 

PI ý-- 01 + 02PI +***+ OPPP-1 

P2 ý OIPI + 4; ý2 4- 
***+ OpPp-2 

(B. 4-3) 

Pp ý OlPp-I + 02P; P-2 ++ Op 
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B. 4. AR(P) MODEL 

Making Var(uj) = -y(O) = 1, then it is possible to get the corresponding value of OX2. 

This %-alue . N-Ul be written as a function of the hyperparameters 01, ---, op. 

Example 

Considering the final model in Chapter 4, and in particular the SARAIA(l, O)X(1,0)12 

model for the survey errors; this model can be seen as an special case of an AR(13) 

v6th 01 ='-- Ov 012 = 4, and 1013 ý -OýD and Oi =0 for i=2, ---, 11 (Harvey, 1993, page 
136). 

Then, the -. -ariance of ut is given by 

2 

-f(o) = -- . (B. 4.4) 
1 OPI - 41)P12 - OPM 

where the values PI i P12 and P13 come from the solution of the corresponding system 

of Yule-INalker equations given by - 

PI 0 +'ýPPII - 041ýP12 

P2 --2 45PI + 41ýPlO - 041ýPll 
(B. 4.5) 

P13 '-' OP12 + 41ýPl - 0410 

The solution of the system pro%ides the values 
o(i+o10(D) 

Pi Z- 1+ 0124) 

0119 - 

012 +e (B. 4.6) j+012(D 

(D-012 (D 2+ 010e2 + 012 
P13 z2 - 1+, 012(D 

and finally 

a%2 
+ 1)(0 _ 1)(0 + 

(B. 4.7) 1+012,1) 
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B. S. ARNIA(l, l) MODEL 

B. 5 ARTVIA(1,1) Model 

Considering the ARAIA(1,1) model given by 

ut olut-I + Xt + oixt-I 

Then, 

UtUt-k lOlUt-lUt-k + XtUt-k + OIXt-lUt-k 

-y(k) 01-y(k - 1) + -tux(k) + 01-yux(k - 1) 

It must be noticed that 

-y, x(k) =0 if k>0 

(B. 5.1) 

(B-5.2) 

(B. 5.3) 

and follo-w-ing the last line in Equation B. 5.2, the next system of equations is obtained 

, (O)=01-, (j)+a2+0 
X(_l) yx 17U (B. 5.4) 

, Y(l) = 101, Y(o) + ola2 
X 

and in particular, since 

E(utXt-, ) = OIE(u-t-lxt-1) + E(xtxt-1) + OIE(xt2, 
-, 

) 
(B. 5-5) 

(01 + 004 

then the systern of equations can be %Titten as 

a2 (1 + 01 (01 + 01» 
x (B. 5.6) 

01, oler2 
x 

In the last system of equation, the solution for -t(O) is 

(1+02 + 20101)ax2 
-)(0) =1= -- 

I_ 
02 (13.5.7) 

11 

and then, it follows that 
2 

i= 
j+O, 2 +20101 

(B. 5.8) 
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B. 6. ARNIA(2.1) MODEL 

Making Nfar(ut) = -y(O) = 1, then it is possible to get the corresponding value of ax2. 
This value urill be written as a function of the hyperparameters 01, ---, op. 

Since p=1, q=1, then using Equation 3.4.16 and 

T= 
1 ], 

Q= 
[10 

1] 
C2 (B. 5.9) 

001x 02 0 0] 

it follows that 

vec(Po) = [I,, - To Tl-lvec(Q) (B. 5.10) 

and then (see (Durbin and Koopman, 2001), page 112) 

1 Po = 

(1-02)0 

14-02+200 (B. 5.11) 

B. 6 ARIvIA(2,1) Model 

Now considering the model AR. N[A(2,1) model given by 

Ut OlUt-I + 02Ut-2 + Xt + OIXt-I (B. 6.1) 

Then, 

UtUl-k OlUt-lUt-k + 02Ut-2Ut-k + XtUt-k + OlXt-lUt-kXt-lUt-k 
(B. 6.2) 

-y(k) 01-y(k - 1) + 02-y(k - 2) + -yux(k) + Oly,, x(k - 1) 

Again, it must be noticed that 

-y, x(k) =0 if k>0 (B. 6.3) 

and following the last line in Equation B. 6.2, the next systern of equations is obtained 

-1(0) = 01-y(l) + 02-y(2) + ax2 - 

= 01, Y(O) + 0, 2, Y(l) + ola2 (B. 6.4) x 

-y(2) = 01-y(l) + 02-y(O) 

204 



B. 6. ARMA(2,1) MODEL 

and in particular, since 

01i7, i2 + 40'2'(UX(-1) + olu 2 
x 

01+01 2 
(B. 6.5) 

1-02 

then the systern of equations can be written as 

01+02 
01-1(1) - 02-y(2) = a? 

1-02+01 1 
1-02 

1), Y(I) = _0 a2 
(B. 6.6) 

01-1(0) + (02 -Ix 

02-y(O) + 01-y(l) - -y(2) =0 

In the last system of equation, the solution for -y(O) is 

22 
-y (0) = 

(U; (02 
- 20101 - 

010102 
- 01 - 1) 

(B. 6.7) (01 -1+ 02)(01 +1- 02)(1 + 02) 

and then, it follows that 

2 
(01 -1+ 02)(01 +1- 02)(1 + 02) 

(B. 6.8) ai ý (02 
- 2010, - 

010,02 - 02, - 1) 

Making Var(uj) = -1(0) = 1, then it is possible to get the corresponding value of a. 2. 

This value uill be written as a function of the hyperpararneters 01 ...... op. 
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Appendix C 

MPI and ABI - Key Facts 

Fact MIDI ABI 

First held in 1998. It re- 

Date Commenced 1958 placed several sector specific 

annual inquiries. 

Statutory/Voluntary Statutory Statutory 

Frequency tonthly Annual 

Main Information Col- 
Total Turnover Total Turnover 

lected 

Number of Employees Number of Employees 

Export Turnover Employment Costs 

Full-time/part-time and 
Purchases of goods and 

male/female employees 
services 

(quarterly) 

* Orders on hand (engineer- 
* Taxes and levies 

ing industries) 

* Export orders on hand 
* Stocks 

(engineering industries) 

* New order (engineering in- 
* Capital expenditure 

dustries) 

* New export orders (engi- 

neering industries) 
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Fact MPI ABI 

Businesses in the produc- 
tion, construction motor Businesses in the produc- 

Respondents trades, wholesale, retail , tion sector SIC03 
catering property financial 

and services trades sectors. 

Sample size 9000 each month 74000 each year 

Frame IDBR IDBR 

Coverage 63% by employment 50% by employment 

srs with complete coverage 

of businesses with employ- srs with 100% coverage of 
Method ment above a threshold of businesses with employment 

150 (or 50 in some indus- above a threshold of 250 

t ries) 
Target Response II. S0% 85% 

Users of Results lop * lop 

UK National Accounts * UK National Accounts 

ONS Labour Nfark-et Divi- 

sion 

Source: National Statistics (2006) 
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Appendix D 

Standard Industrial Classification 

Main Division Description 

A Agriculture, Hunting and Forestry 

B Fishing 

C Mining and Quaxrying 

D Manufacturing 

E Electricity, Gas and Water Supply 

F Construction 

G Wholesale and Retail Trade: Repair of Motor Vehicles, 

and Personal Household Goods 

H Hotels and Restaurants 

I Transport, Storage and Communication 

i Financial Intermediation 

K Real Estate, Renting and Business Activities 

L Public Administration and Defence: Compulsory Social Security 

M Education 

N Health and Social Work 

0 Other Corm-nunity, Social and Personal Service Activities 

P Private Households with Employed Persons 

Q Extra-Territorial Organisations and Bodies 
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Appendix E 

GVF models - Example 4.6.1. 

The modelling to obtain the standard deviation values of the estimates prior to January 

2002 in the MPI example is presented in this Appendix. The final model was obtained 

using Generalized Variance Functions (Wolter, 1985). Equations 4.6.3 - 4.6.7, which 

assume a relationship between the relative variance and the estimates were used but 

also linear and quadratic relationships between standard deviations and variances with 

the estimates obtained in each period of observation. The model with the best fitting 

was that one relating the estimators with their corresponding standard deviations. 

E. 1 Initial GVF Model 

According to Equation E. 1.1 and using the model 

2 
s. ̂e. (yt) : -": #80 

+, 3lYt + 02Yj +6 

The scatterplot between the estimated standard deviation of the estimates and the 

estimates shows a positive association in Figure E. 1. The correlation between the 

standard deviation of the estimates and the estimates is equal to 0.6400143. 

Using R, version 2.0, the corresponding output for the model 6 is as follows. 

Residual standard error: 1334 on 21 degrees of freedom Multiple R-Squared: 0.4157. 

Adjusted R-squared: 0.3601 F-statistic: 7.471 on 2 and 21 DF. p-value: 0.003544. Null 
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E. I. INITIAL GVF MODEL 

0 

14000 

0 

0 

12000 

10000- 

8000- 

60000 70000 80000 90000 100000 110000 

saw 

Figure E. l. Scatterplot estimated standard deviation of the estimates vs. estimates 

Variab e oe cient t. rror value F-value 
Intercept 8048.00 13400.00 0.601 
Estimates -0.04224 0.2998 -0.141 0.889 
Estimates 2 0.0000007 0.000001 0.468 0.644 

Table E. 1. Coefficients of the initial regression model. 

deviance: 64007455 on 23 degrees of freedom. Residual deviance: 37397973 on 21 degrees 

of freedom. AIC: 418.33 

This is a significant model but the coefficients are not significant. Using a backward 

procedure, the next model to evaluate corresponds to 

s. e. Oo + 32 yt' + (E. 1.2) 

Variable oe cient t. rror t va ue P-value 
Intercept 

2 
6169.00 1297.00 4.757 1 0.0000951*** 

Estimatp.. -, 0.0000005 

1 

0.0000001 3.952 0.000678*** 

Table E. 2. Coefficients of the initial quadratic regression model. 

Residual standard error: 1304 on 22 degrees of freedom. Multiple R-Squared: 0.4152. 

Adjusted R-squared: 0.3886. F-statistic: 15.62 on 1 and 22 DF, p-value: 0.000678. Null 
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E. I. INITIAL GVF MODEL 

deviance: 64007455 on 23 degrees of freedom. Residual deviance: 37433338 on 22 degrees 

of freedom. AIC: 416.35 

This model looks better as it is significant, all the parameters are significant, and the 

AIC is smaller than the model before. There was a small lost in terms of R' but now 

all the parameters axe significant. 

This alternative provides the model given by 

Y2 s. ̂e. (yt) = 6169 + 0.0000005 t+f 

0 

9110-6 10-5 1.2'10^-5 1.4'10'-S 

xsnw 

Figure E. 2. Scatterplot relative variahce vs. inverse of the estimates 

Since there was a negative association between the relative variance of the estimates 

and the estimates in this example, the scatterplot between relative variance and the 

inverse of the estimates has a positive association as it is shown in Figure E. 2. The 

correlation between relative variance and inverse of the estimates is equal to 0.2267701. 

Using R, version 2.0, the corresponding output for the model I is as follows. 

Residual standard error: 0.003381 on 22 degrees of freedom. Multiple R-Squared: 0.05142 

Adjusted R-squared: 0.008308 F-statistic: 1.193 on 1 and 22 degrees of freedom, the p- 
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E. l. INMAL GVF MODEL 

Variable oe cient t. rror t va ue P-valu-e 
intercept 0.084 O. UU, 52 1.6020 0.1234 

Inverse(Estimates) 531.3052 486.5000 1.0921 

1 

0.2866 

Table E. 3. Coefficients of the regression model. Complete model 1 

value is 0.2866. Correlation of Coefficients: Cor(Intercept, Inverse(Estimates))=-0.9912. 

Null deviance: 0.00026505 on 23 degrees of freedom. Residual deviance: 0.00025142 on 
22 degrees of freedom. AIC: -201.09 

In conclusion, this is not a good model as it is not significant, neither the intercept nor 

the slope are significant. Using backward regression, the output above suggest the use 

of a constant model. 
V2 =)3 0 +, E 

Variable Coefficient Std. Error It value P-value 
Intercept U. U14U U. UUU-( 1 20.2494 U. UUUU 

Table EA Coefficients of the regression model. Constant model 

(E. 1.3) 

Residual standard error: 0.003395 on 23 degrees of freedom. Multiple R-Squared: 2.27le- 

032 F-statistic: Inf on 0 and 23 degrees of freedom, the p-value is NA. Null deviance: 

0.00026505 on 23 degrees of freedom. Residual deviance: 0.00026505 on 23 degrees of 
freedom. AIC=-201.82 

The last model is clearly not a very good model based on the significance of the model 

or the R' value. A model without intercept in the equation above was implemented. 

However, following (Draper and Smith, 1998, page 27): "The omission of 6o (the 

intercept) from a model implies that the response is zero when all the predictors are 

zero. This is a very strong assumption which is usually unjustified... ". They also 

claims that R' does not make any sense in this case because the denominator in the 

definition of R' has a null model with an intercept in mind. Then, the R2 should 

not be compared to those models with an intercept. The Akaike information criterion 
(AIC) is a measure of fit taking into account the parsimony of the model by penalizing 
for the number of parameters in the model and it will be the measure to be used to 

compare the fitting of the models. 
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E. I. INITIAL GVF MODEL 

Under the assumption that 1/1 =0 implies V' = 0, a new alternative is 

ýr2 
= p, /yt IE 

which is equivalent to the model 

V'ar(yt) =, Olyt + E* 

The output for this model is 

Table E. 5. Coefficients of the regression model. Model without intercept 

Residual standard error: 0.003494 on 23 degrees of freedom. Multiple R-Squared: 0.9437. 

Adjusted R-Squared: 0.9413. F-statistic: 385.8 on 1 and 23 degrees of freedom, the p-value 

is 6.66le-016. Null deviance: 0.00026505 on 23 degrees of freedom. Residual deviance: 

0.00026505 on 23 degrees of freedom. AIC=-200.44 

The R-Squared is not interpretable here. The AIC value is not smaller than the 

constant model. The best alternative under this model (although not a very good one) 

is given by 
ýr2 

= 0.0140 + 

(66.38 * **) 

Multiple R-Squared: 2.27le - 032 AIC = -201.82 

213 



E. 2. FINAL GVF MODEL 

0 

f 04 

a 

-a 

o2O 

00 

0 

00. 

0 0 

0 

0 

t Ouanbles 

Figure E. 3. Residual Diagnostic Plots. QQ Plot. Final Model. 

E. 2 Final GVF Model 

Among the final three possible models, using the RI criterion the model finally chosen 
is given by 

I Y2 +6 s. e. (yt) 6168.73 + 5.45e - 07 t 
(1296.88 **) (1.38e - 07 * **) 

with its corresponding graph in Figure 4.3 in the main document. 

Figures EA - E. 6 summarizes the main diagnostic plots for the residuals of the final 

model. Other diagnostic tests were presented in Table E. 6 in the main document. All 

the plots does not show evidence of non-normality, autocorrelation or heteroscedastic- 

ity. However, Figures E. 3 and E. 6 show the presence of an outlier corresponding to the 

observation 20 (August 2003). This observation was not considered into the analysis 

and a new model was obtained in the next section. 
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Figure EA Standardised Residuals vs Fitted Values Plot. Final Model. 
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Figure E. 5. Autocorrelation Function of Residuals. Final Model. 
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Figure EA Cook's Distances Plot. Final Model. 

E. 2-1 Final Model without Outlier 

After deleting the observation 20, which was an outlier according to the diagnostic 

plots in the last section, the final model follows the equation given by 

s. ̂e. (yt) 5878.68 + 5.59e - 07y 2+f 
t 

(1040.77 (1.10e - 07 * **) 

Figures E. 7 - E. 10 summarizes the main diagnostic plots for the residuals of the final 

model. Other diagnostic tests were presented in Table E. 6 in the main document. All 

the plots does not show evidence of non-normality, autocorrelation or heteroscedastic- 

ity. However Plot E. 10 show the presence of two influential observations 12 and 15 

(December 2002 and March 2003). Keeping taking out influential observations, finally 

we got a model without five influential observations 5,12,15,20 and 24 which is 

presented in the next section. 
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Figure E. 7. Residual Diagnostic Plots. QQ Plot. Model without Outlier. 

E. 2.2 Final Model without Influential Observations 

After deleting five influential observations which were detected through the Cook's 

distance plot, the final model takes the form 

I y2 + 15 s. e. (yt) 3159.47 + 8.57e - 07 t 

(1357.22 **) (1.34e - 07 * **) 

Figures E. 11 - ?? summarizes the main diagnostic plots for the residuals of the final 

model. Other diagnostic tests were presented in Table E. 6 in the main document. All 

the plots does not show evidence of non-normality, autocorrelation or heteroscedastic- 

ity. There is no presence of outliers or influential points in this case either. 

Even though, the model without influential observations has a higher value of R' and 

good performance in the diagnostic plots, it was estimated under 19 observations only. 
The gain in the adequacy of the model is obtained under the loýs of the number of 

observations and in this particular case, this loss is more than the 20% (5/24) of the 
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E. 2. FINAL GVF MODEL 

Figure E. 8. Standardised Residuals vs Fitted Values. Model without Outlier. 

original number of observations. To evaluate if the loss of information compensates the 

gain in the fitness of the model other criteria were used to evaluate the two final possible 

models. It is therefore desirable to have some quantitative measures to evaluate the 

performance of both models, one without the outlier and the other without the outlier 

and the four influential observations. If the improvement is too little, it would be 

better to keep the influential observations in the dataset as the loss of information 

is quite considerable. Four different measures of performance were considered with n 
denoting the number of 

-observations 
with values 24,23 or 19 in the respective models: 

(a) Mean Square Error. 
n 

MSE =n 
E(yt 

t 
)2 (E. 2.1) 

t=1 
(b) Mean Percent EYT-or. 

n 

AIPE Yt Yt (E. 2.2) 
n 

1: 
yt t=1 

(c) Mean Absolute Percentage Error. 
n 

MAPE 1: 1 Yt - ýt (E. 2.3) 
t=1 
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10 12 

Figure EA Autocorrelation Punction of Residuals. Model without Outlier. 

(d) Mean Square Percentage Error. 

1n2 
AfSPE 

n 
1: yt - ýl (E. 2.4) 
t=l 

( 

yt 

) 

For the model under consideration in Equation 4.6.8, yt = sx. (O). The first quantity 

calculated in Equation E. 2.1 is a quantitative measure of how closely the estimated 

values under a particular model follow the actual values. This is a measure of dispersion 

and its magnitude can only be evaluated by comparing it with the average size of 

the variable of study. The last three measures in Equations E. 2.2 - E. 2.4 make this 

comparison, in the last two the absolute value and the square of the value are calculated 

to avoid the problem of positive and negative errors canceling and penalizing large 

individual errors more heavily (Fair, 1984; Pindyck and Rubinfeld, 1991). According 

to the results in Table E. 7, all the last three relative measures are small (values lower 

than 10%) and quite similar. Since the results are very close for the two optional 

models, we will work -%ith the model losing less amount of information that is the 

model with the outlier in the second column of Table E. 7 and given by the Equation 

in page 210. 
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F-2. FINAL G%F MODEL 

A. Hegression Estimates 
Model Model (-1 obs) Model (-5 obsY- 

Coefficients (p-value) 
Intercept GIGS. -t3***(0.00) 5S78.68***(0.00) 3159.47*(0.02) 

Estimates2 5.45e-7***(0.00) 5.59e, -7***ý0.00) 8.57e-7***(0.00)_ 
Diagnostic I ests -of the Hesiduals 

Test Statistics (p-value) 
Shapiro-Wilks 0.9.1(0.19) 37 050 9 0.92 0.12 
Jarque-Bera 3.72(0.15) : 0 13 0,57 1: 

ý ý 
1.800.41 

Ljung-Bo. x 15.48 0.27 7.480.82 13.53(0.41) 
Box-Pierce 

ý 
10.70 O. 

Q 
8.74 0.79 

1 1 

0.97 4.66 
Durbin-Watson, lag 1 2 ý 0.12 2.490.2 ,4 

1 1 
2.580.18 

Durbin-Watson, 1 12 ag= : 01? 0.32 
ý 

1 150.61 
L 

0.970.56 
Homoscedasticity 0.12 0.72 0.73 0.39 1 0.270.60 

L_ 
-. 

H 
7ndex 

R-squared 0.42 0.55 0.71 
Adjusted R-squared 0.39 0.53 0.69 

AIC 416.35 38,8.91 313.14 

Table E6. Estimates and Test Diagnostics GVFs- 

F Statistic 11 Model W obs) I Model (-5 obs) -i 
-NISE 21 1 15SGT3-1 19-11568 
MPE 11 0.0032 (0. %) O. OOGI (0.6/o) 
MAPE 'I'M - - - - 

0.0954-(9.5%) 
N 1 s pr 11 0.0114 (1.1%') 7TI53 (1.5%) 

Table E. 7. Mean Square Error. Related Measures for Comparison Between Models 
without One and without Five Observations RcsPectivelY- 
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Figure E. 10. Cook's Distances Plot. Model without Outlier. 
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Figure E. 11. QQ Plot and Residuals vs Fitted Values. Model without Influential 
Points. 
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