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Benchmarking corresponds to a combination of two sources of information on a given
variable. In many situations, the problem consists of combining a series of frequent
data with a series of less frequent but more accurate data for producing more accurate
estimates of the former series. For example, estimates of population characteristics are
derived from the last census and researchers re-estimate the values for the time gap

between two censuses using more regular information. In what follows we focus in the
problem of benchmarking monthly data with annual estimates; then, the benchmarking

consists of forcing the sum of the monthly signals to equal the signal of the benchmark.
Alternative estimators have been proposed in the literature for benchmarking. When
the adjusted series agrees exactly with these benchmarks, the benchmarking is called
binding. The binding process is implemented by setting the variance of the annual
survey errors to zero. However, it is necessary to account for the variance of the
annual survey errors when computing the variances of the benchmarked estimators.
In this thesis, we develop the theoretical expression of the correct variance as well as
an expression for the excess in the variance due to the binding process. The results
are extended to the most known benchmarking methods proposed in the literature.
An application to business surveys used for official statistics in the UK is presented,
illustrating some particular issues regarding the state space modelling. Finally, the
problem of how to prepare tabular data classified by attributes as columns and points
In time as rows 1s analyzed. This multivariate extension of the benchmarking problem
distinguishes two basic type of problems: when only marginal totals are available
(contemporaneous disaggregation) and when the aggregates do not correspond with

the sum of the disaggregated values by year and/or by attributes (reconciliation). The

scope of this thesis is based basically in a state space model approach.
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Chapter 1

Introduction

1.1 The Benchmarking Problem

Repeated surveys are widely used in many statistical offices to obtain estimates for
a set of variables at regular intervals of time and to follow their level through time.
For instance, official business surveys are carried out to estimate monthly production,
monthly sales or quarterly -capita.l expenditure (National Statistics, 2004; DANE, 2006);
labour force surveys are also conducted monthly to estimate the number of employed
and the rate of unemployment (Holt and Skinner, 1998; National Statistics, 2001;
Bureau of Labor Statistics, 2005) and, as an additional example, monthly surveys are
conducted at regular intervals to measure vote preferences (Freeman, Houser, Kellstedt
and Williams, 1998; Erikson and Wlezien, 1999; Chanley, Rudolph and Rahn, 2000;
Yang, Goldstein and Heath, 2000).

These type of surveys are designed mainly to estimate finite population parameters
such as totals and changes in totals and means over time. According to Sarndal,
Swensson and Wretman (1992), page 279, remark 9.9.2, the “design and estimation for
such surveys may require special methods, for example, the use of time-series analysis
combined with design or model based survey sampling tools.”. The application of
time series methods to repeated surveys was proposed with the aim of improving
estimates in these surveys. Bell and Hillmer (1987a) and Binder and Hidiroglou (1988)

make a distinction between two approaches: the “classical sampling approach” and the

1



1.1. THE BENCHMARKING PROBLEM

“time series approach”. Regarding the “classical sampling approach” (Tikkiwal, 1979;
Wolter, 1979), the parameter of study is assumed to be an unknown constant and
all the variability comes from the sampling. On the other hand, in the “time series
approach”, the parameter is assumed to be a random quantity produced by a stochastic
process and this gives an additional “source of variability”; see for example Blight and
Scott (1973); Scott and Smith (1974); Scott, Smith and Jones (1977); Jones (1980);
Bell and Hillmer (1987b); Binder and Hidiroglou (1988); Duncan and Kalton (1988)
and Pfeffermann (1991).

We will denote the value of the unobserved population true series (signal) at the time

t as 1;. Using the time series approach, Smith (1978, page 208) justifies the approach
thus; “... how strong is the assumption that (the parameter) 7, is an unknown constant.

It implies that n; cannot be predicted in any way from knowledge of the previous values

Ni—1,Ne—2, €tc. Surely in most repeated surveys the parameter would change only
moderately with time, and hence knowledge of n;_; would be very useful in predicting

n:. To ignore this information seems very wasteful”.

Scott and Smith (1974) combined time series and sampling by considering the decom-
position

yt=ﬂt+€t t=1j"'jn (11.1)

where 73, is the signal at time t, £; is the sampling error associated with y; representing
the survey estimate of 7, at time t. Therefore, the equation above decomposes the

observed series y; into the signal 7; plus a noise ¢; with t denoting the repetition of the

survey in n periods.

The estimate 3y, based on the data at time ¢ may be adjusted to increase the ac-
curacy of the estimation of 7;. The most common adjustments made to the peri-
odic observations are signal extraction (smoothing), interpolation, extrapolation and
benchmarking (Dagum, Cholette and Chen, 1998). Signal extraction methods aim
to improve the precision in the estimation of 7, (Bell and Hillmer, 1990; Pfeffermann
and Bleuer, 1993; Binder, Bleuer and Dick, 1993) and interpolation (extrapolation)

methods are commonly used if there are missing values within (outside) the period of
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observation (Chow and Lin, 1971). In this thesis, we will focus specifically on bench-

marking.

Benchmarking corresponds to the optimal combina,tioniof two sources of information
on a variable (two different set of estimates, one of which, the benchmark, is more
accurate than the other). In many situations, the problem consists in combining a
series of high-frequency data (e.g. monthly data) and a series of less frequent data (e.g.
annual data) to produce more accurate estimates of a time series for some specific flow

variable. For instance, yearly estimates of population are derived from the last census

and researchers re-estimate the flows for the time gap between two censuses using

monthly or quarterly regional, subregional and inter-regional information (Dagum and

Cholette (2006), page 3).

In the UK, as another example, results of the Annual Business Inquiry (ABI), produced
by the Office for National Statistics (ONS) are normally used to improve monthly

estimates from business surveys; although it is usually over a year, after the year in
question, before the estimates become available. The monthly estimates are often
assumed as biased due to coverage deficiencies in the sampling frame. Undercoverage
1s caused since new businesses are normally included in the frame with some delay.
The improvement after benchmarking is achieved by assuming that the information

contained in ABI is more accurate than the monthly data.

Figure 1.1 illustrates the benchmarking process using a fictitious example. The series
in red corresponds to the series of original estimates coming from a monthly survey;
vertical lines in black correspond to the exact date when benchmarking methods are
applied using the new available information from an annual survey; and series in green
corresponds to the adjusted series after benchmarking. Given this situation, it is nec-
essary to combine the information in both series to obtain more precise estimates
reflecting the true behaviour of the unknown original series (estimates are represented
by the green series in Fig. 1.1). The most common aim is to improve high frequency
series (e.g. monthly or quarterly), when there are low frequency (e.g. annual) bench-

marks available from another more reliable survey. Typically, the low frequency series

bt
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1.1. THE BENCHMARKING PROBLEM

Berychhrmarking Probbilerm — Huastration
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Figure 1.1. Graphical Description of the Benchmarking Problem

is more reliable than the high frequency series, because it originates from a larger

sample or even a census. The.more reliable measurements are then considered as
benchmarks (Bloem, Dippelsman and Maehle, 2001). In most cases, the annual totals

of the monthly estimates are not equal to the benchmarks. For this reason, bench-
marking has been commonly considered as the process of adjusting the less reliable
monthly series to make it consistent with the annual benchmarks. When the adjusted
series agrees exactly with these benchmarks, the benchmarking is called “binding”.
However, in the presence of annual survey errors, “benchmarking can be defined more
broadly as the process of optimally combining two sources of measurements in order
to achieve improved estimates of the signal under investigation” (Dagum et al., 1998).

We will refer to the benchmarking estimation under the last definition as non-binding

estimation.

A related problem, using the time series approach, has been named the “disaggrega-
tion of univariate time series” and studied by authors such as Chow and Lin (1971),
Ginsburgh (1973), Fernandez (1981), Rossi (1982), Guerrero (1990), Wei and Stram
(1990), Guerrero and Martinez (1995), Guerrero (2003) and Di Fonzo and Marini
(2005), among others. The main purpose of this approach is to combine low frequency
data from the series of study with high frequency data of auxiliary variables in or-

der to obtain high frequency estimates of this series. For example, biennial census

4
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of manufacturers are used to estimate annual estimates of national income in the US

(Friedman, 1962). The problem of combining low frequency data from a given series
with high frequency data coming from auxiliary variables is out of the scope of this

thesis.

Benchmarking will be referred to in this thesis as the more general problem of improv-
ing subannual estimates derived from one source using annual estimates obtained via a,
second source, both including survey errors (Hillmer and Trabelsi, 1987; Cholette and
Dagum, 1994; Laniel and Fyfe, 1990; Chen, Cholette and Dagum, 1997; Durbin and
Quenneville, 1997). The benchmarking problem has also been called ez-post estimation
from the point of view that the low frequency estimates are produced after (post) ob-
serving the benchmarks. Another different problem, called ez-ante estimation is how
to do these adjustments before (ante) the most recent benchmark becomes available
(Nieto, 1998; Nieto, 2007). In business surveys, for example, the annual total estimates
are obtained only in the middle or the end of the following year. Then, the problem
consists in how the estimation in the last few data points, in the partial year at the
end of the series, can be improved before the benchmark estimate is obtained. Durbin
and Quenneville (1997) have proposed an “online procedure”, where it is not necessary

to have the benchmark for the last year of study:.

Another common problem, which can be seen as a multivariate extension of the bench-
marking problem, is how to improve estimation in the cells of a table of data (for exam-

ple, months by rows and industrial subsectors by column). The problem arises when
the information is available in an aggregate form only (annually and/or by industrial
sectors) or when the aggregates do not correspond with the sum of the disaggregated
values because, for example, aggregate and disaggregate values come from different
surveys or sources of information. For instance, aggregated estimates are available in
National Accounts in two forms (Guerrero and Nieto, 1999): temporally (e.g. annu-
ally) and contemporaneously (e.g. by economic sector at a given time) but there is a
necessity to get disaggregated estimates to carry out econometric modelling and for
making decisions about some particular sectors or regions. Telser (1967), Zellner and

Mornmarquette (1976), Abraham (1982), Liitkepoh!l (1984), Wei and Stram (1990),

9
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among others, discuss the problems of drawing conclusions from econometric analyses

at disaggregated levels when the data are temporally aggregated.

'Two special cases of the multivariate problem may be distinguished :

1. Reconciliation of time series corresponds to the multivariate problem when a set
of preliminary series obtained from a source subject to survey error is available
for each subperiod and every subsector. Dagum and Cholette (2006), chapters 12
and 14, refer to this problem as reconciling one-way or two-way classified systems
of time series. The aggregates by row and columns do not correspond with the
sum of the preliminary series because the aggregate series could come from a
different survey. The aim is to make this information consistent using both the
auxiliary information contained in the history of the series and the information

contained in the marginals.

2. Contemporaneous and Temporal Disaggregation corresponds to the multivariate

problem when no prior auxiliary information about the subsectors or the subpe-
riods is available; the only available information is the annual and sector totals.
Dagum and Cholette (2006), chapter 13, refer to this problem as reconciling
marginal two-way systems and set up the problem as a contingency table with
for example “type of industry” in the rows vs “province” in the columns with
available marginal totals ibut missing information in the inner cells. In this thesis,

the same problem is studied but considering one of the dimensions as an index

over “time”;

In the first case, (Zaier and Trabelsi, 2007) have proposed a method to estimate the
inner cells. However, this method does not provide any estimation of the standard
error of the estimates and does not produce estimates for the first year of observation.
Also, an adaptation of the Iterative Proportional Fitting (IPF) method (Deming and
Stephan, 1940) is considered for this problem. In the second case, some alternatives
(Di Fonzo, 1990; Guerrero and Nieto, 1999; Quenneville and Rancourt, 2005; Dagum
and Cholette, 2006) have been recently studied but they either use auxiliary informa-

tion from other highly correlated sources or make use of difficult assumptions such

6
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as knowing the autocovariance matrices of the stochastic processes involved. In this

thesis, new alternatives are proposed to obtain the estimates under the problem being
described above through state space models in Chapters 5 and 6. The advantages and

shortcomings of these proposed methods will also be discussed later on.

1.2 Aims of the Thesis

There are some desirable characteristics that a benchmarking method should have
apart from the natural one as a solution to the consistency of high frequency series
with low frequency benchmarks. The first one, which was mentioned above, is the
capacity to deal with situations where the indicator series extends into a period for
which there is no benchmark yet available; but also, preserving as much as possible
the short term movements in the signal and ensuring that the sum of the sub-periods

of the current year are as close as possible to the annual benchmarks. We will consider

the problem of benchmarking as how to improve subannual estimates derived from one
source by using annual estimates obtained from a second source, with both estimates
(annual and subannual) subject to survey errors. In practice, it is also important
to deal with specific problems such as incomplete or not available standard error of
the survey estimates and specific issues under the state space model approach such
as optimal specification of trends, seasonalities and ARMA modeling of the survey
errors; maximum likelihood estimation of hyperparameters; goodness of fit tests and
estimation of the variance of the estimators. Other problems not considered in this
thesis and possible areas of further work are: missing data; multiplicative structure of
the data when for example, the amplitude of the seasonal cycles increases or decreases
jointly with the trend; specification of trading days/calendar effects and estimation of

the survey bias.

Regarding the multivariate case, a first problem of estimating a set of monthly series
for some specific subsectors of a whole industry is considered by using yearly totals for
each subsector and monthly values of the total sector of industry. The estimated high

frequency time series must fulfill temporal (by year or columns) and contemporaneous
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(by sector or rows) aggregation constraints in the binding case; but also it is relevant
to study the case when the totals are obtained from different sources subject to sur-
vey errors. Regarding the second problem in the multivariate case, Quenneville and
Rancourt (2005, page 1) refer to this situation as “restoring the additivity of a system
of time series, with the objective of balancing a table of seasonally adjusted series
benchmarked to the corresponding annual totals from the raw series”. When auxiliary
disaggregated information exists, it is preferable to employ a disaggregation procedure
that combines all available (aggregated and disaggregated) information rather than
working only with aggregated data. The main aim is to restore the additivity to the
table in order to keep the implied constraints by row and columns. Again, data can

be considered from sample surveys and it is necessary to introduce the survey errors

into the model.

1.3 Outline of the Thesis

The thesis is structured as follows. Chapter 2 reviews the available benchmarking
methods that have been proposed in the literature. Specifically, some theoretical de-
velopments from three main benchmarking methods due to Denton (1971), Cholette
and Dagum (1994) and Hillmer and Trabelsi (1987) are presented along with their main
advantages and disadvantages being highlighted. Chapter 3 introduces basic concepts
in structural time series and state space models and some additional sections referring
to special issues about the Kalman filter, maximum likelihood estimation, initialization
of the recursions and diagnostic checking. In addition to the other benchmarking meth-
ods presented in Chapter 2, two alternative state space model based methods due to
Durbin and Quenneville (1997) are presented. The last sections of this chapter concen-
trate on the use of binding and non-binding estimators (they were introduced in page 4
above). It will be shown, at the end of the chapter, that the use of binding estimators,
in the case of non-zero variance annual estimates, adds an additional component to the
variance of the benchmarked values. The theoretical expression of the correct variance
in this case is presented as well as an expression for the excess in the variance due

to the binding. In particular for the two stage benchmarking model and under some
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specific conditions, the estimates after binding could be even worse than the smoothed
estimates without benchmarking. The results are extended tc; the other benchmark-
ing methods presented in the previous chapters. Chapter 4 presents an overview of
the main business surveys used in official statistics in the UK and describes the cor-
responding main parameters of study, the sampling designs and the need to apply
benchmarking methods in this particular kind of surveys. At the end of the chapter,

state space models are applied in order to benchmark the two main business surveys in

the UK: the MPI, Monthly Production Inquiry and the ABI, Annual Business Inquiry.
The information is available for most of the industrial sectors in the economy but some
particular issues require to be solved before benchmarking. One particular problem is

the non-availability of measures of precision for some periods of study in the survey
and then generalised variance functions (GVF, Wolter (1985)) are used to overcome

this problem. Other recommendations in terms of the specification of the trend and
the seasonalities of the model are suggested and compared with those proposed by
Durbin and Quenneville (1997) accordingly to the assumptions of the respective mod-
els. Additional issues such as initial values and constraints in the maximum likelihood
estimation; initialisation methods for the filter; diagnostic tests over the innovations
and the auxiliary residuals (Kohn and Ansley (1989), Durbin and Koopman (2001))

and Monte Carlo simulation of state space models are also considered.

Chapters 5 and 6 consider the multivariate extension of the benchmarking problem.
The concern here is how to produce tabular data in a consistent and efficient way to
get publishable values complying with both annual and contemporaneous restrictions.
Two different situations are studied: the contemporaneous disaggregation with missing
values case and the reconciliation case (as they were introduced in pages 5 and 6 above).
The solutions for these two problems are presented using State Space Models (SSM);
the reconciliation problem in Chapter 5 and the contemporaneous disaggregation case
in Chapter 6. Additionally, a simulation has been carried out in both cases by an
underlying model for the high frequency series that follows a random walk plus noise
(RWN) process. In the reconciliation problem an AR(1) model is assumed to the
survey errors. The results are presented for the binding case to check the consistency

of the results. However, the method deals with both binding and non-binding cases. A

9



1.3. OUTLINE OF THE THESIS

comparison of the estimates in both situations using the proposed methods and others

proposed in the literature is presented in chapters 5 and 6. Chapter 7 presents some
conclusions, a general overview of the final results of the thesis and possible directions

for areas of future work.

10



Chapter 2

Benchmarking Methods

2.1 Preliminaries

'This chapter presents some of the available benchmarking methods in the statistical

literature and analyses their strengths and deficiencies. The chapter is structured as
follows: firstly, some basic notation to be used throughout this dissertation will be given
and then a review of the existing methods. The benchmarking problem, as described
in the methods in this chapter, assumes the existence of two different series for the
same variable but measured in different frequencies in time. The aim is the optimal
combination of the information in the two series. Considering the most common case,
the low frequency series will be considered as an annual series and it will be assumed
that the high frequency series is observed over time periods of which there are K per

year, (e.g. K = 4 or K = 12 depending on whether it is quarterly or monthly data

respectively).

Let n be the length of the observed subannual series and m be the length of the
series of annual benchmarks. When a benchmark is available for the last subannual
observations, n = mK. Considering the most general case when the information for
the last year is not necessarily complete, m = [n/K] is the number of complete years -

with [z] denoting the integer part of z. For instance, consider the situation when

n = 24 quarterly observations (K = 4), this implies that m = 6 and n = mK; but

11
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if, for example, n = 26 quarterly observations, m will denote the number of complete

years being equal to [26/4], which is also equals to 6 years. The last year in this
case is incomplete and the last two observations in the series do not have an available

corresponding benchmark. In what follows we consider monthly and yearly estimates.

The values of the monthly estimates will be represented by the column vector y =
V1,2, ---,Yn] and the values of the annual estimates will be represented by z =
[T1,Z2,...,Zm)". Let n =[n,:--,n,] denote the underlying signal (the true time series
without survey errors). The annual series z is generally obtained from a different source
(survey or administrative record) than the monthly series. Treating ¢ as.n subject to
error; the benchmarking problem is how to adjust the vector y = [y1,¥2,...,¥n] to
obtain a new more reliable vector of estimates ) = [, 7}, . .., 7,]’ using the information
contained in z = [z}, Z,,...,Zy)’. In this chapter, we will consider the series y as the
subannual values from a flow series. In other words, the yearly values of z should
correspond to the yearly sums of the values in y for the corresponding year (we will
refer to this kind of estimation where the annual sums of the monthly values will

correspond exactly to the yearly values as binding estimation).

2.2 Quadratic Minimization Approach

Denton (1971) proposed a numerical benchmarking method according to the “principle

of movement preservation” (Bloem et al., 2001, section 6.A1.6). This principle requires

a benchmarking method with the following conditions:

(a) the variations in the subannual adjusted series will be close to those obtained in

the subannual observed series, and

(b) the sums of the K subannual values by year are equal to the observed annual

benchmarks in the corresponding year

Denton (1971) expressed mathematically condition (a) as the problem of minimising

the differences between the adjusted subannual series (7}) and the observed suban-

12
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nual series (y). On the other hand, condition (b) can be expressed by the restriction
iK
Y, e=x;withi=1,--- m.

(i-1)K+1

One way to fulfill the latter condition is to equally distribute the difference between the
annual value and the sum of the subannual values for the corresponding year among
the subannual periods. Another possibility is to distribute the value of the annual
benchmark across the subperiods as follows:

A Ly
nt=yt><——‘,7{———=ytxw; t=1,---,n (221)

D Y

(i-1)K+1
with 7 being the corresponding year for the observation ¢; : = 1,-.- ,m. The bench-

marking procedure applying Equation 2.2.1 is known as “prorata”. Notice that from

Equation 2.2.1 is also possible to write w; ~ gf. For this reason, the factors w;’s are

commonly called the “Benchmark to Indicator (BI) ratios” (Maitland-Smith; 2002)

and they could be used as a measure of “bias”.

The prorata method is a good choice to benchmark the monthly series when it is pos-
sible to assume that the observed series and the target series have similar behaviours,
i.e. close variations in the subperiods and similar seasonalities. This method is also
acceptable when the Bl ratio is approximately constant from year to year. If, however,
Bl ratios for consecutive years are very different and the prorata method is used, a dis-
continuity in the growth rate from the last subannual period in one year to the first in
the next year will be introduced. This is known in the literature as “the step problem”

(Bloem et al., 2001, section 6.16). A simple situation illustrating this problem will be

1llustrated in example 2.1 in the next subsection.

2.2.1 Denton’s Method

Denton’s (1971) method uses least squares optimization as a method to benchmark
a monthly series according to annual totals for the same variable. The problem is
formulated mathematically as minimizing a penalty function of the differences between

the adjusted monthly series and the observed monthly series subject to the benchmark

13
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constraints. Using the notation at the beginning of this chapter, and assuming f(7—y)

is the function to be minimized; the problem consists of estimating % in such a way

that f(n — y) is minimized subject to

tK
Z ﬁt=$,; i=1,-~,m (222)
(i-1)K+1

The latter restriction can be written in a matrix form as L') = z where

]-K' OK OK
Loww=| &= Nl =I,01k (2.2.3)
O Or --- 1x

where 15 and O are K x 1 column vectors in which each element is 1 or 0 respectively,
L' is the transpose of L and ® represents the Kronecker product. The elements of the
Kronecker product M; ® M, of matrices M; and M, of dimension a x b and ¢ x d,
respectively, are given by my;; M, with m,;; being the elements of matrix M,. The
resulting product has dimension ac x bd. The results of the Denton’s method are

summarized in Proposition 2.2.1.

Proposition 2.2.1. Let f(i)—y) be the quadratic form represented by () —y)' A(—y)
with A being a non-singular symmetric matriz of order n. The minimum of f() — y)
subject to the restriction 2.2.2 is oblained when

n=y+Cr (2.2.4)
where C = A7'L(L’A™L)™! andr =z — L'y.

Denton (1971) sets up a Lagrangian expression to achieve this result. All the mathe-

matical details not included in Denton (1971) are shown in Appendix A.1.

The consideration of different matrices A produces different solutions. For instance, the
choice of A = I,, minimizes the differences between 9 and y according to the restriction
2.2.2, with I,, the identity matrix of dimension n, and then C = (1/K)L, which
means the solution coincides with the method of equally distributing the discrepancies.

Another alternative is, for example, to minimize the distance between the first or higher

14
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order differences of the original and adjusted series. In that case, the penalty function

can be expressed as (Denton, 1971)
fy) =) (A%, — A% =D [AYd — w))? (2:2.5)
t=1 t=1

where A is the backward difference operator Ay, = 3 — y:—1 and A¢ denotes the

application of this operator d times.

The vector of first backward differences may then be expressed as D(9) — y), where D

is the nxn matrix given by

1 0 0 - 0 O
—1 1 0 - 0 O

D = 0 —1 1 --- 0 0 (2.2.6)
0 0 0 - -1 1

If d = 1, a restricted minimization is done over the distance of the first differences
and the quadratic form to be minimized, subject to the annual constraints, is now
(n —y)D'D() — y) where A = D'D. In general, one could consider a more general
quadratic form as for example () —y) D'’MD(n —y) with M an arbitrary matrix. It is
also possible to specify the penalty function in terms of the distances between higher-

order differences of the original and adjusted series making A = D'D’---D'D-.-DD.
e e’

h times h times
In all the cases, the benchmarked estimates are obtained by replacing the corresponding

value of A in Equation 2.2.4.

Denton’s method is considered as a pure numerical method. Even though the annual
and monthly information could be obtained through periodic surveys, this method
does not include any information about the survey errors. In other words, only binding
estimators are considered. Later on, in this chapter, other benchmarking methods such
as Hillmer and Trabelsi (1987), Cholette and Dagum (1994), Durbin and Quenneville
(1997) will account for survey errors permitting the calculation of binding and non-

binding estimates and their respective confidence intervals.
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Regarding the “step problem”; i.e. the appearance of big discontinuities in the Bl ratios
from one year to the next, Denton (1971) proposed an alternative solution applying
proportional differences. These alternative methods will be explained in section 2.2.1.
Example 2.1 shows an example of the application of the prorata and Denton methods

and highlights the presence of the step problem.

Example 2.1

Table 2.1 shows a fictitious example of series consisting of two years of values: 300
is the annual estimate for the first year and 500 for the second one. The example is
similar to the one appearing in Denton (1971) but it has been constructed in a way
which permits to appregiate more clearly some problems in the estimation. In this new

\

example, the quarterly estimates for the first year in the third column do not add to

300.

Annual | Quarter | Original | Prorata | Equal Distr | 1st Diff 2nd Dift
Totals Y A=1 A=D'D | A=D'D'DD
1 80 48 30 45 o7

(0.56) (0.71)
Year 1 2 100 45 ol
(300) (0.45) (0.51)
| 3 190 130 l 125 .
(0.68) (0.66)
4 130 80 67
(0.62) (0.52)
1 80 o7 34
| (0.71) (0.42)
Year 2 | 2 100 97 82
(500) (0.97) (0.82) |
l 3 190 200 | 205
(1.05) (1.08)
4 130 146 179
(1.12) (1.38)

Table 2.1. Application of prorata and Denton’s Method for three different penalty
functions. BI ratios in parentheses.
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The prorata and Denton methods were applied to benchmark the original series in
the third column to the benchmarks of 300 and 500 using different penalty functions.
In the fourth column, a prorata method was applied using Equation 2.2.1. It can be
observed that the use of A = I in the fifth column makes the difference 300-500 =
-200 for the first year (the second year has not got any change in the third column) to
be equally distributed in the corresponding four periods. The step problem becomes
evident in the prorata (fourth) column as the BI ratios show a big discontinuity from
the last period in the first year to the first value in the second year. In fact, they have
approximately the same adjusted value, even though they come from very different
original values. The same happened in the fifth column using A = I. The alternatives

A=D'D and A = D'D’'DD produce more smoothed BI ratios according to the plots
in Figure 2.2.

2.2.2 Proportional Denton Method

Discrepancies from one year to the next could be smoothed using proportional dif-
ferences as proposed in Denton (1971). This alternative is still a numerical method
rather than a statistical one because it does not consider the survey errors, but is a
good alternative to deal with the “step problem”. In fact, according to Gubman and
Burck (2005), this is the method most applied by statistical agencies around the world

due to its simplicity.

The proportional Denton Method considers a penalty function in terms of propor-
tionate differences between the adjusted and the observed series instead of arithmetic
differences. The proportionate difference in period ¢ is defined as (7; — y;)/y;. Defining

the “subannual BI ratios” as 7j;/y,, the idea of preserving the proportional changes in

the series is equivalent to preserve the subannual BI ratios. This is because

M~ Y% _M-1—"Y-1 _ T T f(2.2.7)

Yt Ye-1 Y Yi-1

Defining ¥ as the nxn diagonal matrix with the elements of the vector y in the diagonal,

the function to minimise can be expressed in the form (i — y)A(f — y) with A =

Y~1A*Y ! for some non-singular matrix A®*.
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2.2. QUADRATIC MINIMIZATION APPROACH

From Proposition 2.2.1., we follow that
Nn=y+YA'YL(LYA*'YL) 'r (2.2.8)

is obtained. In 2.2.4 the adjustment was independent of the values in the observed
‘series being adjusted, in 2.2.8 the adjustment depends on the original values. Bloem

et al. (2001, Annex 6.1, section B2) propose some extensions to the proportional Denton

technique.

Example 2.1 (continued)

Table 2.2 summarizes the results for the data in Example 2.1 using the Proportional
Denton Method. The results in table 2.2, in this very particular case, suggest that
the application of a second order proportional difference seems to ameliorate the step

problem and make the variations in the adjusted series closer to those in the original

one.
Annual | Quarter Orlgmal Prop Diff | 1st Dlﬁ(Prop Diff) 2nd Diff( Pmp Diff)
(0.78) (0.76') (0.85)
2 100 71 61 65
Year 1 (0.71) (0.61) (0.65)
(300) 3 190 86 100 100
(0.45) l (0.52) (0.53)
4 | 130 81 78 | 67
(0.62) (0.60) (0.52)
3 80 50
(0.63)
100 82
Year 2 (0.82)
(500) 190 200
(1.05)
130 108
(0.83)

Table 2.2. Application of Proportional Denton Method for three different penalty
functions. BI ratios in parentheses.

m——-—-——_—_—-_—__-______._______m
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2.2 QUADRATIC MINIMIZATION APPROACH

(a) Prorata

assiﬁﬁﬁéﬁﬁ

(b) Equally Distributed Differences

assséﬁﬁééﬁﬁ

e e

NE22SREZ 88
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Figure 2.1. Plots of Original and Benchmarked Data in Example 2.1 under the
Denton Method

19




2.2. QUADRATIC MINIMIZATION APPROACH

Figure 2.1 shows a plot of the original and benchmarked series under the different
variations of the Denton’s method in Example 2.1. Quarterly BI ratios were also
calculated and plotted in Figure 2.1 for each method applied in this example. The
step problem becomes apparent for the BI ratio plots corresponding to the methods
(a) Prorata, (b) Equally Distributed Differences and (e) Proportional Differences. The
adjustments in these plots were done separately every year and there is big jump from
the last quarter in year one and the first quarter in year two. Particularly plot (a) looks
exactly as the mathematical step function. The remaining plots, related to methods
using differences (absolute and proportional), show smoother changes from one year

to the next.

However, some difficulties with the Denton method have been remarked in the statisti-
cal literature. The main difficulty is that this method does not calculate the standard
error of the estimates. Besides, Cholette (1984) stated that using a predetermined

value for the backward difference operator in Equation 2.2.5 could cause distortions to

the benchmarked series. As an alternative, Bloem et al. (2001, Equation 6.3) consid-
ers the minimization of a function over the differences of the quarterly (or monthly)

BI ratios from t = 2. Additionally, although the Denton method is a numerical pro-

cedure without any statistical criteria to be evaluated, Laniel and Fyfe (1990) have

presented the proportional Denton method in statistical terms. They assume the model

e . Te-1
Yt Ye-1

+ 14, equivalent to

T — Yt _ Ni-1 — Yt-1
Ye Yt—1

+ U (229)

according to Equation 2.2.7 and v; being a sequence of uncorrelated and identically

distributed errors with mean zero and constant variance and 7; values subject to the
restriction in Equation 2.2.2. This formulation let them to conclude that assuming
that a relative bias follows a random walk process and assuming that the subannual
and annual data are observed without sampling errors is a condition unlikely to be
satisfied by economic time series. Finally, the big difficulty with this method is that it

is set up only in a binding scenario (see page 4) and one cannot calculate the variance

of .
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(a) Prorata (b) Equally Distributed Differences
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Figure 2.2. Plots of quarter BI ratios 7;/y; for the benchmarking methods applied
to data in Example 2.1




2.3. REGRESSION APPROACH

2.3 Regression Approach

Denton (1971) is more concerned that the variations (e.g. month-to-month changes and
seasonal patterns) of the original series are not very badly affected after the adjustment
is made. A problem with this method is that it does not include any information

regarding the survey errors and cannot produce any estimates of the standard errors

of the estimates.

When monthly and annual data are obtained from repeated surveys, it is desirable

to account for their corresponding survey errors. Therefore, benchmarking methods
should capture not only the properties of the survey errors associated with the es-
timated time series but also the special characteristics of the survey design. Bloem
et al. (2001, section 6.A1.39, page 106) state that “...the survey design may provide
identifiable information about parts of the stochastic properties of the series. Clearly,
incorporating any such information, if available, in the estimation procedure may po-

tentially improve the estimates”.

Specifically, in repeated surveys, overlapping of the samples generates autocorrelated

errors. It is also common in repeated surveys that the coefficients of variation (i.e. the
ratio of the standard error of the estimator to its expected value) are nearly constant
over time. This implies, in many cases, heteroscedastic survey errors. Other issues

such as presence of bias, non-response, births and deaths in the sample frame must be

also considered during the modelling (Cholette and Dagum, 1994).

The annual benchmarks are generally assumed more precise and less biased than the
monthly estimates, because th‘ey are coming from censuses or surveys of bigger sample
size. In business surveys, for example, the sub-annual estimates are often biased due
to undercoverage in the sampling frame. This is caused by the delay in the inclusion of
new businesses in the sampling frame monthly. This problem is less common in annual

surveys (Laniel and Fyfe, 1990). Cholette and Dagum (1994) introduce a benchmarking
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2.3. REGRESSION APPROACH

method which extends Denton’s method. Their method not only takes into account

the subannual and annual survey errors, not considered by Denton’s method, but also

considers special characteristics of the survey data such as the presence of bias in the
original series and presence of autocorrelations and heteroscedasticity in the survey

€ITOIS.

The Cholette and Dagum’s method consists of the generalised regression model with

autocorrelated survey errors given by

yt=a+nt+ft, t = 1,...,71
iK | (2.3.1)

The first equation in 2.3.1 coincides with Equation 1.1.1 in the last chapter plus an
additional constant term a to denote a bias parameter to be estimated. The estimates of
1, will correspond to the benchmarked series. The consideration of this bias parameter
as a constant term will be discussed later on this section. Using the same notation from
the first chapter, the £;’s represent the monthly survey errors affecting the observations
and they may have a general covariance structure resulting from the overlapping of the
samples. Also, it is assumed that E(¢;) =0 for all t = 1,.-- ,n. The second equation
in 2.3.1 coincides with the Denton’s restriction in Equation 2.2.2 with the addition of

the term e; denoting the corresponding annual survey error.

Using the notation in page 12 and denoting by £ and e the subannual and annual

survey error vectors, respectively; we also denote  the monthly vector of parameters
(considered as fixed non-stochastic quantities). Then, the model in Equation 2.3.1 can

be written in a matrix form as follows

Y 1, I, a 14 a 14

z 0,., L'| |n e n e (2.3.2)

E(€) =0, E(e) =0, E(£€) = 5, E(e€’) = 5., E(ef) =0
where 1, is a vector n-dimensional of ones, 0,, is a vector m-dimensional of zeroes, L
is the n x m design matrix in Equation 2.2.3, a is a bias parameter and X isa (n+m) -

x (n + 1) matrix. In the last equation, the vectors € and e are assumed mutually
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2.3. REGRESSION APPROACH

independent as the monthly and annual data come from two independent separate

surveys. Cholette and Dagum (1994) expressed the model in Equation 2.3.2 as
T=XB+u,E(u)=0,F(uu’)=%, (2.3.3)

where 7/ = [y, 2], B’ = [a,7], v = [£,€'], X, is a block diagonal matrix with
blocks 2, and X, although ¥, and ¥, are not necessarily diagonal matrices. The
benchmarked estimator of this method is given in Proposition 2.3.1.

Proposition 2.3.1. The BLUFE estimators of the'pammeters a and 1 are respectively
qiven by
d=—0:1'L(L'S,L + X.) (z — L'y) (2.3.4)

and . ~
| N=vy"+3 LIL'Z,L+2) =z - L'y"), y'=y-—-1,a (2.3.5)

with respective variances
o; = 1/[1'L(L'S,L + £.)"' L"1] (2.3.6)

and

Y5 =[E¢ — L, L(L'E,L + ) 1L'S,]

, . (2.3.7)
+ [ = L(L'EL +.)'L')162V'[I — &, L(L'S,L + £.)"'L']

The proof is achieved using standard results for GLS and partitioned matrices and all

the details are included in Appendix A.2.

As noted before the survey errors may be heteroscedastic. Cholette and Dagum (1994)
dealt with this problem by expressing ¢; as

0, = k£ (2.3.8)

where the k,’s are weights representing heteroscedasticity over time and it is assumed
that the ¢;’s follow an ARMA model and they have the associated covariance matrix

2e¢ (McLeod, 1975). Then, the covariance matrix of ¢, can be expressed as
Ye=WZ.W (2.3.9)

where W is a diagonal matrix of the weights k;. A possibility is to consider X, as

the autocorrelation matrix of the standardized survey errors and then the k;’s will be
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- 2.4. ARIMA MODEL BASED APPROACH

equal to the standard deviations. We will get back to this representation in section 3.5

when introducing a state space approach for benchmarking.

All the equations used in this method assume knowledge of the autocovariance matrices

of the annual and subannual survey errors. Additionally, considering the heteroscedas-
tic case, it is necessary to consider an ARMA model of the standardized survey errors.
This regression method is one of the core methods included in the software BENCH
produced by Statistics Canada (Cholette, 1994; Bloem et al., 2001). The software
makes the strong assumption that the survey errors follow an AR(1) model. The main .
difficulty in the application of the Cholette and Dagum method is that although statis-
tical agencies sometimes produce reports with estimates of the variances of the survey

errors, they rarely report either autocorrelations or the specification of the relevant

ARIMA models (see Guerrero (1990, page 30)).

Repeated surveys usually use rotation sampling designs which can produce different
expected values for estimates of the same characteristics from different rotation groups.

The phenomenon has been called rotation group bias (Bailar, 1975). The regression
method presented here includes a constant bias component in its formulation; however,
response bias in the data can be at different magnitude over time, due to for exam-

ple, conditioning of the respondent or familiarity with the survey after a long period

(Ghangurde, 1982).

2.4 ARIMA Model Based Approach

Hillmer and Trabelsi (1987) formulate the benchmarking problem using time series
analysis techniques. Their method provides a way to take into account the stochastic
properties of the time series being benchmarked, the statistical properties of the sam-
ple survey from which the original estimates of the time series were derived and the
properties of the errors of the benchmarks. The method was proposed in the context of
improving subannual estimates using annual information and the stochastic properties

of the subannual series itself.
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2.4. ARIMA MODEL BASED APPROACH

This approach is naturally represented in terms of Equation 1.1.1 shown in Chapter
1, ¥y, = n: + £;. It is assumed that the two components 7, and ¢; in Equation 1.1.1 are
mutually independent processes with known first and second order moments and also

that n, and ¢; follow the autoregressive integrated moving average (ARIMA) models

6n(B)(ne — 1) = 0n(B)b; Var(b) =0,

(2.4.1)
de(B)(&) = 0:(B)cy; Var(c) = o:

where each of the pairs of polynomials (¢,(B), 8,(B)) and (¢.(B), 6,(B)) have no com-
mon zeros; ¢,(B) is a polynomial in the backshift operator B having its zeros lying
on or outside the unit circle; 8,(B), ¢.(B) and 6,(B) are polynomials with all zeros

outside the unit circle, p is the mean of the process n; and the processes b; and c; are

uncorrelated white noise processes.

Using equation 1.1.1, the ARIMA model for y; is
d(B)(y: — ) = 6(B)d;; Var(d,) = 03 (2.4.2)

where ¢(B) = ¢,(B).¢¢(B) and 8(B) and o3 can be obtained using the results from
Hillmer and Tiao (1982). Lety = (y1, - ,¥n)s n=(m, - ,7mn) and £ = (¢3,--- ,£,)’;
it is assumed that the random vectors 77 and £ have multivariate normal distributions:

n is N(u,X,) and € is N(0, 3,) where the parameters u, 3,, and 3, can be derived
from the respective ARIMA models.

The aim of the method is to develop the appropriate modifications to the minimum
mean squared error estimate when additional (annual) external information about 7

becomes available. From Equation 2.3.2 in the last section and considering no bias

term,

(2.4.3)

where x is an observed column vector of dimension m, L is an n x m matrix, and e is
an error vector of dimension m x 1. It will be assumed that e has a multivariate normal
distribution N(0,,,X.) and is independent of 77 and £. Like the Cholette and Dagum
method, Hillmer and Trabelsi (1987) consider the vector 7/ = (y’,z’) containing both
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2.4. ARIMA MODEL BASED APPROACH

the monthly and annual observations; a vector of errors u' = (€,e’) containing the
corresponding monthly and annual errors. The vector of parameters consists of the

annual benchmarked values to be estimated (without bias) and the matrix X in 2.3.3

takes now the form X' = [I, L].

Proposition 2.4.1. Consider the model

T=Xn+u

Assuming that n has a N(pu,2,) distribution and u has a N(0,X,) distribution, where
Yu = diag(Xy, X,); the minimum mean squared error estimate of 1) given T is

n=Em|7)=7"+n,

where 17° is the minimum mean squared error linear estimate of n given y

7 = E(n | y) = (Z, + Xp 1)t X (e 'y + 2,7 ),  if n is stationary
(T + I N-133,~1y, | if n 1s non-stationary ARIMA

and 1, is the correction factor term

n.= NRL(L'RL+X.) Yz - L'}")
where

2=Cov(n|y)=E " +Z,~ 1)
and

Yp3=Cov(n|T)=02-QL(L'NRL+ X)) L'

In the last proposition stafionarity implies that all the zeros of the autoregressive part
lie outside the unit circle, whereas non-stationarity ARIMA implies that all the zeros
of the autoregressive part lie on or outside the unit circle. The proof of the last result
1s achieved by minimising the mean squared error. This technique is known in the
time series literature as signal eztraction. The proof of the property above appears
in Hillmer and Trabelsi (1987). However, they make the strong assumption that a
nonstationary series has zero mean according to results in Cleveland and Tiao (1976).
Durbin and Quenneville (1997) suggest that this assumption is unnecessary and in some

cases invalid. An alternative brief proof is included in this document in Appendix A.3.
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2.4. ARIMA MODEL BASED APPROACH

Compared with the regression approach, the Hillmer and Trabelsi method takes into

account the information about the stochastic properties of the series being bench-
marked. Clearly, this information may improve the estimates but the main difficulty
in the application of the method is that statistical agencies normally do not produce
either autocorrelations or specification of ARIMA models of the survey errors. Bell
and Hillmer (1987b) state that the estimation of these autocovariance matrices is the
same as estimating sampling variances and in particular, Hillmer and Trabelsi (1987)
propose the use of the random groups method using survey microdata (Wolter, 1985,

chapter 2).

Scott et al. (1977) refer to the use of survey microdata to estimate the autocovariance
of the sampling errors as a primary analysis. In spite of that, this is not always possible
due to the need for confidentiality in the survey or the lack of a record linking data
in repeated surveys. Scott et al. (1977) estimate the autocovariance matrix of the

survey errors using only the published time series data and they called this alternative
a secondary analysis. Results from Tiao and Hillmer (1978), Bell and Hillmer (1984)
and Bell and Hillmer (1987b) establishes that there is a fundamental identification

problem with this second alternative.

Chen et al. (1997) introduces a non-parametric solution to estimate the covariance

matrix for the stationary part of the signal. Using relative mean squared errors as
a measure of efficiency, they show that the ARIMA approach is more eflicient than

the regression approach and the non-parametric method gives very close values to the

ARIMA method (Dagum and Cholette, 2006, page 208).

Laniel and Fyfe (1990) recommend the use of methods such as those of Cholette and
Dagum or Hillmer and Trabelsi “for only a small number of very important economic
indicators”. Their reason is that “since ARIMA modelling is being used in this method,
it would be costly to implement for large scale surveys dealing with hundreds of series”
(pages 273-274). Another common problem with these two methods is the possible
oversmoothing of the data due to a bad specification of the ARIMA models.
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2.5 Conclusions and Further Issues

The main benchmarking methods available in the literature have been reviewed in this
chapter. Denton’s method is a good alternative when there is no additional information
about the sampling design or the estimated standard errors in the survey and also
particularly, when it is desirable to have binding estimators. Because this method
does not include information about the survey errors, an implicit assumption of this
method is that the variations in the monthly estimates are close to the real variations

of the parameters and it is a pure numerical method without any statistical criteria to

evaluate the precision of the estimates.

Methods which include the survey errors in the modelling such as those of Hillmer and
Trabelsi or Cholette and Dagum may be more efficient because it is possible to take into
consideration stochastic features of the time series structure such as the autocorrelation

and heteroscedasticity of the survey errors and the presence of survey bias. An essential

characteristic of these methods, making them preferable over the Denton method, is

the possibility of calculating the variances of the benchmarked estimates.

Nonetheless, one disadvantage is that sometimes it is not possible to access detailed
information generated from the sample survey such as autocovariance matrices or asso-
ciated ARMA models of the survey errors. Regarding to these disadvantages, Guerrero
(1990, page 30) states that: “these requirements are reasonable for a statistical agency
in charge of publishing official statistics, but they might be very restrictive for a prac-
titioner who occasionally wants to disaggregate a time series”. Also, they require to
obtain the annual benchmark before the end of a given year to adjust the subperiods
in the year. That means, if subannual data is obtained before the end of the year, they

cannot be adjusted until a benchmark is obtained.

The next chapter will present two additional alternatives for benchmarking using state
space models proposed by Durbin and Quenneville (1997). These alternatives do not
require the specification of the autocovariance matrices of the survey errors and in

particular, one of the methods does not need to have an annual benchmark available
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at the end of the year to update the estimates. Diflerent components will make up the
series (trends, seasonalities, cycles, calendar variations, effects of explanatory variables,
interventions) and they are modeled separately. Also multivariate observations can be
treated by straightforward extensions of the univariate state space form. A possible
disadvantage of these models is the relative lack of software and the consideration of
high dimensional vectors and matrices in the estimation. The methods are considered

separately in the next chapter in order to introduce the basic theory of state space

models and some new thoretical developments referred to the variance of the bench-
marked estimates in the binding case which will be extended to all the benchmarking
methods introduced in Chapter 2. There are other techniques not considered in this

thesis that use auxiliary information for benchmarking. They are classified under the

area of “disaggregation of time series” by authors such as Chow and Lin (1971), Fer-

nandez (1981), Guerrero and Martinez (1995), Guerrero and Nieto (1999) or Di Fonzo

and Marini (2003). They assume a set of auxiliary series highly correlated with the
original one. Newly available software, ECOTRIM (Barcellan and Buono, 2002), is

available for the implementation of these methods. Since the application to Business
Surveys in the UK do not consider the use of auxiliary information, these methods

were not considered in this thesis.
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Chapter 3

State Space Models and
Benchmarking

3.1 Preliminaries

The state space model approach provides a flexible approach to time series analysis.
There are many references, including Durbin and Koopman (2001) who provide a
recent treatment of the approach; also Janacek and Swift (1993), Harvey (1989), Tsay
(2005) and Shumway and Stoffer (2006) are some textbooks with related chapters to

the area.

The main idea: in the use of state space models (SSM) in time series analysis of survey
data is to extend the general theory of signal extraction by using the Kalman filter
(Kalman, 1960). Some authors such as Tam (1987), Binder and Hidiroglou (1988),
Binder and Dick (1989) and Pfeffermann (1991) introduced the idea for survey data. A
parameter of interest is estimated in each individual survey and then the Kalman filter
is applied on the series of estimates. The application of the Kalman filter under the
correct model provides at least the “best linear unbiased prediction (BLUP)” estimates
of the parameter in every instant (linear optimal). Specifically, when a Gaussian
distribution is assumed, the estimator is even optimal in the sense of minimising the

Imean square €rror.
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The use of state space models and the Kalman filter has also been proposed in the
area of temporal disaggregation (Harvey and Pierse, 1984; Harvey, 1989, section 6.4.1).
More recently, Durbin and Quenneville (1997), Harvey and Chung (2000) and Moauro
and Savio (2002) have considered the temporal disaggregation problem including infor-
mation about the survey errors. In particular, Durbin and Quenneville (1997) devel-
oped benchmarking methodology for the case where monthly estimates are constrained

to add up to given annual estimates.

The advantages of the Durbin and Quenneville methods, with respect to the other

benchmarking alternatives referred in the previous chapter, arise from the properties
of the state space approach (Durbin, 2000; Durbin and Koopman, 2001, section 3.5).

Under this approach, the original series is assumed to be decomposed into the unob-
served components of trend, seasonality and irregular terms. A big difference of this
method with the others considered above is that one of the methods presented below
provides a solution to the problem of estimating subannual estimates when there is
no a benchmark available in the horizon (ez-ante estimation). Another advantage of
the state space approach is the possibility to introduce innovation terms and calendar
effects into the model in an easy way. Innovation terms permit the consideration of
outliers in the series and calendar effects arising due to variations in every specific year.
For instance, when the activity of an industry varies according to the day of the week

or when the exact days of a holiday change every year.

In this section, the state space model approach for benchmarking is presented as fol-
lows:; firstly, a brief introduction about structural time series models, state space models
and the Kalman filter is given and then, two solutions for the benchmarking problem
are studied in subsections 3.5.1. and 3.5.2. Other issues such as the estimation of the
survey bias (assumed as a constant parameter) and treatment of multiplicative time
series data are presented in Durbin and Quenneville (1997) but not considered in this
overview. Finally, the last section surveys two possible kinds of benchmarked estima-

tors (binding and non-binding) and specifically develops the correct variance of binding

32



3.2. STRUCTURAL TIME SERIES MODEL

estimators when using temporal benchmarks that are subject to survey errors. The
theory is presented considering each particular case under the benchmarking methods

introduced in Chapters 2 and 3.

3.2 Structural Time Series Model

Structural time series models decompose the series of study into unobservable compo-
nents which have a direct interpretation. The common decomposition is to consider

the series as the sum of trend, seasonal and irregular terms (Harvey, 1989). Suppose

we regard y; as having the form:
yt:ﬂt"")’t"'ft; t=1:“'1n (3.2.1)

where p, is a trend component, 4, is a seasonal component and ¢, is the irregular or

residual component. In the case of annual series, seasonal effects can be dropped.

Equation 3.2.1 is known as the additive case. Sometimes, the additive assumption may

be unrealistic and it is preferable to assume the multiplicative decomposition given by:

Ye =Mt Ve €&, t=1,---,n (3-2-2)

This is a more suitable model when the amplitude of the seasonal cycles increases
~ or decreases jointly with the trend. In an additive structure, the seasonal effects are

independent of the evolution of the trend. One simple way to check the adequate

decomposition for a time series is to overplot segments of the original series over the
cycle. Seasonal adjustment software, such as X11 or X12ARIMA, include ANOVA and

non parametric tests to decide what structure is more suitable to use for a particular
time series (National Statistics, 2005a). It can be noticed that taking logarithms,
model 3.2.2 reduces to the model 3.2.1.

Some common structural time series models are:

-Random Walk plus Noise (RWN, Muth (1960), Durbin and Koopman (2001, page

9)). Consider Equation 3.2.1 taking u; = a; where a; is a random walk; without the
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seasonal component and all the disturbances are usually assumed to follow a normal

distribution. These assumptions give the model:

Y = a; + €, €6 ~ NID(0, 07
t = Q¢ T €4, € ( (3.2.3)

A = Q41 + Vi, Vp ~ NID(O, Jf,

forallt =1,--- ,n. We assume that the irregular term ¢, has constant variance o2. This

model is also called the local level model. The notation NID(0,0?) denotes a normally

distributed, serially independent, random variable with mean zero and variance o°.

When o2 is zero, the series follow a random walk and the forecasts are equal to the
last observation, y,. On the other hand, if o2 is zero, the trend is equal to a constant

and the best forecast of future observations is the sample mean.

-Basic Structural Model (BSM, Harrison (1965), Harvey (1989, page 172)). A BSM
follows a structural time series model given by Equation 3.2.1 with the following com-

ponents. The trend component of a BSM consists of a local linear trend model given
by

Pt = te-1 + Pi—1 + &
By = -1+ (;

where u,; is known as the adaptive level and §; is a random walk known as the local

(3.2.4)

rate of change or slope. The processes & and (; correspond to uncorrelated white-noise

terms with variances o7 and o7 respectively.

The seasonal component can be written in two ways, as a dummy variable type or a
trigonometric type. In the dummy variable type, considering K subannual periods per
year (K = 12 if monthly data, K = 4 if quarterly), it is assumed that the seasonal
pattern is constant over time. Then, the seasonal values for the subannual periods can

be modelled by constants v, ¥:—1- - , 7i-(x-1)) Where

K-1
2 Ye—v = 0 | (325)

v=0

In practice, it is desirable to allow the seasonal effects to change over time. A simple

way to achieve changing seasonality using the ideas before is by adding an error term
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3.2. STRUCTURAL TIME SERIES MODEL

we in Equation 3.2.5 and it follows that

K-1 K-1
Z Tt—v = W = Tt = — 2 Yt—v -+ Wy (326)
v=0 v=l]

with w; a disturbance term with mean zero. The zero expectation makes these effects

sum to zero in the forecast function.

Another alternative to express seasonality is by using a trigonometric form proposed
by Hannan, Terrell and Tuckwell (1970). Assuming constant seasonal, the seasonal

effect at time ¢ can be expressed as

[K/2]
Ve = Z (7v cos Kyt + 7] sin Ky t) (3.2.7)
v=1l
where K, correspond to the seasonal frequencies, k, = 27v/K,v = 1,--- ,[K/2] and

[z] denotes the integer part of z.

Equation 3.2.7 may be allowed to evolve over time using results in Harvey (1989, page

42), according to the model

Yt = Z Yot (3.2.8)

where
Yot = Yv,t—1COS Ky + Yy 41 SIN Ky + Wy
’ (3.2.9)
with v =1,--- |[K/2] and with w,; and w}, white noise processes with mean zero and

uncorrelated with each other.

Additional to the trend and the seasonal components (e.g. dummy variable or trigono-

metric type), the BSM accounts for an irregular component €; which is assumed to be

a white noise. The BSM corresponds then to the sum of these three components.

Sometimes the BSM is extended to the more general form
M=+ +n+eo+e, €e~N00), t=1,---,n (3.2.10)

where 7; and ¢, represent trading day and moving festival components. Trading day

refers to the modelling of any variation in the series which depends on how many
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Mondays, Tuesdays, and so on, there are in the series. For example, if Fridays tend
to have bigger sales, there is a necessity to account for the number of Fridays in
the period of reference. On the other hand, certain holidays and religious festivals
(most notably Easter, every Jewish festival, Chinese New Year or Ramadan) appear

in different dates from year to year. Then, the addition of moving festival components
to the model permit to take control over this situation because data from several time

series (e.g. industrial production, retail sales and air traffic series) are affected by the

date when these events are falling, Harvey (1989, page 335). Dagum, Quenneville and
Sutradhar (1992) studied general models for trading day and its SSF, whereas Bell
and Hillmer (1983) and Morris and Pfeffermann (1985) have suggested some models
for the moving festivals. Also, Cleveland and Devlin (1980a) and Cleveland and Devlin
(1980b) discussed some special methods to detect calendar effects.

3.3 State Space Form

The state space form provides a simple way to deal with structural time series models.

The “state” of the system represents the unobserved structural components such as
trends and seasonalities. The basic idea is to write a structural time series model in

a special form, which will permit the Kalman filter to update the state when new
observations become available. Additionally, a better estimate of the state is obtained

using smoothing algorithms at any instant during the period of observation (Anderson

and Moore, 1979; de Jong, 1988a; de Jong, 1989; Kohn and Ansley, 1989).

A state-space model (SSM) is a set of two equations related to an unobserved state
vector a;. The first equation states that the observations are linear combinations of

a, and it is known as the observation equation. The second equation represents the
evolution of a; over time and it is known as the transition equation. The set of two
equations can be written in many ways Durbin and Koopman (2001, page 38) and

particularly, in this thesis, the observation equation will take the form

Ye =4, +& & ~1id0,H;) t=1,---,n (3.3.1)
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and the evolution of a; is given by the transition equation represented by the Markovian

structure,

a; =T,y +9; Y ~iid(0,,Q) t=1,---,n (3.3.2)

where iid(i, X)) stands for “independent identically distributed” random variables with
mean p and covariance matrix ¥. In the pair of the equations above, y; is the value
of the observed time series at the instant ¢, which is a scalar if ¥ is a univariate time
series. Otherwise, ¥, is considered as a P x 1 vector of observations at time £, where P

represents the number of components in the multivariate time series. a; represents the
r x 1 unobserved state vector, Z; and T, are deterministic matrices of dimension P x
r and 7 x r respectively, and € and ¥ are disturbance terms of dimension P x 1 and r

x 1 respectively. Also, H; and Q); denote P x P and r x r known covariance matrices

respectively.

It is also assumed in Equations 3.3.1 and 3.3.2 that the initial vector &g ~ N(ag, Py);
e; and 9, are serially uncorrelated and additionally; it will also be assumed that £, and
v, are mutually independent and uncorrelated with the initial vector ag. In practice,
however, there are some unknown elements in the system given by the observation and
transition equations (e.g. in practice, H; and @, are usually unknown). We will refer

to these unknown parameters as hyperparameters and will discuss their estimation in

section 3.4.2.

Having in mind the formulation in SSF of any structural time series model, Harvey
(1989) highlights that a; must be determined by construction. Notice that, in particu-
lar, if a new state vector aj is obtained making a} = Ma, where M is any nonsingular
r x r matrix and a; is the corresponding state vector in equations 3.3.1 and 3.3.2; a
new state space formulation is obtained given by

Y = Z,a; + &

(3.3.3)

a, =T/a;,_;+9,
where Z; = ZM~',T; = MT:M~! and 9} = M9,. Thus, there is no unique repre-
sentation for any particular model by SSF.
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The basic idea is to set up a state vector a; containing all the information of the system
at the instant ¢ with the smallest possible number of components. We will now present
a state space formulation for the structural time series models presented in the last

section.

- Random Walk plus Noise. The RWN model was introduced in Equation 3.2.3. The

state space form (SSF') for this model is straightforward, using a; to be equal to the

scalar a;, Z; and T; are constants with value equal to 1, £, and ¥, are equal to the
scalars ¢; and v;. The conditions ¢, ~ NID(0,0?) and v; ~ NID(0,02) agree with

those of the state space formulation.

Another possible state space formulation for a RWN model is obtained by defining
a;=a; &, Z¢=[1 1,,Te=(}3),ee=0and ¥, = [ ¢]. Finally, in this second
formulation, 9, ~ NID(0,,Q,) with Q, = diag(c?, 02) and the final SSF is given by

yr=[1 1]-[a; €
a; 1 0| |a,—; U, (3.3.4)

= +
€4 0 O} |€—1 €;

It should be noticed that in this second formulation there is no disturbance term

in the observation equation and the transition matrix T'; is singular. Authors such as
Godolphin and Stone (1980) and Kohn and Ansley (1983) have studied the implications

of singular matrices in state space models.

‘-Basic Structural Model. The Basic Structural Model (BSM) was defined in Section
2.5.1 as a model composed of a local linear trend model defined in Equation 3.2.4; a
dummy variable (Equation 3.2.6) or trigonometric model for the seasonal component
(Equations 3.2.7 and 3.2.9) and a white noise irregular term. The transition equation
in the SSF for the local linear trend can be formulated by setting the following vectors

and matrices below. These elements conform with the vectors and matrices in Equation

3.2.4.
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Q)¢ = , D1t = [1 0] , Tit=
(3.3.5)

According to the Equation 3.2.6, v, = — Z?—=1 vi—r + Wy, the transition equation for a

dummy variable seasonality for quarterly data can be formulated by defining

e -1 -1 -1

aze = |[7-1] » Z2,t = [1 0 0] y Tz,t =11 0 0
(3.3.6)

Yi-2 0 1 O

and 1, = [wt 0 0]

These elements conform with the dummy variable seasonal model presented in the
right side of Equation 3.2.6. Following Equations 3.2.7 and 3.2.9 with v = 1,2 for

quarterly data, the trigonometric seasonality can be formulated in SSM by defining

Vit cos(w/2) sin(w/2) O 0 1 0
aze= |43, |>» T2¢= |—sin(n/2) cos(x/2) 0| =|-1 0 O 3.37)
Yat 0 0 ~1 0 0 -1 o

and Zg; = [1 0 1] U2 = [wlt Wit wzt]

These are the vectors and matrices involved in the SSF of a trigonometric seasonal
model corresponding to the model in Equation 3.2.9. Using Equations 3.3.5 - 3.3.7
and €, = ¢; , the SSF for the BSM is as follows

v = |21 Zoyg| - lans gy + €
Qg Iy: O a1 n U1, | (3.3.8)

SHX. 0 T2,t Qo1 192,:

Another possible state space formulation for the BSM is obtained by including the

irregular term into the state space vector as follows:
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Yt = [Zl,t Z2,t Z3,t] y [0-'1,t Qo ¢ aS,t]’

= [Zl,t Zz,t 1]'[01,t Q)¢ ft]’

Qg ¢ Tl,t 0 0 a)t—1 U4

L

0 T,, O Qi1 | T [V

S
[

| (3.3.9)
Q3¢ 0 0 T3,t Qa3i-1 193,1:

Tl,t 0 O g .¢-1 191,,1t

0 T2,t 0 2 t-1 + '92,t
0 0 0 €11 €¢

The last formulation does not have a disturbance term in the observation equation

and the transition matrix T is singular. For the more general form involving calendar

effects, Dagum et al. (1992) studied the state space formulation for trading day effects.

- ARMA model (Box and Jenkins, 1976; Box, Jenkins and Reinsel, 1994). A stationary
ARMA(p, q) model is given by

et = leet-l + -+ ¢’p€t—p + Xt + 91Xt-1 + -+ qut—q (3'3'10)

where x, ~ NID(0,02) and p and ¢ are non-negative integers.

Assuming p = max(p,q + 1), a SSF representation for the ARMA model is achieved
by setting the state space vector of length p

2

Palp—1 + -+ Ppli—pr1 +O01xe + -+ + 01Xt 42
Q4 = (3.3.11)

¢’9-—-1€t—1 + ¢g£t—2 + 99-—2Xt + 99—1Xt-1
¢g€t—1 + BQ—IXt

and the remaining vectors and matrices defining the SSF as follows

’ ?1 Xt
1 : I, 7,
Z4‘t = ; T4‘t = e-1 ,194; = I'Xt and €41 = 0 (3312)
Og—l (bg-—l :
d’g 0’9—1 QQ-IXt
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Using this formulation some of the AR or MA coefiicients will be equal to zero unless

p = q+ 1. There are many ways to transform such an ARMA model into a state

space form and the interested reader could be referred to other options as presented in

Akaike (1975) and Aoki (1987).

More sophisticated models could be considered in order to exhibit change in variance
over time. Heteroscedasticity (volatility) models such as the ARCH model (Engle,
1982) and the GARCH model (Bollerslev, 1986) can be formulated into a state space

representation with non-normally distributed disturbances but still providing minimum

mean squared error linear estimators of the state and future observations (Harvey, Ruiz

and Shephard, 1994).

3.4 Kalman Filtering and Smoothing

The Kalman Filter is a set of recursive equations for calculating optimal estimates
of the state vector a; at time ¢, using the information available at time ¢ (Kalman,
1960; Harvey, 1989; Durbin and Koopman, 2001). Once a model is set up into its
SSF, it is possible to calculate the expectation and variance of a; conditional on the
observed data Y; = (y1,- -+ ,¥:). The “optimality” of the estimator of a; refers to the
property of minimising the mean squared error (MSE). The application of the Kalman
filter provides at least the “best linear unbiased prediction (BLUP)” estimates of the

parameter in every instant (linear optimal); when a Gaussian distribution is assumed,

the estimator is even optimal in the sense of minimising the mean square error.

3.4.1 Forward and Backward Equations

Let a; = a,; be the conditional mean of a; given the observed data Y, = (y1,--- ,¥:)
and let also P, = Py, be the r x r conditional covariance matrix P, = Cov(a; | Y?).

Taking into account the assumptions in the SSF and assuming normality, the initial
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3.4. KALMAN FILTERING AND SMOOQOTHING

vector &g has a multivariate normal distribution N(ay,Pp).

According to the transition equation

Qa; = Tlao + 191 (341)

Then, a; is multivariate normal with conditional mean &30 = T1ap and covariance
matrix given by Py = T1P¢T'; + Q1. The distribution of a; conditional on y; is
obtained by writing

a; = @ + (a; — a;)p) (3.4.2)

Y1 = 414y + Z(ay — &110) + €)1

The vector [@’y; /] has also a multivariate normal distribution with mean [&;j0  Z161)0]

and covariance matrix

P STV

(3.4.3)
Z\Pyo Z,1PyZ2'y + H,y

Using some properties of the multivariate normal distribution (Harvey, 1989, Appendix

Chapter 3), the distribution of o/; conditional on 2/, is also multivariate normal with

Imnearl

&1]1 = &llo + PIIOZ'lFl'Ivl (344)

and covariance matrix

P, = Py — P1Z"\F{'Z,Pyp (3.4.5)

where v; = y; — Z14;) are called the innovations or one-step ahead prediction errors

and F'y = Z,P9Z] + H, represents their covariance matrix.

Repeating this procedure for £ = 1,--. ,n (Harvey, 1989; Durbin and Koopman, 2001)

result in the prediction equations

Q-1 = Totp—q

(3.4.6)
Pyy =T P T, + Q;
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and the updating equations

A A A  § -]
Q; = Qujp = Qg1 T Pt[t-—lz tFt UF:

Py = Ptlt—l = Pt[t—IZ’tFt_lthtlt—l (3.4.7)

Ui =Yt — Ztatlt—-l

Ft — ZtPtlt_lz; + Ht

where v, denotes the innovations or one-step ahead prediction errors and F'; denote
their variances. Equations 3.4.6 and 3.4.7 give the Kalman filter recursions for the

filtered state, the innovations and their respective variances.

After applying the Kalman filter, it is possible to take account of the information
made available after time ¢, that means updating the Kalman filter estimates using
the information in the entire sample Y,,. This procedure is called smoothing and the
corresponding estimator is called a smoother; since the smoother is based on more

information than the filtered estimator, it will have a smaller MSE.

The fized-interval smoothing algorithm is one of the possible smoothing algorithms,
being a backward recursion which starts at time n after the Kalman filter is applied.

Its derivation is obtained by authors such as Anderson and Moore (1979), Jazwinski

(1970), and Ansley and Kohn (1982). The backward recursions for t = n,---,1 are
given by

Ji1 = Pt—llt-lT;P_l

tlt—1

Qp-yln = Qp-1jt-1 + Je-1(Gjn — Tel;—1jt—1) (3.4.8)
Pt-—l]n = Pt-llt—l _‘Jt—l(Ptln — Pt[t-l)J;-—l

Other forms of the same backward recursions have been proposed by de Jong (1988a),

de Jong (1989), Kohn and Ansley (1989) considering the recursions
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Kt — Pt]t-IZ;F;l

Lt — Tt — Ktzt
ro 1=2' Fly,+L'r

T T T e (3.4.9)
&tln — &tlt-—l + Pt]t—lft—l

Nt-—l — Z;_IF;IZt -+ L;.NtLt
Vin = Pyt—1 — Py 1N 1Py

withr, =0, and N, =0, and t =n,--- , 1. This last set of recursions also permit to
calculate the covariance matrices of the smoothed estimators at different times (de Jong

and Mackinnon, 1988; de Jong, 1998) as follows

Cov(&tln:&tﬂn) = Pt[t_lL; ;+1 ¢ L;;_I(I — Nj—lpt‘lt*—l) (3410)

fort* =t+1,--. ,n. These covariances will be used for benchmarking later on. Durbin
and Koopman (2001, sections 4.3 and 4.5) show the rationale behind the filtering and
smoothing equations and also the equivalence between the recursions in Equation 3.4.8

with the recursions in Equation 3.4.9.

Finally, the smoothed estimates of the response y and its variance can be obtained

making
gt = Zt&tln
Var(@y) = ZiVar(ay.)Z, (3.4.11)
COU(f[t,ﬁt-) — Ztcov(dtlm &t*ln)zr*

fort=n,---,landt*=¢t+1,.--- ,n.

An important case to take into consideration is when any of the matrices Py, becomes
singular. In that case, Harvey (1989), page 154 states that “if Py, is singular for some
t, it may be replaced by a generalised inverse as suggested by Kohn and Ansley (1983)”.
Particularly, this is the case when the RWN or the BSM are written in SSF putt{ng the

irregular term into the state vector. This formulation induces the transition matrix to

have a row of zeros and then being a singular matrix.
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3.4.2 Estimation of the hyperparameters

In the SSF the system matrices usually depend on unknown parameters known as
hyperparameters. For instance, variance of disturbances or ARMA parameters need
to be estimated before the Kalman filter is applied. These estimates can be obtained
using maximum likelihood (ML) estimation. The Kalman filter is used to construct the
likelihood function and then this function is maximised applying a suitable numerical
procedure of optimization. However, the traditional assumption of a set of observa-
tions y1,--- ,yn being independent and identically distributed is not valid for a time
series model. Denoting the vector of hyperparameters by 9 and assuming multivariate

normality for the disturbances in the SSF, the joint density of the observations can be

expressed by
Ly,9) = | | p(we | Y1) (3.4.12)

t=1
where p(y; | Y1) denotes the distribution of 9; conditional in all the information

available until time £ — 1. Assuming normality, p(y: | Y:_,) is also normal with mean

Zayye-1 and covariance matrix F';. The likelihood function can be expressed as,

logL(y) = —(pn/2)log(27) — (1/2) Y log | F | ~(1/2) > v;F'v,  (34.13)
t=1 t=1

where v, are the innovations and the matrices F; are the prediction error variance-
covariance matrices of the innovations as defined in Equation 3.4.7. Equation 3.4.13 is

sometimes known as the prediction error decomposition form of the likelihood.

In order to estimate the set of hyperparameters, the likelihood function will be max-
imised with respect to the vector of unknown parameters ¥ using the function nlminb
in Splus 7.0. This is a function based on numerical maximisation algorithms (Durbin
and Koopman, 2001, section 7.3.2) such as the Newton-Raphson’s method of optimi-
sation. The details and derivations of the Newton’s method can be found in Harvey
(1990). Other optimisation algorithms such as the functions ms and optim are avail-
able in R and Splus (Venables and Ripley, 2002). The algorithm used should be able
to handle constraints, since estimates of variances must be non-negative while ARMA

parameters must follow restrictions in order to get stationary and invertible processes.
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Once the ML estimates are obtained, they are substituted for the unknown hyper-
parameters in the corresponding formulas of the state predictors and their variances.
Pfeffermann and Tiller (2005) point out that this practice results in underestimation of
the true prediction mean square errors (PMSE) due to ignoring the variability implied
by the parameter estimation. They developed bootstrap procedures to get valid PMSE

estimators when the state vector predictors use estimated hyperparameter values.

3.4.3 Initialization of the Kalman filter

In order to start the Kalman filter and smoother recursions, it is necessary to have
initial values of the state ay and the covariance matrix Py. However, it can be shown
that for models reaching a steady state; the state estimates for large t are not con-

siderably affected by the choice of initial values, even if the model is non-stationary

(Janacek and Swift, 1993).

If these values are not known, which is the common case, there are some alternatives
to estimate them. If the state vector is stationary, the filter can be started using a
zero mean and a covariance matrix, Py, representing the mean and covariance matrix

of the unconditional distribution of the state vector provided that the unconditional

mean is zero (Gardner, Harvey and Phillips, 1980).

Following the second line in Equation 3.4.6, Py is considered as the solution of the

equation

Py =TP,T +Q (3.4.14)

which is equivalent to the equation

véc(Po) — vec(TPoT") = vec(Q) (3.4.15)
and then using the property vec(ABC) = (C' ® A)vec(Q), it follows that

vec(Py) = I, — T @ T vec(Q) (3.4.16)

where A ® B denotes the Kronecker product of A and B and the vec(.) operator

transforms a matrix into a vector by stacking its columns one underneath the other.
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On the other hand, if the state vector is generated by a non-stationary process, some

different approaches have been considered to initialize the Kalman filter in this case.
Considering a more general situation where the state vector contains elements in which

there is no prior information available (say b non-stationary elements) and others with

a known joint distribution (m — b stationary elements); a general model for the initial.

state vector ag 1s

ap =a+ B + R\ (3.4.17)

with a being a known r x 1 vector, 6 and A are b x 1 and (r —b) x 1 vectors of unknown
quantities, B and R being r x b and r x (r — b) selection matrices, respectively. B and
R constitute a set of columns of I, and B'R = Oyx(r—3). The aim is to separate oy into

a constant part a, a non-stationary part Bé and a stationary part RA.

Example 2.2

Consider the decomposition of a time series in Equation 1.1.1. Using this expression,
the observed sample time series is decomposed as the sum of the unobserved population
true series plus the sampling error series. Assuming a BSM (Equation 3.2.4) for the

true series and an AR(1) model for the sampling error series, the state vector will take

the form of a column vector of dimension 7 given by:

Qs = [Lgy Bty Ve Ye=1, Ve—2, €2, 8] (3.4.18)

and then, this vector has been formed using non-stationary and stationary compo-

nents (the stationary component corresponds to the last element in the state vector).

According to Equation 3.4.17, the state vector can be decomposed as

with

Os

Ig
y Ax1 = & (3420)

’ Jﬁxl - [/J';r ﬁt: Yo Ve—-15 Ye-2 Et]!) R7x1 -
0s 1

B =

Two alternatives for initializing the Kalman Filter are described below. The first

assumes that ap is random and nothing is known about the initial state. The second
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3.4. KALMAN FILTERING AND SMOQTHING

one assumes that the initial state ag is fixed but unknown. Therefore, its elements

must be estimated by treating them as unknown parameters in the model.

Diffuse Prior Initialization

Using some vocabulary of Bayesian inference, an informative prior corresponds to
specific and definite information about a variable whereas a non-informative prior
corresponds to vague information. Considering the decomposition of the state vector
in Equation 3.4.17, we first need to specify the prior distribution of g to let the
Kalman filter update that distribution.

Assuming 6 ~ N(0, kI,), the Kalman filter is started using as initial conditions ag =

E(ap) = a and Py = Var(ag) where
P, = kP, + P, (3.4.21)

and Kk — 00; P, = BB’ and P, = RQyR’ with Q, being the covariance matrix of A in
Equation 3.4.17. A simple approximate technique is to start the Kalman filter at {t =0
with ap = 0 and replacing k¥ by an arbitrary large number (S+Finmetrics assumes
k = 10° x max{1,diag(Q)}. The first b innovations and their associated variances
are not considered in the prediction error decomposition in Equation 3.4.13. Using
the notation above, if b represents the number of non-stationary components in the
state vector and also if a diffuse prior is considered for ayp; the first b observations will
permit to construct a, and P as the starting values Harvey and Peters (1990, page
92). However, this approach could lead to large rounding errors and could complicate
the numerical optimization if ag is very large (Harvey (1989, page 128); Durbin and
Koopman (2001, page 101)).

More general ways of avoiding the “large x” approximation include the methods due to
Ansley and Kohn (1985) and de Jong (1988b). The Ansley and Kohn (1985) method
propose a transformation which eliminates the dependence on initial conditions. A

modified form of the Kalman filter is then constructed and this enables the likeli-

hood function to be constructed via the prediction error decomposition (see Section
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3.4.2). However, when smoothing, the usual backward recursions are applied from

=n,--- ,b+1 and some modifications are required for the initial period t = b,--- , 1.
Further developments of the Ansley and Kohn (1985) method were given by Koopman
and Durbin (2003) making the collapse betweent =n,--- ,b+1andt =b,---,1 to be
automatic in the smoothing. Time series computational packages such as S4Finmetrics
use Koopman and Durbin (2003) method for initializing the Kalman filter. The method
is known as ezxact diffuse prior (Durbin and Koopman, 2001, chapter 5).

Alternatively, the de Jong (1988b) method is based on an extension of the Kalman
filter augmenting the observed vector. However, in this approach, it is also necessary
to modify the initial smoothing in the backward recursions. A recent solution to the

problem appears in de Jong and Chu-Chun-Lin (2003). Other authors such as Bell and
Hillmer (1991) and Snyder and Saligari (1996) considered the initialization problem for

the Kalman filter recursion from a diffuse prior point of view. However, they did not

consider the adaptation of the smoothing recursions under their initialization methods.

Fixed Initial State Vector

If it is assumed that all the elements of ag are fixed, this will imply that Fp =0. As a
result, the problem of initialization concerns the estimation of ay only. Re-writing the

observations in Equation 3.3.1 in terms of @ by repeated substitution of the Equation

3.3.2. 1t follows that

N =2Z1T1ap+ 2,19, + €,
Y2 = Lol T 10¢g + 4> (T2191 + 192) + €2

(3.4.22)

and calling Xy = Z22T2T and a*; = T,9,; + 9,, it follows that, in general,
Y: = Xiop + 210" + €
4
with Xy = Z, ]| T; and a*, =Tya*; + 9
j=1

Equation 3.4.3 is considered as the measurement equation of a multivariate model and

the GLS estimator of ag is obtained (Wecker and Ansley, 1983). A different method
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3.4. KALMAN FILTERING AND SMOOTHING

by Rosenberg (1973) considers the estimation of oy by maximum likelihood. The

method yields identical numerical results to Wecker and Ansley (1983) (see Harvey
(1989, section 3.4.4.)).

Pfeffermann (1984) considered a more general problem of optimal prediction of vectors
of coefficients considered as stochastic regression coefficients. The Kalman filter can

be considered as a special case of the class of models treated in this paper and optimal

estimators of the fixed starting state ag and “future” realizations a; are obtained. Using
a different approach, Shumway and Stoffer (1982) proposed the use of the EM algorithm
(Dempster, Laird and Rubin, 1977) to derive a recursive procedure for estimating the
parameters by maximum likelihood in time invariant state space models. Their method
initialize the procedure by selecting starting values for the parameters ag, Pg, T' and
QQ and then calculate the likelihood; then perform the E-step, running the traditional
Kalman filter and obtaining smoothed values of a;, Py, and P;;_y},; finally, perform

the M-step updating the estimates aqy, Py, T and Q. The same iterative procedure

is repeated to convergence. Further details can be obtained in Shumway and Stoffer
(2006, section 6.3). The method finally used for initialization in the state space model
applied to business survey data in Chapter 4 was a diffuse prior as a better model in

terms of fitting was achieved under this approach.

3.4.4 Diagnostic Checking and Goodness of Fit

In terms of the goodness of fit of the model, in a well-specified model, the standard-
ized individual elements ¥, (in the univariate case, v;/\/F; for t = b+ 1,--- ,n) are
serially uncorrelated and normally distributed with zero mean and constant variance,
(Harvey, 1989, page 442). This can be checked by means of large-sample diagnos-
tic tests and graphical procedures. QQ plots, histograms, tests of Shapiro and Wilk
(1965) and Jarque and Bera (1980) are some ways to check normality. Additionally,
autocorrelation plots and tests of serial correlation such as Ljung and Box (1978) (also

called Portmanteau test) and Box and Pierce (1970) are useful. Harvey (1989, page
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3.4. KALMAN FILTERING AND SMOOTHING

271) also proposes a F-diagnostic test for heteroscedasticity based on the standardized

innovations v, which has also been called post-sample prediction test.

Plots of the cumulative sum (CUSUM) and the cumulative sum of squares are also
useful to detect stability problems in the parameters (Brown, Durbin and Evans, 1975).

The CUSUM test is based on the cumulated sum of the standardized innovations

t ~
Yi

CUSUMt= 6’*

(3.4.23)
j=b+1 '

Brown et al. (1975) show that CUSUM; has mean zero and variance proportional
tot —b— 1 and also that approximate 95% confidence intervals are given by the
lines +[0.948v/n — b+ 1.896(t — b)/v/n — b] for a significance level of 5%. If CUSUM,
wanders outside these limits there is a failure in the stability assumption of the pa-
rameters. Harvey (1990, page 155) states that the CUSUM plot is also valuable for
detecting structural breaks and includes an example of this use for the series of road
accidents in Great Britain (Harvey, 1989, section 7.5.1). A set of statistics which also

provide useful additional information are the estimates of the irregular disturbance

term and the estimates of the disturbances in the transition equation, known in the

literature as auriliary residuals. For a general model in a SSF in Equations 3.3.1 and
3.3.2, these quantities are defined by (Durbin and Koopman, 2001)

Et|1r:|. =Yt — Zt&tln (3 1 24)

'bt[n — &t[n - Tt&t—lln
Kohn and Ansley (1989) and de Jong (1988a) developed the recursions to compute
the disturbances in the observation equation directly during the Kalman filter and

smoothing recursions without first calculating &;. Koopman (1993) developed the

recursions for the disturbances in the transition equation. However, they are not

serially independent (Kohn and Ansley, 1989) but they could be useful to detect outliers
and structural breaks, respectively. In order to choose one from several candidate
models, it is necessary to establish some comparison criterion. A possible way is to
evaluate the value of the loglikelihood for each of the piausible models. In general,
the larger the number of parameters the larger is the likelihood and then, information

criteria such as the Akaike information criterion (AIC) and the Bayesian information
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3.5. BENCHMARKING BASED ON STATE SPACE METHODS

criterion (BIC) are used in order to penalise models with more parameters than others.

These criteria are given by the formulae

AIC = —2 x log-likelihood + 2 * length()) (3.4.25)

BIC = —2 * log-likelihood + log(n) * length())

In general, big values of the loglikelihood are desirable and therefore, smaller values of

AlIC or BIC.

3.5 Benchmarking Based on State Space Methods

Considering the benchmarking problem presented in Chapter 1, Durbin and Quen-
neville (1997) propose two alternatives to produce benchmarked estimates using SSM
that are cast in state space form. The first method (two step method) uses signal ex-
traction to derive the smoothed estimators of the monthly signals without any bench-

marking and then the smoothed series and the annual benchmarks are combined in
order to compute the final adjusted estimates. In their paper, Durbin and Quenneville
(1997) also consider the inclusion of trading days, treatment of multiplicative series

and estimation of survey bias which will not be covered in this review. They also pro-

posed a second method for benchmarking (single step method). The main difference
from the first one is that instead of performing the estimation in two steps; the method
incorporates into a single series both monthly and annual values and then arrange a

suitable state space model for the combined series in order to obtain the benchmarked

estimators.

This section describes the two methods proposed by Durbin and Quenneville (1997)
and considers the special case when the adjusted series is forced to agree exactly
with the benchmarks (binding estimation). The binding process is implemented by
setting the variance of the annual survey errors to zero. However, it is necessary to
account for the variance of the annual survey errors when computing the variances

of the benchmarked estimators. We develop the theoretical expression of the correct
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'3.5. BENCHMARKING BASED ON STATE SPACE METHODS

variance as well as an expression for the excess in the variance due to the binding

process. As it turns out for the two step benchmarking method and under some
specific conditions, the estimates in the second step after binding could actually be
less accurate than the estimates obtained without benchmarking. The results are
extended to the benchmarking methods based on regression and ARIMA model based

approaches in the last chapter.

3.5.1 Two Step Benchmarking Method

Consider again the decomposition of univariate time series data into a signal 7, and a
survey error £; in Equation 1.1.1. Using the Equation 2.3.8 to represent heteroscedastic

survey errors, it follows that

Y =1 + by = 1y + kil (3.5.1)

where ¢; is the standardized survey error and k; is the standard deviation of the
survey errors. The idea behind the term k; is that since Var({;)=Var(k:f;) then
Var(¢;)=Var(l,;/k;)=Var(¢;)/k? = 1. Then, the term ¢; can be assumed as a unit-
variance stationary ARMA(p,q) series and the model accounts for the heteroscedas-
ticity of the survey errors (see Section 2.3). Consequently, it is necessary that all the

values of k; for t = 1,:.- ,n and also the orders p and ¢ in the survey errors ARMA

model are known.

Following the same ideas as in other benchmarking methods it is assumed that there

is a series of annual values z;, (i = 1,--- ,m) available from another source and also
considered as more accurate than the monthly values 3,’s. We assume that errors in

the benchmarks are independent of errors in the monthly observations. The z;’s are

assumed to satisfy the benchmarking relations in Equation 2.4.3 introduced in section

2.4.
z=Ln+e, e~ N(0ZX,)
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3.5. BENCHMARKING BASED ON STATE SPACE METHODS

where x is an observed m x 1 vector of annual estimates, L is an n x m indicator matrix,

and e is an m x 1 annual error vector having a multivariate normal distribution N(0y,,

¥e) and independent of 77 and £. It is also assumed that 3. is known or can be

estimated.

e

Suppose that the unobserved true series 7, follows a general structural time series

model given by
Mt = He + 7 T € (3.5.2)

where p,, v and ¢, are the trend, seasonal and irregular components respectively. It

follows from Equation 3.5.1 that the observed series v, follows the model

‘ pw=m+b=mwm+vnt+et+ kb, t=1---,n (3.5.3)
¢
Lf; t

with £§ a unit variance ARMA(p,q) process and k; denoting the standard deviation
of the survey errors at time ¢t as before. Following the ideas in subsection 2.5.2, the
structural model in Equation 3.5.3 can be formulated into SSF and then using the

Kalman filter one can get an estimate of 7;. Notice that we model y; but the aim is to

produce a preliminary estimate of 7; by signal extraction. We will denote the estimator

of 7; in this first stage by 7;. 5

Proposition 3.5.1. Consider the structural time series model for the observed series

y: given by Equation 3.5.3, writing this model into a SSF and then combining the

results of the Kalman Filter and smoother with those in Hillmer and Trabelsi (1987),

the BLUP estimator for n is given by

=1 +1, (3.5.4)

and its corresponding covariance matriz X; is given by
2, =Q-QL(L'QL + X,.)"'L'Q (3.5.5)

with 7° the vector with single elements 7oy = Z0y; 1, = RL(L'NL+X.) Y (x— L' ﬁo)

and Q = (@] = Z,Cov(Gy, @) Z}. obtained after the application of the Kalman filter 5

and smoother.
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3.5. BENCHMARKING BASED ON STATE SPACE METHODS

Proof. Let a;; be the trend component in the state vector, ay; the seasonal compo-

nent, az, the irregular component and ay; the survey error component as they were
introduced in section 2.5.2. Setting a3; = €;, implies that the irregular component of

the observation equation is included in the state vector and it follows that

Qa; = [al,t Qat Q3¢ 04,:]’= [al,t Q¢ €4 0!4,t]’ (3-5-6)

Let
Zy=Zv¢ Zop Zay Zi =124 22y 1 Z3) (3.5.7)

where Z,, represents the corresponding matrix related to the element a,¢,t = 1,--- ,4

in Equation 3.5.6 and Z3, = k;Z4;. Equations 3.5.6 and 3.5.7 permit to write the

observation equation in the form

Y = Ztat = pt + Ve + € ktfz (3-5-8)

Moreover, using the corresponding elements T',; and 9, (¢ = 1,---,3), it is possible

to write the transition matrix and the disturbances in the transition equation by

T, = diag(T1,4; T3 T34 T4e) = diag(T1,4;T2,6;0;T'a ) (3.5.9)

U = [ﬁl,t 192,t 193,t 194,.1] = [191,t 192,t €t 194,t]

to get the transition equation

Q; = Ttat_l + 19; (3.5.10)

Once the model is formulated in SSF, it is possible to use the Kalman filter to get the
estimate 9, = E(n | y). Using the observation equation y; = Z.0y, then N = Z0
where Z, has the same form as Z, replacing Zj, by a suitable vector of zeroes (this

is because 7; does not contain the survey errors). Once &; = E{o; | y) is calculated
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3.5. BENCHMARKING BASED ON STATE SPACE METHODS

using the filtering and smoothing recursions analogously to Equations 3.4.11; it follows
that a preliminary estimator of the signals n; is 7p; = Z:&; with covariance matrix
Q = [ ee] = [Cov(oe; 0e+)] for ¢,t* = 1,--- ,n. Also, according to the observation
equation and the fact that the irregular term has been included in the state vector, it
follows that @, = Z,Cov(a;,a;-)Z}.. The recursive expression for the last expression

Cov(ay,a;+) can be calculated from Equation 3.4.10.

The second stage uses the results in Hillmer and Trabelsi (1987) for which theoretical
details are included in Appendix A.3. The final estimate incorporating the annual

information and its corresponding variance are given by the expressions

1 =E(n|z,y) =1 +n
where
n,= RL(L'QL +X.) Yz - L'R)
and covariance matrix

Y5 =Cov(n|z,y) =0 —-NRL(L'NRL+X.)"'L'N

An example of the application of this method to business surveys in the UK will be

presented in Chapter 4 where some structural time series model will be considered with

their corresponding formulation as SSF.

3.5.2 Single Step Benchmarking Method

Durbin and Quenneville (1997) proposed a second method of benchmarking. The

difference from the first one is that instead of performing the estimation in two stages;
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3.5. BENCHMARKING BASED ON STATE SPACE METHODS

both series (monthly and annual) are combined into a single series with the filtering

and smoothing procedures applied in a single stage.

The single series containing both the high and low frequency series is arranged as

yl.l — [yla"' yYKY L1y YK+1y Yy 2Ky T2, Y2K 415" * 3y Uny (xm)] (3511)

where (z,,) signifies that the single series could represent complete years with the
final element being z,, or could represent incomplete years with the final element

being y, representing the last available monthly data. Also K represents the number
of subperiods per year as it was noted before and the elements y,,t = 1,--- ,n and

ri,t=1,--- ,m follow the equations below

Y =M+ & =y + k6
iK (3.5.12)

The total length of the series y* will be n 4+ m independently of whether it ends

with an element y, or an element z,, and s = 1,--- ,n 4+ m will denote the index of
each position in the series y*. This characteristic allows the method to be an online
procedure, i.e. it is not necessary to wait until the next benchmark is available to

apply the procedure. All the benchmarking methods reviewed before require having

available the benchmark for the last year before applying the corresponding method.
This is not the case now and therefore, the single stage benchmarking method is a

solution of the ex-ante estimation problem presented in pages 4 and 5.

Proposition 3.5.2. Consider an array containing both the high and low frequency
series 1n a single series. After writing the structural model for the new series in an

appropriate SSF, the smoothed benchmarked estimates and their respective variances

are given by

s = Z,a, +¢€, (3.5.13a)
Var(s) =Z:P:2" + 02, s=1,---,n+m (3.5.13b)

with n + m the length of the new series and the other components given by the SSF.
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3.5. BENCHMARKING BASED ON STATE SPACE METHODS

Proof. Let us assume that the valuesy; t=1,---,n in y* follow the same structural

time series model used in the two stage method and formulated in Equation 3.5.3. Tt

follows that

y=m+ntet+kl, t=1,---,n

Writing this structural time series model for the values y; along with the equation
T; = Zg{-n k+1M¢ + € for the values z;,7 = 1,--- ,m into SSF, an estimate of 7; can
be obtained using the Kalman filter. Again the modelling is done over y* to produce
an estimate of 7. Considering a; 4,2, a3 and a4, the corresponding components of
the trend, seasonality, irregular terms and the survey errors, respectively. Since every
term z; in the series * depends on the last K values, it will be necessary to consider
the trend, seasonality and irregular components in the state vector each one with a
subvector of length equal to K. That is not necessary for a4, as n; is not affected
by the survey errors. Then, the length of the vector a4 is o = max(p, q) using the
notation given in page 33 and p, ¢ denoting the respective orders of the ARMA(p, q)
model of the survey errors. The total length of the state vector will be equal to 3K + o
with K the number of high frequencies per year. In this way, the observation equation
will refer to two kinds of values: y;,t = 1,--- ,n and z;,7 = 1,--- ,m according to

Equation 3.5.12. This is achieved by considering a state space vector given by

ats — [al,s Qrs Q35 04,3]

(3.5.14)
— [Us: "ty Hs-K41 l Vsy "y Vs—K+1 l €y y€s-K+1 I afl,s]
with observation matrices as
~ [IOK—I | 10K—1 l ]-OK-I I kto —1]: if y’llI = Ut t = 11' R
Ze, = y 3 (3.5.15)
1k |1k | 1k | O, if yy=x; i=1,---,m

and disturbances

€5 = (3.5.16)
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3.5. BENCHMARKING BASED ON STATE SPACE METHODS

with variances given by

o2 = (3.5.17)

0.2

x e
e;)? Ys — L4 ?""']-s"' y 1T

with o2 denoting the variance of the annual survey errors.

Durbin and Quenneville (1997, page 38) state that it is necessary to assume that

Y. is a diagonal matrix; otherwise, the state vector becomes too large. It can also
be noted that, more importantly, if this assumption is not made the disturbances in

the observation equation will become autocorrelated. As an alternative, Pfeflermann
and Tiller (2006) have developed a new filtering algorithm for state space models
with correlated disturbances in the observation equation giving a possible solution to

overcome this problem.

Equations 3.5.14 to 3.5.17 permit writing the observation equation in the form
y' =20, +€* €, ~iid(0,0%) s=1,---,n+m (3.5.18)
which is equivalent to the set of equations 3.5.12. In the binding case
Y, =20y s=1,---,n+m (3.5.19)

Also, using the corresponding elements T',, and 9,5, ¢ = 1,---,4, it is possible to
write the transition equation. The transition equation defines the development of the

system from one instant to the other. Going over the index s = 1,--: ,n + m, the

transition from one element ¥y, to the next is described by the original matrices T, ,.
At the same time, the transitions have to “jump” the elements z; in order to keep the
continuity in the series. Then, the transition from the last element in year 2, denoted
by yik,2 = 1,--- ,m to the next element z; must keep the same state vector in z; as
for y;x. There is no transition from y, to z; and the identity matrix could be used as
T*,. Now from z; to y;x41, it is possible to use the same transition matrix from y;g

to the next y;x41 as the state vector for z; is the same as the state vector for 1.
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