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TIME-CHANGED SELF-SIMILAR PROCESSES 

by Wahib Arroum 

We consider processes of the form X(t) = X(e(t)) where X is a self-similar process 

with stationary increments and e is a deterministic subordinator with a periodic activity 

function a = e' > O. Such processes have been proposed as models for high-frequency 

financial data, such as currency exchange rates, where there are known to be daily and 

weekly periodic fluctuations in the volatility, captured here by the periodic activity 

function. We propose three new methods for estimating the activity and review an 

existing estimator for it. We present some experimental studies of the estimators 

performances. We finish with an application to high frequency financial data such as 

foreign exchange rates and FTSEIOO futures contract. 
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Preface 

The analysis of high-frequency financial data is becoming an issue in understanding 

market behaviour. Millions of quotes are traded everyday and the advances in tech­

nology such as data storage and electronic trading systems implementation have made 

high-frequency financial data accessible to academicals and commercial users. High­

frequency data (HFD) in finance refers to prices that are recorded several times C1. day. 

More precisely, HFD dataset contains quotes for each transaction made during the 

day. High-frequency financial data present an advantage compared to daily data .. The 

additional intraday prices gives more details on how the price reacts to information 

and so a better examination of the source and the volatility of the return can be made. 

However, it also presents a great challenge to econometric modeling and statistical 

analysis for various reasons. Periodic fluctuation exhibited in the volatility is one of 

those reasons for which our research will be focused on. 

Throughout the thesis, we describe how to remove the daily and weekly seasonality 

exhibited in high frequency financial data. We recall the subordinated model of Da­

corogna [3] X(t) = X(e(t)) for high frequency financial data, where X has some scaling 

properties and has stationary increments, and e an increasing deterministic function. 

Assuming the logarithmic price of a given asset being of the form X(e(t)), we present 

three methods to estimate the time change function e. An estimate of the function e 
will describe the daily and weekly periodic fluctuation exhibited in the volatility. 

The thesis is divided into three parts. In the first part, we introduce the mathematical 

background on self-similar stochastic processes. In the second part, we present three 

methods to estimate the deterministic time-change function e and in the last part, we 

apply the time-changed process as a model for high frequency financial data. 

Part I 

In the first Chapter, an introduction of self-similar processes is given. We study espe­

cially the case where such processes has stationary increments. We introduce the Hurst 

index H, which in a certain way represents the roughness of the process in some case; 

when the process has finite second moment, it is also used to detect long/short range 

dependency of a time series. Several methods to estimate this index are presented, such 

as the R/S Analysis[4], the Variance plot[5]' the Wavelet Analysis[6]' the Crossing Tree 

method[7]. 
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Preface 

We introduce the et-stable distribution. Vie present some methods to estimate the 

parameters (et, f3, (5, f-1) of the et-stable distribution, such as ~kCulloch [8J, Koutrouvelis 

[9J, Paulson, Holcomb and Leitch [10J and the maximum likelihood method. \Ve then 

compare their performances. 

Finally, we limit our study to the family of self-similar processes with et-stable distri­

bution [l1J and give some examples such as the Brownian motion (H = 1/0: = 1/2) or 

more generally the fractional Brownian motion (fBm) (H E (0,1),0 = 2 value at which 

the distribution of the process is Gaussian), also the o:-stable Levy process (H = 1/ n). 

called Levy stable motion (Lsm). We extend to the case 0: =I=- 1/ H by providing some 

examples. 

In the second Chapter, we introduce briefly, some mathematical tools describing the 

roughness of a given function sample path. \iVe present some notion on the Hausdorff 

dimension [12J and the Holder exponent. We present as well some notion on the local 

structure of a random process, from which the class of locally self-similar processes will 

be introduced. Obviously a self-similar process is locally asymptotically self-similar. 

Part II 

In the third Chapter, we consider processes of the form X(t) = X(e(t)), where X is a 

self-similar process with stationary increments and e is a deterministic subordinator. 

We study the effect of the time change function on the roughness of the stochastic 

process sample path. Namely we look at the Holder exponent and the local self­

similarity of the process. Then, after describing how to simulate time-changed sclf­

similar processes, we test the self-similarity index estimator's performances described 

in the first Chapter on the time-changed process X (t) = X (e( t)). We end the Chapter 

by presenting the appropriate estimator for time-changed processes. 

In the fourth Chapter, we develop two time change estimators: the 1/ H-varia.tion 

and log-variation. These two methods are based on the path variation of the process. 

We show that these two estimators are consistent under some assumption of X. More 

specifically, we assume X as being locally self-similar and having stationary and ergodic 

increments. A statistical analysis and a numerical analysis of these estimators will be 

carried out. In particular, we test the performances of these two estimators on some 

well known self-similar processes. 

In the fifth Chapter, we introduce a new estimator for the time change function. This 

last will be based on counting the level crossing points of the process. However, the 

continuity of the process sample path is needed as well as the stationarity and the 

ergodicity of its increments. We show that counting the number of crossing points 

of a self-similar process at different level size, allow us to estimate the self-similarity 

index of the process. In this Chapter, some experimental study of the estimator will 

be performed on self-similar processes to test their performances. 
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Preface 

Part III 

In the sixth Chapter, we present an overview on high frequency financial data. The 

main characteristics of such data are described as well as their inconvenience when 

we study them. Since such data contain spurious observations, we present a simple 

algorithm used to clean the data. The main task of the filter is to remove aberrant 

observations. 

In the seventh Chapter, we apply our time change estimator given in part two, t.o some 

high frequency financial data. In particular on some Foreign exchange rate indices and 

the FTSE100 future contract. Assuming t.hat the time change function e has periodic 

derivative such that e'(t + T) = e'(t), where T is the one week periodicity. we introdllce 

Dacorogna's time change estimator, which uses the scaling law properties of the data 

and compares it to ours. The derivative of the time change function represents the 

activity of the market. The function e describes the daily and weekly seasonality of 

the data. 

In the eighth Chapter, we present a model for high frequency financial data, using a 

time-changed Heyde's FATGBl\1 model [13]. We analyse the AUD/USD rate index 

and the FTSE100 future contract after removing the intraday seasonality. A statistical 

analysis will be performed on these data. For both dataset, we study the time duration, 

which is the time interval separating two ticks. We analyse the autocorrelation function 

of the log-prices return as well as its absolute and squared value. The distribution on 

the log-prices return will be fitted to three different distribution functions. After some 

statistical analysis of the data, we set the characteristic of these data as assumptions for 

a model. The model, that uses the FATGBM will be fitted and compared respectively 

to the AUD/USD rate index and the FTSE100 future contract to close the Chapter. 
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Mathematical background 
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Chapter 1 

Introduction to self-similar 

processes 

"Self-similar processes are stochastic processes that are invariant under suitable scaling 

of time and space ... " [14]. In this Chapter, we present an introduction to self-similar 

processes. We start by defining them, then we describe the a-stable distribution and 

we finish by providing some examples of self-similar processes. 

1.1 Self-similar processes 

We introduce some definitions. VVe suppose a stochastic process X = {X(t)}tET' a 

collection of random variables X(t), defined on a probability space (0, 9=', P), where 

T ~ JR., called the index set of the process X. 

Definition 1.1.1. The process X '" 

(i) ... has independent increments if for any t 1 , ... ,tn E T such that tl < ... < tn, 

X(t 2 ) - X(t 1 ), ... , X(tn) - X(tn-d are independent. 

(ii) ... is stochastically continuous at t, if for any E > 0, 

lim JIll (I X (t + s) - X ( t ) I > E) = 0 
8-+0 

(iii) ... has stationary increments if 

(Jdd) 
{X(t + h) - X(h)}tET = {X(t) - X(O)}tET for all hE T 

(iv) ... is trivial (or degenerate) if X (t) is a constant for every t E T. 

2 



Chapter One 1.1. Self-similar proC"l'ss('s 

1.1.1 Definition 

Definition 1.1.2. A stochastic process X is said to be self-similar if for any a > 0, 

there exist b > 0 such that 

(Jdd) 
{X(at)}tET = {bX(t)hET (1.1 ) 

In other words, a self-similar process appears to be the same in statistical terms at any 

temporal scale. In Definition 1.1.2, Lamperti [15] shows under some assumption of X 

that it exists a relation between a and b. This last relation is given in Theorem 1.1.3, 

when X is a non-trivial self-similar process. Note that in [15], Lamperti used the term 

semi-stable instead of self-similar. 

Theorem 1.1.3. Let X be a non-degenerate and stochastically continuous self-similar 

process, then there exists a unique H ;::: 0, such that b in (1.1) can be expressed as 

b = aH
. 

Proof. see proof in [14] page 2. D 

Note that H cannot be also strictly negative. Indeed, let X be a process as defined in 

Theorem 1.1.3; suppose that H < 0, then the relation (1.1) becomes 

(Jdd) {I } {X(at)}tET = iHlX(t) 
a tET 

one has for E ;::: 0 and 0 < a < 1 

JP> (IX(t) - X(O)I > c) = JP> (aIH1IX(at) - X(O)I > c) ::; JP> (IX(at) - X(O)I > c) 

since the process X is stochastically continuous, one gets 

JP> (IX(at) - X(O)I > c) -t 0 as a -t 0+ 

hence for each t E T, X(t) (a~.) X(O). Moreover, X(O) ~ aIH1X(aO) (~.) 0, as a -t +00. 
One deduces for H < 0, X(t) (a~.) 0, for any t E T. 

For H = 0, with Theorem 1.1.3, the relation (1.1) becomes X(at) (d) X(t). Moreover, 

one has X(at) - X(O) ~ X(t) - X(O), which yields to 

JP> ( I X ( t) - X (0) I > E) = JP> ( I X ( at) - X (0) I > c) for some E > 0 

X is continuous in probability, so as a -t 0+, 

JP> (IX(t) - X(O)I > c) = lim JP> (IX (at) - X(O)I > c) = 0 
a-->O+ 

Hence Vt E T, X(t) (a~.) X(O). 

:) 



Chapter One 1.1. Self-similar processes 

One can rewrite the following definition for non-degenerate and stochastically contin­

uous self-similar processes. 

Definition 1.1.4. Let X be a non-degenerate and stochastically continuous process. 

Then the process is said to be H-self-similar if it exists a unique H > 0, such that 

(fdd) H 
'Va> 0, {X(at)}tET = {a X(t)}tET 

H is called the self-similarity index, or also the Hurst indexl. 

A direct consequence of self-similarity is that X(O) (a~.) 0 (Proposition 1.1.5). Further­

more a self-similar process is never stationary, if such process X (t) exists, then one has 

for a > 0 ( X is non degenerate) 

(d) (d) H 
X(t) = X(at + (1 - a)t) = X(at) = a X(t) 

and for t fixed when a -+ +00, X(t) -+ +00 which is impossible. 

For conciseness, we write H-ss for a H-self-similar process and H-sssi for H-ss process 

with stationary increments. 

Proposition 1.1.5. X is H-ss , with H > 0, then X(O) (a~.) 0 

Proof. By self-similarity we have for a > 0 

X(O) ~ X(aO) ~ aH X(O) 

'T' d' X( ) (a.s.) 0 .len mg a to 0, one gets 0 = . 

1.1.2 Self-similar process with stationary increments 

D 

For applications, the stationarity of a process is important. As we saw, H-ss processes 

can not be stationary, however, it can have stationary increments. Several studies on 

self-similar processes with stationary increments exist in the literature ([16], [17], [18]). 

A consequence of adding this last property is the following Theorem. 

Theorem 1.1.6. Let X be a non-trivial H -sssi process. We suppose that E [X(1)2] < 00. 

Then 

Proof. 

E [X(t)X(s)] = E [~(X2(t) + X2(S) - (X(t) - X(S))2)] 

= ~(E [X2(t)] + E [X2(S)] - E [(X(t) - X(S))2]) 

1 In fact. for self-similar processes. the Hurst exponent and the self-similar index coincide. 
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Applying the stationarity of the increments and then the self-similar property, one gets 

IE [X(t)X(s)] = ~(IE [X2(t)] + IE [X2(S)] -IE [X2(t - S)]) 

= ~(ltI2HIE [X2(1)] + Isl2HIE [X2(1)] -It - Sl 2H IE [X2(1)]) 

= IE [X2(1)] (ItI2H + Isl2H _ It _ SI2H) 
2 

Theorem 1.1.7. Let X be a non-degenerate H -sssi process. Then 

(i) IJIE[lX(I)II'] < 00 Jar some 0 < 1 < 1, then H < 1/1 

(i'i) IJIE[IX(I)I] < 00, then H ::; 1 

(iii) IJIE[lX(I)I] < 00 and HE (0,1), then \:It E IR, IE[X(t)] = 0 

(iv) IJIE[IX(I)I] < 00 and H = 1, then \:It E IR, X(t) (a~.) tX(O) 

Proof. see proof in [14] page 20-21. 

D 

D 

So far, we know that if a non-degenerate and stochastically continuous process X is 

H-ss and H ::; 0, then for any t E T, X(t) (a~.) O. Moreover, if X has stationary 

increments, IE[IX(I)I] < 00 and for H E (0,1) then IE[X(t)] = o. When H = 1, then 

X(t) (a~.) tX(O). The Theorem 1.1.8 answers the case H > 1. 

Theorem 1.1.8. Let X be a non-degenerate H -sssi process with H > 1, then 

Proof. Easily shown using (i) of Theorem 1.1.7. D 

1.1.3 Long-Range dependance 

Long range dependence was studied in particulary by Hurst. He studies the level of 

the Nile and problems related to the water storage, known for alternating between 

long periods of dryness followed by long periods of flooding. This effect was called by 

Mandelbrot [19] "Joseph effect" referring to the seven years of abundance followed by 

seven years of famine described by a passage of the Bible. 

Definition 1.1.9. A stationary process {Y(n)}nEN' with its autocorrelation Junction 

r(n), is said to be long-range dependent, or with long memory, or slowly decaying 

correlation, iJ 
+00 

L Ir(n)1 = +00 

n=O 
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Proposition 1.1.10. Let X be a nOTI,-trivial H -sssi process with IE[X(I)2] < 00, and 

let us define the autocorrelation of its increments 

Then 

- \:In E N, 

- \:In E N*, 

\:In E N, r(n) = IE [(X(I) - X(O))(X(n + 1) - X(n))] 

r(n) "-J H(2H - l)n2H- 2IE [Xn ' if H -=/=- ~ 
n-+oo 2 

1 
r(n) = 0, if H = 2 

Proof. With X(O) (a.s.) 0, \:In E N 

r(n) = IE [X(I)X(n + 1)] - IE [X(I)X(n)] = ~ ((n + 1)2H - 2n2H + (n - 1)2H)IE [X2(1)] 

For H = ~, one has r(n) = O. Otherwise, \:In E N, 

1 (( 1)2H (1)2H) r( n) = 2 1 + :;:;: - 2 + 1 - :;:;: n 2H IE [X2 (1) ] 

Taylor expansion yields to 

{ 

( 
1)2H HI 2H(2H -1) (1)2 (1)2 1+- =1+2 -+ - + 0 -
n n 2! n n-++oo n 

( 
1)2H _ HI 2H(2H -1) (1)2 (1)2 1-- -1-2 -+ - + 0 -
n n 2! n n-++oo n 

For H -=/=- ~,r(n) "-J H(2H - l)n2H- 2IE [X(I)2]. 
n-too 

The following conclusion can be set 

1 
(i) If 0 < H < 2' 

00 

L Ir(n)1 < 00 =? Short-Range dependent increments 
n=D 

1 
(ii) If H = 2' \:In E N*, I r ( n) I = 0 =? U ncorrelated increments 

1 
(iii) If 2 < H < 1, 

00 

L Ir(n)1 = 00 =? Long-Range dependent increments 
n=D 

1.1.4 Self-similarity index estimation 

o 

Many methods can be found in the literature thatestimate the Hurst parameter. As 

mentioned in the previous Section, Hurst [20] was the first to analyse the long range 

dependence of a time series, and therefore he introduced the R/S statistic [4]. Since 

many authors found other methods to estimate H: Variance of Residuals [5] and 

[21], \~Tavelet analysis [6], Crossing Tree [7] and [22], Whittle estimator [23], Higuchi's 

method [24]. \Ve present the first four cited methods. 



Chapter One 1.1. Self-similar processes 

Rescaled range analysis 

The rescaled range analysis was developed by Hurst. Let X a H-sssi process, we define 

the range of the deviation of the process as follows 

R(n) = [max (X(i) - iX(n)) - min (X (i) - iX(n))] 
O::;,::;n n O::;,::;n n 

which will be rescaled by its standard deviation. 

1 (1) 2 S(n) = ; L (X(i) - X(i - 1))2 - ; X 2(n) 
l ::;i::;n 

The rescaled adjusted range is then 

R/ S(n) = ~~~? 
We have the following scaling law relation (see [25]) 

(1.2) 

where CH is a positive constant independent of n. 

To estimate H using the R/ S statistic for a given time series {X (i) h ::;i::;N with N 

observations, one subdivides the series into K block ki of size N / K and then computes 

the Rescaled range for each block ki (that we note Rki (n) / Ski (n)) and for each lag n 
with the starting points , ki = iN / K + 1, i = 1, 2, .. , such that ki + n ::; N . When n 

is small, ones gets K values of Rki (n) / Ski (n) and when n is close to N one gets one 

value. Let R/ S(n) = l ~l::;i::;K Rki (n)/ Ski (n) , plotting log (R/ S(n)) versus log n, H 
can then be estimated by computing the slope of the fitting line of the points plotted 

(Figure 1.1 using a fractional Brownian motion for H = 0.6 see Section 1.3.2) . 

fI =0.61643 
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Figure l.1: log( R / S) function of log( n) and its fitted line. 

7 
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Variance of Residuals 

The Detrended Fluctuation Analysis (DFA) was introduced by Peng and all [5]. It 

is also called Variance of Residuals [21]. To apply this method to a time series 

{X (i) h <i<N, we first divide the time series into blocks of size m < N , then in each 

block we detrend the sample by subtracting t he local trend applied to the ith blocks 

Yi(t) = ait + bi, fitted by a least squares method. 

Time series X(t) in green and the local trend a1t+bl in blue 

Detrended path : X(t)- at-b 
40.-----~----~----~------~--__, 

200 

Figure 1.2: Detrend fluctuation analysis. 

For a given block i of size m, one has the following characteristic size of fluctuation 

1 m 

Fi(m) = m L (X(t) - ait - bi )2 
t=l 

and we deduce the average of the characteristic size of fluctuation by 

F(m) = ~ L Fi(m) 
1 '5. i'5.N/ m 

This computation is repeated over different block sizes to provide a relationship between 

F(m) and m . Taqqu proves the following relationship for a fractional Brownian motion 

in [21] and gives a sketch proof for some other cases (see [26]) . 

where 

CH = (2H
2
+ 1 + H ~ 2 - H ~ 1) 

The slope of the linear regression of log F (m) against log(m), determines the scaling 

exponent H . 

8 
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Wavelet analysis 

The idea behind the wavelet analysis, is to expand a signal {X (t) hET for a given 

resolution depth J, as Signal=approximation (low pass)+ details (high pass): 

J 

X(t) = L ax(J, k)CPJ,k(t) + L L dx(j, k)1/Jj,k(t). (1.3) 
k j=l k 

With CPj,k(t) = 2-j/2cpo(2-jt - k), 1/Jj,k(t) = 2-j/21/Jo(2-jt - k), (j, k) E 'l} where CPo is 

the scaling function and 1/Jo the mother wavelet, derived from the CPo via The MultiRes­

olution Analysis see [27]. 

The coefficients ax (j, k) and dx (j, k) are defined through inner products respectively 

with CPj,k and 1/Jj,k 
ax(j, k) =< X(t), CPj,k(t) > 
dx(j, k) =< X(t), 1/Jj,k(t) > 

To understand the application of the wavelet decomposition, we consider a H -ss process 

X. The variance of its wavelet coefficients dx(j, k) can be written as follows (see [6]) 

(1.4) 

Moreover if the process has stationary increments, (1.4) is reduced to 

with 

C(H,'l/Jo) = J J ItI 2H1jJo (u)'l/Jo (u - t)dudt and (52 = lE[X(1)2] 

We deduce an estimator of H by estimating the slope 0: of the regression line of 

log2(lE[dx (j, k)2]) against j, with j E {j1,'" ,j2}, where the interval {j1,'" ,j2} rep­

resents the resolutions used. One gets H = (0: - 1)/2. 

In practice, one estimates lE[dx(j, k)2] by computing the empirical moment of order 2, 

Nj 

/-Lj = lE[dx(j, k)2] ~ ~. L dx(j, k)2 = itj 
J k=l 

where No is the data size, and Nj = 2-jNo. The fact that log(lE[(.)]) i= lE[log(.)], Abry 

and Veitch [6], add a small corrective ~j (the estimation error), such that 

(1.5) 

When the increments of the process X are Gaussian distributed, then the mean and 
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the variance of ~j are given by (see [6]) 

\I! (Nj /2) ((2, Nj /2) 
E[~j] = 1 () -10g2(Nj/2) and Var (~j) = 2( ) og 2 log 2 

where \I!(z) = r'(z)/r(z), r(z) and (( z, v) are respectively the Gamma and the Rie­

mann Zeta function. 

The estimator & of ex is the slope of a linear regression of 10g2 (J-Lj) -E[~j] on j , weighted 

by Var (~j), for j E {jl , ... ,j2}' 

Crossing Tree method 

The Crossing Tree method was introduced by O.D. Jones and Y. Shen in [7]. This 

method consists on studying the process on space scale rather than temporal scale. 

Let X be a H-ss with continuous sample path, and c5 a fixed spacial base scale. Let 

T!: be the kth crossing time of size c52n with 

T; = 0 and T!:+1 = inf{ t > T!: : X(t) E c52n, X(t) =I- X(T!:n 

In Figure 1.3, the crossing levels are plotted as well as its crossing tree. An explanation 

on how the crossing are built can be found in [2]. Also, in appendix F .l a graph on 

how the crossing tree is formed is described. 

sample path and crossings 

-0.8 '----'----~------"-----'--------' 

40 

~ 30 
'in 

.~ 20 

'" § 10 

o 

~N\ 

200 400 600 800 1000 

crossing tree (points give start of crossing) 

O'----'----~------"-----'--------' 
o 200 400 600 800 1000 

Figure 1.3: Formation of the crossing tree from a sample path. Upper panel shows the path, lower 
panel shows the structure of the tree which is in fact the crossings for each level linked by lines 
(Matlab source on [1] to realise this plot) . 

Let Z'k be the number of sub crossings of size c52n- 1 that make up the kth crossing of 

size c52n. For different n , {Z'k} k are identically distributed, and assumed that for fixed 

n Z~ , Z2'" are stationary and ergodic. Let N(n) be the total number of crossings 

of size c52n. The relation between both quantities must satisfy N(n) ~ L:~~~+1) Z'k+l' 
Let J-L = E[Z'k], if we scale the space by 2k, then we must scale the time by J-Lk to get a 

10 
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crossing of the same expected length, this implies that if X is self-similar, then 

So from the definition of a self-similar process, we deduce H = 10g(2)/ 10g(J.L). 

In practice with the previous assumption, one can use (1.6) as a consistent estimator 

for J.L (see [7]), 
N(n) 

fLn = L Z~ /N(n) (1.6) 
k=1 

the estimator for the Hurst index at scale 62n is then given by 

A 10g(2) 
Hn = 10g(fLn) 

If the propriety of self-similarity holds over different scales i.e. 62m to 62n [22], then 

we can combine them to get a more consistent estimator. 

iI = 10g(2) 
m,n 10g(fLm,n) 

where fLm,n = L N(i)fLd L N(i) 

Comments on the crossing tree method 

The crossing tree method estimates the global self-similarity index by using crossings 

level of the process. The crossings points computed on discrete time series are an 

approximation of the real crossing points of the continuous time process and so the error 

of this approximation may falsify the estimation of the global index of self-similarity 

of the process. 

Burq and Jones in [28] present a way to simulate a Brownian on a regular space grid. 

We simulate two standard Brownian motions {BI (t.1) L=o .... n' where 0 = to < ... < tj < 

... < tn = 1 are the crossing times, and {B2(i/n)}j=0, .. ,n with 17, = 500000 observations 

(we omit the first observation). We compare the performance of the crossing tree on 

both Brownian motion. The index of self similarity estimate is shown in Figure 1.4. 

The estimation of the Hurst index of a Brownian, simulated on a regular spacial grid 

at different levels, are illustrated on Figure 1.4 left panel. \Ve note that values of II at 

different levels are around 0.5. For the regular spaced time Brownian motion, the right 

panel of Figure 1.4 shows that there is a kind of tail starting from II = 0.6.5. A good 

estimate of H of the regular time spaced Brownian motion can be seen from crossing 

size of level 5, knowing that the crossing size is the standard deviation of the discrete 

time process. :"Jote that we simulated 500000 observations for each Brownian motion 

so we obtained enough levels for a good estimate of H. That means that for time series 

of small length, the crossing tree is not performing well. For a good performance of the 

11 
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1.2. a -stable distribution 
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Figure 1.4: Hurst index estimation of two Brownian motions , simulated on regular space grid (left 
panel) and one regular space time (right panel) . 

crossing tree estimator, one need to estimate H from time series of a big sample. In 

finance , the size of a dataset of one year of high frequency financial data for example, 

may attain 10 millions of quotes. The crossing tree estimator in that case will be an 

appropriate estimator. 

In Jones and Shen [7], t he EBP (Embedded Branching Process) estimator is tested 

using fractional Brownian motion but not with any discontinuous processes. Accord­

ingly, we tested its performance on simulated a -stable Levy motion, for a variety of 

values of H = l /a E [0.5,1). For each value of H we generated 20 series consisting of 

10000 evenly spaced observations. In Table 1.1 we give the mean ± twice the standard 

error of the EBP estimates for each value of H . In each case, the EBP estimator gave 

a reasonable estimate of H . 

0.5 0.6 0.7 0.8 0.9 
0.537 ± 0.076 0.629 ± 0.110 0.696 ± 0.100 0.795 ± 0.140 0.897 ± 0.134 

Table 1.1: EBP estimates of the Hurst index of a Levy stable motion (using the crossing tree). Each 
estimate is given plus or minus twice the standard error (from a Monte-Carlo experiment) . 

Comments on the efficiency of the estimator 

Several studies can be found in the lit erature about the efficiency of the estimator . We 

refer to the empirical analysis of Taqqu and Teverovsky in [21] and also in [26], on 

the efficiency of the estimators. The DFA and the wavelets method are shown to be 

efficient estimators while the R/S analysis is shown to be less efficient. The crossing 

tree method is not described in [26]. 

1.2 a -stable distribution 

In this Section, we suppose the random variables X , Xl , . . . , Xn defined on the proba­

bility space (n , :7, P). 

12 
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1.2.1 Introduction 

Before we define the a-stable law, we present a more general law: the infinitely divisible 

law. It is from this law that we define the characteristics of the a-stable (see [29] and 

[30]). 

Definition 1.2.1. A random variable X is infinitely divisible, if for each n E N, there 

is an i. i. d. sequence Xl, ... ,Xn such that 

(d) 
Xl + ... +Xn = X 

Definition 1.2.2. A random variable X has a stable distribution if and only if, 'tin E N, 

and Xl, ... ,Xn i.i.d random variables with the same law as X, there exist an positive 

and a real bn such that 

when bn = 0, X has a strictly stable distribution. 

1 
Remark 1.2.3. It can be shown that it exists a E (0,2] such that an = n a . (see /31}). 

Moreover, we note from these definitions that a stable random variable implies that it 

is infinitely divisible. The opposite case is false. 

Theorem 1.2.4. (Levy-Khinchin)(29) If X has a stable distribution, then its charac­

teristic function is 

Where 

';'(t) = { 

and 

i/-Lt - (Ja I W~ ( 1 - i{3 sign( t) tan 1f
2
a) 

i/-Lt - (Jltl (1 + i{3~Sign(t) log Itl) 

{ 

-1 

si9n(t) = ~ 

ift < 0 

ift = 0 

ift> 0 

if a =1= 1 

if a = 1 

- a E (0,2] is called the characteristic exponent. It measures the thickness of the 

tails of an a-stable distribution. The smaller the value of a, the higher the proba­

bility in the distribution tails (see 1.2.6). 

- {3 E [-1, 1] is a symmetry parameter, also called skew parameter. 

- (J > 0 is a scale parameter. 

- /-L E lR is a location parameter. 

We denote an a-stable random variable X: X rv Sa((J, {3, /-L) 

1') 
.J 
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There are two other expressions, which represent the characteristic function of a stable 

distribution. This are given by Zolotarev [32J: 

- 1he Zolotarev's (M) parameterisation X rv S~(cy, (3, /-Lo): 

':it E JR, rpo(t) = e7/Jo(t) 

Where 

{ 

i/-Lot - cyaJtJa (1 + i(3sign(t) tan 7fa (cyl-aJtJl-a - 1)) if a =1= 1 
1/Jo (t) = (2 2 ) 

i/-Lot - cyJtJ 1 + i(3;sign(t) log cyJtJ if a = 1 

- The Zolotarev's (B) parameterisation X rv S; (CY2 , (32, /-L2): 

Where 

These two different parameterisations are linked to the standard parameterisation as 

follow 

- Link between standard and (M) parameterisation 

{ 

/-Lo - (3cy tan 7fa 
/-L= 2 2 

/-Lo - (3CY; log CY 

if a =1= 1 
(1. 7) 

if a = 1 

- Link between standard and (B) parameterisation 

( 
7f(I-Jl- a J)) 7fa (2 2 7fa) 2~ 

~L2 = /-L, tan (32 2 = (3 tan 2' CY2 = CY 1 + (3 tan 2 
2 

/-L2 = /-L, (32 = (3, CY2 = -CY 
7f 

if a =1= 1 

if a = 1 

1.2.2 Properties of the a-Stable Distribution 

Proposition 1.2.5. Let Xl and X 2 be two independent random variables and so that 

Xi rv So: (CYi' (3i' /-Li), i = 1,2. Then Xl + X 2 rv Sa(CY, (3, /-L)with 

Pmof. see [l1J page 10-11. o 
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\i\Then a < 2, the tails are asymptotically equivalent to a Pareto law. 

Proposition 1.2.6. Let X rv S(x(o-, /3, fJ) with 0 < a < 2. Then 

where 

{ 

1- a 

Co. = (100 

x-a Sin(X)dX) -1 ~ ~(2 - ,,) COS ('2") "1" 1 

" a = 1 

Proof. see [11] page 16-17. o 

Let X rv S2(0-, /3, fJ), then for p > 0, the pth moment is finite. Indeed for a = 2, 

the characteristic function becomes ¢ x (t) = e i /,tt-(ut)2, so S2 (0-, /3, fJ) is the normal 

distribution (see (1.9)), and all moments of random variables normal distributed are 

finite. For a -=I 2 we have the next Proposition. 

Proposition 1.2.7. Let X rv So. (0-, /3, fJ) with 0 < a < 2. Then 

{

lE[IXIP] < +00 0 < p < a 

lE[IXIP] = +00 p;:::: a 

PTOOf. For a positive integrable random variable Y one has 

1
+00 

lE[Y] = 0 JPl(Y > u )du 

By substituting Y = IXIP and u = xP we have 

we study this integral at 0 and +00. 

limxP-lJPl(IXI_~ x) = limJPl(IXI > x) = JPl(IXI -=I 0) = 1 
x->O xP x->O 

hence 

xp-1JPl(IXI > x) rv xp - 1 

x->O 

and for ME (0, +(0) and p > 0, 

15 

(1.8) 
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At +00, Proposition 1.2.6 yields to 

hence 
xp-1JP>(IXI > x) f'.J Xp - a - 1 

x-++oo 

and for 1M E (0, +(0) and p < a, 

which implies for p E (0, a), lE[IXIP] < +00 
for p 2:: a 

1
+00 1+00 

xp-a-1dx = +00 {:} xP-1JP>(IXI > x)dx = +00 
A{ A{ 

which implies for p 2:: a, lE[IXIP] = +00 D 

From this property we deduce that for a < 2, the variance of a stable random variable is 

infinite. For a :S 1, the mean becomes infinite. For a > 1, the mean of a stable random 

variable X is fJ. Indeed by computing the derivative of its characteristic function for 

a # 1, 

cp'x(t) = (ifJ - sign(t)ao-altl a- 1 (1 - i,Bsign(t) tan 7f
2
a) ) ei/-Lt-a"IW'(l-i(3signCt)tan "2°) 

hence cp'x (0) = ifJ and so lE [X] = fJ 

1.2.3 Density function 

Except from the normal, Cauchy and Levy distribution, there is no known explicit 

form of the a-stable density function. 

- S2(o-, 0, fJ) is the normal law 

(1.9) 

- Sl(o-,O,fJ) is the Cauchy law 

(1.10) 

- S·l.(o-, 1, fJ) is the Levy law 
2 

( 0-)1/2 (0- ) f(x) = 27f (x - fJt
3

/
2 

exp - 2(x _ fJ) x l C/-L,oo)(x) (1.11) 

Hi 
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However, an integral representation is given by Zolotarev in [32] as an expression of 

the density function using the inverse Fourier transform 

1 1+00 

. f( x; a, /3, 0" , /-L) = 27r - 00 e-~txcpx(t)dt (1.12) 

One can use either the fast Fourier transform (FFT) to compute this density numer­

ically or the direct integration method, proposed by Nolan [33], which consists of a 

numerical integration of Zolotarev's (M) parameterisation. 

The density function is computed from (1.12) (see [33] for more details on the compu­

tation). One gets 

11+00 

0: f(x ;O'.,/3, 1, 0) = - cos(h(x,t;O'.,/3))e-t dt 
7r 0 

{ 

xt + /3 tan 7r0'. (t - to) 0'.=1= 1 
where h(x , t ; a, /3) = xt - 8' (log lE [eitYJ) = 2 2 

xt + /3 - log t a = 1 
7r 

we have the density function of S~(O" , /3, /-Lo) 

{ 

~ f ~ x - /-Lo; a, /3, 1, oj a =1= 1 
f( x; a, /3, 0", /-Lo) = ~ x ~ /-Lo . 

-f ,0'.,/3, 1, 0 0'.= 1 
0" 0" 

Note that we can also compute the density function of Sa (0", /3, /-L) , using its relation 

with the Zolotarev 's (M) parameterisation given in (1. 7) . 

We can see the consequence of the different parameterisation on the density function 

(see [34] for more detail) , using a numerical computation for both densities (see [35]), 

with a E [0 .4,2]' /3 = 1, 0" = 1 and /-L = 0, we obtain Figure 1.5. Note the discontinuity 

on a = 1 for the standard parameterisation. 

a-stable density: S paramelrisatlon,~ =1 

. .' . ..' . ..... 
...... 

10 2 

a- stable density: Soparamelrisatlon,p-1 

10 2 

Figure 1.5: Density function of S",( l , 1,0) (left) and S~(l, 1, 0) (right) with a E [0.4,2]. 
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Chapter One 1.2. a-stable distribution 

1.2.4 Simulation of a-stable random variable 

We present a method to generate an a-stable random variable introduced by Chambers, 

Mallows, and Stuck [36], and corrected by Rafal Weron [37] and [38]. 

This method consists on simulating X rv Sa(l,,8, 0), with a E (0,2] and,8 E [-1,1]' 

using the standard characteristic function. 

First, we simulate two independent random variables U and W such that 

- U rv U(-Z!:. Z!:.) 
2' 2 

- W rv c(l) 

and then X is obtained as follow 

- If a =1= 1: 
1-<> 

X = S sin(a(U + 'Ea,,a)) (COs(U - a(U + 'Ba,,a))--;;;-
a,,a ( ) 1 W cos U ;:; 

- If a = 1: 

2 ((7r) (Z!:.W COS(U))) X = -; "2 +,8U tan(U) - ,8 In 2 ~ + ,8U 

Where: 

arctan (,8 tan( 7I"2a ) ) 

- 'Ea r:l = -----'---~ 
,I-' a 

1 

_ Sa,,a = (1 +,82 tan2 (7r;) ) 20 

One can generate a standard a-stable R.V. X rv Sa(CY,,8, /1), and also X(O) rv S~(CY,,8, /10) 

by using the following equivalences; if Y rv Sa(1,,8, 0) then 

if a =1= 1; 

if a = 1. 

x lO ) = { 

cyY - CY,8 tan 71"; + /10 if a =1= 1; 

if a = 1. 
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Chapter One 1.2. n-stable distributioll 

1.2.5 Estimation of the parameters 

Several stable distribution parameters estimators exist. Fama and Roll [39], [40] esti­

mate the parameters using order statistics limited to 13 = 0 and a E [1, 2]. McCulloch 

[8] extended this method to 13 E [-1; 1] and a E [0.6,2]. Arad [41] and Koutrouvelis 

[9] use the characteristic function, whereas Zolotarev [42] estimate a, 13 and a with 

the method of moments for a known j.l. DuMouchel (1971) developed an algorithm 

using the maximum likelihood. Press [43], Paulson, Holcomb and Leitch [10] use the 

fourier transform of the data. \¥e introduce some of these methods, and compare their 

performances. 

McCulloch method 

This method is based on the distribution quantiles. However the restriction of this 

method is that it gives an estimation of a E [0.6,2]. The author did not provide a pre­

cise reason of this restriction (see [8]). However this restriction is not an inconvenience 

for most applications. 

Let U be a a-stable random variable with a = 1 and j.l = 0 and S = aU + j.l, we define 

Qx and qx the quantiles of distribution such that JP>(S < Qx) and JP>(U < qx). Since 

JP>(U < qx) = JP>(S < aqx + j.l), one has 

(1.13) 

To estimate a and 13, we first need to compute the following quantities defined by 

McCulloch 

{ 

1/ a = _Q_O_.95_-_Q-=--O.O_5 

QO.75 - QO.25 
QO.95 + QO.05 - 2QO.50 

1/(3 = 
QO.95 - QO.05 

From (1.13) the previous equalities are reduced to 

{ 

qO.95 - qO.05 
I/a =----

qO.75 - qO.25 
qO.95 + qO.05 - 2qO.50 

1/(3 = 
qO.95 - QO.05 

which implies that I/a and 1/(3 depend only on a and 13 and by inversion a and 13 depend 

on I/a and 1/(3, one has 

One reads Tables F.1 and F.2 given respectively \[11 and \[12 to find 0: and S respectively 
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Chapter One 1.2. a'-stable distribution 

estimators of 0: and /3. \iVe refer to [8] for the tables. 

The scale and location parameters (J' and f.L, are estimate in a similar way. 

We define 
QO.75 - QO.25 ( ) 

Vc = = QO.75 - QO.25 = <P3 0:, {3 
(J' 

and 
f.L - QO.50 ( ) 

vJ.l = = -QO.50 = <P4 0:, /3 
(J' 

we deduce an estimator of (J' 

and f.L 

see Tables F.3 and F.4 for the function <P3 and <P4. 

Koutrouvelis Method 

This method, introduced by Koutrouvelis, uses the characteristic function (1.14) to 

estimate the o:-stable distribution parameters. He uses a regression-type method that 

starts with an initial estimation of the parameters and proceeds iteratively. 

¢(t) = eiJ.lt-lo-W' l-i/31f w (t,tX) ,where w(t, 0:) = 2 2 ( t) { tan no: if 0: =I- 1 

-log It I if 0: = 1 
n 

(1.14) 

one has 

log ( -log 1¢(t)1 2
) = log(2(J'tX) + o:logt (1.15) 

Using a regression for (1.15), one gets Ii and 0-, estimator of 0: and (J'. 

(1.16) 

where for a sample of stable random variables {Sih={l, ... ,n}, 

A 1 n 

¢(t) = - L exp( iSit ) 
n 

i=l 

is an estimator of .rl-.(t) , and for K E N* {t} is an appropriate set of real 'f' , k {k=l, ... ,K} 

numbers depending on 0:. 
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Chapter One 1.2. a-stable distribution 

To estimate (3 and f.L, we take the real and imaginary part of ¢( t) for 0: =f. 1 

hence 

(
SS(¢(t))) IWt+l 7f0: 

arctan ~(¢(t)) =f.Lt +(3o-Q-t-tan 2 ( 1.17) 

U sing a mUltiple regression for (1.17), one can then estimate the parameters (3 and f.L 

as follows 

(1.18 ) 

where 

X= [ 
. . ] · . · . 

- u &+1 -fJCX _I _d _ tan 7l"CX U 
Ul 2 I 

· . · . · . 

and y= ( ~(q\(ULl) ) 
arctan (_ ) 

ai' q,(uLJ 

where for L E N*, {Ul} {1=l, ... ,L} is an appropriate set of real numbers depending on 0:. 

The appropriate sets of real numbers, fixed by the author for reason of consistency, are 

tk = - and Ul = -{ 7fk} {7ft} 
25 k={l, ... ,K} 50 1={l, ... ,L} 

where K and L are the optimum values depending on 0: and the number of observations. 

This optimum values are given in [9]. 

Once having our estimators &, (3, fJ and fl, one can improve upon the estimation 

by iterating this method (see [44]). We assume S = {Sdi={l, ... ,n} being the random 

variables being estimated. \iVe describe the recursive algorithm as follow. 

1- We set the initial values &(0) = &, b(O) = b, fJ(O) = fJ and fl(O) = fl, where 

&, (3, fJ and fl are obtained by the McMculloch method. We set the optimum 

values K and L depending on & given in [9]. We also set our stoping conditions: 

the maximum number of iterations A1 and the admissible error c > 0 so that 
(o:(i+l) _ 0:(i))2 + (f.L(i+l) - f.L(i)) 2 < c. 

2- We standardise S so that S(O) = (S - fl(O)) IfJ(O) 

3- We estimate &0 and fJo using equation (1.16) and we set So = S(O) IfJo. 

4- We estimate bo and flo using equation (1.18) and we set S(1) = (So - flo) Ido. Our 
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new estimators are 

(1.19) 

5- If our stopping conditions are not satisfied, then we go back to point '3-', otherwise 

we keep our estimator {&(1), t U), 0-(1), flU) }. 

The maximum likelihood estimator (MLE) 

Since we know an approximation of the density function (either using the FFT method 

or the direct integration method), MLE can be applied to estimate the stable parame­

ters. For n independent observations 5 = {51, ... , 5n }, an estimate of B = (a, 0", {3, f.1') 
is obtained by maximizing the log-likelihood function 

n 

Le(5) = L log 1(5;; B) (1.20) 
i=l 

Nolan [45] uses a direct approximated integration of the density function [35] and 

maximises the log-likelihood function using the quasi Newton method. The McCulloch 

method is used to initialise the parameters values before the minimisation procedure. 

Comparison 

We compare these three methods. We simulate a sample of a-stable random variables 

(see Section 1.2.4) for different parameters values. Vie run 50 samples of 10000 a-stahle 

random variables. Table 1.2 shows the mean and in brackets the standard deviation of 

the estimated parameters for each case. 

IVlcthod a = l.80 /i = O.SO (J = n.LG f1 = -10.00 
lVlcCulloch 1.8()08(0.0:366 ) O.S7G9(O.1230) O.2·188( 0.0(32) - I). 9~)76( (J.()OG:3) 
Kou1 rom·elis l. 71)92( () .CJlGO) 0.7921 (0.0707) ll. 2H):3( 0 .(J(Jl 9) ·--10.0007 ((). OOG{)) 
]'vILE l.71)95(CJ.0140) 0.79:18(O.039S) O. 2!J 9·1 (0.00 IS) -J o.oom (0 .()()'17) 

lVIethod o = 1..30 Ii = 0.:30 (J = 2.00 /1 = --(JJj() 

l\lcCulloch 1.3085(0.0202) 0.3150(0.0281) 1.9907 ((). 0:30·1) -0 .!18fJG (O.J :328) 
KOlltrouvelis 1.3051(0.0199) (U02G(O.0278 ) l.mJ7J(O.OL92) -O.5J J8(O.11GG) 
MLE 1.30'W(0.(llG:3) (U(nl ((). 0220 ) UJ~)7(j(().OL5!J) - 0.5001 (0.0277) 

Method a = 0.85 ti = 0.00 (J = G.OO P = ().OO 
McCulloch 0.8541(0.0129) O. ()()()(j (0.027 '1) !1.961G(OJJ915 ) -O.02G7(O.6Gll) 
Koulrouvelis 0.8494(0.0104) 0.0017(0.0281) 19957(O.U78.3) -0.0475 (O.G2!J:3) 
MLE O.8GOO(0.0085 ) - 0.0002 (0.01,"[<)) 4.UfJGl(O.()7(j3) -O.Ol()7(O.07()1 ) 

Met.hod (\ = 0.70 /J = -0.50 (J = LO.O() /1 = 5.00 
McCulloch 0.7128(0.01:32) -O.G:321 (0.0:3:31) 19.6~372(O.9159 ) 7.1925( 1.921.3) 
Koutrom·elis O.6978( CJ.(lll?) -0.501 O( O.02GO) 19. 98():j(O .. 1603) 1.9155(1.'1101) 
l\ILE O.6986( 0 .OO5(j) -OJ1994(O.()127) 20.0120(0.11202) 1. 98,16( (J. 2911) 

TallIe 1.2: Comparison of l\IcCulloch, KoulrouvClis aud i\TLE fur SOYIlf' valne's of u, /1, (J anrl fl. 

These three methods provide good estimates of the a-stable parameters. However their 
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Chapter One 1.3. Self-silllilar process with o-stable distribution 

differences are related to the speed of the computation: The slm\'er the computation, 

the better the estimate: MLE is the most accurate but slowest. 

1.3 Self-similar process with a-stable distribution 

This section deals with self-similar processes with a-stable distribution. We introduce 

here some properties, and give examples of such processes. 

1.3.1 Properties 

From now, we consider self-similar processes with symmetric stable distribution and 

we note such a process H-sssi,SaS . 

Proposition 1.3.1. Let X H -sssi,SaS . If such a process exists, then 

Proof. By self-similarity and stationarity of the increments of X, one has by Theorem 

1.1.7 (ii) and 1.1.8, 

lE[IX(l)ll < 00 =} H ~ 1 {::} H > 1 =} lE[IX(l)ll = 00 

For 1 < a ~ 2, one has for 1 ~ "( < a 

lE[lX(l)ll < lE[lX(l)I'Yl < 00 

whence by Theorem 1.1.7 (ii) we have H ~ 1. 

For 0 < a ~ 1, one has for 0 < "( < a 

and from Theorem 1.1.7 (i), this implies H < 1/,,( whence H ~ l/a. o 

A well known H-sssi,SaS is the Brownian motion, which is a self-similar process with 

index H = l/a = 1/2. The Brownian motion was used by Brown in 1827 to describe 

the particle motion, and later studied by Bachelier in 1900, who gives a theoretical 

definition in his PhD thesis" Theorie de la speculation". A Brownian motion {B (t) h::::o 
is defined as follows 

Definition 1.3.2. A stochastic process {B(t)h::::o is a Brownian motion if 

(i) B(O) (a~.) 0 

(ii) it has independent and stationary increments 

(iii) "It ~ 0, "Is E [0, t], B(t) - B(s) rv :\1(0, t - s) 
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(iv) it has continuous sample paths a.s. 

Theorenl 1.3.3. Brownian motion on lR exists and it is unique. 

Proof The existence of the Brownian motion is based on its construction. A complete 

proof can be found in [46], page 12 Theorem (6). This proof is based on Wiener's work 

~~. 0 

Proposition 1.3.4. A Brownian motion {B(t)}t>o is H -sssi with index H 1/2. 
. {/2 } (fdd) That zs a-I B(at) t;:O:O = {B(t) h;:o:o for a > O. 

Proof 

choosing s = 0, we have B(O) (a~.) O. a- I / 2 B(at) inherits independent increments and 

continuous sample paths from B(t). The result follows from the uniqueness of the 

Brownian motion. o 

Remark 1.3.5. The increments Brownian motion {B(t) h>o are a-stable distributed 

with a = 2. Indeed, a stable distribution with a = 2 is in fact the normal distribution. 

See (1.9). 

The fractional Brownian motion and the stable Levy motion are also both well known 

self-similar processes studied in the literature. These processes will be described in the 

next two Sections. 

1.3.2 Fractional Brownian motion (fErn) 

The advantage of the Gaussian distribution is that a Gaussian process can be charac­

terised up to finite-dimensional distributions only by its mean and covariance function 

(see [11] 7.2 page 318). It exists then a unique Gaussian process X with mean 0 and 

with the following covariance function (see [14] Remark 1.3.1). 

(1.21) 

There is a different way of defining the fractional Brownian motion. One way is to 

consider Proposition 1.3.9 as a definition of the fBm, see for example [14]. Another 

way that we chose is the following definition given by Samorodnitsky and Taqqu in 

[11]. 

Definition 1.3.6. A Gaussian H-sssi process {BH(t)h;:o:o with H E (0,1) 'lS called 

fractional Brownian motion. 

Proposition 1.3.7. The fractional Brownian motion exists and it is unique. 
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Chapter Olle 1.3. Self-similar process with a-stable distribution 

Pmof This is shown in [11] page 318 lemma 7.2.1. D 

Remark 1.3.8. For H =~, {BH(t)LET is a Brownian motion. We refer to Theorem 

1.3.2 page 5 of (14). 

Proposition 1.3.9. A stochastic process X is a fractional Brownian motion if and 

only if 

(i) X(O) (a~.) 0 

(ii) X(t) is Gaussian with mean 0 

(iii) has stationary increments 

(vi) (t, s) E T2, Var (X(t + s) - X(t)) = s2HlE[(X(1))2], with HE (0,1) 

(v) has almost surely continuous sample paths 

Pmof First suppose that X satisfies Definition 1.3.6. 

(i) By self-similarity of the fBm and Proposition 1.1.5. 

(ii) By definition, the fBm has Gaussian increments and 

lE[X(l)] = lE[X(2) - X(l)] = (2H - l)lE[X(l)] 

for H E (0,1), one has 2H -1 i= 1 and obtain then lE[X(l)] = O. Moreover, 'lit E T 

lE[X(t)] = ItIHlE[X(sign(t))] and lE[X(l)] = lE[X(O) -X( -1)] = -lE[X( -1)] hence 

lE[X(t)] = O. 

(iii) By Definition 1.3.6. 

(vi) One use 1.21. 

(v) One has for n E N, lE[(X(t) - X(s))2n] = lE[(X(l))2n](t - s)2nH, moreover 

lE[(X (1) )2n] is finite. Using the Kolmogorv's criterion2 , one shows that almost 

surely X has a continuous sample path. 

For the converse see [11] or [14]. D 

The next theorem gives an integral representation of the fractional Brownian motion. 

Theorem 1.3.10. Let H E (0,1) and {B(t)h::~o a Brownian motion, the process 

t~O 

where 

2The Kolmogorv's criterion will be introduced in Chapter 2 
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is a fractional Brownian motion. 

We can show that this integral representation of a fractional Brownian motion is se1£­

similar (see [14]), and this satisfies Definit ion 1.3.6. 

In the following graphs, we compare fractional Brownian motion for different values of 

H. We use the algorithm developed by Wood and Chan [48] to simulate our fractional 

Brownian mot ion. 
fBm, wilhH_O.2 fll...., ... h.hH _ 0.& rom, .hh H .. 0.1 

0.' 0.' 

J~ 
-<1.80 100 200 300 400 SOO 600 700 800 900 1000 , -<lAO 100 200 300 .coo soo 600 700 aoo 900 1000 -<I..250:---:'::--:::::-::::-,..--:,=-00 -:: ... ::----:::::--::::--=-:::;;--~ , 

Figure 1.6: fBm sample path for H =0.2, 0.5 and 0.8. 

1.3.3 a -stable Levy process 

We describe briefly the class of Levy processes. For more details on Levy processes , 

we refer t o [30] and [29]. 

Definition 1.3.11 (Levy process). A stochastic process {L(t)h~o ~s called a Levy 

process if 

(i) L(O) (a~ .) 0 

(ii) it has independent and stationary increments 

(iii) it is cad lag ( continue a droite, avec limite a gauche) 

(iv) it is stochastically continuous 

Theorem 1.3.12 (Characteristic function of a Levy process). Let {L(t)h~o be a Levy 

process on lR, then there exists a continuous function 'ljJ : lR ---+ C called the characteristic 

exponent of L such that: 

where: 

'ljJ (B) = if-LB - (72 B2 - r (1 - eiiJx - iex1Ix1 <1)v(dx) 
2 JR 

and v is a Levy measure on lR such that 

v( {O}) = 0 and 1 min( l , x2 )v(dx) < +00 

Proof. See Theorem 1 page 13 of [29]. 
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There are different subclasses of Levy processes (see [49]) . However , our interest will 

be limited to Levy processes that have stable distribution. We define the stable Levy 

process and then show the links between self-similarity and stable Levy motion. 

Definition 1.3.13 (Stable Levy motion). A stochastic process {La(t)h?:o is a sta­

ble Levy motion if it is a Levy process with La (1) an a -stable random variable. Its 

characteristic function is given by 

Where 
if-LB - (JalBla (1 - i,6sign(B) tan 1[20'.) if 0'.=1= 1; 

'ljJ(B) = 

if-LB - (JIBI (1 + i,6~Sign(B) log IBI) if 0'. = 1. 

Figure 1.7 shows some simulated paths of stable Levy motion La , for a = {0.5 , I , 1.8} , 

,6 = 0, (J = 1 and f-L = O. The simulations are achieved by taking the cumulative sum 

of simulated a-stable random variables {SihEN described in Section 1.2.4, so that 

!..n . .-llh Q _ 0.5, 6_ O,er .. I .. nd i'- O 

-, 
-30~'00~2OO~--;::;;--;:;;--=-~;::;;-;;:;;--;;;', 

lAm, wlthn -1, 6 -0, .. _I.nd 1'-0 

600 

200 

-2000~'OO~2OO~300---"=-OO~500~600~700-600~OOO~'000 , 

t-I. ";Ib Q _1.I,tI_G,," _ \ .. nd,. .. o 

Figure 1.7: Stable Levy motion sample path for a = 0.5 , 1 and 1.8 

To understand when a stable Levy process is self-similar, we give the following propo­

sition. 

Proposition 1.3.14. An a -stable Levy process X is self-similar with index H = 1/0'. 

if and only if, it has a strictly symmetric stable law (f-L = 0 and ,6 = 0). 

Proof. If 

If f-L = 0 and ,6 = 0, then from the definition of the exponent function 'ljJ of the 

characteristic function , we have for t = (to , t1 , ... , tn) E Tn and i E {O, ... , n} 

however 
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and 

The stochastic process X = {X(ti)}iE{O, ... ,n} has independent increments, for t 

(to, t l ,·· . ,tn) E Tn. One has 

n n 

i=O i=O 

Hence 'PaHX(t) (B) = 'PX(at) (B). Whence {X(ati)}iE{O, ... ,n} (Jdd) {aH X(ti)}iE{O, ... ,n}' 

Only if 

Similarly, if J.L #- ° and j3 #- 0, then 'PaHX(t) (B) #- 'PX(at)(B). Whence 

(Jdd) 
{X(ati)}iE{O, ... ,n} #- {aH X(ti)}iE{O, ... ,n} 

1.3.4 Other examples of H-sssi,SaS processes 

o 

There are other H-sssi,SaS processes (see [11] chapter 7). We introduce some of them 

without giving any details. 

Linear fractional stable motion 

For 0 < H < 1, 0 < a < 2 with H #- 1., Linear fractional stable motions is defined as 
a 

follows 

where (a, b) E ]R2 with ab #- 0, x+ = max(x, 0), x_ = min(x, 0) and La is a stable Levy 

process. 

Log fractional stable motion 

For H = ~, 0 < a < 2, Log fractional stable motion is defined as follows 

1+00 Its I Z(t) = -00 log -s- dLa(s) (l.23) 

where La is a stable Levy process. 

The advantage of self-similar processes is that it allows us to know the statistical 

properties at any other time scale from one time scale. But this advantage generally 

restricts its application as a model to some real phenomena, where the index of self­

similarity changes over different time scales. 
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1.4 Fundamental limit Theorem 

We present another type of self-similar process called Rosenblatt process, see [50]. We 

first present the following Theorem from which the existence of the process follow. 

Theorem 1.4.1. Assume X is stochastically continuous and non-trivial. If there exists 

a process {Y(t)}tET and real numbers {A(A), A 2:: O} with A(A) > 0, lim A(A) = +00 
'\-->+00 

such that 
1 (fdd) 

A(A) Y(.>.t) ---+ X(t), as A ---+ +00 

Then for some H > 0, X is H-ss . A(A) is of the form A(A) = AH L(A), where L is a 

slowly varying function (for all x > 0, tE~~ i~~) = 1) . 
Proof. see [14] page 13. D 

Proposition 1.4.2. Let {Xih;::o be a stationary normal distributed sequence with mean 

o and variance 1, Such that Cov (Xi, X i+k ) rv k-'Y L(k) as k ---+ +00, with, E (1/2,1) 

and L slowly varying. Then 

LntJ 
1 ""' 2 (fdd) 

Zn(t) = nl-'YL(n) t:-t(Xi - 1) ---+ R(t) 

Where R(t) is called the Rosenblatt process, which is H -sssi with H = 1 -I' 
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Chapter 2 

Introduction to locally 

asymptotically self-similar processes 

2.1 Local regularity measure of a function 

In this Section, we present the notion of Hausdorff dimension and the Holder exponent 

as a measure of the roughness of a function sample path. The roughness of a process 

has been studied by many authors. Falconer in [51]; Peltier and Levy Vehel in [52], 

studied the local structure of a process by looking at the local self-similarity index. 

Seuret and Levy Vehel in [53] and Daoudi in [54], studied the same local structure in 

terms of the Holder exponent. The local self-similarity index and the Holder exponent 

both allow us to bound the fractal dimension of the process sample path. 

2.1.1 Hausdorff measure and the Hausdorff dimension 

Let 'U a non-empty subset of n-dimensional Euclidean space lRn , then the diameter of 

'U defined as diam('U) = sup{lx - yl : x, y E 'U}. If {'Ui}iEI is a countable collection of 

sets of diameter at most 6 that cover E; that is E c UiEI 'Ui, then {'UihEI is called a 

6-cover of E. Let E ~ lR, and let {'UJiEI be a 6-cover of E, we define for s E lR+ 

:HHE) = inf { L diam('Ui)S } 
lEI 

where :HHE) is minimised over all countable 6-cover {'Ui}iEI. We define the s-dimensional 

Hausdorff measure of E by 

This limit exists because as 6 decreases, :H6(E) increases, and so approaches a limit as 

6 --* O. This is illustrate in Figure 2.l. 

The Hausdorff dimension dimJ{(E) of E is defined by (we refer to [12] for more detail) 

dimJ{(E) = inf{s 2 0, :HS(E) = O} 
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Figure 2.1: Two 6-cover of E with sup(diam(lLj)) > sup(diam(lL;)) 
jEJ iEI 

Note that for 0 :::; s < dimJ{(E) we have 'J{S(E) = +00, and for s > dimH(E), we have 

'J{S(E) = O. This is illustrated in Figure 2.2. For s = dimH(E), 'J{S(E) E [0, +00] 

]-{S (E) 
00 

o 
s 

Figure 2.2: Graph of ]-{8(E) 

Unfortunately, in practice, it is difficult to calculate the Hausdorff dimension. However, 

the box-counting dimension (see Definition 2.1.1) can be used instead (for more details 

on box-counting see [12]). 

Definition 2.1.1 (box-counting dimension [12]). Let F be any non-empty bounded 

subset of ITJl,n and let No(F) be the smallest number of sets of diameter at most c5 that 

can cover F. The lower and upper box-counting dimension of F are given by 

d· (F) -1' log No(F) d -d' (F) _ -1' log No(F) 
1mB - 1m 1 ' an 1mB - 1m , 

0--.0 - og u 0--.0 -log u 

When these two limits coincide, the box-counting dimension of F is then defined by 

d· (F) l' log No (F) 1m B = 1m ---:----'-="-'-
0--.0 - log c5 

whenever this limit exists. 
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Chapter Two 2.1. Local regularity measure of a function 

2.1.2 Holder exponent 

To characterise the roughness of a stochastic process X, one can measure its regularity 

at point t by the pointwise Holder exponent (2.1) or by the local Holder exponent (2.2). 

P() { l' X(to + o,w) - X(to,w) - o} 
O;x to, w = sup 0; > 0, l~~~P loin - (2.1) 

L { IX(t,w) - X(t',w)1 } 
ax(to, w) = sup a > O,::3E > 0, sup I 'In < CXJ 

(t,t')E]tO-f,tO+f[ t - t 
(2.2) 

Note that we have a~ :::; a~ (see [53]). 

Definition 2.1.2. Let X be a stochastic process. X is Holder continuous of order 

a E (0,1) on T, where T ~ lR. if 

IF (w E [2 : sup -,-I X----'(_t, -:-,W )_-_X"7----'-( s_, w--'-'-) I :::; 0)' = 1 
O<lt-sl<h(w) It - sin 

(s,t)ET 

(2.3) 

where h is an almost surely positive random variable and 0 > ° zs an appropriate 

constant. 

For simplicity, we use X(t) instead of X(t, w) and ax(to) instead ofax(to, w). 

Theorem 2.1.3. Kolmogorov criterion (see [55]) 

Let X be a random process. If there exists strictly positive constants p, (3, C such that 

Vt E T and h > 0, JEIX(t + h) - X(t) IP :::; Chl+(3 then 

lim sup IX(t) - X(s)1 (a~.) ° 
h-+O (t,s)ET 

It-sl<h 

and X has a modificationl {X (t)} whose sample paths are locally Holder continuous 
tET 

of index a E (0, (3lp). 

Corollary 2.1.4. Let X be a random process such that there exists strictly positive 

constants p, H, Cp so that Vt E T and h > ° 

Then using the Kolmogorov criterion, X has a modification whose sample paths are 

locally Holder continuous of index a E (0, H - lip). 

Proof. Using the Theorem 2.1.3, with (3 = pH - 1, the result is straightforward. D 

1 X (t. w) is a modiflcatioll of X(t. w), if iF' ({w E [1 : X(t, w) = X (t, w)}) = 1. 
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Chapter Two 2.2. Local structure of a randol1l process 

This corollary gives us a lower bound of the local Holder exponent of X at time t 

H - 1/ p ::; ai ( t) (2.4) 

Remark 2.1.5. If we have a stochastic process X satisfying conditions of Corollary 

2.1.4 and which has moments of all order finite (e.g: fractional Brownian motion B H ), 

then we have H ::; ai(t). 

2.2 Local structure of a random process 

2.2.1 Tangent processes 

We define ~ the class of random process X = {X(t)h::::o of TI(lR), where TI(lR) is the 

space of real valued cadlag functions. Let J'o = {Y E ~, Y(O) (a~.) O}, then the scaling 

operator 'Jt,E : ~ ----+ ~o is defined by 

('Jt,EX)(U) = X(t + EU) - X(t) U~O 

Definition 2.2.1. [51] For X E ~, we say TX,t E ~o is a tangent process of X at point 

t ~ 0, if there exist sequences r n ----+ 0 and Cn ----+ 0 such that 

. -1 (fdd) 
11m Cn 'It r X = TXt 

n---t+oo ' n , 

The tangent processes reflect the local structure of a random process. We define the 

tangent space Tan(X, t) of X at point t ~ 0 by 

. (fdd) 
Tan(X, t) = {Y E ~o: there eXIsts rn ----+ 0 and Cn ----+ 0 such that c;;1'Jt,rnX ----+ Y} 

Tangent processes are shift invariant and self-similar. These properties are described 

in [51]. To deal with the regularity of the sample path of a process X, we study the 
. (fdd) 

class of tangent processes where en = r~ WIth a > 0 so that r;;O:'Jt,rnX ----+ TX,t. 

Lemma 2.2.2. Let X be a random process of TI(lR) , such that 

Then the tangent process Tx,t is self-similar with index a. 

Proof. Setting r~ = ar n ----+ 0 for some a > 0, one gets 

(fdd). -0: 

{Tx ,t(au)}u2:0 = r~~o {rn 'Jt,rn X (au)}u2:0 

(fdd) 0: l' {(' )-O:'J X()} 
= a r(:::o r n t,r~ U u2:0 

(f~) aO:{Tx ,t(u)}u2:0 
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D 

Lemma 2.2.3. Let X be a random process of TI(.JR.) with stationary increments, such 

that 

Then 

'lit> ° T (fdd) T _ ,X,t X,O 

Proof. For t 2': ° we have: 

{Tx,t(u)}u~O (fdd) }~~o{r~n(X(t + rnu) - X(t))}u~o 

(fdd) l' {-nx( )} = 1m rn rnu u~O 
Tn->O 

(f~d) {Tx,o(u)}u~O 

2.2.2 Locally asymptotically self-similar 

D 

Definition 2.2.4. {51} A process X = {X(t)h~o is locally asymptotically self-similar 

(lass for short) at point t 2': ° with index h( t) if, 

1· {X(t + cu) - X(t) } (f~d) {T' ( )}' 
1m h(t) X,t U u>O 

E->O+ C u~O -
(2.5) 

where the non-degenerate process {Tx,t(u)}u~o is the tangent process at point t of X 

Definition 2.2.5. We say that the process X is lass with multifractional function 

h: [0, +00) --+ (0,1), if for each t 2': 0, process is lass with index h(t) 

Note that the tangent process TX,t is self-similar (see [51]). The process X is lass with 

multifractional function h : [0, +00) --+ (0,1), iffor each t E [0, +00), the process is lass 

with index h(t). A definition of local self-similarity (lss for short) is given by Benassi, 

Cohen and Istas [56]. A process X is lss at point t with index h(t), if there exist a 

non-degenerate random variable T X,t such that 

1
. X(t + c) - X(t) (d) T 
1m h(t) - X,t 

E->O c 

Clearly lass implies lss with TX,t = TxA1). 
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Chapter Two 2.3. Self-similar and locally aSYlnptotically seU:'sil1lilar process 

2.3 Self-similar and locally asymptotically self-similar process 

2.3.1 From self-similar to lass process 

Let us see how self-similar processes are linked to lass processes. Considering a H-sssi 

processes X, then this process is lass. Indeed, one has for some E > 0, 

X is H-sssi =?- {X(t + wl- X(t)} (fdd) {X(u)}u2:0 
E u2:0 

1· {X(t + w) - X(t)} (fdd) {X( )} 
=?- 1m H - U u>O 

E->O+ E u2:0 -

2.3.2 From lass to self-similar process 

N ow if we consider a process that is lass almost everywhere on JR, with index hx (t) = H, 

then this process does not need to be self-similar i.e.: The Filtered White Noise [57], 
which is defined by the following representation 

X( ) = r a(t, s)(e
its 

- 1) dH!( ) 
t }m;. Isll/2+H S 

Where dW ( s) is a Brownian random measure and a E e2
. For the lass properties of 

this process see [57]. For self-similarity, we show that the relation X(ct) ~ cH X(t), 

c > 0 is not satisfied, due to the function t I---t a( t, s). Indeed one has 

X( ) = r a(ct, s)(e
icts 

- 1) dHl( ) ~ H r a(ct, u/c) (e
itu 

- 1) dW( ) 
ct }m;. Isll/2+H S c}m;. lul l / 2+H U 

Assuming for t E JR, a(ct, u/c) =1= a(t, u) Vu E JR, then the Filtered \iVhite Noise 

process is not self-similar. A lass process with stationary increments and hx (t) = H 

(we will see later that processes with stationary increments have a constant index of 

self-similarity over JR) does not imply that the process is self-similar. For example, 

the Real Harmonizable Fractional Levy Motion (RHFLM), represented in (2.6), is lass 

with stationary increments. We refer to the paper of S. Cohen et al. [58] for more 

details on the properties of the RHFLM. 

(2.6) 

where for (a,b) E JR2, L(dx) = a.AI(dx) + bW(dx) is a Levy random measure with 

IV (dx) a Wiener measure independent of Ai (dx ), and AI ( dx) a Levy random measure 

without Brownian component. Vve present some example of lass processes. 

M ultifractional Brownian motion 

Let H : JR -+ (0, 1) be a function, then the M ultifractional Brownian motion, is repre-
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sented as follows 

x (t) = 1~ (a (( t - s )!(tl-1/2 ( -s )!(tl-1/2) + b( (t - s ) =-:(tl"': 1/2 ( -s )=-:(tl-1/2) ) dB( s) 

(2.7) 

Where dB(s) is a Brownian random measure. The lass property is shown in [59]. 

Filtered White Noises 

For 0 < H < 1, the Filtered White Noises [57] is represented by the following expres-

s1On. 

X( ) = r a(t, s)(e
its 

- l)dW( ) 
t JIR IsI1/2+H s 

Where dB(s) is a Brownian random measure and t ---7 a(t, s) E e2 (JR.). 
Refer to [57] for the lass property of this process. 

(2.8) 

2.3.3 Relationship between the local self-similar index and the Hausdorff 

dimension 

We state in this section the result given by Benassi, Cohen and Istas [56] on the link 

between the Hausdorff dimension and the local self-similar index H. Assuming that 

the process X is locally self-similar with index H at every point t, then the dimension 

of the graph of X, dim::rc(X) 2: 2 - H. The proof of this inequality can be found in 

[56]. Moreover, they showed that if the sample path of X is (H - E)-Holder continuous, 

then dim::rc(X) 2: 2 - H. 

2.3.4 Link between the Holder exponent and the local self-similarity index 

Let X = {X(t) h::::o be a lass process with index hx (t) at time t. By the definition of 

lass process, the pointwise Holder exponent ai (t) of X (t) can not be strictly greater 

than hx(t), but it does not imply that they are equal. We introduce the link between 

the Holder exponent and the local self-similar index in the following Proposition. 

Proposition 2.3.1. Let X be a lass process with index hx(t) at t E JR., then its point­

wise Holder exponent ai (t) at t is such that 

ai(t) :::; hx(t) almost surely (2.9) 

Proof. We set h = hx(t) for simplicity. Let 7] > 0, from the definition of the local 

self-similarity provided that lP(Tx,t(l) = 0) = 0, one has 

Eh+1) (d) 
lim = 0 

€->o+ IX(t + E) - X(t) I 
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this implies for p > 0 

( 

Eh+ry ) 
lim JP> > p = 0 

E->+O IX(t + E) - X(t) I 

whence 

lim JP> ( I X (t + E) - X ( t) I < 1/ p) = 0 
E-t+O Eh+ry 

and thus, there exists a sequence En (Theorem 2.4.4 in [60]) such that lim En = 0 
n-t+oo 

1
. IX(t + En) - X(t)1 (a.s.) 
1m = +00 

n-t+oo Eh+E 
n 

(2.10) 

Hence ax(t)P < h + E almost surely or more generally since this inequality is true for 

all E > 0, af:(t) ~ h a.s. 0 

For gaussian processes, one has ax(t)P = hx(t) almost surely [61]. 

Remark 2.3.2. If the process X satisfies the condition of Corollary 2.1.4, then we 

have the inequality (2.4). Moreover if the assumption made in Proposition 2.3.1 is also 

satisfied, then we have the following relation between af:(to), ai(to) and Hx(to) 

For a fractional Brownian motion that has a moment of all order (p ---+ +oo) then we 

have 
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Time-changed H -sssi processes and 

estimation 
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Chapter 3 

Time-change effects on the 

roughness of the sample path 

process 

In this Chapter, we study the time change effects on a random process sample path, 

which will be assumed to be locally self-similar. Let T ~ lR+, we define the set of time 

change function 8(T) by 

8(T) = {e : T ----+ T E e\ s.t. '\It E T, e'(t) > 0, e(O) = O} (3.1) 

We set X(t) = 5qe(t)), where X is locally self-similar and e E 8([0, +00)). 

3.1 Effect of the time change on the local structure of a ran­

dom process 

We study the effects of the function e E 8(lR+) on the Holder exponent and on the 

local index of self-similarity. These indexes may vary over time t 2: O. We then study 

these indexes in the case where the process X has stationary increments. We will see in 

this case the local self-similarity index of the process X(t) = X(e(t)) must be constant 

over the time. 

3.1.1 Effect of the time change on the Holder exponent 

We define the pointwise Holder exponent ax(t) of a process X at t by (see [62]) 

ax(t) = sup { a; li~~~p IX(t + I~Q- X(t)1 = 0 } 

The local Holder exponent &x(t) of the process X at t is given by 
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Chapter Three 3.1. Effect of the time change on the local structure of a random process 

_ { IX(u) - X(v)1 } 
ax(t) = sup a; 31] > 0 sup I la < 00 

u,vEB(t,1)) u - v 

Where B(t,1]) is the open ball centered in t and of radius 1]. This last definition 

introduced in [62], is convenient in this section compare to the definition givenat the 

beginning of Section 2.1.2. 

Assuming our process X (t) = X ( e (t) ), we study the effect of the time-change on the 

Holder exponent. One has the following Proposition 

Proposition 3.1.1. Let e E 8(lR+), the Holder exponent of X at to E lR is equal to 

the Holder exponent of X at t~ = e(to) E lR, one gets 

(3.2) 

Proof. Setting '11;' = e(u), v' = e(v), t' = e(t) and 1]' = e(t + 1]) - e(t), one has 

IX(u) - X(v)1 = IX(e(u)) - X(e(v))1 = I u' - v' la IX(u') - X(v')1 
I u - v I a I u - v I a U - v I u' - v' I a 

Moreover 

u, v E B(t, 1]) {:} u', v' E B(t', 1]') 

The function e is el, and e' (u) > 0, so it exists 1] > 0 such that 

sup E (0, +(0) 
l
u' v'la 

u,vEB(t,1)) U - v 

Hence 
IX(u) - X(v)1 IX(u') - X(v')1 

sup "'------:--- < 00 {:} su p ---:--------,--- < 00 
lu via lu' - v'la u,vEB(t,1)) - u',v'EB(t',1)') 

and thus 

ax(t) = ax(e(t)) 

Similarly, we set h' = e(t + h) - e(t). The continuity of the function e implies h' -+ 0 

as h -+ O. For a < ax(t), one has 

1· IX(t + h) - X(t)1 _ 0 l' IX(t' + h') - X(t')1 - 0 
1m sup I h I a - {:} 1m sup I h' I a -

h-->O h'-->O 

and for a > ax(t), one has 

1
. IX(t + h) - X(t)1 _ . IX(t' + h') - X(t')1 _ 
1m sup Ihla - +00 {:} hmsup Ih'la - +00 

h-->O h'-->O 

Whence 

o 
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The last Proposition shows that the Holder exponent is affected in the sense that it 

undergoes a time change; one has ax = ax 0 8 and ax = ax 0 8. 

3.1.2 Effect of the time-change on the local self-similarity index 

We consider our process X(t) = X(8(t)), where X is lass, with a local index hx(t) at 

t E jR+ and 8 E 8(JR.+). We link in Proposition 3.1.3, the local self-similarity index of 

X to the one of X. We first present the following Lemma 

Lemma 3.1.2. Let Y be a lass process of'D(JR.). Then for any t ::::: 0 

lim {Y(8(t+CU)) - Y(8(t))} (Jdd) {u-hy(e(t))r (u)} (3.3) 
E->O+ (8(t + cu) - 8(t))hy(e(t)) u>O Y,e(t) u>O 

Proof. 

One has Vt ::::: 0, 

lim { y(e(t + cu)) - Y(8(t)) } = lim {u-hy(e(t)) Y (8(t) + UrJE) - Y(8(t))} 
E->O+ (e(t + cu) - 8(t))hy(e(t)) E-+O+ 'YIhy (e(t)) 

u>O 'IE u>O 

where rJE = 8(t + cu) - 8(t), 
u 

From the equality above, one gets for t ::::: 0 and u > 0 

l
' l' 8(t + cu) - 8(t) 
1m rJE = 1m --'-------'---'--'-

E-+O+ E-+O+ U 

= lim c8'(t) 
E-+O+ 

= 0+( because 8'(t) > 0) 

So 

lim { Y(8(t + cu)) - Y(8(t)) } = lim {u-hy(e(t)) Y(8(t) + UrJE) - Y(8(t))} 
E-+O+ (8(t + cu) - 8(t))hy(e(t)) u>O 7)E-+O+ (rJE)hy(e(t)) u>O 

(Jdd) {u-hy(e(t))r (u)} Y,e(t) u>O 

D 

The local self-similarity index of processes X and X are linked in the next Proposition 

Proposition 3.1. 3. Let X be a lass process with index h x (t) at t ::::: 0 and 8 E 8 (JR. +) , 

Then the process X(t) = X(8(t))is lass with index of self-similarity hx(t) = hx (8(t)) 

for any t ::::: 0, 

Proof. For u > 0 
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lim {X(t + cu) - X(t) } 
E-->O+ Ehx (t) 

u>O 

= lim {X(8(t + cu)) - X(8(t))} 
E-->O+ Ehx (t) 

u>O 

{ 

- - ( )hX(IJ(t))} = lim uhx(IJ(t))EhX(IJ(t))-hx(t) X (8(t + cu)) - X (8(t)) 8(t + cu) - 8(t) 
E-->O+ (8(t + cu) - 8(t))hx(IJ(t)) cu 

u>O 

From Lemma 3.1.2 

lim { (X(8(t + cu)) - X(8(t))) } (fdd) {u-hx(IJ(t))T_ (u)} 
E-->O+ (8(t + cu) - 8(t))hx(t) X,IJ(t) u>O 

u>O 

8 E 8(JR+) leads to 

lim 8(t + cu) - 8(t) = 8'(t)hx (IJ(t)) 
( ) 

hx(IJ(t)) 

E-->O+ EU 

Finally to obtain a non-trivial tangent process as a limit, one must set hj((8(t)) -

hx(t) = 0, which implies 

lim {X(t + cu) - X(t)} (fdd) {8'(t)hx(t)y, (u)} 
0+ Ehx(t) Y,IJ(t) u>O 

E--> u>O 

For u = 0 
lim X(t + OE) - X(t) (d) 0 

E-->O+ Ehx(t) 

o 

Like the Holder exponent, the local self-similar index is affected by the time change 

function 8 in the sense that the local structure of X at time t is the same as X at time 

8(t). 

3.1.3 Index of a process with stationary increments 

Since the process X has stationary increments, its pointwise Holder exponent is almost 

surely constant on JR, see Theorem 2 in [62]. In other words, there exists Hoex E (0,1), 

so that for all t E JR 

Using the results given by Proposition 3.1.1, we deduce that the pointwise Holder 

exponent ax(t) = Hoe - for all t E R The local index of self-similarity of the process 
·x 
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X is also constant over the time t. Indeed one has for all t 2: 0 

1
· X(t + E) - X(t) (d) l' h(O)-h(t) X(E) - X(O) 
1m = In1 E 

0-->0+ Eh(t) 0-->0+ Eh(O) 

(d) T- (1) l' h(O)-h(t) 
- X 0 1m E 

, 0-->0+ 

Since the fractional term converges to a non trivial random variable, we must have 

lim Eh(O)-h(t) E (0, +(0), that is, h(O) = h(t). Hence, the function h : IR --+ (0,1) is 
0-->0+ 

constant. There exists a constant Hhx E (0,1) so that for all t 2: 0, h(t) = Hhx ' We 

deduce from Proposition 2.3.1 

HA. - < Hh-
~x - x 

Assuming that for all t 2: 0, there is p > 0 so that 

Then by the Kolmogorov criterion Theorem (see [55]), the process X has a modification 

whose sample paths are locally Holder continuous of index a E (0, Hhx - lip). One 

has Hhx - lip::; Hax ' For processes that have finite moment of every order: e.g. 

Gaussian processes, one deduces in that case that Hax = Hhx ' Note by Proposition 

3.1.1 and 3.1.3, the Holder exponent and the local self-similarity index of the process 

X(t) = X(e(t)) must be constant. Note in practice, a necessary condition for X to be 

a time change of a lass process with stationary increments, is that its Holder exponent 

and its local self-similarity index are constants over the time t 2: O. 

3.2 Simulation of time-changed H-sssi processes 

3.2.1 a-stable stochastic integrals of a deterministic function 

We want to define a stochastic integral with respect to an a-stable Levy motion, of 

a deterministic function 1 E --+ IR, where E c IR, represented by the following 

stochastic integral in (3.4). 

1(1) = l 1(s )dX(s) (3.4) 

where 

lI1(s)lads < 00 (3.5) 

For stochastic functions 1, we refer to works of Rosinski and Woyczynski in [63] and 

Janiki and Weron in [64]. In this last reference ([64] page 73-74), the authors also 

define integral (3.4), where 1 is deterministic. They show for 1 satisfying (3.5), the 

stochastic integral (3.4) is well defined. 
n 

Setting the simple function 1 (t) = L akITAk (t), with disjoint sets Ak , J aniki and Weron 
k=l 
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showed that 1(f) is a-stable. Then, they extended to a more general continuous func­

tion f satisfying (3.5) by showing there exists a sequence of simple functions {f(n)}~=l 

such that for almost all tEE 

and for any n, If(n)(t)1 < g(t), for some continuous function g satisfying (3.5). The 

sequence of integrals {1 (f(n) )}n=1,2, ... is a Cauchy sequence in the complete space of 

a-stable random variables with the metric space induced by convergence in probability. 

So, there exists a random variable 1(f) which is the limit {1(f(n))}n=1,2, ... in this space. 

Whence the definition 

Definition 3.2.1. (64) An a-stable stochastic integral of any continuous function sat­

isfying {3.5}, is by definition 

1(f) = lim I(f(n)) in probability (3.6) 
n---+oo 

3.2.2 Time-changed a-stable H -sssi processes 

A stochastic integral representation of a random time-changed a-stable Levy motion 

is given by Rosinski and Woyczynski in [63]. This stochastic integral defined for V 

non-negative random process and it Va(s)ds < 00, and X an a-stable motion. More 

- (fdd) -
precisely, there exists a process X' = x, such that 

X' 0 it Va(s)ds (a~.) it V(s)dX(s) (3.7) 

Using (3.4) and (3.7), we introduce the integral representation of our time-changed 

a-stable Levy motion. This representation is also satisfied for time-changed Brownian 

motion, since the 2-stable Levy motion is a Browanian. Substituting in (3.4) the 

random process V by the deterministic function all/a, there exists a process X' (fdd) X 
so that 

(3.8) 

Integral (3.8) is well defined since the function a' is positive and a(t) = it a'(s)ds < 00. 

In order to simulate a time-changed H-sssi stable process, an approximation of integral 

(3.8) can be defined using Definition 3.2.1. We set the simple function a,(n) as 

n-1 
a,(n)(t) = L a'(tj)IT[tj,tHl)(t) 

j=O 

. . f [] * [ ) h a' ( *) a ( t j+ d - a ( t j ) where to, ... , tn partItIOn 0 0, t , and tj E t j , tj+1 , such t at tj = t t . 
+1 - j 

The mean value Theorem ensures the existence of such t;. Setting to = 0 and tn = t, 
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one has 

~ ~ (8'(t,))* t+' dX(s) 
j=O tj 

n-l 
= L (e'(tj))l/a (X(tj+l) - X(tj)) 

j=O 

By Definition 3.2.1, one has the following limit 

t n-l r (e'(s))l/adX(s) d::J lim L (e'(tj))l/a (X(tj+d - X(tj)) in probability (3.9) Jo n~oo j=O 

3.2.3 Simulation of time-changed H-sssi process with independent incre­

ments 

As described in the previous section, the continuous time-changed H-sssi a-stable Levy 

motion can be approximated by a discrete time process using (3.9). We define an 

approximation of the continuous time process {X (t) h::::o, by the discrete time process 

{X;n)h=o,l, ... , such that for the increasing sequence of positive real {tj}j=O,l, ... , where 

to = 0, xt) = X(tJ} The discrete time process is obtained by the following expression 

(3.10) 

where dXt) = X(tj+d - X(tj) and X6n) = X(O) = 0 almost surely. 

More generally, continuous time H-sssi processes with independent increments are ap­

proximated by a discrete time process satisfying (3.10). As the process X has inde­

pendent increments, one has 

Indeed, by self-similarity, and stationarity and independency of the increments of X, 
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one has 

lfD (X(e(t1)) - X(e(to)), X(e(t2)) - X(e(td), ... ) 

= lfD (X(e(t1)) - X(e(to))) lfD (X(e(t2)) - X(e(td)) ... 

= I' ( (B(t:~ = :o(to)) H (X (t,) _ X (to)) ) I' ( (B(t~; = :,(t')) H (X(t,) - X(t,)) ) ... 

= I' ( (e(t:~ = :o(to)) H (X(t,) _ X(to)) , (B(t~; = :,(t,)) H (X(t2 ) _ X(t,)) , ... ) 

We define by construction the discrete time H-sssi process {xjn)L=O,l, ... with indepen­

dent increments, such that 

However, this last formula is only true for H-sssi processes with independent incre­

ments. The next section will introduce an approximation of simulating time-changed 

H-sssi with dependent increments. 

3.2.4 Simulation of time-changed H-sssi process with dependent Incre­

ments 

We assume the process X(t) = X(e(t)), where the process X is H-sssi and e E 8(JR+). 

We want to simulate the discrete time process {xjn)}j=O,l, ... on a regular time space, 

such that for the increasing sequence of positive real {t j h=O,l, ... , where to = 0, one has 

xjn) = X(tj). Let {xjn)h=O,l, ... be the discrete time process of the process {Xh~o. We 

simulate N + 1 observations of X of time length T, we get {xjn) = X (-hT) }j=O,l, ... ,N. 
Taking the inverse of our function e, one has for j = 0, 1, ... ,N 

This means in practice, we simulate observation of X regularly spaced in time; say we 

have N + 1 observations of X at times tj = t T, for j = 0,1, ... ,N. The process X is 

obtained by keeping the observation of X at each time tj and changing the time axis 

{t j } by {e-1(tj)}. An illustration is shown in Figure 3.l. 

The observation of X are irregularly spaced in time. Regular time-spaced observations 
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o . 

~ -1 
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'0 " " " " " t, t., " t, '10 

o . 

~ -1 ...... . ............ - ............. . ....... . .. . . . . 

- 2 

F igure 3.1: Process X with regular observation in t ime (top panel) and X with observat ions irregu­
larly spaced in t ime (bottom panel). 

of the process X are obtained by linear interpolation of the observed X . For a pos­

itive integer M , let {X (~ T ) h=O,l , ... ,M be t he discrete t ime process obtained by this 

. l ' S . J; T IM h h . [e-1
(t j ) e- 1

(t j .+1) ) mterpo atlOn. ettmg u = , one as w en 'l E 6 t, 6 t 

or also 
- i6 - e- 1 (t ·) ( - - ) -

X (i6) = e- 1 (t ji+1 ) _ e~l (tjJ X(t ji+1 ) - X(tjJ + X(tjJ (3. 11) 

In the next Proposition, we compute the interpolation error. This means that we look 

at the distribution of IX(i6) - X (i6) 1. 

Proposition 3 .2.2 . Let X be a H-sssi process such that lEIX(1)12 < + 00. We suppose 

having the fol!o wing observation {X(ti)hiEIR' where for (i , j) E N2 such that i < j , 

ti < t j . Let {X (n6)}nEN a process constructed from {X (ti) hiEIR by linear interpolation 

such that tin:::; n6 < tin+l' (tin' tin+1 ) E ]R2 and n E N. Then 

(3. 12) 

where 

VA E [0, 1]' AH (A) _ { 0 if A E {O, I} 
- A(l- A) (A2H- 1 + (1 - A)2H-1 - 1) if A E (0,1) 

(3. 13) 
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Proof We consider the two successive observations X(ti) and X(ti+l)' Let 

where A E [0,1] and t = (1 - A)ti + Ati+l' 

( X ( t) - X (t) ) 2 = (( 1 - A) X ( ti ) + AX ( ti+ 1) _ X ( t ) ) 2 

= (1 - A)2 (X(ti) - X(t) r + A2 (X(ti+d - X(t) r 
+ 2(1 - A)A (X(ti) - X(t)) (X(ti+l) - X(t)) 

By taking the expectation, one get 

lEIX(t) - X(t) 12 = (1 - A)2lEIX(ti) - X(t) 12 + A2lEIX(ti+l) - X(tW 

+ 2(1 - A)AlE [( X(ti) - X(t)) (X(ti+l) - X(t))] 

By self-similarity and stationary increments, using t = (1 - A)ti + Ati+l' one gets 

Whence 

(3.14) 

where the function AH is defined in (3.13). Clearly for any H E (0,1) and A E [0,1]' 
AH (A) E [0,1). Setting t = nc5 and i = in, one gets (3.12). 0 

Corollary 3.2.3. Let X(t) = X(e(t)), where X is a self-similar process such that 

lEIX(1)12 < +00 and e a continuous and increasing function. We suppose having the 

following observation {X(ti)}{tiElR}, where for (i, j) E N2 such that i < j, ti < t j . 

Let {X(nc5)}{nEN} a process constructed from the observation {X(ti)}{tiElR} by linear 

interpolation such that tin :s: nc5 < tin+l' (tin' tin+d E ]R2 and n E N. Assuming e 
piecewise linear! then 

Proof. Straightforward from Proposition 3.2.2 0 

Figure 3.2 represents the function AH defined in (3.13). 

Using Corollary 3.2.3, the interpolation error on the interpolated discrete time process 

] As we deal with discrete time process. we just consider t.he function e being piecewise linear. 
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Figure 3.2: AH (>\) for H E (0 , 1) and>" E [0 , 1] . 

in (3.11), is 

(3.16) 

Note from (3. 16), that to reduce the error, one needs to r.educe the interval between 

tj i and tji +l . If the observations of the process X are regularly spaced in time, one 
i5 - e- 1 (t· .) 

sets t ji+1 - tji = 1/ N . Assuming Ui = e-1 ( . ) _ e~l ( .) is uniformly distributed 
t Ji +1 tJi 

between 0 and 1, one has 

Whence the expected error in the case where Ui is uniformly distributed 

IEIX(i5) - X(i5) 12 = 11 IE [(X(i5) - X(i5)/ lUi = U] du 

= IE I~~!) 1 2 11 AH (u) du 

= CH + 1 ) ~2H + 1) - D E Ix (~ ) I' 
This shows that the interpolation error becomes more important as H decreases. 

3.3 Hurst index estimation of the time-changed H-sssi 

Generally, most of the existing methods2 to estimate the Hurst index assume t he 

process to have stationary increments. However, a time-changed self-similar such that 

X ( t) = X ( e ( t) ), where X is H -sssi and the function e is a nonlinear t ime change 

2Some of t hese methods are presented in the first Chapter. A good survey also on the Hurst index estimation 
given by M .S. Taqqu and V. Teverovsky can be found in [26] 
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strictly increasing, has no st ationary increments. Therefore, the application of t he ex­

isting methods, for example the detrend fluctuation analysis, the wavelets methods or 

the R/ S analysis , might fail on the self-similarity index estimation. As seen in Section 

3.1, the self-similarity index of X is the same as the process X and so the self-similarity 

index can be estimated from X, if this last is known. Unfortunately this is not always 

the case. 

In this section, we present a method for estimating the global index of self-similarity 

of a time-changed self-similar processes. this is known as t he crossing t ree method [7]. 

We show also that there exists a universal estimator int roduced by Cohen and Istas 

in [65] . This last estimator is also adapted to lass processes and t ime-changed lass 

processes. We conduct a comparison of the performance of t he Hurst index estimators 

presented in Chapter 1 on time-changed Brownian motion. This t est is a fair test 

since there exists an exact method for simulating time-changed Brownian motion on a 

regular time grid. 

3.3.1 Estimation methods for time-changed self-similar processes 

For this application, the crossing tree method for estimating H introduced by O.D. 

Jones and Y. Shen [7] is well adapted. Indeed, this estimator does not depend on the 

time-change e and so one can estimate the index H of X through the process X . We 

have illustrated this in Figure 3.3. Clearly, the sequence of crossing points is unaffected 

by a time-change to the process and thus the branching structure of t he crossing t ree is 

unaffect ed by a time-change. The EBP estimator is calculated from the average family 

size of the crossing tree, so it too is unaffect ed by a time-change. 

sample path and,crosslngs 

l~~ j 
o 200 400 600 800 1000 0'--:"-::'---:--'-::-----:-'-::-'--::-:-------=50"-0 ------=-'60'-::-0 ----=-70=-=-0---:8-':':00-----:-'900 

crossing tree (points give start of crossing) crossing tree (points give start of crossing) 

~f r~ _ ~--J~~ .. ~ ::f ~ . 
l ' : ~\ ~~. 

o 200 400 600 800 1000 100 200 300 400 500 600 700 800 

F igure 3.3: The crossing tree of a stochastic process before and after a time change. In each panel 
t he top diagram shows the sample path and three approximations made from crossings of size 4, 8 
and 16. The bottom diagram in each panel shows the crossing tree: nodes correspond to crossings 
and crossings are linked if one is a sub crossing of the other . We see that while the crossing times 
change, t he branching structure of t he t ree is unaffected by t he t ime change. 

900 

For lass processes, the estimator presented in Theorem 1.1 by S. Cohen and J . Istas in 
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[65] is well adapted to time-changed processes. This estimator is local and so does not 

depend on the time-change e. We recall this Theorem and then we show that time­

changed lass processes satisfy conditions of Theorem 3.3.1 through Corollary 3.3.2. 

Theorem 3.3.1. (65) Let Z be a process so that there exists a random variables Y 

such that 
lim Z(t') - Z(t) ~ Y 

t,t'-+to It' - tl H (3.17) 

and that the family of 10g2 CZi~:) _-t~(t) I) are uniformly integrable in neighborhood 

1 
of to· We set Wn = -- '" 10g216.k nZI where for to E JR, nv L ' 

n kEVn 

for En > 2-n, Vn = #Vn and 6.knZ = Z (k + 1) - Z (~). Assume En -+ 0 as , 2n 2n 

n -+ +00. Then one has 
lim l¥n (a.s.) H 

n-++oo 

Corollary 3.3.2. Assume that we have a process of the form X(t) = X(e(t)) where 

- 2 (IX(t') - X(t)l) X is a lass process so that (3.17) is satisfied and log It' _ tl H are uniformly 

integrable in neighborhood of to and e E 8(JR+) so that in neighborhood of to 

1 
I 
e(t') - e(t) IH 

sup og < +00 
t,t' . t' - t 

Then X satisfies Theorem 3.3.1. 

Proof. The process X satisfies (3.17) since 

lim X(t') - X (t) = lim X( e(t')) - X( e(t)) I e(t') - e(t) IH 
t,t'-+to It' - tl H t,t'-+to le(t') - e(t)IH t' - t 

(d) e'( )HT 
= to x,e(to) 

and also 

10 (IX(t') - X(t)l) = 10 (IX(e(t')) - x(e(t))I) 10 le(t') - e(t) IH 
g It' - t I H g Ie ( t') - e ( t ) I H + g t' - t 

l
e(t') - e(t) IH (IX(t') - X(t)l) 

and log t' _ t is bounded in neighborhood of to and 10g2 It' _ tl H is 

uniformly integrable in neighborhood of to. Whence X satisfies Theorem 3.3.l. D 

We showed that the universal estimator of local self-similarity of S. Cohen and .J .Istas 

.51 



Chapter Three 3.3. Hurst index estimation of the time-changed 11 -sssi 

in [65] are adapted to time-changed lass processes, which is also adapted to self-similar 

processes. In practice we will use the EBP estimator. 

3.3.2 Estimation of the self-similarity index of a time changed H-sssi 

The aim is to estimate the index of self-similarity on time changed processes. We simu­

late in this section some time-changed H-sssi processes, using the procedure described 

in Section 3.2. Vve use the DFA, the Wavelet and RIS to estimate H. In particular, 

these estimators are going to be performed on time-changed Brownian motion since it 

has an exact simulation. We will not test these estimators on time-changed fractional 

Brownian motion. The interpolation method to get such a process on a regular time 

grid induce some error on the Hurst index estimate. The linear interpolation tends to 

smooth the path of the process, and so the Hurst index can be overestimated. This 

study on the time change effect on the estimators makes no sense in that case. \lVe 

define the function e as follows 

e ( t) = _co_s...:....( 7r...:....1_2_+_4_7r_t...:....) _-_3...:....1_4 _si-;-n (...:....7r...:....1_2 -,-+_8_7r...:....t )_+---,--( 1_0_+---,--c )_7r_t _+_3...:....-./4 
(10 + c)7r 

(3.18) 

The quantity C is to ensure that the derivative of the function e is strictly positive for 

any t E [0,1]. The function e satisfies e(O) = 0, e(l) = 1 and for all t E [0,1]' e'(t) > O. 

We compare the DFA, Wavelet and RIS estimators before and after time changing a 

Brownian motion. We perform a Monte-Carlo experiment: we simulate 1000 paths of 

time-changed Browanian motion B(e(t)). Because the estimators perform better when 

the number of observations is a power of 2, we simulate 212 observations for each path. 

For comparison, we also estimate the Hurst of Brownian motion B'. The mean and 

twice the standard deviation of the experiment are given in Table 3.l. 

DFA WAY RIS 
B' (L) with regular time space 0.4971 OA990 0.5637 

(0.008t;) (0.0.129) (OJJ21G) 

B({}(t)) with regular time space 0.5039 0.5006 0.5615 
(Cl.0729) (0.0485) l 0.03(4) 

Table 3.1: Hurst estimation on time-changed Brownian motion. The number in brackets, represent 
twice the standard error. 

Note that B' (fdd) B and so it is normal that we do not obtain the same estimation , 
for both processes. Note that the estimators presented here seem to not be affected by 

the time change function theta. 
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Chapter 4 

Time-change estimation using path 

variation 

We consider a process X of the form X(t) = X(e(t)), where X is locally self-similar 

with stationary increments and index H (H-lsssi ), and e E 8(T), where for a compact 

subset of the positive real line T, the set 8(T) is defined by (4.1). 

8(T) = {e : T ----+ T Eel, s.t. 'lit E T, e'(t) > 0 and e(O) = O} (4.1) 

Having the process X, our aim is to estimate the function e. In this Chapter, we present 

two methods based on the path variation of the process to estimate the time-change 

function e. The first method uses the p-variation (p > 0) of the process, this last is 

adapted to continuous processes such as the fractional Brownian motion. The second 

method uses the log-variation, which is suited to heavy-tailed processes (for example if 

X is an a-stable Levy process). In fact our estimators do not estimate e directly but 

its derivative e'. 
Our chapter will be divided into six Sections. In the first section, we present new 

notations and some preliminary results, which are going to be used in our work. In 

the second and the third section, we introduce respectively the p-variation and the log­

variation time-change estimators. For both estimators, we study their convergence, 

which will depend on the structure of dependency of the time-changed process. In the 

fourth and fifth Section, we analyse the bias and the consistency of the estimators. 

This study will be especially focused on time-changed H-sssi processes. We finish then 

by applying our estimators on some H -sssi processes to test their performances. 

4.1 Notation and preliminary results 

4.1.1 Definition of the time-change function e 
We consider the stepwise function e,(n) defined in (4.2). Let {to, ... , t i , ... , tn} be a 

sequence ofT = [O,T], such that to = 0, tn = T and V(i,j) E {O,l, ... ,nF (n E N) 
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and i < j, ti < t j . The stepwise function e,(n) is defined so that for t E T 

n-l 

e,(n)(t) = L e'(tj)n[tj,tJ+l)(t) 
j=O 

(4.2) 

where n[tj,tJ+l)(t) = 1 if t E [tj, tj+d, n[tj,tJ+l)(t) = 0 otherwise; and tj E [tj, tj+d, such 

that 
e'(C) = e(tj+d - e(tj) 

J tj+1 - tj 

Such ej exists by the mean value theorem. Since the function e' is continuous on the 

compact T, it is easy to show that lim e,(n)(t) = e'(t), Vt E T. 
n-++oo 

Both estimators presented in this chapter, estimate the derivative function e,(n), which 

is equivalent to estimate the sequence1 of the {e'(tj)}jE[O,n-l] , for tj E [tj, tj+d. 

4.1.2 Notation 

We set for any random process Y the two following quantities respectively called the 

p-variation (p > 0) and the log-variation of the process Y 

2n-l 

VnH,P(Y, t, M) = 2
1
n L 1.6.~kY(t, 5t) I

P ( 4.3) 
k=O 

and 
2n-l 

U;: (Y, t, 5t) = 2
1
n L log 1.6.~kY(t, M) I ( 4.4) 

k=O 

Y (t + (k + 1)5n) - Y (t + k5n) M 
Where.6.~kY(t,M) = 5H ,M > 0, 5n = - and Htheindex 

, n 2n 

of self-similarity estimated using the crossing tree method described in Section 1.1.4. 

For simplicity of notation and also to avoid big expressions, while we prove the con­

vergence of our estimators, we define a certain number of expressions. We denote by 

c~ (k, " p) and c~ (k, ,) for , > 0, the following covariance functions 

V(k ) = c (I Y([) - Y(O) I
P 1 Y((k + 1)[) - Y(k,) I

P
) 

Cy , " p ov H' H , , (4.5) 

and 
U(k )=C (1 IY([)-Y(O)ll IY((k+1)[)-Y(k')I) cy , , ov og H ' og H , , (4.6) 

Note that when Y is an H-sssi process, covariances (4.5) and (4.6) become indepen­

dent of the constant ,. One gets c~(k, "p) = Cov (IY(l)IP
, IY(k + 1) - Y(k)jP) and 

lKot.e that this sequence represents the "averaged" derivative in the intervals {[Ij. tj+l )}, which means later for 
our financial application, that the estimators will estimate the averaged iictivity of a given asset between two dates . 
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c~(k, ,) = COV (log IY(l)1 ,log IY(k + 1) - Y(k)I). We set also 

V(k ) = 'l;r (I Y((k + 1)r) - Y(k,) I
P

) 
Vy ",p "'far H , (4.7) 

and 
v~(k, ,) = Var (log 1 Y((k + 1~~ - Y(k,) I) (4.8) 

As for the covariance, when the process Y is H-sssi , (4.7) and (4.8) are reduced 

to v~(k, "p) = Var (IY(l)jP) and v~(k, ,) = Var (log IY(l)I). For simplicity we define 

the following means and the standard deviations: J.L~(p) = IEIY(l)IP, J.L~ = IE log IY(l)l, 

(J~(p) = JVar (IY(l)lp) and (J~ = JVar (log IY(l)I)· 

4.1.3 Preliminary result 

We introduce the following Lemma, concerning time-changed locally self-similar process. 

Lemma 4.1.1. Let X(t) = X(e(t)), where X is H -lsssi and e E 8(T). Let B(to, 1]) the 
open ball centered in to and of radius 1] so that B(to, 1]) C T. Then for all t, t' E B(to, 1]) 

lim X(t) - X(t') (d) e'(to)HT- (1) 
t,t'->to It - t'IH X,o 

Proof. One has 

lim X(t) - X(t') 
t,t'-+to It - t'I H 

lim X(e(t)) - X(e(t')) 
t,t'-+to It - t'I H 

= lim X( e(t)) - X (e(t')) 1 e(t) - e(t') IH 
t,t'-+to le(t) - e(t')IH t - t' 

Since e'(t) > 0 for any t E T,and e is el, one has 

lim 1 e(t) - e,(t') IH = e'(to)H 
t,t'-+to t - t 

( 4.9) 

Moreover as (t, t') --+ (to, to) uniformly, (e(t), e(t')) --+ (e(to), e(to)) uniformly so by 

stationarity of the increments of X 

lim X ( e ( t )) - X ( e ( t')) (d) lim X ( e ( t) - e ( t')) - X (0) (d) T _ (1) 
t,t'-+to le(t) - e(t') IH t,t'-+to le(t) - e(t') IH X,O 

Whence 
lim X(t) - X(t') (d) e'(t )HT- (1) 
, It - t'IH 0 X,o t,t -+to 

D 
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4.2 Time-changed estimation using the p-varition 

The p-variation method is used to estimate the time change function e from the process 

X (t) = X ( e (t) ). Our estimator depends on the nature of the locally self-similar process 

X. We decide then to separate two cases. We first consider the process X having 

stationary increments, and such that the covariance function of the absolute value of 

its increments power p satisfies 

v ( 1 ) sup cx(k, r,p) ::; 0 k4(1-H) 
I'E(O,l) 

as k --+ +00 

For the second case, we consider the process X having stationary and ergodic in­

crements. We will show that in the first case, the estimator has an almost surely 

conveniences while in the second case the estimator will converge in probability to the 

result. Let e E 8(T), we set 

Lt/Otj-l 

e(t) = ALt/Otj,Ot(t - It/MJ6"t) + L Aj,otM 
j=O 

(4.10) 

where ALt/otj,Ot is a positif constant depending on t and M. (4.10) can be rewritten as 

e(t) = ALt/Otj,Ot(t - It/6"tJM) + e(lt/MJM) (4.11) 

Our estimator will estimate the sequence of {Aj,otL. For short, we set At,Ot = ALt/Otj,Ot. 

The following Lemma will be useful later. 

Lemma 4.2.1. Let X(t) = X(e(t)), where X is H-lsssi and e defined by (4.10). Then 

VnH,P(X, It/MJM, M) ~ At,olHVnH,p(X, 0, At,ot6"t) ( 4.12) 

Proof. We use the fact that for two sequences of random variables {Xih and {Yih so 
(fdd) (d) 

that {Xih = {Yih, then Li Xi = Li Yi. 

VnH,P(X, It/6"tJ6"t, M) 

= ~ 2~ IX(lt/MJM+ (k+ l)6"n) -X(lt/MJM+ k6"n) IP 

2n ~ 6" H 
k=O n 

= ~ 2~ X(e(lt/MJ6"t) + At,Ot(k + l)6"n) - X(e(lt/MJM) + At,Ot k6"n) p 
2n ~ 6" H 

k=O n 

2n-l - - p 

(d) ~ '" A pH X(At,Ot(k + l)6"n) - X(At,ot k6"n) 
- 2n ~ t,ot H s: H 

k=O \,otUn 

= At,olHVnH,p(X, 0, At,OtM) 
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D 

4.2.1 Time-changed H-Isssi process with condition on covariance 

Theorem 4.2.2. Let X(t) = X(B(t)), where X is H-lsssi and B defined by (4.10). We 

assume for some (X > 2p that for (t, t') E T 

and 

Then 

sup lE (IX(t) - X(t') I) a: < +00 
t,t'ET It - t'I H 

sup c~(k",p) :::; 0 (k4(:-H)) as k ---t +00 
I'E(O,l) 

1 

(
VnH,P(X, It/c5tJc5t, c5t)) pH (a.s.) \ 

V () ---t At,Ot, as n ---t +00 
!iTX,Q P 

Proof. By Lemma 4.2.1, the expected value of VnH,P(X, It/c5tJc5t, c5t) is given by 

lE [VnH,p(X, It/c5tJc5t,c5t)] = Af,7tlE [VnH,P(X, 0, At,Ot c5t)] 

( 4.13) 

.(4.14) 

(4.15) 

By assumption (4.13), for p < 2p < (x, Vt, t' E T, is uniformly ( 
IX(t) - X(t')I) p 

It - t'IH 
integrable, one has by Lemma 4.1.1 

the limit is uniformly in k, so 

n~~oo lE [VnH,p(X, It/c5t Jot, c5t)] = n~~oo Af,7tlE [VnH,P(X, 0, At,6tc5t )] = Af,7tlE ITx,o(1) IP 
( 4.16) 

We now show the following limit to complete the proof 

lim I VnH,P(X, It/ c5t Jot, c5t) - lE [VnH,p (X, ltjc5t J c5t, ot)] I (a.s.) 0 (4.17) 
n-++oo 

By Lemma 4.2.1, the variance of VnH,P(X, It/c5tJc5t, ot) is given by 

where 

2n.-l 2n-l 

Var (VnH,P(X, 0, At,Otc5t)) = 2;n L V~(k,At,OtOn'P) + 2;n L(2n - k)c~(k,At,OtOn'P) 
k=O k=l 
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By assumption (4.13), one has for P < 0'./2, supvj(k, At,8t6n,P) < +00. \Ve set for 
n,k 

E > ° 

By the Tchebychev inequality, one has 

We denote an rv bn when an/bn ----+ C E (0, +(0) as n ----+ +00. One has 

{ 

2n(1-o:) if 0'. < 1 2f l/kO: rv nlog(2) if 0'. = 1 

k=D 1 liO'. > 1 

hence knowing A;~~ < 00 

- For H E (0,1/2), Pn :::; 0(2~) + 0(2~,) + 0(2~n)' This implies Pn = 0(;,,) 

- For H = 1/2, Pn :::; 0(2~) + 0(2~) + 0(2~n)' This implies Pn = 0(2~) 

- For H E (1/2,3/4), Pn :::; 0(21n) + 0(2~) + 0(24"(~-H))' This implies Pn = 0(2~) 

- For H = 3/4, Pn :::; 0(2~) + 0(2r;,) + 0(2~)' This implies Pn = 0(2r;,) 

- For H E (3/4,1), Pn :::; 0Un) + 0(24n(~ H)) + 0(24n(~ H))' This implies Pn 

o (24n(~-H) ) 

Whence for each case, ~~=1 Pn < +00, which implies (4.17) by the Borel-Cantelli 
1 

Lemma. Hence using (4.16) and by continuity of the function x>-> (1EIT
x
:(1)IP ) "H, 

the continuous mapping Theorem yields 

1 

(
V:'P(X, Lt/MJ6t,M)) pH (a.s.) A as n ----+ +00 

lEIT- (l)lp ----+ t,8t, 
X,D 

o 
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Note for X self-similar processes, assumption (4.13) of Theorem 4.2.2 is reduced to 

(
e(t) e(tl))o.H 

IEIX(l) 10. sup - I < +00, for a > 2p 
t,t'ET t - t 

which is equivalent to assume IEIX(l)lo. < +00, as the function e is bounded on the 

compact T. Similarly, assumption (4.14) is reduced to 

4.2.2 Time-changed H-lsssi process with ergodic increments 

For a process X, which does not satisfy assumptions (4.13) of Theorem 4.2.2, we 

consider instead the ergodicity of its increments. An example of a process that has 

stationary and ergodic increments is the fractional Brownian motion (see [66] for the 

ergodicity of the fErn). For X H-lsssi process, we assume that its tangent process Tx 

has ergodic increments. We split the case where X is a H-sssi with ergodic increments 

(see Proposition 4.2.3), and the case where X is a H-lsssi with tangent process Tx 

having ergodic increments (see Proposition 4.2.4). 

Proposition 4.2.3. Let X be a H -sssi with ergodic increments such that for some 

a 2: p, IE IX(l)l a 

< +00. Then 

1 

(
VnH,P(X, Lt/c:5tJ6t,6t)) pH ~ A as n --+ +00 

v ( ) t,ot, 
/-Lx p 

Proof. By Lemma4.2.1 and the self-similarity of the process X, one has 

VnH,P(X, Lt/c:5tJc:5t, 6t) (d) A~,IftvnH,P(X, 0, At,otc:5t) 
ApH 2n-l 

(;!2 ~ '""" IX(k + 1) - X(k) IP 2n L 
k=O 

By the stationarity and the ergodicity of the increments of the process X, one gets by 

the ergodic Theorem [67] 

2n-l 

;n L IX(k + 1) - X(k)IP (~) IEIX(1)IP, as n --+ +00 
k=O 

Whence 

lim VnH,P(X, Lt/c:5tJc:5t, c:5t) (~ A~IftIEIX(l)IP 
n~+oo 1 

1 

Hence by continuity of the function x --+ ( _x ) PH. Corollary 2 page 31 in [68] 
IEIX(l)lp , 
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yields 
1 

(
VnH,P(X, It/MJot, ot)) pH (1') , 

--+ At <t as n --+ +00 IEIX(l)lp ,u , 

D 

Proposition 4.2.4. Let X be H -lass process with stationary increments so that its 

tangent process Tx,o has stationary and ergodic increments and for some ex ;:::: p, 

IEITx ,o(1W' < +00. Then 

1 

1
. l' (VnH,P(X, It/otJM,M)) pH (1') , 
1m 1m - At Ot 

n---; +00 Ot---;O f-L~ _ (p) , 
X,D 

Before proving Proposition 4.2.4, we introduce the following Lemma. 

Lemma 4.2.5. For any t ;:::: 0 

1· {X(t+C:(U+1))-X(t+CU)} (f.!!:...d){T_ ( l)-T- ()} 
1m H - X 0 U + x 0 U u>O 

E---;O+ c: " -
u;:::O 

(4.18) 

Proof. 

lim {X(t + c:(u + 1)) - X(t + CU)} 
E---;O+ c:H 

u;:::O 

(fdd) lim {X(c:(U + 1)) - X(CU)} 
E---;O+ c:H 

u;:::O 

= lim {X(c:(U + 1)) - X(O) _ X(cu) - X(O)} 
~~ ~ ~ 

u;:::O 

D 

Proof. (of Proposition 4.2.4). Here we use the fact that for a finite sequence of random 

variables {Xi(n)}i (01) {Xih as n --+ +00, then Li Xi(n) ~ Li Xi as n --+ +00. By 

Lemma 4.2.5, one has 

lim VnH,P(X, It/otJot, M) (d) lim Af~V:'P(X, 0, At,otOt ) 
ot-tO ot-tO ' 

pH 2n 1 - - P 
= At,ot ~ lim X(At,Ot(k + l)on) - X(At,otkon) 

2n ~ ot-tO (At,otOn)H 
ApH 2n-l 

~ ~ ""' IT- (k + 1) - T- (k)IP 2n 6 x,o X,O 
k=O 
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Moreover, by the stationarity and the ergodicity of the increments of the process Tx,o, 

one gets by the ergodic Theorem [67], 

1 

Hence by continuity of the function x -+ XPH , Corollary 1 page 31 in [68] implies 

Whence 
1 

1
. l' (V:'P(X, It/6tJ5t, 6t)) pH (:1') , 
1m 1m - At lit 

n-++oolit-+O lEITxo (1)lp , , 

D 

4.2.3 'frend effect on the estimator 

Our motivation for considering the effect of trend on the estimator comes from the 

fact that, in practice, time series exhibit trends. Our aim is to investigate the effect of 

this trend on the p-variation estimators. We consider the process Xf(t) = X(t) + f(t), 

where the process X is of the form X(e(t)), where X is H-lsssi , e as defined in (4.10), 

and f is Holder continuous function with a global index Oi f > H, so that for (t, s) E I, I 

a compact of lR, there exists a positive constant C such that If (t) - f (s) I ::; Cit - s I a J . 

Proposition 4.2.6. Assuming the process Xf(t) = X(t) + f(t), where X(t) is of the 

form X(t) = x(e(t)), f an OirHolder continuous function on lR such that Oif > Hand 
that VnH,P(X, t, 6t) converges. Then 

(4.19) 

Proof. One needs to show that 

( 4.20) 

and then by the Theorem of continuous mapping see for example [68], we complete the 
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proof. Using the triangular inequality for p :::; 1, one gets for n large enough 

IVnH,p(X f , It/6tJ6t,6t) - VnH,P(X, It/6tJ6t,6t)1 
2n-l 2n-l 

1 . 1 
= - ~ 1~~kX(lt/6tJ6t, 6t) + ~~kf(lt/6tJ6t, 6t)I P - - ~ 1~~kX(lt/6tJ6t, 6t)I P 
2n~ , , 2n~ , 

k=l k=l 

< ~ 2~ I f (It/6tJ6t + (k + 1)6n) - f (It/6tJ6t + k6n) I

P 

- 2n ~ 6H 
k=l n 

This implies (4.20). For p > 1, we use the Minkowski inequality, one gets 

1 

= 2~ I (~ 1L;.~kX(Lt/btJ8t, ot) + L;.~d(lt/OtJbt, bt)IP) , 
1 -Ct' 1L;.~kX(Lt/8tJOt,bt)IP)' IP 

< ~ 2~ I f (It/6tJ6t + (k + 1)6n) - f (It/6tJ6t + k6n) I

P 

- 2n ~ 6H 
k=l n 

:::; c 16n I
P(a:r H) --+ 0 as n --+ +00 (af > H) 

This implies I (VnH,P(X f, It/ 6t J 6t, 6t)) ~ - (VnH,P(X, It/ 6t J 6t, 6t)) ~ I (~) 0, whence (4.19). 

D 

Note that in practice, Proposition 4.2.6 shows that the p-variation estimator is not 

affected by a trend or seasonality effect added to the process X provided that it is 

smoother than X. We may also consider the function f as a stochastic process. Choos­

ing for example f as locally self-similar process, independent of the process X, with 

local index of self-similarity h f (t) is such that inftElR {h f (t)} > H, then Proposition 

4.2.6 still holds. 

4.3 Time changed estimation using the log-varition 

We present a method to estimate At,M, from the process X (t) = X (e (t)). As in Section 

4.2, we separate two cases. We first consider the process X having stationary incre­

ments and such that the covariance function of the logarithm of the absolute value of 
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its increments satisfies 

For the second case, we consider the process X having stationary and ergodic incre­

ments. We then study the robustness of the estimator by adding to the process X, 

a function f which is Holder continuous with Holder exponent bigger than the local 

index of self-similarity of the process X. 

Lemma 4.3.1. Let X(t) = X(e(t)), where X is H-lsssi and e defined by (4.10). Then 

( 4.21) 

Proof. 

U::(X, It/MJM,<5t) 

= ~ 2~ 10 I X(lt/<5tJM + (k + l)<5n ) - X(lt/MJM + k<5n ) I 
2n ~ g <5 H 

k=O n 

= ~ ~ 10 X(e(lt/MJM) + At,8t(k + l)<5n ) - X(e(lt/<5tJ<5t) + At,8t k<5n ) 

~~ g <5 H 
k=O n 

o 

4.3.1 Time-changed H-Isssi process with condition on covariance 

Theorem 4.3.2. Let X(t) = X(e(t)), where X is H-lsssi and e defined by (4.10). We 
assume that 

and 
( 4.23) 

then 

(
U:!(X, It/MJM,M) -1'#5;:0) (a.s.) 

exp H '----+ At,8t, as n ----+ +00 ( 4.24) 
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Proof. By Lemma 4.3.1, the expected value of U!!(X, It/c5tJc5t, c5t) is given by 

. X(t) - X(t').. . 
By assumptIOn (4.22), log (t _ t')H IS umformly mtegrable, one has by Lemma 

4.1.1 -

lim IE [lOg X(At,iit(k + l)c5n) ~ X(At,iit kc5n) 1 = IE [log ITx 0(1) IJ 
~+oo AHc5 ' 

t,iit n 

the limit is uniform in k, so 

( 4.25) 

We now show the following limit to complete the proof 

lim IU!!(X, It/c5tJc5t,c5t) -IE [U!!(X, It/c5tJc5t,c5t)JI (a.s.) ° (4.26) 
n-++oo 

Which is equivalent to show n~~oo I U!! (X, 0, At,iitc5t) - IE [U!! (X, 0, At,iitc5t)] I (a.s.) 0. The 

variance of U!!(X,O,At,iitc5t) is given by 

[ 
X(t) - X(t') 1 From assumption (4.22), one has sup IE 10g2 ( ')H < +00, this yields, 

t,t/ET t - t 

supv~(k, At,iitc5n) < +00 
n,k 

Settingpn = JlD(IU!!(X,O,At'iitc5t)-IE[U!!(X,O,At'iitc5t)ll~E), for E > 0. By the 
Tchebychev inequality, one gets 
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Whence as in proof of Theorem 4.2.2 

- For H E (0,1/2), Pn::; 0(2~) + 0(2~) + 0(2~n). This implies Pn = 0Un) 

- For H = 1/2, Pn ::; 0(2~) + 0(2~) + 0(2~n)' This implies Pn = 0(2~) 

- For H E (1/2,3/4), Pn::; 0Un) + 0(2~) + 0(24n(~ H))' This implies Pn = 0(2~) 

- For H = 3/4, Pn::; 0(2~) + 0(2r:,) + 0C;n). This implies Pn = 0(2~<) 

- For H E (3/4,1), Pn ::; 0(2~) + 0(24n(~ H)) + 0(24n(~ H))' This implies Pn 

O( 24n(~-H) ) 

whence for each case L~=l Pn < +00, which implies (4.26) by the Borel-Cantelli 

Lemma. Hence using (4.25) and by continuity of the function 

(

X -lE[log ITx 0(1)1]) 
x ---t exp , 

H 

the continuous mapping Theorem yields 

(
U:;(X, Lt/OtJOt,6t) - f-L¥x- 0) (a.s.) \ 

exp , ---t At,8t, as n ---t +00 
H 

o 

We now present a way to check assumption (4.22) of Theorem 4.3.2. We start by the 

two following Lemmas. 

Lemma 4.3.3. Let Yn be a sequence of random variables. If for some ex E (0,1) 

suplElYnlO: < 00 and suplElYnl-O: < 00 
nEN nEN 

then log2 IYn 1 is uniformly integrable 

Proof To show that log2 1Yn 1 is uniformly integrable, we show that there exists a convex 

function ¢o: (see for example [68]), such that 

sup IE [¢o:(log2IYnl)] < +00 
nEN 

We take the following convex function (as in [65]) 

One can check easily that the function ¢o: is convex. One has 
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hence suplE II ¢a(lOg2IYnD] is bounded, if for some a E (0,1) 
nEN 

suplElYnla < 00 and suplElYnl-a < 00 
nEN nEN 

D 

The following Lemma gives us an easy way to check when the lElYI-a is finite for 

a E (0, l)for a given random variable Y. 

Lemma 4.3.4. Let Y be a random variable, let f be the density function of Y. If for 

some f > ° the function f is bounded on (-f, f). Then for a E (0,1), lElYI-a < +00. 

Proof. There exists a positive constant M which bound the function f on (-f, f), so 

that 

1
+00 1 

lElYI-a = -00 IYFf(y)dy 

l E 1 J+oo 1 
~ 2M -dy + -(f(y) + f( -y))dy 

o ya E ya 

1 J+oo ~ 2Mf1
-

a + --;- (f(y) + f(-y))dy 
f E 

1 < 2Mf1
-

a +­
- fa 

<+00 

D 

Note using Lemma 4.3.3, the uniformly integrability of (4.22) is satisfied if for ° < a < 1 

sup lE (IX(t) _X(t')I)a < 00 and sup lE (IX(t) _X(t')I)-a < 00 
t,t'ET It - t'IH t,t'ET It - t'IH ( 4.27) 

For self-similar processes, condition (4.27) is reduced to 

In the following section we present a similar result to Theorem 4.3.2 for processes 

that do not satisfy condition (4.23). We replace this condition by ergodicity of the 

increments of the process X. 

4.3.2 Time-changed H-Isssi process with ergodic increments 

Proposition 4.3.5. Let X be a H -sssi with ergodic increments such that 
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Then 

( 
U!! (X, It/ bt J bt, bt) - fL~) (P) 

exp H ---+ At,M, as n ---+ +00 

Proof. By H -sssi property of the process X, one has 

U:! (X, It/bt Jbt, bt) (d) H log(At,M) + U:! (X, 0, At,8tbt) 
2n-l 

(d) 1 '""'" - -
= Hlog(At,8t) + 2n L log IX(k + 1) - X(k)1 

k=O 

By the stationarity and the ergodicity of the increments of the process X, one gets by 

the ergodic Theorem [67] 

2n-l 
1 L - - (as) -- log IX(k + 1) - X(k)1 ~ lE[log IX(l)l] as n ---+ +00 
2n 

k=O 

Whence 

Hence by continuity of the function x -; exp (x -:~), Corollary 2 page 31 in [681 

yields 

( 
U!! (X, It/ bt J bt, bt) - fL~) (P) 

exp H ---+ At,M, as n ---+ +00 

o 

Note for Proposition 4.3.5, one can show that IlElOg IX(l) II < +00, using the fact that 

and then use Lemmas 4.3.3 and 4.3.4 to show lEIOg2IX(1)1 < +00. For locally self­

similar processes, we present a similar result in the following Propositions. 

Proposition 4.3.6. Let X be a H -lass process with stationary increments so that its 

tangent process Tx,o has stationary and ergodic increments and IlElog ITx,o(1)11 < +00. 
Then 

lim lim exp X,D = e'(t) 
(

U!!(X, It/btJbt, bt) - fL¥-. ) (P) 

n--++oo M--+O H 
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Proof. Using Lemma 4.2.5, one has 

lim U;: (X, It/ M J M, M) (d) lim H log(At,8t) + U;: (X, 0, At,8tbt) 
8t.....,0 8t.....,0 

2n-l 

(d) Hlog(e'(t)) + ~ ~ log ITx o(k + 1) - Tx o(k)1 2n ~, , 
k=O 

Hence, by continuity of the function x ---+ exp(x) , Corollary 1 page 31 in [68] implies 

lim exp (U;: (X, It/btJbt, M)/ H) (d) e'(t) exp ( 1H 2~ log ITx o(k + 1) - Tx o(k)l) 8t.....,0 2n ~, , 
k=O 

Moreover, by the stationarity and the ergodicity of the increments of the process Tx 0' , 

one gets by the ergodic Theorem [67] 

2n-l 

2
1
n L log ITx,o(k + 1) - Tx,o(k)1 (~) IE[log ITx,o(1)I] as n ---+ +00 

k=O 

Hence by continuity of the function x ---+ exp(x) 

lim lim exp (U;: (X, It/ M J bt, M)) (d) At,8t exp (fL~- / H) 
n->+oo 8t->0 x,a 

Whence . . (U/! (X, It/ M J M, bt) - fL¥x,a) (P) 
hm hm exp H = At,8t 

n"""+oo 8t.....,0 

D 

4.3.3 Trend effect on the estimator 

We consider the following process Xf(t) = X(t) + f(t), where the process X is of the 

form X(e(t)), where X is H-Isssi , e as defined in (4.10), and f is Holder continuous 

function with a global index Oif E (H,l], so that for (t, s) E I, I a compact subset of 

ffi., there exists a positive constant C such that If(t) - f(s)1 ::; Cit - SIU/. 

Proposition 4.3.7. Assuming the process Xf(t) = X(t) + f(t), where X(t) satisfying 

conditions of Theorem 4.3.2 and f an OirHolder continuous function on ffi. such that 

Oif > H. Then 

lexp (U;: (Xf, It/btJbt, bt)) - exp (U;: (X, It/MJM, M)) I (~) 0, as n ---+ +00 (4.28) 
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Proof. The process Xf and X have the same tangent process Tx,o' since 

lim X f (t) - X f (t') = lim X (t) - X (t') + .=..-1 (:......:..t )_-_1,--:':( t:......:..') 
t,t'--+to It - t'I H t,t'--+to It - t'I H It - t'I H 

= lim X(t) - X(t') 
t,t'--+to It - t'I H 

Hence exp (U/!(Xf, It/<5tJbt, bt)) and exp (U/!(X, It/btJbt, bt)) converge to the same 

limit 

A~ot exp (E[log ITx,ol]) 

almost surely by Theorem 4.3.2. 

o 

Note that in practice, Proposition 4.3.7 shows that the log-variation estimators is not 

affected by any relatively smooth trend or seasonality effect added to the process X. 

We may also consider the function 1 as a stochastic process. Choosing for example 1 
locally self-similar, with local index of self-similarity h f (t) such that inftElR {h f (t)} > H, 

and 1 is independent of the process X, then Proposition 4.3.7 still holds. 

4.4 Consistency of the p-variation estimator for known H 

Let m be a strictly positive integer. We define A c }Rm the set of A'S estima­

tors, where A = {AjotodE{o -I}' We note ~V,n(p) = {~~~ot(p)} and 
, J , ... ,m , jE{O" .. ,m-l} 

~U,n = {~~~ot}. estimators of A respectively using the p-variation and the 
JE{O, ... ,m-l} 

log-variation, for bt = T /m. Both estimators are defined such that for every j E 

{O, .. "m-l} 

1 

~V,n (p) = (VnH,P(X,jbt,bt)) pH 

JOt,ot "V 
rT­x,o 

~ U,n _ (U/! (X, jbt, bt) - f1¥X'Q) 
and \Ot,Ot - exp H 

We analyse the bias and the mean square error (MSE) for ~V,n(p) in this Section and 

~U,n in the next Section, We also check the asymptotic normality of the estimators in 

some cases. We define the normalised bias and the normalised MSE of an estimator 

A E A as 

~ (A - A) bias(A) = IE -A- and MSE(~) ~ lE .\ =.\ 2 ~ VaT (~) + (bias(~))2 

Note that as ~ is a vector, which can be written as ~ = {~j} , the normilised 
jE{l, ... ,m} 
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bias and the normalised MSE of A can be written as follow 

bias(~) = {bias (~j)} . 
JE{l, ... ,m} 

and MSE(~) = {MSE (~j)}. 
JE{l, ... ,m} 

We define the integrated normalised MSE IMsE by 

IMsd~) = ~ tMSE (~j) 
j=l 

4.4.1 Bias and MSE of the estimator on H-lsssi processes 

We study the asymptotical behaviour of the normalised bias and the normilised MSE 

of ~V,n(p) = {~r:l)Ot Ot(p)} as n goes to infinity. We start by the following 
. J , jE{l, ... ,m} 

Lemma 

Lemma 4.4.1. Let X = X (e (t)) where X is locally self-similar and has stationary 

increments, and e E 8(T). We assume that there exists E > 0, so that 

(
IX(t) _ X(t' )1)2(l+E)/H 

sup IE H < 00 
t,t'ET It - til 

Thenforp:::; 2/H, the random variable (V:'P(X, It/6tJ6t,6t))2/PH is uniformly inte­

grable. 

Proof. Note first since the function e is bounded and differentiable on T and T is closed, 

there exist a constant M > 0 so that 

I 

e(t) - e(t') 1

2
(l+E) 

sup < M 
t,t'ET t - t l 

-

One has 

( 
IX(t) - X(tl) I) 2(l+E)/H (IX(t) _ X(t')I) 2(l+E)/H 

sup IE H < .Af sup H < 00 
t,t'ET It - til - t,t'ET It - til 

To show that the random variable (VnH,p(X, It/6tJ6t, 6t))2/PH is uniformly integrable, 

it suffices to show that for E > 0, sup IE [(VnH,P(X, It/6tJc5t, c5t))2/PH+E] < 00. Since 
n 

2/(pH) + E > 1, whence by Jensen's inequality, one gets 
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Whence, 

IE [(V,;/,P(X, Ltl at J at, at) )2/PH+,] <; (2~ ) 2/pM, 2~ IE [1"'~kX(t, at) 12/1I+P'] 

( 
1 ) 2/pH+E-l (IX(t) _ X(t') I) 2/H+PE 

< - sup IE 
- 2n t,t'ET It - t'IH 

U sing the fact that p ::; 2/ H, one has 

(
1 )2/PH+E-l (IX() X( ')1)2/H+PE 

supIE [(VnH,P(X, It/c5tJot, c5t))2/PH+E] ::; sup --:;:;: sup IE It - 'I H t n n 2 t,t'ET t - t 

(
IX(t) - X(t')1)2(1+E)/H 

< sup IE H 
- t,t'ET It - t'l 
<00 

D 

Without lose of generality, we show in Proposition 4.4.2 that for p E (0,2/ H], the 

estimator ~Y,8~ (p) is consistent as n goes to infinity . 

Proposition 4.4.2. We assume either Theorem 4.2.2 or Proposition 4.2.3 hold. Let 

X = X(e(t)) where X is locally self-similar and has stationary increments, and e E 

8(T). We assume that there exists E > 0, so that 

(

IX(t) _ X(t')1)2(1+E)/H 
sup IE H < 00 

t,t'ET It - t'l 

Then for p E (0, 2/ H], the estimator ~Y,8~ (p) is consistent as n goes to infinity. 

Proof. One has 

1 

by Lemma 4.4.1, for p E (0,2/ H], (V:,P(X, It/c5t Jc5t, ot)) pH is uniformly integrable, 

thus one has 

( 

1 )pk ~ 
lim v () IE [(VnH,P(X, It/c5tJc5t, c5t)) PH] = At,M 

n--++oo f-LT _ P 
x,a 

whence the estimator ~Y,8~ (p) is asymptotically unbiased. For the MSE of the estimator, 
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it suffices to compute the variance of the estimator. One has 

2 

by Lemma 4.4.1, for p E (0,2/ H], (VnH,p(X, It/bt Jot, bt)) pH is uniformly integrable, 

thus one has 

( 

1 )pk ~ 
lim v () Var((VnH,P(X,lt/otJot,bt))PH) =Var(At,8t) =0 

n-++oo f-LT _ P 
x,o 

whence lim MSE(5.Y5~(P)) = O. The estimator 5.Y5~(P) is consistent. 
n~+oo' ) 

4.4.2 Bias of the estimator for H-sssi processes with p = 1/ H 

D 

As our study is based in particular on self-similar processes, we show in Proposition 

4.4.3 that for X self-similar process with finite moment of order bigger or equal to 1/ H; 

the estimator A V,n (1/ H), that we note A V,n for simplification, is unbiased. 

Proposition 4.4.3. Let X = X(e(t)) where X is H-sssi and e E 8(T). We assume 

that lEIX(IW/H < 00, then the estimator 5.Y,5~ is unbiased. 

Proof. One has 

lE[5.V ,n] = lE [V:'l/H (X, It/btJbt, bt)] 
t,cSt f-L ~ (1/ H) 

Since 

1

_ Il/H 
= At,8tlE X(I) 

One has lE[5.Y,5~] = At,t+cSt and bias(5.Y,5~) = 0 D 

4.4.3 MSE of the estimator for H-sssi processes with independent incre­

ments with p = 1/ H 

In Proposition 4.4.4 we compute the normalised MSE of the estimator A V,n, for self­

similar processes with independent increments and finite moment bigger or equal to 

2/H. 
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Proposition 4.4.4. Let X = X (e (t)) where X is H -sssi with independent increments 

and e E 8(T). We assume that lEIX(1)1 2/ H < 00, the MSE is given by 

( 4.29) 

PTa oj. Since the estimator is unbiased, it suffices to compute the variance of 5..y,;,~ 

Since the increments of the process X are independent, one has 

Having () ~ (1/ H) = 
- A V /It ot A V ( ~~n) 2 

Var (IX(l)ll/H) and MSE(\,;'~) = Var ~ + (bias(At,;,~)) , 
t,ot 

one has 

D 

4.4.4 MSE for H-sssi with independent and Gaussian increments (p = 1/ H) 

In the case where the increments of the H-sssi are Gaussian distributed, then one gets 

Corollary 4.4.5. Note that H-sssi process having stationary, independent and normal 

distributed increments, must have H = 1/2. This is due to the unicity of the Brownian 

motion. However, we keep H E (0,1) so one can have an idea of how the MSE reacts 

as a function of H. 

Corollary 4.4.5. We assume X H -sssi with Gaussian increments with mean zeTa. 

Then 
MSE(5.. V,n) = e(H) 

t,Ot 2n 
( 4.30) 

where e(H) = ~ - 1 (
J7ff (2+H) ) 
f (~tl) 
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Proof. We can limit our case to the standard Gaussian process (mean 0 and variance 

1). Indeed assuming the process X = a Z where Z is a standard Gaussian process and 

a a positive constant, one has for a real a > 0 

One has 

Var (IX(l) IQ) 

(lEIX(l)IQ r 
Var (IZ(l) IQ) 

(lEIZ(l) IQ r 
AVn 1 (ak(1 / H)) 2 1 ( lEIX (1)12/H ) 

MSE(.\8t) = 2n JLk(l / H) = 2n (lEIX(1)ll /H)2 - 1 

for a real a > 0, one gets the following result 

Whence by substituting a by 2/ Hand 1/ H , one gets 

MSE(5.V ,n) = ~ (for (~) -1) 
t,ot 2n r ( ~~l ) 2 

D 

We draw the function e in Figure 4.1. From this we deduce that for a given n, the 

estimator perform better on smoother processes. In the case of a time-changed Brown­

ian motion, one has e(1/2) = 2, and the normalised MSE of the 5.r.8~ is 1/2n
-

1
. So 

assuming that we want an error to be less or equal to a E (0, 1) , then n has to be 

bigger or equal to 1-log2(a), (this means for example for a = 0.01 , n 2: 8) . Figu,re 4.2 

illustrates the MSE of the estimator when applied to time-changed Brownian motion. 

We study next the asymptotic normality of the estimator. 

10-~L. 1 ----='0.'::-2 ---:"'0.~3 ----:'"0.4:---::':0.5:-:'::0.6----'0:7.7 ----'0:':-.8 --=0'="".9 ~ 
H 

Figure 4.1: Function loglO(e(H )). 
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Figure 4.2: MSE of the estimator on time­
changed Brownian motion. 
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4.4.5 Asymptotic normality for H-sssi processes with independent incre­

ments ( p = 1 I H) 

We study the asymptotic normality of the estimator. 

Proposition 4.4.6. Under the conditions of Proposition 4.4.4, the asymptotic nor­

mality of the estimator ~Y,J~ is given by 

( 4.32) 

Proof. 

Hence having assumed X with independent increments, the Central Limit Theorem 

yields 

D 

Note that substituting H by its estimator iI in the asymptotic normality expression 

4.32, this last remains still valid. 

4.5 Consistency of the log-variation estimators for known H 

We study the asymptotical behavior of the normilised bias and the normilised MSE of 

~U,n = {~~j~l)M'M)} . as n goes to infinity. Here m is fixed and cSt = Tim. 
JE{l, ... ,m} 

4.5.1 Bias and MSE of H-lsssi processes with independent increments 

Lemma 4.5.1. Let Xn be a sequence of strictly positive random variables, such that 
(d) 

Xn --+ X as n --+ 00, and 

IE [X~l :::; C and IE [x,:;-aJ :::; C ( 4.33) 
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for some 0: > 0 and C a finite real. Then 

lim (lE [x~/n ] ) n = exp (lE log( X)) 
n-+oo 

( 4.34) 

Proof. From O.D. Jones 

We set Yn = 10g(Xn ) and Y = 10g(X). Then (4.34) is equivalent to 

lim (lE [exp (Yn/n)lt = exp (lEY) 
n-+oo 

We define 

The function mn exists 'lin, and t E (-0:,0:). Thus m~(O) = lE [Ynl exists and we have 

mn(t) = 1 + m~(O) + o(t) 

Condition implies (4.33) o(t) ----1- 0 as t ----1- 0 uniformly. This last combined with Lemma 
t 

4.3.3, implies that Yn is uniformly integrable. So 

lE [Ynl = m~(O) ----1- m'(O) = lE [Yl as n ----1- 00 

Thus we can write mn(t) = 1 + tm'(O) + o(t). And so 

log (lE [exp (Yn/n)lt = 10g(1 + tm'(O) + o(t))n ----1-log(exp(m'(O))) = lE [Yl 

as n ----1- 00. This end the proof. o 

Proposition 4.5.2. Assuming there exists 0: E (0,1), so that 

sup lE [( IX(t) - X(t') I) <Xl < 00 and sup lE [( IX(t) - X(t') I) -<Xl < 00 

t,t'ET It - t'IH t,t'ET It - t'IH 

Then the estimator 5.f,~~ is asymptotically unbiased. 

Proof. First, one can rewrite 

exp (U~i (X, Lt/M JOt, Jt)/ H) ~ exp ( 2~ 2~ log 1b..~kX(t, 81)1/ H ) 

2n-l 
1 

= IT 1~~kX(t, 5t) 12nH 

k=O 
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Whence by the independency of the increments of X, one gets 

2n-l 

= II IE [1~~kX(t, cSt) 1
2
,{H ] 

k=Q 

By stationarity of the increments of X, one has 

The bias of the estimator being given by the expected value of ~f,:s~, one has 

( 4.35) 

Proposition 4.5.3. Assuming there exists CY E (0, I), so that 

IE 
[ (

IX(t) _X(tl)I)Cl:] d IE [(IX(t) _X(tl)I)-Cl:] sup H < 00 an sup H 
t,t'ET It - til t,t'ET It - til 

<00 

Then the estimator ~f,:s~ is asymptotically consistent. 

Proof. The MSE of the estimator is the sum of its variance and square bias. As the 

bias converge to 0 as n tends to infinity, it is sufficient to show that the variance of 

~f,:s~ tends to 0 as n tends to infinity. Using proof of Proposition 4.5.2 and setting 

H - X(At ot6n) - X(O) . 
~n,QX(O, At,OtcSt) = ('A 6 )H ' one has by the independency and the statlOnar-

t,ot n 
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ity of the increments of X 

Var (exp (U:;(X, It/5tJ5t,bt)/H)) 

= Var eti' 1"'~kX(t, 61)1 '"H) 

= IE ['ti' 1 "'~kX (t, 8t)l'" H ]- (IE ['ti' 1 "'~kX (t, ot)l'" H ]) , 

= Ai,,, ( (IE [I "'~oX (0, At,"Ol) 1 '.?H 1 r -(IE [I "'~oX (0, At,,,ot) 1 ,J
H 1 r+' ) 

The variance of the estimator is given by 

(Au,n) _ ( (U/!,lIH(X, It/5tJ5t,bt) - fJ~)) 
Var At ,8t - Var exp H 

= exp (-2;x,o ) Var (exp (U:; (X, It/ot Jot, ot)/ H)) 

= Ai,,, exp ( - 2;xo) ( (IE [I "'~oX (0, At,,,6t) 1 ,J H l) 2" 

- (IE [1"'~oX(O, At,,,ot) 1 ,.i
H l) 2"H) 

( 4.36) 

I H - IiI ( d) 1 ( AU) Since .6..n ,oX(O, At,8t5t) -+ ITx,oIH, one concludes by Lemma 4.5.1, Var \,:s~ -+ 0 

Mn-++oo D 

4.5.2 Case of H-sssi processes with independent increments 

For H-sssi processes with independent increments, the normalised biM and MSE are 

deduced respectively from (4.35) and (4.36), and are defined by 

( 4.37) 

( 4.38) 
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4.5.2.1 Case of H-sssi Gaussian processes 

For Gaussian processes, the bias and the MSE can be given explicitly. We first present 

the following Lemma and then we compute the bias and the MSE of an H -sssi process 

with Gaussian and independent increments. Note that Gaussian H-sssi processes with 

H #- 1/2 are correlated, and so there is no point to study the case where H #- 1/2. 

However, we decide to study for all H E (0,1). 

Lemma 4.5.4. 

1+00 10g(x)exp(-x2/2)d 1( 1 ()) 
x = -- "y + og 2 

o ~ 4 

(+00 (log (x) )2~( -x
2 
/2) dx = ~ (1f2 + 2log2 (2) + ,(2, + 10g(16))) 

Jo 21f 16 

where, = - Jo+ oo 
exp( -x) log(x)dx ~ 0.57721 is the Euler-Mascheroni constant. 

Proposition 4.5.5. Let X be an H -sssi process with independent increments of mean 

zero. The bias and the MSE of the estimator 5..~5~ are given by 

( 4.39) 

and 

MSE (5\,~) ~ 1 +22/ H exp (;) (r G -;;*') ) 2" _21+ 1/H exp C~) (r G ~--,'rg) ) 2" 

(4.40) 

Proof. Assuming X(t) = (JtZ(t), where Z is H-sssi process and (Jt = tH (J , one has 

exp (-IE [lOgIX(l)1 /H]) (IEIX(1)12';H r" = exp(-IE[logl(JZ(l)I/H]) (IEI(JZ(1)12 7;Ii rn 
= exp ( -IE [log I Z (1) I / H]) (IEI Z (1) 127! Ii rn 

Note that the bias of the estimator 5..f,5~ is not affected by the variance (J2 of the 

increments of X. The computation are then done for (J = 1. One has 

IE [lOg IX(l) 1/ H] = ~ (+00 log(x) exp(-x
2
/2)dx = __ 1 (log(2) + ,) 

H Jo ~ 2H 
(4.41) 

and by (4.31) 

(1EIX(l)I,JH r = (J2)* (rG~)r 
Whence using (4.37), one gets (4.39). The MSE of 5..f,5~ is defined by (4.38). Simple 
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computation yields to 

Using (4.41) and (4.31) , one has 

MSE (5.f.'~) = 1+22/H exp (~) (f (~,d~) r _21+1/H exp (21) (f ( ~ J,i~) r 
o 

We illustrate in Figure 4.3 the bias and the MSE of the estimator in the case X is a 

Brownian motion. 

Bia.s(>'~6~) MSE(>'~&~ ) 

Figure 4.3: Bias (left panel) and t he MSE (right panel) of 5. f.;,~ of a time-changed Brownian motion 

4.5.2.2 Asymptotic normality of the estimator 

We study the asymptotic normality of the estimator. Let us st art with the following 

Lemma. 

Lemma 4.5.6. Let An be an estimator of A, such that fo r v > 0 

J2n" (~n - A) rv N(O, v) as n --+ +00 

Let f a e1 fun ction such that f is differentiable in A. Then 

J2n"(f (~n) - f (A) ) rv N(O, 1' (A?V) as n --+ +00 

Proof. First , we note that ~n ~ A. Moreover , there e~ists a real ~~, in the open ball of 

radius I~n - AI centered in A, so that f(~n ) = f (A) + 1' (~~)(~n - A); by the Continuous 
~ (1') ~ (1') 

Mapping Theorem one has f (An) --+ f (A) and 1' ( A~) --+ 1' (A). Hence 
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D 

Proposition 4~5.7. The asymptotic normality of the estimator ~~:s~ is given by 

\ Ot - At8t (J -

( 
~ U,n ) (( U) 2) 

~ 'At,Ot' rv N 0,: as n -+ +00 ( 4.42) 

Proof. One has 

Having assumed X with independent increments, the Central Limit Theorem yields to 

By Lemma 4.5.6 using function g : x f---+ exp (x) for x E JR., one has g' : x f---+ exp (x), 

n 
Note for Gaussian H-sssi processes (J~ = (c). Indeed, by Lemma 4.5.4, one gets 

2v 2 

Var (log IX(I)I) ~ L (log Ixl)2~( -x' /2) dx _ (L log Ixl ~_X2 /2) dx )' 

D 

= 2 r+ oo 
(log (x ))2 exp( -x2 /2) dx _ (2 r+ oo 

log(x) exp( -x2 /2) dX) 2 

io V2K io V2K 
1 1 

= "8 (n 2 + 2log2(2) + ,(2, + log(16))) - 4(r + log(2))2 

= n2/8 

4.6 Experimental application to some H -sssi processes 

In this section, we test the performances of our estimators on time-changed self-similar 

processes; In particular we use the following H-sssi processes: the Brownian motion, 

the Levy a-stable motion and the fractional Brownian motion. We set the following 

time-change function e. For t E T = [0,1] and E = 10-7
, we define e as follows (see 
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Figure 4.4) 

e(t) = cos(7f /2 + 47ft) - 3/4sin(7f /2 + 87ft) + (10 + c)7ft + 3/4 
(10 + c)7f 

( 4.43) 

The quantity C is to ensure that the derivative of the function e is strictly positive for 

any t E [0 , 1]. The function e satisfies e(O) = 0, e(l) = 1 and for all t E T , e'(t) > O. 

However, our function e here is not piecewise continuous, but this is not so important 

since in practice e is unknown. Figure 4.4 illustrates the curve of e and its derivative 

e'. 
.(t) 
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" (t) 
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t. 

Figure 4.4: The function 8 (left panel) and its derivative 8' (right panel) 

4.6.1 Time-changed Brownian motion 

The time changed Brownian motion is given by (4.44). The justification of this repre­

sentation is explained in Chapter 3. 

B(e(t)) (fdd) it ft'(;)dB(s) (4.44) 

For these tests, the theoretical self-similarity index is used (H = 1/2) . Indirectly in 

the previous subsection, we already checked that the Brownian motion does satisfy 

Theorems 4.2.2 and 4.3.2. However we remind that for c > 0, lEIB(I)12+~ < +00 and 

for a E (0, 1), lEIB(I)I-a < +00, so condition (4.13) and (4.22) are also satisfied. 

Moreover the Brownian motion has independent increments so condition (4.14) and 

(4.23) are satisfied too. We simulate a Brownian motion on the interval [0 , 1]' since the 

variance does not affect the estimators, we set Var (B(I)) = 1. The estimators are set 

for t5t = 0.005 and n = 10. The time change estimate for both estimators are shown in 

Figure 4.5. The green line on the graphs represent the theoretical e' and the two dashed 

red lines the 95% confidence interval separated from the green line by twice CJn , where 
CJ1(1) (I/H) CJ~(1) 

CJn = vzn for the 1/ H-variation and CJn = vzn for the log-variation . Note 
2n jL'Y:(1/ H) H 2n 

that in Figure 4.5, the 1/ H-variation performs better than the log-variation estimator , 

which is expected. 
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4.6. Experimental application to some H-sssi processes 
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Figure 4.5: Estimate of g' using the 1/ H-variat ion (Top left panel) and the log-variation (Top right 
panel) and the normalized bias bottom panel of a time-changed Brownian motion 

In order to understand the effect of the number of observations in a sample, we simulate 

time changed Brownian motion so that the number of observations used to estimate the 

time change function in the interval of length M is Nebs E {lO, 50, 100,500, 1000}. We 

compute the MSE of our estimators for different values of M (E {O.l, 0.05 , 0.001, 0.005}) 

for n = 1, . .. , 12. 

The results for 10000 runs are shown in Figures 4.6 and 4.7 respectively for the 1/ H­

variation and the log-variation estimators. In both cases, we consider two types of 

interpolation; one taking the previous data as interpolation and the second one using 

a linear interpolation of the data. Note that we could have taken Nebs as a power of 

2 in the interval of length M, but we decided not to do so in order to get closer to a 

real situation in practice, where the number of observations are not specially a power 

of two. The dashed green line represent the theoretical MSE error in the case of a 

continuous time Brownian motion. The theoretical MSE are given by (4.30) for the 

1/ H-variation method and by (4.40) for the log-variation estimator . The blue vertical 

dashed lines represents the logarithm in base 2 of Nebs' 

We note that for n > Nebs, the MSE is more or less constant. That is showing that 

the choice of n depend on the number of observations in the interval of length M. The 

optimum n noted nap is given by nap = m8.XnEN (n < log2 (Nebs)). In fact this last it is 

only applicable for the log-variation method taking as interpolation the previous data. 

In the other situation, when using a linear interpolation, a bigger n does not affect the 

estimator. (We will see later that in fact for irregularly spaced data choosing n > nap 

may affect the estimator in some case) . Note also the choice of the interpolation is 
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important. While a prevlOUS data interpolation is favorable for the 1/ H-variation 

estimate, a linear interpolation is preferred for the log-variation estimate so one can 

avoid increments with value zero which affect the estimator. 

Figure 4.6: MSE of >-Yc5t from a time-changed Brownian motion for different values of 5t and No bs. 

Left panels it is when 'using a previous data interpolation and right panels is when using a linear 
interpolation of the data. 
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Figure 4.7: MSE of >-fc5t from a t ime-changed Brownian motion for different values of Of and N obs. 

Left panels it is when 'using a previous data interpolation and right panels is when using a linear 
interpolation of t he data. 
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Chapter Four 4.6 . Experimental application to some H-sssi processes 

4.6 .2 Time-changed Levy stable motion 

An interesting process to study is the Levy stable motion La (t) . This process has 

infinite variance for a E (0,2) and has infinite jumps. This study is interesting in the 

sense that we will test the performance of our estimators on a process with jumps. For 

a < 2, lE[lLa(l)la] = +00 (see [11]) , so condition (4.13) is not satisfied and Theorem 

4.2.2 can not be applied. We then discard the 1/ H-variation estimator for this study. 

For 0 < a < 1 and a > a, lEILa(1)la < +00 and lEILa(l)l-a < +00, so condition (4.22) 

is satisfied and condition (4.23) also since Levy processes has independent increments , 

Theorem 4.3.2 can be applied. 

As for the time-changed Brownian motion, we study the time-changed Levy motion. 

A way of simulating time change Levy stable motion La(fJ(t)) is to use the following 

equality in distribution 

bg-\O,riaoon (tsm a =0.8) bg-\ll,riation (lBm 0 = 1,5) 
2.5 . 

0.25 

0.2 

0.15 

Iog-\D,riation (Lsm 0 =0.8) 

o ~ U U U U U U U U 1 
t 

2.5 .... 

0.25 

0.2 

-0.15 

- 0.2 

- 0.25 

bg-\Il,rialion (lBm Q = 1.5) 

o ~ U U U U U U U U 1 
t 

Figure 4.8: Estimate of e' using the log-variation of a t ime-changed Levy stable motion for a = 0.8 
(left panels) and a = 1.5 (right panels). The top panels represent an estimate of e' and bottom 
panels the normalized bias. 

We perform a similar study as for the time-changed Brownian motion; we simulate 

La(B(t)) on the interval [0, 1], with parameters a = {0.8, 1.5} . The estimator given 

by the log-variation are set for 6t = 0.005 and n = 10. The results of the time­

change estimation are shown in Figure 4.8. The green line on the graphs represent 

the theoretical B' function and the two dashed red lines the 95% confidence interval 
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U 
(X 0" L ", (l) 

separated from the green line by twice O"n = .;zn . Unlike the Brownian motion) 

O"t (l) is not given explicitly so we estimate it using a Monte Carlo simulation. 

& r . 0.1 

Figure 4.9; MSE of 5.fot from a time-changed Levy stable motion with a = 0.8, for different values 
of 6t and Nobs' Left p~nels it is when using a previous data interpolation and right panels is when 
using a linear interpolation of the data. 

One can see that the estimator performs better as (X gets smaller; in other words when 

H gets bigger. This may appear paradoxical since for small values of (X) the Levy 

stable motion has big sizes jumps. We mean by paradoxical counter-intuitive) since we 

estimate the time change function using the path variation of the process) we would 

think that for a process with jumps) the estimation of the time change function would 

be affected by the huge size of process jumps. In fact) the equation 4. 38 shows that 
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the MSE decreases as a decreases. 

The MSE for different value of at and the number of observations are shown in Figures 

4.9 and 4.10. As expected, the log-variation estimator performs well on H-sssi process 

with jumps as long as this last satisfies the log-variation method hypothesis. As for 

the time-changed Brownian motion, a similar commentary can be made. 
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Figure 4.10: MSE of >-f8t from a time-changed Levy stable mot ion with a = l.5, for different values 
of 8t and Nobs ' Left pa~'lels it is when using a previous data interpolation and right panels is when 
using a linear interpolation of the dat a . 
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4.6.3 Time-changed fractional Brownian motion 

An interesting case of time-changed H-sssi process, here we can test the performance of 

our estimators in the case where the increments of the process are dependent , stationary 

and ergodic. The fractional Brownian motion satisfies conditions of Propositions 4.2.3 

and 4.3.5. The 1/ H-variation and the log-variation estimators can be applied. 

Keeping the same setting as for the Levy stable motion for our estimators, we test 

the performance of our estimators for fBm with H = 0.3 and H = 0.8. The results 

are shown in Figures 4.12 and 4.14 for H = 0.3 , Figures 4.13 and 4.15 for H = 

0.8. The dashed red lines are the theoretical MSE when assuming the process having 

independent and Gaussian distributed increments with H E {0.3, 0.8}. The green line 

is the MSE for continuous fBm with their respective H. This was estimated using a 

Monte carlo simulation over 1000 runs. 

4.6.4 Comment irregularly spaced time data 

For irregularly spaced time data, the estimator is biased when using a linear interpo­

lation of the data. We simulate a time-changed Brownian motion on a regular spatial 

grid with 100000 observations. We estimate the time-changed function from this sam­

ple. Setting T = 1, Ot = 0.01 and n = 10, we obtain the estimated time change 

function using the 1/ H-variation and log-variation in Figure 4.11. We see clearly that 

the estimator is biased when using a linear interpolation of the data, while for the 

previous data interpolation, the 1/ H-variation is not biased and the log-variation does 

not perform as there are many increments with value O. 

1/ H-Variation: linear interpolation used log-Variation: linear interpolation used 

1.5 1.5 2':~ 2':~' 
~ ~ 

'Q, 

1 1 

0.5 0.5 

o O~--~----~~--~----~--~~ 

o 0.2 0.4 t 0.6 0.8 1 0 0.2 0.4 t 0.6 0.8 1 

1/ H-Variation: previous data used 

2':1 1.5 

1 

0.5 

O L---~----~~--~----~---=~ 
o 0.4 0.6 0.8 

'Q, 

2':b!\L0vlOg_v.ri.tion: previous data used 

1.5 

1 

0.5 

O~--~----~~--~----~---=~ 
o 0.2 0.4 0.6 0.8 1 

Figure 4. 11 : Time change estimate from a Brownian motion simulated on a regular spacial grid. 
The top panels when using the linear interpolation and t he bottom panels when using a previous 
data interpolation. The green lines represents the theoretical time-change applied and the blue lines 
the estimated time-change function. 
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4.6. Experimental application to some H-sssi processes 
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Figure 4.12: Estimate of 8' from a time-changed fractional Brownian motion with H = 0.3 using 
the 1/ H-variation (left panels) and the log-variation (right panels). The top panels represent an 
estimate of 8' and bottom panels the normalized bias of it. 
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Figure 4. 13: Estimate of 8' from a time-changed fractional Brownian motion with H = 0.8 using 
the 1/ H-variation (left panels) and t he log-variation (right panels). The top panels represent an 
estimate of 8' and bottom panels the normalized bias of it . 
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Figure 4.14: MSE of 5.YOt (left panels) and 5.Yat (right panels) from a time-changed fBm with 
H = 0.3, Jt = 0.005 a~d Nobs = {10, 50, 100, 500 , 1000}. Top panels shows the MSE when using 
a previous data interpolation and bottom panels when performing a linear interpolation of the data. 

Figure 4.15: MSE of 5.YOt (left panels) and 5.Yat (right panels) from a time-changed fBm with 
H = 0.8, Jt = 0.005 a~d Nobs = {10, 50, 100, 500 , 1000} . Top panels shows the MSE when using 
a previous data interpolation and bottom panels when performing a linear interpolation of the data. 
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Chapter 5 

Time-change estimation using 

level-crossings 

In all the Chapter, we consider crossings of processes that has continuous sample path. 

We note C([O, T]) the space of continuous sample paths functions on [0, T] for some 

T> o. 

5.1 Preliminaries 

Let X = {X(t)}{t2:0} be a stochastic process so that X(O) (a.s.) 0 and X has continuous 

sample path. We define T6 = {TlhiEPl} the crossing time process of levels 6"Z (6" > 0), 

such that 

Tg = 0 and Vi E N, Ti~l = inf{t ~ Tt : IX(t) - X(Tt)1 ~ 6"} 

We define a crossing of level k6" for k E Z, if the previous crossing is of level (k - 1)6" 

or (k + 1)6". We note X (6"Z) the sets of crossing points. This type of crossing has 

been already defined in [7] in order to estimate the Hurst index. An illustration of the 

crossing points for a particular sample path is presented in Figure 5.l. 

We denote by NCs,t) (X) the number of crossing points of levels 6"Z of the process X 
in the interval (s, t) by the number of crossing points made by the shifted process 

ie = {Xs(t) = X(t+s) -X(s)}{t2:0} in the interval (0, t - s). The first crossing point, 

Xs (s) = 0 almost surely, is not considered as crossing. note that 

(5.1) 

Four types of crossing points can be considered (see [69]): up-crossing, down-crossing, 

tangency from below and tangency from above1 . We respectively note their corre-

1 We will show later that the tangencies are not likely to happen 
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Figure 5.1: Crossing times. 

sponding set 'XY (82), lP (82), XB (82) and XA (82). One has 

We present the different crossing types stated by Cramer and Leadbetter in [70]. Let 

f be a continuous function on IR+ and k E 2. 

- f is said to have an up-crossing of level k8 at time to, if the previous crossing 

point or tangency2 was oflevel (k -1)8 and there exists E > 0 such that f(t) > k8 

for t E (to, to + E) . 

- f is said to have a down-crossing of level k8 at time to, if the previous crossing 

point or tangency was of level (k + 1)8 and there exists E > 0 such that f(t) < k8 

for t E (to, to + E). 

- f is said to have a tangency from above of level k8 at time to, if f(to) = k8 , the 

previous crossing point or tangency was of level (k + 1)8 and there exists E > 0 

such that f(t) 2: k8 for t E (to, to + E). 

- f is said to have a tangency from below of level k8 at time to, if f (to) = k8, the 

previous crossing point or tangency was of level (k - 1)8 and there exists E > 0 

such that f(t) ::::; k8 for t E (to, to + E). 

Ylvisaker , [69] and [71], shows that for Gaussian sample path, tangencies does not 

occur almost surely. We show in the next Lemma that for our process X , tangencies 

does not occur almost surely under some assumption. 

We note first that the number of crossings in an interval (8,8 + E), where 8 is a positive 

constant and E > 0, is finite for processes with continuous sample path. Indeed, if 

the number of crossings is infinite, then there is an accumulation point of crossings, 

2 As it will be shown that tangencies does not occur almost surely, only crossing point of type down or up-crossing 
will b e considered. 
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that is a point with infinitely many crossings in the neighborhood of 3 , so X must be 

discontinuous. 

Lemma 5.1.1. Let X E C([O, +(0)), so that N1o,1)(X) < +00 almost surely. We 

assume that for every t ~ 0, X(t) is a continuous random variable, and 

lP' (X has a upcrossing of 6 in (3, t)) is a continuous function of 6 (5.2) 

Then 

lP' (X has a tangent crossing from below of 6 E (3, t)) = 0 

Proof. We fix a real 6, and 3 and t two positive real such that 3 < t. We note first that 

as X (u) is a continuous random variable for all u, one has 

lP'(6 E {X(u) : u E Q}) = 0 

Thus 

lP' (X(u) = 6 for all u E (3, t)) = 0 

So X has no fiat spot almost surely. 

Split the interval (3, t) in n segments of length 6.. , as illustrated in Figure 5.2. 

1 
30 ················ ·1 . ........ • .. "' 1 .. . .. . ....•.. .. ... · .. r 

20 . ····1·· ..... . ..... ·· 1·· 

.... I 

- 0 ... . .......... ·1 

t:" 2t:" 3t:" 

Figure 5.2: Subdivision of the interval (s,t). 

Let IZ = 1 if X has an up crossing at level 6 in the kth interval, and 0 otherwise. 

Similarly let JZ = 1 if X has a tangent crossing at level 6 from below in the k t h 

interval, and 0 otherwise. We set 
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Then since any up crossing of level 6 will also be an up crossing at level 6 - f for f > ° 
small enough, and any tangent crossing of 6 from below will give an up crossing of 6 - f 

for f > ° small enough, hence 

By taking the expectation and then using Fatou's lemma (since the number of crossing 

in the interval is assumed finite), one gets 

Since the right hand side is bounded and lP (X has a up crossing of 6 in (s, t)) is a con­

tinuous function of 6, the right hand side of the inequality converges to ° and we have 

IE [BiJ = 0. As Bi 2: 0, one has Bi (a.s.) 0. 

Since X has no flat spot, for any tangent crossing of 6, there must be an f such that 

there are no other tangent crossings within distance f. Thus Bi ---+ # of tangent 

crossings from below of level 6 in (s, t), as .6. ---+ 0. This ends the proof. D 

Remark 5.1.2. An analogous argument works for tangent crossings from above, where 

lP (X has a down crossing of 6 in (s, t)) is a continuous function of 6 instead of assump­

tion {5.2}. 

Remark 5.1.3. Proof of Lemma 5.1.1 is based on Leadbetter, Lindgren, and Rootzen 

in (72), Theorem 7.2.5. 

Since tangencies do not happen almost surely, the crossings are only defined by its 

up-crossings and down-crossings. We set C J the space of function f E C([O, +(0)) 
such that the tangencies of the function f at level 6 does not occur. 

5.2 Crossing points of process with stationary and ergodic 

increments 

Let X = {X (t) h:::o be a stochastic process with stationary increments and has con­

tinuous sample path. We show that for any t 2: 0, the process {N(m,m+l) (X) }m21 

is stationary, we also show that {N(m,m+k) (X) h20 and {N(O,k) (X) h21 have the same 

joint distribution. Moreover, if the process X has ergodic increments, we show that 

the process {N(m,m+l) (X) }m21 is also ergodic. Since tangencies do not occur almost 

surely, we consider crossing points as being either up-crossing or down-crossing. 

Having C([O, +(0)) the space of continuous functions, we define the metric p from 

C([O,+oo)) x C([O,+oo)) to [0,+(0) corresponding to the uniform convergence on 

compact subsets defined by V(f, g) E C([O, +(0)) x C([O, +(0)) and I C [0, +(0), 

p(f, g) = sup If(t) - g(t)1 
tEl 
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Basically, the subset interval I will be chosen as the interval of time in 'which the 

number of crossings of the process X is counted. 

5.2.1 Continuity of the function f f--+ N(O,I) (f) 

We define the function h from C([O, +00)) to N by 

h : f f--+ N(O,I) (f) 

Lemma 5.2.1. The function h, as defined in (5.3), is continuous on Co. 

(5.3) 

PTOOf. Let f E Co and hn defined as in (5.6) which is also in Co, and f2n --+ f. To 

prove the continuity of the function h from Co to N, we show 

lim h(hn) = h(f) 
n-.;+oo 

Clearly \:In E N, h(hn) :S h(f). One has 

(5.4) 

Now let h(f) = m > 0, where m is a finite integer; that would mean, since the 

tangencies do not happen almost surely, that there is, say crossing points at tl < ... < 
tm in (0,1) at level respectively 5k l , ... ,5km, for ki E Z. One can find, for ti > 0, 

disjoint subintervals (ti - ti, ti + td, so that for no large enough and ji E {O, ... , 2no }, 

jd2n
0 E (ti - ti, t i ) and (ji + 1)/2n

0 E (ti' ti + ti). As h(hn) increases with n, it implies 

for n ~ no, h(hn) ~ m, hence 

lim h(f2n) ~ h(f) 
n-.;+oo 

(5.5) 

whence by (5.4) and (5.5), lim h(f2n) = h(f). 
n-.;+oo 

D 

Remark 5.2.2. The last proof is based on Cramer and Leadbetter in (70). 

Lemma 5.2.3. Let Z be a stochastic process so that the function t f--+ Z(t, w) E 

C([O, +00)). We define Zn so that for all t E [0, +00) 

n 

Zn(t) = L ((nt - (i - 1))Z(i/n) + (i - nt)Z((i - 1)/n)) l{tE((i-I)/n,i/nJ} (5.6) 
i=1 

Th Z 
(a.s.) Z 

en n --+ as n --+ +00. 

Proof. To show that Zn (~) Z, we need to show that the sample path of Zn converges 

to the one of Z. This is traduced by showing that for w E n\N, where N c nand 

TID (N) = 0, 

sup IZn(t,w) - Z(t,w)l--+ 0, as n --+ +00 (5.7) 
tE[O,I] 
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Chapter Five 5.2. Crossing points of process with stationary and ergodic increments 

Since in (5.6) i = lntJ + 1, one has for all t E [0, +(0) 

n 

:S: L ((nt - (i -1))IZ(i/n) - Z(t)1 + (i - nt)IZ((i - 1)/n) - Z(t)l) l{tE((i-l)/n,i/n]} 
i=l 

:S: sup IZ((lntJ + 1)/n) - Z(t)1 + sup IZ(lntJ/n) - Z(t)1 
t t 

Since lntJ/n -l- t and (lntJ + 1)/n -l- t as n -l- +00, and by continuity of the sample 

path of Z, one gets (5.7). By completeness, we have 

Z (a.s.) Z . 
n -l- ,as n -l- +00 

5.2.2 Stationarity of the process {Nfo,m) (X) }m?:l 

Lemma 5.2.4. Let h be a continuous function from co to N. 

D 

Let X = {X (t) h?:o and Y = {Y (t) h?:o two stochastic processes in Co so that X (fdd) Y. 

Then h(X) (d) h(Y). 

Proof It suffices to show for any bounded continuous function f : IR 1---+ IR, 

lE [f(h(X))] = lE [f(h(Y))] 

Let Xn(t) = X( l nt J In) and Yn(t) = Y( l nt J In). One has for any t 2: 0, 

lntJ/n -l- t, as n -l- +00 

and so by continuity of the sample path of X and Y, one has Xn (~) X and Yn (~.) Y 

as n -l- +00. By continuity of the function h, 

Let now ¢ be a continuous function from the space of random vector IRn+l to the space 

of sample path C([O, +(0)), so that Xn = ¢({X(0),X(1/n), ... ,X(1)}) (similarly for 

Yn). The composition of two continuous function is continuous, so since X (fdd) Y 

(d) 
h 0 ¢( {X(O), X(1/n), .. . ,X(1)}) = h 0 ¢( {Y(O), Y(1/n), .. . ,Y(1)}) 

97 



Chapter Five 5.2. Crossing points of process with stationary and ergodic incremellts 

Whence h(Xn) (d) h(Yn). Now let f be any a bounded continuous function, one has 

lIE [j(h(X))]- IE [j(h(Y))]1 :::; lIE [j(h(X))]- IE [f(h(Xn)))]1 

+ lIE [j(h(Xn))]- IE [f(h(Yn))]1 

+ lIE [f(h(Yn))]- IE [f(h(Y))]1 

Tending n to infinity, one gets IE [f(h(X))] = IE [j(h(Y))]. 

Lemma 5.2.5. Let H a function defined by 

D 

where Z is a process with continuous sample path in C6 and {hi h::::: 1 is a sequence of 

continuous functions on C6 to N. 

LetX = {X(t)h:::::o andY = {Y(t)h:::::o two stochastic processes inC6 so that X (fdd) Y. 

Then H(X) (fdd) H(Y). 

Proof. This is a generalisation of Lemma 5.2.4. D 

Using Lemmas 5.2.4 and 5.2.5, we deduce the following Theorem. 

Theorem 5.2.6. Let X be a real-valued stochastic process with stationary increments 

and whose sample path is continuous. For 0 < s < t, let Nfs,t) (X) the number of 

crossing points of the process X in the interval (s, t) as defined earlier. Then 

(i) {Nfm,m+k)(X)h:::::l (f~d) {Nfo,k) (X)h:::::l' for any m 2 1 

(ii) {Nfn+m,n+m+k) (X)}m:::::O (fdd) {Nfm,m+k) (X)}m:::::O, for any k 2 1 and n 2 1. 

Proof. (i) For k 2 1, we set 

Using the shifted process at m, one has 

v (fdd) v 

Xm = {X(t + m) - X(m)}t:::::o = {X(t) - X(O)h:::::o = Xo 

From Lemma 5.2.5, we have by continuity of the functions hk on C6 (see Lemma 

5.2.1), H(Xm) (f!...d) H(Xo). using the equality (5.1), one gets (i). 

(ii) For fixed k 2 1 and m 2 0, we set functions 
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Using the shifted process at n, one has 

v (fdd) v 

Xn = {X(t + n) - X(n)h:;::o = {X(t) - X(O)h:;::o = Xo 

From Lemma 5.2.5, we have by continuity of the functions gm on Co (see Lemma 

5.2.1), G(Xn) (fdd) G(Xo). using the equality (5.1), one gets (ii). 

D 

5.2.3 Ergodicity 

Definition 5.2.7 ([73]). Let (n,:7,lP') be a probability space. A Transform T is called 

measure preserving if for any event A c :7, lP' (T- 1 (A)) := lP' ({wE n : T(w) E A}) = 

lP' (A). The event A is called invariant (with respect to T) if T- 1 (A) = A. Moreover, 

T is ergodic if for any invariant set A, either lP' (A) = 0 or lP' (A) = 1. 

We define the shift transformation T so that 

T( {X(O) -X(O), X(l/n) - X(O), ... }) = {X(l) - X(l), X(1/n+ 1) - X(l), ... } (5.8) 

Sine the process X has stationary and ergodic increments, T is measure preserving and 

ergodic. Using the shifted process, we can rewrite (5.8) as 

Lemma 5.2.8. For some t > 0, the process {Nfm,m+l) (X) }m:;::o is ergodic. 

Proof Let hm · 1-+ Nfm,m+l)(.). 

(5.9) 

Since the process {Nfm,m+l) (X)}m:;::O is stationary, it is enough to show that for every 

continuous function f : ~ 1-+ ~ such that IE [J(ho(X))] < +00 

m-l 
~ L f(hi(X)) (~.) IE [f(ho(X))] (5.10) 

i=O 

Setting h = ho and Xi the shifted process of X at time i, equality (5.10) becomes 

m-l 
~ L f(h(Xi)) (~) IE [f(h(Xo))] (5.11) 

i=O 

We now set Xi(n) the linear interpolation of Xi at point {Xi(O),Xi(l/n), ... } and 1/J a 

continuous function from ~n to the space of continuous sample path, so that 

v (n) v v 

Xi = 1/J( {Xi(O), X i(l/n), . .. }) 
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Using (5.9), we have 

v (n) v v i v v 

h(Xi ) = h o?jJ( {Xi(O), Xi (l/n), .. . }) = h 0 ?jJ(T {Xo(O), Xo(1/n), .. . }) 

By continuity of the function h o?jJ and knowing T ergodic, the sequence {h(Xi(n))} is 

ergodic. We now show (5.11), that implies (5.10). For any n > 1, one has 

m-l m-1 m-1 

~ L J(h(Xi )) -IE [J(h(Xo))] ::; ~ L J(h(Xi )) - ~L J(h(XF71))) 
i=O i=O i=O 

m-1 

+ ~ L J(h(Xi(2
7l

))) -IE [J(h(X6
27l

)))] 

i=O 

Since the number of crossings in an interval of time of finite length if finite almost 

surely, there exist N E N such that for any n ~ N 

m-1 m-1 

~ L J(h(Xi)) - ~L J(h(XFn))) = 0 
i=O i=O 

and 

For any n ~ N, the last inequality is reduced to 

m-1 m-1 

~ L J(h(Xi )) -IE [J(h(Xo))] ::; ~ L J(h(Xi(n))) -IE [J(h(X6n)))] 
i=O i=O 

By ergodicity of the sequence {h(Xi n
))}, one has for any n ~ 1 

lim 
m-->+oo 

m-1 

~ L J(h(Xi(n))) -IE [J(h(X6n)))] (a.s.) 0 

i=O 

whence 
m-1 

~ L J(h(Xi )) -IE [J(h(Xo))] 
(a.s.) 0 

i=O 

an so the statement of the Lemma is shown. D 

5.3 Almost sure and L1 convergence of (Nto,t)(X)/t) 

In this section, we show the convergence of (Nfo,t)(X)/t) almost surely and in L1, 

as t goes to 00, when X has stationary and ergodic increments and has continuous 

sample path. The proof uses Derriennic's almost subadditive ergodic Theorem [74]. 

For simplicity, we note N(o.t) = Nfo.t)(X), 
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5.3.1 Almost subadditivity of Nfo,t) (X) 

We show in Lemma 5.3.1 that the level crossing process is almost sub-additive, term 

introduced by Derriennic [74], which means that it exists a process {U(O,n)}n>O such 

that 

N(O,n) :::; N(O,m) + N(m,n) + U(m,n) 

Wh 1· IE [U(O,n)] 0 ere 1m ---+ . 
n->+oo n 

Lemma 5.3.1. It exists a positive process {U(O,n)}n:2:1 such that IE [U(o,n)] ---+ 0 and 
n 

N(O,n) :::; N(O,m) + N(m,n) + U(m,n) (5.12) 

Proof. For m < n, we set Z(m,n) = N(O,n) - N(O,m). Let T + m the time of the crossing 

point after time m of the process X, so that 

Z _ { 1 + N(T+m,n) if T + m < n 
(m,n) - 0 'f 

1T+m~n 

One has 

N(O,n) = N(O,m) + Z(m,n) = N(O,m) + N(m,n) + (Z(m,n) - N(m,n)) 

where 

{
I + N(T+m,n) - N(m,n) :::; 1 + N(T+m,T+n) - N(m,n) if T + m < n 

Z(m,n) - N(m,n) = 
- N(m,n) :::; 0 if T + m ~ n 

Setting U(m,n) = max (1,1 + N(T+m,T+n) - N(m,n)) , one gets. 

N(O,n) :::; N(O,m) + N(m,n) + U(m,n) 

Since 

one has for all nand m positive 

and so taking m = 0, as n ---+ +00 

n 
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Chapter Five 5.3. Almost sure and L 1 convergence of (Nfo.tl (X) Ii) 

5.3.2 Convergence of (N1o,t) (X)/t) 

We need the following Derrienic's Theorem to show the convergence of (N1o,t) (X)/t). 

Theorem 5.3.2. Almost Subadditive Ergodic Theorem (74J 
Let N(m,n) where (m < n) be a sequence of random variables satisfying the following 

properties 

(i) N(O,n) :::; N(O,m) + N(m,n) + U(m,n) such that lim+ lE [~o,n)] = O. 
n--+ CXl 

(ii) {N(m,m+n) }m2:0 are stationary for every n ;:: 1. 

(i'ti) lE [N(O,l)] < +00 and for each n, lE [N(o,n)] ;:: Cn, where C > -00 

Then, 

(
.) l' lE [N(o,n)] . f lE [N(o,m)] 
Z 1m = In = I 

n--++CXl n m>O m 

(ii) lim N(O,n) exists a.s. and in L1 
n--++CXl n 

Moreover if {N(m,m+n)}m2:0 are ergodic then 

N(O,n) . L1 lim -- = I m and a.s. 
n--++CXl n 

Proof. see [74J D 

Theorem 5.3.3. Let X = {X(t)h2:o be a stochastic process so that its sample path is 

in Co. We assume X having stationary and ergodic increments. Moreover the density 

function of the X(t) are continuous. Then 

N1o,t) (X) 
t ----> I, a.s. and in L1 as t ----> + 00 (5.13) 

lE [N1o,t) (X)] 
Where I = lim 

t--++CXl t 

Proof. Using the fact that 

It J N(O,LtJ) < N(o,t) < It J + 1 N(O,LtJ+1) 

t ltJ t t ltJ+1 

where l:J and ltJ t+ 1 goes to 1 as t goes to infinity, and since {N(m,m+n)}m2:0 satisfies 

assumptions of Theorem 5.3.2, we conclude'the proof. D 

Note that we can show when X has independent increments, that I = ~[ J' where 
lE To 

the random variable To represents the time interval between two consecutive crossing 

point of size 6. This can be shown using the properties of renewal processes stated 

below (see [75]). 
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Chapter Five 5.4. Crossing level of self-similar processes 

Definition 5.3.4 (Renewal process). Let Tl, T2, ... be independent identically distrib­

uted and positive stochastic variables, and set Tn = Tl + ... + Tn. Then the process 

{N(t)h:~o, where 

N(t) = max{n : Tn :::; t} 

is called a renewal process. 

Theorem 5.3.5. Let {N(t)h,~o be a renewal process with durations Tn such that and 

jj = IE [TIl , then 
N(t) (a.s.) 1 
-- --+ - as t --+ +00 

t jj' 

5.4 Crossing level of self-similar processes 

5.4.1 Preliminaries 

X is H-sssi if there exists H > ° so that for any a > 0, 

- (fdd) H-
{X(at)h~o = {a X(t) h~o 

So one has for t E (0, T) 

{X(t) is a crossing of level a-H 52} = {X(at) is a crossing of level 52} 

This is equivalent to say that for any t > ° and a > 0, 

a-HJ - (d) J -
N(o,t) (X) = N(o,at) (X) (5.14) 

This later equality in distribution yields to the following Proposition. 

Lemma 5.4.1. Let X = {X(tnt>o a H-ss process with continuous sample path, so 

that X(l) is a continuous random variable. Then for a fixed t > 0, 

TID (X has a upcrossing of5 in (O,t)) (5.15) 

and 

TID (X has a downcrossing of5 in (O,t)) (5.16) 

are a continuous functions of 5. 

Proof. It suffices to show it for (5.15). The case for (5.16) is then straight forward. We 

set 

p{X(u), 5, (0, tn = TID (X(u) has a up crossing of 5 for u E (0, t)) 
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Chapter Five 5.4. Crossing level of self-similar processes 

From the equality in distribution 5.14, one has for any f > 0, 

p{X(u),o - f, (0, t)} = p{X(u), 0, (0, (1 - fjO)-l/H t )} 

= p{X(u), 0, (0, t)} + p{X(u), 0, [t, (1 - fjO)-l/H t )} 

Hence 

Ip{X(u), 0, (0, t)} - p{X(u), 0 - f, (0, t)}1 = p{X(u), 0, [t, (1 - fjO)-l/H t )} 

and 

limp{X(u), 0, [t, (1 - fjor1/Ht)} = JlD (X(t) = 0) 
€--tO 

Since X(l) is a continuous random variable 

This end the proof. o 

From Lemma 5.4.1 and Lemma 5.1.1, we deduce that for H-sssi process X = {X(t)h::::o 

that has continuous sample path and such that X(l) is a continuous random variable, 

tangencies does not occur almost surely, and Theorem 5.3.3 can be applied. 

Corollary 5.4.2. Let X be H-sssi and satisfying conditions of Theorem 5.3.3. Then 

for 0> ° 
NYo,t)(X) --+ l a.s. and in Ll 

t 01/H' as t --+ +00 (5.17) 

. IE [N(o,t) (X)] 
where 11 = hm 

t--t+oo t 

Proof. Using Theorem 5.3.3, we have lim Nfo,t) (X) = 0-1/H 11 a.s and in Ll and by 
t--t+oo t 

equality (5.14), 

. IE [Nfo,t) (X)] . IE [N(O,6-11 H t) (X)] 
16 = hm = hm = 0-1/H'1 t--t+oo t t--t+oo t 

This ends the proof. o 

Corollary 5.4.3. Let X be H-sssi and satisfying conditions of Theorem 5.3.3. Then 

for t > ° 
s:1/H~r6 (X) (P) 
u J~(O,t) --+ t,l, as 0 --+ ° (5.18) 

Proof. By equality (5.14), there exist a bounded function f so that one has 
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Chapter Five 5.4. Crossing level of self-similar processes 

. £1 / H'lo.r8 ( ) (d) 11m u J~(O t) X = t'Yl 
8->0 ' 

As t'Yl is a constant, we deduce (5.18). D 

5.4.2 Crossing points as an estimate of H 

From Corollary 5.4.2, one has "18 = 5-1
/
H 'YI' An estimate ~8 of "18 is gIven by 

Nto t) (X) A 

lim ' and so an estimate H of H IS given by the slope a when using a 
t->+oo t 
linear regression of the following equality 

log( ~8) = - a log( 5) + log( "11) (5.19) _ 

An estimate of H is if = -1/&. 

We apply the estimator on a Brownian motion simulated on a equally space grid [28J , 

from which we estimate the self-similarity index (H = 1/2 for the Brownian motion). 

We simulate 10000 observed crossings of size 1. A sample of the path is represented in 

Figure 5.3. The linear regression of the equation (5 .19) which estimate the slope - a 

is represented in Figure 5.4. The setting is as follow: 5 E {I, 2, 3, 4, 5} . 

3 . . . . ... ,. . • !' , ...••..• • . " ' ............ ... ~~~~, 
:: ~:". :: 

'" ," .. .. ~~.~:~ ... .. ...................... . 2 . ... . . 

1 .• . , . .. . ............ . 
-1 .... . .. . " .. '; ' ~ ' 

" " 

- 2 . . .. •. .•• .• . •.. • . . ........ . .... . .. .. ... .... 
- 3 . 

-4 .... ..... . . , ....... .. .................. e '··· 

20 40 60 80 100 120 140 

Figure 5.3: Brownian Motion. Figure 5.4: H estimation using a linear regres­
sion. 

We compare the EBP estimator and our estimator performances. We simulate 100 

Brownian motion giving each 10000 and 100000 observed crossings of size 1. Table 5.1 

presents the mean of the estimate H and its standard deviation. The EBP estimator 

performs slightly better than the level crossing estimator. 

number of observation Level Crossings EBP 
10000 0.5005 (0.0110) 0.5004 (0.0079) 

100000 0.5003 (0.0052) 0.5001 (0.0036) 

Table 5.1: Self-similarity index estimation of a Brownian motion simulated in a fixed size grid using 
the level Crossings and the EBP methods. 
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5.4.3 H estimate from fractional Brownian motion 

We compare the level crossings estimator and the EBP, on simulat ed fractional Brown­

ian motion. First we note that there is no way to simulat e the fractional Brownian 

motion on a regular grid space. The number of crossings computed from simulat ed 

fEm on a regular time space are an approximation of the number of true crossings. 

To show how this approximation is affect ed by the roughness of the process, we 

simulate samples of fractional Brownian motion {B H (t)} t E[O,Tj , where T = 100 and 

V ar (BH (1)) = 1. We simulate 2nT observations of this process, where n = {O, 1, ... , 14}. 

We compute the number of crossings for different size of 6. The averaged number of 

crossings for 100 sample of fEm are illustrat e in Figure 5.5 as a function of t he num­

ber of observation. The dashed line represent the confidence interval t aking twice the 

standard deviation on both side of the mean. 

~~. --~,,~. ~~,.~-~~~~ 
, ,,, ..... tJ.o 

.-
~.~ = = ,,;::. =-----'-;- -"":-,. - - ,7-,. 

Figure 5.5: The average number of crossings for 100 sample of fBm as a function of the number of 
observations. 

Setting 6n = J V ar (BH (1/ 2n)) , the coresponding level of size 6n for a sample wit h 

2n T observations when the crossings are t aken at size 6 = 1, is given by 6 = 2 1eve l6 n , 

whence 

level = 10 = nH ( 6) 
g2 JVar (BH (1/2n) ) 

We now compare the level crossing estimator and the EBP estimator . Due to the 

limited computational performance3
, we limit our study to H E [0.5 : 0.9]. The results 

are given in Tables 5.2 for different number of observations. The mean and twice the 

3The computer used do not a low us to simulate a huge number of observation p er sa mple, and so for H ::; 0.4 t he 
estimator will p erform b adly. 
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standard deviation of the estimated self-similar index H for 100 samples are given. 

Number of observations 1000 Number of observations 50000 

H II Xing EBP II II Xing EBP 

0.9 0.8445 (0.1047) 0.8513 (0.1264) 0.9 0.8S:33 (0.0515) 0.8910 (0.0:391) 
0.8 0.7860 (0.0951) 0.7894 (0.U37) 0.8 0.8003 (0.0340) 0.8107 (0.0216) 
0.7 0.7075 (0.1040) 0.7110 (0.1440) 0.7 0.7068 (0.0329) 0.7180 (0.0266) 
0.6 0.63'16 (0.1186) 0.6620 (0.2236) 0.6 0.6160 (0.0381) 0.6271 (0.0310) 
0.5 0.5498 (0.1131) 0.5651 (0.1769) 0.5 0.5191 (0.0344) 0.5340 (0.0390) 

Number of observations 5000 Number of observations 100000 

H II Xing EBP H II Xing EBP 

0.9 0.8766 (0.07,19) 0.8798 (0.0720) 0.9 0.8958 (0.0.179) 0.9009 (O.03GO) 
0.8 0.7943 (0.0645) 0.80-10 (0.0616) 0.8 0.8020 (0.0252) 0.8109 (0.0182) 
0.7 0.7097 (0.0769) 0.7196 (0.OS62) 0.7 0.7074 (0.0210) 0.7175 (0.0190) 
0.6 0.6285 (0.0655) 0.6347 (0.0987) 0.6 0.6145 (0.0280) 0.6289 (0.02·10) 
0.5 0.5385 (0.0790) 0.5509 (0.09S0) 0.5 0.5194 (0.0269) 0.5364 (0.03:36) 

Number of observations 10000 Number of observatiolls 500000 
H Xing EBP I-I Xing EBP 

0.9 0.8791 (0.0706) 0.8824 (0.0570) 0.9 0.8980 (0.0374) 0.9020 (0.0301) 
0.8 0.7962 (0.0642) 0.8013 (0.056:3) 0.8 O.S026 (0.0166) 0.8105 (0.0097) 
0.7 0.7153 (0.0611) 0.7188 (0.0522) 0.7 0.7095 (0.0114) 0.718S (0.0130) 
0.6 0.6192 (0.0706) 0.6335 (0.0571) 0.6 0.6152 (0.0106) 0.6271 (D.019S) 
0.5 0.5297 (0.0716) 0.5335 (0.0877) 0.5 0.5210 (0.0114) 0.5382 (0.0241) 

Table 5.2: Level crossing and EBP estimator comparison 

We conclude that both estimator are affected by the lack of accuracy of the crossing 

points, for sample with small number of observations. As the number of observations 

in a sample increase, the estimators are less biased. However we note that the EBP 

estimator is more affected than the number of crossing points method when using 

approximated crossing points. 

5.5 Crossing level of time-changed self-similar processes 

5.5.1 Time change estimator 

Let X be of the form X (t) = X (e (t)), where X is H -sssi and satisfies conditions of 

Theorem 5.3.3, and e a non-decreasing function, so that e(O) = O. 

Proposition 5.5.1. Let the process X be of the form X(t) = X(e(t)), where X 1,S 

H-sssi and satisfies conditions of Theorem 5.3.3, and e is a continuous non-decreasing 

function. Then 

01/HN(t,t+St)(X) ~ (e(t + Of) - e(t)Yh, 

lE [N(ot)(X)] 
where 11 = lim ' 

t->+oo t 
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Chapter Five 5.·5. Crossing level of time-changed self-similar processes 

Proof It is obvious to see that Ntt,tHt) (X) = Nte(t),e(t+M)) (X) (d) Nfo,J-l/H(e(t+Jt)-e(t))) (X), 
by Corollary 5.4.3, one has 

1· d/H").rJ (X) (d) l' d/H").rJ (X-) iTo u J~(t,tHt) = iTo u J~(O,J-l/H(e(tHt)-e(t))) 

b1/ H N 1 (X) 
(d) (e(t + bt) _ e(t)) lim (O,J-l/H(e(tHt)-e(t))) 

J->o (e(t + bt) - e(t)) 

C!J (e(t + rJt) - e(t))il 

(e(t + bt) - e(t))il is a constant, whence the proof. o 

Assuming the function e as a simple function of the form 

e ( ) - "( . s: ) e ((j + 1) bt) - e (j bt) I ( ) 
t - L t - Jut bt [jJ,(j+l)Jt) t 

j'20 

By Proposition 5.5.1, one can estimate the e by estimating At,M = e(t + b;~ - e(t). An 

estimate of At,M is given by 
A Ntt,t+Jt) (X) 
At Jt = CJ b ' t 

b1/ H 
A (1') 

where CJ = --. One has At Jt -t At M as b -t O. In practice, assuming we have 
11 " 

observation {X(t)}tE[O,Tj, one set e(O) = 0 and e(T) = T, and so CJ can be determinate 

using the fact that 
T/M-l T 
L AjM,M = bt 
j=O 

where bt is chosen so that T / bt is an integer. Note CJ is a norming constant and so the 

index of self-similarity H of the process X does not need to be estimate as H vanishes 

in the norming constant. Vve apply next our time change estimator to time-changed 

Brownian motion and fractional Brownian motion. The theoretical time function is 

identical to the one used in Chapter 4. 

5.5.2 Application to time-changed Brownian motion 

We test the performance of the time change estimator on time-changed Brownian 

motion B ( e (t) ). There is three ways of simulating a time-changed Brownian motion 

as described in the previous Chapters: regularly space in time that we note Bl (See 

Section 3.2.3), irregularly spaced in time that we note B2 (this uses the time function 

e in abscise. See Section 3.2.4) and regularly grid spaced that we note B3 , this last 

present the true crossing points of the process, we refer to [28]. For each of these ways, 

we simulate 100 samples of 100000 observations, from which we estimate ef
• A box 

plot is given in Figure 5.6. 
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Note that the estimated time change from Bl is biased. This is due to the fact that 

there is in proportion more missing crossing points during period when 8' has big value 

than when 8' has small value. This proportion seem to equilibrate and becomes similar 

for any value of 8' in the case of B 2 . From B 3 , the estimator performs better when 

using true crossing points. 

Note that for high volatile period, the estimator has a better estimate than low volatile 

period. This is due to the fact that their is more crossing points during high volatile 

period and so the estimate of the time change function at that period has better 

convergence. 

5.5.3 Application to time-changed fractional Brownian motion 

We test here the time change estimator on time-changed fractional Brownian motion 

BH(8(t)) for H = {0.3 , 0.7}. We simulate 100 sample of 100000 observations irregularly 

spaced in time as for B2 in the previous section. The box plot is illustrate in Figure 

5.7. 
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Figure 5.7: Time change estimate from fB m with H = 0.7 (top panels) and H = 0.3 (bot tom pan­
els) . 

Note that for high volatile period, the estimator has a better estimate than low volatile 

period for both case. we note a smaller error for H = 0.3 compare t o H = 0.7 when 8' 

is high and bigger when 8 is low. 
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Application to high-frequency 
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Chapter 6 

High frequency financial data: 

Introduction and data cleaning 

The analysis of high-frequency financial data is becoming an issue in understanding 

the market behaviour. Millions of quotes are traded everyday and the advances in 

technology such as data storage and electronic trading systems implementation have 

made high-frequency financial data accessible to academics and commercial users. High 

frequency data (HFD) in finance refers to prices that are recorded several times a day. 

More prices we have per day, the higher the frequency of the observations. The prices 

are generally given with one minute interval. However, complete datasets contains all 

the quotes for each transaction made during the day and therefore the dataset has 

tick-by-tick data, also referred by Engle [76] as ultra-high-frequency data (UHFD). 

For UHFD, the time stamps are irregularly spaced in time and may contain several 

transactions for a same time stamp and no quote during week-end time. Various 

studies on the market microstructure exist in the literature, we refer to Andersen [77], 

Goodhart and O'Hara [78], and Wood [79]. Also in some books such as Gouriroux and 

Jasiak [80], Tsay [81] and Taylor [82], a chapter on high-frequency data is presented. 

A complete survey on the subject of high frequency finance is presented in the book of 

Dacarogna et al. [83]. High-frequency financial data present an advantage compared to 

daily data. The additional intraday prices gives more details on how the price reacts to 

information and so a better examination of the source and the volatility of the return 

can be made. However, it presents also a great challenge to econometric modeling 

and statistical analysis and those for various reasons due to the characteristics of high­

frequency financial data. For example: irregular spaced time observations, difficulty 

in deciding what is the efficient price for a given time, existence of daily and weekly 

periodic patterns, erroneous quotes. Vve introduce the main characteristic of High 

frequency financial data and we describe the difficulties we may cross once one studies 

them. We then investigate the issues on cleaning high frequency data. We present a 

simple way to conduct basic cleaning, after describing the different data type error that 

datasets may contain. We then apply our data cleaner to some foreign exchange rate 
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indexes, in particular: AUD/USD, GBP /USD , JPY /USD and EUR/USD rate indexes. 

6.1 UHFD: Characteristics and problems 

Unlike daily and weekly data, ultra-high frequency data are characterised by its com­

plex microstructure, such as the huge number of observations, the irregularly spaced 

time stamp, the price types (discreteness) and the temporal dependence of the as­

set price return. These microstructure characteristics complicate the UHFD analysis. 

Adding to the market microstructure, the market activity effects also introduce some 

complication on data analysis. The price volatility exhibits a periodic pattern. Some 

ofthese characteristics can be seen in Figure 6.1. In this Section, we explain the origins 

and the problems that microstructure elements, as described previously, may cause to 

financial data analysis. 

GBPNSO ut and bOJ.prio. ("'m 23,.01 10 09,oJ,2003j GBP,usD ... t .. ad bOi P"'" (\:I~M .... -lOO3) 

- Ad:.Pric . 
- BriPric. 

Figure 6.1: Quotes of the GBP jUSD rate index of two weeks period(left panel) and one minute pe­
riod(right panel) 

6.1.1 The number of observations 

Assets are quoted several times a day by market makers and so they generate a large 

dataset of quotes . A dataset of high frequency financial data may contain tens of 

thousands of transactions or quotes per day. Figure 6.2 represents the half-hour aver­

aged number of quotes during the day. The averaged number of quotes per half-hour 

may exceed 700. Note the high number of quotes between Oh and 6h in GMT for the 

JPY /USD rate index compared to the GBP /USD. This is due to the trading hours of 

the Asian markets, and so the transactions are higher due to high trading activity for 

the JPY /USD currency. Recording a huge amount of data in a short period of time 

may induce some erroneous quotes. The dataset may then contain erroneous observa­

tions such as outliers, data gaps and even disordered sequences. By looking at the data, 

one may see the obvious bad quotes , however it becomes problematic when the dataset 

contains millions of quotes, such as the GBP /USD rate index dataset which contains 

around 4 million and JPY /USD rate index dataset with around 6 million. Indeed, the 

bigger the size of the dataset , the more bad quotes we expect to have. Thus, the risk 

113 



Chapter Six 6.1. UHFD : Characteristics and problems 

of detecting false a outlier or true price as an outlier, may become important. 

Daily A\'eraged number of quotes of the GSP/usn ute (year 2003) Daily a\~aged number of quotes of th~ JPV /usn ute (year 2003) 
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Figure 6.2: Half-hour averaged number of quotes during the day for the GBP /USD rate index (left 
panel (a)) and the JPY / USD rate index (right panel (b)) 

6.1.2 Irregularly Spaced time 

Quotes or prices are given at irregular spaced time. The time stamp of a given quote 

corresponds to the moment where the transaction occurs. The time between two trans­

actions may differ (see Figure 6.1). For example, we may have two or more different 

quotes having the same time stamp. This is due to transactions which are executed 

simultaneously (see Figure 6.1 (b) at 09:30:25). Also two successive quotes may have 

an interval, which correspond to more than a day, during the week-end for example (see 

Figure 6.1 (a) week end ofthe 2nd of Mars). A cause for irregular spaced time quotes is 

the market active. This last will be discussed later. It is even harder to model such a 

time series since the interval time between two ticks are considered random. We refer 

to N.Hautsh [84] for a more detailed work on Modelling irregularly spaced financial 

data. To make data regularly spaced in time, one of the techniques is to sample the 

data to a certain frequency, using for example a linear interpolation of the data. The 

sampling frequencies may vary depending on the quantity we want to study. Gener­

ally, data are sampled at one minute intervals. Some studies are made with 5 minutes 

sampled data, for example Andersen and Bollerslev in [85] . In sampling data, they 

are two inconveniences: first, losing information and so breaking the high frequency 

system, and second, the statistical characteristic of the high frequency data, such as 

creating dependence of the time series increments may change. For example, during 

low activity market, the number of quotes are low and so a high frequency interpolation 

in that case may create a monotonic series in the data. This last may cause a strong 

dependence in the time series, and introduce a bias in the volatility estimate, see Oya 

[86]. However, if we sample at low frequency, we then loose the extra information of the 

market microstructure and the statistical properties may also differ from the UHFD. 
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Some works exist on the optimal 1 value of the sampling, see Alt-Sahalia [87] and Bandi 

and Russell [88]. 

6.1.3 Price types 

Price formation of a given asset is based on its demand and supply. A more detailed 

explanation on price formation are presented by Madhavan [89] and O'Hara [90]. Prices 

are quoted in fixed increments or ticks. In particular this increments is a multiple of a 

minimum price change allowance, so prices fall on a pre-specified set of values; which 

implies the discreteness of the price. See for example, Figure 6.1 (b), the GBP/USD 

index rate has a minimum size increment, also called Pip2, of 0.0001. 

The price data are often available as quotes, set up by the market makers3 . A market 

maker is a firm that stands ready and able to buy and/or sell a particular share on a 

regular and continuous basis at a publicly quoted price. These firms display a price 

at which they are willing to buy (bid price) and a price at which they are willing to 

sell (ask price) for specific securities, and they are willing to do so from their own 

accounts. For example, assuming you want to sell 100 shares of Alcatel for example, 

you will need to find a willing buyer, who is able to buy from you 100 shares at the 

moment you place your order, and here comes market makers. They will buy from you 

these 100 shares even if they do not have a seller lined up. Therefore market makers 

are important to keep the liquidity 4 and the efficiency 5 of the market. Since each 

market maker can either buy or sell a stock at any given time, market makers make 

profit on bid-ask price difference called the ask-bid spread. 

Generally for UHFD, the dataset contains the date and the time of the transaction, 

and the quotes' bid and ask prices see Table 6.1. High frequency financial dataset when 

the data are given with a regular time interval, contains the date and the time of the 

transaction, followed by the open, the low, the high and the close price. 

DATE I TIl'dE I BID I ASK I 
03/07/2003 9:44:58 1.66l3 1.6618 
03/07/2003 9:45:00 1.6613 1.6618 
0:3/07/2003 9:45:00 1.6612 1.6618 
03/07/200:3 9:45:03 1.6612 1.6618 
0:3/07/2003 9:45:06 1.6614 1.6616 

Table 6.1: Table representing a dataset of the UHFD GBP /USD quotes. 

lIn Chapter 8, we present. a way to find t.he optimum value of the sampling, assuming the financial data are H­
sssi 

2Spread Terminology used in currency market to represent the smallest incremental move an exchange rate call 
make. 

3Not.e the market, is said to be quotes-driven, when quotes are set up by market makers. 
4 Converting securities into cash wit hout affecting the asset's price. Liquidity is characterized by a high level of 

trading activity. One can rapidly buy and/or sell an asset. This is due to the large amount of market makers and so 
the availability of buyer and seller at anytime. 

0How easily and inexpensively transaction can occur. 
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DATE TIME I OPEN I HIGH I LmV I CLOSE I 
03/07/2003 11:44:00 1.6615 1.6615 1.6611 1.6611 
0:3/07/2003 11:45:00 1.6612 1.6615 1.6612 1.6614 
03/07/200:3 11:46:00 1.6613 1.6613 1.6612 1.6612 
03/07/2003 11:47:00 1.6611 1.6614 1.6611 1.6611 
03/07/2003 11:48:00 1.6612 1.6613 1.6611 1.6613 

Table 6.2: Table representing a dataset of GBP /USD rate index quotes, given at 1 minute int.erval 

For VHFD, the bid and ask price respectively noted ptid and Ptsk do not reflect the 

true price Pt for a given asset. One has always 6 

pbid < p* < pask 
t - t - t 

One may be surprised to see through this inequality that the price Pt may be equal to 

the bid or the ask price. Indeed, the price may also exhibit a bid-ask bounce, which is 

the process of the transaction price moving between the ask and bid prices for a period 

of time. As the data do not contain the transaction price, we tend to use the mid point 

pnce 
pask + pbid 

TJ _ t t 
.Lt-

2 

6.1.4 Periodic pattern in the price volatility 

Several studies show that high-frequency financial data exhibit daily and weekly peri­

odic patterns, also known as intraday and intraweek seasonality, in the volatility (see 

Figure 6.3). We refer to Dacorogna et a1. [83] for more detailed discussion on daily 

and weekly seasonality of foreign exchange and Owain ap Gwilym [91] for a more gen­

eral framework. The origin of this seasonality is due to the market activities, which 

depend on the time of day. Indeed, this activity is higher when trade opens and just 

before it closes, lower during lunch time and completely absent at nights and week­

ends, as noted by Owain ap Gwilym [91]; who also showed for most stock markets, 

that volatility exhibits a V-shaped pattern over the course of the day. 

However for Foreign Exchange trading, the activity depends on the trading hours of 

the main markets, situated geographically at different places. When the trading hours 

of two main markets overlap, the activity tends to be higher. Also some markets have 

higher activity than others. We refer to Dacorogna et a1. [3] for more details. 

The heteroskedasticity 7 of the times series create strong temporal dependencies on 

the path of the process. One way to proceed is to remove week-ends and so that we 

create a new trading time. The trading time omitting Saturday and Sundays, the two 

inactive days of the week, is called the business time. It allows the time series to be 

GOf course if the quote is not considered as an erroneOllS ohservation 
7A sequence of random variables is hetf'roskedastic. if the random variables in the sequencf' may have different 

variances. 
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6.2. Cleaning high-frequency financial data 
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Figure 6.3: The averaged realized volatility of the GBP /USD rate index from 2001 to 2006 

less affected by the weekly season~lity. However, the daily periodicity still remains in 

that case. Dacorogna et al. [3] present a new time-clock called the a-time 8. This 

new scaling time ensures that ))the behavior of the market at any particular moment 

is interpreted in the context of the number of participants present)) 9 . Even if the 

number of participants present is the same at any particular moment, the activity in 

the sense of having constant volatility over the trading t ime may remain different. In 

fact mathematically, price under a-time has constant volatility over the time. a-time is 

obtained by stretching the calendar time during high activity period and contracting 

it during low activity period. We refer also to Ghysels et al. [92] and Zhou [93] for 

more discussion on time deformation and deseasonalisation. 

Note also the number of quotes per unit of time exhibits a seasonal pattern. In Fig­

ure 6.2 , we see the daily seasonal pattern of number of quotes per half-hour for t he 

GBP / USD and JPY / USD rate indexes. 

6.2 Cleaning high-frequency financial data 

Large data base record of ultra-high frequency data has often some aberrant obser­

vations. The data cleaning is then primordial in the high-frequency data analysis. 

Uncleaned data may introduce some error in their statistical analysis results . In this 

Section, we try to understand the meaning of an erroneous observation in UHFD and 

present the different data type errors that datasets may contain, as well as their origins. 

We finish by describing the common cleaning process presented in the literature. 

BIn the next chapter , we present methods improving the 8-time estimation 
9Sent ence taken from the Olsen group website: http://www.olsen.ch/research/approach.html. 
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6.2.1 What is an aberrant observation? 

It is not really obvious how to detect whether or not an observation is erroneous. For 

example, assuming the following sequence of prices 

{1.56, 1.67, 1.97, 1.45, 289.78, 1.89} 

it is obvious to say that 289.78 is a bad tick, should we really ask ourselves if we have 

to remove it or not? The answer is no doubt, we remove the quote. In reality that may 

occur on one or two ticks over millions of ticks, but what about having 2.89 instead of 

289.78, should we consider it as an erroneous price? This illustrate the case where the 

filtering becomes complicated. In fact the difficulty of cleaning high-frequency data is 

the inability to define an erroneous observation, as mentioned in [94]. M1iller introduces 

a definition of the so called" erroneous observation" in [83]: 

"A data error is present if a piece of quoted data does not conform to the real 

situation of the market." 

This may provide an answer to the question presented m the title as long as one 

understand what the real situation of the market conformity is, which may depend on 

personal viewpoints. Indeed, what may be considered as a bad tick for some can in 

fact be a real transaction, and what may appear as a good tick may be a spurious 

observation. Cleaning data is risky in the sense that we may not remove only spurious 

ticks but also true observations. The frequency of bad quotes may then vary from one 

filter to another. For examples, Lundin et al. has reported in [95] that their data filters 

identified 2% to 3% of all data points as false outliers, whereas the expected frequency 

of bad quotes in a high frequency dataset is estimated between 0.11% and 0.81% by 

Dacorogna et al. [96] for foreign exchange rates. 

6.2.2 Data type error and its sources 

Several papers in the literature describe the data type error and their ongms, we 

refer to Muller et al. [97], Falkenberry [94] and Morgan [98]. There are two sources 

of error: human error, which is produced either unintentionally such as typing error 

and may cause decimal errors, or missing the fractional portion of the price value; or 

intentional error such as producing dummy quotes just for technical test and this may 

cause repeated or monotonic series of prices. This last error can occur especially just 

before the markets opening time, to test if the connection for data transmission is 

working for example. The second type of error is the result of from computer system 

failures such as time delay in transmission or computer system breakdown, which may 

create missing prices in the dataset. Another explanation on the origins of bad ticks 

is the simultaneous activity of the markets. Each local market have their own trading 

habits, for example the maximum bid-ask spread allowed are different from one market 
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to another and that is even if the market activities overlap. In fact this overlapped 

trading creates simultaneous trading with different quotes. As in [98], these sources 

produce errors that can be summarised and classified into 4 categories: 

- No values have been input (Missing quotes) 

Non plausible values have been input (Negative pnces, Quotes during inactive 

period, bid price> ask price) 

- Inconsistent values have been input (Repeated quotes, Monotonic series) 

- Incorrect values have been input (outliers, decimal error) 

In the next section, we introduce the common high frequency financial data filtering 

process that has been examinated in the literature. 

6.2.3 Common cleaning process 

A common filtering process can be extracted from the filters presented in the literature. 

The extracted common cleaning process comes from filters presented by Dacorogna et 

al. in [83], Falkenberry [94], Green et al. [99] and Morgan [98]. In all filters, there are 

two main processes: 

- Identifying potential bad quotes 

- Correcting or removing bad quotes 

- Filling gaps of missing quotes 

The process starts first by identifying whether or not the quote is considered as a 

potential erroneous observation. The dataset of dirty data gets into the process of 

identifying potential bad quotes. Each filter has different algorithms 10 on identifying 

bad quotes. However, a common filter can be extracted which corresponds to detect­

ing non-possible values. Quotes are marked if it seems to be a potential erroneous 

observation. 

Once the Quotes is detected as a "bad Quote", we check to determine if we are able to 

correct the price values of the bid and/or the ask. If so, then the price is corrected. If a 

correction cannot be performed, then we remove the quote from the dataset. However, 

there are quotes that just need to be removed. These quotes are generally during 

inactive period, such as holidays and week end. For data that are removed during 

trading times, they will be considered as missing values 11. 

Gaps created by missing values are usually filled by values provided by a model which 

fit the data. Vve shall not describe this last here, instead we refer to [98] for more 

discussion on using a model to predict missing values. 

lOsee the corresponding papers to find out more. Ours will be presented in the next section 
lll\ote t hat in our filter we will not consider this type of error. Our filter will just remove ticks which are consid­

ered bad. 
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For more detail on each particular high-frequency financial data filters presented in the 

literature, we refer to their appropriate article [83], [94] and [99]. 

6.3 Our basic data vacuum cleaner 

For our study, we do not need a complicated filter, as described by Dacorogna et al in 

[83]. All that is needed, is to just remove non-plausible quotes and outliers, which may 

affect our time-changed estimators 12. We present the different features of our data 

cleaner. 

1. Check if data are sorted 

2. Check if the bid and ask prices are strictly positive 

3. Check if ask price greater than the bid price 

4. Remove repeated lines in the dataset 

5. Remove quotes during inactive periods 

6. Detecting spikes 

6.3.1 Filtering non plausible quotes 

6.3.1.1 Date and time sequence 

We check if the date and time are sorted. Taking the stamp time Ti of the ith quote 

. and setting n the number of quotes in the dataset, one checks for all i E {I, .. " n -I}, 

If the data are not sorted, we just sort the dataset. 

6.3.1.2 Negative bid and ask price 

The bid and ask price of the ith quote respectively noted ~bid and ~ask must be strictly 

positive. We set 

N,' = (p,'id :S 0) = { ~ if true 
and N i

2 = (pt,. :S 0) = { ~ if true 

if false if false 

12This will be described in the next chapter 
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6.3.1.3 Spread consistency 

Here, we make sure that the bid price are strictly smaller than the ask price, which is 

equivalent to say that the bid/ask spread are strictly positive. We set Si = Ptsk - plid 

the bid/ask spread of the ith quote and we define 

3 {l Ni = (Si < 0) = 0 
if true 4 {1 and Ni = (Si = 0) = 
if false 0 

if true 

if false 

6.3.1.4 Repeated quotes 

We set Lk = {Ti' pi
bid , prk} the ith quotes line includes the time stamp. Dataset may 

contain successive repeated quotes with the same time stamp. In that case, we have 

L;{l = Lk. We define 

5 . . 1 {1 
Ni = (LQ = LQ ) = 0 

if true 

if false 

6.3.2 Filtering quotes in inactive period 

During inactive periods, such as holidays and week-ends, quotes are removed. Using 

previous notation, we set 

N i' = (T; E {inactive periods} ) = { ~ if true 

if false 

6.3.3 Filtering spikes 

We use a median filter of the price rate path to detect spikes. Indeed, unlike the moving 

average filter, the median filter is robust to outliers and jumps. For example, assuming 

Xi is the price or rate of the ith quote, we set 

and 
{ 

zmed = IXi - xmedl 
t,k t,k 

Z;:k = IXi - X;:k I 

We consider the price or rate of the ith quote as a spike, when ZIked and Z;';. are above , , 

a certain value Zmax fixed by the user. In Figure 6.4, we compare the performances 

and the robustness of the median filter and the moving average filter on detecting 

spikes. Note that using a moving average filter, we may confuse spikes and jumps 

and we may also remove quotes that actually are note spikes (see left panels of Figure 

6.4). However, these problems are no longer faced when using a median filter (see right 

panels of Figure 6.4). 
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Figure 6.4: Comparison between moving average filter (left panels) and median filter (right panel) 
on detecting spikes, for k=2 . 

Let ptick be the smallest tick price change (Pip) we set 

Ip ask _ pask I 
zask = i i,k ,med 

t ,k ptick and I pbid _ pbid I 
Zbid = t t ,k ,m ed 

t ,k ptick 

so Zi~~k and Zt~d fall into an integer set. We define the statistic of the spikes filter 

k = (Z~sk > zask ) = {l 
t t ,k max 0 

if true 

if false 
and B . = (Zbid > Zbid ) = {l 

t t, k max o 
if true 

if false 

In the case where the bid and ask price are not both spikes) we look at the bid-ask 

spread value in order to decide whether or the quote has a spike. We define Ci as 

if true 

if false 

where Smax is the maximum bid-ask spread allowed. We finally set our statistic 
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if quote has a spikes 

otherwise 

6.3.4 Marking bad quotes 

Once all the previous filters are performed, every quote will be marked by its corre­

sponding errors. The ith quotes will have the a marking noting l\{ defined as follows 

7 {- 0 Mi = L 2j- 1N! -
·-1 > 1 

if quote is not erroneous 

otherwise J- -

Since the dataset of high frequency financial data is generally huge, this type of marking 

will avoid creating huge database size. To identify the type of problems that the quote 

contain, one will just need to convert the sequence of {Mi} in base 2. For example 

assuming that the ith. quote has a spike during inactive period with a bid price (> 0) 

greater than the ask price (> 0) and such that the Lb =1= L~-l. Then we will have 

N1 = 0 

N2 = 0 

N3 = 1 

N4 =0 

N5 =0 

N6 = 1 

N7 = 1 

pbid> 0 
t 

pask > 0 
t 

s. = pask - pbid < 0 
t t t 

Si = prk - plid =1= 0 

Lb =1= L~-l 

Ti E { inactive periods} 

Quotes has a spike 

So Mi = 100, which in base 2 corresponds to 1100100, is equivalent to 

This way of defining the error type allows us to avoid creating a huge dataset, which will 

save both time computing and RAM13 spaces. This simple algorithms is implemented 

using MATLAB®7 see Figure F.2. In the next Section we perform our filter on some 

tick by tick data foreign exchange rate indexes. 

6.4 Filtering foreign exchange rates 

6.4.1 Presentation of the data 

We apply our data cleaner to the following foreign exchange rate indexes {AUDjUSD, 

GBP jUSD, JPY jUSD, EURjUSD}. All these dataset are dated from the 1st January 

l:J Random Access :'vlernory 
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2003 to the 31st December 2003 and are provided by the Securities Industry Research 

Center of the Asia Pacific (SIRCA). The dataset contains 4 columns as shown in Table 

6.1 (date, time, bid price, ask price). They are given as tick by tick data. Table 6.3 

gives the number of ticks, the file size of the ultra-high frequency dataset and the Pip 

of the concerned dataset. 

FX AUDjUSD GBPjUSD JPYjGBP EUR.jUSD 
Number of Quotes 682354 !15177r17 5359302 83·18911 
File Size (in IvIB) 25.9 171.3 224.7 316.8 

Pip 0.0001 0.0001 O.Cll 0.0001 

Table 6.3: Size of the FX dataset.. 

6.4.2 Foreign exchange trading hours 

As the foreign exchange markets are open 24 hours, it is difficult to present an accurate 

opening and closing trading time of different markets. Therefore, we illustrate in 

Figures 6.5 an approximation of the opening trading times for the three main markets. 

This illustration takes into account the pre-opening market time, as some markets start 

to trade before the opening time. That practice is called the pre-market trading. It also 

includes the after-hours trading. Table F.5 shows the trading hours of main markets 

over the world. We note that the market is inactive between Fridays at 22:00 and 

Sundays 20:00 for the non Daylight Saving time (DST) period, and between Fridays 

at 21:00 and Sundays 21:00 for the DST period14
. 
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Figure 6.5: Geographical trading times in t.he foreign markets 
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Assuming the nth day Dn is a bank holiday, then the inactive period is considered from 

22:00GMT of day Dn - 1 to 20:00GMT of day Dn , for non DST period. Similarly for 

the DST period, the inactive period is from 21:00GMT of day Dn - 1 to 21:00GMT of 

day Dn. Bank Holidays date may differ from a market to another. While the market 

14Kote that the DST period in Europe. is [rom the last Sunday of :'vlarch to the last Sunday of October. Some 
Asian :\Iarkets do not practice the DST sHch as Bon Kong, Tokyo, Singapore. Concr;rning The American markets. 
the DST start the first Sunday of April. For simplicity, we consider for our study the DST of the American markets 
starting as the European ones. 
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is active in Europe, for example, we may have bank holidays in Asia, and therefore 

some markets in Asia are closed. However, during such periods, the activity market 

over the world may differ from normal days trading, but we will still have trading 

running during that period. For this reason, we decided not to include bank holidays 

to detect quotes during inactive period of the markets in our filter. We present in the 

next section the filtering results of our foreign exchange rate index data. 

6.4.3 Filtering results and analysis 

For our filter, we use the following settings', zask = Zbid = S = 1015 Note also max max max . 

as the data may contain up to four spikes in a row, we set k = 5, the number of 

prices taken in each side of a given price Pt;, which makes a window of eleven data 

to compute the median of Pt;. In our foreign exchange rate data, we did not detect 

bad quotes of the type: bid price greater than the ask prices and negative bid and ask 

prices. However, as shown in Table 6.4, our dataset contains between 1% and 2% of 

bad quotes. Most of the bad quotes arise from the fact that they are repeated quotes 

lines in the dataset files. Note also, that 0.1% to 0.3% of data are during inactive 

periods. As was explained earlier, this type of bad quotes is a result of the trading 

system is being tested, so aberrant quotes are sent during inactive quotes. Table 6.5 

shows a higher rate of potential bad quotes during inactive periods. We also note that 

the presence of spikes in the data is little; only between 0.005% and 0.07%. 

AUDjUSD GBPjCSD JPY jUSD EURjUSD 

Quotes # 1 % # 1 70 
pas/(; = pDW 17 0.0025 320 0.007 925 0.017 1087 0.013 
Identical quotes 5832 0.85 50965 1.13 74842 1.39 123939 1A9 
Inactive quotes 1897 0.28 5750 0.1:3 6578 0.12 18266 0.22 
Spikes 185 0.062 1934 0.Cl43 1141 Cl.021 132 Cl.Cl052 

.' ~ c ~ 

1 Total bad trcks 1 8Cl32 1 1.18 1 58(Cl6 1129915 1 8.3188 1 1.55 1 H3113 1 1.r171 

Table 6.4: Filtering results of some foreign exchange rates data. The table gives t.he number and the 
percentage of potential bad quotes for the ACD jUSD, GBP /CSD. JPY jUSD and EURjCSD rate 
indexes. ~ote when reading this table, that in fact one line of quote may contain different types of 
error. 

AUDjUSD GBPjUSD .JPYjUSD ECRjCSD 
Quotes Active lnac. Active Inac. Active 1nac. Active lnac. 
pas,", = plJirl Cl 0.0023 0 0.007 0 Cl.Cl17 Cl.013 0 
Identical quotes 0.820 3.585 1.148 :3.513 1.389 3.439 1.478 1.411 
Spikes 0.0526 2.629 0.0417 0.696 Cl.Cl20 Cl.411 Cl.0047 0.152 

Table 6.5: Filtering results of some foreign exchange rates dat.a. The t able gives t he rates different 
type error for the ACD/USD, GBP jUSD. JPY jUSD and EURjUSD rate indexes during active awl 
inactive periods. 

1,SThis values seemed to be reasonable for us after. FX data studied have almost all their absolute ret.urns less of 
equal to 10 Pip. 
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6.4.4 Suggestion for improving the filter 

The foreign exchange rate filter can be improved. We can remove more data during 

low activity period, and less during high activity time. This will suggest, as shown by 

Dacorogna et al. [83], an estimate of the rate index activity, which means in our case 

that we estimate the time-change function of the data. Assuming that the logarithmic 

middle prices {X(t)}t>o, given by (6.1) , is of the form X(e(t)), where X is an H-sssi 

process and e is a strictly increasing periodic deterministic function, of period T = 1 

week. 

(6.1) 

As X (t) = X ( e (t) ), we estimate the function e and so one gets an estimate X of 

the process X. An empirical study on time-change estimation of for~ign exchange 

rates indexes will be presented in the next Chapter. From the process X, one d~tects 

susceptible outliers by using existing techniques such that the Grubbs'~ test if X has 

its increments normal distributed, see [100]. Note if the increments X are a-stable 

distributed, then we use the outlier statistics presented by Mittnik et al. in [101], which 

is adapted to heavy tailed processes with infinite variance. As the foreign exchange 

rate return may not satisfy the Gaussian or the a-stable distribution, this technique is 

not implemented in our filtering algorithm. Moreover, the filter should not remove a 

lot of potential outliers, because the more we detect potential outliers, the more we are 

susceptible to remove true price detected as an outlier. For this reason, we decided to 

keep our filtering weak, so we do not break the high frequency system of the financial 

data. 

126 



Chapter 7 

Empirical time-changed estimation 

of some UHFD 

High frequency financial data are well known to exhibit periodic seasonality in the 

volatility, see for example [3]. In this Chapter, we perform an empirical study on 

estimating time change function from high frequency financial data. The Chapter 

is divided into five Sections. In the first Section, we present the activity estimator 

introduced by Dacorogna et al. in [3]. We recall our time change estimators described 

in Chapters 4 and 5. We apply the time change estimators on high frequency financial 

data (HFD) in Section 7.2. The notion of HFD was introduced in the previous Chapter 

as well as the definition of UHFD. A detailed study on time-changed data will be 

conducted on HFD. We also study our estimators in the case of ultra-high frequency 

financial data (UHFD) in Section 7.3, and on the FTSEIOO futures tick by tick data 

in Section 7.4. In each case, we estimate the activity of the corresponding data and 

compute the quality of the estimator. We check how well the periodicity is removed 

and check whether the estimated process time-changed data, also called de-seasonalised 

data, is self-similar, or at least has some scaling law property. For foreign exchange 

rates and the FTSEIOO futures data, we model the activity to extract the intraday 

and the weekly seasonality. In the last Section, we show the advantages on using our 

estimator. 

7.1 Preliminaries 

7.1.1 Activity market in terms of time change function a 

Assuming a given financial time series X = {X (t) h:~o, generally defined as the loga­

rithm middle price, is of the form X(t) = X(a(t)), where X has stationary increments 

and a E e ([0, +00)), so that its derivative a' is a periodic function of period T = 1 

week. We define the activity of X, the derivative a' of the time change function a. Let 
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8 7 the set of functions defined by 

8 7 = {e E 8([0, +(0)) s.t 'lit 2: 0, e'(t + T) = e'(t) and 'Ilk E N, e(kT) = kT} 

Assuming that the time change function e exists, so that the time series X (e- l (t)) has 

stationary increments, then the function e is unique. Indeed, setting el and e2 two 

functions of the set 8 n such that processes XI(t) = X(e11(t)) and X2(t) = X(e;-l(t)) 

have stationary increments, then one has for all positive s 

Finally, one gets 

Setting 9 = e;-l 0 el , like XI(t), the process XI(g(t)) also has stationary increments, 

one must have 

g(t + s) - g(s) = g(t) - g(O) 

This last implies that the function 9 is linear. Moreover functions el and e2 belong 

to the set 8 n so for all kEN, el(kT) = e2(kT) = kT which implies g(kT) = kT for 

every k. Whence for all t 2: 0, g(t) = t, which is equivalent to say el = e2. This last 

equality ensures that the activity estimated from financial data are unique in the sense 

that we get the stationarity of the time series increments under the new time scale 

e(t) = J; e'(s)ds. This new time scale is called e-time by Dacorogna. We introduce 

the scaling law estimator described in [3] in the following section. 

7.1.2 Time change estimation using the scaling law 

For t = jOt, j = 0, ... ,M - 1, put 

1 N-I 

I.6.Xt ,MI = N L I.6.XHkT,Jtl, 
1 M-IN-I 

I.6.X.,Jtl = MN L L I.6.XjJHkT,Jtl 
k=O j=O k=O 

where .6.Xt ,Jt = X (t + Ot) - X (t). Dacorogna et al [3] gave the following estimate of the 

discrete activity between time t and t + Ot noted a[t,t+Ot). For t = jOt, j = 0, ... ,M - 1, 

Co ( ) IIi! 
o'[t,t+Ot) = Ot I.6.Xt ,M I , (7.1) 
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where iI is an estimate of H and Co is a scaling constant, chosen so that 

M-I 

1 '"""' AO ~ -:;. ~ a[jJt,(j+I)8t)ut = 1 
j=O 

Dacorogna et al assumed that 10glE[,6.Xt ,Jt[ rv H log 5t. This is unsatisfactory, as our 

starting point is to assume that X exhibits periodic fluctuations in volatility, which 

necessarily interfere with its scaling behaviour. A more reasonable assumption is that 

X exhibits scaling behaviour. 

Given X(t) = X(8(t)) where X is H-sssi, we have 

lE[,6.Xt,Jt[ = lE[X(t + M) - X(t)[ 

= lE[X(8(t + 5t)) - X(8(t))[ 

= lE[X(8(t + M) - 8(t))[ by stationarity increments 

= (8(t + M) - 8(t))HlE[X(1)[ by self-similarity. 

.. 8(t + M) - 8(t) 
Rearrangmg wIth a[t,t+Jt) = M ' we get 

(7.2) 

Using [,6.Xt ,Jt[ to estimate lE[,6.Xt,Jt[ gives us the estimator (7.1), provided we can 

estimate H. Note that the term (lE[X(l)[)I/H is absorbed into the constant Co. 

Dacorogna et al estimated H from the slope of a regression of log [,6.X,Jt[ against log M. 

However, if we have X(t) = X(8(t)) where X is H-sssi, then (7.2) gives 

log lE[,6.X.,Jt [ = HlogM + log (a,£(H, M)) + 10glE[X(1)[ 

where the function a,£ : (0,1) x (0, T) ---+ [0,00) is defined by 

M-IN-I 

a,£(H, M) = l\:N L L ab8t+kr,(HI)8t+kr) 
j=O k=O 

Thus we see that the H estimator of Dacorogna et al fails to allow for the effect of the 

time-change, namely the a,£(H, 5t) terms. The solution to this problem is provided 

by the Embedded-Branching-Process (EBP) estimator for H, recently introduced by 

Jones and Shen [7]. The significance of the EBP estimator is that it is unaffected by a 

time-change, so that the self-similarity index of X can be estimated using the observed 

process X. This last is described in Chapter 3 Section 3.3. 
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7.1.3 Estimation of periodic activity 

We define by a,l(t), a,2(t) and a,3(t) respectively the 1/ H-Variation, log-variation and 

the crossing estimators. Assuming that the activity is weekly periodic, one can either 

consider the averaged or the median of the activities over the periods of the data 

sample. However, there is an advantage using the median instead of the mean in some 

cases. First, one does not need to consider bank holidays that makes computation 

harder for the mean. Second, the median is not sensible to outliers. Indeed, the data 

may contain some jumps; this creates spikes in the activity estimate. Thus, taking the 

median avoids taking the spikes into consideration. However, we will see later that the 

choice between median and mean can be discussed. 

Let us recall our estimators assuming X of the form X (t) = X (e (t)), where X is H -sssi 

and e E 8 7 , An estimate of the activity of the time series X between time t and t + 6t 

are given by 

- The 1/ H-variation 

- The log-variation 

- The crossing number 
~3 C3 h () 
a[t,tHt) = TtN (t,t+8t) X 

where for i = {a, 1, 2, 3}, Ci is the norming constant so that I: a[t,t+8t) = 1. Obviously 

the estimators depend on the choice of n. We now define a,~ and a,~ed as the activity 

estimator by taking the mean and the median over weeks respectively defined by 

where k E {a, 1, ... ,N} and N is the number of weeks, T represents the one week 

period time. As means for comparison, we will also use the median instead of the 

mean in the expression of the scaling law method without any theoretical justification. 

7.1.4 Quality of the estimated activity 

To check how well the activity is estimated, one needs to see how good it is when the 

seasonality is removed. To proceed, one can, for example, compute the autocorrelation 

of the process before and after removing the daily and weekly seasonality of the data. 
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The autocorrelation function estimate is often used in the literature to detect seasonal­

ity. Indeed, it appears a periodic pattern in the function. A similar way to check how 

well the strong seasonality is removed from the data, is to calculate the power spectrum 

of time series before and after time changing it. However, these two procedures are 

graphical tests and we will require a quantitative test for a better comparison. The 

following" relative volatility" measure of how effective a time-change e is at removing 

periodic fluctuations in the activity, has been proposed by Dacorogna et al. in [83]. 

For X(t) = X(e-I(t)), we define 

Q(e) = (7.3) 

where for t = j6t,j = {O, ... , M - I} 

1 N-I 1 M-I N-I 

16Xt ,8t1 = N L 16Xt +kT,8t1 and 16X.,OtI = NAt L L 1
6XjOt+kr,6tl 

k=O j=O k=O 

Smaller values of Q are considered better. We use Q to compare the activity estimators 

for our foreign exchange rate index. Note that 6t here can be different from the one 

used to estimate the activity. We recall it 6tQ in order to make the difference with 6t, 
notation already used in our estimator. 

7.1.5 Investigating for self-similarity 

We need to test whether our de-seasonalised high frequency data is self-similarl. In 

the literature several tests exist. In case of self-similar processes with gaussian and 

stationary increments, we refer to Bardet [102] for a theoretical work and [103] for 

application in finance. In the general case, we refer to Jones and Shen in [7]. This last 

was used to detect self-similarity at different crossing levels for a better estimate of 

the self-similarity index. To test self-similarity, we use the relation (7.4) for X H-sssi 

process. Equality (7.4) can be found in [103]. 

VaT" (X(t + 6t) - X(t)) = 6t2HVaT" (X(l)) (7.4) 

Setting K = log (VaT" (X(l))), one has 

log (VaT" (X(t + 6t) - X(t))) = 2H log(6t) + K (7.5) 

The log prices return do not need to be normal distributed, we just limit ourselves to 

the fact that for 6t in a given range, say 6t E {6t I , ... , 6tn }, the process X is self-similar 

lor has at least some scaling property 
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if log (Var (X(t + Mi ) - X(t))) is a linear function of 10g(Mi) for i E {I, ... , n}. A 

linear regression using a least squares method allows us to find the values Hand K. 

In the case of a Gaussian process, Bardet's test can be applied by measuring the linear 

regression error; we refer to the corresponding article [102]. Unfortunately, this test is 

not sufficient. It does not tell us if the equality in distribution (7.6) is satisfied when 

X has no Gaussian distributed increments. 

X(I) (d) 5:HX (M) (7.6) 

For this reason, we also need to study the distribution of the financial data return of a 
- 1 - ~ 

given range of 5t time scales. We set Y'Jt = -_ X(M), where H is the self-similar index 
MH 

estimated by the EBP estimator. The family of fat; for i E {I, ... ,n}, must have the 

same distribution. One way to check this hypothesis is to use a Kolmogorov-Smirnov 

test (see D.l for details). For i i- j, a Kolmogorov-Smirnov test will confirm whether 
- -
Y'Jt; and Y'Jtj have the same distribution. 

7.2 Application to HFD 

Throughout this section, we will consider the logarithm middle prices of the foreign 

exchange rate index, on which all the study will be based on 

X(t) = 10g(Plid
) + log(prk) 

2 

7.2.1 Estimating the activity 

We apply the time change estimator on the EUR/USD and GBP /USD exchange rate 

index using a one minute interval. These data are dated from January 2001 to De­

cember 2005. The graphs in Figure 7.1 give an estimate of the global self-similarity 

index of the data, using the EBP estimator. The little circles represent the levels at 

which the self-similarity index was estimated. The choice of these levels was decided 

by applying a self-similarity test on all the levels. This procedure is described in [22]. 

The estimated global indexes of self-similarity iI for the EUR/USD and GBP /USD 

rate index are respectively 0.534 and 0.526. Once having the estimated global index, 

we estimate the activity using the estimators aO, aI, a2 and a3 for a step time of 30 

minutes. Considering the time measure is in hour, we set T = 168 and M = 1/2. For 

the 1/ H-variation and the log-variation estimators, we set n = 7; this corresponds to 

taking a subinterval of time on the interval [t, t + M) of approximatively 14 seconds. 

We will then have 27 - 1 = 127 extra data compare to the scaling law method. For 

the crossing number, we set the size of the crossings as the standard deviation of the 

observed jumps increments of the data. For each rate index, we estimate the averaged 
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Figure 7. 1: Global self-similar index estimation using the EBP estimator to the EUR/USD (left 
panel) and to the GBP /USD (right panel) . 

and t he median activities noted respectively a~ and a~ed' for i E {O, 1, 2, 3}. The 

estimated activit ies are represented in Figures F.3 and F.4 for the EUR/USD rate in­

dex, and in Figures F.5 and F.6 for the GBP / USD rate index. In Figures 7.2 and 7.3 

the data before and after the time change are represented (only 2 months (J anuary­

February 2003) of time-changed foreign exchange data using the crossing method are 

represented) . 

~C3'flSD,-" LO!C P· ,o l;lO!!IP· " ) ~~op,u;o. .~ ~x;,-' (' ) 
0.51 ........ . .................................................... . . . 0.51 ..... .. .................................................... . 

0.5 0.5 

0.49 

0.46 .. 0.46 .. 

0.45 Jan03 Jan03 0.45, '---:-:-'::::-----::-=--::-';;::-~:::-----;::-:-::::---;~ 

Figure 7.2: GBP / USD rate index before (left panel) and after (right panel) t ime change 

-0.04 . 

-0.1 L---,-Ja~nO::-3 --:-Ja-':-n03:---J~an'::03--::F~eb=-03--=-F.-'-:bO::-3 --:-7-FebO"3 
t 

- 0.04 .. 

- 0.1 '---:-J."":nO::-3 -J-:-.n'::03:---:J~.nO=-3 -7F.-'-:00=-3 -::-F.b~03:---:F:--'-:::.b03 

Figure 7.3: EUR/USD rate index before (left panel) and after (right panel) t ime change 

In order to test their performances, we estimated the quality (defined by (7.3)) of each 

estimator. Tables 7.1 and 7.2 present respectively the quality values for the GBP / USD 

rate index and the EUR/ USD rate index. We compute the quality of the estimators 

for MQ = {5, 30, 60} in minutes. 
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I Estimator 

6tQ = 5 min 0.2727/0 .2438 0.2658/0 .1990 0.2338/ 0.2628 0.2160/ 0.1916 
6tQ = 30 min 0.1389/0.1606 0.1767/ 0.1539 0.1709/ 0.2198 0.1509/ 0.1483 
6tQ = 60 min 0.1217/0 .1357 0.1616/0.1505 0.1545/ 0.1868 0.1526/ 0.1556 

Table 7.1: Quality of the estimators for the GBP / USD rate index . 

I Estimator 

8tQ = 5 min 0.3216/0.2328 0.2939/0.1951 0.2155/ 0.2296 0.2277/ 0.2107 
8tQ = 30 min 0.1695/0.1624 0.2120/0.1709 0.1571 / 0.1763 0.2066/ 0.1983 
6tQ = 60 min 0.1402/0.1424 0.2057/0 .1635 0.1512/ 0.1715 0.2089/ 0.1961 

Table 7.2: Quality of the estimators for the EUR/ USD rate index. 

Two main comments can be extracted from these results. The first concerns the choice 

between median and mean of the activities. The second concerns the effect of the 

choice of JtQ . First we note that the median of the activities as estimator performs 

better than the mean of the activities for the 1/ H-variation estimator. However , it 

is the opposite for the log-variation. Note also, that like the log-variation estimate, 

the crossing number performs slightly better when using the median. The scaling 

law method gives a simil ~r performance in both cases, except for JtQ < Jt, where 

the median gives better performance. Second, the quality of the estimator for different 

JtQ shows that generally the 1/ H-variation, the log-variation, and the crossing number, 

capture better the seasonality at small scales, even if the scale of the estimated activity 

Jt is bigger than JtQ . This come from the fact that our estimators take more information 

in the interval [t, t + Jt) than the scaling law estimator does. 

7.2.2 Investigating for stationarity of the return 

To check whether the seasonality exhibited by the absolute log-middle prices return of 

the foreign exchange data was removed, we draw its autocorrelation function before and 

after deseasonalisation2
. In Figure 7.4, autocorrelation functions for prices sampled at 

one minute intervals are represented. 

AutoCOfTCiation ElJR,IUS D be D1'!! and after time clulIlge 

Figure 7.4: Autocorrelation of the absolute log-price return of GBP / USD (left panel) and 
EUR/ USD (right panel) before and after time change. 

2We consider the case where the activities were measured t aking the means over weeks. 
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Figure 7.5 shows the autocorrelation function for 10 weeks data and thus for each 

method. 

Figure 7.5: Autocorrelation of the absolute log-price return of GBP / USD (left panel) and 
EUR/ USD (right panel) for each de-seasonalisation method. 

For each method, the seasonal pattern exhibited by the absolute log-middle price re­

turns of our foreign exchange rate was removed. However, a small weekly periodicity 

appears in Figure 7.5. This is due to the fact that the activity is measured at 30 

minutes interval. For example, assuming that our estimator detects activity between 

8:00 and 8:30 but in fact the market starts at 8:05 , after time-changing our data, we 

will have a 5 minute period every week where the price does not change. This will 

imply a small periodic pattern in the autocorrelation function as seen in Figure 7.5. 

This can be fixed by measuring the activity at different intervals of time over the week. 

For example, we use small time interval during high activity periods and long interval 

during low activity. This fact was already described by Dacorogna et al. in [83]. 

7.2.3 Investigating for self-similarity 

Since our estimators assume the form X(t) = X(8(t)) for our financial data where 

X is H-sssi , one must check if this assumption is satisfied by the deseasonalised 

data. We could have limited ourselves by looking at Figures 7.1, and say that we 

have self-similarity through levels 5 to 8. This test does not tell us for which time 

scales we have Aself-similarity. For this study, let us consider the estimated deseaso­

nialised data X using the crossing time change estimator. We analyse the scaling 

properties of our data by estimating the self-similarity index for a range of 1St values 

{5, 10, 15, 20, 30, 40, 60,120, 240} in minutes using (7.5). The results are shown in Fig­

ure 7.6. The scaling exponent H is given by fitting a linear regression line through the 

points over the range of 1St using a least squares method. The self-similarity indexes 

found after time change for the GBP /USD and the EUR/ USD rate index are respec­

tively 0.506 and 0.507. These values differ from the values found before time changing 
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Figure 7.6: Estimated H of the GBP j USD and EURj USD rate index. 

the data. We may expect H to not be estimated from the same range of time scales bt. 

In fact, the EBP estimates H from level 5 to level 8. This correspond to an average 

of time between two hitting points of approximatively 7.8 hours to 17.8 days for the 

GBP /USD and 8.5 hours to 19.5 days for the EUR/USD. Using (7.5) for time scales 

6t between 12 hours and 16 days, we obtain an estimate of H still different for the one 

estimated from the EBP estimator. One gets an estimate of 0.519 for the GBP / USD 

and 0.49 for the EUR/USD. For smallest time scales, the EBP estimator is not able to 

give us a good estimate of H, as the crossings at small levels are badly approximated. 

As we have a scaling property of X for the range of scale bt E {5 , 10, 15 'A20 , 30, 40, 

60,120,240} in minutes , one computes Hand K for each week of the data X by using 

(7.5). If we have self-similarity, we must have Hand K constant over the weeks. 

GBP/US D: Meau(ii)",o.5044; Std (H )::{l.03 1780 ElffitUSD: Mean(ii)=O.S0442; Std(H)=O.02801 
0.65 .... 

0.6 .. 

O~~'--~20~02~~2~00~3 ---2~~~--~20~05--~2~ 
Year Year 

CBP,uSD: Mean(Kp lO.9887; Std(K)=(l.5 130 1 EUnf\JS D: Mcall (K)=o. lO.024 8; S td(K)=O..a055 

YeaT YeAr 

Figure 7.7: Estimated Hand K of the GBP j USD and EURj USD rate index. The green line rep­
resent the mean of the corresponding estimates and the dashed line represent twice the standard 
deviation distanced from the mean. 

Figure 7.7 illustrates an estimate of Hand K of the GBP / USD and EUR/ USD rate 

indexes over weeks. We found respectively an average of 0.504 with a standard devia-
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tion of 0.032 and 0.504 with a standard deviation of 0.028 for the self-similarity index. 

This seems to be reasonable to consider that our time changed foreign exchange dat a 

satisfies the scaling law for time scales 5t between 5 minutes and 4 hours. Keeping 

the given range of time scales 5t , we check whether the distribution of our log middle 

prices return is similar at different time scales increments. Let 

~ = {X(j5t) - X~(j + 1)5t)} 
c5t 5tH 

{j=O,l , .. . } 

where H is given by Figure 7.6. The frequency distribution of the family of Yot are 

represented in Figure 7.8. 

0.1 

0.05 

EURiUSD _5 
_ ,0 _ ,5 
[=:J 20 
[=:J 30 
[=:J 40 
[=:J 60 
_ , 20 
_ 240 

Figure 7.8: Distribution of GBP / USD (left panel) EUR/ USD (right panel) return for different t ime 
scale 

Note that the rate indexes returns distribution seems to be similar for each scale for 

some range of 5t. Using a Kolmogorov-Smirnov test to compare the distribution two by 

two, one can confirm for which range of time scales we have self-similarity in the dat a. 

Taking (5t , 5t') E {(5, 10) , (5,20) , ... , (5 , 240) , (10 , 30) , . . . , (120, 240)} , we consider the 

following hypothesis: Ho: "Yoti and Yotj have the same distribution" . Hi : "Yot and 

Y'6t' do not have the same distribution" . We present the results in Tables 7.3 and 7.4, 

where 0 stands for Ho and 1 for Hi, 

- 5 10 20 30 40 60 120 240 - 5 10 20 30 40 60 120 240 
5 - 1 1 1 1 1 1 1 5 - 1 1 1 1 1 1 1 
10 - - 1 1 1 1 1 1 10 - - 1 1 1 1 1 1 
20 - - - 1 1 1 1 1 20 - - - 0 0 0 0 0 
30 - - - - 0 1 1 1 30 - - - - 0 0 0 0 
40 - - - - - 0 0 0 40 - - - - - 0 0 0 
60 - - - - - - 0 0 60 - - - - - - 0 0 
120 - - - - - - - 0 120 - - - - - - - 0 
240 - - - - - - - - 240 - - - - - - - -

Table 7.3: Hypothesis test (GBP / USD). Table 7.4: Hypothesis test (EUR/ USD). 

The self-similarity is satisfied for 5t E {20, ... 240} in minutes for the EUR/ USD rat e 

index and 5t E {40, ... 240} for the GBP / USD rate index. 
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7.2.4 Modelling the activity: Case of the crossing estimator 

We model the activity using a sum of kernel density functions. We assume that the 

intraday activity is similar for each day of the week with a weighed factor depending 

on the day of the week. This is summarised by the following model 

7 

a~(t) = ¢N(t - 24lt/24J) L w j lI{tElt ,24}(t) (7.7) 
j=l 

where ¢N(t) = tPk exp (- (t - smk?) and I t,24 = [24lt/24J, 24( lt/24J + 1)) , Wj rep-
k=l k 

resent the attributed weight for each day of the week. 1I{tElt,24}(t) = 1 if t E I t,24 , 0 

otherwise. The intra-day activity is given by the left term ¢N(t) of ak(t). We estimate 

the parameter Wj, Pk, mk and Sk, using a least squares method with constraint 

We separated winter time and summer time. We chose N = 6. The results are given in 

Figure 7.9 GBP / USD rate index and Figure 7.10 for the EUR/USD rate index. Note 

that the time is given in Central European Time (CET). 
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Figure 7.9: Intra-day day activity (left panel) and t he day factor (right panel) of the GBP / USD 
rate index 
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Figure 7. 10: Intra-day day activity (left panel) and the day factor (right panel) of the EUR/USD 
rate index 
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Chapter Seven 7.3. Application to CHFD 

Note that the activity is higher in the middle of the week in summer time compared 

to the winter period, and lower on Monday and Friday compared to the winter period. 

Note also that the weekly activity of the two rate indexes is almost identicaL 

7.3 Application to UHFD 

We take the logarithmic middle price Xo: FX (t) between the bid and the ask price at 

time t respectively p~id . t and p::;sk t, where 
u.-FX, L-t-FX, 

CipX = {AUD/USD, GBP/USD, JPY/USD, EUR!USD} 

log(pbid ) + log(pask ) 
We define the logarithmic middle price Xo:

FX 
(t) = O:FX,t 2 O:FX,t . 

Before manipulating the data, we were required to clean them. The cleaning process 

used is described in Chapter 6. 

7.3.1 Time-changes UHFD 

We apply our estimators to UHFD and we compare their performances to the scaling 

law method used by Dacorogna to estimate the activiy. The data taken into consid­

eration are the AUD /USD, GBP /USD, JPY /USD and EUR/USD rate indexes, dated 

from pt of January 2003 to the 3Pt of December 2003. V-Ie decided to take Sunday 

00:00:00 as a start and end date to estimate the activity over one week. For this reason 

the activity of each rate index will be estimated from the 5th of January to the 28th 

of December. This corresponds to 51 weeks. We first estimated the global index of 

self-similarity for each data set using the EBP estimator. The results are presented in 

Figure 7.11 and Table 7.5. 

H.JPYI[JSD 

0.48:3 

Table 7.5: Global Hurst index estimation using the EBP estimators. 

Note that the estimation of the global index of self-similarity for ultra high frequency 

financial data gives a lower value of H compared to the 1 minute interval data of section 

7.2. This is due to the fact that our data are noisy3, so taking the observation at very 

small scales looks very rough, and therefore the self-similarity index at small scales 

tends to be lower than at large scales. This is confirmed by Figure 7.11. As one has 

no real crossings, we must see a tai14 in the three first levels on the graphs. The first 

values starting from this tail should be above the estimated self-similarity index of the 

data. For the AUD /USD rate index this is the case, as the dataset contains around 

6.105 quotes and so has less noise than the GBP /USD, JPY /USD and EUR/USD 

:3The variation at very small scale are considered as noise . 
. Iduc to t.he bad crossing points approximat ion at low lellel size. 
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Figure 7.11: Self-similar index estimate using the EBP estimator to the AUD/ USD (top-left panel) , 
GBP /USD (top-right panel), JPY /USD (bottom-left panel) , EUR/ USD (bottom-right panel). 

rate indexes, for which the dataset contains respectively around 4,5.106 , 5,3.106 and 

8,3 .106 . Further, we may also expect that later on, estimating the activity using the 

crossing may have a bad performance for low crossing levels. As the crossing method 

uses the standard deviation of the jumps of the data as crossing size, we will have 

to increase the crossing size to avoid the prices variation (noise) at very small scales, 

which disturbs the crossing estimator. We estimate the activities of the UHFD using 

our time change estimators. The setting remains similar to those used in Section 7.2. 

We illustrate the results in Figures F.7, F .8, F.9, F.10, F.ll, F.12, F.13 and F.14 in the 

Appendix. The quality of the estimators is presented in Table 7.6. As for the 1 minute 

I X/USD II Estimator me e 

MQ = 5 min 0.3298/ 0.3621 0.3185/ 0.2826 0.291 / 0.3492 0.275/ 0.2846 
AUD MQ = 30 min 0.2523/ 0.3002 0.2667/ 0.2643 0.2827/ 0.3689 0.2543/ 0.28 

otQ = 60 min 0.2129/0.2637 0.251 / 0.2411 0.2529/ 0.3465 0.2256/ 0.2631 

otQ = 5 min 0.32 / 0.3535 0.3614/ 0.2742 0.3119/ 0.3899 0.2845/ 0.3193 
GBP MQ = 30 min 0.2627/ 0.2935 0.3249/ 0.2688 0.2989/ 0.3829 0.2979/ 0.3131 

MQ = 60 min 0.2193/ 0.2484 0.2922/ 0.2368 0.2595/ 0.3442 0.2582/ 0.2743 

MQ = 5 min 0.3855/ 0.3785 0.3492/ 0.3068 0.3006/ 0.3442 0.3291 / 0.3431 
JPY MQ = 30 min 0.3078/ 0.3045 0.3305/ 0.2991 0.2766/ 0.3335 0.3377/ 0.3472 

otQ = 60 min 0.2798/ 0.2957 0.3046/ 0.2848 0.2837/ 0.3271 0.3132/ 0.3318 

MQ = 5 min 0.3101 / 0.3407 0.3258/ 0.2982 0.2758/ 0.3149 0.3784/ 0.403 
EUR otQ = 30 min 0.2551 / 0.3017 0.3213/ 0.3033 0.287/ 0.3023 0.3938/ 0.3942 

MQ = 60 min 0.21 / 0.2467 0.2911 / 0.283 0.262/ 0.2791 0.3597/ 0.4049 

Table 7.6: Quality of the estimators for on tick by tick data. 

interval data, the scaling law does not capture enough information on the interval of 

length bt , and so the quality given for btQ < bt is not satisfactory compared to the 

quality that is given for btQ ~ 6t. The other estimators are less affected. However, as 
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expected, the crossing method performs badly for the JPY jUSD and EURjUSD rate 

indexes. We recalculate the quality for crossing sizes in {2h, 3h, 4h, 5h, 6h, 7h} where h 

is the standard deviation of the jumps of EURjUSD rate index. The results are shown 

in Table 7.7. Clearly, the quality of the crossing estimator has improved by increasing 

the crossing size. However, we note from a certain size (here 5h), the median of the 

activities does not perform well. On the other hand, the mean gives a better result as 

the crossing size increases. Note that we cannot increase the size as much as we would 

like, but just enough to avoid the noisy part of the time series. 

I Crossing size I Mo = [) min I Mo = 30 min I MQ = 60 min I 
> " 

2h 0.3419/0.3675 0.3481/0.3653 0.3347/(1.:3295 
311 0.3145/0.3289 0.3196/0.:3405 0.317/0.2998 
4h 0.2827/0.3019 0.279/0.2846 0.2852/0.2721 
51l 0.2573/0.3228 0.2459/0.312:3 0.2368/0.2717 
6h 0.2586/0.3877 0.256/0.:3293 0.2393/0.3116 
7h 0.2541/0.4649 0.25·1/0.3951 0.2323/0.3526 

Table 7.7: Crossing estimator quality for different crossing sil':e applied to the EUR/USD rate index. 

7.3.2 Volatility of the time-changed data 

We estimate the volatility of the data before and after time change. The volatility 

v[t,tHt) of the time series at time between time t and t + cSt, is defined by 

(7.8) 

where T = 1 week and N is the number of weeks. The results are show in Figures 7.12 

and 7.13. Clearly we see that the volatility looks homogenous for the deseasonialised 

data in each case. 

7.3.3 Modelling the activity: Case of the crossing method 

Here we carry out the same study as the one presented in Section 7.2.4. We use 

equation (7.7) to model the activity. The results are shown in Figures 7.14, 7.15, 7.16 

and 7.17. Note from the bar Figures that the foreign exchange markets are less active 

on Mondays. We also note a strong similarity between the GBP jUSD and EURjUSD 

rates index weekly activity. The weekly activity are almost identical. Both currency 

belong to the European markets. Concerning the daily activity, we note a flat and low 

activity between time 0 and 4 in GMT +35 hour, for the GBP jUSD and EURjUSD. 

In comparison the activity is curvy and high for the AUD jUSD and JPY jUSD in this 

period. The Asian market is open at that time, which explains why Asian currencies 

are traded more than European currencies between time 0 and 4 in GMT +3 . 

. 5\Ve decided to use Gl\IT +:3 time so one can have" Ilull weightpd factor OJ] Sunday and Satmday for the activity 
modal given by (7.7). 
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Figure 7.12: Volatility before and after time change of the AUD/ USD (top left) ,GBP /USD (top 
right), JPY /USD (bottom left) and EUR/ USD (bottom right) , by taking the mean of the activities. 
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Figure 7.13: Volatility before and after time change of t he AUD / USD (top left),GBP /USD (top 
right) , JPY / USD (bottom left) and EUR/ USD (bottom right), by taking the median of the activ­
ities. 
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Figure 7.14: Int ra-day day act ivity (left panel) and t he day factor (right panel) of t he AUDj USD 
rate index 
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Figure 7. 15: Intra-day day activity (left panel) and the day fact or (right panel) of t he GBP j USD 
rat e index 
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Figure 7.16: Int ra-day day activity (left panel) and the day factor (right panel) of t he JPY j USD 
rat e index 
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Figure 7.17: Int ra-day day activity (left panel) and the day factor (right panel) of t he EUR j USD 
rate index 
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7.4 Activity estimates of the FTSEIOO futures 

In this section , we study the FTSE100 futures prices (December 1998 contract) dating 

from the 10th of October 1998 to the 1 2th December 1998. In analysing t his data set , 

we made no initial assumptions about periodicity of the activity. Instead we made local 

activity estimat es for the entire series and then examined these estimates for evidence 

of daily and weekly periodicity. 

7.4.1 Activity estimation 

We measure time in hours and take 6t = 1. We take as our observations X(t) = log P(t) 
where P(t) is the price at time t of the FTSE100. The crossings method was used to 

estimate the activity, with h equal to the standard deviation of t he jumps of X : The 

path variation were used with n = 8, which means we took observations in the interval 

8t separat ed by 14.0625 second (1 hour dived by 28 ). The global index of self-similarity 

H of X is estimat ed by the EBP method for different levels (see Figure 7.18). The green 

circles are the levels t aken to compute an estimate of H . These levels are chosen by 

performing a t est of self-similarity over the levels using a cont ingency table as described 

in [22]. To test for daily and weekly periodicity, we put T = 168, then for j = 0, . . . T-1 , 

H 
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F igure 7. 18: Global index of self-similarity estimation of the X t = log(Pt ) using the crossing tree 
method . 

we grouped t he estimates aU,Hl) , aU+T,Hl+T)' aU+2T,H1+2T) , .. . where i E {I, 2, 3}, and 

drew a box plot of these values against j. The results are given in Figure 7.19 and 

show strong evidence for daily and weekly seasonality in the activity for the three 

estimat ors. Because there are some out liers present , to get a single estimate of t he 

activity at each hour j of t he week, we took the median value of the corresponding 

group of activity estimates. Given our median weekly activity a, we t ime-changed X to 

get t he deseasonalised series X(t) = X(e- 1(t)) , where e(t) = J; a(u)du. The original 

and a3-deseasonalised series are plotted in Figure 7.20. To confirm that we had correctly 
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Figure 7.19: Evidence of daily and weakly seasonality in the activity of FTSE100 futures prices. For 
each half-hour of the week a boxplot of estimated activities is given (taken from different weeks). 
The median activity has been plotted on top. 

captured the periodicity in the activity, we calculated the power spectrum of X and 

X. The results are given in Figure 7.21 and show no discernable remaining daily or 

weekly periodic effects, for all our estimators. We check if the time-changed series is 

self-similar. We use (7.5) across all the series. The results in the case of the l/H­
variation method and the crossing are given in Figure 7.22. We perform a least squares 

linear regression through the points {lOg( 5t), log Var (X (5t) )} (green line on Figure 

7.22) and compute the slope of the line to get an estimate of the self-similarity index. 

The time scale used 5t is in {I , 2, 5, 10, 15, 20, 30, 45 , 60 , 120, 240 , 360, 720, 1440, 2880} 

in minutes. The red line represents the polynomial of second order fitting points 

{log(b't), logVar (X(b't))}. The red line is not straight. This shows that the self­

similar index changes through scales. It is difficult to confirm that the time-changed 

series is self-similar for the given range of b't. 

7.4.2 Daily and weekly seasonal analysis 

To separate the daily and weekly seasonal effects , we fitted a multiplicative model aM 

to our activity estimates at,)+I)' Write k E {O, . .. , 167} as 24(d - 1) + j - 1 where 
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Figure 7.20 : FTSEI00 fut ures prices before (left panel) and after (right panel) removal of the peri­
odic variation in activity. 

Power spectrum of non-deseMOlUllised FTSE IOO 

1.8 .............. . ...... ' ii~iiy ' pe~iodic{t;: " 

1. • ............... ~ ... 

1.4 

1.2 

a.a 

l.a 

1.. 

1.4 

1.2 

PO"''!!r spectrum of ii!' • .r<!eseasonalised F'T'SE IOO 

0.8 .......... ..... ..... ..... .. • . 

a.6 
0.4 .............. .......... . .. ...... . ... . 

a.2 

0.09 0.1 

aa~."a~.a~I ~1 7o.~a2~a~.a73-".a.~~~a~.a~5-7a.=oo~a~.a::-7-7a.=aa~a~.a7, -7a. 1 

PO';\'ef 1IpOClt'WTL of ii!" c.cdeeeaaonal i9lld FTSEI OO 
2 . 

I.a 
1.6 ....... . ••• . •••..... 

1.4 

1.2 ...... . .. . ....... ... ... ....................... . 

a.a 

a .• 
004 . 

0.2 . 

a~~~~~~--~~:--~~---:~-~~:--~ 
o 0.01 0.02 0.03 0,04 0.05 0.06 0.07 0,08 0.09 0.1 

Po""'!!! IlJleC LnIrn of ii.;' . ad_MOMl ised F'TSEIOO 
. . . . . . . . . . . . . . . . ... ...............•....••.. 

I.a 
1.6 .......................................................................... . 

1.4 

1.2 .. 

0.8 " 

M , ···················································· .•....... ••..•... 

a4

1 0.2 1 . 

aa~-a~.a-I--a.~a2~a~.a-3--a.~~-a~.a-5 --a.oo~-a~.a-7--a.a~a--a~.O-9 ~O. 1 

Figure 7.21: Power spectrum of t he FTSEI00 fut ures prices before (left) and after (right) removal of 
the periodic variation in activity. 
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Figure 7.22 : Test of self-similarity of the t ime-changed FTSEI00 using the 1/ H-variat ion (left 
panel) and the crossing (right panel). 
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Chapter Seven 7.5. Comment on the path variation and crossing time change estimators 

d is the day and j the hour, then suppose that for some aj, j = 1, . . . ,24, and !3d, 

d = I , ... , 7, we have a[t,k+l) = a~4(d-l)+j-l,24(d-l)+j) = aj!3d. 

For k 2: 168 let k' = k mod 168 then we have a[t,k+1) = a[t,kl+1)' The parameters 

aj and !3d were estimated using least squares and the results are given in Figure 7.23. 

The characteristic "U shape» of the intra-day activity has been previously observed by 

other authors, for example ap Gwilym and Sutcliffe [91]. 
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Figure 7.23: Daily and weekly periodic effects in the activity of FTSE100 fut ures prices. 

7.5 Comment on the path variation and crossing time change 

estimators 

7.5.1 The advantage of our estimators 

The advantage of our time changed estimators in comparison to the scaling law method, 

is that we obtain a good activity estimate through using just a few weeks of data. In 
comparison, the scaling law needs several weeks of financial data in order to give a 

good estimate of the given asset activity. In this Section, we compute the quality of 

the estimator by taking a small number of weeks and applying it to time change the 
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whole dataset. This study will be carried on the AUD /USD rate index as an example. 
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Figure 7.24: The relative volatility of time-changed compared to original data, for all four esti­
mators and for various values of Ot and the amount of data used to estimat e the time change (in 
weeks). In each cluster of results the estimators are given in the order a?n , a;" , a~ and a~. 

We used Q to compare the activity estimators ai (where i E {O, 1, 2, 3} corresponding 

to the estimators described in 7.1). Thirty weeks of the AUD-USD exchange rate data 

was chosen from the summer time period. For each estimator, we varied the number 

of weeks of data used to fit it and the size of M used when calculating a[t,t+8t ) . The 

amount of data used was either 1, 2, 5, 10, 15 or 30 weeks; the size of M was either 120, 

60, 30, 20, 10 or 5 minutes. Each activity estimate calculated was used to time-change 

all 30 weeks of data and then calculate Q (using M = 5 minutes). The results of these 

calculations are given in Figure 7.24 when taking the mean of the activities and Figure 

7.25 when taking the median of the activities. Within the Figure each panel deals with 

a single value of M. Within each panel, the results for the four estimators are grouped 

together for each of the different amounts of data used. The following conclusions can 

be drawn: for M = 60, 30, 20, 10 or 5 minutes the crossings estimator performs the 

best; while in all cases except for M = 5 minutes the estimator of Dacorogna et al has 
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Figure 7.25: The relative volatility of time-changed compared to original data, for all four esti­
mators and for various values of Jt and the amount of data used to estimate the time change (in 
weeks) . In each cluster of results the estimators are given in the order a~ed' a;"ed' a~ed and a~ed ' 

the worst performance. For 6t = 120 minutes the log-variation estimator performs best; 

while the 1/ H-variation estimator provided a better performance than the log-variation 

when taking the median of the actvities. 

7.5.2 How to use the estimators? 

To conclude, we present a brief explanation on how to use the different time change 

estimators. In each case, we explain how to deal with real data as this last has irregu­

larly spaced observations in time. First: how to interpolate the observed data in order 

to perform a good estimate of the time change function. Second: once the activity 

has been estimated, should we use the mean or the median of the weekly activity. 

Assuming we have observations of our financial data {X(tj)}{jE{l, .. . ,n}} , we define 

(7.9) 
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Chapter Seven 7.5. Comment on the path variation and crossing time change estimators 

n 

Xp(t) = L X(tj)TItE[tj,tj+l) 
j=O 

(7.10) 

The process Xl and Xp are represented in Figure 7.26 and will facilitate to describe 

the type of interpolation needed to perform our estimators. 

t ime 

Figure 7.26: An example of the process Xp (green line) and Xl (blue line) using the observation X 
(red circle). 

Let us comment on each estimator: 

The 1/ H-variation: The data must be interpolated by taking the last observation. 

This means that we estimate e of X using Xp. For continuous data, either the mean 

or the median can be used. For data containing jumps, we may have spikes in the 

activity at the corresponding time jump; this may affect the de-seasonalisation quality. 

In that case, the median of the activities over weeks are considered. This estimator 

performs well on foreign exchange data, as these last are considered not to having 

important changes in price when taking two consecutive quotes. This comes from the 

high liquidity of the foreign exchange market. 

The log-variation: The observed data must be linearly interpolated. This means 

that we estimate the time-changed function e of X using Xl' However, we have to 

make sure that there are no two consecutive identical prices in the data; this will 

generate increments of value O. Assuming there is activity between time t and t + bt, 
an increment of value 0 will imply that the sum used for this estimator will be equal to 

-00, and so the exponential will be O. This is similar to saying that the activity will 

be considered null during that period. It suffices to remove successive identical prices. 

The estimator can be applied for data whether it contains jumps or not. The mean or 

the median of the activities over weeks can be used. 

The crossing estimator: This estimator is very sensitive to outliers; one must ensure 

that the dataset used does not contain any outliers. The crossings are taken from jumps 

of the observed data (from Xp) in order to avoid crossings during inactive periods, such 

as week-ends or bank holidays. The overall activity is estimated by taking the mean 

over weeks. As noted in this section, this last method seems to give a better quality of 

the activity estimate. 
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Chapter 8 

Modelling high frequency data 

Several techniques exist for modeling high frequency financial data. Generally these 

models can be grouped into four classes: 

(1) Model based on price change 

(2) Model based on duration between two ticks 

(:3) A bivariate model based on both price change and price duration 

(4) Modelling price change using a time deformation, also know as subordinated 

process 

For a survey on (1)-(3) type model, we refer to [81]. Models based on price duration are 

especially adapted to tick by tick data, where the waiting time between two transaction 

is random. We refer to [84] for a good study of such models. The type of model (4) is 

of our interest. This model is based on mapping the calendar time t to an operational 

time e(t), with respect to which the data has constant volatility. This model was 

proposed by Mandelbrot [104] and Clark [105] for stochastic time change and then 

by Dacorogna et al. in [3] for deterministic case, where the operational time e(t) is 

called the" e-time". The function e is determined from the scaling property of the 

high frequency financial data. This was described in the first Section of the previous 

Chapter. Later on, Chysels and Jasiek [106] proposed a time deformation determined 

by the trading volume, and Zhou [93] make use of the volatility to determinate e. 
In our case, the operational time e is determined so that the data has stationary 

increments under e (see previous Chapter). The function e is estimated through one 

of the following methods: 1/ H-variation ideal for continuous time processes satisfying 

some scaling properties, log-variation adapted to processes with jumps satisfying also 

some scaling properties, and the level crossings method. 

In this Chapter, we study the statistical properties of the a::n -deseasonalised A UD /USD 

index rate, where a::n was estimated in the previous Chapter using dt = 30 minutes, 

and the a~ed-deseasonalised FTSE100 future contract where a~ed was estimated using 

dt = 60. In particular the following will be analysed: the price duration before and 
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Chapter Eight 8.1. Analysis of the deseasonalised A UD /CSD index rate 

after removing seasonality, the autocorrelation of the log price return and the absolute 

return, the distribution of the log price return. 

For clarity, we note DSa;,,-data for a~-deseasonalised data, where i = 0, ... ,3 de­

pending on the method used (see previous Chapter); e.g. DSa;n-AUDjUSD for a~­

deseasonalised AUDjUSD. Similarly, we note DSai -data for a~erdeseasonalised. 
m~ed 

8.1 Analysis of the deseasonalised AUD /USD index rate 

8.1.1 Time duration and data sampling analysis 

We define the time duration as the time separating two consecutive ticks. As mentioned 

in Chapter 6, the time duration for ultra high frequency financial data are irregularly 

spaced. The deseasonalised data will also be irregularly spaced in time. Here we 

analyse the distribution of the time increments before and after time-change of the 

A UD jUSD rates index. 

8.1.1.1 Time duration analysis 

We denote by T the time duration between two ticks. The distribution of T for the 

non deseasonalised and for deseasonalised data for each method (£1~, £1:ned' £1;1' £1~1) are 

given in Table 8.1. Note for deseasonalised AUDjUSD rate index, some waiting times 

T can still be greater than four hours. This is the minimum1 time duration that can 

exist when one of the foreign exchange Markets2 has bank holidays. For this reason, 

we omit in non-deseasonalised data time duration greater than 4 hours, and we remove 

the corresponding time duration from DSa;" -AUD jUSD. The results are given in Table 

8.2. This practice is needed before sampling the data to obtain regular time spaced 

data. Indeed, if we do not remove bank holidays, the deseasonalised data contains 

many returns with value ° and so fails the statistical analysis of the data. 

We investigate on the distribution of T at smaller scales. These are given in Table 8.3. 

The time deformation consists on stretching periods of high volatility and contracting 

periods of low volatility. This is observable in Table 8.3. The frequency of the time 

duration is lower for DSa; -AUDjUSD (i = 0, ... ,3) than the AUDjUSD when T < 
m 

1 minute. It is also observable in Table 8.4, the standard deviation of the DSa;,,­

AUDjUSD price duration, where holidays were previously removed, are more than 19 

times3 less (except for the scaling law method, which is more than 16 times) than the 

one of the non-deseasonalised data where companies bank holidays and week-ends are 

included. 

1 in fact 3.5hour8 
2This correspond to the A.merican market in non-DST period (see Figure F.5) 
:3The scaling error due to companies hank holidays omission was taken into consideration and is "" 0.777/0.0754 "" 

l.03 
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(in Hour) 7<4 4 ~ 7 < 12 12 ~ 7 < 24 24 ~ 7 
AUDjUSD 674260 5 1 55 
DSa~n -AUDjUSD 674309 5 3 4 
DSa1 -AUDjUSD 674309 .5 2 5 

=ed 

DSii 2 -AUDjUSD 674312 2 2 5 
'111 

DSa3 -AUDjUSD 674309 5 2 5 

Table 8.1: Time duration (in hour) distribution of the AUDjUSD rat.e index price change before 
removing susceptible possible bank holidays. 

(in Hour) 7 < '1 4 ~ 7 < 12 12 ~ 7 < 24 24 ~ 7 
AUDjUSD 674321 0 0 0 
DS,o -AUDjUSD 

'.lrrl 
674319 2 0 0 

DS-l -AUDjUSD ct med 
67<1320 1 0 0 

DSh 2 -AUDjUSD 674320 1 0 0 
. Tn 

DSh" -AUDjUSD 674320 1 0 0 

Table 8.2: Time durat.ion (in hour) distribution of the Al~DjUSD rate index price change aft.er re­
moving susceptible possible bank holidays. 

(in minute) T < 1 1~7<5 5 ~ 7 < 10 10 ~ 7 < 60 60 ~ 7 
AUDjUSD 5!J4333 74300 4.'133 1236 19 
DSa~,-AUDjUSD 528524 137292 6905 1572 28 
DSa1 ··AUDjUSD 517201 151135 5046 919 20 

rncd 

DSa;',,-AUDjUSD 515320 15:3671 4707 604 19 
DSa3 -AUDjUSD 517231 151139 5045 887 19 

Table 8.3: Time duration (in minute) distribution of the AUDjUSD rate index price change after 
removing possible bank holidays. 

II AUDjUSD I DS"" I DS"l m I DSa,1 
m 

DSh;,. 

Including Bank Holidays 

E[T] II 
JVar (7) 

0.777581 0.777571 0.777531 0.77751 I 0.77756 
25.90(17 7A557 7.626 8.0017 7.7393 

Bank Holidays not included 

E[7] II 
JVar (7) 

-I 0.75491 I 0.753651 0.753931 0.75347 
- l.5342 l.3022 l.3238 l.2702 

Table 8.4: Time duration (in minute) average and standard deviation of the AUD jUSD rate index 
price change before and after removing possible bank holidays. 
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8.1.1.2 Data sampling 

In order to analyse the data with observations taken at regular time intervals, we sample 

the data. Sampling a dataset may introduce some error in its statistical analysis, such 

as a bias in the autocorrelation function estimate, for example. This error comes 

from the approximation caused by the interpolation. From Table 8.3, we note that 

less than 1% of time duration are more than 5 minutes for the deseasonalised data, 

except for the DSiiD for which the time duration above 5 minute represents 1.26%. \iVe 
m 

may expect taking observations at a minimum step time of 5 minutes, which can be 

considered reasonable. Assuming the data are continuous in time, one can use a linear 

interpolation of the data to get regularly spaced sample from the observed one. This 

choice was suggested by Mi.iller in [97]. Wasserfallen and Zimmerman [107] used the 

last published price as interpolation. This approach produces many returns with value 

zero and jumps in the data. The error of interpolation is even more pronounced when 

the path of the data is extremely rough. To justify the choice of the linear interpolation 

for our study, we analyse the error of the log price return in both types of interpolation. 

Let X(t) = 10g(P(t)) the logarithmic price of DSii~-AUD/USD. Let X(t) and X(t) the 

log price at time t respectively taken by linear and last price interpolation between two 

consecutive tick times ti and ti+l' If we assume X H-sssi with finite second moment 

and self-similarity index H, which can be seen as the coefficient of roughness of the 

data, the linear interpolation error is given by (see Proposition 3.2.2) 

Where 

[ ] AH(A)-{O ifAE{O,I} 
VA EO, 1 , - A (1 _ A) (A 2H -1 + (1 _ A) 2H -1 - 1) if A E (0, 1) (8.2) 

and by the Markov inequality, the last price interpolation error is given by 

(8.3) 

We represent functions A 1-----+ AH (A) and A 1-----+ A2H in Figure 8.1. Clearly the linear 

interpolation is a better choice for sampling our data. 

The question remaining is, what is the smallest discrete time we should use to sample 

the data so one can reduce the bias in statistical analysis? 

Let R(t, r5t) = X(t + r5t) - X(t) and R(t, cSt) = X(t + cSt) - X(t), for r5t > 0 which 

represent the step time used for the interpolation. Vie define the mean square error of 

the return taken from the linear interpolated data by TJM (t)2. In Proposition 8.1.1, we 

compute TJ8t(t)2 assuming the deseasonalised data is self-similar. We consider the time 
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0.8 

;RjJ.6 

0.4 

0.2 

1 1 

Figure 8.1: Functions A f--+ A H (A) (left panel) and A f--+ A 2H (right panel) 

duration between two consecutive prices as random. 

................ ..... 

0.5 
H 

o 

Proposition 8.1.1. Let X = {X(t)h~o be a H -sssi process such that lE[X(l)]2 < +00 
and lE[X(l)] = O. We suppose having the observation of X at given random times 

T = {TihEN, so that the process T is strictly increasing and independent of X . We set 

Let X a process constructed from {X(Ti)}iE N by linear interpolation such that for t 2: 
t-T 

0, Tit ~ t < Tit +1 , X(t) = (1 - At)X(Tit+l) + AtX(Tit), where At = 1',. _t~. For 
tt+1 tt 

t > s , we set 

R(t, t - s) = X(t) - X(s) and R(t , t - s) = X(t) - X(s) 

and 

2 lE [ (R(t,t-S)-R(t,t-s)r l ~tl 
'TIt = lE IR(t,t-s)1 2 

Then 

Where AH is defined as in (8.2) and 2,H(t, s) is a function of s, t and H. 

Proof. Note first that by self-similarity and stationarity of the increments of X, 
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One has 

lE [IR(t, t - s) - R(t, t - S)1211't] = lE [1(X(t) - X(s)) - (X(t) - X(S))1211't] 

= lE [I (X ( t) - X ( t)) - (X ( s) - X ( s ) ) 1211't ] 

= lE [IX(t) - X(t) 1211't] + lE [IX( s) - X (s) 1211'tJ 

- 2lE [(X(t) - X(t))(X(s) - X(s))I1'tJ 

The two first terms are given by Proposition 3.2.2: 

where the At = t - Tit . Since we use a linear interpolation of the process X, one 
Tit+l -Iit 

gets X(t) - X(t) = At(X(Iit+l) - X(t)) + (1 - At)(X(Iit ) - X(t)) and 

lE [(X ( s) - X ( s ) ) (X ( t) - X ( t) ) l1't ] 

= AtAslE [(X(Iis+d - X(s))(X(Tit+l) - X(t))I1't] (8.5) 

+ As(l - At)lE [(X(Iis+l) - X(s))(X(Tit ) - X(t))I1't] 

+ At(l - As)lE [(X(IiJ - X(s))(X(Iit+l) - X(t))I1't] 

+ (1- As)(l- At)lE [(X(IiJ - X(s))(X(Tit) - X(t))I1't] 

As X is H-sssi with lE[X(l)] = 0, we note the correlation function 

r(t s) = lE[X(t)X(s)] = ~(t2H + S2H _ It _ SI2H) 
, lE[X(lF] 2 

Whence expanding (8.5), one gets 

~H lE [(X(s) - X( s)) (X(t) - X(t)) l1't] 
.::: (t,t-s)= lE[X(1)2] 

= AtAs (r(Iis+l' Iit+l) - r(Iis+l' t) - r(Tit+l, s) + r(s, t)) 

+ As(1- At) (r(Tis+l' Iit) - r(Tis+l' t) - r(s, Iit ) + r(s, t)) 

+ At(1- As) (r(Tis' Tit+l) - r(Iis' t) - r(s, Tit+1 ) + r(s, t)) 

+ (1- As)(l - At) (r(Iis, Tit) - r(Iis' t) - r(s, Iit ) + r(s, t)) 

For H = 1/2, the term '2,H (t, t -s) can be simplified as follow 
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Chapter Eight S.l. Analysis of the deseasonalised AUD/USD index rate 

Lemma 8.1.2. Assuming t > s, for H = 1/2, 

(8.7) 

Proof. For is #- it this is obvious, since disjoint increments are uncorrelated the corre­

lation function has values zeros. For is = it = i and t > s, one has from (8.5) 

IE [(X(Ti+l) - X(s))(X(Ti+d - X(t))I3-"tl = IE [IX(Ti+1) - X(t)1213-"t] 

+ IE [(X(t) - X(s))(X(Ti+1) - X(t))I3-"tl 

= (Ti+1 - t)IEIX(1)12 

Similarly we find 

IE [(X(Ti+l) - X(s))(X(Ti) - X(t))I3-"tl = -(t - s)IEIX(1)12 

IE [(X(Ti+1) - X(t))(X(Ti) - X(s))I3-"tl = 0 

IE [(X(Ti) - X(s))(X(Ti) - X(t))I3-"tl = (s -Ti)IEIX(1)12 

And so, one gets 

This last Lemma leads to the following Corollary. 

Corollary 8.1.3. For H = 1/2 

2 
Tlt = 

t-s 
1---­

Ti+l - Ti 
if is = it = i 

o 

(8.8) 

Proof. Using (8.2) for H = 1/2, then substituting At = T, t - Tit and As = s -Tis 
. +1 - T T +1 - T tt tt 2" t" 

in expression (8.4) and using Lemma 8.1.2, one gets (8.8). 

o 
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Having the observations of X at time {Tih;~o , w.e note it = m3.Xi2:o{i , 1i < t} . We set 

t '- IE [ (R(t, 01) - R(t, ot))' ':Ttl 
'r/8t() - IE IR(t , 6t)1 2 

By Proposition 8.1.1, we note that as the 6t decreases, 'r/8t(t)2 increases. As we will see 

later, our financial data has uncorrelated (or a little correlated) log-prices return and 

has H ~ 0.5. For simplicity we determine the minimum discrete sampling time 6t by 

computing 'r/8t(t)2 for H = 1/2. In that case, one has by Corollary 8.1.3 

6t 
1- ----

THI - Ti 
if itHt = it = i 

(8.9) 
One can then choose the minimum 6t by computing the mean of the square root error of 

the return 'r/8t(t). We draw in Figure 8.2 'r/8t(t) for 6t E {1, 5, 10,30, 60,120 , 720 , 1440}. 

The green line represents the average of 'r/8t(t) . Note that for 6t ~ 60 minutes, the 

mean of the square root error is smaller or equal than 0.10. We expect having a go.od 

approximation of the linear interpolation. However, for our analysis, we also consider 

values of 6t smaller than 60 minutes, knowing that for 6t < 60 minutes, the statistical 

analysis may be meaningless. 

at";;. rrean( 1'/;) =6. 34 at;i(). rrean( 7)J. 0) =6. 2; at =00. rrean( 7JlQ) =6. 15 

"'n~l'll~l~ 

1'/;'0.5 7J>' 0.5 

0 0 

7J>' 0.5 

~ o 
at =6.1. rrean( '1);0) =6. 1 at =l2l rrean( 7)J.20) =6. 07 at =m. rrean( 1)720) =6. m at =l.44l. rrean( 7)J.440 ) =6. ()2 

1 

1'/; ' 0.5 1'/; '0.5 

0 
.1, 

0 

Figure 8.2: The root mean square error of the DSii3 -AUD/USD log-prices returns at different t ime 
scales (ot E {l, 5, 10, 30, 60, 120, 720, 1440}). '" 
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Chapter Eight 8.1. Analysis of the deseasonalised A lTD jCSD iudex rate 

8.1.2 Statistical properties of the log-prices returns 

Here, we concentrate on the DSa;;,-AUD /USD, for which the deseasonalisation us­

ing the method of crossings gives a better estimate quality than the other methods. 

Further, the time duration have smaller a standard deviation. Vve study the auto­

correlation, the distribution of the DSa~7-AUD /USD log-prices returns denoted by 

R(t, Ot) = X(t+Ot)-X(t), where X(t) is the deseasonalised log prices ofthe AUD/USD 

rate index. We also study the scaling behaviour of the data. 

8.1.2.1 Autocorrelation 

We draw the autocorrelation functions of the return (Figure 8.3), the absolute return 

(Figure 8.4) and the squared return (Figure 8.5), and thus at different time scales bt, in 

particular for Ot E {I, 5,10,30,60,120,720, 1440} in minute. The red lines correspond 

to the 95% confidence interval bound, determined by using Bartletts formula for moving 

average processes. We fit the autocorrelation function of the return by the function 

(8.10) 

where k is the kth lag and H E (0,1). PH is in fact the autocorrelation function of the 

increments of an H-sssi process and H represent the self-similarity index. We estimate 

H by fitting PH to the autocorrelation function of the return using a least squares 

method. This is represented by the green line on Figure 8.3, H is also given for each 

Ot. Note that the value of H is slightly smaller than 1/2, for which Plj2(k) = 0 for all 

k and so the return would be uncorrelated. We see that there is little autocorrelation 

in returns. One can consider that the returns are uncorrelated except for very high 

frequency in particular for Ot ::; 10 minutes, where there is a negative correlation for 

the first lag. This was already noticed by Goodhart and Figliuoli [108] for very high 

frequency data. 

The autocorrelation function of the absolute and squared return are correlated, which 

becomes more pronounced as the sampling frequency increases. Note that for small 

sampling frequency (larger than half a day here), the data can be considered as having 

independent return. We observe a strong correlation for the absolute return. Such 

a characteristic has already been observed by Andersen and Bollerslev [109]. The 

autocorrelation function of the absolute return and the squared return seem to decay as 

a power law. We then choose to fit, using a least squares method, these autocorrelation 

functions by the following function 

(8.11) 

where a and j3 are two positive real. The fitted line is represented in green in Figures 

8.4 and 8.5, as well as their corresponding estimated a and j3. 
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Figure 8.3: Autocorrelation function of the DSa~ -AUD/USD log return at different time scales. 
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Figure 8.4: Autocorrelation function of the absolute DSa~ -AUD jUSD log return at different time 
scales. 
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scales. 
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8.1.2.2 Fitting the distribution of log-prices returns 

We assume that log-prices returns of the DSa~ -AUD jUSD are ergodic. We use a 

pseudo-maximum likelihood estimate to fit the log-prices returns to three different 

distributions: Normal, a-Stable and symmetric scaled t-distribution. For details on the 

t-distribution and the uses of pseudo-maximum likelihood see respectively Appendices 

Band C. We draw the PDF, CDF, log(CDF) and log(l-CDF) of the one hour DSa~ ­

AUD j USD log-prices return in Figure 8.6 with their fitted distributions. 
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Figure 8.6: PDF (top right), CDF (top left), log(CDF) (bottom left) and log(l-CDF) (bottom 
right) of the one hour DSa,3 -AUDjUSD log-prices returns, fitted to the normal (in red) , a -stable 
(in green) and symmetric s~aled t-distribution (in magenta). 

The estimated parameters for each distribution is given in Figure 8.7. The quantile­

quantile plots (QQ-plot) are presented graphically to illustrate the goodness of fit 

for each PDF to the DSa~ -AUD jUSD log-prices returns distribution. Note through 
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Figure 8.7: QQ-plot goodness of fit of the one hour D Sa,3 -AUD/ USD log-prices returns 
'" 

these QQ-plots the tail of the marginal distribution of the DSa~ -AUD j USD log-prices 
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returns are too heavy compared to the Normal distribution and not heavy enough for 

the a-Stable distribution. The scaled t-distribution shows a better fit. 

We fit our data with the symmetric scaled t-distribution T(v, 0-, j1), where 0- and j1 

represent respectively the scale parameter and the shift parameter (see Appendix B), 

and thus for returns at different time scales bt. For formality, we use the Kolmogorov­

Smirnov and the Andersen-Darling tests for goodness of fit. These tests are described 

in Appendix D. The critical values are computed using a bootstrap method. This 

technique is also described in Appendix D. While the the DSii?,,-AUDjUSD log-prices 

returns are uncorrelated but dependent, the sample used for bootstrapping are inde­

pendent random variables. This is a good approximation as the size of the sample are 

large enough for bt ::::; 120 minutes. In this instance, the size is from 4234 observa­

tions for 5t = 120 minutes to 508080 observations for bt = 1 minutes. For bt > 120 

minutes, we assume that DSii~ -AUD jUSD log-prices returns are independents. This 

assumption is satisfactory since for bigger scales, the absolute return looks uncorrelated 

in Figure 8.4. The estimated t-distribution parameters for each scales are shown in 

Tables 8.5. D and A2 are respectively the Kolmogorov-Smirnov and Anderson-Darling 

test statistics of the DSii ?" -AUD jUSD log-prices returns distribution, and Dc and A; 

their respective critical values estimated using the bootstrap method of 500 samples 

issued from the t-distribution. The hypothesis Ho is defined so that "the log-prices 

returns follow at-distribution". Ho is accepted when the goodness of fit statistic is 

smaller than its corresponding critical values and marked by ./, otherwise it is marked 

by a cross X. 

We see in Table 8.5 that the degree of freedom v increases as the time scale bt gets 

larger. This shows that the higher the frequency of the sample is, the more peaked the 

distribution becomes and the heavier its tails are. 

Figures 8.8 shows the QQ-plot of the DSii~-AUD jUSD log-prices returns distribution 

to the symmetric scaled t-distribution. 

In order that the DSii~,-AUD jUSD log price index satisfies the self-similarity property, 

the degree of freedom v must be constant for different time scale 5t. To check for a 

possible self-similarity of the data, we fit the log-prices return to a symmetric scaled 

t-distribution with degree of freedom v = 4. This seems to be the most appropriate 

value for different scale. the results are presented in Table 8.6 and Figures 8.9. 

The results in Tables 8.5 and 8.6 shows that the DSii~-AUD jUSD log-prices returns 

follow a t-distribution up to a minimum discrete time of 60 and 45 minutes respectively 

by the D and A2 statistics test. Note also that the daily return (1440 minutes) does 

not follow a t-distribution with respect to goodness of fit tests. 
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Chapter Eight 8.1. Analysis of the deseasonalised A lTD /CSD illdex rate 

of Data parameters K8 test. AD t.est 
size // (J" p. D Dc Ho A- A~ Ha 

1 508080 3.03 9.95e-5 5.43e-7 32.484 0.755 x 369.927 0.637 x 
2 254040 3.89 1.57e-4 1.46e-6 10.995 0.766 x 42.275 0.631 x 
5 101616 3.80 2.41e-4 3.3ge-6 :3.54.7 0.757 x 7.551 0.614 x 
10 50808 3.78 3.3ge-4 6.018-6 2.012 0.750 x 3.602 0.661 X 

15 33872 3.82 4.18e-4 9.77e-6 1.917 0.761 x 3.196 0.653 x 
20 25404 3.88 4.858-4 1.078-5 1.485 0.750 x 1.58.5 0.581 X 

30 16936 4.11 6.03e-4 1. 71e-5 0.980 0.735 x 0.925 0.60:3 x 
40 12702 4.12 6.93e-4 2.45('-5 1.055 0.762 x 0.724 0.589 x 
45 11290 4.19 7.33e- L1 2.71e-5 0.8/16 0.751 x 0.504 0.613 ./ 
60 8468 4,48 8.65e-4 3.738-5 0.736 0.768 ./ 0.5:38 0.602 ./ 
120 423'1 ;1.93 1.24e-:3 6.87e-5 0.668 0.761 .,/ 0.377 0.60:3 ./ 
240 2117 5.31 1.81e-3 1.62e-4 0.513 0.766 ./ 0.259 0.630 ./ 
360 1411 5.33 2.1ge-:3 2.56e-4 0.681 0.754 ./ 0.357 0.611 ./ 
720 705 6.03 3.21e-3 5.23e-4 0.453 0.753 ./ 0.4:38 0.571 ./ 
1440 352 6.66 4.48e-3 1.018-3 1.007 0.797 x 0.920 0.581 x 
2880 176 6.G2 G.21e-3 1.8ge-3 0.788 0.792 ./ 0.472 0.G3:3 ./ 

Table 8.5: Fitting t.he DSa~n -AUD /USD log-prices returns to the symmetric scaled t-dist.ribution for 
different time scale M E{l, 2, 5, 10, 15, 20, 30, 110, 60, 120,210, 360, 720, 1410, 2880} miuutes and 
their goodness of fit statistics. 

Of 
Data parameters KS test AD test 
size // (J" Ii D Dc Ho A- A- Ha c 

1 508080 4.00 1.07e-4 5.75e-7 32.505 0.772 x 556.633 0.656 x 
2 254040 4.00 1.58e-4 1.46e-6 10.985 0.777 x 4:3.:352 0.678 x 
5 10161G 4.00 2.43e-4 3.3ge-6 3.533 0.789 x 9.4GG 0.G5:3 x 
10 50808 4.00 :3.4:3e-4 6.02e-6 2.278 0.7G2 x 4.859 0.G23 x 
15 33872 4.00 4.22e-4 9.82e-G 2.08:3 0.784 x :3.967 0.(;70 x 
20 25404 4.00 4.88e-4 1.08c-5 1.493 0.779 x 1.833 0.680 x 
30 169:36 4.00 G.00e-4 1.708-5 0.9:33 0.7G5 x 0.802 0.G61 x 
40 12702 4.00 6.8ge- /1 2.458-5 l.CJl6 0.778 x 0.657 0.690 ./ 
45 11290 ;1.00 7.2Ge-4 2.70e-5 0.817 0.781 x 0.1170 0.703 ./ 
GO 8468 4.00 8.4Ge-4 3.748-5 0.593 0.771 ./ 0.526 0.685 ./ 
120 4234 4.00 1. 1ge-:3 6.72e-5 0.720 0.759 ./ 0.556 0.711 ./ 
240 2117 4.00 1.73e-3 1.G4e-4 0.G07 0.782 ./ 0.:381 O.GGG ./ 
3GO 1411 4.00 2.08e-3 2.58e-4 0.461 0.782 ./ 0.324 0.668 ./ 
720 705 4.00 3.00e-3 5.50e-4 0.488 0.767 ./ 0.478 0.G73 ./ 
1440 352 4.00 4.13e-3 1. 11e-3 0.861 0.737 x 0.927 0.621 x 
2880 176 4.00 5.72e-3 2.01e-3 0.661 0.777 ./ 0.463 0.G54 ./ 

Table 8.6: Fitting the DSa;" -AUD /USD log-prices returns to the symmetric scaled t-distribution 
with degree of freedom v = 4, for different. time scale M E{l, 2, 5, 10, 15,20,30,40,60, 120, 210, 
360, 720, 1440, 2880} minutes and their goodness of fit statistics. 
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8.1.2.3 Scaling law behaviour and self-similarity ' 

Under the self-similarity assumption of the DSa~ -AUD j USD log price, the scaling 

parameter 0"8t of the t-distribution estimated from the data, must satisfy 0"8t = OtH 0"1 , 
where H is the scaling exponent. Moreover , it can be shown empirically that Z(t) = 

X(t) - 111t , where 111 is the location parameter for the 1 minute log-prices returns , 

given in Table 8.6, is self-similar. It suffices to check that 118t = 111Ot. Indeed, if Z is 

H-sssi , then E[Z(l)] = ° and 118t = E[X(ot)] = E[Z(ot)] + 1110t = 111Ot. 

As Table 8.6 shows that the t-distribution with parameter v = 4 fits well the log-prices 

return for ot E I = {30, 40, 45 , 60,120, 240, 360, 720, 1440}4 in minutes , we compute 

ih an estimate of H for Ot E I by computing the slope of the regression line of 

logO"f,t = Hlogot+logO"l' The result is shown in Figure 8.10 and we find ih = 0.4995
. 

The value of the estimator is almost identical to the self-similarity index estimated on 

Figure 8.3 using the autocorrelation function (8.10). Figure 8.11 shows that 118t = 1110t 

is reasonably satisfied. 
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Figure 8.10: Scaling law exponent estimation using Tables 8.5 (left panel) and 8.6 (right panel) . Re­
gression over at E I (green line) and regression over all bt (red line). 
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Figure 8.11 : Location parameter estimation using Tables 8.5 (left panel) and 8.6 (right panel) . Re­
gression over at E I (green line) and regression over all at (red line) . 

4The AD and KS t ests are quite small for f,t = 30,40, 1440, so we consider t hat t he t -distribut ion fits well t heir 
corresponding returns. 

5Note that t his same values was found when estimating t he self-similarity exp onent of t he non deseasonalised 
AUD / USD dat a using the EBP method in the previous Chapter 
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Chapter Eight 8.2. Statistical analysis of t he deseasonalised FTSEIOO fut ure contract 

8.2 Statistical analysis of the deseasonalised FTSEIOO future 

contract 

The interesting side of the FTSE100 future contract is it contains jumps at the opening 

market time. This allows us to test the performance of our time change estimators on 

data with jumps and in that case, we expect the log-variation estimator to perform the 

best as this last is robust to jumps. This performance will be noticed once we study the 

time duration of the DSai -FTSE100, where i E {O, 1, 2, 3}. In this section, we carry 
med 

the same analysis as for the DSa~ -AUD / USD. Once the performance of the estimators 

on data containing jumps are studied, we remove t he jumps at opening market t imes 

from the data so the statistical analysis does not t ake into consideration t he jumps at 

opening market times. Jumps may be modeled separat ely. They can be added into 

a model as a jump process, where jumps occur at opening market t imes and should 

follow a certain distribution. · Figure 8.12 shows the separation of the jumps from the 

DSa2 -FTSE100 future contract prices. 
med 

Figure 8.12: Removing opening times jumps from t he D S&2 -FTSE100 future contract prices. X(t) 
Tne d 

represent t he logarithmic price process, J(t) t he jumps at opening market t ime and Z(t ) a copy of 
X(t) without jumps. 

The DSai -FTSE100 log-prices returns (with jumps to opening market t ime removed) 
med 

analysis will be conducted in the same way as for t he DSa~-AUD/USD. 

8.2.1 Time duration and data sampling analysis 

8.2.1.1 Time duration analysis 

Defining T as the time duration between two price t icks, its distribut ion is presented 

in Table 8.7 for large scales t ime and Table 8.8 for smaller scales. 
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(in hour) 7 < 1 1::;7<12 12::; 7 < 24 24 ::; 7 
FTSElOO 110942 0 41 10 
DS-o -FTSE100 am 110910 83 0 0 

DSa;""d -FTSE100 110942 51 0 0 
DSa2 -FTSElOO 110993 0 0 0 

rned 

DSa~'d -FTSE100 110922 71 0 0 

Table 8.7: Time duration distribution (in hour) of the FTSE100 at large time scale. 

(in minute) 7 < 1 1::;7<5 5 ::; 7 < 10 10 ::; 7 < 60 60 ::; T 

FTSE100 107173 3691 25 53 51 
DS-o -FTSE100 am 84473 2,1588 1555 294 83 

DSa;"ed -FTSE100 83509 2G4~38 865 130 51 
DSa2 -FTSElOO 78326 30653 1733 281 0 

med 

DS-3 -FTSE100 a d 
81148 28638 1005 131 71 

Table 8.8: Time duration (in minute) distribution of the FTSE100 at small time scale. 

We note in Table 8.7 that the time duration does not exceed one hour when using the 

log-variation method for estimating the time change, which is not the case for the other 

methods. In fact, except for the log-variation method that is robust to jumps, the other 

methods are affected by jumps. They tend to enlarge the time duration, between ticks 

at opening market times and ticks at closing times of the previous day, to compensate 

for the size of the jump so that the time changed data looks continuous. In Table 8.8, 

we observe the phenomena of stretching small time duration and contracting large time 

duration. This is when the 8-time runs faster during low activity period and slower 

when the activity period is high. Once again the result in Table 8.8 shows that the 

log-variation performs better and this is confirmed by the low standard deviation of T 

(see Table 8.9) compared to the ones resulting from the other method. 

Table 8.0: Time duration (in minute) average and standard deviation of the FTSE100. 

For good performance of the log-variation method, we decide to carryon with, the 

study on the DSa2 -FTSE100 log return. 
m.ed 

8.2.1.2 Data sampling 

As shown in the previous Section, a linear interpolation is a reasonable choice. We 

draw on Figure 8.13 17M(t) given by (??) for St E {I, 5,10,30,60,120,720, 1440}. The 

green line represent the average of 17M (t). The linear interpolation will be a good 

approximation up to a certain time scale St. We may expect a reasonable approximation 

of the linear interpolation for St ~ 30 minutes. 
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61. ~. rrean( 7)J0) =fJ.17 
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Figure 8.13: The root mean square error of the DBa.2 -FTSE100 log-prices return at different time 
>ned 

scales (5t E {1, 5,10, 30, 60,120 , 720, 1440}) . 

8.2.2 Statistical properties of the log-prices returns 

8.2.2.1 Autocorrelation 

We draw the autocorrelation function of the return Figure 8.14, the absolute return 

Figure 8.15 and the squared return Figure 8.16, and thus at different time scales 6t, in 

particular for 6t E {I, 5, 10,30,60,120,720, 1440} in minute. The red lines corresponds 

to the 95% confidence interval bound for zero autocorrelation. 

We fit the autocorrelation function of the log-prices returns by the function (8.10), and 

the autocorrelation function of the absolute return and the squared log-prices returns 

by function (8.11), both using the least square method. These are represented by the 

green line. Note that there is positive autocorrelation in the log-prices returns for small 

scales. One can consider that the returns are uncorrelated for t5t 2:: 10 minutes. As 

for the DSa.~ -AUD /USD, the absolute and squared log-prices returns are positively 

correlated and decay as a power law function as the number of lag increases. 

8.2.2.2 Fitting the distribution of log-prices returns 

We assume that log-prices returns of the DSa.2 -FTSE100 are ergodic. We use a 
m e d 

pseudo-maximum likelihood estimate to fit the log-prices returns to three different 

distributions: Normal, a-Stable and symmetric scaled t-distribution. We draw the 

PDF, CDF, log(CDF) and log(l-CDF) of the one hour DSa.2 -FTSE100 log-prices 
med 

returns in Figure 8.17 with their fitted distributions. The estimated parameters for 

each distribution is given in Figure 8.18. The quantile-quantile plots (QQ-plot) are 

presented to graphically illustrate the goodness of fit of each PDF to the DSa.2 -
m e d 

FTSE100 log-prices returns distribution. 

As for DSa.3 -AUD/USD, the symmetric t-distribution seem to fit better the DSa.2 -
711. rned 

FTSE100 log-prices return. We fit our data with the symmetric scaled t-distribution 

'J(v, (J, p,), where (J and p, represent respectively the scale and the shift parameters 

(see Appendix B), and thus for returns at different time scales 6t. The Kolmogorov-
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Figure 8.17: PDF (top right) , CDF (top left) , log(CDF) (bottom left) and log(l-CDF) (bottom 
right) of the one hour DSa2 -FTSE100 log-prices returns , fitted to the normal (in red), a-stable 

",ed 

(in green) and symmetric scaled t-distribution (in magenta) . 

Smirnov and Andersen-Darling tests are computed to check the goodness of fit . The 

critical values are computed using a bootstrap method. Similar to the parameters 

estimation of DSa;, -AUD /USD log-prices returns, a similar argument is applied here 

to justify the use of the pseudo-likelihood estimator and the critical values of the tests 

computation by bootstrapping. The hypothesis Ho is defined so that "log-prices returns 

follow at-distribution". Ho is accepted when the goodness of fit statistic is smaller 

than its corresponding critical values and marked by ./, otherwise it is marked by a 

cross X. We note that the degree of freedom 1.1 increases as the time scale bt gets bigger. 

The distribution of the sample gets more peaked as the sampling frequency increases. 

In order to check for a possible self-similar properties of the DSa2 -FTSE, we fit the 
med 

log-prices returns to a symmetric scaled t-distribution with degree of freedom 1.1 = 5. 
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Figure 8.18: QQ-plot goodness of fit of the one hour DSa2 -FTSE100 log-prices returns 
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The results in Tables 8.10 and 8.11 shows that the DSa2 -FTSE log-prices increments 
med 

follow a t-distribution up to a minimum discrete time of 20 and 10 minutes respectively 

by the D and A2 statistics test. 

Ot 
Data parameters 1(8 test AD test 
size 1/ a 11 D Dc JIo A:' .f1Z Hu 

1 103763 2.10 1.23e-4 2.18e-6 2:3.793 CUS8 X 336.130 0.771 X 

2 51881 2.96 2.33e-'1 :3.7'1e-6 11.583 0.759 X 62.663 0.670 X 

5 20752 3.85 4.'15e-4 5.13e-6 3.0'15 0.771 X 2.878 0.639 X 

10 10376 4.46 6.98e-4 9.7ge-6 1.187 0.744 X OA82 0.G64 ./ 
15 6917 4.31 8.70e-4 1.16e-5 0.829 0.758 X 0.287 0.649 ./ 
20 5188 4.40 1.02e-3 2.23e-5 0.6G2 0.737 ./ 0.:326 0.G95 ./ 
30 3458 4.66 1.2ge-3 2.3ge-G 0.378 0.750 ./ 0.185 0.594 ./ 
45 230G 4.85 1.57e-3 5.46e-5 0.564. 0.767 ./ 0.167 0.596 ./ 
60 1729 4..88 1.83e-3 6.20e-5 0.532 0.74.1 ./ 0.257 0.670 ./ 
120 864 5.13 2.61c-3 1. 17e-4. OA57 0.751 ,/ 0.lD9 0.583 ./ 
240 1132 7.53 4.2ge-3 3.He-!1 0.679 0.791 ./ 0.2·13 0.625 ./ 
360 288 5.84 5.13e-3 4.92e-4 0.530 0.789 ./ 0.280 0.620 ./ 

Table 8.10: Fitting the DSa2 -FT8ElOO log-prices return to the symmetric scaled t-distribution for 
H)eti 

different time scale Ot E{l, 2, 5. 10, 15,20,30.40,60, 120, 240, 360. 720. 1440. 2880} minutes and 
their goodness of fit statistics. 

Ot 
Data parameters 1(8 test AD test 
size 1/ a /.1 D Dc JIo k A~ JIo c 

1 103763 5.00 1.62e-4 2.0.3e-6 26.280 0.788 X 690.962 0.625 X 

2 51881 5.00 2.64e-4 3.40e-6 lUSl2 0.783 X 114.801 0.657 X 

5 20752 5.00 4.6ge-'1 5.0ge-6 3.073 0.784 X 5.845 0.644 X 

10 10376 5.00 7.12e-4 9.90c-6 1.190 0.814 X 0,483 0.628 ./ 
15 6917 5.00 8.94e-4 1.18e-5 0.833 0.781 X 0.315 0.635 ./ 
20 5188 5.00 1.04e-3 2.28e-5 0.644 0.77'1 ./ 0.347 0.700 ./ 
30 3458 .5.00 1.30e-3 2,42e-5 0.'157 0.795 ./ 0.192 0.617 ./ 
45 2305 5.00 1.58e-3 5,46e-5 0.569 0.790 ./ 0.166 0.667 ./ 
60 1729 5.00 1.848-3 6.1ge-5 0.515 0.788 ./ 0.256 0.688 ./ 
120 864 5.00 2.60e-:3 1.17e-4 0.447 0.801 ./ 0.196 0.6:37 ./ 
240 432 5.00 4.06e-3 3.87e-4 0.533 0.751 ./ 0.270 0.619 ./ 
360 288 5.00 5.01e-3 4.98e-4 0.485 0.765 ./ 0.275 0.675 ./ 

Table 8.11: Fitting the DSa2 -FTSE100 log-prices return to the symmetric scaled t-distribution 
TrL(c:d 

with degree of freedom 1/ = 5, for different time scaleM E {I, 2, 5, 10, 15, 20, 30, 40, 60, 120, 240, 
360, 720, 1440, 2880} minutes and their goodness of fit statist.ics. 
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8 .2 .2 .3 Scaling law behaviour and self-similarity 

Assuming that the DSa,2 -FTSE100 log-prices satisfies the self-similar property with 
med 

index HI, the scaling parameter of the t-distribution CJ8t at a given 5t, must satisfy 

where H is t he scaling exponent computed from the slope of the line fitted to 

log CJ8t = HI log 5t + log CJI 

We find HI 0.559 and HI = 0.540 respectively when using Tables 8.10 and 8.11. 

These are represented in Figure 8.19. Concerning the relation between the location 

H! = 0.55944 and iI = 0.61161 HI = 0.54079 and if = 0.5 7094 
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Figure 8.19: Scaling law exponent estimation using Tables 8.10 (left panel) and 8.11 (right panel). 
Regression over 8t E I (green line) and regression over all 8t (red line). 

parameters, one should have /-L8t = /-LI6t. This is shown in Figure 8.20. 
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F igure 8.20: Location parameter estimation using Tables 8.10 (left panel) and 8.11 (right panel) . 
Regression over 8t E I (green line) and regression over all 8t (red line). 

In conclusion, it reasonable to argue that the DSa,3 -FTSE100 has some scaling prop-
med 

erties. It may be modelled by a scaling process. In the next Section, we show how 

the AUD /USD index rates and the FTSE100 future contract can be modelled using a 

t ime-changed process. 
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8.3 Modelling with a time-changed subordinated process 

Throughout this Section, we denote by S(t) and S(t) the price of a given asset at time 

t respectively in calendar time and operational time, so that S(t) = S(e(t)), where 

e E 8 T , such that T = 1 week and e(O) = O. We set the log-prices X(t) = 10g(S(t)j S(O)) 

(resp. X(t) = 10g(S(t)jS(0))) and its increments R(t, cSt) = X(t + cSt) - X(t) (resp. 

R(t, cSt) = X(t + cSt) - X(t)). 

8.3.1 Statistical properties of the log-price increments 

Let us look at the skewness and kurtosis of the log-prices increments R(t, cSt), gIVen 

respectively by Sr5t and /'1;r5t (8.12), where f-Lr5t and CJ8t are respectively the mean and 

the standard deviation of R(t, cSt). For a Gaussian random variables S8t = 0 and 

/'1;r5t = 3. In Table 8.12, we present an estimate of the skewness and kurtosis of the 

previously studied deseasonalised data distribution and thus at different sampling time 

frequencies. We see that Sr5t is non null and /'1;r5t > 3. 

Sr5t = JE[(R(t, cStl- f-L8t)3] and /'1;r5t = JE[(R(t, cStl- f-Lr5t)4] 

CJ8t CJr5t 
(8.12) 

DSa:,,-AUD/CSD DS-2 -FTSE100 
(1.", C< 

bt: (in min) 86/ Klit 8lit Klit 

5 0.246 1Ui8 0.3675 7.85 
1.5 0.0035 11.:36 0.2980 5.17 
30 0.0361 8.45 0.3319 . 4.87 
60 -0.0035 6.86 0.3471 4.71 
120 0.0226 6.11 0.2061 5.59 
720 -0.2716 3.99 -0.13:35 5.24 
1440 -0.2512 ·1.52 -0.2803 3.32 

Table 8.12: Kurtosis estimate of the DS6 " -AUD/USD and DS,,2 -FTSE100 log-prices increments. 
III In ~·d 

Let us summarise 6 the empirical log-prices returns R(t, cSt) statistical characteristics 

of the deseasonalised financial data previously studied as follows 

(Ad- R(t, cSt) f".J T(v, CJ, f-L). The log-prices increments follow a symmetric scaled t­

distribution with degree of freedom v E (3,6) depending on the sampling fre­

quency. The higher the sampling frequency is, the smaller the degree of freedom 

V IS. 

(A2)- /'1;r5t > 3. The log-prices increments exhibit higher kurtosis than the normal distri­

bution. 

(Al)- For an integer k > 0, Cov (R(t + kcSt, cSt), R(t, cSt)) ~ O. The log-prices increments 

are uncorrelated (or little correlated). 

U'vVe omit the skewness of the log prices return. 
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(A4)- For some positive real aI, Cov (IR(t + krSt, rSt) - lu5tl, IR(t, rSt) -lLrStl) rv k-O: 1
, as 

k ---+ +00. The log-prices increments are correlated and decay as a power law 

function. 

(A5)- For some positive real a2, Cov (IR(t + krSt, ot) - ILrSt1 2
, IR(t, rSt) - lLotl 2

) rv k-O:2
, 

as k ---+ +00. The log-prices increments are little correlated and decay as a power 

law function. 

(A6)- JE[IR(t, rSt)l] = (rSt)HJE[IR(t,1)1]· For large rSt, the log-prices increments satisfies 

the scaling law property, where H ~ 1/2. 

(A7)- We assume the process R(t, rSt) stationary. Since the time-change function is 

estimated in order to obtain a process that has stationary increments, the desea­

sonalised log-prices should have stationary increments. Even if we do not have 

direct evidence of this last, we assume that our deseasonalised data has stationary 

increments. 

8.3.2 Modelling the deseasonalised log-prices with Heyde's FATGBM 

8.3.2.1 The log-prices returns as a subordinated Brownian motion 

In this section, we describe a mode17 proposed by Heyde [13] for the log-prices returns, 

which satisfies the assumptions (AI)"'" (A7). We assume the log-price of an asset 

X(t) is such that 

x ( t) = ILt + a Z ( t) 

where IL and a represent respectively the drift and the scale parameters, and Z (t) 

is a stochastic process, with stationary increments (Z (t) will be defined later). The 

log-price return is then given by 

R(t, rSt) = ILrSt + a(Z(t + rSt) - Z(t)) (8.13) 

We choose a process Z, so that the appropriate statistical characteristic of our empirical 

data is obtained. As mentioned by Heyde in [13], such a process can be obtained 

through a subordinated Brownian motion B(T(t)), where B(t) is a Brownian motion 

and T(t) is a strictly increasing process with stationary increments and independent of 

B(t). This process was initially introduced by Clark in [105], where T(t) represents the 

stochastic market clock. Clark shows that such a subordinated process has stationary 

increments [105]. This satisfies the assumption (A7) of the log-prices returns. Since 

processes T and B are independent, setting Tt = T(t + rSt) - T(t), one has B(T(t + 
rSt)) - B(T(t)) ~ yTiB(1), and substituting Z(t) = B(T(t)) in (8.14), one gets the 

7The model fOT the stock prices belongs to Heyde [13] and developed by Heyde and Leonenko [110]. It is called 
FATGBM for Fractal Activity Time Geometric Brownian 1vlotion. 

175 
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following equality in distribution 

R(t,5t) = f-L6t + (J(B(T(t + 6t)) - B((t))) 0!J f-L5t + (JFtB(l) (8.14) 

The kurtosis K of R( t, 5t) is larger than 3, and so (A2 ) is satisfied. Indeed one has 

The following Proposition shows that the log-prices increments as defined in (8.13) 

satisfies the statistical properties (A3 ),(A4 ) and (A5) if the increments of the process 

T(t) are positively correlated. This is in fact given in [110]. 

Proposition 8.3.1. Assuming that the process T(t) has dependent increments, Then 

- Cov ( R(t + k5t, 5t), R(t, 5t)) = 0 

- Cov (IR(t + k6t, 5t) - f-L5tI, IR(t, 5t) - f-L5tI) = (J2COV (ylTt+klit, y'Ti) 

- Cov (IR(t + k5t, 6t) - f-L5t1 2, IR(t, 6t) - f-L5t12) = (J4COV (Tt+klih Tt) 

Proof We have 

Cov (R(t + k5t, 5t), R(t, 6t)) 

Similarly we get 

= Cov (f-L6t + (JylTt+klitBk(l), f-L5t + (JFtBo(l)) 

= (J2COV (ylTt+klitBk(l) , FtBo(l)) 

= (J2 (lE[ylTt+klitBk(l)FtBo(l)] -lE[ylTt+klitBk(l)llE[FtBo(l)]) 

= (J2 (lE[Bo (1)])2Cov (ylTt+k/it, Ft) 
=0 

Cov (IR(t + k5t, 5t) - f-L6tl, IR(t, 5t) - f-L5tI) = Cov ((JylTt+klitI Bk(l) I, (JFtIBo(1) I) 

= (J2(lE[I Bo(1)ll?Cov (ylTt+klit, Ft) 
= (J2COV (ylTt+klit, Ft) 

and 

Cov (IR(t + k5t, 6t) - f-L5t1 2, IR(t, 6t) - f-L5t12) = Cov ((J2Tt+klitIBk(1)12, (J2TtIBo(1)12) 

= (J4(lE[I Bo(1)12])2Cov (ylTt+klit, Ft) 
= (J4COV (Tt+klit, Tt) 

o 

176 



Chapter Eight 8.3. :'lodelling with a time-changed subordinated process 

In order to get R(t, M) rv 'J(v, (J, /1), one needs to have the right distribution of the 

process T increments. Heyde and Leonenko [110], show that taking the increments of 

T inverse gamma distributed leads us to the wanted log-prices increments distribution 

(t-distributed log-prices increments) and so assumption (Ad is satisfied. We develop 

next the properties of the process T. We first show that assumption (A6) is satisfied 

asymptotically. Taking T(t)/t --7 1 almost surely as t --7 +00 , one has 

IEIB(T(t +Jt)) - B(T(t))1 ~ 1E[IEIB(T(M))IIT(bt) ~ tl ~ $tIE [JT~~t) ]IEIB(l)1 

Furthermore as IE[T(bt)1 < +00, IE [ JT~~t)] ~ 1 as t ~ +00. The scaling property 

is given as M goes to infinity. 

8.3.2.2 Analysis of the Fractal activity time T 

We need to generate the fractal activity time so assumptions (A3 ),(A4 ) and (A5) are 

satisfied. Heyde [13] notes that the Fractal activity time process T exhibits long range 

dependence, which suggests that the time process to have a self-similar or multifracta18 

behaviour. One should have the following relation. 

T(at) - at (jdd) .M(a)(T(t) - t) 

where a is a positive constant and M a random function independent of T. For self­

similar behaviour, M(a) is of the form of aH , where H is the index of self-similarity of 

the process T(t) - t. Assuming for a real p strictly positive lEIT(t) - tiP < +00, then 

for q E (0, p] one has 

and so H can be estimated by computing the slope of the linear regression of 

10g(lEIT(t) - tlq) = qHlog(a) + 10g(lEIT(1) - 11 q
) 

We test this hypothesis on our deseasonalised financial data. Using an Ito's formula, 

Heyde [13] proposed the following construction of the time process T 

- dS(t) (J2 

dlog(S(t)) - -_ - = -dT(t) 
S(t) 2 

where 10g(S(t)) = X(t). Taking the prices process S = {S(t)}tE[O,rj. The construction 

procedure of the process T is given as follows. 

8 see Appendix A for an introduction to multifractal processes 
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Set Xo := log(So) 

Set Yo := So 

Set To := 0 

Initialise bt 

Initialise k := 1 

REPEAT While kbt :s; T 

Set X k := log(SkOt) 

Set Yk := Sk8t 
Yk +1 - Yk 

Set Tk+1 := Tk + X k+1 - X k - Y
k 

Set k:= k + 1 

The scaling properties of the time change process is shown in Figure 8.21 for DSa,3 -
m 

AUD/USD and DSa,2 -FTSE100, where T(t) - t was constructed from the price S(t) 
med 

sampled at 30 minutes interval and q = 1. The scaling property is satisfied and we find 

a scaling exponent of 0.753 and 0.812 respectively for DSa,3 -AUD/USD and DSa,2 -
m m~ 

FTSE100 fractal time processes. These correspond to the values mentioned in [13], 

which is H ~ 0.8. However this do not ensure the self-similarity of the process T(t) - t 

and so to continue, we assume that the fractal activity time of our data satisfies Heyde's 

hypothesis that the process T(t) - t is self-similar with index H E (1/2,1). In that 

case, as the increments of the process T are stationary and T(O) = 0 almost surely, for 

two positive reals t and s, the covariance function of the process Tt = T(t + bt) - T(t) 
is given by 

(8.15) 

ns,~.AUDflJSD. H=O.753 DSo'!. .:;,FISEIOO. H=O.812 
-4 -3 

Iog(E.1T(OtHti) Iog(E.1T(Ot)-6~) 

-5 -4 

-5 
-6 

-6 

-7 
-7 

-8 
-8 

-9 -9 

-10 -10 
2 6 10 1 4 

Iog(Ot) Iog(o') 

Figure 8.21: Estimation of the self-similarity index of the fractal activity time of the deseasonalised 
AUD jUSD rate index (left panel) and the FTSElOO future contract (right panel) 

As shown in [110], since the process T is increasing, T(t) - t cannot be self-similar. 
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Indeed, for any s E (0,1), one would have 

P(T(t + s) - T(t) < 0) = P(T(s) - s < -s) 

= p(SH (T(l) - 1) < -s) 

= P(T(l) < 1 - Sl-H) > 0 

which contradict that T is increasing. This push Heyde [13] to write 

(Jdd) 

T(at) - at rv aH (T(t) - t) 

(Jdd) 

where ~ stand for asymptotically equal in finite dimensional distribution and affirms 

the distribution of T(t) can be approximated in the sense of finite dimensional distrib­

ution by the distribution of t +tH (T1 -1), where T1 rv (v - 2)Rf(v /2,1/2) so E[T1] = l. 

In that case, the process B(T(l)) (!!) y'TlB(l) rv 'J(v, 1,0) (see Appendix B). Using the 

relation between the inverse Gamma process and the Chi-squared given in Appendix 

B, the process Tt can be generated as 

v-2 
Tt rv ~v. N(t)2 

L...-1=1 1 

where the Ni (t) are standard normal random processes independent from each other. 

Taking 
1 

Cov (Ni(t + s), Ni(t)) = (1 + IsI2)a/2 

where a E (0,1/2), Heyde and Leonenko [110] shows that we get the appropriate auto­

correlation function of the process Tt given by (8.15) and that the process T( l n~L: l nt J 
converges weakly to a H-self-similar process R(t) with H = 1- a, as n goes to infinity. 

It can be shown that [110] 

T(lntJ) - lntJ (d) 1 LV 
------",,------- ---+ - Ri(t) as n ---+ +00 

n H v 
i=l 

where ~ are independent Rosenblatt processes. This satisfies the asymptotical self­

similarity of the process T(t) - t. 

The subordinated process B(T(t)), with the process T as described above, gave birth 

to Heyde's FATGBM model, to model stock price 

S(t) = S(O)e/-LHCTB(T(t)) 

FATGBM stand for Fractal Activity Time Geometric Brownian Motion. 
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8.3.2.3 Comparison of real data to FATGBM model 

We fit the logarithm of Heyde's FATGBM model to the DSa.~-AUD/USD and DSa.;'ed­

FTSE100 log-price. The FATGBM model is defined by the following parameters: v, 

CJ, p, and a . These parameters were already estimated in the previous sections. Here 

we remind their estimate in Table 8.13 for DSa.~ -AUD/USD log-price with cSt = 30 

minutes and for DSa.2 -FTSE100 log-price with cSt = 60 minutes. med 

DSa~-AUDjUSD DSa2 -FTSEI00 

Parameters vi (J" I J.L I a vi (J" I J.L I a 
4 I 6.00e -4 I 1.75e ·0 I 0.25 5 I 1.84e - ;j I 6.1ge '0 I 0.19 

Table 8.13: FATGBM fitted parameters. 

Note that in theory, the FATGBM is valid for v > 4. However, in practice we allow 

v = 4. In Figure 8.22, we represent the DSa.3 -AUD/USD and DSa.2 -FTSE100 log-
m m~ 

price and log-prices return. For comparison, we also draw a simulated log FATGBM 

and their increments. In Figure 8.24, we draw the autocorrelation function of the 

log-prices increments, as well as the absolute and squared log-prices increments of the 

DSa.3 -AUD/ USD and DSa.2 -FTSE100 log-price with the autocorrelation function of 
m m e d 

their respective models. 

° 

0.25 

0.2 

X(t )0.15 

0.1 

0.05 
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DS. ~-AUDj\JS D 
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FATGBM 

Jui 
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0.2.-----~----~~-_____, 

0.15 

X (t) 0.1 

-8:8~~====:::::========~==~ 

'I" "":~~ 
X(t) 

Nov DBC 

FATGBM Model 
0.2.-----~-----~-____, 

Nov Dec 

Figure 8.22: DSa3 -AUD jUSD (left panels) and DSa2 -FTSEI00 (right panels) log-prices and log-
= =~ 

prices returns , and their calibrated log-FATGBM model below. 
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Chapter Eight 8.3. Modelling with a time-changed subordinated process 

The log-prices return and the log FATGBM increments distribution are represented in 

Figure 8.23. The FATGBM reproduce the distribution of the log prices return of the 

deseasonalised AUD /USD rate index and the deseasonalised FTSE100 future contract. 
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Figure 8.23: Log-prices return distribution of the DSa3 -AUDj USD (left panel) and the DSa2 -
m m~ 

FT SElOO (right panel) as well as their corresponding log FATGBM increments distribution (in 
green). 

We note also that Heyde 's FATGBM model describe well the autocorrelation structure 

of the data and so it seems to be a good model since it satisfies our assumptions on 

the log-prices characteristics described previously. 

0.2[ log-prices increments ACF 

AC~.:~ 

0.2 i .l\Qsoiute Iog.pric1:Q<\ncrements A~~ 

AC~ ·:f~·~;;!f;:;"$)<::.~"""""<JC<~~<w!N"'<),ow.""""'~"" 
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AC~:.~~ 

o .iillso iute Iog.prict9<\ncre me nts A~ .. ~ 
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lAg 

Figure 8.24: ACF of DSa3 -AUD j USD in blue (left panels) and DSa2 -FTSE100 in blue (right 
Tn fned 

panels) compare to the ACF of their calibrated log-FATGBM model in green. 

8.3.3 Time-changed subordinated Brownian motion 

We consider the following time-changed FATGBM, noted 8-FATGBM and defined as 

S(t) = S(O)eJ.LO(t)+aB(T(O(t ))) 
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We draw in Figures 8.25 the log-prices of our data and the log 8-FATGBM given by 

X(t) = j18(t) + O"B(T(8(t))) 
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X(t) 0.15 
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~t) 

F1ll EIOC 
0.2r-----~-....:........:....--~---__, 
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0.1 
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8·F.~TGBM 
0.2,-----~-----~---_, 

0.1 
X(t) 

-8:8~~=====:=======:::::::::===~ 

"I'~":~ 
Nov Dec 

Figure 8.25: AUD j USD (left panels) and FTSE100 (right panels) log-prices and log-prices returns, 
and their calibrated log(8 - F ATGBM) model below. 
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Figure 8.26: ACF of the absolute log-prices increments of AUDjUSD (left), FTSE100 (right) and 
their respect ive 8-FATGBM. 
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Note that the weekly and daily periodicity of our high frequency financial data are 

reproduced into the model. This is confirmed by the autocorrelation function of the 

absolute log-prices increments and one of the log e-FATGBM in Figures 8.26. The blue 

lines represent the ACF of AUD/USD (left panels) and FTSEIOO (right panels). The 

green lines represent the ACF of the e-FATGBM. Clearly, the periodicity exhibited by 

the absolute log-prices return of our financial data are also exhibited almost exactly 

by the time-changed FATGBM. 

The e-FATGBM seems to be a good model for high frequency financial data. It re­

produces the characteristic required, which are given at the beginning of Section 8.3.1. 

Moreover, the e-FATGBM can be seen as a model that includes a stochastic volatility 

component, due to the fractal time activity T and a deterministic volatility component 

intraday seasonality, brought by the function e. 
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Conclusion 

We assumed a process of the form X(t) = X(B(t)), where B is a deterministic function 

strictly increasing and continuous and X is a self-similar process of index H and has 

stationary increments. 

Assuming we have observations of the process X (t), we wanted to estimate the function 

B. To do so, three methods estimating the time-changed function B were developed; 

two of them using the path variation (1/ H-variation and log-variation) and one using 

level crossings of the process. 

For the estimators based on the path variation, the 1/ H-variation is more adapted to 

continuous sample paths processes such as the fractional Brownian motion. In com­

parison, the log-variation is adapted to jump processes such as the Levy stable motion. 

For both of these estimators, the self-similarity index of X needs to be estimated from 

the process X. Jones and Shen [7] estimator is theoretically the right estimator to use 

since it does not depend on the time-change function B. 

The crossing level estimator avoids the problem of estimating H. It has a natural 

estimate of H, while performing the time-change estimate. Moreover, the level crossings 

estimator may be used in a more general framework. The process X does not need to 

be self-similar in that case, however the estimated time change will depend on the size 

of the level crossing chosen. 

For the three estimators, we showed, under H -sssi and ergoditcity assumptions of X, 

convergence in probability to the time change function B. Their performances have been 

tested on simulated time changed self-similar processes; in particular on time-changed 

fractional Brownian motion and time-changed Levy motion. In conclusion, the three 

estimators have advantages and inconveniences. Only the 1/ H-variation method is 

unbiased. The log-variation performs the best with jump processes and the crossing 

method has the advantage to not need an estimate of the self-similarity index. 

When applying the estimator to high frequency financial data, while the path variation 

estimators use the logarithmic price to estimate the activity (since some high frequency 

financial data exhibit a scaling property, when taking the logarithmic price), the cross­

ing may be used directly on the prices itself. However, the level crossing estimator was 

performed on the log prices for the sake of comparison. 

Note before applying our estimator on high frequency financial data, the data needed to 

be cleaned (Chapter 6). One need to remove spurious observations since the estimators 

are sensitive to outliers for example. 
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Conclusion 

Other advantages: Our estimators do not need the use of years of HDF to estimate 

the activity, as the estimator of Dacorogna does [3], and so few weeks suffice to give a 

good estimate of the activity market. 

Note in general, for financial data H ~ 1/2, so that the 1/ H-variation for H = 1/2 

correspond to the time change estimator presented by Zhou in [93], which correspond 

to estimate the local volatile of the data. 

Estimating the activity in high-frequency financial data, allows describing the market 

microstructure as well as removing the intraday seasonality from the data. The way 

that the time change removes the intraday seasonality is carried out by stretching 

periods with high fluctuation and compressing periods of low fluctuation (Chapter 7). 

The estimated time-change, which deform the physical time, is seen as the operational 

time. Since the estimator assume that the time changed data has stationary increments 

in the operational, the filtered data are easier to model. To obtain a model in physical 

time, it suffices to inject the time change function back into the model used in the 

operational time for the HFD. This procedure was described in Chapter 8, using a 

time change on Heyde's FATGBM model. 

We saw that the de-seasonalised log-prices return follow a Student t-distribution. Also, 

the analysis of the data at different scales showed that the log-prices exhibit a scaling 

property. These characteristics are well described by the FATGB11. 

Finally, the e-FATGBM proposed for high frequency financial data in Chapter 8, is 

in some sense a model which exhibits a stochastic volatility as well as a deterministic 

volatility, where this last represents the intraday seasonality of the data. This model is 

a good model since it reproduces the desired periodicity in the autocorrelation function 

of the absolute logarithmic prices increments. 

Further work will consist of, improving the level crossings estimator, and finding a way 

to make it an unbiased estimator. Also, to compare the performance of the crossing 

method on estimating the time change function from the prices and the log prices. We 

can also extend the use of the time-changed process to point processes. This last is an 

alternative for modelling high frequency financial data (see [84]). 

A new topic would be, analysing how trading strategies performed on the operational 

time may be affected by the time change. Generally this will provoke fast trading 

during periods of high activity, which may be difficult to perform in reality, since 

we may end up with two consecutive trading times separated by a few seconds. An 

improvement of trading strategies may be done using time changed process as a model 

for high frequency finance. This last topic may be started by looking at the effect 

of the time change on the liquidity of the market and study how the volume of the 

transaction may be affected. 
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Appendix A 

An overview of Multifractal 

processes 

A.I Definition and properties 

Generally, multifractal measures are proposed to model temporal heterogeneity of self­

similar processes. Definition A.1.1 of a Multifractal process is given by Calvet and 

Fisher in [111]. 

Definition A.I.I. A random process X = {X(t)h:::o is called Multifractal process if 

it has stationary increments and satisfies 

(A.1) 

where for q > 0, T(q) and c(q) are deterministic functions of q. 

T(q) is called the scaling function of the Multifractal process. Note for a self-similar 

process the function T is linear. Indeed suppose X is H-ss process, one has lEIX(t)lq = 

t qHlEIX(l)lq, this implies T(q) = qH - 1. 

Proposition A.I.2. The function T is concave. 

Proof. Let.\ E [0,1] and qI, q2 two strictly positive constant. We set q = (l-.\)qI +.\q2 

Using the Holder inequality one has 

taking the logarithm and using (A.1), one has 

log( c( q)) +T( q) log(t) ::::; (1 - .\) log( c(qd) +.\ log( c( q2)) + ((1 - .\)T(qI) + '\T(q2)) log(t) 

(A.2) 
Dividing by log t for t < 1 and tending t to 0, one gets 
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this implies the function T is concave. o 

Proposition A.1.3. The multiscaling property holds for a bounded interval T ~ jR+. 

Proof. Note that the proof of Proposition A.I.2 contains additional information. Con­

sidering relation (A. 2), taking t > 1 and tending t to infinity, one gets 

which contradicts the concavity of T, we deduce that the multiscaling property holds 

for a bounded interval T ~ jR+. 0 

A large class of multiscaling processes can be defined (see [112]). We consider a process 

X and we assume the existence of an independent positive process hi = {.i\i (c)} c2:0 

that satisfies 
(fdd) 

{X (ct)}t2:0 = {hi(c)X(t)}t2:0' Vt, 0< c:::; 1 (A.3) 

If (a, b) E (0,1]2, the process .i\i takes positive values and satisfies [112] 

(A.4) 

where .i\il and M2 are two independent copies of hi. 

From the multiplicative property and the independency of Ml and M2 , Equation (A.4) 

yields to IEIM(ab)lq = IEI.i\i(aWIEI.i\i(b)lq for all q > 0. When these moments are finite, 

the process M satisfies the scaling relationship IE[.i\i(c)F = CT(q)+l. Using (A.3) one has 

IEIX(t)lq = IEIM(t)X(lW = IEI.i\i(t)lqIEIX(lW = c(q)tT(q)+l 

assuming that X has stationary increments, we deduce by Definition A.I.l that X is 

multifractal. By analogy to self-similar processes, one can replace M(c) by cH(c) , where 

H(c) is a stochastic function of c. We can rewrite (A.3) as 

(A.5) 

Moreover under strict stationarity of the increments of X, one has for M > ° 
{X(t + cM) - X(t)}tET (fdd) {cH(c) (X(t + M) - X(t))}tET 

A.2 Moments and scaling law 

Definition A.2.1. X is a fractal process if for t 2': ° and q > 0, then X satisfies the 

scaling law 
.i\i(q, c5) = IE[I.6.X(t, c5)lq] r-v C(q)c5((q) (A.6) 

where .6.X(t, c5) = X(t + c5) - X(t) and C(q) and ((q) are deterministic function of q. 
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The nature of the process X depends on the function (, one has the following remark 

Remark A.2.2. Let X a process satisfying (A. 6), then 

(i) If the function theta ( is linear ((( q) = qH), then X is a monofractal process, 

example H -ss process 

(i-i) If the function theta ( is non linear, then X is a multifractal process. 

Note if the process X has stationary increments and X(O) (a.s.) 0, then (A.6) becomes 

for c5 > 0 

(A.7) 
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Appendix B 

Symmetric scaled Student 

t-distribution 

B.1 The symmetric scaled Student t-distribution 

The symmetric scaled Student t-distribution 'J(v, (J", fJ) is represented by the following 

density function ((J" and fJ represent respectively the scale and the shift parameter). 

f(x) = r ((v + 1)/2) 

( 2) (v+l)/2 (J"oJ1iT(v/2) 1 + ((x - fJ)/(J") 

The parameter v is called the degree. Most studies in the literature tend to take v 

as an integer; but in fact v belong to the positive real line. For v = 00 the student 

distribution becomes the normal distribution. 

B.2 Other distributions related to the t-distribution 

We present three distributions that are related (closely or not) to the t-distribution. 

Gamma, Inverse Gamma and Chi-squared. The distributions and their links to each 

other are taken from [113]. 

- The Gamma distribution r(a, 13) is defined by the following density function 

where the strictly positive reals a and 13 are respectively the shape and the scale 

parameters. A random variable gamma distributed has mean aP' and variance 

aP'2 for 13 > 2. 

- The Inverse Gamma distribution Rr(a,P') is defined by the following density 

function 
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Chapter B B.:3. Generating scaled Studeni i-distribution random variables 

where the strictly positive reals a and (3 are respectively the shape and the scale 

parameters. A random variable inverse gamma distributed has mean (3/ (a - 1) 

and variance (32/(a - 1)2(a - 2) for (3 > 2. This distribution is related to the 

Gamma distribution by Rf(a,(3) rv l/f(a, 1/(3). 

- Chi-squared distribution X2 (v) 

-x/2 
f ( . ) - v/2-1 e x2 x, V - x -2-V /:-::-2 -f--:-( v-/--:-2"7") 

where the strictly positive real v is the degree of freedom. The link to the 

Gamma distribution is X2(V) rv f(v/2,2) and to the inverse Gamma is X2(v) rv 

1/Rf(v/2, 1/2). Note that X2(V) has same the distribution as the sum of the 

squares of v-independent unit normal random variables. 

B.3 Generating scaled Student t-distribution random varI­

ables 

The random variable X rv 'J(v, 1, 0) has the representation (see for example [113] page 

146) 
X (d) Y 

JZ/v 
where Y has normal standard distribution N(O, 1) and Z has chi-square distribution 

with v degrees of freedom independent of Y. X' rv 'J(v, 0-, f-L) is obtained by the following 

representation 

X' = f-L + o-X 

Another representation can be given byX' (d) f-L + o-VVY, where V, independent of Y, 
v-2 

has mean 1 and V rv --Rf(v/2, v/2). 
v 

. B.4 Moments of 'J(v, CJ, fJo) random variable 

The nth moment f-Ln = E[(X - f-L)2] of 'J(v, 0-, f-L) random variable are given by 

f-Ln = 0 if n < v and n odd 

X= 
n 1.3.5 ... (n - 1)vn

/ 2 

f-L - 0- if n < v and n even 
n - (v - 2)(v - 4) ... (v - n) 

(B.1) 

f-Ln = 00 if n ~ v 
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Appendix C 

Estimating density parameters 

Several technics can be found in the literature to estimate density parameters. The 

main estimators are: the Method of Moments (MM), the Minimum chi-square (MCS) 

estimation, and the maximum likelihood estimator MLE. 

C.l Method of moments 

The method of moments was introduced by Pearson [114]. Generally, only moments of 

order one to four of the observed data are chosen as these moments are well defined. 

The method consists on matching empirical moments with theoretical moments. It 

can be applied to dependent random variables, generally assumed to be stationary and 

ergodic for which the sum of the sample powered by n divided by the sample size 

converges to its theoretical nth moment, as long as this last exists. 

For example, for the symmetric scaled t-distribution, one uses (B.1) for n = 1, ... ,4 

to estimate the density parameters. However, the disadvantage of this method for 

the t-distribution, is that it cannot be applied to sample data for which its empirical 

distribution has a degree of freedom less than or equal to 4, since the 4th moment of 

such sample does not exists. For financial data, generally the logarithmic price return 

follows a t-distribution with 2 < v < 4 (see for example [49] or [110]). 

C.2 Minimum chi-square estimator 

The Minimum Chi-Square (MCS) estimator (see for example [115] and [116]) consists 

on minimising the following statistics 

where e is the density parameters, Oi the number of observations falling within the 
1 

ith -% sample quantile and Ei the expected number of observations falling within the 
n 

same quantile. 
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For large sample data, this method can be applied to dependent observations assumed 

to be stationary and ergodic [116J. However, the disadvantage of this method is that it 

performs poorly for continuous random variables and the choice of n for the percentage 

quantile may affect the estimator. 

C.3 Maximum likelihood estimator 

The Maximum likelihood estimator (MLE) method was introduced by Fisher [117J. 

Let Xl, ... ,Xn with joint distribution fXl, ... ,XJXl, ... ,xnIB) where B is the parameter 

of the distribution. The likelihood function is defined by 

(C. 1) 

The method of maximum likelihood estimates B by finding the value of B that maximises 

L(Blxl,"" xn). Assuming Xl"'" Xn are i.i.d. with common density function f, (C.l) 

becomes 
n 

L(BIXl' ... ,xn) = IT f(XlIB) (C.2) 
j=l 

If the sequence Xl"'" Xn are not i.i.d. then (C.l) can be rewritten as 

To maximise the likelihood function, one maximise its logarithm function. For example, 

using the log of (C.2), one gets 

n 

10g(L(BIXl,"" xn)) = I)Og(f(XlIB)) (C.4) 
j=l 

Wald in [118]' shows that in the case of i.i.d. sequence, the MLE estimator is strongly 

consistent and asymptotically normal. For dependent observations, the likelihood func­

tion is not the product of the densities. However, for large samples, some assumption 

can be made to show the consistency of the MLE. Assuming the observations are sta­

tionary and ergodic, Sagara [119J shows that the MLE is consistent; He uses the Birk­

hoff's ergodic Theorem and the martingale convergence Theorem. For previous work 

on MLE for dependent observations, we refer to Bar-Shalom [120J and Bhat [121J. For 

a survey on the application of the MLE on more general processes see Sweeting [122J. 

In practice, one can use (C.4) for dependent observations with some additional assump­

tions. However (C.4) will not be called likelihood function but "pseudo"-likelihood 

function. The term" pseudo" is given for example by Gourieroux et al. in [123J. We 

also find the term "quasi" instead of "pseudo" in some econometrical papers. The 

principe is similar to the MLE. We maximise the pseudo-likelihood function to esti-
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Chapter C C.4. Comparison 

mate e. Under some assumptions of the dependent observations, Levine [124] and 

Gourieroux et al. [125] showed the consistency of the the ma..ximum pseudo likelihood 

estimator MPLE. Assuming stationary and ergodic observations, Choirat et al [126] 

showed that the MPLE is consistent. 

C.4 Comparison 

Here we present a comparison of the estimators. We generate 10000 independent 

random variables t-distributed, from which we estimate the parameters v, (J and f-L 

using the three estimators described above. We repeat the process 50 times in order 

to get the mean and twice the standard deviation of the estimator. The results of the 

simulation are shown below in Table C.l. The mean, and twice the standard deviation 

into brackets are displayed for some parameters. We note the good performance of the 

MLE and the bad performance of the MM for v :::; 4. 

I :tvlethods II 1/ 

True parameters 10 20 5 
MI\1 10.188(2.101) 20.022(0.531) 5.012(0.517) 
MCS 9.160(1.464) 20.165(0.453 ) 5.000(0.505) 
MLE 9.964 (1.841) 19.972(0.463) 5.002(0.488) 

True pa.rameters 4 1 0 
MM 4.683(0.719) 1.070(0.042) 0.000(0.034) 
MCS 3.990(0.812) 1.076(0.130) 0.000(0.090) 
MLE 4.001(0.399) 1.000(0.026) 0.002(0.026) 

True parameters 2 0.5 -0.01 
MM 4.032(0.061) 1.130(0.4673) -0.009(0.031) 
MCS 2.144(0.893) 0.395(1.2990) 0.044(0.526) 
MLE 2.025(0.071) 0 .. 502(0.0117) -0.010(0.021) 

Table C.1: Comparison of l'v1M, MCS and MLE on t-distributed sample data. 
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Appendix D 

Goodness of fit 

We present two statistical tests the Kolmorov-Smirnov test and the Anderson-Darling 

test. In both tests, the null hypothesis Ho is "The data follow the specified dis­

tribution". HI: " The data do not follow the specified distribution". We consider 

{Xi}iE{l, ... ,n} the observations used to define the the tests. 

D.l Kolmogorov-Smirnov test 

The Kolmogorov test [127] measures the maximum absolute distance between the em­

pirical distribution function Fn of a sample and the empirical distribution function of 

a theoretical function F 

Dn = sup [F(x) - Fn(x)[ (D.1) 
x 

This test is often called Kolmogorov-Smirnov test. In fact Smirnov in [128], presents 

an extension of the Kolmogorov test. The test is based on Kolmogorov statistics and 

has the aim to compare two independent samples that can be of different size. This 

test tells us whether the two samples have the same distribution. Assuming F~ and F~ 

are the empirical distribution of both samples respectively of size nand m, Smirnov 

statistics is given by 

Dn,m = sup [F~(x) - F~(x)[ (D.2) 
x 

The Kolmogorov-Smirnov test in both cases can be applied only on random variables 

for which the empirical distribution function is continuous. The null hypothesis Ho 

is rejected if Dn,m is greater than the critical value. Tabled values can be found in 

Birnbaum [129]. A more applicable formula of the Kolmogorov-Smirnov statistics, 

which can be found in [130], is given by 

(D.3) 

Where Fn (Xi) is the value of the fitted empirical distribution at the ith ordered obser­

vation. 
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Chapter D D.2. Anderson-Darling test. 

D.2 Anderson-Darling test 

Anderson-Darling test [131] measures the quadratic deviations between the empiri­

cal distribution function Fn of a sample, and the empirical distribution function of a 

theoretical function F, multiplied by a weighting function 'ljJ(x) 

(D.4) 

1 
Where 'ljJ(x) = Fn(x)(l _ Fn(x)) This test has the advantage of being more sensitive 

to the tail of distributions (e.g. a-stable distribution, Student t-distribution). As the 

Anderson-Darling test makes use of the specific distribution to calculate the critical 

value, this last must be calculated for each distribution. Tabulated value,s have been 

published for a few specific distributions by Stephens [130]. If the test statistic A 2 is 

greater than the critical value, then the null hypothesis Ho is rejected. 

A more applicable expression of (D.4) is given by (this can be found in [130] for exam­

ple) 
n 2i - 1 

A2 = -n - L --(log(Fn(Xi)) + 10g(1 - Fn(Xn+1- i ))) (D.5) 
n 

i=l 

Where Fn(Xi ) is the value of the fitted empirical distribution at the ith ordered obser­

vation. Note that the Anderson-Darling test statistics can be applied for both discrete 

and continuous distributions. 

D.3 Bootstrap method goodness of fit 

Critical values of the Anderson-Darling and the Kolmogorov-Smirnov statistic for some 

distributions can be found in the literature, see for example [129], [130] and [132]. 

Unfortunately, for the t-distribution and a-stable distribution we could not find them. 

However one can estimate the statistics of this test using a Monte Carlo simulation. 

This is the case when the distribution of the sample are known. 

The distribution of observed real data, such as financial data, are unknown. Generally 

we assume that the sample have a distribution F(X; e) and we estimate e (using one of 

the methods cited in C) for which P = F(X; iJ) fits better the empirical distribution of 

the observed data. The question is how well the distribution fits the one of the sample. 

In that case we use a bootstrap method. 

The bootstrap method introduced by Efron [133] is a general resampling procedure 

for estimating the distributions of statistics based on the observations. The bootstrap 

goodness of fit [134] is used to check if the a sample observations come from a particular 

distribution. Let F(x, e) be the distribution chosen to fit our sample distribution. The 

procedure consists of (see [134]): 
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Chapter D D.3. Bootstrap method goodness of [it 

1 Estimate e from the sample. The estimator is given bye. 

2 Calculate the goodness of fit statistic T for the given distribution F(x, (j). 

3 Use bootstrap sampling to estimate the distribution of the sample T. 

a Generate B sample X(i) from the fitted distribution F(x, (j). 

b Fit F(x,e), by computing (jU) an estimator of e for each sample X(i). 

c Calculate the goodness of fit statistic T(i), for the fitted F(x, (j(i)). 

d From the EDF of T(i) we compute the p-value p of T. The model with the 

smallest value of p is selected. 

#T(j) ~ T 
p=----

B 

Note that as B is bigger as the precision of the p-value increases. One needs B > 500, 

for a good estimate of p. 
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Appendix E 

Time-changed self-similar processes 

and diffusion processes 

We present a short overview on how to include intraday seasonality using the time­

change function e to some well known asset prices models. 

E.1 Motivation 

Assuming the basic model of an asset price in e-time 5(t) is given by the following 

Stochastic Differential Equation (SDE) 

d5(t) = f-L5(t)dt + 0-5(t)dW(t) (E.1) 

where the drift f-L and the volatility 0- are constants and W(t) is a Brownian motion. 

The solution of (E.1) is 

5(t) = 5(0) exp (f-L - 0- 2 /2)t + o-W(t) 

The asset price S ( t) in calendar time is then 

S(t) = 5(e(t)) = 5(0) exp ((f-L - 0- 2 /2)e(t) + o-W(e(t))) (E.2) 

The deterministic function e can be estimated from the log-prices X(t) = log(S(t)/5(0)). 

The process X is locally self-similar if f-L - 0-2 /2 -1= 0, and self-similar otherwise, in 

both cases the index of self-similarity is 1/2, which is the self-similarity index of the 

Brownian motion W. Moreover, X has independent increments and so using Theorem 

in Chapter 4, one can estimate the time function e from X. So the asset price model 

represented by (E.2) can be applied to high frequency financial data, where the function 

e represents the intraday seasonality component of the model. 
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Chapter E E.2. Time changed Asset price model as a deterministic volatility model 

E.2 Time changed Asset price model as a deterministic volatil­

ity model 

The time change function e in the asset price model (E.2), can be seen as a time­

dependent volatility model represented by the following SDE 

(E.3) 

where /Jov is a constant and (J'v is a deterministic function of time, and for which the 

solution is 

Using an integral representation of the time-changed Brownian in (E.2), one has 

By analogy to (E.4) , we find 

(J'v (t) = (J' ft'(t) and /Jov = /Joe (t) 

Note in that case /Jov is time-depend function. 
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Appendices related to Chapters 
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Chapter F F.l. Formation of the crossing tree (Chapter 1) 

F .1 Formation of the crossing tree (Chapter 1) 

~ .. = 

liYd2:Cmsilmgs. _____________________ ....,,_..::::::.::::::-..-::--=------

• • • 

Figure F.l: Construction of the crossing tree for the EBP estimator. Graph taken from [2] 
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F.2 DuMouchel Tables (Chapter 1) 

V;3 

Va 0.00000 0.10000 0.20000 0.30000 0.50000 0.70000 1.0000 
2.4390 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 
2.5000 1.9160 1.9240 1.9240 1.9240 1.9240 1.9240 1.9240 
2.6000 1.8800 1.8130 1.8290 1.8290 1.8290 1.8290 1.8290 
2.7000 1.7290 1.7300 1.7370 1.7450 1.7450 1. 74GO 1.7450 
2.8000 1.6640 1.6630 1.66:30 1.6680 Ui7fiO 1.6760 1.6760 
3.0000 1.5630 1.5600 1.5530 1.5480 1.5470 1.5470 1.5470 
:3.2000 1.4840 1.4800 1.4710 1.4600 1.4480 1.4:380 1.4:380 
3.5000 1.3910 1.3860 1.3780 1.3640 1.3370 1.3180 1.3180 
4.0000 1.2790 1.2730 1.2660 1.2:)00 1.2100 1.1840 1.1GOO 
5.0000 1.1280 1.2] 00 1.1140 1.1010 1.0670 1.0270 0.97300 
6.0000 1.0290 l.(l210 1.0140 1.0040 0.97400 0.93500 0.87400 
8.0000 0.89600 0.89200 O.887()0 CJ.88:~()() 0.85500 0.82:300 0.76900 
10.000 0.81800 0.81200 0.80600 0.80100 0.78000 0.75600 0.69100 
15.000 0.69800 0.69:)00 0.69200 0.68900 0.67600 0.65600 0.59500 
25.000 0.59300 0.:)9000 0.58800 0.58600 0.57900 0.56300 0.51300 

//;3 

V" 0.00000 0.10000 0.20000 0.30000 0.:)0000 0.70000 1.0000 
2.4390 0.00000 2.1600 l.0000 l.0000 1.0000 1.0000 1.0000 
2.5000 0.00000 l.:J920 3.3900 1.0000 1.0000 1.0000 1.0000 
2.6000 0.00000 0.75900 1.8000 1.0000 1.0000 1.0000 1.0000 
2.7000 0.00000 0.48200 1.0480 1.6940 1.0000 1.0000 1.0000 
2.8000 0.00000 0.36000 0.76000 1.2320 2.2290 1.0000 1.0000 
3.0000 0.00000 0.25300 0.51800 0.82300 1.57.50 1.0000 1.0000 
3.2000 0.00000 0.20300 0.41000 0.63200 1.2440 1.9060 1.0000 
3.5000 0.00000 0.16:)00 0.33200 0.49900 0.94300 1.5600 1.0000 
4.0000 0.00000 0.13600 0.27100 0.40400 0.68900 1.2300 2.1950 
5.0000 0.00000 0.10900 0.21600 0.;32300 0.5~1900 0.82700 1.9170 
6.0000 0.00000 0.096000 0.19000 0.28400 0.47200 0.69:300 1.7::i90 
8.0000 0.00000 0.082CJOO 0.IG:300 0.24;~00 0.41200 0.60100 1.59(jO 
10.000 0.00000 0.074000 0.14700 0.22000 0.:37700 0.54600 1.4820 
15.000 0.00000 0.064000 0.12800 0.19100 0.33000 0.47800 1.3620 
25.000 0.00000 0.056000 0.11200 0.16700 0.28500 0.42800 1.2740 

Table F.2: DuMouchel Table to estimat.e /3, note that \[!2(V", -v,g) = -\[!2(V", , v(3). 

211 



Chapter F F.2. DuMouchel Tables (Chapter 1) 

/3 
a 0.00000 0.25000 0.50000 0.75000 1.0000 

2.0000 1.9080 1.9080 1.9080 1.9080 1.9080 
1.9000 1.9140 1. 9150 1.9160 1.9180 1.9210 
1.8000 1.9210 1.9220 1.9270 1.9360 1.9470 
1.7000 1.9270 1.9300 1.9430 1.9610 1.9870 
1.6000 1.9330 1.9400 1.9620 1.9970 2.04.30 
1.5000 1.9390 1.9520 1.9880 2.0450 2.1160 
1.4000 1.9460 1.9670 2.0220 2.1060 2.2110 
1.3000 1.9550 1.9840 2.0670 2.1880 2.3330 
1.2000 1.9650 2.0070 2.1250 2.2940 2.4910 
1.1000 1.9800 2.0400 2.2050 2.4:350 2.6960 
1.0000 2.0000 2.0850 2.3110 2.6240 2.9730 
0.90000 2.0400 2.1490 2.4610 2.8860 3.3560 
0.80000 2.0980 2.2440 2.6760 3.2650 3.9120 
0.70000 2.1890 2.3920 :3.0040 3.8440 4.7750 
0.60000 2.3370 2.6350 3.542Cl 4.8080 6.2470 
0.5ClOOO 2.5880 3.0730 4.5340 6.6360 9.1440 

Table F.3: DuI\·1ouchel Table to estimate l/c, note that <]):l(a, -(3) = <])3(0:, (3). 

a 0.00000 0.25000 0.50000 Cl.75000 1.0000 
2.0000 0.00000 O.OOOClO 0.00000 0.00000 0.00000 
1.9000 0.00000 -0.017000 -0.032000 -0.049000 -0.064000 
1.8000 0.00000 -0.030000 -0.061000 -0.092000 -0.12~~00 

1.7000 0.00000 -0.043000 -0.088000 -0.13200 -0.17900 
1.6000 0.00000 -0.056000 -0.11100 -0.17000 -0.23200 
1.5000 0.00000 -0.066000 -0.13400 -0.20(j00 -0.28300 
1.4000 0.00000 -Cl.075000 -0.15400 -0.24100 -0.3:3500 
1.3000 O.OOOOCl -0.Cl8400Cl -O.17:~00 -0.27600 -0.39000 
1.2000 0.00000 -0.000000 -0.19200 -0.:)1000 -0.44700 
1.1000 0.00000 -0.095000 -0.20800 -lL34GOO -0.50800 
1.0000 0.00000 -0.098000 -0.22300 -0.:38300 -0.57600 
0.90000 O.OOO()() -0.099000 -0.23700 -0.42400 -0.6.5200 
0.80000 0.00000 -0.0\:l600Cl -0.25000 -Cl.469ClCl -Cl.742ClO 
Cl.7ClClClCl 0.00000 -0.089000 -0.51200 -0 .. 52000 -0.85300 
0.60000 0.00000 -0.078000 -0.27200 -0.58100 -0.99700 
0.50000 0.00000 -0.061000 -0.27900 -0.65900 -1.1980 

Table F.4: Dul\louchel Table to estimate //,,, note that <])'" (0:, -(3) = -<])4 (0:, (3). 
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F.3 Appendixes of Chapter 6 

F.3.1 MATLAB GUI UHFD FX Data cleaner 

UHra·Hlgh frelluency FX data cleaner Total bad ticks detected _ % 

Would you like to modify the price tick? 

I __ 0.0001 1 r yes r. no 

I deHa_pask~~~ 

Figure F.2: MATLAB GUI: UHFD FX Data cleaner. 

0.278008 % 

Select FX dataset: Load the UHFD dataset file. The data must be in the following format : time in 

Matlab number, bid price, ask price. 

StepO: Check if dataset is sorted. If not then sort data. 

Stepl: Detect non plausible ticks. 

Step2: Detect quotes during inactive periods (Week-ends and Holidays (optional)) . 

Step3: Detect outliers. 

Data exploration: Shows the nuber of row in the dataset , the Pip value of the data. This last can 

be wrong so one can change this value. We can also plot some Histogram of price 

increments (bid and ask) and also the bid ask spread. 

Summary: At any moment this block can be used. It is used to check graphically the number 

of quotes removed after each step . 
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F.3.2 Trading hours of some markets (Chapter 6) 

Market Pre-Open Trading hours After hours Trading DST Non-DST 
ASX 07:00-10:00 10:00-16:00 16:12-17:00 GMT+IO GMT+ll 

Asian TSE - 09:00-11:00 &. 13:00-15:00 - G1VIT+9 GMT+9 

Markets HKEx - 10:00-12:30 & 14:30-16:00 - GIVIT+8 GMT+8 
SGX 08.30-09.00 09:00-12:30 & 14:00-17:00 - GMT+8 GMT+8 
Euronext 07:00-09:00 09:00-17:30 - GMT+2 GMT+1 

Europeall LSE - 08:00-16:30 - GMT+1 GJ\1T+O 
Markets SWX - 08::-~O - 17::~O - GMT+2 GMT+1 

American TSX - 09:30-16:00 1 G:IG-17:00 GMT-4 GMT-5 

American AMEX 08:00-09::30 09::30 -10:00 - GMT-4 GMT-G 

Table F.5: Trading hours for some markets over the world 

Asian Markets 

(Australia, Hong Kong, Japan, Singapore) 

Australian Stock exchange Sydney (ASX) 

Tokyo Stock exchange (TSE) 

Hong Kong Stock exchange (HKEx) 

Singapore Exchange (SGX) 

European Markets 

(Europe, Switzerland, United Kingdom) 

Euronext West. Europe 

London Stock Exchange (LSE) 

Swiss Exchange (SWX) 

American Markets 

(Canada, United states) 

Toronto Stock exchange (TSX) 

American Exchange (AMEX) 
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Chapter F F.4. Activity estimation in HFD data (Chapter 7) 

F.4 Activity estimation in HFD data (Chapter 7) 

F.5 Activity estimation in UHFD data 
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F.5. Activity estimation in UHFD data 

EUR,u;D 
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Figure F. 3: Activity estimation of the EUR/USD rate index taking t he averaged activity est imated 
by: the scaling law method (top-left), the 1/ H -variation (top-right) , t he log-variation (bot tom-left) 
and crossing number (bottom-right) estimators. 

EUR,u;D EUR,u;D 

6r··~ s·~~~·r· ti~~ ··~~~~~;~··· 

bo", I~", 

EUR,u;D EUR,u;D 

- Summertimt! - W"Ultertime - Swflme rtime - \Vmte r time 

5 , .. 

'~ • .!f . 

Figure F .4: Activity estimation of the EUR/USD rate index taking the median activity estimat ed 
by: the scaling law method (top-left), the 1/ H -variation (top-right) , the log-variation (bottom-left) 
and crossing number (bottom-right) estimators . 
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Figure F .5: Activity estimation of the GBP /USD rate index taking the averaged activity estimated 
by: the scaling law method (top-left), the 1/ H -variation (top-right), the log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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Figure F.6: Activity estimation of the GBP /USD rate index taking the median activity estimated 
by: t he scaling law method (top-left), the 1/ H-variation (top-right) , the log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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Figure F. 7: Activity estimation of the AUD /USD rate index taking the averaged activity estimated 
by: the scaling law method(top-left), the 1/ H -variation (top-right) , t he log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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Figure F.8: Activity estimation of the AUD/ USD rate index taking the median activity estimated 
by: the scaling law method (top-left), the I / H -variation (top-right) , t he log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 

218 



Chapter F F .5. Activity estimation in UHFD data 

CBP,tJS D CBP,tJS D 
........•.................... , .. 
- .wmne r tiUl~ - \'{tnte r time : 

. . . . ........................................... , ...... . 

2 . 

0 
0 24 .. 72 96 120 144 168 

hoW' 

GBP/ USD GBPftJSD 

4.5 

3.5 

3 

·~(~.5 

1.5 

0.5 

0 
0 

hoW' hoW' 

Figure F .9: Activity estimation of t he GBP IUSD rate index taking t he averq,ged activity estimated 
by: the scaling law method (top-left), t he II H-variation (top-right) , t he log-variation (bottom-left) 
and crossing number (bottom-right) estimators . 
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Figure F.10: Activity estimation of the GBP I USD rate index taking the median activity est imated 
by: the scaling law method (top-left), the II H-variation (top-right) , t he log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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Figure F.ll: Activity estimation of the JPY /USD rate index taking the averaged activity estimated 
by: the scaling law method (top-left) , the l / H-variation (top-right) , the log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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Figure F .12: Activity estimation of the JPY /USD rate index taking the median activity estimated 
by: the scaling law method (top-left) , the l / H-variation (top-right), the log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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Figure F .13: Activity estimation of t he EUR/USD rate index taking the averaged activity estimated 
by: the scaling law method (top-left), the I / H-variation (top-right) , the log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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Figure F .14: Activity estimation of t he EUR/USD rate index taking the median activity estimated 
by: the scaling law method (top-left), the 1/ H-variation (top-right), the log-variation (bottom-left) 
and crossing number (bottom-right) estimators. 
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