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ABSTRACT
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TIME-CHANGED SELF-SIMILAR PROCESSES

by Wahib Arroum

We consider processes of the form X(t) = X(6(t)) where X is a self-similar process
with stationary increments and 6 is a deterministic subordinator with a periodic activity
function a = 6’ > 0. Such processes have been proposed as models for high-frequency
financial data, such as currency exchange rates, where there are known to be daily and
weekly periodic fluctuations in the volatility, captured here by the periodic activity
function. We propose three new methods for estimating the activity and review an
existing estimator for it. We present some experimental studies of the estimators
performances. We finish with an application to high frequency financial data such as

foreign exchange rates and FTSE100 futures contract.
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Preface

The analysis of high-frequency financial data is becoming an issue in understanding
market behaviour. Millions of quotes are traded everyday and the advances in tech-
nology such as data storage and electronic trading systems implementation have made
high-frequency financial data accessible to academicals and commercial users. High-
frequency data (HFD) in finance refers to prices that are recorded several times a day.
More precisely, HFD dataset contains quotes for each transaction made during the
day. High-frequency financial data present an advantage compared to daily data. The
additional intraday prices gives more details on how the price reacts to information
and so a better examination of the source and the volatility of the return can be made.
However, it also presents a great challenge to econometric modeling and statistical
analysis for various reasons. Periodic fluctuation exhibited in the volatility is one of
those reasons for which our research will be focused on.

Throughout the thesis, we describe how to remove the daily and weekly seasonality
exhibited in high frequency financial data. We recall the subordinated model of Da-
corogna [3] X (t) = X(6(t)) for high frequency financial data, where X has some scaling
properties and has stationary increments, and 6 an increasing deterministic function.
Assuming the logarithmic price of a given asset being of the form X (A(t)), we present
three methods to estimate the time change function #. An estimate of the function 6
will describe the daily and weekly periodic fluctuation exhibited in the volatility.

The thesis is divided into three parts. In the first part, we introduce the mathematical
background on self-similar stochastic processes. In the second part, we present three
methods to estimate the deterministic time-change function # and in the last part, we

apply the time-changed process as a model for high frequency financial data.

Part I

In the first Chapter, an introduction of self-similar processes is given. We study espe-
cially the case where such processes has stationary increments. We introduce the Hurst
index H, which in a certain way represents the roughness of the process in some case;
when the process has finite second moment, it is also used to detect long/short range
dependency of a time series. Several methods to estimate this index are presented, such
as the R/S Analysis[4], the Variance plot[5], the Wavelet Analysis[6], the Crossing Tree
method|[7].
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Preface

We introduce the a-stable distribution. We present some methods to estimate the
parameters (a, 3, 0, 1) of the a-stable distribution, such as McCulloch [8], Koutrouvélis
9], Paulson, Holcomb and Leitch [10] and the maximum likelihood method. We then
compare their performances.

Finally, we limit our study to the family of self-similar processes with a-stable distri-
bution [11] and give some examples such as the Brownian motion (H = 1/a = 1/2) or
more generally the fractional Brownian motion (fBm) (H € (0,1), a = 2 value at which
the distribution of the process is Gaussian), also the a-stable Lévy process (H = 1/a),
called Lévy stable motion {Lsm). We extend to the case o # 1/H by providing some
examples.

In the second Chapter, we introduce briefly, some mathematical tools describing the
roughness of a given function sample path. We present some notion on the Hausdorft
dimension [12] and the Holder exponent. We present as well some notion on the local
structure of a random process, from which the class of locally self-similar processes will

be introduced. Obviously a self-similar process is locally asymptotically self-similar.

Part 11
In the third Chapter, we consider processes of the form X (t) = X(6(t)), where X is a

self-similar process with stationary increments and 6 is a deterministic subordinator.
We study the effect of the time change function on the roughness of the stochastic
process sample path. Namely we look at the Holder exponent and the local self-
similarity of the process. Then, after describing how to simulate time-changed self-
similar processes, we test the self-similarity index estimator’s performances described
in the first Chapter on the time-changed process X (t) = X (8(t)). We end the Chapter
by presenting the appropriate estimator for time-changed processes.

In the fourth Chapter, we develop two time change estimators: the 1/H-variation
and log-variation. These two methods are based on the path variation of the process.
We show that these two estimators are consistent under some assumption of X. More
specifically, we assume X as being locally self-similar and having stationary and ergodic
increments. A statistical analysis and a numerical analysis of these estimators will be
carried out. In particular, we test the performances of these two estimators on some
well known self-similar processes.

In the fifth Chapter, we introduce a new estimator for the time change function. This
last will be based on counting the level crossing points of the process. However, the
continuity of the process sample path is needed as well as the stationarity and the
ergodicity of its increments. We show that counting the number of crossing points
of a self-similar process at different level size, allow us to estimate the self-similarity
index of the process. In this Chapter, some experimental study of the estimator will

be performed on self-similar processes to test their performances.
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Part IIT

In the sixth Chapter, we present an overview on high frequency financial data. The
main characteristics of such data are described as well as their inconvenience when
we study them. Since such data contain spurious observations, we present a simple
algorithm used to clean the data. The main task of the filter is to remove aberrant
observations.

In the seventh Chapter, we apply our time change estimator given in part two, to some
high frequency financial data. In particular on some Foreign exchange rate indices and
the FTSE100 future contract. Assuming that the time change function ¢ has periodic
derivative such that 6'(¢ +7) = 6'(t), where 7 is the one week periodicity. we introduce
Dacorogna’s time change estimator, which uses the scaling law properties of the data
and compares it to ours. The derivative of the time change function represents the
activity of the market. The function 8 describes the daily and weekly seasonality of
the data.

In the eighth Chapter, we present a model for high frequency financial data, using a
time-changed Heyde’s FATGBM model [13]. We analyse the AUD/USD rate index
and the FTSE100 future contract after removing the intraday seasonality. A statistical
analysis will be performed on these data. For both dataset, we study the time duration,
which is the time interval separating two ticks. We analyse the autocorrelation function
of the log-prices return as well as its absolute and squared value. The distribution on
the log-prices return will be fitted to three different distribution functions. After some
statistical analysis of the data, we set the characteristic of these data as assumptions for
a model. The model, that uses the FATGBM will be fitted and compared respectively
to the AUD/USD rate index and the FTSE100 future contract to close the Chapter.

XX



Part 1

Mathematical background



Chapter 1

Introduction to self-similar

processes

"Self-similar processes are stochastic processes that are invariant under suitable scaling
of time and space...” [14]. In this Chapter, we present an introduction to self-similar
processes. We start by defining them, then we describe the a-stable distribution and

we finish by providing some examples of self-similar processes.

1.1 Self-similar processes

We introduce some definitions. We suppose a stochastic process X = {X(¢)}ier, a
collection of random variables X (t), defined on a probability space (2, F,P), where
T C R, called the index set of the process X.

Definition 1.1.1. The process X ...

(i) ...has independent increments if for any ti,...,t, € T such that t; < --- < t,,
X(tz) — X(t1),...,X(ta) — X(tn—1) are independent.

(i) ...1is stochastically continuous at t, if for any € > 0,

lim P (X (¢ +5) - X(£)] > &) =0

(111) ...has stationary increments if

{X(t+h) = X (W her = {X(t) = X(0)}er for all €T

(tv) ...1is trivial (or degenerate) if X (t) is a constant for everyt € T.



Chapter One 1.1. Self-similar processes

1.1.1 Definition

Definition 1.1.2. A stochastic process X is said to be self-similar if for any a > 0,
there exist b > 0 such that

(X (at)her B0 10X (#) her (1.1)

In other words, a self-similar process appears to be the same in statistical terms at any
temporal scale. In Definition 1.1.2, Lamperti [15] shows under some assumption of X
that it exists a relation between a and b. This last relation is given in Theorem 1.1.3,
when X is a non-trivial self-similar process. Note that in [15], Lamperti used the term

semi-stable instead of self-similar.

Theorem 1.1.3. Let X be a non-degenerate and stochastically continuous self-similar
process, then there exists a unique H > 0, such that b in (1.1) can be expressed as

b=a".
Proof. see proof in [14] page 2. O

Note that H cannot be also strictly negative. Indeed, let X be a process as defined in
Theorem 1.1.3; suppose that H < 0, then the relation (1.1) becomes

Crater @ {oxo}
one hasfore >0and 0 <a <1
P(IX(t) — X(0)] > ¢) =P (a| X (at) — X(0)| > ) < P(|X(at) — X(0)| > ¢)
since the process X is stochastically continuous, one gets

P(|X(at) — X(0)| >¢) > 0asa— 0"

(a.s.

hence for each t € T, X () 2 X (0). Moreover, X (0) @ al®1 X (a0) () 0,asa — 4o0.
One deduces for H < 0, X(t) () 0, for any t € T.
For H = 0, with Theorem 1.1.3, the relation (1.1) becomes X (at) @ x (t). Moreover,

one has X(at) — X(0) @ X(t) — X(0), which yields to

P(|X(t) — X(0)] >¢) =P(|X(at) — X(0)| > €) for some &€ >0
X is continuous in probability, so as a — 0%,

P(IX(t) — X(0)] > &) = lim P(|X(at) — X(0)] >¢) =0

a—07t

Hence Vt € T, X (t) @) (0).




Chapter One 1.1. Self-similar processes

One can rewrite the following definition for non-degenerate and stochastically contin-

uous self-similar processes.

Definition 1.1.4. Let X be a non-degenerate and stochastically continuous process.

Then the process is said to be H-self-similar if it exists a uniqgue H > 0, such that
fdd
Va >0, {X(at)her "= {a" X (t) her

H s called the self-similarity indezx, or also the Hurst index!.

A direct consequence of self-similarity is that X (0) @) (Proposition 1.1.5). Further-
more a self-similar process is never stationary, if such process X (t) exists, then one has

for a > 0 ( X is non degenerate)

X(t) = X(at+(1-a)t) 2 X(at) € a? X (1)

and for ¢ fixed when a — +o0, X(t) — 400 which is impossible.
For conciseness, we write H-ss for a H-self-similar process and H-sssi for H-ss process

with stationary increments.
Proposition 1.1.5. X is H-ss , with H > 0, then X (0) @)

Proof. By self-similarity we have for a > 0
X(0)2 x(a0) 2 o X (0)

Tending a to 0, one gets X (0) sy, O

1.1.2 Self-similar process with stationary increments

For applications, the stationarity of a process is important. As we saw, H-ss processes
can not be stationary, however, it can have stationary increments. Several studies on
self-similar processes with stationary increments exist in the literature ([16], [17], [18]).

A consequence of adding this last property is the following Theorem.

Theorem 1.1.6. Let X be a non-trivial H-sssi process. We suppose that [X(l)z} < 00.
Then
E[X(1)?
(t.) € B EIX(0X(6)] = S Lot o (o g — o)

Proof.

EIX()X(5)] = E |5 (1) + X*(s) — (X() = X(s))")

= S(E M)+ E[X%(s)] ~ E [(X(2) ~ X(5)%)

Iy fact, for self-similar processes, the Hurst exponent and the self-similar index coincide.
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Applying the stationarity of the increments and then the self-similar property, one gets

E[X(£)X(s)] = o (E [X(1)] + E [X*(s)] = E[X2(¢ — 5)])

2
= SR ()] + 1sP7E [X°()] ~ |t — sP7E [X°(1)])
= BN ooy o — e — o)
O
Theorem 1.1.7. Let X be a non-degenerate H -sssi process. Then
(1) If E[|X(1)]"] < oo for some 0 <~y <1, then H < 1/v
(i1) If E[| X (1)]] < oo, then H <1
(iii) If E[| X (1)]] < co and H € (0,1), then ¥t € R, E[X(¢)] = 0
(iv) FE[X(1)]] < 0o and H =1, then Vt € R, X<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>