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Iterative multiuser receivers constitute an effective solution for transmission

over Multiple Access Interference (MAI) infested channels, when invoking a com-

bined Multiuser Detector (MUD) and channel decoder. Most reduced-complexity

methods in this area use the Minimum Mean Squared Error (MMSE) MUD.

Since the desired output of Binary Phase Shift Keying (BPSK) modulated sys-

tems is real-valued, minimising the Mean Squared Error, (MSE) between the

beamformer's desired output and the real part of the beamformer output has

the potential of significantly improving the attainable Bit Error Rate (BER) per-

formance. We refer to this MMSE design as the Real-valued Minimum Mean

Squared Error (RMMSE) receiver. In this thesis, we explore a new Soft-Input

Soft-Output (SISO) Interference Cancellation (IC) aided multiuser detection al-

gorithm based on the novel Minimum Bit Error Rate (MBER) criterion. We

demonstrate that the MBER turbo receiver outperforms both the MMSE and

the RMMSE algorithms, particularly in so-called rank-deficient beamforming sys-

tems, where the number of receiver antennas is-lower than the number of users

supported. A novel iterative Soft Interference Cancellation (SIC) aided beam-

forming receiver is also developed for high-throughput Quadrature Amplitude

Modulation (QAM) assisted systems. The proposed SIC based Minimum Symbol

Error Rate (MSER) multiuser detection scheme guarantees the direct and explicit

minimisation of the Symbol Error Rate (SER) at the output of the detector.

This thesis also studies the Mutual Information (MI) transfer characteristics

of the proposed iterative SIC aided beamforming receiver communicating over

both Additive White Gaussian Noise (AWGN) and slow-fading channels. Based

on the Extrinsic Information Transfer (EXIT) chart technique, we investigate



the convergence behaviour of the iterative MBER multiuser detection scheme as

a function of the system parameters and channel conditions. We also compare

the performance and the convergence behaviour of different MUDs and channel

decoders. Our simulation results show that the EXIT chart analysis is sufficiently

. accurate for the MBER MUD and the MSER MUD, despite its non-Gaussian

output distribution. As expected, the proposed SIC-MBER MUD and the SIC-

MSER MUD outperform the SIC-MMSE MUD.

Based on EXIT charts, the convergence behaviour of a.three-stage serially

concatenated multiuser beamforming receiver is also presented. This system uses

an MBER MUD as the inner detection module. Due to the non-recursive nature

of this inner module, the system has a finite-duration Impulse Response (IR) and

hence a modest-efficiency extrinsic information exchange. Therefore an Infinite

Impulse Response (IIR) unity-rate memory-1 recursive precoder is placed in front

of the channel in order to create an IIR system, which benefits from an effi-

cient extrinsic information exchange and hence improves the iterative detection

scheme's performance. Novel Irregular Convolutional Codes (IRCCs) are con-

structed, which are used as the outer code for the sake of achieving a near-capacity

performance. Our simulations show that this system outperforms traditional

two-component iterative detection aided structures and is capable of significantly

reducing the error floor encountered.

The problem of designing an optimal linear transmit preprocessing transfor-

mation for the downlink of Multi-Input Multi-Output (MIMO) aided communi-

cation systems is also addressed. The BER is minimised under a maximum total

transmit power constraint. The transmitter of the Base Station (BS) requires

explicit knowledge of the channel transfer function coefficients and of the receiver

processing matrix. It is shown that the proposed Linear Minimum Bit Error

Rate (LMBER) Multiuser Transmitter (MUT) outperforms the Wiener precod-

ing method in terms of the achievable BER versus channel quality performance.
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Chapter 1

Introduction

1.1 Wireless Communication Systems

There are two fundamental aspects of wireless communication that make it chal-

lenging and interesting. Firstly, the phenomenon of fading: results in the time-

variation of the channel's magnitude and phase due to the small-scale effects of

multipath fading, as well as owing to the larger scale effects, such as the path loss

proportional to distance and shadowing due to obstacles. Secondly, wireless users

communicate over the air and there is significant interference between them in

wireless communication. The interference can be between transmitters commu-

nicating with a common receiver as in the uplink of a cellular system, or between

signals emerging from a single transmitter to multiple receivers, as in the down-

link of a cellular system, as well as between different transmitter-receiver pairs

(e.g. interference between users in different cells). How to deal with fading and

with interference is central to the design of wireless communication systems.

The increasing demand for the higher data rates to be supported by future

wireless systems inevitably comes at the cost of an increased bandwith occupied

by the transmitted signal, since the bandwidth is proportional to the symbol

rate of the transmitted signal. In order to efficiently exploit the limited band-

width available, the most recently introduced communication systems consider

the employment of multiple transmit and receive antennas for the transmission

of independent bit-streams. This trend towards the employment of Multi-Input

Multi-Output (MIMO) systems introduced for the sake of achieving spatial multi-

plexing has largely been motivated by the work of Foschini and Gans, who showed
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in [1] that under idealized assumptions the capacity of the wireless channel in-

creases linearly with the minimum of the number of transmit and receive anten-

nas. Their work is a logical evolution of the channel capacity analysis provided

by Shannon in [2] 1948. In order to exploit this potential increase in channel ca-

pacity and therefore the increase of the theoretically achievable data throughput,

MIMO transceivers are expected to be an integral part of most future wireless

communication systems. Further work on the capacity of MIMO channels has for

example been provided by Goldsmith et al. in [3] and by Shamai in [4] who also

contributed an extensive tutorial overview with Biglieri in [5].

However, even with the advent of MIMO transceivers and higher order mod-

ulation schemes, the bandwidth occupied by the transmitted signal is generally

significantly higher than the coherence bandwidth of the wireless channel and

will therefore result in multi-path propagation of the transmitted signal. Often

the multi-path channels exhibiting frequency selective fading are also referred to

as wideband channels. Orthogonal Frequency Division Multiplexing (OFDM) [6]

is proposed in the 3rd Generation Partnership Project (3GPP) and in its Long-

Term Evolution (LTE) [7] drafts, as well as in a range of other communica-

tion systems, such as WiFi [8] and Worldwide Interoperability for Microwave

Access (WiMAX) [9]. The OFDM scheme, which belongs to the family of multi-

carrier [6] transmission schemes is capable of supporting high data-rates, while the

detection of the signal at the Mobile Station (MS) can be achieved at a relatively

low computational cost. The problem of a high peak-to-average power ratio [6]

for the modulated signal can be solved by employing a linear or linearized and

hence less power efficient amplifier at the Base Station (BS) transmitter's radio

frequency front-end.

However, since mobile operators want to keep the cost and the power consump-

tion of MSs low, OFDM is less attractive for the uplink of the communication

system. For this reason and because typically a lower data rate is required for

the uplink, it was proposed in [10] to consider single-carrier transmission for the

reverse link as part of the 3GPP LTE. Single-carrier transmission imposes a low

computational complexity and hence imposes modest hardware demands on the

transmitter in exchange for an increased equalization complexity at the receiver.

Generally, an increased complexity at the BS poses less of a problem than at the

MS. The increased complexity of the BS is mainly imposed by the space-time

equalizer required for detecting the signal.
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1.2 Motivation and Novel Contributions

The increasing demand for mobile communication services supported within a

limited radio-frequency bandwidth motivates the design of antenna array assisted

beamforming techniques [11] as well as Spatial Division Multiple Access (SDMA)

arrangements [6]. By appropriately combining the signals received by the different

elements of an antenna array, beamforming becomes capable of creating an an-

gularly selective transmitter/receiver beam, hence potentially separating signals

transmitted on the same carrier frequency but arriving from sufficiently different

angles. •

Since the discovery of turbo codes in 1993 [12], iterative detection [13] has

been applied in the context of joint channel estimation and equalization [14], in

turbo equalization [15,16], in multiuser detection [17,18,19] and numerous other

coded communication systems [15,20]. In iterative multiuser receivers [13], the

Multiuser Detector (MUD) and the channel decoder exchange extrinsic informa-

tion in a number of consecutive iterations. During each iteration, the extrinsic

information alternately extracted either from the MUD or the channel decoder

is used as the a priori input by the other detection stage in the next iteration.

The information exchanged is exploited for the sake of improving the receiver's

attainable performance. In [18], a suboptimal linear MUD was introduced, which

benefitted from both Soft Interference Cancellation (SIC) and instantaneous lin-

ear Minimum Mean Squared Error (MMSE) filtering.

Against this background, in this thesis we propose a novel family of iterative

beamforming receivers. To elaborate a little further, the conventional beam-

former combines the signals received with the aid of each Antenna Element (AE)

for the sake of minimising the Mean Squared Error (MSE) between the complex-

valued locally stored and received reference signal. For Binary Phase Shift Keying

(BPSK) systems, however, the beamformer's desired output is real-valued. By

minimising the MSE between the beamformer's desired output and the real part

of the beamformer output, the system's achievable Bit Error Rate (BER) per-

formance can be significantly enhanced. We will refer to this alternative MMSE

design as the Real-valued Minimum Mean Squared Error (RMMSE) arrange-

ment in order to contrast it with the standard MMSE. However, the MMSE and

RMMSE algorithms do not guarantee the direct and explicit minimisation of the

system's BER. Hence in references .[21,22,23,24,25,26,27,28,29,30,31,32] the
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BER rather than the MSE was minimised at the MUD's output. The Minimum

Bit Error Rate (MBER) beamforming design is the true optimal solution and

hence it generally outperforms the MMSE and the RMMSE solutions, particu-

larly in the context of the so-called rank-deficient systems, where the degree of

freedom for the antenna array is lower than the number of users. The achiev-

able BER difference of the MMSE and MBER receivers becomes particularly

substantial in this scenario. The MBER detectors are challenging to derive for

higher-order Quadrature Amplitude Modulation (QAM), but nonetheless, Yeh

and Barry have succeeded in directly minimising the detector's output Symbol

Error Rate (SER) [33] for a QAM equalizer. Motivated by their work, a novel

Minimum Symbol Error Rate (MSER) beamforming assisted receiver has been

developed for high-throughput QAM schemes [34]. In this thesis, an iterative SIC

aided MSER beamformer is proposed for QAM signals. Note that the shifting

properties and the symmetrical distribution of the output signal's Probability

Density Function (PDF), which were exploited in the derivation of the original

MSER beamforming solution of [34], are no longer valid in our iterative system.

Therefore, we derive a new a priori information assisted MSER MUD suitable

for employment in the proposed iterative SIC aided receiver. Motivated by the

idea of RMMSE algorithm and the Widely Linear (WL) method of [35], we also

introduce the WL-MMSE, the WL-MBER and the WL-MSER SIC MUDs, which

employ two separate weight vectors for individually detecting the in-phase and

quadrature-phase component of the transmitted symbol. These WL algorithms

are capable of achieving a better performance at a similar complexity.

In order to investigate the iterative detection process and its convergence, the

powerful concept of semi-analytical Extrinsic Information Transfer (EXIT) charts

was introduced in [36] and [37]. This semi-analytic technique uses the Mutual

Information (MI) between the inputs and outputs of the concatenated receiver

components in order to analyse the achievable system performance. For example,

EXIT charts were employed in turbo equalization in [16,38,39], while in [19]

and [40] they were used to examine the convergence properties of a turbo MUD.

Until recently EXIT chart analysis was only capable of predicting the achievable

decoding performance, when the extrinsic information was Gaussian distributed,

but Li and Wang [40] succeeded in adopting this technique also in the context

encountering a non-Gaussian distribution at the output of a turbo MUD.

It is widely recognized that in a serially concatenated receiver employing it-

erative decoding the inner code should be recursive in order to maximize the at-
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tainable interleaver gain [41]. This benefit may be generalized to diverse serially

concatenated schemes. However, not all inner modules of serially concatenated

schemes can be readily rendered recursive, which hence limits the achievable de-

coding performance. In our system, a Soft-Input Soft-Output (SISO) MBER

MUD [29,30] is invoked, which directly minimises the BER at the MUD's out-

put, rather than minimising the MSE, as in the classic MMSE detector. The

non-recursive nature of the MBER MUD may be ameliorated with the aid of

a simple unity-rate memory-1 recursive precoder incorporated at the transmit-

ter, and hence the attainable performance may be further improved [42]. Then,

the inner component of the receiver constituted by the MBER MUD, the inter-

mediate channel decoder and the outer channel decoder constitute a three-stage

serially concatenated scheme. In this thesis we design this three-stage concate-

nated multiuser receiver for the sake of achieving near-capacity performance [39].

By combining and projecting a series of three-dimensional EXIT functions onto a

single two-dimensional EXIT chart [43], the convergence behaviour of the system

is visualized. Specifically, Irregular Convolutional Codes (IRCCs) [38] are con-

structed, which are used as the outer code for the sake of solving the EXIT curve

fitting problem of [44], i.e. that of minimising the area of the EXIT chart's open

tunnel, implying that the system becomes capable of approaching the achievable

capacity.

In particular, downlink transmission is of interest. The BS is assumed to know

the linear processing performed by the MS. The BS is capable of acquiring the

required MIMO channel coefficients with the aid of the side-information feedback

channel transmitted from the MS or by estimating the uplink channel and as-

suming that the downlink channel is similar, as in Time Division Duplex (TDD)

systems [45]. An important advantage of transmit preprocessing is that the af-

fordable computational complexity of the BS is higher than that of the MS, and

as a benefit, the processing in the MS can be simpler. Consequently, it is cheaper

to produce the MS. A specific transmit preprocessing scheme maximizing the

output Signal-to-Noise Ratio (SNR) at the receiver was derived in [46], which is

the Transmit Matched Filter (TMF) based preprocessor. The most intuitive ap-

proach designed for transmit preprocessing is Transmit Zero Forcing (TZF), which

removes all interference at the receivers [47,48]. A modified MSE transmit pre-

processing defined under a specific power constraint was considered in [49,50,51],

which is referred to as the Transmit Wiener Filter (TWF). In a practical commu-

nication system, however, the goal is to directly minimise the BER. Hence in this
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thesis, a linear preprocessing method that directly minimises the BER is derived.
The proposed method leads to an improved BER versus channel SNR perfor-
mance. The related problem of designing a minimum BER transmit preprocessor
for a known channel has-been considered in [52,53,54,55].

The thesis is based on the publications [56,57,58,59,60,61,62]. In
summary, the novel contributions of this thesis are:

• A soft MBER MUD aided iterative beamforming receiver was in-
vestigated, which directly minimises the BER at the MUD's out-
put. The proposed MBER scheme significantly outperforms the
conventional MMSE method at the cost of a higher computational
complexity [56,57].

• We derived a new a priori information assisted MSER MUD suit-
able for employment in the proposed iterative SIC aided receiver
designed for high-throughput QAM schemes. The proposed lin-
ear SIC aided MSER multiuser detection scheme guarantees the
direct and explicit minimisation of the SER at the output of the
detector [60,61].

• The WL-MMSE, WL-MBER and WL-MSER SIC MUDs, which
employ two separate weight vectors for individually detecting
the in-phase and quadrature-phase component of the transmit-
ted symbol, were introduced. These WL algorithms are capable
of achieving a better performance than the corresponding non-WL
MUDs operating at a similar detection complexity.

• We studied the mutual information transfer characteristics of the
proposed novel iterative SIC aided beamforming receiver com-
municating over both Additive White Gaussian Noise (AWGN)
and flat-fading channels. Based on the EXIT chart technique, we
investigated the convergence behaviour of the iterative MBER
MUD scheme as a function of both the system parameters and
channel conditions in comparison to the SIC aided MMSE MUD
[58,59,60,61].

• Based on EXIT charts, the convergence behaviour of a three-stage
serially concatenated multiuser beamforming receiver was pre-
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sented. This system used a linear MBER MUD as the inner detec-
tion module. Due to the non-recursive nature of this inner mod-
ule, the system has a finite-duration Impulse Response (IR) and
hence a modest-efficiency extrinsic information exchange. There-
fore an Infinite Impulse Response (IIR) unity-rate memory-1 re-
cursive precoder is placed in front of the channel in order to
create an IIR system, which benefits from an efficient extrinsic
information exchange and hence improves the iterative detection
scheme's performance. Novel IRCCs were constructed to be used
as the outer code for the sake of achieving a near-capacity perfor-
mance [62].

• A linear Multiuser Transmitter (MUT) that minimises the BER
subject to a power constraint was proposed. The proposed Linear
Minimum Bit Error Rate (LMBER) transmission scheme is ca-
pable of achieving a better performance than the Wiener MUT,
and its complexity can be significantly reduced in the presence
of slow-fading channels compared to its non-linear Minimum Bit
Error Rate Transmission (TMinBer) aided counterpart.

1.3 Organization of the Thesis

An overview of MIMO systems is presented in Chapter 2, where the various

categories of multiple antenna aided communication systems are introduced. A

range of multiuser detection techniques are reviewed for the sake of providing the

necessary background to this exciting research field. We will mainly concentrate

our attention on linear multiuser detection schemes.

In Chapter 3, we explore the SISO Interference Cancellation (IC) multiuser

detection algorithm based on the novel MBER criterion. We demonstrate that

the MBER turbo receiver outperforms both the MMSE and the RMMSE algo-

rithms. We also study the MI transfer characteristics of a novel iterative SIC

aided beamforming receiver communicating over both AWGN and slow-fading

channels. Based on the EXIT chart technique, we investigate the convergence

behaviour of an iterative MBER multiuser detection scheme as a function of the

system parameters and channel conditions. We also compare the attainable per-
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formance and the convergence behaviour of different MUDs and channel decoders.

Our simulation results show that the EXIT chart analysis is sufficiently accurate

for the MBER MUD, despite its non-Gaussian output distribution. As expected,

the proposed SIC-MBER MUD outperforms the SIC-MMSE MUD. We also in-

vestigate the iterative MSER receiver design in the context of a high-order QAM

system. This proposed MSER system outperforms the well-known MMSE aided

system. The performance of the WL-MMSE MUD, the WL-MBER MUD and

the WL-MSER MUD are also studied. „ ' .

In Chapter 4, we extend the two-stage iterative receiver to three SISO mod-

ules, namely the inner MUD, the intermediate unity-rate channel decoder and

the outer channel decoder. The convergence behaviour of our design example

was analysed using 3D EXIT charts and their 2D projections. The three-stage

system is capable of eliminating the residual BER encountered in the conven-

tional two-stage system. With the advent of 2D EXIT-chart projection, an IRCC

was constructed for employment as the outer code, whose EXIT function was

matched to the joint EXIT function, and as a result, the channel capacity was

closely approached.

In Chapter 5} a LMBER MUT was explored. The LMBER optimization

process was detailed. The simulation results show that the proposed algorithm

outperforms the previously proposed Wiener multiuser transmission method [49].

The BER performance of the MUT systems using imperfect and outdated channel

information was also studied.

Finally, in Chapter 6, we offered our conclusions and provided suggestions

for future research.



Chapter 2

Multi-Input Multi-Output

Detection

2.1 Multi-Input Multi-Output Communications

Multi-Input Multi-Output (MIMO) wireless systems may be conveniently de-

scribed by an abstract mathematical model. Another commonly used term for

MIMOs is 'smart antennas', which perform spatio-temporal information process-

ing with the aid of multiple antennas. In MIMO wireless communication systems,

significant throughput and/or integrity improvements can be achieved within a

given bandwidth and at a given total transmit power, as detailed below.

Smart antennas provide us with a wide variety of design options, ranging from

Single-Input Multi-Output (SIMO) architectures that harvest more energy using

multiple receiver antennas to improve the SNR at the receiver, to MIMO architec-

tures that create multiple parallel data links. The number of inputs and outputs

here refers to the number of AEs used at the transmitter and receiver, respec-

tively. To elaborate a little further, in smart antenna assisted systems multiple

AEs may be invoked at the transmitter and/or the receiver, where again, the AEs

may be arranged for achieving spatial diversity gains, directional beamforming or

multiplexing gains, as well as for attaining both diversity and beamforming. In

these smart antenna aided systems the achievable performance improvements are

usually a function of the antenna spacing and that of the baseband algorithms

invoked for processing the signals received by the AEs [17]. Terms commonly

used today that embrace various aspects of smart antenna systems include in-
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telligent antennas, adaptive antennas, phased arrays, Spatial Division Multiple

Access (SDMA), spatial processing, spatial multiplexing, digital beamforming and

others [11,45]. Different smart antenna architectures provide different benefits,

which can be broadly classified as achieving array gain, diversity gain, multiplex-

ing gain and interference reduction [63]. The signaling strategy at the transmitter

and the corresponding processing at the receiver are designed based on the specific

system specifications. Table 2.1 summarizes the evolution of the state-of-the-art

in MIMO designs.

Table 2.1: Selection of MIMO papers

Author(s)

[64]

Foschini

[1]
Foschini

and Gans

[65]

Tarokh

et al.

[66]

Wolniansky

et al.

[67]

Alamouti

Contribution

Proposed the Bell Laboratories Layered Space-Time

(BLAST) architecture capable of capturing much of the

MIMO capacity promised by information theory.

Examined the benifits of multiple AEs representing the spa-

tial dimension to improve the achievable wireless capacity in

certain applications. Fixing the overall transmitted power,

the authors expressed the capacity offered by multiple AEs

and quantified how the capacity scales upon increasing the

SNR for a large but practical number of AEs at both the

transmitter and receiver.

Considered the design of Space-Time Trellis Codes (STTCs)

for improving the data rate and/or the reliability of commu-

nications over fading channels using multiple transmit anten-

nas.

Described a wireless communication architecture known as

Vertical BLAST (V-BLAST).

Presented a low-complexity two-branch Space-Time Block

Code (STBC). Using two transmit and a single receive

antenna the scheme achieves the same diversity order as a

maximal-ratio combining receiver employing a single trans-

mit antenna and two receive antennas.
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Author(s)

[68]

Tarokh

et al'

[69]

Tarokh

et al.

[70]

Tarpkh

et al.

[71]

Foschini

ei al.

[72]

Jafarkhani

[4]
Shamai and
Marzetta

[73]

Sellathurai

and Haykin

Contribution

Documented the attainable performance of a novel class of

STBCs, which provide a new design paradigm for transmis-

sion over Rayleigh fading channels using multiple transmit

antennas.

Introduced the combination of array processing at the re-

ceiver and coding techniques for multiple transmit antennas

at the transmitter, which can provide reliable high data rate

communication over narrowband wireless channels, while pro-

viding both diversity and coding gains.

Introduced STBC for communication over Rayleigh fading

channels using multiple transmit antennas.

Investigated robust wireless communication in rich-scattering

propagation environments using multiple AEs at both the

transmit and receive sites in the context of V-BLAST, which

is a simplified, but spectrally efficient space-time processing

method. ^

Designed unity rate codes, which are quasi-orthogonal and

provide partial rather than 'full' diversity. The decoder of

the proposed codes processes pairs of transmitted symbols

instead of single symbols.

Investigated the channel capacity of a multiuser sys-

tem employing multiple receive AEs communicating over

Rayleigh block-fading channels without requiring Channel

State Information (CSI).

Presented the concept of turbo-BLAST, which is a novel

MIMO scheme designed for high-throughput wireless commu-

nications. It amalgamated the following ideas: the BLAST

architecture, random layered space-time coding using inde-

pendent block codes and random space-time interleaving, a

sub-optimal turbo-like iterative detection aided receiver and

estimated channel matrix in a simple iterative fashion.
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Author(s)

[74]

Foschini

et al.

[3]
Goldsmith

et al.

[75]

Diggavi

et al.

[76]

Tao and

Cheng

Contribution

Discussed three architectural superstructures designed for

wireless links employing multiple antennas, including

Diagonal BLAST (D-BLAST), Horizontal BLAST (H-

BLAST) and the single outer code architecture.

Provided an overview of the capacity of single-user and multi-

user MIMO channels. The results indicated that the capacity

gain achieved for single-user MIMO channels heavily depends

on the available channel information at both the receiver and

transmitter, as well as on the channel SNR and the corre-

lation between the channel gains of each antenna element.

The capacity region of the MIMO multiple access and the

highest achievable rate region (also referred to as the dirty-

paper coding region) of the MIMO broadcast channel are

intimately inter-related by a duality transformation, which

facilitates finding the transmission strategies that achieve a

point on the boundary of the MIMO multiple-access chan-

nel's capacity region.

The effect of spatial diversity on the attainable throughput

and reliability of wireless networks was examined. The au-

thors illustrated the benefits of spatial diversity across the

entire physical (signal transmission/coding and receiver sig-

nal processing) as well as networking (resource allocation,

routing, and applications) layers, discussed the associated

engineering intuitions and tradeoffs, emphasizing the strong

interactions between the various network functionalities.

Presented the architecture of generalized layered space-time

codes as a combination of the BLAST architecture and Space-

Time Codes (STCs) in multiple-antenna aided wireless com-

munication systems. This approach provides both spectral

and power efficiency gains at a moderate complexity.
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Author(s)

[77]

Pabst et al.

[78]

Nosratinia

et al.

Contribution

Presented an overview of important applications in the con-

text of relaying and covered different approaches to exploiting

the benefits of multihop communications via relays. Relay-

ing was presented as a means of reducing the infrastructure

deployment costs. It was also shown that through the ex-

ploitation of spatial diversity, multihop relaying is capable of

enhancing the achievable capacity of cellular networks.

Presented an overview of the developments in cooperative

communication proposed for enabling single-antenna aided

mobiles in a multi-user environment to share their anten-

nas and hence to generate a virtual multiple-antenna aided

transmitter that allows them to achieve a substantial trans-

mit diversity.

2.1.1 Space-Time Codes

Space-Time Codes (STCs) [13] are capable of improving the reliability of data

transmission in wireless communication systems using multiple transmit anten-

nas with the aid of their transmit diversity gain. More explicitly, STCs rely

on transmitting multiple, redundant copies of a data stream to the receiver in

the hope that at least some of them may arrive over the physical path between

the transmitter and receiver unimpaired to allow reliable decoding. The fact that

the transmitted data must traverse a potentially hostile propagation environment

contaminated by scattering, reflection, refraction and by the thermal noise in the

receiver implies that some of the received copies of the data will be more cor-

rupted than others. More explicitly, space-time coding combines all the copies of

the received signal in order to extract as much information from each of them as

possible. Space time codes may be classified into two main types. Space-Time

Trellis Codes (STTCs) [65] employ a trellis code for mapping the information to

multiple antennas and multiple time-slots and hence to provide both coding gain

and diversity gain. Space-Time Block Codes (STBCs) [67,68,70] act by encod-

ing a short block of data at a time and provide only diversity gain. However,

STBCs are less complex in implementation terms than STTCs. The aim of us-

ing spatial diversity is to provide both transmit as well as receive diversity and

hence to enhance the system's integrity/robustness. This typically results in a
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better physical-layer performance and hence a better network-layer performance.

Therefore, STCs are capable of indirectly increasing not only the transmission

integrity, but also the achievable spectral efficiency.

While STCs require multiple transmit antennas, it is not necessary to have

multiple receive antennas, although they substantially improve the achievable

performance. An STBC's action is usually represented by an encoding matrix,

where each row of the matrix represents a time slot and each column corresponds

to a specific antenna's transmissions over time. The code rate of an STBC quan-

tifies how many symbols per time slot it transmits on average over the course of

an STBC block. STBCs as originally proposed [67] were designed to be orthog-

onal, ensuring that the vectors representing any pair of columns taken from the

coding matrix are orthogonal. The benefit of this.is that simple linear decoding

can be used at the receiver. Its most serious disadvantage is that all but one

of the STBCs that satisfy this criterion must make a sacrifice in terms of their

coding rate.

Alamouti invented the first STBC in 1998 [67]. It was designed for a two-

transmit antenna system and has the coding matrix of

(2.1)

where the superscript * denotes the complex conjugate of the variables. It is the

only complex modulated orthogonal STBC that achieves a coding rate of unity.

That is to say that it is the only STBC that can achieve its full diversity gain

without having to make a sacrifice in terms of its coding rate. This property

lends Alamouti's code a potential throughput advantage over the higher-order

STBCs, even though they achieve a better error-rate performance. Stimulated

by Alamouti's work, Tarokh et al. discovered a set of STBCs [68,70] that are

particularly beneficial and yet straightforward. The authors also showed that

no STBC using more than two transmit antennas may achieve 'full-rate'. A

quasi-orthogonal STBC was then proposed by Jafarkhani [72]. Although these

codes exhibit partial orthogonality and hence provide only part of the maximum

achievable diversity gain, their benefit is that they exhibit a unity rate. As a

further advantage, they only require linear processing at the receiver, although

their decoding is slightly more complex than that of Alamouti's [67] and Tarokh's

[68,70] orthogonal STBCs.
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2.1.2 Space Division Multiplexing

The basic concept of Space Division Multiplexing (SDM) or spatial multiplexing

is that several different data bits are transmitted via several independent spatial

channels. It may be viewed as an improved-throughput point-to-point communi-

cation system requiring no frequency band expansion. The data streams can be

separated by the space-time equalizer of the receiver.

Bell Laboratories Layered Space-Time (BLAST) scheme was developed by

Foschini in 1996 [64]. It is an extraordinarily bandwidth-efficient approach to

wireless communication, which takes advantage of the spatial dimension by trans-

mitting and detecting a number of independent co-channel data streams using

multiple, essentially co-located, antennas. The central philosophy of BLAST is

the exploitation of the different Channel Impulse Responses (CIRs) encountered

by the AEs imposed by their different multipath effects in order to achieve a high

spectral efficiency (bits/sec/Hz), significantly higher than that, when multipath

propagation is viewed as an adversary rather than an ally. Under the widely used

theoretical assumption of having independent Rayleigh scattering, the theoretical

capacity of the BLAST architecture grows roughly linearly with the number of

antennas, even when the total transmitted power is fixed.

BLAST uses multi-element antennas at both the transmitter and receiver

to support transmission rates far in excess of those possible using conventional

approaches by treating the multiplicity of scattering paths as separate parallel

diversity subchannels. BLAST accomplishes this by splitting a single user's data

stream into multiple substreams and using an array of transmitter antennas to

simultaneously launch the parallel substreams. Again, all the substreams are

transmitted in the same frequency band, hence the spectrum is used very effi-

ciently. Since the user's data is transmitted in parallel over multiple antennas,

the effective transmission rate is increased roughly in proportion to the number

of transmitter antennas used. At the receiver, again an array of antennas is used

to pick up the multiple transmitted substreams and their scattered images. Each

receive antenna 'sees' all of the transmitted substreams superimposed, not sepa-

rately. However, if the multipath scattering is sufficiently rich, then the parallel

substreams are all scattered slightly differently, since they originate from different

transmit antennas that are located at different points in space. Using sophisti-

cated signal processing, these slight differences in scattering allow the substreams

to be identified and recovered. In effect, the unavoidable multipath is exploited to
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support parallel streams and hence to improve the achievable data transmission

rates. Thus, when using the BLAST technique, the more multipath, components

can be resolved the better.

The diagonally-layered space-time architecture proposed in [64], now known

as Diagonal BLAST or D-BLAST, utilizes an elegant diagonally layered coding

structure in which the code blocks are dispersed diagonally across the space-time

dimensions. A space-time layering scheme using four transmit antennas may be

represented by a matrix, where each column represents a time slot and each row

represents a specific antenna's transmissions over time, as seen below:

0

0

0

a2

0

0

b2

0

c2

&3

Q4

a5

d2

C3

b5 c5 d5

a6 66 c6

U3 07 67

C4 G?4 a s

where c*j is the zth symbol arriving from layer a. However, the diagonal approach

suffers from certain implementation complexities, which make it inappropriate

for low-complexity implementation. In [66,71], a simplified version of BLAST

known as Vertical BLAST or V-BLAST was described. The essential difference

between D-BLAST and V-BLAST lies in their encoding process. In D-BLAST, re-

dundancy is introduced between the substreams using a specific inter-substream

block coding. The D-BLAST code blocks are organized by delaying each an-

tenna's signal by one additional signalling interval for the sake of achieving di-

versity gains in both space and time. It is this particular space-time coding

arrangement that equips D-BLAST with a higher spectral efficiency for a given

number of transmitters and receivers than V-BLAST. In V-BLAST, however, the

vector encoding process is simply a demultiplexing operation, followed by inde-

pendent bit-to-symbol mapping of each substream. No inter-substream coding is

required, although conventional channel coding may certainly be applied before

the serial-to-parallel conversion block. Another BLAST structure which employs

a serial-to-parallel block for generating multiple independent substreams and has

a separate encoder for each layer is known as Horizontal BLAST (H-BLAST) [74].

The H-BLAST structure was not designed for achieving transmit diversity gain,

because the symbols of different layers are uncorrelated. In [73], a BLAST archi-

tecture referred to as turbo-BLAST was devised. Similar to the D-BLAST, the

turbo-BLAST scheme also has a space-time interleaver after the inter-substream

channel encoders. However, the turbo-BLAST arrangement does not delay each
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antenna's signal by one signalling interval, but transmits them simultaneously.

This simplification decreases the achievable BER performance compared to that

of the D-BLAST scheme, but it benefits from achieving a higher data through-

put. The turbo-BLAST scheme employs both channel coding and space-time

interleaving, hence it is capable of achieving both spatial diversity as well as a

multiplexing gain.

2.1.3 Spatial Division Multiple Access

Another application of smart antennas is often referred to as Spatial Division Mul-

tiple Access (SDMA), in which different users transmit independent data through

different multipath channels. The SDMA technique exploits these unique, user-

specific 'spatial signatures' of the individual users for differentiating amongst

them. In simple conceptual terms one could argue that both a conventional Code

Division Multiple Access (CDMA) spreading code and the CIR affect the trans-

mitted signal similarly - namely they are convolved with it. Hence, providedthat

the CIR is accurately estimated, it becomes known and certainly unique, although

not orthogonal to the other CIRs. Nonetheless, it may be used for uniquely identi-

fying users after channel estimation and hence for supporting several users within

the same bandwidth. Provided that a powerful MUD is available, one can sup-

port even more users than the number of antennas. Hence this method directly

enhances the achievable spectral efficiency.

SDMA
multiuser
detector

Si

52

Figure 2.1: Signal flow graph for uplink SDMA system equipped with L
receive AEs and supporting K users.
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Figure 2.1 shows an uplink SDMA system equipped with L receive AEs and

supporting K users. These K users are transmitting symbols [s\ • •• SK]T at the

same frequency, where the superscript T denotes the transpose. The original

signals travel through the wireless channels and arrive at the receive antennas.

When the signals pass through the channel, they will vary in both amplitude and

phase depending on the multipath environment. The CIR hik in the diagram is a

complex quantity or a complex vector representing the channel spanning from user

k to the Zth receive AE. Since the users and receive AEs are located at different

positions, each of the complex-valued CIR coefficients should be uncorrelated

with each other. The received signals [7*1 • • -rjr,]71, then contain all components of

the transmitted signals. To express the received signals in matrix form, we use

the following equation

n /i l l

X

Si

s2

SK

+

h i

n2

nL

(2.2)

where ni is the additive noise at AE I. Then the received noisy signals are

processed by the SDMA MUD, which exploits the unique CIR of each user to

estimate the original symbols. Various linear and non-linear MUD algorithms

can be used [6].

2.1.4 Beamforming

Beamforming is a signal processing technique designed for A/2-spaced AEs either

at the transmitters or at the receivers that controls the directionality of a radi-

ation or reception pattern. When receiving, a signal, beamforming can increase

the gain in the direction of wanted signals and decrease the gain in the direction

of interfering sources. When transmitting a signal, beamforming has the poten-

tial of increasing the gain in the direction of the desired user. This is achieved

by creating beams and nulls in the radiation pattern. Beamforming can also be

viewed as angular filtering, which is achieved by feeding the A/2-spaced AEs with

appropriately phased signals and hence creating their constructively or destruc-

tively phased superposition. In other words, when transmitting, a beamformer

appropriately controls the amplitude and phase of the signal at each transmitter

AE, in order to create a pattern of constructively and destructively phased inter-
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ference in the wavefront. When receiving, the signal impinging on the different

AEs is combined in such a way that the expected angular selectivity is observed.

Again, unlike in other smart antenna systems spacing the AEs as far as pos-

sible, in beamforming arrangements typically A/2-spaced AEs are used for the

sake of creating a spatially selective transmitter/receiver beam, where A is the

wavelength. Smart antennas using beamforming have widely been employed for

mitigating the effects of interfering received signals and for providing a transmit

beamforming gain. Furthermore, beamforming arrangement is capable of sup-

pressing the effects of co-channel interference, which allows the system to support

multiple users within the same bandwidth and/or same time-slot by separating

them angularly. This angular separation, however, becomes only feasible, if the

corresponding users are separable in terms of the Direction of Arrival (DOA) of

their beams. These beamforming schemes, which employ appropriately phased

antenna array elements that are spaced at distances of A/2 typically result in an

improved Signal-to-Interference-plus-Noise Ratio (SINR) distribution and hence

in an enhanced network capacity [11].

The physical and mathematical description is essentially the same for both

the transmitter and receiver beamformings, hence we will concentrate on receiver

beamforming to explain the concept further. An example consisting of four sig-

nal sources and a three-element linear antenna array is shown in Figure 2.2. The

DOAs of the sources are ft = 45°, 62 = 15°, 93 = -30° and 04 = -70°, respec-

tively. Since the elements of the antenna array are quite close, we can assume

that the CIR coefficients between the kth source and each of the receiver AEs is

source 3 source 2
source 1

source 4

A/2 • A/2 — •
antenna 1 antenna 2 antenna 3

Figure 2.2: Geometric structure of beamforming consisting of four signal
sources and a three-element linear antenna array. The DOAs of the sources
are ft = 45°, 62 = 15°, 93 = -30° and 6>4 = -70°.
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(a) Source 1 (0i = 45°)

(c) Source 3 (03 = -30°)

(b) Source 2 (02 = 15°)

(d) Source.4 (04 = -70°)

Figure 2.3: Beam patterns, when employing three AEs to support the four
sources seen in Figure 2.2. The solid radial line indicates the direction of the
desired source, and the dashed radial lines denote the interfering sources.

the same, which is denoted as hk- Then the received signal can be expressed as

hi h2

X

Si

s2

S3

_S4_

ni

n2

_n3j

, (2.3)

where ni is the additive noise at AE I. Figure 2.3 shows the resultant beam

patterns for all four sources after beamforming aided detection. The solid radial

line indicates the direction of the desired source, and the dashed radial lines denote

the interfering sources. It is clear that the beamformer creates its 'main beam1 in

the desired source's direction. At the same time, the beamformer creates a null in

the other three directions, namely in those of the interfering sources. Hence the

Signal-to-interference Ratio (SIR) is increased at the output of the beamformer.
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2.1.5 Multi-functional MIMOs

As we have seen in Sections 2.1.1-2.1.4, the benefits of multiple antenna aided

systems are manifold, since they are capable of achieving increased bit rates with

the aid of spatial multiplexing, or reduced error rates using spatial diversity,

and of improving the SNR with the aid of adaptive antenna arrays. The basic

smart antenna structures introduced above are summarized in Table 2.2. Each

Table 2.2: Benefits of different smart antenna structures

STTC
STBC .
D-BLAST
V-BLAST
H-BLAST
SDMA
Beamforming

Array
gain

/

Diversity
gain

/
V
/

Multiplexing
gain

/
/
/

Interference
reduction

/
/

Coding
gain

/

structure exhibits different key advantages compared to the single-input single-

output system. These differences inspire the combination of two or more smart

antenna schemes, in order to create so called 'multi-functional MIMOs'. It was

proposed in [69] to combine the benefits of STBCs and of V-BLAST techniques

for the sake of providing both antenna diversity as well as spectral efficiency gains.

This hybrid scheme was improved in [76] by optimizing the specific decoding order

of the different antenna layers.

2.1.6 Distributed MIMOs

In space-time coding and spatial multiplexing techniques, it is typically assumed

that the individual AEs are co-located, i.e. they belong to the same antenna

array, and that their antenna spacing is sufficiently high in order to justify the

assumption of having statistically independent links. In many practical scenarios,

having a sufficiently high antenna spacing cannot be guaranteed, which results

in correlation between the individual transmission links. Mobile terminals, for

example, are typically characterized by a small size, where ensuring a sufficiently

high separation of the AEs is difficult. However, even if no correlation is experi-

enced between the transmission links, experiencing shadow fading may result in a
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Transmitter 2

T-
Transmitter K

Transmitter 1

Virtual antenna array

Figure 2.4: Distributed MIMO system with K-node VAA at the transmitter
side.

poor SNR for all channel links. In this scenario, spatial diversity remains unable

to improve the achievable BER performance.

In order to circumvent the limitations of wireless communications, new and

unconventional concepts are required. An attractive idea that has recently gained

considerable interest is the concept of cooperative wireless networks [78]. In such

networks, multiple network nodes cooperate and share their antennas, for exam-

ple by using a distributed space-time coding scheme (or a distributed diversity

reception scheme). By this means, a Virtual Antenna Array (VAA) may be

established, as seen in Figure 2.4. The cooperating nodes, possibly equipped

with only a single antenna, can thus enjoy the benefits offered by conventional

MIMO systems having co-located antennas. Cooperative wireless networks can

be viewed as a mixture of hierarchical and ad-hoc, networks [75]. Current wire-

less networks are typically characterized by an inflexible hierarchical structure,

where communication is mainly controlled by a central network node, namely a

BS. By allowing some cooperation between the individual network nodes, ele-

ments of an ad-hoc network may be introduced. Cooperation can, for example,

be performed between multiple BSs having intersecting coverage areas. Another
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example of cooperation between fixed network nodes are constituted by wireless

sensors, where data measured by wireless sensors are collected by multiple dis-

tributed receiving nodes and are then processed in a joint fashion. Cooperation

can also be performed between mobile terminals. An example of the latter is

given by relay-assisted networks [77], where the mobile terminals mutually relay

their transmitted or received signals.

2.2 Multiuser Detection

The philosophy of multiuser detection is based upon treating the signals generated

by all simultaneous users as 'wanted' signals, which must be jointly detected at the

receiver. Verdu's optimum MUD [79,80] uses a bank of matched filters followed by

Viterbi's Maximum Likelihood (ML) sequence estimator [81] invoked for detecting

the most likely data sequence. Although the optimum MUD exhibits a significant

performance improvement over conventional single-user detectors, this is achieved

at an enormous complexity. The sub-optimum MUDs can generally be divided

into two main classes, namely adaptive and non-adaptive MUDs [6]. The latter

class would normally require knowledge of some a priori information about the

channel and the system itself. By contrast, adaptive MUDs would relax either all

or some of the a priori information requirements of the non-adaptive MUDs. The

non-adaptive MUD class can be further divided into linear and non-linear MUDs.

In linear multiuser detection a linear mapping is applied to the soft outputs of

the conventional matched filter detector in order to produce a new set of outputs.

By contrast, in non-linear detection some form of Interference Cancellation (IC)

is carried out, in order to cancel the Multiple Access Interference (MAI) imposed

on each other. This typically achieves a better performance in comparison to

linear MUDs.

The most well-known linear MIMO detector is the MMSE detector [6], which

is discussed in detail in numerous text-books, such as [82,6]. It is well known that

the MMSE detection approach is optimum in terms of minimising the MSE of

a linear detector. However, a linear detector directly designed for achieving the

lowest BER is optimum in terms of minimising the BER. Hence, the set of linear

detectors, which achieve the minimum BER are referred to as MBER detectors.

They have been studied for example in [29] by Chen et al. A simplified MBER

detector has for example been proposed by Gesbert in [83] on the basis of a closed-
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form expression for certain channel conditions. At the time of writing MBER

detectors have mainly been proposed for BPSK signals as well as 4-level QAM

signals. MBER detectors are challenging to derive for higher-order QAM, and this

open problem was solved in [33] by Yeh and Barry, who have proposed a Minimum

Symbol Error Rate (MSER) detector for high-order QAM. A generic framework

for adaptive minimum error-probability filter design was reviewed in [84] by Chen

et al.

In systems, where the number of transmit AEs is higher than the number of

receive AEs, the linear detectors are often incapable of correctly detecting the

desired signal and hence the family of non-linear detectors has to be employed.

The optimum non-linear detector is the ML or Maximum A Posteriori Probability

(MAP) detector, which is also often referred to as the Bayesian detector [85]. It

was shown in [85] that the Bayesian detector achieves the lowest possible BER

of all non-linear detectors. Another attractive non-linear MUD is the IC based

MUD, classified into successive IC [86] and parallel IC [87]. In general, the signals

transmitted by the various users in a communication system are channel coded.

Instead of separating the signal processing operations of the demodulator from

those of the decoder as in the IC algorithms, a better strategy is to use the soft-

information metrics output by the channel decoder to enhance the suppression

of the MAI at the demodulator with the aid of a turbo-style iterative detection

algorithm [88,18]. It is widely recognized that the optimum MUD has a non-linear

decision boundary [80] and that the employment of non-linear MUDs typically

provides a better performance in comparison to linear MUDs. However, this

performance improvement is achieved at an increased complexity.

Table 2.3 summarizes the history of MUD design.

Table 2.3: Selection of MUD papers

Author (s)

[79]

Verdu

[87]

Varanasi

and

Aazhang

Contribution

Investigated the uncoded probability of error achievable by

optimum ML MUDs for transmission over asynchronous

Gaussian multiple-access channels.

Proposed and analysed a multistage MAI mitigation scheme

for coherent demodulation in an asynchronous CDMA sys-

tem.



2.2 Multiuser Detection 25

Author(s)

[86]

Patel and

Holtzman

[88]

Reed et al.

[18]

Wang and

Poor

[83]

Gesbert

[40]

Li and

Wang

[29]

Chen et al.

[19]

Tarable

et al.

Contribution

Analysed a simple SIC scheme for coherent and noncoher-

ent modulation of Direct Sequence Code Division Multiple

Access (DS-CDMA) systems, where the channel parameter

estimation was carried out using the output of a linear cor-

relator.

Introduced an iterative multiuser receiver for DS-CDMA em-

ploying forward error control coding. The receiver employed

the MAP criterion for the multiuser received signal, but em-

ployed only single-user decoders.

An iterative receiver structure was proposed for detect-

ing multiuser information in a convolutionally coded asyn-

chronous multipath DS-CDMA system. The receiver per-

forms two successive soft-output decisions carried out by a

SISO MUD and a bank of single-user SISO channel decoders

with the aid of an iterative process.

It was stated that minimum error-rate linear receivers have

the potential of significantly outperforming MMSE receivers,

but no simple direct method of designing minimum error-rate

receivers exists. The author derived a closed-form approxi-

mate solution for this problem.

Based on the Extrinsic Information Transfer (EXIT) chart

technique, the authors studied the mutual information trans-

fer characteristics of SIC aided MUDs designed for coded

CDMA systems operating in synchronous AWGN and asyn-

chronous multipath fading channels.

An adaptive beamforming technique was proposed based on

directly minimising the BER. This MBER approach adjusts

the antenna array elements more intelligently than the stan-

dard MMSE approach.

A structure based on a linear user separation technique was

introduced and analysed, where the matched filter outputs

were generated according to the MMSE criterion for the first

few iterations, and then the MMSE filter was by-passed, when

the interferers' bits became known with a sufficiently high

probability.
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Author(s)

[89]

Schober

et al.

[30]

Alias et al.

[34]

Chen et al.

[84]

Chen et al.

Contribution

It was showed that for DS-CDMA using BPSK modulation

transmission over complex baseband channels the real part of

the Matched Filter (MF) output and not the MF output itself

should be used as sufficient statistics for further processing.

Based on this observation, the authors derived novel linear

and decision-feedback aided MMSE receivers.

Invoked genetic algorithms for finding the optimum weight

vectors of the MBER MUD in the context of multiple-

antenna-aided multiuser OFDM.

A novel MSER design was proposed for a beamforming as-

sisted receiver, where the system's SER was directly opti-

mized for a QAM system.

Provided a genenic framework for adaptive minimum error-

probability filter design suitable for the employment in a va-

riety of communication systems. The advantages and dis-

advantages of the adaptive minimum error-probability filter

design were analysed in comparison to the classic Wiener fil-

ter aided design.

2.2.1 System Model

The system considered consists of K uplink MSs employing a single-element trans-

mit antenna and a BS receiver, which has L number of AEs. The symbol Sk of

the A;th MS is transmitted to the BS's Ith. AE over a narrowband channel charac-

terized by the channel coefficients /i^. The.channel coefficient hik represents the

complex-valued gain of the channel between MS k and the Ith BS receiver AE.

The output signal of the Zth AE of the BS receiver can be written as

K

(2.4)

where n\ is the complex-valued AWGN having a variance of E [|n/12] = 2u\. Under

the assumption of perfect synchronization, the channel's output is described by a

(Lx.K')-dimensional matrix H = [hi h2 • • • h/r], where the (I, k)th element of the
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matrix is given by h^- The channel's output vector r can now be expressed as

r = Hs + n, (2.5)

where the column vector s = [s\ S2 • • • SK]T contains the symbols transmitted by

the MSs and the associated AWGN is given by n = \n-iji2 • • • ni]T.

In this thesis, we only discuss BPSK modulation, Quadrature Phase Shift

Keying (QPSK) modulation and 16QAM modulation using Gray mapping. The

constellation diagrams are shown in Figure 2.5, in which Es denotes the average

symbol energy.

The soft output estimated symbol vector s of a linear MUD can be written as

§ = W H r , (2.6)

where W represents a (Lx/Q-element complex-valued MUD weight matrix and

the superscript H denotes the Hermitian transpose. The different columns of W

denoted as wfc are associated with the different transmitters' symbols. The hard

detected bits are given by

BPSK:
Sfc(l) = sgn(3?[sfe]), (2.7)

QPSK:

(2.8a)

(2.8b)

16QAM:

6fc(l) = sgn(8[S*]), • (2.9a)

6 f c ( 2 ) = s g n ( | 5 R [ 4 ] | - ^ s ) ) (2.9b)

6fc(3) = sgn(3[sfcj), (2.9c)

(2.9d)

where bk(i) is the ith bit of the fcth user's hard decision based symbol §k, sgn(-) is

signum function, | • | represents the absolute value of a real number, 3?[•] denotes
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Figure 2.5: Constellation diagrams of BPSK, QPSK and rectangular 16-
QAM using Gray mapping. Es denotes the average symbol energy.

the real part and S[-.] denotes the imaginary part.

Let us now Consider a two-user, single receive antenna aided system as an

example for plotting the cost function surface of various multiuser detection algo-

rithms. BPSK signals are transmitted over a narrowband non-dispersive channel

and the CIR matrix of the two uplink users is given by H = [0.708-J0.707, 0.997

-jO.083].
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2.2.2 Bayesian Detection

We wish to design a signal detector that makes a decision concerning the kth

user's transmitted signal sk based on the observation of the vector r, in order

that the probability of a correct decision is maximized.- With this goal in mind,

we consider a decision rule based on the computation of the a posteriori proba-

bilities defined as P[sk=s^ |r), where s^m) is the rath symbol of the modulation

constellation, ra G {1,2, • • • , M}, and M denotes the number of possible symbols

in the modulation constellation. The decision criterion is based on selecting the

signal corresponding to the maximum of the set of a posteriori probabilities:

sk =

= argmax J ^ P(s(9)|r), (2.10)
Vs

s(9)=s(m)

where s ^ is the qth possible transmitted signal combination of the K users,

q € {1,2, ••• ,MK}, and sjjr is the kth user's signal in this combination. This

decision criterion is referred to as the Maximum A Posteriori Probability (MAP)

criterion, which minimises the probability of error. Using Bayes' rule, the criterion

may be expressed as

s W = a

argmax J^ ^(r |s ( 9 ))P(s ( 9 )) , (2.11)

where P ( s ^ ) = IIfc=i P{sk ) ^s ^ e a V^on probability of the gth possible signal
combination being transmitted, and P ( r | s ^ ) is the conditional probability of the
observed vector given s^9\ which can be expressed as

Simplification of the MAP criterion becomes possible, when the transmit-

ted signals are equally probable. Consequently, the decision rule based on find-
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ing the signal that maximizes P(s^9)|r) is equivalent to finding the signal that

maximizes P ( r | s ^ ) . The conditional probability P ( r | s^ ) is usually referred

to as the likelihood function, and the decision criterion based on the maximum

of P(r|s(')) over all the possible transmitted signal combinations is called the

Maximum Likelihood (ML) criterion, which now may be written as

(2.13)
Vs<«>

sM=a(m)

Let us now consider a BPSK system and define the signed ML decision func-

tion as

P(r|st«>)- £ P ( r | s« ) . (2.14)

Then the corresponding decision rule can be written as

( r ) ) . • (2.15)

The bold line shown in Figure 2.6 indicates, how the ML detector formulates

an optimum non-linear decision boundary. The surface illustrates the first user's

channel-output for the specific channel setup defined in the last paragraph of

Section 2.2.1 at £6/iV0=10dB.

2.2.3 Minimum Mean Squared Error Detection

The Minimum Mean Squared Error (MMSE) MUD optimizes the kth user's

weight vector w^ based on minimising the MSE between the actual transmit-

ted symbol sk and the soft output sk of the MUD. The MSE criterion can be

expressed as follows

E[\sk-sk\
2]

E[|,fc-wfr|2]
E[skS*k] - wf Eftr] - v

Es - wf HE[SfcS] - w p

Es - ^ s w f hfc - ^w^h

fE[*fcr'] +

H*E[Sfcs*] +

wfE[rrH]wfc

•wf(HE[ss^]HH

HHH + 2^IL)wfc (2.16)
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Decision boundary

Figure 2.6: ML decision boundary (bold line) and the first user's channel-
output (surface) for the specific channel setup defined in Section 2.2.1 at
Eb/N0=10dB.

where E[-] denotes the expected value, and 1^ denotes the (LxL)-element identity

matrix.

The MMSE solution is now defined as

wk = (2.17)

Figure 2.7 shows the MSE surface for the first user of our example introduced in

the last paragraph of Section 2.2.1 at Eb/N0=lOdB as a function of the weight's

real part K[wi] and imaginary part Gfwj]. The contours of the MSE surface

are plotted on the base plate of Figure 2.7. We can see the typical quadratic

shape of the cost function, which may be minimised by taking the derivate of

Equation (2.16) and setting it to zero. The gradient of the MSE cost function is

given by

,MSE = 2-KMSE

= -2Eshk + 2(ESHHH + 2cr2
nIL)wk. (2.18)
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MMSE solution X

Figure 2.7: MSE cost function surface for the first user of our example
introduced in Section 2.2.1 at Eb/No—10dB as a function of the weight's
real part SR[wi] and imaginary part 5[wi].

By setting V£MSE = 0, the MMSE weight vector can be shown to be [6]

-l

HH hfe. (2.19)

It is apparent that the MMSE weight vector attempts to reduce the effects

of noise enhancement. Therefore the MMSE solution can be viewed as a striking

compromise that takes into account the relative importance of each interfering

user as well as of the background noise.

2.2.4 Real-valued Minimum Mean Squared Error

Detection

For BPSK systems, the optimal MMSE receiver would only minimise the MSE

between the transmitted signal and the real part of the MUD's output signal.

Accordingly, the Real-valued Minimum Mean Squared Error (RMMSE) solution

is introduced to avoid considering the imaginary part's minimisation. Let us
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define the complex matrices' vertical stacking by the subscript c. Then we have

(2.20)

where Mc can be any matrix, which is vertically stacked. The real-valued MSE

criterion may be expressed as

= Ea (2.21)

Similarly to the MMSE solution, the RMMSE optimization problem can now

be defined as

Wfc)C = argmin^fiMSfi. (2.22)

Figure 2.8 shows the real-valued MSE surface for the first user of the example

introduced in the last paragraph of Section 2.2.1 at Eh IWo=lOdB as a function of

the weight's real part 9£[wi] and imaginary part 3?[wi]. The contours of the real-

valued MSE surface are plotted on the base plate of Figure 2.8. The minimum

point on this surface can be found by setting the gradient of Equation (2.21) to

zero. The gradient of £RMSE is given by

XRMSE

= -2EshktC

Setting the gradient to zero leads to the closed-form solution [89]

(2.23)

- l

(2.24)

The first half of the elements in wj.)C are the real part of the RMMSE solution

Wfc, while the second half of the elements form the imaginary part.
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RMMSE solution O

Figure 2.8: Real-valued MSE cost function surface for the first user of the
example introduced in Section 2.2.1 at Eb/No=10dB as a function of the
weight's real part 3?[wi] and imaginary part 5[wi],

2.2.5 Minimum Bit Error Rate Detection

The MMSE algorithm is the most popular design strategy in the context of linear

MUDs. However, a better strategy is to choose the linear MUD's coefficients so as

to directly minimise the bit error probability or the BER, rather than the MSE.

This is because minimising the MSE does not necessarily guarantee that the BER

of the system is also minimised. The family of detectors that directly minimises

the BER is referred to as the class of Minimum Bit Error Rate (MBER) detectors.

For BPSK systems, the BER encountered at the output of the MUD charac-

terized by the combiner weight vector Wfc of user k may be expressed as

Peb = P(sgn($t[sk}) 0). (2.25)

Define x = sgn(3ff[s/c]) • ̂ [^(w/j)] as a signed decision variable. The PDF of x

is constituted by a mixture of the Gaussian distribution associated with each

possible combination of the transmitted data symbols of all users. Under the

assumption that all the noise-free signal states are equiprobable, the PDF of x is
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given by [29]

1 £ ( g ( [ 4 ] ) [ 4 ] )
exp —* ^-s J— , 2.26

1 2a» I ' 1 y

where M-^ is the number of equiprobable combinations of the binary vectors of

the K users for M-ary PSK. systems. Furthermore, sjj. = W J ^ H S ^ denotes the

noiseless signal at the output of the MUD related to the A;th user, when the qth.

possible combination of the K users s ^ is transmitted. The erroneous decision

events are associated with the area under the PDF curve in the interval (—oo, 0),

which is quantified as

Pet, =

9=1

The MBER solution is defined as

wfc = argminPe6. (2.28)

In Figure 2.9 the BER surface is plotted as a function of the array weight co-

efficients for the example introduced in the last paragraph of Section 2.2.1 at

Eb/N0=lQdB. The contours of the BER surface are plotted on the base plate

of Figure 2.9. The different array weights of the MMSE, the RMMSE and the

MBER solutions are also indicated. The corresponding BERs are distinctly dif-

ferent at a specific array weight value. Even when the optimum weight value is

used for all three MUDs, the MBER solution has the lowest BER. As already

mentioned above, the solution to this problem can be found by taking the derivate

of Equation (2.27) and setting it to zero. From the expression of Equation (2.27),

we know that the BER is independent of the magnitude of the MUD's weight

vector, as also seen in Figure 2.9 indicated by the straight-line BER contours

and the narrow trough near R[wi] = 0, which has an infinite number of solutions

along its spine. The gradient of Equation (2.27) may be expressed as [29]
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MMSE solution X
SE solution O

solution A

Figure 2.9: BER cost function surface for the first user of the example
introduced in Section 2.2.1 at Eb/No=lOdB as a function of the weight's
real part 5R[wi] and imaginary part S[wi].

(2.29)

which is derived in Appendix A.I, when considering the absence of a priori in-

formation.

Equation (2.29) does not provide us with a closed-form solution for the MBER

MUD weights. Therefore, an iterative strategy based on the steepest-descent

gradient method can be used for finding the MBER solution. The steepest-descent

gradient algorithm is summarized as follows

wfc(r) + Sdk(i)

wfc(i)-<JVPe6[wfc(i)], (2.30)

where i is the iteration index, 5 represents the step size and VPe;,[wfc(i)] is the

gradient of the bit error probability during the ith iteration. According to this

method the weight vector w^ of the linear MUD is updated iteratively, until the
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specific weight vector that exhibits the lowest BER is arrived at. Unfortunately,

the steepest-descent gradient algorithm may converge relatively slowly. In or-

der to circumvent this convergence problem, we invoke the Simplified Conjugate

Gradient (SCG) method [29], which uses a constant step size for all iterations

comparing with the original conjugate gradient algorithm. This strategy chooses

the vectorial direction of the current MUD weight vector update to be orthogonal

to that of the previous update and improves the achievable convergence speed.

The SCG algorithm operates as follows [90]:

Initialization: Set the iteration index i=l. Choose a step size 6>0

and a termination scalar (3>0. Given w(l) and d(l) =

—• VPej,[w(l)], carry out:

Loop: If ||VPet[w(i)]|| < P, goto End. Else

(2.31)

0. = M" -»i"v"-/Jn , (2.32)

= 0<d(i) - VPe6[w(t+l)], (2.33)

and i = i + l. Goto Loop.

End: Weight vector w(i) is the chosen solution.

Figure 2.10 shows the iterative weight-update convergence process of the SCG al-

gorithm, emerging from the MMSE solution and approaching the MBER solution.

For QPSK systems, we have in effect two binary phase-modulated signals in

phase quadrature. Since there is no crosstalk or interference between the signals

modulating the two quadrature carriers, the bit error probability can be expressed

as

(2.34)

The gradient of the probability is

VPeb = | (VPe , + VPeQ). (2.35)

The in-phase error probability Pej and its gradient VPe/ are the same as in

Equations (2.27) and (2.29). The quadrature-phase error probability Peg is sim-
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10'
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Figure 2.10: BER surface and the iterative weight-update trajectory of the
SCG algorithm (polygonal line), emerging from the MMSE solution and
approaching the MBER solution.

ilar to that in Equation (2.27), except for considering the imaginary-part of the

desired symbol, which can be expressed as

Pen =
1

MK

MK
' f c J (2.36)

9=1

Based on Appendix A.I, when considering the absence of a priori information,

the gradient of Pen can be expressed as

VPeQ = 2
dPetQ

dwt

(2.37)
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2.2.6 Minimum Symbol Error Rate Detection

Since the MBER algorithm cannot be directly applied in high-order QAM sys-
tems, a Minimum Symbol Error Rate (MSER) algorithm has to be designed.
Let us now consider an M-QAM system, and define the constellation symbol
as s(m,n) = Vm /2 _ ^j - 1) + j /*& (2n - T/M - l ) , where we

have m G {1, 2, • • • , \/~M} and n G {1,2, • • • , VM}. When the desired user k

transmits symbol sk = s^m'n\ the conditional PDF of sk is a mixture of Gaus-

sian distributions, each of which is centered at the legitimate symbol position

s{
k
g) = wfHs ( 9 ) = wf (hfcs(m'") + EfcVfchfc/sj?)- Then the conditional PDF is

expressed as [34]

In general, w^ hfc is complex-valued and the vector rotation operation of •

,wfc. fc.Wfc can be used to ensure that wj?hk positive and real-valued. This vector

rotation is a linear transformation and does not affect the system's SER [34]. By

defining 6* = / ^ (2i — -/M), % G {1,2, • • • , y/M—1}, the decision boundaries

of sk are determined by 6,wf hfc for the in-phase component and by jbiW%hk for

the quadrature-phase component. Assuming that the fcth user transmits symbol

s(m,n)^ ft m a v ^ e readily seen that the points s^ conditioned on sk
9' = s^m>n^

are distributed symmetrically around the symbol point wf hfcs(m>n) [34]. Further-

more, when user k transmits an arbitrary legitimate symbol s^m'n\ the conditional

PDF of p(sfc|sfc=s(m>n)) retains the same shape and remains in the same position

with respect to the corresponding decision boundaries, which is referred to as the

shifting property [34]. Then the conditional in-phase component error probability

of the hard detected symbol ?R[sk] ^ R[s^m'n^] can be shown to be

1 V ^ / r+oo

m=2
r+oo

_iwfh*

r+oo

+ / . p(h\sk=sM)<m[h]
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2M-2VM
M

' w - " • - • " • | (2.39a)

Similarly, the conditional quadrature-phase component error probability of the

hard detected symbol $$[sk] ^ Q[s^m'n^] can be shown to be

Then the resultant symbol error rate is given by

Pes = Pe 7 + PeQ - Pet • PeQ. (2.40)

The resultant MSER solution is defined as the one that minimises the upper

bound of the SER given by

Wfc = arg min PeSB

(2.41)

The upper bound PeSB is very tight, i.e. very close to the true SER Pes since

Pei • PeQ is typically small [34].

In order to arrive at the optimum weights for the MSER solution by using the

SCG method, we need the gradient of Pess

VPesB = VPe7 + VPeQ, (2.42)

where based on Appendix A.2 and in the absence of a priori information, VPe7

and VPeQ can be expressed as
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2M-2VM ^ ( _
exP I

)

and

2M-2x/M y ex

w f wfc

2.2.7 Interference Cancellation Aided Detection

In addition to linear detection schemes, researchers have also proposed nonlinear

detectors that cancel the interferers' signals from the composite multiuser signal

to detect that of the desired user. More explicitly, the Interference Cancellation

(IC) based MUDs attempt to remove the MAI by reconstructing the original

transmitted signals of one or several users and cancel the interference imposed by

these reconstructed signals on the composite received signal. The resultant signal

is then processed iteratively for removing the effects of all users, invoking the same

procedure, in order to obtain the data estimates for the remaining users, until all

the users' signals are detected. The IC aided detectors include two classes: the

family of successive IC [86] and the parallel IC techniques [87].

The successive IC assisted MUDs [86] adopt a serial approach to canceling the

effects of interference. Each stage of the successive IC MUD makes a decision,

regenerates and cancels the effects of the modulated signal of one user from the

composite received signal. Intuitively, the process commences by removing the

effects of the strongest signal, since it has the most detrimental effect on the

remaining users and can be most reliably demodulated. More explicitly, the

successive IC MUD is susceptible to the initial estimation error and the strongest

signal can provide the most reliable data estimates for initiating the process.
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Thus, the successive IC aided MUD requires sorting all the users in descending

order according to their received signal powers and then successively eliminates

the effect of the strongest signals, until all users' data are detected. Paradoxically,

successive IC detectors perform most reliably, when the interference is strong

relative to the desired signal, i.e. when there is a significant power difference

between the users' signals. By contrast, the successive IC MUD's performance is

poor, when the power levels are similar. Naturally, the received signals have to be

sorted according to their power correctly, and further signal reordering is required,

whenever, the power profile changes. This will be a particular risk in a high

capacity system having widely varying power levels. Finally, serial cancellation

of the users' signals one by one will lead to a relatively high complexity.

As opposed to the above-mentioned successive IC technique, the parallel IC

based MUD [87] estimates and subtracts all the MAI for each user simultane-

ously. It usually consists of multiple stages of IC, so the parallel IC MUD is

also often referred to as multistage IC. In each cancellation stage, the signal of

each user is reconstructed using the data estimates generated during the previ-

ous cancellation stage. Then, for each user, the reconstructed signals of all other

users are subtracted from the composite received signal and the resultant signal

is processed by a MF, in order to obtain a new set of data estimates for this

user. The number of parallel IC stages is determined by the tolerable detection

complexity that the system can afford. The iterative parallel IC can be repeated

the affordable number of times, in order to achieve the best possible performance.

Hence parallel IC detection has been regarded as one of the most promising MUD

techniques. In an accurately power-controlled, equal-power scenario the classic

parallel IC scheme tends to perform better than the successive IC scheme. A

straightforward enhancement of the parallel IC detection is to use soft decisions

rather than hard decisions in each iteration, except for the last one.

2.2.8 Computational Complexity of MUD Schemes

For the sake of fair comparisons of the MUD algorithms, the number of real-

valued operations is used as the unit of complexity, and the complexities imposed

by a real-valued multiplication and a real-valued addition might be considered

equivalent. A single complex-valued addition's complexity is equivalent to that

of two real-valued operations, and a complex-valued multiplication's complexity

is equivalent to that of six real-valued operations. The computational complexity
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of a (TVxiV)-element complex-valued matrix inversion is on the order of 87V3

real-valued operations, denoted by 0(8iV3).

The comparison of the different MUD schemes' computational complexity

is summarized in Table 2.4 when considering the detection of single transmit-

ted symbol. The optimum Bayesian detector has the computational complexity

of O(LMK), which increases exponentially with the number of users K. The

MBER and MSER detectors have similar complexities of O(NcgLMK), where

Ncg denotes the number, of iterations in the SCG algorithm. It is clear that the

computational complexity of the MBER and MSER MUDs is about Ncg times

higher than that of the Bayesian MUD. The high computationally complexity

associated with determining the MBER or MSER weights is owing to the fact

that the number of legitimate channel output states is proportional to O(MK)

and thus grows exponentially with the number of transmit AEs. However, the

complexities seen in Table 2.4 were obtained under an assumption of rapid fading

environments. For a slowly fading channel scenario, the complexity of all linear

MUD algorithms will be significantly lower than the corresponding complexity

in the table, because the weights calculated already can be reused, when the

channels are considered time-invariant.

Table 2.4: Comparison of computational complexity per symbol of different
MUD schemes

MUD

Bayesian

MMSE

RMMSE

MBER

MSER

Computational complexity

O

O

¥ ) + 1 6 L 2 - ^ + 6L + f - 2

^ ) + 1 6 L 2 - ^ + 2L + f - 1

(((4L + 2) log2 M + 8L- 2)Ncg + 8L- f"jMK +
(18L + 5)Ncg + 8L-2

((20£±jo +8L_ 2^Ncg + 8L- f W * + (24L +

ll)7VCfl + 8 L - 2

Equation (s)

(2.12), (2.14)

(2.19)

(2.24)

(2.28), (2.29),
(2.37)

(2.41), (2.43)

2.2.9 Performance of MUD Schemes

Let us now consider a receiver beamforming scheme employing a three-element

antenna array. All users have the same transmit power as well as channel coef-
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MMSE
RMMSE
MBER
ML

30

Figure 2.11: BER versus Eb/N0 performance of the ML, MMSE, RMMSE
and MBER beamformers employing L=3 receive AEs for supporting K=6
BPSK users communicating over AWGN channels. The DOAs of the de-
sired user and the other interference users are seen in Figure 2.12.

desired user
interferer 3

interferer 4\ / interferer 2

interferer 5

interferer 1

- A / 2

Figure 2.12: Three AEs, where the signal of the desired user arrives from
15°, while the interfering signals from 70°, 35°, -5°, -25° and -50°.

ficients of hk = 1.0+jO.O (k £ {1, • • • ,K}). Figure .2.11 shows the BER versus

Et,/No performance of our BPSK system supporting K=Q users. The DOA of

the desired user is 15°, and the DOAs of the other interference users are 70°, 35°,

—5°, —25° and —50°, respectively, as seen in Figure 2.12. It can be observed

that the ML receiver exhibits a significantly better performance than the linear

detectors. For BPSK modulated signals, the MBER detector clearly outperforms
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Figure 2.13: BER versus Eb/N0 performance of the ML, MMSE and MBER
beamformers employing L=3 receive AEs for supporting K=4 QPSK users
communicating over AWGN channels. The DOAs of the desired user and
the other interference users are seen in Figure 2.14.

the MMSE detector. This is mainly due-to the fact that the MBER detector

only optimizes the real-part of the filter's output, whereas the MMSE algorithm

minimises the MSE composed of both the real and the imaginary part of the

filter output. The RMMSE detector performs similarly to the MBER detector,

when the E^/NQ value is lower than 20dB. However, in the high-SNR region the

RMMSE detector cannot match the performance of the MBER detector, since

the residual interference plus noise is non-Gaussian distributed [83].

The BER versus Eb/N0 performance of the QPSK system supporting K=4

users is shown in Figure 2.13. The DOA of the desired user is also 15°, and the

DOAs of the other interference users are 45°, —20° and —50°, respectively, as seen

in Figure 2.14. In this QPSK case, the ML detector still has the best performance.

The MBER detector outperforms the MMSE algorithm at high SNRs. This per-

formance difference indicates that the MMSE algorithm is incapable of optimally

separating the linearly separable data sets owing to its MSE-based optimization

function, whereas the MBER algorithm achieves this goal.

Figure 2.15 shows the SER versus E^/NQ performance of a 16QAM modulated

system supporting K=A users. The DOA of the desired user is 15°, and the
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interferer 2

interferer 3

desired user

interferer 1

A/2

Figure 2.14: Three AEs, where the signal of the desired user arrives from
15°, while the interfering signals from 45°, -20° and -50°.
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Figure 2.15: SER versus Eb/N0 performance of the ML, MMSE and MSER
beamformers employing L—3 receive AEs for supporting K=A 16QAM users
communicating over AWGN channels. The DOAs of the desired user and
the other interference users are seen in Figure 2.16.

DOAs of the interfering users are -12°, —43° and —57°, respectively, as seen in

Figure 2.16. For this example, the MSER beamformer achieved a significantly

better performance than the MMSE beamformer at high SNRs. We should be

aware that if the data sets conditioned on the desired user's transmitted symbol

are not linearly separable, both the MMSE and the MBER algorithms will have

a similarly poor performance.
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interferer 1
desired user

interferer 2

interferer

Figure 2.16: Three AEs, where the signal of the desired user arrives from
15°, while the interfering signals from -12°, -43° and -57°.

2.3 Conclusions

In this chapter different MIMO structures, namely the STCs of Section 2.1.1, the

spatial multiplexing of Section 2.1.2, the SDMA of Section 2.1.3, the beamform-

ing of Section 2.1.4 as well as the multi-functional MIMOs of Section 2.1.5 and

the distributed MIMOs of Section 2.1.6 have been introduced. Different smart

antenna architectures provide different benefits, such as array gain, diversity gain,

multiplexing gain, interference reduction and coding gain. The advantages of the

basic smart antenna structures compared to single-input single-output systems

were summarized in Table 2.2.

In Section 2.2, we introduced various MIMO multiuser detection algorithms.

The non-linear Bayesian detector of Section 2.2.2 constitutes the optimum non-

linear receiver, which significantly outperforms all linear MUDs. The RMMSE

MUD of Section 2.2.4 designed for BPSK systems considers only the real-part

of the signal, hence it is capable of achieving a better performance than the

conventional MMSE MUD of Section 2.2,3. The MBER MUD of Section 2.2.5

and the MSER MUD of Section 2.2.6 both constitute the optimum linear mul-

tiuser detection algorithms, where the former was designed for BPSK and QPSK

schemes, while the latter for higher-order QAM schemes. The MBER and MSER

algorithms minimise the BER or SER directly at the output of the MUDs and

hence are capable of outperforming the MMSE and RMMSE MUDs at the cost

of a higher complexity. Furthermore, we also introduced IC based MUDs in

Section 2.2.7.

The detailed performance and computational complexity of the methods men-
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tioned above are summarized in Table 2.5. The system uses the parameters of

Section 2.2.9, depending on the modulation scheme used. It can be seen in Ta-

ble 2.5 that the Bayesian detector outperforms other MUDs as a benefit of its

non-linear decision characteristic. The MMSE MUD has the lowest computa-

tional complexity. The RMMSE algorithm designed for BPSK systems is capable

of achieving a better performance than that of the MMSE MUD at the cost of a

similar complexity. Furthermore, the optimum linear MBER and MSER detectors

significantly outperform the MMSE and RMMSE methods. Although the MBER

and MSER MUDs cannot achieve a performance similar to that of the Bayesian

MUD, they impose a lower computational complexity, when communicating over

block-fading channels.

Table 2.5: Performance and complexity summary of MUD schemes

MUD

Bayesian

MMSE

RMMSE

MBER
MSER

Section

2.2.2

2.2.3

2.2.4

2.2.5
2.2.6

Complexity

O(LMK)

°(*r

O(LNcgM
K)

O(LNcgM
K)

Modulation
BPSK
QPSK
16QAM
BPSK
QPSK

16QAM
BPSK

BPSK
QPSK
16QAM

SNR at a
BER of 10~3

25.5dB
18dB
18.5dB
unachievable
unachievable

unachievable

40dB

29dB
29dB
27.5dB



Chapter 3

Iterative Beamforming Receiver

In this chapter, multiuser detection and channel decoding are combined in order to

improve the achievable multiuser beamforming receiver's performance, following

the 'turbo detection principle'. The soft output of the channel decoder is fed

back to the beamformer's input to improve the achievable multiuser detection

performance. In return this improvement then benefits the decoder. The resultant

iterative multiuser receiver is designed based on the soft parallel IC algorithm and

the MBER algorithm, not the conventional MMSE algorithm. Based on the EXIT

chart technique [36], we analyse the achievable performance and the convergence

behaviour of different joint detection schemes, both of which are highly dependent

upon the different system parameters and channel conditions. The EXIT chart

analysis is shown to be valid for the MBER MUD1, despite the non-Gaussian

distribution of its output.

Iterative processing was introduced by Berrou in [12] in the context of iter-

atively decoding two parallel concatenated convolutional codes referred to as a

turbo-code. His work has later been extended to serially concatenated codes [91]

and then found its way gradually into iterative detector designs, such as for ex-

ample iterative equalizers [92,15,16] or iterative multi-user detectors [18,19], In

this section we propose a novel iterative beamforming receiver. The MBER beam-

forming design is optimal in terms of the BER and hence it generally outperforms

the MMSE and the RMMSE solutions at the cost of a higher complexity. EXIT

charts [36] can be used to analyse the convergence behaviour of an iterative MBER

1This treatise deals with the design of beamformers, where typically only the desired user's
signal is detected. However, the same detection procedure may be applied for all the users and
hence we will employ the more general terminology of MUD.

49
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multiuser detection scheme as a function of the system parameters and channel

conditions.

3.1 System Description

3.1.1 Signal Model

The system supports K users and each user transmits his/her signal on the same

carrier angular frequency of u> = 2nf. The receiver is equipped with a linear

antenna array consisting of L elements, which have a uniform element spacing of

A/2, as shown in Figure 3.1, where A is the wavelength.

Assume that the channel is non-dispersive in both the angular domain as well

as in the time domain and hence does not induce Intersymbol Interference (ISI).

Then the symbol-rate received signal samples can be expressed as

K

^e^ m{n) (3.1)

where I € {1,2,-•• , L}, hk is the non-dispersive complex-valued channel coeffi-

cient of user k, Sk(n) is the nth symbol of the feth user, nj(ra) is a complex-valued

Gaussian white noise process associated with i?[|n/(n)|2] = 2<r£, and

(

user k

A / 2 — • • :
L-l

Figure 3.1: Geometric structure of the antenna array consisting of L ele-
ments showing the received signal of user k, where 9k is the LOS compo-
nent's angle of arrival.



3.1.2 Iterative Multiuser Beamforming Receiver Structure 51

= -(J-l)sin(0 f c) . (3.2)

is the relative time delay at array element I for the source signal of user k, with

9k being the Line of Sight (LOS) angle of arrival for source k, and c is the speed

of light. .

If source k is the desired user and the rest of the sources are the interfering

users, then the desired-user's Signal-to-Noise Ratio becomes SNRfc = ^fer1 a n d

the desired Signal-to-Interference Ratio of user k' is SIR*,*./ = i^Tp, where Es is

the symbol energy. The received signal vector r(n) = \r\{n) r2(n) • • •r,£/(n)]T is

given by

r(n) = Hs(n) + n(n), (3.3)

where we have n(n) = [ni(n) ri2(n) • • •ni(n)]T, the transmitted symbol vector of

the K users is s(n) = [s\{n) S2(n) • • • SA-(n)]r and the system matrix is denoted

by H = [hi h2 • • • h*-], which is associated with the steering vector

(3.4)

for source k, k € {1,2, • • • , K}. The system vector h^ is the unique, user-specific

signature of user k. In this chapter, we assume that the relative time delay of

all users with respect to the angularly closest neighbours is the same. All the

angular locations of the users were selected under this constraint.

3.1.2 Iterative Multiuser Beamforming Receiver

Structure

The iterative multiuser beamforming receiver's structure is shown in Figure 3.2,

which consists of two stages, namely the Soft-Input Soft-Output Interference

Cancellation aided beamforming MUD, followed by K parallel single-user SISO

channel decoders. The two stages are separated by the usual deinterleavers arid

interleaves.

The proposed SISO beamforming MUD first computes the estimated symbol

Sfc(n) corresponding to the transmitted symbol Sk(n) using a linear filter, which

determines the coefficients of the beamformer weight wjt(n) according to the

specific design criterion employed and uses this weight to estimate Sk{n) from

the received signal r(n) with the aid of a linear transformation [17]. Let us now
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Cancellation aided beamforming MUD, followed by K parallel single-user SISO channel decoders. The two stages are separated
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define bk(n,i) as the ith bit of symbol sk(n), whereas bk(j) is the same bit but

in a different position of the bit-based interleaving block after the deinterleaver.

LA(-), Lp(-) and LE(-) denote the a priori, a posteriori and extrinsic information

in terms of Log-Likelihood Ratio (LLR), and the indices m and d are associated

with the MUD and channel decoder, respectively. Then the SISO beamforming

MUD delivers the a posteriori information of bit bk(n, i) expressed in terms of its

LLR as [13]

T (h( -\\ i P{h(n,i)=+l\sk(n))
Lp,m{bk{n,i)) = In—r—— >

P{bk(n,i)=-l\sk(n))

= lnP(lfc(n)|bfc(n, »)=+!) P(bk(n,i)=+1)
11 P(sk(n)\bk{n,i)=-1) n P(bk{n,i)=-l)

= LEtm(bk{n,i))+LA,m(bk(n,i)), (3.5)

where the second term, denoted by LAtm(bk(n,i)), represents the a priori LLR of

the interleaved and encoded bit bk(n, %). For the first iteration, assuming equiprob-

able encoded bits, i.e. that no a priori information is available, all bits have a

probability of 0.5. Hence in the LLR domain we have L^>m(fefc(n,i)) = 0. The

first term in Equation (3.5), which is denoted by LEiTn(bk(n,i)), represents the

extrinsic information delivered by the SISO MUD, based on the received signal

r(n) and on the a priori information about the encoded bits of all users, except

the zth bit of the desired user k. The extrinsic information, which is not influ-

enced by the a priori information of the desired bit i provided by the fcth channel

decoder, is then deinterleaved and fed into the A;th user's channel decoder, which

will be used as the a priori information in the next iteration.

As seen in Figure 3.2, between the banks of channel decoders and interleavers,

based on the a priori information LA,d(bk(j)) provided by the SISO beamforming

MUD for the SISO decoder, we compute the extrinsic LLR as [13]

LE4{bk{j)) = LP4(bk(j)) -LA4(bkU)), (3.6)

where the extrinsic information is gleaned from the surrounding encoded bits,

excluding the specific bit considered [14]. We note that as usual in joint itera-

tive detection and decoding schemes [14], we exchange the extrinsic information

concerning both the original information bits and parity bits, rather than only

that of the information bits, although only the LLRs of the latter are needed

in the classic turbo decoder of Berrou et al. [12]. After interleaving, the extrin-
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sic information delivered by the channel decoders is then fed back to the SISO

MUD, as the a priori information concerning the encoded bits of all the users for

exploitation during the next iteration.

At the first iteration, the extrinsic information contributions LE,m(bk) and

LE,d(bk) are statistically independent. However, during the subsequent iterations

they will become more and more correlated and hence the incremental iteration

gains become more modest.

3.2 SISO Interference Cancellation

As described in the previous section, the task of SISO IC is to choose the beam-

former weight Wfc of the linear filter seen in Figure 3.2 according to an appropriate

design criterion and compute the corresponding output LLRs.

Given the a priori LLRs

where the symbol-index n was dropped for notational convenience, the a priori

probabilities of the bit bk{i) can be expressed as

(3.8a)

(3.8b)

where tanh(a;') = fx+l-l is the hyperbolic tangent function. Then the a priori

probability of the pth legitimate value of the symbol Sfc is given by

log2M

PA(sk=sM) = n PA{bk(i)=b^(i)), (3.9)

where s^ is the pth. symbol in the modulation constellation, p £ {1,2, • • • , M},
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M is the number of symbols in modulation constellation and b^(i) is the value

of s^ 's iih bit. Using the Gray-labeled constellations in seen Figure 2.5, all

transmitted bits can be decided independently. Then we can define the mean and

variance of the kth. user's symbols as in [18]:

sk = E[sfc]
M

tanh

+jtmh

and

LA(bk(2)
2

t a n h

(BPSK)

(QPSK)

(3.10)

(16QAM)

M

p=l

Ea-\sk\
2

Es-\sk\
2

+ | tanh + | tanh

(BPSK)

(QPSK) .

(16QAM)

(3-11)

When using the SIC principle, the estimated symbol of user k can be expressed

as [18]
, (3.12)

where we have sfc = [si • • • sk-i 0 • • • SK]T-
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3.2.1 SISO Interference Cancellation Using the MMSE

MUD

3.2.1.1 Weights of the Soft MMSE MUD

Classically, the beamformer's weight vector wfc is determined by minimising the

complex-valued MSE metric of [11]

(3.13)

Using Equation (3.12) and (3.3), the MSE cost function can be expressed as

ZMSE = E[|s* - wf (Hs - Hit + n)|2]

= E[sks*k] - wfH • Eft(s - Sfc)] - E[sk(s
H - sf)] • H %

= ES- Esw«hk - £shfwfc + wf (HV.H^ + £;,hfchf + 2a2
nIL)wk,

(3,14)

where I/, denotes the (LxL)-dimensional identity matrix and we have V^ =

diag[ui • • • vk-i 0 vk+\ •••VK], in which diag[-] denotes a diagonal matrix. The

gradient of Equation (3.14) can be derived as

= -2EM + 2(HVfcH" + EshX + 2a%)wk. (3.15)

Setting this gradient to zero leads to the closed-form MMSE solution of [18]

f + 2a2
nILy1-Eshk. (3.16)

3.2.1.2 Output LLRs of the Soft MMSE MUD

The exact expression of the bit 6^(i)'s output LLR is [18]
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exP

= ln
e^r, (-exp i

(3.17)

where s ^ is the 9th possible symbol combination, q e {1,2, • • • , M*-} and bjf (z)

is the value of the fcth user's zth bit in this combination. It is clear from Equa-

tion (3.17) that the computational complexity of the MUD's output LLRs is

exponentially increases with the number of users K. Fortunately, we can use an

approximate method to simplify this calculation [18].

The conditional PDF p(sk\sk=s^) is a mixture of all MK~X legitimate trans-

mitted signals' Gaussian distributions, in which the kth user transmits symbol

s^ and all other interfering users transmit an arbitrary symbol. Figure 3.3 shows

some examples of the conditional PDF of the MMSE MUD's output signal sup-

porting K=A users in the presence of AWGN but in the absence of fading at

Et,/N0=5dB, both with and without a priori information. The arrival angles of

the users' signal are 15°, 49°, —14° and —48°, respectively, as seen in Figure 3.4.

We consider the first user as the desired user and assume that the transmitted

symbol is sx = +1 for BPSK, si = +75+J7J for QPSK and s1 = +-^+j^

for 16QAM. In the scenarios associated with a priori information, all.the inter-

fering users' a priori LLRs are randomly generated, exemplified in Table 3.1. In

Table 3.1: A priori LLRs of the interfering users

User 2
User 3
User 4

BPSK
-0.582
-1.969
-0.499

QPSK
-0.582, 0.597
-1.969, -0.423
-0.499, 0.574

16QAM
-0.582,0.597,0.187, 1.511
-1.969, -0.423, -0.268, 0.909
-0.499, 0.574, 0.592, 0.292

every sub-figure, the conditional 3-dimensional PDF p(s\) (surface); the marginal

conditional PDF of the real part p(9£[si]) and the marginal conditional PDF of

the imaginary part ^(^[si]) (solid curves) of the MUDs' output are shown. As

stated in [18], the conditional PDF p(^Sk\sk=s^) can be assumed to be Gaussian

distributed. Since the Gaussian distribution can be defined by two parameters,

namely the mean and the variance, we can generate the approximate PDF by

calculating these two values. Using Equation (3.12), the mean and the variance
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9(5,]
3|s,]

9[s,l

(a) BPSK without a priori informa-
tion

(b) BPSK with a priori information

315,]

(c) QPSK without a priori informa-
tion

(d) QPSK with a priori information

(e) 16QAM without a priori infor-
mation

(f) 16QAM with a priori informa-
tion

Figure 3.3: Conditional PDF p{s\) (surface), marginal conditional PDFs
p(5ft[si]) and p(G[si]) (solid curves) of the MMSE MUD's output signal,
and approximate Gaussian marginal conditional PDFs (+).
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desired user
interferer 2

interferer 3 \ / interferer 1

Figure 3.4: Two AEs, where the signal of desired user arrives from 15°,•
while the interfering signal from 49°, —14° and —48°.

are given by

f hk (3.18)

and

wk

(3.19)

Using Equation (3.16) and Wjfhfc = hĵ Wfc, the variance can be simplified to

f hfc - Eswghfchf

(3.20)

Then the approximate Gaussian PDF can be expressed as

TTCTf
exp [

• exp - |. (3.21)
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In Figure 3.3, we can see that the one-dimensional Gaussian distribution indicated

by the '+' points constitutes an adequate practical assumption in all the scenarios.

Based on the Gaussian distribution, the extrinsic output LLRs of the MMSE

MUD can be expressed as [18]

(3.22)

For BPSK and QPSK systems, this expression can be further simplified to [15]

BPSK:

LB(bk(l))=ln-
exp -

f hfc|
2 - |sfc -

QPSK:

e x p , _ hfc(l-wf

LE(bk(l))=ln-

exp -

(3.23)

+ exp -

exp
= ln
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+ - ( K & ] -

£swfhfc(l-wfwfh,)

and similarly

(3.24a)

(3.24b)

3.2.1.3 • Computational Complexity of the Soft MMSE MUD

The complexity of a linear MUD might be divided into three parts, namely the

calculation of the a priori mean and variance values, the calculation of the weight

vector and the calculation of the output extrinsic LLR values. Real-valued oper-

ations are used as the basis of our calculations and the complexity imposed by a

real-valued multiplication and a real-valued addition might be considered equiv-

alent. The soft MMSE MUD's complexity per symbol per user is summarized in

Table 3.2. The related equations are also given in this table. It is shown that

the complexity of the soft MMSE MUD mainly depends on the calculation of the

weight vector.

Table 3.2: Computational complexity of the soft MMSE MUD

Means &
variances

BPSK
QPSK
16QAM

Weight vector

LLRs
BPSK
QPSK
M-QAM

Computational complexity
6
12
25
0(8L3) + 4KL2 + 12L2 + L
8KL + 8L + 1
8KL + 8L + 3
8KL+8L+(Mlog2M+M+9)log2M+
13M-4

Equation (s)
(3.10), (3.11)

(3.16)
(3.23)
(3.24)
(3.22)
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3.2.2 SISO Interference Cancellation Using the RMMSE

MUD

For BPSK systems, the beamformer's desired output sk is real-valued. It is clear

that the MMSE solution of Section 3.2.1 attempts to simultaneously minimise the

MSE between the desired signal and both the real part and imaginary part of the

beamformer's output. However, in case of BPSK modulation the beamformer's

decision depends only on the real part of the multiuser signal at the beamformer's

output. Hence minimising the MSE associated with the imaginary part does not

contribute to improving the beamformer's performance. Rather it imposes an

unnecessary constraint on the beamforming weight [89]. Hence we introduce the

soft RMMSE solution.

3.2.2.1 Weights of the Soft RMMSE MUD

The real-valued MSE cost function minimising the MSE between the desired

signal and the real part of the beamformer's output can be written as

= E[(sfc - K[wf (Hs - Hifc + n)])2]. (3.25)

The RMMSE solution is defined by

wfc = &rgmm£RMSE- (3.26)

In order to derive a closed-form solution for this RMMSE design, the real-valued

vertical concatenation matrix method of [89] is applied. Let us define the index

c as the subscript to indicate the matrices' vertical concatenation, then we have

Mc = (3.27)

where M c can be any matrix which is vertically, concatenated. Hence, Equa-

tion (3.25) becomes .

- w£c(Hcs - Hcsfc + nc))
2]

= E[s2J-2w£cHc-E[sfc(s-ifc)]
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c • E[(s - ifc)(s
r - si)) • nT

c + E[ncn

fciC. (3.28)

The gradient of the real-valued MSE cost function can be expressed as'

= 5

<9wfciC

= -2EshkiC + 2(HcV f eH^ + EshkiChlc + <#2 i ) wfc,c. (3.29)

Then in contrast to the closed-form MMSE solution of Equation (3.16), the closed-

form solution of the concatenated weight matrix ~Wk,rmmse,c is derived from Equa-

tion (3.29), yielding

^ w _ (xs v , H r 4 - E hu hT -l-r^TorT1 • E h*. C\ "V))

The first L elements of wfe]C are the real part of the RMMSE solution wfc, and

the last L elements of Wfc)C form the imaginary part of w&.

3.2.2.2 Output LLRs of the Soft RMMSE MUD

When computing the MMSE solution* the conditional PDF p(sk\sk=s^) of Fig-

ure 3.3 is assumed to be Gaussian distributed. By contrast, the RMMSE solution

considers only the in-phase component and the corresponding marginal condi-

tional PDF becomes p(jR[sk]\sk—s^). Figure 3.5 shows the conditional PDFs of

the RMMSE MUD's output signal supporting K=4 BPSK users at Eb/NQ=5dB

both with,and without a priori information. As seen in Figure 3.4, the arrival

angles of the users' signal are 15°, 49°, —14° and -48°, respectively. We con-

sider the first user as the desired user and assume that the transmitted symbol is

si = +1. In the scenario associated with a priori information, all the interfering

users' a priori LLRs are listed in Table 3.1. Recall that the MMSE solution's

output constellation seen in Figure 3.3 had a symmetric distribution. Observe

by contrasting Equation (3.16) and Equation (3.30) that the beamformer weights

of the RMMSE design are different and hence the weighted beamformer output

phasors are positioned differently in Figure 3.5, which results in a non-Gaussian

distribution for the ignored quadrature-phase component. However, the in-phase

component of Figure 3.5 appears to be near-Gaussian. Explicitly, p(si) is spread

more widely along the ^[ii] axis, resulting in a distribution for p(3R[si]) which
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(a) Without a priori information (b) With a priori information

Figure 3.5: Conditional PDF p{s\) (surface), marginal conditional PDFs
p(5ft[£i]) and p(9[si]) (solid curves) of the RMMSE MUD's output signal,
and approximate Gaussian marginal conditional PDFs (+).

has its center of gravity further away from the decision boundary of 5R[si] = 0

than that in Figure 3.3.

Then the conditional mean and variance of $t[sk] can be formulated as:

(3-31)

and

= w£cHc • E[(s - Ifc

= w^ c (H cV f cH^ + o2
nI2L)wktC.

Using Equation (3.30), the variance can be simplified to

(3.32)

(3-33)



3.2.2 SISO Interference Cancellation Using the RMMSE MUD 65

Given the approximate Gaussian distribution

(3.34)

the extrinsic output LLR can be expressed as

1

2iJwf iCh fc lO(l-w2' iCh fc,c)

2wge(re-Hesfc) (3.35)

3.2.2.3 Computational Complexity of the Soft RMMSE MUD

The soft RMMSE MUD's complexity per symbol per user is summarized in Ta-

ble 3.3 which was valuated by counting the number of real-valued additions and

multiplications. The related equations are also given in Table 3.3. It can be seen

that the computational complexity of the soft RMMSE is almost the same as

that of the soft MMSE beamformer portrayed in Table 3.2. However, the soft

RMMSE system may be expected to have a better performance as we will show

in Section 3.4.

Table 3.3: Computational complexity of the soft RMMSE MUD

Means & variances
Weight vector
LLR

Computational complexity
6
C(8L3) +8KL2 + 8L'2 + 2L
AKL + 4L + 3

Equation(s)
(3.10), (3.11)
(3.30)
(3.35)
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3.2.3 SISO Interference Cancellation Using Widely Linear
MMSE MUD

The WL algorithm [35] may be defined as that employing two separate weight

vectors for separately detecting the in-phase and quadrature-phase component of

the transmitted symbol. In contrast to Equation (3.12), the estimated symbol of

the kth user is given by

(3.36)

where w^/ and W^Q are the kth user's weight vectors for the in-phase and

quadrature-phase component, respectively.

3.2.3.1 Array Weights of the Soft WL-MMSE MUD

The soft WL-MMSE solution using separate in-phase/quadrature-phase array

weights is defined as

wfci/ = argmin £/
W f c •

= argminE[(K[Sfc] - 5J[sfc])
2], . (3.37a)

Wfc

)Q = argmin £QMS£;
wfc

2 (3.37b)

which minimise the MSE between the in-phase component and the quadrature-

phase component of the beamformer's output and that of the desired symbol,

respectively. Defining the vertically stacked matrix

(3.38)

where M can be any arbitrary matrix and when using Equation (3.27), the cost

functions of the WL-MMSE solution can be expressed as

= E

(iMSE —

,2

nc
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- 2w£ c H c •

£cHc • E[(B[s] -

(3.39a)

£QMSE = E

= E

+

^ h ^ + a2
nI2L)wktC, (3.39b)

where Esj and ESQ are the in-phase component and the quadrature-phase compo-

nent of the total symbol energy. Furthermore, we have Vfc/ = diagfyi,/ • • • vk-\,i 0

Vk+1,1 • • • VK,I\)
 vk',i = E[5J2[sfc']j —3J2[sfc'], and V.k,Q = diagft^Q • • • Vk-i,Q 0 vk+i@

• • • VK,Q], Vk',Q = E[^2[sfc/]] - 32[sjfc<]. Setting the gradient of the WL-MMSE cost

functions to zero, we have the WL-MMSE solution as

(3.40a)
wfcl/lC = ]

•EsIhkiC,

wfc,QiC = ( H c X ^ H f + EsQhktChT
k,c

•EsQhkiC. (3.40b)

For BPSK systems, we have Esi = Es, EsQ = 0, Vfc7 = Vfc and Y.k,Q is a

matrix. Then the expression of the weight vector wkjtC in Equation (3.40a) can

be simplified to

, - i
• EahkiC, (3.41)

which is the same as the RMMSE solution of Equation (3.30). Hence the RMMSE
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technique constitutes a particular manifestation of the WL-MMSE algorithm in

the context of BPSK systems. For non-BPSK systems, assuming Esi = ESQ =

\ES and V fc / = VfcQ = |Vfc, the weight vector expression of Equations (3.40)

may be simplified to

wjfc./.c = wfc,Q,c = (HCV,H[ + H,,VfcH
T

c, + Eshch
T

c + £shc,h£ + 2a%L) ~l • Eshkfi.

(3.42)

This equation is equivalent to

f + 2a2
nIL) • Eshk) (3.43)

which is the same as the soft MMSE solution of Equation (3.16). This observation

indicates that the soft WL-MMSE solution may have some potential gain over the

soft MMSE solution, but only when the a •priori information's variance recorded

for the in-phase and quadrature-phase signal is different.

3.2.3.2 Output LLRs of the soft WL-MMSE MUD

Figure 3.6 shows the conditional PDFs of the WL-MMSE MUD's output signal

using different weight vectors, when supporting K=4 users at Eb/N0=5dB with

the aid of a priori information. The arrival angles of the users' signal are 15°, 49°,

— 14° and —48°, respectively, as shown in Figure 3.4. We consider the first user

as the desired user and assume that the transmitted symbol is Sj = +^+J~7f

for QPSK and si = +-m+J~M ^or 16QAM. All the interfering users' a priori

LLRs are listed in Table 3.1. Since different weight vectors wij and W^Q are

selected for detecting the in-phase and quadrature-phase components of signal

Si, the conditional PDFs p(§i\wij) and p(si\witQ) may be different, which can

be seen from Figure 3.6.

Similar to the distribution of the RMMSE beamformer's in-phase output,

we can assume that the marginal conditional PDFs p(5R[sfc]|sfe=s^,Wfei/) and

p(^[sfc] |sfc=s^, ~Wk,o) °f the detector's output are both one-dimensional Gaussian

distributed, which are indicated by the '+ ' points in Figure 3.6. Then, the means

and variances of the marginal conditional PDFs are given by

= W E[R[s] -
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3|S,J

(a) QPSK using weight (b) QPSK using weight

3[s,]

(c) 16QAM using weight

Sis,]

(d) 16QAM using weight WI,

Figure 3.6: Conditional PDF p(si) (surface), marginal conditional PDFs
p(SR[si]) and p(Q[si]) (solid curves) of the WL-MMSE MUD's output signal,
and approximate Gaussian marginal conditional PDFs (+).

w£ / i Ch f c , c

= w J / i C H c • E[9f[s] -

= 3 [sW] w[,Q)Chfc,c - 3? [5W] w

E[3?[s] -

(3.44b)

and

• E[(B[s] - K[l

H«, • E[(9[s] -

CHc • E[(3i[s] -

Hjwfci/iC

(3.45a)
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o*kjQ =

= w£Q]CHc • E[(9[s] - 9

+ w£Q,cHc, • E[(»[s] -

- 2w£Q,cHc • E[(9f[s] - G[sfc]

(9[aW]wJOiCh*,e - »[*«] w ^ c h ^ ) 2

H ^ + c72l2L)wfc)Q,c. (3.45b)

Using Equations (3.40), the variances are simplified to

(3.46a)

(3.46b)

For BPSK system, the expression of the output LLRs is the same as that of the

RMMSE solution shown in Equation (3.35). For higher-order QAM schemes the

output LLRs of the WL-MMSE MUD are

LE{bk(i))= In

E v» exP
6<P)fi)=-l

(3.47a)

when bk(i) is mapped to the real part of sk, and

exp ( -

fc(P)(i)=-l V k.Q J 1-

(3.47b)
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when bk(i) is mapped to the imaginary part of Sk- Compared to the MMSE

solution's output LLRs seen in Equation (3.22), the WL-MMSE MUD's output

LLRs have the same expression, but exhibit different means and variances for the

in-phase and quadrature-phase components of the signal.

3.2.3.3 Computational Complexity of the Soft WL-MMSE MUD

The soft WL-MMSE MUD's computational complexity per symbol per user is

summarized in Table 3.4. The related equations are also given in Table 3.4. For

BPSK systems, the complexity is the same as that of the RMMSE solution listed

in Table 3.3. For higher-order QAM constellations, the complexity of the soft

WL-MMSE is about twice of that of the soft MMSE. This doubled complexity is

attributable "to that of the weight vector calculation. '

Table 3.4: Computational complexity of the soft WL-MMSE MUD

Mean &
variance

QPSK
16QAM

Weight vector
LLRs

Computational complexity
16
32
0(16L3) + 32KL2 + 16L2 + AL
8KL+16L+ (M log2 M+4M+5) log2 M+
6M + 6

Equations
(3.10), (3.11)

(3.40)
(3.47)

3.2.4 SISO Interference Cancellation Using the MBER
MUD

The MMSE algorithm does not guarantee the direct and explicit minimisation of

the system's BER. However, the MBER beamforming design, in which the BER

rather than the MSE was minimised at the MUD's output, is the true optimal

solution and hence it generally outperforms the MMSE solution.

3.2.4.1 Bit Error Rate

In M-ary PSK systems supporting K users, the transmitted symbol combination

may assume MK possible combinations, here however we limit our discussions to

BPSK (M=2) and QPSK (M=4). Let us now consider a QPSK system, where
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Figure 3.7: Symbol sjj. of a QPSK constellation with the interference-
contaminated expectation §£' of the estimated signal ŝ  and the PDFs of
the in-phase and quadrature-phase component of the estimated signal.

the qth possible symbol combination s ^ is transmitted, in which the desired

user's symbol s^ is +^+j^- Figure 3.7 shows the transmitted symbol sjj. , the

interference-contaminated expectation s£" of the estimated signal s£" and the

PDFs of the in-phase and quadrature-phase component of the estimated signal.

As seen in Figure 3.7, the PDFs of the in-phase and quadrature-phase component

of s^ are both one-dimensional Gaussian distributed. The error probabilities of

the in-phase and quadrature-phase component are denoted by Pef' and Peg',

respectively. The error probability Pej is given by the integral of the PDF

p(5R[s^]) the wrong side.of the decision boundary of 9?[s£"] = 0, and and PGQ

can be derived in a similar way.

By defining x = sgn(!R[sfc]) • U[§k], the conditional PDF of x is a Gaussian
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mixture given by [29]

9=1

1 ff

(3.48)

where P f c(s^) = ^ IIVA:'̂ *: ̂ ( sfc'=4^) *s ̂ e probability of transmitting the qth

possible symbol combination s ^ based on the a priori information of the other

(K—l) users except for user k, and sjjr is the kth user's estimated symbol, when

ignoring the effects of noise, yielding

= wffjf). (3.49)

It can be readily shown that the error probability of the in-phase part is

f°
Pez = P{x < 0) = / p{x)dx

J — OO
M K

(3-50)

where Q,(x) = -4= / J ^ e~* /2d£. Similarly, the error probability of the quadrature-

phase part is

Hence the BER of the beamformer is

('Per (BPSK) , N

Peb={ K ' . (3.52)
U(P P) (QPSK)



3.2.4 SISO Interference Cancellation Using the MBER MUD 74

3.2.4.2 Weights of the Soft MBER MUD

The MBER beamforming solution is then defined as [29]

wfc = argminPeb. (3.53)
Wfc

This optimization problem can be solved using the SCG algorithm, which is

detailed in Section 2.2.5. Basing on the derivation in Appendix A.I, the gradients

of both the in-phase and quadrature-phase bit error probabilities are

P ( « ) • exp ( -

(3.54.)

and

(3.54b)

3.2.4.3 Weights of the Soft WL-MBER MUD

For QPSK systems, the WL-MBER solution can be applied, which is defined by

wfc); = argminPe/, (3.55a)

Wfc.Q = argminPeQ. (3.55b)

The gradient formulas of Equations (3.54) can be used to find the optimum

weights for the WL-MBER solution. The WL-MBER weight calculation has

the same complexity as that of the MBER MUD formulated in Equation (3.53).
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3.2.4.4 Output LLRs of the Soft MBER MUD

Figure 3.8 shows the conditional PDFs of the MBER MUD's output signal sup-

porting K=4 users at Eb/N0=5dB both with and without a priori information.

The arrival angles of the users' signal are 15°, 49°, —14° and —48°, respectively,

as seen in Figure 3.4. We consider the first user as the desired user and assume

that the transmitted symbol is Si = +1 for BPSK and Sj = + -75+J-75 f°r QPSK.

In the scenarios associated with a priori information, all the interfering users'

a priori LLRs are listed in Table 3.1. For the BPSK system, despite the fact

that the marginal conditional PDF of the imaginary part p(Q;[s/c]]sfc=s^^) seen in

Figure 3.8a is clearly non-Gaussian distributed, the real part's p(3?[sfc]|sfc=s^),

however, can be assumed to be Gaussian Gaussian distributed. For QPSK sys-

(a) BPSK without a priori informa-
tion

(b) BPSK with a priori information

(c) QPSK without a priori informa-
tion

(d) QPSK with a priori information

Figure 3.8: Conditional PDF p(s\) (surface), marginal conditional PDFs
p(9t[$i}) and p(Q[si]) (solid curves) of the MBER MUD's output signal,
and approximate Gaussian marginal conditional PDFs (+).
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tems, both the marginal conditional PDFs p(jR[sk]\sk=s^) and p(G[s/c]|s/c=s^)

are approximately Gaussian distributed as seen in Figure 3.8c. We should also ob-

serve that when the SNR is high, the Gaussian assumption mentioned above may

no longer be accurate. Fortunately, the proposed SISO beamforming is employed

in iterative systems, which typically operate in the low SNR region.

For our BPSK MBER design as suggested by Figure 3.8a, we assume that the

conditional PDF p(^R[sk]\sk=s^) is Gaussian distributed. The conditional mean

and variance of 9? [§k] are given by

[] (3.56)

and

wZwk. (3.57)

They are equivalent to the mean and variance expressions of the RMMSE solution

seen in Equations (3.31) and (3.32), respectively. However, since the MBER

design does not have a closed-form weight solution, the simplified Equation (3.33)

cannot be applied for the MBER MUD's variance. Then the extrinsic output LLR

can be expressed as

« w ; ( 3 ' 5 8 )

which is similar to Equation (3.35) for the RMMSE MUD, but no common factor

9?[wĵ hfc] exists in the numerator and the denominator in Equation (3.58).

For our QPSK MBER design based on Figure 3.8c, we assume that the

marginal conditional PDFs p(jR[sk]\sk=s^) and p(S[s/c]|sfc=s(p)) are both one-

dimensional Gaussian distributed. Then, the means and variances of the in-phase

and quadrature-phase components of §k are given by

(3.59a)
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(3.59b)

and

>fw f c , (3.60a)

H]VkiQM[HHwk] - 9[w*H] V^SpH^w*] + a > f wfc, (3.60b)

where V f c / = diag[ui]7 • • • vk_ltI 0 vk+i,i • ••• vK,i], vk<%1 = \ES - K2[sfc'] and V f c Q =

diagbi.Q • • • ̂ fc-1,0 0 vk+itQ • • • vKiQ], vk>iQ = \ES - $s2[sk']- They are equivalent

to Equations (3.44) and (3.45) for the WL-MMSE solution, but employ a sin-

gle weight vector for the in-phase and quadrature-phase components. Then the

extrinsic output LLRs can be expressed as

exp I - _ _^
(3.61a)

>

v. f ^ y ) ( )
r /"». rr>\\ l 6(p)(2)=+l \ ' y / fo ciu\

LE{bk(2))=ln ^ (p . — : , (3.61b)

6 ( P ) ( 2 ) = - 1

which are the same expressions as those of the WL-MMSE's output LLRs of

Equations (3.47).

3.2.4.5 Output LLRs of the Soft WL-MBER MUD

Figure 3.9 shows the conditional PDFs of the WL-MBER MUD's output signal

supporting K=4 QPSK users at Eb/N0=5dB with the aid of a priori information.

The arrival angles of the users' signal are 15°, 49°, —14° and —48°, respectively,

as seen in Figure 3.4. We consider the first user as the desired user and assume

that the transmitted symbol is si = +~jo+J~jo- All the interfering users' a priori

LLRs are listed in Table 3.1. We can assume that the marginal conditional PDFs

p(pt[sk]\sk=s^p\ w/-,/) andp(Q:[sfc]|sfc=s^, Wfc(Q) of the detector's output are both

one-dimensional Gaussian distributed, as suggested by the '+ ' points shown in
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3[s,]

(a) Using weight (b) Using weight

Figure 3.9: Conditional PDF p(s\) (surface), marginal conditional PDFs
p(5ft[si]) and p(S[si]) (solid curves) of the WL-MBER MUD's output signal,
and approximate Gaussian marginal conditional PDFs (+).

Figure 3.9.

The expressions of the extrinsic information delivered by the WL-MBER MUD

for the in-phase and quadrature-phase components are the same as in Equa-

tions (3.61). However the means and variances of the in-phase and quadrature-

phase components of §k are changed to

(3.62a)

(3.62b)

and

(3.63a)

(3.63b)

which may be contrasted to Equations (3.59) and (3.60).

3.2.4.6 Computational Complexity of the Soft MBER MUD

The soft MBER MUD's computational complexity per symbol per user is sum-

marized in Table 3.5 in terms of the number of real-valued additions and multipli-

cations evaluated. The related equations are also given in this table. It is shown
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that the total computational complexity of the soft MBER mainly depends on

the calculation of the weight vector, which is O(LNcgM
K), where Ncg denotes

the number of iterations required by the SCG method. The computational com-

plexity of the soft MBER MUD increases exponentially with the number of users.

This implies that the soft MBER MUD is significantly more complex than the soft

MMSE MUD of Table 3.2 and the soft WL-MMSE MUD of Table 3.4. The soft

WL-MBER MUD has the same complexity as the soft MBER MUD for QPSK

systems, as seen by comparing Equations (3.55) with Equation (3.53).

Table 3.5: Computational complexity of the soft MBER MUD

Mean &
variance

BPSK
QPSK

Weight vector

LLRs BPSK
QPSK

Computational complexity .
6
12
(((6L + 6)log2M + 8L - 2)iVcs + 8KL -

2L + ZK - 3) MK + (18L + 2) JVCS + (M +
8) log2 M-M
Y1KL + 16L - 2
IQKL + 38L + 10K + 57

Equation(s)
(3.10), (3.11)

(3.53), (3.54)

(3.58)
(3.61)

3.2.5 SISO Interference Cancellation Using the MSER

MUD

The noise-free estimated symbol s^' of Equation (3.49) can be rewritten as

- Wf Hifc, (3.64)

where q E ( l ,2 , - • • ,MK}. Let us now consider a specific transmitted symbol

s^ of user A; in the constellation and investigate the properties of the symbol

subset {sj^lsfc =s^}. It is readily known from Equation (3.64) that this symbol

subset has a center of (wf h^s^ — wf Hsfc). Furthermore, for any symbol s^

in this subset, a symmetric symbol sjj. exists at the other side of the center with

sJf = -sj«> for all k' ̂  it.

In [33,34], the MSER algorithm was investigated when the MUD has access
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to no a priori information; This implies that the a priori probabilities of all

symbol combinations {s^9H are the same, namely -^. Moreover, in [34], the

weight Wfc was rotated to make wĵ hfc real and positive. Hence the symbol sub-

set {si. |Sfc —s^} can be shifted parallel to the decision boundary, when user k

transmits a neighboring symbol in the constellation. Under these constraints, the

PDF subsets {P( s^ ) -p(s^ )} satisfy the shifting properties and are symmetri-

cally distributed [34], which may be used to simplify the weight vector calculation.

However, when the MUD is provided with useful a priori information, these lem-

mas are invalid and the MSER method of [34] needs further modifications. Hence

in this section we introduce the a priori information aided MSER MUD to resolve

this problem.

3.2.5.1 Symbol Error Rate

Let us now consider an M-QAM system, and define the transmitted symbol as

(m,n) = _ j j £ / 2 m - yfM - 1) + j Z 5 ^ (2n - \/M - l ) , where we have

m 6 {l, 2, • • • , \ /M} and n € {l, 2, • • • , \ /M}. Figure 3.10 shows an example of

the estimated signal sjj?' and its marginal PDFs, when user k transmits symbol

s£' = s(m>n). The PDF of s^' is a Gaussian distribution with a mean value of

sjj. , as seen in Figure 3.10. Then, when the kth user transmits symbol -s^m'n\ the

conditional PDF of §& is a Gaussian mixture defined by

^ = M

s(9)= s(m,»)

E P^{9)) • «P I " 'fc2 H - (3-65)

)

where P^(s^) = ^ Elvfc'/fc •P(sfc'=sfc' ) ^s ^he probability of transmitting the qth

possible symbol combination s^\ given the a priori information of the other
(K—l) users, except for user k. By defining bi = -T=5=(2i — \/M), i €

{l,2,--- ,y/M—l}, the decision boundaries of §k are determined by bi\w%hk

for the in-phase component and by jfejjwjfhfc| for the quadrature-phase compo-

nent, as seen in "Figure 3.10. Then the error rate is given by the integral of the

PDF outside the corresponding decision boundaries. Figure 3.10 only shows the

scenario of the inner constellation point, which is enclosed by boundaries. For
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Figure 3.10: Decision boundaries, the interference-contaminated expecta-
tion s£ of the estimated signal s£', when wehave sj. = s^m<n\ and the
PDFs of the in-phase and quadrature-phase component of the estimated
signal.

the border constellation points, they may have open boundaries in one or two

directions, which should be considered for the error rate calculation.

Let us now assume that the fcth user transmits symbol s(m>n). Then the

conditional in-phase component error probability of the hard detected symbol

U[sk] ¥= $l[s{m'n)] can be shown to be
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{m=VM)

J

sk

+Q

E*(*M)- Q

(2<m<v /M-l)

(3.66a)

Similarly, the conditional quadrature-phase component error probability of the

hard detected symbol 5$[sk] ^ Q\s^m'n^] can be shown to be

sM=s(m,n)

(2<n<\/M-l)

(3.66b)

Then the average error probability of the in-phase and quadrature-phase compo-

nent are given by

VM

(3.67a)
m=\n=l
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and

\[M

(3.67b)
m—\ n=\

respectively. Since the resultant symbol error rate is equal to (one minus symbol-

correct-rate), it can be expressed as

Pes = 1 - (1 - Pe/)(1 - PeQ)

= Per + PeQ - Pe7 • PeQ. (3.68)

3.2.5.2 Weights of the Soft MSER and WL-MSER MUDs

The resultant MSER solution is defined as the one that minimises the upper

bound of the SER given by

fc = argmin(Pe/ + Pen),
Wfc

(3.69)

The upper bound (Pe/ + Peg) is very close to the true SER Pes because our

experiments not included here have shown that Pei • PeQ is typically negligible,

which reduces the associated complexity. Similarly to the WL-MBER solution of

Equations (3.55), the WL-MSER solution is defined as

= argminPe/,
W

arg min Pe
Wfc

(3.70a)

(3.70b)

In order to arrive at the optimum weights for the MSER and WL-MSER solutions,

we need the gradients of Pe/ and PeQ, which can be derived from the gradients

of the Q-functions in Equations (3.66) as stated in Appendix A.2, leading to

VQI
ffnVwfc Wfc

V^CTnx/wfWfc
= • exp I —

wfw fc wt
(3.71a)
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and

(3.71b)

3.2.5.3 Output LLRs of the Soft MSER MUD

Figure 3.11 shows the conditional PDFs of the MSER MUD's output signal sup-

porting four 16QAM users at Eb/N0=5dB both with and without a priori in-

formation. The arrival angles of the users' signal are 15°, 49°, —14° and -48°,

respectively, as seen in Figure 3.4. We consider the first user as the desired

user and assume the transmitted symbol is s\ = +-^g+j—^5. In the scenario

associated with a priori information, all the interfering users' a priori LLRs

are listed in Table 3.1. It can be seen from the figure that the marginal con-

ditional PDFs p(3?[sfc]|s,c=s(m'n)) and p(3[sfc]|sfc=s(m'n)) can both be assumed

as one-dimensional Gaussian distributed. Then the output extrinsic information

delivered by the MSER MUD, similarly to those of the MBER MUD in Equa-

Sis,]

(a) Without a priori information (b) With a priori information

Figure 3.11: Conditional PDF p{s\) (surface), marginal conditional PDFs
p(SR[si]) and p(3[si]) (solid curves) of the MSER MUD's output signal, and
approximate Gaussian marginal conditional PDFs (+).



3.2.5 SISO Interference Cancellation Using the MSER MUD 85

tions (3.61), can be expressed as

LE{bk(i)) = In
j Vs<m'n>

,lm,n)\

2ai

when bfe(i) is mapped to the real part of Sk, and

LE(bk(j))=\n
exp ( -

v^ exp i
V

(3.72a)

(3.72b)

when 6fc(i) is mapped to the imaginary part of s^. The calculation of the means

Mfc/'" i /^ITQ" a n d the variances cr^j, CT̂ Q are the same as those for the soft MBER

solution in Equations (3.59) and (3.60).

3.2.5.4 Output LLRs of the Soft WL-MSER MUD

Figure 3.12 shows the conditional PDFs of the WL-MSER MUD's output signal

supporting K=A 16QAM users at Et,/No=5dB with a priori information. All the

(a) Using weight (b) Using weight

Figure 3.12: Conditional PDF p(s\) (surface), marginal conditional PDFs
p(3i[si]) and p(9[Si]) (solid curves) of the WL-MSER MUD's output signal,
and approximate Gaussian marginal conditional PDFs (+).
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interfering users' a priori LLRs are listed in Table 3.1. Based on the Gaussian

assumption again, as for the soft MSER solution, the WL-MSER MUD's out-

put LLRs can be expressed as in Equations (3.72), where the calculation of the

means and variances ensues in the same way as those of the WL-MBER MUD in

Equations (3.62) and (3.63).

3.2.5.5 Computational Complexity of the Soft MSER MUD

The soft MSER MUD's computational complexity evaluated in the context of

16QAM systems per symbol per user in term of the number of real-valued ad-

ditions and multiplications is summarized in Table 3.6, The related equations

are also given in Table 3.6. Clearly, the complexity of the soft MSER MUD is

O(LNcg16K). It is seen to be higher than the MMSE.MUD's complexity shown in

Table 3.2. Moreover, the soft WL-MSER MUD has the same complexity order as

the soft MSER MUD as seen by comparing Equations (3.70) with Equation (3.69).

Table 3.6: Computational complexity of the soft MSER MUD

Mean &; variance
Weight vector

LLRs

Computational complexity
25
({30L + lS)Ncg + 8KL-2L + 3K -1)16K +
(8L + 7)iVcg + 80
1QKL + 108L + 1QK + 535

Equations
(3.10), (3.11)
(3.69), (3.71)

(3.72)

3.3 EXIT Chart Analysis

3.3.1 EXIT Chart Introduction

For the sake of Extrinsic Information Transfer (EXIT) chart analysis, the receiver

components (i.e., the MUD and the channel decoder) are modeled as components

mapping a sequence of both received signal observations and the a priori infor-

mation LA to a new sequence constituting the extrinsic information LE- The

EXIT chart analysis computes the Mutual Information (MI) between the LLRs
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LA and the corresponding bits S, which is given by [36]

1
I(LA]S) = - /

J -<

PLA(X\S) • \og2

PLA(X\+1) + PLA(X\-1)
dx, (3.73)

where we have I(LA\S) € [0,1], and piA(x\s) represents the distribution of the

a priori information conditioned on s £ {+1,-1}. After passing samples of LA

through the detector or the decoder, at the output the MI I(LE] S) between the

extrinsic information LB and S is obtained by applying Equation (3.73) using the

distribution of LE- This can be done by first approximating the PDF of LE by

the experimentally generated histogram of the output LLRs and then computing

I(LE\ S) numerically. '

We denote the MI of the input and output LLRs, respectively by I A = I{LA;S)

and IE = I{L>E; S). When the Gaussian approximation is applied to the PDF of

LA, the MI I A is a function of a single parameter, usually that of the variance

(aA) = 1 - /
J-o

log2 (1 + e~x)dx. (3.74)

Let us define J{aA) — IA{VA) with the two extremal values of limo^^o J{VA) = 0

and lim^-.oo J(CTA) = 1> which correspond to having either none or perfect a

priori information, respectively. The function J is monotonically increasing and

thus it is invertible [36]

<rA = J-1{IA). (3.75)

It is infeasible to express J or its inverse in closed form. However, they can be

closely approximated by [43]

1.1064

and

J(a) = (l - 2-°-3 0 W 7 8 7y

/ \ 0.5596
J - 1 (/) = ( - 3.2541 x log2 (1 - I0:9038) J

(3.76)

(3.77)

Note that for the MUD, the received signal has to be recorded for a given

channel state and SNR, because the MUD's received signal is affected by the

channel quality quantified here in terms of the noise power. The EXIT chart

is either the nonlinear transfer function IE,m — fm(^A,m)SNR) of the MUD or

the corresponding function IE4 = fd(lA,d) of the channel decoder, which maps
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the input variable I A to the output variable IE- The specific value of IE in the

range [0,1] characterizes the quality of the output LLRs of a receiver compo-

nent. The essential idea of EXIT chart analysis is as follows. Firstly, with the

introduction of the interleaver, we randomly reorder the input sequence of both

the MUD and the channel decoder. This operation ensures that both the MUD

and the channel decoder may be considered in isolation, where each of them is

fed with sufficiently independent extrinsic information by the other constituent

component. Secondly, we generate the EXIT curve IE = J{IA} by assuming the

a priori LLRs are Gaussian distributed. This simplifying assumption results in a

discrepancy between the EXIT charts and the actually encountered real detection

or decoding trajectories. This discrepancy is maybe sufficiently low so that we

may ignore it [93]. When using the MI as our detection convergence metric, we

do not require that the distribution of the output extrinsic information has to be

Gaussian, since the MI is a function of the entire PDF, rather than that of the

first and second moments of the extrinsic information, which is quite different

from the philosophy of classic SNR analysis, especially when the distribution of

the extrinsic information is non-Gaussian. Based on the latter feature, EXIT

chart analysis can also be applied to multiuser communications over multipath

fading channels, despite the fact that in this case the distribution of the output

extrinsic information of the MUD cannot be approximated by a Gaussian PDF.

The numerical procedure invoked for obtaining the EXIT curve IE = S{IA)

can be described as follows:

1. We randomly generate the input bits s 6 {+1,-1} and the corre-

sponding LLRs LA according to the Gaussian distribution having

a variance of o\ and a mean of s-a\/2.

2. We then invoke an SISO detector (MUD or decoder) for detecting

the sequence S.

3. From the obtained output LLRs LE we calculate the resultant

MI using Equation (3.73).

4. Repeating the above procedure for different values of a\ results

in pairs of values (lA,m,lE,m), {IA^IEA), which are used for

approximating the functions /m(-) and /<*(•)•

The output of one of the constituent detectors is the input of the other, hence

both transfer functions are shown in the same EXIT plane having coordinate axes
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of {lA,m—lE,d), {lE,m—^A,d)- The stair-case-shaped lines connecting the MI points

evaluated during each iteration are referred to as the detecting trajectory. The

substantial advantage of EXIT charts accrues from the fact that the detecting tra-

jectory points recorded for both constituent components exchanging information

fall on the continuous EXIT functions obtained independently, which is expressed

as

= fm(lE,d(n ~

where /£,m(n) and

iteration.

(3.78a)

(3.78b)

represent the output MI produced during the n-th

An infinitesimally low BER may be attained, when there is a so-called open

tunnel between the EXIT curves of the decoder and the MUD. This graphical rep-

resentation gives us an immediate insight into the number of detection iterations

required to attain the best possible BER performance. Finally, since the MI at

the decoder's output may be directly mapped to the final BER [40], EXIT charts

allow us to compare turbo receivers in terms of their overall BER performance.

3.3.2 EXIT Charts for Multiuser Beamforming

Unlike in single-user turbo coding or turbo equalization, in the multiuser detec-

tion scenario the MUD's EXIT curve recorded for the desired user depends on all

the other (K—l) users' channel decoder output MI, which implies that the MUD's

EXIT surface should be iC-dimensional. Unfortunately this if-dimensional EXIT

hyperplane cannot be readily visualized. A feasible solution to,resolve this prob-

lem is that of translating a single K-dimensional EXIT chart to K number of two-

dimensional EXIT charts, where each two-dimensional EXIT chart corresponds

to a single user. However, the MUD's EXIT curve in any of these two-dimensional

EXIT charts changes upon each iteration, and it also depends on the other users'

MI forwarded from the channel decoders to the MUD.

Nonetheless, we now slightly relaxed our simplifications and we assume that

although all the users' angular locations are selected so that the relative time

delay of all users with respect to the angularly closest neighbors is the same,

one of the users has a higher power than the remaining equal-power users. In
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CDMA or SDMA systems, if all the cross-correlation coefficients are equal, the

Multiuser Interference (MUI) imposed by any of the users is equivalent. Hence

we can use a pair of 2D EXIT charts for analysing the attainable convergence

performance. More specifically, one of the EXIT charts is for the higher-power

user, where the EXIT curves do not depend on the iteration index, while the other

EXIT chart is for the average of the lower-power users, where the MUD's EXIT

curve depends on the iteration index. However, in the context of beamforming

systems operating under the above-mentioned conditions, the high-power user

always imposes more interference on the angularly adjacent users than on the

angularly better separated users. This implies that during the first iteration,

the low-power users who are angularly close to the high-power user have a worse

performance than the other low-power users. Furthermore, during later iterations,

when a high-power user has a lower BER and can be essentially canceled, the

angularly adjacent low-power users will have a better performance than the others.

Hence the low-power users' signals cannot be readily combined into a single subset

and hence their performance cannot be directly averaged. Therefore the 2D EXIT

charts are unsuitable even for this simple beamforming scenario.

Based on the above reasons, in our simulations all users' SNRs were identical.

Additionally, their angular locations were selected so that the relative time delay

• of all users with respect to the angularly closest neighbors was the same, as defined

in Section 3.1.1. Hence the turbo MUD can average all the users' MI in order to

generate the corresponding EXIT chart. When these constraints are not satisfied,

the averaged EXIT trajectories will deviate from the EXIT transfer curves and

consequently the EXIT chart analysis becomes less accurate.

3.4 Performance Analysis

In this section, simulation results are presented in order to illustrate the perfor-

mance of the iterative beamforming receiver. EXIT charts are used to analyse

the attainable performance. The system employs a two-element antenna array.

All users have the same transmit power. Each user employs a different randomly

generated interleaver. The interleaver length of each user is 2xlO4 bits.



3.4.1 BPSK Transmission Over AWGN Channels 91

3.4.1 BPSK Transmission Over AWGN Channels

Figure 3.13 shows the BER performance of the MMSE, RMMSE and MBER

beamforming receivers of Section 3.2 communicating over AWGN channels sup-

porting K=Q BPSK users and the corresponding single-user performance is also

included as a reference. The system's schematic obeys the structure of Figure 3.2

and uses the parameters of Table 3.7. All users have the same channel coeffi-

Table 3.7: BPSK transmission parameters

Number of receive antennas
Number of users
DOAs of users' signal
Modulation
Interleaving length
Channel coding
Code rate
Constraint length
Polynomial generators

2
6
68°, 36°, 15°, -4° , -24°, -48°
BPSK
2 x 104

NSC
1/2
4
(15,17)

cients of hk = l.O+jO.O, k e {1,2,-•• ,6}, and employ the same rate 1/2 and

10u

10'

10-2

S -3

10,-5 .,

-v-6

Iteration index
Single user
MMSE
RMMSE
MBER

#50

Figure 3.13: BER comparison of the MMSE, RMMSE and MBER iterative
beamforming receivers of Section 3.2 for the BPSK system supporting K=Q
users communicating over AWGN channels. The system's schematic obeys
the structure of Figure 3.2 and uses the parameters of Table 3.7.
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. user 4
user 5 i u s e r 3

user 6
user 2

user 1

Figure 3.14: Two AEs, where the signal of users arrives from 68°, 36°, 15°,
-4°, -24° and -48°.

constraint length 4 Non-Systematic Convolutional (NSC) code using the octally

represented generators (15,17). The arrival angles of users' signal are 68°, 36°,

15°, —4°, -24° and —48°, respectively, as seen in Figure 3.14. It can be seen that

the performance of both the MBER and the RMMSE beamforming receivers has

significantly improved after 50 iterations. Their performance approach the single-

user bound when the SNR is higher than 2.3dB and 2.6dB respectively. However,

the MMSE solution's BER approaches the single-user bound when the SNR is

higher than 5.8dB. It is seen that in this 'overloaded' system supporting three

times the number of users in comparison to the number of antennas, the MBER

algorithm has 0.3dB and 3.5dB gain than the RMMSE and MMSE solution, re-

spectively. On the other hand, at a high SNR condition, all the three algorithms

have the same performance, i.e. the single-user BER.

3.4.1.1 EXIT-Chart Trajectories of the MBER MUD

According to the principles outlined in Section 3.3.1, in Figure 3.15 we plot both

the EXIT charts and the simulated trajectories of the iterative MBER beam-

forming BPSK receiver supporting K=Q users at Eb/N0=2dB and 3dB. All users

employ the same rate 1/2 and constraint length 4 NSC code using the octally

represented generators (15,17).

The iterative detection process commences from the 7 ^ = 0 point, which im-

plies the absence of a priori information for the MUD. Next, the output LLRs

described by IE^—IAA
 a re fed into the decoder, yielding the LLRs described by

lE,d=lA,m, which are then fed back to the MUD and so forth. The detection pro-

cess is curtailed at the crossing of the EXIT curves of the MUD and the decoder
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— MBER trajectory
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Figure 3.15: EXIT charts and simulated trajectories of the iterative MBER
receiver of Section 3.2.4 supporting K=6 BPSK users communicating over
AWGN channels at Et,/No=2dB and 3dB. The system's schematic obeys
the structure of Figure 3.2 and uses the parameters of Table 3.7.

if the SNR is insufficiently high, as seen for Eb/N0=2dB in Figure 3.15. The

iterative detection process is represented by the staircase shaped trace between

the transfer curves of the MUD (the doted line) and decoder (the dashed line)

components.

Figure 3.15 also shows the detection trajectories (the solid lines) of the iter-

ative process obtained by simulation. The detection trajectories closely follow

the EXIT curves of the receiver components, which indicates that the EXIT

chart analysis is valid for the MBER MUD. Again, as seen in Figure 3.15, at

Eb/N0=2dB the trajectory is curtailed after seven iterations, since the EXIT

curves of the MUD and the decoder do intersect. By contrast, at Eb/No=3dB,

the decoding trajectory passes through 'the bottleneck' and reaches the top-right

corner, indicating an infinitesimally low BER, after fourteen iterations. We ob-

serve that after a few iterations, the trajectories slightly deviate from the EXIT

curves, which is a consequence of the extrinsic information becoming correlated

upon increasing the number of iterations, in particular, when the interleaving

length is finite.
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3.4.1.2 EXIT-Chart Based BER Estimation

EXIT charts can be used to obtain an estimate of the BER after an arbitrary-

number of iterations. For the channel decoder, the soft output of the coded bits

generated after a given number of iterations can be written as the sum of the

extrinsic information and the a priori information, which can be expressed as

L = LA^ + LE,CL- For the sake of deriving a simple formula for the channel coded

bit error probability Pe^, both the a priori information LA4 a n d the extrinsic

information LE4 are assumed to be Gaussian distributed. Hence, the decoder's

output L is also Gaussian with a variance of a2 and a mean of \i = ^. Then the

coded bit error probability can be written as [36]

Peb «(§)• (3.79)

Assuming perfect independence between the extrinsic information and the a priori

information, we have a2 = aAd + a\d. Applying Equation (3.77), the variances

a2
Ad and aEd can be obtained from the corresponding MI IAtd and /^id.

Consider a six-user system communicating over an AWGN channel. We use

a rate 1/2 NSC code having the octal generators of (15,17). Table 3.8 compares

the estimated coded BER results obtained from the EXIT chart to the simulation

results characterizing the iterative MBER MUD at Eb/N0=3dB. The table shows

Table 3.8: Comparison of BER estimation from EXIT chart and simulation
results

Iteration
index

1
2
3
4
5
6
7
8
9
10
11
12
13
14

0.367,0.119
0.405,0.203
0.434,0.276
0.461,0.36
0.492,0.471
0.534,0.604
0.582,0.742
0.633,0.859
0.676; 0.923
0.698,0.948
0.706,0.955
0.709,0.956
0.71,0.957
0.71,0.958

OLA.d,GLB.d
1.643,0.845
1.758,1.142
1.843,1.37
1.924,1.623
2.021,1.956
2.151,2.382
2.309,2.916
2.483,3.55

2.643,4.111
2.729,4.433
2.765,4.551
2.776,4.581
2.779,4.6

2.779,4.608

Estimated
BER

1.778e-l
1.473e-l
1.254e-l
1.041e-l
7.981e-2
5.428e-2
3.146e-2
1.515e-2
7.272e-3
4.621e-3
3.88e-3
3.7e-3

3.604e-3
3.565e-3

Simulated
BER

2.467e-l
1.981e-l
1.634e-l
1.314e-l
9.702e-2
6.667e-2
3.683e-2
1.61e-2

7.267e-3
4.9e-3

4.233e-3
3.85e-3
3.617e-3
3.5e-3
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that the EXIT chart in combination with the Gaussian approximation provides

reasonable BER predictions.

3.4.1.3 Operating SNR Threshold Estimation

We can infer from the above results that the turbo detection scheme is capable

of providing significant performance improvements, when the iterative process

converges successfully. However, achieving successful convergence depends upon

a number of factors, such as the user load, the type of detector, as well as the

channel code and the SNR considered, all of which will be considered below.

From Figure 3.15, it is readily seen that if E^/NQ is a little bit higher than

2dB, there will be an open tunnel between the EXIT curve of the MUD and

that of the decoder. The iterative process will hence successfully converge to an

infinitesimally low BER. However, if E^/NQ is lower than 2dB, the EXIT tunnel

will close and the iterative process fails to provide a significant BER performance

improvement. Hence we estimate Eb/No=2.2dB as the operating SNR threshold

of this system.

Single user
, >__ . . Iteration #1

10"2 F : ^ ? = -
X IteratioriiflO--

Iteration #15
Iteration #20
Iteration #25
Iteration #35
Iteration #45

2.8
(dB)

Figure 3.16: BER performance of the iterative MBER beamforming re-
ceiver of Section 3.2.4 supporting K=Q users communicating over AWGN
channels, when increasing the number of iterations. The system's schematic
obeys the structure of Figure 3.2 and uses the parameters of Table 3.7.
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Figure 3.16 shows the BER performance of the system, when increasing the.

number of iterations. It can be seen that when the SNR is higher than 2.2dB,

the achievable BER approaches that of the single-user bound, which confirms the

predictions of the EXIT charts. Finally, it is worth noting that the narrower the

EXIT tunnel, the higher the number of iterations required for achieving detection

convergence.

3.4.1.4 The Number ofUsers Supported

In addition to the operating SNR threshold, there are other thresholds in turbo

multiuser detection, which are of interest. For example, given a certain SNR,

the EXIT curve of the detector moves downwards upon increasing the number

of users K, potentially closing the convergence tunnel. This limits the maximum

number of users that the system can support at this SNR.

Figure 3.17 shows the EXIT curves of the channel decoder and the MBER

MUD, when supporting different number of BPSK users K at Et,/N0=3dB. The

DOAs of all users for different number of user are listed in Table 3.9. The channel

code is a rate 1/2 NSC code having the octally represented generators of (15,17).

0 0.2

Channel decoder
Single user
3 users
4 users
5 users
6 users
7 users
8 users

0.4 0.6

'A,m>'E,d

0.8

Figure 3.17: EXIT charts for the MBER MUD of Section 3.2.4 communi-
cating over AWGN channels and NSC channel decoder for different number
of BPSK users at Eb/No=3dB using the parameters of Tables 3.7 and 3.9.
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Table 3.9: Arrival angles of users' signal

Single user
2 users
3 users
4 users
5 users
6 users
7 users
8 users

15°
15°, -4°
68°, 15°, -24°
49°, 15°, -14°, -48°
41°, 15°, -8° , -33°, -70°
68°, 36°, 15°, -4°, -24°, -48°
56°, 33°, 15°, -2° , -18°, -37°, -62°
49°, 31°, 15°, 1°, -14°, -29°, -48°, -82°

The EXIT chart shows that at Eb/N0=3dB, the maximum number of users is

K=6, where an open EXIT-tunnel is visible. It is clear that the maximum number

of users supported is a function of the SNR, as well as of the specific detection

and decoding schemes employed.

Figure 3.17 also shows that all the MUD EXIT curves converge to the ordinate

value of /£)m«0.73 at the abscissa of I^m=l. This is because regardless of the

number of users, when the a priori information is perfect, all the other users'

interference can be perfectly removed, resulting in a near-single-user performance.

We also note that the point of perfect convergence at [1,1] is not reached, since

the BER performance of the MUD depends on the SNR, when the MUI has been

perfectly removed. When the SNR is infinitely high, the point of [1,1] can indeed

be reached.

3.4.1.5 Comparison of Different Turbo-MUDs

Consider a six-user BPSK system employing two receive antennas. Figure 3.18

shows the EXIT characteristics of the iterative MUDs using the MBER, the

MMSE and the RMMSE detection schemes operating at Eb/No=0dB, 3dB and

6dB. The MBER MUD has the potential of providing a marginally wider EXIT

tunnel than the RMMSE scheme, followed by the MMSE MUD. Figure 3.18 also

reveals that the three detectors yield the same value of /£,m<l with the advent

of perfect a priori information corresponding to-/J4im=l. This is because for

+o°, the MAI can be completely removed from the received signal.

The main difference between the three detectors is the slope of the EXIT

curves, which will then affect both the SNR convergence threshold and the con-

vergence rate of the associated turbo receiver. Figure 3.13 shows the BER versus
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Single user
MMSE MUD
RMMSE MUD
MBER MUD

0.8 1

Figure 3.18: EXIT characteristics of the iterative MUDs using the MMSE,
RMMSE and MBER detection schemes of Section 3.2 supporting K=6
BPSK users communicating over AWGN channels at Eb/No=0dB, 3dB and
6dB using the parameters of Table 3.7.

SNR performance of these three MUD algorithms, whose SNR thresholds are

2.3dB, 2.6dB and 5.8dB, respectively. It can be seen that the performance of all

three beamforming receivers has significantly improved after z=50 iterations. In

this rank-deficient system supporting three times the number of users in compar-

ison to the number of antennas, the MBER algorithm has the lowest operating

SNR requirement.

Figure 3.19. shows the lowest number of iterations required to achieve a near-

single-user performance for the three MUDs, when the SNR experienced is higher

than the SNR threshold. It is clear that the number of iterations required de-

creases upon increasing the SNR. At a given SNR, the MBER algorithm neces-

sitates the least iterations to approach the single-user performance.

Figure 3-20 shows the number of users supported at different SNRs for the

three MUDs. The MBER algorithm is likely to support more users than the other

two algorithms.
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50

Figure 3.19: The number of iterations required to achieve a near-single-user
performance by the MMSE, RMMSE and MBER SISO MUDs of Section 3.2
supporting K=Q users communicating over AWGN channels. The system's
schematic obeys the structure of Figure 3.2 and uses the parameters of
Table 3.7.

-X

-X-

MMSE
RMMSE
MBER

Figure 3.20: The number of users supported by the MMSE, RMMSE and
MBER SISO MUDs of Section 3.2 communicating over AWGN channels.
The system's schematic obeys the structure of Figure 3.2 and uses the
parameters of Table 3.7.



3.4.1 BPSK Transmission Over AWGN Channels 100

3.4.1.6 Comparison of Different Channel Coding Schemes

Let us now compare the performance of the MBER turbo receivers using different

channel codes, namely the previously used NSC code and a Recursive Systematic

Convolutional (RSC) code. Both codes have the same code rate of 1/2 and

constraint length 4. The generator polynomials are (15,17) and (17/15) in octal

representation, respectively. Figure 3.21 shows the EXIT curves of the NSC and

RSC channel decoders. We can see that the EXIT curves of the NSC decoder and

the RSC decoder are .almost the same, which implies that the iterative receive

systems employing either channel coding scheme have the same performance.

Now we consider two NSC channel codings using different parameters. Code-1

has constraint length 3 and octal generator polynomials (5, 7). By contrast, code-

2 has constraint length 5 and octal generator polynomials (23,35). Figure 3.22

shows the EXIT charts of these two NSC channel decoders along with the MBER

MUD characteristics, when supporting K=Q BPSK users at 2?&/iVo=2dB and 3dB.

Observe in Figure 3.22 that when IA4 is lower than 0.5, code-1 has a higher output

MI IE,CL than code-2. However, as IA4 increases, code-2 starts to perform better.

In Figure 3.22, the arrows indicate the intercept points of the channel decoders

0.8 -

0.6 -
-o
<

0.4 -

0.2 f

SISC channel decc
RSC channel decc

•

xJer
)der

0.2 0.4 0.6 0.8

E,d

Figure 3.21: EXIT curves of the NSC and RSC channel decoders. Both
codes have the same code rate of 1/2 and constraint length 4. The generator
polynomials are (15,17) and (17/15) in octal representation.
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Code-1 decoder
Code-2 decoder
MBER MUD

0.2 0.4 0.6 0.8

Figure 3.22: EXIT charts of two NSC channel decoders along with the
MBER MUD's EXIT characteristics, when supporting K=6 BPSK users
communicating over AWGN channels at Ef,/No=2dB and 3dB. Code-1 has
constraint length 3 and octal generator polynomials (5,7). Code-2 has
constraint length 5 and octal generator polynomials (23,35).

and the MBER MUD at different SNRs. When the SNR is low, for example 2dB,

the intercept points of both decoders are near the bottom-left corner, with that

of code-2 being nearer. This implies that the receiver using shorter constraint

length channel code has a better performance at low SNRs. When the SNR

increases to 3dB, both codes provide open EXIT tunnel and the intercept point

of the code-2 decoder is moved nearer to the top-right corner than that of code-1

scheme. Hence the receiver employing code-2 performs better. Figure 3.23 shows

the simulated BER performance of these two NSC coded MBER receivers after

i=50 iterations, which confirms the above EXIT-chart based conclusions.

Observe from Figure 3.23 that the code-2 receiver has a steep BER curve,

while the code-1 receiver's BER curve is quite gently sloping. The reason for

this difference can be explained by their EXIT charts. Comparing the EXIT

characteristics of the code-2 decoder and the MBER MUD at 3dB in Figure 3.22,

we also observe that the EXIT chart slope of the MUD is slightly steeper than

that of the code-2 decoder. This implies that the bottleneck is at the left end of

the tunnel. When the EXIT tunnel becomes just opened, the receiver becomes

capable of achieving a significant BER-versus SNR gain, which results in a steep
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Iteration index
Code-1 single user
Code-2 single user
Code-1 6 users
Code-2 6 users

(dB)

Figure 3.23: BER comparison of two NSC coded MBER turbo receivers '
of Section 3.2.4 supporting K=6 BPSK users communicating over AWGN
channels. Code-1 has constraint length 3 and octal generator polynomials
(5,7). Code-2 has constraint length 5 and octal generator polynomials
(23,35). The system's schematic obeys the structure of Figure 3.2 and uses
the parameters of Table 3.7.

BER curve. By contrast, for code-1 the slope of the decoder's EXIT curve is

steeper than that of the MUD and hence the EXIT-chart intercept point moves

more gradually upon increasing the SNR. Hence the BER curve of the code-1

receiver does not exhibit the same waterfall phenomenon.

Actually, at the threshold SNR value, the area between the two component

curves is a measure of the performance loss relative to the channel capacity [94],

Therefore, both above-mentioned channel codes are somewhat deficient. To opti-

mize the performance, we have to find a specific channel code, whose EXIT curve

matches the MUD's curve in order to minimise the area between them. This will

be investigated in next chapter.

3.4.2 BPSK Transmission Over Slow-Fading Channels

Consider a K=6 user BPSK system communicating over narrowband slow-fading

channels obeying the schematic of Figure 3.2 and using the parameters of Ta-
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Channel decoder
MBER MUD
MBER trajectory

0.2 0.4 0.6 0.8
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Figure 3.24: EXIT charts and simulated trajectories of the iterative MBER
receiver of Section 3.2.4 supporting K=6 users communicating over flat-
fading channels at Eb/No=2dB and 3.5dB. The system's schematic obeys
the structure of Figure 3.2 and uses the parameters of Table 3.7.

ble 3.7. The normalized Doppler frequency is 1CT2, and the Ricean K-factor is

10. Figure 3.24 shows both the EXIT charts and the simulated trajectories of

the iterative MBER beamforming receiver at Eb/N0=2dB and 3.5dB. All users

employ a 1/2-rate and constraint length 4 NSC code using the octal generators of

(15,17). The arrival angles of users' signal are 68°, 36°, 15°, -4° , -24° and -48°,

respectively, as seen in Figure 3.14. In Figure 3.24 we note that the trajectories

of the iterative process obtained by Monte-Carlo simulations closely follow the

EXIT curves of the receiver components and are curtailed at the crossing of the

MUD's and the decoder's curves, which indicates that the EXIT chart analysis is

quite accurate for the fading case. •

Figure 3.25 shows the BER performance improvements of the system using the

MMSE, RMMSE and MBER algorithms after z=30 iterations. Observe that for

SNRs in excess of 3.5dB, the simulated BER of the MBER algorithm approaches

the single-user BER, which confirms the predictions of the EXIT charts.
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Figure 3.25: BER comparison of the iterative MMSE, RMMSE and MBER
beamforming receivers of Section 3.2 supporting K=6 users communicating
over fiat-fading channels. The system's schematic obeys the structure of
Figure 3.2 and uses the parameters of Table 3.7.

3.4.3 QPSK Transmission Over AWGN Channels

Figure 3.26 shows the BER versus SNR performance of the MMSE, WL-MMSE,

MBER and WL-MBER beamforming receivers of Section 3.2 for transmission over

AWGN channels supporting K=4 QPSK users in comparison to the correspond-

ing single-user performance. The system's schematic was shown in Figure 3.2

and all parameters are summarized in Table 3.10. All users have the same chan-

Table 3.10: QPSK transmission parameters

Number of receive antennas
Number of users
DO As of users' signal
Modulation
Interleaving length
Channel coding
Code rate
Constraint length
Polynomial generators

2
4
49°, 15°, -14°, -48°
QPSK
2 x 104

NSC
1/2
4
(15,17)

nel coefficients of hk = 1.0+jO.O, k G {1,2,3,4}, and employ a 1/2-rate and
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Figure 3.26: BER comparison of the MMSE, WL-MMSE, MBER and WL-
MBER iterative beamforming receivers of Section 3.2 for the QPSK system
supporting K=4 users communicating over AWGN channels. The system's
schematic obeys the structure of Figure 3.2 and uses the parameters of
Table 3.10.

constraint length 4 NSC code using the octal generators of (15,17). The arrival

angles of users' signal are 49°, 15°, —14° and —48°, respectively, as seen in Fig-

ure 3.4. Their performance approach the single-user bound, when the SNR is

2.8dB, 2.6dB, 2.5dB and 2.3dB for the MMSE, WL-MMSE, MBER and WL-

MBER MUDs of Section 3.2, respectively. It can be seen that the performance of

all beamforming receivers has significantly improved after z=40 iterations. In this

rank-deficient system, namely when the channel-matrix becomes rank-deficient

and non-invertible due to supporting twice the number of users in comparison to

the number of antennas, the WL-MBER algorithm has the lower operating SNR

requirement.

In Figure 3.27 we plot both the EXIT charts and the simulated trajecto-

ries of the iterative MMSE, WL-MMSE, MBER and WL-MBER beamforming

QPSK receivers supporting K=A users at Eb/No=2.5dB. When the a priori in-

formation is IA,m=0, the MMSE MUD and the WL-MMSE MUD have the same

output extrinsic information /e,m , because in this scenario the two algorithms are

equivalent. In this situation, the MBER MUD and the WL-MBER MUD of Sec-

tion 3.2.4 also have the same IE,™ value, which is marginally better than that of
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Figure 3.27: EXIT charts and simulated trajectories of the iterative MMSE,
WL-MMSE, MBER and WL-MBER receivers of Section 3.2 supporting
K—4 QPSK users communicating over AWGN channels at Eb/No=2.5dB.
The system's schematic obeys the structure of Figure 3.2 and uses the
parameters of Table 3.10.

the MMSE MUD and of the WL-MMSE MUD. All the four MUDs' EXIT curves

have another point of intersection at /,i]rra=l, where they achieve the single-user

performance, although they all fail to reach the point of infinitesimally low BER

typically associated with {lA,m^E,m)—{^A)- When we have IA,™, € (0,1), the

WL-MMSE MUD outperforms the MMSE MUD, and the WL-MBER MUD out-

performs the MBER MUD. The trajectories shown in Figure 3.27 indicate that

the EXIT chart analysis is also accurate for the QPSK systems.

3.4.4 16QAM Transmission Over AWGN Channels

-^ . . .
Consider a K=3 user 16QAM system obeying the schematic of Figure 3.2 and

using the parameters of Table 3.11. All users have the same channel coefficients

of hk = 1.0+jO.O, k G {1,2,3}, and employ the same rate 1/2 and constraint

length 4 NSC code using the octally represented generators (15,17). The arrival

angles of users' signal are 68°, 15° and —24°, respectively, as seen in Figure 3.28.
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Table 3.11: 16QAM transmission parameters

Number of receive antennas
Number of users
DOAs of users' signal
Modulation
Interleaving length
Channel coding
Code rate
Constraint length
Polynomial generators

2
3
68°, 15°, -24°
16QAM
2 x 104

NSC
1/2
4
(15,17)

user 3 user 2

user 1

Figure 3.28: Two AEs, where the signal of users arrives from 68°, 15° and
-24°.

Figure 3.29 shows the EXIT curves of the MMSE, WL-MMSE, MSER and

WL-MSER MUDs of Section 3.2 and the simulated trajectories of the itera-

tive MMSE and MSER 16QAM beamforming receivers supporting K=3 users

at Eb/N0=7.5dB. In this 16QAM system, the MMSE MUD, WL-MMSE MUD,

MSER MUD and WL-MSER MUD have almost the same output lE,m value at

both the axes at lA,m=Q and / i4 im=l. Between these two points of intersection,

the MMSE MUD has the lowest EXIT curve, and the WL-MSER's EXIT curve

reaches the highest IE,™ value.

Figure 3.30 shows the SER versus SNR performance of the MMSE, WL-

MMSE, MSER and WL-MSER beamforming receivers for transmission over AWGN

channels, when supporting K=3 16QAM users and the single-user performance.

It can be seen that after i=20 iterations, all these iterative systems approach

the single-user performance. The WL-MSER system has the lowest operating

SNR threshold, which is 0.5dB, 0.2dB and 1.3dB lower than that of the MSER,

WL-MMSE and MMSE systems, respectively.
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Figure 3.29: EXIT charts and simulated trajectories of the iterative MMSE,
WL-MMSE, MSER and WL-MSER receivers of Section 3.2 supporting
K—3 16QAM users communicating over AWGN channels at Eb/No—7.5dB.
The system's schematic obeys the structure of Figure 3.2 and uses the pa-
rameters of Table 3.11.

3.5 Conclusions

In this chapter, we introduced the new iterative MBER SIC beamforming re-

ceiver of Section 3.2.4 for BPSK and QPSK systems, which directly minimises

the BER instead of the MSE. This novel algorithm significantly outperforms the

conventional MMSE SIC algorithm of Section 3.2.1 at the cost of a higher compu-

tational complexity. The RMMSE algorithm of Section 3.2.2 designed for BPSK

was also considered, which minimises the MSE between the real-valued desired

signal and the real part of the complex-valued beamformer output. The SISO

WL-MMSE algorithm of Section 3.2.3 designed for higher-order QAM schemes

was extended from the RMMSE solution. Similarly, the soft WL-MBER solution

of Section 3.2.4 was also introduced, which has the same computational complex-

ity as the MBER algorithm. Our simulations have shown that the MBER and

WL-MBER solutions outperform both the conventional MMSE and the RMMSE

or WL-MMSE iterative receivers. Furthermore, the SISO MSER and WL-MSER

MUDs of Section 3.2.5 were also introduced and analysed in the context of 16QAM

systems. They also outperform the MMSE or WL-MMSE systems at the cost of
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Figure 3.30: SER comparison of the MMSE, WL-MMSE, MSER and WL-
MSER iterative beamforming receivers of Section 3.2 for the 16QAM system
supporting K=Z users communicating over AWGN channels. The system's
schematic obeys the structure of Figure 3.2 and uses the parameters of
Table 3.11.

a high complexity.

The detailed performance and computational complexity of the methods men-

tioned above are summarized in Table 3.12. The system's schematic obeys the

structure of Figure 3.2 and uses the parameters of Tables 3.7, 3.10 or 3.11, de-

pending on the modulation scheme used. When quantitatively comparing the dif-

ferent SISO detectors' performance, we investigated the SNR threshold expressed

in terms dBs, which indicates the lowest SNR where the iterative SIC MUD re-

ceiver is capable of achieving the BER performance of the single-user system for

transmission over AWGN channels. As it becomes clear from Table 3.12, the

MMSE SIC algorithm imposes lower complexity than both the MBER and the

MSER methods. However, the MBER and the MSER MUD receivers have on

approximately 3.5dB, 0.3dB and 0.8dB gain over the MMSE algorithm for BPSK,

QPSK and 16QAM systems, respectively. It can also be seen in Table 3.12 that

the WL algorithms outperform their corresponding non-WL methods at a similar

complexity.

Despite the non-Gaussian distribution of the MI recorded in the MBER multi-
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Table 3.12: Performance
receivers

SISO MUD

MMSE

RMMSE

WL-MMSE

MBER
WL-MBER
MSER
WL-MSER

Section

3.2.1

3.2.2

3.2.3

3.2.4
3.2.4
3.2.5
3.2.5
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and complexity summary of iterative beamforming

Complexity

0( i3)

/if\ / T 3 \
\*S I /J 1

O(L3)

O(LNcgM
K)

O(LNcgM
K)

O(LNcgM
K)

O(LNcgM
K)

Modulation
BPSK
QPSK
16QAM
BPSK
QPSK
16QAM
BPSK
QPSK
QPSK
16QAM
16QAM

SNR threshold
5.8dB
2.8dB
7.9dB
2.6dB
2.6dB
6.8dB
2.3dB
2.5dB
2.3dB
7.1dB
6.6dB

user scenario, we succeeded in adopting the classic single-user EXIT-chart concept

for our convergence analysis in Section 3.3.2. More explicitly, based on the EXIT

charts of the SISO MUDs, the exchange of extrinsic information between the

MUDs and the channel decoders was visualized, which facilitated their conver-

gence analysis in the context of iterative detection. EXIT charts were also used

for estimating the BER performance of the system at different user loads in Sec-

tion 3.4.1.2, for estimating the operating SNR threshold in Section 3.4.1.3, for

estimating the number of users supported in Section 3.4.1.4, and for comparing

the convergence behaviour of various turbo receivers using different MUDs and

channel codes in Sections 3.4.1.5 and 3.4.1.6.



Chapter 4

Three-stage Iterative Receiver

Using Irregular Convolutional

Codes

All the SISO MUDs discussed in Chapter 3 have a non-recursive nature, having a

finite impulse response, which limits the achievable performance of the iterative

system, because the extrinsic information exchange between the decoder compo-

nents tends to be based on more correlated LLRs than in an IIR system. This

disadvantage may be ameliorated with the aid of a simple unity-rate memory-1

recursive precoder incorporated at the transmitter. Hence the attainable itera-

tive detection performance may be further improved [42]. Naturally, having a

code rate for the precoder which is less than one restricts the achievable data

throughput [38]. Furthermore, having a memory-1 structure slightly increases

the system's complexity. Then the inner decoder component constituted by the

MUD, the intermediate channel decoder and the outer channel decoder result in

a three-stage serially concatenated scheme. In this chapter we design this three-

stage concatenated multiuser receiver based on the MBER MUD for the sake

of achieving a near-capacity performance [39]. By combining and projecting a

series of three-dimensional EXIT functions onto a single two-dimensional EXIT

chart [43], the convergence behaviour of the system is visualized. Specifically,

IRCCs [38] are constructed, which are used as the outer code for the sake of

solving the EXIT curve fitting problem of [44], i.e. that of minimising the. area

of the EXIT chart's open tunnel, implying that the system becomes capable of

approaching the achievable data rate [44,38]. A near-capacity system can also be

111
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designed by employing an irregular inner module [95], or two serially concatenated

irregular modules [96,97].

4.1 System Description

The system supports K BPSK users and all users transmit signals on the same car-

rier frequency. The receiver is equipped with a linear antenna array consisting of L

elements, which have a uniform element spacing of A/2. Then the signal samples

received at the symbol-rate can be expressed as rj(i) = Y^=\ hk{i)sk{i)eiu>tl^ +

ni(i) for I e {1,2, • • • , L}, where sk(i) is the ith symbol of the kih BPSK user,

hk(i) is the complex-valued channel coefficient when transmitting the ith symbol

of user k, ni(i) is the complex-valued Gaussian white noise having a power of

2a%, and ti(6k) = %(l — 1) sin(0fc) is the relative time delay at array element I for

the source signal of user k, with 6k being the LOS angle of arrival for source k.

The system vector hfc = [hke
jtjjtl{-9^ hke

jwt^6k) • • • hke
ju*L^]T constitutes the

unique, user-specific signature of user k. We assume that the relative time delay

of all users with respect to the angularly closest neighbours is the same. All the

angular locations of the users were selected under this constraint.

Figure 4.1 depicts the system structure of the proposed three-stage serially

concatenated multiuser communications system. In this figure, only one trans-

mitter and the kth user's receiver were portrayed. At transmitter k, a block

of information bits ak is encoded by channel encoder I first. Then the outer en-

coded bits bk are interleaved, yielding the permuted bits ck, which are fed through

the unity-rate memory-1 encoder II. The resultant 'double-encoded' bits dk are

interleaved by a second inter leaver, yielding the interleaved bits ek, which are

fed to a bit-to-modulated-symbol mapper, as seen in Figure 4.1. After map-

ping, the modulated signal sk is transmitted over a memoryless AWGN or fading

channel. At the receiver of Figure 4.1, an iterative MUD/decoding structure is

employed, where extrinsic information is exchanged between the three SISO mod-

ules, namely the SISO MUD, the A Posteriori Probability (APP)-based decoder

II and the APP-based decoder I1 in a number of consecutive iterations. To be

specific, in Figure 4.1, LA{-) denotes the a priori information represented in terms

of LLRs [98], while LE{.) denotes extrinsic information also expressed in terms of

LLRs. Note that decoder II processes two a priori inputs arriving from both the

user has a separate decoder I, decoder II, interleavers and deinterleavers.
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Figure 4.1: Three-stage iterative multiuser beamforming system structure,
in which only the fcth user's transmitter and receiver are portrayed.

MUD and decoder I in order to generate two extrinsic outputs. Following the last

iteration, the estimates â  of the original bits are generated by decoder I, as seen

in Figure 4.1,

4.2 Convergence Analysis Using Projected EXIT

Charts

The EXIT chart analysis computes the MI between the LLRs and the correspond-

ing bits, as detailed in [37]. Let IA(X) denote the MI between the a priori values

LA(X) and bit-sequence x. Furthermore, let IE(X) denote the MI between the ex-

trinsic values LE(X) and the bit-sequence x. The EXIT function of decoder I is

defined by2

(4-1)

As seen from Figure 4.1, decoder II has two extrinsic MI outputs, namely IE{C)

and IE{<I)I both of which are functions of the a priori MI inputs, namely IA{C) and

IA{<I)- The two EXIT functions are defined by [43]

(4.2)

2Each user employs the same channel coding I and channel coding II schemes, hence the
subscript k can be omitted in the EXIT functions of decoder I and decoder II.
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(4.3)

Unlike in single-user turbo coding or turbo equalization, in the multiuser detection

scenario the MUD's EXIT curve recorded for the desired user depends on all the

other (K—l) users' channel decoder output MI, which implies that the MUD's

EXIT surface should be if-dimensional. Note that for the MUD, the received

signal has to be recorded for a given channel state and SNR, because the MUD's

received signal is affected by the channel quality quantified here in terms of the

noise power. Then the EXIT function of the MUD for user k is defined by

, (4.4)

where k' E {1, • • • , A;—1, k+1, • • • , K}. In our simulations all users' SNRs were

identical. Additionally, their angular locations were selected so that the relative

time delay of all users with respect to the angularly closest neighbors was the

same, as defined in Section 4.1. Hence the turbo MUD can average all the users'

Mis in order to simplify the EXIT chart function of (4.4) to

lE(e)=fm{lA(e),Eb/N0). (4.5)

Consider a half-rate NSC code using the octally represented generators (15,17)

as encoder I, and a simple rate-1 accumulator as encoder II, described by the oc-

tal generator polynomials of (1/3), where 3 represents the feedback polynomial.

An SISO MBER MUD is employed as the inner component. All the EXIT func-

tions can be plotted in two 3D EXIT charts. One for the EXIT functions of

Equation (4.3) and Equation (4.5) as shown in Figure 4.2a, and another for the

EXIT functions of Equation (4.1) and Equation (4.2), as shown in Figure 4.2b.

The intersection of the surfaces seen in Figure 4.2a characterizes the best possi-

ble attainable performance, when exchanging information between the MUD and

decoder II after an infinite number of iterations at different fixed values of IA{C),

which is shown as a thick solid line. For each point \IA{C), ̂ 4(d)> ̂ E(d)] of this line

in the 3D space of Figure 4.2a, there is a specific value of IE{C) determined by

IA(C) and lA{d) according to the EXIT function of Equation (4.2). Therefore the

solid line on the surface of the EXIT function of decoder II seen in Figure 4.2a is

mapped to the solid line shown in Figure 4.2b. In order to avoid the cumbersome

3D representation, we now project the bold EXIT curve of Figure 4.2b onto the



4.2 Convergence Analysis Using Projected EXIT Charts 115

Decoder II
MBER MUD
Intersection

(a) Decoder II and the MBER MUD at Eb/N0=2.1dB

)- 'A(b)

0.5

Decoder II
Decoder I

ied intersection

- 1

'A(C)- !E(b)

(b) Decoder I and decoder II

Figure 4.2: 3D EXIT charts of the 3-stage iterative MBER beamforming re-
ceiver supporting K=6 users with the aid of two antennas at Eb/No—2.16B.
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Figure 4.3: 2D projected EXIT charts of the 3-stage iterative MBER
beamforming receiver supporting K=6 users with the aid of two anten-
nas at Eb/N0=2.1dB. The EXIT curves of the MBER MUD recorded at
Eb/No=2.1dB and that of decoder I are also plotted.

2D plane at IA(<I)=0, yielding the solid line in Figure 4.3 [43]. The EXIT curves

of the MBER MUD recorded at Eb/N0=2. ldB and that of decoder I were also

plotted in Figure 4.3. The projected EXIT curve can be described as

(4.6)

which implies that the MUD and decoder II are combined into a single inner de-

coder cdmponent and hence the resultant 3-stage iterative scheme can be analysed

as a traditional 2-stage iterative arrangement.

As for a traditional two-stage turbo scheme, the EXIT curve of the inner

component and that of the outer component are used for analysing the associ-

ated convergence behaviour. As seen from Figure 4.3, the EXIT curve of the

MBER MUD cannot reach the convergence point of [1,1] and intersects with the

EXIT curve of the outer NSC code, which implies that residual errors persist,

regardless of both the number of iterations used and the size of the interleaver.

This explains the residual BER encountered by the traditional two-stage turbo

scheme. On the other hand, if the inner MBER MUD and the intermediate de-

coder II are viewed as a single joint inner SISO module, then the projected EXIT
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function of Equation (4.6) is the EXIT function of this module, which is capable

of reaching the convergence point of [1,1]. As long as there is an open tunnel

between the EXIT curve of this joint inner module and that of the outer decoder,

the three-stage concatenated system is capable of converging, hence achieving an

infinitesimally low BER.

4.3 Design of Irregular Convolutional Coded

Beamforming

According to the area properties [44,38] of the EXIT charts, the area under the

EXIT curve of the inner module is approximately equal to the achievable data

rate when employing a specific multiuser detection scheme, when the channel's

input is uniformly distributed. Furthermore, the area under the EXIT curve

of the outer code is approximately equal to 1—Ri, where Rj is the outer code

rate. More explicitly, let A^ and A^ be the areas under /<*,(/) and its inverse

/ ^ ( J ) , / G [0,1], respectively. Similarly, we define Am for fm(I,Eb/N0) and Ap

for fp(I,Eb/N0). Then we have Adl « Ri, and for BPSK modulation Am « C,

where C is the achievable data rate of the communication channel when its input

is uniformly distributed. Since the intermediate channel code II has a unity rate,

the area Ap under the projected EXIT curve is also approximately equal to the

above-mentioned uniform-input achievable data rate C. These area properties

yield a design rule for our system: Rj should approach C as closely as possible

under the constraint of

tiI
1(I)<fP(I,Eb/N0) V/G[0,l), (4.7)

implying that an outer code is sought, which ensures that the inverted EXIT

curve fj^(l) fits to fp(I, Eb/N0) as closely as possible, while maintaining an open

EXIT tunnel, and hence minimising the area of the open EXIT tunnel.

However, as seen from Figure 4.3, even if the area under the projected EXIT

curve plotted using the continuous line at Eb/No=2.1dB is Ap~0.51, which is

larger than the outer code rate of i?/=0.5, no open EXIT tunnel exists. In order

to circumvent this problem, we introduce the novel concept of Irregular Con-

volutional Codes (IRCCs) [38], which allow us to shape the outer code's EXIT

curve for the sake of matching that of the inner code. IRCCs were specifically
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designed with the aid of EXIT charts for the sake of improving the convergence

behaviour of iteratively decoded systems, and are constituted by a superposition

of convolutional codes having different code rates. To be specific, an IRCC is con-

structed from a family of P subcodes. Each subcode has its own individual code

rate rp(p € {1, • • • , P}) and encodes a specific fraction of aprpN of the original

uncoded information bits, hence generating apN number of encoded bits, where

N denotes the total number of encoded bits. Given the target overall average

code rate of R G [0,1], the weighting coefficient ap has to satisfy J2p=i av ~ *>

Yfp=\ aprp = # and ap € [0,1], Clearly, the individual code rates {rp} and the

weighting coefficients {ap} play crucial roles in shaping the EXIT function of the

resultant IRCC. The EXIT function fd,(IA) of the target IRCC is the weighted

superposition of its subcodes' EXIT functions fd,,P{lA) [38], yielding

p=l

For example, a family of P=17 subcodes constructed from a recursive system-

atic, half rate, memory-4 mother code defined by the octal generator (27/31) was

introduced in [38]. Higher rates are obtained by puncturing, while lower rates are

obtained by adding more generators and by puncturing while maximizing the free

distance. Table 4.1 shows the code rates, generator polynomials and puncturing

patterns of all 17 subcodes. The EXIT curves of these subcodes are plotted in

Figure 4.4. By using these 17 subcodes and the optimization criterion of

in f (/j/(J) - /P(I, Eb/No))
2dl,

Jo
min f (/j/(J) - /P(I, Eb/No))

2dl, (4.9)
Jo

which minimises the squared error between the IRCC EXIT curve and the corre-

sponding target curve, introduced in [38], we now optimize the weighting coeffi-

cients {ctp}, so that the IRCC's EXIT curve matches the projected EXIT curve.

Figure 4.5 shows the target projected MBER EXIT curve and the resultant EXIT

curve of the optimized IRCC at Eb/N0=2.1dB. The non-zero weights of the IRCC

subcodes are listed in Table 4.2. The area under the projected EXIT curve at

Eb/No—2.1dB is Ap « 0.51, which indicates that this E^/NQ value is close to the

lowest possible convergence threshold for a system having an outer coding rate of

i?/=0.5. Despite the fact that Ap and Rj are so close to each other, there is still an

open tunnel between the two curves in Figure 4.5, which explicitly indicates the

flexibility of the IRCCs. Figure 4.5 contrasts the projected MMSE EXIT curve'
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Table 4.1: An example of IRCC subcodes

Code rate
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9

Generator polynomials
(27,27,27,27,35,35,35,35,33)/31
(27,27,27,35,35,33)/31
(27,27,35,33)/31
(27,35,33)/31
(27,35,33)/31
(27,35)/31
(27,35)/31
(27,35)/3l
27/31
27/31
27/31
27/31
27/31
27/31
27/31
27/31
27/31

Puncturing pattern
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 •
7,7,7,7,7,7,3
1,1,1,1,1

1,1,1,1
7,7,7,1
177,177,077
3,3,1
777,777,021

1,1
3777,2737
7,3
17777,05253
177,025
7,1
17,1
377777,010101
777,1

Table 4.2: The non-zero weights of IRCC subcodes in percent for the opti-
mized curve in Figure 4.5 using the family of 17 subcodes in Table 4.1

Subcode p
ap in % 1

1

.72
3

26.63
4

3.61
6

.10.36
9

19.11
13

20.62
16

3.44
17

14.51

to that of the MBER MUD, where the area under the MMSE curve is about

0.48. This implies that the MMSE receiver needs a higher SNR for maintaining

an open tunnel.

4.4 Performance Analysis

The system employs a two-element receive antenna array. All K=6 users employ

BPSK modulation and have the same transmit power. The angular separation of

users with respect to the antenna array are 68°, 36°, 15°, -4° , -24° and -48°.

Each user employs two different randomly generated interleavers having a length

of 2xlO4 bits. The code rate of encoder I is 0.5.

When communicating over AWGN channels, the iterative decoding trajec-

tory recorded during our Monte Carlo simulations using the optimized IRCC at
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0 0.2 0.4 0.6 0.8 1

Figure 4.4: EXIT curves of a family of 17 IRCC subcodes, the code rates
are from 0.1 to 0.9 bottom-up plotted with a step of 0.05.

MBER Projection
MMSE Projection
IRCC decoder

Figure 4.5: The projected EXIT curve and the optimized EXIT curve of
the IRCC for the 3-stage iterative beamforming receiver supporting K—Q
users with the aid of two antennas at Eb/No=2.1dB.
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Figure 4.6: EXIT charts and recorded iterative trajectory for the 3-stage
iterative MBER beamforming receiver using IRCCs for supporting K=6
users communicating over AWGN channels with the aid of two antennas
at Eb/No—2.6dB. The system's schematic obeys the structure of Figure 4.1
and uses the parameters of Table 3.7.

i?6/jVo=2.6dB is depicted in Figure 4.6. It can be seen that the recorded tra-

jectory converges to the [/^(C),/B(C)] = [1, 1] point through the predicted EXIT

chart tunnel. Furthermore, since the tunnel between the two EXIT curves is very

narrow, a significant number of iterations are required for enabling the iterative

receiver to converge to the point of [1,1].

Figure 4.7 shows the BER performance of the three-stage iterative MBER

beamforming scheme using IRCCs. The conventional two-stage system using a

NSC code having a constraint length of 4 and octal generator polynomials of

(15,17) as the outer code is also plotted. It can be seen in Figure 4.7 that the

2-stage MBER receiver exhibits an error floor, which corresponds to the BER

performance of the single-user case. By contrast, the 3-stage MBER and MMSE

system becomes capable of achieving an infinitesimally low BER, when the Eb/No

encountered is higher than 2.5dB and 5.1dB, respectively. This BER figure con-

firms the performance difference of the two MUDs, which we have predicted from

the EXIT curves of Figure 4.5.

We observe from Figure 4.5 that the 3-stage iterative system is capable of
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Figure 4.7: BER performance of the 3-stage and 2-stage iterative MBER
beamforming receivers and the 3-stage iterative MMSE beamforming re-
ceiver supporting K=6 users communicating over AWGN channels with
the aid of two antennas. The system's schematic obeys the structure of
Figure 4.1 and uses the parameters of Table 3.7.

maintaining an open tunnel and hence of converging to the point of [1,1] in

the EXIT-chart at Eb/N0=2AdB. However, the Eb/N0 threshold of the 3-stage

system characterized in Figure 4.7 is higher than 2.5dB. Figure 4.8 shows both

the iterative decoding trajectory and the EXIT curves at Eb/N0=2.5dB. In this

figure, we can see the formation of an open tunnel. However, the actual decoding

trajectory aborts at a point around [0.1,0.17] for the following reasons:

1. Our system is a multiuser system. Although we selected the arrival angles

of the users' signals under the rule defined in Section 4.1, the achievable

performance of the users is still not perfectly identical. In the EXIT charts,

we used the average MUD EXIT curve and trajectory. When the average

EXIT tunnel is quite narrow, a certain user's tunnel may in fact be closed.

This poor performance of a single user may render the parallel IC mechanism

' unable to remove the MUI.

2. In our simulations, the activation order of the consecutive iterations is

"MUD, decoder II, decoder I, decoder II, MUD . . ." . There is only one

iteration between the MUD and decoder II before the extrinsic information
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, Figure 4.8: EXIT charts and recorded iterative decoding trajectory for the
3-stage iterative MBER beamforming receiver using IRCCs for support-
ing K—Q users communicating over AWGN channels with the aid of two
antennas at E|,/./Vo=2.5dB. The system's schematic obeys the structure of
Figure 4.1 and uses the parameters of Table 3.7.

is transferred to decoder I. It implies that the accurate 2D projected curve

recorded for this particular activation order of the decoders should be a lit-

tle lower than the projected curve seen in Figure 4.8, and the actual tunnel

may become narrower, or even closed.

3. The projected curve is the mapped intersection of the MUD's EXIT surface

and the decoder II's EXIT surface. It represents the best possible output

MI of the combined component. However, the practically achievable per-

formance may be worse, potentially leading to a lower projected 2D-curve

and higher SNR threshold.

Let us now consider the above-mentioned 3-stage system's convergence per-

formance, when communicating over flat Ricean fading channels. The normalized

Doppler frequency is 0.01, and the Ricean K-factor is 10. Our simulation results

demonstrate that the Eb/N0 threshold required for achieving an infinitesimally

low BER is 2.9dB. At this SNR the recorded iterative decoding trajectory and

the resultant EXIT curves are shown in Figure 4.9.
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Figure 4.9: EXIT charts and recorded iterative trajectory for the 3-stage
iterative MBER beamforming receiver using IRCCs for supporting K—6
users communicating over fiat-fading channels with the aid of two antennas
at Eb/No—2.9dB. The system's schematic obeys the structure of Figure 4.1
and uses the parameters of Table 3.7.

4.5 Conclusions

In this chapter, we proposed a three-stage serial concatenated multiuser system,

where the inner SISO MBER MUD module cannot be rendered recursive. Hence

the iterative receiver of Chapter 3 was extended to three SISO modules, namely

the inner MBER MUD, the intermediate unity-rate channel decoder and the outer

channel decoder. Furthermore, the convergence behaviour of our design example

was analysed using 3D EXIT charts and their 2D projections in Section 4.2.

It has been pointed out that although the EXIT function of the inner MBER

MUD cannot reach the point of perfect convergence at [1,1], the joint EXIT

function obtained for the amalgamated inner MBER MUD and the intermediate

channel decoder with the aid of projection can. Therefore the three-stage system

is capable of eliminating the residual BER encountered in the conventional two-

stage system. With the advent of 2D projection, the IRCC of Section 4.3 was

constructed for employment as the outer code, whose EXIT function was matched

to the joint EXIT function of Section 4.2, and as a result, the channel capacity

was closely approached.
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Table 4.3 summarizes the performance of the 3-stage MUD and the 2-stage

MUD receivers in terms of their SNR required-for maintaining BER of 10~4

as well as for an infinitesimally low BER. The system's schematic obeys the

structure of Figures 4.1 and 3.2. It can be seen that the proposed 3-stage MBER

receiver significantly outperforms both the 2-stage MBER SIC receiver as well

as the 3-stage MMSE receiver. Furthermore, the 3-stage iterative receivers are

capable of achieving an infinitesimally low BER. However, the 2-stage receiver's

performance has an error floor, which is identical to that of the single-user system.

Table 4.3: Performance summary of 3-stage iterative beamforming receivers

SISO
MUD

3-stage MMSE
3-stage MBER
2-stage MBER

SNR at a(n)
BER of 10-4

> 5.1dB
> 2.5dB
4.6dB

infinitesimally low BER
>5.1dB
> 2.5dB
unachievable



Chapter 5

Beamforming Aided Multiuser

Transmitter

Sophisticated multiuser detection techniques can be readily employed at the BS's

uplink receiver, since the power consumption of the BS is less constrained than

that of the MSs. By contrast, our goal is to design low-complexity, low-power

MSs and hence it may be beneficial to design sophisticated transmitters in the

interest of reducing the MS's receiver complexity.

Numerous techniques have been proposed for achieving this ambitious goal

[99,46,47,48,51,53], but their common feature is that they require the perfect

knowledge of the CIRs to be encountered during the future instant of down-

link transmissions to all the MSs. This unique, user-specific CIR or Angle of

Arrival (AOA) may be used by the MUT to separate the users' downlink sig-

nals with the aid of appropriate transmit preprocessing techniques and hence to

avoid or to mitigate the MUI imposed on each others' downlink signals. Nat-

urally, the provision of accurate downlink CIR or AOA estimated for the BS's

downlink MUT is a challenging task, because all MS receivers have to estimate

their downlink channels and then have to report it back to the BS using the

uplink control channels. This process is prone to both quantization errors as

well as to signalling delays, which may be mitigated with the aid of using so-

phisticated Vector Quantization (VQ) techniques [100] and long-term channel

prediction methods [101]. The simple philosophy of long-term channel prediction

is that owing to the Doppler-frequency dependent correlation of the channel's

envelope, it is possible to predict its future values based on its past values, which

126
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Figure 5.1: Downlink beamforming schematic supporting K users portray-
ing the uplink CIR/AOA side-information signalling and long-term channel
prediction at the BS..

have already been received and stored by the BS's uplink receiver. This allows

the BS to avoid the above-mentioned signalling delay and to predict the channel

envelope to be encountered between the BS's MUT and each MS during their

next downlink transmission burst, as seen in Figure 5.1.

To elaborate a little further, the assumption that the downlink CIR is known

at the BS may be deemed to be valid in TDD systems [45], because the uplink

and the downlink share the same frequency band. Thus, all channel parameters

may be considered to be similar for the uplink and downlink, provided that the

coherence time of the channel is sufficiently high to ensure that, the channel esti-

mate is still valid, when it is used by the MUT algorithm. In Frequency Division

Duplex (FDD) systems [45], the uplink and downlink reside in different frequency

bands, hence the channel parameters have to be explicitly signalled, as discussed

above.

Briefly returning to the family of downlink preprocessing techniques, it was

argued in [102] that most MUD techniques have an MUT counterpart, such as

the Transmit Zero Forcing (TZF), the Transmit Minimum Mean Squared Error
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(TMMSE) [48,100], the Transmit Wiener Filter (TWF) [51] etc. The network-

layer benefits of both uplink and downlink beamforming were quantified in High-

Speed Packet Access (HSPA) style third generation systems in [45]. Table 5.1

summarizes some state-of-the-art MUT papers and their novel contributions.

Table 5.1: Selection of MUT papers

Author (s)

[99]

Henry and

Glance

[46]

Esmailzadeh

and Naka-

gawa

[47]

Tang and

Cheng

[48]

Vojcic and

Jang

[49]

Karimi

et al.

Contribution

Introduced the idea of exploiting the reciprocity of the uplink

and downlink channels in TDD systems by applying a linear

transmit filter in the downlink for flat fading channels and

for multiple antenna elements at the BS.

Proposed a pre-Rake combination method for multipath di-

versity signal combining designed for DS-CDMA communi-

cations, where multiple transmissions of each spreading code

were activated and each transmission was independently de-

layed and amplified according to the channel's delay profile,

i.e. according to the estimated CIR taps.

Proposed a pre-decorrelating strategy for single user detec-

tion in the downlink of a centrally controlled DS-CDMA sys-

tems. The basic idea is that instead of the direct superpo-

sition of each user's data, an appropriately weighted linear

combination of the active users' data is transmitted.

Proposed a transmitter preprocessing scheme, which rep-

resents a linear transformation of the transmitted signals,

where the mean squared errors at the output of all receivers

are minimised. It was shown that when either a conventional

single-user receiver or a RAKE receiver is employed, both the

multiple access and the intersymbol interference can be elimi-

nated. The authors also discussed the possibility of including

a specific transmit power constraint, which was,referred to as

the constrained MMSE transmit filter.

Introduced the concept of the TWF method. The trans-

mit MMSE filter was obtained by simply incorporating a

weighted identity matrix in the TZF solution in an intuitive

way.
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Author(s)

[103]

Barreto and

Fettweis

[50]
Joham et al.

[52]

Irmer et al.

[53]

Irmer et al.

[54]

Irmer et al.

[55]

Hj0rungnes

and Diniz

[51]

Joham et al.

Contribution

Two precoding schemes were proposed for the downlink of

CDMA systems, which assist in reducing the multiuser inter-

ference by jointly preprocessing the transmitted signal based

on the knowledge of the downlink channel. Also proposed

an unequal transmit power constraint, and stated that the

resultant optimization problem has no closed form solution.

Derived the transmit Wiener filter concept for DS-CDMA

systems, which takes into account the noise power encoun-

tered at the receivers. Demonstrated that the transmit

Wiener filter converges to the transmit matched filter and

to the transmit zero-forcing filter for low and high SNRs,

respectively.

Proposed a novel approach to MUT design created for the

CDMA downlink operating in frequency-selective channels.

The key idea is to directly minimise the BER at the receivers

with the aid of pre-distortion of the transmitted symbols.

Suggested the extension of nonlinear minimum BER trans-

mission to multiple transmit and receive antennas. Both

linear and nonlinear multiple antenna aided MUT schemes

were compared, when combined with the application of Pre-

RAKE, RAKE and Singular Value Decomposition (SVD)

aided eigen-mode preprocessing.

The extension of nonlinear minimum BER transmission from

the symbol-level to the more general chip-level was advocated

using a phase-only nonlinear MUT scheme, which imposes a

considerably reduced computational complexity.

Addressed the problem of designing an optimal prefilter

transform for wireless Finite Impulse Response (FIR) MIMO

communication systems. The BER was minimised under a

given power constraint.

Examined and compared the different types of linear trans-

mit processing schemes designed for MIMO systems. Demon-

strated that the transmit filters are based on a similar op-

timization process as the respective receive filters, with an

additional constraint imposed on the transmit power.



5.1 System Description 130

Author(s)

[100]

Yang et al.

[102]

Yang

Contribution

Investigated the achievable performance of SDMA MIMO

systems using transmitter preprocessing, when the channel

knowledge required for preprocessing was acquired by the

downlink receiver and then conveyed to the transmitter via

realistic error-prone feedback channels that may also expe-

rience fading. The CIR magnitudes and phases were vector

quantized and conveyed to the downlink transmitter sepa-

rately.

Introduced novel concepts for finding the relationship be-

tween MUDs and MUTs, so that the study of MUTs can

benefit from the well-documented theory of MUDs. For any

given linear MUD scheme, there exists a linear MUT counter-

part, which can be readily designed from the original linear

MUD.

5.1 System Description

Consider a downlink system communicating over non-dispersive channels. The

transmitter has Lt downlink transmit antennas. The system supports K users

and all the users have LT receive antennas. The multiuser downlink system's

structure is shown in Figure 5.2, where s& is the source symbol transmitted to

user k, and Pfe is the preprocessing vector specifically derived for symbol s^.

Then the K-usev transmit signal vector becomes t = X/fc=i PkSk = Ps> where

P = [pi P2 • • • PK] £ CLtxK and s = [si S2 • • • SK]T- The estimated symbol of

(5.1)
user k can be written as

where H& is the (LrxLt)-element non-dispersive downlink channel matrix of user

k, dfc is the kth. user's receive filter and n/. is the additional noise at the receiver

of user k. When we represent the estimated symbols §k of all the K users in the

vectorial form s similar to s, the K users' downlink transmission can be expressed

as

DHn, (5.2)
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Si

Sk

SK

Pi

PK

df

Figure 5.2: Multiuser downlink transmit preprocessing system structure
supporting K users.

where we define the K users' channel matrix as H = [Hf H^

CKLrxLt^ D = blockdiag[di d 2 - - - d K ] G CKLrXK, and n = [nf n --nK]T e

5.2 Multiuser Transmission Schemes

5.2.1 Transmit Matched Filter

The Transmit Matched Filter (TMF) concept was introduced by Esmailzadeh

et al. [46] by moving the matched filter H H conventionally match to the channel

at the receiver to the transmitter. The TMF does not consider the effect of

interference, but maximizes the desired signal's contribution to the estimate s

due to the transmitted signal s and hence beneficially uses the available transmit

power Et. Thus the TMF's transfer function is expressed as

PMF = arg max
P

|E[s*S]|s
(5.3)

By introducing the transmitted signal's covariance matrix R s = Ejss^], the

resultant TMF can be written as

(5.4)
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where we have
E

and tr(-) denotes the trace of a square-shaped matrix.

5.2.2 Transmit Zero Forcing

Since the transmitter has no influence on the noise encountered at the receivers,

the most intuitive approach for transmit processing is using Transmit Zero Forcing

(TZF), which removes all the interference at the receivers with the aid of appropri-

ate transmit preprocessing. Tang et al. presented a pre-decorrelating technique

for flat fading scenarios in [47], and Vojcic et al. proposed the more sophisticated

transmitter precoding technique of [48]. The TZF coefficients are found by forc-

ing the concatenated transmit filter P, channel H and receive filter DH to be an

identity matrix according to D H H P = I. Since the transmit power is constrained

to Et, the heuristic approach to meet this requirement is to scale the gain of the

resultant filter. Then the cost function of the TZF can be expressed as

{PZF,PZF} = argmin/T2 s.t.: D H H P = 01K and E[||Ps||2] = Et. (5.6)

More explicitly, the optimization criterion is to maximize the received data symbol

power, or to minimise the magnitude of the inverse power scaling factor /3~2. The

first constraint is that of satisfying the zero-forcing condition i.e. to suppress the

interference, while the second constraint defines the available transmit power Et.

Therefore, the TZF solution reads as follows

) H D (5.7)

with

PZF = —F z{—T- (5-8)

\ L SJ

5.2.3 Transmit Wiener Filter

In [48], Vojcic noted that in the absence of receiver noise the transmit filter min-

imising the MSE is the TZF. He also discussed the possibility of including a
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transmit power constraint, which was referred to as a constrained MMSE trans-

mit filter. Barreto et al. [103] proposed to replace the equality in the transmit

power constraint E[||Ps||2] = Et by an inequality, but stated that the resultant

optimization had no closed-form solution. The Transmit Wiener Filter (TWF)

concept was first mentioned by Karimi et al. in [49], who obtained the transmit

MMSE filter by simply adding a weighted identity matrix in the solution of the

TZF in an intuitive way. The optimization of the TWF was detailed by Joham

et al. in [50] and [51].

The key to determining the TWF is to allow the transmit filter to generate

a receive signal s, whose amplitude is different from that of the original desired

signal s. The amplitude @ of the desired portion in the received signal has to be as

high as possible in order to combat the effects of the noise, because the automatic

gain control-of the receiver is unable to separately scale the desired portion of

the signal, it also scales the noise portion of the received signal according to /3'1.

The TWF includes the weighting of the estimated signal s with the factor f3~l in

the definition of the MSE and uses the total available transmit power according

to

s.t.: E[||Ps||2] = Et. (5.9)

We can find the necessary conditions for the transmit filter P and for the real-

valued amplitude weight /? to satisfy Equations 5.9 by constructing the La-

grangian function and employing Equation (5.2). Then we have

L(P, A A) = E[||s - / r t l f ] + A(E[||Ps||2] - Et)

= tr(Rs - /T^P^H^D - /T
H - XEt, (5.10)

where we define Rn = E[nnH]. By setting this Lagrangian function's gradient

with respect to P to zero, we can derive

, (J, A)

= - / T ^ D ' R , + /T2HTD*DrH*P*Rs + AP*RS

= 0LtXK, (5.11)

where we used atr(^CB) = A r B r and ̂ g ^ ) = c r T h e r i ) t h e t r a n s m i t m t e r^
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matrix can be expressed as

H I t H + X/32lLt)~
1-HHB. (5.12)

Furthermore, based on Equation (5.12) and using tr(AB) = tr(BA), the gradient

of Equation (5.10) with respect to /? can be expressed as

= t r ( /T 2 R s P H H H D + / r 2 D H

3 H H H H D -

(5.13)

Setting this gradient to zero and using the power constraint E[||Ps||2] = t r (PR sP^)

= Et, we have
(

Then, the closed form solution for the optimization problem formulated in Equa-

tion (5.12) is given by

^ D , (5.15)

where we define

F = H"DD"H + t r ( D ^BhLt (5.16)

and
E

It may be readily shown that the TWF converges to the TMF at a low SNR,

while to the TZF solution at a high SNR.

5.2.4 Nonlinear Minimum Bit Error Rate Transmission

minimising the downlink BER as transmit signal optimization criterion was pro-

posed for Minimum Bit Error Rate Transmission (TMinBer) by Irmer et al.

in [52,53,54], which exploited the knowledge of all users' transmitted symbols.

For uplink MUD, the perfect knowledge of the transmitted symbols is usually
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not available since they arrive from geographically dispersed MSs, whereas in

MUT the data symbols are known a priori. Using the nth actually transmitted

symbol combination s(n), which may be preprocessed by a symbol- and user-

specific coefficient, and assuming perfect channel knowledge, the symbols received

by each MS can be calculated. Given the receiver noise variance, the average BER

of all receivers may be calculated as

n , >_ ' ^^Aen(«h(n)])8}[df(n)H t(n)P(n)S(n)]^
( " ' ~ K h V Wtf(XM> 7) ( ]

for BPSK modulation, where the noise variance of the fcth receiver is 2a\k. The

BER of all MSs is then minimised by optimizing the BS's MUT preprocessing

coefficients, where a constant total transmit power constraint has to be fulfilled.

Then the TMinBer solution can be expressed as

PrMinBeAn) = argminPe(n) s.t.: E[||Ps(n)||2] = Et. (5.19)

Unfortunately, there is no closed-form analytical solution for the constrained non-

linear TMinBer optimization problem. In fact, it is not even necessarily a convex

optimization problem. Nonetheless, using state-of-the-art nonlinear optimization

methods, such as Sequential Quadratic Programming (SQP) [104], satisfactory

results can be achieved.

5.3 Linear Minimum Bit Error Rate

Transmission

5.3.1 Bit Error Rate

When using a linear precessing matrix P in the transmitter, as shown in Figure 5.2

and Equation (5.2), the symbol estimated at the kth. receiver is given by

sk = d f HfcPs + d£ nfc. (5.20)

Let us define x = sgn(5R[sfc]) • 9J[sfc(P)] as a signed decision variable. The PDF of

x is constituted by a mixture of the Gaussian distributions associated with each

possible combination of the transmitted data symbols of all users. Similarly to the
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MBER detector of Equation (2.26), under the assumption that all the noise-free

signal states are equiprobable, the PDF of x is given by

(5.21)

where MK is the number of equiprobable combinations of the binary vectors of

the K users for M-ary PSK systems. The erroneous decision events are associated

with the area under the PDF curve in the interval (—oo,0), hence similarly to

the MBER MUD Equation (2.27), the average BER of the in-phase component

at the receiver is quantified as

Comparing this expression to Equation (5.18), we can infer that the proposed

Linear Minimum Bit Error Rate (LMBER) MUT considers all possible combi-

nations of transmitted symbols to derive the BER, while the TMinBer solution

of Section 5.2.4 only considers the specific transmitted symbols at the certain

time. The LMBER MUT algorithm constitutes a linear method, which does not

rely on the symbols transmitted from the BS. Similarly, the average BER of the

quadrature-phase component is

9 = 1 fc=l

Hence the downlink BER of the MS's receiver is

(5.24)
(QPSK)

5.3.2 Linear Minimum Bit Error Rate Solution

Similarly to the MBER detector of Equation (2.28), the LMBER transmission

solution can be defined as

PLMBER = 8LTgmmPeb s.t.: E[||Ps||2] = Et, (5.25)



5.3.3 Constrained Optimization . 137

which is a constrained optimization problem. If A is defined as the Lagrange

multiplier used for imposing the constraint E[||Ps||2] = Et, then the Lagrangian

expression L(P, A) can be expressed as

A(E[||Ps||2]-£;t)

) (5.26)

Then the LMBER transmission solution becomes

= argminL(P,A). (5.27)

5.3.3 Constrained Optimization

Let us how define a real-valued vector p = [3ftr[pi] Kr[p2] • • • 9ftr[px]
^ M.2KLt, which is an alterative expression for the MUT preprocessing

matrix P derived for simplifying the calculation of the first and second gradients of
the BER formulae of Equations (5.22) and (5.23). Then, using the SQP algorithm
[104] to solve the optimization problem of Equation (5.27), we arrive at

V2Pe6 + AV2tr(PRsP^) Vtr(PRsP
H)

(vtr(PRsP
H))T 0

Ap

AA tr(PRsP") -
(5.28)

where A p is the correction of the transmit processing vector p , and AA is the

Lagrange multiplier's1 correction. The first and second derivatives of the constraint

t r ( P R s P H ) in Equation (5.28) can be derived as

Vtr(PR5P") = -^~t

= <Rsp (5.29)

and

V 2 t r (PR sP") = W,, (5.30)

where $HS = blockdi'ag[£slILt Es2ILt • • • EsKlLt EsllLt • • • EsKILt] e M?KL"2KL

Eak is the average symbol energy of user k. The first-order and second-order gra-

dients of Peb in Equation (5.28) can be derived from the gradients of Pej and

PtQ. Based on the derivations in Appendix B, the gradients of both the in-phase
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and quadrature-phase bit error probabilities are given by

f

v
I vk,I
2

q) (q)T
,l\Vk,l) '

K

where vg=[K[SS9)dfHfc] 3?[s?dfHfe]

(5.31a)

(5.31b)

and

The SQP algorithm^operates as follows [104]:

Initialization: Set the iteration index z=l. Choose a step size of 5>0

and a termination scalar of /?>0. Given A(l), P( l ) and p(l) =

carry out:
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Loop:

i) = tr(P(i)RsP(i)H)-Et>

D(t) =

c(z)

P(z)) + \(i)V2c(i) Vc(i)
(Vc(z))T 0

AA(z)

.(5.33)

(5.34)

(5.35)

(5.36) .

(5.37)

(5.38)

transform the real-valued vector p(i-f-l) back to a complex-valued

matrix P(i+1), and i = i + l. If ||Ap(i)|| < (3, goto End. Else,

goto Loop.

End: Weight matrix P(i) is the chosen solution.

5.4 Computational Complexity Comparison

The comparison of the different MUT schemes' computational complexity im-

posed by computing the preprocessing matrix P is summarized in Table 5.2.

The number of real-valued operations is used as the unit of complexity, while

the complexities imposed by a real-valued multiplication and a real-valued addi-

tion might be considered equivalent. It can be seen in Table 5.2 that the TMF

MUT has the lowest complexity of O(KL2). The TZF and TWF transmitters

have similar computational complexities, which are O{KZ + L3 + K2Lt + KL2)

and O{L\ + KL2), respectively. The TMinBer MUT has a higher complexity

of O(K3L3Nsqp), where Naqp denotes the number of iterations in the SQP algo-

rithm. The LMBER method has the highest complexity of O(K3L2MKNsqp) in

Table 5.2, which is about ^ times higher than that of the TMinBer MUT.

These MUT schemes' computational complexity can be considered for differ-

ent channel conditions. The first channel condition is the fast-fading uncorrelated

channel, in which the channel experienced by the transmitted signal is varying

rapidly. Then the preprocessing matrix P has to be re-calculated for each trans-
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Table 5.2: Computational complexity comparison of different MUT schemes

MUT
TMF
TZF

TWF

TMinBer

LMBER

Computational complexity
8KL2 + 8KLtLr + 2KLt - 2L'{ + Lt + 1
O{8KA) + O{8L6

t) + 8K'2Lt + 16KL2 + 8KLtLT -
2l2 ~ 2KLt + K + 1
O (8L*) + 24KL'f + 8KLtLr + 6KLr - 4L'{ + 2Lt + l

(o(8K3L3)+8K3L2 + 8K2Lf+UK2Lt + 8KL2 +
8KLtLT + 6K2 + 18KLt + 8KLr - 2L2'+ 2K + Lt +
ll)Nsqp

((8K3L2 + 6K2Lt + 8K2 + 6KLt + AK)MK +

O(8K3L3) + 8K2L\ + 8K2Lt + 8KL2 + 8KLtLT +
\2KLt + 8KLT - 2K2 - 2L2 + Lt-2K + ll)iVsgp

Equation (s)
(5.4), (5.5)
(5.7), (5.8)

(5.15), (5.16),
(5.17)

(5.19)

(5.28), (5.31),
(5.32)

mitted signal, regardless of which MUT algorithm is employed. The other channel

model considered is the block-fading, i.e. slow-fading channel. Under the corre-

sponding slow-fading conditions, we assume that the fading envelop remains con-

stant for Nb symbols, i.e. the channel can be considered as time-invariant. Then

it is faded independently at the end of this period. Hence the computational

complexity of all linear schemes, namely of the TMF, TZF, TWF and LMBER

MUTs, can be reduced by a factor of Nj, with respect to the corresponding value

seen in Table 5.2. However, the non-linear TMinBer algorithm, still has a similar

complexity under the block-fading conditions to that recorded for the fast-fading

conditions.

5.5 Performance Analysis

5.5.1 Performance with Perfect Channel Information

Let us now consider a downlink transmit beamforming system employing a three-

element antenna array and benefitting from perfect channel information. All users

have the same transmit power as well as non-dispersive CIR coefficients of hk =

1.0+jO.O (k e {1, • • • , K}). Figure 5.3 shows the BER versus Eb/N0 performance

of the Wiener, TMinBer and LMBER MUTs supporting K=5 BPSK users. This

corresponds to a challenging rank-deficient scenario, where the channel matrix
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Tx Wiener
Tx TMinBer
Tx LMBER

—X— RxMMSE
--B— RxMBER

20

Figure 5.3: BER versus Ef,/No performance of the Wiener, TMinBer and
LMBER MUTs employing Lt=3 transmit AEs for supporting if=5 BPSK
users communicating over AWGN channels. The transmit angles of the
users' signal are seen in Figure 5.4.

user 3 user 2
user 4

user 5

user 1

A/2

Figure 5.4: Three AEs, where the signal of the individual users are trans-
mitted at angles of 41°, 15°, -8° , -33° and -70°.

becomes non-invertible. The transmit angles of the users' signal were 41°, 15°,

—8°, —33° and —70°, respectively, as seen in Figure 5.4. It can be observed that

the LMBER transmitter substantially outperforms the Wiener MUT, namely

by about 7.8dB at the BER of 10"5. However, the optimum linear LMBER

MUT has a decreased performance compared to non-linear TMinBer transmission.

In Figure 5.3, the BER performance of the MMSE MUD and of the MBER

MUD uplink systems employing three-element uplink receiver antenna arrays and
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Tx Wiener
Tx TMinBer
Tx LMBER
Rx MMSE
RxMBER

10
Eb/N0(dB)

Figure 5.5: BER versus E^/NQ performance of the Wiener, TMinBer and
LMBER MUTs employing Lt=3 transmit AEs for supporting K=h BPSK
users communicating over flat-fading channels when the Doppler frequency
is 10~2. The transmit angles of the users' signal are seen in Figure 5.4.

supporting five users are also plotted. It is shown that the LMBER transmit

processing and MBER receive processing have the same performance.

Consider a K=h user BPSK downlink system communicating over narrow-

band slow-fading channels. The normalized Doppler frequency is 10~2, and the

Ricean K-factor is 10. Figure 5.5 shows the BER performance of the Wiener,

TMinBer and LMBER MUTs, as well as those of the MMSE and MBER MUDs.

Observe that the LMBER MUT significantly outperforms the Wiener MUT. The

Wiener MUT has an error floor higher than 10~2, while the LMBER MUT is

capable of achieving an infinitesimally low BER at high SNRs. Under these fad-

ing conditions, the non-linear TMinBer MUT outperforms the proposed LMBER

scheme, which is a linear preprocessing method. Figure 5.5 also shows that the

LMBER MUT has an approximately 3.5dB gain over the MBER MUD at the

BER of 10~5. The reason of this performance difference is that the multiuser

transmit preprocessing is capable of potentially providing a better power allo-

cation solution. By contrast, the MUD remains unable of optimizing the users'

transmit power without power control feedback information.
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5.5.2 Performance Subject to Channel Estimation Errors

All simulations assumed so-far perfectly known channel information at the trans-

mitter. . However, in realistic scenarios the achievable performance will be de-

graded owing to channel estimation errors imposed by the quantization error and

the outdated fading feedback channels. To evaluate the achievable performance

in the presence of channel estimation errors without assuming a specific chan-

nel estimation algorithm or a channel information feedback algorithm, a simple

channel estimation error model is used. Explicitly, the channel estimation error

is modeled as an additive complex Gaussian variable with a variance of ofe
 a^ *ne

transmitter. Of interest is its ratio to the mean variance of all channel taps. The

additive channel estimation error is assumed to have the same variance, regardless

of the current channel coefficient, which is subject to fading.

Figure 5.6 plots the BER performance of the Wiener and LMBER MUTs,

when the CIR taps are contaminated by an additive complex Gaussian estima-

tion error. Again, the transmitter has a three-element transmit antenna array

supporting K=5 BPSK users communicating over narrowband slow-fading chan-

10u
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No channel error
-30dB channel error
-20dB channel error
-10dB channel error

6 10 12

Figure 5.6: BER versus Eb/No performance of the Wiener and LMBER
MUTs employing Lt=3 transmit AEs supporting K—5 BPSK users commu-
nicating over flat-fading channels with additive channel estimation errors.
The transmit angles of the users' signal are seen in Figure 5.4.
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Figure 5.7: The first user's BER surface of the Wiener and LMBER MUT
employing Lt—3 transmit AEs supporting K=5 BPSK users communi-
cating over flat-fading channels with additive channel estimated errors at
Ef,/No=lOdB. The transmitter has perfect knowledge of all users' channels,
except for the CIR spanning from the first of the Lf=3 transmit antennas
to the single antenna of the first user.

nels. The normalized Doppler frequency is 1CT2, and the Ricean K-factor is 10.

It can be seen that when the CIR tap estimation error related Noise-to-Signal

Ratio (NSR) is —30dB, the system has almost the same performance as that

having perfect channel information. However, as the channel error's variance

increases, the MUT aided system has a gradually degrading BER performance.

We can also see in Figure 5.6 that for the channel estimation NSR of — lOdB,

the LMBER MUT's BER performance degrades faster than that of the Wiener

MUT. This means that the LMBER MUT is more sensitive to the channel esti-

mation errors than the Wiener MUT. This may be anticipated, since the more

sophisticated LMBER MUT achieves its better performance by making use of the

accurate channel information. When the channel information is contaminated, it

becomes more challenging to separate the users at the MUT with the aid of their

unique CIRs.

Let us now assume that the transmitter has perfect knowledge of all users'

channels, except for the CIR spanning from the first of the Lt=3 transmit an-

tennas to the single antenna of the first user. Figure 5.7 plots the first user's

BER surface of the Wiener MUT and the LMBER MUT at £fe/iVo=lOdB. The

horizontal axes labeled as Kfe^i] and Offê i] represent the real and the imaginary

part of the channel estimation error from the first of the multiple transmit an-

tennas to the single receive antenna of the first user, respectively. The contours
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of the BER surface and the point corresponding to zero channel estimation error

are both plotted on the base plate of the figure. We can observe in Figure 5.7b

that as expected, the BER performance of the LMBER MUT degrades, when the

channel estimation error is increased in any direction from the error-free point.

However, for the Wiener MUT characterized in Figure 5.7a, it is possible that the

performance may improve, when the Wiener filter based transmitter has imper-

fect channel information, as observed for example when the channel estimation

error becomes e^i = 0.5. This is one of the reasons why the LMBER MUT is.

more sensitive to the channel estimation errors than the Wiener MUT.

5.5.3 Performance with Outdated Channel Information

In practical applications the downlink channel knowledge used for transmit pre-

processing might not be updated for each transmitted symbol. When the channel

information is fed back from the MSs to the BS, the transmitter has to rely on

outdated channel knowledge. In this section, we will investigate the influence of

the outdated channel information on the MUT-aided system's performance.

Tx Wiener
Tx LMBER
Feedback/symbol
Feedback/10 symbols
Feedback/20 symbols
Feedback/50 symbols

v Feedback/100 sym bols

10 12 14

Figure 5.8: BER versus Eb/No performance of the Wiener and LMBER
MUTs employing Lt—2> transmit AEs supporting K=5 BPSK users commu-
nicating over flat-fading channels at differently delayed channel information
updates. The transmit angles of the users' signal are seen in Figure 5.4.
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Tx Wiener
Tx LMBER
Doppler=0.001
Doppler=0.002
Doppler=0.005
Doppler=0.01

10

Figure 5.9: BER versus Eb/No performance of the Wiener and LMBER
MUTs employing Lt=S transmit AEs for supporting K=5 BPSK users
communicating over fiat-fading channels using outdated channel informa-
tion at different Doppler frequencies. The transmit angles of the users'
signal are seen in Figure 5.4.

Let us consider a system employing a three-element transmit antenna array

for supporting K=5 BPSK users communicating over narrowband slow-fading

channels. The normalized Doppler frequency is 10~3, and the Ricean K-factor is

10. We assume that the BS receives perfect channel information from the MSs

every N transmitted symbols. This means that (iV—1) out of the N downlink

symbols have to rely on outdated channel knowledge. When N=l, the transmitter

employs perfect channel information for all transmitted symbols. Figure 5.8 shows

the Wiener and the LMBER MUTs' performance for iV = 1, 10, 20, 50 and 100.

The LMBER MUT system outperforms the Wiener MUT system, and naturally,

the BER performance of both systems degrades, when the parameter N increases.

Figure 5.9 also plots the BER performance of various MUT systems employing

outdated channel knowledge, when we consider the influence of different normal-

ized Doppler frequencies. In this scenario, we assume that the channel informa-

tion is fed back to the MUT every 10 symbols, where the Doppler frequencies

considered are 10~3, 2xlO~3, 5xlO~3 and 10~2, respectively^ As the Doppler fre-

quency increases, which implies encountering more rapidly fading channels, both

the Wiener filter and the LMBER aided systems' performance degrades. We can
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also see in Figure 5.9 that the LMBER MUT is more sensitive to the outdated

channel information than the Wiener filter based MUT.

5.6 Conclusions

In this chapter a linear MUT that minimises the BER subject to a power con-

straint was proposed. It was shown by simulations that better BER results can be

achieved by the proposed LMBER transmission scheme of Section 5.3, when.com-

pared to the Wiener filter based MUT of Section 5.2.3. The optimum LMBER

MUT solution can be found by exploiting a power-constrained optimization prob-

lem, which was investigated in Section 5.3.3. Furthermore, other preprocessing

schemes, such as the TMF MUT of Section 5.2.1, the TZF MUT of Section 5.2.2

and the non-linear TMinBer MUT of Section 5.2.4 were also introduced.

The computational complexity and the achievable BER performance when

communicating over Ricean fading channels recorded for the methods mentioned

above are summarized in Table 5.3. The system's schematic obeys the structure of

Figure 5.2. Although the proposed LMBER preprocessing aided transmission al-

gorithm has a better performance than the other linear MUTs, it is more sensitive

against channel estimation errors, and the computational complexity imposed by

finding the proposed MUT solution is higher. Once the solution is found, it has

a similar implementational complexity to those of the other linear transmission

algorithms. Under block-fading conditions, the complexity of the LMBER MUT

can be significantly reduced, although it fails to achieve a performance similar to

that of the non-linear TMinBer algorithm.

Table 5.3: Performance and complexity summary of beamforming aided
MUTs

MUD
TMF
TZF
TWF
TMinBer
LMBER

Section
5.2.1
5.2.2
5.2.3
5.2.4
5.3

Complexity

O(KLi)
O(K'3 + Uj + K2Lt + Kl\)
Q\L\ + Km
O(K*L»Nsqp)
O{KiL\MKNsqv)

SNR at a
BER of 10~4

unachievable
unachievable
unachievable
4.2dB
10.9dB



Chapter 6

Conclusions and Future Research

6.1 Conclusions

The conclusions provided in this chapter constitute an amalgam of our previously

drawn conclusions provided at the end of Chapter 2-5 and establishes their logical

connection.

In Chapter 2 we presented various categories of multiple antenna aided com-

munication systems, which perform spatio-temporal information processing with

the aid of multiple antennas. Different smart antenna assisted architectures pro-

vide different benefits, such as achieving array gain, diversity gain, multiplexing

gain, interference reduction and/or coding gain. The concepts of multi-functional

MIMOs and distributed MIMOs have recently gained considerable interest. The

former structure combines the benefits of different smart antenna aided techniques

for the sake of combining their advantages, highlighted in Table 2.2. By contrast,

in the latter concept, multiple MSs may cooperate and share their single antennas

in order to achieve the improved performance of MIMO systems.

Various MIMO assisted multiuser detection algorithms were also introduced

in Chapter 2. The 'System 1' column in Table 6.1 quantifies the achievable per-

formance versus computational complexity of different MUDs when employing

no Forward Error Correction (FEC). As assumed in Section 2.2.9, all users'

signals are transmitted over AWGN channels and the receiver employs a three-

element antenna array. The number of users and their DOAs were plotted in

Figures 2.12, 2.14 and 2.16 for BPSK, QPSK and 16QAM schemes, respectively.

148



6.1 Conclusions 149

As seen in Table 6.1, the Bayesian detector constitutes the optimum nonlinear

receiver, which significantly outperforms all linear MUDs at the cost of a higher

complexity. The conventional MMSE beamformer combines the signals received

with the aid of each AE for the sake of minimising the MSE between the complex-

valued locally stored and received reference signal. For BPSK systems, however,

the beamformer's desired output is real-valued. By minimising the MSE between

the beamformer's desired output and the real part of the beamformer output, the

system's achievable BER performance can be significantly enhanced, and this was

referred to as the RMMSE design. However, the MMSE and RMMSE algorithms

do not guarantee the direct and explicit minimisation of the system's BER. This

motivated the design of MBER beamforming, where the BER rather than the

MSE was minimised at the MUD's output. The MBER beamformer design is the

optimal linear solution and hence it generally outperforms the MMSE and the

RMMSE solutions, as seen in Table 6.1. The MBER detectors are challenging

to derive for higher-order QAM, hence a novel MSER beamforming assisted re-

ceiver was designed for high-throughput QAM schemes, which also outperforms

the MMSE solution by minimising the SER at the MUD's output. It can be

seen in Table 6.1 that the proposed MBER and MSER MUDs have a higher

complexity than the Bayesian MUD, although they cannot achieve a similarly

high performance to that of the Bayesian MUD. However, they may impose a

lower computational complexity, when communicating over block-fading channels.

Furthermore, all linear MUDs have their corresponding equivalent WL methods,

where the latter employ two separate weight vectors for separately detecting the

in-phase and quadrature-phase .component of the transmitted symbol As dis-

cussed in Section 3.2.3, under the zero a priori information conditions these WL

algorithms have two identical weight vectors and therefore have the same perfor-

mance as their corresponding non-WL solutions.

In Chapter 3, multiuser detection and channel decoding were combined in

order to improve the achievable multiuser beamforming receiver's performance fol-

lowing the 'turbo detection principle'. The resultant iterative multiuser receiver

is designed based on the soft parallel IC algorithm. In the iterative receivers,

the MUD and the channel decoder exchange extrinsic information in a number

of consecutive iterations. During each iteration, the extrinsic information is al-

ternately extracted either from the MUD or the channel decoder and then used

as the a priori input by the other detection stage in the next iteration. Based on

the EXIT chart technique, we also analysed both the achievable performance and-



6.1 Conclusions 150

the convergence behaviour of different joint detection schemes, both of which are

highly dependent upon the different system parameters and channel conditions.

The attainable performance versus computational complexity of different iter-

ative MUD aided receivers was summarized in the 'System 2' column of Table 6.1.

The system's schematic obeys the structure of"Figure 3.2 and uses the parame-

ters of Tables 3.7, 3.10 or 3.11, depending on the modulation scheme employed.

We defined the SNR threshold expressed in terms dBs as the lowest SNR, where

the iterative SIC MUD receiver is capable of approaching the BER performance

of the single-user system for transmission over AWGN channels. In Chapter 3,

we introduced the new iterative MBER SIC beamforming receiver designed for

BPSK and QPSK systems, which directly minimises the BER instead of the MSE.

This novel algorithm significantly outperforms the conventional MMSE SIC algo-

rithm at the cost of a higher computational complexity. The RMMSE algorithm

designed for BPSK was also considered, which minimises the MSE between the

real-valued desired signal and the real part of the complex-valued beamformer

output. The SISO WL-MMSE algorithm designed for higher-order QAM schemes

was derived from the RMMSE solution. Similarly, the soft WL-MBER solution

was also introduced, which has the same computational complexity as the MBER

algorithm. Table 6.1 has shown that the MBER and WL-MBER solutions out-

perform both the conventional MMSE and the RMMSE or WL-MMSE iterative

receivers. Furthermore, the SISO MSER and WL-MSER MUDs were also intro-

duced and analysed in the context of 16QAM systems. They also outperform the

MMSE or WL-MMSE systems at the cost of a high complexity. In contrast to

the performance of the MUD receivers dispensing with FEC and characterized

in the 'System 1' column of Table 6.1, the WL MUD aided iterative receivers

are capable of achieving a better performance than their corresponding non-WL

iterative counterparts as a benefit of having non-zero a priori information for the

MUDs. We can also observe that the SNRs required for achieving a BER of 104

by all MUD receivers are similar, except for the MMSE receiver of the BPSK

system. The reason for this observation is that they may achieve the single-user

performance at an SNR lower than that required for maintaining a BER of 104.

All the SISO MUDs discussed in Chapter 3 have a non-recursive nature char-

acterized by a finite, rather than IIR which limits the achievable performance

of the iterative system, because the extrinsic information exchange between the

decoder components tends to be based on more correlated LLRs than in an IIR

system. This disadvantage may be ameliorated with the aid of a simple unity-
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rate memory-1 recursive precoder incorporated at the transmitter. Hence the

attainable iterative detection performance may be further improved. Then the

inner decoder component constituted by the MUD, the intermediate channel de-

coder and the outer channel decoder constitute a three-stage serially concatenated

scheme. In Chapter 4 we designed this three-stage concatenated multiuser re-

ceiver based on the MBER MUD for the sake of achieving a near-capacity perfor-

mance. By projecting a series of three-dimensional EXIT functions onto a single

two-dimensional EXIT chart as seen in Figures 4.2 and 4.3, the convergence be-

haviour of the system was visualized. Specifically, IRCCs were constructed, which

were used as the outer code for the sake of solving the EXIT curve fitting prob-

lem, i.e. that of minimising the area of tfie EXIT chart's open tunnel, implying

that the system becomes capable of approaching the achievable capacity.

The 'System 3' column of Table 6.1 summarized the performance of the 3-stage

iterative MUD receivers in terms of their SNR required for maintaining a BER of

10~4 as well as for an infinitesimally low BER. The system's schematic obeys the

structure of Figures 4.1 and uses the parameters of Tables 3.7. It can be seen that

the proposed 3-stage MBER iterative receiver significantly outperforms both the

2-stage MBER SIC receiver as well as the 3-stage MMSE receiver. Furthermore,

the 3-stage iterative receivers are capable of achieving an infinitesimally low BER.

However, the 2-stage receivers' performance has an error floor, which is identical

to that of the single-user system.

Sophisticated multiuser detection techniques can be readily employed at the

BS's uplink receiver, since the power consumption of the BS is less constrained

than that of the MSs. By contrast, for downlink transmission, it may be ben-

eficial to design sophisticated transmitters in the interest of reducing the MS's

receiver complexity. The BS is capable of acquiring the required MIMO chan-

nel coefficients with the aid of the side-information feedback channel transmitted

from the MS or by estimating the uplink channel and assuming that the down-

link channel is similar. In Chapter 5 a linear MUT that minimises the BER

subject to a power constraint was proposed. It was shown in Table 5.3 that bet-

ter BER results can be achieved by the proposed LMBER transmission scheme,

when compared to the TMF, TZF and Wiener filter based MUTs. The optimum

LMBER MUT solution can be found by exploiting a power-constrained optimiza-

tion problem, which was investigated in Section 5.3.3. Furthermore, the effects

of channel estimation error and outdated channel information imposed on both

the Wiener filter and on the LMBER MUTs were investigated. Compared to the



Table 6.1: Summary of the achievable performance versus computational complexity of different MUD beamforming receivers
extracted from Tables 2.5, 3.12 and 4.3. The SNR threshold expressed in terms dBs is defined as the lowest SNR, where the
iterative SIC MUD receiver is capable of approaching the BER performance of the single-user system for transmission over
AWGN channels.

O
o

Io
g

MUD
algorithm

Bayesian

MMSE

RMMSE

WL-MMSE

MBER
WL-MBER
MSER
WL-MSER

Modulation

BPSK
QPSK
16QAM
BPSK
QPSK

16QAM
BPSK

QPSK
16QAM

BPSK
QPSK
QPSK
16QAM
16QAM

System 1
MUDs,

SNR at a
BER of 10-3

25.5dB
18dB

18.5dB
unachievable
unachievable

unachievable
40dB

unachievable
unachievable

29dB
29dB
29dB

27.5dB
27.5dB

noFEC

Complexity

O(LMK)

•°(*)

O(LNcgM
K)

O\LNC9M
K)

O\LNC9M
K)

O(LNcgM
K)

System 2
2-stage iterative MUDs

SNR
threshold

5.8dB
2.8dB
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2.6dB

2.6dB

6.8dB

2.3dB
2.5dB
2.3dB
7.1dB
6.6dB

SNR at a
BER of 10-4 Complexity

not evaluated

5.8dB
4.5dB

7.9dB

4.6dB

4.5dB
7.9dB

4.6dB
4.5dB
4.5dB ,
7.9dB
7.9dB
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O(L3)

O(L>)

O(LNcgM
K)

O\LNC9M
K\

O\LNC9M
K)

O(LNcgM
K)

System 3
3-stage iterative MUDs
SNR at a

BER of 10-4
SNR at a
BER of 0

not evaluated

> 5.1dB > 5.1dB

not evaluated

not evaluated

not evaluated

>2.5dB > 2.5dB
not evaluated
not evaluated
not evaluated
not evaluated
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Wiener filter based MUT, the LMBER MUT is more sensitive against channel

estimation errors, and the computational complexity imposed by finding the pro-

posed MUT solution is higher. Once the MUT solution is found, it has a similar

implementational complexity to those of the other linear transmit preprocessing

algorithms. Under slow-fading conditions, the complexity of the LMBER MUT

can be significantly reduced/although it fails to achieve a performance similar to

that of the non-linear TMinBer algorithm.

Finally, some open issues to be solved for the practical implementation of our

systems are addressed. In Chapter 2-4, we assumed that the receivers have per-

fect channel knowledge, which hardly exists in reality. Naturally, when employing

imperfect channel information, the systems' performance degrades. In our iter-

ative beamforming systems, we also assumed that the relative time delay of all

users with respect to the angularly closest neighbours is the same. This constraint

guarantees that the parallel interference cancellation aided systems are capable

of achieving good performance and the systems' convergence behaviour can be

analysed by using EXIT charts. However, the realistic arrival angles of the users'

signals could be arbitrary, which decreases the achievable performance. The com-

plexity of the MBER/MSER MUD aided system has to be further reduced, before

their practical implementation becomes a reality.

6.2 Future Research

6.2.1 Linear Minimum Symbol Error Rate Transmission

The LMBER MUT solution cannot be directly applied in high-order QAM sys-

tems. Hence, similar to the MSER multiuser detection algorithm of Section 2.2.6,

the Linear Minimum Symbol Error Rate (LMSER) transmission method is mo-

tivated, which minimises the average SER at all users' receivers under a certain

maximum transmit power constraint.

Let us consider the system model of Section 5.1 for an M-QAM system,

and define the constellation symbol as s(m'n) = / ^ (2m - A/M - l) +

j J^s_x ( 2 r a - V M - l ) , where we have m e {1,2,--- , y/M} and n e {1,2, - - - ,

\ /M}. Assuming that the downlink transmitter has to transmit the ^th legitimate

symbol combination s^ , q € {1,2, • • • , MK}, the fcth user's estimated signal can
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be expressed as

Then the PDF of sjjr is given by

d?nfc.

exp -

(6.1)

(6.2)

By defining fef = -7==== (2i - \ /M), i G {1,2,-•• ,V /M-1}, the decision bound-

aries of Sfe are determined by ^|djfHfcP| for the in-phase component and by

j6i|dj^HjtP for the quadrature-phase component. Assuming that the symbol

transmitted to user k is sjjr = s^m'n\ the conditional in-phase component and

quadrature-phase component error probabilities of the hard detected symbol

sg' ^ s(
m.n) can be shown to be

(6.3a)

(m =

and

(n =

(6.3b)

Then the resultant symbol error rate is given by

- MK K

(6.4)
g = l fc=l

The LMSER transmission solution can be defined as

P' LMSER = argminPe5 s.t.: E [ | | P s | | 2 ] = ^ . (6.5)

This optimization problem can be solved by constructing the Lagrangian function
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and employing the SQP algorithm, as seen in Section 5.3.

6.2.2 Joint Multiuser Transmission and Iterative Multiuser

Detection

In this treatise, both multiuser transmission and iterative multiuser detection

were investigated for downlink and uplink communication systems, respectively.

However, for a point-to-point MIMO system, it is possible to construct a joint

MUT and iterative MUD structure.

For an iterative MUD system dispensing with transmit preprocessing, the re-

ceiver's performance and convergence behaviour can be analysed by exploiting the

EXIT chart technique. When increasing the number of transmitted data streams,

which imposed an increased higher MAI on the receiver, the EXIT curve of the

MUD may be shifted to a lower position, which renders the open tunnel between

the EXIT curves of the MUD and the channel decoder narrower. However, if

transmit preprocessing is employed, the MAI at the receiver may be decreased,

and hence this joint MUT and MUD system becomes capable of achieving an

increased system capacity.

6.2.3 Cooperative Minimum Error Rate Transmission

The joint MUT and iterative MUD structure of Section 6.2.2 can be extended

to a multiuser uplink scenario by introducing a cooperation aided transmission

scheme. This attractive idea is capable of exploiting the advantages of MIMOs by

exploiting the transmit cooperation of distributed antennas belonging to many

different users, which has gained considerable interest [75,77,78]. Hence a topic

of our future research is the investigation of MBER and MSER aided cooperative

transmission systems.

6.2.4 Minimum Error Rate at the Output of Channel

Decoders

All proposed minimum error rate multiuser detection algorithms proposed in this

treatise were designed for minimising the error rate at "the output of the MUDs.
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However, for the sake of resisting interference and channel noise, various practical

wireless communication systems employ channel coding schemes, where the error

rate minimising at the output of the MUDs cannot guarantee the minimisation of

the receiver's error rate. Hence, the effect of channel coefficients and noise power

on the error rate of the channel decoders' output becomes an interesting topic. If

we formulate the BER/SER expression at the channel decoders' output, a more

novel minimum error rate detection algorithm can be exploited.



Appendix A

Gradients of Bit/Symbol Error

Rate for Multiuser Detection

A.I Bit Error Rate Gradient

The bit error probabilities of the in-phase part and the quadrature-phase part in

Equations (3.50) and (3.51) can be written as

MK

g=l
r

where the variable x^ is defined as

<A-2)X® = <

Then the gradient of Equation (A.I) can be expressed as

2 / ' lA-J/

where
V = 2 i - . (A-4)
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Using Equation (3.49), we can derive the following equations

and

L K K J

__ sgnQft^]) f i]) f if

O-nVWfc Wfc
n"- (A.5a)

\ 'wfWfc 'W^WkJ

f Wfc)

fa) (A.5b)

Substituting V x ^ in Equation (A. 3), we can express the gradients of both the

in-phase and quadrature-phase component as

VPeT =
1

(A.6a)

and

(A.6b)
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A.2 Symbol Error R a t e Gradient

All the Q-functions in Equation (3.66a) can be classified into two types, which
/(,.|wHh IjjffC')] \

and Q | *' k } „ [ k J ) , i E { l , 2 , - - - , \ / M - l } . The

latter one can also be written as

= ! Q

whose gradient can be expressed as

VQ R
<̂TnVwifeWfc

(A.8)

Therefore, the problem of calculating the gradient of Equation (3.66a) becomes

that of calculating the gradient VQ( ' k *. H'k ) . Similarly, we have to

calculate VQ
J sfc - 6 ,

. The gradient of the Q-function Q

to derive the gradient of Equation (3.66b).

'nVwfc

•V:

IS

(A.9)

where

- fr|wf hfc r^] - ft,V|wf hfc[
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11. —

Similarly, the gradient of the Q-function Q *- h I k—- I iis

VQ
\

V

where

/ri9) + —

Then we have

VQI : exp -

(A. 10)

(A.ll)

(A.12)

(A. 13a)
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and

VQl i-exp -

wfwfc w i

(A. 13b)



Appendix B

First and Second Gradients of

Bit Error Rate for Multiuser

Transmission

Similarly to the derivation of the Q-function's gradient in Equation (A.3), the

first-order gradients of the bit error probabilities of the in-phase and the quadrature-

phase signals formulated in Equations (5.22) and (5.23) can be expressed as

f ^
(B.la)

and

f

(B.lb)

where

V = | . (B.2)
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Then, the only unresolved problem is that of deriving the gradients V f 5ft [dj^HfcPs^] j

and V^[dfHfcPs(9)]j,

Let us define dfHfc = aT e ClxLt and s^ = b e C**1. Then dfHfcPs(l?)

can be written as

df HfcPs(9) = a T Pb
Lt K

/ = 1 fc=l

where a; is the Zth element of vector a, bk is the kth element of vector b, and ptk is

the element that lies in the lih row and the fcth column of matrix P. Furthermore,

we have

Lt K

5R[dfHfcPs ]̂ = Y2Y1 {^ihW\pik\ - »[a;6fc]»M) (B.4a)
;=i fc=i

and

9[df H*Ps«] = £ J2 (»M*]*b*] + *Mfc]9|p»]) • (B.4b)
/=i fc=i

Since the real-valued vector p was defined as

p =

, (B.5)

we can readily derive that the gradients of 3?[dfHfcPs(9)] and 3 [df HfcPs(<?)],

yielding
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Vt[a2bK]

and

-%[a2bK]

(B.6a)

(B.6b)

Then the first-order gradients in Equations (B.I) are expressed as

MK K

(B.7a)
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and

(B.7b)

The second-order gradients of Equations (5.22) and (5.23) can be derived as

and
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