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COMMUNIQATIONS RESEARCH GROUP

A thesis submitted for the degree of Doctor of th'lo.sophy

Minimum Error Rate Beamforming Transceivers

by Shuang Tan

Iterative multiuser receivers constitute an effective solution for transmission
over Multiple Access Interference (MAI) infested channels, when invoking a com-
bined Multiuser Detector (MUD) and channel decoder. Most reduced-complexity
methods in this area use the Minimum Mean Squared Error (MMSE) MUD.
Since the desired output of Binary Phase Shift Keying (BPSK) modulated sys-
tems is real-valued, minimising the Mean Squared Error. (MSE) between the
beamformer’s desired output and the real part of the beamformer output has
the potential of significantly improving the attainable Bit Error Rate (BER) per-
formance. We refer to this MMSE design as the Real-valued Minimum Mean
Squared Error (RMMSE) receiver. In this thesis, we explore a new Soft-Input
Soft-Output (SISO) Interference Cancellation (IC) aided multiuser detection al-
gorithm based on the novel Minimum Bit Error Rate (MBER) criterion. We
demonstrate that the MBER turbo receiver outperforms both the MMSE and
the RMMSE algorithms, particnlarly in so-called rank-deficient beamforming sys-
tems, where the number of receiver antennas is- lower than the number of users
supported. A novel iterative Soft Interference Cancellation (SIC) aided beam-
forming receiver is also developed for high-throughput Quadrature Amplitude
Modulation (QAM) assisted systems. The proposed SIC based Minimum Symbol
Error Rate (MSER) multiuser detection scheme guarantees the direct and explicit
minimisation of the Symbol Error Rate (SER) at the output of the detector.

This thesis also studies the Mutual Information (MI) transfer characteristics
of the proposed iterative SIC aided beamforming receiver communicating over.
both Additive White Gaussian Noise (AWGN) and slow-fading channels. Based
on the Extrinsic Information Transfer (EXIT) chart technique, we investigate
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the convergence behaviour of the iterative MBER multiuser detection schéme as
a function of the system pa}ameters and channel! conditions. We also compare
the performance and the convergence behaviour of different MUDS and channel
~ decoders. Our simulation results show that the EXIT chart analysis is sufficiently

‘accurate for the MBER MUD and the MSER MUD, despite its non-Gaussian
output distribution. As expected, the proposed SIC- MBER MUD and the SIC-
MSER MUD outperform the SIC-MMSE MUD.

Based on_EXIT charts, the convergence behaviour of a.three-stage serially
concatenated multiuser beamforming receiver is also presented. This system uses
an MBER MUD ds»_the inner detection module. Due to the non-recursive nature
of this inner module, the system has a finite-duration Impulse Response (IR) and
hence a modest-efficiency extrinsic information exchange. Therefore an Infinite
Impulse Response (IIR) unity-rate memory-1 recursive precoder is placed in front
of the channel in order to create an IIR system, which benefits from an effi- .
cient extrinsic information exchange and hence improves the iterative detection
scheme’s performance. Novel Irregular Convolutional Codes (IRCCs) are con-
structed, which are used as the outer code for the sake of achieving a near-capacity
performance. Our simulations show that this system outperforms traditional
two-component iterative detection aided siructures and is capable of significantly

reducing the error floor encountered.

The problem of designing an optimal linear transmit preprocessing transfor-
mation for the downlink of Multi-Input Multi-Output (MIMO) aided communi-
cation systems is also addressed. The BER is minimised under a maximum total
transmit power constraint. The transmitter of the Base Station- (BS) requires
explicit knowledge of the channel transfer function coefficients and of the receiver
processing matrix.. It is shown- that the proposed Linear Minimum Bit Error
Rate (LMBER) Multiuser Transmitter (MUT) outperforms the Wiener precod-
ing method in terms of the achievable BER versus channel duality pérformance.
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Chapter 1

Introduction

1.1 Wireless Communication Systems -

There are two fundamental aspects of wireless communication that make it chal-
lenging and interesting. Firstly, the phenomenon of fading: results in the time-
variation of the channel’s magnitude and phase due to the small-scale effects of
multipath fading, as well as owing to the larger scale effects, such as the path loss
prOpOI‘thl’lal to distance and shadowing due to obstacles. Secondly, wireless users
communicate over the air and there is significant interference between them in
wireless communication. The interference can be between transmltters commu-
nicating with a comumon receiver as in the uplink of a cellular system, or between
sxgnals emerging from a single transmitter to multlple receivers, as in the down-
link of ‘a cellular system, as well as between different transmitter-receiver pairs
(e.g. interference between users in different cells). How to deal with fading and

with interference is central to the design of wireless communication systems.

The increasing demand for the higher data rates to be supported by future
wireless systems inevitably comes at the cost of an increased bandwith occupied
by the transmitted signal, since the bandwidth is proportional to the symbol
rate of the transmitted signal. In order to efficiently exploit the limited band-
width available, the most recently introduced communication systems consider
the employment of multiple transmit and receive antennas for the transmission
of independent bit-streams. This trend towards the employment of Multi-Input
Multi-Output (MIMO) systems introduced for the sake of achieving spatial multi-
plexing has largely been motivated by the work of Foschini and Gans, who showed
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1.1 Wireless Communication Systems : 2

in [1] that under idealized assumptions the capacity of the wireless channel in-
~ creases linearly with the minimum of the number of transmit and receive anten-
nas. Their work is a logical evolution of the channel capacity analysis provided
by Shannon in [2] 1948. In order to exploit this potential increase in channel ca-
pacity and therefore the increase of the theoretically achievable data throughput, -
MIMO transceivers are expected to be an integral part of mc_>st future wireless
communication systems. Further work on the capacity of MIMO channels has for
example been provided by Goldsmith et al in [3] and by Shamai in [4] who also

‘contributed an extensive tutorial overview with Biglieri in [5].

However, even with the advent of MIMO transceivers and higher order mod-
ulation schemes, the bandwidth occupied 'by the transmitted signal is generally
signiﬁcantly higher than the coherence bandwidth of the wireless channel and
will therefore result in multi-path propagation of the transmitted signal. Often
the multi-path channels exhibiting frequency selective fading are also referred to
as wideband channels. Orthogonal Frequency Division Multiplexing (OFDM) [6]
is proposed in the 3rd Generation Partnership Project (3GPP) and in its Long-
Term Evolution (LTE) (7] drafts, as well as in a range of other communica-
tion systems, such as WiFi [8] and Worldwide Interoperability for Microwave
Access (WiMAX) [9]. The OFDM scheme, which belongs to the family of multi-
carrier [6] transmission schemes is capable of supporting high data-rates, while the
detection of the signal at the Mobile Station (MS) can be achieved at a relatively
low computavtvional cost. The problem of a high peak-to-average power ratio [6]
for the modulated signal can be solved by employing a linear or linearized and
hence less power efficient amplifier at the Base Station (BS) transmitter’s radio

frequency front-end.

However, since mobile operators want to keep the cost and the power consump-
tion of MSs low, OFDM is less attractive for the uplink of the communication
system. For this reason and because typically a lower data rate is required for
" the uplink, it was proposed in [10] to consider single-carrier transmission for the
reverse link as part of the 3GPP LTE. Single-carrier transmission imposes a low
computational complexi'ty and hence imposes rho_dest hardware demands on the
transmitter in exchange for an increased equalization complexity at the receiver.
Generally, an increased complexity at the BS poses less of a problem than at the
MS. The increased complexity of the BS is mainly imposed by the space-time
equalizer required for detecting the signal.




1.2 Motivation and Novel Contributions v 3

1.2 Motivation and Novel Contribﬁtio'ns

The increasing demand for mobile communication services supported within a
limited radio-frequency bandwidth motivates the design of antenna array assisted
beamforming techniques [11] as well as Spatial Division Mulfiple Access (SDMA)
arrangements [6] By appropriately combining the signals received by the different .
elements of an antenna array, beamforming becomes capable of creating an an-
gularly selective transmitter/receiver beam, hence potentially separating signals
transmitted on the same carrier frequency but arriving from sufficiently different

angles.

Since the discovery of turbo codes in 1993 [12], iterative detection [13] has
been applied in the context of joint channel estimation and equalization [14], in
turbo equalization [15, 16], in multiuser detection [17,18,19] and numerous other
coded communication systems [15,20]. In iterative multiuser receivers [13], the
Multiuser Detector (MUD) and the channel decoder exchange extrinsic informa-
tion in a number of consecutive iterations. During each iteration, the extrinsic
information alternately extracted either from the MUD or the channel decoder
is used as the a priort input by the other detection stage in the next iteration.
The information exchanged is exploited for the sake of improving the receiver’s
attainable performance. In [18], a suboptimal linear ;MUD was introduced, which
benefitted from both Soft Interference Cancellation (SIC) and irstantaneous lin-
ear Minimum Mean Squared Error (MMSE) filtering. '

~ Against this background, in this thesis we propose a novel family of iterative
beamforming receivers. To elaborate a little further, the conventional beam-
former combines the signals received with the aid of each Antenna Element (AE)
for the sake of minimising the Mean Squared Error (MSE) between the complex-
valued locally stored and received reference signal. For Binary Phase Shift Keying
(BPSK) systems, however, the beamformer’s desired output is real-valued. By
minimising the MSE between the beamformer’s desired output and the real part
of the beamformer output, the system’s achievable Bit Error Rate (BER) per-
formance can be significantly enhanced. We will refer to this alternative MMSE
design as the Real-valued Minimum Mean Squared Error (RMMSE) arrange-
ment in order to contrast it with the standard MMSE. However, the MMSE and
RMMSE algorithms do not guarantee the direct and explicit minimisation of the
system’s BER. Hence in references [21,22, 23, 24, 25, 26,27, 28, 29, 30, 31, 32] the
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BER rather than the MSE was minimised-at the MUD’s output. The Minimum
Bit Error Rate (MBER) beamforming design is the true optimal solution and
hence it generally outperforms the MMSE and the RMMSE solutions, particu-
larly in the context of the so-called rank-deficient systems, where the degree of
freedom for the antenna é,rray is lower than the number of users. The achiev-
able BER difference of the MMSE and MBER receivers becomes particularly
substantial in this scenario. The MBER detectors are challenging to derive for
higher-order Quadratu_fe Amplitude Modulation (QAM), but nonetheless, Yeh
and Barry have succeeded in directly minimising the detector’s output Symbol
Error Rate (SER) [33] for a QAM equalizer. Motivated by their work, a novel
Minimum Symbol Error Rate (MSER) beamforming assisted receiver has been
developed for high-throughput QAM schemes [34]. In this thesis, an iterative SIC
aided MSER beamformer is proposed for QAM signals. Note that the shifting
properties and the symmeﬁrical distribution of the. output signal’s Probability
Density Function (PDF), which were exploited in the derivation of the original
MSER beamforming solution of [34], are no longer valid in our iterative system.
Therefore, we derive a new a priori information assisted MSER MUD suitable
for employment in the proposed iterative SIC aided receiver. Motivated by the
idea of RMMSE algorithm and the Widely Linear (WL) method of [35}], we also
introduce the WL-MMSE, the WL-MBER and the WL-MSER SIC MUDs, which
employ two separate weight vectors for individually detecting the in-phase and
quadrature-phase componént of the transmitted symbol. ‘These WL algorithms
are capable of achieving a better performanée at a similar complexity.

In order to investigate the iterative detection process and its convergence, the
powerful concept of semi-analytical Extrinsic Information Transfer (EXIT) charts
was introduced in [36] and [37]. This semi-analytic technique uses the Mutual
Information (MI) between the inputs and outputs of the concatenated receiver
components in order to analyse the achievable system performance. For example,
EXIT charts were employed in turbo equalization in [16, 38, 39], while in [19]
and [40] they were used to examine the convergence properties of a turbo MUD.
Until recently EXIT chart analysis was only capable of predicting the achievable
decoding performance, when the extrinsic information was Gaussian distributed, .
but Li and Wang [40] succeeded in adopting this technique also in the context
encountering a non-Gaussian distribution at the output of a turbo MUD.

It is widely recognized that in a serially concatenated receiver employing it-

erative decoding the inner code should be recursive in order to maximize the at-
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tainable interleaver gain [41]. This benefit may be generalized to diverse serially
concaténated schemes. However, not all inner modules of serially concatenated
schemes can be readily rendered recursive, which hence limits the achievable de-
coding performance. In our system, a Soft-Input Soft-Output (SISO) MBER
MUD (29, 30] is invoked, which directly minimises the BER at the MUD’s out-
put, rather than minimising the MSE, as in the classic MMSE detector. The
non-recursive nature of the MBER MUD may be ameliorated with the aid of
a simple unity-rate memory-1 recursive precoder incorporated at the transmit-
ter, and hence the attainable performance may be further improved [42]. Then,
the inner component of the receiver constituted by the MBER MUD, the inter-
‘mediate channel decoder and the outer channel decoder constitute a three-stage
'serially concatenated scheme. In this thesis we design this three-stage concate-
nated multiuser receiver for the sake of achieving near-capacity performance [39).
By combining and projecting a series of three-dimensional EXIT functions onto a
-single two-dimensional EXIT chart [43], the convergence behaviour of the system
is visualized. Specifically, Irregular Convolutional Codes (IRCCs) [38] are con-
structed, which are used as the outer code for the sake of solving the EXIT curve
fitting problem of [44], i.e. that of minimising the area of the EXIT chart’s open
tunnel; implying that the system becomes capable of approaching the achievable

capacity.

In particular, downlink transmission is of interest. The BS is assumed to know
the linear processing performed by the MS. The BS is capable of acquiring the
required MIMO channel coefficients with the aid of the side-information feedback
channel transmitted from the MS or by estimating the uplink channel and as-
suming that the downlink channel is similar, as in Time Division Duplex (TDD)
systems [45]. An important advantage of transmit preprocessing is that the af-
fordable computational complexity of the BS is higher than that of the MS, and
as a benefit, the processing in the MS can be simpler. Consequently, it is cheaper
to produce the MS. A specific transmit preprocessing scheme maximizing the
output Signal-to-Noise Ratio (SNR) at the receiver was derived in [46], which is
the Transmit Matched Filter (TMF) based preprocessor. The most intuitive ap-
proach designed for transmit preprocessing is Transmit Zero Forcing (TZF), which
removes all interference at the receivers [47,48]. A modified MSE transmit pre-
processing defined under a specific power constraint was considered in [49,50,51],
which is referred to as the Transmit Wiener Filter (TWF). In a practical commu-
nication system, however, the goal is to directly minimise the BER. Hence in this
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thesis, a linear_ preprocessing method that directly minimises the BER is derived.
The proposed method leads to an improved BER versus channel SNR perfor-
mance. The related problem of designing a minimum BER transmit preprocessor

for a known channel has been considered in [52,53,54,55).

The thesis is based on the publications [56,57, 58,59, 60,61, 62]. In

summary, the riovel contributions of this thesis are:

o A soft MBER MUD aided iterative beamforming receiver was in-
vestigated, which directly minimises the BER at the MUD’s out-
put. The proposed MBER scheme significantly outperforms the
conventional MMSE method at the cost of a higher computational

complexity [56, 57].

e We derived a new a priori information assisted MSER MUD suit-
able for employment in the proposed iterative SIC aided receiver
designed for high—throﬁghput QAM s_chemés. The proposed lin-
ear SIC aided MSER multiuser detection scheme guarantees the
direct and explicit minimisation of the SER at the output of the
detector [60,61]. '

e The WL-MMSE, WL-MBER and WL-MSER SIC MUDs, which
employ two separate weight vectors for individually detecting
the in-phase and quadrature—pha}sé component of the transmit-
‘ted symbol, were introduced. These WL algorithms are capable
of achieving a better performance than the corresponding non-WL

MUDs operating at a similar detection complexity.

e We studied the mutual information transfer characteristics of the
proposed novel iterative SIC aided beamforming receiver com-
municating over both Additive White Gaussian Noise (AWGN)
and flat-fading channels. Based on the EXIT chart technique, we
investigated the convergence behaviour of the iterative MBER
MUD scheme as a function of both the system parameters and
channel conditions in comparison to the SIC aided MMSE MUD
(58,59, 60,61]. ‘ '

‘e Based on EXIT charts, the convergence behaviour of a three-stage
serially concatenated multiuser beamforming receiver was pre- ‘
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sented. This system used a linear MBER MUD as the inner detec-
tion module. Due to the non-recursive nature of this inner mod-
ule, the system has a finite-duration Impulse Response (IR) and
hence a modest-efficiency extrinsic information exchange. There-
fore an Infinite Impulse Response (IIR) unity-rate memory-1 re-
cursive precoder is placed in front of the channel in order to
create an IIR system, which benefits from an efficient extrinsic
information exchahge and hence improves the iterative detection
scheme’s performance. Novel IRCCs were constructed to be used
as the outer code for the sake of achieving a near-capacity perfor-

mance [62].

e A linear Multiuser Transmitter (MUT) that minimises the BER
subject to a power constraint was proposed. The propdsed Linear
Minimum Bit Error Rate (LMBER) transmission scheme is ca-
pable of achieving a better performance than the Wiener MUT,
and its complexity can be significantly reduced in the presence
of slow-fading channels compared to its non-linear Minimum Bit
Error Rate Transmission (TMinBer) aided counterpart.

1.3 Organization of the Thesis

An overview of MIMO systems is presented in Chapter 2, where the various
categories of multiple antenna aided communication systems are introduced. A
range of multiuser detection techniques are reviewed for the sake of providing the
necessary background to this exciting research field. We will mainly concentrate

our attention on linear multiuser detection schemes.

In Chapter 3, we explore the SISO Interference Cancellation (IC) multiuser
detection algorithm based on the novel MBER criterion. We demonstrate that
the MBER turbo receiver outperforms both the MMSE and the RMMSE algo-
rithms. We also study the MI transfer characteristics of a novel iterative SIC
aided beamforming receiver communicating over both AWGN and slow-fading
channels. Based on the EXIT chart techni'que, we investigate the convergence
behaviour of an iterative MBER multiuser detection scheme as a function of the
system parameters and channel conditions. We also compare the attainable per-
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formance and the convergence behaviour of different MUDs and channel decoders.
Our simulation results show that the EXIT chart analysis is sufficiently accurate
for the MBER MUD, despite‘its non-Gaussian output distribution. As expected,
the proposed SIC-MBER MUD outperforms the SIC-MMSE MUD. We also in-
vestigate the iterative MSER receiver design in the context of a high-order QAM
system. This proposed MSER system outperforms'the well-known MMSE aided
system. The performance of the WL-MMSE MUD, the WL-MBER MUD and
the WL-MSER MUD are also studied. - "

In Chapter 4, we extend the two-stage iterative receiver to three SISO mod-
ules, namely the inner MUD, the intermediate unity-rate channel decoder and
the outer channel decoder. The convergenée behaviour of our design example
was analysed using 3D EXIT charts and their 2D projections. The three-stage
system is capable of eliminating the residual BER encountered in the conven-
tional two-stage system. With the advent of 2D EXIT-chart projection, an IRCC
was constructed for employment as the outer code, whose EXIT function was
matched to the joint EXIT function, and as a result, the channel capacity was

closely approached.

In Chapter 5; a LMBER MUT was explored. The LMBER optimization
process was detailed. The simulation results show that the proposed algorithm
outperforms the previously proposed Wiener multiuser transmission method [49].
The BER performance of the MUT systems using imperfect and outdated channel

information was also studied.

Finally, in Chapter 6, we offered our conclusions and provided. suggestions

for future research.




Chapter 2

Multi-Input -»Multi—Output

Detection

2.1 Multi-Inpﬁt Multi-Output Communications

Multi-Input Multi-Output (MIMO) wireless systems may be conveniently de-
scribed by an abstract mathematical model. Another commonly used term for
MIMOs is ‘smart antennas’, which perform spatio-temporal information pchess—v
ing with the aid of multiple antennas. In MIMO wireless communication systems,
significant throughput and/or i_ntégrity improvements can be achieved within a
given bahdwidth and at a given total transmit power, as detailed below.

Smart antennas prbvide us with a wide variety of design optioris, ranging from
Single-Input Multi-Output (SIMO) architectures that harvest more energy using
multiple receiver antennas to improve the SNR at the receiver, to MIMO architec-
tures that create multiple parallel data links. The number of inputs and outputs
here refers to the number of AEs used at the transmitter and receiver, respec-
tively. To elaborate a little further, in smart antenna assisted systems multiple
AEs may be invoked at the transmitter and/or the receiver, where again, the AEs
may be arranged for achieving spatial diversity gains, directional beamforming or
‘multiplexing gains, as well as for attaining both diversity and beamforming. In
these smart antenna aided systems the achievable performance improvements are
usually a function of the antenna spacing and that of the baseband algorithms
invoked for processing the signals received by the AEs [1'7]. Terms commonly
used today that embrace various aspects of smart antenna systems include in-

9
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' telligent antennas, adaptive antennas, phased arrays, Spatial Division Multiple
Access (SDMA), spatial procéssing, spatial multiplexing, digital beamforming and
others [11,45]. Different smart antenna architectures provide different benefits,
which can be broadly classified as achieving array gain, diversity gain, multiplex-
ing gain and interference reduction [63]. The signaling strategy at the transmitter
and the corresponding processing at the receiver are designed based on the specific

- system specifications. Table 2.1 summiarizes the evolution of the state-of-the-art
in MIMO designs.

Table 2.1: Selection of MIMO papers

Author(s) Contribution

[64] Proposed the Bell Laboratories Layered Space-Time
Foschini (BLAST) architecture capable of capturing much of the

MIMO capacity promised by information theory. A

[1] Examined the benifits of multiple AEs representing the spa-
Foschini tial dimension to improve the achievable wireless capacity in
and Gans certain applications. Fixing the overall transmitted power,

the authors- expressed the capacity offered by multiple AEs
and‘quantiﬁed how the capacity scales upon increasing the
SNR for a large but prax:tical number of AEs at both the
transmitter and receiver. ' _

[65] Considered the design of Space-Time Trellis Codes (STTCs)
Tarokh for improving the data rate and/or the reliability of commu-
et al. nications over fading channels using multiple transmit anten- |

nas. o

[66] Described a wireless communication architecture known as
Wolniansky | Vertical BLAST (V-BLAST).
et al. '

[67] Presented a low-complexity two-branch Space-Time Block
Alamouti Code (STBC). Using two transmit and a single receive

antenna the scheme achieves the same diversity order as a
maximal-ratio combining receiver employing a single trans-
mit dntenna and two receive antennas.
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Author(s) -

Contribution

[68]
Tarokh

et al.

Documented the attainable performance of & novel class of
STBCs, which provide a new design paradigm for transmis-
sion over Rayleigh fading channels using multiple transmit

antennas.

[69]
Tarokh

et al.

Introduced the combination of array processing at the re-
ceiver and coding techniques for multiple transmit antennas
at the transmitter, which can provide reliable high data rate
communication over narrowband wireless channels, while pro—

viding both diversity and coding gains. .

[70]
Tarokh

et al.

Introduced STBC for communication over Rayleigh fading

channels using multiple transmit antennas.

[71]
Foschini

et al.

Investigated robust wireless communication in rich-scattering
propagation environments using multiple AEs at both the
transmit and receive sites in the context of V-BLAST, which
is a simplified, but spectrally efficient space-time processing
method. o .

[72]
Jafarkhani

Designed unity rate codes, which are quasi-orthogonal and

provide partial rather than ‘full’ diversity. The decoder of |

the proposed codes processes pairs of transmitted symbols
instead of single symbols.

[4]
Shamai and
Marzetta

Investigated the channel capacity of a multiuser sys-
tem employing multiple receive AEs communicating over

Rayleigh block-fading channels without requiring Channel
 State Information (CSI). ' ' ’

[73]
Sellathurai
and Haykin

Presented the concept of turbo-BLAST, which is a novel
MIMO scheme designed for high-throughput wireless commu-
nications. It amalgamated the following ideas: the BLAST
architecture, random layered space-time coding using inde-
pendent block codes and random space-time interleaving, a

sub-optimal turbo-like iterative detection aided receiver and

estimated channel matrix in a simple iterative fashion.




12

' 2.1 Multi-Input Multi-Output Communications

Author(s)

Contribution

[74]
Foschini

et al.

Discussed three architectural superstructures designed for
wireless links employing multiple antennas, including
Diagonal BLAST (D-BLAST), Horizontal BLAST (H-
BLAST) and the single outer code architecture.

[3]
Goldsmith
et al.

‘

Provided an overview of the capacity of single-user and multi-
user MIMO channels. The results indicated that the capacity
gain achieved for single-user MIMO channels heavily depends
on the available channel information at both the receiver and
transmitter, as well as on the channel SNR and the corre-
lation between the channel gains of each antenna element.
The capacity region of the MIMO multiple access and the
highest achievable raté region (also referred to as the dirty-
paper coding region) of the MIMO broadcast channel are
intimately inter-related by a duality transformatibn, which
facilitates finding the transmission strategies that achieve a
point on the boundary of the MIMO multiple-access chan-
nel’s capacity region. '

[75]
Diggavi
etal.

The effect of spatial diversity on the attainable throughput
and reliability of wireless networks was examined. The au-

thors illustrated the benefits of spatial diversity across the

entire physical (signal transmission/coding and receiver sig-
nal proéessing) as well as networking (resourcé allocation,
routing, and applications) layers, discussed the associated
engineering intuitions and tradeoffs, emphasizing the strong
interactions between the various network functionalities.

[76]
Tao and
Cheng

Presented the architecture of generalized layered space-time
codes as a combination of the BLAST architecture and Space-
Time Codes (STCs) in multiple-antenna aided wireless com-
munication systems. This approach provides both spectral
and power efficiency gains at a moderate complexity.
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Author(s) Contribution

- [77) Presented an overview of important applications in the con-
Pabst et al. | text of relaying and covered different approaches to exploiting
the benefits of multihop communications via relays. Relay-

ing was presented as a means of reducing the infrastructure
deployment costs. It was also shown that through the ex-
plditation of spatial diversity, multihop relaying is capable of
enhancing the achievable capacity of cellular networks.

[78] Presented an overview of the developments in cooperative
Nosratinia | communication proposed for enabling single-antenna aided
et al. mobiles in a multi-user environment to share their anten-

nas and hence to generate a virtual multiple-antenna aided
transmitter that allows them to achieve a substantial trans-

| mit diversity.

2.1.1 Space-Time Codes

Space-Time Codes (STCs) [13] are capable of improving the reliability of data
transmission in wireless communication systems using multiple transmit anten-
nas with the aid of their transmit diversity gain. More explicitly, STCs rely
on transmitting multiple, redundant copies of a data stream to the receiver in
the hope that at least some of them may arrive over the physical path between
the transmitter and receiver unimpaired to allow reliable decoding. The fact that
the transmitted data must traverse a potentially hostile propagation environment
contaminated by scattering, reflection, refraction and by the thermal noise in the
receiver implies that some of the recéived copies of the data will be more cor-
rupted than others. More explicitly, space-time coding combines all the copies of
the received signal in order to extract as much information from each of them as
possible. Space time codes may be classified into two main types. Space-Time
Trellis Codes (STTCs) [65] employ a trellis code for mapping the information to

multiple antennas and multiple time-slots and hence to provide both coding gain
~ and diversity gain. Space-Time Block Codes (STBCs) [67, 68, 70] act by encod- -
ing a short block of data at a time and provide only diversity gain. However,
STBCs are less complex in implementation terms than STTCs. The aim of us-
/ing spatial diversity is to provide both transmit as well as receive diversity and

hence to enhance the system’s integrity/robustness. This typically results in a
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better physical-layer performance and hence a better network-layer performance.
Therefore, STCs are capable of indirectly increasing not only the transmission

integrity, but also the achievable spectral efficiency.

While STCs require multiple transmit antenhas, it is not necessary to have
multiple receive antennas, althoug’h they substantially. improve the achievable
performance. An STBC’s action is usually represented by an encoding matrix,
where each row of the matrix represents a time slot and each column corresponds
to a specific antenna’s transmissions over time. The code rate of an STBC quan-
tifies how many symbols per time slot it transmits on average over the course of
an STBC block. STBCs as originally proposed [67] were designed to be orthog-
onal, ensuring that the vectors representing any pair of columns taken from the
coding matrix are orthogonal. The benefit of this is that simple linear decoding
can be used at the receiver. l Its most serious disadvantage is that all but one
of the STBCs that satisfy this criterion mu';st make a sacrifice in terms of their

coding rate.

Alamouti invented the first STBC in 1998 [67]. It was designed for a two-

transmit antenna system and has the coding matrix of

S1 Sy '
, 2.1
[— 55 s’{] . 21

where the superscript * denotes -_t_he complex conjugate of the variables. It is the

“only complex modulated orthogonal STBC'that achieves a coding rate of unity.
That is to say that it .is the only STBC that can achieve its full diversity gain
without having to make a sacrifice in terms of its coding rate. This property
lends Alamouti’s code a potential throughput advantage over the higher-order
* STBCs, even though they achieve a better error-rate performance. Stimulated
by Alamouti’s work, Tarokh et al. discovered a set of STBCs [68,70] that are
particularly beneficial and yet straightforward. The authors also showed that
no STBC using more than two transmit antennas may achieve ‘full-rate’. A
quasi-orthogonal STBC was then proposed by Jafarkhani [72]. Although these
codes exhibit partial orthogonality and hence provide only part of the maximum
achievable diversity gain, their benefit is that ith‘ey exhibit a unity rate. As a
further advantage, they only require linear processing at the receiver, although
their decoding is slightly more complex than that of Alamouti’s {67] and Tarokh’s
[68,70] orthogonal STBCs.

Gy




2.1.2 Space Division Multiplexing ' 15
2.1.2 Space Division Multiplexing

The basic concept of Space Division Multiplexing (SDM) or spatial mﬁltiplexing
is that several different data bits are It'ransmitted via several independent spatial
channels. It may be viewed as an improved-throughput point-to-point communi-
cation system requiring no frequency band expansion. The data streams can be

separated by the space-time equahzer of the receiver.

Bell Laboratories Layered Space-Time (BLAST) scheme was developed by
Foschini in 1996 [64]. It is an extraordinarily bandwidth-efficient approach to
wireless communication, which takes advantage of the spatial dimension by trans-
mitting and detecting a nﬁmber of independent co-channel data streams using
multiple, essentially co-located, antennas. The central philosophy of BLAST is
the exploitation of the different Channel Impulse Responses (CIRs) encountered
by the AEs imposed by their different multipath effects in order to achieve a high
spectral efficiency (bits/sec/Hz), significantly higher than that, when multipath
propagation is viewed as an adversary rather than an ally. Under the widely used
theoretical assumption of having independent Rayleigh scattering, the theoretical
capacity of the BLAST architecture grows roughly linearly with the number of

antennas, even when the total transmitted power is fixed.

BLAST uses multi-element antennas at both the transmitter and receiver
to support transmission rates far in excess of those possible using conventional
approaches by treating the multiplicity of scattering paths as separate parallel
diversity subchannels. BLAST accomplishes this by splitting a single tser’s data
stream into multiple substreams and using an array of transmitter antennas to
simultaneously launch the parallel substreams. Again, all the substreams are
transmitted in the same frequency band, hence the spectrum is used {rery effi-
ciently. Since the user’s data is transmitted in parallel over multiple antennas,
the effective transmission rate is increased roughly in proportion to the number
of transmitter antennas used. At the receiver, again an array of antennas is used
to pick up the multiple transmitted substreams and their scattered images. Each
receive antenna ‘sees’ all of the transmitted substreams superimpdsed, not sepa;
rately. However, if the multipath scattering is sufficiently rich; then the parallel
substreams are all scattered slightly differently, since they originate from different
transmit antennas that are located at different points in space. Using sophisti-
cated signal processing, these slight differences in scattering allow the substreams
to be identified and recovered. In effect, the unavoidable multipath is exp'loited to
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support parallel streams and hence to improve the achievable data transmission
rates. Thus, when using the BLAST technique, the more multipath, components
can be resolved the better.

- The diagonally-layered space-time architecture proposed in [64], now known
as Diagonal BLAST or D-BLAST, utilizes an elegant diagonally layered coding
structure in which the code blocks are dispersed diagonally across the space-time
dimensions. A space-time layering scheme using four transmit antennas may be
represented by a matrix, where each column represents a time slot and each row

represents a specific antenna’s transmissions over time, as seen below:

ap b ¢ di as bs c5 ds
0 apy by ¢y do ag bg ¢
0 0 a3 b3 c3 ds a7 by
0 0 O ag by ¢4 dy ag

where a; is the ¢th symbol arriving from layer a. However, the diagonal approach
suffers from certain implementation complexities, which make it inappropriate
for low-complexity impleinentation. In [66,71], a simplified version of BLAST
known as Vertical BLAST or V-BLAST was described. The essential difference
between D-BLAST and V-BLAST lies in their encoding process. In D-BLAST, re-
dundancy is introduced between the substreams using a specific inter-substream
block coding. The D-BLAST code blocks are organized by delaying each an-
tenna’s signal by one additional si'gnallirig interval for the sake of achieving di-
versity gains in both space and time. It is this pafticular space-time coding
arrangement that equips D-BLAST with a higher spectral efficiency for a given
number of transmitters and receivers than V-BLAST. In V-BLAST, however, the
vector encoding process is simply a demultiplexing dperation, followed by inde-
pendent bit-to-symbol mapping of each substream. No inter-substream coding is -
required, although conventional channel coding may certainly be applied before
the serial-to-parallel conversion block. Another BLAST structure which employs
a serial-to-parallel block for generating multiple independent substreams and has
a separate encoder for each layer is known as Horizontal BLAST (H-BLAST) [74].
The H-BLAST structure was not designed for achieving transmit diversity gain,
because the symbols of different layers are uncorrelated. In [73], a BLAST archi-
tecture referred to as turbo-BLAST was devised. Similar to the D-BLAST, the
turbo-BLAST scheme also has a space-time interleaver after the inter-substream

channel encoders. However, the turbo-BLAST arrangement does not delay each
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antenna’s signal by one signalling interval, but transmits them simultaneously.
This simplification decreases the achievable BER performance com_paréd to that
of the D-BLAST scheme, but it benefits from achieving a higher data through-
put. The turbo-BLAST scheme employs both channel coding and space-time
interleaving, hence it is capable of achieving both spatial diversity as well as a

multiplexing gain.

2.1.3 Spafial Division Multiple Access

Another application of smart antennas is often referred to as Spatial Division Mul-
tiple Access (SDMA), in which different users transmit independent data through
different multipath channels. The SDMA technique exploits these unique, user-
specific ‘spatial signatures’ of the individual users for differentiating amongst
them. In simple conceptual terms one could argue that both a conventional Code
Division Multiple Access (CDMA) spreading code and the CIR affect the trans-
mitted signal similarly - namély they are convolved with it. Hence, provided'thét /
the CIR is accurately estimated, it becomes known and certainly unique, although

not orthogonal to the other CIRs. Nonetheless, it may be used for uniquely identi-
fying users after channel estimation and hence for supporting several users within
the same bandwidth. Provided that a powerful MUD is available, one can sup-
port even more users than the number of antennas. Hence this method directly

enhances the achievable spectral efficiency.

N

SDMA 3
multiuser .
detector .

| Sxc |

Figure 2.1: Signal flow graph for uplink SDMA system equipped with L
receive AEs and supporting K users. .
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Figure 2.1 shows an uplink SDMA system equipped with L receive AEs and
supporting K users. These K users are transmitting symbols [s; - - - sx]T at the
same freQuency, where the superscript 7 denotes the transpose. The original
signals travel through the wireless channels and arrive at the receive antennas.
When the signals pass through the channel, they will vary in both amplitude and
phase depending on the multipath environment. The CIR hy in the diagram is a
complex quantity or a vcomplex vector representing the channel sbanning from user
k to the Ith receive AE. Since the users and receive AEs are located at different
positi.ons, each of the complex-valued CIR coefficients should be uncorrelated
with each other. The received signals [r; - - - |7, then contain all components of
the transmitted signals. To express the received signals in matrix form, we use

the following equation

r1 hii hiy - hg 81 ny
T2 _ ha h.zz o heg 1% L™ , (2.2)
TL hpi hpe -+ hix| ISk n,

where n; is the additive noise at AE [. Then the received noisy signals are
processed by the SDMA MUD, which exploits the unique CIR of each user to
estimate the original symbols. Various linear and non-linear MUD algorithms

can be used [6].

2.1.4 Beamforming

Beamforming is a signal processing technique designed for A/2-spaced AEs either
at the transmitters or at the receivers that controls the directionality of a radi-
ation or reception pattern. When receiving a signal, beamforming can increase
the gain in the direction of wanted signals and decrease the gain in the direction
of interfering sources. When transmitting a signal, beamforming has the poten-
tial of increasing the gain in the direction of the desired user. This is achieved
by creating beams and nulls in the radiation pattern. Beamforming can also be
viewed as angular filtering, which is achieved by feeding the \/2-spaced AEs with
appropriately phased signals and hence creating their constructively or destruc-
tively phased superposition. In other words, when transmitting, a beamformer
appropriately controls the amplitude and phase of the signal at each transmitter
AE, in order to create a pattern of constructively and destructively phased inter-
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ference in the wavefront. When receiving, the signal impinging on the different
AEs is combined in such a way that the expected angular selectivity is observed.

Again, unlike in other smart antenna systems spacing the AEs as far as pos-
sible, in beamforming arrangefnents typically A/2-spaced AEs are used for the
sake of creating a spatially selective transmitter/rebeiver beam, where A is the
wavelength. Smart antennas using beamforming have widely been employed for
mitigating the effects of interfering received signals and for providing a transmit
beamforming gain. Furthermore, beamforming arrangement is capable of sup-
pressing the effects of co-channel interference, which allows the system to support
multiple users within the same bandwidth and/or same time-slot by separating
them angularly. This angular separation, however, becomes only feasible, if the
corresponding users are separable in terms of the Direction of Arrival (DOA) of
their beams. These beamforming schemes, which employ appropriately phased
antenna array elements that are spaced at distances of A/2 typically result in an
improved Signal-to-Interference-plus-Noise Ratio (SINR) distribution and hence

in an enhanced network capacity [11].

The physical and mathematical description is essentially the same for both
the transmitter and receiver beamformings, hence we will concentrate on receiver
beamforming to explain the concept further. An example consisting of four sig-
nal sources and a three—element_ linear antenna array is shown in Figure 2.2. The
DOAs of the sources are 8; = 45°, 6, = 15°, 63 = —30° and 6, = —70°, respec-
tively. Since the. elements of the antenna array are quite close, we can assume
that the CIR coefficients between the kth source and each of the receiver AEs is

source 3 source 2
1
| source 1

source 4

A2 —eo— A2 —e
antenna 1 antenna 2 antenna 3

Figure 2.2: Geometric structure of beamforming consisting of four signal
sources and a three-element linear antenna array. The DOAs of the sources
are 8 = 45°, 03 = 15°, §3 = —30° and 64 = —70°. '
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- (c) Source 3 {#3 = —30°) (d) Source 4 (64 = —70°)

Figure 2.3: Beam patterns, when employing three AEs to support the four ‘
sources seen in Figure 2.2. The solid radial ling indicates the direction of the
desired source, and the dashed radial lines denote the interfering sources.

the same, which is denoted as h;. Then the received signal can be expressed as

5
™ : hl ,hz h3 h4 s ni
- . _— S 2
ro| = hleprsmal hzeﬁrsmez hseg-/rsmag h4e_71rsm04 X + g ’(2.3)
P S s o s S3
T3 hl 6_727r sin 61 h2e]27l’ sin 62 h36‘727r sin 03 h4e_721r sin 64 N3
| 54

where n; is the additive noise at AE I. Figure 2.3 shows the resultant beam
patterns for all four sources after beamforming aided detection. The solid radial
line indicates the direction of the desired source, and the dashed radial lines denote
the interfering sources. It is clear that the beamformer creates its ‘main beam’ in
the desired source’s direction. At the same time, the beamformer creates a null in
~ the other three directions, namely in those of the interfering sources. Hence the
Signal-to-Interference Ratio (SIR) is increased at the output of the beamformer.
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2.1.5 Multi-functional MIMOs

As we have seen in Sections 2.1.1-2.1:4, the benefits of multiple antenna aided
systems are manifold, since they are capable of achieving increased bit rates with
the aid of spatial multiplexing, or reduced error rates using spatial diversity,
and of improving the SNR with the aid of adaptive antenna _arrays.' The basic

smart antenna structures introduced above are summarized in Table 2.2. Each

Table 2.2: Benefits of different smart antenna structures

Array | Diversity | Multiplexing | Interference | Coding
gain gain gain reduction gain
STTC v _ v
STBC . v
D-BLAST v v
V-BLAST | v
H-BLAST - v
SDMA . ¢ : v
Beamforming v v v

structure exhibits different key advantages compared to the single-input single-
output system. These differences inspire the combination of two or more smart
antenna schemes, in order to create so called ‘multi-functional MIMOs’. It was
proposed in [69] to combine the benefits of STBCs and of V-BLAST techniques
for the sake of providing both antenna diversity as well as spectral efficiency gains.
This hybrid scheme was improved in [76] by optimizing the specific decoding order
of the different antenna layers. :

2.1.6 Distributed MIMOs

- In space-time coding and spatial multiplexing techniciues, it is typically assumed

that the individual AEs are co-located, i.e. they belong to the same antenna
array, and that their antenna spacing is sufficiently high in order to justify the

~ assumption of having statistically independent links. In many practical scenarios,

having a sufficiently high antenna spacing cannot be guaranteed, which results
in correlation between the individual transmission links. Mobile terminals, for
example, are typically characterized by a small size, where ensuring a sufficiently
high separation of the AEs is difficult. -However, even if no correlation is experi-

enced between the transmission links, experiencing shadow fading may result in a

[}
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Figure 2.4: Distributed MIMO system with K-node VAA at the transmitter
side. ‘

poor SNR for all channel links. In this scenario, spatial d1vers1ty remains unable

to improve the achievable BER performance.

~In order to circumvent the limitations of wireless communications, new and
unconventional concepts are required. An attractive idea that has recently gained
considerable interest is the concept of cooperative wireless networks [78]. In such
networks, multiple network nodes cooperate and share their antennas, for exam-
ple by using a distributed space-time coding scheme (or a distributed diversity
reception scheme). By this means, a Virtual Antenna Array (VAA) may be
established, as seen-in Figure 2.4. The cooperating nodes, possibly equipped
. with only a single antenna, can thus enjoy the benefits offered by conventional
MIMO systems having co-located antennas. Cooperative wireless networks can
be viewed as a mixture of hierarchical and ad-hoc, networks [75]. Current wire-
less networks are typically characterized by an inflexible hierarchical structure,
where communication is mainly controlled by a central network node, namely a
BS. By allowing some cooperation between the individual network nodes, ele-

ments of an ad-hoc network may be introduced. Cooperation can, for example,

be performed between multiple BSs having intersecting coverage areas. Another
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example of cooperation between fixed network nodes are constituted by wireless

" sensors, where data measured by wireless sensors are collected by multiple dis-

tributed receiving nodes and are then processed in a joint fashion. Cooperation
can also be performed between mobile terminals. An example of the latter is
given by relay-assisted networks [77], where the mobile terminals mutually relay

their transmitted or received signals.

2.2 Multiuser Detection

The philosophy of multiuser detection is based ﬁpon treating the signals generated
by all simultaneous users as ‘wanted’ signals, which must be jointly detected at the
receiver. Verdi’s optimum MUD [79,80] uses a bank of matched filters followed by
Viterbi’s Maximum Likelihood (ML) 'sequénce estimator [81] invoked for detecting
the most likely data sequence. Although the optimum MUD exhibits a significant
performance improvement over conventional single-user detectors, this is achieved
at an enormous complexity. The sub-optimum MUDs can generally be divided
into two main classes, namely adaptive and non-adaptive MUDs [6]. The latter
class would normally require knowledge of some a priori information about the
channel and the system itself. By contrast, adaptive MUDs would relax either all
or some of the a priori information requirements of the non-adaptive MUDs. The
non-adaptive MUD class can be further divided into linear and non-linear MUDs.
In linear multiuser detection a linedr mapping is applied to the soft outputs of
the conventional matched filter detector in order to produce a new set of outputs.
By contrast, in non-linear detection some form of Interference Cancellation (IC)
is carried out, in order to cancel the Multiple Access Interference (MAI) imposed
on each other. This typically achieves a better performance in comparison to
linear MUDs. |

The most well-known linear MIMO detector is the MMSE detector [6], which
is discussed in detail in numerous text-books, such as [82,6]. It is well known that
the MMSE detection approach is optimum in terms of minimising the MSE of
a linear detector. However, a linear detector directly designed for achieving the
lowest BER is optimum in terms of minimising the BER. Hence, the set of linear
detectors, which achieve the minimum BER are referred to as MBER detectors.
They have been studied for example in [29] by Chen et al. A simplified MBER
detector has for example been proposed by Gesbert in [83] on the basis of a closed-
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form expression for certain channel conditions. At the time of writing MBER
detectors have mainly been proposed for BPSK signals as well as 4-level QAM
signals. MBER detectors are challenging to derive for higher-order QAM, and this
open problem was solved in [33] by Yeh and Barry, who have proposed a Minimum
Symbol Error Rate (MSER) detector for high-order QAM. A generic framework
for adaptive minimum error-probability filter design was reviewed in [84] by Chen

et al.

In systems, where the number of ‘transmit AEs is higher than the number of
receive AEs, the linear detectors are often incapable of correctly detecting the
 desired signal and hence the family of non-linear detectors has to be employed.
The optimum non-linear detector is the ML or Maximum A Posteriori Probability
(MAP) detector, which is also often referred to as the Bayesian detector [85]. It
was shown in [85] that the Bayesian detector achieves the lowest possible BER
of all non-linear detectors. Another attractive non-linear MUD is the IC based
MUD, classified into successive IC [86] and parallel IC [87]. In general, the signals
transmitted by the various users in a communication system are channel coded.
Instead of separating the signal processing operations of the demodulator from
those of the decoder as in the IC algorithms, a better strategy is to use the soft-
information metrics output by the channel decoder to enhance the suppression -
~ of the MAI at the demodulator with the aid of a turbo-style iterative detection
algorithm [88,18]. It is widely recognized that the optimum MUD has a non-linear
decision boundary [80] and that the employment of non-linear MUDs typically
provides a better performance in comparison to linear MUDs. However, this

performance improvement is achieved at an increased complexity.
Table 2.3 summarizes the history of MUD design.

Table 2.3: Selection of MUD papers .

Author(s) v ~ Contribution

[79] Investigated the uncoded probability of error achievable by
Verdd optimum ML MUDs for transmission over asynchronous

Gaussian multiple-access channels. v

(87] Proposed and analysed a multistage MAI mitigation scheme
Varanasi for coherent demodulation in an asynchronous CDMA sys-
and tem. '

Aazhang
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Author(s)

Contribution

[86]
Patel
Holtzman

and

Analysed a simple SIC scheme for coherent and noncoher-
ent modulation of Direct Sequence Code Division Multiple

Access (DS-CDMA) systems, where the channel parameter

estimation was carried out using the output of a linear cor-

relator.

(88]
Reed et al.

Iritroduced_an iterative multiuser receiver for DS-CDMA em-

ploying forward error control coding. The receiver employed

the MAP criterion for the multiuser received signal, but em-

ployed only single-user decoders.

| [18]
Wang and
Poor

An iterative receiver structure was proposed for detect-
ing multiuser information in a convolutionally coded asyn-
chronous multipath DS-CDMA system. The receiver per-
forms two successive soft-output decisions carried out by a
SISO MUD and a bank of single-user SISO channel decoders
with the aid of an iterative process.

[83]
Gesbert

It was stated that minimum error-rate linear receivers have
the potential of significantly outperforming MMSE receivers,
but no simple direct method of designing minimum error-rate
receivers exists. The author derived a closed-form approxi-

mate solution for this problem.

[40]
Li
Wang

and

Based on the Extrinsic Information Transfer (EXIT) chart
technique, the authors studied the mutual information trans-
fer characteristics of SIC aided MUDs designed for coded
CDMA systems operating in synchronous AWGN and asyn-
chronous multipath-fading channels.

[29]
Chen et al.

An adaptive beamfornﬁng technique was proposed based on
directly minimising the BER. This MBER approach adjusts
the antenna array elements more intelligently than the stan-
dard MMSE approach.

[19]
Tarable
et al.

A structure based on a linear user separation technique was
introduced and analysed, where the matched filter outputs

| were generated according to the MMSE criterion for the first

few iterations, and then the MMSE filter was by-passed, when
the interferers’ bits became known with a sufficiently high

probability.
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Author(s) ' Contribution

[89] It was showed that for DS-CDMA using BPSK modulation
Schober | transmission over complex baseband channels the real part of
et al. the Matched Filter (MF) output and not the MF output itself

should be used as sufficient statistics for further processing.
Based on this observation, the authors derived novel linear
and decision-feedback aided MMSE receivers.

[30] Invoked genetic algorithms for finding the optimum weight
Alias et al. | vectors of the MBER MUD in the context of multiple- |
antenna-aided multiuser OFDM.

'[34] A novel MSER design was proposed for a beamforming as-
Chen et al. | sisted receiver, where the system’s SER was directly opti-
' mized for a QAM system.

[84] Provided .a genenic framework for adaptive minimum error-
Chen et al. | probability filter design suitable for the employment in a va-
riety of communication systems. The advantages and dis-
advantages of the adaptive minimum error-probability filter
design were analysed in compaﬁson to the classic Wiener fil-

ter aided design.

2.2.1 System Model

The system considered consists of K uplink MSs employing a single—elefnent trans-
mit antenna and a BS receiver, which has L number of AEs. The symbol s of
the kth MS is transmitted to the BS’s I{th AE over a narrowband channel charac-
terized by the channel coefficients hy,. The channel coefficient hy, represents the
complex-valued gain of the channel between MS & and the lth BS receiver AE.
- The output signal of the Ith AE of the BS receiver can be written as

K
T = Z Pugse + m, (2.4)

k=1

where n; is the complex-valued AWGN having a variance of E [Im|?] = 202. Under

the assumption of perfect synchronization, the channel’s output is described by a
(Lx K)-dimensional matrix H = [h; h, -+ - hg], where the (I, k)th element of the
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matrix is given by hj,. The channel’s output vector r can now be expressed as

r=Hs+n, | (2.5)

where the column vector s = [s; sy - sx]T contains the symbols transmitted by
the MSs and the associated AWGN is given by n = [ny.ng---ng]7. ’

In this thesis, we only discuss BPSK modulatiqn, Quadrature Phase Shift
Keying (QPSK) modulation and 16QAM modulation using Gray mapping. The
constellation diagrams are shown in Figure 2.5, in which E, denotes the average

symbol energy.

The soft output estimated symbol vector § of a linear MUD can be written as

§=WH"r, . (2.6)

where W represents a (L x K )-element complex-valued MUD weight matrix and
the superscript  denotes the Hermitian transpose. The different columns of W '

'denoted as wy are associated with the different transmitters’ symbols. The hard

detected bits are given by

be(1) .= sgn(R[3k]), ’ (2.7)
QPSK:
bie(1) = sgn(R[5]), (2.8a)
be(2) =sen(Sfa]), | (2.8b)
16QAM:
b (1) = sgn(R[3)), (2.92)
be(2) = sen (R[5 — F55e), (2.00)
bi(3) = sgn(S3x]), | (2.9¢)
be(4) = sgn(l%[ﬁkﬂ . —\/%E) (2.9d)

where by(1) is the ith bit of the kth user’s hard decision based symbol &, sgn(-) is
signum function, | - | represents the absolute value of a real number, R|:] denotes
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Figure 2.5: Constellation diagrams of BPSK, QPSK and rectangular 16-
QAM using Gray mapping. E, denotes the average symbol energy.

the real part and (] denotes the imaginary part.

Let us now consider a two-user, single receive antenna aided system as an

example for plotting the cost function surface of various multiuser detection algo-
rithms. BPSK signals are transmitted over a narrowband non-dispersive channel
and the CIR matrix of the two uplink users is given by H = [0.708—350.707, 0.997

—30.083].
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12.2.2 Bayesian Detection

We wish to design a signal detector that makes a decision concerning the kth
user’s transmitted signal s, based on the observation of the vector r, in order
that the probability of a correct decision is maximized. With this goal in mind,
we consider a decision rule based on the computation of the a poster'z'orz" proba-
bilities defined as.P(sk=s(m)|r), where s(™ is the mth symbol of the modulation
constellation, m € {1,2,--- , M}, and M denotes the number of possible symbols
in the modulation constellation. The decision criterion is based on selecting the

signal corresponding to the maximum of the set of a posteriori probabilities:

8 = arg rr%ach(sk=s(m’|'r)
s m

= arg max P(s9|r), (2.10)
sm) vs(@) ' .
siﬂ)=s(m)

where s(@ is the gth possible transmitted signal combination of the K users,
g € {1,2,---,M*}, and s,(f) is the kth user’s signal in this combination. This
decision criterion is referred to as the Maximum A Posteriori Probability (MAP)

criterion, which minimises the probability of error. Using Bayes’ rule, the criterion

may be expressed as

P(r|s®) P(s@)
P(r)

8k = argmax E
s(m)
vs(9)
‘31(:)=3(m) ,

| = argmax P(r|s9)P(s@), (2.11)

vs{®)
32‘7):3("‘)

where P(s@) = [/, P(s,(cq)) is the a priori probability of the gth possible signal
combination being transmitted, and P(r!s“”) is the conditional probability of the

observed vector given s(@, which can be expressed as

: / — Hs@||? ’
P(rjs@) = 5 = exp (— M) (2.12)

2 2
wog 202

Simplification of .the MAP criterion becomes possible, when the transmit-

ted signals are equally probable. Consequently, the decision rule based on find-
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ing the signal that maximizes P(s(?|r) 1s equivalent to finding the signal that
maximizes P(rls(‘J)). The conditional probability P'(r|s(‘I)) is usually referred
to as the likelihood function, and the decision criterion based on the maximum
of P(r[s) over all the possible transmitted signal coinbinations is called the

Maximum Likelihood (ML) criterion, which now may be written as

5% = arg max > P(r|s@). | (2.13)

vs(?)
sSCQ):g(m)

Let us now consider a BPSK system and define the signed ML decision func-
tion as ' :
fe(r) =" Z P(r[s9) - Z P(rjs@). (2.14)

vs(9) : vs(9)
s;:])=+1 S;cq)=—1

Then the corresponding decision rule can be written as
8k = sgn(fi(r)). - (2.15)

The bold line shown in Figure 2.6 indicates, how the ML detector formulates
an optimum non-linear decision boundary. The surface illustrates the first user’s
channel-output for the specific channel setup defined in the last paragraph of
Section 2.2.1 at F,/Ny=10dB.

2.2.3 Minimum Mean Squared Error Detection

The Minimum Mean Squared Error (MMSE) MUD optimizes the kth user’s
weight vector wy based on minimising the MSE between the actual transmit-

| ted symbol s, and the soft output §; of the MUD. The MSE criterion can be

expressed as follows

émse = E[se — 5%
=E|sk — wiir[*] |
= E[sys}] — Wi E[sir] — WZE[SkI‘*] + wiE[rr? ] wy
= E, — wiHE[s}s] — wa*E[sksT"] +wl (HE [ss”]H" + E[nnH])W,c

= E, — Eswi h, — Egwihy, +wi (E;HHY + 2021, ) wy,, - (2.16)
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Decision boundary ——

Figure 2.6: ML decision boundary (bold line) and the first user’s channel-
output (surface) for the specific channel setup defined in Section 2.2.1 at
Ey/Np=10dB.

where E[-] denotes the expected value, and I, denotes the (L x L)-element identity

matrix.

The MMSE solution is now defined as
wy = argmin & yse. (2.17)
Wk

Figure 2.7 shows the MSE surface for the first user of our example introduced in
the last paragraph of Section 2.2.1 at E,/Ny=10dB as a function of the weight’s
real part R[w;] and imaginary part $[w;]. The contours of the MSE surface
are plotted on the base plate of Figure 2.7. We can see the typical quadratic
shape of the cost function, which may be minimised by taking the derivate of
Equation (2.16) and setting it to zero. The gradient of the MSE cost function is
given by

_ ,9msE
Vémse =2 Fw

= —2E,h; + 2(E,HH" + 2021, ) wy. (2.18)
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Figure 2.7: MSE cost function surface for the first user of our example
introduced in Section 2.2.1 at Ej/Ny=10dB as a function of the weight’s

real part R[w;] and imaginary part $[w;].

By setting V&yse = 0, the MMSE weight vector can be shown to be [6]

22 _\~*
Wi = (HHH = E"I[,) hk.

(2.19)

It is apparent that the MMSE weight vector attempts to reduce the effects

of noise enhancement. Therefore the MMSE solution can be viewed as a striking

compromise that takes into account the relative importance of each interfering

user as well as of the background noise.

2.2.4 Real-valued Minimum Mean Squared Error

Detection

For BPSK systems, the optimal MMSE receiver would only minimise the MSE
between the transmitted signal and the real part of the MUD’s output signal.

Accordingly, the Real-valued Minimum Mean Squared Error (RMMSE) solution

is introduced to avoid considering the imaginary part’s minimisation.

Let us
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define the complex matrices’ vertical stacking by the subscript .. Then we have

_®My o -
M, = [Q[MJ, | (2.20)

where M, can be any matrix, which is vertically stacked. The real-valued MSE

criterion may be expressed as

€rmse = E[(sk ~ §R[§k])2]
= (s = wEero)’]
;': Es - 2Esw£,chk,c -+ WZ‘,C(ESHCHZ + 0'727,12L)Wk,c- (221) )

Similarly to the MMSE solution, the'RMMSE optimization problem can now
be defined as '
Wi = arg mm fRMSE : (2.22)

Figure 2.8 shows the real—valued MSE surface for the first user of the example
introduced in the last paragraph of Section 2.2.1 at Ey/No=10dB as a function of
the weight’s real part R[w,] and imaginary part S{w;}. The contours of the real-
valued MSE surface are plotted on the base plate of Figure 2.8. The minimum
point on this surface can be found by setting the gradient of Equatmn (2.21) to
zero. The gradient of Epprse 1S given by

d
Vérmse = gI;MSE

k,c

= —2Eh;  +2 (ESHCHCT + 021oL) Wie: (2.23)

Setting the gradient to zero leads to the closed-form solution [89)

-1 v
Wi, <H H =+ E”Iz[,) hk,c- (2.24)

The first half of the elements in wy . are the real part of the RMMSE solution
Wy, while the second half of the elements form the imaginary part.
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Figure 2.8: Real-valued MSE cost function surface for the first user of the
example introduced in Section 2.2.1 at Ej/Np=10dB as a function of the
weight’s real part R[w;] and imaginary part &[w].

2.2.5 Minimum Bit Error Rate Detection

The MMSE algorithm is the most popular design strategy in the context of linear
MUDs. However, a better strategy is to choose the linear MUD’s coefficients so as
to directly minimise the bit error probability or the BER, rather than the MSE.
This is because minimising the MSE does not necessarily guarantee that the BER
of the system is also minimised. The family of detectors that directly minimises
the BER is referred to as the class of Minimum Bit Error Rate (MBER) detectors.

For BPSK systems, the BER encountered at the output of the MUD charac-
terized by the combiner weight vector wy of user £ may be expressed as

Peb = P(sgn(%[sk]) ¢ éR[.g’k(Wk)] = 0) (225)

Define z = sgn(R[sk]) - R[5x(wyx)] as a signed decision variable. The PDF of z
is constituted by a mixture of the Gaussian distribution associated with each
possible combination of the transmitted data symbols of all users. Under the

assumption that all the noise-free signal states are equiprobable, the PDF of z is
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given by. {29]
| 2
et )|
P MK\/%an\/w,}:’wk,qzl Pl 202wilwy T

where M¥ is the number of eqﬁipfobable combinations of the binary-vectors of
the K users for M-ary PSK systems. Furthermore, §§f) = wHHs® denotes the
noiseless signal at the output of the MUD related to the kth user, when the gth

possible combination of the K users s@ is transmitted. The erroneous decision '

events are associated with the area under the PDF curve in the interval (—oo, 0),

which is quantified as

= _1_§ Q(sgn(% [Sl(cq)]v) ) %[Eiq)] > _ (2.27)

The MBER solution is defined as
Wi = arg min Pey,. (2.28)
Wk

In Figure 2.9 the BER surface is plotted as a function of the array weight co-
efficients for the example introduced in the last paragraph of Section 2.2.1 at
Ey/Noy=10dB. The contours of the BER surface are plotted on the base plate
of Figure 2.9. The different array wéights of the MMSE, the RMMSE and the
MBER solutions are also indicated. The éorrésponding BERs are distinctly dif-
ferent at a specific array weight value. Even when the optimum weight value is
used for all three MUDs, the MBER solution has the lowest BER. As already

mentioned above, the solution to this problem can be found by taking the derivate |

of Equation (2.27) and setting it to zero. From the expression of Equation (2.27),
we know that the BER is independent of the magnitude of the MUD’s weight
vector, as also seen in Figure 2.9 indicated by the straight-line BER contours
and the narrow trough near §R[w1] = 0, which has an infinite number of solutions
along its spine. The gradient of Equation (2.27) may be expressed as [29]

oP €p
ow

VPeb =2
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MMSE solution
SE solution

»O X

Figure 2.9: BER cost function surface for the first user of the example
introduced in Section 2.2.1 at E,/Ny=10dB as a function of the weight’s
real part R[w,] and imaginary part $[w;].

K
= 1 %: exp —_ @[:9_—,(;1)_])—2
MK 210, /Wi wy e 202w wy,

§R[§(q)]w
. @1y 2% 1Tk _ g4 299
sgn(R]s{ ])( S0 (229)
which is derived in Appendix A.l, when considering the absence of a prior: in-

formation.

Equation (2.29) does not provide us with a closed-form solution for the MBER
MUD weights. Therefore, an iterative strategy based on the steepest-descent
gradient method can be used for finding the MBER solution. The steepest-descent

gradient algorithm is summarized as follows

wi(i41) = wy (i) + 0d(i)
= w (1) — 6V Pey[wi(7)], (2.30)

where 7 is the iteration index, ¢ represents the step size and V Pey[wy(7)] is the
gradient of the bit error probability during the ith iteration. According to this
method the weight vector wy of the linear MUD is updated iteratively, until the
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specific weight vector that exhibits the lowest BER is arrived at. Unfortuhately,
the steepest-descent gradient algorithm may converge relatively slowly. In or-
der to circumvent this convergence problem, we invoke the Simplified Conjugate
Gradient (SCG) method [29], which uses a constant step size for all iterations
comparing with the original conjugate gradient algorithm. This strategy chooses
~ the vectorial direction of the current MUD weight vector update to be orthogonal
to-that of the previous update and 'impro'ves the achievable convergence speed.
The SCG algorithm operates as follows [90]: o |

Initialization: Set the iteration index i=1. Choose a step size 6>0
and a termination scalar #>0. Given w(1) and d(1) =
— V Pey|w(1)], carry out:

Loop: If ||VPe[w(i)]|| < B, goto End. Else

w(i+1) = w(i) + 6d(i), (2.31)
| vPelw)| 230
R
d(i+1) = ¢;d(i) ~ VPe[w(i+1)], (2.33)

and ¢ =i+ 1. Goto Loop.

 End: Weight vector w(i) is the chosen solution.

Figure 2.10 shows the iterative weight—update cOnvergence process of the SCG al-
gorithm, emerging from the MMSE solution and approaching the MBER solution.

For QPSK systems, we have in effect two binary phase-modulated signals in
phase quadrature. Since there is no crosstalk or interference between the signals:
modulating the two quadrature carriers, the bit error probability can be expressed

- Pey = %(Pe] + Peq).' (234)

The gradient of the probability is

VPe, = 1(VPes + VPeg). (2.35)

The in-phase error prdbability'PeI and its gradient V Pe; are the same as in
Equations (2.27) and (2.29). The quadrature-phase error probability Peg is sim-
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T MMSE solution X
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Figure 2.10: BER surface and the iterative weight-update trajectory of the
SCG algorithm (polygonal line), emerging from the MMSE solution and
approaching the MBER solution.

ilar to that in Equation (2.27), except for considering the imaginary-part of the

desired symbol, which can be expressed as

if - sgn (S‘ [SE)}) . S‘[gl(:)]
Pen = . 2:30
€Q = 7% q§=1 Q S i (2.36)

Based on Appendix A.1, when considering the absence of a priori information,

the gradient of Peg can be expressed as

_o 8P6Q
VPGQ = 8W,';
- MK 2M O/ Wi W, — 4 202w w
g—(Q)
-sgn(S[s:"]) MH'HS(") : (2.37)
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2.2.6 Minimum Symbol Error Rate Detection

Since the MBER algorithm cannot be directly applied in high-order QAM sys-
tems, a Minimum Symbol Error Rate (MSER) algorithm has to be desighéd.
~ Let us now consider an M-QAM system, and define the constellation symbol

as smm) — »___ii/[E_i_ﬁ(gm - VM -1) + \/_(_3158_(% — VM — 1), where we

have m € {1,2,--,v/M} and n € {1,2,--- ,v/M}. When the desired user k
- transmits symbol s; = stmm)  the conditional PDF of 3 is a mixture of Gaus-
sian distributions, each of which is centered at the legitimate symbol position
59 = wiHs® = wl (hyst™m 4 Dbk hys?). Then the conditional PDF is

expressed as (34]

‘ : s (a2 :
_ 1 . Sk — S |
~ —o(mmn)y _ k
P _ e —_ ], (2.38
p(8ksk=s v) ME=1.2r02wilwy, VZ(Q:) XP( 20’2WkHWk> (238)
. siq):s(m.n) . .

new

In general wihy i is complex-valued and the vector rotation operation of wj
—%—wk can be used to ensure that wy H'h,, positive and real-valued. This vector
rotatlon is a linear transformation and does not affect the system’s SER {34]. By

defining b; = \/;/(;——_—1)(2?— VM), i€ {1,2,-, v/ M—1}, the decision boundaries
of 4 are determined by b;wi hy, for the in-phase component and by jb;w{hy for
the ’quadrature phase component. Assuming that the kth user transmits symbol
. ™) it may be readily seen that the points 5% conditioned on s{® = stmn)
are distributed symmetrically around the symbol point wy Hh,s(mn) [34]. Further-
more, when user k transmits an arb1trary legitimate symbol s(m ™, the conditional
PDF of p(x|sx=5™™) retains the same shape and remains in the same position
with respect to the corresponding decision boundaries, which is referred to as the
shifting property [34]. Then the conditional in-phase component error probability

of the hard detected symbol R[5] # R[s(™™] can be shown to be

Pe; = '—Z (/ ‘ sk‘sk s(l’" )ng[Sk]
blwk hk .
v : bm_.lwk hy
+ Z (/ (sk[sk—sm”))d%[sk]
+oo ) - ‘
+/ . p(gk,skzs(m,n))d%[gk])
b,

imwil hy,
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—00

bm_lwfcihk : o .
+/ p(§klsk:s(m'"))d%{§k]>

oM -2V M [t
= _\/—‘_ p(8k]si=s"™) dR[3]

M b1w‘€{hk . v
OM - M bywHh, — R[5 _
MM s (Mo fll)

, SECQ)___S(I,n)

Similarly, the conditional quadrature-phase corhponent error probability' of the

hard detected symbol $([3x] # S[s(™™] can be shown to be

oM — 2v/M bywhhy, — $[59] )
Peg = ———— Q( . . (2.39b)
| MK \7%‘1:) , o/ Wiwy, |
D =glm1)
k
Then the resultant symbol error rate is given by
' Pe, = Pe; + Peq — Pe; - Peg. v (2.40)

The resultant MSER solution is defined as the one that minimises the upper
bound of the SER given by

wy = arg min Peyp
Wk : )
= argmin(Pe; + Peg). - (2.41)
Wk
The upper-bound Pe,p is very tight, i.e. very close to the true SER Pe, since
Pe; - Peg is typically small [34].

In order tb arrive at the optimum weights for the MSER solution by using the
SCG method, we need the gradient of Pe,g

VPe, = VPe; + VPeg, (2.42)
where based on Appendix A.2 and in the absence of a pm'on' information, V Pej

and V Peg can be expressed as

8P6]_
ow},

VPeI =2
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oM — 2\/_ Z o _ (bowlhe - R[57))°
M K \/ﬁ(rm/ or P 202wiwy

(q)='s(1,n)

b Hh _ =@ | .
i (( 1Wi %[Sk ])Wk + Hs@ — blhk> . (2.43a)

wak

and

9 86P6*Q ’
Wi - :
2M — 2M T _ (bawf'he = S[5))°

~ MF o /el o 207whwi

(q)'___s(m,l)

brwih, — S[5 | |
. (( 1Wy by . [5]) wi — jHs® — by . (2.43b)
Wi Wi ' .

VPeQ =

2.2.7 Interference Cancellation Aided Detection

In addition to linear detection schemes, researchers have also proposed nonlinear

detectors that cancel the interferers’ signals from the composite multiuser signal

“to detect that of the desired user. More explicitly, the Interference Cancellation

(IC) based MUDs attempt to remove the MAI by reconstructing-the original
transmitted signals of one or several users and cancel the interference imposed by
these reconstructed signals on the composite received signal. The resultant signal
is then processed iteratively for removing the effects of all users, invoking the same
procedure, in order to obtain the data estimates for the remaining users, until all
the users’ signals are detected. The IC aided detectors include two classes: the
family of successive IC [86] and the parallel IC techniques [87].

The successive IC assisted MUDs [86] adopt a Serial approach to canceling the
effects of interference. Each stage of the successive IC MUD makes a decision,
regenerates and cancels the effects of the modulated signal of one user from the
compoéite received signal. Intuitively, the process commences by removing the
effects of the strongest signal, since it has the most detrimental effect on the
remaining users and can be most reliably demodulated. More explicitly, the
successive IC MUD is susceptible to the initial estimation error and the stfongest
signal can provide the most reliable data estimates for initiating the process.
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Thus, the successive 1IC aided MUD requires sorting all the users in descending
order according to-their received signal powers and then successively eliminates
the effect of the strongest signals, until all users’ data are detected. Paradokically,
successive IC detectors perform most reliably, when the interference is stfong
relative to the desired signal, i.e. when there is a significant power difference
between the users’ signals. By contrast, the successive IC MUD'’s performance is
poor, when the power levels are similar. Naturally, the received signals have to be
sorted according to their power correctly, and further signal reordering is required,
whenever. the power profile changes. This will be a particular risk in a high
capacity system having widely varying power levels. Finally, serial cancellation |
of the users’ signals one by one will lead to a relatively high,complexity.

As opposed to the above-mentioﬁed successive IC technique, the parallel IC
based MUD [87] estimates and subtracts all the MAI for each user simultane-
- ously. It usually consists of multiple stages of IC, so the parallel IC MUD is
also often referred to as multistage IC. In each cancellation stage, the signal of
each user is reconstructed using the data estimates generated during the previ-
ous cancellation stage. Then, for each user, the reconstructed signals of all other
users are subtracted from the composite received signal and the resultant signal
is processed by a MF, in order to obtain a new set of data estimates for this
user. The number of parallel IC stages is determined by the tolerable detection
complexity that the system can afford. The iterative parallel IC can be repeated
the affordable number of times, in order to achieve the best possible performance.
Hence parallel IC detection has been regarded as one of the most promising MUD
‘techniques. In an accurately power-controlled, equal-power scenario the classic
parallel IC scheme tends to perform better than the successive IC scheme. A
straightforward enhancement of the parallel IC detection is to use soft decisions
rather than hard decisions in each iteration, except for the last one.

2.2.8 Computational Compléxity of MUD Schemes

For the sake of fair comparisons of the MUD algorithms, the number of real-
valued operations is used as the unit of complexity, and the complexities imposed
by a real-valued multiplication and a real-valued addition might be considered.
equivalent. A single complex-valued addition’s complexity is equivalent to that

of two real-valued operations, and a complex-valued multiplication’s complexity
is equivalent to that of six real-valued operations. The computational complexity
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~of a (NxXN )—elemént complex-valued matrix inversion is on thie order of 8N®
real-valued operations, denoted by O(8N?).

The comparison of the different MUD schemes’ computational complexity
is summarized in Table 2.4 when considering the detection of single transmit-
ted symbol. The optimum Bayesian detector has the computational complexity
of (D(LM K ), which increases exponentially with the number of users K. The
MBER and MSER detectors have similar complexities of O(N.,LMX), where
N,y denotes the number of iterations in the SCG algorithm. It is clear that the
computational complexity of the MBER and MSER MUDs is about N, times
higher than that of the Bayesian MUD. The high computationally complexity
associated with determining the MBER or MSER weights is owing to the fact
that the number of legitimate channel output states is proportional to O(M*)
and thus grows exponentially with the number of transmit AEs.- However, the
complexities seen in Table 2.4 were obtained under an assumption of rapid fading
environments. For a slowly fading channel scenario, the complexity of all linear
MUD algorithms will be significantly lower than the corresponding complexity
in the table, because the weights calculated already can be reused, when the
channels are considered time-invariant.

Table 2.4: Comparisoh of computational complexity per symbol of different
MUD schemes

MUD Computational complexity | Equation(s)
Bayesian | (8L+3+ H;—Z) MK —M . . (2.12), (2.14)
MMSE |O(%)+1602 - L +6L+£-2 (2.19)
RMMSE | O(%2) + 1617 — 4 + 2+ % — (2.24)

MBER | (((4L+2)log, M +8L — 2)Ng + 8L — %%)MK + | (2.28), (2.29),
(18L + 5)N,, + 8L — 2 - | (237)

MSER _ (%"—j—liwﬂ + 8L - 2) Ny + SL - %) M¥ +(24L + | (2.41), (2.43)
11)N,, + 8L — 2

2.2.9 Performancé of MUD Schemes

Let us now consider a receiver beamforming scheme employing a three-element
antenna array. All usérs have the same transmit power as well as channel coef-
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Figure 2.11: BER versus E,/Np performance of the ML, MMSE, RMMSE
and MBER, beamformers employing L=3 receive AEs for supporting K=6
BPSK users communicating over AWGN channels. The DOAs of the de-
sired user and the other interference users are seen in Figure 2.12.

desired user
interferer 3

interferer 2

 interferer 1

“)\/2 —e \

Figure 2.12: Three AEs, where the signal of the desired user arrives from
15°, while the interfering signals from 70°, 35°, —5°, —25° and —50°.

ficients of Ay = 1.0+50.0 (k € {1,---,K}). Figure 2.11 shows the BER versus
Ey/Np performance of our BPSK system supporting K=6 users. The DOA of
the desired user is 15°, and the DOAs of the other interference users are 70°, 35°,
—5°, —25° and —50°, respectively, as seen in Figure 2.12. It can be observed
that the ML receiver exhibits a sigﬁiﬁcantly better performance than the linear
detectors. For BPSK modulated signals, the MBER detector clearly outperforms .




2.2.9 Performance of MUD Schemes ‘ 45

10° -

N .

102 o : :
x v ' A
103 3 : \\ : \\

10" : {
—%— MMSE | S\
—a— MBER ]
— ML

0 10 | 20 . 30
Ey/No (dB)

Figure 2.13: BER versus E, /Ny performance of the ML, MMSE and MBER
beamformers employing L=3 receive AEs for supporting K=4 QPSK users
communicating over AWGN channels. The DOAs of the desired user and
the other interference users are seen in Figure 2.14. '

the MMSE detector. This is mainly due-to the fact that the MBER detector
only optimizes the real-part of the filter’s output, whereas the MMSE algorithm
minimises the MSE composed of both the real and the imaginary part of the
filter output. The RMMSE detector performs similarly to the MBER detector,
when the Eb/No value is lower than 20dB. However, in the high-SNR region the
RMMSE detector cannot match the performance of the MBER detector, since

the residual interference plus noise is non-Gaussian distributed [83]. |

The BER versus E,/Np performance of the QPSK system supporting K =4
users is shown in Figure 2.13. The DOA of the desired user is also 15°, and the
DOAs of the other interference users are 45°, —20° and —50°, respectively, as seen
in Figure 2.14. In this QPSK case, the ML detector still has the best performance.
The MBER detector outperforms the MMSE algorithm at high SNRs. This per-
formance difference indicates that the MMSE algorithm is incapable of optimally
separating the linearly separable data sets owing to its MSE-based optimization
function, whereas the MBER algorithm achieves this goal.

Figure 2.15 shows the SER versus Ey /Ny pefformance of a 16QAM modulated
system supporting K'=4 users. The DOA of ‘the desired user is 15°, and the
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desired user
interferer 2

interferer 3 interferer 1

Figure 2.14: Three AEs, where thé signal of the desired user arrives from
15°, while the interfering signals from 45°, —20° and ~50°. '
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Figure 2.15: SER versus Ej, /No performance of the ML, MMSE and MSER
beamformers employing L=3 receive AEs for supporting K=4 16QAM users
communicating over AWGN channels. The DOAs of the desired user and
the other interference users are seen in Figure 2.16.

DOAs of the interfering users are —12°, —43° and —57°, respectively, as seen in
Figure 2.16. For this example, the MSER beamformer achieved a significantly
better performance than the MMSE beamformer at high‘SNRs. We should be
aware that if the data sets conditioned on the desired user’s transmitted symbol
are not linearly separable, both the MMSE-and the MBER algorithms will have

a similarly poor performance.
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interferer 1
d?sired user

interferer 2
interferer
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Figure 2.16: Three AEs, where the signal of the desired user arrives from
15°, while the interfering signals from —12°, —43° and —57°.

2.3 Concluéions |

In this chapter different MIMO structures, namely the STCs of Section 2.1.1, the
spatial multi_plexirig of Section 2.1.2, the SDMA of Section 2.1.3, the beamform-
ing of Section 2.1.4 as well as the multi-functional MIMOs of Section 2.1.5 and
the distributed MIMOs of Section 2.1.6 have been introduced. Different smart
antenna architectures provide different benefits, such as array gain, diversity gain,
multiplexing gain, interference reduction and coding gain. The advantages of the
basic smart antenna structures compared to single-input single-output systems

were summarized in Table 2.2. .

- In Section 2.2, we introduced various MIMO multiuser detection algorithms.
The non-linear Bayesian detector of Section 2.2.2 constitutes the optimum non-
linear receiver, which signiﬁcan’dy outperforms all linear MUDs. The RMMSE
MUD of Section 2.2.4 designed for BPSK systems considers only the real-part
of the signal, hence it is capable of achieving a better performance than the
conventional MMSE MUD of Section 2.2.3. The MBER MUD of Section 2.2.5
and the MSER MUD of Section 2.2.6 both constitute the optimum linear mul-
tiuser detection algorithms, where the former was designed for BPSK and QPSK
schemes, while the latter for higher-order QAM schemes. The MBER and MSER
algorithms minimise the BER or SER directly at the output of the MUDs and
hence are capable of outperforming the MMSE and RMMSE MUDs at the cost
of a higher complexity. Furthermore, we also introduced IC based MUDs in -
Section 2.2.7. ’ '

The detailed performance and computationdl complexity of the methods men-
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tioned above are summaﬁzed in Table 2.5. The system uses the parameters of
Section 2.2.9, depending on the modulation scheme used. It can be seen in Ta-
ble 2.5 that the Bayesian d_etectdr outperforms other MUDs as a benefit of its
non-linear decision characteristic. The MMSE MUD has the lowest computa-

“tional complexity." The RMMSE algorithm designed for BPSK systems is capable

of achieving a better performance than that of the MMSE MUD at the cost of a
similar complexity. Furthermore, the optimum linear MBER and MSER detectors
signiﬁcantly outperform the MMSE and RMMSE methods. Although the MBER
and MSER MUDs cannot achieve a performance similar to that of the Bayesian
MUD, they impose a lower computational complexity, when communicating over

block-fading channels.

Table 2.5: Performance and complexity summary of MUD schemes

. , SNR at a

MUD | Section | Complexity | Modulation | BER of 1073
» | BPSK 25.5dB
Bayesian | 2.2.2 | O(LM¥) | QPSK 18dB
- 16QAM 18.5dB

_ ‘BPSK unachievable

MMSE | 2.2.3 0(%‘) QPSK | unachievable

- 16QAM unachievable
RMMSE | 224 |O(%) = |BPSK 40dB
[ BPSK 20dB
MBER |225 | O(LN,M¥) [QPSK 20dB
MSER | 226 | O(LN,,MF) | 16QAM 27.5dB




Chapter 3
Iterative Beamfoi"ming‘ Receiver

In this chapter, multiuser detection and channel decoding are combined in order to
improve the achievable multiuser beamforming receiver’s performance; following
the ‘turbo detection principle’. The soft output of the channel decoder is fed
back to the beamformer’s input to improve the achievable multiuser detection
performance. In return this improvement then benefits the decoder. The resultant
iterative multiuser receiver is designed based on the soft parallel IC algorithm and
the MBER algorithm, not the conventional MMSE algorithm. Based on the EXIT
chart technique [36], we analyse the achievable performance and the convergence
behaviour of different joint detection schemes, both of which are highly dependent
upon the different system parameters and channel conditions. The EXIT chart
analysis is shown to be valid for the MBER MUD?, despite the non-Gaussian

distribution of its output.

Iterative processing was introduced by Berrou in [12] in the context of iter-
atively decoding two parallel concatenated convolutional codes referred to as a
turbo-code. His work has later been extended to serially concatenated codes [91]
and then found its way gradually into iterative detector designs, such as for ex-
ample iterative equalizers [92,15,16] or iterative multi-user detectors {18,19]. In
this section we propose a novel iterative beamforming receiver. The MBER beam-
forming design is optimal in terms of the BER and hence it generally outperforms
the MMSE and the RMMSE solutions at the cost of a higher complexity. EXIT
charts [36] can be used to analyse the convergence behaviour of an iterative MBER,

1This treatise deals with the design of beamformers, where typically only the desired user’s
signal is detected. However, the same detection procedure may be applied for all the users and
hence we will employ the more general terminology of MUD.

49
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multiuser detection scheme as a function of the system parameters and channel

conditions.

3.1 System Description

3.1.1 Signal Model

The system supports K users and each user transmits his/her signal on the same
carrier angular frequency of w = 2mf. The receiver is equipped with a linear
antenna array consisting of L elements, which have a uniform element spacing of

A/2, as shown in Figure 3.1, where ) is the wavelength.

Assume that the channel is non-dispersive in both the angular domain as well
as in the time domain and hence does not induce Intersymbol Interference (ISI).
Then the symbol-rate received signal samples can be expressed as

K

n(n) =3 s m(n) (3.1)
k=1 . /
where I € {1,2,--+,L}, h; is the non-dispersive complex-valued channel coeffi-

cient of user k, s;(n) is the nth symbol of the kth user, n;(n) is a complex-valued

Gaussian white noise process associated with E[|ny(n)|?] = 202, and

4(6) = 21— 1)sin(6)

Figure 3.1: Geometric structure of the antenna array consisting of L ele-
ments showing the received signal of user k, where 8, is the LOS compo-
nent’s angle of arrival.
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= g(z ~1)sin(6y) (3.2)

is the relative time delay at array element [ for the source signal of user k, with
f; being the Line of Sight (LOS) angle of arrival for source k, and c is the speed
of light. ‘ ' -

If source k is the desired user and the rest of the sources are the interfering
users, then the desired-user’s Signal-to-Noise Ratio becomes SNR,, = Jh—;c;lﬁ and
the desired Signal-to-Interference Ratio of user k' is SIRgp = T':—;'I%, where E, is
the symbol energy. The received signal vector r(n) = [ri(n) ro(n)---rp(n)]” is
givéen by '

r(n) = Hs(n) + n(n), (3.3)

where we have n(n) = [n;(n) ny(n) - - ny(n)]?, the transmitted symbol vector of

the K users is s(n) = [s1(n) sy(n)- - sx(n)]T and the system matrix is denoted
by H = [h; hy - - - hg], which is associated with the steering vector

hy = [hpe @) pemiotaldn) .. hke~:'wta(9k>]T. | (3.4)

for source k, k € {1,2,--- ,K}. The system vector hy, is the unique, user-specific
signature of user k. In this chapter, we assume that the relative time delay of
all users with respect to the angularly closest neighbours is the same. All the

angular locations of the users were selected under this constraint.

~

- 3.1.2 . Iterative Multiuser Beamforming Receiver

Strlicture

The iterative multiuser beamforming receiver’s structure is shown in Figure 3.2,
which consists of two stages, namely the Soft-Input Soft-Output Interference
Cancellation aided bearriforfning MUD, followed by K parallel single-user SISO
channel decoders. The two stages are separated by the usual deinterleavers and.

interleavers.

The proposed SISO beamforming MUD first computes the estimated symbol
§k(n) corresponding to the transmitted symbol si(n) using a linear filter, which
determines the coefficients of the beamformer weight w(n) according to the
specific design’ criterion employed and uses this weight to estimate §(n) from
the received signal r(n) with the aid of a linear transformation [17]. Let us now
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Figure 3.2: Iterative multiuser beaimforming receiver structure, which consists of two stages, namely the SISO Interference
Cancellation aided beamforming MUD, followed by K parallel single-user SISO channel decoders. The two stages are separated
by the usual deinterleavers and mterleavers
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define bi(n,1) as the ith bit of symbol s;(n), whereas b.(j) is the same bit but
in a different position of the bit-based interleaving block after the deinterleaver. -
La("), Lp(-) and Lg(-) denote the a priori, a posteriori and extrinsic information
in terms of Log-Likelihood Ratio (LLR), and the indices , and 4 are associated
* with the MUD and channel decoder, respectively. Then the SISO beamforming
MUD delivers the a posteriori information of bit bi(n, 1) expressed in terms of its
LLR as [13] | |

' P(bi(n,i)=+1|5c(n
LP,m(bk(Tl, z)) =In Pgbzgn, zi;—l:ékgnig | |
L P(5k(n)|be(n,5)=+1) ln P(b(n,i)=+1)
P(8k(n)Jbe(n,5)==1) - P(be(n,5)=-1)
= Lgm(bk(n,1)) + Lam(bs(n, 1)), : (3.5)

where the second term, denoted by Lam (be(n,4)), represents the a priori LLR of
the interleaved and encoded bit br(n,1). For the first iteration, assuming equiprob- -
able encoded bits, i.e. that no a priori information is available, all bits have a
probability of 0.5. Hence in the LLR domain we have Lan, (bk(n,z‘)) = 0. The
first term in Equation (3.5), which is denoted by Lgm(bk(n,7)), represents the
extrinsic information delivered by the SISO MUD, based on the received signal
r(n) and on the a prior: information about the encoded bits of all users, except -
the ith bit of the desired user k. The extrinsic information, which is not influ-
enced by the a priori information of the desired bit ¢ provided by the kth channel
decoder, is then deinterleaved and fed into the kth user’s channel decoder, which

will be used as the a priori information in the next iteration.

As seen in Figure 3.2, between the banks of channel decoders and interleavers,
based on the a priori information L 4,4(bx(j)) provided by the SISO beamforming
MUD for the SISO decoder, we compute the extrinsic LLR as [13] '

Loa(be(i)) = Loa(be(s)) — Laa(bei)), (36)

where the extrinsic information is gleaned from the surrounding encoded bits,
excluding the specific bit considered [14]. We note that as usual in joint itera-
tive detection and decoding schemes [14], we exchange the extrinsic information
concerning both the original information bits and parity bits, rather than only
that of the information bits, although only the LLRs of the latter are needed
in the classic turbo decoder of Berrou et al. [12]. After interleaving, the extrin-
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sic information delivered by the channel decoders is then fed back to the SISO
MUD, as the a priori information concerning the encoded bits of all the users for

exploitation during the next iteration.

At the first iteration, the extrinsic information contributions Lg m(by) and
L 4(by) are statistically independent. However, during the subsequent iterations
they will become more and more correlated and hence the incremental iteration

gains become more modest.

3.2 SISO Interference Cancellation

~ As described in the previous section, the task of SISO IC is to choose the beam--
former weight w, of the linear filter seen in Figure 3.2 according to an appropriate
design criterion and compute the corresponding output LLRs.

G/iven the a priori LLRs

P (bg(i)=+1)

Ploul)=1) &0

La(b()) =1n

where the symbol-index n was droppéd for notational convenience, the a priori
probabilities of the bit be(¢) can be expressed as

eLa(®r(i)
Pa(b(i)=+1) = Zmmye T
= %(1 + tanh (EAM)) , (3.8a)
Pa(be(t)=-1) = eT(T(l))—_H |
= 3(1- v (a@)), @)

where tanh(z) = Z:;Z:: is the hyperbolic tangent function. Then the a prioré

probability of the pth legitimate value of the symbol s is given by

logz

Pa(sp=s") = H P (by(3)=bP) (1)), (3.9)

where s® is the pth symbol in the modulation constellation, p € {1, 2,- . , M},
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"M is the number of symbols in modulation constellation and b®(3) is the value
of s®’s jth bit. Using the Gray-labeled constellations in seen Figure 2.5, all
transmitted bits can be decided independently. Then we can define the mean and

variance of the kth user’s symbols as in [18]:

S = E[Sk] :
M . .
= Zs(p) - Pa(s=5')
p=1
(/I tanh (.4(.%&) (BPSK)
E:| tanh (LA e )+ jtanh (—D”k@ )) (QPSK)
= < E ( tanh (LA(bZk(l))) (tanh (LA(bzk@)Z) +2> (3.10)
+jtanh (£als)) (tanh (Lalpa) 4 2)) (16QAM) -

and

o = E[|sk| ] |Esi]|”

—

|s® | - Pa(sp=5P) — |5

[\”1:

p=1 v
— |5|? . , | (BPSK)
“{E-lal o (QPSK)
Es(1+§tanh (éé‘—’;&ﬁ)Jrgtanh (-LA—(”;(—“)%)>_|§,C,2 (16QAM)
(3.11)

When using the SIC principle, the estimated symbol of user k can be expressed
as 18] ‘
s=wh(r—Hs), (3.12)

where we have §;, = [5; -+ 51 0 541 - - 5k]7.
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3.2.1 SISO Il‘lterference. Cancellation Using the MMSE
| MUD | | |

3.2.1.1 Weights of the Soft MMSE MUD

Classically, the beamformer’s Weight vector wy, is determined by minimising the

complex-valued MSE metric of [11]

émse = E[lsk — &%) - (313)
Using Equation (3.12) and (3.3), the MSE cost function can be expressed as

énse = E|sx — w (Hs - Hs, +n)|']
= Blsesi] - wiH - Blsi(s — 5] - E[su(s” — )] - H'w,
+wff (H-E[(s-5) (" - )] BT+ Bfn]Jwy
= E, — E;w{'h; — Ehfwy + wil (HY, H” + Ebihfl + 2071, ) w,,

(3.14)

where I, denotes the (LxL)-dimensional identity matrix and we have V., =
diag[vy -+ - Vg—1 O Vg1 ---vk], in which diag[-] denotes a diagonal matrix. The
gradient of Equation (3.14) can be derived as

- o%usE
VfMSEv =2 Jwt

= —2E,h; + 2(HV, H” + Ehihy’ + 2021.) wy. (3.15)

Setting this gradient to zero leads to the closed-form MMSE solution of (18]

wy, = (HV,H? + Ehyhff +2021,) 7 - B,y (3.16)

3.2.1.2 Output LLRs of the Soft MMSE MUD
The exact expression of the bit by(7)’s output LLR is [18]

Lg (b (2))
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- s ;win s@ 5
2 s €xp (— onmw 25,% ol )Hv(k’ A m)P(bk’( i")=b{ (1))

8P (i)=+1

Sp—wHH(s() -3 , ’
e e )H oyptey P 0)=50 @)

b (i)=—1

(3.17)

where 5@ is the gth possible symbol combination, g € {1,2,-- , M 'K} and b,(f)(z')
is the value of the kth user’s ith bit in this combination. It is clear from Equa-
tion (3.17) that the computational complexity of the MUD’s output LLRs is
exponentially increases with the number of users K. Fortunately, we can use an
approximate method to simplify this calculation [18].

The conditional PDF p(3;|s¢=s®)) is a mixture of all M5~ legitimate trans-
mitted signals’ Gaussian distributions, in which the kth user transmits symbol
s and all other interfering users transmit an arbitrary symbol. Figure 3.3 shows
some examples of the conditional PDF of the MMSE MUD’s output signal sup-
porting K=4 users in the presence of AWGN but in the absence of fading at
E‘b/No=5dB, ‘both with and without a priori information. The arrival angles of
the users’ signal are 15°, 49°, —14° and —48°, respectively, as seen in Figure 3.4,

We consider the first user as the desired user and assume that the transmitted -

symbol is s; = +1 for BPSK, 81 = +—z+jJ5 for QPSK and s; = +os+is
for 16QAM. In the scenarios associated with a priori information, all the inter-
fering users’ a priori LLRs are randomly generated, exemplified in Table 3.1. In

Table 3.1: A priori LLRs of the interfering users

BPSK | QPSK 16QAM
User 2 | -0.582 | -0.582, 0.597 | -0.582, 0.597, 0.187, 1.511
User 3 | -1.969 | -1.969, -0.423 | -1.969, -0.423, -0.268, 0.909
User 4 | -0.499 | -0.499, 0.574 | -0.499, 0.574, 0.592, 0.202

every sub-figure, the conditional 3-dimensional PDF p(3,) (surface); the marginal
conditional PDF of the real part p(R[5;]) and the marginal conditional PDF of
the imaginary part p(${$:1]) (solid curves) of the MUDs’ output are shown. As
stated in [18], the conditional PDF p(8k|sk=s®) can be assumed to be Gaussian
distributed. Since the Gaussian distribution can be defined by two parameters,
namely the mean and the variance, we can generate the apprc_)icimate PDF by
calculating these two values. Using Equation (3.12), the mean and the variance
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Figure 3.3: Conditional PDF p(§;) (surface), marginal conditional PDFs
p(RN[81]) and p(][81]) (solid curves) of the MMSE MUD'’s output signal,
and approximate Gaussian marginal conditional PDFs (+).
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desired user
interferer 2
interferer 3 ‘

interferer 1

o— )\/2

Figure 3.4: Two AEs, where the signal of desired user arrives from 15°,
“while the interfering signal from 49°, —14° and —48°.

are given by

: 'ufcp) — E[gklskzs(p)_]
=wiH-E[s - §k|sk=s(”)]

=sPwfh, ) (3.18) .
and

.0,% = E[lv§k|2’~5'k=$‘(p)] - |M;(cp) ’
— WH - B[(s — 50 (5" — 8)[sy=s] - Hfw + wl - Bnn] - wy
- Is(”)|2wfhkhffwk

= wH (HV, H? + 2021,)w;. | | , (3.19)

USing Equation (3.16) and wiTh; = th Wy, the variance can be simplified to

i

- o =wy (HV,HY + Ehghf! + 20211 ) wy, - Eswy hyhy wy,
= E;wlhy — E,whhfw, |

= E;wihg(1—-wihy). (3.20)

Then the approximate Gaussian PDF can bé expressed as

v ' T (@) |2
1 -
ﬁ(éklsk=3(p)) = F‘_"%e){p <— ,_S.E_Tg_@__l_)

- 1 o ,.;k — s®hwiThy|*
= WEsthk:(l _-thk) exXp <— Eswfhk(l — thk) . (321)
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In Figure 3.3, we can see that the ohe-dimensional Gaussian distribution indicated

by the ‘4’ points constitutes an adequaté practical assumption in all the sg:enarids.

Based on the Gaussian distribution, the extrinsic output LLRs of the MMSE
MUD can be expressed as [18] ’ '

5p—sPwlh ' g .
2 e, P ( - Elv:,i’ hk(l—kwﬂlhk)> [vegs P(6(1) =00 (1))

b(P) (1) =41

L) = |5k —s(PIwl hy| - .
) Sp—s\Plwy N ,
2y, o ( " BewEhe(i-wEh 7) [Tvips P(bi(i)=09)(&))
(3.22)
For BPSK and QPSK systems, this expression can be further simplified to [15]

BPSK:
exp( 56—V Eawi/be” >
: Eywl hy(1-wihy)
LE(bk(l)v) =In TN
' exp( Eswihy (1-wf hQ)
_ I§k, 4/ Eswfhk' - |Sk - \/Eswlghklz
ESthk(l - W]Ic{hk)
_ 4\/ Es%[ék]wfhk
"~ Eswlh (1 - wihy)
R[5 | |
= , 3.23
VB (- wity)’ (3.23)
QPSK:

_ (x/T+J\/_)wkhk|) ( o(2)= +1)+

Eew{hy (1-w{'h)
+ exp <_ o ’Ig:v/j—h‘kﬂ(\{i)}ik)hki > - P(bg(2)=—1)
exp <~ e (-vE L] 1:; b )  P((2)=+1)+
[se= (/B s/ B it | ) . P(by(2)=—1)

.+ exp ( Eowi hk(l wfhk)

| ,exp( (Rlsel=y/Frwtn)” )

E..,;w,c ( —wy

exp ( (m[sk]ﬂ/rw,ghk)j ’ )

Eswthk(l w

exp

LE(bk(l)) =In

=1In
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' 2 2
(Rl + y/Bewline) — (Rl — /Zh)
E;wih (1 —wlwihy) o
4y /BRIy
= Eswf'hk(l - thk)
O 2VRR[E) '
= JE (= wihy)’ _ ‘ : (3.24a)

and similarly

Lg(b:(2)) = \/E(l—wl,'}hk)' |  (3.24b)

~ 3.2.1.3 - Computational Complexity of the Soft MMSE MUD

The complexity of a linear MUD might be divided into three parts, namely the
calculation of the a p'm'cl)m' mean and variance values, the calculation of the weight
vector and the calculation of the output extrinsic LLR values. Real-valued oper-
ations are used as the basis of our calculations and the complexity imposed by a
' real-valued multiplication and a real-valued addition might be considered equiv-
alent. The soft MMSE MUD’s complexity per symbol per user is summarized in
Table 3.2. The related equations are also given in this table. It is shown that
the complexity of the soft MMSE MUD mainly depends on the calculation of the

weight vector.

Table 3.2: Computational complexity of the soft MMSE MUD

Computational complexity Equation(s)
Means & | BPSK 6 (3.10), (3.11)
variances | QPSK 12 ‘
" 16QAM |25
Weight vector O(BL%) +4KL* +12L° + L (3.16)
BPSK 8KL+8L+1 v - 1(3.23)
LLRs QPSK 8KL+8L+3 (3.24)
M-QAM | 8K L+8L+ (M log, M+M+9) log, M+ | (3.22)
. 13M -4 . "
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3.2.2 SISO Interference Cancellation Using the RMMSE
MUD - | D

For BPSK systems, the beamformer’s desired output 3 is real-valued. It is clear
that the MMSE solution of Section 3.2.1 attempts to simultaneously minimise the
MSE between the desired signal and both the real part and imaginary part of the
beamformer’s output. However, in case of BPSK modulation the beamformer’s
decision depends only on the real part of the multiuser signal at the beamformer’s
output. Hence minimising the MSE associated with the imaginary part does not
contribute to improving the beamformer’s performance. Rather it imposes an
unnecessary constraint on the beamforming weight [89]. Hence we introduce the
soft RMMSE solution.

3.2.2.1 Weights of the Soft RMMSE MUD

The real-{{alued MSE cost function minimising the MSE between the desired
signal and the real part of the beamformer’s output can be written as

~ €rmse = E[(sk — R[&)?7]
= E[(s,c — R[wf(Hs — Hs, + n)])z]. (3.25)

The RMMSE solution is defined by
wi = argminégpyse. - (3.26)
: Wi .

In order to derive a closed-form solution for this RMMSE design, the real-valued
vertical concatenation matrix method of [89] is applied. Let us define the index

c as the subscript to indicate the matrices’ vertical concatenation, then we have

M, = limﬂ , | (3.27) |

where M. can be any matrix which is vertically, concatenated. Hence, Equa-
tion (3.25) becomes . ‘

fRMSE‘ = E[(sk - W]Z:c(Hcs - HcSk + nc))z]
= E[si] —2wj H. - E[sk(s — §)]
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+ Wi (Hc -Bl(s —5)(s" —5)] - H] + E[n;nzDWk’c

= B, — 2E,wj .+ wi (HV,HY + Echy hi + 0201 )Wee.  (3.28)

The gradient of the real-valued MSE cost function can be expressed as’

8wkc : .

= —2E,hy + 2(HVHY + Ehy hf, + 02To0) Wi (3.29)

Then in contrast to the closed-form MMSE solution of Equation (3.16), the closed-
form solution of the concatenated weight matrix Wi rmmse,c is derived from Equa-
tion (3.29), yielding '

o Wee= (HVHT + By chl, + 021p) 7 - Erhy. (3.30)

The first L elements of wy, are the real part of the RMMSE solution wy, and
the last L elements of wy . form the imaginary part of wy. ‘

3.2.2.2 Output LLRs of the Soft RMMSE MUD

When computing the MMSE‘.solution',v the conditional PDF p(§k|sk=s(”)) of Fig-
ure 3.3 is assumed to be Gaussian distributed. By contrast, the RMMSE solution
considers only the in-phase component and the correspondving marginal condi-
tional PDF becomes p(R|[3x]|sx=s)). Figure 3.5 shows the conditional PDFs of

the RMMSE MUD'’s output signal supporting K=4 BPSK users at E/Ny=5dB
" both with.and without a priori information. As seen in Figure 3.4, the arrival
angles of the users’ signal are 15°, 49°, —14° and —48°, respectively. We con-
sider the first user as the desired user and assume that the transmitted symbol is
s; = +1. In the scenario associated with a priori information, all the interfering
users’ a priori LLRs are listed in Table 3.1. Recall that the MMSE solution’s
output constellation seen in Figure 3.3 had a symnﬁetric distribution. Observe
by contrasting Equation (3.16) and Equation (3.30) that the beamformer weights
of the RMMSE design are different and hence the weighted beamformer output
phasors are positioned differently in Figure 3.5, which results in a non-Gaussian
distribution for the ignored quadrature-phase component. However, the in-phase
component of Figure 3.5-appears to be near-Gaussian. Explicitly, p($;) is spréad
more widely along the $[§;] axis, resulting in a distribution for p(R[$;]) which
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Figure 3.5: Conditional PDF p(8;) (surface), marginal conditional PDFs
p(R[$1]) and p(S[81]) (solid curves) of the RMMSE MUD'’s output signal,
and approximate Gaussian marginal conditional PDFs (+).

has its center of gravity further away from the decision boundary of R[§;] = 0
than that in Figure 3.3.

Then the conditional mean and variance of [5;] can be formulated as:

ue) = E[R[a]|si=s%]
= R[w{H] - E[s — 5|si=5"]
= PR [wlh,]
= sPwT by, (3.31)

and

o} = B[R*[3]|sx=s?] - (ug’))z
=L E[(s —8)(s" - 5) lsk'—'s(p)] ‘HI Wi+ Wi, E[nenl | w,
= (S(p))zwzchkﬂh;cwk,c

= Wi o (HV, H] + 031ar) Wi (3.32)
Using Equation (3.30), the variance can be simplified to

2 i 4 T T 2 T T
O = Wi (Hckac + Eshk‘.chk,c ¥ UnI2L)wk,C = Eswk,chkychk,cwk,c
o a1 T T
= Egwy hpe — Egwy hychy wie

= E,wi (1 — wi hie). (3.33)




- 3.2.2 SISO Interference Cancellation Using the RMMSE MUD 65

Given the approximate Gaussian distribution

( (Rl5:) - u,amr)

5(R[5]|5p=5P) =
p( [Bellse=s ) 2m oy 20}

| 1 R[ék] — sPw] by, 2 : .
= exp | — ( [T’f] £ Tk’ ) — |, (3.34)
BV 27T0’k 2Eswk,chk,c(1 - wk;,chk,c)

the extrinsic output LLR can be expressed as

o _ (m[§k]—\/E—‘sw{,chklc)2
xp ZESW,'J;Chk',c(l'“w{chk-cj
Lo (b(1)) = In ' )
( (Rl3e]+VEswE b ) )
Cexp| — :

2Eswz:chk,c(1—w{’chk,c)

(RI&w] + VEwl by )® — (Rl8e] — vVEWT by ()
" 2Ewl hg(1—wl h.)
4VER5 W] hy
T 2B,wI (1 — Wi hy)
2wy (e~ H.,)

" VB -Wihe)

(3.35)

3.2.2.3 Computational Complexity of the Soft RMMSE MUD

The soft RMMSE MUD’s complexity per symbol per user is summarized in Ta-
ble 3.3 which was valuated by counting the number of real-valued additions and
multiplicatibns. The related equations are also given in Table 3.3. It can be seen
that the computational complexity of the soft RMMSE is almost the same as
~ that of the soft MMSE beamformer portrayed in Table 3.2. However, the soft
RMMSE system may be expected to have a better performance as we will show

in Section 3.4.

Table 3.3: Computational complexity of the soft RMMSE MUD

: Computational complexity Equation(s)
Means & variances | 6 (3.10), (3.11)
Weight vector O(8L%) + 8KL? +8L*+ 2L (3.30)
LLR ’ 4KL+4L+3 (3.35)

1
- o {
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3.2.3 SISO Interference Cancellation Using Widely Linear
MMSE MUD '

The WL algorithm [35] may be defined as that employing two separate weight
- vectors for separafely detecting the in-phase and quadrature-phase component of
the transmitted symbol. In contrast to Equation (3.12), the estimated symbol of
the kth user is given by

S = E)?[W,fl(r - HSk)] + j%[w,ﬁ{Q(r - H_§_k)], (3.36)

where w;; and wyq are the kth user’s weight vectors for the in-phase and

quadrature-phase component, respectively.

3.2.3.1 Array Weights of the Soft WL-MMSE MUD

The soft WL-MMSE solution using separate in-phase/quadrature-phase array
weights is defined as ’ '

Wg,1 = arg Ialkn €IMSE
= 'arg Hv}llkn E [(%[Sk] — §R[§k] )2] , . (337&)
Wi, = arg nv},lkn fomsE

= arg rrvtlknE[(g[sk] - %[§k])2], | (3.37b') |

which minimise the MSE between the in-phase component and the quadrature-
-phase component of the beamformer’s output and that of the desired symbol,

respectively. Defining the vertically stacked matrix

[-smy -
M, = [R[M] ] : ﬂ _(3.38)

where M can be any arbitrary matrix and when using Equation (3.27), the cost
functions of the WL-MMSE solution can be expressed as ' '

érvss = B[ (Rlow] ~ R[wf!(Hs - Hs, +n)])’]

= E[(m[sk] = Wio(He(Rs] — R[5,]) +He (S[s] - S5)) + n))ZJ |
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= B[R?[si]] — 2wi H, - E[R[s](Rs] - R[5))]
+ Wz,ch : E[(%[ - [sk])(%[ST] QR[ k] )] ’ HcTWk,c
 +wi He - B[(S[s] - S[:)) (SUs™] - SE7)] - Howi,e
+wi, - E[nenl] - w, . ’ )
= Ey  — 2B wi Ny + Wi, (HchJHZ + Eyhychi, + HoV, oHY
+ Esghy o, + o3lor) Wi, - (3.39a)

fomse = E{(%[sk] — %[W,ﬁ"(Hs - Hs, + n)])z]
_ E[( ] = Wi (FLL(Sfs] - l5u]) — He (Rfs] - RI5) - “c’)ﬂ

= E[9%[s,]] — 2w} H. - E[S[s¢)(Ss] — (5,)]
+wi H - E[(s] - S(5,]) (S["] - SET)] - HI Wi

-+ wiHe - E[(R]s] - RE]) (Rls"] - R[] Howee
+wl, - E[nenl] - we |

= E,q — 2E,qwj Jhi + wi (HV, HE + Ethk,chf,c + Hc'—Y.kIHZ
+ Eghiohl , + 02Lhn) Wi, ' (3.39b)

where E,; and E,q are the in-phase component and the quadrature-phase compo-
nent of the total symbol energy. Furthermore, we have V.= diagfvy,r -+ Vg-1,1 0
Vkt1,1 Uk 1), iyt = B[R2[sp]] —R2[5k], and V,, o = diagvio - k-1 0 Uk1,0
vkl v, = B[S?[sp]] — $%[8r]. Setting the gradient of the WL-MMSE cost
functions to zero, we have the WL-MMSE solution as

| ‘ .
Wite = (HoV, (HT + Eghy bl + HoV, oHY + Ehyohfy + 021

+ Egrhy e, ; : (3.40a)
Wige = (HV, oHT + Ethk,Ch{,c + HoV, B + Egheohl, + 021y -

« Eyohy,. - » (3.40b)

For BPSK systems, we have Eg = E's, EsQ =0,V;;=V,and V, 5 isa null
matrix. Then the expression of the welght vector w1 in Equation (3. 40a) can

be simplified to
Wire = (HV,HT +E shych? 4+ 021,.) 7 - By, - (3.41)

which is the same as the RMMSE solution of Equation (3.30). Hence the RMMSE
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technique constitutes a particﬁlar manifestation of the WL-MMSE algorithm in
the context of BPSK systems. For non-BPSK systems, assuming F,; = Eq =
3Bs and V. ; = V, 5 = ;V,, the weight vector expression of Equations (3.40)
may be simplified to

Wi ie = Wroe = (HVH] + HoV,HY + E-hh] + E;hyhl +207215,) “? -Ehy ..
(3.42)

This equation is equivalent to

Wi = Wi = (HV,H? + Ehhl +2021,) 7' Ehy,  (3.43)

which is the same as the soft MMSE solution of Equation (3.16). This observation
indicates that the soft WL-MMSE solution may have some potential gain over the
soft MMSE solution, but ohly when the a priori information’s variance recorded
for the in-phase and quadrature-phase signal is different.

3.2.3.2 Output LLRs of the soft WL-MMSE MUD

Figure 3.6 shows the conditional PDFs of the WL-MMSE MUD’s outpﬁt signal
using different Weight vectors, when supporting K'=4 users at E/Ny=5dB with
the aid of a priori information. The arrival angies of the users’ signal are 15°, 49°,
—14° and —48°, respectively, as shown in Figure 3.4. We consider the first user
as the desired user and assume that the transmitted _symbol is 87 = +%+j—\}—§
for QPSK and s; = +%+j —\/31=0 for 16QAM. All the interfering users’ a prior:
LLRs are listed in Table 3.1. Since different weight vectors w;; and w; g are
selected for detecting the in-phase and quadrature-phase components of signal
s1, the conditional PDFs p(8;}wy 1) and p(§;|w1 o) may be different, which can

be seen from Figure 3.6.

Similar to the distribution of the RMMSE beamformer’s in—phase. output,
we can assume that the marginal conditional PDFs p(R[3]|sx=s"),wyr) and
p(S[8k]|se=5P, wi,q) of the detector’s output are both one-dimensional Gaussian
distributed, which are indicated by the ‘+’ points in Figure 3.6. Then, the means
and variances of the marginal conditional PDFs are given by

u?) = E[R[5]|se=5P, wi,]

= Wi H - B[R]s] — R[5]lse=s®] + wl, Ho - B[3[s] - S(5Jlse=s?]
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Figure 3.6: Conditional PDF p(§;) (surface), marginal conditional PDFs
p(RN[8;]) and p(S([31]) (solid curves) of the WL-MMSE MUD’s output signal,
and approximate Gaussian marginal conditional PDFs (+).

§R [S(p)] Wfl chk o 2 {S(p)]W;{,I,chk,c', (3.443)
Hil = E[STe]lse=5®, wiq]

WirHe - [ [s] - SEullse=s?] — wii; He - E[R[s] — R[] Ise=5""]

& -R

[s( ]Wch ko (3.44Db)
and

0',%)1 = E[%Z[ék]lskzs(”),wk’f] - (,ufcp})
= WkT,I,cHC . E[(?R[s] - ER[S,C])ORT[S] §RT[sk])|sk s ”)] H wy .
+W£,1,CHC’ E[(%[S] e g[s_k])(gT[s] C\T[sk])|3k S )] Hc'wklc
+2wi; H, - E[(Rls] — R[5, (S [s] - S7[5,]) Ise=s"] - Howi 1
+wi o Enenl] - wire — (R[s®]wi; b+ %[s(”)]wkT,,'chk,c/)z
= W;f,z,c (HchJHcT 2 Hka,QHZ + UiIZL)Wk,I,c, (3.45a)
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7t = B[9"[sills=s, wie] - (ufh)"
= wio H, - B[(Sls] - S(8])(37[s] - $7[5) Isw=s] - HI w0
+wigHe - B[(Rls] — R[E]) (RT[s] - RT[E,]) |se=5P] - Hiwiq,c
— 2w g He - E[(S(s] = S (R[] - RT[E]) Ise=5P] - Hiwyq,c
+ Wige E[nenl] - wige — (S[s®]wig by ~ R[sP]wig hye)”
 =wWig(H YV, oHY + HoV, HY + 02101 )Wrger (3.45Db)

Using Equations (3.40), the variances are simplified to

oy =wi (HV, HI + E,thychi, + HoV, oHY + Eghyohi , + 02l ) Wi,

— Egqwi ;g chi wi e — Eqwip hpohi o Wi

= Eqwi ;e — EsIWg:I,chk,c_hz:ch,I,c — Byqwi ; hiohi ywir e

= Egw;y I,cﬁk,c(l — W{ rchie) = Esqlwi I’Chk,d)2,v _ (3.46a)

Tho = Wioo(HcVyoHE + ExQhychi, + HC'-Y.k,IHZ; + Eghyohi 4+ 02Ln) Wi g

- EsQw,f’Q’chk,chf,cwk,Q,c — EstkT’Q’chk,c/hZ,c,wk,Q,c

= EyqWi g ke — EsQWZ:Q,chk,ch{,cwk,Q,c - EsIWkT,Q,chk,c’h[Tc:de,Q,c

= Eyqwlohie(l — wlg hie) = Esr(whg hie)”. (3.46D)

For BPSK system, the expression of the o_utput'LLRs is the same as that of the -
RMMSE solution shown in Equation (3.35). For higher-order QAM schemes the
output LLRs of the WL-MMSE MUD are ’ '

Riskl 7))’ o oy
T exp( _<_2_L) [Tes P (i) =0 (@)

20
. . () (3)=+1 kd
Le(b(i)) = In —2 ~
: R[5k)~ (») _ ) .
> e exp < - ﬁ—,——“’i"” > Tvr s P (by,(i")=b®)("))
b (i)=—1 - |

(3.47&)

when b.(¢) is mapped to the real part of s, and

. 51— (» \? | » . .
E vs®  €XP ( - M) HVi’#i P(bk(’i,)=b(p)(i/)) _

20
b (3)=+1 kQ

LE(bk(i)) =In Slse-n®.)’
S o exp(— et )HVi/;eiP(bk(i'):b(w(i'))

b(P) (5)==1 2%kQ

(3.47b)
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when b, (i) is mapped to the imaginary part of s;. Compared to the MMSE
solution’s output LLRs seen in Equation (3.22), the WL-MMSE MUD’s output
LLRs have the same expression, but exhibit different means and variances for the

in-phase and quadrature-phase components of the 51gnal

3.2.3.3 Computational Complexity of the Soft WL-MMSE MUD

The soft WL-MMSE MUD'’s computational complexity per symbol per user is
summarized in Table 3.4. The related equations are also given in Table 3.4. For
BPSK systems, the complexity is the same as that of the RMMSE solution listed
in Table 3.3. For higher-order QAM constellations, the complexity of the soft
WL-MMSE is about twice of that of the soft MMSE. This doubled complex1ty is
attributable to that of the weight vector calculation.

Table 3.4: Computational complexity of the soft WL-MMSE MUD

Computational complexity Equations
Mean & | QPSK | 16 (3.10), (3.11)
variance | 16QAM | 32
Weight vector O(16L%) + 32KL* + 16L2 +4L (3.40)
LLRs 8K L+16L+ (M log, M+4M+5) log, M+ | (3.47)
6M +6 :

3.2.4 SISO Interference Cancellation Using the MBER
MUD '

The MMSE algorithm does not guarantee the direct and explicit minimisation of
~ the system’s BER. However, the MBER beamforming design, in which the BER
rather than the MSE was minimised at the MUD’s output, is the true optimal
solution and hence it generally outperforms the MMSE solution.

3.2.4.1 Bit Error Rate

In M-ary PSK systems supporting K users, the transmitted symbol combination
may assume M¥ possible combinations, here however we limit our discussions to
BPSK (M=2) and QPSK (M=4). Let us now consider a QPSK system, where
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0

Figure 3.7: Symbol s,(f) of a QPSK constellation with the interference-

contaminated expectation §,(cq) of the estimated signal §,(Cq) and the PDFs of
the in-phase and quadrature-phase component of the estimated signal.

the gth possible symbol combination s(@ is transmitted, in which the desired
user’s symbol s,(cq) is +3§+j lg Figure 3.7 shows the transmitted symbol's,(f) , the
interference-contaminated expectation 5% of the estimated signal 3\ and the
PDFs of the in-phase and quadrature-phase component of the estimated signal.:
As seen in Figure 3.7, the PDFs of the in-phase and quadrature-phase component
of §,(Cq) are both one-dimensional Gaussian distributed. The error probabilities of
the in-phase and quadrature-phase component are denoted by Pegq) and Peg’),
- respectively. The error probability Pef,q) is given by the integral of the PDF

p(R[5%]) the wrong side of the decision boundary of R[] = 0, and and Pey

can be derived in a similar way.

By defining z = sgn(R[sk]) - R[5x], the conditional PDF of z is a Gaussian
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mixture given by [29]

ZPk @) -sen(®R[s,"]) - p(R[5"])

- 2
gp o (= - sen(R[5]) - R[5])
27r ws k s "eXp ) — ‘ 20,21W,fwk ,
(3.48)

where P, (s@) = L [ P (sk/—sk, ) is the probability of transmitting the qth
possible symbol combination s@) based on the a priori information of the other
(K—1) users except for user &, and s(q) is the kth user’s estimated symbol, when
ignoring the effects of noise, yielding

39 = wi (Hs? — Hs,)
= wfr,(f). : ) (3.49)

It can be readily shown that the error probability of the in-phase part is

' 0
Pe; =Pz <0) = / p(x)dz
M¥ -
= Zf_k(s(q)) . Pe_(,Q)
q=1 ' o
(9) a2l .
_ Z P,(s9) (Sgn(%[skq ])H' R[] ) (3.50)
g=1 o Opy/ Wi Wi :
- where Q(z) = \/—12——; f:; e~*/2d¢. Similarly, the error probability of the quadrature-
phase part is
MK D) . T30
P = P (Y. sgn(\y[sk ]) '\S[sk ] ) 3.51 ’
€Q ;——k(s ) Q( an\/vw ( )

Heﬁce the BER of the beamformer is

Pey = . (3.52)
1(Pe; + Peg) (QPSK)
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3.2.4.2 Weights of the Soft MBER MUD

The MBER beamforming solution is then defined as [29]
Wy, = arg min Pe,,. (3.53)
_ W .

This optimization problem can. be solved using the SCG algorithm, which is
detailed in Section 2.2.5. Basing on the derivation in Appendix A.1, the gradients
of both the in-phase and quadrature-phase bit error probabilities are

VPe = 2%1;?
' 2(9)
Vo \/WZ:P () e""( %)
sen(el) (2L ) e
and - .
VPeQ = 28(91::;

o [3(@)71)2
ZP ) _exp<_ <u2[skH)>)
Voo ﬂ/ - 207wy Wy

29w, ;
- sgn(S[s{9)) (M +j?,(f)). | (3.54b)

wiw,

-

3.2.4.3 Weights of the Soft WL-MBER MUD

For QPSK systems, the WL-MBER solution can be appliéd, which is defined by

Wy, = arg min Pey, (3.55a)
o Wk
Wy,o = argmin Peg. (3.55b)
Wi
The gradient formulas of Equations (3.54) can be used to find the optimum

weights for the WL-MBER solution. The WL-MBER weight calculation has
the same complexity as that of the MBER MUD formulated in Equation (3.53).
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3.2.4.4 Output LLRs of the Soft MBER MUD

Figure 3.8 shows the conditional PDF's of the MBER MUD'’s output signal sup-
porting K'=4 users at E,/Ny=5dB both with and without a priori information.
The arrival angles of the users’ signal are 15°, 49°, —14° and —48°, respectively,
as seen in Figure 3.4. We consider the first user as the desired user and assume
that the transmitted symbol is s; = +1 for BPSK and s; = +\/—+] v for QPSK.
In the scenarios associated with a priori information, all the interfering users’
a priori LLRs are listed in Table 3.1. For the BPSK system, despite the fact
that the marginal conditional PDF of the imaginary part p(S{3]|si=s®)) seen in
Figure 3.8a is clearly non-Gaussian distributed, the real part’s p(R[8x]|sx=s®),
however, can be assumed to be Gaussian Gaussian distributed. For QPSK sys-
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(c) QPSK without a priori informa- (d) QPSK with a priori information
tion

Figure 3.8: Conditional PDF p(§;) (surface), marginal conditional PDFs
p(R[51]) and p(S[51]) (solid curves) of the MBER MUD’s output signal,
and approximate Gaussian marginal conditional PDFs (+).
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tems, both the marginal conditional PDFs p(R[3;]|sy=s®) and p(S[8]|se=s®)
are approximately Gaussian distributed as seen in Figure 3.8c. We should also ob-
serve that when the SNR is high, the Gaussian assurhption mentioned above may
no longer be accurate. Fortunately, the proposed SISO beamforming is employed
in iterative systems, which typically operate in the low SNR region.

For our BPSK MBER design as suggested by Figure 3.8a, we assume that the
conditional PDF p(R[8k)|sx=s®") is Gaussian distributed. The conditional mean

and variance of R[$;] are given by

e = B[R[3]|se=s"]
= sPR[wi hy] (3.56)

and

,E[§R2[§k]|5k=s(p)] - (p,(cp))z
= R[wiH|V,R[H w;] + 02w wy. (3.57)

o

They are equivalent to the mean and variance expressions of the RMMSE solution
seen in Equations (3.31) and (3.32), respectively. However, since the MBER
design does not have a closed-form weight solution, the simplified Equation (3.33)
cannot be applied for the MBER MUD'’s variance. Then the extrinsic output LLR

can be expressed as

2R [36]R [wi hy]

LE(bk(l)) = %‘[WfH]MkéR[HHWk] + ngfwk, (3-58)

which is similar to Equation '(3.35) for the RMMSE‘MUD, but no common factor
R [wihy| exists in the numerator and the denominator in Equation (3.58).

For our QPSK MBER design based on Figure 3.8c, we assume that the
marginal conditional PDFs p(R[8k]|si=s") and p(S(8k]|sk=5")) are both one-
dimensional Gaussian distributed. Then, the means and variances of the in-phase

and quadrature-phase components of §; are given by

= R[s®Pwih,], ' (3.59a)
E
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= %[s(p)wfhk] | o (3.59Db)
and
ot s = B[R s lonmst”] - (4’ o |
= R[wiH|V, R[H W] — Swi H|V, oS[H W] + o2wf wy, (3.60a)
Oho= E[%2[§k]|8k—s(p)] (#(p) ) | ' |
= R[wiH|V, o R[H W] — S[wiH]V, ;S[Hw,] + 02wy wi, (3.60b)

where V, ; = diag[vyr -+ Uk-1,1 0 Upg1,1 * -+ Vi ,1], Uk r = %Es -~ R?[5)] and Vio=
diag[vy g« Uk-1,0 0 V1,0 Vk,Q)s Vkio = 3B, — $*[51]. They are equivalenf
_to Equations (3.44) and (3.45) for the WL-MMSE solution, but employ a sin-
~gle weight vector for the in-phase and quadrature-phase components. Then the
extrinsic output LLRs can be expréssed as

D2 e eXp( ";U M1 > P(b )(2))
bP) (1)=+1 k.l
Lg(be(1)) =1n : P ,  (3.61a)
Sk]l—u :
Z ( )Vs(p) exp < ’;ak ,k J )P b(P) 2))
bP) (1)=-1
' gls’“ “kQ)z P ®)(1
. Z (p)vs(p) €xXp 2"1: bk 1) b ))
Lg(by(2)) = In &= — ., (3.61b)
3k
Z (- L_,_L% Bl pe=om)
blp .

which are the same expressmns as those of the WL-MMSE’s output LLRs of
Equations (3.47). :

3.2.4.5 Output LLRs bf the Soft WL-MBER MUD

Figure 3.9 shows the conditional PDFs of the WL-MBER MUD’s output signal
supporting K'=4 QPSK users at £ /No=5dB with the‘aid_ of a priort information.
The arrival angles of the users’ signal are 15°, 49°, —14° and —48°, respectively,
as seen in Figure 3.4. We consider the first user as the desired user and assume
that the transmitted symbol is 5; = +%+ 7 —\}—5 All the interfering users’ a priori
LLRs are listed in Table 3.1. We can assume that the marginal conditional PDFs
- p(R[5k]|sk=5"), Wi 1) and p(S[8k]|sk=5"), wy,q) of the detector’s output are both
one-dimensional Gaussian distributed, as Suggested by the ‘4’ points shown in
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Figure 3.9: Conditional PDF p(§;) (surface), marginal conditional PDFs
p(R[81]) and p(T[81]) (solid curves) of the WL-MBER MUD'’s output signal,
and approximate Gaussian marginal conditional PDFs (+).

Figure 3.9.

The expressions of the extrinsic information delivered by the WL-MBER MUD
for the in-phase and quadrature-phase components are the same as in Equa-
tions (3.61). However the means and variances of the in-phase and quadrature-

phase components of §; are changed to

w?) = R[sPwh by, (3.62a)
u,(c”’c)a = [sPwf, hy] (3.62b)

or; = R[wiH|V, R[H W] - S[wi H|V, oS[H Wi r] + 02wl wir,

(3.63a)
org = R[WiH|V, oR[H W o] — S[WlH]|V, [S[H Wi o] + o2wi gwi o,
(3.63b)

which may be contrasted to Equations (3.59) and (3.60).

3.2.4.6 Computational Complexity of the Soft MBER MUD

The soft MBER MUD'’s computational complexity per symbol per user is sum-
marized in Table 3.5 in terms of the number of real-valued additions and multipli-

cations evaluated. The related equations are also given in this table. It is shown




3.2.5 SISO Interference Cancellation Using the MSER MUD v 79

that the total computational complexity of the soft MBER mainly depends on
‘the calculation of the weight vector, which is C’)(LNCQM K ), where IV, denotes
the number of iterations required by the SCG method. The computational com-
plexity of the soft MBER MUD increases exponentially with the number of users.
This implies that the soft MBER MUD is significantly more complex than the soft
MMSE MUD of Table 3.2 and the soft WL-MMSE MUD of Table 3.4. The soft
WL-MBER MUD has the same complexity as the soft MBER MUD for QPSK
systems, as seen by comparing Equations (3.55) with Equation (3.53).

Table 3.5: Computational complexity of the soft MBER MUD

Computational complexity . . Equation(s)
Mean & | BPSK | 6 (3.10), (3.11)
variance | QPSK | 12

Weight vector (((6L +6)logy M + 8L — 2) Ny + 8K L — | (3.53), (3.54) |
"~ |2L+3K - 3)MK+ (18L + 2)Nog + (M +

8)logy M — M _
LLRs BPSK { 12KL + 16L — 2 (3.58)
[QPSK | 16K L + 38L + 10K + 57 T (3.61)

3.2.5 SISO Interference Cancellation Using the MSER
MUD ' '

The noise-free estimated symbol §,(f) of Equation (3.49) can be rewritten as

g’l(cq) = Wf (hks,(f) + Z hklsl(j) - Hsk)

| oy
=wihs? + > wihys — wiHg,, (3.64)
ki k
where q € {1,2,--- ,M¥}. Let us now consider a specific transmitted symbol -

s(P) of user k in the constellation and investigate the properties of the symbol
subset {E,Eq)|s,(cq)=s(”)}. It is readily known from Equation (3.64) that this symbol
subset has a center of (w/hys(? — w Hs,). Furthermore, for any symbol 59
in this subset, a symmetric symbol §,(f.) exists at the other side of the center with
sO = —s9 for all &' # k. |

In [33,34], the MSER algorithm was investigated when the MUD has access
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to no a priori information. This implies that the a prior: probabilities of all
symbol combinations {s(?} are the same, namely 5jr. Moreover, in [34], the
weight wy was rotated to make wi’h, real and positive. Hence the symbol sub-
set { s,(cq |s,(cq)=s T’)} can be shifted parallel to the decision boundary, when user k
transmits a neighboring symbol in the constellation. Under these constraints, the
PDF subsets {P(s@) - p(s?,(f) ) } satisfy the shifting properties and are symmetri-
cally distributed [34], which may be used to simplify the weight vector calculation.
However, when the MUD is provided with useful a priori information, these lem-
mas are invalid and the MSER method of [34] needs further modifications. Hence
in this section we introduce the a priori information aided MSER MUD to resolve

this problem.

3.2.5.1 Symbol Error Rate

Let us now consider an M-QAM system, and define the transmitted symbol as

slmn) — —%(Zm -vVM-1)+ %(271 ~ VM — 1), where we have
m € {1 2, \/_} and n € {1,2, ,\/_} Figure 3.10 shows an example of
the estimated signal s(q) and its inarginal PDFs, when user k transmits symbol

(q) = smn) The PDF of §,(f) is a Gaussian distribution with a mean value of
Efcq), as seen in Figure 3.10. Then, when the kth user transmits symbol s(™™), the
conditional PDF of §; is a Gaussian mixture defined by

p($k|8k=s(m,n)) =M Z Py (s9) ’P(gz(cq))

vs(@)
s;:l)_:s(m,n)
e ) DR A CLY |sk-s,ﬁ)|2 (3.65)
s

o0 —g(mim)

where _Bk( (‘1)) i ch' £ (sk:=s,(c‘f) ) is the probability of transmitting the gth
possible symbol combination s(@, given the a priori information of the other
(K—1) users, except for user k. By defining b; = \/—7(3%(21 - \/m, i €
{1,2,--- ,v/M—1}, the decision boundaries of 3 are determined by b; |w,’c’ hy|
for the in-phase component and by jb; lw,C hk' for the quadrature-phase compo-
nent, as seen in Figure 3.10. Then the error rate is given by the integral of the
PDF outside the corresponding decision boundaries. Figure 3.10 only shows the
scenario of the inner constellation point, which is enclosed by boundaries. For
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Figure 3.10: Decision boundaries, the interference-contaminated expecta-

tion §,(cq) of the estimated signal §,(cq), when we have s,(cq) = s(mn) and the.

PDFs of the in-phase and quadrature-phase component of the estimated
signal. : ' :

the border constellation points, they may have open bound'amries in one or two
directions, which should be considered for the error rate calculation.

~ Let us now assume that the kth user transmits symbol s(mn)_ Then the
conditional in-phase component error probability of the hard detected symbol
R[3x] # R[s(™™] can be shown to be

Pe;(sp=sm™m) = Z Pel?

vs(®
sfcq):s(m,n)
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(J; iy P (Sels=s"") dR(S] (m=1)

_ L p(aulsi=stm ) as) |
I g dsimsn )R] (25mTT-1)

\f_”gﬁ—llwk hklp(gklskzs(m,n))dmgk] ‘ (m=\/M)

MZ ve(@ pk(s(q)) Q(Mﬂ) (m=1)

sk)——s(m'ﬂ) C"n\/vm
@] - 1w
M3 @ Pk(s(q)). (Q(m[ kq.]\; Hll fhkl)
=J sk)—s(mﬂ) On\/ Wi Wi
w z(q) : ]
. +Q<bm, Fhy|- ?fi[ "]) _ (ZSmSm_l)
U'n\/wkwk
. : o] _ whH
15 oy S e
\ s _s(mn) » n

(3.66a)

Similarly, the conditional quadrature-phase component error probability of the
hard detected symbol (3] # S[s™™] can be shown to be

'PeQ (skzs(""”))

b1| Fhy|-9 s“”
M 5(9) ( n=1
> i )\isgm n) VWi wE ( )

Q
M3y v(;) P S(q) (Q Sk _bn i hkl)
)-Q

. v_ < )—s(”' ) un\/wk Wi

40 <b,,|wk bo i - [3¢"] )  (esn<vEI-1)

wk Wi

M E Vs‘q) k

\ k)_s(m n)

(3.66b)

Then the average error probability of the in-phase and quadrature-phase compo-
nent are given by

1 L |
Pe; = MZZPe; se=s"m) (3.67a)

m=1 n=1
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and

PeQ =— Z Z Peg(sp=s™ ™), (3.67b)

m—l n=1

respectively. Since the resultant symbol error rate is equal to (one minus symbol—

correct-rate), it can be expressed as

'Pes =1 - (1 —- Pef)(l - PCQ)
= Pej + Peg — Pej - Peg. (3.68) .

3.2.5.2 Weights of the Soft MSER and WL-MSER ‘MUDs»

" The resultant MSER solution is defined as the one that minimises the upper

bound of the SER given by
wy = argmin(Pey + Peg). (3.69)

The upper bound ((Pe; + Peg) is very close to the true SER Pe, because our
experiments not included here have shown thét Pe; - Peg is typically negligible,
which reduces the associated complexity. Similarly to the WL-MBER solution of
Equations (3.55), the WL-MSER solution is defined as

wy, 7 = arg min Pey, (3.70a)
w
w0 = argmin Peg. | (3.70b)
: o, |

In order to arrive at the optimum weights for the MSER and WL-MSER solutions,
we need the gradients of Pe; and Peg, which can be derived from the gradients
of the Q-functions in Equations (3.66) as stated in Appendix A.2, leading to

B'W;: OnvV W ]?ch . -
R S AR .5 A
_ - \/%Un\/ Wi Wy P 202wl wy |

[ (R[s 5] — bifwihe|)wi _-(q)+ bihxhy w
Ty
Wi Wi [wi hy

(3.71a)

v/ W,?Wk
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and
oo B =bimEnl\ _, 0 (S[5] ~jwirhg
onv/ WHwy owy, ony/ WHwy
1 (S[87] = bilwihl)
= exp | —
V21, /Wl wy ? 202w wy,
(S[E] — b wibe))w ;. bibuhiw,
wilwy, 4 ]ch’hk|
(3.71b)

3.2.5.3 Output LLRs of the Soft MSER MUD

Figure 3.11 shows the conditional PDFs of the MSER MUD’s output signal sup-
porting four 16QAM users at £,/Ny=5dB both with and without a priori in-
formation. The arrival angles of the users’ signal are 15°, 49°, —14° and —48°,
respectively, as seen in Figure 3.4. We consider the first user as the desired
user and assume the transmitted symbol is s; = +T/31’—6+ 7 -\/—%. In the scenario
associated with a priori information, all the interfering users’ a priori LLRs
are listed in Table 3.1. It can be seen from the figure that the marginal con-
ditional PDFs p(R[8k]|sk=5") and p(S[3x)|sk=s"™) can both be assumed
as one-dimensional Gaussian distributed. Then the output extrinsic information
delivered by the MSER MUD, similarly to those of the MBER MUD in Equa-

Actual PDF —— Actual PDF ——
i Approx. PDF  + Approx. PDF ~ +
PDF(3,) PDF(,)

(a) Without a priori information (b) With a prior: information

Figure 3.11: Conditional PDF p(8;) (surface), marginal conditional PDFs
p(R[51]) and p([81]) (solid curves) of the MSER MUD’s output signal, and
approximate Gaussian marginal conditional PDFs (+).
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tions (3.61), can be expressed as

Rlsn)-uf7y™)’ . |
valmm) XD ( _ ( kza/‘k,l ) > HW# P(bk(z’):b(mv")(ll))
: b(mn) (i)=+1 it
LE(bA('Z)) =iln (;}3[* : (m,n))2
Skl =py, ; .
Z : Vs()m,n) exp ( = ——‘-2;;:;—1—’—> HVi’#i P(bk(z’):b(mm)(zl))
bmm) (j)=—1 '

(3.72a)

when by (i) is mapped to the real part of s, and

afanl-u{™)” 5 o
T yymm  EXD ( _ ﬁ_"‘;kLZ_> e P(be(i")=bmm (i)

2
b{mn) () =+1 %kQ

LE(bk(i)) == 5
NIER B
z vomn)  €XP ( e M;‘ml) va¢¢ P(bk(i')=b(m’")(i’))

b(m'")(i)=—l Qak.Q
(3.72b)

when by (¢) is mapped to the imaginary part of sx. The calculation of the means
u,(f"}’"), u,(:a") and the variances o} ;, 0} o are the same as those for the soft MBER

solution in Equations (3.59) and (3.60).

3.2.5.4 Output LLRs of the Soft WL-MSER MUD

Figure 3.12 shows the conditional PDFs of the WL-MSER MUD'’s output signal
supporting K=4 16QAM users at E;,/Npy=5dB with a priori information. All the

Actual PDF —— Actual PDF ——
Approx. PDF

Approx. PDF
PDF(s,) PDF(S,)

2

0,

(a) Using weight wy s (b) Using weight w; o

Figure 3.12: Conditional PDF p($;) (surface), marginal conditional PDFs
p(R[81]) and p(I[8;]) (solid curves) of the WL-MSER MUD'’s output signal,
and approximate Gaussian marginal conditional PDF's (+).
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interfering users’ @ priori LLRs are listed in Table 3.1. Based on the Gaussian
assumption again, as for the soft MSER solution, the WL-MSER MUD’s out-
put LLRs can be expressed as in Equations (3.72), where the calculation of the
means and variances ensues in the same way as those of the WL-MBER MUD in

Equations (3.62) and (3.63).

3.2.5.5 Computational Complexity of the Soft MSER MUD

The soft MSER MUD’s computational complexity evaluated in the context of
16QAM systems per symbol per user in term of the number of real-valued ad-
ditions and multiplications is summarized in Table 3.6. The related equations
are also given in Table 3.6. Clearly, the complexity of the soft MSER MUD is

O(LNCgI(SK ) It is seen to be higher than the MMSE MUD’s compl_exity shown in -

~ Table 3.2. Moreover, the soft WL-MSER MUD has the same complexity order as
the soft MSER MUD as seen by comparing Equations (3.70) with Equation (3.69).

Table 3.6: Computational complexity of the soft MSER MUD

Computational complexity Equations
| Mean & variance | 25 : (3.10), (3.11)
Weight vector ((30L+18)Ny+8KL—2L+3K —1)16 + | (3.69), (3.71)
(8L + T) Ny + 80 _
LLRs 16K L+ 108L + 10K +535 (3.72)

| 33 EXIT Chart Analysis

3.3.1 EXIT Chart Introduction

For the sake of Extrinsic Information Transfer (EXIT) chart analysis, the receiver
components (i.e., the MUD and the channel decoder) are modeled as components
mapping a sequence of both received signal observations and the a priori infor-
mation L4 to a new seQuence constituting the extrinsic information Lz. The
EXIT chart analysis computes the Mutual Information (MI) between the LLRs
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L4 and the corresponding bits S , which is given by [36]

2pL 4 (7)s) _
I(Ly; S / zls) - lo 4 dz, (3.73
Al Se{; e pLA l ) g2 pLA(fEH'l) +pLA(37‘—1) ( )

i

where we have I(Lg4; ) [0,1], and pr, (:cls) represents the distribution of the
a priori information conditioned on s € {+1,~1}. After passing samples of L4
through the detector or the decoder, at the 'output the MI I(Lg; S) between the
extrinsic information Lg and S is obtained by applying Equation (3.73) using the
- distribution of Lg. This can be done by first approximating the PDF of Lg by
the experimentally generated histogram of the output LLRs and then computing

I(Lg; S) numerically.

We denote the MI of the input and output LLRs, respectively by I, = I(L4; S)
and I £ = I(Lg;S). When the Gaussian approximation is applied to the PDF of
Ly, the MI I, is a function of a single parameter, usually that of the variance
a? [36]

(@=o%/2)?

0 e__z?‘?;—

Mo =1 ). oran

Let us define J(o4) = I4(04) with the two extremal values of lim,,_q J(c4) =0
and lim,, .. J(04) = 1, which correspond to having either none or perfect a
priort information, respeb’gively. The function J is monotonically increasing and

thus it is invertible [36]

-logy (1 + €7")dz. (3.74)

7a= I ). W)

It is infeasible to express J or its inverse in closed form. HoWever, they can be

closely approximated by [43]
| ' 1.1064 o
J(a’) — (1 _ 2—0.3073><ul'787) (3.76)

and

0.5596
) . (3.77)

J7Y(I) = ( — 3.2541 x log, (1 — 1°99%%)

Note that for the MUD, the received signal has to be recorded for a given
channel state and SNR, because the MUD’s received signal is affected by the
channel quality quantified here in terms of the noise power. The EXIT chart

is either the nonlinear transfer function Tem = fm{lam, SNR) of the MUD or

the corresponding function Ig4 = f4(l4,4) of the channel decoder, which maps
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the input variable I4 to the output variable /. The specific value of T g in the
range [0,1] characterizes the quality of the output LLRs of a receiver compo-
nent. The essential idea of EXIT chart analysis is as follows. Firstly, with the
introduction of the interleaver, we randomly reorder the input sequence of both
the MUD and the channel decoder. This opération ensures that both the MUD
and the channel decoder may be considered in isolation, where each of them is
fed with sufficiently independent extrinsic information by the other constituent
component. Secondly, we generate the EXIT curve Ig = f(I4) by assuming the
a priori LLRs are Gaussian distributed. This simplifying assumption results in a
discrepancy between the EXIT charts and the actually encountered real detection
or decoding trajectories. This discrepancy is maybe sufficiently low so that we
may ignore it [93]. When using the MI as our detection convergence metric, we
do not require that the distribution of the output extrinsic information has to be
Gaussian, since the MI is a function of the entire PDF, rather than that of the -
first and second moments of the extrinsic information, which is quite different
from the philosophy of classic SNR analysis, especially when the distribution of
the extrinsic information is non-Gaussian. Based on the latter feature, EXIT
chart analysis can also be applied to multiuser communications over multipath
fading channels, despite the fact that in this case the distribution of the output
extrinsic information of the MUD cannot be approximatéd by a Gaussian PDF.

The numerical procedure invoked for obtaining the EXIT curve Ig = f(I4)

can be described as follows:

1. We randomly generate the input bits s € {+1, —1} and the corre-
sponding LLRs L4 according to the Gaussian distribution having
a variance of 0% and a mean of s-0%/2. -

2. We then invoke an SISO detector (MUD or decoder) for detecting
the sequence S.

3. From the obtained output LLRs Lg we calculate the resultant
MI using Equation (3.73). '

4. Repeating the above procedure for different values of gﬁ results
in pairs of values (Iam,Iem), (Iag, I54), which are used for
approximating the functions f,(-) and f4(-). '

The output of one of the constituent detectors is the input of the other, hence
both transfer functions are shown in the same EXIT plane having coordinate axes
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of (Inm=Ipa), (Iem=1I44). The stair-case-shaped lines connecting the MI points
~ evaluated during each iteration are referred to as the detecting trajectory. The
substantial advantage of EXIT charts accrues from the fact that the detecting tra-
jectory points recorded for both constituent components exchanging information
fall on the cqnﬁinuous EXIT functions obtained independently, which is expressed

Y:
Igm(n) = fm(Ipa(n—1)), -~ | (3.78a)
- Iga(n) = fa(Igm(n)), | | (3.78b)

where Igm(n) and Igg(n) represent the output MI produced during the n-th

iteration.

An inﬁnitesimally low BER may be attained, when there is a so-called open
tunnel between the EXIT curves of the decoder and the MUD. This graphical rep-
resentation gives us an immediate insight into the number of detection iterations
required to attain the best possible BER performance. Finally, since the MI at
the decoder’s output may be directly mapped to the final BER [40], EXIT charts
allow us to compare turbo receivers in terms of their overall BER performaﬁce.

3.3.2 EXIT Charts for Multiuser Beamforming

Unlike in single-user turbo coding or turbo equalization, in the multiuser detec-
tion scenario the MUD’s EXIT curve recorded for the desired user depends on all
the other (K —1) users’ channel decoder output MI, which implies that the MUD’s
EXIT surface should be K-dimensional. Unfortunately this K-dimensional EXIT
hyperplane cannot be readily visualized. A feasible solution to.resolve this prob-
lem is that of translating a single K-dimensional EXIT chart to K number of two-
dimensional EXIT charts, where each two-dimensional EXIT chart corresponds
to a single user. However, the MUD’s EXIT curve in any of these two-dimensional
EXIT charts changes upon each iteration, and it also depends on the other users’
- MI forwarded from the channel decoders to the MUD.

Nonetheiess, we now slightly relaxed our simplifications and we assume that
although all the users’ angular locations are selected so that the relative time
delay of all users with respect to the angularly closest neighbors is the same,

one of the users has a higher power than the remaining equal-power users. In
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CDMA or SDMA systems, if all the cross-correlation coefficients are equal, the
Multiuser Interference (MUI) imposed by any of the users is equivalent. Hence .
~ we can-use a pair of 2D EXIT charts for analysing the attainable convergence
performance. More specifically, one of the EXIT charts is for the higher-power
user, where the EXIT curves do not depend on the iteration index, while the other
EXIT chart is for the average of the lower-power users, where the MUD’s EXIT
curve dependé on the iteration index. However, in the context of beamforming
systems operating under the above-mentioned conditions, the high-power user
always imposes more interference on the angularly adjacent users than on the
angularly better separated users. This implies that during the first iteration,
the low-power users who are angularly close to the high-power user have a worse -
performance than the other low-power users. Furthermore; during later iterations,
when a high-power user has a lower BER and can be essentially canceled, the
angularly adjacent low-power users will have a better performance than the others.
Hence the low-power users’ signals cannot be readily combined into a single subset
and hence their performance cannot be directly averaged. Therefore the 2D EXIT

charts are unsuitable even for this simple beamforming scenario.

Based on the above reasons, in our simulations all users’ SNRs were identical.
Additionally, their angular locations were selected so that the relative time delay
- of all users with respect to the angulaﬂy closest neighbors was the Same, as defined
in Section 3.1.1. Hence the turbo MUD can average all the users’ MI in order to
generate the corresponding EXIT chart. When these constraints are not satisfied,
the averaged EXIT trajectories will deviate from the EXIT transfer curves and
consequently the EXIT chart analysis becomes less accurate.

3.4 Performance Analysis

In this section, simulation results are présented in order to illustrate the perfor-
mance of the iterative beamforming receiver. EXIT charts are used to analyse
the attainable performance. The system employs a two-element antenna array.
All users have the same transmit power. Each user employs a different randomly
generated interléaver. The interleaver length of each user is 2x10* bits.
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3.4.1 FBPSK Transmission Over AWGN Channels

Figure 3.13 shows the BER performance of the MMSE, RMMSE and MBER
beamforming receivers of Section 3.2 communicating over AWGN channels sup-
porting K=6 BPSK users and the corresponding single-user performance is also
included as a reference. The system’s schematic obeys the structure of Figuré 3.2
and uses the parameters of Table 3.7. All users have the same channel coeffi-

Table 3.7: BPSK transmission parameters

Number of receive antennas | 2
| Number of users 6
DOAs of users’ signal 68°, 36°, 15°, —4°, —24°, —48°
Modulation BPSK
Interleaving length 2 x 10*
‘Channel coding NSC
Code rate 1/2
Constraint length 4
Polynomial generators (15,17)

cients of hy = 1.0+3j0.0, ¥ € {1,2,---,6}, and employ the same rate 1/2 and
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Figure 3.13: BER comparison of the MMSE, RMMSE and MBER iterative
beamforming receivers of Section 3.2 for the BPSK system supporting K=6
users communicating over AWGN channels. The system’s schematic obeys
the structure of Figure 3.2 and uses the parameters of Table 3.7.
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user 4
user 5 user 3

user 6

user 1
o— )/2

Figure 3. 14 Two AEs, where the 51gnal of users arrives from 68°, 36° 15°,
—4°, —24° and —48°. :

constraint length 4 Non-Systematic Convolutional (NSC) code using the octally
represented generators (15,17). The arrival angles of users’ signal are 68°, 36°,
15°, —4°, —-24° and —48°, respectively, as seen in Figure 3.14. It can be seen that
the performance of both the MBER and the RMMSE beamforming receivers has
significantly improved after 50 iterations. Their performanée approach the single-

user bound when the SNR is higher than 2.3dB and 2.6dB respectively. However,

the MMSE solution’s BER approaches the single-user bound when the SNR is
higher than 5.8dB. It is seen that in this ‘overloaded’ system supporting three
times the number of users in comparison to the number of antennas, the MBER
algorithm has 0.3dB and 3.5dB gain than the RMMSE and MMSE solution, re-
spectively. On the other hand, at a high SNR condition, all the three algorithms
have the same performance, i.e. the single-user BER. |

3.4.1.1 EXIT-Chart Trajectories of the MBER MUD

According to the principles outlined in Section 3.3.1, in Figure 3.15 we plot both
the EXIT charts and the simulated trajectories of the iterative MBER beam-
forming BPSK receiver supporting K =6 users at Ej /No=2dB and 3dB. All users
employ the same rate 1/2 and constraint length 4 NSC code usmg the octally
represented generators (15,17).

The iterative detection process commences from the I A,m=0. point, which im-
plies the absence of a priori information for the MUD. Next, the output LLRs
described by Igm=1I4,q are fed into the decoder, yielding the LLRs described by
Ig 4=14m, which are then fed back to the MUD and so forth. The detection pro-
cess is curtailed at the crossing of the EXIT curves of the MUD and the decoder
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Figure 3.15: EXIT charts and simulated trajectories of the iterative MBER
receiver of Section 3.2.4 supporting K=6 BPSK users communicating over
AWGN channels at Ep/Ny=2dB and 3dB. The system’s schematic obeys
the structure of Figure 3.2 and uses the parameters of Table 3.7.

if the SNR is insufficiently high, as seen for E,/Ny=2dB in Figure 3.15. The -
iterative detection process is represented by the staircase shaped trace between:

the transfer curves of the MUD (the doted line) and decoder (the dashed line)

components.

Figure 3.15 also shows the detection trajectories (the solid lines) of the iter-
ative process obtained by simulation. The detection trajéctories closely follow
the EXIT curves of the receiver components, which indicates that the EXIT
chart analysis is valid for the MBER MUD. Again, as seen in Figure 3.15, at
E,/No=2dB the trajectory is curtailed after seven iterations, since the EXIT
curves of the MUD and the decoder do intérsect. By contrast, at E,/Ny=3dB,
the decoding trajectory passes through ‘the bottleneck’ and reaches the top-right
corner, indicating an infinitesimally low BER, after fourteen iterations. We ob-
serve that after a few iterations, the trajectories slightly deviate from the EXIT
curves, which is a consequence of the extrinsic information becoming correlated
upon inéreasing the number of iterations, in particular, when the interleaving

length is finite.
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3.4.1.2 EXIT-Chart Based BER Estimation

EXIT charts can be used to obtain an estimate of the BER after an arbitrary
number of iterations. For the channel decoder, the soft output of the coded bits
generated after a given number of iterations can be written as the sum of the
extrinsic information and the a priori information, which can be expressed as
L= Lpa+ Lgg4. For the sake of deriving a simple formula for the channel coded
bit error probability Pe;, both the a priori information L4 and the extrinsic
information Lg4 are assumed to be Gaussian distributed. Hence, the decoder’s
output L is also Gaussian with a variance of 02 and a mean of p = "72 Then the

coded bit error probability can be written as [36]

' o
Pey = Q(E) (3.79)
Assuming perfect independence between the extrinsic information and the a prioTi -
information, we have 62 = ¢} ; 4+ 0% ,. Applying Equation (3.77), the variances

0% 4 and 0 can be obtained from the corresponding MI I4 4 and Ig 4.

Consider a six-user system communica’c{ng over an AWGN channel. We use
a rate 1/2 NSC code having the octal generators of (15, 17). Table 3.8 compares
the estimated coded BER results obtained from the EXIT chart to the simulation
results characterizing the iterative MBER MUD at F,/Np=3dB. The table shows

Table 3.8: Comparison of BER estimation from EXIT chart and simulation

results

Iteration Estimated | Simulated

index | Ir, . Jipy | OLo4OLEy BER BER
1 0.367,0.119 | 1.643,0.845 | 1.778e—1 | 2.467e—1
2 0.405,0.203 | 1.758,1.142 | 1.473e—~1 | 1.981e~1
3 0.434,0.276 | 1.843,1.37 | 1.254e—1 | 1.634e—1
4 0.461,0.36 | 1.924,1.623 | 1.041e—1 | 1.314e-1
5 0.492,0.471 | 2.021,1.956 | 7.981e—2 | 9.702e—2
6 0.534,0.604 | 2.151,2.382 | 5.428e—2 | 6.667e—2
7 0.582,0.742 | 2.309,2.916 | 3.146e—2 | 3.683e—2
8 0.633,0.859 | 2.483,3.55 | 1.515e—2 | 1.6le—2
9 '0.676,0.923 | 2.643,4.111 | 7.272e—3 | 7.267e—3

10 0.698,0.948 | 2.729,4.433 | 4.621e—3 | 4.9e—3
11 0.706,0.955 | 2.765,4.551 |. 3.88e—3 | 4.233e—3
12 0.709,0.956 | 2.776,4.581 | 3.7e—3 | 3.85e—3
13 0.71,0.957 | 2.779,4.6 | 3.604e—3 | 3.617e—3

14 0.71,0.958 | 2.779,4.608 | 3.565e—3 3.5e—3
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that the EXIT chart in combination with the Gaussian approximation provides

reasonable BER predictions.

3.4.1.3 Operating SNR Threshold Estimation -

We can infer from the above results that the turbo detection scheme is capable
of providing significant performance improvements, when the iterative process
converges successfully. However, achieving successful convergence depends upon
a number of factors, such as the user load, the type of detector, as well as the
channel code and the SNR considered, all of which will be considered below.

From Figure 3.15, it is readily seen that if E,/N, is a little bit higher than
2dB, there will be an open tunnel between the EXIT curve of the MUD and
that of the decoder. The iterative process will hence successfully converge to an
infinitesimally low BER. However, if E,/N is lower than 2dB, the EXIT tunnel
will close and the iterative process fails to provide a significant BER performance
improvement. Hence we estimate E,/Ny=2.2dB as the operating SNR threshold

of this system.
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Figure 3.16: BER performance of the iterative MBER beamforming re-
ceiver of Section 3.2.4 supporting K=6 users communicating over AWGN
channels, when increasing the number of iterations. The system’s schematic
obeys the structure of Figure 3.2 and uses the parameters of Table 3.7.
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Figure 3.16 shows the BER pérformance of the system, when increasing the
number of iterations. It can be seen that when the SNR is higher than 2.2dB,
the achievable BER approaches that of the single-user bound, which confirms the
predictions of the EXIT charts. Finally, it is worth noting that the narrower the
EXIT tunnel, the higher the number of iterations required for achieving detection

convergence.

3.4.1.4 The Numbér of Users Sﬁpported

In addition to the operating SNR threshold, there are other thresholds in turbo
- multiuser detection, which are of interest. For example, given a certain SNR,
the EXIT curve of the detector moves downwards upon increasing the number
of users K , potentially closing the convergence tunnel. This limits the maximum
number of users that the system can support at this SNR.

Figure 3.17 shows the EXIT curves of the channel decoder and the MBER
MUD, when supporting different number of BPSK users K at E,/No=3dB. The
DOAs of all users for different number of user are listed in Table 3.9. The channel
code is a rate 1/2 NSC code having the ocfally represented generators of (15,17).
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Figure 3.17: EXIT charts for the MBER MUD of Section 3.2.4 communi-
cating over AWGN channels and NSC channel decoder for different number
of BPSK users at E,/Np=3dB using the parameters of Tables 3.7 and 3.9.
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Table 3.9: Arrival an'gles of users’ signal

Single user | 15°

2 users . | 15°, —4°

3 users 68°, 15°, —24°

4 users 48°, 15°, —14°, —48°

5 users 41°, 15°, —8°, —33°, —70° -

6 users 68°, 36°, 15°, —4°, —24°, —48°

7 users 56°, 33°, 15°, —2°, —18°, —37°, —62°

8 users - | 49°, 31°, 15°, 1°, —14°, —29°, —48°, —82°

The EXIT chart showé that at Ey,/Ny=3dB, the maximum nurﬁber of users is
K =6, where an open EXIT-tunnel is visible. It is clear that the maximum number
of users supported is a function of the SNR, as well as of the specific detection

and decoding schemes employed.

Figure 3.17 also shows that all the MUD EXIT curves converge to the ordinate
value of Ig,~0.73 at the abscissa of 74m=1. This is because regardless of the
number of users, when the a priori information is perfect, all the other users’
interference can be perfectly removed, resulting in a near-single-user performance.
We also note that the point of perfect convergence at (1, 1] is not reached, since
the BER performance of the MUD depends on the SNR, when the MUI has been
perfectly removed. When the SNR is infinitely high, the point of [1,1] can indeed
be reached. ' '

3.4.1.5 Comparison of Different Turbo-MUDs

Consider a six-user BPSK system employing two receive antennas. Figure 3.18
shows the EXIT characteristics of the iterative MUDs using the MBER, the

MMSE and the RMMSE detection s‘chemes'operating at Eb/N():OdB, 3dB and -

6dB. The MBER MUD has the potential of providing a marginally wider EXIT
tunnel than the RMMSE scheme, followed by the MMSE MUD. Figure 3.18 also
reveals that the three detectors yield the same value of /g, <1 with the advent
of perfect a priori information corresponding to I4m,=1. This is because for
|Z 4,m|—00, the MAI can be completely removed from the received signal.

The main difference between the three detectors is the slope of the EXIT
curves, which will then affect both the SNR convergence threshold and the con-

vergence rate of the associated turbo receiver. Figure 3.13 shows the BER versus
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Figure 3.18: EXIT characteristics of the iterative MUDs using the MMSE,
RMMSE and MBER detection schemes of Section 3.2 supporting K=6
BPSK users communicating over AWGN channels at E,/Np=0dB, 3dB and
6dB using the parameters of Table 3.7. ‘

SNR performaﬁce of these three MUD algdrithms, whose SNR thresholds are
2.3dB, 2.6dB and 5.8dB, respectively. It can be seen that the performance of all
three beamforming receivers has significantly irhproved after 4=50 iterations. In
this rank-deficient system supporting three times the number of users in compar-
ison to the number of antennas, the MBER algorithm has the lowest operating

- SNR requirement.

Figure 3.19.shows the lowest number of iterations required to achieve a near-
single-user performance for the three MUDs, when the SNR experienced is higher
than the SNR threshold. It is clear that the number of iterations fequired de-
creases upon increasing the SNR. At a given SNR, the MBER algorithm neces-
sitates the least iterations to approach the single-user performance. ‘

Figure 3.20 shows the number of users supported at different SNRs for the
three MUDs. The MBER algorithm is likely to support more users than the other

two algorithms.
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Figure 3.19: The number of iterations required to achieve a near-single-user
performance by the MMSE, RMMSE and MBER SISO MUDs of Section 3.2
supporting K=6 users communicating over AWGN channels. The system’s ‘
. schematic obeys the structure of Figure 3.2 and uses the parameters of -
"Table 3.7. '
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Figure 3.20: The number of users supported by the MMSE, RMMSE and

MBER SISO MUDs of Section 3.2 communicating over AWGN channels.

The system’s schematic obeys the structure of Figure 3.2 and uses the
parameters of Table 3.7.
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3.4.1.6 Comparison of Different Channel Coding Schemes

Let us now compare the performance of the MBER t>urbo receivers using different
channel codes, narnely_the previously used NSC code and a Recursive Sys:tematic
Convolutional (RSC) code. Both codes have the same code rate of 1/2 and
constraint length 4. The generator polynomials are (15,17) and (17/15) in.octal
representation, respectively. Figure 3.21 shows the EXIT curves of the NSC and.’
RSC channel decoders. We can see that the EXIT curves of the NSC decoder and
the RSC decoder are almost the same, which implies that the iterative receive

systems employing either channel coding scheme have the same performance.

Now we consider two NSC channel codings using different parameters. Code-1
. has constraint length 3 and octal generator polynomials (5, 7). By contrast, code-
2 has constraint length 5 and octal generator polynomials (23, 35). Figure 3.22
shows the EXIT charts of these two NSC channel decoders along with the MBER,
MUD characteristics, when supporting K'=6 BPSK users at E,/Ny=2dB and 3dB.
Observe in Figure 3.22 that when 14 4 is lower than 0.5, code-1 has a higher output
MI Ig 4 than code-2. However, as I4 4 increases, code-2 starts to perform better.
In Figure 3.22, the arrows indicate the intercept points of the channel decoders

1

0.8

0.6

\

.0.2
[ — NSC channel decoder
ol 77T IRSC chalnnel decgder

0 0.2 0.4 0.6 0.8 1
lg g '

Figure 3.21: EXIT curves of the NSC and RSC channel decoders. Both
codes have the same code rate of 1/2 and constraint length 4. The generator
polynomials are (15,17) and (17/15) in octal representation.
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Figure 3.22: EXIT charts of two NSC channel decoders along with the
MBER MUD’s EXIT characteristics, when supporting K=6 BPSK users
communicating over AWGN channels at Ep/No=2dB and 3dB. Code-1 has
constraint length 3 and octal generator polynomials (5,7). Code-2 has
constraint length 5 and octal generator polynomials (23, 35).

and the MBER MUD at different SNRs: When the SNR is low, for example 2dB,
* the intercept points of both decoders are near the bottom-left corner, with that
of code-2 being nearer. This implies that the receiver using shorter constraint
length channel code has a better performance at low SNRs. When the SNR
increases to 3dB, both codes provide open EXIT tunnel and the intercept point
of the code-2 decoder is moved nearer to the top-right corner than that of code-1
scheme. Hence the receiver employing code-2 performs better. Figure 3.23 shows
the simulated BER perfomiance of these two NSC coded MBER receivers after
=50 iterations, which confirms the above EXIT-chart based conclusions.

Observe from Figure 3.23 that the code-2 receiver has a steep BER curve,
while the code-1 receiver’s BER curve is quite gently sloping. The reason for
this difference can be ex'plained‘b'y their EXIT charts. Comparing the EXIT
characteristics of the code-2 decoder and the MBER MUD at 3dB in Figure 3.22,
we also observe that the EXIT chart slope of the MUD is slightly steeper than
that of the code-2 decoder. This implies that the bottleneck is at the left end of
the tunnel. When the EXIT tunnel becomes jlist opened, the receiver becomes
capable of achieving a significant BER versus SNR gain, which results in a steep
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Figure 3.23: BER comparison of two NSC coded MBER turbo receivers
of Section 3.2.4 supporting K=6 BPSK users communicating over AWGN
channels. Code-1 has constraint length 3 and octal generator polynomials
(5,7). - Code-2 has constraint length 5 and octal generator polynomials
(23,35). The system’s schematic obeys the structure of Figure 3.2 and uses
the parameters of Table 3.7.

BER curve. By contrast, for code-1 the slope of the decoder’s EXIT curve is
steeper than that of the MUD and hence the EXIT-chart intercept point moves
more gradually upon increasing the SNR. Hence the BER curve of the code-1
- receiver does not exhibit the same waterfall phenomenon.

Actually, at the threshold SNR value, the area between the two component
curves is a measure of the performance loss relative to the channel capacity [94].
Therefore, both above-mentioned channel codes are somewhat deficient. To opti-
mize the performance, we have to find a specific channel code, whose EXIT curve
matches the MUD’s curve in order to fninimise_ the area between them. This will

be investigated in next chapter.

3.4.2 BPSK Transmission Over Slow-Fading Channels

Consider a K=6 user BPSK system communicating over narrowband slow-fading
channels obeying the schematic of Figure 3.2 and using the parameters of Ta-
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Figure 3.24: EXIT charts and simulated trajectories of the iterative MBER
receiver of Section 3.2.4 supporting K'=6 users communicating over flat- .
fading channels at Ej/Np=2dB and 3.5dB. The system’s schematic obeys
the structure of Figure 3.2 and uses the parameters of Table 3.7. B

ble 3.7. The normalized Doppler frequency is 1072, and the Ricean K-factor is
10. Figure 3.24 shows both the EXIT charts and the simulated trajectories of
the iterative MBER beamforming receiver at Ej/Ny=2dB and 3.5dB. All users
employ a 1/2-rate and constraint length 4 NSC code using the octal generators of
(15,17). The arrival angles of users’ signal are 68°, 36°, 15°, —4°, —24° and —48°,
respectively, as seen in Figure 3.14. ‘In Figure 3.24 we note that the trajectories
of the iterative process obtained by Monte-Carlo simulations closely follow the
EXIT curves of the receiver cdmponents and are curtailed at the crossing of the
MUD'’s and the decoder’s curves, which indicates that the EXIT chart analysis is

quite accurate for the fading case.

Figure 3.25 shows the BER performance improvements of the system using the
-MMSE, RMMSE and MBER algorithms after =30 iterations. Observe that for
SNRs in excess of 3.5dB, the simulated BER of the MBER algorithm approaches
the single-user BER, which confirms the prédictions of the EXIT charts.
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Figure 3.25: BER comparison of the iterative MMSE, RMMSE and MBER ,
beamforming receivers of Section 3.2 supporting K=6 users communicating . 1
over flat-fading channels. The system’s schematic obeys the structure of \
Figure 3.2 and uses the parameters of Table 3.7. »

3.4.3 QPSK Transmission Over AWGN Channels

Figure 3.26 shows the BER versus SNR performance of the MMSE, WL-MMSE,
MBER and WL-MBER beamforming receivers of Section 3.2 for transmission over
AWGN channels supporting K=4 QPSK users in comparison to the correspond-
ing single-user pérformance. The system’s schematic was shown in Figure 3.2
and all parameters are summarized in Table 3.10. All users have the same chan-

Table 3.10: QPSK transmission parameters .

Number of receive antennas | 2

Number of users 4

DOAs of users’ signal 49°, 15°, —14°, —48°
Modulation QPSK

Interleaving length 2 x 10?

Channel coding NSC

Code rate 1/2

Constraint length 4

Polynomial generators (15,17)

nel coefficients of hy = 1.0+50.0, k € {1,2,3,4}, and employ a 1/2-rate and
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Figure 3.26: BER comparison of the MMSE, WL-MMSE, MBER and WL-
MBER iterative beamforming receivers of Section 3.2 for the QPSK system
supporting K=4 users communicating over AWGN channels. The system’s
schematic obeys the structure of Figure 3.2 and uses the parameters of
‘Table 3.10. :

constraint length 4 NSC code using the octal generators of (15,17). The arrival
angles of users’ signal are 49°, 15°, —14° and —48°, respectively, as seen in Fig-
ure 3.4. Their performance approach the single-user bound, when the SNR is
2.8dB, 2.6dB, 2.5dB and 2.3dB for the MMSE, WL-MMSE, MBER and WL-

MBER MUDs of Section 3.2, respectively. It can be seen that the performance of |
all Beamforming receivers has significantly improved after =40 iterations. In this
rank-deficient system, namely when the channel-matrix becomes rank-deficient
and non-invertible due to supporting twice the number of users in comparison to
the number of antennas, the WL-MBER algorithm has the lower operating SNR

requirement.

In Figure 3.27 we plot both the EXIT charts and .the simulated trajecto-
ries of the iterative MMSE, WL-MMSE, MBER and WL-MBER beamforming "
QPSK receivers supporting K=4 users at E,/Ny=2.5dB. When the a priori in-
formation is 14 ,,=0, the MMSE MUD and the WL-MMSE MUD have the same
output extrinsic information /g, because in this scenario the two algorifhms are
equivalent. In this situation, the MBER MUD and the WL-MBER MUD of Sec-
tion 3.2.4 also have the same I, value, which is marginally better than that of
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Figure 3.27: EXIT charts and simulated trajectories of the iterative MMSE,
WL-MMSE, MBER and WL-MBER receivers of Section 3.2 supporting
K=4 QPSK users communicating over AWGN channels at E,/Np=2.5dB.
The system’s schematic obeys the structure of Figure 3.2 and uses the
parameters of Table 3.10. '

the MMSE MUD and of the WL-MMSE MUD. All the four MUDs’ EXIT curves
have another point of intersection at I4 ,=1, where they achieve the single-user
perfo:mance,‘althoilgh they all fail to reach the point of infinitesimally low BER
'typically associated with (J4m,Igm)=(1,1). When we have I4, € (0,1), the
WL-MMSE MUD outperforms the MMSE MUD, and the WL-MBER MUD out-
performs the MBER MUD. The trajectories shown in Figure 3.27 indicate that
the EXIT chart analysis is also accurate for the QPSK systems. '

3.4.4 16QAM Transmission Over AWGN Channels

Consider a I—(\ =3 user 16QAM system obeying the schematic of Figure 3.2 and
using the parameters of Table 3.11. All users have the same channel coefficients
of hy = 1.0+50.0, k € {1,2,3}, and employ the same rate 1/2 and constraint
length 4 NSC code using the octally represented generators (15,17). The arrival
angles of users’ signal are 68°, 15° and —24°, respectively, as seen in Figure 3.28.
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‘Table 3.11: 16QAM transmission pararﬁeters '

Number of receive antennas | 2
Number of users 3
DOAs of users’ signal 68°, 15°, —24°
Modulation 16QAM
Interleaving length 2 x 10*
Channel coding 'NSC
Code rate 1/2
Constraint length 4
Polynomial generators (15,17)

user 3 user 2

‘user. 1

o— )\/2

" Figure 3.28: Two AEs, where the signal of users arrives from 68°, 15° and
—24°,

Figure 3.29 shoWs the EXIT curves of the MMSE, WL-MMSE, MSER and
WL-MSER MUDs of Section 3.2 and the simulated trajectories of the itera-
tive MMSE-and MSER 16QAM beamforming receivers supporting K'=3 users
at Ey/Np=7.5dB. In this 16QAM system, the MMSE MUD, WL-MMSE MUD,
MSER MUD and WL-MSER MUD have almost the same output Iz, value at
" both the axes at I4,=0 and I4,,=1. Between these two points of intersection :
" the MMSE MUD has the lowest EXIT curve, ‘and the WL-MSER’s EXIT curve
reaches the highest I Em value.

Figure 3.30 shows the SER versus SNR performance of the MMSE, WL-
MMSE, MSER and WL-MSER beamfdrming receivers for transmission over AWGN
channels, when supporting K=3 16QAM users and the single-user performance.
It can be seen that after 1=20 iterations, all these iterative systems approach
the single-user performance. The WL-MSER system has the lowest operating -
SNR threshold, which is 0.5dB, 0.2dB and 1.3dB lower than that of the MSER
WL-MMSE and MMSE systems, respectively.
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Figure 3.29: EXIT charts and simulated trajectories of the iterative MMSE,
WL-MMSE, MSER and WL-MSER receivers of Section 3.2 supporting
K=3 16QAM users communicating over AWGN channels at E,/No=7.5dB.

- The system’s schematic obeys the structure of Figure 3.2 and uses the pa-
rameters of Table 3.11. : ‘

3.5 Conclusions

In this chapter, we introduced the new iterative MBER SIC beamforming re-
ceiver of Section 3.2.4 for BPSK and QPSK systems, which directly minimises
the BER instead of the MSE. This novel algorithm significantly outperforms the
conventional MMSE SIC algorithm of Section 3.2.1 at the cost of a higher compu-
tational complexity. The RMMSE algorithm of Section 3.2.2 designed for BPSK
was also considered, which minimises the MSE between the real-valued desired
signal and the real part of the complex-valued beamformer output. The SISO
WL-MMSE algorithm of Section 3.2.3 designed for higher-order QAM schemes
was extended from the RMMSE solution. Similarly, the soft WL-MBER solution
of Section 3.2.4 was also introduced, which has the same computational complex-
ity as the MBER algorithm. Our simulations have shown that the MBER and
WL-MBER solutions outperform both the conventional MMSE and the RMMSE
or WL-MMSE iterative receivers. Furthermore, the SISO MSER and WL-MSER
MUDs of Section 3.2.5 were also introduced and analysed in the context of 16QAM
systems. They also outperform the MMSE or WL-MMSE systems at the cost of
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Figure 3.30: SER comparison of the MMSE, WL-MMSE, MSER and WL-
MSER iterative beamforming receivers of Section 3.2 for the 16QAM system
supporting K=3 users communicating over AWGN channels. The system’s
schematic obeys the structure of Flgure 3.2 and uses the parameters of
Table 3.11.

a high complexity.

The detailed performance and computational complexity of the methods men-
tioned above are summarized in Table 3.12. The system’s schematic obeys the
structure of Figure 3.2 and uses the parameters of Tables 3.7, 3.10 or 3.11, de-
pending on the modulation scheme used. When quantitatively comparing the dif-
ferent SISO detectors’ performance, we investigated the SNR threshold expressed
in terms dBs, which indicates the lowest SNR where the iterative SIC MUD re-
~ceiver is capable of achieving the BER performance of the single-user system for-
transmission over AWGN channels. As it becomes clear from Table 3.12, the
MMSE SIC algorithm imposes lower complexity than both the MBER and the
MSER methods. However, the MBER and the MSER MUD receivers have on
approximately 3.5dB, 0.3dB and 0.8dB gain over the MMSE algorithm for BPSK,
QPSK -and 16QAM systems, respectlvely It can also be seen in Table 3.12 that
the WL algorithms outperform their correspondmg non-WL methods at a similar

complex1ty.

- Despite the non-Gaussian distribution of the MI recorded in the MBER multi-
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Table 3.12: Performance and complexity summary of iterative beamforming

receivers
SISO MUD | Section | Complexity | Modulation { SNR threshold
' BPSK 5.8dB '

MMSE 3.2.1 O(L?) QPSK 2.8dB

: , 16QAM 7.9dB

RMMSE 3.2.2 @) (L3) BPSK - 2.6dB

_ QPSK 2.6dB

WL-MMSE | 3.2.3 O(L?) 16QAM 6.8dB

' BPSK 2.3dB

MBER 3.24 | O(LNM¥) [ QPSK 12.5dB

WL-MBER | 3.2.4 0 (LNCgMK) QPSK 2.3dB

MSER 3.2.5 o0 (LNchK) 16QAM 7.1dB

WL-MSER | 3.2.5 (’)(LNch K ) 16QAM 6.6dB

user scenario, we succeeded in adopting the classic single-user EXIT-chart concept

for our convergence analysis in Section 3.3.2. More explicitly, based on the EXIT
charts of the SISO MUDs, the exchange of extrinsic information between the
MUDs and the channel decoders was visualized, which facilitated their conver-
gence analysis in the context of iterative detection. EXIT charts were also used
for estimating the BER performance of the system at different user loads in Sec-
tion 3.4.1.2, for estimating the operating SNR threshold in Section 3;4.1.3, for
estimating the number Qf users supported in Section 3.4.1.4, and for comparing

the convergence behaviour of various turbo receivers using different MUDs and
channel codes in Sections 3.4.1.5 and 3.4.1.6. -
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‘Three-stage Iterative Receiver
Using Irregular Convolutional
Codes |

All the SISO MUDs discussed in Chapter 3 have a non-recursive nature, having a
finite impulse response, which limits the achievable performance of the iterative
system, because the extrinsic information exchange between the decoder compo- -
nents tends to be based on more correlated LLRs than in an IIR system. This
disadvantage may be ameliorated with the aid of a Simple unity-rate memory-1
recursive precoder incorporated at the transmitter. Hence the attainable itera-
tive detection performance may be further improved [42]. Naturally, having a
code rate for the precoder which is less than one restricts the achievable data
throughput [38]. Furthermore, having a memory-1 structure slightly increases
the system’s complexity. Then the inner decoder component constituted.by the
MUD, the intermediate channel decoder and the outer channel decoder result in
a three-stage serially concatenated scheme. In this chapter we design this three-
stage concatenated multiuser receiver based on the MBER MUD for the sake
of achieving a near-capacity performance [39]. By cdmbining and projectihg a
series of three-dimensional EXIT functions onto a single two-dimensional EXIT
chart [43], the convergence behaviour of the system is visualized. Specifically,
IRCCs [38] are constructed, which are i;sed as the outer code for the sake of
solving the EXIT curve fitting problem of [44], i.e. that of minimising the. area
of the EXIT chart’s open tunnel, implying that the system becomes capable of
approaching the achievable data rate [44,38]. A near-capacity system can also be -

111
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. designed by employing an irregular inner module [95], or two sérially concatenated

irregular modules [96,97].

4.1 System Deséription

The syStern supports K BPSK users and all users transmit signals on the same car-
rier frequency. The receiver is equipped with a linear antenna array consisting of L

elements, which have a uniform element spacing of /2. Then the signal samples -

received at the symbol-rate can be expressed as (%) = S hi(d)sg (1)) +
my(7) for 1 € {1,2,--+, L}, where s,(:) is the ith symbol of the kth BPSK user,
hy(4) is the complex-valued channel coefficient when transmitting the ith symbol

of user k, my(7) is the complex-valued Gaussian white noise having a power of

202, and t;(0;) = Z(I — 1) sin(6;) is the relative time delay at array element [ for

the source signal of user k, with 6 being the LOS angle of arrival for source k.
The system vector hy, = [het1®)  pyeftz®) ... hkej“’tb(ek)]_T constitutes the
- unique, user-specific signature of user k. We assume that the relative time delay
of all users with respect to the angularly closest neighbours is the same. All the

angular locations of the users were selected under this constraint.

Figure 4.1 depicts the system structure of the proposed three-stage serially
concatenated multiuser communications system. In this ﬁgure, only one trans-
mitter and the kth user’s receiver were portrayed. At transmitter £, a block
of information bits a, is encoded by channel encoder I first. Then the outer en-
coded bits by, are intérleaved, yielding the permuted bits ¢, which are fed through
the unity-rate memory-1 encoder II. The resultant ‘double-encoded’ bits dj are
interleaved by a second interleaver, yielding the interleaved bits ey, which are
" fed to a bit-to-modulated-symbol mapper, as seen in Figure 4.1. After map-
ping, the modulated signal s, is transmitted over a memoryless AWGN or fading
channel. At the receiver of Figure 4.1, an iterative MUD/decoding structure is
" employed, where extrinsic information is exchanged between the three SISO mod-
ules, namely the SISO MUD, the A Posteriori Probability (APP)-based decoder
II and the APP-based decoder I! in a number of consecutive iterations. To be
specific, in Figure 4.1, L 4 denotes the a priori information represented in terms
of LLRs [98], while L denotes extrinsic information also expressed in terms of
LLRs. Note that decoder II processes two a priori inputs arriving from both the

1Bach user has a separate decoder I, decoder II, interleavers and deinterleavers.
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Figure 4.1: Three-stage iterative multiuser beamforming system structure,
in which only the kth user’s transmitter and receiver are portrayed.

MUD and decoder I in order to generaté two extrinsic outputs. Following the last
iteration, the estimates a; of the original bits are generated by decoder I, asseen

in Figure 4.1,

4.2 Convergence Analysis Using_ Projected EXIT
Charts | |

The EXIT chart analysis computes the MI between the LLRs and the correspond-
ing bits, as detailed in [37]. Let I4(;) denote the MI between the a priori values
L (z) and bit-sequence z. Furthermore, let I F(z) denote the MI between the ex-
trinsic values Lg(;) and the bit-sequence . The EXIT function of decoder I is

defined by? ' ’ | |
Iewy = fa;(Tag)- ' (4.1)

As seen from Figure 4.1, decoder 11 has two extrinsic MI outputs, namely Ig(
and Ig(g), both of which are functions of the a priori MI inputs, namely I4(;) and
I The two EXIT functions are defined by [43]

In) = faro(Taey Ing), - (42)

2Fach user employs the same channel coding I and channel coding II schemes, hence the
subscript x can be omitted in the EXIT functions of decoder I and decoder II.




4.2 Convergence Analysis Using Projected EXIT Charts 114

Ie@) = fan (T Ta)- (4.3)

Unlike in single-user turbo coding or turbo equalization, in the multiuser detection
scenario the MUD’s EXIT curve recorded for the desired user depends on all the
other (K1) users’ channel decoder output MI, which implies that the MUD’s
EXIT surface should be K-dimensional. Note that for the MUD, the received
signal has to be recorded for a given channel state and SNR, because the MUD’s
received signal is affected by the channel quality quantified here in terms of the
noise power. Then the EXIT function of the MUD for user % is defined by

IE(ek) = fm,k (VIA(ek/): Eb/NO), . (44)

where &’ € {1,--- ,k=1,k+1,--- ,K}. In our simulations all users’ SNRs were
identical. Additionally, their ahgular locations were selected so that the relative
time delay of all users with respect to the angularly closest neighbors was the
same, as defined in Section 4.1. Hence the turbo MUD can averaée all the users’
MIs in order to simplify the EXIT chart function of (4.4) to '

Ipe = Fm (Zace), Es/No). | - (45)

Consider a half-rate NSC code using the octally represented generators (15, 17)
as encodef I, and a simple rate-1 accumulator as encoder II, described by the oc-
tal generator polynomials of (1/3), where 3 represents the feedback polynomial.
An SISO MBER MUD is employed as the inner component. All the EXIT func-
tions can be plotted in two 3D EXIT charts. One for the EXIT functions of
‘Equation (4.3) and Equation (4.5) as shown in Figure 4.2a, and another for the
EXIT functions of Equation (4.1) and Equation (4.2), as shown in Figure 4.2b.
The intersection of the surfaces seen in Figure 4.2a characterizes the best possi-
ble attainable performance, when exchanging information between the MUD and

" decoder 11 after ah infinite number of iterations at different fixed values of I,
which is shown as a thick solid line. For each point [I4(), Jac), E(d)'] of this line
in the 3D space of Figure 4.2a, there is a specific value of I ;_;;(C) determined by
T4() and 4@ according to the EXIT function of Equation (4.2). Therefore the
solid line on the surface of the EXIT function of decoder II seen in Figure 4.2a is
mapped to the solid line shown in Figure 4.2b. In order to avoid the cumbersome
3D representation, we now project the bold EXIT curve of Figure 4.2b onto the
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Figure 4.2: 3D EXIT charts of the 3-stage iterative MBER beamforming re-
ceiver supporting K=6 users with the aid of two antennas at Ej/Ny=2.1dB.
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Figure 4.3: 2D projected EXIT charts of the 3-stage iterative MBER
beamforming receiver supporting K=6 users with the aid of two anten-
nas at E,/Ny=2.1dB. The EXIT curves of the MBER MUD recorded at -
Ep/No=2.1dB and that of decoder I are also plotted.

9D plane at I4g=0, yielding the solid line in Figure 4.3 [43]. The EXIT curves
of the MBER MUD recorded at E,/Ny=2.1dB and that of decoder I were also
plotted in Figure 4.3. The projected EXIT curve can be described as

. IE’(c) = fp(IA(c); Eb/NO)1 (46)

which implies that the MUD &and decoder 1I are combined into a single inner de-
coder component and hence the resultant 3-stage iterative scheme can be analysed

as a traditional 2-stage iterative arrangement.

As for a traditional two-stage turbo scheme, the EXIT curve of the inner
component and that of the outer component are used for analysing the associ-
ated convergence behaviour. As seen from Figure 4.3, the EXIT curve of the
MBER MUD cannot reach the convergence point of [1, 1} and intersects with the
EXIT curve of the outer NSC code, which implies that residual errors persist,
regardless of both the number of iterations used and the size of the interleaver.
This explains the residual BER encountered by the traditional two-stage turbo
scheme. On the other hand, if the inner MBER MUD and the intermediate de-
Icodef IT are viewed as a single joint inner SISO module, then the projected EXIT
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function of Equation (4.6) is the EXIT. function of this module, which is capable

of reaéhing the convergence point of [1,1]. As long as there is an open tunnel
between the EXIT curve of this joint inner module and that of the outer decoder,
the three-stage concatenated system is capable of converging, hence achieving an

infinitesimally low BER.

4.3 Design of Irregular Convolutional Coded

Beamforming

According to the area properties [44,38] of the EXIT charts, the area under the
EXIT curve of the inner module is approximately equal to the achievable data
rate when employing a specific multiuser detection scheme, when the channel’s
input is uniformly distributed. Furthermore,_ the area under the EXIT curve
of the outer code is approximately equal to 1—R;, where R; is the outer code
~rate. More explicitly, let A;, and Ad, be the areas under fy, (/) and its inverse
fd_ll(I ), I € ]0,1}], respectively. Similarly, we define A, for f,(I, Ey/Np) and A,
for f,(I, Ey/No). Then we have Ay, =~ Ry, and for BPSK modulation Am =~ C,
where C is the achievable data rate of the communication channel when its input
is uniformly distributed. Since the intermediate channel code II has a unity rate,

the area A, under the prdject’ed EXIT curve is also approximately equal to the |
above-mentioned uniform-input -achievable data rate C. These area properties
yield a design rule for our system: R; should approach C' as closely as possible

under the constraint of
© D) < 1, By/No) VI €0,1), (4.7)

implying that an outer code is sought, which ensures that the inverted EXIT
curve fy (1) fits to f,(I, E»/No) as closely as possible, while maintaining an open
EXIT tunnel, and hence minimising the area of the open EXIT tunnel.

However, as seen from Figure 4.3, even if the area under the projected EXIT
curve plotted using the continuous line at Ey/Ng=2.1dB is A,,zO.Sl, which is
larger than the outer code rate of R;=0.5, no opén EXIT tunnel exists. In order
to circumvent this problem, we introduce the novel concept of Irregular Con-
volutional Codes (TRCCs) [38], which: allow us to shape the outer code’s EXIT
- curve for the sake of matching that of the inner code. IRCCs were specifically
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designed with the aid of EXIT charts for the sake of improving the convergence
behaviour of iteratively decoded systems, and are constituted by a superposition
of convolutional codes having different code rates. ‘To be specific, an IRCC is con-
structed from a family of P subcodes. Each subcode has its own individual code
rate rp(p € {1,---, P}) and encodes a specific fraction of a,r,N of the original
uncoded information bits, hence generating o, N number of encoded bits, where
N denotes the total number of encoded bits. Given the target overall average
code rate of R € [0,1], the weighting coefficient o, has to satisfy E;’;l ap =1,
Z;;l aprp = R and a, € [0,1]. Clearly, the individual code rates {r,} and the
weighting coefficients {a,} play crucial roles in shaping the EXIT function of the
resultant IRCC. The EXIT function fg,(14) of the target IRCC is the weighted
superposition of its subcodes’ EXIT functions fg, ,(I4) [38], yielding

o
fa(T14) = opfay p(I4). (4.8)

For éxample, a family of P=17 subcodes constructed from a recursive system-
atic, half rate, memory-4 mother code defined by the octal generator (27/31) was
introduced in [38]. Higher rates are obtained by puncturing, while lower rates are
obtained by adding more generators and by puncturing while maximizing the free
distance. Table 4.1 shows the code rates, generator polynomials and puncturing
patterns of all 17 subcodes. The EXIT curves of these subcodes are plotted in
Figure 4.4. By using these 17 subcodes and the optimization criterion of

min /0 (F120) = FolT, B/ o)), (4.9)

which minimises the squared error between the IRCC EXIT curve and the corre- '
sponding target curve, introduced in [38], we now optimize the weighting coeffi-
cients {c,}, so that the IRCC’s EXIT curve matches the projected EXIT curve.
Figure 4.5 shows the target projected MBER EXIT curve and the resultant EXIT
curve of the optimized IRCC at Ey/Np=2.1dB. The non-zero weights of the IRCC
subcodes are listed in Table 4.2. The area under the projected EXIT curve at
E,/Ny=2.1dB is A, =~ 0.51, which indicates that this E,/Ny value is close to the
lowest possible convergence threshold for a system having an outer coding rate of
R;=0.5. Despite the fact that A, and R; are so close to each other, there is still an
open tunnel between the two curves in Figure 4.5, which explicitly indicates the
flexibility of the IRCCs. Figure 4.5 contrasts the projected MMSE EXIT curve’
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vTable 4.1: An example of IRCC subcodes

Code rate Generator polynomials Puncturing pattern
0.1 (27,27,27,27,35,35,35,35,33)/31 | 1,1,1,1,1,1,1,1,1,1
0.15 (27,27,27,35,35,33)/31 | 777,77,7,3

0.2 (27,27,35,33)/31 , 1,1,1,1,1

0.25 - (27,35,33)/31 1,1,1,1

0.3 (27,35,33)/31 7,7,7,1

0.35 | (27,35)/31 ' 177,177,077

04 (27,35)/31 3,3,1

0.45 (27,35)/31 | 777,777,021

0.5 27/31 1,1

0.55 27/31 3777,2737

0.6 27/31 7,3

0.65  |[27/31 17777,05253

0.7 27/31 v 177,025

0.75 - 127/31 - 7,1

08 - 127/31 17,1

0.85 27/31 377777,010101
0.9 27/31 ' 777,1

Table 4.2: The non-zero weights of IRCC subcodes in percent for the opti-
mized curve in Figure 4.5 using the family of 17 subcodes in Table 4.1

Subcodep| 1 3 4 6 9 13 16 17
"o, m % | 172 2663 361 1036 1911 2062 344 1451

to that of the MBER MUD, where. the afea under the MMSE curve is about
0.48. This implies that the MMSE receiver needs a higher SNR for maintaining

an open tunnel.

4.4 Performance Analysis

The system employs a two-element receive antenna array. All K'=6 users employ
BPSK modulation and have the same transmit power. The angular Separation of
users with respect to the antenna array are 68°, 36°, 15°, —4°, —24° and —48°.
Each user employs two different randomly generated interleavers having a length
of 2x10* bits. The code rate of encoder I is 0.5.

When communicating over AWGN charinels, the iterative decoding trajec-
tory recorded during our Monte Carlo simulations using the optimized IRCC at
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Figure 4.4: EXIT curves of a family of 17 IRCC subcodes, the code rates
are from 0.1 to 0.9 bottom-up plotted with a step of 0.05.
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Figure 4.5: The projected EXIT curve and the optimized EXIT curve of
the IRCC for the 3-stage iterative beamforming receiver supporting K=6
users with the aid of two antennas at Ep/Np=2.1dB.
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Figure 4.6: EXIT charts and recorded iterative trajectory for the 3- -stage
iterative MBER beamformmg receiver using IRCCs for supporting K=6
users communicating over AWGN channels with the aid of two antennas
at Ey/Np=2.6dB. The system’s schematic obeys the structure of Figure 4.1
and uses the parameters of Table 3.7.

Eb/No—-2 6dB is depicted in Figure 4.6. It can be seen that the recorded tra-
Jectory converges to the [IA(C),IE(C)] (1,1] point through the predicted EXIT
chart tunnel. Furthermore, since the tunnel between the two EXIT curves is very

narrow, a significant number of iterations are required for enabling the iterative |

receiver to converge to the 'point of [1,1].

~ Figure 4.7 shows the BER performance of the three-stage iterative MBER
beamforming scheme using IRCCs. The conventional two-stage system using a
~ NSC code having a constraint length of 4 and octal generator polynomials of
(15,17) as the outer code is also plotted. It can be seen in Figufe 4.7 that the
2-stage MBER receiver exhibits an error floor, which corresponds to the BER
performance of the single-user case. By contraét, the 3-stage MBER and MMSE
system becomes capablé of achieving an infinitesimally low BER, when the E,/Ny
encountered is higher than 2.5dB and 5.1dB, respéctively. This BER figure con-
firms the performance difference of the two MUDs, which we have predicted from
the EXIT curves of Figure 4.5. -

We observe from Figure 4.5 that the 3-stage iterative system is cépable of




4.4 Performance Analysis

122

10°

107

10
2

Figure 4.7: BER performance of the 3-stage and 2-stage iterative MBER
beamforming receivers and the 3-stage iterative MMSE beamforming re-
ceiver supporting K=6 users communicating over AWGN channels with
the aid of two antennas. The system’s schematic obeys the structure of
Figure 4.1 and uses the parameters of Table 3.7.

maintaining. an open tunnel and hence of converging to the point of [1,1] in

MBER 2-stage
'MBER 3-stage
MMSE 3-stage

3

the EXIT-chart at E,/Ny=2.1dB. However, the Ej,/Np threshold of the 3-stage
system characterized in Figure 4.7 is higher than 2.5dB. Figure 4.8 shows both
the iterative decoding trajectory and the EXIT curves at Eb/N0=2.5dB. In this
figure, we can see the formation of an open tunnel. However, the actual decoding

trajectory aborts at a point around [0.1,0.17] for the following reasons:

1. Our system is a multiuser system. Although we selected the arrival angles

of the users’ signals under the rule defined in Section 4.1, the achievable

performance of the users is still not perfectly identical. In the EXIT charts,
we used the average MUD EXIT curve and trajectory. When the average
EXIT tunnel is quite narrow, a certain user’s tunnel may in fact be closed.

" This poor performance of a single user may render the parallel IC mechanism

‘unable to remove the MUI

2. In our simulations, the activation order of the consecutive iterations is

“MUD, decoder II, decoder I, decoder II, MUD ...".

There is only one

iteration between the MUD and decoder II before the extrinsic information
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Figure 4.8: EXIT charts and recorded iterative decoding trajectory for the
3-stage iterative MBER beamforming receiver using IRCCs for support-
ing K=6 users communicating over AWGN channels with the aid of two
antennas at Ep/Np=2.5dB. The system’s schematic obeys the structure of
Figure 4.1 and uses the parameters of Table 3.7.

is transferred to decoder 1. It implies that the accurate 2D projected curve
recorded for this particular activation order of the decoders should be a lit-
tle lower than the projected curve seen in Figure 4.8, and the actual tunnel .

may become narrower, or even closed.

3. The projected curve is the majiped intersection of the MUD’s EXIT surface
and the decoder II’s EXIT surface. It represents the best possible output
MI of the combined component. However, the practically achievable per-
formance may be worse, potentially leading to a lower projected 2D-curve
and higher SNR threshold.

Let us now consider the above-mentioned 3-stage system’s convergence per-
formance, when communicating over flat Ricean fading channels.. The normalized
Doppler frequency is 0.01, and the Ricean K-factor is 10. Our simulation results
demonstrate that the Ej/Ny threshold required for achieving an infinitesimally
low BER is 2.9dB. At this SNR the recorded iterative decoding trajectory and
the resultant EXIT curves are shown in Figure 4.9. :
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Figure 4.9: EXIT charts and recorded iterative trajectory for the 3-stage
iterative MBER, beamforming receiver using IRCCs for supporting K==6
users communicating over flat-fading channels with the aid of two antennas
at Ep/No=2.9dB. The system’s schematic obeys the structure of Flgure 4.1
and uses the parameters of Table 3.7.

4.5 Conclusions

In this chapter, we proposed a three-stage serial concatenated multiuser system,
where the inner SISO MBER MUD module cannot be rendered recursive. Hence
the iterative receiver of Chapter 3 was extended to three SISO modules, namely
the inner MBER MUD, the intermediate unity-rate channel decoder and the outer
channel decoder. Furthermore, the convergence behaviour of our design example
was analysed using 3D EXIT charts and their 2D projections in Section 4.2.
It has been pointed out that although the EXIT function of the inner MBER
MUD cannot reach the point of perfect convergence at [1,1], the joint EXIT
function obtained for the amalgamated inner MBER MUD and the intermediate
channel decoder with the aid of projection can. Therefore the three-stage system -
is capable of eliminating the residual BER encountered in the conventional two-
stage system. With the advent of 2D projection, the IRCC of Section 4.3 was
constructed for employment as the outer code, whose EXIT function was matched
to the joint EXIT function of Section 4.2, and as a result, the channel _capacity

was closely approached.
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Table 4.3 summarizes the performance of the 3-stage MUD and the 2-stage
MUD receivers in terms of their SNR required: for maintaining BER of 10~*
as well as for an infinitesimally low BER. The system’s schematic obeys the
structure of Figures 4.1 and 3.2. It can be seen that the proposed 3-stage MBER
receiver significantly outperforms both the 2-stage MBER SIC receiver as well
as the 3-stage MMSE receiver. Furthermore, the 3-stage iterative receivers are
capable of achieving an infinitesimally low BER. However, the 2-stage receiver’s
performance has an error floor, which is'identical to that of the single-user system.

Table 4.3: Performance summary of 3-stage iterative beamforming receivers

SISO ’ - SNR at a(n)

MUD BER of 10~ | infinitesimally low BER
3-stage MMSE | > 5.1dB > 5.1dB '
3-stage MBER | >2.5dB = | > 2.5dB
2-stage MBER | 4.6dB unachievable




Chapter 5

Beamforming Aided Multiusei'

Transmitter

Sophisticated multiuser detection techniques can be readily employed at the BS’s
uplink receiver, since the power consumption of the BS is less constrained than
that of the MSs. By contrast, our goal is to design low-complexity, low-power
MSs and hence it may be beneficial to design sophisticated transmitters in the

interest of reducing the MS’s receiver complexity.

- Numerous techniques have been proposed for achieving this ambitious goal
[99, 46,47, 48,51,53], but their common feature is that they require the perfect
knowledge of the CIRs to be encountered during the future instant of down-
link transmissions to all the MSs. This unique, user-specific CIR .or Angle of
Arrival (AOA) may be used by the MUT to separate the users’ downlink sig-
nals with the aid of appropriate transmit preprocessing techniques and hence to
avoid or to mitigate the MUI imposed on each others’ downlink signals. Nat-

urally, the provision of accurate downlink CIR or AOA estimated for the BS’s

downlink MUT is a challenging task; because all MS receivers have to estimate
their downlink channels and then have to report it back to the BS using the
uplink control channels. This process is prone to both quantization errors as
well as to signalling delays, which may be mitigated with the aid of using so-
phisticated Vector Quantization (VQ) techniques [100] and long-term channel
prediction methods [101]. The simple philosophy of long-term channel pfediction
is that owing to the Doppler-frequency dependent correlation of the channel’s

envelope, it is possible to predict its future values based on its past values, which

126
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Figure 5.1: Downlink beamforming schematic supporting K users portray-
ing the uplink CIR/AOQA side-information signalling and long-térm channel
prediction at the BS.

have already been received and stored by‘the BS’s uplink receiver. This allows
the BS to avoid the above-mentioned signalling delay and to predict the channel
envelope to be encountered between the BS’s MUT and each MS during their

next downlink transmission burst, as seen in Figure 5.1.

To elaborate a little further, the assumption that the downlink CIR is known
at the BS may be deemed to be valid in TDD systems [45], because the uplink
and the downlink share the same frequency band. Thus, all channel parameters
may be considered to-be similar for the uplink and downlink, provided that the
coherence time of the channel is sufﬁ.ciently high to ensure that. the channel esti-
mate is still valid, when it is used by the MUT'algorith_m. In Frequency Division
Duplex (FDD) systems [45], the uplink and downlink reside in different frequency
bands, hence the channel parameters have to be explicitly signalled, as discussed

above.

Briefly returning to the family of dowﬁlink preprocessing techniques, it was
argued in [102] that most MUD techniques have an MUT counterpart, such as
the Transmit Zero Forcing (TZF), the Transmit Minimum Mean Squared Error

>
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(TMMSE) [48,100], the Transmit Wiener Filter (TWF) [51] etc. The network-
layer benefits of both uplink and downlink beamforming were quantified in High-
Speed Packet Access (HSPA) style third generation systems in [45]. Table 5.1

summarizes some state-of-the-art MUT papers and their novel contributions.

Table 5.1: Sélection of MUT papers

Contribution

Vojéi¢ and
Jang .

Author(s)

[99} Introduéed the idea of exploiting the reciprocity of the uplink
Henry and | and downlink channels in TDD systems by applying a linear

| Glance transmit v_ﬁlter in the downlink for flat fading channels and
for multiple antenna elements at the BS. .

[46] Proposed a pre-Rake combination method for multipath di-
Esmailzadeh | versity signal combining designed for DS-CDMA communi- |
and Naka- | cations, where multiple transmissions of each spreading code

| gawa were activated and each transmission was independently de-
layed and amplified according to the channel’s delay profile,
, i.e. according to the estimated CIR taps.

[47] Proposed a pre-decorrelating strategy for single user detec-
Tang and | tion in the downlink of a centrally controlled DS-CDMA sys-
Cheng tems. The basic idea is‘that_instead of the direct superpo-

sition of each user’s data, an appropriately weighted linear
combination of the active users’ data is transmitted.

48] Proposed a transmitter preprocessing scheme, which rep-

resents a linear transformation of the transmitted signals,
where the mean squared errors at the output of all receivers
are minimised. It was shown that when either a conventional

single-user receiver or a RAKE receiver is employed, both the

‘multiple access and the inﬁersymbol interference can be elimi-

nated. The authors also discussed the possibility of including
a specific transmit power constraint, which was. referred to as
the constrained MMSE transmit filter.

[49]
Karimi

et al.

Introduced the concept of the TWEF method. The trans-
mit MMSE filter was obtained by simply incorporating a
weighted identity matrix in the TZF solution in an intuitive

way.
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Author(s) Contribution
[103] Two precodmg schemes were proposed for the downlink of
Barreto and | CDMA systems, which assist in reducing the multiuser inter-
Fettweis ference by jointly preprocessing the transmitted signal based
on the knowledge of the downlink channél. Also proposed
an unequal transmit power constraint, and stated that the
resultant optimization problem has no closed form solution.
[50] Derived the transmit Wiener filter concept for DS-CDMA
Joham et al. systems, which takes into account the noise power encoun-
tered at the receivers. Demonstrated that the transmit
Wiener filter converges to the transmit matched filter and
to the transmit zero-forcing filter for low and high SNRs,
respectively.
[52] Proposed a novel approach to MUT des1gn created for the
Irmer et al. | CDMA downlink operating in frequency-selective channels.
The key idea is to directly minimise the BER at the receivers
with the aid of pre-distortion of the transmitted symbols.
[53] _ Suggested the extension of nonlinear minimum BER trans-
Irmer et al. | mission to multiple transmit and receive antennas. Both
linear and nonlinear multiple antenna aided MUT schemes
were compared, when combined with the application of Pre-
RAKE, RAKE and Singular Value Decomposmon (SVD)
aided eigen-mode preprocessing. '
[54] | The extension of nonlinear minimum BER transmission from
Irmer et al. | the symbol-level to the more general chip-level was advocated
using a phase-dnly nonlinear MUT scheme, which imposes a
considerably reduced computational complexity.
[55] Addressed the problem of designing an optimal prefilter
Hjgrungnes | transform for wireless Finite Impulse Response (FIR) MIMO
v and Diniz communication systems. The BER was minimised under a
4 given power constraint. |
[51] Examined and compared the different types of linear trans- |
Joham et al. | mit processing schemes designed for MIMO systems. Demon-
strated that the transmit filters are based on a similar op-
timization process as the respective receive filters, with an
additional constraint imposed on the transmit power.
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Author(s) K Contribution
[100] | Investigated the achievable performance of SDMA MIMO
Yang et al. | systems using transmitter preprocessing, when the channel

knowledge required for preprocessing was acquired by the
downlink receiver and then conveyed to the transmitter via
realistic error-prone feedback channels that may also expe-
rience fading. The CIR magnitudes and phases were vector
quantized and conveyed to the downlink transmitter sepa-

rately. »
[102] Introduced novel concepts for finding the relationship be-
Yang tween MUDs and MUTs, so that the study of MUTs can

benefit from the well-documented theory of MUDs. For any
given linear MUD scheme, there exists a linear MUT counter-
part, which can be readily designed from the original linear
MUD. '

5.1 System Description

Consider a downlink system communicating over non-dispersive channels. The
transmitter has Lt downlink transmit antennas. The system supports K users
and all the users have L, receive antennas. The multiuser downlink system’s
structure is shown in Figure 5.2, where s; is the source symbol transmitted to
user k, and pi is the preprocessing vector specifically derived for symbol sy.
Then the K-user transmit signal vector becomes t = _Z,If:l pxse = Ps, where
P = [p) P2 Px)] € CiK and s = [s; s5---sk]T. The estimated symbol of

user k can be written as

8 = dekt +‘dl€1nk: . (5.1)

where Hy, is the (L, x L;)-element non~dispérsive downlink channel matrix of user
k, dj, is the kth user’s receive filter and ny is the additional noise at the receiver
of user k. When we represent the estimated symbols 3, of all the K users in the
- vectorial form § similar to s, the K users’ downlink transmission can be expressed

as
§ = D¥HPs + D"n, - (5.2)
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Figure 5.2: Multiuser downlink transmit preprocessing system structure
supporting K users.

where we define the K users’ channel matrix as H = [HT HI...-H%]" €
CKLrxL+ D = blockdiag[d; d---dk] € CK4*K and n = [n] n%‘—--n}}]T €

CKL'XI.

s

5.2 Multiuser Transmission Schemes

5.2.1 Transmit Matéhed Filter

The Transmit Matched Filter (TMF) concept was introduced by Esmailzadeh
et al. [46] by moving the matched filter H¥ conventionally match to the channel
at the receiver to the transmitter. The TMF does not consider the effect of
interference, but maximizes the desired signal’s contribution to the estimate §
due to the transmitted signal s and hence beneficially uses the available transmit
power E;. Thus the TMF’s transfer function is expfessed as

, Hg)P? .
Pyr = arg mgxM st B[|Ps|f’] = E. ~ (5.3)
s[omal] '

By introducing the transmitted signal’s covariance matrix Rs. = E[SS'H ], the

resultant TMF can be written as

Pur = BurH?D, - ~ (5.4)
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where we have

o E,
Bur = \/ & (F7DR,D7H) - (5.5)

and tr(-) denotes the trace of a square-shaped matrix.

5.2.2  Transmit Zero Forcing

~ Since the transmitter has no influence on the noise encountered at the receivers,
the most intuitive approach for transmit processing is using Transmit Zero Forcing
(TZF), which removes all the interference at the receivers with the aid of appropri-
ate transmit preprocessing. Tang et al. presented a pre-decorrelating technique
for flat fading scenarios in [47}, and Vojcié et al. proposed the more sophisticated
transmitter precoding technique of [48]. The TZF coefficients are found by forc-
ing the concatenated transmit filter P, channel H and receive filter D¥ to be an
identity matrix according to D¥HP = I. Since the transmit power is constrained
to E}, the heuristic approach to meet this requirement is to scale the gain of the
resultant filter. Then the cost function of the TZF can be expressed as

{Pzr,Bzr} = argrgiéz 5~ st DFHP = Sl and E[|Ps|’] = B..  (5.6)

More explicitly, the optimization criterion is to maximize the received data symbol
power, or to minimise the magnitude of the inverse power scaling factor 8~%. The
first constraint is that of satisfying the zero-forcing condition i.e. to suppress the
interference, while the second constraint defines the available transmit power E;.

Therefore, the TZF solution reads as follows
Pzr = fzr(H?DD?H) 'H*D (5.7)

with

Ey
tr|(D"HH"D) "'R,|

Bzr = (5.8)

5.2.3 Transmit Wiener Filter

In [48], Vojci¢ noted that in the absence of receiver noise the transmit filter min-
imising the MSE is the TZF. He also discussed the possibility of including a
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transmit power constraint, which was referred to as a constrained MMSE trans-
mit filter. Barreto et al. [103] proposed to replace the equalityin the transmit
power constraint E[||Ps||?] = E; by an inequality, but stated that the resultant
optimization had no closed-form solution. The Transmit Wiener Filter (TWF)
concept was first mentioned by Karimi et al. in [49], who obtained the transmit
MMSE filter by simply adding a weighted identity matrix in the solution of the
TZF in an intuitive way. The optimization of the TWF was detailed by Joham
et al. in [50] and [51]

The key to determining the TWF is to allow the transmit filter to generate
a receive signal §, whose amplitude is different from that of the original desired
signal s. The amplitude 3 of the desired portion in the received signal has to be as
~ high as possible in order to combat the effects of the noise, because the automatic
~ gain control of the receiver is unable to separately scale the desired portion of
the signal, it also scales the noise portion of the received signal according to §71.
" The TWF includes the weighting of the estimated signal § with the factor 87! in
the definition of the MSE and uses the total available transmit power according

to
{Pwr,Bwr} = arg I{,HEE[“S - [3_13”2] s.t.: E[||Ps|’] = E. (5.9)

We can find the necessary conditions for the transmit filter P and for the real-
valued amplitude weight 3 to satisfy Equations 5.9 by constructing the La-
grangian function and employing Equation (5.2). Then we have

L(P,,)) =E|[ls = 875| + AE[IPs[] - B)
—tr(R - 'R,PPHD - ~'D?HPR, +ﬂ“2DHHPR PHHAD
+fﬁ—2DHR,nD+)\PR PH) ~ \E, (5.10)

where we define R,, = E[nn ] By setting this Lagrangian functlon s gradlent

with respect to P to zero, we can derive

VeL(P,f,)) = —-—3L(g;,ﬁ 2

—B'HTD'R, + ~2H'D*DTH'P'R, + \P'R,
= Or.xk, | (5.11)

where we used %i = ATBT and Qtrzg_ig_) = CT. Then, the transmit filter
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matrix can be expressed as
P = B(H'DD"H + A3’1;,) " -HD. (5.12)

Furthermore, based on Equation (5.12) and using tr(AB) = tr(BA), the gradient
of Equation (5.10) with respect to 8 can be expressed as

SL(P,8,)
op
= tr(°R,PYHYD + $°D"HPR,

— 26 *D*HPR,PYHD - 26-*D"R,D)
= 267%r(fH"DR,P” - H"DD”"HPR,P” — D"R,D)
= 267%tr(A\3*PR,P¥ — D"R,D). , (5.13)

VﬂL(P)B; )‘) =

Setting this gradient to zero and using the power constraint E[||Ps||?] = tr(PR,P¥)

= E;, we have .
tr (DH RnD)
E; '

Then, the closed form solution for the optimization problem formulated in Equa-

| ABZ = (5.14)

tion (5.12) is given by

ng = BwrF 'HZD, o | (5.15)
where we define | | ,
| F=HDD"H + —(D—ZR"—D)IL, (5.16)
and ,
p WF;:\/ tr(F- 2HH%R JD#H)’ ' (5.17)

It may be readily shown that the TWF converges to the TMF at a low SNR
while to the TZF solution at a hlgh SNR.

5.2.4 Nonlinear Minimum Bit Error Rate Transmission

minimising the downlink BER as transmit signal optimization criterion was pro-
‘posed for Minimum Bit Error Rate Transmission (TMinBer) by Irmer et al.
in [52,53, 54}, which exploited the knqwledge of all users’ transmitted symbols.

For uplink MUD, the perfect knowledge of the transmitted symbols is usually -
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not available since they arrive .from geographically dispersed MSs, whereas in
MUT the data symbols are known a priori. Using the nth actually transmitted
symbol combination s(n), which may be preprocessed by a symbol- and user-
specific coefficient, and assuming perfect channel knowledge, the symbols received
by each MS can be calculated. Given the receiver noise variance, the average BER

of all receivers may be calculated as

i (sgn (Rlsw( )]) %[df(“)Hk(n)P(n)s(n)]) (5.18)

K a3 (m)

for BPSK modulation, where the noise variance of the kth receiver is 202,. The
BER of all MSs is then minimised by optimizing the BS’s MUT preprocessing
- coefficients, where a constant total transmit power constramt has to be fulfilled.
Then the TMmBer solution can be expressed as

Prainser (1) = arg min Pe(n) st E[|Ps(n)|?] = E:. (5.19)

Unfortunately, there is no closed-form analytical solution for the constrained non-
linear TMinBer optimization problem. In fact, it is not even necessarily a convex
optimization problem. Nonetheless, ﬁsing state-of-the-art nonlinear optimization
methods, such as Sequential Quadratic Programming (SQP) [104], satisfactory
results can be achieved. | '

5.3 Linear Minimum Bit Error Rate

. Transmission

5.3.1 Bit Error Rate

When using a linear precessing matrix P in the transmitter, as shown in Figure 5.2
and Equation (5.2), the symbol estimated at the kth receiver is given by
s = dfH,Ps +dffn,. (5.20)

Let us define z = sgn(R{si]) - R[5x(P)] as a signed decision variable. The PDF of
z is constituted by a mixture of the Gaussian distributions associated with each’
possible combination of the transmitted data symbols of all users. Similarly to the -




5.3.2 Linear Minimum Bit Error Rate Solution 136

MBER detector of Equatlon (2. 26) under the assumption that all the n01se-free
signal states are equlprobable the PDF of z is given by '

2
(ac - sgn(?R{s,(f)}) : %[dkHHsz(q)]) :

z 3
plz) = MK\/zvranm/d di Z 20%.df di :
' ' (5.21)

whe're M¥ is the number of equiprobable combinations of the binary vectors of
the K users for M-ary PSK systems. The erroneous decision events are associated
with the area under the PDF curve in the interval (—oo,0), hence similarly to
the MBER MUD Equation (2.27), the average BER of the in-phase component

‘at the receiver is quantified as

(5.22)

e < (sgn(R[s9]) - R[ATH,Ps@)]
o= e 33 o Sl FEART] ),

Comparing thié éxpressioh to Equation (5.18), we can infer that the proposed
Linear Minimum Bit Error Rate (LMBER) MUT considers all possible combi-
nations of transmitted symbols to derive the BER, while the TMinBer solution
of Section 5.2.4 only considers the specific transmitted symbols at the certain
time. The LMBER MUT algorithm constitutes a linear method, which does not
rely on the symbols transmitted from the BS. Similarly, the average BER of the

quadrature-phase component is

ME K @1y . g[dHH, Ps@ -
ZZ sgn ) d; H,Ps
fee MK g=1 k=1 Q( = ] dE{dk k ]) | 02

Hence the downlink BER of the MS’s receiver is

Pe  (BPSK) e
Pe, = | : (5.24)
3(Per + Peg) (QPSK) T

5.3.2 Linear Minimum Bit ‘Error Rate Solution

Similarly to the MBER detector of Equation (2.28), the LMBER transmission

| solution can be defined as

| PLMBER = argngnPeb st E[][Ps||2] = E, (5.25)

h
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which is a constrained thimizatioh problem. If A is defined as the Lagrange
multiplier used for imposing the constraint E[][Ps||2] = E, then the Lagrangian

expression L(P, ) can be expressed as

L(P,)) = Pe, + A(E[|Ps|?] - E.)
- =Pa+(tr(PRPH) - ). (5.26)

Then the LMBER: transmission solution becomes

{PLMBER,_/\LMBER} = arg min L(P,A). (5.27)

5.3.3 Constrained Optimization

Let us how define a real-valued vector p = [RT[p1] RT[p,] - RT[px] ST[py] - --
STp K]]T € R?KXL: | which is an alterative expression for the MUT preprocessing

matrix P derived for simplifying the calculation.of the first and second gradients of -

the BER formulae of Equations (5.22) and (5.23). Then, using the SQP algorithm
[104] to solve the optimization problem of Equation (5.27), we arrive at

ApJ .

V2Pey + )\Vztr(PRsPH) v Vtr(PR;,PH)
(Vir(PR,PH ))T 0

VPey + AVir(PR,PH)
- tr(PR,P¥) — E;

AN

’

(5.28)

where Ap is the correction of the transmit processing vector p, and AM is the

Lagrange multiplier’s correction.' The first and second derivatives of the constraint

tr(PR,P¥) in Equation (5.28) can be derived as

Vtr(PR,P¥) = é%tf(PRsPH) -
= NP | (.5-29)
‘and : :
Vtr(PR,PY) = R,, | (5.30)

where R, = blockdiag[Eal;, Eoly, -+« Ewxly, Ealy, -+ Eogly,] € R¥Lex2KL
E is the average symbol enérgy of user k. The first-order and second-order gra-
dients of Pe, in Equation (5.28) can be derived from the gradients of Pe; and
Peg. Based on the derivations in Appendix B, the gradients of both the in-phase
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- and quadrature-phase bit error probabilities are given by

oP
VPe; = 8;’ |
(R[AFHPsD])*\ sen(R[s¥])
\/%KMK ; kZIeXp ( 2aik.d£1dk . ank\/dfdk Vet
(5.31a)
OPe
VP6Q= apQ .
(S[AFHPsO)?Y sgn(S[s¥]) ()
27rKMK ;;exp< 207,di dy | omy/dld; O
(5.31b)
and
, A | d H PS(Q)])z
2 k Tk
V*Per = \/_KMK ;;GXP ( 2072Lk:d1{-{dk .
(@) H (9 :
sgn(R|s -RId{H.Ps
et [ks]) _H[ 2 £Ps'?] VAT, (5.32a)
nk(d dk)
. dHHkPS(q)])
2
ViPeq = \/— MK ; ;exp ( 202,dHd;
& (@) e dHH P (9)
 sen(S[s"]) - S[df H,Ps ]v% (V)T (5.32b)

03, (df1dy)?

where v{¥) = |R]s (")dHHk] R[sPAfH] -+ R[sPAfH] —S[s{PdflH,] -
(sl d_{ij]]T € R¥™ and vi7) = [S[s{Pdf H,] S[s{dfHy] --- S[sPdf Hy]
R[sOaFH,] - R[sPaFH,)| € RoF -

The SQP algorithm.operates as follows [104]:

| Initialization: Set the iteration index i=1. Choose a step size of §>0

and a termination scalar of $>0. Given A(1), P(1) and p(1) =

- [RTpa(1)] R [p2(1)] -+ RT[px(1)] ST[P2(V)] - Slpx(1)]])",
carry out:v
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Loop:
c(d) = tr(P(i)R,P (1)) — B, o (5.33)
' [V Pe (i : '
g(i) = \2 b( (z )c)(z';‘ )‘( )Ve(d) | , : (5.34)
py= |V 7 eb(P( (vgc)(J;)A(z)Vzc(l) VZ(Z) (535
Ap(s)| _ —D) (s EE
A/\(Z_)] = DQ g(), | (5.36)
p(i+1) = p(5) +8AP(H), (5.37)
A(i+1) = A(@) + 6AN(), ' (5.38)

transform the real-valued vector p(i+1) back toa corﬁplex—valued
matrix P(i+1), and i = i + 1. If | Ap(s)}| < 8, goto End. Else,
goto Loop. ' :

End: Weight matrix P(z) is the chosen solution.
: /

5.4 Computational Complexity Comparison

The comparison of the different MUT schemes’ computa’cibnal complexity im-
posed by computing the preprocessmg matrix P is summarized in Table 5.2.
The number of real-valued operations is used as the unit of complex1ty, while
the complexities imposed by a real-valued multiplication and a real-valued addi-
tion might be considered equivalent. It can be seen in Table 5.2 that the TMF
MUT has the lowest complexity. of (’)(K Lf) The TZF and TWF transmitters
have similar computational complexities, which are O(K3+ L} + K2L, + KL?)
and O(L? + KL?), respectively. The TMinBer MUT has a higher complexity
of O(K3LE Nugp), where Ny, denotes the number of iterations in the SQP algo-
rithm. The LMBER method has the highest complexity of O(K3L?M¥ N,,) in
Table 5. 2 which is about 2= times higher than that of the TMinBer MUT.

These MUT schemes’ computational complexity can be considered for differ-
ent channel conditions. The first channel condition is the fast-fading uncorrelated
channel, in which the channel experienced by the transmitted signal is varying

rapidly. Then the preprocessing matrix P has to be re-calculated for each trans-
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Table 5.2: Computational complexity comparisoh of different MUT schemes .

MUT Computational complexity | : Equation(s)
TMF 8KL;+8KL;L,+2KL; — 2L7 + Ly + 1 (5.4), (5.5)
TZF O(8K®) + O(8L;) + 8K*L, + 16 KL? + 8K L, L. — | (5.7), (5.8)

2L} —2KLi+ K + 1 _
TWF | O(8L})+24K L} +8KL L, +6K L, —4L} +2L,+1 | (5.15), (5.16),
‘ ' -1 (5.17)

TMinBer (O(8K3L§) +8KOL2 +8K2L2 + 14K2L, +8K L2 + | (5.19)
- 8K L, +6K?+18K Ly +8K L, — 2L+ 2K + L, +
11) Nugp
LMBER ((8K3L§ + 6K2L, + 8K? + 6KL, + 4K)M¥ + | (5.28), (5.31),
O(SK3LY) +8K?L? + 8K?L, + 8K L? + 8K L, L, + | (5:32)
12K L, +8KL, ~ 2K* — 2L} + L, — 2K +11) Nog,

mitted signal, regardless of which MUT algorithm is émployed. The other channel -
model considered is the block-fading, i.e. slow-fading channel. Under the corre-
sponding slow-fading conditions, we assume that the fading envelop remains con-
stant for /V, symbols, i.e. the channel can be considered as time-invariant. Then
it is faded independently at the end of this period. Hence the computational
complexity of all linear schemes, nafnely of the TMF, TZF, TWF and LMBER
MUTSs, can be reduced by a factor of N, with reépect to the correspohdin'g value
seen in Table 5.2. However, the non-linear TMinBer algorithm still has a similar
complexity under the block-fading conditions to that recorded for the fast-fading

conditions.

5.5 Performance Analysis

5.5.1 Performance with Perfect Channel Information

Let us now consider a downlink transmit beamforming system employing a three-
element antenna array and benefitting from perfect channel information. All users
have the same transmit power as well as non-dispersive CIR coefficients of hy =
1.0+;0.0 (k € {1,--- , K}). Figure 5.3 shows the BER versus £}/, performance
of the Wiener, TMinBer and LMBER MUTs supporting K=5 BPSK users. This

co’rrespbnds to a challenging rank-deficient scenario, where the channel matrix
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Figure 5.3: BER versus Eb/No performance of the Wiener, TMinBer and
LMBER MUTs employing L;=3 transmit AEs for supporting K'=5 BPSK
users communicating over AWGN channels. The transmit angles of the
users’ signal are seen in Figure 5.4.

user 3 user 2

Figure 5.4: Three AEs, where the signal of the individual users are trans-
mitted at angles of 41°, 15°, —8°, —33° and —70°.

becomes non-invertible. The transmit angles of the users’ signal were 41°, 15°,
—8°, —33° and —70°, respectively, as seen in Figure 5.4. 1t can be observed that
the LMBER transmitter substantially outperforms the Wiener MUT, namely
by about 7.8dB at the BER of 1075. Howeirer, the optimum linear LMBER
MUT has a decreased performance compared to non-linear TMinBer transmission.
In Figure 5.3, the BER performance of the MMSE MUD and of the MBER
MUD uplink systems employing three-element uplink receiver antenna arrays and
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Figure 5.5: BER versus E,/N; performance of the Wiener, TMinBer and
LMBER MUTSs employing L;=3 transmit AEs for supporting K=5 BPSK
users communicating over flat-fading channels when the Doppler frequency
is 10™2. The transmit angles of the users’ signal are seen in Figure 5.4.

supporting five users are also plotted. It is shown that the LMBER transmit
processing and MBER receive processing have the same performance. ‘

~ Consider a K=5 user BPSK downlink system communicating over narrow-
band slow-fading channels. The normalized Doppler frequency is 1072, and the
Ricean K-factor is 10. Figure 5.5 shows the BER performance of the Wiener,

© TMinBer and LMBER MUTs, as well as those of the MMSE and MBER MUDs. )

Observe that the LMBER MUT signiﬁéantly outperforms the Wiener MUT. The
Wiener MUT ha$ an error floor higher than 1072, while the LMBER MUT is
capable of achieving an inﬁnitesimally low BER at high SNRs. Under these fad-
ing conditions, the non-linear TMinBer MUT outperforms the proposed LMBER
scheme, which is a linear preprocessing method. Figure 5.5 also shows that the
LMBER MUT has an approximately 3.5dB gain over the MBER MUD at the
‘BER of 107°. The reason of this performance difference is that the multiuser
transmit preprocessing is capable of potentially providing a better powér allo-
cation solution. By contrast, the MUD remains unable of optimizing the users’

transmit power without power control feedback information.
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5.5.2 Performance Subject to Channel Estimation Errors

All simulations assumed so-far perfectly known channel information at the trans-

mitter. . However, in realistic scenarios the achievable performance will be de-
graded owing to channel estimation errors imposed by the quantization error and
the outdated fading feedback channels. To evaluate the aChieVable performance
in the presence of channel estimation errors without assuming a specific chan-
nel estimation algorithm or a channel information feedback algorithm, a simple
channel estimation error model is used. Explicitly, the channel estimation error
is modeled as an additive complex Gaussian variable with a variance of o2 at the
transmitter. Of interest is its ratio to the mean variance of all channel taps. The
- additive channel estimation error is assumed to have the same variance, regardless
of the current channel coefficient, which is subject to fading,. .

Figure 5.6 plots the BER pérformance of the Wiener and LMBER MUTs,
when the CIR taps are contaminated by an additive complex Gaussian estima-~
tion error. Again, the transmitter has a three-element transmit antenna array
supporting K'=5 BPSK users communicating over narrowband slow-fading chan-

----- Tx Wiener

-4 Tx LMBER
107 X 'Nochannel error \
O -30dB channel error _ . \5
- O  -20dB channel error ;\g)
107 A -10dB channel error '
0 2. 4 6 8 10 12

Ex/No (dB)

Figure 5.6: BER versus Ep/Ny performance of the Wiener and LMBER
MUTs employing L;=3 transmit AEs supporting K=5 BPSK users commu-
nicating over flat-fading channels with additive channel estimation errors.
The transmit angles of the users’ signal are seen in Figure 5.4.
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Figure 5.7: The first user’s BER surface of the Wiener and LMBER MUT
employing L;=3 transmit AEs supporting K=5 BPSK users communi-
cating over flat-fading channels with additive channel estimated errors at
E}/Np=10dB. The transmitter has perfect knowledge of all users’ channels,
except for the CIR spanning from the first of the L;=3 transmit antennas
to the single antenna of the first user.

nels. The normalized Doppler frequency is 1072, and the Ricean K-factor is 10.
It can be seen that when the CIR tap estimation error related Noise-to-Signal
Ratio (NSR) is —30dB, the system has almost the same performance as that
having perfect channel information. However, as the channel error’s variance
increases, the MUT aided system has a gradually degrading BER performance.
We can also see in Figure 5.6 that for the channel estimation NSR of —10dB,
the LMBER MUT’s BER performance degrades faster than that of the Wiener
MUT. This means that the LMBER MUT is more sensitive to the channel esti-
mation errors than the Wiener MUT. This may be anticipated, since the more
sophisticated LMBER MUT achieves its better performance by making use of the
accurate channel information. When the channel information is contaminated, it
becomes more challenging to separate the users at the MUT with the aid of their
unique CIRs.

Let us now assume that the transmitter has perfect knowledge of all users’
channels, except for the CIR spanning from the first of the ;=3 transmit an-
tennas to the single antenna of the first user. Figure 5.7 plots the first user’s
BER surface of the Wiener MUT and the LMBER MUT at E,/Ny=10dB. The
horizontal axes labeled as R[e; 1] and S(ey 1] represent the real and the imaginary
part of the channel estimation error from the first of the multiple transmit an-

tennas to the single receive antenna of the first user, respectively. The contours
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of the BER surface and the point corresponding-to zero channel estimation error
are both plotted on the base plate of the figure. We can observe in Figure 5.7b
that as expected, the BER performance of the LMBER MUT degrades, when the
channel estimation error is increased in any direction from the error-free point.
However, for the Wiener MUT characterized in Figure 5.7a, it is possible that the
performance may improve,'when the Wiener filter based transmitter has imper-
fect channel information, as observed for example when the channel estimation
error becomes e1, = 0.5. This is one of the réasons why the LMBER MUT is
more sensitive to the channel estimation errors than the Wiener MUT.

5.5.3 Performance with Qutdated Channel Information

In practical applications the downlink channel knowledge used for transmit pre-
processing might not be updated for each transmitted symbol. When the channel
information is fed back from the MSs to the BS, the transmitter has to rely on
outdated channel knowledge. In this section, we will investigate the influence of
the outdated channel information on the MUT-aided system’s performance.

10° —T—
107 BREESs g
R - YD (i RN Gl v
- 10
o
w
0
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10 5 P ] i 1 1 .» - )
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Figure 5.8: BER versus Ej/Ng performance of the Wiener and LMBER
MUT's employing L;=3 transmit AEs supporting K'=5 BPSK users commu-
nicating over flat-fading channels at differently delayed channel information
updates. The transmit angles of the users’ signal are seen in Figure 5.4.
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Figure 5.9: BER versus Ey /Ny performance of the Wiener and LMBER
MUTs employing L;=3 transmit AEs for supporting K=5 BPSK users
communicating over flat-fading channels using outdated channel informa-
tion at different Doppler fréquencies. The transmit angles of the users’
signal are seen in Figure 5.4. '

Let us consider a system erriploying a three-element transmit antenna array
for supporting K=5 BPSK users communicating over narrowband slow-fading
channels. The normalized Doppler frequency is 1073, and the Ricean K-factor is
10. We assume that the BS receives perfectvvcha}nnel information from the MSs
“every N transmitted symbols. This means that (N—1) out of the N downlink
symbols have to rely on outdated channel knowledge. When N=1, the transmitter
employs perfect channel information for all transmitted symbols. Figure 5.8 shows
the Wiener and the LMBER MUTS’ performance for N = 1, 10, 20, 50 and 100.
The LMBER MUT system outperforms the Wiener MUT system, and naturally,
the BER performance of both systems degrades, when the parameter NV increases.

~ Figure 5.9 also plots the BER performanée of various MUT systems employing
outdated channel knowledge, when we consider the influence of different normal-
ized Doppler frequencies. In this scenario, we assume that the channel informa-
tion is fed back to the MUT every 10 symbols, where the Doppler frequencies
considered are 1073, 2x 1073, 5x10~3 and 102, respectively. As the Doppler fre-
quency increases, which implies encountering more rapidly fading channels, both
the Wiener filter and the LMBER aided systems’ pérformance degrades. We can
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also see in Figure 5.9 that the LMBER MUT is more sensitive to the outdated
channel] information than the Wiener filter based MUT. '

5.6 Conclusions

In this chapter a linear MUT that minimises the BER sub ject to a power con-
straint was proposed. It was shown by simulations that better BER results can be
achieved by the proposed LMBER transmission scheme of Section 5.3, when.com-
pared to the Wiener filter based MUT of Section 5.2.3. The optimum LMBER
MUT solution can be found by exploiting a power-constrained optimization prob-
lem, which was investigated in Section 5.3.3. Furthermore, other preprocessing -
schemes, such as the TMF MUT of Section 5.2.1, the TZF MUT of Section 5.2.2
and the non-linear TMinBer MUT of Section 5.2.4 were also introduced.

The . computational complexity and the achievable BER pefforman_ce when
communicating over Ricean fading channels recorded for the methods mentioned
above are summarized in Table 5.3. The system’s schematic obeys the structure of
Figure 5.2. Although the proposedv LMBER preprocessing aided transmission al-
gorithm has a better performance than the other linear MUTs, it is more sensitive
against channel estimation errors, and the computational complexity imposed by
finding the proposed MUT solution is higher. Once the solution is found, it has
a similar implementational complexity to those of the other linear transmission
algorithms. Under block-fading conditions, the complexity of the LMBER MUT
can be significantly reduced, although it fails to achieve a performance similar to

that of the non-linear TMinBer algorithm.

Table 5.3: Performance and complexity summary of beamforming aided

MUTs
‘ . SNR at a

MUD | Section Complexity BER of 104
TMF 52.1 | O(KL}) unachievable
TZF 5.2.2 | O(K3+ Lj+ K?L,+ KL}) | unachievable
TWF 523 |O(L}+KL}) unachievable
TMinBer [52.4 | O(K°LiN.g) 2.2dB
IMBER |53 | O(K°LIMEN,,,) 10.9dB




Chapter 6

‘Conclusions and Future Research

A

6.1 Conclusions

The conclusions provided in this chapter constitute an amalgam of our previously
drawn conclusions provided at the end of Chapter 2-5 and establishes their logical

connection.

In Chapter 2 we pre'sentedvvarious categories of multiple antenna aided com-
munication systems, which perform spatio-temporal informdtion processing with
the aid of multiple antennas. Different smart antenna assisted architectures pro-
vide different benefits, such as achieving array gain, diversity gain, multiplexing
gain, interference reduction and/or coding gain. The concepts of multi-functional
MIMOs and distributed MIMOs have recently gained considerable interest. The
former structure combines the benefits of different smart antenna aided techniques
for the sake of combining their advantages, highlighted in Table 2.2. By contrast,
" in the latter concept, multiple MSs may cooperate and share their single antennas
in order to achieve the improved performance of MIMO systems.

Various MIMO assisted multiuser detection algorithms were also introduced
in Chapter 2. The ‘System 1’ column in Table 6.1 qﬁantiﬁes the achievable per-
formance versus computational complexity of different MUDs when employing
no Forward Error Correction (FEC). As assumed in Section 2.2.9, all users’
signals are transmitted over AWGN channels and the receiver employs a three-
element antenna array. The number of users and their DOAs were plotted in
Figures 2.12, 2.14 and 2.16 for BPSK, QPSK and 16QAM schemes, respectively.

148
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As seen in Table 6.1, the Bayesian detector constitutes the optimum nonlinear
receivér, which signiﬁcantly outperforms all linear MUDs at the cost of a higher
complexity. The conventional MMSE beamformer combines the signals received
with the aid of each AE for the sake of minimising the MSE between the complex-
valued locally stored and received reference signal. For BPSK systems, however,
the beamformer’s desired output is real-valued. By' minimising the MSE between
the beamformer’s desired output and the real part of the beamformer output, the
system’s achievable BER performance can be significantly enhanced, and this was
referred to as the RMMSE design. However, the MMSE and RMMSE algorithms -
do not-guarantee the direct and explicit minimisation of the system’s BER. This
motivated the design of MBER béamforming, where the BER rather than the
MSE was minimised at the MUD’s output. The MBER beamformer design is the
optimal linear solution and hence it generally outperforms the MMSE and the
RMMSE solutions, as seen in Table 6.1. The MBER detectors are challenging
to derive for higher-order QAM hence a novel MSER beamformlng assisted re-
ceiver was designed for high-throughput QAM schemes, which also outperforms
the MMSE solution by minimising the SER at the MUD’s output. It can be
seen in Table 6.1 that the proposed MBER and MSER MUDs have a higher
complexity than the Bayesian MUD, although they cannot achieve a simiiarly
high performance to that of the Ba,yesian MUD. However, they may impose a
lower computational complexity, when communicating over block-fading channels.
Furthermore, all linear MUDs have their corresponding equivalent WL methods,
where the latter employ two separate weight vectors for Separately detecting the
in-phase and quadrature-phase component of the transmitted symbol: As dis-
~cussed in Section 3.2.3, under the zero a priori information conditions these WL
algorithms have two identical weight vectors and therefore have the same perfor—

mance as their corresponding non-WL solutions.

In Chapter 3, multiuser detection and channel decoding were combined in
order to improve the achievable multiuser beamforming receiver’s performance fol-
lowing the ‘turbo detection principle’. The resultant iterative multiuser receiver
is designed based on the soft parallel IC algorithm. In the iterative receivers,
the MUD and the channel decoder exchange extrinsic information in a number
.of consecutive 1terat10n§. During each iteration, the extrinsic information is al-
. ternately extracted either from the MUD or the channel decoder and then used
“as the a priori input by the other detection stage in the next iteration. Based on
the EXIT chart technique, we also analysed both the achievable performance and.

~
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the convergence behaviour of different joint detection schemes, both of which are

highly dependent upon the different system parameters and channel conditions.

The attainable perfdrmance versus computational comp'lexity of different iter-
ative MUD aided receivers was summarized in the ‘System 2’ column of Table 6.1,
The system’s schematic obeys the structure ofLFigure 3.2 and uses the parame-
ters of Tables 3.7, 3.10 or 3.11, depending on the modulation scheme employed.
We defined the SNR threshold expressed in terms dBs as the lowest SNR, where
the iterative SIC MUD receiver is capable of approaching the BER performance
of the single-user system for transmission ‘over AWGN channels. In Chapter 3,
we introduced the new iterative MBER SIC beamforming receiver designed for -
BPSK and QPSK systems, which directly minimises the BER instead of the MSE.
" This novel algorithm significantly outperforrﬂs the conventional MMSE SIC algo-
rithm at the cost of a higher computational complexity. The RMMSE algorithm
designed for BPSK was also considered, which minimises the MSE between the
real-valued desired signal and the real part of the complex-valued beamformer
output. The SISO WL-MMSE algorithm designed for higher-order QAM schemes
was derived from the RMMSE solution. Similarly, the soft WL-MBER solution
was also introduced, which has the same comp‘utéti‘ona,l complexity as the MBER
algorithm. Table 6.1 has shown that the MBER and WL-MBER solutions out-
perform both the conventional MMSE and the RMMSE or WL-MMSE iterative
receivers. Furthermore, the SISO MSER and WL-MSER MUDs were also intro-
duced and 'analysed in the context of 16QAM systems. They also outperform the
MMSE or WL-MMSE systems at the cost of a high complexity. In contrast to
the performance of the MUD receivers dispensing with FEC and characterized
in the ‘SyStem 1’ column of Table 6.1, the WL MUD aided iterative receivers
are capable of achieving a better performance than their corresponding non-WL
iterative counterparts as a benefit of having non-z€ro a priori information for the
~ MUDs. We can also observe that the SNRs required for achieving a BER. of 104
by all MUD receivers are similar, except for the MMSE receiver of the BPSK
system. The reason for this observation is that they may achieve the single-user
performance at an SNR lower than that required for maintaining a BER of 10%.

All the SISO MUDs discussed in Chapter 3 have a non-recursive nature char-
acterized by a finite, rather than IIR which limits the achievable performance
of the iterative system, be¢ausve the extrinsic information exchange between the
decoder components tends to be based on more correlated LLRs than in an IIR

system. This disadvantage may be ameliorated with the aid of a simple unity-
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rate memory-1 recursive precoderb incorporated at the transmitter. Hence the

attainable iterative detection performance may be further improved. Then the

inner decoder component. constituted by the MUD, the intermediate chahnel de-

coder and the outer channel decoder constitute a three-stage serially coricate_nated

scheme. In Chapter 4 we designed this three—stage concatenated multiuser re-

ceiver based on the MBER MUD for the sake of achieving a near-capacity perfor-
mance. By projecting a series of three-dimensional EXIT functions onto a single

two-dimensional EXIT chart as seen in Figures'4.2 and 4.3, the convergence be-

~haviour of the system was visualized. Speciﬁcally, IRCCs were constructed, which
- were used as the outer code for the sake of solvihg the EXIT curve fitting prob-
lem, i.e. that of minimising the area of the EXIT chart’s open tunnel, implying
that the system becomes capable of approaching the achievable capé,cit‘y{

The ‘System 3’ column of Table 6.1 summarized the performance of the 3-stage
iterative MUD receivers in terms of their SNR required for maintaining aBER of
10~ as well as for an infinitesimally low BER. The system’s schematic obeys the
structure of Figures 4.1 and uses the parameters of Tables 3.7. It can be seen that
the pfoposed‘3-stag_e MBER iterative receiver significantly outperforms both the
2-stage MBER SIC receiver as well as the 3-stage MMSE receiver. Furthermore,
the 3-stage iterative receivers are capable of achieving an infinitesimally low BER.
However, the 2-stage receivers’ performance has an error floor, which is identical

to that, of the single-user system.

Sophisticated multiuser detection techniques can be readily employed at the
BS’s uplink receiver, since the power consumption of the BS is less constrained
than that of the MSs. By contrast, for downlink transmission, it may be ben-
eficial to design sophisticated transmitters in the interest of reducing the MS’s
receiver complexity. The BS is capable of acquiring the required MIMO chan-
nel coefficients with the aid of the side-information feedback channel transmitted
from the MS or by estimating the uplink chanhel and assuming that the down-
link channel is similar. In Chaptei' 5 a linear MUT that minimises the BER
subject to a power constraint was proposed. It was shown in Table 5.3 that bet-
ter BER results can be achieved by the p’roposevd LMBER transmission scheme, -
when compared to the TMF, TZF and Wiener filter based MUTSs. The optimum
LMBER MUT solution can be found by exploiting a power-constrained optimiza--
tion problem; which was investigated in Section 5.3.3. Furthermore, the effects -
of ‘channel estimation error and outdated channel information imposed on both
the Wiener filter and on the LMBER MUTs were investigated. Compared to the




Table 6.1: Summary of the achievable performance versus computational complexity of different MUD beamforming receivers
extracted from Tables 2.5, 3.12 and 4.3. The SNR threshold expressed in terms dBs is defined as the lowest SNR, where the
iterative SIC MUD receiver is capable of approaching the BER performance of the single-user system for transmission over

AWGN channels.
| System 1 System 2 ) System 3
MUDs, no FEC 2-stage iterative MUDs 3-stage iterative MUDs
"MUD. _ SNR at a , SNR SNR at a SNRata |SNRata
algorithm | Modulation || BER of 1073 | Complexity || threshold | BER of 1074 | Complexity || BER of 10~* | BER of 0
. . | BPSK 25.5dB : '
Bayesian | QPSK 18dB O(LM K ) not evaluated not evaluated
16QAM 18.5dB | ‘ '
_ BPSK _unachievable [ 5.8dB 5.8dB - . >51dB | >5.1dB
MMSE | QPSK unachievable | O(&) 2.8dB 15dB | O(L?)
- 16QAM unachievable 7.9dB - 7.9dB not evaluated
RMMSE | BPSK 40dB o(% 2.6dB 4.6dB o(L?) not evaluated
» QPSK unachijevable 2.6dB 4.5dB _
WL-MMSE | 16QAM unachievable o L?s) 6.8dB 7.9dB O(L3) not evaluated
~ | BPSK 29dB . 2.3dB 46dB - >25dB | > 2.5dB
MBER QPSK 29dB O(LNM¥) 2.5dB 4.5dB O(LN,M*¥) not evaluated
WL-MBER | QPSK 29dB O(LN, M¥) 2.3dB 45dB . | O(LNzM*¥) not evaluated -
MSER 16QAM 27.5dB * | O(LN,M") 7.1dB 7.9dB O(LN M%) not evaluated
WL-MSER | 16QAM 27.5dB O(LNM*) 6.6dB 7.9dB O(LNM*) not evaluated
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Wiener filter based MUT, the LMBER MUT is more sensitive against channel
estimation errors, and the éomputational complexity imposed by finding the pro-
posed MUT solution is higher. Once the MUT solution is found, it has a similar
implementational complexity to those of the other linear transmit preprocessing
algorithms. Under slow—f_ading conditions, the complexity of the LMBER MUT
can be significantly reduced, although it fails to achieve a performance similar to

that of the non-linear TMinBer algorithm.

Finally, some open issues to be solved for the practical implementation of our -
systems are addressed. In Chapter 24, we assumed that the receivers have per-
fect channel knowledge, which hardly exists in reality. Naturally, when employing
imperfect channel information, the systems’ performance degrades. In our iter-
ative beamforming systems, we also assumed that the relative time delay of all
users with respect to the angulaﬂy closest neighbours is the same. This constraint
guarantees that the parallel interference cancellation aided systems are capable
of achieving good performance and the systems’ convergence behaviour can be
analysed by using EXIT charts. However, the realistic arrival angles of the users’
signals could be arbitrary, which decreases the achievable performance. The com-
plexity of the MBER/MSER MUD aided syst-em has to be further reduced, before
their practical implementation becomes a reality.

6.2 Future Research
6.2.1 Linear Minimum Symbol Error Raté Transmissibh

The LMBER MUT solution cannot be directly applied in high-order QAM sys-
tems. Hence, similar to the MSER multiuser detection algorithm of Section 2.2.6,
the Linear Minimum Symbol Error Rate (LMSER) transmission method is mo-
tivated, which minimises the average SER at all users’ receivers under a certain

maximum transmit power constraint.

Let us consider the system rﬁodel of Section 5.1 for an M-QAM system,

. (m,n) — V3E, - —
and define the constellation symbol as s \/2_(M——1)(2m vM Al) +
' j—z-\/‘/(?wl—il)(%—vM—l), where we havem € {1,2,--+ ,vM} andn € {1,2,---,

vVM}. Assuming' that the downlink transmitter has to transmit the gth legitimate
symbol combination s9, ¢ € {1,2,---, MX}, the kth user’s estimated signal can
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be expressed as ,
59 = d”Hsz(‘J) +dfn,. o (6.0)

Then the PDF of 5 is given by

20 _ qHEL Psl@
2@ _ 1 _ [&" ~ dfH P | 6.2
p(") = omo dld, ¥ ( 202, dld, ) ( ‘_)

* By defining b; = \7%(22 \/m ie{1,2,-- ,vVM: '1} the decision bound-
aries of Sy are determined by b; ‘dH HkPI for the in-phase component and by
ijdf HkP| for the quadrature-phase component. Assuming that the symbol
transmitted to user k is s(q) = s(m"")' the conditional in-phase component and
quadrature-phase component error probabilities of the hard detected symbol

'(‘1) # s(m") can be shown to be

flldHHkPIp(sk )dQR[ ] | (m=1)

' m—1|d{/ HeP| ¢ ~(q) 2(9) :

pota _ 355 p(3x )Cm [ ] | s
b\/——l,dk HkPI (§(q))d§R[ (Q)] ‘ (m _ \/‘M)

\ v —00O

and
() e P(E) 9’{ M (=1
bn—1|df H,P| ( (q)) [( ] A o
Peg)k ={77" @ . (6.3b)
_ n|dHHkP]p( ) 3] (1<n<VM)
\f_bg-—lldk H;P| ( z(cq))ds[sl(c )] (n= VM)

Then the resultant symbol error rate is given by

K .
Z Z Pequ + Pe(q) Pegq,)c Pe(Q) ) (6.4)

q—l k=1

1
Pe, = K
The LMSER transmission solution can be defined as

Pmser = arg min Pe; s.t.. B[||Ps|’] = E.. (6.5)

- This optimization problem cah be solved by constructing the Lagrangian function
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and employing the SQP algorithm, as seen in Section 5.3.

6.2.2 Joint Multiuser Transmission and Tterative Multiuser

Detection

In this treatise, both multiuser transmission and iterative multiuser detection
were investigated for downlink and uplink communication systems, respectively.
However, for a point-to-point MIMO system, it is possible to construct a joint
MUT and iterative MUD structure. '

For an iterative MUD system dispensing with transmit preprocessing, the re-
ceiver’s performance and convergence behaviour can be analysed by exploiting the
EXIT chart technique. When increasing the number of transmitted data streams,
which imposed an increased higher MAI on the receiver, the EXIT curve of the

“MUD may be shifted to a lower position, which renders the open tunnel between
the EXIT curves of the MUD and the channel decoder narrower. However, if
transmit preprocessing is employed, the MAI at the receiver may be decreased,
and hence this .joint MUT and MUD System becomes capable of achlewng an

increased system capacity.

6.2.3 Cooperative Minimum Error Rate Transmission

The joint MUT and iterative MUD structure of Section 6.2.2 can be extended
to a multiuser uplink scenario by introducing a cooperation aided transmission
scheme. This attractive idea is capable of exploiting the advantages of MIMOs by
exploiting the transmit cooperation of distributed antennas belonging to many
different users, which has gained considerable interest [75,77,78]. Hence a topic
of our future research is the 1nvest1gat10n of MBER and MSER aided cooperative

transmission systems.
6.2.4 Mlnlmum Error Rate at the Output of Channel
Decoders

All proposed minimum error rate multiuser detection algorithms proposed in this
treatise were designed for minimising the error rate at-the output of the MUDs.
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However, for the sake of resisting interference and charmel-noise, various _practical
wireless communication systems employ channel coding schemes, where the error
rate minimising at the output of the MUDs cannot guarantee the minimisation of
the receiver’s error rate. Hence, the effect of channel coeflicients and noise power
on the error rate of the channel decoders’ output becomes an interesting topic. If
we formulate the BER/SER expression at the channel decoders’ output, a more
novel minimum error rate detection algorithm can be exploited. |




Appendix A

‘Gradients of Bit / Symbol Error

Rate for Multiuser Detection

A.1 Bit Error Rate Gradient

The bit error probabilities of the in-phase part and the quadrature-phase part in
Equations (3.50) and (3.51) can be written as

: o _ : '
Pe = Zﬂk(s(q)) .'Q(x(Q))’ (A.1)

where the variable x(q? is defined as

x§q> = oon(2[7]) =[] (for Pey)

20 )T T T el | A2
PCIL) IS RS

Un\/WEWk

Then the gradient of Equation (A.1) can be expressed as

: s .(q) -1 »(x(q))z (@)
VP6=§£I¢(S )jﬁexp = | Ve, (A-3)
where
V=22 (A 4)
T owy’ '
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Using Equation (3.49), we can derive the following equations

On WiWe  (whwy) ,
- Bl (o - 2 A
o/ Wi Wy Wi Wk : |
and |
vl sgn(%[s(q)]) ' vg[wff’(j)]
Q On Vwiwg
sgn(S [s,(cq)]) VS [wiTY] el He(0) 1
- \Y
O wHwy + 9w wi Wy
On wak (W};IW]C) % .
B sgn(%[sff)]) [ @ _ \’[:( )] ;
_ , A5b
o fWk Itk Wf Wk ( :

Substituting Vz{@ in Equation (A.3), we can express the gradients of both the

in-phase and quadrature-phase component as

. (REP)*
\/Q?crm/wk Wi g ZP () exp( 202wk "

VPCI
| @ [ R [—:(c Twe @ S
. sgn(ﬂ?[sk ]) _;I):[_V_Vk— - I'k (A6a)
and
'v g[ (q)])
VPe, = p (q) (
Q= \/27r<7.,n/w,c k qz; | exp ( 2:72w,c Wy
a[5@ '
-sgn(S [sg’)]) <———————£:}:{v]vzvk —j—jff?). . (A.6b)




C)

A.2 Symbol Error Rate Gradient » 159

A.2 Symbol Error Rate Gradlent

All the Q-fuhctions in' Equation (3.66a) can be classified into two types, which

R{50 | bl wh hy bafwini [R50 ,
ore QLTUH) end QML) i € (12 VA1), e

latter one can also be written as

Q<blwkhk| [(q)]>=1;Q(%[S£Q)]‘6H|thk{> “(A.7)

o/ WHwy Tn\/ Wilwy

whose gradient can be expressed as

VQ(b i|wi hk| [<q>]) vq(gﬁ[‘ ]'_byk hk|>'. a8 .

Therefore, the problem of calculating the gradient of Equation (3.66a) becomes

. . R g,(cq) —bilwfhkl ..
that of calculating the gradient VQ Py v e . Similarly, we have to
n k k )

on w,’c'l Wi

: ®[5?] b;|wHn
. The gradient of the Q-function Q( k [ ) is
o wk Wi

VQ(%[ 5] — b th> Clug (_ Lo —'bikaHhkl)2>

» S[3] e[ wi | , ,
calculate VQ( ) to derive the gradient of Equation (3.66b).
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(A.10)
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Similarly, the gradient of the Q-function Q Wore is
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and
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Appendix B

First and Second Gradi'ents‘ of
Bit Error Rate for Multiuser

Transmlssmn

Similarly to the derivation of the Q—funct'ion’s gradient in Equation (A.3), the

first-order gradients of the bit error probabilities of the in-phase and the quadrature-

phase si'gnéls formulated in Equatibns (5.22) and (5.23) can be expressed as

(_’ slaredo)')

VPer= KMK ZZ e"p 202, A dy

per e AV '
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and

-+ where
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(B.2)
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Then, the only unresolved problem is that of deriving the gradients V (ER [df HkPS(Q)]>
and V(S [dHHsz@]) |

Let us define dfH; = a” € C'*/* and 5@ =b € (CK*}. Then d¥H,Ps®

can be written as

dfH,Ps? = a’Pb
' K

Ly .
= Zzalplkbk, . - (B3)

1=1 k=1

~where q, is the Ith element of vector a, by is the kth element of vector b, and py is
the element that lies in the /th row and the kth column of matrix P. Furthermore

we have

Ly

K .
§R[ HkPS q) Z Z S‘E[albk éR[plk] %[albk]g[plk]) (B.4a)

=1 k=1

and
c\}[dekPS(‘q)] = Zt Z (C\\Y[albk]%[plk] + m[albklg[p[k]). (B.4b)

=1 k=1

Since the real-valued vector p was defined as

P‘é [®7[p1] ®R7[p2) - W_[PK] 7] - S7Ipx]]"
= [Rlpu) Rlpzr) -+ Rlpra]
R(p12] Rlpea] -+ Ripr,o]

Rlpix] Rlpex] -+~ Rlpr.x]
Spul Slpa] -+ Slpra]
.S’[le] 3[1’21{]‘ -g[thK]]T, - | (B5)

we can readily derive that the gradients of Rla7 Hsz(Q)] and %[df Hsz(‘?)],
yielding |

V?R[dHHsz(")] [Rla1b1] §R[a2b1] - Rlag,bi]




Appendix B. First and Second Gradients of BER for Multiuser Transmission164

§R[a1b2] §R[a2b2] %[aLtbzl
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~Sfarbx] —Slagbr] -+ —Slarbi]]”

= [R[a"0] R[abs] - R[a"bk] ~S[a"n] - ~SaTbi]]
= [R[dfHes?] R[AFHL] - R[Af Hes?)]

~S[df ) - S]]

;(c ) ‘\ o (B.6a)

and
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Sarbx] Slasbx] -~ Haz,bx]
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Rlarbx] Rlashx] - Rlasbr]]” e
= [olah] Sk - s[RI - Rlahi]]”
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Then the first-order gradients in Equations (B.1) are expressed as ‘
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VP - !

VPer = o KMK ;;exr’ ( 207,474, o /AR,
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and

_ (QlaFmPs])’\ sen(S[s)
20%,df7d, ome/dffde Y

(B.7b)

VPeq = \/—KMK Z Z exp

g=1 k=1

The second-order gradients of Equations (5.22) and (5.23) can be derived as
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