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The AdS/CFT c;)rrespondence has long been used as a tool for understanding
non-perturbative phenomena in gauge theories because it is an example of a
‘strong-weak’ duality: when one side of the duality is W?akly coupled, the other
is strbngly coupled and vice-versa. Hence strongly coupled phehomena can be
studied by looking at the weakly coupled side of the duality. In its original form
the correspondence proposes a duality between type IIB superstring theory on
AdSs x §° and an N = 4 supersymmetric Yang-Mills theory in four dimensions.
~ In this thesis we investigate proposed duals to QCD-itself. Duals to QCD fall into
two categories: ‘top-down’ and ‘bottom-up’. We take inspiration from both by
truncating a consistent solution to the type IIB supergravity equations of motion
(top-down). This model demonstrates dynamical chiral symmetry breaking, has
a running coupling and contains a holographic description of the vector meson
sector. By artificially extending the existing U(1) symmetry to SU(2) (bot'tom—
up) we then obtain a holographic desbcription of the axial vector sector. We show
that this model reproduces the masses and decay constants of the lightest mesons
to the 10% level. By regulating the UV with a sharp cut-off we can reproduce
the p meson masses to. within 2%. Finally we demonstrate that this model can
be used to reproduce a very good agreement with hadrorization data for particle

production over a range of four orders of magnitude.
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Chapter 1

“~

Introduction

1.1 Introduction Overview

The advance of physics in the last few centuries has béen relentless. One
of the main themes “va this advance has been the desire for unification, the
ﬁltimate aim being to have one theory that describes all the fundamental
forces. A major step towards this goal was achieved in.the nineteenth cen-
tury, when separaﬁe descriptions of electricfty and Ir;agnetism were unified
into a single theory of electromagnetism. It wasn’t until the 1930s that
it was. fully appreciated that electrqmagnetism was an example of a gauge

theory.

A gauge theory, in its most general sense, is a model with an invariance
under a local symmetry of some of the variaioles in the theory [4,5]. In the
case of QED, the i)hases on all the-fields can be chariged locally, and so lpng
as we introduce a gauge field which connects the pointé of local relabelling,

the physics remains unchanged. In QED, for example, the quanta of these

gauge fields are called -photons.




QED is an ekample of an Abelian gauge theory: £he order in which two
gauge transformations, Gy, Gs, are performed is irrelevant. It is possible to
construct gauge theories that are non-Abelian, meahing that the order in
which two (or more) gauge transformations are performed does matter. In
fact it was discovered in the 1970s that_ this was exactly what was needed
to describe both the weak force and the strong force, which make up two

"more of the four fundamental forces. The force which we have yet to come

to is gravity.

Currently gravity is a bit of an enigma in the particle physics world:
classically it is well described by the theory of general relativity [6,7], and
there are no experimental measurements which contradict its predictions.
However it is hard to test gravity at a single particle level because it is so
weak in comparison to the other three forces. However almost everyone be-
lieves that general relativity needs modification; as it-stands at the moment
it cannot be quantized, which would make it unique amongst all the other
forces. How to quantize gravity has been the bane of quantum physicists
for generations, and there are currently two prongs of attack: loop quantum
gravity [8], and strﬁig theory [9-11], on which we will spend some further
_ time in section 1.4. However the th'eme of this thesis is QCD, so it is prudent

to review some of the features of this non-Abelian gauge theory.

1.2 QCD

In the late _1940s and early 1950s, only a few ‘clementary particles’ were
known: the prbton, neutron, electron, neutrino and photon. Almost the
entire observable universe consists of just these particles. Howéver, some

puzzling unstable particles had been seen in cosmic rays. Furthermore,
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physicists were keen to learn about the nuclear force which was preéumed
to bind protons and neutrons together to forfn nuclei. This led to the
construction of larger and larger particle colliders throughout the deéades,
the most recent being the Large Hadron Collider in Switzerland. These
accelerators have revealed the existence of hundreds of new particles, and
almost all of them can be classed as hadrons. The discovery of these
hadrons was not greeted with glee: it seemed incredulous to believe that
such a large number of particles could all be fundamental. Fortunately, the
initial skepticism has been validated. A lot of work in the 1950s and 1960s
has shown that all hadrons (which include the protons and -neutrons) are
composite particles: they themselves are made up ofdevén smaller pérticles,
called quarks. It is currently believed that there are six flavours of quark,
each of which exist in one of three ‘colours’: red, green or blue. Almost all
known hadrons can be accounted for by combining a suitable comb‘ination of
“quarks in varying levels of excitation. The entire Spectrdm can be explained
by allowing gluons (the quanta of the QCD gauge field) to form particles
too.

- Why quarks are not seen as free entities of their own is a very deep
quesfion, and is essentially the question of colour conﬁnement. Physicists
hypothesise that the force between two quarks does not diminish as they
are separated (éontrast this with QED and, say, a positron and electron).
Therefore it would take an inﬁnite‘amount of energy to separate two quarks. '
Hence quarks are forever bound into colourless combinations, such as red-
green-blue or red-antired. These colourless combinétions are the hadrons
we see in particle detectors and cosmic rays. Cohﬁnement, although widely
believed, is yet to be énalytically proven.

When quarks were first discussed in theoretical pépers it was not’ certain

if they were just convenient mathematical fictions, or whether they were




physical entities. An excellent paper [12] predicted what would be seen in
deep inelastic scattering of electrons and protons if the quarks did physically
exist. Essentially, the idea was to replicate the idea of Rutherford Scattering
by firing electrons at the protons and neutrons in nuclei and analyzing
the resulting scatterihg'pattern. Th'e. experiment was performed atv the
Stanford Linear Accelerator Center (SLAC) in 1969. The results matched

the theoretical predictions, and since then quarks have been embraced as

physical entities. [13] contains a good review of this éxperimental evidence.

1.2.1 The QCD Légrangian

The QCD Lagrangian is given by [14]

_ - 1
L = ¢ (i0y" + gAlnt* —m) Y — ZFJ,,F"”?

Fo, = 0,A%—0,A% +gf ™ ALA @
Mathematically v is a Dirac fermion in the fundamental representation of
SU(3), A is the gauge ﬁeldt, which is in the adjoint répresentation of SU(3),
fo¢ are the stfucture constaﬁts of SU(3), g is a number and m is a mass.
Physically, 1 represents fhe quarks, with m being. their mass. A represents
. the gluons, and g is the QCD‘ coupling constant; Greek letters label space-

time indices, and Roman letters label gauge group indices.

The Lagrangian fully describes QCD. It is decéptively simple, and like
a fractal that on close inspection is ever more complek, so too is QCD. For |
example, it is not immediately clear from (1.1) how to calculate hadron

masses, decay constants or scattering cross-sections. In what follows we

choose to mention those aspects which will be of relevance in this thesis.




1.2.2 Renormalization

The tricky subject of renormalization is dealt with in m.any textbooks [14,15]
and is the result of efforts made in the 1940s when it was realised that simple
‘ calculations, even in QED, resulted.in divergent intégrals. It is now accepted
that these divergences, if finite in n_umber*, can be reabsorbed into the pa-
rameters of the Lagrangian. Hence quantities such as the quark mass, m,
the QCD couplipg constant, g, and the field strengths, A,, as they appear
in the Lagrangian in equation (1.1) are infinite. These quantities are called
the bare values, and when we speak of the quark mass, QCD coupling con-

stant etc. we are actually referring to the redefined renormalized quantities.

To properly construct a systematic method of renormalization, we have’
t'o define a renormalization scale which is the enefgy at which we define
our renormalized quantities (m, g, A,). We then see what. happens to these
quantities as we vary the energy scale at Which we are working. It turns
out that the quantities vary as we change the energy scale. What must be
. remembered at all .times is that the physics is independent of our choice
of renormalization scale: experimentally medsurable quantities ‘are com-
pletely blind to whi.ch renormalization scheme the th_eorist has chosen. The
implication of this statement is explored in the following section, via the

renormalization group equation.

1.2.3 The Renormalization Group Equation

The first step towards calculating hadron masses, decay constants and cross-

sections from (1.1) is the calculation of correlation functions. In fact this is

*A theory is, by definition, renormalizable, if there are only a finite number of diver-
gences. If there are an infinite number, the theory is said to be non-renormalizable. For
"details on how we know whether a theory is renormalizable or not, see [14]




the most difficult step.
Let us consider the bare connected n-point correlation functioh, Fg‘) in

¢* theory'. It is defined as
T8 (21,22, ..., Tn) = (01T o(@1)Po(2)-. b0 () |0) (1.2)

where ¢o(z) refers to the bare fields, before renormalization. They are
~ related to the renormalized fields by a rescaling: ¢p(z) = Z;/ >¢(z). The
bare quantity, I‘gl)' is a'function of the bare coupling constant, go, and some’
~cutoff, A. The renormalized quantify, I‘%) is a function of the renormalized

coupling constant ¢ and the renormalization scale M.
P(n)(ki§ 9, M) = Zé"ml“fy’})(ki; 90,."-/\) , (1.3)

The bare theory is independent of the renormalization scale, M, so we'can

write

' d (=n/2)p(n) (... _ V
(Mm) (Z¢ r (kz,g,M))_O e

It is easy to show that this equation can be rewritten as

5] 0 n
9 59 " . _
[MaM + ﬁag 27] '™(k;9,M) =0 (1.5)

with the definitions

_ a9

b= Mz (1.6)
. 8IHZ¢

7= M (1.7)

t$? theory is one of the simplest examples of an interacting quantum field theory.
Its Lagrangian is £ = }(8,9)? — 3m?¢®> — $¢*. More details can be found in [14].
However, its exact nature is unimportant here. We use it because its renormalization
group equation is particularly simple. )




A little- thought will also convince us that 4 and 7y can only be functions
of g: by dimensional analysis they cannot depend upon' M, and are clearly
independent of either n or {z;}. Using the method of characteristics, we
can solve (1.5):

n

Mg, M) = T ks g(o M) eww (<5 [Tt ) as)

x

with the characteristic equation pdfi—(pp) = B(g(p)), and the initial condition

glp=1) =g

Equivalent equations to (1.6) and (1.7) can be derived for all quantum
field ﬁheories, and the definitions of # and v are identi‘cal to those definitions
in (1.6) and (1.7).

Next we turn to the significance of 5 and v.

1.2.4 The beta function

We defined the beta function, 8(g) in (1.6), and from its definition we can
see that the beta function tells us how the renormalised coupling constant
changes as we vary the renorma}lisation scale. The strength of the coupling
constant at any particular energy is an important quantity: it determines
when perturbation theory is valid. Pefturbation theory is' the most suc-
cessful tool we have for solving quantum field theories: it was used very
successfully in QED, so it would be excellent if we could use the same tech-
nique for QCD. |

At low energies QCD is not weakly coupled: the cdupling constant is
large and perturbation theory is not applicable. But what about at high
energies - perhaps we could use perturbation theory Jthen?

To see what happens, let us assume that at high energies the theory

is weakly coupled, and check that this doesn’t lead us to a reductio ad




absurdum argument.

If g is small, we can approximate the beta function at these energies by

a Taylor series expansion:
B(g) = A+ Bg+Cg*+ Dg*. .. (1.9)

where g is the deviation of g from its value at p=M. We déﬁne the value
of gat p= M as gr: gr = g(p = M).

Any perturbative deviation from gr will involve some sort of interaction.
With each interaction, at least one power of the coupling constant Will enter.
Hence we can set A = 0.

\ B,C,D... can be éalculatec{ quantitatively?; the method is detailed
in [14]. Here we are only concerned with the qualitative effects of the the
leading coefficient of (1.9). The first non-zero contribution to (1.9) is canon-

ically called B;. There are three possibilities:

1. ﬂ1>0
2. ,6’1=0
3. 5 <0

For 5:1(g) > 0, the coupling constant becomes small in the infrared region
of the thebry. This is the case with QED, and allows us to successfully use
perturbation theory at every-day energies. However, in the high energy,
ultraviolet regime; the cbupling constant gets larger and larger, eventually
reaching the point where perturbation theory is no longer valid. Fortunately,
in QED, the energy level where this occurs is much much higher tHan any
reachable today. Furthermore, new physicé is expected to appear a long

time before we reach such energies.

In QCD with 6 flavours of quark, B=C =0and D = *Te%’f (14]




For $i1(g) = 0, the coupling constant doesn’t run, and sob the bare cou- .
pling constant is equal to the renormalised coupling constant for all energies.
This is the case for many supersymmetric theories. It is also the case with
scale invariant field theories and conformal field theori’es: if the

- coupling constant doesn’t run, and there is no other source of scale in the
theory (e.g. a mass scale could be introduced by having massive quarks),
then the theory is defined to be scale invariant. A conformal field, however,
is invariant to metric rescalings (ds? — A2ds? for arbitrary, real A). All con-
formal field theories are scale invariant (the metric can be used to measure
distance, in a conformal field theory we can always rescale the metric, so
it is impossible to unambiguously define a distance), however not all scale
invariant theories are conformal. Known examples are rare though [16-19].

For B1(g) < 0, the coupling constant gets smaller at largé energies, and

- conversely gets large at small energies. This is the case for QCD (see next

section). So although we cannot use perturbation theory at low energies for

QCD, we can use it for high energies; typically those found at large particle

accelerators in Switzerland, Germany and California.

The beta function for QCD

In 1973, the one-loop contribution te #(g) for QCD was calculated to be

3 ' '
Br(gs) = 52 (—1—1Nc+gﬁ’i) (1.10)

with n; being the number of quark flavours, and N, deriving from the
SU(N,) gauge grdup. There are widely believed to be six flavours of quark,
so Bi(gs) < 0, nﬁeaning that at high energies the quarks interact weakly.

They are said to be asymptotically free.

10
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Figure 1.1: Plot of the solution to the first loop beta function for QCD

We can go further, and solve (1.10):

2
9r
9s(p)* = (1.11)
1+ 298 log(p?/M?)

1672

whose solution is plotted in figure 1.1. Note that Jp enters the solution,
for it is the only dimensionful parameter available to make the log term
dimensionless. So in fact we can swap the M derivative with a p derivative

in the definition of the A function in (1.6): .

g9 _ % 09

T OM  dlogM A= 8lbgp (1.12)

This reparameterization will come in useful in t'he next section.

Figure 1.1 brings to our attention two important features of QCD.
Firstly, g gets smaller and smaller as p — 00. So QCD is indeed asymptot-
ically free, and we can use perturbation theory at hiéh energies. ‘

Secondly, figure 1.1 demonstrates the anomalous breakiné of scale
invariance. If we were to lbok at the massless QCD Lagrangian, ie. (1.1)

with m set to zero, we would see that there is no dimensionful parameter.

11




We say that, classically, massless QCD is scale invariant. However, this
would be a puzzle: phenomenologically there is clearly an inherent mass
scale in QCD: the hadronic masses are not continuotis, so ‘any one could be
used to define a scale. On studying the S function we would be reassured.
Figure 1.1 clearly introduces a scale into the theory, commonly called Aqcp.
It is norfnally defined to be the energy at Which the couplihg constant
becqmes infinite. In figure 1.1 this is approximately 246 MeV (although a
more careful >an.alysis, including higher ofder corrections to B(g) sets Aqop
at ~ 215 MeV). For all energies where g, > 1, perturbation theory is no
longer valid. Quantum effects have broken the classical symmetry: we say

that the scale invariance has been broken anomalously.

1.2.5 The ’t Hooft Expansion

Equation (1.10) provides an ideal opportunity to talk about the ’t Hooft ex-
pansion, a particularly clever way of performing perturbation theory about
the strong scale Aqcp. We have just shown that at and arouﬁd Aqcp, the
- coupling constant is greater than one, which means.a perturbative expan-
sion such as in (1.9) would be invalid. However in [20,21] it was pointed
out that there is a second dimensionless parameter in QCD: that of ‘N, in
the gauge group SU (N.). ’t Hooft showed that gauge theories simplify at
large N and that they have a perturbative expansion in terms of 1/N. We
surhmarise his analysis, and that of [22], in this section.

- We stated in (1.10) that the S-function for a pure SU(N.) gauge theory
is gi\}en by |

11

3 , .
B(g:) = = Neges + O(gh) (1.13)

so the leading terms remain the same if we let N — 00, so long as we keep

A = ¢2N fixed (one can show the higher order terms also stay the same in

12




this limit). This limit is known as the 't Hooft limit.

The ’t Hooft expansion was originally formulated in terms of a U(N,)
gauge theory, with all matter in the adjoint representation (although this
can be generalised to include fundamental matter). Let us assume, that
as in QCD, all three-point terms are proportional to g, and all four-point

terms are proportional to g2, so the Lagrangian takes the schematic form
L ~ Tr(d®;d®;) + g7 Tr(®;9,;84) + g2d 7P Tr(;®;8,®)  (1.14)

for some constants ¢/* and d7¥!. We can rescale the fields by &; = ¢,®;, to

reach

$

1 . L. g Y e . -
L — [Tr(d(I)idq)i) + T (B, 8y) + d”“'n(@i@j@k@l)] (1.15)

where 1/g%,, = N/X. Now we want to know what happens in the limit
N — 00, A = fixed. Although‘ 1/¢2 tends to infinity, this is countered by
the fact ;chat the number of components in the ﬁeldé also goes to infinity.

A U(N,) theory with matter in the adjoint representation can be repre-
sented as a direct pfoduct of a fundamental and an anti—fundamenteyl field
@}, as in figure 1.2, where we have drawn two contributions to the vacuum
amplitude.

What is the power of N and A associated with each diagrarh? From-
(1.15) we can see that each vertex willlhave a coefficient proportional to
N/, and each propagator will have a coefficient propértioﬁal to A/N. In

addition, each closed loop will a factor of N, since we have to sum over all
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Figure 1.2: Two examples of contributions to the vacuum amplitude in dou-
ble line notation. The diagram on the left is planar and hence contributes
N?. The diagram on the right is of genus one and hence contributes N°

indices in the loop. Hence we have

Vertex : _]Y/\_c . (1.16)
Propagatqr : Nic (1.17)
Loop : N, (1.18)

. So a diagram with V vertices, E propagators and F loops will include a

factor

NN-BAFABV — Nx)E-V (1.19)

- where x is the Euler characteristic of the diagram. It is a topological

invariant, depending only on the genus (number of holes), g, of the surface:

x=2-2g (1.20)

Therefore the perturbative expansion of any diagram in field theory can be

written as

i N*~2% i Coit = i N272 £ (X) (1.21)
g=0

1=0 g:O
where f; is some polynomial in A. In the large N limit, we see that any

computation will be dominated by those diagrams_ which are topologically
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equivalent to a sphere or plane (ie. no holes, genus = 0).

If we identify 1 /N as some generic coupling constant, g,, we can see
that (1.21) looks like a perturbative éxpansion about g,. The resemblance
between (1.21) and perturbative string theory is onel of the strongest moti-
vations for believing that string theories and field theories are related [22],
" in particular by a 1 /N expansion.

In particular, the AdS /CFT cvorrespondence,v which is the inspiration for
this thesis, and which we turn our attention to in section 2, is formulated
at large V. It is hopéd that in the future 1/N corrections will make the

éorrespondence even more applicable to SU(3) -quantum chromodynamics.

1.2.6 Anomalous Dimensions

In section 1.2.4 we looked at §(g) when g was small. Now we turn our
attention to g > 1, the strongly coupled regime. We can no longer calculate
B(g) explicitly, but we can consider the qualitative possibilities.

Of most interest is when 3(g) is either positive or negative in the weakly
coupled regime, but higher order corrections mean that B(g) has non-trivial

zeros: the two possibilities are shown in figure 1.3.

Big)
@ 1]

A\ >~

Figure 1.3: Possible forms of the § function with non-trivial zeros: (a)
ultraviolet-stable fixed point; (b) infrared-stable fixed point

A beta function of the form 1.3(a) is weakly coupled at low energies.

At higher energies the coupling constant grows, but only upto g.. Once it
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reaches g,, the coupling constant stays constant. This is a potential, but
-unproven resolution of the Lahdaﬁ pole$ in QED: the Standard Model has
such a pole at 103*MeV [23]. However this analysis assumes a monotonic
beta function. If the beta function of QED hae a non-trivial zero, then the
Landau pole would not exist. |

Exphc]tly, near the fixed pomt of ﬁgure 1.3(a), the @ function can be

approximated by

B~ —B(g — gx) (1.22)
or . »
4 Blg-g) (1.23)
which has the solution
) M\%
gp)=g:+C (;) | | (1.24)

This has important impli‘cations for the exact solution of the renormalization
group equation (1.8). For sufficiently large p, the integral in the exponential

of (1.8) will be dominated by those values of p where g(p) is close to g..

Then
G(p) ~ Glg.)exp [~(log 2-2(1 —(9.))] (1.25)
1 1-7(gx)
~ (%) . (1.26)

So the two-point function returns to a simple scaling law, as might be ex-
pected in a naive dimensional analysis argument. But there is an impertan‘c

difference -we would expect the power law to be p~2, but instead it is

SA Landau pole means that the coupling constant becomes infinite at finite energy.
Technically QCD has a Landau pole at ~ Agcp, but the phrase is usually used to refer
to non-asymptotically free theories only :
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p~2(0-7(-)) The complex interactions of the quantum field theory have af-
fected the law of rescaling. Finally, since the fixed point is reached at large
p, it is known as an ultraviolet fixed point. -

An analysis of graph 1.3(b) follows similar lines. Near the fixed point

the @ function can be approximated by

B~ +B(g—g.) (1.27)
which has the solution
_ p\2
glp) =g« +C (*) (1.28)

M

This means that for sufficiently small p, the integral in the exponential of

(1.8) will be dominated by those values of p where g(p) is close to g., giving

Glp) ~ Glo)exp [~(log +-2(1 —1(9.))] (1.29)
1 1-(g«) ,
C(E) o (1.30)

Because this occurs at small p, this fixed. point is called an infrared fixed
" point.

Once again, the complex interactions of the field theory héve affected
the law of rescaling. For this reason, the y(g) function is cdmmonly known

as the anomalous dimension, even if there is no fixed point in the theory.

1.2.7 Mass gap

Another feature of QCD, and yet to be proved rigorously by anybody, is
that of a mass gap. A quantum field theory is said to have a mass gap

if the energy spectrum has a positive greatest lower bound, but does not
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include zero. This is thought. to be very closely Iini<ed to the property of
confinement, which is simply .a statement that gluons cannot exist on théir
own, but only in colourless bound states. Lattice gauge theories have shown
to the satisfaction of moét that quafkless QCD exhibits such a phenomena,
but solving this problem with due mathematical rigour still remains one
of the Millennium Prize Problems. Experimentally it is certainly true that

there is a mass gap in QCD.

1.2.8 Chiral Symmetry‘Breaking

We have already seen in section 1.2.4 that massless QCD ahofnalously
breaks its classical scale invariance. There is a second classical symme-
try to the massless QCD Lagrangian: that of chiral symmetry, meaning
that the left and right handed qliarks transform independently.

The Lagrangian of massless QCD is given by taking equation (1.1) and

simply setting m = 0:

N A 5 v a 1 a . va
L =1 (0,9 + gAiyHt*) ¢ — ZFWF“ , (1.31)

(1.31) possesses a chiral symmetry which can be seen if we write ¢ as
Y
Yr

and choose the chiral representation of the gamma matrices:

then (suppressing the gauge field which doesn’t affect the analysis), equation

(1.31) becomes

L= i} (9 — 0.7) bz + il (B + 0.7) ¥r (1.32)
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Inv this form it is clear that we can perform separate global ﬂavéur transfor-
mations on ¢, and ¥g. Since the quarks are in an SU(2) isospin multiplet,
we write these transformations as SU(2) ® U(1)p-and SU(2)r @ U(1)p
respectively. The Lagrangian is unchanged by these transformations: it is

chirally invariant. (The analysis still holds if we turn on the gauge field 4,,.)

However, this is a symmetry of the Lagrangian which is broken spbnta—
neously by the choice of vacuum. The most obvious manifestation of this
is the absence of a barity~d_oubled spectrurri. If the chiral symmetry was
respected, there would be a positive parity hadron for every 'neg-ative parity
hadron. This is not what is.seen in nature. For example, the proton has
isospin %, spin 3 and a positive parity. Its mass is 938 MeV. Its parity part-
ner, catchingly called thé N(1535) S;;, has a mass of 1535 MeV [24]. We
conclude that chiral symmetry is broken at a quantum level, and 'the easi-
est way to accoulnt for this is by assuming that. QCD spontaneously forms
a quark condensate.. In other words, the QCD vacuum glives‘a non-zero

vacuum expectation value to the scalar operator
(0|QLQr + QrQLIO) # 0 (1.33)

What is the physical interpretation of this VEV? The up and aown quarks
are very light, and so it costs little energy to create a quark—antiqudrk pair.
However, the binding energy released by a bound quark-antiquark pair is
large. All (1.33) is saying is that the process of forming a quark—antiquark
pair and then binding them togethér is exoth‘ermic.: we get out more energy
then we put in. |

The vacuum expectation value (1.33) means that we can no longer

perform independent gauge transformations on the left and right handed
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spinors: the only flavour transformation we still can make is one where we
simultaneously make the same transformation on both ¥ and ¥g. We say
that the SU(2)L x SU(2) g flavour symmetry has been spontaneous‘ly broken
to SU(2)y .

Goldstone’s theorem [25] states that whenever a continuous symmetry
of a quantum field theory is spontaneously broken, a massless particle will
af)pear. In breaking SU(2) x SU(2)g to SU(2)y, we started with six group
generators, aﬂd ended up with three: acéording to Goldstone’s theorem we
would expect three massless particles to éppear in the spéctrum of QCD.

However, the Lagrangian of (1.31) is not exactly Jthat of real QCD. Thé
proper Lagrangian of QCD has massive quarks and is given in (1.1). Hence
QCD does not have an exact SU(2)p x SU(2)r symmetry QCD. But be-.
cause the up and down quarks are almost massléss, there is an approximate
symmetry, so a perturbative approach about m, ~ 0 may still be useful.

Looking at the hadron spectrum there are three suspiciously light hadrons,
namely the pions, whose masses are about one fifth of the next lightest
hadron. Furthermore they have the éorrect parity to be created by the

axial isospin current, j*5%:
7 = Qy*y°1°Q | | (1.34)
The coupling between the 'pior;s and the vector axial current is defined as
(m*(P)| Q15T QO)0) = —ifrpud™ (1.35)

where T is a generator of the brokenvsymmetry group and f, is a number
with dimensions of mass. It is called the pion decay constant. For an SU(2)
isospin symmetry, meaning two flavours of quark, we expect three types of

pion.
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Figure 1.4: The vector current two-point function, 1y (—¢?). The grey blob
represents all possible one particle irreducible diagrams that can be inserted.

f in equation (1.35) is a measure of the extent of the chiral symmetry
breaking. If there is no chiral symmetry breaking its value is zero. In QCD
it can be determined from measuring the decay rate of 7° particles [24]. It

is found to be 92 MeV.

Meson decay constants

It is not just the pion that has a decay constant associated with it. All

pseudoscalar mesons, P, have a decay constant Fp, defined by

(0]A4,(0)|P(q)) = iFpq, (1.36)

And the vector meson decay constants¥ are defined as:

01Q0)YQ(0)|V (p; N)) = iFymyey (1.37)

where p and A are the momentum and polarization state of the vector meson
V(p; A). €, is the corresponding polarization vector.
Experimentally, Fp can be measured from leptonic decays of the ap-

propriate meson [24]. Fy can be measured from the decays of tau lep-

Yvector mesons have two decay constants: the transverse pblarization decay constant,
F{', and the longitudinal polarization decay constant Fy,. Only the longitudinal decay
constant can be determined experimentally.
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Figure 1.5: One contribution to the vector current two-point function

tons [26-28]. (
If we represent the vector current two-point fu_ncfion as figure 1.4, then
one contribution to the vector two-point current will be that of figure 1.5.
It can be shown [29, 30]‘ that at large N, the mesons form an infinite,
stable spectrum and that the vector two-point current is given by the sum

over all meson and glueball resonances (with the correct quantum numbers),

such as that in figure 1.5:

My(-¢%) = -3 <Ol~(f;|2pz<i|£|o>

F} o
- N (1.38)
Zp:@?—m,%)mz

The axial vector current two-point function at large N, IIp(—g¢?), is almost

identical: :
B F2
Mp(=g?) = =3 b (1.39)
f ; (q2 - mgl)mgl

Axial 'Curlfent Anomaly

(1.31) also possesses a U(1), ® U(1) g symmetry which we have yet to men-
tion. Whereas the SU(2) syminetries mixed the up and down quarks, the

U(1) symmetries act to add a phase to the entire spinor. Classically, we have
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H1da

WWg

Figure 1.6: One of the diagrams that leads to the axial vector anomaly in
QCD

independent U(1) symmetries for both the left and fiéht handed symmetries.
These phases always cancel out since the fermions are always bilinear. The
presence of the non-zero VEV (1.33) also breaks this classical U(1),@U (1) R
symmetry to leave a single U(1)y éymmetry. And once again, Goldstone’s
theorem applies: -a spontaneously broken symmetry implies the presence of
a massless boson. Here the broken symmetry has one only one generator, so
we’d expect one massless boson. A look at the known QCD mass spectrum
shows that the only suitable candidate, in terms of quantum numbers, is the
7/ (958) meson. However it has a disappointingly high mass. Even allowing
for the small masses of the quarks, we'd expect our boson to have a rnass
similar to that of the pions. '

" The explanation of this dichotomy puzzled physicists for a long v(rhile,
and was‘yn”t explained until 1986 [31]. It is quite easy to show [14, 32] that
due to the necessity of regularization and renormalization (in particular
triangle diagrams such as figure 1.6) the classical axial symmetry of QCD

(8,3"%- = 0) is broken by quantum effects to

2 ~
y € apuy
8" = ~Te¢ B Fop Fu - (1.40)

The obvious question to ask is what is the source of such an anomaly, and

the answer lies in the complicated field of instantons [31-34]. There are
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an infinite number of distinct QCD vacua, whom differ from one another
by their topological equivalence class: 73(S%) = Z. Furthermore, it can be
shown that whenever a correlation function tunnels in and back out of a
vacuum in a different topological class, it picks up a contribution to the

axial symmetry:

1 [, |
Q= ——2n—f/8pj”5 (141)

where Q is defined as the topological charge, and can be shown to be equal
to the number of left handed fermions minus the number of right handed

fermions: @@ = nr —ng. An instanton is defined as those solutions for which

Q=1

Probably the simplest way to think of instantons is as isolated sources of

axial symmetry breaking, and they are responsible for making the 7'(958)
meson heavy. More detailed analysis can be found in the sources quoted

earlier.

1.3 Solving QCD

Now that we’ve investigated some of the complex features of QCD, a pru-
dent question would be to ask whether we have the theoretical tools required

to calculate experimental quantities such as hadron masses and decay con-

~ stants. These are very difficult quantities to determine. Current approaches

can be divided into four classifications.

e Perturbative QCD

. i
_Feynman diagrams are used highly successfully in QED to calculate

cross-sections. The correlation function is expanded in terms of a
small parameter, o = 1/137, and then each contribution is calculated

order-by-order. Beyond one loop the calculations can get very in-
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tractable, and it requiresv a great deal of effort and care. Fortunateiy,
« is very small, and so higher order contfibutions are also small. The
equivalent expansion in QCD is a, &~ 0.118 at 91.2 GeV [35], which
means that the expansion does not converge as rapidly. In addition,
as we discussed earlier, we can only use perturbative QCD at high

energies, so for many interactions, it is not valid.

Lattice QCD {36, 37]

The best established approach to non-perturbative QCD is the use
of huge supercomputers. Continuous spacetime is represented by a
discrete four dimensional lattice, with lattice sl;acings éf a. The QCD
Lagrangian (1.1) is then reformulated for a discrete spacetime, and
the calculations are made for as small a lattice spacing as possible.
For the final answer, the limit a — 0 is taken. Lattice QCD takes a
lot of human time and effort, and it is not always clear what happens -

when the limit a — 0 is taken‘

Effective Theories

Mirroring the techniques of perturbation theory, theories are writ-
ten down which mimic QCD for some limited parameter space. And
within this parameter space, there will be a pe;rameter which can be
used as a perturbation parameter. Examples are chiral perturbation
theory [38-40], which uses the light quark masses (at low momentum)
as perturbation parameters, and‘heavy quark effective theory [39,41],
thCh uses the inverse of a heavy quark mass as a perturbation pa-
rameter. These approaches can be very useful, but are limited by the

extent of parameter space to which their model is valid.
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e 1/N expansion
Once again, mirroring the tec,hniques of perturbation theory, experi-
mental quantities are calculated as a perturbative expansion in terms
of the NV in the SU (N) of the gauge group of QCD, in line with the
argument presented in section 1.2.5. In theory this is applicable to all
of QCD, but the perturbation parameter, (1/3)?, is not very small,
so the series does not converge as quickly as-one might like. More
.importantly, it is not clear how to go about calculating the 1/N cor-
rections. Hence there is little knowledge of the error in a tree-level
calculation. The AdS-CFT correspondence falls under this classifica~
tion. Before we investigate it we need to go over some basic aspects

of string theory.

1.4 Strihg Theory

- The AdS/CFT correspondence is discussed in detail in chapter 2. It de-
scribes a duality between a gauge theory and a string theory, so we take
this opportunity to review some of those aspects of string theory relevant

to this thesis.

1.4.1 Premise

String theory starts by assuming that fundamental éarticles are not point-
like, but have a finite length. In other words, they are little strings.

We _reach the Euler-Lagrange equations of motibn fér point-like particles
by minimizing their world-lines. By analogy, We assume that the equations

of motion for strings will be found by minimizing their world areas. The

original formula for the area of the sheet, known as the Nambu-Goto action
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[9,10], is

S = T/dadT\/X2X’2 —(X.X")? (1.42)
where
. 85(#(0"’7-) , 65(“(0-’7-)
" [ A
Xt = 5 X 3 (1.43)

The X* are the bosonic fields in the spacetime. (1.42) does not contain

fermionic fields; this is addressed later.

The square root in (1.42) makes the mathematics of optimization awk--

ward. Instead we can introduce a new variable, ks which will be the metric

on the string world sheet. This leads to the conventional
' T 2 \/— af m v
S = —5 d*oVhh*n,,0, X 0 X (1.44)

Since the derivatives of A do not appear in (1.44), it is not a real field, and

so can be eliminated, leading back to (1.42) if required.

(1.44) is not satisfactory to describe the real world. Fiistly, we need
fermions in the theory, and secondly it turns out that (1.44) contains a

tachyon. However it is possible to supersymmetrize (1.44) [9]:
1 -
S[X, ¢ = M/d2‘7(77ab9w3aX”3qu) + &' (1™ gu P 1a0p0”)  (1.45)

And with a lot of work [9] it is possible to show that so long as X* and U*

exist in ten dimensions, (1.45) contains no tachyons or anomalies.

1.4.2 World-sheet Boundary Conditions

There are several types of string: their properties depend on the nature of

the boundary conditions of the fields on the world-sheet. For the moment we

27




Type | Details
I All strings are charged under an SO(32) gauge
symmetry
ITA | Chiral, meaning that parity is a good symmetry.
No gauge symmetry either, so theory only contains
gravity »
IIB - | Non-chiral, both in the fermionic sector and the
gauge sector

HO | Heterotic, meaning that the left-movers are
‘ | bosonic, and the right-movers are fermionic. Has
, an SO(32) gauge symmetry

HE | Heterotic, with an E3 x Eg gauge symmetry

bi

Table 1.1: The five consistent types of superstring theory

only consider closed strings (open strings enter when we consider D-branes
. in section 1.4.3). We can choose to make our strings orientable m(')r non-
orientable. If a string is orientable, we can tell which way we are travelling
along a string. If it is non—bfientable, we can’t. There are further choices
we can make with fespect to the fermionic boundary conditions, and in fact
going through every possibility took researchers a lot of time. In the end,
there are five consistent superstring theories, summarised in table 1.1.

What is the spectrum of closed string theory? This is a detailed and
complex subject that is visited by many sources (see {9,11,42-45] for exam-
ple) so hére we just briefly summarise the fesults.

The spectrum contains the metric,' G, the scalar dilaton @, and a two

index antisymmetric tensor B,,:

e The metric needs little explanation, and plays the usual role as the

device for measuring distance and angles.

e The dilaton is a very important field in string theory: it generically
appears in the action as e®, and measures the Euler characteristic
(the number of holes and handles) of the string worldsheet. Hence

the quantity e® plays the role of the theory’s coupling. When dpen
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and closed string sectors are combiﬁed the Yang-Mills coupling from

the open string sector has gZ,, = e?.

e B, known as the Kalb-Ramond or NS-NS B-field, is the generaliza-

tion of the one-form potential A, of electrodynamics. For point-like

particles moving in an electromagnetic potential the action is given
by [ Audz*. For closed stfings moving in a Kalb-Ramond potential,

the action is given by [ By, dz*dz.

All of the fields listed above are NS-NS fields (Neveu—Schwarz—Neveu-
Schwarz). R-R (Ramond-Ramond), NS-R and R-NS fields also exist. The
NS-R and R-NS fields are not a concern to us - they are simply the fermionic
partners of the bosonic sector. However the R-R fields are sourced by D-
branes [9] and so are also present in the spéctrum‘. They enter as field
stréngt_hs of antisymmetric fields as shown in (1.46) and (1.47).

For the AdS/CFT correspondence applied to 3 + 1-dimensional field
theories, ten-dimensional type IIB string theory is of central ’ifnportance,
and in'particular its low-energy limit where stfings become poir;t-like and
string theory.becomes supergravity. There exists no. completely satisfaétory
action for the type IIB supergravity, since it involves an antisymmetric field
Cy with seIf—dﬁal field strength F5. However, it is possible to write an
action ihvolving béth dualities of Cy, and then impose the self-duality as

a supplementary field equation. In this way one obtains (see for example

[42-44])
, 1 ,
Sus =, yre) / VGe **(2Rg + 89,00"® - |H3[?) (1.46)
1 - 1 - ‘ '
P /[\/@(|F1[2 + |F3)* + §|F5|2) +Cy AN Hs A Fg}+ fermions,
B
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where the field strengths are defined by

F1=dC, H3=dB, F3=d02,-'F5=dC4,
(1.47)

_ _ 1
Fy=Fy — CH;, F5=F5—-%A2/\H3+§B/\F3,

and we have the additional self-duality condition *Fy = Fy.

However, for the AdS/CFT correspondence, there are only three fields
sWitched on: the graviton, the dilaton, and the five-form field strength Fi,
so we can disregard most of the fields in (1.46) and instead use:

2 _ 1

- ﬁFg (1.48)

Sip = 5% / % V=G [R - %(6@)

where we have redefined the metric (Vée“_m - VG) to transform the

action from the string frame to the Einstein frame, giving an action in the

usual Einstein-Hilbert form [46]. It is in this frame that the stress-energy
tensor has its usual meaning.

There is more to the string theory story than thatJindicated by table 1.1.

As well as the 1—}-1 dimensional strings', there are higher dimensionful objects

too, called D-branes. Their importance was first recognised in the mid-

1990s, and they form an important part of the AdS-CFT correspondence.

We look at them next.

1.4.3 D-branes

Upto this point we have been conducting a purely mathematical exercise.
It Was hoped that string‘theory would provide a unique theory of the four
fundamental forces of nature. However, we have already stated that there
are five consistent versions of supers’cring theory. This is disillusibning, and
was the point at which the string community had reached in ther early 1990s.

Fortunately, it was shown that all five theories were linked by a series of
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simple dualities, meaning that there was only one theory after all, called

M-theory. One of those dualities is T-duality.

T-duality is a symmetry between small and large distances. The ‘T’

stands for topology, since T-duality transformations work on spaces in which
at least one dimension has the topology of a circle.
Let us consider a string that is wrapped around the circle, ie. it is closed.

It’s energy spectrum is given by

me~ R? a'?

The first term is the Kaluza-Klein energy, and the second term is the wind-

ing number. (1.49) is invariant under the following transformation:
R — d'/R, n—uw (1.50)

Therefore a theory with only closed modes will be invariant under (1.50).

But -what if a theory contained open strings too? These aren’t invariant

under (1.50). The open strings will have a Kaluza-Klein contribution to
their energy spectrum, but no winding term. Hence T-duality will change
the spectrum of the open strings.

Under T-duality, the boundary conditions of the open string change:
0y, X#(01,(0,1)) =0 — X*(01,(0,1)) = c* (1.51)

We go from Neumann boundary conditions (LHS) to Dirichlet boundary
conditions (RHS). For a long time this was result was ignored by the string
community because the Dirichlef bourdary condition is not Lorentz invari-
ant - a special surface in the 10D spacgtime has >be‘en picked out. It was

Polchinski who first embraced this result, and extolled the modern explana-
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tion of this effect. The surface ¢* is indeed special; it represents the surface
of another iject, hitherto undiscovered in string theory. ‘These objects
are called D-branes, the ‘D’ standing for ‘Dirichlet’, and',the ‘brane’ as in
membrane, or surface. By the T-duality, all open 'étrings must start and
finish on a D-brane. ‘

Just as closed strings can be considered fluctuations of the baékground
geometry, open strings can be considered as fluctuations of the D-branes.
The D-branes are solitonic objects, and thus exist in the low energy limit

of string theory - supergravity.

1.4.4 D-brane action

It was shown [47] in 1989 that the action

S~/ e®2\/det(G' + B' + F) (1.52)
o ‘

for some arbitrary'D~brane gives the equations of motion for all the back-
vground fields associated with any D-brane. This form of an action was
first written down by Born and Infeld when considering a particuiar non-
linear generalization of electromagnetism [48], and was expanded upon by
Dirac [49]. All this occurred a long time before the advent of string theory
and D-branes, but for historical reasons (1.52) is still called the Dirac-Born-

Infeld (DBI) action. Let us briefly explain each field in turn:

e & is the usual dilaton.

e G’ is the induced metric on the brane’s surface. The precise definition
of this concept is given in section 3.2.1, but it is the equivalent of
the v/—detg term in the standard Einstein-Hilbert action for general

relativity.
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e B’ is the induced Kalb-Ramond field on the _brane’s surface. The
precise co-ordinate definition can be found in [9], but all it represents
is the two-form field which has been induced on the surface of the

‘D-brane as a result of the Kalb-Ramond field in the bulk. .

)

e [ is the usual electromagnetic field poténtial for a single D-brane, and
is attributable to the open string sector. In fact the B’ fields and F
fields interact, and it can be shown [50] that only the combination

F + B’ is gauge invariant.

In many publications, it has been conventional to re-define £ as 2ma/'F,
and for clérity we follow this convention in this thesis. Furthermore, the
Kalb-Ramond field will be switched off for all the examples in this thesis.

Hence the DBI action for the rest of this thesis is taken to mean

SN/ e®2\/det(G + 2/ F) (1.53)
M

1

There will be cases though when we turn off the electromagnetic field tensor
F in (1.53) too.
For completeness, we add that it is possible to add a Chern-Simons term

to (1.52) [51,52]:

S~ / e®?\/det(G+ B' + F) + z/ Tr {exp(27ra’F2 + Bsy) A ZC’q
JM - Jem » p
(1.54)

However this is a topological term that is only relevant if we are considering
vacuums with non-trivial topologies. In all that follows, we implicitly as-
sume that the vacuum is topologically trivial, and hence we will not include

(
- a Chern-Simons term in any subsequent action.
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Chapter 2

AdS-CFT

The discovery of the AdS/CFT correspondence was built upon a whole
raft of previous discoveries and conjectures. Here we ignore the historical
steps that led to its discovery, and simply introduce it, as if by magic, as it
stands today. On one side we have a type IIB string theory in the geometry
induced by an infinite stack of D3 branes. Thé other side is a conformal
gauge theory with an infinite number of colours. First we address the D3-

brane construction.

2.1 Strihg description

QOur starting point is to put N D3-branes in the centre of a ten dimensional
space, which is otherwise empty. There will be three types of interaction:
those amongst the open strings on the branes; those amongst the closed
strings in the bulk; and those between the open and closed strings. We can

write the effective action as

S = Sbulk + Sbrane + Sint (2.1)
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Now we consider the limit in which we send the string length to zero; I, — 0
(o — 0). All other dimensionless parameters (the string coupling constant,
gs, and N) we keep fixed. Doing this means the coupling of the strings to
each other (~ g,a?) goes to zero, and hence the strings do not interact:
Sing is turned off, and we are left with two decoupled systems: 'claséical ten
dimensional gravity in the bulk, Sy, and a four dimensional gauge theory
on the surface of the branes, Sprane.

What is the exact nature of the four dimensional gauge theory? The ends
of the open strings are labelled by the branes vthey are attached to. The
strings are orientated, so there are two types of strings stretching between
any two branes: one whose left end is on the first brane and whose right end
is on the second brane, and vice versa. These labels are called Chan-Paton
factors, and in the case of a coincidental stack of branes, as we have here,
there is a clear re-labelling symmetry of the Chan-Paton factors.

There are N? possible string relabellings, which fills the adjoint repre-
sentation of the U(N) Lie group. The strings are free to move around on
the surfaces of the branes, so the relabelling can be performed at any point:
hence the U(N) symmetry is a local one. In other words it is a gauge theory,
and the Chan-Paton labels can be interpreted as labelling the gauge charge
of each end of the string.

In the large N limit, thé propagators of adjointd fields in a U(N ) and
SU(N) gauge theory differ by a vanishing term, proportional to N ™! {22],
so when N — oo, we can treat U(NN) and SU(N) gauge theories as identical.

The spectrum of strings is given by the dimensional reduction of an N=1
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gauge multiplet in ten dimensions to four dimensions:

A* A+

A
— [ ~ (2.2)
v v v y v

D=10, N'=1 D=4, N=4

where the left hand side of (2.2) is defined in ten dimensions with one
supersymmetry generator (N = 1), and the right hand side is defined in
four dimensions, with four supersymmetry generators (N = 4). The A* are
gauge fields, ¥ are gauginos, and A represent complex scalars. Six of the
ten-dimensional gauge field deérees of freedom become the three complex
scalars in the four-dimensional reduction. |

The one-loop @ function for this theory is

11 8

with the ﬁrst>term coming from the gauge fields, the second from the gaugi-
nos, and the third from the scalar fields. Supersymmetric non-renormalization
theorems [53] can be used to show that there are no higher order contri-
butions to the § function, and thus it is zero.for the full quantum theory.
A theory which has.no massive ﬁelds, and whose coupling constant doesn’t

undergo dimensional transmutation, is a conformal field theory (CFT). This

means the theory is invariant to rescalings of the metric.
To conclude: on the string side, we have two decoupled systems: ten-

dimensional supergravity; and an"SU(N) conformal gauge theory.
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2.2 Supergravity description

Let us consider the system from a different point of view. D-branes are
massive objects, and hence warp the spacetime that they are put in. It is
possible to show that there is a D3 brane solution to supergravity [54] which
is |

6
ds® = 27y, datde’ + 27 datda®

a=1

R? | '
Z=1+— R =dngliN /Ss *Fs=N (2.4)
R characterises the typical curvature scale of the gravitational solution,
and NV vis the number of D3-branes in the spacetime. ‘
Now let’s take the same low energy limit as we did before (I; — 0). From
the point of view of an observer at infinity, there will be two types of low
energy excitations. The first type_wauld be any massless excitation in the
bulk with a suitably large wavelength. The Second is a bit more subtle, and
is a result of gi; not being constant. All observations made at infinity will be
. redshifted, by a factor Z~1/4, when compared to the observations made at-
some fixed position 7. So we can have very highly excited states in this low

energy system, just so long as they are close enough to r = 0, because by the

time they have reached some observer at infinity the redshift factor will be

so large that all excitations will appear low energy to that observer. And as
we tend closer and closer to the limit [; — 0, the two systems will decouple:
the excitations near r = 0 because the grax}itational well is insurmountable;
and the supergréwity excitations because the wavelengths will be very large
compared to the gravitational extent of the branes.

In conclusion, we have supergravity in the bulk, and in the near horizon
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we have

ds® = % (—dt® + da? + da + dzf) + R2%2~ +R%OZ (25)
where we have been able to go from (2.4) to (2.5) because in the limit we are
considering, r <« R. Equation (2.5) is simply the geometry of AdSs x S5,
with the radius of the 5-sphere given by R.

We see that from both the string description, and the supergravity de-
scription, the system decouples into supergravity in flat space, and some-
thing else. This suggests the conjecture that the ‘something else’ are al-

ternative descriptions of exactly the same thing: this is the essence of the

AdS/CFT correspondence:

N =4 U(N) SYM in 341 dimensions

is dual to type IIB superstring theory on AdSs x S°

It is sometimes easy to get lost in the mathematical details of what we
are doing, but it is worth pausing to consider exactly what we are claiming.
The SYM side of the duality is defined in 3+1 dimensions: the supergravity
side exists in 941 dimensions! In some sense, six of the ten dimensions
on the supergravity side are superfluous! This type of duality is classed as
a holographic duality, taking its name from holograms whiéh use a two di-
mensional object to depict a three dimensional image. The first holographic
‘dual was proposed for black-holes, with the postulate that the entropy of a
black-hole is given by its area. This meant that all the information contained
within a black hole is encoded in a lower dimensional surface. Similarly we
~ are claiming here that all the information in the ten dimensional supergrav-

ity can be equally well explained by a four dimensional field theory.
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2.3 Matching the Symmetries

What symmetries do each side of the description have? On the AdSs x S°

side we clearly have two symmetry groups: the SO(6) of the 5-sphere, and

the symmetry of the AdSs spacetime is SO(4,2) [22]." What does this relate
to on the super Yang-Mills side? Since it is A = 4 there are four gauginos,
hence there is an SU (4)r & SO(6) symmetry. It is also conformal in all
four dimensions: the conformal group in four dimensiohs has a symmetry
group SO(4,2). So we can identify corresponding symmetries on eithér side
of the correspondence: I-

N =4 SYM AdSs x S°

SO(4,2) conformal group | spacetime symmetry

SU(4)=SO(6) | R-symmetry S® isometry

2.4 Regime of usefulness

 In what regime are our approximations valid?. On the supergravity side, the

two regimes of interest decoupled when the wavelength of the supergravity

excitations were much larger than the string length:”

4

RY
< o~ 9o N ~ g,N (2.6)

E)

But on the field theory side we need the 't Hooft coupling to be much less

than one if the theory is to be in the perturbative regime:

13> gV ~ goN ~ | (2.7)

Clearly the two inequalities are incompatible, which leads us to the conclu-

sion that when the gravity dual is weakly coupled, the field theory must be
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strongly coupled. We can be bolder still, and make th_e conjecture that when
the gravity side is strongly coupled, the field side will be weakly coupled.
We propose that the duality is a strong-weak duality.

This is why this duality is so exciting to those studying strongly cou-
pled. gauge theories. As explained earlier, solutions to the non-perturbative
regime of such theories have evaded _Gaptﬁre for decades. This duality gives
us hope that instead of having to try and solve the nightmare of a strongly
coupled theory, we can instead r_efparameterise the theory in terms of a
Weakly coupled supergravity theory, which we can solve using perturbation

theory!

2.5 Energy—radius Duality

Ignoring for the moment the SU(4)r = SO(6) part of the duality, we have
a 441 spacetime dual to a 341 field theory. Conventionally the ‘extra’
fifth dimension of the spacetime is denoted with r, and here we consider its

physical interpretation.

The AdS side has the metric
ds® = r~2dr® + r*n,, dz"dz” (2.8)

But the CFT is invariant under z# — e®z*. If the CFT side is invariant
under this transformation, then so too must be the AdS side. Hence r must
scale as r — re~®. It transforms as an energy.

This can be understood from the point of view of an observer at infinity
(the boundary of AdSs x S°). To her, a photon emitted from the centre of

the space is red-shifted. If the observer moves in from infinity to some finite

-, the photon is less red-shifted. So the energy-radius duality indicates that
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instead of just considering the duality as being constructed on the boundary
of the AdSs x S® space, we are free to look at the duality at any value of
r: each different choice of r simply represents the same field theory at a

 different energy scale.

From here onwards, the r coordinate is referred to as the energy scale.

The small r limit is called the infrared (IR), and the high r limit is called

the UV (ultraviolet).

2.6 Explicit Correspondence

The correspondence will only be useful if there is a prescribed way of cal-
culating physical quantities on each side. The way to do this was first

suggested in [55], and the postulate is that the generating functional for

. correlation functions with some source ¢o(z) is equal to the supergravity

partition function whose fields ¢(z) tend to ¢o(z) at the boundary of the
AdSs x S® space:

(Exp </ d4$¢0($)0($)>>A455X35, =J string [ P0(T)] (2.9)

#(x,00)=¢0o(z)

So, in éimple terms, the boundary values for supergravity fields correspond
to soﬁrces for the field theory operators.

The LHS side of (2.9) is independent of the giobal symrﬁetries of the
conformal field theory. So, the entity [ d*z ¢o(z)O(&) must be a singlet
.under all the symmetries of the dual field theory. This is how-we go about
identifying which fields in the supergravity match with which operators in

the CFT, which we address next.
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2.7 Field-operator Matching

We showed in the previous section that an operator O on the conformal
side corresponds to putting in a field ¢ on the gravity side.
The example canonically presented is to consider the action of a scalar

- field, ¢, of mass m on the AdSs x S° side:
S= / d'z dr dls /=g (1 8,$0,¢ — m*¢?) (2.10)

The simplest solution is obtained by assuming that ¢ is a function of r, the

radial direction of the AdSs x S° space only. Then the solution is given by

$(r) = Ar~G=8) 4 Br=2 (2.11)

\

with m? = A(A — 4)*.

In fact in general, a bulk scalar ¢ wit'h' mass m? corresponds to a scalar
operator on the qonformal side with dimension A = ;2:t\/zl_+7n—2T. Solving
O¢ = 0 gives two independent solutions, r2~4 and r=2: ¢(r) ~ Ar2=4 +
Br=®. We can then identify [55-58] B as the source of the operator O
and A as the VEV for the same operator’.v As discussed in the previous
section, the most natural way [55] to combine these quantifies to form a
dimensionless quantity is [ d*z (A x B)-z—‘ [ d*z 0.

We also stated in the last section that [ d*z ¢o(z)O(x) must be a singlet
under éll symmetries of the conformal field theory. Furthermore, it must
have mass dimension 0 since it is part of an exponential, so ¢o(z)O(z) must

have mass dimension 4. Clearly such a combination of A and B satisfies

- these requirements.

*This formula can be generalized to m? = (A — p)(A + p — 4) in the more general
case of the action of a p-form [22] .
A refers to the full dimension of the operator (i.e. classical + anomalous)
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Let us consolidate these ideas by looking ‘at the example of the gaugino
bilinear M. It is a Lorentz scalar of dimension 3: therefore we need a su-
pergfavity scalar field with mass diménsion 1. It is also a ten dimensional
representation of the SU(4) R-symmetry. We find such a field in the reduc-
tion of type IIB strings on AdSs [55] if we set m? = —3% in (2.10). Then

the solution becomes

¢(r) = Ar-t+Br® . (2.12)
= ?—Jrr% (2.13)

where we have just redefined the. constants A and B. Supergravity fields

do not scale under four-dimensional conformal transformations, so m must
have dimension 1 dnd ¢ must have dimension 3, which corresponds with m
being a source (i.e. a mass) for A\ and ¢ being its VEV (or condensate).
The careful reader may ask at this point about existence and uniqueness
when it comes to operatbr—ﬁeld matching. Fortunately tvhvat question has
been answered in [59]: for every operator there exists a corresponding field
which is unique. However, as is the way with existence-uniqueness theories,
‘ there is no easy way to match operators with fields: each one has to be done
by hand. And in any gauge theory there are an infinite number of operators.
When we come to consider duals to QCD, a lot of the work is in deciding
which operators of QCD, from an inﬁnite choice, are to be included in the

holographic field theory.

1AdS has negative curvature, and so we can have m? < 0 without faster-than-light
travel
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2.8 Deformations and Adding Flavour

So far we have exf)loreci the AdS/CFT duality as it was first presented,
basically as a mathematical construct. However thé promise of describing
a strongly coupled gauge theory in terms of a weakly coupled one was very
exciting to students of QCD. Perhaps, it was thought,; this would be a useful
way to make calculafions in the strongly coupled regime of QCD. However,
there were some immediate obstacles to overcome: the CFT field theory
present in the duality had many characteristics which makes it distinctly
different to QCD. It is conformal, supersymmetric, strongly coupled in the
UV, and has an infinite number of colours. In additidn there aren’t any

quarks. The addition of quarks is addressed in the next chapter.
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Chapter 3
Flavouring the AdSs x S°

All the matter discussed in chapter 2 was in the adjoint representation of the
SU(N) colour group. This is because both ends of the open strings start and
end on the same type of brane - a D3-brane - and so are indistinguishable.
All the Chan-Paton factors are in effect colour indices. Quarks have both
coloBr and flavour indices, and are in the fundamental representation of
th'e gauge group. So we need strings in our geometry which can take on
these properties. A lot of work, by a lot of contributers, showed that this is
achieved by introducing D7 branes [45,60-76]. In this section we summarise

the salient points of their work.

3.1 The D7-Brane Probe

A brane is massive, and will distort the spacetime in which it is placed. At
the moment this is an unwanted complication for us, so we shall use the
probe limit, which means that we ignore the gravitational effects of the new
brane. This apiaroximation, known as the quenched dpproximation, holds if
N¢ < N, where Ny is the number of probe branes, and NN, is the number of

D3 branes. This approximation is the same as introducing a test charge in
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L5]

D3
D7

X

Table 3.1: Choice of D3 and D7 embedding. Filled directions are marked
with a cross. Unfilled directions by a dot.

‘electrodynamics. Work has been done on unquenched spacetimes [70,77-80],

but this is not too much of a concern for us here.

The AdS; x S5 metric can be written as

2 2 6

ds? — ]—ggﬂu,,dx“da:" + % Z dnz (3.1)_

i=1

A D7-brane probe can be chosen to fill the x directions and four of the r
directions, as illustrated in table 3.1.
Introducing the D7 branes has allowed two new types of string to exist

in this system:

e Strings stretched between the D3 and D7 branes - these have one

colour index and one flavour index, and so can be identified as quarks

e Strings with both ends on a D7 brane - these have two flavour indices,

and so are identified as mesons

This is, of course, in addition to the strings with both ends on a D3
brane (‘gluons’) and closed strings (‘gravitons’) which were present before
the D7 branes, and are still there.

If the D3 and D7 stack are coincidental in the rs — e plane, there is a

conformal symmetry in the system. If they are not coincidental, then we

have introduced a scale into the system, and the conformal symmetry is '

broken; this is shown in*figure 3.1. In breaking the conformal symmetry, all

the fermions and scalars of the A = 2 multiplet acquire a mass.
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D7

D3

Figure 3.1: If we place the D7 brane(s) at any non-zero distance from the
D3 branes, we break the conformal symmetry '

The exact embedding of Nf D7-branes has been chosen so that the
directions of r5 and rg are orthogonal to the D7—bfanes’ world-volume (table
3.1). There is now an N = 2 chiral supermultiplet connecting the D3 and
D7 brane stack, and this interacts with the N/ = 4 supermultiplet on the
surface of the D3 branes. How to know which symmetries are preserved.
and which are broken in some setup of Dp and Dp’ branes is not an obvious
one, and involves some detailed calculations [81]. In this particular case, the -
N = 4 supermultiplet is broken completely by the presence of the D7 brane,
leaying just the A/ = 2 supermultiplet. When the D7 brane is separated
: froin the D3 stack, the scalar associated with the 75 and rg directions gains

a VEV and gives a mass to the quarks:
QXs6Q — mQQ as Asg acquires a VEV (3.2)

However when when we have separated the D3-D7 system, there is still
a U(1) symmetry because of our freedom'to re-parameterise the r5 — 74
coordinates. This U(1) symmetry corresponds to the axial symmetry of a
single-flavour QCD model. As explained in section 1.2.8, in QCD this sym-

metry is spontaneously broken by the chiral condensate (gg). We don’t see
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a Goldstone boson though, because of the presence of instantons. However,
in the 't Hooft limit (N — oo with g2\, fixed), -the instanton effect is

negated, and so the Goldstone boson becomes light once again.

3.2 Particle spectrum in the probe limit

The excitations of the D7-brane in the directions perpendicular to its world
volume correspond to scalar fields, which are Singlets under the colour group
and are in the adjoint of the flavour group: these states include mesons.

Since the theory is supersymmetric, there will also be other states, in-
cluding fermions, living on the brane, but these are not explored in this
thesis. | '

The presence of supersymmetry also means that a fermion condensate
cannot be expected to form (we check this explicitly in the next section).
Hence chiral symmetry will not be spontaneously broken, as it is in QCD.
Non-supersymmetric deformations of the correspondence can overcome this
drawback, and in chapter 4 we address a particﬁlarly" important example of

such a deformation.

3.2.1 Quark mass and condensate

In this section we analyse how the probe D7 brane lies when introduced into
the D3-brane setup. We will show that its asymptotic solution is holographic
to the quark mass-and condensate.

The full action for a probe D7-brane in the D3-brane setup is

Sor = =17 [ e/ ~aa (Ple] + 2w F) + T2l [piowiapar
(3.3)

where G is the ten dimensional metric, and F is the field strength of the
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gauge field U(1) living on the D7 brane. P[G] is the pullback of the ten
dimensional metric onto the surface of the D7 brane. It is defined as

_ 0z@ 92

PG = Ea B8 O (3.4)

with @, 8 running over the coordinates on the D7 brane, and a,b running
over the whole spacetime’s coordinates.
For now, we neglect the U(1) field and the Wess-Zumino term, leaving

us with

Spr = —T / 6/ —det (P[G];)  35)

We can néglect the Wess-Zumino term because it is only brelevant for gauge
fields with a vector index on the 5-sphere.. In other words they carry a
supersymmetry charge.. Such states are important in the full dual, but for
this thesis they are unimportant - wé are trying to provide holographic
descriptions of QCD, which does not (to the best of our knowledge) contain
any supersymmetric states. We will re-introduce the U(1) field in section
3.2.2. It will turn out to be holographic to the Qector meson sector.

The DBI action for (3.5) is

3 Bus?  Ous?\ R® [Ous® Oug?
[ e 1o (S TYs L e R .
7/ gRB\/ +(8p % ) tel\Em T ) GO
where the ten-dimensional metric has been written as

2 R2
ds? = %nwdxudx" + = (dp® + p*d3 + du? + dug) (3.7)

with «? = p? + 42 + u2. The z direction is perpendicular to the D7’s world
volume, so fluctuations in z correspond to the meson spéctrum. We come to

this next, but first we address fluctuations in the p direction - this governs
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how the probe brane lies within the spacetime. Using the U(1) freedom
we have to re-parameterise us and ug, let us set ug = 0, and look at the
equation of motion for us. Expanding the square root to second order, the

Euler-Lagrange equation of motion is

8, <ﬁf—’”5—> =0 (3.8)
VI+duE) -
- whose solution tends to m + cp™2 as p — oo.

From (3.6) we can see that-‘ us has dimensions of mass. Hence the pa-
rameter m corresponds fo a mass for the gq operator, and the parameter c,
with mass dimension three, corresponds to a VEV for the g bilinear.

Now we can investigate whether this system does or does not allow a
quark condensate. For the field theorj to be consistent, we require two

things of the D7 flow:

e The field theory must have a unique description at any given energy:

hence the sum ug + p? must be monotonic as p varies from 0 to oo

e The metric (3.7) is symmetric under p — —p, which implies that well-
behaved solutions must obey ug(0) = 0 and us(0) # £oo. Were it
otherwise, the brane would have a kink, which would give an infinite

contribution to the action

Figure 3.2 shows three flows for m =1 with ¢ = —1,0 and 1. As

expected for a supersymmetric theory, a condensate is not allowed to form.

If the reader is not satisfied with this numerical explanation, we can

provide an analytical proof. (3.8) can be solved analytically, for all p. Its
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201 -

1.5F c=1

1.0 c=0

0.5

Figure 3.2: D7-brane flows for m = 1 with several different condensate
values in AdSs x S° background. Only the ¢ = 0 solution allows a consistent
theory ' '

solution is

i*3B
us(p) = A+2.31/4\/B_6——r6_

V(B2 + i2/372) (Bt — 23 B2 4 1/3r4) (3.9)

F(¢, 3(2 +/3)) x

with ¢ = arccos(%ﬁ-%). F (¢, m) is the incomplete elliptic integral
of the first kind, using the convention defined in Mathematica version 5.2.

The function is complex uﬁless B = 0, meaning that the only well-
behaved solution is when us is equal to a constant. This is the solution
with a zero valued condensate. .By\allowing m # 0 we have clearly broken
the U(1) chiral symmetry that existed before. We showed in section 1.2.8
that QCD breaks chiral symmetry botﬂ by the spontaneous formation of a
chirél condensate, and to a lesser extent, by the mass of the quarksi In this

_pure AdS system, the only way we can break chiral symmetry is by making

the quarks massive. -
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Meson mass spectrum

How to calculate the meson spectrum in this background has been detailed
in [62]. We summarise the results here. |

The meson spectrum corresponds to x-dependent fluctuations of the
fields us and ug on the D7-brane world vblume. To find the spectrum,
the mésons are treated as small fluctuations on the brane surface, meaning
that the DBI action can be expanded to second order, with no interaction
between the meson fields. Hence we can treat the fields as freely moving
plane waves, which will alléw us to explicitly calculate the spectrum. |

There are two directions in which the fields us and ug can ﬂuctudte:
perpendicular to the p-dependent flow of the brane, and parallel to the

p-dependent flow. We use the U(1) symmetry to write this as
Us = m + X(ma T) Ug = ¢(5L‘a4’r) (310)
The induced metric on the D7 brane can be written as

2 2 2 22
2__p + L v R 2 Rp
ds® = ——nudatdr +p2+L2dp +p2+L2

73 dQ? | (3.11)
with p? = u? — L2. L is the distance bétween the centres of the D7 brane
énd the D3 brane stack. It ié therefore proportioﬁal to the quark mass: the
constant of proportionality is unimportant in this analysis. It just means
that we will predict the masses of the mesons relative to one another, rather
_than relative to some absolute scale.

The DBI action is then given by

cd

Spgr = ~Tx /dsg VvV —detG (1 + 2(Wa’R)QPQi L2(8cx<9dx o 30¢8d¢))
- | . (3.12)
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The equations of motion for ¢.and y are identical, so we write the generic
field as ®, and its equation of motion is
R

: -1
(—ma“@ﬁb + E(p:’apcb) =0 (313)

We assume that the mesons w&ll be non-interacting and plane-wave, so we
make the ansiitz @ = f(p)e**, with k* = ~M? (M .:bei_ng the mass of the
meson). We then look for normalisable soiutions to (3.13): these correspond
to coﬁsistent field theory solutions.

(3.13) can be solved exactly by:
F(0) = (0 + L) o Fi(~a, —a + 1,2, —p*/L?) (3.14)

2Fi(a, b; ¢; 2) is the regular hypergeometric function, defined as

o .
' ~ (a)n(b)n 2" ’
Fi(a,bc;2) = — : 3.15
2 1(CL c ) nZ=O (C)n n' ( | )
where (a), is the rising factorial. « is as yet undetermined. ‘We can de-
termine it by considering our requirements on f(p): the solution must be
normalizable and real. To stop (p? + L?)~® o Fy (~a, ~a+1;2; —p?/L?) run-
ning off to +00 as p — 0o we need to terminate the series at order p—2*. A

little maths shows that this can be done by setting
n=a-1 ' (3.16)

in which case the hypergeometric function terminates at order (p?/L?)".

Hence ¢ ~ p~2 as p — oo0. So the final solution to (3.13) is

- flp) = W 2Fi(—n —1,-n;2; —p?/L?) (3.17)
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The condition (3.16) means that the mass spectrum is discrete:.

ae o 2L

"= (n+1)(n+2) | .(3;18)

Equation (3.18) shows that in pure AdSs x S5, the meson mass spectrum
is proportional to the quark mass. This is at odds to what we’d expect in
QCD: even if the quarks were massless we’d still expect the mesons of QCD
to be massive. This is another sign that this geometry does not support
a quark con‘dehsate. ‘A meson in QQD gets the majority of its mass from
interactions with the non-zero quark condensate.: when this condensate is

zero, its mass becomes proportional to the quark mass.

Numerical Solutions

We have been lucky in being able to solve (3.13) exactly: in the more
complicated geometries to come, we will not be able td,‘ and so it will be
helpfgl to go over the alternative numerical technique, first detailed in [45],
~ using an example where we can check that the answers are what we’d expect.
The task is to find those values of M, in (3.13) for which f,(p) is a

normalizable, real and smooth solution.

1. Define the numerical solution f,(p) as a function of M, To define the
numerical solution requires us to set boundary conditions, so we make
the appropriate choice in the UV: for the meson spectrum we require

fn(o0) = p~2. So now f, is a function of M, and p: f, = fu(p, M)

2. We now want those solutions which are finite in the IR and smooth
across the origin: otherwise the solution will have a kink across p =
0. We could do' this by altering M slightly each time, and then re-
plotting the solution. A better method is to define a new function

g(M) = sgn [8,f(0, M)] and plot g(M) over some suitable range.

54




™
1.0 - : —

-1.0

Figure 3.3: Numerical calculation of the meson spectrum in AdSs x S%. The
dots are the analytical values.

3. Where the value of g(M) changes sign indicates a stable flow: an

example plot for (3.13) with L = 1, M =-1/2 is shown in figure 3.3

Figure 3.3 shows that the numerics agree with the analytical solution.
This will be important - in future we will not be able to find an analytical
soiution, So‘we have to be confident that the numerical solutions can be
trusted. To give an even clearer idea of what is happening around one of
the normalizable solutions té (3.13) we plot f(r) for three different values of
- M around v/2 in figure 3.4. It can be seen that as we pass through M = /2
the solution flips from —o0 to +00, so the only normalizable solution in this

neighbourhood is at M = /2.

3.2.2 Vector Meson Spectrum

‘We analysed the scalar meson sector in section 3.2.1. Now we re-introduce

the U(1) gauge field that we neglected in equation (3.5):

Spr = —Ty/dgf\/—det (Plg] + 2ma'F) ’ (3.19)
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Figure 3.4: Plot of three solutions around the M = v/2 solution.

The process is identical to that in section 3.2.1 once we have made the

following ansétz fpr the holographic gauge field:

AF = g(p)eTer (320

¢# is the polarization vector, defined only in the Minkowski directions. g(p)
is determined from the eduations of motion, just as f(p) was for the scalars.
In this geometry, the mass spectrum of the vector mesons is exactly the
same as that for the scalars:

2 oL

"= (n+1)(n+2) (3.21)

This is to be expected since they both form part of an N = 2 hypermultiplet.
In the more complicated geometries that we will study later the N' = 2

hypermultiplet will be broken, and then the masses will differ.
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3.3 DBreaking the Supersymmetry

As it stands at the moment, supersymmetry is still exact, and hence a
fermion bilinear condensate cannot be formed. In other words, chiral sym-
metry is not broken, whiéh is a necessity for any 'hologréphic description
of QCD. To induce a breaking of the supersymmetry, we must deform the
gravity side in a non-supefsymmetric and non-conformal way. There are
many examples of such deformations [82~108]. The one of most relevance

to us is that considered in [109] and we address it next.
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Chapter 4
The Constable-Myers

Geometry

We showed in chapter 3 that D7 probe branes can be used to include quarks
in holographic duals. However, the resulting theory still had a massless
quark condensate. Here we take a step back, and before introducing quarks,

we consider a gravity dual where supersymmetry has already been broken.

4.1 The Background

The Constable-Myers geometry, first studied in [109], is a consistent solution
to the type IIB supergravity equations of motion. We state the solution

first, and then describe its properties. In the Einstein frame, the geometry

is given by: ~
6
ds? = H—1/2f6/4d$2 + R2H1/2f(2—6)/4 w! — b Zdw? (4.1)
= 4 wh t s
_ i=1
4 4
5 _wi+b »
Where H = f — ]., f = m (42)
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The dilaton and four-form are
e =eMofh W= QEH_ldt Adx Ndy Adz (4.3)
Theré are formally two free parameters, R and b, since
6 =RY2b*, A?=10-62 ' (4.4)

The metric (4.1) has a singqlarity at w* = b*; we loosely expect this to
correspond to the presence of the central stack of D3 branes [69].

The dilaton and five-form field strength are a function of r, and in the
- UV limit (r — 0o) the geometry returns to AdSs x S5. However, due to the
dependence on 7, the interior of the field theory is strongly deformed.

The set of solutions are described by two dimensionful parameters, b
| and R. However, by looking at (4.1) we can see that if b = 0, then the
solution returns to AdSs; x S°, with radius R. Hence b determines the
scale of the conformal symmetry breaking. We can identify b’s'holographic
partner éxplicitly by looking at the form of the dilaton in the UV limit
(r — oo): |

' /4008 = RS
ed.’ ~ e¢0<1+_40—__R_>

| o
_ oo (;‘;4) | (4.5)

A has scaling dimension 4 and is a singlet under the 5-sphere isometry.
Therefore it must correspond to an operator of dimension 4 which is an
R-singlet. There is only one candidate (as pointed out in section 2.7, we
are gﬁaranteed to have such a unique candidate). It must be (Tr F'?). This
deformation completely breaks the supersymmetry of the gauge theory (ie.

from A/ = 4 to A/ = 0). In addition, a complex VEV does not make
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much sense, so b must be greater than or equal to 4071/3R. Belov;r this, the
geometry is not well-defined. v

Meanwhile R determines ¢%,,N in the field théory, as is usual in the
corréépondence. So R specifies if the field thebry is in the Strongly coupled

or weakly coupled regime.

4.2 Confinement and Glueballs in the Constable-

Myers Geometfy

Before we introduce quarks into this geometry, it is worth pausing to con-
sider some of the properties alre'ady present in this theory, namely confine-

ment and the glueball spectrum.

4.2.1 Confinement ,

Confinement means that quarks are consigned to exist in colour—neutral.
combinations. A single quark cannot exist on its own. One way of showing
this is to calculate the energy of a quark-antiquark as a function of their
separation. In QED, the energy between a positron-electron pair would
monotonically decrease to zero as we separated the two. In QCD, we’d
expect the energy to increase as we tried to seﬁar‘a‘ce a quark-antiquark
pair, showing that it would take an infinite amount of energy to produce a
solitary quark.

In [110] it is argued that this effect can be studied holographically by
looking at the Nambu-Goto action for a fundamental string in the geometry
dual to the field theory. Specifically, the expecta’cionlval'ue of a Wilson loop

in the field theory is dual to the fuﬁdamental string in the holographic

background:
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Figure 4.1: Wilson loop used to calculate the quark-antiquark force. The
vertical direction represents Euclidean time. The horizontal direction indi-
cates one of the spatial coordinates

(W(C)) ~es - (4.6)

where W(C) is the Wilson loop around some clésed contour C: W(C) =
—}VT‘rPei JeA, P means that the calculation is path-ordered. S is the action
of the worldsheet of Vthe string. |

The LHS of (4.6) needs further explanation. In Euclidean field theory
with a rectangular contour with sides of length T' and L (figure 4.1), the
energy of a quark-antiquark pair can be found by calculating the expectation

of the Wilson loop in the 7' — oo limit [110}:
(W)~ e )

where E(L) is the energy of the quark-antiquark pair. A good analysis of
equation (4.7) can be found in [111]. Here we summarise the result. We

start by defining the two quark state at time ¢ by:

T, R)) = 13(t,0)q(t, R)) (4.8)
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Then we need to consider

i

(a(T, )T, )[2(0, 0)a(0, B))
= Jim (T'(T, AT, R))
= Jim SO0, Re BT

~ e BRI (4.9)

Ill_rgo QT,R) =

lim
T— o0

We have been able to pick out the smallest energy eigenvalue E, in (4.9)
because in the T — oo limit, it will dominate all the other terms.

All we have left to do to demonstrate (4.7) is to show that 7111_{1;0 Q(T, Rv) ~
Tlgr;o W (C). However, the Wilson loop corresponds to an extended ‘source’
in the fundamenta.l representation (ie. quarks), separated by a distance R,
being created at 7" = 0 and annihilated at some general T', so we are done.

Let us apply equation (4.6) to the Constable-Myets geometry coﬁsidered

in this chapter. The Nambu-Goto action of the fundamental string is [109]:

. 1
S=:— / d2o\/—detG ynBazM By (4.10)

with Gy denoting the string frame metric, which is-related to the Einstein

metric by a scaling factor:

dsztring = e¢/2d82Einstein (411)
’ 6

4 _pa
= H‘1/2f(A+5)/4d$3+R2Hl/2f(A+2_5)/4w —4b Zdw.z
w

3
i=1

It will be useful to recast (4.11) with an explicit 5-sphere symmetry:

4 4
ds? = H-V2 pa+/4q,2 | R2H1/2f(A+2-_5)/4ﬂ__—_b_ (dr? + r2dQ2) (4.12)

wh
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We want a static solution to the equations of motion, so it is convenient to
set ® =t and ¢! = z, and assume y = z = 0. We also assume that the

string is at a constant angular position in S°. Then the action becomes

1/2

S = 2730/ /dt dz n(r) [1 +m(r) (%)2} (4.13)

with

TL(T) = Gge = H_I/Zf(A+6)/4

) = GG, = L fa-sos
w?

Equation (4.13) is very similar to the integral found when performing Fer-
mat’s Principle for the path of light rays [102]. For large separation of
endpoints, the trajectory which minimizes S locates itself very nearly at
the minimum of n(r) for most of its length. Henbe the complicated pro-
cess of optimizing S is reduced to simply optimizing n(r). Furthermore, for
small separationis Az about its minimum, S becomeé

) n(rmin)
S~ T Ag (4.14)

It is easy to show that n(r) is optimized by

2wt
4
Thin 7 (4.15)
(35%) 7" -1
which gives
V(o) = S(Ag) = — B8 A (4.16)
Y T VI |

with &= 24 " 4. (4.16) shows us that this geometry gives us a linear quark-

antiquark potential. In other words, it exhibits confinement. ¢
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Glueball State | Mass
S0t 1.00
o++* 1.56
O+ 2.08
(| 2.60
Qe 3.11

Table 4.1: 0%+ glueball masses from Constable Myers geometry. Normal-
ization is such that the ground state mass is set to one (arbitrary units).

4.2.2 Glueballs

The glueball spectrum for this geometfy was ihvesﬁgated in [109]. The
procedure for calculating holographic glueball spectra is quite straightfor-
ward [82-84,112]: it is found by solving the equation of motion for the scalar
field ®: |

9 (v99" e %9,@) =0 (4.17)

with the metric given in equation (4.1). Making the ansitz ® = g(p)e®*®
(since the scalar field is assumed to be a small perturbation) we then look
for solufions to (4.17). This can be done numerically. As r — oo, the
metric asymptotes to AdS space, and the normalizable solution to the wave
equation goes like 7=, Hence we use 'the. boundary conditions g(A) =
A, ¢'(A) = —4A~° we then look for those solutions which obey f'(0) = 0
(for continuity). We find a discrete spectrum (table 4.1). In other words,

this geometry has a mass gap in the glueball sector.

4.3 Chiral Symmetry Breakiné

The most exciting aspect of this geometry is that once we introduce quarks,
a quark condensate forms spontaneously. This is an essential characteristic
of QCD.

We start by introducing quarks in the same way we did in chapter 3,
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by adding Ny probe D7 branes to the geometry. “The exact dimensions
occupied by the D7 and D3 branes are shown in table 4.2.

We make a change of variables in the two directions perpendicular to
| both branes: |
®=rs+irg =o€’ (4.18)

and introduce one flavour of quark via a D7 brane probe in the geometry.

The Dirac Born Infeld (DBI) action for the probe is

1

- S’ —_—
D7 (2m)7 oy,

/ d®¢e?/—det(P[Gap)) (4.19)

where P indicates the pullback of the spacetime metric onto the D7 world
volume. The pullback of a metric is defined as

9™ AP

5 o6 (4.20)

P[Gab] —

with o — z9 being the coordinates in the bulk, and & — &; being the
coordinates on the D7 brane. We choose the static gauge, which simply
means z; = & for i = 1 — 7, and zg = z(&o, - .., &7), 29 = Zo(&o,. - -, 7).

This action will determine how the D7 lies in the remaining r5—7¢ directions.

Performing the necessary calculation we get

1 ERTIG SO BT
Sor = gy | % (5w) o ()

~&
4 4 T 4___ 4
X \/1+|a @|2+H(“’ “’) wb 10,02 (4.21)

with w? = p? + |®(? = p? + wi + Wi.
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Table 4.2: Choice of D3 and D7 embedding. Filled directions are marked
with a cross. Unfilled directions by a dot.

Applying the Euler-Lagrange equation of motion for ® we find

d (G2 o i1 o.opl -

((p* + |27)* + 1)((0* + [2[*)* — 1)
(0* +|2)*

with G(p, ®) = p° (4.23)

There are two important points to be noted in equation (4.22).
Firstly there is a an explicit ® — €!*® symmetry. In the massless case

this is the U(1)4 symmetry on the quarks.

Secondly, in the UV limit (r — 00), the equation of motion simplifies to

d [ ,d®

which has the simple solution ® = m+cp~2. The two integration constants,
m and ¢, correspond to a quark mass and a VEV for the quark bilinear gg -
respectively.

Returning to the full equation of motion, we look for regular solutions
that have the UV boundary condition o = m + cp~2. (For the moment 6
is turned off: it corresponds to the pion fields, which we will demonstrate
later). A few of the solutions are plotted in figure 4.2. v

The key feature of ﬁguré 4.2 is the m = 0, ¢ = 1.86 curve. This shows
that this geometry demonstrates chiral symmetry breaking: there is a quark

condensate even if the quarks are massless! This makes the Constable-Myers

66




We

1.5
m= 1.32,¢c=1.04
! m= 0.86, c= 1.32
05 m= 0.46, c= 1.59
m=0,c=1.87
O - T — p
0 2 4 6 8 10

t

Figure 4.2: Solutions for the wg flow when ws = 0 showing the dependence
of the condensate on the quark mass

geometry a very interesting model to study other properties of QCD.

4.4 Pions and their Interactions

We now turn our attention to the presence of Goldstone bosons. Numerical
soluti_ons discussed in the last section have demonstrated that this syétem
dynamically breaks the classical U(1)4 symmetry by forming a quark con-
densate. We first met Goldstone’s theorem [25] in chapter 1.2.8, and in that
section we analysed the spontaneous breaking of the U(1), x U(1)g sym-
metry to U(1)y. We identified the 7'(958) meson as the relevant Goldstone
boson. However, matters were complicated by the presence of instantons,
which made the 1'(958) heavier than would otherwise be expected. Here,
at large N, there are no instantons anfi so the equivalent 1’ meson should
still be light. \

Henceforth we ;Nﬂl describe the pseudo-Goldstone boson resulting from

the spontaneous breaking of the U(1) 4 symmetry of this geometry as a pion.
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4.4.1 The Pion Equation Of Motion

In the case of one ﬂavour, the pion is simply a bound Gg state, and will
be described by the field ®. The Goldstone fluctuation corresponds to .os—
cillations of the field along the vacuum manifold, which in the chiral limit
means fluctuations in the angular  direction of ®. To leading order, if we
have a background configuration for the D7 brane described by og, we can

look at small fluctuations in the @ direction.

The action for these fluctuations (to quadratic order) is given by ex-

panding the DBI action (4.19):

o2 «
S = (Z—W)f—a,;@/dpd‘*xefﬁfz‘*g,/u(apao)? |

197 999(0,0)* | 19" 9090,00,0
- = . 4.
X (1 31T B0 T2 14 (9,000 (425)

And the resulting Euler-Lagrange equation of motion is:

2
asf

M2R%e%G ((pz + 05)2 + 1)(1—6)/2 (pz _HTS)Q -1
VIF (800 \(*+08)?~1 (p* +a3)?

d e’G 5 _
A +dp (\/W%Bpf> =0 (4.26)

We look for values of MR as a function of m that give regular solutions to
(4.26). The UV boundary condition we impose is f= 1/ p2, which reflects
the fact that pion has the s‘ame UV scaling dimension as ch. The results are
plotted in figure 4.3. There is a massless pion when m, = 0, in accordance

with Goldstone’s theorem.
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Figure 4.3: Quark mass versus meson mass, showing the massless pion when
mg = 0. We plot the square root of the quark mass to demonstrate the linear
relationship.

4.4.2 The Vector Meson Equation Of Motion

There is an additional field present on the D7 brane which we have left
undiscussed: it is the gauge field partner of the scalar ®. The field strength
of this gauge field enters in the standard way as 27ra’F“l3 in the square root.

The leading Lagrangian for this field, in a background configuration oy is

- 2R ' : ()02 + 0'2)2 —1 I 1
= . ¢ 2 ___,___0______ 2 / 2—F‘“’F ,
T B fdpe g( L Ot ((p2 +08)? + 1) (ama)" g FE

1 1 2 2)2 _ 1 3 2 22
((p + 0-02) ) (p +200) F/,LpFup (4.27)
2R? /14 (0,002 \ (P*+03)+1 /) (0 +05)*—1

There is an additional term that could be added to the DBI action: the

.+

Wess-Zumino term, which gives the coupling of the four-form C® to the
gauge fields. It is not included here because when we calculate the equations
of motion for the gauge fields, this term is only relevant for the gauge fields

with a vector index on the S3. We are only interested in states that carry
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n | AdS case | CM case
0 2.83 2.16
1 4.90 4.85
2 6.93 7.05
3 8.94 9.20
4 11.0 11.3

Table 4.3: Vector meson spectrum comparing CM and pure AdS back-
grounds ' ,

no SO(4) R—charge. We write the gaugé field as
A* = g(p) sin(kz)e! (4.28)
The resulting Euler-Lagrange equation of motion is then
e*G\[1+ (0,00 M Rg(0)H (ij = ) %

e?*G w _
to (m@g@ ¢<w4~—1)<w4+1>) =0 6

There are two asymptotic solutions.to equation (4'.29). The simplest is

M =0, g(p) = constant. This corresponds to introducing a background
gauge field associated with U (1)vbaryon number in the field theory. It is of
little interest to us here. ' |

The second solution is, g(p) ~ 1/p? and this has the right dimension
- and symmetries to be identified as dual to the operator gv#q.” By seeking
smooth solutions to the equation.of motion we can determine the vector
mass spectrum; The results are shown in table 4.3, and compared to fhe
equivalent result in the pure AdSs x S° spacetime, which we calculated in

- section 3.2.2.
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Figure 4.4: A plot of m, vs m2 in the Constable-Myers background on the
left. Lattice data [1] (preliminary, quenched and at finite spacing) for the
same quantity is also shown on the right. ’

2
4.5 m, vs. m;

We can compare the dependence of the rho meson maés on the pion mass
squared. This is an interesting thing to do because the same result has been
computed for large N in lattice simulations [1], so a direct comparison of
gauge/gravity and lattice results is possible. We show the result in figure
4.4.

We have chosen units in the Constable-Myers geometry such that we
can compare directly with the lattice results of [1]. °It is striking that not
only does the lattice data display the same linearity as the gauge/gravity
result, but that the slopes are so similar (0.52 and 0.57 respectively). This
is one of many examples where AdS predictions match QCD 'much better
than one would naively expect. In the next section we explore some more

predictions.
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Chapter 5
AdS-QCD

5.1 Premise

In 2005 two very interesting papers [2,113] were published that for the first
. time dispensed with trying to deform supergravity solutions to mimic QCD.
Instead the authors aim was to “start from QCD and attempt to construct
its five-dimensional holographic dual”. Since QCD has an infinite number
of operators, they had to be careful about which operators they were going
to try and include. [2] focused on holographically modelling the dynamics
of chiral symmetry breaking in QCD. To this end, we would expect only a

small number of operators to be influential. These would be

e the left-handed and right-handed currents corresponding to the SU(Ny)p x

SU(Ny)g chiral flavour symmetry

e the chiral order parameter

So in keeping with the unique operator-field matching, this would require

three fields on the five-dimensional holographic side. Their details are given

in table 5.1.
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2

4D:0(z) 5D: ¢(z,7) p A md
avtiq.  Ag, 13 0
drY"t"qr B 1 3 0

Ga,  (2/HX? 0 3 -3

Table 5.1: Operators/fields of the model of [2]

The choice of ms for each field is determined by the relation (A-p)(A+
p — 4) = m? which we discussed in section 2.7. The metric, also an ansitz,
is simply AdSs, which is the simplest choice we coJuId make. In keeping
with (2], in this section we will write the fifth dimension in terms of zZ,

instead of the usual r. The two are related by z = r~!.

Hence z ~ 0 is
the ultraviolet part of the spacetime, and z ~ zp is the infrared of the
spacetime.

ds? = —27%d2* + 27 %, dztdz” (5.1)

The use of an AdS geometry implies that the dual theory will be conformal
- not something we want in a dual to QCD. So to give the theory a mass
gap, the spacetime is defined to end.at some IR scale z = z,,. In the window
0<z S zm, the background gauge is conformél, and the coupling doesn’t
run.

The 5D action is
S=/d5x\/§T‘r{lDX|2+3lX12 - 4—;3(FL2+F,§)} (5.2)
. 5

where Dy X = 8, X —iAr, X +iXAgy, AL = A} jt% and F,, = 9,4, —
0, A, —i[A,, AJ).X is a Higgs-like field, holographically dual to the quark
mass and condensate. Its value in the UV will be:

¢

Xo(e) — 2mye + 2630 as € —= 0 (5.3)
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where m, is the quark mass matrix, and o is the quark coﬁdensate matrix.
Both are diagonal matrices.

There are now four free parameters: zm,mq,0,95. g5 can be fixed by
operator product expansion for the prodlict of currents, and we come to this
a little later. We also take this opportunity to focus on just two flavours of
quark, so in table 5.1, o, = 1,2; a,b = 1,2,3; and ¢* = 0%/2, where ¢*
are the Pauli matrices. This model with three flavours of quark have been
investigated [114], and the results are good. Here though, the third flavour
would provide an unnecessary complication. Models beyond three flavours
would be futile because the lightest three quark ﬂaV(;urs are of roughly the
same mass and thus have an approximate SU(3) symmetry. The charm
quark however is much heavier than the previous three quarks, and so the
SU(4) symmetry is badly broken. |

As with the AdS/CFT correspondence, we claim that preciée correspon-
dence is obtained by equating the generating functional of the connected
correlators in the four-dimensional theory with the effective action of the
five-dimensional theory, with the UV boundary &alues of the 5D bulk fields

set to the value of the sources in the 4D theory:

> Zp " (5.4)
9(z.0)=¢o()

(Exp ( / d4x¢o(x>0(x>)>
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5.2 Fixing the g5 coupling

The idea in this section is to calculate the vector current two-point function

in the holographic scheme, and then by equating the result to that obtained

from perturbétive QCD we can hence fix gs.

We introduce the vector field as V' = (A 4 Ag)/2, choose the gauge

Vi(z,r) = 0, and by using the Euler-Lagrange equation on the holographic

action (5.2), we obtain an equation of motion:

0. (2009 + Lvz(a ), =0 (55

We then substitute (5.5) back into the action (5.2), and we are left with the

boundary term

— 1 4 1 <.1 1a
S = 252 dx(zVM8ZV> (5.6)

So, by the claim made above (5.4), equation (5.6) is the generating func-
tional for QCD. To obtain the vector current two-point function, we simply
functionally differentiate (5.6) twice with respect to the source V4, with V;
defined in V¥#(q, 2) = V(q, 2)Vy'(q). (V§**(q) is the Fourier transform of the

source of the vector current J = gvut*q).Doing the necessary maths, we

get
[ ERE@R0) = e - Po) @) 61)
' oy 1 8V(ge)
My (-¢°) = T — (5.8)

For large Euclidean Q*(= —¢°) we only need to know V(q,r) near the

boundary,

V(Q,2) =1+ QZZz In(Q%2) + ... (5.9)
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which upto contact terms gives
2 1 2
Iy (@%) = —5.5 (@) (5.10)
95

We can calculate exactly the same quantity using Feynman diagrams [115,

116]. The leading-order diagram is the quark bubble

N,
2472

Iy (Q?) = — =5 In(Q?) (5.11)

And so comparing (5.10) and (5.11) we can fix g5 as

1272

2 = 5.12
95 Nc ( )

A cautionary note

The matching we have just performed is a little naive. One should match
the gravitational theory to QCD only at the point where the QCD coupling
becomes non-perturbative, for this is the point where the gravitational dual
will be weakly coupled. And of course, when the QCD coupling is non-
perturbative, .gluonic contributions become impoftan;c. In all of the analysis
to follow, we keep g5 fixed as in equation (5.12). However we have performed
an analysis that treats g5 as a free parameter: this indicated that the optimal
value of gs is 5.19, rather than the 3.54 that (5.12) suggests: th-is is a
discrepancy of 32%! So for the rest of fhis section we add the disclaimer
that non—perturbative effects could have a significant effect on our results.
We also remind the reader that AdS/CFT correspondence is a large N,
large ‘t Hooft limit (¢2,4N = X > 1). In calculating g5 we have just
assumed N, = 3; this is a further source of error. We return to the matter

of g5 in chapter 6. -
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5.3 Calculations

5.3.1 Vector Mesons

There are now only three parameters in our model: z,,m, and 0. The
hadrons of QCD correspond to the normalizable modes of the 5D fields.
Requiring the modes to be normalizable means that when we substitute the
chosen modes back into the 5D action, the action remains finite. As usual,
this means that the solution must die away sufficiently rapidly in the UV,
and be smooth over the IR boundary (here given by z = z,,). This gives us

two explicit conditions for a general solutionvw(z).
P(0)=0 0 (2m) =0 . (5.13)

There is also a third constraint: that of orthogonality. 1, and 1, must be
orthogonal to one another if they are to represent distinct mésQns. So we
also have [(dz/z)y2 = 1. Two constraints is sufficient to solve a second or-
der differential equation: having three constraints guarantees us a discrete

spectrum. This is clearly a pre-requisite for a sensible model of QCD.

| A simple check shows that

Yo(2) 1/’;7(2)
= .14
Glan) =2 T (514)
is the Green’s function to (5.5). It can also be shown that V (g, 2') of equa-
tion (5.8) is given by —(1/2)8,G(g; z,2') at 2 = e. Putting this together
with equation (5.8) we find .

2

Tv{= ZZ(q —m2+ze)

(5.15)
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which on comparison with equation 1.38 of section 1.2.8, in the limit € — 0,

allows us to extract the decay constant F:

F?= ;13 (Wiie)/e)® - (5.16)-

5.3.2 Axial Vector Mesons

Our analysis of the axial vector mesons closely follows that of the vector
mesons. However things are complicated by the mixing of the pion field 7
and the longitudinal axial gauge field ¢. We start with the action, expanded

to quadratic order:

v(2)?

| 1 .
. 5 - a ra a’_ AaN2
= /d :c ( T (7° = A%) ) (5.17)

where we have defined v(z) = myz + 022, A = (A — Ag)/2 and X =
Xo exp(i2m°t%). We make the gauge choice A, = 0 and A, = A, + 0,¢.

Then the equations of motion become

1 ¢ 95v* o
[62 <;52AZ) + ?AZ - :E—Au . == O (518)
2,,2
8, <laz¢“> + 8 —g =0 (519
z z
921)2
—q"0.4" + Z5-0:m" = 0 (5.20)

The a; meson is a spin-1 particle, and so is the solution to equation (5.18)

with the same boundary conditions we imposed for the vector mesons,

4

naimely

Ya, (O) =0 az"bal (Zm) =0 (521)
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The normalization condition is also the same: [(dz/z)y2 = 1. Similarly,

the decay constant Fy, is given by (5.16), but with p replaced by as:

F? = gl OGO (5.22)

The pion can be found by solving (5.19) and (5.20) simultaneously, subject
to the boundary conditions ¢'(z,) = 0,$(0) = 0 and 7(0) = 0. The pion
decay constant can be found by considering the axial current correlator of
(1.36):

014 0)Im(q) = ifvqu - (5.23)

According to (5.23), IT4(—q?) will have a pole at g2 = m2. In the limit m, =

0, ITa(—q%) ~ —f2/q*. Hence, on comparison with (5.16), we-conclude

_16,A(0,¢)

5.24
g e (5.24)

s =

5.4 Results

From this siﬁple model we can predict six quantities*: the mass and decay
constants of the p mesons, the pions, and the a Mesons. We still have
three inputs: the quark condensate, the quark mass, and the position of
the infrared cutoff. Performing a best-fit analysis gives a rms error of 9
%.(Note €ms = Y,5((60/0)?/n)!/? with O the observable and n equal to
the number of predictions minus the number of inputs, so here n = 3).The

results are displayed in table 5.2.

*in [2] they claim to predict seven quantities; the seventh being the = — p coupling,
gprn- However this term would presumably receive an important contribution from F3
terms in the holographic action, which haven’t been included. It could be argued, though,
that a good agreement between the prediction for g,., and its experimental value in the
absence of F'3 terms indicates that these terms have little influence
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Observable | Measured (MeV) | Best Fit (MeV)
' My 140 141
my 776 . 832
Ma, 1230 1220
fr 92 84
| 345 353
2 433 440

Table 5.2: Results of model from [2] for QCD observables. m, = 2.3MeV,
o = (327MeV)3, 2, = 323(MeV)~! .

5.5 Improvements

| Since the publication of [2] in December 2005, there have been many further
publications, suggesting improvements to the simple model presented in the
preceding parts of this chapter. We consider here one of the more well-
known extensions, achieved by including a dilaton in the action (5.2) and

generalizing the metric (5.1) to:

S = /dsw e %) \/ng{IDXJZJr?»lX]z—é(F}j’JrFl%)}(a%)
5

ds® = € (d2? + 1, dztdz”) (5.26)

As yet, ®(z) and A(z) are undetermined. We can constrain them with the

following pieces of physics:

1. The geometry must return to AdS in the UV (2 — ¢), so the linear

combination ® — A must asymptote to log z for small z

2. A simple flux model [117] shows that meson masses obey the relation

_ m2 ~ n for each radial excitation n. This agrees with experiment

(figure 5.1). To reproduce this phenomenon, & — A must asymptote

to 22 for large z. It is worth noting that the model [2] we analysed in

the previous section predicts a meson mass spectrum with m2 ~ n?
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Figure 5.1: Experimentally, the p mesons follow very closely the relationship

m2 ~ n. The dots are the physical values

There are still an infinite number of choices we could make for A(z) and
®(z) that would obey these constraints. We make the simplest choice, and

set A(z) = —log(z) and ® = 22. Hence the action and metric become

2 1
S = /d% e * \/§Tr{|DX12+31X|2— ZEg(Ff+F§)} (5.27)

ds® = glg(dzunwdx“da{") . (5.28)

Now we repeat the p'rocedure of section 5.3 to find the meson masses and

decay constants.

5.5.1 Vector Mesons

_ Répeating the process of section 5.3.1, the equation of motion becomes

2 22
9, (e 8zvn> +mfle vp =0 - (5.29)

z z

As usual, we look for normalizable solutions to (5.29). However, now our
choice of boundary conditions is much simpler than when there was no
dilaton term. There is no hard IR cutoff at z = z,, (as there was previously),
and the action is defined for all z. So the ambigﬁity of (5.13) is removed

when we have a theory with a smooth wall cutoff (although we have re-

31




introduced some ambiguity through our choice of A(z) and ®(z)). Requiring

that the solution is simply normalizable gives us a discrete spectrum:

v (2) = 224/ n—2f~ 1L;(z2) (5.30)

where L7 are the associated Laguerre polynomials. The masses and decay

constants are found using the same formulae in section 5.3.1, the only differ-
ence being the presence of the non-zero dilaton, which changes the results

to:

rﬂi = 4(n+1) 4' (5.31)
» _ 8(n+1) (5.32)
o 98 '

Note that the mass spectrum goes like m2 ~ n, as we set out to achieve.

5.5.2 Axial Vector Mesons

The treatmen’ﬁ of the axial vector mesons follows that of sectidn 5.3.2. We
define the axial gauge field as A = 3 (A; — Ag), and the equation of motion

is found to be

z z

_z2 2 _z2 .
e g e _
0, ( azan> + (mfL - —ZX(z)2) “—n = 0 (5.33)

with the linearized equation of motion for the Higgs-like field X (z) given

by

2 2

8, (%@X(z)) +‘36Z5 X(z) =0 (5.34)
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and, of course, in the UV the Higgs-like field must asymptote to the usual

holographic quark mass (m,) and condensate (o) terms:

| 1
X(2) 28 SMez+ 502t (5.35)

Unfortunately, althqugh it is not yet clear, including the dilaton term in the
action (5.27) ruins the predictability of the axial vector meson sector. We

demonstrate why in the next section.

Loss of predictability

For large z, the equation of motion for X (z) (5.34) becomes
n ! 3 |
X" 22X+ SX =0 (2> 1) . (5.36)
z

(5.36) has two linearly independent solutions. One asymptotes to e* in the
IR, whilst the other tends to e=®™2", The solution must be finite for all
z, so we must discard the first solution, and hence conclude that m, and
o are proportional to one another. This is not what.one wants in a theory
with anomalous symmetry breaking. We conclude that including a dilaton
term ®(z) = —2z? greatly improves the vector meson sector, but removes

anomalous symmetry breaking from the holographic field theory.

Further extensions

We only included terms quadratic in X in the holographic action (5.27).
The brevious section_showed that this is not sufficient to model the axial
vector meson well. Including such terms rwould introduce nonlinearity into
equation (5.34). This in turn would make the relationship between m, and o
nonlinear: an essential result if we are to holographically model spontaneous

symmetry breaking. This avenue is left to other authors.
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Many other aspects of QCD phenomenology have been successfully brogmched
by AdS-QCD models. Baryons, strange quarks and higher spin mesons have
all been addressed [114,118,119). Four-point current-current correlators rel-
evant to the Al = 1/2 rule and the Bg paraméter for K-meson mixing are
analyzed in [120,121): Heavy qua;k potentials are cz)mputed in [122]. The
AdS/QCD model is related to light cone QCD in [123,124] allowing form
factor computationé. Form factors for mesons can also be found in [125,126].

Properties of QCD at high tefnperature and density and the deconﬁne—
ment transition have beén apaleed in this context in [127-133].

Such models have also been adapted to describé walking [134] techni-

colour [135,136] dynamics for electroweak symmetry breaking in [137-141].

N
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Chapter 6

Improving the IR of
Holographic Descriptions of
QCD '

As we saw chapter 5, a surprisingly good description of QCD can be obtained
from a simple five dimensional gauge theory on a truncated AdS space [2].

However, there are many short-comings of the model:

e The use of an AdS geometry implicitly means that the background

gauge configuration is conformal
e Hence the UV does not become asymptotically free

e The existence of a mass gap is imposed by hand by the introduction

of an infrared cutoff. It is not the result of a running coupling

e The fields that holographically describe the quark bilinears are in-

cluded phenomenologically

e The solution for the field holographic to the quark mass and conden-

sate is put in by hand - it is not dynamically determined by either the -
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gauge conﬁguration or the quark mass.

e The excited meson mass spectrum scales like the excitation number
A
n. Experimentally, the masses scale like \/n, a result which a simple

flux model can reproduce (see [117])

It would be useful to address the above points, and some progress has
been made [117,142,143]. Here we take the opportunity to examine the ap-
proach taken in [142]. The idea was to take the well-documented Constable-
Myers supergravity solution of chapter 4, whose dual describes many of
the characteristics of QCD, most crucially, chiral symmetry breaking. The

salient features of the model are

e The background gauge configuration in which the quarks live is non-

supersymmetric, and has a running coupling

e The mass gap arises naturally as a result of the non-supersymmetric

gauge configuration

" @ The holographic dual of the quark bilinear .is explicit in the string

configuration

e The quark condensate is a prediction of the gauge configuration, and

is determined by the quark mass

These p‘oints go a considerable way towards addressing the short-;:omings
mentioned e-arlier.» We will, however, continue to adopt the phenomenolog-
‘ical approach of treating the background as describing an N = 3 theory
rather than N = co. Furthermore, the string theory construction can only
realise a U(1) axial symmetry and does not provide a holographic descrip- _

tion of the axial vector mesons. We artiﬁcially’include the appropriate fields
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to provide a non-Abelian chiral symmétry and aXJaJ vector states. This is
in keeping with the phenomenological spirit of {2,113].

In thié chapter we compute with our phenomenological model the masses
and decay constants for ‘the pion and the rho and @, vector mesons. We
find that the model gives comparable predictions to the pure AdS models
within 12% of the QCD values. We believe these results provide support
for the robustness of the predictions of these holographic models.

The geometry we propose returns to pure AdS space in the’ ultra-violet,
so we do not address here the absence of asymptotic freedom in the grav-
ity description. As pointed out in [144], the gravity theory should only be
used up to a UV cﬁt off, corresponding to the scale at Which QCD switches
from perturbative to non-perturbative behaviour. Above that cut off the
gravitational dynamics must become non-perturbative with its loop correc-
tions completely dominating the classical results. The correct UV dynamics
should be encoded at that cut off by correcting the values of higher dimen-
sion operator couplings. In principle, these can be tuned in the AdS JCFT
apprdach to produce the holographic equivalent of a perfect lattice action.

As a small example of these ideas we consider the matching of the five
dimensional gauge coupling in the UV. In [2,113] this coupling is matched
to the perturbative result for the vector vector correlator in QCD. The
AdS gravitational dual presumably describes a strongly coupled conformal
theory in the UV and so the correlator behaviour matches the logarithmic
result of the conformal but weakly Kcoupled UV behaviour of QCD. It is
surprising that the numerical coefficient of the log term can be matched
though. In chapter 5 we indicated that this matéhing might underpredict
gs by as much as 30%. We perform a similar analyéis here, and find that
once again the ideal value of Q5 is higher than that indicated in [2;113],

this time by 18%. This provides a measure of non-perturbative corrections
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at the scale of matching to the strongly coupled regime of QCD. We leave
attempts to further i'mprove the UV of the theory to chapter 7.

Finally, as we showed in section 5.5, an appropriate change to the IR
behaviour of the dilaton can correct the n scaling of the tower of excited
p meson states. We have tested our model in this respect but find only a
marginal improvement over fhe pure AdS case. Thisis a éign that, although
our geometry describes a non-supersymmetric gauge configuration, it is still
not a perfect description of QCD and work remains to be done on improving

the geometric background.

6.1 The generic 5D holographic model

For a generic five dimensional holographic model of QCD, we can write the

action as
S~ /d“x dre®/=g (.co + Tr|DX |2 = Z%T}(Fg + F,%)) (6.1)
5

“with DU = 0,U — iALuU + iU ARg,. The field U(z,r) = exp(in®(z,r)T?)
- describes the pions produced by the breaking of a U (Ny) chiral symmetry
with generators 7% The non-Abelian gauge fields Ay and Ag coﬁple by
left and right action on U and holographically describe the axial and vector
mesons (we describe this in more detail later). The o is a Higgs-like field and
we only consider fluctuations in its r direction. It ho}ographically describes
the quark mass and condensate. A non-zero value for this field will break
the U(Ny)p x U(Ny)r symmetry of the action down to U(Ny)y.

If we set ¢ = 0 and £, = 3]X|?, we reproduce the model discussed in
chapter 5. - |

However, in this'chapter, we are going to use a compactified model of
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the Constable-Myers solution, presented in chapter 4.

6.1.1 Truncating the Constable-Myers Geometry

The truncation we propose is incredibly simple. For convenience we repro-
duce the equations of motion (4.26), (4.29) for the eight dimensional fields
defined on the surface of the D7 brane. The functions f, represents the

pion fields, and g, the vector fields.

RIMEeG ( (P + 08+ 1)““”/ T o) -1,
VI+ (@007 \(P*+08)? -1 (B +0a "

¢
+ 8, (ﬁag@, fn> =0 (6.2)
pY0

(wt—1\1
. e®Gq/1 + (8pa0)2M§Rzgn(p)H (w4 n 1)

e®G . o _
+ 3, (map’gn(p) S - D)Wt + 1)) =0 (6.3)

G is defined as in (4.23). The reader is reminded ‘that the metric is also

defined in eight dimensions:

4 4\ 6/4 4 4\ (2-6)/4 4 q 4

_yp (WD . app1/ [WHD w? — b 9

H (w4 — b4> N drtdz’+R°H / (w4 . — E dw;
v i=1

(6.4)

Since we want to propose a theory that is dual to QCD, the fields must
not have any components on the three sphere. The simplest way to do this
is to claim that all of the fields f,, gn, ¢ and o are constants on the 3-sphere.

They are only functions of r and z only.
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On making this choice, we can then either work directly with (6.2) and
(6.3), whilst remembering that ¢, and o are constants under the SO(3)
isometry, or we can explicitly recast the entire enserr;ble in five dime;sions.
This is how it was presented in [142], and we reproduce the ﬁve dimensional

theory here.

The five dimensional metric is

ds® = H™'2f18 ", datda” + H'Y? f*/°hdr? - (6.5)
i=0
with .
fe (o(r)2+7r2)%+1 b= (o(r)2+r¥)2 -1 H=f_1
(o(r)2+r2)2 -1’ (o(r)? +r2)2

(6.6)

The explicit values of ¢, g5 and L, are
o = H5/4f15/16—\/3§/4h5/zr3(1 + o)1 (6.7)
gg _ 47r2H1/2f3/8+‘/§§/4h | : (6.8)

Lo = /=gf/g3\ /1 ¥ o2 (6.9)

So on substituting (6.9) into (6.1) we get the five dimensional action. Note

that as r — o0, the entire model reverts back to the simple AdS model

considered in section 5.

- We now go on to calculate the masses and decay constant of the vector

and axial meson sectors.
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6.2. Vector ahd Axial Mesons

6.2.1 Vector sector

In exactly the same way that we calculated the vector and axial meson
masses and decay constants in chapter 5, we repeat here.

Just as in section 5.3.1, we look for solutions to the vector equation
of motion that are of the form Vii(z,r) = VJ(r)exp(igx) with the gauge
V(z,r) = 0. We find |

8, (K1(r)8,V(r)) + q2K2(r)V;(T)J: 0 (6.10).

with K7 = f12hr3(1 4 6%)7Y2 and K, = H f1~%2h%r3(1 + ¢2)~1/2
The p mesons are interpreted as the normalizable modes of (6.10), mean- -
ing that we impose the boundary conditions V’(0) = 0 to ensure the smooth-
ness of the solution, and V(00) = 0 to ensure the normalization is ﬁrﬁte.
VOur analysis for the decay constants follows the same path as that laid
out in section 5.3.1. For large N, the vector current correlator can be written

as the sum over p resonances:

My (—-¢*) = — Z @T‘Em | (6.11)

o

In order to find F),, we proceed by finding the Green’s function solution to
(6.10). Imposing the completeness relation Y, Ka(r)y,(r)¢,(r') = é(r ')

on the set of eigenfunctions one finds

G(g;r, ") Z wp(r)ibp(r (6.12)l

q* —mj
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The generalisation of equation (5.8) is

Iy (%) = [ﬁm(r)&v(m]  (613)

=00

Using the fact v(g, ") = [K1(r)8,G(g; 7, 7)o, We find

1 (Ki(r)(r)? |
—g?) =~ lim = S e . (6.14
My (~-¢°) Jlim 2 Z @ —m2ym2 (6.14)
Comparing this to (6.11) we identify the rho decay constant as:
.1 2 -
F?= lim 72 (Kl(r)d);(r)) (6.15).

6.2.2 Axial sector

The axial vector field is defined as A}, = (A}, — A%,). We choose the gauge
such that A, (z,7) =0 and A¥ = A" + 8"¢. There are three equations of
motion: one for each of the a; meson field, the 7 field and the longitudinal

' axial gauge field ¢:

[0, (K1(r)8,A%(r)) + ¢ Ko (r)A%(r) — gPa(r)?K(r)A%(r)] | = 0(6.16)
0, (K1(r)0,¢) + g5za(r)2K3(r)(7r“ ~¢*) = 0(6.17)

~PK\(r)0,¢ + g5’ Ka(r)o(r)?0,m = 0(6.18)

where K3(r) = H f3/278/2+8/2p3p3(1 4 62)~Y2 and Ky(r) = f+420%r%(1 +
62)71/2, and we have separated A, as A, (z,7) = A(q,7) exp(iqz).

Looking for the normalizable solutions to (6.16) requires us to set the
boundary conditions 14 (00) = 0 and 9,1,1(0) = 0. We can then predict

the a; meson mass spectrum. And in an almost identical analysis to that
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Observable | Measured (MeV) | New Model (MeV) | Previous Model (MeV)

m, 140 139 141
m, 776 743 832
M, 1230 1337 1220
fr 92 84 84.
F? 345 297 " 353
i 433 491 440

/

Table 6.1: Comparing the best fit results in [2] and the model presented
here :

we performed for the vector sector, the a; decay constants are given by
F2 = lim = (Ky(r)W (1) 6.19
ay 'an;) g_g ( 1(T)¢a1 (T)) ( . )

Léoking at equations (6.17) and (6.18) we see that the pion and longitudinal
gauge fields mix. This makes finding numerical solutions to (6.17 ) and (6.18)
very hard. In principle we’d have to search for solutions with two unknowns:
the pion mass, —q?, and the ratio of the ¢ and 7 fields at r = 0. So instead,
we use the Gell-Mann-Oakes-Renner relation (m2f2 = 2myc) [145], to fix
m,. Here we introduce this relation by hand, but it is possible to show
that in the geometry studied in chapter 5, the equation can be derived
explicitly [2]. This relation elimihates one of our free parameters, and makes
the numerical search much easier.

This model has two free parameters: m and b. m represents the quark
mass (this is a model Wifh only two flavours of quark, which we have as-
sumed to be of equal mass), and b, which in the original supergravity solu-
tion represented the size of the conformal symmetry breaking. Here then it
roughly corresponds to Agep. Note that this model has the same number

of free parameters as real QCD.
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6.2.3 Results

The results of the model are displayed in Table 6.1. We compute six QCD
meson parameters for our fits (we do not include g ). Our model has two
free parameters (after fixing g5 phenomenologically as discussed above), b
" corresponding roughly to the strong coupling scale A, and m corresponding
to the light quark mass. The model therefore has the same number of free
parameters as real QCD.

In the first model, A, we match b and m by demanding that we correctly
reproduce m, and m,. In order to do this, we must set Ay = 264.5 MeV
and m = 2.16 MeV. This gives a prediction of 325.8 MeV for the scale of -
the quark condensate. The overall rms error for thi“s model is 12.8%. For
comparison we also reproduce the pure AdS fit to the same parémeters found
in [2]. That model has three free parameters, the value of the IR cut off,
the quark mass and the quark condensate and is therefore less predictive.

In model B, we perform a global fit to all observables. This gives Ay =
253.2 MeV and m = 2.24 MeV, with the characteristic scale for the quark
condensate 311.9 MeV. The overall rms error for this model is 11.6%. Again
we reproduce the equivalent pure AdS model fit for cémparison.

It is also possible to calculate the rho-pion-pion coupling constant in
this geometry [142]. This was also done in [2]. However, as we noted in
section 5.4, this term would receive important contributions from F'3 terms
in the holographic action, which we have thus far neglected. Nevertheless,
for cofnparison with (2] we do perform this result, and find that in this
geometry 9pnr = 4.81 MeV. This compares well with the experimental ‘value

of 6.03 = 0.07 MeV [24].
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gs coupling

In séction 5.2 we pointed out that the pertﬁrbative matching of g5 may not
be ideal. So once again, we have performed a fit withﬂ gs being considered as
a extra free parameter. This indicated that the optimal value of g5 is 4.36,
which is 18% higher than 3.54,.‘ the value suggested by the perturbative-

matching result in equation (5.12).

6.2.4 Conclusions

We have adapted a string theoretic model of chiral symmetry breaking to
a phenomenological description of QCD. The model we have proposed goes
some way towards addressing the inconsistencies of simple AdS slice holo-

graphic QCD models [2,113]. The background geometry of our model is non-

supersymmetric, and it is the smooth variation of this geometry with the .

radial direction r that provides a mass gap, without the need for an artificial
hard IR cut-off. In addition, the dual field to the quark mass/condensate
operator is a natural part of the geometrical set-up with the value of the
condensate being determiﬁed by the quark mass.

However, this is still a phenomenological approach in that we introduce
extra fields and ‘symmetries by hand into the model in order to describe
the full pion and axial vector sectors. Fbr_mally there is no geometric string
‘interpretation for this system. We also treat the background as though it
describes an IV = 3 rather than an N = oo field theoi"y by matching the 5D
| gauge coupling to QCD.

We find that the predictions of this model match experimental results to
within 12%. This model is a little more predictive than the pure AdS slice
models since the condensate is dynamically determined by the geometry.

The best fit is in fact a few percent worse than the AdS slice models but
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hopefully the theoretical improvements represeﬁt at least a moral vic‘to'ry.
In any case one would naively have expected errors of order a few 100% in
all of these models so the closeness to QCD across a range of holographic
models suppb»rts the robustness of the approach.

A drawback of these models to date has been that the geometry returns
to AdS for large 7, \meaning that'the field theory is not asymptotically
free in the UV. Incorrect physics in the UV may affect the strong coupling
regime in the IR [144]. Heré we investigated corrections to the matching
of the 5D gauge coupling to naive perturbative QCD results. We found
that this coupling’s value should be changed at the 18% level indicating the
size of non—perfurbative effects. In the future one might hope to study the

importance of higher dimension operators in the IR physics as well.
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Chapter 7

Improving the UV of
Holographic Descriptions of
QCD

This thesis has investigated the possibility of finding a holographic descrip-
tion of QCD. However, QCD is asymptotically free and thus its dual is
strongly éoupled in the UV. We don’t know how toﬂ solve string theory in
the strongly coupled regime, and so a naive step is to simply eliminate this
part of the duality by cutting off the gravity dual in the UV at some as yet
undetermined energy A. The dual field theoz:y is then only defined upto A.
In this chapter we investigate £he effect of including such a sharp UV
cutoff in the gravity dual. The first task is to identify opérator-ﬁeld matches

at 7 = A rather than at r = 0o, which we discuss next.
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7.1 Operator-field matching

The matching of operator dimensions to field solutions is complicated by
the presence of a UV cutoff, A. Without it the matching is performed at
7 = 0co: now the matching must be performed at » = A. This makes things

more difficult for two reasons:

1. As we discussed in section 1.2.6, fields can have anomalous dimensions

in the bulk which become small as » — oo, and so don’t require -

consideration when matching at r = co. By introducing a finite cutoff
7 = A, we need to match not to the classical dimension, but to the

anomalously-adjusted dimension of the fields.

2. The presence of large couplings for higher dimension operators before .

QCD can be matched to the perturbative gravity theory would be
another signal of non-perturbative phenomena. Formally there are an
infinite set of such couplings. They are called irrelevant perturbations

(because they become small in the perturbative regime), and will ap-

pear in the gravitational dual as deformations of the metric which

grow at large 7.

These two points seem almost unsurmountable, but all is not lost. There
are an infinite number of operatorsAin QCD anyway, yet we have shown in
chapters 5-6 that including' just a handful gives us very close matches to
experimental values. In'ad-ditio\n, we do have some idea of what to expect

from lattice QCD results from a subject called ‘perfect actions’ [146].

For the rest of this section, we first see the effect of imposing a hard
UV cutoff, without worrying about the effects of anomalous dimensions or

higher dimension operators. The results are very good. We then consider
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the possible effect of anomalous dimensions and higher dimension operators,

and find that for the cases we-consider, the results are changed minimally.

7.2 A UV Cutoff

Here -our starting point is the model described in section 5.5, chosen both
because of its simplicity, and because the model is smooth for the entire IR
spectrum. Whereas before we were looking for solutions to the equations
of motion that went like f(r) ~ 7% as 7 — oo, we now look for solutions
that go like f,(r) ~ 772 at r = A. A is the cutoff, above which QCD be-
comes perturbative or, in the holographic dual, the .scale below which the
supergravity approximation is trustable. A will be determined phenomeno- ’
logically. For convenience, we reproduce the equation of motion for the

vector meson spectrum (5.29) here:

n
z z

2 52
0, (e 8zvn) +mf-,e vy, =0 (7.1)

The results for the first five radial excited states with several different valﬁes
of A are shown in figure 7.1. Note that the A = oo reproduces that of section
5.5, as expected. ‘ o

The best phenomenological fit is when the cutoff is set at 194 MeV, and
gives an rms error of just 1.8%. This is a startling result, not just becatse
the fit is so good, but also because it suggests that the regime of validity
of a gravity dual to QCD is rather small. Similar con¢lusions were made
in [144]. |

It is worth pointing out that with this value of A; wé predict the next 3
excited p mesons to be at 2320 MeV, 2475 MeV and 2626 MeV. Experimen-

tal searches have reached up to 2510 MeV, and so far the highest excited p
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Figure 7.1: The mass squared of the n lightest p meson excitations for
different values of the UV cutoff. The dots represent the experimental

values.

meson found is the final one listed above at 2150 MeV.

7.3 Decay constants

The decay constants F), can be found by substituting the reguiar solutions
fn(r)pH(z) back into the five dimensional action, and integrating over r, in
exactly the same manner as section 5.3.1. Repeating the result here for
convenience, the decay constants are then given by

F = (8, (8) (72)

o
5

2 as

Since the large r behaviour of f,,(r) is the same for all n (f, ~ r~
T — 00), the different excited states only differ in their decay constants as
a result of the different normalizations of the f,.

We require that the kinetic terms for the different rho excitations are all
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canonical which implies imposing
A e-rfz . .
dr——f;=1 (7.3)
/0 rgs "

In the original AdS/QCD model (section 5.5.1) with the UV cutoff at infin-
ity, one finds the decay constants grow as the square root of the excitation

number n

o 8(n+1)

74
Pn 952 ( )

If one matches g5 to the perturbative high energy vector correlator [2,113],
giving g2 = 1272/N, then the py meson has a decay constant Fxl* = 260
MeV comparea to the physical value of 345 MeV.

In figure 7.2 we display the results of the same computation with a UV
cutoff present. For low cutoffs F,, rises: with' A = 194 MeV F,}o/ 2 = 478
MeV. Comparison with the physical value again hints that a low cutoff is
appropriate.

On the other hand, as the cutoff is brought down the y/n behaviour
(argued for in [{147]) is apparently lost and the higher resonance decay con-
stants fall relative to the n = 0 case. The reason for this is that the cutoff
impedes on the values of v where the wave functioné of the eigenstates are
‘substantial. By the time that the cutoff is of order a few hundred MeV the
integral for the normalization is dominated around the cutoff. This makes
the computation of the decay constant suspect. - formally one needs a de-
scription of the physics to higher energies which may lie beyond the region
df perturbative \./alidity for the supergravity.

This contrasts with the computation of the masses in the previous section
- those values are determined by requiring regular solutioné in the infrared

away from the cutoff.
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Figure 7.2: The decay constant F,,/ for different p excitations, plotted for
varying UV cutoffs

7.4 Anomalous Dimensions at the Cutoff Scale

There remains the possibility that the classical dimension of any operator is
not respected at the quantum level. Here we investigate possible effects to
the operator gy*q*. Classically is has dimension three, and this is encoded

in the gravity dual by fixing the UV boundary condition as

falr) 12 fr) ~ =2 (7.5)

v
«

In general though we should write
falr) ~r79 fi(r) ~ —wrTe! (7.6)

and numerically investigate the preferre"d value of.w. The result is that for

all values of the cutoff, from 00 down to our tuned value of 194 MeV, the

- preferred value of w is two, so 1t appears that the classical value is‘cons\erved
at the quantum level. ”

However, this is a rather naive analysis: if oné evaluates the derivative

of the flows f,(r) at finite values of r in the case of the model with an

infinite cutoff, the derivatives differ for each value of n. Hence we should be

*There is a theorem [148] that says that conserved currents are forbidden from ac-
quiring anomalous dimensions. However this theorem is only true for theories that do
not contain vector mesons with the same quantum numbers as the conserved current,
hence the theorem is not applicable here
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considering the possibility of a different valué of w for each f,. Pragmati-
cally, tuning each radial excitation is both time consuming, and means that
we are introducing so many free parameters that we have lost all powers
of prediction. However it is interesting to see how, much the anomalous
dimensions may contribute. The results for our best fit of A = 194 MeV is
shown in table 7.1(a). All corrections are less than 10%, which in AdS-QCD

terms, is negligible.

7.5 Coupling of Higher Dimension Opera-
tors |

The second cause for concern when introducing a finite UV cutoff in the
strong coupling regime is the contribution of irrelevant opérators. As we
pointed out in section 7.1, there are an .inﬁnite nurﬁber of such operators,
and it is not known how to encode the majority into the gravity dual.
However, one m/ight hope the couplings of lbwer dimension operators would
grow fastest as one moved into the non-perturbative regime. We know how
to encode one simply {144, 149—151-], so we investigate its effect.

Let us rewrite the metric (5.1) of model [2] as
ds? = HY?dr® + H™Y?n,,dz"dz” (7.7)

with H equal to r=* in 5.1. We can deform the AdS space by allowing it to

return to flat space asymptotically:
Hry—-rtdra=r*(1+ar™) (7.8)

The parameter « is a symmetry singlet and has energy dimension minus

103




A /MeV o €rms /% meson | w
11000 | 0.0011 | 8.2 BT
5600 | 0.0045 | 7.5 f L o8
2700 | 0.019 | 68 - 219
470 | 075 | 47 P o8
194 008 | 18 p e

Table 7.1: Preferred values for: a) the quantum dimension w of the operator
gr*q (left), and b) the field dual to G Tr F* (right)

four. Therefore it is identified with the coupling G of the operator Tr F4.

We repeated the fit to the lightest five p mesons masses in this deformed
geometry. The results are displayed in table 7.1(b).
The results show two effects. Firstly that o grows as A decreases. This

is to be expected since a changes the large r part of the metric. To change

the results when only a small r slice of the metric is present needs a large

a. Secondly, the result at A = 194 MeV is an exception to this rule. In fact
changing « in this case only has an effect on the third significant figure in
the error. This reﬂéc’cs just how good the fit is frofﬂ a simple cutoff. We
conclude that at an appropriately low cutoff, the influence of the G Tr!is a

small effect.

7.6  Discussion

A perturbative gravitational dual of QCD should only be expected to work
at energies below a few GeV at best, where QCD is non-perturbative. We
have investigated imposing a UV cutoff on an AdS/QCD mbdél of the p
mesons and found that the data has a fit at the 2% level with a UV cutoff of
a few hundred MéV (compared to a fit of 21% with ‘an infinite cutoff). This

leads us to the conclusion that the holographic description of QCD should

only be used at low energies on a quite small radial interval. However this
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conclusion is countefed by table 7.1(a): all the errors are small, and so it is
also plausible that the holographic description of QCD could stretch upto
several GeV. This would dovetail nicely with chiral perturbation theory and
perturbative QCD. |

We have also looked at fitting corrections to the anomalous dimension
of the operator ¢y*q and introducing a coupling of the operator Tr F.
Although these cérrections could be used to fine tune the fit by a percent
or s0 ;chey do not appear to be significant corrections to the model. Of
course these are only easily implementable examples from an infinite set of
possible éorrections but ﬁpding the corrections to be small provides further
understanding of the éuccess of the basic AdS/QCD models. One could
also try to includé the vacuum expectation values of more operators in
the metric (see for example [152]) and a dynamical; predictive mechanism
of chiral symmetry breaking [153]. Such effects would be important to
study the pion and axial vector meson sectors of the model. As explained
in [117] the model. used here does not give a good prediction of these sectors
because the dilaton form, put in to give the 1/n rise in masses, does not
lead to a sensible condensate prediction. If one attempted to tackle all of
these problems then most likely the number of free parameters would rise
' faster than the number of available data points. Of course this reflects the
fact that a perfect action is in the end just a reparameterization of the full
QCD spectrum. We hope though that we have identified the imposition
of a UV barrier as an important correction and that these other effecfs are
- sub-leading in the p sector. Putting together a complete model of all sectors

including the baryons remains as an important challenge.
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Chapter 8

Hadronization

We now turn to a notoriously difficult problem of sfrongly coupled QCD:
hadronization. Hadronization is the process of the formation of hadrons
from gluons and quarks. It is widely believed that this is how hadrons were
formed in the very‘early stages of the universe, as the quark-gluon plasma
- cooled sufficiently. Nowadays, those kind of energies and densities are only
reached in extreme natural conditions, such as in the cores of neutron stars.
They can also be reproduced in the laboratofy, typically at high energy
particle colliders of the type found at CERN, FermiLab or DESY, and most
recently with the Relativistic Heavy Ion Collider (RHIC) in Brookhaven,
USA.

All these colliders are based on the simple premise of colliding two par-
ticles together at §ery high_ energies, and seeing what the result is. Richard
Feynmann iikened the process to smashing two Swiss watches tdgethér to
figure out how the watches work. It is a crude method, but has been very
successful. Of primary interest are the hard processes which occur immedi-
ately after fhe collision: these processes can be calculated using Feynman
diagrams and have been used to verify the predictions of QCD to within

an error of a few percent. However, the vast majority of the collisions after
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the initial hard collision are soft, and cannot be treated using perturbative
QCD. The question we address in the this section is one of the most simple:
"“If we annihilate an ete~ péir at high energy, what particles, and in what
numbers do we detect in our apparatus?”’ This simple question hides a
multitude of very difficult issues. If taken at its most fundamental interpre-
tation, it would require us to predict the mass spectrum of all hadrons, their
branching ratios, as well as the physics through a probable phase change.

Instead we limit our answer to just predict_ing the initial yield of hadrons
following the (assumed) annihilation of the ete™ pair. For the hadronic mass
spectrum we use what has been phenomenologically observed [24], and we
use the same source to obtain the branching ratios of every hadron. Our
treatment is not without precedent. [3] assumed that after the quarks freeze
into hadrons, they may be described as a hadron gas in thermodynami-
cal equilibrium. [3] made no attempt to predict branching ratios or mass
spectra.

It will be prudent to first review the elementary facts of hadronization.

‘8.1 Basics

The essence of hadronization is shown in figure 8.1, with the black arrow
in the middle symbolising the little understood hadronization process. A
computer re-enactment of a single eTe™ collision is shown in figure 8.2.

It shows that for any one collision, many hadrons are produced. The
precise number of hadrons produced in. each collision varies, reflecting the
probabilistic nature of quantum field theory. But over many collisions, we
can compile an average number per collision for each hadron. A sample of
these results is shown in table 8.1 (we tabulate the éomplete results later).

The heaviest hadron detected, the Q baryon, has a multiplicity of 0.0014,
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—— hadrons (7%, K*,p, A° etc.)

Figure 8.1: Hadronization

meaning that for every 10,000 collisions, it is seen fourteen times. Over the
same number of collisions, we would have seen 918,000 7%s.

The creation of the g pair in figure 8.1 immediately after the ete™

360G : 510 20 50 Gev
Centre of screen is ( 0.0000, 0.0000, 0.0000) [ B e 41 T

Figure 8.2: A re-enactment of a single e™e™ collision detected at CERN
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Hadron | Number measured
7wt - 8.53
0 9.18
K+ 1.18
K?° 1.015
n 0.934
o° 1.21
K* 0.357
n 013
7} 0.488
A 0.185
Q 0.0014

Table 8.1: Mean multiplicities for a typical e e; collision .at Ve = 91.2
GeV [3]
collision is a hard process, and is easily modelled by Feynman diagrams
. such as that shown. What as yet is unknown is hox& to model the process
represented by the black horizontal arrow of figure 8.1. Although there
may still be some hard processes occurring, the vast majority will be at low
energies, especially as the quarks form more and more hadrons. .These soft
processes represent a difficult conceptual challenge. -

Conservation of momentum means that the gg pair will bé travelling
back to back. Conservation of energy means that they will be travelling
very fast. Colour confinement forbids the quarks from existing individually,

and how they form colour singlet composites is the focus of several theories.

In the independent model the gg act independently and each com-
bines with quarks and antiquarks spontaneously created from the vacuum

to form hadrons.

Alternatively, the Lund string theory treats all but the highest-energy
gluons as field lines, which are attracted to each other due to the gluon self-
!/

~ interaction and so form a narrow tube (or string) of strong colour field. This
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colour tube forms between the gg pair, and fragmentation of the strings in
the tubes causes the formation of hadrons (see [154] for more details). The
rLund theory is part of a more general class of parton fragmentation models
used by event generators such as PYTHIA and JETSET. However these are
complex rriulti—parameter Monte Carlo event generators that do not reflect

the simplicity of QCD, and have little predictive power.

A recent model which has had striking success is that of [3]. It assumes
that each quark/ antiquark from the gq pair forms a hadronic gas in thermo-
dynamical equilibrium. The gas then cools and expands, until it is no longer
in equilibrium, at which point the hadrons are frozen out, and these are then
the particles that travel to the detector. So this model only requires three
parameters: the temperature and volume of the gas at the point of freeze-
out, and a'strangeness suppression factor to account; for the sﬁperior mass
of the strange quark. The strangeness supression factor should, in principle,
be derivable from the known mass of the strange quark. However, such an
attempt is not made in [3], and 7, is left as a free-fit parameter. (Factors for
the charmed and bottom quarks can also be introduced, but these quarks
are so massive, their production rate is negligible). This model can repro-

duce the results of LEP and PEP-PETRA to 34% and 38% respectively.

All models of hadronization have two parts: predicting the initial yield
of hadrons directly after annihilation, and then allowing for decays of those
particles in transit towards the detector. Both of these processes are QCD

‘processes, and so should be fully predictable from the theory. However
just predicting one of these two processes is a major challenge: here we
concentrate our efforts on the first stage. We will then use experimentally

measured values for the branching ratios of all the hadrons [24] to predict
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what would actually be seen in a detector.

8.2 The premise

All AdS-QCD models provide a weakly coupled five dimensional gravita-
tional theory that describes the hadrons of QCD. Each hadron and its ex-
cited states (e.g. the ‘stack’ of p meson masses: p(770), p(1450), p(1700) .. .)
is described by a five dimensional field that shares the Lorentz and global
symmetries of the hadron. In the gravitational theory one seeks solutions for
those fields that separate the 341 dimensional dependence from the extra
radial dependence. More succinctly, wé seek solutions of the form g, (r)e*n?
with k2 = M2. There are only regular solutions on the space for discrete
masses: these correspond to the meson masses. The functions g,(r) form
an orthogonal basis with the appropriéte weighting function.

We will assume that at the point where the quarks form hadrons, the
energy of the event is democratically available to all hadronic channels.
We describe the initial condition as some deposition of energy into the 5D
model’s stress-energy tensor. The radial .dependence of the stress-energy
dependence can be expanded in terms of the functions g, and will deter-
mine the relative multiplicities of each particle in a hadron stack. The x
dependence will determine the energy and momentum of the hadrons. In
this paper we will simply concentrate on the multiplicities.

The result for the multiplicities depends on the choice of the function
expanded in terms of the g, and this represents the matching to the under-
lying asymptotically free QCD dynamics. The simple guess we will employ
is that we should treat all hadronic channels equally a;nd pick a Gaussian for
the initial condition. The height of the Gaussian determines the absolute

value of each particle’s multiplicity and hence is-a free parameter which we
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fit (this parameter can be re-expressed as the averagé energy per hadron,
r, which we detail later). The width is also a free parameter which we fit.
Finally the data displays a suppression factor on the production of strange
quarks - this is not surprising sihce they are more massive. We reﬂe‘ct this
factor in the underlying dynamics by a strangeness suppression factor 7,
which multiplies the Gaussian for each strange quafk in the hadron (note
that if mixing occurs the strange quark content need nbt be an integer). s,
which is also used in the thermal hadronization models (3], is another fit
parameter in our analysis.. |

For any collision with an initial energy of /s, no particle with a rest mass
greater than /s will be produced, so in principle we would need a cutoff
‘which would depend on the centre of mass energy of the initial collision. In
practice we shall simply include all known states with mass below 1.7' GeV.
Above this value the experimental data on the full spectrum becomes patchy
In- addltlon the high mass states in this range are only produced with very
small multiplicities and have a minimal effect on the lighter particle results.
Since the ag(980) triplet is widely thought té be a bound kaon state [24]
we include this as a decay channel, but not as a state that can be formed
immediately after the annihilation.

The final ingredient we require is a specific AdS/QCD model of the QCD
hadrons. We will adapt a string theory derived model of chiral symmetry
breaking, based on the Constable-Myers geometry of chapter 4 that includes
the vector mesons and pions [69]. That both the vector mesonsl énd the
pions are included is an important feature: the mass spectra of the pseudd—
Goldstone bosons are significantly different to all other hadrons in QCD. We

" will then assume that the g, functions associated with each hadron stack are
not that different from the p-stack functions - we will simply reproduce them

but with the mass of the lightest stack member tuned to the experimental
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value. Similarly the pion stack can be used to-reproduce the towers of states
associated with each pseudo-Goldstone of the chiral symmetry breaking (i.e.
the pions, kaons and eta meson). The relative weighting is parameterised

by R, a measure of g%\,N, which we fit.

8.3 Holographic Hadron Basis Functions

Our holographic model of the hadron spectrum is based on the Cox}stable-
Myers geometry discussed in chapter 4. We then compactify it to five di-
mensions, in exactly the same way we did in chapter 6 when trying to
regulate the inffared of holographic descriptions of QCD. We remind the
reader that fhis model spontaneously forms a chiral condensate, and has a
complete orthogonal set of functions for both the vector meson sector and
pionic-like sector. Henceforth we denote these two sets as gn(r) and fi(r)

respectively, matching the notation used in chapters,4 and 6.

The mass of the lowest lying p meson can be dialled by choosing the
conformal symmetry breaking scale in the model, and the mass of the lowest
lying pion can be dialled by choosing the asymptotic quark maés. The
excited states in both stacks are then predicted: my = 1737 MeV, mg. =
1701 MeV (c.f. experimental values of 1459 and 1300 MeV respectively). So
whilst they don’t precisely reproduce lthe experimental values the pattern
is at least roughly right.

As stated above, we assume that the g, functions associated with each
hadron stack'are not that different from the p-stack functions, and simply
rescale the r coordinate such that the mass of the lowest member of each
stack is correct.

We class the pions, kaons and 7(548) mesons as pionic, and use the f,
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Figure 8.3: The normalised holographic ‘hadron basis functions for the 7%
stack (left) and the p meson stack (right)

functions to model them. For each pionic meson, we dial the asymptdtic
) quark mass such that the mass of the lowest member of each stack is correct.
To give an idea of the functions that result, we plot the first three functions
for fn, gr in figure 8.3.

It must be clear to the reader that this situation is not ideal: our ad hoc
.model predicts over méssive excited states, and we have crudely broadened
the scope of a model which originally contained only the vector meson sector
and a single pionic sector. We would prefer a model which contained all the
fields of QCD, and predicted their masses correctly. However, this would be
a major breakthrough in progress towards a holo'graﬁhic dual of QCD. This
~ breakthrough has yet to be achieved, and so in the meantime we proCeed

with the model as presented here.

8.4 Overlap Computation of Multiplicities

With our holographic functions f,, g in place for each hadron stack we can
now proceed with computing the expected initial yield in a hadronization
event. |
We assume that all the five dimensional fields U(r) have a common
initial condition of a Gaussian centred at = 0 and of width A. To find the-

multiplicities of each stack member we compute

114




¢, = /0 0 0r) w(r)gu(r)dr (8.1)

where u)(r) is the weighting function associated with the basis functions g,
The multiplicity is simply given by ¢2 multiplied by (2J+1) where J is
the spin of the hadron.

There are a number of special cases, which we address in turn.

Pseudo-Goldstone Bosons

The pseudo-Goldstones are described by a separate holographic field, 8, in
our model and are représented by functions f,(r). The relative contributions

the ﬁelds make to the stress-energy tensor are
Tor o D1(r)(8:8)% + Do(r)n™ (8, AL) (0. AL) + .. (8.2)

A1, A, are functions of r, completely calculable from the holographic model,
using the usual definition of the stress-energy tensor:

1o

—“2ﬁ 59‘“} (\/—_gﬁmattef) X (83>

T =

To ensure the fields A, and # see the same contribution to the stress-
energy tensor we must rescale the Gaussian. If our standard Gaussian is
W(r) then for the energy to be equally divided between all sectors we require

8,0 = %m.

Strangeness Suppression Factor

Since the underlying asymptotically free dynamics will distinguish the strange
quark from the up and down quarks, we also multiply the Gaussian by a

factor of (v5)° where o is the strangeness content of the stack. 7, is then the
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second fit parameter in our procedure. Note that t}}is procedure is rather
crude because different members of a stack may mix to varying degrees with
other states. For example the n(548) has 32% strangeness content while the
7** has 100%. In these cases we set s by “’che sfrangeness content of the

lightest member of the stack.

Height of Gaussian

The normalisation of the Gaussién tells us the relative multiplicities of the
various hadrons in an event. An overall multiplicative factor x sets the
absolute number of each épecies and we fit this value. x determines the
- t;)tal number of final state particles (before allowing for decays in transit to

the detector), and hence we express it as the average hadron energy in the

collision.

A Fourth Parameter

Our choice of holographic dual also contains a free parameter, R, which sets
the 't Hooft coupling in the grévity dual. We fit it to the data. However, R
is not in the same class as A,y,, k. R has a sound theoretical background,

and would not be present if the holographic dual to QCD was known.

Decay in transit

Once we have calculated the initial yield of hadrons, we then have to al-
. low for decays of the particles in transit from the interaction pdint to the
detector. Branching ratios are taken from [24], and particles that can be
detected at LEP (whose results we will compare to) are set as stable. All
the other particles aré allowed to dec‘ay through th‘é decay channels until
they reach one of the stable particles. In this way we get a list of numbers

which is what our model predicts would be seen at LEP.
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8.5 Predictions

We compare our results both to ete™ collisions performed at LEP (1/s =
91.2 GeV), and at PEP-PETRA (v/s ~ 30 GeV). Average multiplicities of
various hadrons have been compiled in [3], and we reproduce them here,
along with our results, in table 8.2. For both sets of results we have per-
formed a four parameter fit so as to minimise the rms error. The pion
predictions are expected to be low because our holographic model predicts
over-massive excited states. Thus yields of particles such as 7(1300) and
p(1450) are unnaturally suppressed which would otherwise be expected to
give significant contributions to the pioh multiplicities. Despite this, the
fits are very good, with rms errors of 47% and 53% for /5 = 91.2 GeV and
Vs ~ 30 Ge\} respectively. The Q and 7' yields aren’t ideal, but previous
 models have had the same problem [3], esf)ecially when matching to the
PEP-PETRA data. Our model is expected to have poor predictive power
for these two hadrons: the 7 is technically a pseudo-Goldstone boson, but
instanton effects cancel out this effect. Our ﬁod’el just treats it as non-
Goldstone boson, which is probably over simplistic. In addition, it mixes
heavily with n(548): ‘our model contains no good pa}ameterisationv of mix-
ing. The £ baryon also highlights weaknesses of our model: it is a bafyon,
not a meson (our functions g, originally source from a model of mesons,
not baryons); it is very heavy, and so is strongly affected by our exclusion
of hadrons above 1.7 GeV; it contains threé strange quarks, making it very

sensitive to ;.
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‘Table 8.2: Results of the model for hadron yields at /5 = 91.2 GeV (centre
column) and /s ~ 30 GeV (right column). The relevant 3+1 free parameter
values are shown in the final row.

Hadron Model Expt Model Expt
7t 5.95 8.5 4.07 5.35
w0 6.43 9.2 4.41 5.3
K* 1.09 1.2 0.68 0.7
K° - 1.09 1.0 0.68 0.69
n 1.06 0.93 0.66 0.584
p° 1.33 1.2 0.88 0.9
K* 0.387 036 028 . 031
K 0.385  0.37 0.28 0.28
7' - 0042  0.13 0.03 0.26
p 0.41 0406 | 030 0.3

0.03 0.1 .0.02 0.084
A 0172 0.19 013  0.0983

TR 0.0120  0.0094 |0.0089  0.0083
e 0.012  0.012 |0.0088  0.0083
Cht 0.0040  0.0033 | n/a n/a
Q 0.0011  0.0014 |0.0008  0.007

A (MeV), x (GeV), 7, R | 150, 4.96, 0.97, 2.6 | 152, 2.35, 0.97, 2.4

8.6 Conclusions:

We assumed that every hadron in QCD can in principal be represented by

a function in the 7 coordinate of the 5D holographic theory of QCD. We

then proposed that hadronization can be modelled by hypothesising that

the initial yield (that is before the particle created siarts decayiﬁg) for any
hadron is given by the square of the overlap between the function which
represents the hadron, and a Gaussian, centred at the origin, with a width
of A. In addition we have two other parameters in the theory; a strangeness
suppression factor to account for the heaviness of the strange quark, and &
which determines with what energy the particles leaQe the interaction point.

Wiﬁh the full holographic dual to QCD currently unknown, we made

some ad hoc assumptions to achieve a full set of functions which represented
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every hadron. We could then put our hypothesis to the fest, and compared
the results to ete™ collisions made at LEP and PEP-PETRA. The results
were surprisingly good.

It is also interesting to note that although we included a strangeness
supression factor, s, ih_the manner of [3], we found it to be almost equal
to one in both fits. This suggests that in practice such a parameter is not
necessary in our model. In addition, our holographic model of QCD predicts
over-massive excited states, and this probably leads to a suppression of the
pion yields in table 8.2. A holographic model .with a more accur&ife hadronic
mass spectrufn would almost certainly give better results.

The model of hadronization presented here is apf)li.cable to all particle-
_antiparticle annihilation events, where the fireball after the collision has no
residual quantum numbers. Broadening this model to include events éuch
as deep inelastic proton-proton scattering, and heavy' ion collisions would

clearly be desirable. We leave such an analysis for the future.
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Chapter 9
Conclusions

QCD is far from being fully understood. The non-perturbative aspects of
the theory are ﬁarticularly intriguing: confinement, asymptotic freedom,
chiral symmétry breaking, the hadron spectrum, hadronization, and the
QCD phase diagram all offer excitiné research opportunities. The AdS/CFT

correspondence has proved to be a valuable tool in our understanding of
strongly-coupled gauge theories, and the related AdS/QCD models have
reproduced many aspects of QCD vefy successfully. ‘

. In chapter 1 we described some of the more beguiling aspects of QCD,
and reviewed the very basic fundamentals of string theory. In chapter 2
we introduced the AdS/CFT correspondence, in particular explaining how
every operator in the field theory can be uniquely matched with a field on
the gravity side. We used chapte.r 3 to show how to include flavour into the
correspondence, via a D7 brane probe. This gave a relationship between the
quark mass and quark condensate, and we showed that in.this geometry,
chiral symmetry breaking could only be induced by massive quarks: the
vacuum does not spontaneously break the chiral symmetry. We went on to
calculate the (scalar) meson spectrum in this set-up by looking at the scalar

fields on the surface of the D7 brane. We also showed that the vector meson
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spectrum in this geometry was identical to the scalar meson spectrum, which

was to be expected by supers'ymmetry.- |

In chapter 4 we infroduced a geometry, called the Constable-Myers ge-
'ometry, which was singular and non-supersymmetric. It is an important ge-
ometry because it was the first known geometry to hologréphically demon-
strate chiral symmetry breaking. We summarised its salient properties:
confinement énd the demonstration of a massi gap &via the glueball spec-
trum). We then introduced quarks with a D7 probe, and confirmed the
spontaneous breaking of chiral symmetry. The pion and vector meson épec—
tra were calculated, and we plotted m, against m2. This was compared
against equivalent lattice data for QCD at large N, and the results were
found to be in excellent agreement.

k - Chapter 5 brought us into the realm of bottom-up theories, generically
called AdS-QCD models. We studied in detail the most famous example of
such a médel because it was historically important, simple to follow, and
very successful. By including just three operators in a truncated AdS space,
it was possible to holographically model chiral symmetry breaking, and
hence predict the masses and decay constants of the a; meson, the p meson,
and the pion. The predictions were to within about 10% of the true QCD
values. We then generalised our first AdS-QCD model to include a dilaton in
the action. This had the welcome effect of making the vector mesons follow
the Regge trajectory of m2 ~ n (c.f. m, ~ n without the dilaton), but the -
unwelcome effect of ruining the spontaneous chiral symmetry breaking of
the model, and thus removing any méaningful predictions of the axial vector
spectrum. We then briefly described the many other phenomena which have
been described in AdS-QCD models.

In chapter 6 we attempted to address some of the shortcomings of the

existing AdS-QCD models: the lack of asymptotic freedom, the hard IR
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cutoff, and no dynamical determination of the quark mass and condensate.
We took the Constable-Myel_rs geometry of chapter 4 and truncated it by
removing the S° part of the spacetime. This then provided a model which
was everywhere smooth, and had all the features that we analysed in chapter
-4: confinement, a mass gap, and spontaneous breaking of chiral symmetry.
The model, like QCD, only depended on two parameters: the light quark
mass m, and the strong coupling scale A (c.f. the model of chapter 5 which
had three parameters). For C(;mparison with chapter 5, we calculated the
same quantities and found agreement with experiment to the 10% level.

Whilst chapter 6 had regulariied the IR of AdS—QCD models, chapter
7 dealt with regularizing the UV of such models. Without regularization in
thé UV, we were implicitly trying to solve a string theory in the strongly
coupled regime. The simplest approach was to include a hard UV cutoff
in the gravity dual. This removed the strongly coupled regime from the
theory, and made predictions of the vector meson spectrum to within 2%
of accep;ted values. However, the UV cutoff complicated the operator-field
matching process. Firstly if a field had an anomalous dimension it would
have to be fitted to a different operator with the réievant dimension, and
secondly irrelevant operators would become more and more dominant as we
neared the non-perturbative regime. Hence they would have to be encoded
in the gravity dual. Without being able to address each complication fully
we instead looked at an example of each and found that, for these particular
examples, the effect was not large. _

The final chapter addressed hadronization. We postulated that after
some annihilation event in a particle accelerator, the residual energy took
on the shape of a Gaussian. The initial multiplicities of some hadron species
would then be given by the overlap between this Gaussian and the radial

function which represented that particular hadron in the QCD holographic
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dual. Once the initial mulfiplicities were known they were then allowed to
decay according to their published branching ratios until they reached the
detector. With the full holographic dual to QCD currently unknown, we
used the model of chapter 6. We compared our predictfons to ete” collisions
at centre-of-mass energies of 30 GeV and 91.2 GeV. Data which ranged over
. four orvders of magnitude were predicted to the 50% level. |
The overall conclusion to be drawn from this thesis is that the AdS-
QCD correspondence is in its infancy, but can still reproduce many aspects
of QCD at very surprisinglsf accurate levels. Regulating the ultraviolet and
“infrared regimes of the dual are necessary steps that don’t disrupt the good
predictions. Most excitingly, it seems that AdS-QCD models can model

hadronization events very well with only a few free parameters.
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