Hecke groups and their subgroups of low index

Catherine Campbell -Grant

June 2008

School of mathematics M.Phil.

# Contents

| 1          | Int                      | roduct                                                     | ion                                               | 4  |  |  |  |  |  |
|------------|--------------------------|------------------------------------------------------------|---------------------------------------------------|----|--|--|--|--|--|
| 2          | $\mathbf{H}\mathbf{y}_1$ | perbol                                                     | ic geometry and Fuchsian groups                   | 7  |  |  |  |  |  |
|            | 2.1                      | -                                                          | rbolic geometry                                   | 7  |  |  |  |  |  |
|            |                          | 2.1.1                                                      | Models of the hyperbolic plane                    | 7  |  |  |  |  |  |
|            |                          | 2.1.2                                                      | The upper half-plane model                        | 7  |  |  |  |  |  |
|            | 2.2                      | The g                                                      | roup of automorphisms of the upper half plane     | 8  |  |  |  |  |  |
|            |                          | 2.2.1                                                      | The elements of this group                        | 8  |  |  |  |  |  |
|            | 2.3                      | Riema                                                      | ann surfaces                                      | 9  |  |  |  |  |  |
|            | 2.4                      |                                                            |                                                   |    |  |  |  |  |  |
|            |                          | 2.4.1                                                      | Properly discontinuous                            | 10 |  |  |  |  |  |
| 3          | Fundamental regions      |                                                            |                                                   |    |  |  |  |  |  |
|            | 3.1                      |                                                            | amental regions'                                  | 11 |  |  |  |  |  |
|            |                          | 3.1.1                                                      | Locally finite                                    | 12 |  |  |  |  |  |
|            |                          | 3.1.2                                                      | Congruence of sides                               | 12 |  |  |  |  |  |
|            |                          | 3.1.3                                                      | Presentations of Fuchsian groups                  | 13 |  |  |  |  |  |
|            |                          | 3.1.4                                                      | A triangle group                                  | 13 |  |  |  |  |  |
|            |                          | 3.1.5                                                      | The hyperbolic area of a fundamental region       | 14 |  |  |  |  |  |
| 4          | The                      | e perm                                                     | utation method and arithmetic methods             | 15 |  |  |  |  |  |
|            | 4.1                      | Subgroups of Fuchsian groups and finite permutation groups |                                                   |    |  |  |  |  |  |
|            | 4.2                      | Homo                                                       | geneous and inhomogeneous groups                  | 16 |  |  |  |  |  |
|            | 4.3                      | Congr                                                      | ruence subgroups of the modular group             | 16 |  |  |  |  |  |
|            |                          | 4.3.1                                                      | The cosets of some congruence subgroups           | 20 |  |  |  |  |  |
|            | 4.4                      | Wohlf                                                      | ahrt's result                                     | 22 |  |  |  |  |  |
|            | 4.5                      | Dessin                                                     | ns d'enfants                                      | 23 |  |  |  |  |  |
|            |                          | 4.5.1                                                      | Imprimitivity                                     | 24 |  |  |  |  |  |
|            | 4.6                      | Calcul                                                     | lations                                           | 26 |  |  |  |  |  |
|            | 4.7                      | Some                                                       | sample calculations performed to obtain the table | 30 |  |  |  |  |  |
| <b>5</b> . | Hecke groups             |                                                            |                                                   |    |  |  |  |  |  |
|            | 5.1                      | _                                                          | ples of Hecke groups                              | 32 |  |  |  |  |  |
|            | 5.2                      | -                                                          | ng with commensurable Hecke groups                | 33 |  |  |  |  |  |

|   | 5.3 The permutation method            | 34 |  |  |  |  |  |  |
|---|---------------------------------------|----|--|--|--|--|--|--|
|   | 5.4 Arithmetic methods                | 36 |  |  |  |  |  |  |
| 6 | Looking for a non-congruence subgroup |    |  |  |  |  |  |  |
|   | 6.1 Proof with the modular group      | 38 |  |  |  |  |  |  |
|   | 6.1.1 The Jordan-Hölder Theorem       | 41 |  |  |  |  |  |  |
|   | 6.2 Proof extended to $H^5$           | 42 |  |  |  |  |  |  |
| 7 | Acknowledgements                      | 44 |  |  |  |  |  |  |
| 8 | References                            | 45 |  |  |  |  |  |  |
| 9 | Appendix                              | 47 |  |  |  |  |  |  |

## Chapter 1

# Introduction

We first look at Fuchsian groups. To understand what these are we look at hyperbolic geometry. One model of the hyperbolic plane is the upper half-plane model. The underlying space of this model is

$$\mathbb{H} = \{ z \in \mathbb{C} \mid Im(z) > 0 \}$$

The group of conformal automorphisms of the upper half-plane is isomorphic to

$$PSL(2_{\mathfrak{g}}\mathbb{R})=SL(2,\mathbb{R})/\{\pm I\}$$

where

$$\mathrm{SL}(2,\mathbb{R}) = \{ \left( egin{array}{cc} a & b \\ c & d \end{array} 
ight) | a,b,c,d \in \mathbb{R}, ad-bc=1 \}$$

The isomorphism is obtained by letting  $A \in SL(2,\mathbb{R})$  act as a Mobius transformation

$$z \to \frac{az+b}{cz+d}$$
.

A Fuchsian group is a discrete subgroup of  $PSL(2,\mathbb{R})$ .

To begin with we study the modular group and its subgroups, particularly concentrating on congruence subgroups of low index. We then extend this work to some Hecke groups in chapter 5.

The modular group is  $PSL(2,\mathbb{Z})$ . It is isomorphic to the triangle group  $(0;2,3,\infty)$  which has a presentation

 $\{x,y,z\mid x^2=y^3=xyz=1\}$ . The quotient space  $\mathbb{H}/\operatorname{PSL}(2,\mathbb{Z})$  is referred to as a modular triangle.

The problem which we concentrated on was finding all the subgroups of low index ( $\leq 10$ ) in the modular group and determining which were *congruence* subgroups.

Any subgroup G of  $\mathrm{PSL}(2,\mathbb{Z})$  containing a principal congruence subgroup  $\Gamma(N)$  is called a congruence subgroup. This is when a principal congruence

subgroup is defined as

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \epsilon PSL(2, \mathbb{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \bmod N \right\}$$
 The least  $N$  such that  $G \geq \Gamma(N)$  is called the level of  $G$ .

This idea is generalised to Hecke groups in chapter 5, where we show that  $H^5$  contains non-congruence subgroups.

With the idea of cusp widths we can generalise the concept of level as below.

A cusp is a fixed point of a parabolic element. Definition A

**Definition B** The cusp width of a particular cusp (i.e. a point at  $\infty$ ) in the quotient space  $\mathbb{H} / \Gamma_1$  (where  $\Gamma_1$  is an arbitrary modular subgroup) is the number of modular triangles within the quotient space that touches the cusp.

**Definition** C Let  $\Gamma_1$  be an arbitrary subgroup of finite index of the modular group. The geometric level of  $\Gamma_1$  can be defined to be the l.c.m. of the cusp widths of the quotient of the upper half-plane by  $\Gamma_1$ .

Wohlfahrt brought these two definitions together by proving the following theorem.

**Theorem(Wohlfahrt)** Let N be the geometric level of a modular subgroup  $\Gamma_1$ . Then  $\Gamma_1$  is a congruence subgroup if and only if it contains  $\Gamma(N)$ .

We also study the dessin d'enfants of the coset permutation representations of these subgroups of the modular group. These pictorially show the permutation of the cosets. Conjugate subgroups give isomorphic dessins so non-isomorphic dessins give non-conjugate subgroups. Dessins with different structures therefore show the quotient groups of our Hecke group by different non-conjugate non-isomorphic subgroups.

We then look at Hecke groups. We know that the modular group is discrete and is generated by R(z) = z + 1 and  $S = \frac{-1}{z}$ . Hecke extended this by going on to look at when groups generated by  $R_1(z) = z + \lambda$  and  $S_1(z) = \frac{-1}{z}$  are discrete.

He found in a paper published in 1936 [3] that they were discrete if and only

- (i)  $\lambda = 2\cos\frac{\pi}{q}$  for some integer  $q \geq 3$ , or

In the first case we find that  $S_1^2 = (S_1 R_1)^q = 1$ . We denote this group by  $H^q$  and it is isomorphic to the free product  $C_2 * C_q$ .  $H^3$  is the modular

group.

In this thesis we concentrated on  $H^5$ . We once again looked at the subgroups of low index. During our studies we used two main methods. These being:

- (i) The permutation method
- (ii) Arithmetic methods

The description of these techniques follows in chapters four and five.

The main result is in chapter six where we find a non-congruence subgroup of finite index in  $H^5$ . We do this by extending work done in the modular group.

In the modular group we can use three lemmas to show that there exists a normal subgroup N of the modular group  $\Gamma$  which is of finite index and contains none of the principal congruence subgroups  $\Gamma(N)$ . The three lemmas are listed below:

**Lemma One** Let  $\mathbb{Z}_N$  be the ring of integers  $mod\ N$ , and let  $PSL(2,\mathbb{Z}_N)$  be the group of Mobius transformations with  $a,b,c,d\in\mathbb{Z}_N$ . Then the quotient group  $\Gamma/\Gamma(N)$  of the Nth principal congruence subgroup in the modular group is isomorphic with  $PSL(2,\mathbb{Z}_N)$ .

**Lemma Two** The only nonabelian quotient groups that can appear in a composition series of  $PSL(2,\mathbb{Z}_N)$  are the groups  $PSL(2,\mathbb{Z}_p)$ , where p is a prime number. [This implies  $p \geq 5$ , in which case  $PSL(2,\mathbb{Z}_p)$  is simple.]

**Lemma Three** The alternating group  $A_{11}$  on 11 symbols is a quotient group of the modular group, and  $A_{11}$  is not isomorphic with any group  $PSL(2, \mathbb{Z}_p) = \Gamma/\Gamma(p)$ .

We go on to extend this proof into  $H^5$  and from this process we prove our main result which is as follows.

**Main Result** There is a non-congruence subgroup of index 11 in  $H^5$ .

In the appendix we look at subgroups of low index in  $H^5$  and their corresponding transitive permutation representations. In doing so we find epimorphisms from  $H^5$  onto  $A_{11}$  which are of great interest in our work.

## Chapter 2

# Hyperbolic geometry and Fuchsian groups

The results in this chapter can be seen in chapters 4 and 5, Jones and Singerman, Complex functions [9].

## 2.1 Hyperbolic geometry

## 2.1.1 Models of the hyperbolic plane

By a model, we mean a choice of underlying space, together with a choice of how to represent basic geometric objects, such as points and lines, in this underlying space.

## 2.1.2 The upper half-plane model

The underlying space of this model is the upper-half plane in the complex plane, defined to be

$$\mathbb{H} = \{z \in \mathbb{C} | Im(z) > 0\}$$

We use the usual notion of point and of angle that  $\mathbb H$  inherits from  $\mathbb C$  and we define hyperbolic lines to be the intersection of  $\mathbb H$  with a Euclidean line in  $\mathbb C$  perpendicular to the real axis or the intersection of  $\mathbb H$  with a Euclidean circle centred on the real axis.

The metric ds of hyperbolic geometry is defined on  $\mathscr U$  and is given by the formula

$$ds^2 = \frac{|dz|^2}{y^2}$$
 with  $z = x + yi$ 

We also have the formula

$$dA = \frac{dxdy}{y^2}$$

for infinitesimal hyperbolic area.

# 2.2 The group of automorphisms of the upper half plane

Let  $SL(2,\mathbb{R})$  be the group

$$SL(2,\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a,b,c,d\epsilon \mathbb{R},ad-bc = 1 \}$$

Dividing this by its centre  $\{\pm I\}$  we get the group

$$PSL(2,\mathbb{R}) = SL(2,\mathbb{R})/\{\pm I\}$$

 $PSL(2,\mathbb{R})$  is the group of automorphisms of the upper half-plane. It acts on the upper half-plane as the transformations

$$SL(2,\mathbb{R}) = \{ \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) : z \to \frac{az+b}{cz+d} \}$$

They are orientation preserving hyperbolic isometries.

**Theorem 1** (i)  $PSL(2, \mathbb{R})$  is transitive on  $\mathscr{U}$ . (ii)  $PSL(2,\mathbb{R})$  is doubly transitive on  $\mathbb{R} \cup \{\infty\}$ .

**Proof** (i) Let  $ai + b \in \mathcal{U}$ , so that a > 0. Then if T(z) = az + b,  $T \in PSL(2,\mathbb{R})$  and T(i) = ai + b. Thus the orbit of i under the action of  $PSL(2,\mathbb{R})$  is  $\mathcal{U}$  and so  $PSL(2,\mathbb{R})$  is transitive on  $\mathcal{U}$ .

(ii) If  $a, b \in \mathbb{R}$ , a > b then if  $S(z) = \frac{(z-a)}{(z-b)}$ ,  $S \in PSL(2, \mathbb{R})$  maps the ordered pair (a, b) to  $(0, \infty)$ . Also  $z \to \frac{-1}{z}$  maps  $(0, \infty)$  to  $(\infty, 0)$  and  $z \to z + b$  maps  $(0, \infty)$  to  $(b, \infty)$ . It follows that the orbit of  $(0, \infty)$  under the action of  $PSL(2, \mathbb{R})$  consists of all ordered pairs (a, b),  $(a, b \in \mathbb{R} \cup \{\infty\}, a \neq b)$ , so that  $PSL(2, \mathbb{R})$  is doubly transitive on  $\mathbb{R} \cup \{\infty\}$ .

## 2.2.1 The elements of this group

Let 
$$T(z) = \frac{az+b}{cz+d}$$
,  $a, b, c, d \in \mathbb{R}$ ,  $\Delta = ad - bc > 0$ 

The elements of this group can be classified according to the value of their trace as follows: If |a+d|=2 then we say that T is parabolic, if |a+d|>2 then we say that T is hyperbolic, and if |a+d|<2 then we say that T is elliptic.

These have different geometric properties. A parabolic element acts with a single fixed-point on the boundary of  $\mathscr{U}$ , a hyperbolic element acts with two fixed-points on the boundary of  $\mathscr{U}$ , and an elliptic element acts with one fixed point on  $\mathscr{U}$ .

## 2.3 Riemann surfaces

We will now go on to look at Fuchsian groups; these are discrete subgroups of  $PSL(2,\mathbb{R})$ . A reason for our interest in these subgroups is that every connected Riemann surface may be obtained from one of the three simply connected Riemann surfaces which are the sphere, the plane, and the upper half plane. They are obtained by factoring out by a discontinuous group of one of the automorphism groups of these surfaces. In the following theorem we show that with the exception of four simple cases all Riemann surfaces are obtained by factoring out a Fuchsian group from the upper half plane.

Theorem 2 (see reference[9], p.213) If S is a connected Riemann surface not conformally equivalent to the sphere  $\Sigma$ , the plane  $\mathbb{C}$ , the punctured plane  $\mathbb{C}\setminus\{0\}$ , or a torus  $\mathbb{C}\setminus\Omega$ , then S has universal covering space  $\widehat{S}=\mathscr{U}$ , the upper half-plane, and S is conformally equivalent to  $\mathscr{U}/G$  for some subgroup G of  $\mathrm{PSL}(2,\mathbb{R})$  acting discontinuously on  $\mathscr{U}$ .

## 2.4 Fuchsian groups

Identifying the matrix  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  of  $\mathrm{PSL}(2,\mathbb{R})$  with the point (a,b,c,d) of  $\mathbb{R}^4$  we can view  $\mathrm{PSL}(2,\mathbb{R})$  as a topological space with topology inherited from the topology of  $\mathbb{R}^4$ . In this way  $\mathrm{PSL}(2,\mathbb{R})$  becomes a topological group and we define a discrete subgroup  $\Omega$  of it to be a subgroup with the property that there is a neighbourhood U in  $\mathrm{PSL}(2,\mathbb{R})$  of I the identity matrix such that  $U \cap \Omega = \{I\}$ .

**Definition** A Fuchsian group is a discrete subgroup of  $PSL(2,\mathbb{R})$ .

The modular group The modular group is an example of a Fuchsian group. It consists of the elements defined below.

$$SL(2,\mathbb{Z}) = \{ \left(egin{array}{c} a & b \\ c & d \end{array}
ight) | a,b,c,d \in \mathbb{Z}, ad-bc=1 \}$$
  $PSL(2,\mathbb{Z}) = SL(2,\mathbb{Z})/\{\pm I\}$ 

## 2.4.1 Properly discontinuous

Let G be a group of homeomorphisms of a topological space Y. Then G acts properly discontinuous on Y if each point  $y \in Y$  has a neighbourhood V such that if  $g(V) \cap V \neq \emptyset$  for  $g \in G$ , then g(y) = y.

**Theorem 3** (i) Let  $\Gamma$  be a subgroup of  $PSL(2,\mathbb{R})$ . Then  $\Gamma$  is a Fuchsian group if and only if  $\Gamma$  acts properly discontinuously on  $\mathscr{U}$ .

(ii) Let  $\Gamma$  be a Fuchsian group and let  $p \in \mathcal{U}$  be fixed by some element of  $\Gamma$ . Then there is a neighbourhood W of p such that no other point of W is fixed by an element of  $\Gamma$  other than the identity.

**Theorem 4** Let  $\Gamma$  be a subgroup of  $PSL(2,\mathbb{R})$ . Then  $\Gamma$  is a Fuchsian group if and only if for all  $z \in \mathcal{U}$ ,  $\Gamma_z$ , the  $\Gamma$  - orbit of z, is a discrete subset of  $\mathcal{U}$ .

## Chapter 3

# Fundamental regions

The results in this chapter can be seen in chapter 5, Jones and Singerman, Complex functions [9].

#### 3.1 Fundamental regions

F is a fundamental region for  $\Gamma$  if F is a closed set such that

(i) 
$$\cup_{T \in \Gamma} T(F) = \mathscr{U}$$

(i)  $\cup_{T \in \Gamma} T(F) = \mathcal{U}$ , (ii)  $\overset{\circ}{F} \cap T(\overset{\circ}{F}) = \emptyset$ , for all  $T \in \Gamma \setminus \{I\}$ , where  $\overset{\circ}{F}$  is the interior of F.

The Dirichlet region Let  $\Gamma$  be an arbitrary Fuchsian group and let  $p \in$  $\mathscr{U}$  be not fixed by any element of  $\Gamma \setminus \{I\}$ . Such points exist by theorem 3 (ii). We define the Dirichlet region for  $\Gamma$  centred at p to be the set

$$D_p(\Gamma) = \{ z \in \mathcal{U} \mid \rho(z, p) \le \rho(z, T(p)) \quad \text{for all} \quad T \in \Gamma \}$$

By the invariance of the hyperbolic metric under  $PSL(2,\mathbb{R})$  this region can also be defined as

$$D_p(\Gamma) = \{z \in \mathscr{U} \mid \rho(z,p) \leq \rho(T(z),p) \qquad \text{for all} \qquad T \in \Gamma\}$$

**Theorem 5** If p is not fixed by any element of  $\Gamma \setminus \{I\}$ , then  $D_p(\Gamma)$  is a connected fundamental region for  $\Gamma$ .

**Example** If we take  $\Gamma$  to be the modular group then we find that  $D_{ki} = F$ (k > 1) where

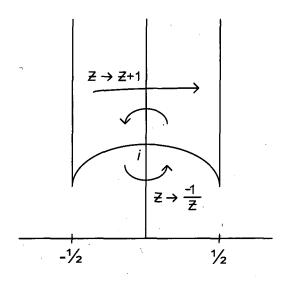
$$F = \{z \in \mathscr{U} \mid |z| \geq 1, |Re(z)| \leq \frac{1}{2}\}$$

See the following picture.

## 3.1.1 Locally finite

**Definition** A fundamental region F for a Fuchsian group  $\Gamma$  is called locally finite if every point  $a \in F$  has a neighbourhood V(a) such that  $V(a) \cap T(F) \neq \emptyset$  for only finitely many  $T \in \Gamma$ .

Theorem 6 A Dirichlet region is locally finite.


### 3.1.2 Congruence of sides

Let s be a side of a Dirichlet region F for a Fuchsian group  $\Gamma$ . If  $T \in \Gamma \setminus \{I\}$  and T(s) is a side of F then s and T(s) are called congruent sides.

There cannot be more than two sides in a congruent set.

**Theorem 7** Let  $\{T_i\}$  be the subset of  $\Gamma$  consisting of those elements which pair the sides of some fixed Dirichlet region F. Then  $\{T_i\}$  is a set of generators for  $\Gamma$ .

**Example (The modular group)** The two vertical sides of the Dirichlet region found above can be paired using the transformation  $z \to z + 1$ . The part of the boundary consisting of a segment of the unit circle consists of two sides split by the fixed point (namely i). These can be paired using the transformation  $z \to \frac{-1}{z}$ . Therefore Theorem 7 implies that the modular group is generated by  $z \to z + 1$  and  $z \to \frac{-1}{z}$ .



#### 3.1.3 Presentations of Fuchsian groups

The most general presentation of a Fuchsian group  $\Gamma$  with a fundamental region of finite area is

$$\langle x_1, \dots, x_r, a_1, b_1, \dots, a_g, b_g, p_1, \dots, p_s \mid x_1^{m_1} = x_2^{m_2} = \dots = x_r^{m_r} = \prod_{i=1}^g [a_i, b_i] \prod_{j=1}^r x_j \prod_{k=1}^s p_k = 1 \rangle$$

 $x_1, \ldots, x_r$  are elliptic elements,  $a_1, b_1, \ldots, a_q, b_q$  are hyperbolic elements, and  $p_1, \ldots, p_s$  are parabolic elements.

We then say  $\Gamma$  has signature  $(g; m_1, m_2, \ldots, m_r; s)$ 

#### 3.1.4A triangle group

A triangle group is denoted by (l, m, n) where l, m, n are positive integers or  $\infty$ . It is a Fuchsian group with signature (0; l, m, n; -) and it has a presentation

$$\{x, y, z \mid x^l = y^m = z^n = xyz = 1\}$$

When an elliptic element has infinite period it is a parabolic element. A parabolic element generates an infinite cyclic group. For instance  $z \to z + 1$ would be an example of a parabolic element in the modular group. These are easily recognised when looking at the quotient space of a Fuchsian group by the generators pairing the sides joined by cusps (or vertices of zero angle that lie on the boundary of  $\mathbb{H}$ ). A triangle group  $(l, m, \infty)$  has the presentation

$$\{x,y,z\mid x^l=y^m=xyz=1\}$$

For a geometric interpretation of the triangle group (l, m, n) we consider a triangle T with angles  $\frac{\pi}{l}, \frac{\pi}{m}, \frac{\pi}{n}$  in a space X where X is either the sphere, the Euclidean plane, or the hyperbolic plane.

The group generated by the reflections of X in the sides of T has a subgroup of index two, consisting of all the orientation preserving transformations, isomorphic to (l, m, n).

The integers (l, m, n) determine completely the underlying space X, namely X is:

- (i) The sphere iff  $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} > 1$ (ii) The Euclidean plane iff  $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$ (iii) The hyperbolic plane iff  $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} < 1$

Seeing the modular group as a triangle group we get an isomorphism  $\Gamma \cong (2,3,\infty)$  (where  $\Gamma$  is the modular group). We can see this from the earlier fundamental region.

## 3.1.5 The hyperbolic area of a fundamental region

**Theorem 8** Let  $F_1$ ,  $F_2$ , be two fundamental regions for a Fuchsian group  $\Gamma$ . Suppose that the boundaries of  $F_1$ ,  $F_2$  have zero hyperbolic area. Then  $\mu(F_1) = \mu(F_2)$ .

Now looking at the area of the Riemann surface produced by a Fuchsian group and using the Gauss-Bonnet theorem we prove the following.

**Theorem 9** Let  $\Gamma$  have signature  $(g; m_1, \ldots, m_r)$ .

If F is a fundamental region for  $\Gamma$  whose boundary has zero hyperbolic area then

$$\mu(F) = 2\pi \left\{ (2g - 2) + \sum_{i=1}^{r} (1 - \frac{1}{m_i}) \right\}$$

**Theorem 10** If  $g \ge 0$ ,  $m_i \ge 2$  are integers and if

$$2g - 2 + \sum_{i=1}^{r} (1 - \frac{1}{m_i}) > 0,$$

then there exists a Fuchsian group with signature  $(g; m_1, \ldots, m_r)$ .

**Theorem 11** If F is a Dirichlet region of a Fuchsian group  $\Gamma$  with  $\mathcal{U} \setminus \Gamma$  compact then  $\mu(F) \geq \frac{\pi}{21}$ . If  $\mu(F) = \frac{\pi}{21}$  then  $\Gamma$  is a triangle group with signature (0; 2, 3, 7).

**Theorem 12** Let  $\Gamma$  be a Fuchsian group and  $\Lambda$  a subgroup of index n. If

$$\Gamma = \Lambda T_1 \cup \Lambda T_2 \cup \ldots \cup \Lambda T_n$$

is a decomposition of  $\Gamma$  into  $\Lambda$ -cosets and if F is a fundamental region for  $\Gamma$  then

(i)  $F_1 = T_1(F) \cup T_2(F) \cup \ldots \cup T_n(F)$  is a fundamental region for  $\Lambda$ ,

(ii) if  $\mu(F)$  is finite and the H-area of the boundary of F is zero then  $\frac{\mu(F_1)}{\mu(F)} = n$ .

## Chapter 4

# The permutation method and arithmetic methods

# 4.1 Subgroups of Fuchsian groups and finite permutation groups

The following theorems are obtained from a paper written by D. Singerman entitled Subgroups of Fuchsian groups and finite permutation groups. This can be seen as number 15 in my list of references.

Theorem 13 (Singerman [15]) Let  $\Gamma$  have the signature  $(g; m_1, m_2, \ldots, m_r; s)$ . Then  $\Gamma$  contains a subgroup  $\Gamma_1$  of index N with signature  $(g'; n_{11}, n_{12}, \ldots, n_{1\rho_1}, \ldots, n_{r1}, n_{r2}, \ldots, n_{r\rho_r}; s')$  if and only if

- (a) There exists a finite permutation group G transitive on N points, and an epimorphism  $\theta:\Gamma\to G$  satisfying the following conditions:
- (i) The permutation  $\theta(x_j)$  has precisely  $\rho_j$  cycles of lengths less than  $m_j$ , the lengths of these cycles being  $\frac{m_j}{n_{j1}}, \ldots, \frac{m_j}{n_{j\rho_j}}$ ,
- (ii) If we denote the number of cycles in the permutation  $\theta(\gamma)$  by  $\delta(\gamma)$  then  $s' = \sum_{k=1}^{s} \delta(p_k)$ .
- (b)  $\frac{\mu(F_1)}{\mu(F)} = N$  (where  $F, F_1$  are fundamental regions of  $\Gamma$  and  $\Gamma_1$  respectively).

Let G be a finite permutation group which acts transitively on N points and which is a homomorphic image of a triangle group (0; l, m, n). Then G has generators a, b, c obeying the relations

$$a^l = b^m = c^n = abc = 1$$

Let the permutation a have  $\lambda_u$  u-cycles  $(u=1,2,\ldots,l-1)$ , b have  $\mu_v$  v-cycles  $(v=1,2,\ldots,m-1)$ ,and c have  $\nu_w$  w-cycles  $(w=1,2,\ldots,n-1)$ . Then we have

**Theorem 14 (Singerman [15])** There exists an integer  $g \ge 0$  such that

$$2g - 2 + \sum_{v=1}^{l-1} \lambda_u (1 - \frac{u}{l}) + \sum_{v=1}^{m-1} \mu_v (1 - \frac{v}{m}) + \sum_{w=1}^{n-1} \nu_w (1 - \frac{w}{n}) = N(1 - \frac{1}{l} - \frac{1}{m} - \frac{1}{n})$$

#### 4.2 Homogeneous and inhomogeneous groups

Let  $\Gamma_1$  be a subgroup of the homogeneous group  $SL(2,\mathbb{Z})$ . The map

$$\varphi: A \to \bar{A}, \qquad A = \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_1, \qquad \bar{A}: z \to \frac{az+b}{cz+d},$$
 induces a homomorphism of  $\Gamma_1$  onto a subgroup

 $\overline{\Gamma_1} = \varphi(\Gamma_1)$ 

of the inhomogeneous modular group PSL(2,Z). This homomorphism has the kernel  $\pm I$  if  $-I \in \Gamma_1$ , and is an isomorphism if  $-I \notin \Gamma_1$ 

#### 4.3Congruence subgroups of the modular group

The principal congruence group is defined to be

$$\Gamma(N) = \{ \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma \mid \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) \equiv \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \operatorname{mod} N \}$$

Any subgroup G of the modular group  $\Gamma$  containing a principal congruence subgroup  $\Gamma(N)$  is called a congruence subgroup, and the least N such that  $G \geq \Gamma(N)$  is called the level of G.

Some examples of congruence subgroups are: \

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid a \equiv d \equiv 1 \bmod N, c \equiv 0 \bmod N \right\}$$

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \equiv 0 \bmod N \right\}$$

$$\Gamma^0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid b \equiv 0 \bmod N \right\}$$

$$\Gamma^0_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid b \equiv c \equiv 0 \bmod N \right\}$$

defined for any positive integer N.

We can now see that the following inclusion holds for any positive integer:

$$\Gamma(N) \le \Gamma_1(N) \le \Gamma_0(N) \le \Gamma$$

If N > 2, for the indices (in the inhomogeneous modular group) of the above inclusions we have the formulae:

$$\begin{split} \mid \Gamma : \Gamma_0(N) \mid = N \Pi_{p|N} (1 + \frac{1}{p}) \\ \mid \Gamma : \Gamma_1(N) \mid = \frac{N^2}{2} \Pi_{p|N} (1 - \frac{1}{p^2}) \\ \mid \Gamma : \Gamma(N) \mid = \frac{N^3}{2} \Pi_{p|N} (1 - \frac{1}{p^2}) \\ \mid \Gamma : \Gamma_0^0(N) \mid = \frac{\phi(N)}{2} = \frac{N}{2} \Pi_{p|N} (1 - \frac{1}{p}) \\ \end{split}$$
 and

$$|\Gamma:\Gamma_0(2)|=3, |\Gamma:\Gamma_1(2)|=3, |\Gamma:\Gamma(2)|=6, \text{ and } |\Gamma:\Gamma_0(2)|=6.$$

The products in these equations run over the distinct prime divisors of N.

A well known isomorphism is:

$$PSL(2,\mathbb{Z}_N) \cong \Gamma/\Gamma(N)$$

Specific examples of these groups are:

$$PSL(2,\mathbb{Z}_2) \cong S_3$$
,  $PSL(2,\mathbb{Z}_3) \cong A_4$ ,

$$PSL(2,\mathbb{Z}_4) \cong S_4, PSL(2,\mathbb{Z}_5) \cong A_5$$

where  $S_n$ ,  $A_n$  are the symmetric and alternating groups on n points.

**Example** We can prove that  $PSL(2,\mathbb{Z}_2)$  is isomorphic to  $S_3$  by calculating the multiplication table of  $PSL(2,\mathbb{Z}_2)$ . By identifying specific elements of  $PSL(2,\mathbb{Z}_2)$  with specific elements of  $S_3$  it is easy to see that the structure of  $PSL(2,\mathbb{Z}_2)$  is the same as that of  $S_3$ .

In the table below we use the following notation for the matrices of  $PSL(2,\mathbb{Z}_2)$ .

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, a_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, a_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, a_3 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, a_4 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, a_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

|       | e     | $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ |
|-------|-------|-------|-------|-------|-------|-------|
| e     | ė     | $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ |
| $a_1$ | $a_1$ | . e   | $a_3$ | $a_2$ | $a_5$ | $a_4$ |
| $a_2$ | $a_2$ | $a_5$ | $a_4$ | $a_1$ | e     | $a_3$ |
| $a_3$ | $a_3$ | $a_4$ | $a_5$ | e     | $a_1$ | $a_2$ |
| $a_4$ | $a_4$ | $a_3$ | e     | $a_5$ | $a_2$ | $a_1$ |
| $a_5$ | $a_5$ | $a_2$ | $a_1$ | $a_4$ | $a_3$ | e     |

## The multiplication table of $PSL(2,\mathbb{Z}_2)$

By reordering these elements we can clearly see the isomorphism between the two groups.

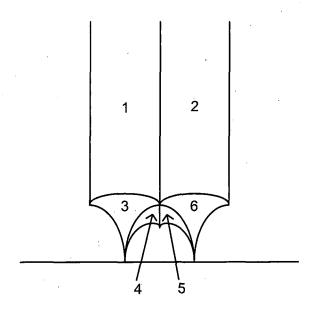
|       | e     | $a_2$ | $a_4$ | $a_3$ | $a_1$     | $a_5$ |
|-------|-------|-------|-------|-------|-----------|-------|
| e     | e     | $a_2$ | $a_4$ | $a_3$ | $a_1$     | $a_5$ |
| $a_2$ | $a_2$ | $a_4$ | e     | $a_1$ | $a_5$     | $a_3$ |
| $a_4$ | $a_4$ | e     | $a_2$ | $a_5$ | $a_3$     | $a_1$ |
| $a_3$ | $a_3$ | $a_5$ | $a_1$ | e     | $a_4$     | $a_2$ |
| $a_1$ | $a_1$ | $a_3$ | $a_5$ | $a_2$ | $\cdot e$ | $a_4$ |
| $a_5$ | $a_5$ | $a_1$ | $a_3$ | $a_4$ | $a_2$     | e     |

This table is identical to the multiplication table of  $S_3$ . Therefore knowing that  $S_3 = \langle a, b | a^2 = b^2 = (ab)^3 = 1 \rangle$  we can find the isomorphism  $a \to a_2, b \to a_3$ .

Example: Looking at Theorem 13 As shown in Singerman's theorem we can describe (conjugacy classes of) subgroups  $\Gamma_1$  of the modular group in terms of transitive permutation representations of the modular group.

If we look at the fundamental region of  $\Gamma(2)$  (which is later illustrated more thoroughly) and we number the modular triangles we can see this in action. The permutations are as follows:

$$X = (1,3)(2,6)(4,5)$$


$$Y = (1,4,6)(3,2,5)$$

The permutation X being induced by  $E=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$  and the permutation Y being induced by  $V=\begin{pmatrix}1&1\\-1&0\end{pmatrix}$ . By calculating

$$XY = (1,3)(2,6)(4,5)(1,4,6)(3,2,5) = (1,2)(3,4)(5,6)$$

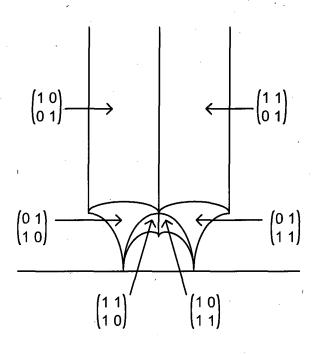
we can determine that this modular subgroup has three conjugacy classes of parabolic cyclic subgroups.

We can also see that its presentation is  $\langle a, b | -- \rangle \cong F_2$ , the free group on two elements.



## 4.3.1 The cosets of some congruence subgroups

Let A,B be two elements of the modular group  $\Gamma$  as shown below


$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$$

then L'Ivrissimtzis proved the following theorem in his thesis (see reference [7]).

**Theorem 15 (Ivrissimtzis** [7]) Let N be a positive integer. The matrices A, B belong in the same coset of

- (i)  $\Gamma_0(N)$  if and only if  $ac' ca' \equiv 0 \mod N$
- (ii)  $\Gamma_1(N)$  if and only if  $a \equiv a' \text{mod} N$ ,  $c \equiv c' \text{mod} N$  or  $a \equiv -a' \text{mod} N$ ,  $c \equiv -c' \text{mod} N$
- (iii) $\Gamma(N)$  if and only if  $a \equiv a' \text{modN}$ ,  $b \equiv b' \text{modN}$ ,  $c \equiv c' \text{modN}$ ,  $d \equiv d' \text{modN}$  or  $a \equiv -a' \text{modN}$ ,  $b \equiv -b' \text{modN}$ ,  $c \equiv -c' \text{modN}$ ,  $d \equiv -d' \text{modN}$

An application Using both Theorem 13 and Theorem 15 we can look at the fundamental region for  $\Gamma(2)$ . Seeing how different matrices relate to different sections of the region as illustrated below.



An interesting theorem related to the fundamental regions of subgroups  $\Gamma_1$  of the modular group  $\Gamma$  which illustrates the above example is

Theorem 16 (Hoare and Singerman [4]) There exists a fundamental region  $F_1$  for  $\Gamma_1$  which is constructed from modular triangles in such a way that every pair of them can be connected by a chain of modular triangles with a common side. This fundamental region  $F_1$  is simply connected.

The system of inequivalent cusps for the homogeneous principal congruence subgroup  $\Gamma(N)$  (This result can be seen as theorem 8, in chapter 4, Elliptic modular functions [14].)

**Theorem 17** If N > 2, the number  $\sigma_{\infty}(N)$  of inequivalent rational cusps for  $\Gamma(N)$  is equal to one half the number of pairs (a,b) incongruent modN with (a,b,N)=1. If N=2,  $\sigma_{\infty}(N)$  is equal to the number of these pairs.

**Example** When we apply theorem 17 to N=12 we find the following incongruent pairs.

```
(0, 1), (0, 5), (0, 7), (0, 11),
```

```
(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (1, 11),
```

$$(3, 1), (3, 2), (3, 4), (3, 5), (3, 7), (3, 8), (3, 10), (3, 11),$$

$$(4, 1), (4, 3), (4, 5), (4, 7), (4, 9), (4, 11),$$

$$(5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (5, 11),$$

$$(7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (7, 8), (7, 9), (7, 10), (7, 11),$$

$$(10, 1), (10, 3), (10, 5), (10, 7), (10, 9), (10, 11),$$

$$(11, 0), (11, 1), (11, 2), (11, 3), (11, 4), (11, 5), (11, 6), (11, 7), (11, 8), (11, 9), (11, 10), (11, 11).$$

There are 06 mai

There are 96 pairs and so  $\Gamma(12)$  has 48 inequivalent cusps by the above theorem.

<sup>(2, 1), (2, 3), (2, 5), (2, 7), (2, 9), (2, 11),</sup> 

<sup>(8, 1), (8, 3), (8, 5), (8, 7), (8, 9), (8, 11),</sup> 

<sup>(9, 1), (9, 2), (9, 4), (9, 5), (9, 7), (9, 8), (9, 10), (9, 11),</sup> 

#### 4.4Wohlfahrt's result

A parabolic element L of the modular group can always be written in the form  $\pm A^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ A where A is a matrix within the modular group and  $A^{-1}\infty$  is a parabolic fixed point of the induced transformation. In this form, m is a rational integer, not zero and uniquely determined by L. The modulus |m| of m will be called the amplitude of the parabolic matrix L. If a subgroup  $\Gamma_1$  of the homogeneous modular group contains parabolic elements P their fixed points are called cusps. If we take  $\xi$  to be a cusp of a modular subgroup  $\Gamma_1$  then the subgroup of  $\Gamma_1$ , generated by -I and a certain parabolic element P, contains all the matrices in  $\Gamma_1$  with fixed point  $\xi$ . The element P cannot be uniquely determined by  $\Gamma_1$  and  $\xi$  but the choice is limited to  $\pm P, \pm P^{-1}$  of a common amplitude m. This common amplitude is equivalent to the width of the cusp in the quotient of the upper half plane by this modular subgroup. The width of a cusp is the number of modular triangles in the quotient space that touch this cusp.

All equivalent cusps have equal cusp widths.

**Definition** Let  $\Gamma_1$  be any subgroup of the modular group and denote  $C(\Gamma_1)$  to be the subset of all cusp widths of  $\Gamma_1$  in the set  $\mathbb{Z}$ . If  $C(\Gamma_1)$  is nonempty and bounded in  $\mathbb{Z}$ , the lowest common multiple of all the numbers in  $C(\Gamma_1)$  is a number  $m \in \mathbb{Z}$  and will be called the level of  $\Gamma_1$ . If  $C(\Gamma_1)$  is empty or unbounded, the level of  $\Gamma_1$  is defined to be the number zero.

**Example** A normal subgroup  $\Gamma_1$  of finite index of  $PSL(2,\mathbb{Z})$  has just one class of cusps and so  $C(\Gamma_1)$  has just one element. This is illustrated by looking back at the diagram of the fundamental region of  $\Gamma(2)$ . There we see that all of the cusps have width two and therefore the level of this group is two.

Looking at subgroups We can now begin to see how theorem 13 works in terms of parabolic elements. When we look at subgroups of the modular group we see that the cusp widths of the subgroups are equivalent to the length of the cycles in the coset permutation representation of the parabolic element. Therefore the lowest common multiple of these cycle lengths is the level of the subgroup.

Theorem 18(Wohlfahrt, An extension of F.Klein's level concept [17]) Let m be the level of a modular subgroup  $\Gamma_1$ . Then  $\Gamma_1$  is a congruence subgroup if and only if it contains  $\Gamma(m)$ .

Theorem 19(Wohlfahrt, An extension of F.Klein's level concept [17]) Let  $\Gamma_1$  be a subgroup of the modular group of index  $\mu \leq 6$ . Then  $\Gamma_1$  is a congruence subgroup.

## 4.5 Dessins d'enfants

If we let G be a triangle group then dessin d'enfants can be thought of as:

1. Drawings (structured in a manner consistent with G) on connected orientated surfaces,

In these terms a map or dessin is an embedding of a graph G' in a surface S such that the components of S-G' are simply connected. As the graphs become more complex we often require a surface with genus greater than zero to achieve this. From this we acquire the genus of our subgroup.

## 2. Subgroups of G,

The stabilizer of a dessin is a subgroup of G. It consists of group elements that leave the dessin unchanged.

3. Transitive permutation representations of G, along with a choice of basepoint.

The transitive permutation representation of G corresponding to a subgroup  $G_1 \leq G$  is the permutation of the cosets of  $G_1$  in G. We will describe the coset representations of subgroups of the modular group using the following notation.

Let

$$\gamma_0 = \left(\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right), \gamma_1 = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \gamma_\infty = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right),$$

where the following relation is satisfied

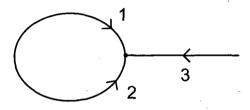
$$\gamma_0^3 = \gamma_1^2 = \gamma_0 \gamma_1 \gamma_\infty = 1$$

in G. This is the complete set of defining relations in our group and so to obtain a transitive permutation representation of G, we need only choose transitive permutations  $\sigma_0, \sigma_1, \sigma_\infty$  that satisfy the above relation. Dessin d'enfants then go onto represent these permutations pictorially.

In the dessin d'enfants we number each of the darts in our diagram. Then:

### 1. The edges relate to $\sigma_1$

By transposing any two numbered darts which lie on the same edge we obtain our permutation  $\sigma_1$  (the other darts remain constant).


### 2. The vertices relate to $\sigma_0$

By rotating our numbered darts anticlockwise around the vertices (i.e. where the edges intersect) we obtain our permutation  $\sigma_0$ .

### 3. The faces relate to $\sigma_{\infty}$

By the combined effect of the two actions in 1 and 2 we obtain the permutation  $\sigma_{\infty}$ .

**Example** As an example we look at the permutations and dessin of the coset representation of  $\Gamma_0(2)$  as a subgroup of the modular group. The permutations are  $\sigma_0 = (1,2,3)$ ,  $\sigma_1 = (1,2)(3)$ , and  $\sigma_{\infty} = (1)(2,3)$ . They have the dessin below:



Using theorem 13 we can deduce from the permutations in this example that  $\Gamma_0(2)$  (conjugate to the stabiliser of a point) has the signature  $(0; 2, \infty, \infty)$ .

### 4.5.1 Imprimitivity

Let  $\Omega$  be a set. A partition of  $\Omega$  is a set P of nonempty disjoint subsets of  $\Omega$  whose union is  $\Omega$ . We use  $Part(\Omega)$  to denote the set of partitions of  $\Omega$ . Now suppose that G is a group which acts transitively on  $\Omega$ . Then a system of imprimitivity for G on  $\Omega$  is a partition B whose members are permuted by G. We denote the set of systems of imprimitivity for G on  $\Omega$  by  $Imp_G(\Omega)$ .

**Definition** We define a map  $\Phi_1$  from  $Imp_G(\Omega)$  to subgroups of G by saying that, for  $B \in Imp_G(\Omega)$ ,  $\Phi_1(B)$  is the stabiliser of the member of B containing 1.

We also note the following definition.

**Definition** A permutation group G acting on a set  $\Omega$  is called primitive if G preserves no nontrivial partition of  $\Omega$ .

Using this definition we can use the following theorem on the above example.

**Theorem 20** If G is transitive on the set  $\Omega$ , then G is primitive on  $\Omega$  if and only if for each  $\alpha \in \Omega$ ,  $G_{\alpha}$  is a maximal subgroup of G. Here  $G_{\alpha} = Stab_{G}(\alpha)$  is the stabiliser of  $\alpha \in \Omega$ .

We can therefore see that in the above example we must be looking at a maximal subgroup. This theorem also comes in very handy when we are building our table of subgroups at the end of this chapter.

## 4.6 Calculations

We will use some of the above results to study subgroups of low index in the modular group.

Example 1 (applying the theory of imprimitivity) A subgroup of index eight in the modular group has a coset permutation representation generated by:

E = (1, 2)(3, 4)(5, 6)(7, 8),

V = (1,3,5)(4,6,8)(2)(7).

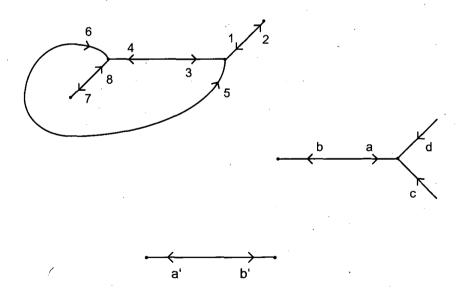
Two systems of imprimitivity of these permutations are the partitions:

(i)  $a = \{1, 8\}, b = \{2, 7\}, c = \{3, 4\}, d = \{5, 6\}.$ 

These blocks are permuted by the generators as follows:

E = (a, b)(c)(d),

V = (a, c, d)(b).


(ii)  $a' = \{1, 3, 5, 7\}, b' = \{2, 4, 6, 8\}.$ 

These blocks are permuted by the generators as follows:

E = (a', b'),

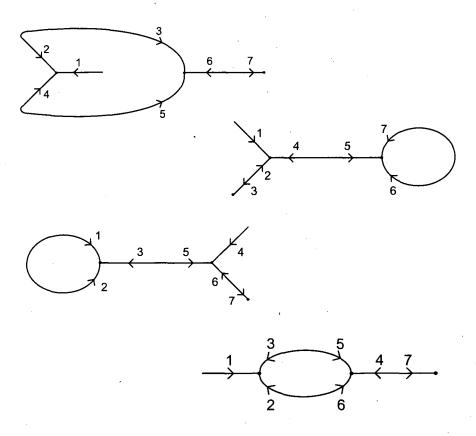
V = (a')(b').

Therefore our original group of index 8 in the modular group (represented by the permutations above) lies in a subgroup of index four in the modular group (represented by the permutations found in (i)) and a subgroup of index two in the modular group (represented by the permutations found in (ii)). The dessins are as below:

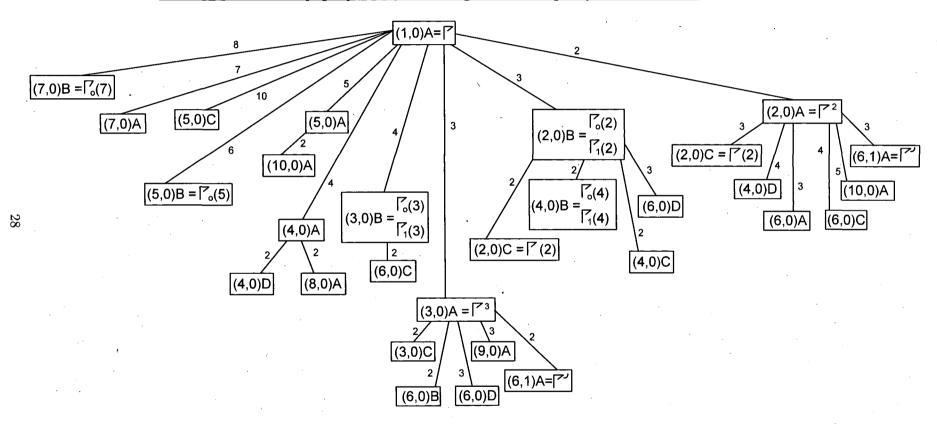


Example 2 (finding non-congruence subgroups of index 7 in the modular group) As we know, seven is the lowest index that a non-congruence subgroup can have in the modular group (Wohlfahrt, An extension of F.Klein's level concept [17]).

For index seven in the modular group we have the following permutation representations for the cosets of four non-conjugate subgroups:


$$X = (1)(2,3)(4,5)(6,7), Y = (1,2,4)(3,5,6)(7), XY = (1,2,5)(3,4,6,7)$$

$$X = (1)(2,3)(4,5)(6,7), Y = (1,2,4)(3)(5,6,7), XY = (1,2,3,4,6,5)(7)$$


$$X = (1,2)(3,5)(6,7)(4), Y = (1,2,3)(4,5,6), XY = (1,3,6,7,4,5)(2)$$

$$X = (1)(3,5)(2,6)(4,7), Y = (1,2,3)(4,5,6), XY = (1,2,4,7,5)(3,6)$$

These subgroups have geometric levels 12, 6, 6, and 10 respectively. Therefore to be congruence subgroups (by Wohlfahrt's Theorem) they must contain  $\Gamma(12)$ ,  $\Gamma(6)$ ,  $\Gamma(6)$ ,  $\Gamma(10)$  respectively. The indexes of  $\Gamma(12)$ ,  $\Gamma(6)$ ,  $\Gamma(6)$ ,  $\Gamma(10)$  within the modular group are 576, 72, 72, and 360 respectively (by the before mentioned formula). For these to lie in our four subgroups the indexes must be divisible by seven. These numbers are not divisible by seven and so these subgroups (the stabilisers of one in these four permutation representations) must be non-congruence.



## A table of all the conjugacy classes of congruence subgroups of index ≤ 10



In this table the first number before the letters distinguishing the groups tells you their level and the second number indicates the genus of the group. The numbers which lie on the lines that join the group boxes are the indices (i.e. the index of the lower group to the group it is joined to above). Using calculations we have been able to identify some of the groups. Many of these groups have been defined previously in this thesis. The groups which are as yet undefined are the following:

 $(a)\Gamma$ 

This is the commutator subgroup of the modular group, i.e. the subgroup generated by the commutators of its elements, that is

 $\Gamma' = \langle g^{-1}h^{-1}gh|g, h \in \Gamma \rangle.$ 

(b) $\Gamma^2$ 

This is the power subgroup generated by the squares of the elements of  $\Gamma$ .  $(c)\Gamma^3$ 

This is the power subgroup generated by the cubes of the elements of  $\Gamma$ .

# 4.7 Some sample calculations performed to obtain the table

Calculation 1 There are only two possible coset permutation representations for a subgroup of index 3 in the modular group. These being:

1. X = (1)(2)(3), Y = (1, 2, 3) where XY = (1, 2, 3)

2. 
$$X = (1, 2)(3), Y = (1, 2, 3)$$
 where  $XY = (1, 3)(2)$ 

As you can see only one of these has level 2 and so this must be the coset permutation representation for  $\Gamma_0(2)$  (or equivalently  $\Gamma_1(2)$ ).

Calculation 2 There is only one possible coset permutation representation for a subgroup of index 5 in the modular group. This is:

X = (1)(2, 3)(4, 5), Y = (1, 2, 4)(3)(5) where XY = (1, 2, 3, 4, 5).

This must be a congruence subgroup due to Wohlfahrt's result.

Calculation 3 We know that  $\Gamma(2)$  lies in  $\Gamma_0(2)$  (or equivalently  $\Gamma_1(2)$ ) therefore the coset permutation representation in calculation one must be a system of imprimitivity of the coset permutation representation of  $\Gamma(2)$ . By calculations (finding all the possible dessins on six points) we find that there is only one subgroup of index six in the modular group which is of level two. This is:

X = (1,4)(2,6)(3,5), Y = (1,2,3)(4,5,6) where XY = (1,5)(2,4)(3,6). Splitting this into the following partition:

$$A = \{2, 6\}, B = \{3, 4\}, C = \{1, 5\}$$

we find that these blocks are permutated as follows by the permutations above.

$$X = (A)(B, C), Y = (A, B, C)$$

We can easily see that these are the same permutations as in calculation one. Therefore X and Y must be our coset permutation representation for  $\Gamma(2)$ .

Calculation 4 There is only one coset permutation representation of index six in the modular group which has level five. This is:

X = (1)(2)(3, 4)(5, 6), Y = (1, 2, 3)(4, 5, 6) where XY = (1, 2, 3, 5, 4)(6). Therefore this must be the coset permutation representation of  $\Gamma_0(5)$ .

A lot of my work was finding all the possible dessin d'enfants which have either one or three lines touching each vertex (i.e. which represent subgroups of the modular group).

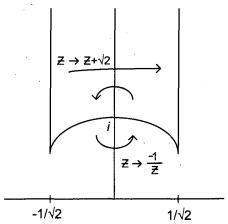
## Chapter 5

# Hecke groups

We will now move onto to look at Hecke groups and try to see how we can generalise the above ideas in these groups.

Consider the group generated by  $z \to \frac{-1}{z}$  and  $z \to z + \lambda$ .

Hecke (see reference [3]) showed that these groups are discrete if either:


1. 
$$\lambda > 2$$

or

2.  $\lambda = 2 \cos \frac{\pi}{q}$  where  $q \in \mathbb{N}, q \geq 3$ .

The groups of type two are isomorphic to the triangle groups  $(2,q,\infty)$ . We will be concentrating of the groups of type two. These are Hecke groups of the first kind, where the limit set is dense in the reals. The second kind occurs when  $\lambda>2$ . We let  $H(\lambda_q)$  or  $H^q$  denote the Hecke group of type two generated by  $z\to \frac{-1}{z}$  and  $z\to z+\lambda_q$  where  $\lambda_q=2\cos\frac{\pi}{q}$ .

An example of a fundamental region of one of these Hecke groups (i.e.  $H(\sqrt{2})$ ) is shown below. This can be easily generalised.



The fundamental domain of  $H(\sqrt{2})$ 

## 5.1 Examples of Hecke groups

If we take q=3 in the second case then we have H(1) known to us as the modular group.

If q = 4 we have  $H(\sqrt{2})$ . In this group there are two types of matrices. The two types are

 $\begin{pmatrix} a & b\sqrt{2} \\ c\sqrt{2} & d \end{pmatrix}$  and  $\begin{pmatrix} a\sqrt{2} & b \\ c & d\sqrt{2} \end{pmatrix}$  where  $a,b,c,d\in\mathbb{Z}$  and the determinants of all of these matrices equals one (i.e. ad - 2bc = 1 in the first case and 2ad - bc = 1 in the second case).

We can prove that all of the elements of  $H(\sqrt{2})$  lie in these two sets of matrices by first observing that both of our generators are of one of these two forms. For example  $\begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix}$  is in the first set and  $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$  is in the second. We will now look at what effect each of our generators has on an arbitrary member of both of these sets.

an arbitrary member of both of these sets.
$$\begin{pmatrix} a & b\sqrt{2} \\ c\sqrt{2} & d \end{pmatrix} \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & (a+b)\sqrt{2} \\ c\sqrt{2} & 2c+d \end{pmatrix},$$

$$\begin{pmatrix} a & b\sqrt{2} \\ c\sqrt{2} & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} b\sqrt{2} & a \\ d & c\sqrt{2} \end{pmatrix},$$

$$\begin{pmatrix} a\sqrt{2} & b \\ c & d\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a\sqrt{2} & 2a+b \\ c & (c+d)\sqrt{2} \end{pmatrix},$$

$$\begin{pmatrix} a\sqrt{2} & b \\ c & d\sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} b & a\sqrt{2} \\ d\sqrt{2} & c \end{pmatrix}.$$

As the generators of the Hecke group have determinant one and as det A det B = det AB, all the matrices of the Hecke group have determinant one. Therefore the generators do not move the matrices outside these two sets and so our proof is complete.

To be specific what we have just proved is

$$H(\sqrt{2})\subseteq H_e(\sqrt{2})\cup H_e(\sqrt{2})\left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)$$

where  $H_e(\sqrt{2})$  consists of the matrices  $\begin{pmatrix} a & b\sqrt{2} \\ c\sqrt{2} & d \end{pmatrix}$  with a determinant of one. The reverse inclusion can be proved. Therefore  $H_e(\sqrt{2})$  and  $H_e(\sqrt{2})\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$  are two cosets of this Hecke group.

If q = 6 we have  $H(\sqrt{3})$ . In this group we see a similar pattern to  $H(\sqrt{2})$ . There are two types of matrices.

The two types are

$$\left(egin{array}{ccc} a & b\sqrt{3} \ c\sqrt{3} & d \end{array}
ight) ext{ and } \left(egin{array}{ccc} a\sqrt{3} & b \ c & d\sqrt{3} \end{array}
ight) ext{ where } a,b,c,d\in\mathbb{Z} ext{ and the determining}$$

nants of all of these matrices equals one (i.e. ad - 3bc = 1 in the first case and 3ad - bc = 1 in the second case).

 $H(\sqrt{2})$  and  $H(\sqrt{3})$  are commensurable in the wide sense with the modular group (see 5.2) and so once we have information about subgroups in the modular group it is relatively easy to extend it to these two Hecke groups. It is however more difficult to find out information about the subgroups of the Hecke group where q=5.

## 5.2 Working with commensurable Hecke groups

**Definition** A pair of subgroups  $H_1$  and  $H_2$  of a group G are commensurable in the wide sense if there exists  $g \in G$  such that  $(g^{-1}H_1g) \cap H_2$  is a finite index subgroup of both  $g^{-1}H_1g$  and  $H_2$  (when g is trivial, we say  $H_1$  and  $H_2$  are commensurable).

The following examples show how we can use information we know about subgroups of the modular group to obtain information about subgroups of the Hecke groups where q=4 and q=6.

**Example 1** If we let 
$$m=2$$
 or  $m=3$  then we can calculate 
$$\begin{pmatrix} m^{\frac{-1}{4}} & 0 \\ 0 & m^{\frac{1}{4}} \end{pmatrix} \begin{pmatrix} a & b(xm) \\ c & d \end{pmatrix} \begin{pmatrix} m^{\frac{1}{4}} & 0 \\ 0 & m^{\frac{-1}{4}} \end{pmatrix} = \begin{pmatrix} a & xb\sqrt{m} \\ c\sqrt{m} & d \end{pmatrix}$$
 where  $x \in \mathbb{Z}$ .

Therefore the modular subgroups  $\Gamma^0(mx)$  produce the subgroups  $\begin{pmatrix} a & xb\sqrt{2} \\ c\sqrt{2} & d \end{pmatrix}$ ,  $\begin{pmatrix} a & xb\sqrt{3} \\ c\sqrt{3} & d \end{pmatrix}$  in  $H^4$  and  $H^6$  respectively (where  $x \in \mathbb{Z}$ ).

The even subgroups of the Hecke groups  $H^4$  and  $H^6$  are all the matrices of the form  $\begin{pmatrix} a & b\sqrt{2} \\ c\sqrt{2} & d \end{pmatrix}$  and  $\begin{pmatrix} a & b\sqrt{3} \\ c\sqrt{3} & d \end{pmatrix}$  respectively. Therefore as you can see above by conjugating  $\Gamma^0(2)$  we can obtain the even subgroup of  $H^4$  and by conjugating  $\Gamma^0(3)$  we can obtain the even subgroup of  $H^6$ .

The even subgroups have index two in the Hecke groups.  $\Gamma^0(2)$  is of index 3 and  $\Gamma^0(3)$  is of index 4 in the modular group.

**Example 2** Looking at principal congruence subgroups within the modular group we conjugate specific examples of them to obtain the corresponding subgroups in the Hecke groups as below.

$$\begin{pmatrix} m^{\frac{-1}{4}} & 0 \\ 0 & m^{\frac{1}{4}} \end{pmatrix} \begin{pmatrix} a(mx)+1 & b(mx) \\ c(mx) & d(mx)+1 \end{pmatrix} \begin{pmatrix} m^{\frac{1}{4}} & 0 \\ 0 & m^{\frac{-1}{4}} \end{pmatrix} = \begin{pmatrix} a(mx)+1 & bx\sqrt{m} \\ cmx\sqrt{m} & dmx+1 \end{pmatrix}$$
 where  $x \in \mathbb{Z}$ .

However  $H(\lambda_5)$  is not commensurable with the modular group (S.Katok, reference[10]) and its elements are much more difficult to describe.

Some information we do know about  $H(\lambda_5)$  is:

- (i)  $\mathbb{Z}[\lambda_5]$  is a principal ideal domain.
- (ii) The set of cusps of  $H(\lambda_5)$  is  $\mathbb{Q}(\lambda_5) \cup \{\infty\}$ .

The two methods for working out the subgroups of the  $H(\lambda_5)$  which we have used extensively are:

- (a) The permutation method
- (b) Arithmetic methods

## 5.3 The permutation method

We looked at this method in chapter 4 (in particular 4.1, 4.5, 4.6, 4.7, and the examples in 4.3). We will now go on to use this method in  $H^5$ . Using the permutation method we obtain the results shown in the appendix. We arrived at these results by using dessin d'enfants and coset permutation representations.

The level of a subgroup of a Hecke group As part of our results we obtain levels of our subgroups of  $H^5$ . We should therefore take the time here to explain exactly what level means in these cases. Here instead of looking at modular triangles to obtain our level we use instead fundamental regions of the specific Hecke group we are studying (see the opening page to chapter five). In our case this will be the fundamental region of  $H^5$ . Once we find a subgroup of  $H^5$  we then go onto to observe how many of the fundamental regions of  $H^5$  touch each cusp in our fundamental region of the subgroup we have found. The numbers we obtain here are very similar to the cusp widths we defined in the case of a modular subgroup. Similarly to the modular group we now take the lowest common multiple of all of these numbers to obtain our geometric level.

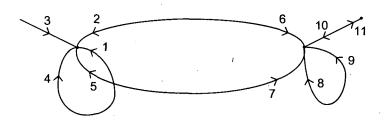
We will now go onto to look at an example of the calculations carried out.

**Example** The coset permutation representation of one of these subgroups is:

$$X = (1,4)(5,7)(2,6)(8,9)(10,11)$$

$$Y = (1,2,3,4,5)(6,7,8,9,10)$$

$$XY = (1,5,8,10,11,6,3,4,2,7)(9)$$


We can therefore deduce that the signature is  $(1;2,5,\infty,\infty)$ . We can also see that

 $\alpha = 10$ 

 $\beta = 11$ 

where  $\alpha$  is the level of our subgroup and  $\beta$  is the index of our subgroup in  $H^5$ 

The dessin d'enfant for this subgroup is as below:



## 5.4 Arithmetic methods

When we talk about using arithmetic methods we mean looking at congruence subgroups, etc. We discussed this method previously in chapter 4 (in particular 4.3 and 4.4). We have to approach this slightly differently in  $H^5$ . To implement this method we first need to define what we mean by a congruence subgroup (i.e. how principal congruence subgroups translate across to Hecke groups).

Congruence subgroups in Hecke groups If we let I be an ideal of  $\mathbb{Z}[\lambda_a]$  then we can define

$$PSL(2, \mathbb{Z}[\lambda_q], I) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{Z}[\lambda_q]) | a - 1, b, c, d - 1 \in I \right\}$$
We define  $PSL(2, \mathbb{Z}[\lambda_q], I)$  and  $PSL_2(2, \mathbb{Z}[\lambda_q], I)$  similarly. For these

We define  $PSL_1(2,\mathbb{Z}[\lambda_q],I)$  and  $PSL_0(2,\mathbb{Z}[\lambda_q],I)$  similarly. For these we require  $a-1,c,d-1\in I$  and  $c\in I$  respectively.

Our principal congruence subgroup is as below:

 $H^q(I) = PSL(2, \mathbb{Z}[\lambda_q], I) \cap H^q$ 

 $H_1^q(I)$  and  $H_0^q(I)$  are similar.

Now, clearly  $H^q(I) \leq H_1^q(I) \leq H_0^q(I) \leq H^q$ .

I.Ivrissimtzis proved the following theorem in his thesis (see reference [7]).

**Theorem 21** If p is a prime then any proper principal congruence subgroup of  $H^p$  is torsion free.

**Proof**  $H^p$  is generated by  $R(z) = \frac{-1}{z}$ ,  $S(z) = z + \lambda_p$ , obeying only the relations  $R^2 = (RS)^p = 1$  (where p is a prime). We write T = RS. Then, as  $H^p$  is a Fuchsian group, the only elements of finite order are conjugates of R, or conjugates of powers of T. If a principal congruence subgroup  $H^p(I)$  contains an element of finite order, then as  $H^p(I)$  is normal, it must contain R or a power of T. If it contains  $R = \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ , then  $R \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  mod I. Thus  $1 \in I$ , and so  $I = Z[\lambda_p]$ , and  $H^p(I) = H^p$ . If the principal congruence subgroup contains a power of  $T = \pm \begin{pmatrix} 0 & -1 \\ 1 & \lambda_p \end{pmatrix}$  then as p is a prime it must contain T itself. Therefore as above,  $T \in H^p(I)$  implies that  $1 \in I$ , so that  $I = Z[\lambda_p]$  and  $H^p(I) = H^p$ . The theorem above has therefore been proved true.

From this theorem we can observe using theorem 13 (shown earlier) that the index of any proper principal congruence subgroup within  $H^5$  must be divisible by ten. This is because for our subgroup to be torsion free neither of the permutations X or Y can have a fixed point and so our index must be divisible by both 2 and 5. Therefore the index must be divisible by ten. This is where X and Y are permutations induced by right multiplication of the cosets of the generating elements of orders 2 and 5.

# Looking for a non-congruence subgroup

### 6.1 Proof with the modular group

In the modular group we can use three lemmas to show that there exists a normal subgroup N of the modular group  $\Gamma$  which is of finite index and contains none of the principal congruence subgroups  $\Gamma(N)$ . (These lemmas can be seen in chapter 3, Noneuclidean tesselations and their groups, Magnus [13].) The three lemmas are listed below:

**Lemma One** Let  $\mathbb{Z}_N$  be the ring of integers  $mod\ N$ , and let  $PSL(2,\mathbb{Z}_N)$  be the group of Mobius transformations with  $a,b,c,d\in\mathbb{Z}_N$ . Then the quotient group  $\Gamma/\Gamma(N)$  of the Nth principal congruence subgroup in the modular group is isomorphic with  $PSL(2,\mathbb{Z}_N)$  (This can be seen as theorem 6.9.3 and corollary 6.9.4 in Jones and Singerman, Complex functions [9]).

**Proof** Looking at  $SL(2,\mathbb{Z})=\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}| a,b,c,d\in\mathbb{Z}, ad-bc=1\}$ . Let a,b,c,d be integers representing residue classes mod N such that  $ad-bc\equiv 1modN$ . Then there exist integers a',b',c',d' such that  $a\equiv a'modN,\,b\equiv b'modN,\,c\equiv c'modN,\,d\equiv d'modN,\,a'd'-b'c'=1$ . From this it follows that the natural mapping of  $SL(2,\mathbb{Z})$  into  $SL(2,\mathbb{Z}_N)$  is a surjective mapping. Let g be the greatest common divisor of a and b, and let  $a^*=\frac{a}{g}$  and  $b^*=\frac{b}{g}$ .

Then there exist integers  $c^*$ ,  $d^*$  such that  $a^*d^* - b^*c^* = 1.$ 

We have
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a^* & b^* \\ c^* & d^* \end{pmatrix}^{-1} = \begin{pmatrix} a'' & 0 \\ c'' & d'' \end{pmatrix} (a''d'' \equiv 1 \mod N).$$
Now let  $a''d'' = 1 + kN$  and  $(c'' - k)d'' = t$ . Then

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} a^* & b^* \\ c^* & d^* \end{array}\right)^{-1} \left(\begin{array}{cc} a'' & N \\ k & d'' \end{array}\right)^{-1} \left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right)^{-1} \equiv \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) modN,$$

$$\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \begin{pmatrix} a'' & N \\ k & d'' \end{pmatrix} \begin{pmatrix} a^* & b^* \\ c^* & d^* \end{pmatrix}$$
 contains the elements a', b', c', d' which we wanted to find. Therefore our

mapping has been proved to be surjective and so by using the well known formula

$$Im\phi \cong \frac{G}{Ker\phi}$$
 (where  $Im\phi = PSL(2, \mathbb{Z}_N)$ ,  $G = \Gamma$ ,  $Ker\phi = \Gamma(N)$ ) we complete our proof.

(See exercise 6I, Jones and Singerman, Complex functions [9])

**Lemma Two** The only nonabelian quotient groups that can appear in a composition series (see section 6.1.1) of  $PSL(2,\mathbb{Z}_N)$  are the groups  $PSL(2,\mathbb{Z}_p)$ , where p is a prime number. [This implies  $p \geq 5$ , in which case  $PSL(2, \mathbb{Z}_p)$  is simple.]

**Proof** We show that  $SL(2,\mathbb{Z}_N)$  is the direct product of the groups  $SL(2,\mathbb{Z}_q)$ , where q denotes any one of the distinct prime powers  $q_{\nu} = p_{\nu}^{e_{\nu}}$  the product of which equals N. Let again a, b, c, d be integers representing residue classes mod N, such that  $ad-bc \equiv 1 \mod N$ , and let  $a_{\nu}$ ,  $b_{\nu}$ ,  $c_{\nu}$ ,  $d_{\nu}$  be integers such that

 $a \equiv a_{\nu} \mod q_{\nu}, \ b \equiv b_{\nu} \mod q_{\nu}, \ c \equiv c_{\nu} \mod q_{\nu}, \ d \equiv d_{\nu} \mod q_{\nu},$  $a_{\nu} \equiv 1 \mod q_{\mu}, \ b_{\nu} \equiv 0 \mod q_{\mu}, \ c_{\nu} \equiv 0 \mod q_{\mu}, \ d_{\nu} \equiv 1 \mod q_{\mu} \text{ for } \mu \neq \nu.$ According to the Chinese remainder theorem, the  $a_{\nu}$ ,  $b_{\nu}$ ,  $c_{\nu}$ ,  $d_{\nu}$  exist and are uniquely determined mod N. Let

$$M_{\nu} = \left(\begin{array}{cc} a_{\nu} & b_{\nu} \\ c_{\nu} & d_{\nu} \end{array}\right)$$

Then the product M of the  $M_{\nu}$  has the property to be congruent  $M_{\nu}$  mod  $q_{\nu}$  for all  $\nu$ , regardless of the arrangement of the factors. Therefore,

$$M \equiv \left( egin{array}{cc} a & b \ c & d \end{array} 
ight) mod N.$$

Since  $ad - bc \equiv a_{\nu}d_{\nu} - b_{\nu}c_{\nu} \equiv 1 \mod q_{\nu}$ , we have a unique decomposition of the elements of  $SL(2,\mathbb{Z}_N)$  into a product of pairwise commuting matrices  $M_{\nu}$  which define elements of  $SL(2,\mathbb{Z}_{q_{\nu}})$ . Therefore  $SL(2,\mathbb{Z}_N)$  is indeed the

direct product of the  $SL(2,\mathbb{Z}_{q_{\nu}})$ , and a quotient group that appears in the composition series of  $PSL(2,\mathbb{Z}_N)$  must also appear as a quotient group in a composition series of an  $SL(2,\mathbb{Z}_q)$ . Next we show that the quotient groups of a composition series of  $SL(2,\mathbb{Z}_q)$  are all abelian, with the possible exception of  $PSL(2,\mathbb{Z}_p)$ , which is the quotient group of  $SL(2,\mathbb{Z}_p)$  with respect to its centre. The proof is based on the remark that  $SL(2,\mathbb{Z}_{p^{\nu+1}})$  contains a normal abelian subgroup  $N_{\nu}$  whose quotient group is  $SL(2,\mathbb{Z}_{p^{\nu}})$ , where  $N_{\nu}$  consists of the matrices  $P_{\nu}$  defined by

$$P_{\nu} \equiv \left( \begin{array}{cc} 1 + \lambda p^{\nu} & \rho p^{\nu} \\ \sigma p^{\nu} & 1 - \lambda p^{\nu} \end{array} \right) \bmod p^{\nu+1},$$

in which  $\lambda, \rho, \sigma$  are representatives of residue classes mod p. From direct calculations we see that the  $P_{\nu}$  form an abelian group of exponent p and rank 3 which is normal in  $SL(2, \mathbb{Z}_{p^{\nu+1}})$ , and that  $M^{-1}M^*$  is a matrix of the type of  $P_{\nu}$  if  $M, M^* \in SL(2, \mathbb{Z}_{p^{\nu+1}})$  and  $M \equiv M^* mod p^{\nu}$ . This completes the proof.

To prove lemma three we require the following theorem.

Theorem 22 (see reference [16], p.34) A primitive group which contains a transposition is isomorphic to  $S_n$ . A primitive group which contains a 3-cycle is isomorphic to  $A_n$  or  $S_n$ .

Lemma Three (see reference [13]) The alternating group  $A_{11}$  on 11 symbols is a quotient group of the modular group, and  $A_{11}$  is not isomorphic with any group  $PSL(2, \mathbb{Z}_p) = \Gamma/\Gamma(p)$ .

**Proof** We observe first that the simple group  $A_{11}$  cannot be isomorphic with any group  $PSL(2,\mathbb{Z}_p)$ , because the latter group is known to be of order  $p(p^2-1)/2$ , and p is the greatest prime number dividing its order. Since 11 is the greatest prime number dividing the order of  $A_{11}$ , we would have p=11. But  $A_{11}$  has order 11!/2 which is larger than  $11(11^2-1)/2$ . Now we show that  $A_{11}$  is a quotient group of the modular group  $PSL(2,\mathbb{Z})$ . To prove this, we merely have to show that  $A_{11}$  can be generated by an element X of order two and an element Y of order 3. We choose

$$X = (1, 5)(6, 7)(8, 10)(9, 11),$$

$$Y = (1, 2, 3)(4, 5, 6)(7, 8, 9)$$
. Then

$$YX = (1, 2, 3, 5, 7, 10, 8, 11, 9, 6, 4).$$

Since YX is an eleven-cycle, the group generated by X,Y is certainly transitive. Since 11 is a prime number, the group is also primitive. If we can show it contains a three-cycle, it must be  $A_{11}$  or  $S_{11}$ , according to theorem 22. Since X,Y  $\in A_{11}$  we merely have to compose a three-cycle out of these

permutations to complete the proof of lemma three. Now  $Y^{-1}XY = (2, 6)(4, 8)(7, 11)(9, 10),$   $YXY^{-1}X = (1, 5, 11, 10, 6, 7, 8, 9)(3, 4),$   $(YXY^{-1}X)^4 = (1, 6)(5, 7)(8, 11)(9, 10),$   $Z = Y^{-1}XY(YXY^{-1}X)^4 = (1, 6, 2)(4, 11, 5, 7, 8).$  Therefore  $Z^5 = (1, 2, 6)$  is a three cycle and our proof is complete.

#### 6.1.1 The Jordan-Hölder Theorem

An important result that is used in the proof above is called the Jordan-Hölder Theorem. To understand this theorem we must first define what we mean by a composition series.

**Definition** Every finite group G of order greater than one possesses a finite series of subgroups, called a composition series, such that  $e \triangleleft T_s \triangleleft \cdots \triangleleft T_2 \triangleleft T_1 \triangleleft G$ ,

where  $T_{i+1}$  is a maximal normal subgroup of  $T_i$  and  $T \triangleleft G$  means that T is a normal subgroup of G. A composition series is therefore a normal series without repetition whose factors are all simple. The quotient groups  $G/T_1$ ,  $T_1/T_2, \ldots, T_{s-1}/T_s$ , and  $T_s$  are called composition factors of G.

The Jordan-Hölder Theorem The composition quotient groups belonging to two composition series of a finite group G are, apart from their sequence, isomorphic in pairs. In other words, if

 $e \subset T_s \subset \cdots \subset T_2 \subset T_1 \subset G$ 

is one composition series and

$$e \subset K_t \subset \cdots \subset K_2 \subset K_1 \subset G$$

is another, then t=s, and corresponding to any composition quotient group  $K_j/K_{j+1}$ , there is a composition quotient group  $T_i/T_{i+1}$  such that  $K_j/K_{j+1} \cong T_i/T_{i+1}$ .

The kernel of the homomorphic mapping from the modular group  $\Gamma$  to  $A_{11}$  provides us with a non congruence subgroup because the simple group  $A_{11}$  cannot appear as a quotient in a composition series of any group  $\Gamma/\Gamma(N)$ .

We can generalise this proof to  $H^5$ .

#### 6.2 Proof extended to $H^5$

We now begin to think about how to extend this proof to  $H^5$ .

For any ideal I of  $\mathbb{Z}[\lambda_q]$ ,  $H^q(I)$  is the kernel of a natural homomorphism  $\rho: H^q \to PSL(2, \mathbb{Z}[\lambda_q]/I)$ . Thus each principal congruence subgroup of  $H^q$  is normal and of finite index.

This is equivalent to lemma one in the previous proof therefore lemma one holds. When we look at lemma two and how its proof works we see that lemma two follows through similarly to before as we are working with a Euclidean domain and so primes factorization works in a similar way. We are therefore left with lemma three to look at.

In a paper by Lang, Lim, and Tan (see reference [11]) they prove the following result.

Corollary (Lang, Lim, and Tan [11]) Let p be the positive rational prime that lies below the prime ideal  $(\tau)$  of  $\mathbb{Z}[\lambda_5]$ . The indices of the congruence subgroups of  $H^5$  of level  $(\tau)$  are given by

| p                               | (	au)                      | $[H^5:H^5(	au)]$ | $[H^5:H_1{}^5(	au)]$ | $H^5:\overline{H_0}^5(	au)$ |
|---------------------------------|----------------------------|------------------|----------------------|-----------------------------|
| 2                               | $(\tau) = (2)$             | 10               | 5                    | 5                           |
| 3                               | (	au) = (3)                | 60               | 20                   | 10                          |
| 5                               | $(\tau) = (2 + \lambda_5)$ | 60               | 12                   | 6                           |
| $\equiv \pm 3 (mod 10), \neq 3$ | (	au) = (p)                | a                | $(p^4-1)/2$          | $p^2 + 1$                   |
| $\equiv \pm 1 (mod 10)$         | $(\tau) \neq (p)$          | b                | $(p^2-1)/2$          | p+1                         |

where 
$$a = \frac{1}{2}(p^2 - 1)p^2(p^2 + 1)$$
 and  $b = \frac{1}{2}(p - 1)p(p + 1)$ 

Looking at the results in the appendix (at the end of my thesis) In the appendix we look at subgroups of low index in  $H^5$  and their cor-

In the appendix we look at subgroups of low index in  $H^5$  and their corresponding transistive permutation representations. We see epimorphisms from  $H^5$  onto various finite permutation groups. By the coset permutation representations we find we can see that  $A_{11}$  is a quotient group of  $H^5$ . In fact using GAP we are able to deduce that there are up to automorphisms of  $A_{11}$ , 160 epimorphisms from  $H^5$  onto  $A_{11}$  in the appendix. The representatives of these are indicated by stars in their first column.

One specific example of these epimorphisms is:

$$X = (1, 10)(5, 7)(2, 8)(9, 11)$$
  
 $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$ 

We can see that this system is primitive by observing that it cannot have any systems of imprimitivity as 11 is prime(see section 4.5.1). Using theorem 22 and calculating the equation below we can see that these per-

mutations do indeed generate  $A_{11}$ . By calculation we get  $(XY)^4 = (1, 6, 7)$ 

for the above permutations. Therefore since both X and Y lie in  $A_{11}$  they must generate this group.

We can easily see that  $A_{11}$  does not have the same index as any of the principal congruence subgroups mentioned in Lang, Lim, and Tan's corollary. This can be seen because 11 is the greatest prime that divides the order of  $A_{11}$ . However neither 10 or 60 are divisible by 11. As for the other indexes the p used to calculate these is the greatest prime integer that divides the indexes and if we substitute p=11 into these formulae we get  $(10\times11\times12)/2=660$  and  $(120\times121\times122)/2=885720$ . The order however of  $A_{11}$  is 11!/2=19958400 and this is not the same as either of the above so we can see that  $A_{11}$  is none of the groups mentioned in the theorem by Lim, Lang, and Tan. Therefore the kernel of the epimorphism from  $H^5$  onto  $A_{11}$  gives us a non-congruence subgroup (in the same way as before). By combining all our work we can deduce our main result which is as follows.

Main Result There is a non-congruence subgroup of index 11 in  $H^5$ .

# Acknowledgements

I would like to thank Professor David Singerman for all his help and guidance during my studies. I would also like to thank the School of Mathematics at Southampton University for all their support during my time there. I am grateful for the financial support from EPSRC.

## References

- [1]J.W.Anderson, Hyperbolic Geometry, Springer-Verlag, 2005
- [2]C.J.Cummins and S.Pauli, Congruence subgroups of  $PSL(2,\mathbb{Z})$  of genus less than or equal to 24, Experimental Mathematics, Vol.12, Issue 2, 243-255, 2003
- [3]E.Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Mathematische Annalen, Vol.112, 664-699, 1936
- [4] Hoare and Singerman, Groups St. Andrews, LMS lecture notes, Vol.71, 221-227, 1982
- [5]T.Hsu, Permutation techniques for coset representations of modular subgroups, Geometric Galois Actions II: Dessins d'enfants, Mapping Class Groups and Moduli, Vol.243 of L.M.S. lecture notes, 67-77, Cambridge University Press, 1991
- [6]T.Hsu, *Identifying congruence subgroups of the modular group*, Proceedings of the American mathematical society, Vol.124, No.5, 1351-1359, May 1996
- [7]I.P.Ivrissimtzis, Congruence subgroups of Hecke groups and regular dessins, PhD Thesis, University of Southampton, 1998
- [8]I.P.Ivrissimtzis and D.Singerman, Regular maps and principal congruence subgroups of Hecke groups, European Journal of Combinatorics, Vol.26, 437-456, 2005
- [9]G.A.Jones and D.Singerman, Complex functions: An algebraic and geometric viewpoint, Cambridge University Press, 1997
- [10]S.Katok, Fuchsian Groups, University of Chicago Press, Section 5.6, 1992 [11]Mong-Lung Lang, Chong-Hai Lim, and Ser-Peow Tan, *Principal Con-*
- gruence Subgroups of the Hecke Groups, Journal of Number Theory, Vol.85, 220-230, 2000
- [12] C.Maclachlan, Topics on Riemann surfaces and Fuchsian groups, L.M.S. lecture series 287, Cambridge university press, 2001
- [13] W.Magnus, Noneuclidean tessellations and their groups, Academic press,

New York and London, Chapter 3, 1974

 $[14] B. Schoeneberg, \textit{Elliptic modular functions}, Springer-Verlag, Chapter 4, p.71-103, <math display="inline">19\bar{7}4$ 

[15] D.Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math.Soc, 2(1970), 319-323

[16] Helmut Wielandt, Finite Permutation Groups, Academic press, New York and London, 1964

[17] K.Wohlfahrt, An extension of F.Klein's level concept, Illinois J. Math., 8 (1964), 529-535

# Appendix

In the following table we look at subgroups of low index in  $H^5$  in the form of their corresponding transitive permutation representations. We see epimorphisms from  $H^5$  onto various finite permutation groups. The representative 160 epimorphisms from  $H^5$  onto  $A_{11}$  that we discussed in section 6.2 are indicated by stars in their first column (i.e. next to the index figures).

| T 1   | T                   | G:                                            | T 1   | D 1 1 1              |
|-------|---------------------|-----------------------------------------------|-------|----------------------|
| Index | Permutations        | Signature                                     | Level | Para. cycle lengths  |
| 2     | X = (1, 2)          | $g = (0; 5, 5, \infty)$                       | 2     | 2                    |
|       | Y = (1)(2)          |                                               |       |                      |
| 5     | X = (1, 2)          | $g = (0; 2, 2, \overline{2}, \infty, \infty)$ | 4     | 4,1                  |
|       | Y = (1, 2, 3, 4, 5) |                                               |       |                      |
| 5     | X = (1, 3)          | $g=(0;2,2,2,\infty,\infty)$                   | 6     | 3, 2                 |
|       | Y = (1, 2, 3, 4, 5) |                                               |       |                      |
| 5     | X = (1)(2)(3)(4)(5) | $g = \overline{(0; 2, 2, 2, 2, \infty)}$      | 5     | 5                    |
|       | Y = (1, 2, 3, 4, 5) |                                               |       |                      |
| 5     | X = (1,2)(3,4)      | $g = (0; 2, \infty, \infty, \infty)$          | 3     | 3, 1, 1              |
|       | Y = (1, 2, 3, 4, 5) | · ·                                           |       | _                    |
| 5     | X = (1,3)(4,5)      | $g = (0; 2, \infty, \infty, \infty)$          | 2     | $2, 2, \overline{1}$ |
|       | Y = (1, 2, 3, 4, 5) | ,                                             |       |                      |
| 5     | X = (1,3)(2,4)      | $g=(1;2,\infty)$                              | 5     | 5                    |
|       | Y = (1, 2, 3, 4, 5) | ·                                             |       |                      |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 | X=(1,6)                                       | $g = (0; 2, 2, 2, 2, 5, \infty)$     | 6  | 6             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------|--------------------------------------|----|---------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 1                                             |                                      |    | · ·           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 | X = (1,2)(3,6)                                | $g = (0; 2, 2, 5, \infty, \infty)$   | 5  | 5,1           |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,2)(5,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(2,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(4,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(4,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(5,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,2)(3,4)(5,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,2)(3,4)(5,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(4,5)(2,6) \\ Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(2,4)(5,6) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(1$    |   |                                               |                                      |    |               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 |                                               | $g = (0; 2, 2, 5, \infty, \infty)$   | 5  | 5,1           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ |                                               | (0.0.0.5                             |    | F 1           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P |                                               | $g=(0;2,2,5,\infty,\infty)$          | Э  | 5,1           |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(4,6) \\ & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(5,6) \\ & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,2)(3,4)(5,6) \\ & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,2)(3,4)(5,6) \\ & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(4,5)(2,6) \\ & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(2,4)(5,6) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & X = (1,4)(5,6)(3,7) \\ & X = $                       | 6 |                                               | $a = (0.2, 2.5, \infty, \infty)$     | 3  | 3,3           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | l .                                           |                                      |    |               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 |                                               | $g = (0; 2, 2, 5, \infty, \infty)$   | 4  | 4,2           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | Y = (1, 2, 3, 4, 5)                           |                                      |    |               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 |                                               | $g = (0; 2, 2, 5, \infty, \infty)$   | 4  | 4,2           |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(4,5)(2,6) \\ & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(2,4)(5,6) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline \end{array}  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                               |                                      |    |               |
| $ \begin{array}{ c c c c c }\hline 6 & X = (1,3)(4,5)(2,6) & g = (0;5,\infty,\infty,\infty) & 6 & 3,2 \\ Y = (1,2,3,4,5) & g = (1;5,\infty) & 6 & 6 \\ X = (1,3)(2,4)(5,6) & g = (1;5,\infty) & 6 & 6 \\ Y = (1,2,3,4,5) & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 |                                               | $g = (0; 5, \infty, \infty, \infty)$ | 4  | 4,1,1         |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5) \\ \hline 6 & X = (1,3)(2,4)(5,6) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 |                                               | (0.5                                 | 6  | 2 2 1         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O |                                               | $g = (0, 5, \infty, \infty, \infty)$ | В  | 3, 2, 1       |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5) \\ \hline 7 & X = (4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(5,7) \\ \hline 7 & X = (1,2)(5,$ | 6 |                                               | $a = (1.5 \infty)$                   | 6  | 6             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ü |                                               | $g=(1,0,\infty)$                     |    |               |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5) \\ \hline 7 & X = (5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (2,3)(4,6)(5,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,4)(5,6)(3,7) \\ & Y = (1,2,3,4,5) \\ \hline \end{array}  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 |                                               | $g = (0; 2, 2, 2, 5, 5, \infty)$     | 7  | 7             |
| $ \begin{array}{ c c c c c c } \hline & Y = (1,2,3,4,5) \\ \hline 7 & X = (1,2)(4,6)(5,7) & g = (0;2,5,5,\infty,\infty) & 6 & 6, 2 \\ \hline Y = (1,2,3,4,5) & & & & & & & & & \\ \hline 7 & X = (1,3)(4,6)(5,7) & g = (0;2,5,5,\infty,\infty) & 10 & 5, 2 \\ \hline Y = (1,2,3,4,5) & & & & & & & & \\ \hline 7 & X = (2,3)(4,6)(5,7) & g = (0;2,5,5,\infty,\infty) & 6 & 6, 2 \\ \hline Y = (1,2,3,4,5) & & & & & & & \\ \hline 7 & X = (1,2)(5,6)(3,7) & g = (0;2,5,5,\infty,\infty) & 6 & 6, 2 \\ \hline Y = (1,2,3,4,5) & & & & & & \\ \hline 7 & X = (1,4)(5,6)(3,7) & g = (0;2,5,5,\infty,\infty) & 12 & 4, 3 \\ \hline Y = (1,2,3,4,5) & & & & & \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                               |                                      |    |               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 |                                               | $g = (0; 2, 2, 2, 5, 5, \infty)$     | 7  | 7             |
| $\begin{array}{ c c c c c c }\hline & Y = (1,2,3,4,5) & & & & & & & \\ \hline 7 & X = (1,3)(4,6)(5,7) & g = (0;2,5,5,\infty,\infty) & 10 & 5,2 \\ & Y = (1,2,3,4,5) & & & & & \\ \hline 7 & X = (2,3)(4,6)(5,7) & g = (0;2,5,5,\infty,\infty) & 6 & 6,2 \\ & Y = (1,2,3,4,5) & & & & & \\ \hline 7 & X = (1,2)(5,6)(3,7) & g = (0;2,5,5,\infty,\infty) & 6 & 6,2 \\ & Y = (1,2,3,4,5) & & & & & \\ \hline 7 & X = (1,4)(5,6)(3,7) & g = (0;2,5,5,\infty,\infty) & 12 & 4,3 \\ & Y = (1,2,3,4,5) & & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                               |                                      |    |               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 |                                               | $g = (0; 2, 5, 5, \infty, \infty)$   | 6  | 6,1           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 |                                               | a = (0, 0, 5, 5, ac, ac)             | 10 | <b>5</b> 9    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ' |                                               | $g = (0, 2, 3, 3, \infty, \infty)$   | 10 | ე,∠           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 |                                               | $a = (0; 2, 5, 5, \infty, \infty)$   | 6  | 6;1           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                               |                                      |    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 |                                               | $g = (0; 2, 5, 5, \infty, \infty)$   | 6  | 6, 1          |
| Y = (1, 2, 3, 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                               |                                      |    |               |
| Y = (1, 2, 3, 4, 5)<br>7 $X = (2, 4)(5, 6)(3, 7)$ $q = (0, 2, 5, 5, \infty, \infty)$ 12 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 |                                               | $g = (0; 2, 5, 5, \infty, \infty)$   | 12 | 4,3           |
| $ 7 + X  = (2, 4)(5, 6)(3, 7) + a = (0, 2, 5, 5, \infty, \infty) + 12 + 4.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Y = (1, 2, 3, 4, 5)                           |                                      |    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 | X = (2,4)(5,6)(3,7)                           | $g=(0;2,5,5,\infty,\infty)$          | 12 | 4,3           |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R | X = (1, 2, 3, 4, 3)<br>X = (1, 6)(2, 7)(3, 8) | $a = (0.2, 2.5, 5.5, \infty)$        | 8  | <del>8-</del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 |                                               | $g = (0, 2, 2, 0, 0, 0, \infty)$     | ١  | J             |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 | X = (1,6)(2,7)(4,8)                           | $g = (0; 2, 2, 5, 5, 5, \infty)$     | 8  | 8             |
| Y = (1, 2, 3, 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                               |                                      |    |               |

|    | V (1.0)(2.6)(4.7)(7.0)                                                    | (0.5.5.5)                                         | 77 | 77 1          |
|----|---------------------------------------------------------------------------|---------------------------------------------------|----|---------------|
| 8  | X = (1, 2)(3, 6)(4, 7)(5, 8)<br>Y = (1, 2, 3, 4, 5)                       | $g = (0; 5, 5, 5, \infty, \infty)$                | 7  | 7,1           |
| 8  | X = (1,3)(2,6)(4,7)(5,8)                                                  | $g = (0; 5, 5, 5, \infty, \infty)$                | 15 | 5,3           |
| 9  | Y = (1, 2, 3, 4, 5) $X = (1, 6)(2, 7)(3, 8)(4, 9)$                        | $g = (0; 2, 5, 5, 5, 5, \infty)$                  | 9  | 9             |
|    | Y = (1, 2, 3, 4, 5)                                                       |                                                   |    | ,             |
| 10 | X = (1,6)(2,7)(3,8)(4,9)(5,10)                                            | $g = (0; 5, 5, 5, 5, 5, \infty)$                  | 10 | 10            |
| 10 | Y = (1, 2, 3, 4, 5) $X = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)$                 | $g = (2; \infty)$                                 | 10 | 10            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |    |               |
| 10 | X = (1,6)(2,8)(3,7)(4,9)(5,10)                                            | $g=(1;\infty,\infty,\infty)$                      | 4  | 4, 4, 2       |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(2, 9)(3, 7)(4, 8)(5, 10)$ | $g=(2;\infty)$                                    | 10 | 10            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |    | ,             |
| 10 | X = (1,6)(2,7)(3,10)(4,9)(5,8)<br>Y = (1,2,3,4,5)(6,7,8,9,10)             | $g=(1;\infty,\infty,\infty)$                      | 6  | 6, 2, 2       |
| 10 | X = (1,6)(2,8)(3,7)(4,10)(5,9)                                            | $g = (1; \infty, \infty, \infty)$                 | 6  | 6, 2, 2       |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |    |               |
| 10 | X = (1,6)(2,8)(3,10)(4,7)(5,9)<br>Y = (1,2,3,4,5)(6,7,8,9,10)             | $g=(2;\infty)$                                    | 10 | 10            |
| 10 | X = (1,6)(2,10)(3,9)(4,8)(5,7)                                            | $g = (0; \infty, \infty, \infty, \infty, \infty)$ | 2  | 2, 2, 2, 2, 2 |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   | _  |               |
| 10 | X = (1,2)(3,4)(5,6)(7,8)(9,10)<br>Y = (1,2,3,4,5)(6,7,8,9,10)             | $g = (0; \infty, \infty, \infty, \infty, \infty)$ | 6  | 6, 1, 1, 1, 1 |
| 10 | X = (1,2)(3,4)(5,6)(7,8)(9,10)                                            | $g=(1;\infty,\infty,\infty)$                      | 8  | 8, 1, 1       |
| 10 | Y = (1,3,2,4,5)(6,7,8,9,10)                                               | $g = (0; \infty, \infty, \infty, \infty, \infty)$ | 10 | 5, 2, 1, 1, 1 |
| 10 | X = (1,2)(3,4)(5,6)(7,8)(9,10)<br>Y = (1,3,4,2,5)(6,7,8,9,10)             | i i                                               | 10 | [0,2,1,1,1]   |
| 10 | X = (1,2)(3,4)(5,6)(7,8)(9,10)                                            | $g=(2;\infty)$                                    | 10 | 10            |
| 10 | Y = (1,3,2,4,5)(7,9,8,10,6) $X = (1,2)(3,4)(5,6)(7,8)(9,10)$              | $g = (0; \infty, \infty, \infty, \infty, \infty)$ | 4  | 4, 2, 2, 1, 1 |
| 10 | Y = (1, 3, 4, 2, 5)(7, 9, 10, 8, 6)                                       |                                                   | 4  | 4, 2, 2, 1, 1 |
| 10 | X = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)                                       | $g=(1;\infty,\infty,\infty)$                      | 14 | 7, 2, 1       |
| 10 | Y = (1,3,2,4,5)(7,9,10,8,6) $X = (1,2)(3,8)(4,9)(5,10)(6,7)$              | $g = (1; \infty, \infty, \infty)$                 | 8  | 8, 1, 1       |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   | 3  | , ,           |
| 10 | X = (1,2)(3,8)(4,9)(5,10)(6,7) $X = (1,2)(3,8)(4,9)(5,10)(6,7)$           | $g=(1;\infty,\infty,\infty)$                      | 12 | 4, 3, 3       |
|    | Y = (1, 3, 2, 4, 5)(6, 8, 7, 9, 10)                                       |                                                   |    |               |

|    | T                                                                         | <del></del>                                       | <del>- /</del> |                                |
|----|---------------------------------------------------------------------------|---------------------------------------------------|----------------|--------------------------------|
| 10 | X = (1,2)(3,8)(4,9)(5,10)(6,7) $Y = (1,2,2,4,5)(6,7,8,0,10)$              | $g=(1;\infty,\infty,\infty)$                      | 6              | 6, 3, 1                        |
| 10 |                                                                           | $g = (1; \infty, \infty, \infty)$                 | 8              | 8,1,1                          |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | $g=(1,\infty,\infty,\infty)$                      | 0              | 0,1,1                          |
| 10 | X = (1,2)(3,10)(4,8)(5,9)(6,7)                                            | $g=(2;\infty)$                                    | 10             | 10                             |
|    | Y = (1, 3, 2, 4, 5)(6, 8, 7, 9, 10)                                       |                                                   |                |                                |
| 10 | X = (1,2)(3,10)(4,8)(5,9)(6,7)                                            | $g=(1;\infty,\infty,\infty)$                      | 6              | 6, 3, 1                        |
|    | Y = (1, 3, 2, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |                |                                |
| 10 | X = (1,2)(3,10)(4,9)(5,8)(6,7)                                            | $g = (0; \infty, \infty, \infty, \infty, \infty)$ | 4              | 4, 2, 2, 1, 1                  |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | 7- 7-                                             | <u> </u>       | -                              |
| 10 | $X = (1,2)(3,\overline{10})(4,9)(5,8)(6,7)$                               | $g=(2;\infty)$                                    | 10             | 10                             |
| 10 | Y = (1, 3, 2, 4, 5)(6, 8, 7, 9, 10)                                       | $g = (1; \infty, \infty, \infty)$                 | 14             | 7, 2, 1                        |
| 10 | X = (1,2)(3,10)(4,9)(5,8)(6,7) $Y = (1,3,2,4,5)(6,7,8,9,10)$              | $g=(1;\infty,\infty,\infty)$                      | 14             | 1, 2, 1                        |
| 10 | X = (1,2)(3,9)(4,8)(5,10)(6,7)                                            | $g=(2;\infty)$                                    | 10             | 10                             |
|    | Y = (1, 3, 2, 4, 5)(6, 8, 7, 9, 10)                                       |                                                   |                |                                |
| 10 | X = (1,2)(3,9)(4,8)(5,10)(6,7)                                            | $g = (0; \infty, \infty, \infty, \infty, \infty)$ | 6              | 3, 3, 2, 1, 1                  |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |                |                                |
| 10 | X = (1,2)(3,9)(4,8)(5,10)(6,7)                                            | $g=(1;\infty,\infty,\infty)$                      | 6              | 6, 3, 1                        |
|    | Y = (1, 3, 2, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |                |                                |
| 10 | X = (1,2)(3,9)(4,10)(5,8)(6,7)                                            | $g=(1,\infty,\infty,\infty)$                      | 20             | 5, 4, 1                        |
| 10 | Y = (1, 3, 2, 4, 5)(6, 7, 8, 9, 10) $Y = (1, 3)(2, 8)(4, 10)(5, 0)(6, 7)$ | 0 (0                                              | 0              | 2 2 2 1 1                      |
| 10 | X = (1,2)(3,8)(4,10)(5,9)(6,7)<br>Y = (1,2,3,4,5)(6,7,8,9,10)             | $g = (0; \infty, \infty, \infty, \infty, \infty)$ | 6              | 3, 3, 2, 1, 1                  |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 2)(3, 8)(4, 10)(5, 9)(6, 7)$ | $g = (1; \infty, \infty, \infty)$                 | 4              | 4, 4, 2                        |
| 10 | Y = (1, 3, 2, 4, 5)(6, 8, 7, 9, 10)                                       | $y = (1, \omega, \omega, \omega)$                 | 1              | <b>4</b> , <b>4</b> , <b>2</b> |
| 10 | X = (1,2)(3,8)(4,10)(5,9)(6,7)                                            | $g = (1; \infty, \infty, \infty)$                 | 14             | 7, 2, 1                        |
| -  | Y = (1, 3, 2, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |                |                                |
| 10 | X = (5,7)                                                                 | $g = (0; 2, 2, 2, 2, 2, 2, 2, \infty)$            | 10             | 10                             |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   | ,              |                                |
| 10 | X = (1,6)(5,7)                                                            | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$          | 8              | 8,2                            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                   |                |                                |
| 10 | X = (2,6)(5,7)                                                            | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$          | 21             | 7,3                            |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | (0.00.00.00                                       | 10             | 0.4                            |
| 10 | X = (2,7)(5,6)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                             | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$          | 12             | 6,4                            |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 7)(5, 6)$                    | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$          | 5              | 5, 5                           |
| 10 |                                                                           | $g = (0, 2, 2, 2, 2, 2, \infty, \infty)$          |                | ,,,                            |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(5, 7)(2, 10)$             | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$     | 6              | 6, 2, 2                        |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | , , , , , , , , , , , , , , , , , , ,             |                |                                |
|    |                                                                           |                                                   |                |                                |

| 10 | X = (1,6)(5,7)(2,9)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                  | $g=(0;2,2,2,2,\infty,\infty)$                   | 30              | 5, 3, 2         |
|----|---------------------------------------------------------------------|-------------------------------------------------|-----------------|-----------------|
| 10 | X = (1,6)(5,7)(3,10)                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 30              | 5, 3, 2         |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(5, 7)(3, 9)$        | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 4               | 4, 4, 2         |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |
| 10 | X = (2,10)(5,7) $Y = (1,2,3,4,5)(6,7,8,9,10)$                       | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$        | 12              | 6,4             |
| 10 | X = (2,7)(5,10)                                                     | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$        | 5               | 5, 5            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |
| 10 | X = (2,8)(1,10)(5,7)                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 12              | 4, 3, 3         |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |
| 10 | X = (3,8)(1,10)(5,7)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                 | $g=(0;2,2,2,2,\infty,\infty,\infty)$            | 12              | 4, 3, 3         |
| 10 | X = (3,8)(2,10)(5,7)                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 12              | 4, 3, 3         |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |
| 10 | X = (4,8)(3,6)(5,7)                                                 | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 4               | 4, 4, 2         |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |
| 10 | X = (4,8)(1,9)(5,7)                                                 | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 4               | 4, 4, 2         |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.0.0                                          | 4               | 4, 2, 2, 2      |
| 10 | X = (2,6)(4,9)(1,7)(5,8)<br>Y = (1,2,3,4,5)(6,7,8,9,10)             | $g=(0;2,2,\infty,\infty,\infty,\infty)$         | 4.              | , , ,           |
| 10 | X = (2,10)(4,7)(1,6)(5,8)                                           | $g=(1,2,2,\infty,\infty)$                       | 8               | 8, 2            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |
| 10 | X = (2,10)(1,7)(4,6)(5,8)<br>Y = (1,2,3,4,5)(6,7,8,9,10)            | $g=(1;2,2,\infty,\infty)$                       | 8               | 8,2             |
| 10 | X = (2,10)(1,7)(5,6)(4,8)                                           | $g = (1; 2, 2, \infty, \infty)$                 | 12              | 6,4             |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 | 0, 1            |
| 10 | X = (2,10)(1,8)(5,6)(4,7)                                           | $g=(1;2,2,\infty,\infty)$                       | 8               | 8,2             |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 | . ,             |                 |
| 10 | X = (2,10)(1,8)(5,7)(4,6)                                           | $g=(1;2,2,\infty,\infty)$                       | 12              | 6, 4            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |
| 10 | X = (4,10)(5,8)(1,7)(2,6)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 6               | 3,3,2,2         |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 10)(5, 8)(4, 7)(2, 6)$ | $g = (1; 2, 2, \infty, \infty)$                 | 5               | 5,5             |
| 10 |                                                                     | $g=(1,2,2,\infty,\infty)$                       | ) ၂             | )<br>  0, 5<br> |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (5, 10)(1, 8)(4, 7)(2, 6)$ | $g = (1, 2, 2, \infty, \infty)$                 | 21              | 7,3             |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (4, 10)(1, 8)(5, 7)(2, 6)$ | :                                               |                 |                 |
| 10 |                                                                     | $g=(1;2,2,\infty,\infty)$                       | $2\overline{1}$ | 7,3             |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                 |                 |

| 10             | V = (5, 10)(1, 9)(9, 7)(4, 6)                                | (0.0.0.                                                                        | I c | 0 0 0 0    |
|----------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|-----|------------|
| 10             | X = (5,10)(1,8)(2,7)(4,6) $Y = (1,2,3,4,5)(6,7,8,9,10)$      | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$                                | 6   | 3, 3, 2, 2 |
| 10             | X = (5,6)(1,8)(2,7)(4,10)                                    | $g = (1; 2, 2, \infty, \infty)$                                                | 8   | 8, 2       |
| 10             | Y = (0,0)(1,0)(2,7)(4,10) $Y = (1,2,3,4,5)(6,7,8,9,10)$      | $g=(1,2,2,\infty,\infty)$                                                      |     | 0, 2       |
| 10             | X = (5,6)(2,8)(4,7)(1,10)                                    | $g=(1;2,2,\infty,\infty)$                                                      | 6   | 3, 3, 2, 2 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | $g=(1,2,2,\infty,\infty)$                                                      |     | 0,0,2,2    |
| 10             | X = (1,6)(2,8)(5,7)(4,10)                                    | $g = (1; 2, 2, \infty, \infty)$                                                | 8   | 8, 2       |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | (1, 2, 2, 30, 30)                                                              |     | 0,2        |
| 10             | X = (1,6)(2,8)(5,10)(4,7)                                    | $g = (1; 2, 2, \infty, \infty)$                                                | 21  | 7,3        |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                | ļ   | ,          |
| 10             | X = (1,7)(2,8)(5,10)(4,6)                                    | $g=(1;2,2,\infty,\infty)$                                                      | 8   | 8, 2       |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | •                                                                              |     |            |
| 10             | X = (1,7)(2,8)(4,10)(5,6)                                    | $g = (1; 2, 2, \infty, \infty)$                                                | 5   | 5, 5       |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                |     |            |
| 10             | X = (1, 2)(5, 7)                                             | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$                                       | 9   | 9, 1       |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                |     |            |
| 10             | X = (3,4)(5,7)                                               | $g = (0; 2, 2, 2, 2, 2, 2, \infty, \infty)$                                    | 9   | 9,1        |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                |     |            |
| 10             | X = (1,2)(5,7)(6,10)                                         | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$                                  | 8   | 8, 1, 1    |
| 10             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                      |     | 8, 1, 1    |
| 10             | X = (1,2)(5,7)(8,9) $X = (1,2)(5,7)(6,7,9,0,10)$             | $g=(0;2,2,2,\infty,\infty,\infty)$                                             | 8   | 8, 1, 1    |
| 10             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$                                  | 8   | 8, 1, 1    |
| $\mid 10 \mid$ | X = (3,4)(5,7)(6,10) $Y = (1,2,3,4,5)(6,7,8,9,10)$           | $g = (0, 2, 2, 2, 2, \infty, \infty, \infty)$                                  | 0   | 0, 1, 1    |
| 10             | X = (2,3)(5,7)(9,10)                                         | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$                                  | 8   | 8, 1, 1    |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | $g=(0,2,2,2,2,\infty,\infty,\infty)$                                           | 0   | 0,1,1      |
| 10             | X = (1, 2)(5, 7)(9, 10)                                      | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$                                  | 8.  | 8, 1, 1    |
| _              | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | <u> </u>                                                                       | -   | -,-,-      |
| 10             | X = (3,4)(5,7)(9,10)                                         | $g = (\overline{0}; 2, \overline{2}, \overline{2}, 2, \infty, \infty, \infty)$ | 8   | 8, 1, 1    |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          | ,                                                                              |     |            |
| 10             | X = (2,3)(5,7)                                               | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$                                       | 9   | 9,1        |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                |     |            |
| 10             | X = (1,2)(3,4)(5,7)(6,10)                                    | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$                                | 7   | 7, 1, 1, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                |     |            |
| 10             | X = (1,2)(3,4)(5,7)(9,10)                                    | $g=(0;2,2,\infty,\infty,\infty,\infty)$                                        | 7   | 7,1,1,1    |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                |     |            |
| 10             | X = (1,2)(3,4)(5,7)(8,9)                                     | $g=\overline{(0;2,2,\infty,\infty,\infty,\infty)}$                             | 7   | 7, 1, 1, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(2, 3)(5, 7)$ | (0,0,0,0,0                                                                     | 14  | 7.01       |
| $\mid 10 \mid$ |                                                              | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$                                  | 14  | 7, 2, 1    |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                          |                                                                                |     |            |

| 10             | V (1 6)(2 4)(5 7)                                                   | - (0.0.0.0.0.)                                  | T 1 4          | T 7 0 1    |
|----------------|---------------------------------------------------------------------|-------------------------------------------------|----------------|------------|
| 10             | X = (1,6)(3,4)(5,7) $Y = (1,2,3,4,5)(6,7,8,9,10)$                   | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 14             | 7, 2, 1    |
| 10             | X = (1,6)(2,3)(5,7)(9,10)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 6              | 6, 2, 1, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                |            |
| 10             | X = (1,6)(2,4)(5,7)(8,9)                                            | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 10             | 5, 2, 2, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | · ·                                             |                |            |
| 10             | X = (1,6)(2,4)(5,7)(9,10)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 10             | 5, 2, 2, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                |            |
| 10             | X = (1, 6)(2, 4)(5, 7)(8, 10)                                       | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 4              | 4, 2, 2, 2 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | ·                                               |                |            |
| 10             | X = (1,4)(2,6)(5,7)(8,9)                                            | $g=(1;2,2,\infty,\infty)$                       | 9              | 9, 1       |
| 10             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (1.0.0                                          |                |            |
| 10             | X = (1,4)(2,6)(5,7)(9,10) $X = (1,2,2,4,5)(6,7,8,0,10)$             | $g=(1;2,2,\infty,\infty)$                       | 9              | 9,1        |
| 10             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (1; 2, 2, \infty, \infty)$                 | 9              | 9,1        |
| $\mid 10 \mid$ | X = (1,4)(2,7)(5,6)(8,9) $Y = (1,2,3,4,5)(6,7,8,9,10)$              | $g=(1,2,2,\infty,\infty)$                       | 9              | 9,1        |
| 10             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 4)(2, 7)(5, 6)(9, 10)$ | $g = (1; 2, 2, \infty, \infty)$                 | 9              | 9, 1       |
| 10             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | · ·                                             |                | ',5,1      |
| 10             | X = (1,4)(2,7)(5,6)                                                 | $g = (1; 2, 2, 2, 2, \infty)$                   | 10             | 10         |
| -              | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                |            |
| 10             | X = (1,4)(2,6)(5,7)(8,10)                                           | $g = (1; 2, 2, \infty, \infty)$                 | 8              | 8, 2       |
| <u> </u>       | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 | <u> </u>       |            |
| 10             | X = (1,4)(2,7)(5,6)(8,10)                                           | $g=(1;2,2,\infty,\infty)$                       | 8              | 8, 2       |
| <u> </u>       | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                |            |
| 10             | X = (1,6)(2,4)(5,7)                                                 | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 6              | 6, 2, 2    |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.         |                |            |
| 10             | X = (2,6)(5,7)(8,10)                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$   | 30             | 5, 3, 2    |
| 10             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (1; 2, 2, 2, 2, \infty)$                   | 10             | 10         |
| $\mid 10 \mid$ | X = (1,4)(2,6)(5,7)  Y = (1,2,3,4,5)(6,7,8,9,10)                    | $g=(1,2,2,2,2,\infty)$                          | $\mid 10 \mid$ | 10         |
| 10             | X = (1, 3)(2, 7)(5, 6)(8, 10) $X = (1, 3)(2, 7)(5, 6)(8, 10)$       | $g=(1;2,2,\infty,\infty)$                       | 8              | 8,2        |
| •              | Y = (1,3)(2,7)(3,0)(8,10) $Y = (1,2,3,4,5)(6,7,8,9,10)$             | $g=(1,2,2,\infty,\infty)$                       |                | , 2        |
| 10             | X = (2,7)(3,4)(5,6)(8,10)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 12             | 4, 3, 2, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 | 1 -            | , -, -, -  |
| 10             | X = (1,6)(2,3)(5,7)(8,9)                                            | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 6              | 6, 2, 1, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                |            |
| 10             | X = (1,6)(3,4)(5,7)(9,10)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$ | 6              | 6, 2, 1, 1 |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 3)(2, 6)(5, 7)$        |                                                 |                |            |
| 10             |                                                                     | $g = (1; 2, 2, 2, 2, \infty)$                   | 10             | 10         |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |                |            |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Tr (0 0)(0 1)(7 =)                                             | T. (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0           |    |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------|-----------------------------------------------------|----|------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10               | X = (2,6)(3,4)(5,7) $Y = (1,2,3,4,5)(6,7,8,9,10)$              | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 6  | 6, 3, 1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10               |                                                                | $q = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 6  | 6, 3, 1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                                                |                                                     |    |            |
| $\begin{array}{ c c c c c }\hline 10 & X = (2,6)(1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(2,6)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,8)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,6)(3,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,6)(3,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(2,7)(5,6) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,6) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,6) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline$                 | 10               |                                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 6  | 6, 3, 1    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10               |                                                                | (1.0.0                                              |    |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               |                                                                | $g=(1;2,2,\infty,\infty)$                           | 9  | 9,1        |
| $ \begin{array}{ c c c c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,8)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,6)(3,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(2,7)(5,6) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,6) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,6) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(6,7,8,9,10) \\ \hline 10 & X $ | 10               |                                                                | $a = (1 \cdot 2 \cdot 2 \cdot \infty \cdot \infty)$ | 9  | 9 1        |
| $\begin{array}{ c c c c c }\hline 10 & X = (2,7)(3,4)(5,8)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,6)(3,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(2,7)(5,6) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,6) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ Y = (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,$                                                                                                                                                                                                                                                                                                                                     | 1                |                                                                |                                                     |    | ŕ          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               |                                                                | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$     | 15 | 5, 3, 1, 1 |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(2,7)(5,6) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (2,7)(3,4)(5,6) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (2,4)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (2,4)(5,7)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,4)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,4)(5,7)(6,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (2,4)(5,7)(8,9) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (1,3)(5,7) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \\ 10 & X = (2,4)(5,7) \\ \hline \\ 10 & X = (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,$                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                                |                                                     |    |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               |                                                                | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$     | 15 | 5,3,1,1    |
| $ \begin{array}{ c c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,7)(3,4)(5,6) \\ & Y = (1,2,3,4;5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,3)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,3)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,3)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (2,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (2,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (2,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (2,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (2,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \hline 10 & X = (2,4)(5,7) \\ \hline \hline 0 & X = (2,4)(5,7) \\ \hline 0 & X = (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10               |                                                                | $a = (1:2, 2, 2, 2, \infty)$                        | 10 | 10         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                                                | ·                                                   | •  | 10         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10               |                                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 6  | 6, 3, 1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                                                |                                                     |    |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               |                                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 14 | 7, 2, 1    |
| $ \begin{array}{ c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(6,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(9,10) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,4)(5,7)(8,9) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (1,3)(5,7) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 10 & X = (2,4)(5,7) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10               |                                                                | $a = (0.2, 2.2, 2.2, \infty, \infty, \infty)$       | 14 | 7 2 1      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                |                                                     |    |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               |                                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 14 | 7, 2, 1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                |                                                     |    |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10               |                                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 14 | 7, 2, 1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10               |                                                                | $a = (0: 2, 2, 2, 2, \infty, \infty, \infty)$       | 14 | 7.2.1      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                | · · · · · · · · · · · · · · · · · · ·               |    |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10               |                                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 14 | 7, 2, 1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                | (0.000000000000000000000000000000000000             |    |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10               |                                                                | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 6  | 6,3,1      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10               |                                                                | $a = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 6  | 6.3.1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                | <b>3</b> (0, 2, 2, 2, 2, 00, 00, 00)                |    | 3, 3, 2    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10               | X = (1,4)(5,7)(8,9)                                            | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$       | 6  | 6, 3, 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                            | (0.00.00.00.00.00.00.00.00.00.00.00.00.0            |    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mid ^{10}\mid$ | X = (1,3)(5,7) $Y = (1,2,3,4,5)(6,7,8,0,10)$                   | $g = (0; 2, 2, 2, 2, 2, 2, \infty, \infty)$         | 8  | 8,2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10               | $\frac{1 - (1, 2, 3, 4, 3)(0, 7, 8, 9, 10)}{X = (2, 4)(5, 7)}$ | $q = (0; 2, 2, 2, 2, 2, 2, \infty, \infty)$         | 8  | 8,2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                            |                                                     |    |            |

|          |                                                                      | ·                                                          |     |            |
|----------|----------------------------------------------------------------------|------------------------------------------------------------|-----|------------|
| 10       | X = (1,4)(5,7) $Y = (1,2,3,4,5)(6,7,8,9,10)$                         | $g = (0; 2, 2, 2, 2, 2, \infty, \infty)$                   | 21  | 7,3        |
| 10       | X = (1,3)(2,4)(5,7)(6,10)                                            | $g = (1; 2, 2, \infty, \infty)$                            | 9   | 9,1        |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     |            |
| 10       | X = (1,3)(5,7)(6,10)(8,9)                                            | $g = (0; 2, \overline{2}, \infty, \infty, \infty, \infty)$ | 6   | 6, 2, 1, 1 |
| 100      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     |            |
| 10       | X = (2,7)(5,6)(8,9) $Y = (1,2,2,4,5)(6,7,8,0,10)$                    | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$              | 20  | 5, 4, 1    |
| 10       | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 7)(5, 6)(9, 10)$        | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$              | 20  | 5, 4, 1    |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | ,                                                          | 20  | 0, 4, 1    |
| 10       | X = (1,3)(2,7)(5,6)(8,9)                                             | $g = (1; 2, 2, \infty, \infty)$                            | 9   | 9,1        |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     |            |
| 10       | X = (1,3)(2,7)(5,6)(9,10)                                            | $g=(1;2,2,\infty,\infty)$                                  | 9   | 9,1        |
| 10       | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 1 - | 5, 3, 1, 1 |
| 10       | X = (2,7)(5,6)(3,4)(8,9) $Y = (1,2,3,4,5)(6,7,8,9,10)$               | $g=(0;2,2,\infty,\infty,\infty,\infty)$                    | 15  | 5, 3, 1, 1 |
| 10       | X = (2,7)(5,6)(3,4)(9,10)                                            | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 15  | 5, 3, 1, 1 |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     |            |
| 10       | X = (1,7)(5,6)(2,3)                                                  | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$              | 20  | 5, 4, 1    |
| <u> </u> | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     |            |
| 10       | X = (1,7)(5,6)(3,4)                                                  | $g=(0;2,2,2,\infty,\infty,\infty)$                         | 20  | 5, 4, 1    |
| 10       | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 7)(5, 6)(2, 3)(9, 10)$  | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 4   | 4, 4, 1, 1 |
| 10       | Y = (1, 7)(3, 6)(2, 3)(9, 10)<br>Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) | $y = (0, 2, 2, \infty, \infty, \infty, \infty)$            | 4   |            |
| 10       | X = (1,7)(2,3)(5,6)(8,9)                                             | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 4   | 4, 4, 1, 1 |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     |            |
| 10       | X = (1,7)(5,6)(3,4)(9,10)                                            | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 4   | 4, 4, 1, 1 |
| -10      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.0.0.0.0                                                 | 20  | 5,3,2      |
| 10       | X = (1,7)(5,6)(2,4)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                   | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$              | 30  | 3, 3, 2    |
| 10       | X = (1,7)(5,6)(2,4)(8,9)                                             | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 12  | 4, 3, 2, 1 |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | <i>y</i> (-,-,-,,,,                                        |     | , , - , ,  |
| 10       | X = (1,7)(5,6)(2,4)(9,10)                                            | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 12  | 4, 3, 2, 1 |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     | <u></u>    |
| 10       | X = (2,10)(1,6)(5,7)(3,4) $Y = (1,2,3,4,5)(6,7,8,0,10)$              | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 10  | 5,2,2,1    |
| 10       | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 9)(1, 6)(5, 7)(3, 4)$   | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$            | 12  | 4, 3, 2, 1 |
| 10       | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0, 2, 2, \infty, \infty, \infty, \infty)$            | 14  | 1, 0, 4, 1 |
| 10       | X = (2,9)(1,6)(5,7)(8,10)                                            | $g = (1; 2, 2, \infty, \infty)$                            | 8   | 8,2        |
|          | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                            |     |            |
|          |                                                                      |                                                            |     |            |

|    |                                                                     |                                                          | ,            |                       |
|----|---------------------------------------------------------------------|----------------------------------------------------------|--------------|-----------------------|
| 10 | X = (3,10)(1,6)(5,7)(2,4)                                           | $g=(1;2,2,\infty,\infty)$                                | 8            | 8,2                   |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.00                                                    | 10           | 4.0.0.1               |
| 10 | X = (3,10)(1,6)(5,7)(8,9) $Y = (1,2,2,4,5)(6,7,9,0,10)$             | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | 12           | 4, 3, 2, 1            |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (1; 2, 2, \infty, \infty)$                          | 8            | 8, 2                  |
| 10 | X = (1,6)(5,7)(2,4)(3,9) $Y = (1,2,3,4,5)(6,7,8,0,10)$              | $g \equiv (1; 2, 2, \infty, \infty)$                     | 0            | 8,2                   |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 3)(2, 4)(5, 7)(9, 10)$ | $g = (1; 2, 2, \infty, \infty)$                          | 9            | 9,1                   |
| 10 | Y = (1,3)(2,4)(3,7)(3,10) $Y = (1,2,3,4,5)(6,7,8,9,10)$             | $g=(1,2,2,\infty,\infty)$                                | 9            | 9, 1                  |
| 10 | X = (1,3)(5,7)(6,8)(9,10)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | 10           | 5, 2, 2, 1            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0, 2, 2, 00, 00, 00, 00)                                | -0           | 0, =, =, =            |
| 10 | X = (1,3)(2,4)(5,7)(8,9)                                            | $g = (1; 2, 2, \infty, \infty)$                          | 9            | 9,1                   |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |              |                       |
| 10 | X = (2,4)(5,7)(6,10)(8,9)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | 6            | 6, 2, 1, 1            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |              |                       |
| 10 | X = (2,4)(5,7)(6,8)(9,10)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | 10           | 5, 2, 2, 1            |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          | <u> </u>     |                       |
| 10 | X = (1,4)(2,3)(5,7)(6,10)                                           | $g=(0;2,2,\infty,\infty,\infty,\infty)$                  | 6            | 6, 2, 1, 1            |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.00                                                    | 1 -          | 5, 3, 1, 1            |
| 10 | X = (1,4)(5,7)(6,10)(8,9) $Y = (1,2,2,4,5)(6,7,8,0,10)$             | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | 15           | [5,3,1,1]             |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 4)(5, 7)(6, 8)(9, 10)$ | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | 12           | 4, 3, 2, 1            |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0, 2, 2, \infty, \infty, \infty, \infty)$          | 12           | 4,0,2,1               |
| 10 | X = (1,4)(2,3)(5,7)(8,9)                                            | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | 6            | 6, 2, 1, 1            |
| Ĺ! | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |              |                       |
| 10 | X = (1,3)(2,4)(5,7)                                                 | $g = (1; 2, 2, 2, 2, \infty)$                            | 10           | 10                    |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |              |                       |
| 10 | X = (1,4)(2,3)(5,7)                                                 | $g = (0; 2, 2, 2, 2, \overline{\infty, \infty, \infty})$ | 14           | 7, 2, 1               |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (1.0.0.0.0.)                                             | 10           | 10                    |
| 10 | X = (2,7)(5,10)(1,3) $Y = (1,2,2,4,5)(6,7,8,0,10)$                  | $g = (1; 2, 2, 2, 2, \infty)$                            | 10           | 10                    |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 4)(2, 7)(5, 10)$       | $g = (1; 2, 2, 2, 2, \infty)$                            | 10           | 10                    |
| 10 | X = (1,4)(2,7)(3,10) $Y = (1,2,3,4,5)(6,7,8,9,10)$                  | $y=(1,2,2,2,2,\infty)$                                   | 10           | 10                    |
| 10 | X = (2,7)(5,10)(3,4)(8,9)                                           | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$          | $\frac{}{4}$ | 4, 4, 1, 1            |
| -  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | <i>y</i> (-, -, -, 3-, 3-, 3-, 30)                       |              | -, -, <del>-, -</del> |
| 10 | X = (1,3)(2,7)(5,10)(8,9)                                           | $g = (1; 2, 2, \infty, \infty)$                          | 9            | 9, 1                  |
|    |                                                                     |                                                          |              |                       |
| 10 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 4)(2, 7)(5, 10)(8, 9)$ | $g = \overline{(1; 2, 2, \infty, \infty)}$               | 9            | 9,1                   |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 3)(2, 7)(5, 10)(6, 8)$ |                                                          |              |                       |
| 10 |                                                                     | $g = \overline{(1; 2, 2, \infty, \infty)}$               | 12           | 6,4                   |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |              |                       |

| 10  | X = (1,3)(2,7)(5,10)(6,9)                               | $g=(1;2,2,\infty,\infty)$                                           | 5        | 5,5                         |
|-----|---------------------------------------------------------|---------------------------------------------------------------------|----------|-----------------------------|
| 10  | Y = (1,3)(2,7)(3,10)(0,9) $Y = (1,2,3,4,5)(6,7,8,9,10)$ | $g=(1,2,2,\infty,\infty)$                                           | 3        | 0,0                         |
| 10  | X = (2,7)(5,10)(1,4)(6,9)                               | $g=(1;2,2,\infty,\infty)$                                           | 12       | 6,4                         |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | <i>y</i> ( <i>x</i> , <i>z</i> , <i>z</i> , <i>se</i> , <i>se</i> ) |          | , , ,                       |
| 10  | X = (1,10)(5,7)(2,8)(3,4)                               | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$                     | 3        | 3, 3, 3, 1                  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     |          |                             |
| 10  | X = (1,10)(5,7)(2,8)(6,9)                               | $g = (1; 2, 2, \infty, \infty)$                                     | 12       | 6, 4                        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | ·                                                                   |          |                             |
| 10  | X = (2,10)(1,3)(5,7)                                    | $g=(1;2,2,2,\infty)$                                                | 10       | 10                          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     |          |                             |
| 10  | X = (2,10)(5,7)(1,3)(8,9)                               | $g=(1;2,2,\infty,\infty)$                                           | 9        | 9, 1                        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     |          |                             |
| 10  | X = (2,10)(5,7)(1,3)(6,9)                               | $g=(1;2,2,\infty,\infty)$                                           | 12       | 6, 4                        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     | <u> </u> |                             |
| 10  | X = (2,10)(5,7)(1,3)(6,8)                               | $g = (1; 2, 2, \infty, \infty)$                                     | 5        | 5, 5                        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     |          |                             |
| 10  | X = (2,10)(5,7)(3,4)(8,9)                               | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$                     | 4        | 4, 4, 1, 1                  |
| 10  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | $g = (1; 2, 2, \infty, \infty)$                                     |          | 0.1                         |
| 10  | X = (2,10)(5,7)(3,4)(6,9)                               | $g=(1;2,2,\infty,\infty)$                                           | 9        | 9, 1                        |
| 10  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | $g=(1;2,2,\infty,\infty)$                                           | 5        | 5, 5                        |
| 10  | X = (2,10)(5,7)(1,4)(6,9) $Y = (1,2,2,4,5)(6,7,9,0,10)$ | $g=(1;2,2,\infty,\infty)$                                           | ) b      | $\mathfrak{d},\mathfrak{d}$ |
| 10  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | $g = (1; 2, 2, 2, 2, \infty)$                                       | 10       | 10                          |
| 10  | X = (2,10)(5,7)(1,4)<br>Y = (1,2,3,4,5)(6,7,8,9,10)     | $g=(1,2,2,2,2,\infty)$                                              | 10       | 10                          |
| 10  | X = (2,10)(5,7)(3,4)                                    | $g = (0, 2, 2, 2, 2, \infty, \infty, \infty)$                       | 20       | 5, 4, 1                     |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | g = (0, 2, 2, 2, 2, 30, 30, 30)                                     | 20       |                             |
| 10  | X = (2,7)(5,10)(3,4)                                    | $g = (0; 2, 2, 2, 2, \infty, \infty, \infty)$                       | 20       | 5, 4, 1                     |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | •                                                                   |          | , ,                         |
| 10  | X = (1,10)(5,7)(3,8)(2,4)                               | $g = (1; 2, 2, \infty, \infty)$                                     | 21       | 7, 3                        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     |          |                             |
| 10  | X = (2,6)(5,7)(4,9)(8,10)                               | $g=(1;2,2,\infty,\infty)$                                           | 21       | 7,3                         |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     | ·                                                                   |          | _                           |
| 10  | X = (1,2)(3,6)(5,7)(4,8)                                | $g = (0; 2, 2, \infty, \infty, \infty, \infty)$                     | 12       | 4, 3, 2, 1                  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     |          |                             |
| 10  | X = (1,9)(5,7)(4,8)(6,10)                               | $g=(0;2,2,\infty,\infty,\infty,\infty)$                             | 12       | 4, 3, 2, 1                  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 11)(5, 7)$ |                                                                     |          |                             |
| 11* | X = (1,11)(5,7)                                         | $g = (0; 2, 2, 2, 2, 2, 2, 5, \infty)$                              | 11       | 11                          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 11)(5, 7)$ |                                                                     |          |                             |
| 11* |                                                         | $g = (0; 2, 2, 2, 2, 2, 2, 5, \infty)$                              | 11       | 11                          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                     |                                                                     |          |                             |

|     |                                                               |                                                        |                 | ,    |
|-----|---------------------------------------------------------------|--------------------------------------------------------|-----------------|------|
| 11* | X = (3,11)(5,7)                                               | $g = (0, 2, 2, 2, 2, 2, 2, 5, \infty)$                 | 11              | 11   |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (4, 11)(5, 7)$       | $g = (0, 2, 2, 2, 2, 2, 2, 2, 5, \infty)$              | 11              | 11   |
| 113 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           | $g = (0, 2, 2, 2, 2, 2, 2, 2, 3, \infty)$              | 11              | 11   |
| 11  | X = (1,6)(5,7)(2,11)                                          | $g = (0; 2, 2, 2, 2, 5, \infty, \infty)$               | 18              | 9, 2 |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           | , , , , , , , , , , , , , , , , , , , ,                |                 | '    |
| 11  | X = (1,6)(5,7)(3,11)                                          | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 18              | 9,2  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           |                                                        |                 |      |
| 11  | X = (1,6)(5,7)(4,11)                                          | $g = (0; 2, 2, 2, 2, 5, \infty, \infty)$               | 18              | 9,2  |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           | (0.0.0.0.0.5                                           | 00              | - A  |
| 11  | X = (5,7)(2,6)(1,11) $Y = (1,2,2,4,5)(6,7,8,0,10)$            | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 28              | 7,4  |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (5, 7)(2, 6)(3, 11)$ | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 24              | 8,3  |
| ••  | Y = (3,7)(2,6)(3,11) $Y = (1,2,3,4,5)(6,7,8,9,10)$            | $y = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$            |                 | 0,3  |
| 11  | X = (5,7)(2,6)(4,11)                                          | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 24              | 8,3  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           |                                                        |                 | ,    |
| 11  | X = (5,7)(2,6)(8,11)                                          | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 24              | 8,3  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           |                                                        |                 |      |
| 11  | X = (5,7)(2,6)(9,11)                                          | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 24              | 8,3  |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           | (0.0.0.0.0.0.1)                                        | 0.4             | 0.0  |
| 11  | X = (5,7)(2,6)(10,11)<br>Y = (1,2,2,4,5)(6,7,8,0,10)          | $g = (0; 2, 2, 2, 2, 5, \infty, \infty)$               | $2\overline{4}$ | 8,3  |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (5, 6)(2, 7)(9, 11)$ | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 28              | 7,4  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           | g = (0, 2, 2, 2, 2, 2, 0, 00, 00)                      | -0              | •, - |
| 11  | X = (5,6)(2,7)(8,11)                                          | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 28              | 7,4  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           |                                                        |                 |      |
| 11  | X = (5,6)(2,7)(10,11)                                         | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 28              | 7,4  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           |                                                        |                 |      |
| 11  | X = (5,6)(2,7)(3,11) $X = (1,2,2,4,5)(2,7,2,2,12)$            | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 30              | 6,5  |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 28              | 7,4  |
| 11  | X = (5,6)(2,7)(1,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)           | $g = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$            | 20              | 1,4  |
| 11  | X = (5,6)(2,7)(4,11)                                          | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 30              | 6, 5 |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           |                                                        |                 | ,,,  |
| 11  | X = (5,6)(1,7)(4,11)                                          | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 30              | 6, 5 |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (5, 6)(1, 7)(2, 11)$ |                                                        |                 |      |
| 11  |                                                               | $g = (0; 2, 2, 2, 2, \overline{2}, 5, \infty, \infty)$ | 30              | 6,5  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (5, 6)(1, 7)(3, 11)$ | (0.00.00.00.00.00.00.00.00.00.00.00.00.0               | 0.5             |      |
| 11  |                                                               | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 30              | 6,5  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                           | <u></u>                                                |                 |      |

|     | T                                                                       |                                                        |                 |                                                     |
|-----|-------------------------------------------------------------------------|--------------------------------------------------------|-----------------|-----------------------------------------------------|
| 11* | X = (2,10)(1,6)(5,7)(3,11)                                              | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 14              | 7, 2, 2                                             |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $   X = (2, 10)(1, 6)(5, 7)(4, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 14              | 7, 2, 2                                             |
| 114 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        | 1.4             |                                                     |
| 11* | X = (1,6)(5,7)(2,9)(3,11)                                               | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 6               | 6, 3, 2                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        |                 |                                                     |
| 11  | X = (1,6)(5,7)(2,9)(4,11)                                               | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 6               | 6, 3, 2                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        |                 |                                                     |
| 11* | X = (1,6)(5,7)(2,9)(10,11)                                              | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 20              | 5, 4, 2                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     | 70 2 2 2                                               | <u> </u>        |                                                     |
| 11* | X = (1,6)(5,7)(2,9)(8,11)                                               | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 6               | 6,3,2                                               |
| 7 7 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     | (0.0.0.0.5                                             | 6               | 6, 3, 2                                             |
| 11* | X = (1,6)(5,7)(3,10)(9,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)               | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | b               | $\left  \begin{array}{c} 0,3,2 \end{array} \right $ |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(5, 7)(3, 10)(4, 11)$    | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 6               | 6, 3, 2                                             |
| 114 | X = (1,0)(5,7)(5,10)(4,11) $Y = (1,2,3,4,5)(6,7,8,9,10)$                | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$          |                 | 0,0,4                                               |
| 11  | X = (1,6)(5,7)(3,10)(8,11)                                              | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | . 6             | 6, 3, 2                                             |
| '   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     | (-, -, -, -, 5, 55, 55, 55)                            | -               |                                                     |
| 11* | X = (1,6)(5,7)(3,10)(2,11)                                              | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 20              | 5, 4, 2                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        |                 |                                                     |
| 11* | X = (1,6)(5,7)(3,9)(2,11)                                               | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 20              | 5, 4, 2                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        |                 |                                                     |
| 11* | $\overline{X} = (1,6)(5,7)(3,9)(4,11)$                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 20              | 5,4,2                                               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     | (0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5               |                 | Ľ <u></u>                                           |
| 11  | X = (5,7)(1,11)(2,10)                                                   | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 30              | 6,5                                                 |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 90              | 7,4                                                 |
| 11  | X = (5,7)(2,10)(3,11)<br>Y = (1,2,3,4,5)(6,7,8,0,10)                    | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 28              | 1,4                                                 |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (5, 7)(2, 10)(4, 11)$          | $g = (0; 2, 2; 2, 2, 2, 5, \infty, \infty)$            | 28              | 7,4                                                 |
| 11  | X = (5, 7)(2, 10)(4, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$          | $y = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$            | 20              | , r, =                                              |
| 11  | X = (5, 10)(2, 7)(1, 11)                                                | $g = (0; 2, 2, 2, 2, 5, \infty, \infty)$               | 30              | 6, 5                                                |
| ^*  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     | <i>y</i> (-, -, -, -, <b>-</b> , <b>-</b> , 0, 00, 00) |                 | -, -                                                |
| 11  | X = (5, 10)(2, 7)(3, 11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 30              | 6, 5                                                |
| •   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        |                 | ,                                                   |
| 11  | X = (2,7)(5,10)(4,11)                                                   | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 30              | 6,5                                                 |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        |                 |                                                     |
| 11* | X = (1,10)(5,7)(2,8)(9,11)                                              | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 12              | 4, 4, 3                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 10)(5, 7)(2, 8)(6, 11)$    |                                                        | لـــا           |                                                     |
| 11* |                                                                         | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | $1\overline{2}$ | 4,4,3                                               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                     |                                                        |                 |                                                     |

| 11* | X = (1,10)(5,7)(2,8)(4,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 15       | 5, 3, 3              |
|-----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (0.3.3.5                                                                                                                                                                                                                                                                                                                                                        | <u> </u> |                      |
| 11* | X = (1, 10)(5, 7)(2, 8)(3, 11)                                             | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 15       | 5, 3, 3              |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 12       | 4,4,3                |
| 11* | X = (1,10)(5,7)(3,8)(4,11) $Y = (1,2,3,4,5)(6,7,8,0,10)$                   | $g = (0; 2, 2, 2, 3, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 12       | 4,4,3                |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 10)(5, 7)(3, 8)(2, 11)$       | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 15       | 5, 3, 3              |
| 11* | Y = (1, 10)(3, 1)(3, 3)(2, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$       | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 10       | 0,0,0                |
| 11* | X = (2,10)(5,7)(3,8)(4,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 12       | 4, 4, 3              |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                                                                                                                                                                                                                                                                                                                                 |          | -, -, -              |
| 11* | X = (2,10)(5,7)(3,8)(1,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 15       | 5, 3, 3              |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                                                                                                                                                                                                                                                                                                                                 |          |                      |
| 11* | X = (3,6)(5,7)(4,8)(1,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 20       | 5, 4, 2              |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                                                                                                                                                                                                                                                                                                                                 |          |                      |
| 11* | X = (3,6)(5,7)(4,8)(2,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 20       | $5, \overline{4, 2}$ |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                                                                                                                                                                                                                                                                                                                                 |          |                      |
| 11* | X = (1,9)(5,7)(4,8)(10,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 20       | 5, 4, 2              |
| 11. | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 20       | 5,4,2                |
| 11* | X = (1,9)(5,7)(4,8)(6,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                   | $g = (0; 2, 2, 2, 3, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                   | 20       | [0,4,2]              |
| 11  | X = (1,6)(5,7)(4,8)(3,9)(10,11)                                            | $g=(0;2,5,\infty,\infty,\infty,\infty)$                                                                                                                                                                                                                                                                                                                         | 10       | 5, 2, 2, 2           |
| **  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | ,                                                                                                                                                                                                                                                                                                                                                               | ,        | 0,2,2,2              |
| 11  | X = (1,6)(5,7)(3,8)(4,9)(10,11)                                            | $g=(1;2,5,\infty,\infty)$                                                                                                                                                                                                                                                                                                                                       | 18       | 9, 2                 |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | •                                                                                                                                                                                                                                                                                                                                                               |          |                      |
| 11  | X = (1,6)(5,7)(3,8)(4,9)(2,11)                                             | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | 18       | 9, 2                 |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | ·                                                                                                                                                                                                                                                                                                                                                               |          |                      |
| 11  | X = (2,10)(1,7)(5,8)(4,6)(9,11)                                            | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | 18       | 9, 2                 |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | 10       | 0.0                  |
|     | X = (2,10)(1,7)(5,8)(4,6)(3,11)                                            | $g=(1;2,5,\infty,\infty)$                                                                                                                                                                                                                                                                                                                                       | 18       | 9, 2                 |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(5, 8)(4, 7)(3, 9)(10, 11)$ | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | 30       | 6,5                  |
| 11  | Y = (1,0)(5,8)(4,7)(3,9)(10,11) $Y = (1,2,3,4,5)(6,7,8,9,10)$              | $g=(1,2,3,\infty,\infty)$                                                                                                                                                                                                                                                                                                                                       | 30       | 0,0                  |
| 11  | X = (2,10)(4,7)(1,8)(5,6)(3,11)                                            | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | 18       | 9, 2                 |
| ••  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | g (~, ~,                                                                                                                                                                                                                                                                                                                                                    \qu |          | - , <b>-</b>         |
| 11  | X = (2,10)(1,8)(5,6)(4,7)(9,11)                                            | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | 18       | 9, 2                 |
|     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |          |                      |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 10)(1, 8)(4, 6)(5, 7)(3, 11)$ | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | -28      | 7,4                  |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                                                                                                                                                                                                                                                                                                                                 |          |                      |
| 11  | X = (2,10)(1,8)(4,6)(5,7)(9,11)                                            | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                 | 28       | 7,4                  |
| 1 ! | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | ì                                                                                                                                                                                                                                                                                                                                                               | (        |                      |

| 11 | $X = (1,6)(5,7)(4,8)(3,10)(9,\overline{11})$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 12  | 4, 3, 2, 2 |
|----|----------------------------------------------------------------------------|-------------------------------------------------|-----|------------|
| 11 | X = (1,7)(5,6)(4,9)(3,8)(10,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 30  | . 6,5      |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11 | X = (2,6)(5,10)(1,8)(4,7)(3,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 24  | ,8,3       |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11 | X = (2,6)(5,10)(1,8)(4,7)(9,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 28  | 7,4        |
| 11 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (1.0.5                                          | 0.4 | 0.0        |
| 11 | X = (2,6)(4,10)(5,7)(1,8)(9,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 24  | 8,3        |
| 11 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g=(1;2,5,\infty,\infty)$                       | 28  | 7,4        |
| 11 | X = (2,6)(1,8)(4,10)(5,7)(3,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)             | $g=(1;2,3,\infty,\infty)$                       | 20  | 1,4        |
| 11 | X = (2,7)(1,8)(5,10)(4,6)(9,11)                                            | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 12  | 4, 3, 2, 2 |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (0, 2, 0, \infty, \infty, \infty, \infty)$ | 12  | *, 0, 2, 2 |
| 11 | X = (2,7)(1,8)(4,10)(5,6)(9,11)                                            | $g = (1; 2, 5, \infty, \infty)$                 | 18  | 9,2        |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     | ,          |
| 11 | X = (2,8)(4,7)(5,6)(1,10)(3,11)                                            | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 12  | 4, 3, 2, 2 |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11 | X = (1,9)(4,8)(5,7)(3,6)(10,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 18  | 9,2        |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11 | X = (1,6)(2,8)(5,10)(4,7)(3,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 28  | 7,4        |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 | L   |            |
| 11 | X = (1,6)(5,10)(2,8)(4,7)(9,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 24  | 8,3        |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (1.0.5                                          | 10  | 0.0        |
| 11 | X = (1,8)(5,7)(4,10)(3,6)(2,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 18  | 9, 2       |
| 11 | Y = (1,2,3,4,5)(6,7,8,9,10)                                                | $g = (1; 2, 5, \infty, \infty)$                 | 30  | 6,5        |
| 11 | X = (2,9)(1,8)(5,7)(4,6)(10,11) $Y = (1,2,3,4,5)(6,7,8,9,10)$              | $g=(1,2,3,\infty,\infty)$                       | 30  | 0, 5       |
| 11 | X = (1, 2)(3, 11)(5, 7)                                                    | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 10  | 10, 1      |
| ** | Y = (1, 2)(3, 11)(8, 7) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$              | $g = (0, 2, 2, 2, 2, 2, 0, \infty, \infty)$     | 10  | 1 20, 1    |
| 11 | X = (1, 2)(4, 11)(5, 7)                                                    | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 10  | 10,1       |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     | , ´ ,      |
| 11 | X = (1,2)(6,11)(5,7)                                                       | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 10  | 10, 1      |
|    |                                                                            |                                                 |     |            |
| 11 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 2)(10, 11)(5, 7)$             | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 10  | 10,1       |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 2)(9, 11)(5, 7)$              |                                                 |     |            |
| 11 |                                                                            | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 10  | 10, 1      |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 2)(5, 7)(8, 11)$              |                                                 |     |            |
| 11 |                                                                            | $g = (0; 2, 2, 2, 2, 5, \infty, \infty)$        | 10  | 10, 1      |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |

| 7.1       | Y (0 4)/0 11\/T =\                                                   | (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.       |      | 10.                                              |
|-----------|----------------------------------------------------------------------|-----------------------------------------------|------|--------------------------------------------------|
| 11        | X = (3,4)(2,11)(5,7) $Y = (1,2,3,4,5)(6,7,8,9,10)$                   | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
| 11        | X = (1,11)(3,4)(5,7)                                                 | $g = (0; 2, 2, 2, 2, 5, \infty, \infty)$      | 10   | 10, 1                                            |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |      |                                                  |
| 11        | X = (3,4)(5,7)(6,11)                                                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | ,                                             |      |                                                  |
| 11        | X = (3,4)(5,7)(10,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.000                                        | 1.0  |                                                  |
| 11        | X = (3,4)(5,7)(9,11) $Y = (1,2,2,4,5)(6,7,8,0,10)$                   | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
| 11        | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (3, 4)(5, 7)(8, 11)$        | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
| 11        | Y = (3,4)(5,7)(6,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                  | $g = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$   | 1.10 | 10,1                                             |
| 11*       | X = (1,2)(6,10)(5,7)(4,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 9    | 9,1,1                                            |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |      |                                                  |
| 11*       | X = (1,2)(3,11)(5,7)(6,10)                                           | $g=(0;2,2,2,5,\infty,\infty,\infty)$          | 9    | 9, 1, 1                                          |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |      |                                                  |
| 11*       | X = (1,2)(5,7)(6,10)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 9    | 9, 1, 1                                          |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |      |                                                  |
| 11*       | X = (1,2)(5,7)(6,10)(9,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 9    | 9, 1, 1                                          |
| 11        | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 9    | 9, 1, 1                                          |
| 11*       | X = (1, 2)(3, 11)(5, 7)(8, 9)<br>Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) | $g = (0; 2, 2, 2, 3, \infty, \infty, \infty)$ | 9    | $\left[\begin{array}{cc}9,1,1\end{array}\right]$ |
| 11*       | X = (1, 2)(5, 7)(4, 11)(8, 9)                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 9    | 9, 1, 1                                          |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | <i>g</i> (-, -, -, -, -,,,)                   |      | ·                                                |
| 11*       | X = (3,4)(5,7)(6,10)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 9    | 9, 1, 1                                          |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |      |                                                  |
| 11*       | X = (3,4)(5,7)(6,10)(9,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 9    | 9, 1, 1                                          |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               | 10   |                                                  |
| 11        | $X = (2, \overline{3})(5, 7)(1, 11)$                                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
| 11        | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
| 11        | X = (2,3)(5,7)(4,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                  | $y = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$   | 10   | 10, 1                                            |
| 11        | X = (2,3)(5,7)(6,11)                                                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0, =, =, =, =, 0, 00, 00)                    |      | ,_                                               |
| 11        | X = (2,3)(5,7)(10,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 3)(5, 7)(9, 11)$        |                                               |      |                                                  |
| 11        |                                                                      | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
|           | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 3)(5, 7)(8, 11)$        |                                               |      |                                                  |
| 11        |                                                                      | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$   | 10   | 10, 1                                            |
| <u></u> _ | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |      |                                                  |

| 11   | V = (2, 2)(1, 11)(5, 7)(0, 10)                                      | (0.0.0.0.5)                                     | 0  | 0.1:1      |
|------|---------------------------------------------------------------------|-------------------------------------------------|----|------------|
| 11*  | X = (2,3)(1,11)(5,7)(9,10)<br>Y = (1,2,3,4,5)(6,7,8,9,10)           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9, 1, 1    |
| 11*  | X = (2,3)(4,11)(5,7)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9,1,1      |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    | 0,1,1      |
| 11*  | X = (1,2)(3,11)(5,7)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9, 1, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | j                                               |    |            |
| 11*  | X = (1,2)(4,11)(5,7)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | .9 | 9, 1, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |            |
| 11*  | X = (1,2)(6,11)(9,10)(5,7)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9, 1, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |            |
| 11*  | X = (1,2)(5,7)(9,10)(8,11)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9, 1, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |            |
| 11*  | X = (1,11)(5,7)(3,4)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9, 1, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |            |
| 11*  | X = (3,4)(5,7)(2,11)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9, 1, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.0.0.5                                        |    | 9, 1, 1    |
| 11*  | X = (3,4)(5,7)(6,11)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 9  | 9, 1, 1    |
| 11.  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   |    | 9,1,1      |
| 11*  | X = (3,4)(5,7)(8,11)(9,10) $X = (1,2,2,4,5)(6,7,8,0,10)$            | $g=(0;2,2,2,5,\infty,\infty,\infty)$            | 9  | 9,1,1      |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 8  | 8, 1, 1, 1 |
| . 11 | X = (1,2)(3,4)(5,7)(6,10)(8,11) $Y = (1,2,3,4,5)(6,7,8,9,10)$       | $g=(0,2,3,\infty,\infty,\infty,\infty)$         | 0  | 0, 1, 1, 1 |
| 11   | X = (1, 2)(3, 4)(5, 7)(6, 10)(9, 11)                                | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 8  | 8, 1, 1, 1 |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 | 0  |            |
| 11   | X = (1, 2)(3, 4)(5, 7)(9, 10)(8, 11)                                | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 8  | 8, 1, 1, 1 |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | *                                               |    |            |
| 11   | X = (1,2)(3,4)(5,7)(6,11)(9,10)                                     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 8  | 8, 1, 1, 1 |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |            |
| 11   | X = (1,2)(3,4)(5,7)(8,9)(10,11)                                     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 8  | 8, 1, 1, 1 |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | ·                                               | J  |            |
| 11   | X = (1, 2)(3, 4)(5, 7)(8, 9)(6, 11)                                 | $g=(0;2,5,\infty,\infty,\infty,\infty)$         | 8  | 8, 1, 1, 1 |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | · · · · · · · · · · · · · · · · · · ·           |    |            |
| 11*  | X = (1,6)(5,7)(2,3)(4,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8  | 8, 2, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.00.0.5                                       |    |            |
| 11*  | X = (1,6)(5,7)(2,3)(10,11)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8  | 8, 2, 1    |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.0.0.5                                        | 0  | 0.0.1      |
| 11*  | X = (1,6)(5,7)(2,3)(9,11)<br>Y = (1,2,2,4,5)(6,7,8,0,10)            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8  | 8, 2, 1    |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(5, 7)(2, 3)(8, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8  | 8, 2, 1    |
| 11   |                                                                     | $y = (0; 2, 2, 2, 3, \infty, \infty, \infty)$   | 0  | 0, 4, 1    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |            |

| 77 : (4 0) (7 5) (0 4) (40 44)      | /0.000 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                     | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8, 2, 1                                               |
|                                     | $a = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8, 2, 1                                               |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| X = (1,6)(5,7)(3,4)(8,11)           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8, 2, 1                                               |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
|                                     | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8, 2, 1                                               |
|                                     | - (0, 2, 5, so, so, so, so)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7, 2, 1, 1                                            |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
|                                     | $g = (0; \overline{2, 5, \infty, \infty, \infty, \infty})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7, 2, 1, 1                                            |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
|                                     | $g = (0; 2, 5, \infty, \infty, \infty, \overline{\infty})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6, 2, 2, 1                                            |
|                                     | (0,0,7,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5, 3, 2, 1                                            |
|                                     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\left[\begin{array}{c}5,3,2,1\\\end{array}\right]$   |
|                                     | $a = (0; 2, 5, \infty, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6, 2, 2, 1                                            |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| X = (1,6)(5,7)(2,4)(8,9)(3,11)      | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5, 3, 2, 1                                            |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| X = (1,6)(5,7)(2,4)(8,10)(9,11)     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4, 3, 2, 2                                            |
|                                     | a = (1, 2, 5, ac, ac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
|                                     | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,<br>                                                 |
| X = (1,4)(2,6)(5,7)(9,10)(8,11)     | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
|                                     | (1.0.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.1                                                  |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
|                                     | $q = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
| X = (1,4)(5,6)(2,7)(8,9)(3,11)      | $g = (1; 2, 5, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |
|                                     | $g=(1;2,5,\infty,\infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) | a = (1, 2 5 ap ap)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
|                                     | $g = (1, 2, 3, \infty, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10, 1                                                 |
| X = (1,4)(5,6)(2,7)(3,11)           | $g = (1; 2, 2, 2, 5, \infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                    |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · .                                                   |
|                                     | Y = (1,2,3,4,5)(6,7,8,9,10) $X = (1,6)(5,7)(3,4)(2,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,3)(4,11)(9,10)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,3)(9,10)(8,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,4)(9,10)(8,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,4)(3,11)(9,10)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,4)(8,9)(10,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,4)(8,9)(3,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,4)(8,9)(3,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,6)(5,7)(2,4)(8,10)(9,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,7)(2,6)(8,9)(10,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,7)(2,6)(8,9)(3,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,7)(2,6)(9,10)(8,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,6)(2,7)(8,9)(10,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,6)(2,7)(8,9)(3,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,6)(2,7)(8,9,10)(8,11)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,6)(2,7)(3,11)(9,10)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ $X = (1,4)(5,6)(2,7)(3,11)(9,10)$ $Y = (1,2,3,4,5)(6,7,8,9,10)$ | $\begin{array}{c ccccc} Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(3,4)(9,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(3,4)(8,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(3,4)(2,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,3)(4,11)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,3)(9,10)(8,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,4)(9,10)(8,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,4)(3,11)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,4)(8,9)(10,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,4)(8,9)(10,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,4)(8,9)(3,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,6)(5,7)(2,4)(8,10)(9,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,4)(5,7)(2,6)(8,9)(10,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,4)(5,7)(2,6)(9,10)(8,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,4)(5,6)(2,7)(8,9)(10,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,4)(5,6)(2,7)(3,11)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,4)(5,6)(2,7)(3,11)(9,10) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \\ X = (1,4)(5,6)(2,7)(3,11)(9,10) \\ Y = $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| 11. | V = (1/4)(5/6)(9/7)(10/11)                                                 | (1.0.0.0.5)                                   | 111 | 11                                               |
|-----|----------------------------------------------------------------------------|-----------------------------------------------|-----|--------------------------------------------------|
| 11* | X = (1,4)(5,6)(2,7)(10,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                  | $g=(1;2,2,2,5,\infty)$                        | 11  | 11                                               |
| 11* | X = (1,4)(5,6)(2,7)(9,11)                                                  | $g = (1; 2, 2, 2, 5, \infty)$                 | 11  | 11                                               |
| 1   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g=(1,2,2,2,3,\infty)$                        | **  | 11                                               |
| 11* | X = (1,4)(5,6)(2,7)(8,11)                                                  | $g = (1; 2, 2, 2, 5, \infty)$                 | 11  | 11                                               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | g (1, 2, 2, 2, 0, 00)                         |     | **                                               |
| 11  | X = (1,4)(5,7)(2,6)(8,10)(3,11)                                            | $g = (1; 2, 5, \infty, \infty)$               | 18  | 9,2                                              |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                               |     | -,-                                              |
| 11  | X = (1,4)(5,7)(2,6)(8,10)(9,11)                                            | $g = (1; 2, 5, \infty, \infty)$               | 24  | 8,3                                              |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                               |     | ,                                                |
| 11  | X = (1,4)(5,6)(2,7)(8,10)(3,11)                                            | $g=(1;2,5,\infty,\infty)$                     | 18  | 9, 2                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | ,                                             |     | ,                                                |
| 11  | X = (1,4)(5,6)(2,7)(8,10)(9,11)                                            | $g=(1;2,5,\infty,\infty)$                     | 24  | 8, 3                                             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | ·                                             |     |                                                  |
| 11* | X = (1,6)(5,7)(2,4)(10,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 14  | 7, 2, 2                                          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | · · · · · · · · · · · · · · · · · · ·         |     |                                                  |
| 11  | X = (1,6)(5,7)(2,4)(3,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 6   | 6, 3, 2                                          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                               |     |                                                  |
| 11* | X = (1,6)(5,7)(2,4)(8,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 14  | 7, 2, 2                                          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                               |     |                                                  |
| 11* | X = (1,6)(5,7)(2,4)(9,11)                                                  | $g=(0;2,2,2,5,\infty,\infty,\infty)$          | 14  | 7, 2, 2                                          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (0.0.0)                                       | 1   |                                                  |
| 11* | X = (2,6)(5,7)(8,10)(9,11)                                                 | $g=(0;2,2,2,5,\infty,\infty,\infty)$          | 15  | 5, 3, 3                                          |
| 11. | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 20  | 5,4,2                                            |
| 11* | X = (2,6)(5,7)(1,11)(8,10)<br>Y = (1,2,2,4,5)(6,7,8,0,10)                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 20  | $\left[\begin{array}{cc}5,4,2\end{array}\right]$ |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 6   | 6, 3, 2                                          |
| 11* | X = (2,6)(5,7)(8,10)(4,11)<br>Y = (1,2,3,4,5)(6,7,8,0,10)                  | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$ |     | 0, 3, 2                                          |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 6)(5, 7)(8, 10)(3, 11)$       | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 6   | 6, 3, 2                                          |
| 11^ | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$ |     | 0,0,2                                            |
| 11* | X = (2,6)(5,7)(1,4)(3,11)                                                  | $g = (1; 2, 2, 2, 5, \infty)$                 | 11  | 11                                               |
| ^ - | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | g (1, 2, 2, 2, 0, 00)                         |     |                                                  |
| 11* | X = (2,6)(5,7)(1,4)(10,11)                                                 | $g = (1; 2, 2, 2, 5, \infty)$                 | 11  | 11                                               |
| ] ] | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | J (-, , -, -, -, -, -, -, -, -, -, -, -, -,   |     | _                                                |
| 11* | X = (2,6)(5,7)(1,4)(9,11)                                                  | $g = (1; 2, 2, 2, 5, \infty)$                 | 11  | 11                                               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                               |     |                                                  |
| 11  | X = (2,6)(5,7)(1,4)(8,11)                                                  | $g = (1; 2, 2, 2, 5, \infty)$                 | 11  | 11                                               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | ·                                             |     |                                                  |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (5, 6)(2, 7)(1, 3)(8, 10)(9, 11)$ | $g = (1; 2, 5, \infty, \infty)$               | 24  | 8,3                                              |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                               |     |                                                  |
|     | <del></del>                                                                |                                               |     |                                                  |

|         | Tr. (0 m)/r a)/1 a)/1 11/2                                          | (1.0 =                                                   | T   |                      |
|---------|---------------------------------------------------------------------|----------------------------------------------------------|-----|----------------------|
| 11      | X = (2,7)(5,6)(1,3)(4,11)(8,10)                                     | $g=(1;2,5,\infty,\infty)$                                | 18  | 9, 2                 |
| 11      | Y = (1,2,3,4,5)(6,7,8,9,10)                                         | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 30  | 5, 3, 2, 1           |
| . 11    | X = (2,7)(5,6)(1,11)(3,4)(8,10) $Y = (1,2,3,4,5)(6,7,8,0,10)$       | $g = (0; 2, 3, \infty, \infty, \infty, \infty)$          | 30  | [5, 5, 2, 1]         |
| 11      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 12  | 4 2 2 1              |
| 11      | X = (2,7)(5,6)(3,4)(8,10)(9,11) $ Y = (1,2,3,4,5)(6,7,8,9,10)$      | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 12  | 4, 3, 3, 1           |
| 11      | X = (1, 6)(5, 7)(3, 4)(2, 11)(9, 10)                                | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 14  | 7, 2, 1, 1           |
| 11      | Y = (1,0)(3,7)(3,4)(2,11)(3,10) $Y = (1,2,3,4,5)(6,7,8,9,10)$       | $g = (0, 2, 0, \infty, \infty, \infty, \infty)$          | 1.4 | 1,2,1,1              |
| 11      | X = (1,6)(5,7)(2,3)(8,9)(10,11)                                     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 14  | $\frac{1}{7,2,1,1}$  |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     | ., , –, .            |
| 11      | X = (2,6)(5,7)(1,3)(10,11)                                          | $g = (1; 2, 2, 2, 5, \infty)$                            | 11  | 11                   |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     |                      |
| 11*     | X = (2,6)(5,7)(1,3)(9,11)                                           | $g = (1; 2, 2, 2, 5, \infty)$                            | 11  | 11                   |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     |                      |
| 11*     | X = (2,6)(5,7)(1,3)(4,11)                                           | $g = (1; 2, 2, 2, 5, \infty)$                            | 11  | - 11                 |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     |                      |
| 11*     | X = (2,6)(5,7)(1,3)(8,11)                                           | $g = (1; 2, 2, 2, 5, \infty)$                            | 11  | 11                   |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     |                      |
| 11*     | X = (2,6)(5,7)(3,4)(10,11)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 21  | $7, \overline{3, 1}$ |
| 11      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0; 2, 2, 2, \overline{5}, \infty, \infty, \infty)$ | 21  | 7, 3, 1              |
| 11*     | X = (2,6)(5,7)(3,4)(9,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)            | $g=(0;2,2,2,5,\infty,\infty,\infty)$                     | 21  | [,7,3,1]             |
| 11*     | X = (2,6)(5,7)(3,4)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 21  | 7, 3, 1              |
| 11"     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | g = (0, 2, 2, 2, 0, 00, 00, 00)                          |     | 1,0,1                |
| 11*     | X = (5,7)(2,6)(1,11)(3,4)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 12  | 6, 4, 1              |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | ·                                                        |     | ·                    |
| 11*     | X = (2,6)(5,7)(9,10)(8,11)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 21  | 7, 3, 1              |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     |                      |
| 11*     | X = (2,6)(5,7)(1,11)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 12  | 6, 4, 1              |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     |                      |
| 11*     | X = (2,6)(5,7)(3,11)(9,10)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 21  | 7, 3, 1              |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                          |     |                      |
| 11*     | X = (2,6)(5,7)(9,10)(4,11)                                          | $g=(0;2,2,2,5,\infty,\infty,\infty)$                     | 21  | $7,\overline{3,1}$   |
|         | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0:000                                                   | 0.1 | 7 0 1                |
| 11*     | X = (2,6)(5,7)(8,9)(10,11)<br>Y = (1,2,2,4,5)(6,7,8,0,10)           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 21  | 7,3,1                |
| 11.     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 6)(5, 7)(4, 11)(8, 9)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 21  | 7, 3, 1              |
| 11*     |                                                                     | $y=(0;2,2,2,3,\infty,\infty,\infty)$                     | 21  | 7, 3, 1              |
| 11*     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 6)(5, 7)(3, 11)(8, 9)$ | $g=(0;2,2,2,5,\infty,\infty,\infty)$                     | 21  | 7, 3, 1              |
| 11      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0, 2, 2, 2, 0, \infty, \infty, \infty)$            | -1  | •, 0, 1              |
| <u></u> | - (1,2,3,1,3)(3,1,3,10)                                             |                                                          |     |                      |

|     |                                                                      | ,                                               |     |                  |
|-----|----------------------------------------------------------------------|-------------------------------------------------|-----|------------------|
| 11* | X = (2,6)(5,7)(8,9)(1,11)                                            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 12  | 6, 4, 1          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11  | X = (2,6)(5,7)(1,3)(8,9)(10,11)                                      | $g=(1;2,5,\infty,\infty)$                       | 10  | 10,1             |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 | ,   |                  |
| 11  | X = (2,6)(5,7)(1,3)(4,11)(8,9)                                       | $g=(1;2,5,\infty,\infty)$                       | 10  | 10, 1            |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11  | X = (2,6)(5,7)(1,3)(9,10)(8,11)                                      | $g=(1;2,5,\infty,\infty)$                       | 10  | 10, 1            |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11  | X = (2,6)(5,7)(1,3)(9,10)(4,11)                                      | $g = (1; 2, 5, \infty, \infty)$                 | 10  | 10, 1            |
| 1   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 | }   |                  |
| 11  | X = (2,6)(5,7)(1,11)(3,4)(8,9)                                       | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 20  | 5, 4, 1, 1       |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11  | X = (2,6)(5,7)(3,4)(8,9)(10,11)                                      | $g=(0;2,5,\infty,\infty,\infty,\infty)$         | 6   | 6, 3, 1, 1       |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | · · · · · · · · · · · · · · · · · · ·           |     |                  |
| 11  | X = (2,6)(5,7)(3,4)(9,10)(8,11)                                      | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 6   | 6, 3, 1, 1       |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11  | X = (2,6)(5,7)(1,11)(3,4)(9,10)                                      | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 20  | 5, 4, 1, 1       |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11* | X = (2,7)(5,6)(1,3)(4,11)                                            | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11* | $\overline{X} = (1,3)(5,6)(2,7)(10,11)$                              | $g=(1;2,2,2,5,\infty)$                          | 11  | 11               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11* | X = (1,3)(5,6)(2,7)(9,11)                                            | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                 |     |                  |
| 11* | X = (1,3)(5,6)(2,7)(8,11)                                            | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11               |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.         | 0.1 |                  |
| 11* | X = (2,7)(5,6)(1,11)(3,4)                                            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 21  | 7, 3, 1          |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.0.0.0.7                                      | -01 |                  |
| 11* | X = (2,7)(5,6)(3,4)(10,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 21  | 7,3,1            |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0,0,0,0,5                                      | 0.1 | $\frac{}{7,3,1}$ |
| 11* | X = (2,7)(5,6)(3,4)(9,11)                                            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 21  | 1,3,1            |
| 11. | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 21  | 7, 3, 1          |
| 11* | X = (2,7)(5,6)(3,4)(8,11)                                            | $g = (0; z, z, z, 5, \infty, \infty, \infty)$   | ۱۵  | 1, 3, 1          |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 3)(5, 7)(6, 10)(4, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8   | 8, 2, 1          |
| 11* |                                                                      | $g=(0,2,2,2,3,\infty,\infty,\infty)$            | 0   | 0, 4, 1          |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 3)(5, 7)(6, 10)(2, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 21  | 7, 3, 1          |
| 114 | Y = (1, 3)(3, 7)(6, 10)(2, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$ | $y=(0,2,2,2,0,\infty,\infty,\infty)$            | 21  | 1,0,1            |
| 11* | X = (1,3)(5,7)(6,10)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8   | 8, 2, 1          |
| *** | Y = (1, 3)(3, 7)(6, 10)(8, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$ | $y=(0,2,2,2,3,\infty,\infty,\infty)$            | ا " | o, <b>2</b> , 1  |
| L   | 1 - (1, 2, 3, 4, 3)(0, 1, 3, 10)                                     |                                                 |     |                  |

| 11              | X = (1,3)(5,7)(6,10)(9,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|-----------------|----------------------------------------------------------------------|-----------------------------------------------|-----|---------------------|
| 11              | Y = (1, 3)(6, 7)(6, 10)(9, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$ | $y = (0, 2, 2, 2, 3, \infty, \infty, \infty)$ | "   | 0, 2, 1             |
| 11*             | X = (1,3)(5,7)(6,11)(9,10)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
| ′               | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |     |                     |
| 11*             | X = (1,3)(5,7)(9,10)(4,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | ٠.                                            |     |                     |
| 11*             | X = (1,3)(5,7)(9,10)(2,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 21  | 7, 3, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |     |                     |
| 11*             | X = (1,3)(5,7)(9,10)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.       |     |                     |
| 11              | X = (1,3)(5,7)(8,9)(4,11) $X = (1,3)(5,7)(6,7)(6,9)(4,11)$           | $g=(0;2,2,2,5,\infty,\infty,\infty)$          | 8   | 8, 2, 1             |
| 11              | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $Y = (1, 2)(5, 7)(8, 9)(2, 11)$  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 21  | 7, 3, 1             |
| 11*             | X = (1,3)(5,7)(8,9)(2,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)             | $g=(0,2,2,2,3,\infty,\infty,\infty)$          | Z1. | 1,3,1               |
| 11*             | X = (1,3)(5,7)(8,9)(6,11)                                            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |     | -,-,-               |
| 11*             | X = (1,3)(5,7)(8,9)(10,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |     | ·                   |
| 11              | X = (2,4)(5,7)(6,10)(1,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |     |                     |
| 11*             | X = (2,4)(5,7)(6,10)(3,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 21  | 7, 3, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.0.0.5                                      |     | 0.0.1               |
| 11*             | X = (2,4)(5,7)(6,10)(9,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
| 11              | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g=(0;2,2,2,5,\infty,\infty,\infty)$          | 8   | 8, 2, 1             |
| $\mid 11* \mid$ | X = (2,4)(5,7)(6,10)(8,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)            | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$ | O   | 0, 2, 1             |
| 11*             | X = (2,4)(5,7)(9,10)(1,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (3, 2, 2, 2, 3, 30, 30, 30)                   |     | -, <del>-</del> , - |
| 11*             | X = (2,4)(5,7)(9,10)(6,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |     |                     |
| 11*             | X = (2,4)(5,7)(9,10)(3,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 21  | 7, 3, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                               |     |                     |
| 11*             | X = (2,4)(5,7)(9,10)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.000                                        |     |                     |
| 11*             | X = (2,4)(5,7)(8,9)(3,11) $X = (1,2,3,4,5)(6,7,3,0,10)$              | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 21  | 7,3,1               |
| 11.             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 4)(5, 7)(8, 9)(1, 11)$  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 0 2 1               |
| 11*             |                                                                      | $y = (0; 2, 2, 2, 3, \infty, \infty, \infty)$ | Ö   | 8,2,1               |
| 11*             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 4)(5, 7)(8, 9)(6, 11)$  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$ | 8   | 8, 2, 1             |
| 114             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0, 2, 2, 2, 0, \infty, \infty, \infty)$ | 0   | 0, 2, 1             |
|                 | - (-, 2, 0, 2, 0, (0, 1, 0, 0, 10)                                   |                                               | 1   |                     |

| 11  | T (0.4) (F. F) (0.0) (10.11)                                         | (0.0.0.5                                               | Τ ο | 0.0.1      |
|-----|----------------------------------------------------------------------|--------------------------------------------------------|-----|------------|
| 11  | X = (2,4)(5,7)(8,9)(10,11)<br>Y = (1,2,3,4,5)(6,7,8,0,10)            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 8   | 8, 2, 1    |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 4)(5, 7)(6, 10)(8, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 21  | 7, 3, 1    |
| 11. | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$          | 21  | 1,0,1      |
| 11* | X = (1,4)(5,7)(6,10)(2,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 12  | 6, 4, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | •                                                      |     |            |
| 11* | X = (1,4)(5,7)(6,10)(3,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 12  | 6, 4, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        |     |            |
| 11* | X = (1,4)(5,7)(6,10)(9,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 21  | 7, 3, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        |     |            |
| 11* | X = (1,4)(5,7)(9,10)(6,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 21  | 7, 3, 1    |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.0.0.5                                               | 01  | 7, 3, 1    |
| 11* | X = (1,4)(5,7)(9,10)(8,11)<br>Y = (1,2,3,4,5)(6,7,8,0,10)            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 21  | 7,3,1      |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 4)(5, 7)(9, 10)(3, 11)$ | $g=(0;2,2,2,5,\infty,\infty,\infty)$                   | 12  | 6, 4, 1    |
| 114 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        | 12  | 0,4,1      |
| 11* | X = (1,4)(5,7)(9,10)(2,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 12  | 6, 4, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | <i>g</i> (0, 2, 2, 2, 0, 00, 00, 00)                   |     |            |
| 11  | X = (1,4)(5,7)(8,9)(10,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 21  | 7, 3, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        |     |            |
| 11  | X = (1,4)(5,7)(8,9)(6,11)                                            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 21  | 7, 3, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        |     |            |
| 11  | X = (1,4)(5,7)(8,9)(3,11)                                            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$          | 12  | 6, 4, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | (0.0.0.5                                               | 10  | 0 1 1      |
| 11  | X = (1,4)(5,7)(8,9)(2,11)                                            | $g=(0;2,2,2,5,\infty,\infty,\infty)$                   | 12  | 6, 4, 1    |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 18  | 9, 2       |
| 11  | X = (1,3)(5,7)(6,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                  | $y = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$            | 10  | 9, 4       |
| 11  | X = (1,3)(5,7)(10,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 18  | 9, 2       |
| **  | Y = (1, 3, 4, 5)(6, 7, 8, 9, 10)                                     | $g = (0, 2, 2, 2, 2, 2, 0, \infty, \infty)$            |     | , <u>-</u> |
| 11  | X = (1,3)(5,7)(9,11)                                                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 18  | 9,2        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        |     | <i>'</i>   |
| 11  | X = (1,3)(5,7)(8,11)                                                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 18  | 9, 2       |
| ·   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        |     |            |
| 11  | X = (1,3)(5,7)(4,11)                                                 | $g = \overline{(0; 2, 2, 2, 2, 2, 5, \infty, \infty)}$ | 18  | 9, 2       |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | ·                                                      |     |            |
| 11  | X = (1,3)(5,7)(2,11)                                                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 24  | 8,3        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 11)(2, 4)(5, 7)$        | (0.0.0.0.0.5                                           | 10  |            |
| 11  |                                                                      | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$            | 18  | 9,2        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                        |     |            |

|      |                                                                     | Y                                               |    | , · · · · · · · · · · · · · · · · · · · |
|------|---------------------------------------------------------------------|-------------------------------------------------|----|-----------------------------------------|
| 11   | X = (2,4)(5,7)(3,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 24 | 8,3                                     |
| 11   |                                                                     | (0.0.0.0.0.0.0.5                                | 10 | 0.0                                     |
| 11   | X = (2,4)(5,7)(6,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 18 | 9, 2                                    |
| 11   | X = (2,4)(5,7)(10,11)                                               | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 18 | 9,2                                     |
| 11   | Y = (2, 4)(5, 7)(10, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$      | $g = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$     | 10 | 9,2                                     |
| 11   | X = (2,4)(5,7)(9,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 18 | 9, 2                                    |
| 1.1  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$     | 10 | 9,2                                     |
| 11   | X = (2,4)(5,7)(8,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 18 | 9,2                                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0, -, -, -, -, -, 0, 00)                       |    | ,                                       |
| 11   | X = (1,4)(5,7)(10,11)                                               | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 24 | 8,3                                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    | ·                                       |
| 11   | X = (1,4)(5,7)(6,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 24 | 8,3                                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |                                         |
| 11   | X = (1,4)(5,7)(9,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 24 | 8,3                                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    | <u> </u>                                |
| 11   | X = (1,4)(5,7)(8,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 24 | 8,3                                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.0.0.0.0.5                                    | 00 |                                         |
| 11   | X = (1,4)(5,7)(3,11)                                                | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 28 | 7,4                                     |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | $g = (0; 2, 2, 2, 2, 2, 5, \infty, \infty)$     | 28 | 7,4                                     |
| 11   | X = (1,4)(5,7)(2,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                 | $g = (0, 2, 2, 2, 2, 2, 3, \infty, \infty)$     | 20 | 1,4                                     |
| 11   | X = (1,3)(2,4)(5,7)(6,10)(8,11)                                     | $g = (1; 2, 5, \infty, \infty)$                 | 10 | 10,1                                    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    | ,                                       |
| 11   | X = (1,3)(2,4)(5,7)(6,10)(9,11)                                     | $g = (1; 2, 5, \infty, \infty)$                 | 10 | 10,1                                    |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |                                         |
| 11   | X = (1,3)(4,11)(5,7)(6,10)(8,9)                                     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 14 | 7, 2, 1, 1                              |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |                                         |
| 1.1  | X = (1,3)(5,7)(6,10)(8,9)(2,11)                                     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 6  | 6, 3, 1, 1                              |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 | (0.0.0.5                                        | 10 | 0.4.1                                   |
| 11*  | X = (2,7)(5,6)(8,9)(10,11) $X = (1,2,2,4,5)(6,7,8,0,10)$            | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 12 | 6, 4, 1                                 |
| 11*  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $Y = (2, 7)(5, 6)(8, 0)(1, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 12 | 6, 4, 1                                 |
| 111* | X = (2,7)(5,6)(8,9)(1,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)            | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$   | 14 | U, <del>1</del> , 1                     |
| 11*  | X = (2,7)(5,6)(8,9)(4,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 5  | 5, 5, 1                                 |
|      |                                                                     | 3 (0, -, -, -, 0, 00, 00, 00)                   | ا  | -, -, -                                 |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 7)(5, 6)(8, 9)(3, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 5  | 5, 5, 1                                 |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |                                         |
| 11*  | X = (2,7)(5,6)(9,10)(1,11)                                          | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 12 | 6, 4, 1                                 |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                 |                                                 |    |                                         |
|      |                                                                     |                                                 |    |                                         |

| 11  | V (0.7)/F ()(0.10)/4.11)                                                   | (0.0.0.0.5                                               | <del></del>     | F F 1        |
|-----|----------------------------------------------------------------------------|----------------------------------------------------------|-----------------|--------------|
| 11  | X = (2,7)(5,6)(9,10)(4,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 5               | 5, 5, 1      |
| 11* | X = (2,7)(5,6)(9,10)(3,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 5               | 5, 5, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11* | X = (2,7)(5,6)(9,10)(8,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 12              | 6, 4, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(8,9)(1,3)(4,11)                                             | $g = (1; 2, 5, \infty, \infty)$                          | 10              | 10, 1        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(1,3)(8,9)(10,11)                                            | $g = (1; 2, 5, \infty, \infty)$                          | 10              | 10, 1        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(1,3)(9,10)(4,11)                                            | $g = (1; 2, 5, \infty, \infty)$                          | 10              | 10, 1        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(1,3)(9,10)(8,11)                                            | $g = (1; 2, 5, \infty, \infty)$                          | 10              | 10, 1        |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(3,4)(8,9)(10,11)                                            | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 6               | 6, 3, 1, 1   |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(3,4)(8,9)(1,11)                                             | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 6               | 6, 3, 1, 1   |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(3,4)(9,10)(1,11)                                            | $g=(0;2,5,\infty,\infty,\infty,\infty)$                  | 6               | 6, 3, 1, 1   |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11  | X = (2,7)(5,6)(3,4)(9,10)(8,11)                                            | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 6               | 6, 3, 1, 1   |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11* | X = (1,7)(5,6)(2,3)(10,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 12              | 6, 4, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | ;                                                        |                 |              |
| 11* | X = (1,7)(5,6)(2,3)(9,11)                                                  | $g = (0; 2, 2, 2, \overline{5}, \infty, \infty, \infty)$ | 12              | 6, 4, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11* | X = (1,7)(5,6)(2,3)(8,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | $\overline{12}$ | 6, 4, 1 .    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          |                 |              |
| 11* | X = (1,7)(5,6)(2,3)(4,11)                                                  | $g = (0; 2, 2, \overline{2}, 5, \infty, \infty, \infty)$ | 5               | 5, 5, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (0 0 0 0 7                                               |                 | 1            |
| 11* | X = (1,7)(5,6)(3,4)(2,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 5               | 5, 5, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (0.0.0.0.7                                               |                 | C 4 1        |
| 11* | X = (1,7)(5,6)(3,4)(8,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$            | 12              | 6, 4, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (0,0,0,0,7                                               | 10              | C / 1        |
| 11* | X = (1,7)(5,6)(3,4)(9,11)                                                  | $g=(0;2,2,2,5,\infty,\infty,\infty)$                     | 12              | 6, 4, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                  | .10             | <i>C A</i> 1 |
| 11* | X = (1,7)(5,6)(3,4)(10,11) $X = (1,2)(6,7)(6,7)(6,7)(10,11)$               | $g=(0;2,2,2,5,\infty,\infty,\infty)$                     | 12              | 6, 4, 1      |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 7)(5, 6)(2, 3)(9, 10)(8, 11)$ | (0.0.5.                                                  |                 | F / 1 1      |
| 11  | , , , , , , , , , , , , , , , , , , , ,                                    | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$          | 20              | 5,4,1,1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                          | <u></u> l       |              |

|      |                                                                                                  | ,                                               |         |                             |
|------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|-----------------------------|
| 11   | X = (1,7)(5,6)(2,3)(9,10)(4,11)                                                                  | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 20      | 5, 4, 1, 1                  |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 00      | E A 1 1                     |
| 11   | X = (1,7)(5,6)(2,3)(8,9)(10,11) $Y = (1,2,3,4,5)(6,7,8,9,10)$                                    |                                                 | 20      | 5, 4, 1, 1                  |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 7)(5, 6)(3, 4)(9, 10)(2, 11)$                       | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 20      | 5, 4, 1, 1                  |
| 1 11 | Y = (1, 7)(3, 0)(3, 4)(9, 10)(2, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$                       | $g = (0, 2, 0, \infty, \infty, \infty, \infty)$ | 20      | 0,4,1,1                     |
| 11*  | X = (1,7)(5,6)(2,4)(3,11)                                                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 15      | 5, 3, 3                     |
|      | Y = (1, 7)(5, 6)(2, 4)(5, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$                              |                                                 |         | 3,3,5                       |
| 11*  | X = (1,7)(5,6)(2,4)(10,11)                                                                       | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 6       | 6, 3, 2                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              |                                                 |         |                             |
| 11*  | X = (1,7)(5,6)(2,4)(8,11)                                                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 6       | 6, 3, 2                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              |                                                 |         |                             |
| 11   | X = (1,7)(5,6)(2,4)(9,11)                                                                        | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 6       | 6, 3, 2                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              |                                                 | <u></u> |                             |
| 11   | X = (1,7)(5,6)(2,4)(8,9)(3,11)                                                                   | $g=(0;2,5,\infty,\infty,\infty,\infty)$         | 12      | 4, 3, 3, 1                  |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 00      | F 0: 0                      |
| 11   | X = (1,7)(5,6)(2,4)(8,9)(10,11)                                                                  | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30      | 5, 3, 2, 1                  |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)<br>Y = (1, 7)(5, 6)(2, 4)(0, 10)(3, 11)                      | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 12      | 4, 3, 3, 1                  |
| 11   |                                                                                                  |                                                 | 12      | 4, 3, 3, 1                  |
| 11   | X = (1,7)(5,6)(2,4)(9,10)(8,11)                                                                  | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30      | 5, 3, 2, 1                  |
| **   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              |                                                 |         | , c, c, <u>r</u> , <u>r</u> |
| 11   | X = (2,10)(1,6)(5,7)(3,4)(8,11)                                                                  | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 6       | 6, 2, 2, 1                  |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              | ·                                               |         |                             |
| 11   | X = (2,10)(1,6)(5,7)(3,4)(9,11)                                                                  | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 6       | 6, 2, 2, 1                  |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              |                                                 |         |                             |
| 11   | X = (2,9)(1,6)(5,7)(3,4)(10,11)                                                                  | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 4       | 4, 4, 2, 1                  |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              | 10.0.7                                          | لــَـا  |                             |
| 11   | X = (2,9)(1,6)(5,7)(3,4)(8,11)                                                                   | $g=(0;2,5,\infty,\infty,\infty,\infty)$         | 30      | 5, 3, 2, 1                  |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              | (1.0 f                                          | 10      | 9,2                         |
| 11   | X = (2,9)(1,6)(5,7)(8,10)(3,11)<br>Y = (1,2,3,4,5)(6,7,8,9,10)                                   | $g = (1; 2, 5, \infty, \infty)$                 | 18      | 9,2                         |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 9)(1, 6)(5, 7)(8, 10)(4, 11)$                       | $g = (1; 2, 5, \infty, \infty)$                 | 18      | 9,2                         |
| 11   | $ \begin{vmatrix} X = (2,9)(1,6)(5,7)(8,10)(4,11) \\ Y = (1,2,3,4,5)(6,7,8,9,10) \end{vmatrix} $ | $g=(1,2,0,\infty,\infty)$                       | 10      | 3, 4                        |
| 11   | X = (1,6)(5,7)(3,10)(2,4)(8,11)                                                                  | $q=(1;2,5,\infty,\infty)$                       | 18      | 9,2                         |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              | g (-, <b>-</b> , 0, 00, 00)                     | -5      | - , <del>-</del>            |
| 11   | X = (1,6)(5,7)(3,10)(2,4)(9,11)                                                                  | $g = (1; 2, 5, \infty, \infty)$                 | 18      | 9, 2                        |
|      |                                                                                                  |                                                 |         |                             |
| 11   | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 6)(5, 7)(3, 10)(8, 9)(4, 11)$                       | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30      | 5,3,2,1                     |
|      | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                              |                                                 |         |                             |
|      |                                                                                                  | <del></del>                                     |         |                             |

| 11             | V (1.0)(7.7)(0.10)(0.0)(0.11)                                             | (0.0.5                                          | 1 4      | 1 4 0 1      |
|----------------|---------------------------------------------------------------------------|-------------------------------------------------|----------|--------------|
| 11             | X = (1,6)(5,7)(3,10)(8,9)(2,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 4        | [4, 4, 2, 1] |
| 11             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | $g = (1; 2, 5, \infty, \infty)$                 | 18       | 9,2          |
| 11             | X = (1,6)(5,7)(3,9)(2,4)(10,11)                                           | $g=(1;2,5,\infty,\infty)$                       | 18       | 9,2          |
| 11             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | $g = (1; 2, 5, \infty, \infty)$                 | 18       | 9, 2         |
| 11             | X = (1,6)(5,7)(3,9)(2,4)(8,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 18       | 9,2          |
| 11             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | $g = (1; 2, 5, \infty, \infty)$                 | 10       | 10, 1        |
| 11             | X = (1,3)(2,4)(5,7)(9,10)(6,11)                                           | $g=(1;2,5,\infty,\infty)$                       | 10       | 10, 1        |
| 1              | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | $g = (1; 2, 5, \infty, \infty)$                 | 10       | 10.1         |
| 11             | X = (1,3)(2,4)(5,7)(9,10)(8,11)                                           | $g = (1; 2, 5, \infty, \infty)$                 | 10       | 10, 1        |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | (0.0.2                                          |          |              |
| 11             | X = (1,3)(5,7)(6,8)(9,10)(4,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 6        | 6, 2, 2, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                 | -        |              |
| 11             | X = (1,3)(5,7)(6,8)(9,10)(2,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30       | 5, 3, 2, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                 |          |              |
| 11             | X = (1,3)(2,4)(5,7)(8,9)(6,11)                                            | $g=(1;2,5,\infty,\infty)$                       | 10       | 10,1         |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | $g = (1; 2, 5, \infty, \infty)$                 | 10       | 10, 1        |
| 11             | $\overline{X} = (1, \overline{3})(2, 4)(\overline{5}, 7)(8, 9)(10, 11)$   | $g=(1;2,5,\infty,\infty)$                       | 10       | $10, 1^{-}$  |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                 |          |              |
| 11             | X = (2,4)(5,7)(6,10)(8,9)(1,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 14       | 7, 2, 1, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                 |          |              |
| 11             | X = (2,4)(5,7)(6,10)(8,9)(3,11)                                           | $g=(0;2,5,\infty,\infty,\infty,\infty)$         | 6        | 6, 3, 1, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ |          | 6, 2, 2, 1   |
| 11             | X = (2,4)(5,7)(6,8)(9,10)(1,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 6        | 6, 2, 2, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                 |          |              |
| 11             | X = (2,4)(5,7)(6,8)(9,10)(3,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30       | 5, 3, 2, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | (6.00                                           | -        |              |
| 11             | X = (1,4)(2,3)(5,7)(6,10)(8,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 14       | 7, 2, 1, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                 |          |              |
| 11             | X = (1,4)(2,3)(5,7)(6,10)(9,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 14       | 7, 2, 1, 1   |
| 11             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | (0.0.5                                          | 00       | F 4 1 1      |
| $\mid 11 \mid$ | X = (1,4)(5,7)(6,10)(8,9)(2,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 20       | 5, 4, 1, 1   |
| 4 -            | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | (0, 0, F                                        | 00       | <u> </u>     |
| 11             | X = (1,4)(5,7)(6,10)(8,9)(3,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 20       | 5, 4, 1, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | (0.0.5                                          |          | 4 4 0 1      |
| $\mid 11 \mid$ | X = (1,4)(5,7)(6,8)(9,10)(2,11)                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 4        | 4, 4, 2, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       | (0,0,5,)                                        |          | 4 4 0 1      |
| 11             | X = (1,4)(5,7)(6,8)(9,10)(3,11) $X = (1,4)(5,7)(6,8)(9,10)(3,11)$         | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | $4 \mid$ | 4, 4, 2, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 4)(2, 3)(5, 7)(8, 9)(6, 11)$ | (0, 0, 7                                        | 14       | 7011         |
| 11             |                                                                           | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 14       | 7, 2, 1, 1   |
|                | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                       |                                                 |          |              |

|     | Tr. (1 1)(2 2)(7 7)(2 2)(12 11)                                            | 70.0.5                                          |     |            |
|-----|----------------------------------------------------------------------------|-------------------------------------------------|-----|------------|
| 11  | X = (1,4)(2,3)(5,7)(8,9)(10,11)                                            | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 14  | 7, 2, 1, 1 |
| 11. | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
| 11* | X = (1,3)(2,4)(5,7)(6,11)<br>Y = (1,2,3,4,5)(6,7,8,0,10)                   | $g = (1; 2, 2, 2, 3, \infty)$                   | 111 | 11         |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (1, 3)(2, 4)(5, 7)(10, 11)$       | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
| 11* | Y = (1,3)(2,4)(3,7)(10,11) $Y = (1,2,3,4,5)(6,7,8,9,10)$                   | $y=(1,2,2,2,3,\infty)$                          | 11  | 11         |
| 11* | X = (1,3)(2,4)(5,7)(9,11)                                                  | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
| 11. | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g=(1,2,2,2,0,\infty)$                          | **  | 11         |
| 11* | X = (1,3)(2,4)(5,7)(8,11)                                                  | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (=,=,=,=,=,=,=,                                 |     |            |
| 11* | X = (1,4)(2,3)(5,7)(6,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8   | 8, 2, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11* | X = (1,4)(2,3)(5,7)(10,11)                                                 | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8   | 8, 2, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11* | X = (1,4)(2,3)(5,7)(9,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8   | 8, 2, 1    |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11* | X = (1,4)(2,3)(5,7)(8,11)                                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$   | 8   | 8, 2, 1    |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (1.0.0.0.5                                      | 11  |            |
| 11* | X = (2,7)(5,10)(1,3)(4,11)<br>Y = (1,2,2,4,5)(6,7,8,0,10)                  | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
| 11* | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 7)(5, 10)(1, 3)(8, 11)$       | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
| 114 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | $g=(1,2,2,2,3,\infty)$                          | 11  | 11         |
| 11* | X = (2,7)(5,10)(1,3)(9,11)                                                 | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | 3 (-, -, -, -, -, -,                            |     |            |
| 11* | X = (2,7)(5,10)(1,3)(6,11)                                                 | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11* | X = (2,7)(5,10)(1,4)(3,11)                                                 | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     | . <b>-</b> |
| 11* | X = (2,7)(5,10)(1,4)(8,11)                                                 | $g=(1;2,2,2,5,\infty)$                          | 11  | 11         |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     |            |
| 11* | X = (2,7)(5,10)(1,4)(6,11)                                                 | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        | (10005)                                         | 11  | 11         |
| 11* | X = (2,7)(5,10)(1,4)(9,11)<br>Y = (1,2,2,4,5)(6,7,8,0,10)                  | $g = (1; 2, 2, 2, 5, \infty)$                   | 11  | 11         |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 7)(5, 10)(3, 4)(8, 9)(1, 11)$ | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 20  | 5, 4, 1, 1 |
| 11  | X = (2, 7)(5, 10)(5, 4)(8, 9)(1, 11) $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$ | $g = (0, 2, 3, \infty, \infty, \infty, \infty)$ | ۷ ا | 0,4,1,1    |
| 11  | X = (2,7)(5,10)(1,3)(8,9)(4,11)                                            | $g = (1; 2, 5, \infty, \infty)$                 | 10  | 10, 1      |
| **  |                                                                            | g (2, 2, 0, 00, 00)                             | -   | , -        |
| 11  | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 7)(5, 10)(1, 3)(8, 9)(6, 11)$ | $g = (1; 2, 5, \infty, \infty)$                 | 10  | 10, 1      |
|     | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                        |                                                 |     | ,          |
|     |                                                                            |                                                 |     |            |

| $\begin{array}{ c c c c c c }\hline 11 & X = (2,7)(5,10)(1,4)(8,9)(3,11) & g = (1;2,5,\infty,\infty) & 10 & 10, \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,4)(8,9)(6,11) & g = (1;2,5,\infty,\infty) & 10 & 10, \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,3)(6,8)(4,11) & g = (1;2,5,\infty,\infty) & 28 & 7,4 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,3)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,3)(6,9)(8,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,4)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 28 & 7,4 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ \hline \end{array}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ c c c c c }\hline 11 & X = (2,7)(5,10)(1,4)(8,9)(6,11) & g = (1;2,5,\infty,\infty) & 10 & 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{ c c c c c c }\hline 11 & X = (2,7)(5,10)(1,3)(6,8)(4,11) & g = (1;2,5,\infty,\infty) & 28 & 7,4 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,3)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,3)(6,9)(8,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,4)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 28 & 7,4 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(6,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{ c c c c c }\hline 11 & X = (2,7)(5,10)(1,3)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,3)(6,9)(8,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,4)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 28 & 7,4 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(6,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{ c c c c c }\hline 11 & X = (2,7)(5,10)(1,3)(6,9)(8,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline 11 & X = (2,7)(5,10)(1,4)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 28 & 7,4 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(6,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{ c c c c c }\hline 11 & X = (2,7)(5,10)(1,4)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 28 & 7,4\\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(6,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3\\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3\\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5\\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5\\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11\\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{ c c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline & 11 & X = (1,10)(5,7)(2,8)(3,4)(6,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & 12 & 4,3,3 \\ \hline & 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & & \\ \hline & 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & \\ \hline & 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline & 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{ c c c c c c }\hline 11 & X = (1,10)(5,7)(2,8)(3,4)(6,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & 12 & 4,3,3 \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & 12 & 4,3,3 \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & 30 & 6,5 \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{ c c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{ c c c c c c }\hline 11 & X = (1,10)(5,7)(2,8)(3,4)(9,11) & g = (0;2,5,\infty,\infty,\infty,\infty) & 12 & 4,3,3 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{ c c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) \\ & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline \end{array}  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{ c c c c c c }\hline 11 & X = (1,10)(5,7)(2,8)(6,9)(3,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & & \\ \hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & & \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{ c c c c c c } \hline & Y = (1,2,3,4,5)(6,7,8,9,10) \\ \hline & 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & \\ \hline & 11* & X = (2,10)(5,7)(1,3)(4,11) & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{ c c c c c c }\hline 11 & X = (1,10)(5,7)(2,8)(6,9)(4,11) & g = (1;2,5,\infty,\infty) & 30 & 6,5 \\ Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & & \\ \hline 11* & X = (2,10)(5,7)(1,3)(4,11) & & g = (1;2,2,2,5,\infty) & 11 & 11 \\ & Y = (1,2,3,4,5)(6,7,8,9,10) & & & & & & \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $X = (2,10)(5,7)(1,3)(8,11)$ $Q = (1,2,2,2,5,\infty)$ $A = (1,2,2,2,5,\infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11* $X = (2,10)(5,7)(1,3)(6,11)$ $g = (1,2,2,2,5,\infty)$ 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 $X = (2,10)(5,7)(1,3)(8,9)(6,11)$ $g = (1,2,5,\infty,\infty)$ 10 10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 $X = (2,10)(5,7)(1,3)(8,9)(4,11)$ $g = (1,2,5,\infty,\infty)$ 10 10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 $X = (2,10)(5,7)(1,3)(6,9)(4,11)$ $g = (1,2,5,\infty,\infty)$ 28 7,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 $X = (2,10)(5,7)(1,3)(6,9)(8,11)$ $g = (1,2,5,\infty,\infty)$ 28 7,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $  11   X = (2.10)(5,7)(1.3)(6,8)(4.11)   q = (1,2,5,\infty,\infty)   30   6.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11 $X = (2, 10)(5, 7)(1, 3)(6, 8)(4, 11)$ $g = (1, 2, 5, \infty, \infty)$ 30 $6, 5$ $Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| $\overline{11}$ | X = (2,10)(5,7)(3,4)(8,9)(1,11)                                      | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$               | 20  | 5, 4, 1, 1 |
|-----------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----|------------|
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $\begin{bmatrix} g & (0, 2, 0, 00, 00, 00, 00) \end{bmatrix}$ | 20  | 0, 1, 1, 1 |
| 11              | X = (2,10)(5,7)(3,4)(6,9)(1,11)                                      | $g = (1; 2, 5, \infty, \infty)$                               | 10  | 10, 1      |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | 9 (1,2,0,00,00)                                               | 10  | 10,1       |
| 11              | X = (2,10)(5,7)(3,4)(6,9)(8,11)                                      | $g = (1; 2, 5, \infty, \infty)$                               | 10  | 10, 1      |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | g (1, <b>2</b> , 0, 00, 00)                                   |     | 10,1       |
| 11              | X = (2,10)(5,7)(1,4)(6,9)(3,11)                                      | $g = (1; 2, 5, \infty, \infty)$                               | 30  | 6,5        |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     | ,,,        |
| 11*             | X = (2,10)(5,7)(1,4)(6,11)                                           | $g = (1; 2, 2, 2, 5, \infty)$                                 | 11  | 11         |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     | ,          |
| 11*             | X = (2,10)(5,7)(1,4)(3,11)                                           | $g = (1; 2, 2, 2, 5, \infty)$                                 | 11  | 11         |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     | ,          |
| 11*             | X = (2,10)(5,7)(1,4)(8,11)                                           | $g = (1; 2, 2, 2, 5, \infty)$                                 | 11  | 11         |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     |            |
| 11              | X = (2,10)(5,7)(1,4)(9,11)                                           | $g = (1; 2, 2, 2, 5, \infty)$                                 | 11  | 11         |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     |            |
| 11*             | X = (2,10)(5,7)(3,4)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 12  | 6, 4, 1    |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     |            |
| 11              | X = (2,10)(5,7)(3,4)(1,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 5   | 5, 5, 1    |
| <u> </u>        | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     |            |
| 11*             | X = (2,10)(5,7)(3,4)(9,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 12  | 6, 4, 1    |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     |            |
| 11*             | X = (2,10)(5,7)(3,4)(6,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 5 · | 5, 5, 1    |
| 11              | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 10  | 6, 4, 1    |
| 11*             | X = (2,7)(5,10)(3,4)(8,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 12  | 6, 4, 1    |
| .11             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 5   | 5, 5, 1    |
| $1\overline{1}$ | X = (2,7)(5,10)(3,4)(6,11)<br>Y = (1,2,3,4,5)(6,7,8,0,10)            | $g = (0; 2, 2, 2, 3, \infty, \infty, \infty)$                 | υ   | 0, 0, 1    |
| 11*             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) $X = (2, 7)(5, 10)(3, 4)(1, 11)$ | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 12  | 6, 4, 1    |
| 114             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g = (0, 2, 2, 2, 3, \infty, \infty, \infty)$                 | 14  | 0,4,1      |
| 11*             | X = (2,7)(5,10)(3,4)(9,11)                                           | $g = (0; 2, 2, 2, 5, \infty, \infty, \infty)$                 | 12  | 6, 4, 1    |
| 11.             | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | $g=(0,2,2,2,0,\infty,\infty,\infty)$                          |     | 0, 1, 1    |
| 11              | X = (1,10)(5,7)(3,8)(2,4)(9,11)                                      | $g=(1;2,5,\infty,\infty)$                                     | 24  | 8,3        |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | •                                                             |     | -, -       |
| 11              | X = (1,10)(5,7)(3,8)(2,4)(6,11)                                      | $g = (1; 2, 5, \infty, \infty)$                               | 28  | 7, 4       |
| -               | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  |                                                               |     | ,          |
| 11              | X = (2,6)(5,7)(4,9)(8,10)(1,11)                                      | $g = (1; 2, 5, \infty, \infty)$                               | 28  | 7,4        |
|                 | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)                                  | _ , , , , , ,                                                 |     |            |
|                 |                                                                      |                                                               |     |            |

| 11 | X = (2,6)(5,7)(4,9)(8,10)(3,11)     | $g=(1;2,5,\infty,\infty)$                       | 24 | 8,3          |
|----|-------------------------------------|-------------------------------------------------|----|--------------|
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) |                                                 |    |              |
| 11 | X = (1,2)(3,6)(5,7)(4,8)(9,11)      | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30 | [5, 3, 2, 1] |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) |                                                 |    |              |
| 11 | X = (1,2)(3,6)(5,7)(4,8)(10,11)     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30 | 5, 3, 2, 1   |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) | ·                                               |    |              |
| 11 | X = (1,9)(5,7)(4,8)(6,10)(3,11)     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30 | 5,3,2,1      |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) | ·                                               |    |              |
| 11 | X = (1,9)(5,7)(4,8)(6,10)(2,11)     | $g = (0; 2, 5, \infty, \infty, \infty, \infty)$ | 30 | 5, 3, 2, 1   |
|    | Y = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) |                                                 |    | ]            |

Table 9.1: Subgroups of  $H_5$  up to and including index eleven