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This thesis is concerned with the situation in which there are several competing linear
models for describing the dependence of a response on a set of explanatory variables.
The aim of the thesis is to produce methodology by which experimental designs may be
selected that allow discrimination between the possible models and enable a model to be
chosen that is as close as possible to the 'true' model. A Bayesian decision theoretic
framework will be used for model selection and choosing an experimental design. The
Bayesian approach allows prior information from previous experimentation to be used in
the selection of a design and provides a means by which a model may be selected from a
set of competing models.
In this thesis, the Penalised Model Discrepancy (PMD) criterion for selecting an
experimental design is introduced. The criterion is first applied to the situation of
screening experiments, where little prior information is available. Good designs under
the PMD criterion are found for several model spaces which may be used for screening
experiments. The MD, HD and F criteria are existing Bayesian criteria from the
literature for selecting experimental designs for model discrimination; a comparison
between these and the PMD is made via examples and a simulation study. The
sensitivity of the PMD criterion to the choice of hyperparameters of the prior
distribution is also investigated. The PMD criterion is then applied to the selection of
follow-up runs after an initial experiment, using examples from the literature. For one
example, a comparison is again made to the F, MD and HD criteria. For another
example, the effect of the choice of initial design on the follow-up runs selected is
investigated. Follow-up runs for a tribology experiment carried out in the School of
Engineering Sciences at the University of Southampton were chosen using the PMD
criterion. The results and analysis of this experiment are presented, as well as details of
how the follow-up runs were chosen.

In some situations, especially when interaction terms are considered, the space of possible
models can become very large. As a consequence, evaluating the PMD objective function
can become very computationally expensive. Methods for reducing the computational
burden of evaluating the PMD objective function are investigated, and used to select
good designs for large model spaces. Methodology for improving the accuracy of the
evaluation of the HD and MD objective functions for large model spaces is also given.
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Chapter 1

Introduction and Overview

In this chapter the concepts of the linear model, design of experiments and Bayesian

inference are introduced. We then review some of the existing literature on Bayesian

experimental design, in particular, approaches to the problem of model discrimination.

The types of models and prior distributions for their parameters to be used throughout

this thesis are described. Finally, the overall aims and specific objectives of the work are

stated, and an overview of the thesis is given.

1.1 The Linear Model and Bayesian Inference

1.1.1 The Linear Model

Suppose that we wish to model the dependence of a n x 1 response vector Y on a set of

p explanatory variables. Let X be an n x p matrix, where X,j is the value of the j th

explanatory variable at the ith data point. Then a linear model for the dependence of Y

on X is given by:

Y = X/3 + e,

where /3 is a p-dimensional vector of regression parameters, and e ~ N(0, a2) is an

n-dimensional vector of random error terms. The mean responses given by the model at

the n data points are held in the vector X/3. The differences between the means and
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observed responses is modelled by the terms in e.

1.1.2 Bayesian Inference

In classical inference, the parameters 0 associated with a statistical model /(y|0) are

treated as having a fixed, albeit unknown, value. Once data are obtained, 0 may be

estimated (by using maximum likelihood estimation, for example), and point hypotheses

about the parameters may be tested. In the Bayesian framework, 6 is instead treated as

a random variable. Before data are available, a prior distribution f(0) represents the

current beliefs and knowledge about the parameters. Upon observation of the data y,

this distribution is updated to a posterior distribution f(9\y) via Bayes theorem:

(1 n

jf(e)f(y\e)de- ( L 1 )

e

For parameters taking discrete values, the integral in equation (1.1) is replaced by a

summation.

1.1.3 Bayesian Inference for Linear Models

In this thesis we will consider the situation where there are M > 2 competing linear

models of the form

ml:Y = Xif3i + ei, i = l,...,M, (1.2)

where /3j is a ^-dimensional vector of regression parameters, X; is the n x pi model

matrix for model m, and e, ~ N(0, of) is a n-dimensional vector of random error terms.

In a Bayesian framework, each model is given a prior probability P(rrii) and prior

distributions are assigned to the model parameters /^ and of. Bayes' theorem is used to

obtain posterior model probabilities and parameter distributions after data y have been

observed.

A commonly used prior for the joint distribution of /^ and of is a Normal

Inverse-Gamma distribution. This is a conjugate distribution for the linear model

described in Section 1.1.1. Details of this distribution may be found in O'Hagan and

Forster (2004), chapter 11. We assign an inverse-gamma prior distribution to of, which
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does not depend on i. That is,

(1.3)

or Gamma(|, | ) , where a and d are hyperparameters. Given model m, and the

value of of, the conditional density of f3i is N(fiit of Vj), where /x, and Vj are the

Pi-dimensional prior mean and the pi x p^ prior variance-covariance matrix, respectively,

for model m*. The posterior distributions are of the same family:

(1.4)

(1.5)

where

V* = (1.6)

d* = + n.

Model Probabilities

For i = 1 , . . . , M a probability that model mj is the true model is assigned. This prior

probability is denoted by P(rrii). These probabilities may be updated to posterior

probabilities using Bayes' theorem:

P(mly)-

where, under (1.4) and (1.5), the marginal likelihood of the data y given model raj is

{ '
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These model probabilities can be used to calculate the marginal posterior probability

that a factor is active. The definition of an 'active' factor or effect differs across the

literature, see, for example, Box and Meyer (1986). In this thesis an active effect is

denned as being one of a non-negligible magnitude; an active factor is one that is

involved in one or more active effects. The marginal posterior probability that factor j is

active is given by Yl P(mi\y)-
i:j£mi

Choice of Hyperparameters

The values used for the hyperparameters a, d, \ii and Vj should reflect prior beliefs about

the parameters /3j and <7j. If little prior information is available, an noninformative prior

should be used. If data are available from a previous experiment, as in the examples in

Chapters 4 and 5, then a natural method of finding a prior distribution for use in future

work is to start with an noninformative prior, then update it to a posterior distribution

given the data to produce a more informative prior for subsequent experiments.

Using fa = 0 is a neutral choice of prior mean for j3, and reflects the fact that we do not

know the direction of the effects, so view each component of (3 as equally likely to be

positive or negative. If we have no prior information about correlations between the

distributions of the components of /9j, we should make V, a diagonal matrix, as the

parameters are viewed as independent a priori. As we do not know the magnitude of (3i}

we might assume that we should make the numbers on the diagonal of V, as large as

possible, corresponding to a 'flat' prior on f3. However, if we do this, smaller models will

be favoured too strongly. Suppose Vj = XIPi where pi is the number of terms in model

mi. Then, as A -> oo, V* -> (X-X,)"1 and |V;| = XPi -> oo. Hence using (1.8),

/ (y l r n i ) / / (y l m j ) —> 0 if pj < pj. So for large A, the posterior probability will

automatically be greatest for the smallest models. This effect is an example of Lindley's

paradox (Jeffreys, 1939), which shows that a diffuse prior can lead to a Bayesian analysis

favouring a smaller model when a classical likelihood ratio test would have rejected this

in favour of a larger model. To stop this from happening, we can either use Aj = X0'
Pl

for some constant Ao, or use A = 1 for all models. As the intercept term is present in all

models, it is possible to put a large prior variance on this term without causing problems

with the relative probabilities of models with different numbers of terms. We also need
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to select a and d, the hyperparameters of the inverse-gamma prior distribution of of.

The mean of the distribution in (1.3) is a/(d - 2) for d > 2 and its variance is

2a2/ ((d — 2)2(d — 4)) for d > 4. Hence, if we want a prior distribution with finite mean

and variance for <x2 we should use d > 4 and choose a and d to give a reasonable mean

and variance for the distribution of a2. The effects of changing a and d are discussed in

Section 3.3.4. Alternatively, we can use an improper prior distribution for a2. For

example, using a — 0, d = 0 gives the improper prior distribution f(a2) oca"2.

1.2 Design of Factorial Experiments

Experimental design to investigate several variables involves selecting a set of

combinations of values, or levels, of factors at which to perform experimental runs.

When the factors are qualitative or are limited to a fixed number of levels, factorial or

fractional factorial designs are often used. If / factors are investigated in the
/

experiment, with factor i having ki levels, then a full factorial design consists of all Y[ &i
i=l

combinations of the factor levels. A fractional factorial design uses some subset of the

available runs from a full factorial design. A regular fractional factorial design is one

that is generated by a defining relation, which can be interpreted as a set of equations

that must be satisfied by the factor levels in every row of the design. For factors with

two levels, the fractional factorial design generated by a defining relation consists of all

possible combinations of factor levels ±1 that satisfy the defining relation. In these

designs, the correlations between factorial effects (main effects and interactions) are

either 0 (uncorrelated) or 1 (total aliasing). There is no partial aliasing between factorial

effects; see, for example, Box, Hunter and Hunter (2005), Chapter 6.

Example For five factors, A... E, each at two levels, denoted by -1, 1, a quarter (25~2)

regular fraction is defined by / = ABCD = ABE. This fraction has the 8 runs shown in

Table 1.1.

In this example, the mean is aliased with the four-factor ABCD interaction, and the

three-factor ABE interaction. The main effects are totally aliased with two and three

factor interactions, for example A with BE and BCD. Some two-factor interactions are

also aliased together, for example AB with CD. The resolution of a design is the length
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Table 1.1: The 25~2 design denned by / = ABCD = ABE.

A
1
1
1

-1
-1
-1
-1

B
1
1
-1
-1
1
1
-1
-1

C
1
-1
1
-1
1
-1
1
-1

D
1

-1

T—
1

-1
1
1
-1

E
1
1
-1
-1
-1
-1
1
1

of the shortest word in its denning relation. For example, the design shown in Table 1.1

has resolution III because the shortest word in the defining relation (ABE) contains

three factors.

Regular factorial and fractional factorial designs of resolution III or higher are examples

of main effects orthogonal designs. These are designs in which the columns containing

the values of the factors are all orthogonal to each other. An advantage of using a main

effects orthogonal design is that the least squares estimators of all the main effects are

uncorrelated.

Irregular fractions have no defining relation and may allow estimation of main effects and

lower order interactions in fewer runs than a regular fractional factorial design. The most

well known are the designs of Plackett and Burman (1946) which are used for estimating

main effects when interactions are believed to be negligible. For 2-level factors, Plackett

and Burman designs may be constructed for any number of runs that is a multiple of

four, unlike full and fractional factorial designs, for which the number of runs must be a

power of two. A complete catalogue of two-level main effects orthogonal designs in 12, 16

and 20 runs was provided by Sun, Li and Ye (2002), and was found by computer search.

1.3 Design for Model Discrimination

Consider the situation in which there are M competing linear models of the form given

in equation (1.2). The problem is how to choose, by experiment, a model m* from the

set of models M. under consideration which provides the 'best' approximation to the

observed response. Throughout this thesis, this best model is called the 'true' or
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'correct' model.

Several criteria have been proposed for selecting designs for the purpose of discriminating

between a set of possible models to describe the relationship between a response and a

set of explanatory variables. In this subsection we briefly describe the main non-Bayesian

approaches to this problem. A review of Bayesian criteria will be given in Section 1.3.1.

The model discrimination capability of the search designs of Srivastava (1975) is

measured by a criterion called resolving power. For discriminating between M = 2

models, the T-optimality criterion was introduced by Atkinson and Federov (1975a).

This criterion is based on maximising the residual sum of squares for the alternative

model, given the known 'true' model. Atkinson and Federov (1975b) generalised this

criterion to allow several competing models. A different approach using criteria based on

the Subspace Angle and Expected Prediction Difference, was recently introduced by

Jones, Li, Nachtsheim and Ye (2007). These criteria aimed to select designs where

differences between the fitted values from the M models are as large as possible. The

subspace angle of a pair of models is a measure of the closeness between the spaces

spanned by their model matrices for a given design. To select a design, Jones" et al.

(2007) denned two criteria based on the subspace angle: either to maximise the

minimum out of the subspace angles between pairs of models in M, or to maximise the

average subspace angle over all pairs of models in M. The expected prediction difference

between two models is the expectation of the squared magnitude of the difference

between the fitted values of the two models, where the response is normalised to lie on

the unit sphere. As with the subspace angle, Jones et al. (2007) denned two criteria - the

minimum and average expected prediction difference over all pairs of possible models.

Agboto, Li and Nachtsheim (2006) evaluated the designs in the catalogue of Sun et al.

(2002) under a variety of model discrimination criteria, including the expected prediction

difference.

1.3.1 Bayesian Experimental Design for Model Discrimination

A comprehensive review of Bayesian experimental design was given by Chaloner and

Verdinelli (1995). In a Bayesian framework, experimental design may be approached by

using decision theory. There are two decisions to be made: firstly, the choice of design to
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use and secondly an inferential decision based on the outcome of the experiment, such as

the choice of a model or estimators of the model parameters. Lindley (1972) followed

this approach, and suggested selecting a design d to maximise the expected utility of the

final inferential decision 6 chosen from set of possible decisions A. That is, to choose d,

from the set of designs under consideration V, to maximise

U(d) = J wuxj U(6,e,d,y)f(9\y,d)f(y\d)dddy, (1.9)
y e

where 6 is the vector of unknown model parameters. Using utility functions based on the

accuracy of parameter estimates or the gain in Shannon information on the parameters

leads to the Bayesian A- and D- optimality criteria respectively (see Chaloner and

Verdinelli (1995) for references). A more model-robust approach was implemented by

DuMouchel and Jones (1994) using Bayesian D-optimality and a particular choice of

prior where a distinction is made between terms which must be estimated in the model

(primary) and those which may possibly need to be included (potential).

There are several existing approaches to producing designs for the purpose of model

discrimination in a Bayesian framework. Box and Hill (1967) introduced the D (for

discrimination) criterion, based on maximising the expected Kullback-Leibler distance

(see, for example, Chaloner and Verdinelli (1995)) between the predictive densities of

pairs of competing models. We refer to this criterion as MD, following Meyer, Steinberg

and Box (1996), who used this criterion for the selection of follow-up designs.

The MD criterion selects a design that maximises

MD = Y, Pi^Pimj) f /(YK) log ( ^ ^ l ) dY. (1.10)
0<i^j<m J \J\ \ 3)/

The objective function (1.10) is the expected Kullback-Leibler distance between the

prior predicted densities of models rrii and rrij. For a normal inverse-gamma prior

distribution, the prior predictive distribution under model m, of the response in future

experiments with model matrix Xj is Y ~ iV(Yi,ai£i) where Y, = Xj/ij, and

Ej = I + XjViX^ (see O'Hagan and Forster 2004). Meyer et al. (1996) showed that, for a

normal inverse-gamma prior, the MD objective function can be written as
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MD = \ E nr

x {-n + tr (Sj1^) + d [(Y8 - Y /ST 1 ^ - Y^M] } .

(1.11)

A further development of the work of DuMouchel and Jones (1994), is the F criterion

suggested by Jones and DuMouchel (1996) for use in model discrimination. It aims to

find a design that maximises

where

V o =
i i i

For a model m*, the matrix Vei is the prior variance-covariance matrix expanded to

include all possible model terms, with zero entries in rows and columns that represent

terms not included in the model. Likewise, fiei is ni, the prior mean for model m*, with

extra zero entries for terms not in model rrii and Xy is the model matrix for the full

model containing all possible terms. The criterion is related to the Bayesian

D-optimality criterion for a 'super-model' that contains all possible terms, which is to

maximise IV71 + X'^X/|, where V/ is the prior variance-covariance matrix for the model

containing all possible terms.

The HD criterion of Bingham and Chipman (2007) is similar to the MD but based on

Hellinger distances, which gives the advantage of an upper bound on the objective

function. The HD criterion is to maximise

where /; is the prior predictive distribution of new observations under model mj. The

Hellinger distance between two densities fi, fj is given by

Jj) = J(f!/2 - f}/2)dY = 2 -2J(flfj)
1/2dY.
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For a linear model, we can write j{fifj)ll2dY in closed form as

2a, '

1/2

For a derivation of this result when the prior means are non-zero, see Appendix A.

1.4 Aims and structure of the thesis

The overall aim of this thesis is to develop methodology to select experimental designs

for the purpose of model discrimination within a Bayesian framework. This specific

objectives are:

• To formulate a design selection criterion which reflects our objectives in model

discrimination, and which is consistent with a Bayesian decision theoretic approach

to model selection.

• To investigate methodology for efficient evaluation of experimental designs under

this criterion, and to enable us to search for good designs under the proposed

criterion.

• To apply the criterion to examples involving different sets of possible models, with

differing levels of prior information. Specifically, we will apply the criterion to the

selection of screening designs, follow-up runs and to a real example.

• To compare the use of the criterion to that of other criteria from the literature for

a variety of examples.

In Chapter 2, we define the Penalised Model Discrepancy (PMD) criterion for design

selection and describe methodology for evaluating our objective function and searching

for good designs. In Chapter 3, we consider the problem of choosing designs for

screening experiments for a variety of model spaces. We compare the use of the criterion

to the MD, HD and F criteria from the literature. In Chapter 4, we apply the PMD
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criterion to an example from the literature, where follow-up runs must be chosen to

build on information from an initial experiment. We again compare our criterion to the

MD, HD and F criteria. In Chapter 5, we apply similar ideas to the selection of

follow-up runs for an experiment in tribology. Finally, in Chapter 6 we investigate

approaches to the high computational burden that arises when large model spaces are

used. Conclusions, a summary and ideas for further work are presented in Chapter 7.



Chapter 2

The Penalised Model Discrepancy

Criterion

In this chapter we describe the approach taken to Bayesian model selection. This leads

to the formulation of an objective function for comparing designs and a criterion for

design selection, given in Section 2.2. The implementation of our criterion is discussed in

Section 2.3.

2.1 A Decision Theoretic Approach to Model Selection

Suppose that data, y, are obtained from an experiment that uses design dn € T>(n),

where T>(n) is the set of all n-point exact designs. Then prior model probabilities P(rrii)

are updated to give posterior model probabilities P(rrii\y, dn) via (1.7) and parameter

distributions /(/3j,o"2|y, dn,m,i) via (1.1).

We define a loss function L(i,j) to be the loss incurred in selecting model raj when

model rrij is true in the sense described in Section 1.3. We choose a model mi which

minimises the expected loss

E(L(i,j)\y,dn) = Y/P(mj\y,dn)L(i,j), (2.1)
3

which is known as the Bayes risk; see for example, Berger (1985). The simplest form of

13
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loss function is a loss of 1 for choosing an incorrect model, and a loss of zero for choosing

the correct model, i.e.

L(i,j) = 0 if i = j and L(i,j) = 1 otherwise. (2.2)

This loss function leads us to always select the model with highest posterior probability.

The loss function used to select a model in this thesis is constructed by assigning a loss

of 1 to every model term from the true model that is not present in the selected model,

and a loss of c for every extra term in the selected model that is not in the true model.

This loss function is defined by

L( i , j )= |«57 \ ' 5 i |+c |5 i \ «S j |, (2.3)

where Si is the set of terms in the selected model m; and |«S| denotes the size of the set

<S. We call this the Penalised Model Discrepancy (PMD) loss function. An advantage of

the PMD loss function is that it has simple interpretation when c — 1 as the actual

number of terms by which the chosen model differs from the true model.

2.1.1 Formulation of the Expected Loss

As described in Section 2.1, a model is selected that minimises the expected loss. For the

loss function (2.3), the expected loss from selecting model m*, given the data y obtained

using design dn, is

M M M

Ej (L(i,j)\y,dn) = ^p(mj|y)L(i, j) = J ^ r r i , |y) | Sj\Si | +c^p(roj-|y) | St \ Sj | .
3=1 j=l 3=1

(2.4)

We now reformulate (2.4) as a function of the probabilities of individual terms being

present in the model. This reformulation will be used in later chapters to gain

understanding of which particular terms are included in the chosen model.

The number of terms in rrij that are not in model m; can be expressed as :
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M

where S — (J <S; and I(£ G Sj) = 1 if term £ is in model rrij, and 0 otherwise

(j = l,...,lM). Then
M M

j \ S I = ^pK|y) £ /(* G
J=l ^65

ees

M

Here, p(^|y) = Yl P(rnj|y)-^(^ ^ •S,-) is the posterior probability that model term £ is

present in the true model; see, for example, Box and Meyer (1986).

Applying a similar argument to the second summation in (2.4) gives
M

^TpKly) | Si \ Sj \= Y, i (e e s^ [1 - P(e\y)]. (2.5)
j=i ees

Hence from (2.5) and (2.5), the expected loss is
M

E(L(i,j)\y,dn) = Y,P{m3\y)L{i,j) = £ { / ( * ^ Si)p{l\y) + cl(£ e S>) [1 - p(i\y)]} .
j

(2.6)

For some choices of model spaces, this equation can provide insight into how the model

selected relates to the posterior probabilities of the individual model terms. Define

T C S to be the set of terms such that

e€T<*p(£\y)>c[l-p(e\y)],

for a chosen penalty c, that is, p(£\y) > j4^. Then, provided that

T = Si for some 1 < i < M, (2.7)

Si will contain the terms of a model that minimises the expected loss (2.6). The value of

this loss is then

£min{p(* |y ) ) C [ l - p (* | y ) ]} . (2.8)

The condition (2.7) applies for any prior distribution which gives non-zero prior

probability to models composed of any subset of terms of S, for example, relaxed weak

heredity, see Chipman (1996), and Chapters 3 and 4 for definition and discussion.
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2.2 Design Selection

The most general formulation of the criterion we use to select a design is to minimise the

average expected loss of the model chosen, given the data, that is to minimise

(2.9)

This expression is equivalent to equation (1.9) of Chapter 1 (see, also, Chaloner and

Verdinelli, 1995) and can be applied to any choice of loss function. Throughout this

thesis we restrict attention to the criterion with loss function (2.3), and this leads to our

new criterion for obtaining designs.

Definition: The Penalised Model Discrepancy (PMD) optimal design over the set Vn of

n-point designs is

< - argmin EY[dn (mmEj [L(i,j)\y, dn}) , (2.10)

where L(i,j) is denned in equation (2.3).

An advantage of this criterion, compared with alternatives discussed in later chapters, is

that it has straightforward interpretation: For the special case when c = 1, the expected

loss in (2.3) may be is interpreted as the expected number of terms by which the chosen

model differs from the true model. If c ̂  1, the objective function is a weighted sum of

the expected number of additional terms and missing terms compared to the true model.

The use of a value of c < 1 means that the inclusion of extra terms in the model is

penalised less harshly than the omission of important terms, as a model with extra terms

is still a 'correct' model for predictive purposes. This enables us to retain model terms if

we do not have strong evidence that they are inactive, which may be necessary,

particularly in the early stages of experimentation. Conversely, use of c > 1 would

encourage the selection of a simpler model, possibly missing more active terms. This is

further discussed and illustrated in Chapter 3.

2.3 Implementation

In this section we describe how the PMD criterion has been implemented in software,

which is written in C. The PMD objective function cannot be calculated analytically,

hence simulation is used to evaluate it. Further, as an exhaustive evaluation of all
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possible designs cannot be made, a search algorithm is used to find good designs. For

other computation required for this thesis, we have used R (R Development Core Team

2008).

2.3.1 Evaluation of the Objective Function

In each simulation, we generate a data set from the prior predictive distribution of Y,

calculate the posterior model probabilities, and select the model with the lowest

expected loss. The losses incurred due to the models selected are averaged over a large

number, s, of simulations to evaluate the objective function. The algorithm used to

evaluate the objective function is:

1. Calculate the parts of the posterior model probability that do not depend on y.

We have, from Chapter 1, Section 1.1.3 that this probability involves y only

through the term a*, given by

a* = a + ^ ( V " 1 - V - ^ V - V , + y'(In - X,V*X^)yt - 2yJX i V;vr 1
/ i i .

In this expression we may calculate V*, 2XiV*V~1/Lii, I n - XjV*X£ and

for each of the models before we begin the simulation.

2. Generate n x 1 vectors Zfc (k = 1 , . . . , s) each containing independent N(0,1)

deviates.

3. Draw a random sample of s models from M. using probability sampling in

conjunction with the prior model probabilities P(rrii), for i = 1, . . . , M. This

sample provides a set of 'true' models from which data sets are generated. Without

loss of generality, label these models, which may not be distinct, as u\,..., us.

4. Generate values for the variances a\ (k — 1,..., s) independently from an

IG(a/2, d/2) distribution.

5. Obtain values of the regression parameters / 3 | i m for the fcth simulation

(k = 1 , . . . , s) as random draws from the prior distribution N(nUk,a^VUk), where

fiUk and YUk are the prior mean and variance respectively of model u^.
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6. Create n x 1 vectors of values of Y defined by

Yfc = XUk(3fm + afcZfc,

for k = 1 , . . . , s, where XUk is the n x pUk model matrix for model Uk-

7. For k — 1 , . . . , s, start from the original prior distributions P(rrii), f ((3^,(7\rrii), and

calculate the posterior model probabilities P(m,i\Yk) for i — 1 , . . . , M using Bayes'

theorem, see equation (1.7).

8. Find the expected loss of the model chosen by calculating ^L(i,j)P(mj\y) for
j

i = 1 , . . . , M and taking the lowest value obtained.

9. Calculate the average expected loss over the s chosen models selected from the s

simulation runs.

In step 8, computational savings may be made in one of two ways:

First,

i arrange the models in order of prior probability,

ii calculate the expected loss for the first model in this list in the usual way.

iii for each subsequent model, add up the terms in the expression (2.1) until

• either the expected loss becomes greater than that of the current best model, in

which case we move on to the next model, or

• all terms of the sum have been included and the expected loss is still lower than

that of the best model, in which case the model currently under consideration is

now the best.

Alternatively, provided condition (2.7) holds, the expected loss of the model selected can

be found from equation (2.8).
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2.4 Searching for Designs

We use a modified Fedorov Exchange Algorithm (MFEA, Cook and Nachtsheim, 1980)

to search for good n-point designs under the PMD criterion. The algorithm works as

follows:

1. A set of N candidate points is created, from which the rows of the design may be

chosen. For example, if we are dealing with / factors, each at two levels, we may

allow all possible combinations of the factor levels, giving a candidate list of 2$

points.

2. Start with an n-point design consisting of points randomly selected, with

replacement, from the candidate list. Evaluate the objective function for this

design.

3. For the first design point, form a new design by exchanging this point with the

first candidate point. Evaluate the objective function for the new design formed. If

this value is lower than before the exchange was made, keep the new point in the

design and record the objective function value as the best obtained so far.

Otherwise, do not retain the exchange. Repeat the procedure for the Ith. candidate

point (l = 2,...,N).

4. Repeat step 3 for the ith design point (i — 2 , . . . , n).

5. If an improvement in the value of the objective function exceeding e, where e is

some pre-determined small number, has been achieved through step 3, retain this

design and repeat the process from step 3. If a sufficient improvement is not

obtained, stop and return the current design.

In practice, several tries of the algorithm are made from random starting designs and the

best design found is selected. This is to try to overcome the problem of the search

becoming stuck near a local optimum.
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2.4.1 Adaptive Simulation Size

We refine this algorithm by the use of an adaptive simulation size. In the early stages of

the search, the differences between designs are expected to be larger than at later steps

when the algorithm is approaching a local minimum. Hence, a small simulation size may

be sufficient for the first few steps of the search, but a larger simulation is required later

to give sufficient precision in our estimate of the objective function to discriminate

between designs in the presence of Monte Carlo error. An adaptive sample size was also

used in the simulated annealing algorithm of Muller, Sanso and De Iorio (2004).

Let Rk (for Bayes risk) be the expected loss (2.1) given the current design, at the kth

step of our search. This is a random variable and, at the A:th step, a random sample of

values of Rk values is used to estimate E(Rk), the objective function, by the sample

mean, &k- Let Sk be the sample size used at the kth step of the search. At the (k + l)th

step, the search moves to a new design if the estimated objective function for the new

design is lower than that for the current design, that is, if Rk+i < fk, where fk is the

observed sample mean. Suppose that 5 is the decrease in value of the objective function

observed on the last occasion on which a move was made to a new design. Then, at the

kth step we would like to be able to detect a change of magnitude 5 with reasonable

probability in the presence of the Monte Carlo variation in Rk+i- Hence, if

E(Rk+i) = fk — S, we require that

P(Rk+i < fk) > 1 - a. (2.11)

The variance of Rk+i is unknown and is estimated by the sample variance, Vk, from the

fcth simulation. By the Central Limit Theorem, Rk+i is approximately distributed as

N(E(Rk+i),Vk/Sk+i)• Hence, (2.11) is satisfied provided that

where $ is the standard N(Q, 1) cumulative distribution function. Thus, we require

( )
sfc+i > vk.

\ ° J
Therefore, at each step of the search, we set Sk+i to be the smallest integer to achieve

this.
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2.5 Summary

In this chapter we have described the Bayesian decision theoretic approach taken to

model selection in this thesis. The new design criterion proposed (the PMD criterion)

follows naturally from minimising the expectation of the expected loss of the model

chosen and has the advantage of having a straightforward interpretation. It is not

possible to calculate the objective function analytically, so a method for its estimation

has been proposed using simulation. We have also given the steps of the Modified

Fedorov Algorithm that is used in this thesis to find good designs by search, and

described some methods of making computational savings which have been incorporated

into the algorithm.



Chapter 3

Screening Experiments

3.1 Introduction

In this chapter we consider experiments where the aim is to identify active effects from a

large number of possible effects. Typically these experiments take place early in an

investigation when there is not much prior information available. Hence non-informative

priors will be used in the analysis of the results. First, in Section 3.2, we investigate the

designs of Sun et al. (2002) (known as 'main effects orthogonal designs') for a very

simple model space in which each model has only main effects and a mean. In later

sections, interactions are introduced. In Section 3.3 the model space is composed of

models with all main effects and exactly one interaction. The sensitivity of the designs

to the hyperparameters of the prior distributions is investigated in Section 3.3.4. In

Section 3.4 models containing any subset of main effect and interaction terms are

permitted. For this model space a comparison is made between the designs selected

under the PMD criterion and the designs selected under criteria from the literature.

Finally, in Section 3.4.6, an evaluation is made of the designs selected under the PMD

criterion and three criteria from the literature defined in Section 1.3 in terms of several

indicators of their capability of selecting a 'correct model'.

Throughout this chapter, unless otherwise stated, the hyperparameters for the prior

distributions of j3 and a2 are a = 200, d = 15, /x = 0 and Vj = IPi (The hyperparameters

are introduced in Section 1.1.3 and the sensitivity of the PMD criterion to the values

22
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used is investigated in Section 3.3.4). These values of a and d give a mean for the prior

distribution of a2 of around 15.

3.2 Main Effects Only Models

We first investigate designs for a very simple model space composed of models that may

contain any subset of main effect terms. To assign probabilities to each possible model,

it is assumed that each main effect is included independently with prior probability

p=0.5. A modified Fedorov exchange algorithm search (Section 2.4) was used to find

designs for / = 5,6,7,8 factors and run sizes from / + 1 to 16. Note that for / + 1 runs

the designs are saturated for the largest model.

Figure 3.1 shows the value of the PMD objective function for the designs obtained

plotted against the different numbers of runs investigated. For each number of factors,

the objective function values for the best design found at each number of runs are

connected by a line. For numbers of runs for which a main effect orthogonal design

exists (8, 12 or 16 runs), these designs were the best found under the PMD criterion.

This figure shows how the value of the PMD objective function decreases as the number

of runs increases, and increases with the number of factors. For 5 and 6 factors, the

objective function decreases most rapidly as the number of runs increases up to 8, the

first available orthogonal design. For all numbers of factors shown, especially 7 and 8,

there is a sharper decrease in the value of the PMD objective function between 11 and

12 runs than from 12 to 13 runs, showing the benefit of an orthogonal design, and the

relative lack of improvement from using one more run than needed for an orthogonal

design.

3.3 Models Containing All Main Effects and one Two-factor

Interaction

Another simple model space was examined by Li (2005) who assumed that all main

effect terms are known to be active, and there is possibly a single active two-factor

interaction. The main objective of the experiment is to detect this interaction. The
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Figure 3.1: Value of the PMD objective function vs run size for 5, 6, 7 and 8 factor designs
using models containing main effects only.
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model space, M, is composed of models

my : E(Y) = fa + J^P&l + PijXiXj, (3.1)

1=1

for i,j = 1 . . . f;i ^ j , i.e. the set of models with all / linear effects and one interaction.

We assume that all models are equally likely to be 'correct' and assign P(rriij) = I-MI"1.

3.3.1 Ranking of Main Effects Orthogonal Designs Under Four Criteria

The 16-run main effects orthogonal designs of Sun et al. (2002) for 3 to 9 factors were

ranked under each of the PMD, F, MD and HD criteria. The top ten designs under each

criterion are given in Table 3.1, using the design labels of Sun et al.. The full factorial

designs and regular fractional factorial designs are indicated in the table.

For 3 to 5 factors, 16 runs are sufficient to allow full factorial or resolution V regular

fractional factorial designs that have all main effects and interactions clear of each other

and this design is ranked highest by all the criteria. The best main effects orthogonal

design for 3 factors is two replicates of the full factorial. For 4 factors, the best design is

the full factorial and for 5 factors the best is the 2y-1 half fraction ABCDE = I.

For 6 to 9 factors, where the regular design has some interactions completely aliased

with other interactions or main effects, the PMD criterion does not rank regular designs

highly. In contrast,

• the MD criterion selects a regular design for all numbers of factors.

• the F criterion selects a regular design for 6 to 8 factors, with a regular design

ranked second best for 9 factors.

• The HD criterion selects regular designs for 6 to 8 factors but the regular design is

only ranked sixth for 9 factors.

The disagreement between the designs selected using the PMD criterion and the other

criteria becomes more pronounced for larger numbers of factors. Figure 3.2 shows the

rank correlation between the objective function of the PMD and those of each of the

other criteria for the set of 16 run orthogonal main effects designs for 3 to 9 factors. This

plot indicates that designs that are good under the other criteria are not necessarily
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Table 3.1: Ranking of 16-run main effects orthogonal designs of Sun et al. (2002) for
3-9 factors under four criteria, using models containing all main effects and one 2-factor
interaction. *Full factorial, fRegular design.

# factors 3 4 5 6
Criterion PMD F MD HD PMD F MD HD PMD F MD HD PMD F MD HD

Ranking 1 2* 2* 2*
2 3 3 3
3 1 1 1
4 . . .
5 - - -
6 - - -

9
10

3
1

3*
4
5
1
2

3* 3*
4 4
5 2
2 5
1 1

3*
4
5
2
1

5
8
7
10
11
2
6
3
9

4t 4t
5 3
3 5
8 7

8
2

7
10

5
3
7
8
10

2 10 11
9
2
6

11 11
9 9
6 6

13 5T
19 8
20 13
24 4*
22 14
6 19

23 6
26 12
27 24
7 20

5T 5 t
8 8

4* 13
14 19
13 14
19 12
6 20

12 24
7 22

15 4+

# factors
Criterion

Ranking 1
2
3
4
5
6
7
8
9

10

PMD
32
49
55
53
43
54
27
45
30
50

7
F
6t
12
28
32
21
33
11
5

22
49

MD

6+
12
28
5
11
22
33
32
21
49

HD

6+
12
28
32
49
33
21
31
55
36

PMD
68
67
39
77
66
72
42
36
73
74

F
6*
18
42
77
48
17
4
26
41
40

i
MD
6t
18
4
26
17
48
77
42
41
12

HD
6t
18
42
77
41
48
67
68
17
76

PMD
71
36
79
70
32
82
77
69
68
84

9
F
25
4t
53
17
84
44
5

65
22
10

MD

4+
25
17
53
5

44
3

84
12
10

HD
25
53
84
44
17
4t
71
83
74
55

good under the PMD criterion. For example, the highest ranked design under the F

criterion for each of 6 to 9 factors are ranked 24, 53, 80 and 82 under the PMD criterion

out of the 27, 55, 80 and 87 designs evaluated respectively.

The reason the difference between the F and PMD is that the two criteria have different

objectives. The PMD criterion is aimed that discriminating between models, and so

chooses designs with minimal aliasing of the terms that vary between models, i.e. the

interaction terms. The F criterion selects designs which enable precise estimates of

individual terms, particularly those with high prior probability, i.e. the main effects

terms, even though good estimates of these terms are not directly useful in

discriminating between the models.
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Figure 3.2: Correlation between the ranks of 16-run main effect orthognal designs under
the PMD criterion and the ranks under each of the F, MD and HD criteria.
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Figure 3.3: Values of the PMD objective function for all the 16-run main effect orthogonal
designs together with designs found by algorithmic search.

3.3.2 Non-orthogonal designs

An MFEA search was run for designs of 16 runs in 3 , . . . , 9 factors, and repeated 20

times for each number of runs. For 3 to 5 factors, it was not possible to improve on the

best main effects orthogonal design. For 6 , . . . , 9 factors, it is possible to make an

improvement compared to the best main effects orthogonal design. Figure 3.3 shows the

PMD values of all main effects orthogonal designs for 3 , . . . , 9 factors, with a line

connecting the best for each number of factors. Also plotted are the PMD values for the

designs returned from 20 tries of the Modified Federov Exchange Algorithm at each

number of factors.

3.3.3 Explanation of Results

For 3-5 factors, the best main effects orthogonal design has not only main effects

orthogonal to each other, but also all effects (main effects and 2-factor interactions) are
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orthogonal to each other. It is for these numbers of factors that no improvement on the

best main effects orthogonal design was found with an unrestricted search. Such designs

do not exist for greater numbers of factors in 16 runs.

For 7-9 factors, the best design found did not have main effects orthogonal, but did have

all main effects orthogonal to all 2-factor interactions. For 6 factors, designs with this

property were returned as local optimum designs, but were not the overall best found.

3.3.4 Sensitivity

Prior Model Probabilities

To assess the sensitivity of the design ranking to changes in the prior information,

suppose that we have 7 factors. Suppose also that models m\j (j = 1 . . . 7), i.e. those

containing an interaction involving the first factor, are considered to be more (or less)

likely, a priori, than the other models. There are 15 models that do not include an

interaction involving factor 1, and 6 models that do include an interaction involving

factor 1. The whole model space consists of these 21 models and JZ P{mij) — 1-
1 7

Hence we may incorporate such prior information by setting

where m^ is defined in (3.1). The prior probabilities of all models are equal when a = 1.

Figure 3.4 shows the changing performance of three designs as a varies from 0 to 4. We

observe that the relative performance of the designs may change, especially if we have

strong prior information on which models are more likely to be true (a near 0 or a > 1).

For example, the red line corresponds to a design for which at least one of the models

m\j (j = 2 . . . 7) is indistinguishable from one or more models triy (i, j = 2 . . . 7; i < j),

when all models are assigned the same prior probability and the Normal-Inverse Gamma

prior distribution, defined in Section 1.4 is used for the model parameters. Hence,

although this design is poor when a = 1, it is more useful when prior information

indicates which of two sets of models is more likely.

The green line corresponds to a design where models that are indistinguishable under

uniform prior information are only of the type rriij (i, j = 2 . . . 7; i < j); this design

becomes more useful if the prior probability is concentrated on the first 6 models (a > 1).
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Q

Figure 3.4: PMD values for three 16 run main effect orthogonal designs in 7 factors
evaluated for 0 < a < 4

The results indicated in black correspond to a design which enables discrimination

between all the models; it is a good choice for all a, although a more informative prior

will improve its performance.

All 55 16-run main effects orthogonal designs in seven factors are displayed in the plot in

Figure 3.5. In addition to the colour coding described above, designs shown in blue have

pairs of indistinguishable models where the interactions of neither model involves the

first factor and has indistinguishable pairs where exactly one of the models has an

interaction involving the first factor. The objective function of these designs behaves

similarly to a combination of the red and green lines.

The grey lines in the figure represent designs that also have pairs of indistinguishable

models each of which contains an interaction term involving the first factor, in addition

to the types of pairs that are not distinguishable for the designs in blue. These perform

poorly for all values of a.

Finally, for the designs corresponding to the yellow lines, there is at least one pair of
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Figure 3.5: PMD values for the 55 main effects orthogonal designs for 7 factors in 16 runs
evaluated for 0 < a < 4.

indistinguishable models which have interactions involving the first factor. Also, there is

at least one pair of indistinguishable models with neither interaction involving the first

factor. Finally, there are no pairs of indistinguishable models such that one model has

an interaction involving factor 1 and the other does not. The objective function for these

designs stays near the middle of the range of the range as a varies.

Prior Variance-Covariance Matrix (I)

We also assessed the sensitivity of the objective function to changes in the prior

variance-covariance matrix. We evaluate the objective function for all 16-run orthogonal

designs in 7 factors, using the prior distributions given in Section 3.1, except that

V =
0

0

A

that is, the prior variance of 0g, the coefficient of the interaction term, equals A. We

evaluated and ranked the designs using the PMD objective function for 10 different
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values of A, at intervals of 0.2 from 0.2 to 2. We found that the best design remained the

same for each value of A and that two designs were always ranked second or third,

although their order varied with A. However, the relative ranking of other designs varied

a lot as A was changed, for example, design 6 was ranked 30th for A = 1, but 15th for

A = 0.2.

To investigate why the ranking of designs changes over the range 0.2 < A < 1, we have

plotted in Figure 3.6 the number of pairs of models which are distinguishable (i.e. will

not always have identical posterior probabilities) when given equal prior probabilities

and the same prior parameter distribution, against

£ 4 (3-2)

on the vertical axis. Here Sfj — ((X'X)jj)2 where X is the model matrix for a model

including the intercept, the 7 main effects and all 21 2-factor interactions between them

and (X'X)jj denotes the (i, j)th element of (X'X). In expression (3.2), i denotes the

intercept or a main effect term and j is an interaction, the expression measures the

extent to which a design has aliasing between interactions (which vary between models)

and other effects (which are included in all models). We observe that for designs whose

ranking improves as A increases, there is a lot of aliasing between interactions and other

effects, relative to the other designs with a similar number of distinguishable models.

This is because for small A, the magnitude of the interaction effects generated is small,

and hence will not greatly increase the probability of the true model when it is partially

aliased with another effect in the same model. However, as A increases, the magnitude of

the interaction effect increases and so the probability of the model containing that effect

will be increased even when aliasing is present.

In this case, the same design would be chosen for all A in the range studied. However,

these results show that, in general, an incorrect prior specification of the relative sizes of

effects common to all models and those which vary between models might lead to the

choice of an inappropriate design.



CHAPTER 3. SCREENING EXPERIMENTS 33

W O

c
.2
0 o

I I
E

1 o

o

0

*

0

*

* * *
*
*

*

No change in rankinc
Ranking worsens
Ranking improves

* #o

*

*

100 200 300 400

Number of Discriminable Model Pairs

Figure 3.6: Features of designs leading to a change in ranking as A varies.

Prior Variance-Covariance Matrix (II)

We now investigate a second form of prior variance-covariance matrix, namely V = AI.

As before, we use the values of A at intervals of 0.2, from 0.2 to 2, and evaluate the PMD

criterion for the 55 orthogonal 16-run designs in 7 factors. The value of A changes the

sizes of the model parameters relative to the random errors, as /3\a ~ N(0, & V) and

e ~ JV(0,CT2)

For each value of A, we ranked the designs from 1 (best, i.e. lowest PMD) to 55 (highest

PMD). The results for the six designs with most improved ranks, the six that worsen in

ranking the most, and the three best designs, are shown in Table 3.2.

An indication of why the ranking of some designs changes with A is given by the

5? = (X'Xy)2, (i 7̂  j) values, which show the extent of aliasing between effects in the

design, and which may equal 0, 64 or 256 for these designs. As an example, compare

designs 10 and 45. Design 10 has Sf = 0 for a large number of pairs i,j, which enables

discrimination between models containing these effects even when random error is large

compared to the effect sizes. Design 45, on the other hand, has partial aliasing between

many effects, so is less useful than design 10 for low values of A. However, for large A,

models which have partially aliased effects may be better discriminated, but those with
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Table 3.2: Change in ranking of designs under PMD with increasing effect size relative to
error

Design no.
Ranking for A = 0.2
Ranking for A = 2

#4- = o# 4 = 6 4

# 4 = 256> * + 3
Design no.
Ranking for A = 0.2
Ranking for A — 2
#Sfj = 0

# 4 = 6 4
# 4 = 256, i ^ j

Design no.
Ranking for
Ranking for
*Sfj = 0

# 4 = 64
# 4 = 256>

41
50
42
656
144
12

19
12
25
710
96
6

A = 0
A = 2

50
15
7

68(
135
0

10
9

21
72£
72
12

.2

45
22
9

) 66*
> 144

0

7
20
31

i 74(
48
18

32
1
1

692
120
0

42
37
20

5 662
I 144

6

30
5
13

i 710
96
6

49 55
2 3
2 3

51
27
8

644
168

0

31
19
26

686
120
6

680 686
132 126
0 0

52
35
12

644
168
0

11
18
24

728
72
12

full aliasing (Sfj — 256, i / j) are still indistinguishable, so the ranking of designs such as

10 worsens. The three best designs were included in Table 3.2 for comparison. These

designs have no full aliasing and less partial aliasing than most other designs, and are

also good under the Expected Prediction Difference criteria of Li (2005).

Hyperparameters of the prior distribution

The value of the PMD criterion for a design is invariant to the scale parameter, a, of the

prior distribution of a, provided we are using zero means for the prior distributions of

parameters. To show this, let us follow the steps of our computer code. First, we select

models at random from the prior distribution, then, for a given model, we generate

random values of a1 = % where I/J ~ Xd- We then generate the other model parameters

from the prior distribution (3 ~ N(m, a2V) by (3 = crCzo + m, where zo is a

p-dimensional vector of iV(0,1) random deviates and C is the Cholesky decomposition of

V such that C'C = V. We generate samples of y as zcr + Xt/9 where z is an

n-dimensional vector of iV(0,1) random deviates and X t is the model matrix of the true

model. Then, for m = 0, y = a(z 4- XjCzo) and, if a\ is the value of a* obtained for
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model i,

a* = o + y ' ( I n - X i V * X ' i ) y (3.3)

^ (3.4)

(3.5)

The likelihood given model i, is

_ ]V^V^T(dV2) d./2

where d* = d + n. The part of the likelihood that depends on a is

od/2 (a?)-«r/2 = a<*/2a-<r/2 [! + ^ - i ( z + x t Cz 0 ) ' ( I n - X iV*X' i)(z + XtCz0)]"r/2 .

Hence there is a common factor of a,(d~d*^2 in all model likelihoods, which cancels when

we calculate the posterior model probabilities. Therefore the PMD value is independent

of a when the prior means of the regression parameters are 0.

The effect of the shape hyperparameter, d, appears to be small enough to not really

affect the value of the PMD criterion or the ranking of designs. If we use the same V for
1 ft*

all models, then the part of the likelihood that differs between models is |V*|2 (a*) r .

We may divide all likelihoods by {~)~ without changing the posterior model

probabilities, to get

|V?|*(1+ £)"£, (3.6)

where

n = (z + X tCzo)'(In - XiV*X'i){z + XtCzo).

If we assume that ty, a random variable, is close to its modal value of d + 2, then (3.6) is

approximated by

Using the fact that (1 + ^ ) n —> ex as n —> oo, (3.7) has a limit, as d —> oo, of

For the 11 orthogonal designs for 5 factors in 16 runs, we evaluated the PMD criterion

for d = 5,10,15,20,25. Also, we generated random normal residuals z, z0 and random
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Figure 3.7: PMD value for 11 designs, repeated for 5 values of d.

selections of true models t. These were used to calculate r^ and e~n/2 for all models. In

this model space, L(i,j) — 2 for i ^ j , so our selected model is that with the highest

posterior probability. Hence, as the prior model probabilities are equal, we were able to

obtain an approximation to the PMD value for a design as d —> oo by calculating the

mean of

2 1 - (3.8)

over 50 000 simulations.

The results are shown in Figure 3.7. Each group of five points gives the PMD values for

a design at each of the five values of d that we used. The horizontal line through the

group is the value obtained for the limit (3.8) for that design. We see that, even for

small d, the PMD value is close to the asymptotic limit. Although the individual values

of |V*|2e~n/2 for the models may not be close to the corresponding values of (3.6), the

ratio used to obtain the model probabilities does appear to converge quickly as d

increases.
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Summary of Sensitivity Analysis

We have investigated the sensitivity of the PMD criterion to the prior model

probabilities and hyperparameters of the prior distribution for a model space consisting

of models involving seven factors that contain all main effect terms and one 2-factor

interaction. In all cases, 16-run main effects orthogonal designs were evaluated and the

best design remained the same despite the different prior distributions used. Firstly, the

prior model probabilities were altered so that models containing an interaction involving

the first factor were more or less likely than the others. For most designs, the PMD

objective function was highest when all models had equal prior probability. However, the

PMD objective function for designs with aliased pairs of interactions that did not involve

the first factor increased as the prior probability for the indistinguishable models was

increased. For all prior model probabilities studied, the best two designs remained the

same. The sensitivity of the criterion to the prior variance-covariance matrix was

investigated by changing the magnitude of the interaction term in comparison to the

main effects. If the interaction was larger than the main effects, then designs that had

fewer indistinguishable pairs of models were ranked more highly, even if they had partial

aliasing between main effect and interaction terms. We also tried multiplying the prior

variance-covariance matrix by a constant, to change the relative magnitude of the model

coefficients and the error term. If the error was large, the designs with the least partial

aliasing were more effective, whereas, with small error, minimising the number of totally

aliased interactions was more important. Over the ranges studied, the best three designs

remained the same. The scale hyperparameter, a, does not affect the value of the PMD

objective function if the prior means of the regression coefficients are zero. The shape

hyperparameter, d, also appears to have little effect on the PMD objective function.

3.4 Models containing any Subset of Main Effect and 2-factor

Interaction Terms.

Bingham and Chipman (2007), in their work on the HD criterion, use a model space

where any subset of the possible main effect and 2-factor interaction terms is permissible

- marginality is not enforced. If p is the prior probability that a main effect term is
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present, then 2-factor interaction terms are included with probability

po = O.Olp, pi = 0.5p, or P2 = V (3-9)

given the presence of 0,1 or 2 respectively of the main effect terms of the factors

involved. Bingham and Chipman give a formula to find the value of p that gives a

specified expectation of the number of active effects. Bingham and Chipman applied

their criterion to this model space for two examples: 5 factors in 12 runs and 6 factors in

16 runs. For 5 factors,Bingham and Chipman chose p to be 0.429, and their formula

gave an expectation of about four active effects. For 6 factors, the value of p used was

0.410 (giving about five active effects expected). Because of the large size of the model

space, Bingham and Chipman approximate their objective function by using a subset of

the models with greatest prior probability. They used 40 models for searches and 400

models for the final evaluation of designs.

We will compare the F, HD, MD and PMD criteria on both examples. We will also use

400 models for the final evaluation, and investigate the use of different numbers of

models in our searches. An investigation of the sensitivity of the objective function to the

values of p and c is presented, as well as the results of simulation studies which indicate

the performance of the designs for different loss functions. Finally, we investigate the set

of 16-run main effects orthogonal designs for each of 3 to 9 factors, and evaluate each of

these under all four criteria, using the 400 models with highest prior probability.

3.4.1 Obtaining the subset of models with highest prior probability

We use a model space where a model may have any combination of main effects and

2-factor interactions. For / factors, this space contains 2^+^) models. Even for

moderate / , this number can be very large, for example, for 9 factors there are over

3.5 x 1013 models. This means that we cannot obtain the subset of models with highest

prior probability by simply calculating the probability for every model and sorting the

models accordingly. However, we may use the fact that many models have equal prior

probability to obtain the top 400 (for example) models. Suppose a model contains m

main effect terms and, respectively, io, i\ and i% interaction terms for which 0,1 and 2 of

the factors involved have the corresponding main effect term in the model. The prior
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probability for such a model is

pm(i -p)'-m(o.oip) io(i - o.oipjCTH0 (o.5p)4l(i - o.5p)mV-m'>-ili?2(i-p)(r2)-i*,

(3.10)

provided 0 < m < / , 0 < i0 < {S~™), 0 < h < m(f - m) and 0 < i2 < (™). The number

of models with the same values of m, io,ii and %2, and hence the same prior probability,

i s (m)( /70
m)(m( ' ir ro))(^?)- W e a l s o u s e t h e P r o b a b i l i t i e s (3-9) o f Bingham and

Chipman. We are therefore able to define classes of models with the same prior

probability, and rank these classes according to the size of this probability. The number

of classes is much smaller than the number of models. For example, there are 7582

classes for 9 factors. Starting from the class with highest probability, we use the

minimum number of classes necessary for the inclusion of at least 400 models. For each

class, it is possible to identify all the constituent models and their probabilities, and so

obtain a list of the models of highest prior probability. This may be truncated at the

desired number of models, and the probabilities then standardised to sum to 1.

3.4.2 A further look at the prior model probabilities

The classes of models that make up the 447 models with highest prior probability for 6

factors with p ~ 0.410 are given in Table 3.3. The relative probabilities of the models

raises some questions about whether the prior model probabilities accurately represent

our beliefs about which models are more likely. For example, models with

m = 1, IQ = 0 = Z2, i\ = 1 have higher prior probability than models with

m = 2, i0 = i\ = i2 = 0, i.e. P(I + A + AB) > P(I + A + B). This is in apparent

disagreement with Bingham and Chipman's assumption of effect hierarchy, that

lower-order effects are more likely to be important than higher-order effects. This occurs

because, given the main effect terms of both A and B (but no other main effect term)

are present in the model, there is a fairly high probability for each of the models

I + A + B, I + A + B + AB, I + A + B + AX, I + A + B + BX (where X represents any

factor other than A or B). However, if A is the only main effect term present, only I + A

and models of the form I + A + AX have any sizeable probability. To remove this

problem, we suggest two possibilities (a) using a prior with strong heredity, that is, an



CHAPTER 3. SCREENING EXPERIMENTS 40

Table 3.3: Composition of 447 models with highest prior probability for 6 factors

m IQ i\ %2 Model Probability Number of models
0
1
1
2
2
1
2
3
2
3

0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
2
1
0
1
0

0
0
0
0
1
0
0
0
1

1—
1

0.040
8.9 x lO-3

2.3 x lO-3

1.9 x lO-3

1.3 x lO-3

5.9 x lO-4

4.8 x lO-4

3.6 x lO-4

3.3 x lO-4

2.5 x lO-4

1
6
30
15
15
60
120
20
120
60

Table 3.4: Composition of 447 models with highest prior probability for 6 factors, pi=0.1.

m IQ i\ %2 Model Probability Number of models
0
1
2
2
3
3
1
3
3
2
4
2

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
1
0
1

0
0
0
1
0

1—
1

0
2
3
0
0
1

0.040
0.023

8.4 x 10"3

5.8 x 10"3

2.0 x lO-3

1.4 x 10"3

9.8 x lO-4

9.5 x lO-4

6.6 x lO-4

3.6 x lO-4

3.0 x lO-4

2.5 x lO-4

1
6
15
15
20
60
30
60
20
120
15
120

interaction term may only be included if both main effect terms in the factors involved

are included, or (b) reducing p\ from the current value of 0.5p. For example, the top

classes of models when p\ = O.lp are given in Table 3.4. The ordering of the models by

prior probability is now more intuitively reasonable.

3.4.3 5 factors in 12 runs

For 5 factors in 12 runs, the HD-optimal design is a Plackett-Burman design, which is

orthogonal in the main effects. For the PMD, MD and F criteria, a different design is

chosen, which is given in Table 3.5. This design is not balanced, however the columns

representing the first four main effect terms are orthogonal to each other.

For 6 factors in 16 runs, the HD-optimal design is design 13 from the list of orthogonal
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Table 3.5: The best 12 run design in 5 factors found under the PMD, MD and F criteria
for Bingham and Chipman's model space

-1
-1
-1
-1
-1
1
1
1
1
1
1
1

-1
-1
-1
1
1

-1
-1
-1
-1
1
1
1

-1
-1
1

-1
1

-1

1—
1

1
1

-1
-1
1

-1
1
1
1

-1
-1
1
-1
1
-1
1
1

1
-1
1
1

-1
-1
1
1

-1
1

-1

1—
1

main effects designs from Sun et al. This is also the best design found under the F

criterion, and is the best design from this list under the PMD criterion. The strengths of

this design are

1. As an orthogonal main effects design, all main effect terms may be estimated

independently.

2. It has no pairs of effects (main effects or interactions) totally aliased, one of nine

orthogonal main effects designs with this property.

3. Of these nine designs, this one has the joint most pairs of main effect and

interaction terms orthogonal to each other (78 out of 90 possible pairs, the joint

most with design 19). Out of all possible orthogonal main effects designs, only one

has all these pairs orthogonal to each other, the 26
ty

2 fraction (design 5).

4. Design 13 has more pairs of interactions orthogonal to each other (93 out of 105)

than design 19 (87 out of 105).

Under the MD criterion, however, the best main effects orthogonal design is the

resolution IV regular design. This is also the best design returned by a search under this

criterion. The second and third best designs under this criterion also have total aliasing

between pairs of 2-factor interactions.
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In Figure 3.8, we have plotted the ranks of the 6 factor 16 run main effects orthogonal

designs under each of the four criteria against each other. Designs denoted by a '+ ' do

not have any pairs of terms totally aliased. The PMD criterion completely splits the

designs, so that the nine designs with this property are ranked 1 , . . . , 9 under the PMD

criterion, out of the 27 designs. The regular fractional factorial designs in 16 runs and 6

factors are marked by a '*'. The regular designs are the 2®Jj design defined by

I=ABC=ADEF, which is ranked second under the F criterion, and third under the MD,

but only 23 under the PMD criterion, and the 26jy2 design defined by

/ = ABCD = ABEF, which is ranked 1 s t under the MD criterion.

The worst design under all four criteria, design 1, is two copies of a 26
TJj fraction.

3.4.4 Results of Design Searches

In addition to evaluating the main effects orthogonal designs under our criterion for this

example, we also run searches, using different numbers of models to evaluate the

objective function, performing 20 searches for each set of models. Figure 3.9 shows the

PMD objective function for various designs, evaluated using 400 models. The upper part

of Figure 3.9 shows that all the searches consistently find designs that are better under

the majority of the main effects orthogonal designs. The lower part of the figure shows

the results of the same searches, but focuses on the designs with lower values of the

PMD objective function. In this figure, it can be seen that the best design found by a

search using 40 models to evaluate the objective function is slightly worse than the best

main effects orthogonal design. The searches that used 100 or 400 models to evaluate the

objective function found designs that had slightly lower values of the PMD objective

function than the best main effects orthogonal design.

3.4.5 Sensitivity

We observe the effect of using a different value of p to give different prior model

probabilities. This is shown in Figure 3.10, where each line corresponds to one 16-run

main effects orthogonal design in 6 factors. We see that, although the value of the PMD

objective function increases with p, as with a greater p a greater number of models have
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Figure 3.8: Ranks for each of the four criteria for the 16 run main effects orthogonal
designs for 6 factors; + indicates designs with no pairs of terms completely aliased, *
indicates regular fractions.
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Figure 3.9: Comparison of PMD objective function values for 16 run 6 factor designs from
different sources. In the second plot a magnified view of the lower section of the first plot
is shown.
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Figure 3.10: The effect of changing p on PMD objective function for 16 run 6 factor main
effect orthogonal designs.

a reasonable prior probability, the ordering of the designs remains about the same. In

particular, the best design remains constant over this range.

We also test the sensitivity of our criterion to changing the value of c. We may use a

different value of c depending on whether we are interested in building a parsimonious

model or not discarding factors that may have an important effect. Altering c between

0.25 and 4 gives no real change to the ranking of the main effects orthogonal designs -

the top fifteen remain in exactly the same order. Designs returned from searches can
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improve on the best main effects orthogonal design, with different designs having the

lowest PMD objective function value when c is less than or greater than 1.

We can generalise our loss function to allow a different value of c to be used for main

effect or interaction terms, so that our loss function may more accurately reflect the

experimenter's interests. We let c\ = 1 be the loss for wrongly including a main effect

term and c^ be the loss for wrongly including an interaction term. Twenty searches were

performed at each of C?. — 0.25,0.5,2 and 4. All the designs found, in addition to the

main effect orthogonal designs, were evaluated using C2 = 0.25,0.5,1, 2 and 4. Out of

these designs, the main effects orthogonal design 13 was the best at all values of c^ used;

the searches did not manage to improve upon this design. The second-placed design

changed as C2 is altered. For c% — 0.25, the main effects orthogonal design 19 is second

best, however, when c-i > 1, a better design was one that was found in a search using

C2 = 4, which has less partial aliasing between the interaction terms.

3.4.6 Comparison via Simulation Studies

We would like to see how effective the designs chosen by the various criteria are for the

task they are chosen to do - i.e. selecting a model. The analysis corresponding to use of

a design selected by the PMD criterion is to choose the model that minimises the

expected loss function (2.4) using the posterior model probabilities provided by our data.

Although no analysis is explicitly given for the other criteria, one sensible analysis is to

select the model with highest posterior probability.

To evaluate the performance of a design, we simulate 10000 models from the priors and

generate responses from these models. Four methods are used to select a model based on

the posterior model probabilities:

1. Select the model that minimises the PMD loss (2.1) using c=l.

2. Select the model with highest posterior probability, equivalent to using a 0-1 loss

function.

3. As (1) but using c=0.5.

4. Select the model that minimises the expected value of the squared number of terms

difference between the true and selected models (squared PMD loss).
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For each of these methods of model selection, we find the percentage of time that the

correct model (the one that was used to generate the data) is selected, the average R2

value of the model selected, the average number of terms that are incorrectly included or

excluded and average number of terms that the chosen model is wrong by compared to

the true model.

For 12 runs in 5 factors, the HD criterion selects a Plackett-Burman design. A different

design is chosen for the PMD, F and MD criteria. Table 3.6 shows that the

Plackett-Burman design performs better in either method of model selection, selecting

the correct model more often when using the model with highest posterior probability,

and a model with lower PMD loss when using this method of model selection.

The best 16 run main effects orthogonal designs for 6 factors differed for the four criteria.

Design 13 was best for the PMD, MD and HD criteria, whereas design 5 would be

selected under the F criterion. The second placed designs were 19 under PMD and HD, 4

under F and 8 under MD. The results of a simulation on these five designs are displayed

in Table 3.7. The searches under the PMD criterion described in Section 3.4.4 found

some 16-run, 6-factor designs with a lower PMD objective function value than the best

main effects orthogonal design. The results of a simulation on the best three of these

designs are shown in Table 3.8. The simulation shows that these designs perform slightly

better at model selection than the best main effects orthogonal designs. We also evaluate

all the other 16 run 6 factor main effect orthogonal designs in the set provided by Sun et

al. (2002), using this simulation. These designs are then ranked on their performance in

the simulation, according to the proportion of time that the correct model was selected,

when selecting the model with highest posterior probability and also the average PMD

loss of the model selected when selecting a model to minimise this loss. Table 3.9 shows

the rank correlation between simulation performance and the four design criteria, where

the simulation is based on either selecting the model with highest posterior probability

or the model that minimises the PMD loss function. The PMD and HD criteria correlate

more strongly with the performance in the simulations than the MD and F criteria.



Table 3.6: Performance of 5 factor 12 run designs in simulation study. % correct denotes the % of times that the model selected
by each of the four methods was the same as the model used to generate the data.

Performance Measure
F-optimal

Design
Plackett-
Burman 1

Plackett-
Burman 2

% correct, PMD loss (c=l)
% correct, 0-1 loss
% correct, PMD loss (c=0.5)
% correct, squared PMD loss (c=l)
Mean R2, PMD loss (c=l)
Mean R2, 0-1 loss
Mean R2, PMD loss (c=0.5)
Mean R2,squared PMD loss (c=l)
Average modal posterior model probability
Mean terms wrong by, PMD loss (c=l)
Mean terms wrong by, 0-1 loss
Mean terms wrong by, PMD loss (c=0.5)
Mean terms wrong by, squared PMD loss (c=l)
Mean terms incorrectly included, PMD loss (c=l)
Mean terms incorrectly included, 0-1 loss
Mean terms incorrectly included, PMD loss (c=0.5)
Mean terms incorrectly included, squared PMD loss (c=l)
Mean terms incorrectly omitted, PMD loss (c=l)
Mean terms incorrectly omitted, 0-1 loss
Mean terms incorrectly omitted, PMD loss (c=0.5)
Mean terms incorrectly omitted, squared PMD loss (c=l)

47.35
48.2
44.41
45.46
0.71
0.7
0.73
0.71
0.48
0.8
0.81
0.84
0.81
0.14
0.14
0.28
0.15
0.66
0.67
0.56
0.65

47.09
47.9
44.47
45.04
0.71
0.71
0.73
0.71
0.48
0.82
0.83
0.86
0.83
0.14
0.16
0.29
0.15
0.68
0.68
0.58
0.68

47.21
48.0
44.53
45.14
0.71
0.71
0.73
0.71
0.48
0.81
0.83
0.86
0.82
0.14
0.16
0.29
0.15
0.67
0.67
0.57
0.67

i
i
to

I

I
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Table 3.7: Performance of designs 4,5,8,13,19 (16 run, 6 factor main effects orthogonal designs) under each criterion from simulation. W

Design Number cc
Performance Measure, method of model selection 4 5 8 13 19 £a
% correct, P M D loss ( c = l ) 46.86 49.38 53.76 55.23 55.37 §
% correct, 0-1 loss 48.56 51.02 54.72 55.77 55.99 |
% correct, P M D loss (c=0.5) 4551 4918 5246 5344 5341 O
% correct, squared PMD loss (c=l)
Mean R2, PMD loss (c=l)
Mean R2, 0-1 loss 5
Mean R2, PMD loss (c=0.5) 0.7 0.7 0.71 0.7 0.71 |
Mean #2,squared PMD loss (c=l) ^
Average modal posterior model probability
Mean terms wrong by, PMD loss (c=l)
Mean terms wrong by, 0-1 loss
Mean terms wrong by, PMD loss (c=0.5)
Mean terms wrong by, squared PMD loss (c=l)
Mean terms incorrectly included, PMD loss (c=l)
Mean terms incorrectly included, 0-1 loss
Mean terms incorrectly included, PMD loss (c=0.5)
Mean terms incorrectly included, squared PMD loss (c=l)
Mean terms incorrectly omitted, PMD loss (c=l)
Mean terms incorrectly omitted, 0-1 loss
Mean terms incorrectly omitted, PMD loss (c=0.5)
Mean terms incorrectly omitted, squared PMD loss (c=l)

46.86
48.56
45.51
43.58
0.68
0.69
0.7
0.65
0.49
0.91
0.97
0.95
0.92
0.21
0.26
0.35
0.18
0.71
0.71
0.61
0.74

49.38
51.02
49.18
45.38
0.67
0.69
0.7
0.63
0.51
0.82
0.85
0.86
0.84
0.15
0.2
0.28
0.11
0.67
0.64
0.58
0.73

53.76
54.72
52.46
51.29
0.68
0.69
0.71
0.67
0.54
0.69
0.7
0.72
0.7
0.12
0.14
0.22
0.1
0.57
0.56
0.5
0.6

55.23
55.77
53.44
53.46
0.69
0.69
0.7
0.69
0.56
0.63
0.64
0.66
0.64
0.1
0.11
0.2
0.1
0.53
0.53
0.46
0.54

55.37
55.99
53.41
53.54
0.69
0.69
0.71
0.69
0.56
0.63
0.64
0.66
0.64
0.1
0.12
0.2
0.11
0.53
0.53
0.46
0.54

CD
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Table 3.8: Performance of best three 16-run designs found for 6 factors, from simulation. w

Co

Design <*>
Performance Measure, method of model selection Found # 1 Found #2 Found#3 to
% correct, PMD loss (c=l) 55.31 55.11 55.05 £*j
% correct, 0-1 loss 558 5569 5563 §
% correct, PMD loss (c=0.5)
% correct, squared PMD loss (c=l)
Mean R2, PMD loss (c=l)
Mean R2, 0-1 loss £
Mean R2, PMD loss (c=0.5) 0.7 0.7 0.7 |
Mean R2,squared PMD loss (c=l) ^
Average modal posterior model probability
Mean terms wrong by, PMD loss (c=l)
Mean terms wrong by, 0-1 loss
Mean terms wrong by, PMD loss (c=0.5)
Mean terms wrong by, squared PMD loss (c=l)
Mean terms incorrectly included, PMD loss (c=l)
Mean terms incorrectly included, 0-1 loss
Mean terms incorrectly included, PMD loss (c=0.5)
Mean terms incorrectly included, squared PMD loss (c=l)
Mean terms incorrectly omitted, PMD loss (c=l)
Mean terms incorrectly omitted, 0-1 loss
Mean terms incorrectly omitted, PMD loss (c=0.5)
Mean terms incorrectly omitted, squared PMD loss (c=l)

55.31
55.8
53.38
53.61
0.69
0.69
0.7
0.69
0.56
0.63
0.64
0.66
0.64
0.1
0.11
0.2
0.11
0.53
0.53
0.46
0.53

55.11
55.69
53.18
53.32
0.69
0.69
0.7
0.69
0.56
0.63
0.64
0.66
0.64
0.1
0.11
0.2
0.11
0.53
0.53
0.46
0.54

55.05
55.63
53.25
53.34
0.69
0.69
0.7
0.68
0.56
0.64
0.65
0.67
0.65
0.1
0.12
0.2
0.11
0.54
0.53
0.47
0.54

o
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Table 3.9: Spearman's rank correlations to compare the rankings under each criterion with
those from the simulation study, for the 16 run 6 factor main effect orthogonal designs of
Sun et al. (2002).

Criterion
F

PMD
MD
HD

Method of
Highest Posterior

0.44
0.98
0.33
0.90

model selection
Probability PMD loss

0.47
0.98
0.36
0.91

3.4.7 Choice of c

Our simulation studies may also give us some insight into the effects of changing c, and

some guidance on values of c that could be used. Figure 3.11 shows the results of a

simulation done on main effects orthogonal design 13 using the top 400 models for

p — 0.410. Although the full set of models for this value of p gives the expected number

of effects as 5, in this reduced set the expectation is about 2.21.

It can be seen that the losses due to the two types of error are not evenly balanced for

c = 1 - many more terms are incorrectly omitted than are spuriously included. This is

due to the high prior probability of models with small numbers of terms and a lack of

information on which terms are active provided by the design. Using a value of c « 0.334

(calculated from the simulation) gives, on average, an equal number of terms (0.377)

incorrectly missed or included. The total number of terms wrong is therefore on average

0.754, compared to 0.625 for c = 1.

Because the average number of model terms is 2.21, and there are 21 possible model

terms (not including the intercept), the average number of terms wrong is

2.21P( Term not included | Term is in true model ) + (3.11)

(21 - 2.21)P( Term included Term not in true model ).

Using c = 0.334, the two terms in this sum are equal. If, however, we would like the two

conditional probabilities to be equal, we should use c ss 0.082 (from simulation), which
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Figure 3.11: The number of terms incorrectly included or excluded as c changes, from
simulation, for main effect orthogonal design 13.
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gives

P( Term not included | Term is in true model ) = (3-12)

P( Term included | Term not in true model ) = 0.092.

This is the intersection point in Figure 3.12, which shows how the conditional

probabilities of incorrectly including or not including a term vary with c. If are 'equally

interested in avoiding both types of error', the intuitive choice of c = 1 may in fact be

too high, depending on what we mean by this statement. The values of c given here are

specific to this design and set of models. However, they may be determined using the

posterior model probabilities obtained when simulating to evaluate the PMD objective

function, so do not require much additional computational expense.

Alternatively, if there are actual financial losses associated with missing or incorrectly

including terms, these can be used to set c. For example, retaining spurious terms in our

model means that future experiments will require more runs to enable the extra

parameters to be estimated. However, omitting a term may mean that possible process

improvements may be missed, which has associated financial cost. We should then set c

to be the cost, per term, of the extra runs required in future experiments divided by the

expected cost, in terms of not being able to optimise the response, of missing a term

from the model.

3.4.8 Main Effects Orthogonal Designs in 3 to 9 factors.

For each of / = 3 , . . . , 9 factors, we obtain the 400 models with highest prior probability,

using p such that the expected number of active effects is / — 1. Using this model space,

with the corresponding probabilities re-standardised to sum to 1, we evaluate the 16-run

main effects orthogonal designs in the catalogue provided by Sun et al., under all four

criteria. The ranking of the designs under each criterion is given in Table 3.10.

When three to five factors are used, a regular design is best under all four criteria, as in

the previous example (see Table 3.1). For six to nine factors, the best designs under the

PMD and HD criteria are similar, and the designs ranked highly by the F criterion are

also ranked highly under the MD. However, designs that are good under the PMD and

HD criteria do not usually rank highly under the F and MD criteria.
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Figure 3.12: The probability of terms being incorrectly included or excluded as c changes,
from simulation, for main effect orthogonal design 13.
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Table 3.10: Ranking of 16-run main effects orthogonal designs in 3 to 9 factors under all
four criteria, using Bingham and Chipman's model space *Full factorial, fRegular design.

Number of
factors PMD

Ranking 1 2*
2 3
3 1
4
5
6
7
8
9

10

Number

F
2*
3
1

of
factors

Ranking

J

1
2
3
4
5
6
7
8
9

10

3
MD
2*
3

1—
i

PMD
32
49
55
53
43
54
39
50
45
52

HD
2*
3
1

7
F
12
6 t

28
32
21
11
33
5

22
49

PMD F
3*
4
5
2
1

MD
6*
12
28
5
11
33
32
22
21
49

3*
4
5
2
1

HD
32
49
28
55
53
43
33
21
54
31

4
MD
3*
4
2
5
1

PMD
67
68
72
77
76
42
50
71
70
69

HD
3*
4
5
2
1

8
F
6+
18
4
77
42
17
48
26
12
58

PMD F
4*
5
7
8
10
11
3
9
2
6

MD
6*
18
4
17
77
48
26
42
12
58

4T

5
8
7
10
3
2
11
9
6

HD
77
42
67
68
76
61
79
50
41
71

5
MD
4 r

3
5
7
8
2
10
11
9
6

PMD
76
84
83
74
75
65
72
73
86
66

HD
4+
5
7
8
3
10
11
9
2
6

9
F
4+
25
53
17
84
44
22
32
5
10

6
PMD F

13
19
24
20
22
23
18
26
27
8

MD
4*
25
53
17
84
10
5

32
22
44

13
4*
14
8
6

19
24
5

20
15

HD
84
83
65
76
74
75
86
72
66
87

MD
5+
8
4 t

14
13
19
6
12
7

24

HD
13
19
8

24
20
14
22
23
12
18

3.5 Summary

In this chapter, we have investigated the use of the PMD criterion for selecting designs

for screening experiments. Three model spaces that could be used in a screening

situation have been tried, allowing either main effects only, all main effects plus one

2-factor interaction, or any subset of main effects and 2-factor interactions. For the

model space consisting of models containing any combination of the main effect terms,

we have run Modified Federov Algorithm searches for various numbers of factors and

runs. For numbers of runs where main effects orthogonal designs are available, these are

the best designs found under the PMD criterion for this model space.

The model space consisting of models that contain all main effect terms plus exactly one

2-factor interaction was investigated, by ranking the set of 16-run main effects orthogonal
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designs in 3 to 9 factors and comparing this to the MD, HD and F criteria. Searches for

good 16-run designs were also run, and for 6 or more factors, it was possible to find

non-orthogonal designs that performed better than the best orthogonal design. For this

model space, we have also shown how changing the parameters of the prior distribution

affects the objective function and the ranking of main effect orthogonal designs.

Finally, we use a much larger space of possible models, allowing any combination of main

effect and interaction terms, as used by Bingham and Chipman (2007). This model

space is approximated by using a subset of models with high prior probability. The

16-run main effect orthogonal designs in 3 to 9 factors are evaluated and ranked, and the

results compared to those for the MD, HD and F criteria. We notice that agreement

between the rankings of designs under the four criteria lessens as the number of factors

is increased. Simulation studies have been used to evaluate the performance of designs

chosen under the four criteria against several indicators of suitability for model selection.

The studies show that the PMD criterion agrees closely with the performance for the

design in model selection, as does the HD. For the examples used in the simulation

study, the four criteria select quite similar designs. There were only small differences in

the performance of the designs in the simulation study. If an example was found where

very different designs were selected by each criterion, a simulation study could provide

useful information about the strengths and weaknesses of designs selected using each

criterion. The simulations also gave an indication of what values of c should be used,

and suggest that using c = 1, though intuitive, may be too large if we are equally

interested in identifying active effects and omitting inactive effects from our model.



Chapter 4

Follow-up Experiments

In this chapter we investigate the use of the PMD criterion in the practical situation

where prior information is available from an initial experiment of n runs and it is desired

to select a further n* follow-up runs that provide as much further information as possible

to enable better discrimination between the models. Following Meyer et al. (1996), an

injection moulding example from the literature is used to make a comparison of the

PMD criterion with the MD, F and HD criteria, which were defined in Section 1.3.1.

The performances of various different designs under each of the four criteria are

compared, and underlying reasons for the choice of particular designs are discussed. A

second example on a chemical reactor, where data from a full factorial is available, is

used to investigate the sensitivity of our methodology to the choice of design for the

initial experiment. In addition, the results from the analysis are used to compare the

conclusions from a PMD design with those from an MD design (given by Meyer et al.

1996). Throughout this chapter we have made use of the R package BsMD (Barrios

2004) for producing graphs of factor probabilities, evaluating the MD objective function

and searching for good designs under the MD criterion.

4.1 First Example

Box, Hunter and Hunter (1978) described an experiment for an injection moulding

process, where 8 factors were varied - see Table 4.1. The aim of the experiment was to

57
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Table 4.1: Design and Results for the Injection Moulding Example from Box, Hunter and
Hunter (1978, p398)

A
-1
1

-1
1

-1
1

-1
1
1

-1
1

-1
1

-1
1

-1

B
-1
-1

1
1

-1
-1
1
1
1
1

-1
-1
1
1

-1
-1

C
-1
-1

-1
-1
1
1
1
1
1
1
1
1

-1
-1
-1
-1

D
1

-1

-1
1
1

-1
-1
1

-1
1
1

-1
-1
1
1

-1

E
1

-1

1
-1
-1
1

-1
1

-1
1

-1
1
1

-1
1

-1

F
1
1

-1
-1
-1
-1
1
1

-1
-1
1
1
1
1

-1
-1

G
-1
1

1
-1
1

-1
-1
1
1

-1
-1
1

-1
1
1

-1

H
1
1

1
1
1
1
1
1

-1
-1
-1
-1
-1
-1
-1
-1

y
14.0
16.8
15.0
15.4
27.6
24.0
27.4
22.6
22.3
17.1
21.5
17.5
15.9
21.9
16.7
20.3

A
B
C
D
E
F
G
H

y

Factors
Mould Temperature
Moisture Content
Holding Pressure
Cavity Thickness
Booster Pressure
Cycle time
Gate Size
Screw Speed

Response
Shrinkage (%).

identify those factors that had an important effect on the percentage shrinkage in an

injection moulding process. The design used for the experiment was a 2®y4 fractional

factorial design, with generators / = ABDH = ACEH = BCFH = ABCG.

Meyer et al. (1996) analysed the results of this experiment using a Bayesian approach,

discussed below, and subsequently found a follow-up design using the MD criterion of

Box and Hill (1967), denned in Section 1.3.1. The set of possible models they considered

was all linear models which contain

i any subset of factor main effects and also

ii all possible 2- and 3-factor interactions between those factors whose main effects are

included in the model.

The automatic inclusion of interactions in a model in (ii) is known as 'effect forcing'.

Meyer et al. used prior probabilities which differ slightly from those in Section 1.1.3.

These prior distributions will be used in this chapter. The prior model probabilities are

calculated under the assumption that each factor has the same probability p of being
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Table 4.2: Posterior model probabilities for the initial experiment

Model Number Factors in Model Posterior Probability
mi

rri2

m-3

7714

7715

rriQ

m-j

C
C E

A C E
A C H
A E H
C E H

A C E H

0.0002
0.0004
0.2356
0.2356
0.2356
0.2356
0.0566

active, independently of each other, so that

P(mi)=pfi(l-p)k-fi, (4.1)

where /, is the number of factors in model m; and k = 8 is the total number of factors.

Meyer et al. used p — 0.25. An improper prior for the overall mean (3Q and standard

deviation a is used, so that f((3o, o) oc a~x. This is equivalent to using values of a = 0

and d = — 1 for the hyperparameters in the inverse Gamma distribution, and allowing

the prior variance of (3Q to tend to 00. The rest of the coefficients in /3, are given Normal

prior distributions with mean 0 and standard deviation 7a, where 7 is a scaling

parameter estimated by Meyer et al. to be 2 from the data. As in Chapter 1, the

posterior distribution for model m* is still a Normal Inverse Gamma distribution, with

(4.2)

(4.3)

d* = n - 1.

From the results of the initial experiment, seven models were found to account for

99.98% of the posterior probability, as shown in Table 4.2. All these models contain only

factors A, C, E and H. The aliasing scheme of this design (in particular the relation
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Table 4.3: Posterior means for the model parameters in 3-factor models after the initial
experiment (reproduced from Meyer et'al. (1996))

Parameter
I

A = CEH
C = AEH
E = ACH
H = ACE
AC = EH
AE = CH
AH = CE

Posterior Mean
19.75
-0.17
.1.364
-0.94
0.297
0.223
1.14

-0.149

/ = AC EH) and the effect forcing prior distribution result in models m^,..., TUQ being

indistinguishable in that they have the same posterior model probabilities. This is

because models m^,..., me have the same model matrix X but with columns assigned to

different explanatory variables. Hence the parameters have the same posterior

distributions but are attributed to different effects in each model. The posterior means

for the regression parameters in the three-factor models are also identical, but assigned

to different effects. These are summarised in Table 4.3.

4.1.1 Searching for Follow-up Runs

As models containing only factors A, C, E and H account for virtually all the posterior

probability, following Meyer et al. (1996), we searched for a set of n* = 4 follow-up runs,

from a list of candidate points composed of all combinations of these factors at levels ±1.

The points in the candidate list are given in Table 4.4 together with numerical labels.

Note that points 1-8 are combinations of levels of the factors A, C, E, H which have

already been run in the initial 8 factor experiment. It is assumed that the remaining four

factors are inactive, and can be set to some convenient level in the follow-up runs. As an

alternative to the Bayesian criteria discussed here, there are also frequentist methods for

selecting follow-up runs. For example, Box et al. (1978) construct a follow-up design for

this experiment using the methods of Daniel (1962) to algebraically remove the aliasing

between pairs of effects. The semi-foldover, or f designs of John (1971) are another way

to augment a half fractional factorial design without using all the runs required to
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Table 4.4: Candidate points for the injection moulding experiment

Point Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A
-1
-1
-1
-1
1
1
1
1

-1
-1
-1
-1
1
1
1
1

C
-1
-1
1
1

-1
-1
1
1

-1
-1
1
1

-1
-1
1
1

E
-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

-1
1

H
-1
1
1

-1
1

-1
-1
1
1

-1
-1
1

-1
1
1

-1

complete a full factorial. The three best sets of follow-up runs under the MD criterion

were found by Meyer et al. to be (9,9,12,15), (9,12,14,15) and (9,11,12,15).

4.2 Comparison between the PMD and MD Criteria

The PMD criterion, defined in Section 2.2 with c = 1, and the search algorithm outlined

in Section 2.4 were used to find sets of four follow-up runs to compare with those of

Meyer et al. (1996). The prior distributions for the models and parameters were taken to

be the posterior distributions from the analysis of the initial experiment of Meyer et al.

Table 4.5 gives the best sets of four follow-up runs we found. Also shown are the values

of the PMD and MD objective functions for the best follow-up designs under each of the

criteria.

The table shows that the best follow-up designs differ. However, the best design under

PMD is the third best under the MD criterion. The best three designs under the PMD

criterion consist of four distinct design points. This contrasts with the best design under

the MD criterion, which has a point repeated. For both criteria, the best follow-up

designs contain only points which were not included in the initial design, which has
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Table 4.5: Best sets of four follow-up runs for the objective function values under the MD
and PMD criteria; for design point labels, see Table 4.4

Found under MD criterion
Runs MD PMD

9 9 12 15 85/7 0.080
9 12 14 15 84.4 0.054
9 11 12 15 83.6 0.041

Found under PMD criterion
Runs MD PMD

9 11 12 15 83.6 0.041
11 12 15 16 47.2 0.042
10 11 12 15 50.4 0.044

/ = AC EH as a denning contrast. Thus they have the main effect of A completely

aliased with the interaction —CEH, which is the 'reverse' of the aliasing in the design

used in the initial experiment. When we analyse the follow-up experiment, using the

posterior from the initial experiment as a prior, we are effectively analysing a 20-run

experiment. Therefore adding four points from a complement of the initial design breaks

the aliasing in the initial design. This means that the follow-up runs provide information

on which effects in a pair of effects that were aliased after the initial experiment is in the

true model. For example, analysis of the data from the initial experiment gives a

comparatively large positive posterior mean (Table 4.3) for the parameter corresponding

to C = AEH in the equivalent 3-factor models labelled 7713,... ,m6 in Table 4.2. For all

the designs in Table 4.5, the points at which C = 1 will have AEH = - 1 (where AEH

denotes multiplication of columns in Table 4.4) and vice-versa. Suppose also that higher

values of the response, Y*, are obtained at the runs of the follow-up experiment at

which C = 1. Then the posterior mean from the follow-up runs will remain positive for

C in those models which contain C, and will move towards zero for AEH in the models

containing this term. Hence, the posterior probability will be increased for models that

contain C and will be decreased for those containing AEH.

Some insights can be gained into how the results under the PMD criterion with c = 1

relate to those obtained from the 0,1 loss function (Equation 2.2). From the results of

the initial experiment, the four most probable models all differ from each other by
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exactly eight terms. This can be seen from Table 4.2 when the impact of effect forcing is

taken into account. Therefore, the expected loss for one of these models after the

follow-up experiment will be approximately 8 times the sum of the posterior probabilities

of the rest of models m,3,... ,me in Table 4.2. Hence, if the total of the posterior

probabilities of the other models is negligible, then the minimum value of (2.1) is

minE(L(rrii,mj)\Y) = min ^ P(mj|Y)L(mj,mj)
m€M

6

,*?,%; 52 P(™i\Y)L(mi, m.j)
i=3

= mm
3<i<6

= 8 | l - max

This indicates that our approach will, for this example, give similar results to choosing

the model with highest posterior probability, that is, the model found using the 0,1 loss

function.

In order to provide a more general comparison of the PMD criterion with that of Meyer

et al. (1996), we randomly generated four-point follow-up designs from the list of

candidate points (Table 4.4), and evaluated and ranked them under both criteria. The

results are plotted in Figure 4.1. This figure also includes the ranks of all designs

composed of four distinct points that were not included in the original design. The

colours identify the number of new points used (that is, not in the initial design), and

different plotting characters show the number of distinct points in the design.

The plot indicates a general trend that designs which are good under one criterion tend

to be good under the other (rank correlation = 0.92). We observe from the evaluated

designs that, designs which perform well under the PMD criterion are those which have

four distinct points. This is not necessarily the case for the MD criterion. For both

criteria, the better performing designs contain no points that are replicates of the runs in

the initial design.
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Figure 4.1: Ranking of MD vs PMD objective function values for random sample of four-
point follow-up designs formed from candidate points in Table 4.4, plus all designs formed
of four distinct new points.
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4.3 Comparison between the PMD and F Criteria.

In the discussion of the Meyer et al. (1996) paper, Jones and DuMouchel proposed an

alternative to the MD criterion, called the F criterion (described in Section 1.3.1). In

Figure 4.2 the rankings are plotted for the same set of designs as in Figure 4.1 under the

PMD and F criteria. The plot indicates a slightly stronger relationship between these

criteria (rank correlation = 0.94) than between the PMD and MD. It is clear that the

best designs under both criteria are those formed entirely of distinct points which are

not present in the first stage design.

Figure 4.2 shows that some designs perform poorly under the PMD criterion compared

to other designs with the same number of new and distinct points, and a similar F value.

These tend to be designs that have either A assigned level 1, or H assigned level -1 for

each of the new design points. For example, the design ranked 66th under the F criterion

and 280th under the PMD criterion consists of candidate points 13,14,15 and 16 from

Table 4.4, and has factor A set to level 1 at all four points. These sets of follow-up runs

are plotted in red in Figure 4.3, and can be identified as being above and to the left of

the trend line in Figure 4.2. These are obviously undesirable in terms of estimating the

associated main effects. Also such a follow-up design may lead to main effect terms

cancelling with 2-factor interactions and making their partially aliased joint effect close

to 0, so that it is hard to tell if either effect is important. Designs with either A set to 1

for all points or H assigned level -1 for all points perform badly even when compared to

other designs with one factor kept at a constant level. If a follow-up design has, for

example, A equal to 1 at all points, then the columns of the model matrix representing

the terms C and AC will be identical, as will be the columns for E and AE, and the

columns for H and AH. The confounding between the terms for E and AE, and

between H and AH give rise to cancelling. The prior means for the coefficients of E and

AE in the three-factor models are -0.94 and 1.14 respectively (refer to Table 4.3 for the

prior means of the effects at the second stage). Therefore, if A is set to level 1, the

average difference between the expected response at the high and low levels of E will be

2 x (-0.94 + 1.14) = 0.40, much less than the 2 x -0.94 = 1.88 it would be without the

cancelling with the AE interaction.

Table 4.6 shows the difference between the expected response at the high and low levels
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Figure 4.2: Ranks under F and PMD criteria for a random sample of designs formed from
candidate points in Table 4.4, plus all designs formed of four distinct new points.
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Figure 4.3: Ranking under F and PMD Criteria for the Set of Designs used in Figure 4.2.
Designs in Red have either A set to 1 or H to -1 for all new points.
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Table 4.6: Apparent sizes of effects for follow-up designs with different terms aliased.

Aliasing

A = l
A=-l
C = l
C=-l
E = l
E=-l
H = l
H=-l

Difference ir
A

-0.34
-0.34
0.10
-0.78
1.94
-2.62
-0.62
-0.06

C
3.16
2.28
2.72
2.72
2.44
3.00
5.00
0.44

L X/3 between ]
E

0.40
-4.16
-2.16
-1.60
-1.88
-1.88
-1.44
-2.32

H
0.32
0.88
2.88
-1.68
1.04
0.16
0.60
0.60

ligh/low values of factor.
Average Absolute Value

1.06
1.92
1.96
1.70
1.82
1.92
1.92
0.86

of each factor, due to the main effect and aliased interaction terms, for having each

possible aliasing of a main effect with the mean. Designs for which A is equal to 1, or H

to -1 lead to these differences being small, on average, so detecting the presence of main

effect terms is more difficult, leading to greater uncertainty and a higher PMD value.

This is reflected in the ranks of these designs under the PMD criterion, but not as much

under the F criterion. Example of such designs are the two designs with four distinct

new points that are separated from the rest in Figure 4.2, ranked 66 and 82 under the F

criterion but 280 and 302 respectively under the PMD.

4.4 Comparison to the HD criterion.

We use the same set of randomly chosen designs as before to compare the HD with the

PMD criterion, see Figure 4.4. The rank correlation is 0.97 for these two criteria, the

strongest correlation with PMD of all the criteria. The HD criterion selects the same

best design as the PMD criterion, and, in contrast to the MD and F criteria, designs

with A set to 1 or H set to -1 at all new points are given a low ranking, as under the

PMD criterion.

4.5 Second Example

A second example of selecting follow-up runs to build on the information from a

first-stage experiment was also investigated by Meyer et al. The example uses data from

a 25 full factorial experiment involving a chemical reactor, described by Box et al.
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Figure 4.4: Ranking of HD vs PMD objective function values for random sample of four-
point follow-up designs formed from candidate points in Table 4.4, plus all designs formed
of four distinct new points.
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Table 4.7: Top 10 models after first stage for second example, as given in Meyer et al.
(1996).

Probability
0.231
0.134
0.075
0.070
0.055
0.055
0.055
0.052
0.051
0.032

Model
I
I
I
I
I
I
I
I
I
I

B
D
A
A D
A B
B D
E
C
B C

AD
AB
BD

BC

(2005). The eight runs are a 27/7
2 design with defining relation I — ABD = ACE.

Meyer et al. used the MD criterion to select a four-run follow-up design with points

chosen from the full factorial. The responses obtained at these points in the actual

experiment are known. Hence this example has the advantage of allowing an indication

of how the design would have performed in practice to be gained. The results from the

initial 8-run experiment and four follow-up runs may also be compared to those from

using all 32 runs.

4.5.1 Initial Experiment

The prior distributions of models and parameters are set up as in Section 4.1 except that

in order to make a direct comparison with the results of Meyer et al. (1996) the value

7 = 0.4 was used. In the analysis of the first eight runs, weak evidence was found for

factors B,D and E being active, but it was inconclusive. The top 10 models are given in

Table 4.7 and the effect probabilities in Table 4.8.

Unlike our first example, there is insufficient evidence to justify dropping any of the

factors. We made 20 tries of the search algorithm described in Section 2.4 for a 4-run

follow-up design under the PMD criterion. The five best follow-up designs, together with

the best five under the MD criterion (from Meyer et al., Table 8) were then evaluated

under each criterion. Table 4.9 lists the follow-up points together with the values of the

two objective functions. The labels of the 25 = 32 possible design points are given in
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Table 4.8: Effect probabilities from the runs of the 2\jf initial experiment in the second
example

Effect
I
A
B
C
D
E

AB
AC
AD
AE
BC
BD
BE
CD
CE
DE

ABC
ABD
ABE
ACD
ACE
ADE
BCD
BCE
BDE
CDE

Probability
1

0.27
0.38
0.17
0.29
0.17
0.10
0.04
0.10
0.04
0.07
0.10
0.06
0.05
0.04
0.05
0.02
0.03
0.02
0.02
0.01
0.02
0.02
0.01
0.02
0.02

Appendix C.

It can be seen from the table that there are no designs that are in the top 5 under both

criteria. However, designs that are good under one of the criteria are generally good

under the other. Figure 4.5 shows the PMD and MD objective functions for 500 designs

randomly selected from the 32 candidate points. There is a strong correlation (-0.8)

between the two objective functions; all the designs listed in Table 4.9 are in the top 2%

of all possible 4-run designs under each of the criteria.
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Table 4.9: Best follow-up runs for the second example under the PMD and MD criteria

Search Criterion
PMD
PMD
PMD
PMD
PMD
MD
MD
MD
MD
MD

Follow-up runs
2 4 10 12

25 26 27 28
4 10 12 18
18 20 26 28
9 10 12 27
4 10 11 26
4 10 11 28
4 10 26 27
4 10 12 27
4 11 12 26

PMD
1.951
1.955
1.957
1.961
1.966
1.972
1.975
1.967
1.971
1.975

MD
0.549
0.529
0.545
0.504
0.560
0.615
0.610
0.608
0.606
0.603

4.5.2 Performance of the PMD and MD-optimal follow-up designs

In this subsection, we follow Meyer et al. (1996) in evaluating designs for this example by

comparing the conclusions from the Bayesian analysis of the follow-up runs with those

found from the PMD criterion and also from the analysis of the full data set for the 25

experiment. Analysis of the full 25 experiment gives posterior probabilities close to 1 for

the factors B, D and E and near zero for the others. The MD-optimal design gives each

of these factors a probability greater than 0.6 of being active, whilst A and C each have

probabilities less than 0.2, giving broad agreement with the results from the full data set.

The posterior probabilities of the factors using the MD-optimal design, and the two best

designs under the PMD criterion are shown in Figure 4.6, together with the probabilities

obtained by using the first eight runs only (that is, the initial design). The two best

designs under the PMD criterion both give higher posterior probabilities for factors B,D

and E than for A and C, although the results are less conclusive than for the

MD-optimal design.

The ten models with highest posterior probability using the MD-optimal and each of the

two designs found using the PMD criterion are given in Tables 4.10-4.12.

A more detailed summary of the distribution of models and parameters after the first

stage may be found in Table 4.13. In addition to the posterior probabilities of all model

terms, we have also sampled from the model-averaged posterior distribution for the

regression parameters, using methodology described in more detail in Section 5.6. From

this we have obtained the mean of each component of /3, given that it is included in the
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Figure 4.5: PMD and MD objective function values for 500 randomly selected designs for
the second example

model, and a 95% credible interval for its value, formed from the 2.5 and 97.5 percentiles

of the sampled values. This is an interval, in this case centred on a parameter's marginal

posterior median, for which the probability that the parameter lies within it is 0.95. The

credible intervals for all terms (except the intercept) contain zero. However, for several

of the parameters the credible interval are not centred close to zero, and contains values

of much higher magnitude on one side of zero than the other. For example, the evidence

suggests that coefficient of B is positive.
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(d) 25,26,27,28.

The parameter distributions summarised in Table 4.13 suggest that the A = BD,

B = AD and D = AB effects are likely to be large and positive, hence the higher

probability of these factors compared to the other two. The need to estimate the

parameters associated with these factors is reflected in the designs chosen by the two

criteria. The MD-optimal design consists of points for which the column representing

ABD is set to -1, reversing the first stage aliasing in a similar way to our first example.
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Table 4.10: Factors in the 10 most probable models after using MD-optimal follow-up (4
10 11 26).

Probability
0.462
0.209
0.172
0.064
0.041
0.016
0.006
0.005
0.004
0.004

Factors in Model
B
B
B
B

B
D
E
B
C

D
D
C

C

C

E

D E

none
D

Table 4.11: Factors in the 10 most probable models after using PMD-optimal follow-up
(2 4 10 12).

Probability
0.283
0.232
0.109
0.095
0.089
0.049
0.036
0.015
0.013

Factors
B
B
A
A
B
B

B
D

D
D
B
B
C

in

E
C
D
D

none
C D

Model

D
E
E

The best design found under the PMD criterion maintains orthogonality for factors B

and D, but sets A to +1 for all points and C and E to -1 for all points. The posterior

distribution of the BC interaction after the first stage suggests that in it is usually

negative in those models that contain it. Therefore, setting C to — 1 has the advantage

that the main effect of B will not be cancelled with the BC interaction - setting C to -1

gives a better chance of detecting the main effect of B, if it is active. The top five

follow-up designs under both criteria have C set to -1 for all points.

The new parameter distributions obtained after using the MD-optimal follow-up runs is

given in Table 4.14. Terms with a posterior probability of being active that is > 0.5 are

shown in bold. Resolving the first stage aliasing and gaining extra information means

that the effects with high probability are those involving factors B, D and E, not A. The

95% probability intervals for terms such as BD and DE no longer include zero, giving us
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Table 4.12: Factors in the 10 most probable models after using 2nd best follow-up under
the PMD criterion (25 26 27 28).

Probability
0.366
0.164
0.144
0.095
0.080
0.065
0.018
0.017
0.011
0.010

Factors in Model
B
B
B
B
B
B
B
A
A

D
D
C
C

C
C
B
B

E

E
D E

D

E

none

a more definite indication of the direction of the associated effects. Summaries of the

posterior parameter distributions after using the top two follow-up experiments under

the PMD criterion are given in Tables 4.15 and 4.16. The best design under the PMD

criterion seems to have been less successful than the MD-optimal design, as factor E has

a posterior probability of being active that is < 0.5, yet an analysis of the full factorial

experiment, mentioned by Meyer et al. (1996), shows E to be almost definitely active.

The second best design under the PMD criterion does indicate that E is active.

4.5.3 Alternative initial designs

Although Meyer et al. use the \ fraction denned by ABD = ACE as the starting design,

we could equally have chosen any of the 15 possible regular 25jJr fractional factorial

designs for the initial experiment. We repeated the above investigation using each of

these initial designs in turn. We observed how the initial design affects the posterior

factor probabilities after the initial experiment and the best selection of follow-up runs

(Table 4.17). For each initial design, twenty MFEA searches under the PMD criterion

were performed and the best four-point follow-up design obtained. These are given in

Table 4.18. For each design, an indication of the settings of each factor is given. Factors

for which balance is retained are indicated by 'b'. Factors that take only one level in the

follow-up design are denoted by -1/+1 as appropriate. Several general trends may be

noticed by comparing the design to the factor probabilities after the first stage from

Table 4.17. Firstly, factors with high probability after the initial fraction are often given
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Table 4.13: Summary of posterior distribution of components of (3 after the first stage.

Term
I
A
B
C
D
E

A B
A C
A D
A E
B C
B D
B E
C D
C E
D E

A B C
A B D
A B E
A C D
A C E
A D E
B C D
B C E
B D E
C D E

P(In model)
1

0.271
0.375
0.172
0.291
0.17
0.103
0.038
0.104
0.038
0.066
0.104
0.057
0.047
0.038
0.052
0.015
0.03
0.015
0.016
0.007
0.015
0.016
0.014
0.016
0.015

Mean|in model
64.595
3.283
5.497
-0.2

3.575
-1.016
3.282
-0.872
5.029
-0.207
-3.395
3.035
1.67

1.672
3.018
-3.244
1.367
0.163
-2.929
-2.974
0.202
1.564
-0.777
3.094
-0.166
4.646

95% credible
27.415
-5.198
-2.821
-9.005
-4.858
-10.255
-4.547
-8.988
-2.881
-8.337
-11.06
-4.591
-6.039
-6.048
-5.222

-11.128
-5.533
-9.784
-9.7

-9.937
-11.005
-5.106
-7.407
-3.842
-6.9

-2.574

interval in model
101.741
11.823
13.83
8.643
12.269
8.141
11.015
7.051
12.581
7.689
3.911
10.392
9.371
9.06

11.258
4.739
8.445
10.475
4.373
3.646
11.899
8.406
6.752
9.755
6.884
11.781

balanced follow-up runs, whereas factors with very low probability may be set to a

constant level. The initial fractions denned by ABC = BDE = 1 and ACE = BDE = 1

lead to high (> 0.3) posterior probabilities for the three factors B, D and E. The

follow-up runs chosen are the same in these two cases, and consist of a run with all

factors set to the high level (point 32) and three runs with exactly 1 out of factors B,D

and E set to -1 and everything else set to +1.

4.5.4 Single stage design

An alternative to using an eight-run initial design plus a four-run follow-up experiment

would be to choose a twelve run design before beginning experimentation. For
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Table 4.14: Summary of posterior distribution of components of (3 after MD-optimal
follow-up (4 10 11 26).

Term
I
A
B
C
D
E

A B
A C
A D
A E
B C
B D
B E
C D
C E
D E

ABC
ABD
ABE
ACD
A C E
ADE
BCD
B CE
B D E
CDE

P(In model)
1

0.011
0.938
0.197
0.873
0.646
0.008
0.002
0.006
0.004
0.193
0.865
0.639
0.189
0.172
0.637
0.002
0.006
0.003
0.002
0.001
0.003
0.188
0.172
0.636
0.172

Mean|in model
65.045
-0.587
9.166
0.454
5.253
-1.55
1.917
1.626
1.474
0.299
-3.384
5.678
2.011
1.353
2.307
-4.76
1.908
-1.759
0.013
-1.197
0.177
1.213
-1.683
3.329

-0.552
4.974

95% probability
59.405
-9.623
2.26

-4.157
0.143
-4.921
-4.173
-2.386
-4.661
-3.303
-8.397
0.964
-1.716
-3.173
-1.864
-8.014
-1.901

-15.168
-3.84
-5.618
-4.182
-5.046
-6.074
-1.228
-4.102
0.316

interval in model
70.291
7.208

14.313
5.362

10.018
2.794
7.783
5.432
10.635
4.539
1.195
10.24
5.457
6.149
6.633

-0.077
5.147
8.408
2.745
4.633
3.72

4.832
2.564
8.255
2.554
9.426

comparison, 12 runs corresponding to a Plackett-Burman design were selected from the

data. The posterior marginal factor probabilities are shown in Figure 4.7, for two values

of 7. The analysis for the initial eight runs, from which the probabilities shown in figure

4.6 (a) are calculated, used 7 = 0.4. Following Meyer et al. (1996), the analysis for the

initial eight runs, combined with four follow-up runs was performed using 7 = 1.2, from

which the probabilities shown in Figure 4.6 (b)-(d) are calculated. From comparing the

posterior factor probabilities in Figures 4.6 (b)-(d) and 4.7, the evidence on which

factors are active is much more conclusive when a single stage 12-run experiment is used.

This may be partly because of the blocking factor which was used for the follow-up runs,

but does not have to be used in a single stage design. The 12 run Plackett-Burman
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Table 4.15: Summary of posterior distribution of components of /3 after PMD optimal
follow-up (2 4 10 12).

Term
I
A
B
C
D
E

A B
A C
A D
A E
B C
B D
B E
C D
C E
D E

A B C
A B D
A B E
A C D
A C E
A D E
B C D
B C E
B D E
C D E

P(In model)
1

0.355
0.934
0.32

0.899
0.487
0.337
0.188
0.337
0.171
0.316
0.875
0.483
0.314
0.159
0.482
0.187
0.325
0.17
0.187
0.045
0.17
0.314
0.159
0.481
0.159

Mean|in model
64.298
2.734
7.381
-0.116
4.869
-1.366
3.162
-0.513
4.805
0.234
-2.976
4.574
1.614
1.357
2.337
-3.895
1.26

0.846
-2.733
-2.717
0.008
1.283
-1.303
2.944
-0.557
4.442

95% probability
56.519
-2.57
0.889
-3.954
-0.753
-4.711
-1.753
-5.227
-0.275
-4.531
-7.626
-0.742
-2.721
-3.21
-2.36

-7.884
-3.414
-5.25

-7.476
-7.435
-5.801
-3.416
-5.847
-1.711
-4.701
-0.399

interval in model
71.341
8.988

13.216
4.077

10.538
2.877
8.218
4.185
10.183
4.983
1.825
9.613
5.514
5.916
7.042
1.305
5.892
6.931
2.144
2.149
5.887
5.981
3.253
7.554
3.46
9.171

design has the advantage of having all main effects orthogonal to each other, which the

combined eight-run initial experiment and four follow-up runs do not have. Therefore, in

this example, if we plan to run 12 runs it is better to design a 12-run experiment than

use an initial eight-run experiment and select four follow-up runs based on the results of

the initial experiment. However, using an initial experiment gives us the option of

stopping after fewer runs if the results are already conclusive, or dropping factors with

low probability, as in the injection moulding example.



CHAPTER 4. FOLLOW-UP EXPERIMENTS 80

Table 4.16: Summary of posterior distribution of components of f3 after using 2nd best
follow-up under the PMD criterion (25 26 27 28).

Term
I
A
B
C
D
E

A B
A C
A D
A E
B C
B D
B E
C D
C E
D E

A B C
A B D
A B E
A C D
A C E
A D E
B C D
B CE
B D E
C D E

P(In model)
1

0.063
0.982
0.388
0.641
0.713
0.062
0.016
0.018
0.039
0.387
0.639
0.712
0.167
0.305
0.493
0.016
0.018
0.039
0.004
0.005
0.014
0.167
0.305
0.493
0.112

Mean | in model
63.903
3.092
9.245
-0.48
5.342
-1.552
4.334
0.167
2.692
-1.663
-5.504
5.286
2.947
1.533
4.257
-5.115
2.681
-0.586
-4.672
-0.676
1.518
-0.491
-1.53
4.286
-0.136
4.052

95% probability
56.994
-3.461
3.543
-4.716
0.456
-4.767
-1.758
-4.663
-3.424
-6.323
-9.344
0.865
-0.56
-3.855
-1.573
-8.642
-3.394
-8.029
-9.009
-6.636
-5.553
-5.668
-6.35
-1.43

-3.324
-1.009

interval | in model
69.466
8.186

14.504
3.571
8.995
2.543
9.034
5.483
8.611
2.802
-0.4
9.26
6.277
6.185
8.212
0.827
7.45
6.425
1.412
4.952
8.802
4.698
2.893
8.083
4.031
9.052

4.6 Summary

In this chapter, we have shown how the PMD criterion can be applied to the problem of

selecting follow-up runs after an initial experiment, using two examples from the

literature and have compared its performance with those of the MD, HD and F criteria.

In the first example we showed that the PMD criterion has the advantage over the MD

of selecting follow-up runs with distinct points which can 'reverse' the aliasing scheme

relative to the initial experiment. It was also noted that follow-up runs with certain

patterns of aliasing, which induce effect cancelling, perform badly under the PMD

criterion. We have shown that there is generally a strong positive correlation between
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Table 4.17: Factor probabilities after all possible regular 8-run first stage experiments

Defining
Relation

ABC=ADE=1
*ABD=ACE=1
ABE=ACD=1
ABC=BDE=1
ABD=BCE=1
ABE=BCD=1
ABC=CDE=1
ACD=BCE=1
ACE=BCD=1
ABD=CDE=1
ACD=BDE=1
ADE=BCD=1
ABE=CDE=1
ACE=BDE=1
ADE=BCE=1

none
0.23
0.23
0.26
0.19
0.22
0.2
0.23
0.25
0.2

0.23
0.2
0.22
0.25
0.18
0.24

P (Factor
! A

0.24

0.27

0.18

0.14

0.3
0.17

0.22

0.19

0.16

0.28

0.17

0.21

0.19

0.13

0.2

included in

B
0.39

0.37

0.37

0.37

0.37

0.41

0.41

0.41

0.45

0.31

0.3
0.36

0.35

0.34

0.38

C
0.22

0.17

0.19

0.14

0.18

0.32

0.23

0.18

0.28

0.23

0.17

0.27

0.2
0.14

0.2

model)

D
0.22

0.29

0.26

0.41

0.27

0.29

0.23

0.24

0.29

0.28

0.41

0.26

0.28

0.47

0.24

E
0.18

0.17

0.2
0.36

0.18

0.17

0.17

0.2
0.15

0.18

0.33

0.18

0.19

0.32

0.2
*Design used by Meyer et al. (1996).

the ordering of the sets of follow-up runs using the PMD objective function and the

orderings under each of the MD, HD and F criteria. We noted, however, that there are

some important exceptions including sets of four follow-up runs where only three runs

are distinct which performed well under the MD criterion and much less well under the

PMD criterion.

In the second example we have investigated the effect of the initial design on the

follow-up runs chosen. Initial designs with different aliasing schemes give slightly

different posterior probabilities for the factors, so follow-up runs that concentrate on

different factors are chosen. Comparison with a 12-run Plackett-Burman design shows

that, in this example, if 12 experimental runs are available, it is better to choose a

12-run single stage design than to select four follow-up runs to resolve aliasing in an

initial eight-run experiment.

Throughout this chapter we have used the set of models and prior probabilities from

Meyer et al. to allow comparison with their results. Similarly, we have kept the

assumption of effect forcing. This assumption, particularly for 3 factor interactions,

seems unrealistic. The use of a resolution IV initial design, as in the first example,

where main effects are confounded with three-factor interactions, suggests that
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Table 4.18: Summary of designs chosen under the PMD criterion for all possible regular
starting fractions. Key: b=factor is balanced in follow-up runs, -1= factor set to -1 level
for all follow-up runs, +1 factor is set to +1 for all follow-up runs.

Starting fraction
Defining relation
ABC=ADE=1
ABD=ACE=1
ABE=ACD=1
ABC=BDE=1
ABD=BCE=1
ABE=BCD=1
ABC=CDE=1
ACD=BCE=1
ACE=BCD=1
ABD=CDE=1
ACD=BDE=1
ADE=BCD=1
ABE=CDE=1
ACE=BDE=1
ADE=BCE=1

Follow-up runs
chosen by PMD

9 10 11 28
2 4 10 12
9 11 25 27
16 24 30 32
25 26 27 28
9 13 27 31
9 11 13 15
9 11 25 27
11 13 27 19
29 30 31 32
3 15 23 31
26 28 30 32
9 11 13 15
16 24 30 32
9 11 25 27

A
b

+1
-1
+1
b
-1
-1
-1
-1
b
-1
+1
-1
+1
-1

Setting of
B
b
b
b

b
b
b
b
b
b

+1
b
b

b

C
-1
-1
-1
+1
-1
b
b
-1
b

+1

b
b

+1
-1

factors
D
+1
b

+1

+1
+1
+1
+1
+1
+1
b

+1
+1

+1

E

-1
b

+1
b
-1
b
b

+1
b

+1
-1

b

three-factor interactions are viewed as unlikely a priori. It would be interesting to

explore the use of a less restrictive model space in relation to these and other examples.
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Figure 4.7: Posterior factor probabilities from a 12-run Plackett-Burman design for the
second example, with two values of 7. Runs used are 1,3,6,12,14,15,18,23,24,25,28,29.



Chapter 5

Application to a Tribology

Experiment

5.1 Introduction

In this chapter, a small programme of experimentation is described, which was carried

out by the Tribology group in the School of Engineering Sciences at the University of

Southampton. This example demonstrates how the PMD criterion may be used to select

a small number of follow-up runs after an initial experiment, and also shows the type of

analysis that may be carried out on the data obtained from the experiment. The

researchers were interested in simulating the effect of contaminated oil on the wear in a

pin and disc assembly and finding out which contaminants had an important effect on

wear. The aim of the particular experiment described here was to screen for important

process effects.

The experimental setup consisted of a pin moving relative to a disc, with oil between

them; see Figure 5.1. There were six factors that could be set in the experiment: Disc

material (steel or silicon), Pin material (steel or silicon), Soot (% by weight), Oxidation

(hours), Concentration of H2SO4 (mM) and Moisture (%ml). Four response variables

were measured: Charge (pC), Coefficient of Friction, Temperature (°C) and Wear Scar

Radius (mm). The observations were time-consuming to obtain and hence only about 20

runs could be made in the experiment. A linear model with main effects and possibly

84
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Table 5.1: Coding scheme for explanatory variables.

Variable
Disc Material
Pin Material
Soot (% wt)
Oxidation (hours)
H2SO4 (mM)
Moisture (% ml)

Label
A
B
C
D
E
F

-1 level
Steel
Steel

0
0
0
0

0 level
-
-

5
5

1.25
1.25

+ 1 level
Silicon
Silicon

10
10
2.5
2.5

Figure 5.1: Experimental rig for tribology example

some two-factor interactions was believed likely to produce a reasonable approximation

to the response.

5.2 Initial Experiment

The design chosen for the initial experiment was a 2 ^ 2 fractional factorial with defining

relation ABBE — ACEF = BCDF = I combined with four 'centre points' with the

quantitative factors (C, D, E, F) set to the 0 level for the four possible combinations of

the two qualitative factors (A, B). These four points were to be used for model checking.

The factors were labelled and coded as shown in Table 5.1. Each of the four response
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variables was measured at each run of the experiment.

5.3 Models and Prior Distributions

For each response variable, the model space adopted included all linear models formed

from main effect and 2-factor interaction terms in the six factors, subject to strong

heredity (see Chipman 1996). That is, an interaction term may not be present unless

both main effects of the factors involved in the interaction are also in the model. We

make this restriction so that the model that we select is easily interpreted. Nelder (1998)

showed that an analysis using models which obey strong heredity has the advantage of

not being affected by re-coding of the factors.

The model probabilities are built up from the individual effect probabilities, as described

in Section 4.1. Each main effect term is included in the model independently with the

same probability pm. Each interaction term is included in the model with probability pi,

provided both corresponding main effects are present; and with probability 0 otherwise.

The prior distribution on a2 is an improper non-informative prior / (a 2 ) oc <r~2,

equivalent to an inverse-gamma distribution with a = d — 0. Conditional on a2, the

regression parameters (3 are distributed as N(0,Ia2).

5.4 Analysis of the Initial Experiment

In this section, the analysis of the initial experiment is described, starting with a

preliminary investigation based on simple frequentist methods. A full Bayesian analysis

is then given. The design and data from the experiment are given in Table 5.2.

Run 15 was an outlier with respect to the response variable charge, with value 45.5 pC.

A re-run was performed at this combination of factor levels under the same laboratory

conditions and the new response value used instead and is recorded in Table 5.2.

5.4.1 Preliminary Analysis

A half-normal effects plot was used to identify unusually large effects or combinations of

effects (Daniel 1959). A brief description of findings for each variable is now given. The
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Table 5.2: Initial runs of tribology experiment

Run

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1

B

1
1

-1
-1
-1
-1
1
1

-1
1
1

-1
-1
-1
1
1
1
1

-1
-1

C

-1
1
0

-1
1

-1
-1
0
1
1

-1
-1
0
1
1
1

-1
0
1

-1

D

1
1
0
1

-1
-1
-1
0
1

-1
1

-1
0

-1
-1
1

-1
0
1
1

E

-1
-1
0
1

-1
-1
1
0
1
1
1
1
0
1

-1
1

-1
0

-1
-1

F

-1
1
0
1
1

-1
1
0

-1
-1
-1
-1
0
1

-1
1
1
0

-1
1

Charge
(PC)
0.03
0.02
0.02
0.02
0.02
0.02
0.02
0.04
0.02
0.03
5.39
14.41
26.75
10.68
13.16
3.57
6.75
28.6
6.05
6.82

Coefficient
of Friction

0.11
0.09
0.17
0.08
0.08
0.11
0.09
0.11
0.10
0.08
0.07
0.07
0.08
0.07
0.10
0.09
0.10
0.10
0.05
0.06

Temp.
(°C)
40.32
54.96
66.34
38.27
64.48
36.70
41.07
59.47
50.06
58.95
54.00
55.88
56.00
63.93
60.86
65.63
56.20
58.89
57.02
51.36

Wear Scar
(mm)
0.11
0.26
0.48
0.14
0.42
0.14
0.11
0.24
0.45
0.25
0.12
0.26
0.26
0.32
0.31
0.23
0.18
0.22
0.40
0.21

Temp.
Difference (°C)

22.32
33.96
41.34
18.27
41.98
18.10
20.07
39.37
30.56
36.85
28.00
32.88
32.00
33.93
29.86
40.63
32.20
32.89
32.02
28.36

half-normal plots for the charge and coefficient of friction responses are given in

Appendix B.

Wear Scar Radius: The main effects of B and C (pin material and soot) stand out for

this response. The AC — EF interaction term is the next largest, but is close to the line

of effects assumed to be non-active (see Figure 5.2).

Temperature: The largest effects on the temperature response appear to be those of A

and C (disc material and soot) and the two-factor interaction between them (see Figure

5.3).

Charge: The preliminary analysis indicated that a log transformation would produce a

response variable that would better fit the modelling assumptions (normal distribution

with constant error variance). The normal effects plots of the transformed charge

variable is shown in Figure B.I. This plot shows that the main effect of A (disc material)

is much larger than all other effects. Figure B.2 shows a normal effects plot with A

removed to give a clearer assessment of the next two largest effects, D (oxidation) and
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Half-normal quantiles

1.5

Figure 5.2: Half Normal Plot for Wear Scar.

AC

0.0 0.5 1.0

Half-normal quantiles

Figure 5.3: Half Normal Plot for Temperature.



CHAPTER 5. APPLICATION TO A TRIBOLOGY EXPERIMENT 89

the aliased interactions AD = BE relative to the sizes of the other factorial effects.

Coefficient of Friction: Run 3, one of the 'centre points', is an outlier with respect to

coefficient of friction. It was decided to set aside the centre points for model checking,

and perform an analysis based on the results from the fractional factorial. The

half-normal plot for the coefficient of friction response does not closely follow a straight

line. However, residual diagnostics and the Box-Cox stabilisation (Box and Cox 1964) do

not suggest that transformation is required. A few effects stand out as being larger than

the rest, which are the main effects of A and B (disc and pin materials), the interaction

between them (AB = DE), and the AD = BE interaction.

Based on this preliminary analysis, the log transform was retained for charge. The

preliminary analysis provided a useful understanding of the data for the more detailed

modelling.

A useful preliminary way to explore any relationships that may exist between the four

responses given in Table 5.2 is to plot them against each other, as shown in Figure 5.4.

There weak is evidence of a correlation between the wear scar and temperature, and, to

a lesser extent, between log(charge) and temperature. A possible analysis for data with

multiple response variables is multivariate analysis of variance (MANOVA). However,

this technique is most effective with a reasonable degree of correlation between the

response variables, which is not evident for all pairs of variables in this data and so is

thought unnecessary.
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Figure 5.4: Matrix plot and correlations of the four responses given in Table 5.2
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5.4.2 Bayesian Analysis

The data from the initial experiment that were analysed consist of a set of 19 runs (with

the outlying response obtained from a centre point excluded) for the coefficient of

friction, and the full set of 20 observations for each of the three remaining responses.

The prior distributions outlined in Section 5.3 are used, with pm = Pi = 0.5. For each

response the posterior probabilities of all models in the set were calculated were

calculated using R (R Development Core Team, 2008). The results are summarised for

each response in the following tables in two ways. First, the most probable models are

listed. Second, the marginal probabilities for each factorial effect are given, formed by

summing the probabilities of all models containing that effect. These have been used

also by Meyer and Wilkinson (1998), who call them model-averaged effect probabilities.

An effect probability formed by summing over the top 10 models by posterior probability

is also given (re-normalised so that a term that is present in all the top 10 models is

given marginal probability 1). This is given following the reasoning (although not the

method) of Madigan and Raftery (1994), who state that models with a low posterior

probability have effectively been 'discredited' and that averaging over a smaller set of

models more accurately reflects our model uncertainty. The results for the wear scar

response are given in Tables 5.4 and 5.3, for the results under the other three responses,

see Appendix B.

Table 5.3: Top 10 most probable models for Wear Scar at First Stage

Probability
0.349
0.158
0.114
0.026
0.024
0.022
0.022
0.021
0.02
0.019

I
I
I
I
I
I
I
I
I
I

Model
B
C
B
B
B
B
C
C
C
A

Terms
C

C
C
C
C
F
E
D
B

BC
F
E
D

C
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Table 5.4: Model-averaged Effect Probabilities for Wear Scar for the initial experiment.

Factorial
Term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

Probability
(All models)

1.00
0.09
0.71
0.97
0.10
0.10
0.11
0.01
0.03
0.00
0.00
0.00
0.17
0.01
0.01
0.01
0.02
0.02
0.03
0.00
0.00
0.00

Probability
(In top 10 models)

1.000
0.025
0.715
1.000
0.054
0.058
0.062
0.000
0.000
0.000
0.000
0.000
0.147
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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5.4.3 Summary of Results after the initial experiment

The analysis of half-normal plots from the initial experiment provides evidence that

several of the factors are active and have an effect on some of the responses. Charge is

much higher when the disc material (A) is silicon. There is also some evidence to suggest

that oxidation (D) and the AD = BE interaction have some effect. When coefficient of

friction is the response, the main effects A and B and the AD = BE and AB — DE

interactions stand out in the half-normal plot (figure B.3). For temperature, the largest

effects are A, C and the AC = EF interaction. For wear scar, the effects of B, C and

the BC = DF interaction are the largest.

A Bayesian analysis shows that, for the log(charge) response, disc material is almost

definitely having an effect. The next most likely model term is the main effect of

Oxidation (D). For coefficient of friction, the model with highest posterior probability

contains the intercept term only, however, some other model terms retain a reasonable

posterior probability, such as B and A, with probabilities 0.3 and 0.22 respectively. The

main effect terms of B and C have high posterior probability for the wear scar response.

There is also some evidence to suggest that the BC interaction is active, as it appears in

the third most likely model and has the highest posterior probability of any interaction

term under any of the responses in this analysis. For temperature, C has a high

posterior probability (0.48). The second most likely model term is the main effect of A.

The marginal probabilities for the interaction terms are very small - with the exception

of the BC interaction under the wear scar response, all are less than 0.03. However, the

strong heredity prior that was used will have had some effect on these results. Some

interactions that were seen to be large in the half-normal plots do not have high

posterior probability because the parent main effects are small hence the models that

contain them have low posterior probability. A follow-up experiment was planned to

provide further information about the importance of effects for which the evidence is so

far inconclusive. Such effects include the BC interaction for the wear scar response and

the main effects of C and A for temperature. For charge, the main effect of A is almost

certainly active, but a follow-up experiment will help determine whether any other

factors have an effect. For the coefficient of friction response the follow-up runs will help

confirm or negate the weak evidence for the main effect of B from the initial experiment.
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5.5 Selection of Follow-up Runs

It was possible to perform a further six experimental runs in order to provide more

information on which main effects and interactions affect each response, and to help

distinguish between effects aliased in the initial runs. For each of the four responses, the

posterior distribution obtained in the analysis of Section 5.4.2 was used as a prior for

evaluating follow-up designs under the PMD criterion. Twenty searches were performed

for each response, using the Modified Fedorov Exchange Algorithm described in Chapter

2. In addition, 80 designs were generated randomly, for comparison. All 160 designs

were evaluated under the PMD criterion for all four responses. It was decided to base

selection of a design on its performance with respect to the wear scar and temperature

response only, as these produced the greatest variation in PMD values. Hence there was

less scope to choose a bad design for the other two responses. Because of the difference

in the ranges of values of the objective function for the different responses, a ranking of

the designs under each response was employed rather than values of the objective

function. This ranking was used to identify a minimax design, i.e. a design that has the

minimum value of

max {Rank for wear scar, Rank for temperature}

over the set of designs considered.

The ranks of the designs with respect to the two responses are plotted in Figure 5.5.

The colours (black, blue, red, green ) correspond to the responses used in the search -

log(charge), coefficient of friction, wear scar and temperature respectively. Designs

plotted in magenta were generated randomly. This plot shows the search algorithm to be

working fairly effectively - the designs found for a particular response are generally

ranked higher under that response than those found for different responses or obtained

at random, apart from a few instances of designs where the algorithm became trapped in

local optima.

The minimax design has ranks of 18 and 19 for the responses wear scar and temperature

respectively. This is the design plotted in red on the lower left-hand corner of Figure 5.5,

and is the design that we would ideally use. However, the researchers had only three
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Figure 5.5: Ranks of Follow-up Designs for Wear Scar and Temperature Responses. Found
for log (charge)* coefficient of friction* wear scar* temperature* random*.

steel discs left for experimentation, and this design requires the use of steel discs for four

runs. In Figure 5.6 we have plotted the rankings of the designs again, but designs using

three or fewer steel discs are indicated by squares. The minimax design (of those that

are permissible) is ranked 41 and 31 with respect to wear scar radius and temperature

respectively, and is one of the designs generated randomly. There is another possible

design, with rankings 42 and 12 that was found using temperature as a response.

Although not strictly the minimax design, we use this design because of its better

performance with temperature as a response. The experiment was run using this design,

and data collected for the four responses. The design and the responses obtained from it

are given in Table 5.5. It may be noted that this design maintains balance and

orthogonality for factors A and C, the two most important factors at the first stage

when using temperature as a response. The factor B is not balanced, but is orthogonal

to C, which is of use when wear scar is the response and models containing B, C and

BC are among those of high posterior probability after the first stage.
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Data on temperature difference (temperature of apparatus - ambient temperature)

became available for all experimental runs after the second stage, so this was used

preference to the temperature variable previously used.

in

Table 5.5: Follow-up runs for Tribology Experiment

Run

1
2
3
4
5
6

A

1
-1
-1
1
1

-1

B

1
-1
1

-1
-1
-1

C

-1
1
1

-1
1

-1

D

-1
1

-1
-1
1
1

E

1
1

-1
-1
1

-1

F

-1
-1
1
1

-1
1

Charge
(PC)
6.65
0.02
0.02
5.15
13.94
0.02

Coefficient
of Friction

0.08
0.09
0.10
0.06
0.07
0.16

Temp.
(°C)
37.33
52.93
55.21
38.17
47.70
46.53

Wear Scar
(mm)
0.12
0.42
0.21
0.26
0.34
0.23

Temp.
Difference (°C)

17.33
34.93
37.21
20.17
29.70
28.53
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5.6 Analysis for Second Stage experiment

We perform a Bayesian analysis at the second stage, again calculating the model

averaged probabilities of each term, and finding the top 10 most probable models. For

each model term we also calculate the maximum value of c which would see it included

in the model selected using the PMD loss function (2.3). This value of c is simply y^-,

where p is the posterior model-averaged probability of the term. In this example, the

models selected using c = 1 turn out to be the models with highest posterior probability.

Another analysis performed is to show the likely size and direction of effects using

histograms of the model-averaged posterior distribution of the parameters, similar to

those produced by Meyer and Wilkinson (1998). To create these histograms, we sample

10 000 models, with replacement, from the posterior model distribution. For each model,

we calculate a* ,d*, n* and V*. From these, we take one sample of a2 from a a*Xd*

distribution and (3 from a N(fi*,a2*V*) distribution. For each regression term, we can

plot a histogram of the values that the associated elements of /3 take when we sample

from models containing that parameter. These histograms must be interpreted with

reference to the model-averaged effect probabilities in Tables 5.6, 5.8, 5.10 and 5.12 as

for each term there are models that do not contain it, where its value is effectively zero.

These models have not been included on the histograms because the relative height of

the 'spike' at zero is dependent on the width of the bins used in constructing the

histogram. However, the existence of these models, and their combined probability,

should be borne in mind when considering the posterior parameter distributions.
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Table 5.6: Model-Averaged Effect Probabilities for Wear Scar at Second Stage.

Factorial
Term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

Probability
(All models)

1.00
0.10
0.95
1.00
0.08
0.08
0.09
0.02
0.04
0.00
0.00
0.00
0.24
0.01
0.01
0.02
0.02
0.01
0.03
0.00
0.00
0.00

Probability
(In top 10 models)

1.000
0.058
0.967
1.000
0.031
0.046
0.051
0.000
0.023
0.000
0.000
0.000
0.213
0.000
0.000
0.000
0.000
0.000
0.013
0.000
0.000
0.000

In PMD model
chosen when c <

NA
0.115
19.211

497.127
0.082
0.083
0.102
0.020
0.043
0.002
0.002
0.001
0.322
0.014
0.013
0.016
0.017
0.014
0.026
0.001
0.001
0.003

Table 5.7: Top 10 most probable models for Wear Scar at Second Stage

Probability
0.487
0.168
0.032
0.029
0.028
0.027
0.026
0.02
0.011
0.011

I
I
I
I
I
I
I
I
I
I

B
B
B
A
C
B
B
A
B
B

Model
C
C

c
B

C
C
B
C
C

Terms

BC
F
C

E
D
C
F
E

AC
CF
BC
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Figure 5.7: Model-Averaged Posterior Parameter Distributions for Wear Scar at Second
Stage
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Table 5.8:
Stage.

Model-averaged Effect Probabilities for Temperature Difference at Second

Factorial
Term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

Probability
(All models)

1.00
0.12
0.10
0.89
0.10
0.11
0.14
0.00
0.03
0.00
0.00
0.00
0.02
0.00
0.00
0.00
0.02
0.02
0.02
0.00
0.00
0.00

Probability
(In top 10 models)

1.000
0.088
0.059
0.944
0.072
0.061
0.107
0.000
0.027
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.014
0.000
0.021
0.000
0.000
0.000

In PMD model
chosen when c <

NA
0.136
0.113
7.846
0.114
0.120
0.167
0.001
0.033
0.002
0.002
0.002
0.016
0.001
0.001
0.002
0.017
0.016
0.026
0.001
0.002
0.005

Table 5.9: Top 10 most probable models for Temperature Difference at Second Stage

Probability
0.469
0.072
0.052
0.051
0.05

0.049
0.047
0.022
0.018
0.012

I
I
I
I
I
I
I
I
I
I

Model
C
C
A
C
B
C

A
C
C

Terms

F
C
E
C
D

C
F
D

AC
CF
CD
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Table 5.10

Factorial
Term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

: Effect Probabilities for log(charge)

Probability
(All models)

1.00
1.00
0.12
0.11
0.10
0.10
0.16
0.03
0.02
0.02
0.02
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Probability
(In top 10 models)

1.000
1.000
0.091
0.082
0.078
0.059
0.123
0.021
0.016
0.014
0.000
0.027
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

at Second Stage.

In PMD model
chosen when c <

NA
6 x 1012

0.135
0.119
0.114
0.105
0.184
0.029
0.021
0.018
0.017
0.035
0.002
0.002
0.002
0.002
0.001
0.001
0.002
0.001
0.002
0.002

Table 5.11: Top 10 most probable models for log(charge) at Second Stage

Probability
0.512
0.087 ]
0.063 ]
0.06 ]
0.058 ]
0.054 ]
0.024 ]
0.019 ]
0.015 ]
0.012 1

Model
[ A
[ A
[ A
[ A
[ A
[ A
[ A
[ A
[ A

A

Terms

F
B
C
D
E
F
B
C
D

AF
AB
AC
AD
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Table 5.12: Model-Averaged Effect Probabilities for Coefficient of Friction at Second
Stage.

Factorial
Term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

Probability
(All models)

1.00
0.61
0.14
0.15
0.12
0.16
0.11
0.03
0.02
0.02
0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Probability
(In top 10 models)

1.000
0.560
0.091
0.111
0.043
0.121
0.043
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

In PMD model
chosen when c <

NA
1.565
0.163
0.177
0.141
0.195
0.127
0.033
0.020
0.021
0.023
0.010
0.004
0.003
0.003
0.002
0.002
0.005
0.002
0.003
0.003
0.003



CHAPTER 5. APPLICATION TO A TRIBOLOGY EXPERIMENT 105

Table 5.13: Top 10 most probable models for Coefficient of Friction at Second Stage

Probability
0.295
0.147
0.047
0.046
0.043
0.037
0.034
0.033
0.032
0.032

Model
I
I
I
I
I
I
I
I
I
I

A

E
A
A
C
A
B
F
D

Terms

C
E

B
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Figure 5.10: Model-Averaged Posterior Parameter Distributions for Coefficient of Friction
at Second Stage

5.6.1 Summary of Results

For the wear scar response, the main effects of pin material (B) and soot (C) are very

likely to be active. The BC interaction is also possibly active, with posterior probability

0.24, and is present in the second most likely model. The posterior means, for B, C and

BC, averaged over the models containing them, are -0.052, 0.075 and -0.014 respectively.

Both B and C were viewed a likely to be active after the initial experiment (with

probabilities 0.71 and 0.97 respectively). The follow-up runs have provided more
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evidence to confirm this. With temperature difference as the response, the main effect of

C is active with high probability, and has an estimated mean of 5.04. No other model

terms have a posterior probability greater than 0.14. After the initial experiment, for the

temperature response, A was viewed as a potentially important factor, with a

probability of 0.22, and large estimated effects for A and AC (see Figure 5.3). However

after the follow-up experiment, which maintained the orthogonality of A and C, the

probability that A is active has dropped to 0.12. With log(charge) as the response, the

main effect of disc material (A) dominates, with posterior probability effectively equal to

1. This was also the case after the initial experiment. The posterior model-averaged

mean for the effect of A is about 2.8, equating to charge being about 270 times greater

for silicon discs. For coefficient of friction, factor A has a posterior probability of around

0.61 of being active. The expected effect of disc material, given that it is active, is

around -0.01. After the initial experiment, the factor with highest marginal probability

was B, with a probability of 0.30; the probability of A was 0.22. The extra data provided

by the follow-up runs has reduced the probability of B to 0.14.

5.7 Conclusions

In this chapter, the PMD criterion was applied to the selection of follow-up runs for a

real experiment, which was then performed. The data from the experiment was analysed

by Bayesian methods consistent with the objectives of the experiment of model selection

and effect screening. The multiple responses were handled by fitting separate models

and performing separate design searches for each response, then selecting a minimax

design using two of the responses. For the data from this experiment, it was felt that

modelling a multivariate response would not be appropriate, however, the use of

multivariate techniques would be a possible extension to this work.

The Bayesian final analysis of this data does not give very high posterior probability to

many interaction terms. This may simply be because none were active, or that a larger

experiment is required to give sufficient power to detect them. However, the prior

distributions used may have had some effect. Changing the prior distributions, for

example by not enforcing strong heredity, changing the value of pi, or the prior variance
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of the associated model parameters might lead to more models containing interactions

having high posterior probability.



Chapter 6

Computational Approaches to Large

Model Spaces

6.1 Introduction

As we have seen in Chapter 3, some situations, particularly in screening, result in the

need to consider a large number of possible models. Evaluation of the PMD criterion

requires posterior probabilities of all these models to be calculated at each run of

simulation. If the model space is sufficiently large, evaluating the probabilities for all

models is computationally infeasible. The specific model space that we will consider here

is one with / possible factors, where the main effect of each factor is included

independently with probability pmain> and, conditional on the presence of main effects i

and j , the ij interaction is included with probability pint. We will generally use

Pmain — Pint — 0-5 to represent a lack of prior information.

Therefore, there are

/m=0

possible models, where each term in the summation is the number of models that involve

fm factors. This rises rapidly with / , as demonstrated in Table 6.1. In this chapter we

will discuss three methods of approximating the objective function for large model

spaces. These are:

109
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Table 6.1: Size of strong heredity model space for 3-9 factors.

No. of factors
3
4
5
6
7
8
9

No. of models
18

113
1450

40069
« 2.35 x 106

« 2.86 x 108

« 7.12 x 1010

(i) using a subset of the models with highest prior probability

(ii) a technique called Occam's window, and

(iii) using an MCMC scheme to explore the model space.

6.2 Using only the Models with Highest Prior Probability

One simple approach is, for the purposes of design, to use an approximation to the prior

and set the prior probabilities of some models to 0. This is done by replacing the model

space with the Mo < M models with highest prior probability, with the prior model

probabilities re-normalised to sum to 1. This approach was used by Chipman (1996) to

evaluate the HD objective function, and was used in Chapters 3 and 5 of this thesis.

There are some drawbacks to this method. If the combined prior probability of the Mo

models used is not very close to 1, the approximation to the objective function may be

poor. Figures 6.1 and 6.2 (using a semi-log scale) show that, for six factors, a relatively

small set of models do account for most of the prior probability. In our model space,

when pmain = Pint = 0-5, all models containing the same number of main effect terms will

have the same prior probability. Therefore, there is not a unique set of Mo models with

highest prior probability unless Mo corresponds to a cut-off point between different sizes

of models. These cut-off points correspond to the 'kinks' in Figure 6.2. Using a value of

Mo that is not a cut-off between models of different sizes will mean that the main effect

and interaction terms involving some of the factors will be given higher prior probability

than others. This may lead to designs being selected that are good at estimating and
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Figure 6.1: Cumulative prior probability for six-factor model space

discriminating between these effects at the expense of others, even though all factors are

being viewed as equally important a priori.

Using a subset of the models may be unrepresentative of the whole space. For example,

with 6 factors, we might use the 197 models with highest prior probability, which is a

natural cut-off corresponding to all models involving three or less factors, with a

combined prior probability of 0.66. However, under the prior given, we are just as likely

to have six active factors as any given three; the prior probabilities for six-factor models

are smaller purely because there are more of them, as there are more possible
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combinations of interaction terms. Using just the top 197 models ignores a large set of

possible models with a fairly high combined prior probability (0.34).

6.3 Occam's Window

Madigan and Raftery (1994) use the term 'Occam's window' to describe a method of

accounting for model uncertainty in which only models m, with a posterior probability

>
max {P(mt |y)}

(6.1)
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are used in the calculation of posterior expectations, where r > 1 is a tuning parameter

to be chosen. In our situation the expected posterior loss is approximated by

where

• = i mk :
r )

Madigan and Raftery (1994) provide an algorithm for finding A, for graphical models,

which we have adapted for linear models. The algorithm builds up models from the null

model by adding terms and comparing posterior probabilities. They also provide an

algorithm for constructing A by removing terms from the saturated model. However,

due to the structure of our model space, this is less useful, as a main effect term may not

be removed unless all interactions in which it is involved have already been removed, so

it is required to evaluate the posterior probability for more models in order to find A

under this algorithm. The algorithm that we use to find A is a slightly altered version of

the Up algorithm of Madigan and Raftery. We start with .A = 0, and the set of models

under consideration C = {constant model}. At any stage of the algorithm, the model,

nii, that we are currently considering, was reached through a number of steps starting at

the model with just a constant term, and adding one term at a time. For model rrii, let

this set of models (including the constant model and m;) be V(mj). We also define two

constants, OL and OR. NOW let mf be a supermodel of rrii and consider the log posterior

odds, log ^m|iy/. If the log posterior odds is large and positive (> OR), there is

evidence in favour of the smaller model, if the log posterior odds are large and negative

(< OL), the evidence points towards the larger model. Intermediate values of the log

odds mean that both models should be considered. Madigan and Raftery (1994) also

rule that, if a smaller model is rejected in favour of a larger one, so are all its submodels,

and if a larger model is rejected in favour of a smaller one, all its supermodels are also

rejected. Combining these rules means that a model is not permissible if it has

probability less than e°L times the probability of any of its supermodels, or if its

probability is less than e~°R times the probability of one of its submodels.

The algorithm is as follows:

1. Select a model m,- from C
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2. C <- C \ {mj}, .4 <- X U {mi}

3. Select a supermodel mf of m* by adding a permissible effect to i.

4. Evaluate / (y | X,mf).

5. Compute B = log

6. If B <OL,A^A\ {rrn}, if m+ £ C then C ^ C U {m+}

7. If OL < -B < 0 ^ then if m+ £ C then C<-CU {mf}

8. If there are more supermodels of rrn, go to 3.

9. If C ^ 0 go to 1.

10. Finally, remove from A any models that do not satisfy the condition (6.1)

In the original formulation of Occam's window, if a model has a lower probability than

one of its submodels, then that model always is rejected and not included in the final set

A. We do not wish to do this, as the number of parameters has already had an effect on

the posterior probabilities, through both the prior and the likelihood. Hence we use

—OL — OR = log(r) and only remove models from the final set on the basis of inequality

(6.1).

6.3.1 Use of Occam's window

We compare the use of Occam's window with different values of OL for 5-factor 16-run

main effect orthogonal designs. We use OL = —OR = — log(r) for 10 different values of

r. These are plotted against the PMD values calculated by using all the models (Figure

6.3). Also plotted are the PMD values obtained by using a reduced model set, of either

106 or 426 models. The sizes of these sets are chosen to be natural cut-off points that do

not omit models of the same prior probability as models that are included, as discussed

in Section 6.2.

We see that, as r increases, Occam's window becomes a better approximation to

evaluation over all models, but even for r = 2, the ordering of designs is close to being

correct.
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using Occam's window or a reduced model space, and complete evaluation for the full
model space.

The time taken to evaluate a design depends on the design and the value of r. Generally,

worse designs will leave more models with substantial posterior probability so will take

longer to evaluate. For a simulation size of 1000, we find the PMD value for each of the

5 factor 16 run main effects orthogonal designs, and measure the time taken (in seconds)

using 10 values of r. Figure 6.4 shows how the time taken changes with r over this

range, with each line corresponding to a design. This is related to the number of models

contained in set A, over which the PMD value is calculated. The average number of

models in A for each 5 factor 16 run main effects orthogonal design is shown for different

values of r in Figure 6.5.

Figure 6.6 shows how the relative time taken by the different designs remains similar as

we change r, and there is a considerable time saving compared to calculating posterior

probabilities for all models, for r = 30, for example, the time taken is a saving of at least

50% compared to using all models, for all 11 designs.



CHAPTER 6. COMPUTATIONAL APPROACHES TO LARGE MODEL SPACES 116

400 600 800 1000

Figure 6.4: Time taken to find PMD vs r for 5 factor 16 run main effects orthogonal
designs.

200 400 600 1000

Figure 6.5: Average number of models remaining in A for different values of r for 5 factor
16 run main effects orthogonal designs.
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Design

10

Figure 6.6: Time taken to find PMD for several values of r and by using all models for 5
factor 16 run main effects orthogonal designs.

Table 6.2: Top 10 main effects orthogonal designs for 6 factors in 16 runs evaluated using
Occam's window and top 400 models by prior probability.

Rank

1
2
3
4
5
6
7
8
9
10

Occam's
Design

13
19
18
20
24
23
22
8

26
14

Window
PMD
1.20
1.23
1.24
1.24
1.24
1.25
1.26
1.27
1.28
1.28

Top 400
Design

13
19
24
20
22
23
18
26
27
8

models
PMD
0.63
0.63
0.64
0.64
0.64
0.64
0.64
0.65
0.65
0.69

6.3.2 Results using Occam's Window

We use Occam's window with r = 20 to evaluate all 16-run main effects orthogonal

designs in 6 factors. This is an example for which calculating posterior probabilities for

all models would be prohibitively time-consuming. The top ten designs, are given in

Table 6.2.
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The order of top 10 designs are not dissimilar to the order for Bingham and Chipman's

model space, given in Table 3.10 and repeated in Table 6.2 for comparison. In Figure

6.7, the PMD value of a design, calculated using Occam's window, is related to its

aliasing structure. It can be seen that designs with fewer pairs of terms completely

aliased have lower PMD objective function values. Pairs of terms i,j without any partial

aliasing will have zero as the corresponding entry in Si j , where S = X'X for the model

containing all terms. Given the number of pairs of completely aliased terms, having

more zero entries in S decreases the objective function.

6.4 MCMC Methods

An alternative approach to the computation of the PMD objective function for large

model spaces is to construct a Markov Chain Monte Carlo (MCMC) scheme to move

around the model space, with equilibrium distribution equal to the posterior model

distribution, P(m\y). We use the proportion of iterations that each term is included in

the model visited by the chain to approximate the posterior model-averaged probability

for that term. An approximation to the expected loss of the model chosen may then be

calculated as

min^ [L(i,j)\y,dn] = £min{p(*|y),c [1 - p(£\y)}} (6.2)
* ees

as described in Section 2.1.1. The expected losses of the models chosen are then

averaged over many runs of simulation, as before. We will use a Metropolis-Hastings

Algorithm to approximate P(m\y), the steps of which are given below.

1. Select a model to start at. In this work we experiment with two methods. Firstly,

we can randomly select a model from the prior model distribution. Alternatively

we can start at the 'true' model from which the response y was generated.

2. At each iteration of the algorithm, propose a model j to move to from the current

model i, using some proposal distribution q{i,j)-

3. Accept the proposed model with probability
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Figure 6.7: The effect of aliasing structure on the PMD objective function value for 16
run main effect orthogonal designs in 6 factors.

using the result that
P(mj\y)

P(mi\y) f(y\ml)P(mi)
(6.3)

to calculate this probability.

4. If model rrij is not accepted, remain at m;.

5. Go to step 2. Repeat for a fixed number of iterations.
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There are two types of proposal distribution that we will try. Firstly, we can propose m.j

which differs from rrii by one term (we will call this a 1-step proposal). To do this, we

randomly select a term £ from <S, with equal weight given to all terms. If £ £ Si, then rrij

is model rrii with term £ added; if £ G Si, rrij is model m; with term £ removed. If rrij is

now a model that does not obey strong heredity, we go back to rrii and try again until a

permissible model is reached. This is still only counted as one proposal. Hence q(mi,m,j)

is equal to the reciprocal of the number of permissible moves from rrii. Alternatively, we

can use an independence sampler based on the prior as the proposal distribution, where

q(m,i,mj) = P(rrij) Vi. We also try using a chain where, at each step, we randomly select

either of the proposal distributions, with equal probability (50:50 proposal). The idea of

this proposal is to use the independence sampler to make large moves around the model

space and the 1-step proposal to explore locally.

6.4.1 Use of MCMC Scheme

We apply the MCMC methods to the example from Section 6.3.1. Before we do this, we

check that the use of Equation (2.8) is applicable. Recall that the expected loss given by

this equation is that of the model that includes all terms with posterior probability

> |qj^. If this model does not obey strong heredity, we would not be permitted to select

it, so the expected loss calculated would be incorrect. However, we can show that this is

not the case. Suppose, for example, that the AB interaction is in the model that

minimised the expected loss, that is, P{AB\y) > j ^ , where P(AB\y) is the sum of the

posterior probabilities of all models containing the term AB. Then

P(AB\y) = Y,P{J\y)I{AB G Sj) < ̂ P(j\y)I(A G Sj)I(B G Sj) = P(AnB\y), (6.4)

3 3

because AB G «Sj; =>• A G Sj and B G Sj. Hence

P(AB\y) >^-^P(An B\y) > ^ - . (6.5)

So, if AB is included in the model, so will the main effect terms of A and B. Therefore,

the model which minimises the expected loss is always permissible, so we can use

Equation (2.8) to calculate this loss.
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Table 6.3: Correlations between PMD values for 5 factor 16 run main effects orthogonal
designs using the fulls model space and various MCMC approximations with 100 iterations.

Method Comparison to values from full space:
Correlation Rank Correlation

Random start, 1-step proposal
Start at True, 1-step proposal
Start at True, 50:50 Proposal
Start at True, Independence Sampler

To compare the different proposal distributions and methods of choosing a model to

start from, we have evaluated the eleven 5 factor, 16 run main effect orthogonal designs

using a chain of length 100 to approximate the full space of 1450 models. In Figure 6.8,

the PMD objective function values obtained are plotted against the PMD values

evaluated over the full model space. The correlations between each approximation and

the evaluation over the full space are given in Table 6.3.

We observe that, when using the 1-step proposal distribution, starting from the true

model gives an improved approximation to the PMD objective function, compared to

choosing a starting model at random. This is because the true model will generally be in

a region of high posterior probability, so the chain does not waste iterations moving

away from a starting point that has low probability under the posterior. The other plots

in Figure 6.8 and the correlations given in Table 6.3 show that the independence sampler

is the most effective proposal distribution.

We also investigate the length of chain required to accurately approximate the objective

function. Figure 6.9 shows how the PMD objective function values obtained from

independence sampler MCMC approximations, starting at the true model, change as the

chain length increases from 2 to 1000. The last point in each line is the objective

function obtained using the full model space. The objective function values start off close

together, and spread out towards the values from the full model space as the chain length

increases. If we are only interested in the objective function as a means of selecting a

design, then the ranking of the designs is more important than the actual values of the

objective function. Using very short chains of 10 or even 5 iterations gives the correct

top two designs. The rank correlation of the objective function values obtained from

MCMC methods for various lengths of chain and by using the full model space are given
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Figure 6.8: Comparison of PMD values for 5 factor 16 run main effects orthogonal designs
using various MCMC approximations with 100 iterations.

in Figure 6.10. This shows that the ranking of designs using an MCMC approximation is

very similar to that obtained using all the models. We can also compare the use of

MCMC methods to using a reduced model space, of 106 or 426 models, as we did in

Figure 6.3. In Figure 6.11 we have plotted the PMD objective function values obtained

using the full model space against the MCMC approximations with various length chains

and values obtained using a subset of the models. The manner in which the objective

function approaches its limiting value as the chain length is increased is different to that
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of the objective functions obtained via Occam's window as r is increased. When using

Occam's window, the PMD values start off low for all designs, and increase with r. This

is because increasing r increases the number of models that will be in A, and decreases,

on average, the posterior probability of the model chosen, when the probabilities of the

models in A are re-normalised to sum to 1. Hence the expected loss of the model chosen

increases with r. When using the MCMC algorithm, the objective function may be

either over- or under-estimated with short chain lengths, but move towards the correct

value as the chain length increases. With short chain lengths, the algorithm tends to

overestimate the objective function for good designs and underestimate it for bad ones.

6.4.2 Timings for MCMC Method

We now investigate how the time taken to evaluate the PMD objective function using

the MCMC scheme is affected by the number of factors. An MCMC chain of fixed length

will always perform the same number of marginal likelihood evaluations for any number

of factors or size of model space. However, to find the marginal likelihood, it is necessary

to calculate V* (see Equation 1.6), which requires the inversion of a p x p matrix where

p is equal to the number of terms in model i. The number of operations required to

invert such a matrix is O(p3) (see Press, Teukolsky, Vettering and Flannery, 2002, for

details). The times taken to estimate the PMD objective function for 16-run designs in

3 , . . . , 9 factors, using an MCMC approximation with chain length 5000 and simulation

size 1000, are plotted in Figure 6.12.

6.4.3 Diagnostics for MCMC

We can use graphical methods to asses the convergence of the Markov chain

approximations of the model term probabilities and expected loss. Figure 6.13 shows, for

16-run, 9 factor design 1 (from the catalogue of Sun et al. (2002)), for one run of

simulation, how the estimated probability of each term converges, for an MCMC

approximation starting at the true model and using an independence sampler. Each line

on the plot represents one of the 46 model terms, its probability being estimated by the

proportion of steps of the chain so far that the model has included that term. We also
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Figure 6.9: PMD values for 5 factor 16 run main effects orthogonal designs using the
independence sampler with different numbers of iterations.

plot (in Figure 6.14) the progress of the estimate of expected loss as the chain moves

around the model space. This is calculated using Equation (2.8).

After some initial movement, the estimates of the term probabilities settle down after

the first 5000 steps of the chain, and do not alter much in the next 5000 steps. Similar

behaviour can be seen in the estimation of the expected loss. Another example, for

which the estimated expected loss is much lower, is shown in Figures 6.15 and 6.16. This

example is for 16-run design 84 in nine factors (from the catalogue of Sun et al. (2002)).
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We observe that most of the terms have a probability near 0 or 1, resulting in a low

expected loss; there is only one term for which there is any real uncertainty about

whether it should be included. Again, after about 5000 steps of the chain, the term

probabilities and expected loss have just about converged.

In our first example, the proposed model was accepted about 8% of the time. In the

second example, the posterior less closely resembled the prior and hence the proposal

distribution, and probability was concentrated on a smaller set of models. For this
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example, the acceptance rate falls to about 4%.

6.4.4 Results from MCMC Method

We use the MCMC scheme to obtain approximations to the PMD objective function for

the 16 run main effects orthogonal designs in 6 to 9 factors. The model space of interest

allows models that contain any subset of the main effect and 2-factor interaction terms,

subject to heredity. The sizes of the model spaces involved here (given in Table 6.1)
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mean that an evaluation over the full model space would be impossible, and there would

be difficulties in even using Occam's window as an approximation, as for any reasonable

r, the size of A may become very large. For completeness, we present a list of the top

ten best 16-run main effects orthogonal designs at each of 3 to 9 factors, although when

there were < 6 factors, the evaluation was made using the full model space as use of the

MCMC method was not required. These results are given in Table 6.4.
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6.4.5 Comparison of the three methods

For the set of 16 run main effects orthogonal designs in 6 factors, we have used three

different approximations to the objective function. These are: Occam's window with

r = 20, evaluation using only the 197 models with highest prior probability, and an

MCMC approximation using chains of length 5000. The objective function values

obtained using each of these three methods for these 27 designs are plotted these against

each other in Figure 6.17. The same designs have low PMD objective function values in
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each approximation, suggesting that these are the designs that would perform well if

evaluations were done using the full model space.

6.5 Monte Carlo Approximations to other Objective Functions

We move on to evaluating the objective functions associated with the HD and MD

criteria, for large model spaces. These criteria differ from the PMD in that it is not

necessary to calculate the posterior model probabilities in order to evaluate the objective
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Figure 6.15: Example of convergence of term probabilities.

function. Rather, the prior model probabilities are used to find the weighted average

distance (Kullback-Leibler or Hellinger) between the predictive posterior distributions of

pairs of models. As posterior model probabilities are not required, we do not need to use

MCMC methods. However, we can use a Monte Carlo approach of sampling pairs of

models from the prior distribution, finding the distance between their predictive

distributions, and averaging this distance over many sampled pairs of models. It is

possible that this method will give a better approximation to the objective function

evaluated over all models than is obtained by using a subset of the models with highest
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prior probability. In comparison, Chipman (1996) obtain a subset of models with high

prior probability by simulating models from the prior and discarding all but the most

probable. The HD objective function is then evaluated over this set of models only. To

test the method for these objective functions, we use Bingham and Chipman's model

space for 4 factors, which contains 1024 models, using p calculated to give

E(# effects) = 3. For this model space, we can obtain the exact values of the MD and

HD objective functions for the five 16-run main effects orthogonal designs, evaluated

over all ( 2 ) = 523776 pairs of models, within a reasonable amount of computing time.
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Table 6.4: Top 10 16 run main effects orthogonal designs under PMD criterion for 3 to 9
factors

Ranking 1

2
3
4
5
6
7
8
9
10

3
2
3
1

4
3
4
5
2
1

Number of
5
4
5
7
8
10
11
3
2
9
6

6
13
19
8
20
24
14
18
23
6
22

Factors
7
32
49
53
28
55
33
43
54
39
21

8
68
42
77
76
67
66
36
41
40
39

9
71
79
32
36
84
70
78
77
82
81

We will compare these exact values to those obtained from Monte Carlo evaluations as

the simulation length is increased, and also to approximations from using a subset of the

models with highest prior probability.

6.5.1 Methodology

To calculate the Monte Carlo Approximation to either objective function, we follow

these steps:

1. Generate a model mi from the prior model distribution. Each main effect, is

independently included with probability p. Conditional on these, interaction terms

are independently included with probability O.Olp, 0.5p or p if 0,1 or 2 of the

associated main effect terms are included.

2. Independently generate another model rrij in exactly the same way.

3. For the HD criterion, calculate ^H(fi,fj) (see Section 1.3.1 or Bingham and

Chipman (2007) for definition of H(,)). The \ is necessary because

HD = Y,P{mi)P{m-)H{U,n) = \Y.P{™i)P{mj)H{fi,fj) = \EUj{H{fu /_,-)) as

H(,) is symmetric and H(i,i) = 0. For the MD criterion, the distance function

I(rrii,mj) = / / ( Y | m j ) log ( {[y m*) ) ^ ls n o* s y m m e t r ic , so we calculate
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Figure 6.17: Comparison of approximations to the PMD objective function for 16 run 6
factor main effects orthogonal designs

4. Average the distances obtained over many samples of pairs of models from the

prior.

To examine the performance of the method of using a subset of models with the highest

prior probability, we first calculate the distances between all possible pairs of models. To

find the approximation to the objective function that we would obtain by using, for

example, the 100 models with highest prior probability, we sum the distances between

the pairs formed using these 100 models, and divide by the square of the total
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probability of this subset of models, to account for the fact that we would have

re-normalised the probabilities to sum to 1. To enable fair comparison between this

method and the Monte Carlo approach, we look at the number of pairs of models for

which distances must be calculated. If we use the MQ models with highest prior

probability, then Mo (Mo — l)/2 pairs of models must be used.

6.5.2 Results for MD Objective Function

For each of the 16-run main effects orthogonal designs in four factors, we calculate the

approximation to the MD objective function using the two methods. The progress of

these approximations as the number of pairs of models used increases is shown in Figure

6.18. Each colour in the plot corresponds to one design, with solid and dashed lines

indicating the Monte Carlo and subset of models approximations respectively.

We observe that the Monte Carlo approximation moves around initially, but quickly

homes in on the correct value. The values of the objective function for the method of

using a subset of models steadily increase to approach the true values, but always

underestimate the objective function, even when a large number of models are used.

Another comparison that we can make is to plot the mean squared error of the objective

function, compared to the true value, across the five designs, for both the methods. The

results of this are shown on a semi-log scale in Figure 6.19, and again demonstrate that

the Monte Carlo approximation quickly gets close to the true value for all the designs.

6.5.3 Results for HD Objective Function

The results for the HD objective function are similar to those for the MD. These are

shown in Figures 6.20 and 6.21.

6.5.4 Best designs under MD and HD criteria

We use the Monte Carlo evaluation methods to rank the 16-run main effects orthogonal

designs in 5-9 factors. The top ten designs presented here should be compared to those

in Table 3.10, where evaluation was made using the 400 models with highest prior

probability. The designs that are ranked highly, and their ordering, are similar under
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Figure 6.18: Comparison of Approximation Methods for MD Objective Function

both methods. However, the Monte Carlo method will be able to obtain a more accurate

approximation to the objective function with less computational expense.

6.6 Conclusions

In this chapter we have shown that, if we wish to consider more than a few factors and

allow the possibility of 2-factor interactions, then the number of possible models can

grow very rapidly if we do not use a restrictive prior such as effect forcing. This can
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increase the amount of computation required to obtain the objective functions for the

PMD, HD and MD criteria. Three approaches were considered for the PMD: only

considering a subset of the models with relatively high prior probability, evaluating the

objective function over a subset of models with high posterior probability using Occam's

window, and using an MCMC scheme to estimate marginal term probabilities from

which we can calculate the objective function.

The use of a subset of models with high prior probability, equivalent to changing the

prior to give a prior probability of zero for some models, is a fairly straightforward way
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Figure 6.20: Comparison of approximation methods for HD objective function

to reduce the computation required. For the model spaces discussed in this chapter, this

method can provide a reasonable approximation to the objective function. We have

shown that some care is needed in selecting which models to include in the set used to

evaluate the objective function if all factors are equally important and we require our

prior to reflect this. Occam's window allows us to evaluate the objective function over a

set of models with high posterior probability. Madigan and Raftery (1994) argue that

this is not merely a computational convenience, but rather, a natural Bayesian extension

of the principle of Occam's razor, which states that we should accept the simplest
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Figure 6.21: Mean squared errors of approximation methods for HD objective function

hypothesis which explains the data. In Occam's window, the simplest set of models

which can explain the data are selected. Computationally, use of Occam's window can

allow the use of larger model spaces than could be investigated by evaluation of posterior

probabilities for all models. However, the set of accepted models can use up a lot of

computer memory, and the algorithm can be slow for larger numbers of factors. For

example, we were not able to evaluate designs for 7 or more factors in the model space

described in this chapter for any reasonable value of r.

The MCMC scheme does not require as much to be held in the computer memory as
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Table 6.5: Top 10 16-run main effects orthogonal designs under HD criterion for 3 to 9
factors

Ranking 1

2
3
4
5
6
7
8
9
10

3
2
3
1

4
3
4
5
2
1

Number of
5
4
5
8
7
10
3
11
9
2
6

6
19
13
20
24
22
8
23
14
18
26

Factors
7
55
32
49
33
28
43
54
53
36
39

8
77
76
42
67
68
79
50
71
48
41

9
84
83
86
53
65
74
75
71
44
81

Table 6.6: Top 10 16-run main effects orthogonal designs under MD criterion for 3 to 9
factors

Ranking

1
2
3
4
5
6
7
8
9
10

3
2
3
1

4
3
4
5
2
1

Number of
5
4
3
5
7
8
2
10
11
9
6

6
5
4
8
14
6
13
19
3
7
12

Factors
7
6
5
12
11
22
28
7
4
33
21

8
6
4
5
3
9
12
26
18
17
20

9
4
5
3
2
25
10
12
7
9
13

Occam's window, only details of the current and proposed models. This enables us to

look at even larger model spaces, such as those for 7, 8 or 9 factors in this chapter. As

with all MCMC methods, it is important to check that the chain converged. The

acceptance rate of proposed moves is quite low, so the value of the objective function

may move slowly without having converged.

We have also introduced Monte Carlo methods for evaluating the MD and HD objective

functions. These appear to produce an accurate approximation to the objective function

with less computation than would be required by using a subset of models with high

prior probability.



Chapter 7

Summary and Further Work

7.1 Summary

In this thesis we have examined the problem of choosing an experimental design for

model selection in a Bayesian framework. The Penalised Model Discrepancy criterion

was introduced in Chapter 2, and minimises the expectation of a weighted sum of the

expected number of terms wrongly omitted and incorrectly included in the chosen

model. Software has been written to evaluate the PMD objective function and to search

for good designs under the criterion.

In Chapter 3 the PMD criterion was applied to the selection of designs for screening

experiments, for several model spaces suitable for screening situations. If only main

effects are considered, the PMD criterion selects a main effects orthogonal design if one

is available. For a model space where all main effects are always included, and exactly

one two-factor interaction, a non-orthogonal design may be preferred over an orthogonal

design if it reduces aliasing involving 2-factor interactions. A study was also made into

the sensitivity of the PMD criterion to the hyperparameters of the prior distribution for

this model space. For a larger model space, where any subset of main effect and 2-factor

interaction terms is permitted subject to strong heredity, attention was focussed on

16-run main effect orthogonal designs. A comparison was made to other Bayesian

criteria for choosing designs for model discrimination. Of the criteria studied, the HD

criterion of Bingham and Chipman (2007) agreed most closely with the PMD in its
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ranking of designs. The MD and F criteria selected similar designs to each other, and

tended to rank regular designs more highly than the PMD and HD criteria. A

simulation study was also made on the model discrimination performance of designs

selected by the four criteria. There was not a large difference in the performance of the

designs in the simulations, although designs chosen by the PMD criterion were usually

slightly better. These simulation studies was also used to show the dependence of the

average number of model terms incorrectly omitted or included on c, the loss incurred by

incorrectly including a term. The simulation studies showed that, for the particular

situation studied, using c = 1 can lead to far more terms being missed than wrongly

included, suggesting that a smaller value of c may be more appropriate.

Two examples of the use of the PMD criterion for the selection of follow-up runs were

presented in Chapter 4. In the first, injection moulding, example the PMD criterion

selected distinct points that were not repeats of runs from the initial experiment. The F

and HD criteria performed similarly; however, the MD criterion selected a design with a

repeated run. The PMD criterion was also seen to penalise designs more heavily than

the F criterion if they had aliasing which gave rise to cancelling of effects. In the second,

chemical reactor, example, an investigation was made into the effect of the initial design

on the follow-up runs chosen. Different initial designs result in different factors having

high marginal posterior probability after the initial experiment; factors with high

probability are often chosen to be balanced in the follow-up runs.

The tribology example in Chapter 5 demonstrated the use of the PMD criterion for a

real experiment. This experiment shows one way that the PMD criterion may be used to

select follow-up runs when there are multiple responses to an experiment. This example

also showed the type of Bayesian analysis which may be used for experiments designed

using the PMD criterion.

In Chapter 6 we addressed the computational issues that arise when the space of

potential models is very large, and produced algorithms that were implemented in our

programs for the evaluation of the PMD objective function. These algorithms are

effective in reducing the time required to produce a good estimate of the objective

function. Code in R for evaluation of the MD and HD objective functions when the

model space is large, was also produced. This made use of a Monte Carlo method which
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was shown to produce a more accurate approximation to the true objective function

value, for less computational expense, than is obtained by using a subset of models with

high prior probability.

7.2 Further Work

One possible extension to this work is to look at generalised linear models instead of the

linear models that we have used here. In most generalised linear models, such as those

where the response follows a binomial or Poisson distribution, there is not a closed form

expression for the posterior parameter distributions or model likelihoods. This

potentially adds another layer of computation required, as MCMC methods are needed

to produce these. However, if the size of the model space is very large, we need to use

Markov Chain methods to approximate the posterior model probabilities anyway, as

described in Chapter 6. It would be possible to use methods such as Reversible Jump

Markov Chain Monte Carlo (Green 1995) to expand this idea to include generalised

linear models. Alternatively, we can use a Laplace approximation to the posterior

marginal likelihood of each model, as given in Kass and Raftery (1995).

One important use of any statistical model is that it may be used to predict, or give a

predictive distribution for, future observations from the response being modelled.

Therefore design criteria that are based on the ability of the design to select a model and

estimate its parameters so that it will produce good predictions would be useful. The

PMD criterion treats the omission of any term from the model chosen, compared to the

'true' model as equally important. This would not be the case with prediction based

criteria, for which the omission of terms that make a large difference to the expected

response would incur a higher loss.

In the examples presented in Chapters 3 and 4, the HD and PMD criteria generally

select similar designs, and rank designs in a similar order. Evaluation of the HD

objective function does not require simulation, so requires less time to compute than the

PMD. Therefore, use could be made of the HD criterion to quickly find designs that

perform well under the PMD criterion. For example, a shortlist of designs found by a

search under the HD criterion could be evaluated under the PMD and the best design
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selected. Alternatively, the HD criterion could be used within the Modified Fedorov

Exchange Algorithm to order the candidate points at step 3 of the algorithm given in 2.4

by the improvement in the HD objective function each point would make if swapped in

to the design. This step would reduce (on average) the number of designs which are

evaluated at each step under the PMD criterion before one is found that reduces the

objective function, and should reduce the computation time required.

In this thesis we have only considered designs with factors at two levels. If the model

space under consideration contains models with quadratic or higher order terms then

more than 2 levels are necessary to allow estimation of these terms. A modified Fedorov

exchange algorithm might still be used to search for designs if we are satisfied with

restricting the factors to a limited number of levels. Alternatively, methods such as

simulated annealing (see, for example, Brooks and Morgan, 1995) could be used to allow

variables to be set at any level within a permitted range.
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Appendix A

Derivation of HD objective function

for non-zero prior means.

The prior predictive distribution under model i is Y ~ jV(Xj/jj, aj(I + XiVjX^)) (see

O'Hagan and Forster). Let Yj = Xj^j and Sj = I + XjVjX^. Then the posterior

predictive density of model i is

w e x p (-5
and

A A _
it ij -

2a,

exp -

(27r)"/2|ai:

^ -\) B ( Y - B " 1 | S i Y i + —i
2a, ; ; v v 2°* 2a>

We know that

/ • ( 2 T T ) " / 2 | B - 1 | 1 / 2
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Hence

exp
f,1/2dY =

1 /2

When all terms have a prior mean of zero, the numerator is equal to 1 and this

expression reduces to the one found in appendix A of Bingham and Chipman.



Appendix B

Analysis of first stage results for the

tribology example

B.I Half-normal Plots

0.5 1.0

Half-normal quantiles

Figure B.I: Half Normal Plot for log (charge)
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S ° -

0.5 1.0

Half-normal quantiles

Figure B.2: Half Normal Plot for log(charge), without effect A.
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Figure B.3: Half Normal Plot for Coefficient of Friction.
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B.2 Bayesian Analysis

Table B.I: Marginal or Model-averaged Effect Probabilities for Temperature for the initial
experiment.

Factorial
Term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

Probability
(All models)

1.00
0.22
0.12
0.48
0.15
0.13
0.14
0.00
0.02
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00

Probability
(In top 10 models)

1.000
0.162
0.052
0.444
0.107
0.056
0.095
0.000
0.000
0.000
0.000

o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000



APPENDIX B. ANALYSIS OF FIRST STAGE RESULTS FOR THE TRIBOLOGY
EXAMPLE 151

Table B.2: Top 10 most probable models for Temperature based on 20 observations

Probability
0.224
0.175
0.071
0.051
0.049
0.044
0.043
0.039
0.032
0.028

Model
I
I
I
I
I
I
I
I
I
I

C

A
A
D
F
E
B
C
C

Terms

C

D
F

Table B.3: Marginal or Model-averaged Effect Probabilities for log(Charge) for the initial
experiment.

Factorial
Term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

Probability
(All models)

1.00
1.00
0.10
0.11
0.17
0.11
0.12
0.02
0.02
0.04
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Probability
(In top 10 models)

1.000
1.000
0.060
0.083
0.132
0.083
0.092
0.000
0.016
0.033
0.016
0.019
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Table B.4: Top 10 most probable models for log(Charge) based on 20 observations.

Probability
0.49

0.088
0.066
0.06

0.059
0.054
0.03

0.017
0.015
0.014

I
I
I
I
I
I
I
I
I
I

Model
A
A
A
A
A
A
A
A
A
A

Terms

D
F
E
C
B
D
F
E
C

AD
AF
AE
AC

Table B.5: Marginal or Model-averaged Effect Probabilities for Coefficient of Friction for
the initial experiment.

Factorial
term

I
A
B
C
D
E
F

AB
AC
AD
AE
AF
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF

Probability
(All models)

1.00
0.22
0.30
0.14
0.17
0.18
0.16
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.01
0.00
0.01

Probability
(In top 10 models)

1.000
0.150
0.265
0.072
0.110
0.116
0.083
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Table B.6: Top 10 most probable models for Coefficient of Friction based on 19 observa-
tions.

Probability
0.218
0.132
0.086
0.066
0.062
0.062
0.054
0.026
0.02

0.019

Model
I
I
I
I
I
I
I
I
I
I

B
A
E
D
F
C
A
B
B

Terms

B
E
D
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Candidate Points for the Reactor

Experiment

154



APPENDIX C. CANDIDATE POINTS FOR THE REACTOR EXPERIMENT 155

Table C.I: Candidate points for the reactor experiment

Run
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

A
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1
-1
1

B
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1
-1
-1
1
1

C
-1
-1
-1
-1
1
1
1
1
-1
-1
-1
-1
1
1
1
1
-1
-1
-1
-1
1
1
1
1
-1
-1
-1
-1
1
1
1
1

D
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
-1
-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1

E
-1
-1
-1
-1
-1
-1
-1
-1

i-H

-1
-1
-1
-1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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