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Throughout the universe we observe powerful engines which accelerate particles to
immense energies. The precise details of how these engines function are still poorly
understood, but polarisation measurements of the high energy radiation are pivotal to
gain a deeper insight into the physical environment in these systems. Interaction
processes usually dominated by strong magnetic fields and highly ordered geometries
are required to produce a net polarisation signal in the emission from a source. The
strength and direction of a polarisation signal will lead back to an understanding of the
configuration of the fields at the emission site.

There have been few attempts at measuring gamma-ray polarisation since
measurements are hampered by large backgrounds and systematic effects within the
detectors. However, the advent of modern fast computing clusters has made large scale
simulation of an instrument’s response now possible. By combining instrument data
and results from detailed Monte-Carlo Mass-Model simulations using GEANT 4, it is
possible to put constraints on the polarisation characteristics of the gamma-ray flux
emitted by a source. Using the Compton scattered events in the SPI instrument on
INTEGRAL, constraints have been put on the percentage polarisation in the prompt
gamma-ray flux of GRB041219a to be 96+40% at 68% confidence and greater than 5%
at 99.7% confidence. The method has also been extended to allow the summation of
multiple data sets to obtain a measurement of the off-pulse polarisation of the Crab
pulsar of 46% + 10% at an angle of 123° + 11°, showing a remarkable alignment to the
rotational axis of the spinning Neutron star.

The future of polarisation measurements in the gamma-ray band relies on
instruments being designed with polarimetry in mind. The detector system designed for
the upcoming Laue Lens mission, GRI will be capable of polarisation measurements in
the 10keV to 1MeV energy range. A Laue Lens uses transmission diffraction through
crystal planes to focus the incoming gamma-rays. Diffraction is highly energy
dependant and in order to recreate high resolution images, very accurate measurements
of the total energy of the incident photon are necessary in order to avoid chromatic
aberrations, as well as good spatial resolution. The aim is to absorb all the Compton
scattered products of the incoming photons. The design uses a cavity geometry with the
main germanium pixelated imaging detector embedded in a position sensitive cavity.
The germanium is then enclosed in a veto to reduce background and to clean the
imaging of unwanted non-photopeak events. This allows the majority of backscattered
photons to be captured producing a detector with a photopeak efficiency of ~90% at
511keV and millimetric spatial resolution.
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Chapter 1

Introduction

Astronomy attempts to explain the universe around us. Since the earliest time people
have looked up at the stars and wondered what they were. Today we use ever more
sophisticated tools to look at the stars to discover their origin. By carrying out
observations at different wavebands in the electro-magnetic spectrum we have
discovered much about the universe, but each discovery leads to more questions.
Observations in the gamma-ray regime allow us to inspect some of the most energetic
emission processes related to sources. Unlike other wave bands that mainly see
emission due to thermal processes within hot gasses, the majority of gamma-ray
emission is non-thermal and is usually produced by electrons and other elementary

particles in magnetic fields.

As more observations are taken, scientific explanations are sought to describe the

emission detected. Detailed imaging and spectral information allows models of the
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source of the emis.sion to be produced. However, there can usually be more than one
way to explain the emission and different observations are needed to solve this
degeneracy. Linear polarisation of the emission can be used in this case, giving another
parameter to measure. At gamma-ray energies linear polarisation is an important
diagnostic with the potential to significantly constrain models of emission. Electrons
are accelerated on ordered magnetic field lines and release gamma-rays. This emission
will be polarised, with the direction and percentage of polarisation related to the
emission mechanism and the geometry of the fields. Measurements of polarisation in
other wavebands have been extremely valuable in determining which mechanisms and
physical conditions are responsible for the emission. For example, the radio to X-ray
emission from the Crab nebula was unambiguously attributed to synchrotron radiation
after consistency in the polarisation was found (Weisskopf et al. 1978; Smith et al.
1988).

To date measuring gamma-ray polarisation in astronomy has always proved difficult.
There have been few attempts of measuring this polarisation since measurements are
hampered by small count rates, large backgrounds and systematic effects within the
detectors. However, the advent of modern fast computing clusters has made large scale
simulation of an instrument’s response now possible. By combining instrument data
and results obtained from detailed Monte-Carlo Mass-Model simulations it is possible

to put constraints on the polarisation of the flux emitted by a source.

This thesis begins with a description of the physical processes and probable cosmic
sources of polarised gamma-radiation. This review sets the scene for measurements of
polarisation, showing how and why polarisation can be used to investigate properties of
an astronomical object and as a diagnostic for models of the source emission. This
section concludes with a description of some of the other missions that have in the past

been used to measure gamma-ray polarisation.
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The third chapter continues by explaining the instrument used for this work,
INTEGRAL, and its role in modern gamma-ray astronomy. This European Space
Agency satellite, although not explicitly designed for polarimetry, does include two
instruments suitable for polarisation studies. These instruments are examined and their
suitability for this work is discussed. In order to detect polarisation with INTEGRAL,
detailed modelling of the satellite needs to be carried out using the GEANT 4 toolkit.
The modeiling and simulation aspect is covered in chapter 4 as well as the tests used to

check the output.

Chapter 5 describes some of the better known models of Gamma-Ray Bursts and the
polarisation expected to be seen in the gamma-ray flux. Chapter 6 looks at the results of
using the SPI instrument on INTEGRAL to detect the polarisation in the 3 GRBs:
GRB041219a, GRB060901 and GRB061122. A natural follow on from the GRB work
is the attempt to measure the polarisation of a persistent source such as the Crab Pulsar.
Chapter 7 covers the theory and measurement of the polarisation of the Crab off-pulse
emission, along with a description of the results expected from looking at the pulsed

Crab emission.

Chapter 8 looks at the future of gamma-ray astronomy detectors by documenting the
work carried out with the GRI Consortium on the design of a new polarisation sensitive
detector for use in an upcoming mission. This mission will use a Laue Lens to focus
gamma-rays allowing for the first time an increased collecting area, without an

increased background.

In the final chapter some conclusions are drawn from this work on the feasibility of
polarisation studies, the future of polarisation measurements and the design of future

astronomical polarimeters.
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Chapter 2

Polarisation in Gamma-Ray Astronomy

2.1 Introduction

Before measuring a parameter, it is important to understand what is to be measured and
why. This chapter discusses some of the justifications for gamma-ray polarimetry and
the reasons why polarimetric "observations can provide a unique insight into the
geometries of the astronomical objects. Most of the emission mechanisms are non-
thermal involving highly energetic particles in strong magnetic fields. These
mechanisms can produce high degrees of linear polarisation that can reveal information

on the geometry of the system.

This chapter starts by describing the principle emission mechanisms that can produce

polarisation in gamma-ray astronomy. This will show how polarised emission is
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produced before describing how these mechanisms are important in the astronomical
objects seen in the gamma-ray sky. This chapter concludes by looking at the physics
involved in detecting polarisation and some of the previous missions capable of

detecting polarisation.

2.2  The Production of y-Rays with Respect to Polarisation

There are many emission mechanisms relevant to polarisation in gamma-ray astronomy.
This section will discuss in detail the mechanism showing how the polarised emission is
produced and how it helps our understanding of the source. The derivations contained
in this chapter are based largely of those contained in Radiative Processes in
Astrophysics by G.B. Rybicki and A.P. Lightman (1986) and High Energy Astrophysics,
Volumes I and 2 by M.S. Longair (1992; 1994).

2.2.1 Bremsstrahlung Radiation

Bremsstrahlung, also known as free-free emission, involves a charged particle
undergoing acceleration due to the electrostatic field of an ion or the nucleus of an atom.
As the particle is accelerated, it emits radiation proportional to 1/m? where m is the rest
mass of the particle. This process is more important to lighter particles such as
electrons since they experience a greater acceleration. Therefore, if there is a significant
abundance of free electrons in a hot gas, we would expect to see Bremsstrahlung
radiation (Heristchi 1986). This process is particularly important in solar flares due to
the large number of charged particles and the large number of target nuclei present

during these events.
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Figure 2.1: The variation of the maximum Figure 2.2: Electron-proton Bremsstrihlung
energy of emitted photons from proton-electron cross-section (lower figure) and the degree of
Bremsstrihlung with the direction of emission linear polarisation (upper figure) with the
for various incident particle energies (Heristchi emitted photon energies for E.=6m.’ and
1986). various photon emission angles (Gluckstern

et al. 1953).

The maximum energy of a single photon emitted by an incident particle of mass, m,,

energy, E, and momentum, P, is:

sz
E = 2.1
max mq+my+E—P cos 6

where m, is the rest mass of the target particle and 8 the emission angle measured from
the incident particle’s direction. The variation of the maximum emitted energy of a

proton-electron Bremsstréhlung can be seen in Figure 2.1.




Polarisation in Gamma-Ray Astronomy

At the gamma-ray energies (E > 1MeV) where the hot gas is optically thin to the
emission, then the emitted power is only weakly dependant on the frequency and

produces a continuous spectrum

P(v)dv < v 01 2.2

The radiation is linearly polarised in the plane of the electron’s motion with the photons
being emitted perpendicular to the electron’s direction of travel (Gluckstern et al. 1953).

The degree of polarisation for a single photon is given by,

M= meczEA0—2m206
E2Ag—moc2EAg+2m3cb

2.3

where FE is the energy of the emitted photon, E, is the initial total energy of the electron

and

Ao =E,— M cos@ 2.4

Figure 2.2 shows the variation of the degree of linear polarisation with the emitted
photon energy for an initial electron energy of E,=6m,.c’ for various emission angles.

The degree of linear polarisation reaches a maximum of ~80%.

On a large scale, where many particles are releasing Bremsstrahlung radiation it is
unlikely that any polarisation will be seen in the overall flux. Without some mechanism
to force all the particles to be accelerated in the same direction, the random directions of
acceleration caused in a hot gas will wash out the polarisation from one particle. The
force to accelerate all the electrons in a single direction is usually provided by magnetic

fields and gives an ordered system in which polarisation can be detected.
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2.2.2 Magneto-Bremsstriahlung Radiation

In order for polarisation to be seen in Bremsstridhlung emission, the system needs to be
ordered. Instead of the radiation being caused by a particle accelerating due to an
electrostatic field, the charged particle is accelerating due to a magnetic field. As with
the other forms of Bremsstrdhlung, this process is most important for the lighter

particles.

If the charged particle is moving with a velocity, v, in a constant magnetic field, B, then

it experiences a force given by

Fzz—:(v X B) 2.5

The force acts orthogonally to both v and B so the particle will circle the magnetic field

lines. If v and B are not orthogonal to each other, then the angle between them, known

OJOJOJOJOJOJO,
©O@OOOOO®

Linearly Polarised Circularly Polarised

Figure 2.3: Diagram showing the motion of electrons on magnetic field lines. Below, the
polarisation seen when observing the system at this angle.
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as the pitch angle (y), will force the particle to precess along a helical path in the
direction of the magnetic field line. The particle experiences a constant acceleration and

so emits radiation at a rate of

2
dE oT (V) 202 ~:..2
——=—[-] cy“B“sin 2.6
dt 41 \c 4 X
where ot is the Thompson cross-section,
8m(Ze)*
= —_— 2.7
T ™ 3m2c4
and vy is the Lorentz factor,
1
2.8

There are three special cases of Magneto-Bremsstrihlung radiation, the non-relativistic
case of cyclotron emission and the two ultra-relativistic cases of synchrotron and

curvature emission.

2.2.2.1 Cyclotron Radiation

Cyclotron or Gyro radiation is a form of Magneto-Bremsstrahlung radiation. The force
acting on a charged particle, such as an electron, will cause the particle to have a helical
path along the magnetic field lines (Figure 2.3). The electron emits radiation in a
dipolar distribution. The power radiated per unit solid angle varies as sin’0 with respect
to the acceleration vector of the electron (Figure 2.4). This will give a maximum

intensity perpendicular to the acceleration vector and a minimum parallel to the vector.
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Figure 2.4: Polar diagram showing the dipole radiation distribution (red) emitted by an
accelerated electron travelling along a path (blue).

The polarisation of the emission is aligned in the plane of the acceleration and direction

of the electron.

Depending on the angle of the motion with respect to the observer, a different
polarisation can be seen in cyclotron emission. If the observer is looking down the field
lines then the radiation will be circularly polarised. However, if the observer is
perpendicular to the magnetic field lines then the radiation will be linearly polarised
(Figure 2.3) (Longair 1992). For an arbitrary angle the polarisation will be seen to be a

combination of the two and observed to be elliptically polarised.

2.2.2.2 Synchrotron Radiation

Synchrotron radiation is the relativistic case of cyclotron radiation, where relativistic
electrons radiate as they change their direction. This relativistic motion causes the
emitted radiation to be beamed in the direction of motion of the electron. This creates a
pulsing signal with linear or slightly elliptical polarisation depending on the pitch angle

of the electron path, much like in the cyclotron case.

10
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The polarisation is also energy dependent, since as the electron energy increases, the
emitted radiation forms a narrower beam. With a narrower beam the acceleration vector

has rotated less and so the polarisation appears more linear (Lei et al. 1997).

For the case of many electrons there will be a distribution of pitch angles. Electrons
with beams within y" of the line of sight will contribute to the overall intensity.
Elliptical components of the polarisation on either side will cancel producing a net

linear polarisation.

The observed spectrum can be approximated at MeV energies by the power-law

distribution,

P(v)dv x v~(@1/2 2.9

where a is the slope of the power-law. The fractional polarisation can be shown to be

(Rybicki and Lightman 1986)

a+1
I =— 2.10

C(+§

The observed range of power-law indices for synchrotron radiation sources range from

1.5 to 5.0, leading to a degree of polarisation of 65% to 80%.

2.2.2.3 Curvature Radiation

Another form of magneto-Bremsstrihlung is curvature radiation. If an electron moves
in a non-uniform magnetic field, it will tend to drift in the direction of the field lines. If

the field lines bend then the electron will emit photons the same as in other forms of

11
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Bremsstrahlung. This becomes important near the poles of a dipolar field where the
field lines curve sharply. In synchrotron emission, the polarised photons are polarised
orthogonal to the magnetic field lines. In curvature radiation, the photons emitted are
polarised parallel to the field lines. This can be a useful diagnostic, if polarised
synchrotron emission is seen in the radio wavelengths and the gamma-ray emission is

seen to be polarised perpendicular to this, it is likely to be from curvature radiation.

2.2.3 Inverse Compton Scattering

In this process, the photon gains energy by scattering off an electron. If the electron is
moving at speed, it can impart energy to the photon and if the electron energy greatly
exceeds the photon energy, it is possible for a relativistic electron to up-scatter an
optical photon to gamma-ray energies. For the general case, the average energy of a

scattered photon is given by
2
4 2(V
Eq e = '5]/ (_) Eq 2.11

where Ej is the incident photon energy. If the Lorentz factor vy is around 1000 then the
photon can be scattered from optical to gamma-ray energies in the MeV range. In

practice the relativistic case is usually considered where v = c, equation 2.11 becomes

4.2
E pe = 3Y E, 2.12

In an astronomical source Inverse Compton scattering leads to a power-law distribution

at MeV energies of the form (Ginzburg 1979)

P(w)dv = v—(@-1/2 2.13

12
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where a is the electron power-law index. This is the same as the distribution for
synchrotron radiation given in equation 2.9. This could lead to some confusion of
which mechanism is producing the gamma-ray emission. This ambiguity can be solved

by looking at the polarisation properties of the flux.

Inverse Compton scattering and Compton scattering can both create a polarised flux
from an unpolarised flux and depolarise an initially polarised flux. The polarisation or
depolarisation of the emission is dependent on the alignment of the individual photons.
For an isotropic distribution the scattered radiation will be comprised of polarised
photons from every direction and so the components will cancel, leaving no net

polarisation being seen.

The probability that a photon will be scattered by an angle 6, is given by the Klein-

Nishina differential cross-section. For unpolarised photons this is

dogny _

1.2 2 -1 .2
-r s+ et —sin“0 14
a0 2 o€ [ + ] 2

Where 1; is the classical electron radius, € is the ratio between the energies of the

scattered photon, E’, and the incident photon, Eq (Fernandez et al. 1993)

E=—= 2.15

The degree of linear polarisation of the scattered photons from an initially unpolarised

beam is given by

13
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Figure 2.5: Degree of linear polarisation of scattered photons from a beam initially 100% polarised
to 90 degrees. '

)
sin“0
n =——— 2.16
U™ cre-1—sin20

The maximum polarisation is obtained for an angle of 90 degrees at 100 keV. For
higher energies the maximum polarisation occurs at smaller angles reaching 40 degrees
at 10 MeV. This happens because of the forward scattering nature of the higher energy

photons.

If the initial radiation is polarised then the scatter distribution is no longer isotropic.

The Klein-Nishina differential cross-section for a polarised photon is

dognp _ 1
e 2

1

rig’[e + €71 — 25in*0cos?n] 2.17

where the azimuthal scattering angle 7, is the polarisation angle of the scattered photon.

This produces a degree of linear polarisation of

14
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1—sin?0 cos?
In, =2 1 2.18

p e+£~1-25in?0 cos?y

This shows that as the energy increases the degree of linear polarisation also drops

(Figure 2.5).

2.3 Overview of Potential Sources of Polarised y-ray Emission

Many astronomical sources could produce a polarised flux. They will all, however,
tend to rely on the same groups of processes, as to produce a polarised flux requires a
highly ordered system, usually provided by strong magnetic fields. This section will
form an overview of the astronomical objects of interest in the gamma-ray sky and what
information polarisation can give us for understanding these objects. A detailed
explanation of the sources examined in this thesis will occur later with along the

analysis.

2.3.1 Gamma-Ray Bursts

In the late 1960s a cluster of satellites was launched called Vela. These satellites had
been designed to monitor nuclear weapons testing. However, between 1969 and 1972
they witnessed 16 short bursts of gamma-rays which did not come from either the Earth
or the Sun. Due to the classified nature of the mission the existence of these bursts did
not reach the public domain until 1973 (Klebesadel et al. 1973). These bursts created a
great deal of discussion in the community. The biggest leap forward in explaining them
came with the launch of the Compton Gamma-Ray Observatory (CGRO) (Neal et al.
1990) in 1991.

15
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The bursts observed by Vela were lasting of the order of milliseconds to tens of
seconds, appearing randomly across the sky. This made determination of the location
very difficult. The bursts were obviously energetic, but without accurate distance
information it was difficult to know how energetic. If the burst were localised within
the Milky Way then they required much less energy to create. The Burst and Transient
Source Experiment, BATSE (Fishman et al. 1985), on CGRO was designed to record
the positions of as many GRBs as possible. Optimised to measure brightness variations
of GRBs on microsecond timescales, over the energy range 30keV to 1.9MeV, BATSE

used 8 large area Nal detectors to provide all sky monitoring.

The distribution of the GRBs seen by BATSE show that the bursts must come from
either very close to the earth, or more likely, outside our galaxy. Otherwise, the
distribution would match the distribution of our galaxy and the burst would be seen
more often in the galactic plane. This however, does create a problem for the energies
involved. If the bursts are extragalactic then the energies required are much greater,

briefly making them the most luminous objects in the universe.

The information collected by the CGRO has allowed two classes of GRBs to be
determined, short bursts with a duration of less than 2 seconds, and long bursts with
durations of longer than 2 seconds. With the short bursts being so short it has been very
difficult to gain much information about them. The leading theory for the production of
short bursts is the merger of a binary neutron star (Narayan et al. 1992; Katz 1997). The
binary will lose its energy by gravitational radiation and spiral inward, eventually
coalescing. The final merged state is too massive to form a single neutron star, but
spinning too rapidly to form a black hole immediately. A black hole surrounded by a
torus of debris is produced (Rees 1999).

16
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The favoured model to explain long GRBs is the collapsar model (Aloy et al. 2000;
MacFadyen et al. 2001). The supernova of a star too massive to form a neutron star,
and rotating too fast to immediately collapse into a black hole will release the large
amount of angular momentum before creating a black hole accreting from a large torus
of debris. Both these models solve the problem of the large energies needed to produce
a gamma-ray burst by having the energy emitted in a beam. It is the jetted radiation that
is most likely to create polarisation in the gamma-ray flux. Jetted emission implies that
there is an anisotropy in the emission, usually due to the geometry of the magnetic
fields. This has been backed up by the observation of afterglows (Costa et al. 1997,
Frail et al. 1997; van Paradijs et al. 1997) and “jet breaks” in the afterglow light curves
of GRBs (Fruchter et al. 1999; Harrison et al. 1999; Kulkarni et al. 1999; Stanek et al.
1999; Berger et al. 2000; Halpern et al. 2000; Jensen et al. 2001; Price et al. 2001; Sagar
et al. 2001; Stanek et al. 2001). The actual source of this polarised emission will be

discussed in detail in Chapter 5.

There is a useful empirical model derived from an extensive study of the BATSE GRBs

(Band et al. 1993). The non-thermal emission is modelled by a broken power-law of the

form
E
[24 —_—
N(E) A(100EkeV) e(Ebreak) (a_B)EbreakZE
= _ a-p P 2.19
A((a 1‘(;)2151?:;“) el@h (100EkeV) (a—B)Eprear<E

where Ejcqr 1 the energy at which the spectrum turns over; a and B are the slopes below
and above the break and A is the amplitude, measured in photons cm® s@ keV™.
Although it has no physical meaning, this model will be useful later when simulating
the GRB flux.

17
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GRBs become an ideal candidate when searching for polarisation. Their high flux over
a very short period of time becomes very useful. Over a shorter interval there is a much
lower chance that the instrument, background and polarisation properties of the source
are likely to change, making modelling and analysis easier. Being so bright also means
that the signal to noise ratio is also going to be much higher, increasing the significance

of any detection.

2.3.2 Gamma-Ray Pulsars

Pulsars fall into two categories, accreting and rotation-powered. Rotation-powered
pulsars are usually detected via their radio emission and derive their luminosity from
their rotational energy. The rotational energy decreases as the pulsar radiates, observed
as the spinning down of the pulse period. In contrast accreting x-ray pulsars derive
most of their luminosity from the gravitational accretion of in-falling gas, resulting in
the pulse period increasing over time. Historically, rotation-powered pulsars were the
first to be discovered (Hewish et al. 1968). Often visualised as lighthouses in space,
their pulsating nature has proved very useful in testing general relativity by using the
timing of the first double pulsar seen, PSR J0737-3039 (Lyne et al. 2004).

The pulsations are caused by a rapidly rotating neutron star where the magnetic field
axis is misaligned with the rotational axis by a large angle. The emission occurs from
the two magnetic poles in a conical beam (Figure 2.6). As these beams sweep across
our line of sight we see the pulsar, pulse. This emission is thought to be caused by
synchrotron radiation (Cheng et al. 1986) or curvature radiation (Daugherty and
Harding 1982) from the particles trapped on the magnetic field lines at these points.
Here, a detection of polarisation at gamma-ray wavelengths could help determine the

nature of the pulsar emission.
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Figure 2.6: Schematic of a Pulsar. The star’s magnetic and rotational axes are misaligned and
collimated radiation emitted along the magnetic axis will only be seen when the axis is aligned with
the observer’s line of sight. The light cylinder describes the point at which the magnetic field is no
longer co-rotating with the neutron star.

The Crab is a particularly good example of a well studied pulsar. It is one of the
brightest gamma-ray sources and in the case of many instruments used as a calibration
source. In the case of the INTEGRAL mission this means that there is a lot of archive

data available, spanning many years, for use in the search for polarisation.

2.3.3 Micro-Quasars

Micro-Quasars are X-ray black hole binary systems with emission collimated into jets
(Figure 2.7), perpendicularly either side of an accretion disc (Mirabel et al. 1992).

These jets are thought to be a good source of polarised gamma-ray flux as they are
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Figure 2.7: Sketch illustrating the current understanding of the physical components and sites of
emission in an X-ray binary system. A compact object (neutron star or black hole) accretes
material from a binary companion, and the potential accretion energy is released in the form of a
combination of high-energy emission (UV/X-ray/gamma-rays) and mechanical energy in an
outflow (which itself may be the site of some high-energy emission) (Fender and Maccarone 2004).

likely to be collimated by the magnetic field of the compact object (Meier et al. 2001).
A small amount of linear polarisation may also be seen from the accretion disc

(Connors and Stark 1977).

The emission from the relativistically beamed jet in the Micro-Quasar GRS1915+105
has been shown to be circularly polarised at radio wavelengths (Fender 2003), thought
to be due to synchrotron emission. Although there is no direct evidence of X-ray and
gamma-ray emission from the jet, there is evidence of a strong coupling between the

observed radio and X-ray luminosities (Gallo et al. 2003). If the gamma-ray emission is
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also synchrotron emission, it should be possible to detect polarisation from a source
such as GRS1915+105. However, Fender et al (2003) showed that the linear
polarisation GRS1915+105 rotated by ~50 degrees over ~6 hours. The rotation was
shown not to be due to Faraday rotation as the polarisation produced the same rotation
at different wavelengths. It is possible that the rotation of the polarisation is due to the
rotation of the jet or a change in the projected position of the magnetic field in the
emission regions since the rotation rate does not match with the other known rotation
rates in the system. Any attempt at gamma-ray polarisation will require much longer

observations and so the polarisation will be averaged, out reducing the signal.

2.3.4 Active Galactic Nuclei

Active Galactic Nuclei (AGN) are the large black holes (M = 107M0) at the centres of
galaxies that emit large amounts of high-energy radiation by the accretion of material
from the surrounding galaxy. These often show jetted emission similar to Micro-
Quasars. AGN come in many different types. The different types of AGN can be
unified by considering the geometry and inclination angle of the system to the observer
(Figure 2.8)(Urry and Padovani 1995). The orientation dictates whether the central
broad-line emission regions can be seen producing a Seyfert 1 galaxy, or if this region is
obscured by the optically thick torus with only the outer narrow-line regions of a
Seyfert 2 galaxy being seen. If a jet is seen then the object is classified as a Quasar.
However, if the jet is orientated towards the observer then a Blazar is seen. These jets
are relativistic and create large-scale structures emitting in radio wavelengths as the jet

plows into the surrounding medium.
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Figure 2.8: Unification model of AGN (Courtesy of M. Polletto, adapted from (Urry and Padovani
1995))

Observations in the radio and optical bands have revealed that most of the emission at
these wavelengths is highly polarised, an expected result as both radiations are likely to
be due to synchrotron emission. The higher energy emission is thought to be associated
with electrons in either the accretion disk or the jet. If the emission comes from the
accretion disk this would lead to the percentage of polarisation being dependant on the

viewing angle of the disk (Sunyaev and Titarchuk 1985). For Centaurus A it is
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Figure 2.9: Contours of total intensity and magnetic-field vectors at a resolution of 0.75 arcsec.
The plots cover 27 arcsec on either side of the nucleus. The left-hand panels show the total
intensity contours at levels of -1, 1, 2, 4, 8, 16, 32 x 20 pJy beam™ area. The right-hand panels
show the vectors whose magnitude and directions are proportional to the magnetic-field (Laing
and Bridle 2002).

predicted that the degree of polarisation should be ~60% for energies below 300 keV
(Skibo et al. 1994). Simulations and observations of the jet of 3C 31 (Laing and Bridle
2002) show that the radio polarisation vector is initially aligned to the jet; further from
the centre the polarisation is perpendicular to the jet axis (Figure 2.9). Since the life
times of high energy electrons are short, the gamma-ray emission they produce is likely
to occur closer to the origin of the jet. Measuring the polarisation would allow a better
understanding of the processes involved. However, AGN are very faint, meaning that
many observations are needed to gain significant statistics. Centaurus A appears with a
flux of ~38 mCrab (38/1000 of the Crab flux) in the IBIS/ISGRI 3™ Catalogue (Bird et
al. 2007).

2.3.5 Solar Flares

Solar flares are caused by complex magnetic field fluctuations in the sun’s
chromosphere and are closely related to sunspots. The emission from solar flares is
seen at most wavelengths and is thought to be produced by Bremsstrihlung radiation

from the many low mass particles travelling along the field lines (Petrosian et al. 1994).
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Figure 2.10: A simplified diagram of the magnetic structure and radiation emission sites of a solar
flare (Lei et al. 1997).

The loops of magnetic fields on the surface of the sun produce very ordered systems of

a local scale and so the emission from these regions is likely to be polarised (Figure

2.10).

The polarisation has been measured at other wavelengths (Erjushev and Tsvetkov 1970;
Tindo et al. 1970; Kundu and McCullough 1972; Henoux et al. 1983; Henoux and
Chambe 1990; Xu et al. 2005) and more recently McConnell et al has attempted to
measure the polarisation of a flare in the 20-100keV energy band using the RHESSI
satellite (McConnell et al. 2007).
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2.4 Gamma-Ray Interaction Mechanisms and the Detection of

Polarisation

Three mechanisms are important in the detection of gamma-rays: photoelectric effect,
Compton scattering and pair production. Each can be the dominant process involved in
a material depending on the energy of the gamma-rays and the atomic number of the

material (Figure 2.11).

In practice the probability of a gamma-ray interacting is the sum of the probabilities for
each of these interactions, defined by the linear attenuation coefficient . The total
linear attenuation is the sum of the attenuation coefficients for each of the interaction

mechanisms. The attenuation of flux through a material can be defined by:

—=e K 2.20

where [ is the intensity left at the original energy after a distance x, of the original

intensity Io.
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Figure 2.11: Different interactions dominate in different regions defined by the atomic number of
the absorbing material and the photon energy.
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2.4.1 Photoelectric Absorption

The photoelectric effect involves the incoming photon interacting with a bound electron.
Free electrons cannot absorb the photon and recoil since energy and momentum are not
conserved (Krane 1988). The photon’s energy allows the electron to break from the
atom and travel away with the energy of the photon minus the binding energy. The

ionised atom can gain a new electron, emitting a photon in the process.

For an unpolarised photon, the electron will be emitted in é random direction. If the
incoming photon is polarised then the probability distribution of the photon’s direction
is modified and becomes proportional to cos’®. This means the electron is most likely
to be ejected in the direction of polarisation (Hall 1936). This effect can be seen in the
simulations shown in Figure 2.12, where on the smallest scale the electrons are emitted
in a non-isotropic fashion. On larger scales the random scatter of the electrons blurs out
the initial distribution. However, with a suitably fine resolution detector, such as the
Micro Pattern Gas Detector planned for XEUS and HXMT, the pattern can still be seen
(Bellazzini et al. 2006; Costa et al. 2007).

Y axis (micron)

\\Y axis (micron)

Y axis (micron)

o

Y axis (micron)
Y axis (micron)

X axis (mieron)

100
X axis (micron) X axis (micron)

Figure 2.12: 50 keV photoelectron tracks in Neon (100% linearly polarised, collimated photon
beam). (Credit: R. Bellazzini).
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Figure 2.13: Illustration of the Compton scattering process. An incoming photon is scattered off a
free electron. The electron will recoil and the photon will be scattered by an angle 6.

2.4.2 Compton Scattering

As mentioned previously, if an incoming photon meets a free electron it will scatter at
an angle of 6 to the photons direction and a fraction of its energy will be transferred to
the electron (Figure 2.13). This energy transferred to the electron is what is measured in
a detector. Unlike the photoelectric effect, the photon can never lose all its energy to
the electron. The minimum transfer is a glancing impact on the electron (6 = 0°) where
little or no energy is transferred to the electron. The largest energy transfer is a direct
collision between the photon and electron (6 = 180°). The maximum energy transferred

to the electron, Enax, from a photon with energy, Ey, known as the Compton edge is

ZEph
mec?
ZEph

1+—=
+meC2

Emax - Eph 2.21

where mcc2 1s the rest mass of the electron. In a real detector there will also be a
backscatter peak where a photon that has already undergone a large angle scatter will
deposit the rest of its energy through photoelectric absorption. The area between these

two peaks forms a saddle shape and is known as the Compton continuum.
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Figure 2.15: The Klein-Nishina differential cross-section seen from the side. As the photon energy
increases the photon is more likely to be forward scattered (Davisson and Evans 1952).
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Figure 2.14: The Klein-Nishina differential cross-section for a polarised photon, seen from the
direction of incidence. As the energy increases the photon is more likely to be forward scattered
and the distribution becomes more isotropic.
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Figure 2.16: Q factor (the ratio of parallel to perpendicular scattering probability) vs scatter
angle for a point scatter and detection of various incident photons.

The probability that the photon will scatter by 6 is given by the Klein-Nishina

differential cross-section. In the case of a linearly polarised photon, this is given by

dogn,p

1 _ .
k= ~r§e’[e+ &7t — 2sin®Bcos’n] 2.22

Where 1y is the classical electron radius, € is the ratio between the scattered photon and
the incident photon energies and 1 is the azimuthal scattering angle, defined as the
angle to the polarisation unit vector (Lei et al. 1997). This means that the photon will
preferentially scatter 90 degrees to the direction of polarisation. The differential cross-

section can be seen in Figure 2.15 and Figure 2.14.

These cross-sections show that as the energy increases the photons are more likely to

forward scatter and the angular distribution due to the polarisation becomes more
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isotropic. This will have important repercussions on the dimensions of a detector and

its ability to detect polarisation.

2.4.3 Pair Production

In this process, a high energy photon is converted into an electron-positron pair. In
order to conserve momentum, this must occur in the presence of a third body, usually a
nucleus. The minimum energy required for this process is twice the rest mass of an
electron, 1.022MeV. In practice, pair production is only important for photons with
energy greater than 5MeV, with the remaining energy being split evenly between the
particles as kinetic energy. The positron will then annihilate and the electron be

absorbed, releasing 1.022MeV as gamma-rays.

If the original photon is linearly polarised then the electron and positron will be
produced and travel preferentially in a plane perpendicular to the plane of polarisation
(Berlin and Madansky 1950). Detecting polarisation in this manner can be very
difficult outside of a controlled laboratory environment, since the electron and positron
usually need to be separated using a magnetic field and each particle detected

separately, so that the plane they lie in can be found.

2.5 Theory of Compton Polarimeters

As seen previously, the Compton scattering differential cross-section dictates that a
photon will scatter preferentially perpendicularly to its polarisation vector. After many
photons this will lead to an asymmetry in the number of photons scattered parallel and

perpendicular to the electric vector. Using a suitable arrangement of detector elements
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this asymmetry can be used to determine the direction and degree of polarisation of the

beam.

The simplest way in which to detect polarisation, using Compton scattering, is to use a
pixelated detector setup. Small pixels will allow the gamma-rays to Compton scatter in
one and be absorbed in another. Due to the speed of gamma-rays both pixels will
record an energy deposit at the same time and an analysis of the directions in which

these illuminated pixels lie will give the original polarisation of the ray.

To assess the relative effectiveness of any arrangement of detectors, the response of the
polarimeter to a 100% polarised beam of photons is calculated. This response is known

as the Q polarimetric modulation factor (Q-factor) given by (Suffert et al. 1959)

_ NNy
NL+N||

Q

2.23

where N; and N are the count rates in orthogonal directions in the XY plane. By
calculating the cross sections parallel and perpendicular to the polarisation vector this

becomes

sinZ @
e 14g—sin% 0

Q=

2.24

For increasing photon energy the maximum Q factor is achieved at progressively lower
angles due to the probability of photons being forward scattered at higher energies

(Figure 2.16). When fully forward or backward scattered the Q factor tends to zero and
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therefore the photon can no longer give information about its polarisation through this
process. The maximum Q factor also drops as the photon energy increases and above

10MeV tends towards zero.

In practice the peak value of the Q factor will be dependent on the detector used. The
physical sizes and passive material as well as the detector thresholds and background

will all modify the Q factor from this theoretical maximum.

2.6 Detecting Polarisation in Gamma-Ray Astronomy

With a space based mission, using a rotating detector system that is normally found in a
laboratory experiment is not practical. Moving parts are often discouraged by space
agencies due to the increased risk of failure. Therefore, the simplest way to build a
polarimeter is to use a pixelated array. There have been many different variations in
achieving a suitable polarisation sensitive detector. COMPTEL, RHESSI and

INTEGRAL are all satellite missions and have met with varying success.

2.6.1 COMPTEL

COMPTEL was launched aboard the Compton Gamma-Ray Observatory in 1991.
Designed for imaging, it operated in the 1 — SMeV energy range and had a 1 steradian
field of view. The instrument consisted of two detector layers, where an incoming
photon could Compton scatter off the upper low atomic number liquid scintillator and
then be detected by the lower sodium iodide detector (Figure 2.17)(Schoenfelder et al.
1993).
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Figure 2.17: The imaging Compton telescope COMPTEL (Schoenfelder et al. 1993).
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