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Over the past few decades, it has been realised that gauge theory scattering amplitudes
have structures much simpler than the traditional Feynman graph driven approach would
suggest. In particular, Parke and Taylor found a particularly simple expression for the
tree-level amplitudes with two gluons of different helicity than the others (the so-called
MHYV amplitudes). Cachazo, Svréek and Witten (CSW) devised rules for construct-
ing tree-level amplitudes by sewing lower-valence MHV amplitudes together with scalar
propagators: It was shown by Mansfield in 2005 that a canonical change of the field
variables could be constructed that resulted in a lagrangian whose vertices were pro-
portional to MHV amplitudes, continued off-shell by CSW’s prescription, the so-called
Canonical MHV Lagrangian. We derive the explicit form of this transformation and
use this to show that the vertices are indeed the Parke-Taylor amplitudes for up to
five gluons. Noting that CSW’s MHYV rules cannot be used to construct the tree-level
(—++) or one-loop (+++-+) amplitudes, we extend our work to augment the MHV
rules with so-called completion vertices. These permit construction of these 'missing
amplitudes by means of evasion of the S-matrix equivalen(ie"theorem. Indeed, together
they reconstruct off-shell light-cone Yang-Mills amplitudes algebraically. We also give a
prescription for dimensional regularisation of the Canonical MHV Lagrangian. Finally,
we construct a canonical MHV lagrangian with massless fermions in the fundamental

representation using a similar methodology.
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Chapter 1
Introducti.on

The Standard Model! of Particle Physics is a quantum field theory with an SU(3)C X
SU(2); x U(1l)y gauge symmetry which gives rise to three of the four. fundamental
forces: electromagnetism, the Weak interaction and the Strong force. The quantisation
of gravity is, at time of writing, an open question and it is omitted from the Standard
Model framework.

The SU(2); x U(1)y factor of the Standard Model gauge symmetry provides the
electroweak interaction, a union of electromagnetism and the Weak interaction. The
SU(2); component acts on representations classified by weak isospin I, and the U(1) on
weak hypercharge Y. Below energies of around 100 GeV this is spontaneously broken to
the Weak interaction and electromagnetism via the Higgs mechanism. This endows the
Weak interaction gauge bosons W+ and Z° (discovered in 1983 at the UA1 and UA2
experiments at CERN) with masses 80 GeV and 91 GeV, respectively.

- The Strong force is governed by the SU(3)c component of the gauge group. It acts
only on quark matter, generations of which live in its fundamental representation called
colour, hence the choice of name ‘Quantum Chromodynamics’ (QCD) for the underlyiflg
theory. This force is seen to exhibit two properties of particular phenomenological
interest. The first is confinement: physical states are only ever in the colour singlet
representation, and free individual quarks and gluons are never observed. This property
has never been proved analytically for QCD2. The second interesting property of QCD
is that it demonstrates asymptotic freedom [3,4] in the ultraviolet: its coupling os runs

with energy scale @ according to (see e.g. section 17.2 of [1])

27
(11 - 2nf/3) ln(Q/AQCD)

- as(Q) =

to one-loop order in perturbation theory for n¢ quark flavours. Clearly the coupling
'becomes smaller as the energy scale increases. Aqcp characterises the energy scale
around which as transitions between strong and weak, and is determined experimentally

!The purpose of this discussion is to give an overview of the Standard Model that provides sufficient
context for the rest of the thesis. Further details can be found in many textbooks, e.g. that of ref. [1]

2Studies with lattice gauge theory have yielded an analytical proof for confinement and the linear
form of quark-antiquark potential [2], but it is not known how this behaves in the continuum limit.

10
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to be around 200 MeV. At energies below Aqcp the Strong force coupling is larger
than unity so we cannot expect perturbation theory to work. Instead one must resort
to lattice techniques (see e.g. [5,6]) or strong-weak dualities such as the AdS/CFT
correspondence [7]. But at energy scales further above Aqcp (of the -order 1 GeV or
more), the running coupling is less than unity, so we may attempt to use perturbation
theory with increasing confidence as the energy scale rises. For high-energy processes,
QCD exhibits a factorisation property which allows us to split cross-sections into a non-
perturbative hadronic part and a perturbative partonic piece. This is a core concept in
perturbative QCD phenomenology, a rich subject in itself and we refer the interested
reader to e.g. refs. [8,9], but the important’idea in this is that long- and short-distance
physics can be decoupled. The perturbative piece is computed as if the partons were
free physical states, ‘Weighted’ by form factors computed from hadronic physics.

The Standard Model has been tested extensively and found to be a remarkably ro-
bust theory. Nevertheless, it suffers from a number of limitations. First, there is the
Higgs mechanism. The W* and Z° particles acquire mass through spontaneous symimne-
try breaking — the scalar Higgs field acquires a non-zero vacuum expectation value. Yet
its particle the Higgs boson, believed to have a mass somewhere between 115 GeV and
180 GeV (see e.g. ‘Higgs Boson Theory and Searches’ in [10]), has yet to be observed.
Furthermore, there are indications of the presence of physics beyond the Standard Model
arising from questions concerning the origin of neutrino masses, the observed matter /an-
timatter asymmetry in the universe, the nature of dark matter, and the so-called ‘hier-
archy problem’ of the vastly different energy scales in physics.

It is hoped that the Large Hadron Collider (LHC) at CERN will help resolve (at
least some of) these issues from the experimental end. This machine is a 14 TeV proton-
proton collider and, assuming that the current bounds on the Higgs mass are correct,
Higgs production should be well within its reach. Furthermore it is believed that it
is at the TeV energy scales at which the first signals of trans-Standard Model ‘New
Physics’ should emerge. There are a number of candidate models for this, amongst

which the most phenomenologically promising are rooted in supersymmetric® and/or

extra dimensional?* extensions of the Standard Model. But being a hadronic collider, the .

signal from any-collision event it generates will be dominated by the QCD background
— processes involving quarks and gluons, often with many> being involved in any given
process. Furthermore, experimentalists have publishedr)a next-to-leading order ‘LHC
“priority” wish list"\[12] of processes important to both Higgs production and New
Physics discovery, some of which involve sub-processes with potentially large numbers
of gluons and quark-antiquark pairs. These background effects are all Standard Model
physics, and we know how to compute perturbative quantities with the Standard Model
using Feynman graphs. Putting this into practice is where we come unstuck: computing

amplitudes for many-particle processes quickly becomes prohibitively complicated; for

3For an introduction, see e.g. (11]; a more technical review can be found in the ‘Supérsymmetry’
sections of [10]. ‘ :
4Such as those of the section ‘Extra Dimensions’ of ref. [10].
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example, even at tree-level, a six gluon amplitude has 216 Feynman diagrams, a ﬁgure v
which grows faster than the factorial of the number of gluons involved.

Thankfully, a number of methods for quickly computing tree-level amplitudes have
been developed. First is the realisation that much of the complexity associated with
non-abelian gauge theories, the colour structure, can be separated from the kinematical
part of the dynamics leaving one to consider just ‘partial’ amplitudes. Famously, Parke

and Taylor in [13] conjectured a compact formula for the tree-level maximally helicity-

< violating (MHV) partial amplitudes containing only gluons, with no more than two

having a different helicity than the others:

CA(LT,. ) =

0,
A(1™,2%,...,nT) =0,
| 4
A, 2%, T = (1)

~ D@3 (- Ly D)

(Note that in the last line only gluons 1 and 7 have negative hélicity; the notation is
explained in section 2.1.) This was later proved by Berends and Giele [14] More recently,
Cachazo, Svréek and Witten developed the CSW rules for connecting MHV vertices with
scalar propagators (using a particular prescription for off-shell spinors) [15,16] that can .
be used to compute tree-level amplitudes with arbitrary helicity configurations, using a
polynomial number of diagrams. We will consider these in some detail. Additionally,
Britto, Cachazo and Feng discovered (in ref. [17]) the BCF recursion relations between
tree-level amplitudes, which were proved with the help of Witten in ref. [17,18]. These
arise from generali considerations on the pole structure and analytic properties of tree-
level scattering amplitudes, rather than relying on particular details of the theory under
consideration; correspondingly, recursion relations have been found for theories involving
non-gluonic matter [19-23] and even for perturbative gravity [24-26]. The CSW rules
have been extended likewise [19,27,28], and indeed it has come to be understood that
the CSW rules arise from a particular adaptation of the BCF relations.

Work has also been done to search for labour-saving devices for the one-loop contri-
butions, although no satisfactorily complete systematic method has been found to date.
A variety of techniques have been shown to reproduce known results both in QCD and
Supersymmetric Yang-Mills (SYM) theories, and have even been used to predict results
for all helicity configurations for up to six gluons and particular configurations at higher

orders. These methods include:
e the twistor-string inspired holomorphic anomaly [29-32];

e (generalised) unitarity [33-36], whereby cuts in the complex plane of the mo-
mentum invariants are matched to those of functions known to arise in one-loop
- amplitudes, thereby recovering the cut constructible parts. The N =land N =4
supersymmetric Yang—Mllls theories are completely cut constructible since their -
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rational terms are inextricably linked to the cut-containing pieces. In QCD, how-
ever, the rational terms cannot be correctly recovered by cut construction (indeed,
some classes of loop amplitudes are purely rational) and these must be determined
e.g. by extracting the cut-free parts from the Feynman intégrals [37-39] or using:

e ‘bootstrap’ methods [40-42], which exploit recursion relations between amplitudes

at one-loop to extract the rational parts given the cut-constructible pieces; and

e one-loop MHV diagrams [43-45), essentially the .application of the CSW rules at
one-loop to recover the cut-constructible parts of QCD amplitudes.

A feature common to all these techniques is that they have taken place outside the
usual Lagrangian framework, drawing inspiration from the twistor-string dual theories
in the cases of the CSW rules and holomorphic anomaly computations, or studies of
the analytic structure of scattering amplitudes. The Lagrangian formulation underpins
a large body of our understanding of quantum field theory, in particular making man-
ifest the symmetries and guiding us towards a systematic' application of regularisation
structure, something which these techniques currently lack. This brings us neatly to the
motivation of the work documented in this thesis: to forl{mlate the modern techniques,
in particular the CSW rules, from a field theory viewpoint. We construct the rules in

terms of the Lagrangian formalism, and begin a study of the consequences thereof.

1.1 Outline

The rest of this thesis is organised as follows. In chapter 2, we establish the necessary

background materials and preliminaries from perturbative gauge theory that provide the

tools and the context for the work presented in chapters 3-5. In particular, we review .

gauge theory itself; the important techniques of colour-ordered decomposition, the spinor

helicity formalism, the Parke-Taylor MHV amplitudes, and the use of supersymmetry to '

. extract information about scattering amplitudes. We describe the BCFW construction
of recurrence relations between on-shell amplitudes, and the CSW rules at tree-level.
Although loop-level techniques are not the main focus of this thesis, we will also review
the most successful developments in this area, in particular unitarity and generaliéed
unitarity. '

Chapter 3 introduces and develops the Canonical MHV Lagrangian. In ref. [46]5,
Mansfield gave a canonical (in the sense of classical mechanics) field transformation
that re-wrote the lagrangian of light-cone gauge Yang-Mills theory as one in terms of
an infinite series of Parke-Taylor MHV vertices connected by scalar propagators and
continued off-shell in a manner that follows the CSW rules. Following the construction
set out in [46], we proceed to solve for this transformation explicitly as a power series.
We demonstrate explicitly that the transformation results in vertices of the Parke-Taylor

form for up to five gluons. This work was originally published in ref, [48]. '

SWe note that a similar transformation was proposed by Gorsky and Rosly in ref. [47].
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Next, chapter 4 addresses some of the issues identified. at the end of the previous

chapter. We follow the research published in ref. [49], where we use the transformation .

discovered previously to define MHV completion vertices. We use these to reconstruct
amplitudes which could not be obtained from MHV vertices alone, such as (—-+-+)
at tree-level and (++++) at one loop. We apply the transformation to dimensionally
regulated light-cone Yang-Mills and obtain D-dimensional MHV vertices. We find strong
evidence that MHYV vertices and completion vertices together algebralcally reconstruct
the orlgmal LCYM theory, even off shell.

Chapter 5 extends the construction of chapter 3 to include massless quarks in the
fundamental representation, and follows the work published in ref. [50]. By considefing
a similarly specified canonical transformation which results in a lagrangian consisting
of an infinite series of vertices with an MHV helicity content, we construct a series
solution from which we define completion vertices and test the resulting lagrangian
vertices against known QCD MHV amplitudes. ,

Finally, in chapter 6, we review this work and considei? it in the context laid out
in this introduction, considering its value as a computational tool and as a means of
gaining. insight into the structure of gauge theories. We also outline what is left to be
understood in the techniques developed herein, and what routes for further research this

implies. Finally, we take the opportunity to consider similar developments.




Chapter 2

Modern Perturbative Gauge

Theory

The Strong Interaction is described by QCD, a non-Abelian gauge theory with-the

following action:
Sqcp = /d4x {zZ(up —m)y — %trFuuFﬂ”} L (2.1)

The phenomenologically relevant implementation of QCD has an SU(3) gauge group
with the quark field ¥ transforming in the fundamental representation. It also features
(from QCD’s point of view) six different flavours of quark, each with a different mass.
However, for the purposes of the studies conducted in this thesis, we will be coﬁcerhed
with the case of just one flavour with m = 0 when we come to consider quarks. We will
also generalise the gauge group slivghtly and work with SU(N¢) (and sometimes U(Nc)

_ where convenient) where N¢ is the number of colours of quark (i.e. the dimension of the

fundamental representation).
Let us make (2.1) more concrete by making some further definitions. First, the gauge

covariant derivative is

i |
D,=0,- -\/%Aﬂ, (2.2)

where A, = A}T® is the gluon field, liVing in the adjoint representation of the gauge '
group. The N& — 1 generators of the su(/Ng) Lie algebra are normalised according to
tr(ToT) = 6%, giving the factor of 271/2 in (2.2)!, and the structure constants fe¢

defined according to _
[T, T%) = iv/2fTe. (2.3)

The field strength F),, is an algebra-valued 2—'form, defined here by

Fu=[DuD,)J]=08,4, —0,A,+ [4, A]. . (24

1This factor would be absent had we chosen the ‘textbook’ normalisation tr(T“Tb) = %5“6, but this
would lead to a proliferation of factors of /2 elsewhere.

15
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Note that in this thesis, we will use the term ‘QCD’ to refer to the massless, quark—
containing SU(Nc¢) gauge theory. In absence of quarks, the non-Abelian nature of the
gauge group (i.e. f% # 0) means that the gaugé field still interacts with itself, and so
what is left over is still interesting. We will refer to this théory as ‘(pure) Yang-Mills’.
As noted in chapter 1, QCD is asymptotically free, and ifs running coupling constant
decreases with increasing energy scale Q like (In@)~!. From a phenomenological point
of view, it will be the perturbatively amenable, high-energy regime on which we focus
our studies. Alternatively, noting that in the absence of an experimental impetus the
theory described continues to exhibit UV asymptotic freedom, we can simply presume
“to work at some energy scale at which the coupling constant is much smaller than 1. |

Z——g——j t 513_‘ ‘ . i .
‘ . p -m . , p —m
a _E, b i /w(sab ) uv
W, @ wrTTe Y, _;72-9‘ _pg
H,a _
29 _pipay i g
_ \/5'7 (T*) \/5'7
? J
H,a ' i ig ,
gfabc[g/w(p - k)p — V__Q_[Q;W(p _ k)p
q I¢ +9"(q - p)* y
,/\ i ) + ¢*°(q — p)*
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FIGURE 2.1: Feynman rules for QCD, excluding Faddeev-Popov ghosts. The expres-

sions in the second column are for the traditional formulation that includes colour

explicitly. The third column gives the colour-ordered Feynman rules. All momenta are
' out-going.

The textbook treatment of the theory of (2.1) is to expand the expression for the
action in terms of its component fields, and then gauge fix in order to define the path
integral. This is conventionally carried out by the Faddeev—Popov procedure working in
Feynman gauge. The procedure introduces extra ‘ghost’ fields which may be understood
as ‘anti-degrees-of-freedom’ that eliminate the non-physical degrees of freedom that arise
from gauge invariance. Ghosts couple to gluons but are not physical particles (which may
be understood by considering the BRST transformation properties of the theory [51]),
so they only show up in loop diagrams. Nevertheless, the Feynman gauge is not the only
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possible gauge and a judicious choice (such as an axial gauge, n - A% = 0) decouples the
ghosts entirely (albeit often at the cost of increased computational difficulties).

With a gauge-fixed action, we can construct Feynman‘ rules and thence Feyninan
graphs. The Feynman rules (minus ghost vertices) for the theory (2.1) in Feynman
gauge are shown in fig. 2.1. Calculating perturbative gauge theory amplitudes is from
then on a straightforward procedure: oné draws all the relevant diagrams contributing
to an amplitude at a desired order in g, contracts with external polarisation vectors and
spinors and adds them up. ‘

Unfortunately, in practise this turns out to be a computationally intensive task as
the number of particles in the amplitude grows. Consider the multi-gluon amplitudes,
which have a phenomenological relevance to the computation of the LHC background
(amongst other things): just at tree level, the number of diagrams and the complexity of
their expressions grows incredibly rapidly. Indeed, for n gluons the number of Feynman
graphs increases faster than n! [52]: 220 diagrams for 6 gluons, increasing (from 7 gluons)

as 2 485, 34 300,589 405, 10 525 900, ..., and any attempt to calculate these amplitudes.

soon encounters the limitations of time or memory. It is, therefore, surprising to find
that the final expressions for these amplitudes often take a very simple form (when
expressed in the right framework), even at the loop level. Computational techniques
have also been discovered that have a great computational advantage over Feynman
graphs. All this hints that gauge theories have a structure much simpler than we would
otherwise expect. _

The remainder of this chapter aims to establish some of the formalism that makes
these simplifications manifest, and illustrate some of the modern techniques that exploit
this. Sections 2.1, 2.2 and 2.3 introduce the spinor-helicity formalism, the concept of
colour ordered amplitudes and the Parke-Taylor MHV amplitude, and explain the role
of supersymmetry in dealing with a hon—supersymmetric theory. Sections 2.4 and 2.5
discuss two important modern tools for computing tree-level amplitudes, the CSW rules
and BCF recursion relations, and finally in section 2.6, we review the techniques that

have been applied at the loop level.

7

2.1 The spinor formalism

. {
Much development in modern perturbative gauge theory uses the spinor framework to

represent momenta and helicity. Ref. [53] has a particularly clear exposition of this, and
we will follow closely the formalism therein.

It is well-known that the complexified Lorentz group SO(1, 3; C) is locally isomorphic
to SL(2; C) x SL(2; C), so its representations may be classified as (m,n) where m and n
are half-integers giving the spin of the representation. (3,0) and (0, %) are the left- and
right-handed chiral Weyl spinors, respectively, whose direct:sum gives the Dirac spinor.

%,'% is the 4-vector, so it can be represented as a bispinor p,g, and we can map from
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Minkowski co-ordinates (p?, p!, p?, p®) into this representation using

£ .3 .1 +2

_ p+p D —p :

Pac = pu(gu)da = . ) . (25)
pl + Zp2 pt _ p3 .

where the 4-vectors of Pauli matrices are

(c*)%* = (1,6) and (6")aa = (1, -0)

and o is the usual 3-vector of Pauli matrices. (The spinor indices are printed here to
show their ‘natural’ position, i.e. as they dereference the elements of the matrices on
the RHS.) From this, it is clear that detp = p?. If p is null then p,s may be factorised
into two Weyl spinors as ' o
Pad = AaAa-

Ao is commonly termed the holomorphic spinor, transforming in the (0, %) representa-
tion, and A\ the antiholomorphic spinor in the (%, 0). representation?.

We define raising (and hence lowering) of spinor indices as follows:
AY = 6“'6/\,3 & A= eaﬁ)\ﬁ, : (2.6)

and likewise with dotted indices. In our convention, the invariant antisymmetric bispinor
has €!? = ¢!? = 1. We define the downstairs-indexed € to be just the inverse of the one
with indices raised: 6"5657 = §5. Thus,

P**Gac = 2P ¢, , (2.7)

s

which can be seen either by direct application of (2.5) and (2.6), or by noticing that

(o#)%® = (g#)*%, and hence
(6")aa(8%)** = troto” = 2g".

Since the € bispinor is an_SL(2; C) invariant, the following products of spinors are Lorentz
invariants:
O p)=€*Prous and [A pl = edﬁxdﬁﬁ , (2.8)

In what follows, for null momenta we will often simply use that momentum’s symbol or
its number directly in the () and [] brackets, using its (anti)holomorphic spinor as the
context above suggests. Clearly these brackets are antisymmetric in their arguments.
Combining (2.8) with (2.7), we have for any two null momenta p = AX and q = pj

2p-q= Ayl (2.9)

2While we are following the discussion of (53], this is closer to the convention of [15].




Chapter 2 Modern Perturbative Gauge Theory 19

2.1.1 Spinor helicity

For massless vector particles, we choose the following polarisation vectors, written as
bispinors [53]: '
)\aﬂd

[v Al

vk )
62&(177 /J'),: V2222 and €na(Dy 1) = V2

ooy (2.10)

for a gluon with momentum poq = AgArg. The spinors v and ¥ correspond to a null
reference vector lag = Valg. It is easy to verify (e.g. using (2.7) and the antisymmetry

of €*P) that these polarisation vectors satisfy the following:

p-€5(p,u) = p**et,(p,p) = 0,
o, p) - € (g, 1) = 0, | (2.11)
€t (p,q) - € (q,1) = 0. (212) .

The choice of y is arbitrary (so long as its respective spinors are not proportional to
those of p), and this is due to residual gauge invariance. We can add to et any multiple
- of p and still preserve the Lorentz gauge condition, and clearly any change of v and ©
effects precisely that: since they are not parallel, ¥ and A (and their conjugates) form a
basis for the Weyl spinors. Any change along the v direction cancels in (2.10), whereas
the component of X leaves a piece proportional to AX — that is, p.

Last but not least, we state the Schouten identity,

(i )(k 1) = GR)(G 1) + (G 1){k J) (2.13)

and its conjugate under () < []. This may be derived by noting Fierz-type identity for
Weyl spinors €qgeys = €ay€5 + €as€qyg- '

2.2 Colour ordered decomposition

The first signiﬁcaﬁt simplification of the process of computing QCD scattering ampli-
tudes comes from the observation that we can separate the management of the colour
information from the kinematics, and this gives rise to colour ordering and colour ordered

partial amplitudes.
Now consider the Feynman rules of the Yang-Mills theory.. We see that the vertices

have group theory factors that are either linear or quadratic in the gauge theory structure

constants f**°. We can re-write these as traces:
abe t apbrnc cpba
= — tr(T*T°T° - T°T°T*).

| Internal SU(Ng) colour lines in the adjoint representation make contractions between
indices of these structure constants, but by definition, iv/2T° % = [T, T®], so inserting
this into the above simply unrolls the further permutations of gauge generator matrices.
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Thus for a purely gluonic tree-level amplitude, the entire colour content can be moved
out into a trace. A n-gluon tree-level amplitude with all particles out-going, where the
gluon label 7 subsumes a momentum p; and he11c1ty state h;, and a; is an adjoint index,

can be decomposed as’

AQ--m) = @M p) > te(T%® T ) A(o(1) - o(n),  (2.14)
0€ESn /Ln .

where S,,/Z,, is the group of all permutations of n objects, modulo cycles (under which
the trace is invariant). The colour-stripped object A(1---n) is a partial amplitude.

- When a single quark-antiquark pair is présent in an amplitude, carrying fundamental
indices 7 and j, respectively, we obtain colour structures with exposed fundamental

indices of the form
(XoT™ Ta2Y0)it7 tr(XlT‘“le) tr(Xo T Ya) -

where the ellipsis on the extreme right denotes further omitted traces, and X; and Y;
are products of gauge generators. We can use the SU(N¢) Fierz identity
- roogs 1 a7
{ { l .
(T (T = 636 — N—C5f5k (2.15)
to break up these products into a product of all the gauge generators, plus a product of
traces suppressed by 1/N¢ of the form

o1 =
(Xo1 X1 Yo Xo - Yo)i + ]—Vg(products of traces)d.

Now for one quark line, we can ignore the O(1/N¢) piece: to see this, consider that
it is juét the statement that the su(Ng) generators are traceless. Had we considered
the U(Ng) gauge group instead, the O(1/N¢) term would be absent from (2.15). Now,
U(Ng) = SU(N¢) xU(1) so in this case the theory has an extra gauge boson (a photon);
its corresponding gauge generator is proportional to the identity and so commutes with
the SU(Ng) generators and decouples from the gluons. Thus, with one quark line at
tree level, the U(Ng) and SU(N¢) amplitudes are the same and we may discard terms
O(1/N¢). The colour decomposition for an amplitude with one quark—é,ntiquark pair is

therefore

A(lg,2,...,m -1 yNg) = (277)45(21—1171) Z (Ta,”(z)"‘T%("'l))hZ"

cESh-2
x A(lq,0(2),...,0(n —1),ng). (2.16)

With more than one quark line, the extra photon from the U(Ng) theory can couple
between the quark lines. Thus, in this situation we do have to consider terms O(1/Ng)

3Note that it will be our convention to absorb the factors of 7 and g into the partial amplitude.

{
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in the decompositioﬁ of the colour structures. This is explained in detail in [28,54]. We
will not reproduce the full construction here for the purposes of this thesis, since we
will only encounter this in section 5.3.3 for four-quark amplitudes with no gluons; these
are simple enough to permit us to work out the colour structures on-the fly. However,
we note below that for an amplitude with two quark-antiquark pairs and an arbitrary

number of positive-helicity gluons, the leading partial amplitude is
AR 2,52, G- 175 541, e 1 g™, (2.17)
which is associated with the colpur facfor
(T% - .Taj—z)ilfj—ll(Taa"-H cTanet); T (2.18)
There are also sub-leading partial amplitudes associated with the colour struct;ure
(R ) (T ) 219)

The full amplitude is obtained by summing over the permutations of the gluon labels

{2,...,7-2,7+1,...,n— 1}, over permutations of the quarks {1, 5} and antiquarks

{7 —1,n} so as not to over-count and remembering a Fermi statistics factor of —1 for
an odd permutation; and finally over 7, interpreted as the position of the second quark
in (2.18) and (2.19) (or equivalently as a parametrisation of the length of T-strings).

’t Hooft double-line diagrams and colour-ordered Feynman rules

In [55], ’t Hooft described a novel way of analysing the colour structure of an amplitude.
One assigns a directed line to each line in the graph that carries a charge in the funda-
mental representation. In our convention where all particles are out-going, lines start
on fundamental indices i and end on antifundamental indices 7, such as with the gluon
vertex of fig. 2.2(a). A trace of gauge matrices, such as at a three-gluon vertex, joins up
fundamental lines cyclically as shown in fig. 2. 2(b). Gluon lines contract fundamental
lndlces, and may be dealt with using the SU(NC) Fierz identity. This manifests itself
as two possible ways of connecting lines to the fundamental indices of the matrices on
which the gluons end, and so connections between vertices in double-line diagrams are
made using the right-hand side of in fig. 2. 2(c).

The third column of fig. 2.1 shows the colour ordered Feynman rules for QCD Whlch
are derived from the normal Feynman rules by taking their colour factors and writing
them in terms of [traces of] the various T® matrices, and one then simply extracts the
term bearing the leading colour order (e.g. tr(T*T®T°T?) for the four gluon vertex).
These rules are used to compute colour-ordered partial amplitudes, which we obtain by

summing all planar graphs whose external legs’ labels (into which we remind the reader

-we have subsumed both colour and helicity information) are ordered so as to match the

colour factor with which the partial amplitude is associated. That these graphs must

7
f
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FIGURE 2.2: ’t Hooft double line diagrams for (a) the quark-gluon vertex, (b) a three-
gluon vertex, and (c) the SU(Ng) Fierz identity (2.15).

be planar and ordered in this fashion is clear upon con51der1ng the associated 't Hooft

diagrams: non-planar-graphs contribute to other colour orders partial amphtudes

Symmetries of gluonic partial amplitudes

The pure-gluon partial amplitude is gauge invariant (inasmuch as it does not change un-
der redefinitions of polarisation €; — €;+ ap;), and satisfies a number of useful symmetry

properties.

e The argument list is only defined up to cydes, so A1l---n)=A(2 --nl)=---="
A(n,1,...,n—1).
{

e Under complete reversal of the arguments, A(1---n) = (=1)"4A(n---1). To see
this, note that under complete reversal of a planar diagram, the three-point Feyn-
man rule changes sign but the four point rule does not. An n-gluon tree with |
m 4-point vertices has n — 2 — 2m 3-point vertices, so the overall sign change is
(=122 = (-1

e The dual Ward identity links cycles of n—1 consecutive arguments:
A(l---n)+ A(23---1n) + A(34---12n) -+ A(n — 1,...,n — 2,n) = 0.

This can be seen from the construction of the amplitudes in terms of colour-ordered
Feynman rules: one can always pair up each graph from one term with another
graph in another term of the opposite sign. Alternatively, one works with the the
gauge group U(N¢) and lets particle n be the photon in (2.14). Carry out the sum
noting now that T~ is proportional to the identity, and by collecting terms of the

same trace structure we arrive at the expression above.

Already, we can see that these symmetries cut down on the amount of work we
have to do to assemble amplitudes. For example, for five gluons, we first note that

parity invariance means that we only need to consider partial amplitudes‘ with up to two
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negative helicity gluons, since for more we can flip the helicities by complex conjugation.
Furthermore, we note (as seen in section 2.2.1), the partial amplitudes with fewer than

" two negative helicity gluons vanish. Thus, applying the rotational symmetry, we are left

with just two independent partial amplitudes:
A(17273T4*5%) and A(1"2+374+5).

2.2.1 The Parke—Taylor amplitudés

Some of the most important colour-ordered amplitudes were first given in ref. [13] by
Parke and Taylor. The following expressions are for tree-level colour-ordered gluon

amplitudes with an arbitrary number of particles with positive helicity, and up to two

- with negative helicity:

AQQt--nt) =0, 2.20)
CA(T2tnt) =0, 2.21)

. \4
AQ72F ) =g (1) : (2.22)

12)(23) - (n—1,n)(n1)

(The amplitudes with the opposite helicity follow by parity symmetry upon exchangihg
() < [].) The last amplitude above is the first one which is non-vanishing at tree-level
for the largest difference between the number of positive- and negative-helicity gluons,
and hence is referred to as mazimally helicity-violating, or MHV for short. When the
helicities are flipped, we refer to this as an MHV amplitude. An amplitude with three
negative-helicity gluons is termed a next-to-MHV or NMHV amplitude, with four a
NNMHYV and so-on so that an N"MHV amplitude has n 4 2 negative-helicity gluons.
It is fairly straightforward to prove the first two expressions (2.20) and (2.21) by
conéide‘ring the (colour-ordered) Feynman graphs that contribute to them. For the all-
+ amplitude with n gluons, first consider the gluon vertices of fig. 2.1: each one can
contribute at the most one external momentum p{, and there are at the most n — 2

vertices. Now contract the polarisation vectors e;r = ej(pi,ki) into this expression

" There are n of these, so each term must contain a factor of the form ef *, which

vanishes by (2.11) if we choose all the reference momenta to be the same; the amphtude
therefore vanishes by gauge invariance. When one gluon has negative helicity, the same
thing happens: we obtain factors ¢; - e;’, 4 > 2, which vanish by (2.12) if we pick
reference momenta k; = p; for j > 2. '

Berends and Giele proved (2.22) in [56] using a recursive technique that connected
together off-shell gluon currents. We will not reproduce this here; instead, we refer the
reader to the proof obtained by Britto, Cachazo and Feng in [17], and shown in section
2.5.1, using on-shell recursion relations.

Now, it is clear these are remarkably simple expressions: even for tree-level am-
plitudes, given what we remarked earlier about the growth in the complexity of the

expressions arising in conventional perturbation theory. What might not be so clear is
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precisely why. They hint that gauge theories have a much simpler structure than implied
by traditional Feynman diagrams — and as such we might well ask how this simplicity
extends to higher order computations, and moreover wherein lie its origins.

2.2.2 Colour ordering at one loop

At one loop, the colour ordered decomposition is more complicated due to the presenée
of non-planar diagrams. For the planar pieces, the leading colour structure is still of
the form tr(7%1 ... T9), but is amplified by a factor of N¢ arising from the trace of the
identity of the SU(Ng)’s fundamental representation. The non-planar graphs contribute
structures of the form tr(7* ...T%-1)tr(T% ...T°), which are correspondingly sup-
pressed relative to the planar terms.” The one-loop colour (;rdered decomposition for

gluon amplitudes was obtained in [57] as

AMP(1.ny =" 3" Notr(T™ - T%) A (0(1) - o(n))
0€Sn/Ln
[n/2]+1 :
+ D) tr(T%W T (T - T% ) A o(a(1) -+ o(n)).  (2.23)
c=2 0€Sn/Sn;c

Snic Is the subset of S, that leaves the traces invariant. Amazingly, it turns out [58] that

the non-planar partial amplitudes A, (c(1)---o(n)), ¢ > 1, can be computed as sums )

of permutations of the primitive amplitudes Ay (c(1) - - - o(n)), which are obtained from
planar graphs. As such, the majority of the literature is devoted to the computation of
the latter. '

2.3 Techniques from Supersymmetry

While QCD is not itself a supersymmetric theory, we can use prototypical unbroken
supersymmetric theories as elements in the calculation of QCD amplitudes, and thereby

leverage the cancellations and simplifications the supersymmetry produces.

2.3.1 Supersymmetric Ward identities

SUSY transformations mix fermions and bosons in a supermultiplet, and so construct
relationships between pure-gluon amplitudes and those also containing gluinos. This
is useful for QCD since at tree level the theory is effectively supersymmetric (once we

have removed the colour information) by virtue of sharing its kinematic structure with

unbroken SUSY theories. (Because SUSY multiplets have a different field content to
QCD, this bre’aks at loop level; however, this turns out to be a blessing in disguise as
discussed in section 2.3.2.) We can map the gluon—gluino amplitudes back to gluon-
quark amplitudes (albeit with a few caveats for certain configurations of pure-quark

amplitudes).
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Consider a ‘parallel’ theory with A/ = 1 supersymmetry and a vector supermultiplet
consisting of a gauge field 4,, with two bosonic phys‘ical degrees of freedom, and the
Majorana spinor A (also in the adjoint representation) with its two fermionic degrees of
freedom. The theory has the lagrangian density

1. - D?
L=tr|{—7F"Fu+ iADA + - ) (2.24) -

where D is the auxiliary field. Now let ¢ be a null vector with correéponding chiral
Weyl polarisation spinors ((g).and @(q) (defined, €.g. in (3.5) upon identifying ¢ = A,
@ = \), from which we define 74 (q) = 04 (q)/v2 and 7%(q) = 8¢%(q)/v/2 where 0 is a
Grassman number. Then for on-shell fields in the asymptotic (free) limit, one can show
that the commutators of the SUSY generator Q(n) = 7°Qq + 1 Q@% with the gluon and
gluino helicity~-momentum annihilation operators, A*(k) and A*(k) respectively, are as

fpllows4:
(QEn), A*(K)] = T (k, m)A* k), (2.25)
[62(77),/\*(10]=Z F (k,m) A= (k), , (2.26)
with
T (k,n) = ~0lkq] and T~ (k,n)=0(kq). (2.27)

Applying the commutation relations (2.25)—‘(2.27) to strings of annihilation operators
gives relationships known as supersymmetric Ward identities [59,61] that link different
amplitudes.. Let us study seme examples of this in action to see how it is useful for
obtaining QCD amplitudes. ’

First, let us use these ideas to derive the gluon—gluino MHV amplitude. We define
|vac) = S |0), where the S-matrix S evolves asymptotic ‘in’ states (defined in the infinite
past) to ‘out’ states (defined in the infinite future), and (0) is the free vacuum state.

Q(n) annihilates the vacuum, so
0= (0l[Q(n), A7 AF -+ A7 -+ AT A7 ]|vac).

We expand the commutator, and choose 7, 7j to be the spinors associated with the null
momentum p; to obtain (noting, of course, that the terms with two AT operators vanlsh

by helicity conservation)

(O|A1_A; . Aj“ AT Af|vac) = —%%(OIAI"A;' AT At |vac)
_ - e 15)%(j v
AATAY - AS - AF AF) =g 2<1 70 3;'_7?(:_")1,”)@ T (2.28)

4These may be obtained .directly by considering the effect of SUSY transformations acting on the
annihilation operators expressed in terms of the asymptotic-(free) fields [59]. We note that the convention
used here differs slightly from that found in [60], which results in a sign difference for every fermion-
antifermion pair in the amplitudes.
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7/
<

Similarly,

—~

1
]>(O|A+A+ LA - AT AT [vac)
nj

. o _ e 1 4Mn )3 »
:>Av(AfAj---Aj AT AD) =g 2<1 e 3><J><<n J_>1’n)<n o (2.29)

(OIATAF - AT - A A vac) =
\

—

Extracting a QCD amplitude from this is straightforward. For example, when n = 4,

43

—~
~

el

(OJAT Af A3 A} |vac) = (0| AT Af A3 A} |vac). (2.30)

/\
w

13)°

Now since everything is in the adjoint representation, we can.interpret both sides as
partial amplitudes associated with tr(791T92737T%4), Conversely,. we can interpret the
LHS of (2.30) as A(1;2%3747F), to be associated with the (T%2T);,™ colour structure,
as follows. We draw the 't Hooft double-line diagram for the QCD colour structure such
that the quark lines run on the outside, shown for this case in fig. 2.3. To lift to the
SUSY side, we add an extra line alongs1de each quark line. Note that in the case of up to
one quark-antiquark pair, there is a unique way to do this, hence we can map these QCD
partial amplitudes directly onto SUSY partial amplitudes with the associated gluinos

adjacent to each other.

I

(Ta2Te3), 1 - tr(T‘“ T“’-’T“?'T‘“)

iy

FIGURE 2.3: 't Hooft double:line diagrams relating QCD to SUSY colour structures

with one quark-antiquark pair. On the left is the QCD structure with the fundamental

indices, the quark line running on the outside. It is lifted to the colour trace on the
right by addlng an extra line.

Correspondingly, we can define the MHV amplitudes with a quark-antiquark pair and

a single gluon of negative helicity by

(13 n) "
A3 o~ La(e ) (2:31)

- — 4N o2
A(1q2+---y ---(n—1)+nq)—-zg”

and

(15){nj)® -
(12)(23) (n—1,n)(n 1)’ (2:32)

A(1j{2+ cegT o (n=1)tng) = ig" 2

both of which are associated with the (792 ... T%-1); ™ colour structure.
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To add more gluino pairs, we continue‘the process. For example, to obtain four gluino
amplitudes, start from V ' '
0 = (01[Q(n), AT Az A3 A]|vac)
= (O (1,m) AT Af A7 AT — (2, m)A7 Af A7 AS (2.33)
+T7(3,mATATAT AL + T (4, AT A A3 Af |vac).

If we choose 7 and 7 to be the spinors associated with the momentum p4, then

_ _ 42) . _ (24)(13)3
AMTAFAGAT) = — 82 A a- at Az 00 = ig? : :
( 14%2 %3 4) <43) ( 1472 _3 A4) tg <1 2)<2 3)(34)(4(1) (2 34)
Similarly .
2 T . (24)3(13)
AATASATAD) = <—A A AT ATAT) = ig? : .
( 1422423 4) <4l> ( 24134 1) 1g (12><23>(34><41>1 (235)
and ' 12) - - (3 42 .
: 12 34
AAFTATATAT) = — “A-ATATY = —502 . .
There is one caveat to note when mapping between QCD and the parallel SUSY
theory. Certain pure quark amplitudes with the alternating + — + — ... helicity con-

figuration contain colour structures whereby the (anti)fundamental indices of adjacent
quarks are connected by Kronecker ds, such as shown for n = 4 in fig. 2.4. In this
particular example, we see that two separate QCD amplitudes bear colour structures
that lift to the same trace on the SUSY side upon adding additional lines to the 't Hooft
diagram. Indeed, the quarks’ charges are flipped between the left and centre diagrams,
necessary because the glhiinos are in the adjoint representation. As such, we expect both
QCD partial amplitudes to contribute to the SUSY partial amplitude (something which

we demonstrate explicitly in section 5.A).

" \_¢_/ ’ " | ’ 1 \—/ :
+ —_—

. /—>—\ y . ; . , ;

52 6;; 62 6:: ’cr(’_lv"11 T2 osTo4)

FIGURE 2.4: Certain amplitudes with two or more quark-antiquark pairs in QCD have
multiple colour structures lifting to the same trace on the SUSY side.

We end this section by noting that this programme can be extended to include scalar
particles by considering a N = 2 extended supersymmetric theory with a vector super-
multiplet (which has four bosonic degrees of freedom, from the two gluon states, the

~ .
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scalar and anti-scalar, and four fermionic degrees of freedom). From this we obtain the.

result

A(1725354% ..ty = 12 o A(17273%4%...nT)
| PP ~\1g ) n
where P is one of {A, A, ¢} for gluon, gluino and scalar, respectively. sp is the spin of
particle species P. (For a scalar, + and — ‘helicity’ refer to particle and antiparticle,
respectively). Whence, '

A(1E2T...nt) =0

for any spin content. _
It is important to point out here that for supersymmetric theories, the SWIs were
derived without resorting to any particular perturbative expansion. Therefore they hold

to all orders of perturbation theory.

2.3.2 Supersymmetric decomposition of loop amplitudes

The properties (such as those above) endowed upon SUSY theories by their extra sym-
metries can be exploited at the loop level to make Yang-Mills and QCD calculations
easier. By counting the respective degrees of freedom, a gluon amplitude with a gluon

running around the loop

Asluon AN=4 - 4AN=1,X + Ascalar (237)

Here,

o AN=% is the same amplitude but with a A/ = 4 supermultiplet running around
the loop, which contains a gluon (one bosonic d.o.f. for each helicity), four gluinos
(each contributing one fermionic d.o.f. for each helicity) and six complex scalars

(two bosonic d.o.f.s each);

o AN=1X has an N = 1 supermultiplet in its loop, consisting of a Weyl fermion and

a'complex scalar; and
o Ase@lar 1155 just a complex scalar in its loop.

Similarly for a fermion in the loop,

Afermiox;x — AN=Lx _ gscalar v (2.38)

Why is this helpful? Well firstly, we saw that the supersymmetric Ward identities
tell us that a significant number of amplitudes vanish exactly. This means that gluon
amplitudes with a (£ + - - - +) helicity content receive contributions only from the scalar
loop. These have an algebraically simpler form, and as a result much of the recent
effort in computing multi-gluon loop amplitudes has focused on obtaining scalar loop
amplitudes. For cases where the supersymmetric contributipns do not vanish, the su-

persymmetry provides useful cancellations that simplify the calculation. In particular,
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the SUSY amplitudes are ‘cut-constructible’ (see section 2.6.1) — a knowledge of its
unitarity cuts is sufficient to reconstruct the amplitude itself. At one-loop level, these

cuts can be computed from the tree graphs, which are much easier to obtain.

2.4 The CSW construction

Motivated by the observation [53] that MHV amplitudes (2.22) localise on ‘complex lines |
in twistor »spaces, and that lines in twistor space correspond to points in space-time,
Cachazo, Svréek and Witten proposed [15] a framework for computing tree-level colour-
ordered partial amplitudes for gluons by sewing together MHV amplitudes according to

the following rules:
1. Use MHV amplitudes as vertices.

2. Join the vertices together, helicities + to —, using a scalar propagétor i/ P?, where

P is the momentum flowing between the vertices.

3. For each leg of a vertex that joins to a propagator carrying momentum P, define
its corresponding holomorphic spinor as (Ap)g = Paaf®, where 7} is some arbitrary

spinor.

On the last point, we note that if we supplement 7} with a holomorphic spinor n and use
it define a null vector p = 77, then we can construct the null projection of an arbitrary
four vector p by

2 .
L. (2.39)

pnull;P_ 2% - p

Then if (Prull)aa = Aard, Ao = Paaf®/[A n]. This is coincident with point 3 above:
a propagator links a + line on one vertex to a — line on another, so under a scaling
A — c) the diagram will scale like ¢~2 - (c* - ¢™2) = 1. Hence we can discard the [A 1]
denominator. -

Adding all the so-called CSW diagrams constructed this way returns the desired
scattering amplitude. Given the unbounded positive—helicity' valence of the vertices, an
- amplitude with n_ negative helicity gluons has n_ — 1 vertices; for n gluons overall, the
number of diagrams grows no faster than n2, so this method clearly presents a significant

computational advantage over Feynman diagrams.

2.4.1 An example: A(17273747)

In [15], the authors give examples of calculations for the tree-level amplitudes A(1+2‘3_4‘)
as well as for the five-gluon amplitudes. They also note verification of the technique for
certain configurations of higher-valence tree amplitudes, and even apply it to obtain the
n-gluon amplitude with three consecutive gluons of negative helicity. We refer the in-
terested reader to the literature for these examples; here, we will repeat the calculation

5Specifically, copies of CP! embedded in CP3.
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of vanishing amplitude A(11273747), since this not only illustrates the construction in

action, but also forms a consistency check. {

2- 1+ 9~

(@) | (b)

- FIGURE 2.5: CSW diagrams contributing to the A(17273747) amplitude.

The contributing CSW rules diagrams are shown in fig. 2.5. Since the final result
vanishes anyway, we will drop any phase and coupling factors from propagators and the
formula (2.22) for the MHV amplitudes. The first diagram, fig. 2.5(a), has a contribution

(2xp)® 1 (34)3

(13)(Ap 1) P2 (4 A_p)(A_p 3) (2.40)

where P = p; + p2. We pick a reference spinor 7 (whose specific value will not be

needed). Then according to the CSW prescription,

C e = [Mal)s + C2)alia)ali,
(O pla = [()alig)a + M)a(Ra)ali,

so that (2Ap) = (21)ay, (Apl) = (21)ag, (4A_p) = (43)as and (A_p3) = (43)ay, where
o; := [¢ n]. Substituting, and using (2.9) to deal with the propagator, (2.40) becomes

34) of - )
¥ aza;m. | (2.41)

Repeating the exercise for the graph of fig. 2.5(b) gives, similarly,

(32) af

[1 4] (65 X0 210 7} '

Adding this to (2.41) results in an expression with a numerator proportional to

'S

=1

(B4[41)+(32)[21] = D (31 =0

by conservation of momentum. Thus, the amplitude vanishes.
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2.4.2 Proving the CSW rules

In the latter part of ref. [18], the authors gave a neat proof of the Validity of the CSW
construction by considering Lorentz invariance and the singularity structure of tree-level
scattering amplitudes. It proceeds as follows. ' _

It turns out that upon analytic continuation to complex momenta, a trée amplitude
can be determined entirely by its physical singularities — something which gives rise
to recursion relations between on-shell amplitlides (see section 2.5). Now suppose we
calculate a particular amplitude in‘two ways: by colour-ordered Feynman graphs, to give
AFeyn, and .ACSW by the CSW construction. Both are clearly rational functions of the
external momenta’s spinors. In ref. [15], the authors argue that Acsw contains the same
physical singularities as Apeyn (individual graphs in Acsw might contain outstanding
singularities of the form 1/A*P,47®, but in their sum these must vanish by Lorentz
invariance) so Acsw — Apeyn must be a polynomial. For n gluons, we can check directly
that this polynomial vanishes when n = 3,4, and for n > 4, such a polynomial cannot

exist on dimensional grounds. Therefore Acsw = Areyn-

2.4.3 CSW rules for fermions

One extension of the CSW rules that will have relevance to the work in chapter 5 is
that of ref. [28]_ which adds massless quarks in the fundamental representation. This
extension works as one might expect: the propagator and off-shell prescription are as
" in the purely gluonic case above, but one adds two new classes of vertices (using the
expressions for the corresponding amplitudes found in ref. [54]) to the fold.

The first has either the quark or antiquark carrying a negative helicity (by conserva-

tion of helicity) and one gluon of negative helicity. Thus these vertices are

j
2+ (n—l)—'_ =.A(1;;2+,...,j—,...,(71"1)+,'n;-:')
1- &£§: nt o (2.42)
i 2%
Y 23 (n-Laynl)’
- _
g E ... R e
L+ - - ' (2.43)

e (1))
9 W23 (n-1nnl)
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associated with the ccolour structure of (2.16).6 The second has two quark-antiquark
pairs. For this to be an MHV vertex, all the gluons have positive helicity, and it is

ot (G-2)7F

G=1)~h s
=A@k 2L G2, -1

s |
(n=1)*  (G+1)* da DY, (=D g
_ o n2_F(h1,hy) (1,7—-1) {(jn)
ARG DU G251 i) Ty Y
. with ‘
F(+,+) = (n,j—1)2 F(+,-) = —(nj)?,
F(_a+) = _<17j_1>2a F(_’—) = <1 j)z’

and associated with the colour structure of (2.18). The sub-leading amplitude associated
with (2.19) is

(j-2)*
. 1y=h;

(‘Zz 1) =A(l)(121,2+,'...,(j—2)+,ngh1;
7 : hy . o \—hy
<G+ (=) (-5
T G g G (=)L (15 ™)

— Z-gn—2 F(hl?hj) (1 TL) | (j’j—:l) ,
1n)(5,5-1) (12) -+ (j=3,i=2)(j—2,n) (,j+1) - (n=2,n—-1){n—1,5-1)

(2.45)

_ There are no MHV vertices with more quark-antiquark lines. We notice that in both

cases the gluons lie to the right of the quark lines as one travels along them in the
direction of the arrows. This can be seen from the 't Hooft diagram construction, where

in planar graphs the external fermion lines can always be arranged to run on the outside.

2.5 BCF r_ecursion relationé |

Britto, Cachazo and Feng discovered a recursion relation that shows one how to con-
struct tree-level amplitudes in terms of lower-valence, on-shell amplitudes and a scalar
propagator. This works by shifting the external momenta by an amount parametrised

by a complex number z; the amplitude sought is therefore a rational function of z, and

5We note that our expressions have a sign difference with those of (28] due to a different choice of
external state fermion ordering.
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we can use knowledge of its pole structure to reconstruct it. Ultimately, every amplitude
reduces to sums of products of MHV and MHV amplitudes.
Coricretely, suppose we are to compute the amplitude A(1---n) for some helicity

configuration. We pick external lines k and ! which without loss of generality we may

assume to have helicities —, +, —, ~ or +, +, respectively7.\ We then' shift these null
momenta Dk = Aghp — pr(z) and p; = AN, — Fi(2) by shifting their spinors according
to ' : ¢ :

. j\k — S\k- — z;\l, Al — A+ 2 A, (2.46)

which defines the amplitude A(z) = A(1,...,k(z),...,i(2),...,n). Now let us choose
a partition® of the external lines, i,...,7 such that this range includes {. Since we are
dealing with tree diagrams, there is (for general momenta) a unique propagator carrying
momentum F;; := p; + -+ + p;, and all propagators can be found this way by choosing

an appropriate range. B, becomes_rshifted to

P,j(2) = Py + 2D\ . (2.47)
Now A(z) will have poles whenever the P,;(z)? = 0, i.e. when the shifted propagators
go on shell. As

Pij(2)? = 1 Bj(2)ac Py (2)*®
{(Pi)aa(Pij)®® +22(Pyj)ac \EA}

= P2 — 2(k|P;]l],

N~ N~

these poles are located at

P? '
Z =z = m, ' (2.48)
using the notation
(k| Pll) = =AE Pac A - (249)

Since A(z) is a rational function, these are its only poles®.

Let us now assume that A(z) — 0 as |z| — oo, so that

_ L fAGE L opes Al
fc A0)+ 3 = Res A(2), (2.50)

2me z ij FTRig

z€{zi;} “
where C is a contour at infinity. Since the residues in the sum above are taken at points
where we know propagators to go on shell, each term in the sum must be prqduct of
the amplitudes to either side of that propagator multiplied by the residue of the shifted

"The +, — case can be dealt with by re-labelling the external momenta using the cyclic symmetry of
partial amplitudes. . '
8We defined ‘partition’ here and hereafter to mean a choice of contiguous, non-intersecting, sequential

subsets.

9There may be poles in z arising from the action of the shifts (2.46) on the denominators of the
polarisation- vectors (2.10), but these may always be removed by an appropriate choice of reference
spinor and as such are gauge artifacts that do not contribute to the final amplitude.
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propagator, so

1 (k| P;iln) 1
— Res A(z) = 229! + F(s..
es A(z) = P2 5 ~A7 (2i5) Res Z(k|Pz'j|n]AR(z”)

le 2=z5

==Y Af(zij)ﬁAlqa:(zij)a
+ 1
where the sub-amﬁlitudes

A (57) = A <'“-i<z;j)j+1,...,k(zij>,...,z'—1>, | (251)
A (zi5) = A(=PF (zi5), 4, -, Uzi), .. 9), (2.52)

and all index arithmetic should be carried out cyclically. Thus we obtain the recursion

relation

AQ-m)= > ZA( E(2ii),7 +1,. 'k(zij),...,i—l)

(i,5)eP =+

A( (Z”) .,l(zij),...,j),' (2.53)

where P is the set of all partitions into two of ranges of external lines that include line
. This may be described schematically by the diagram of fig. 2.6.

FIGURE 2.6: Mnemonic diagram illustrating the terms of the BCF construction.” Index
arithmetic should be carried out cyclically. All external momenta are out-going. ‘

What remains is to prove that for Yang-Mills theory A(z) vanishes as |z| — 0. In
ref. [18], the authors use the CSW construction (discussed in section 2.4) to prove this,
and we reproduce this reasoning here. First, we recall the possible choices of helicity
for the gluons k and I as outline above. We can restrict the analysis to the case where
gluon [ has + helicity; the case where gluon & is of — helicity can be treated by the same
reasoning but using the conjugate CSW construction with MHV vertices.

Now a general CSW tree graph consists of a. number of MHV vertices continued
off shell by the CSW prescription, multiplied by a number of propagators. Under the
momentum shifts, a subset of these propagators may be shifted such that they vanish
as |z| — oo. Now in the CSW prescription, one defines the holomorphic spinor of a
propagator’s momentum by (Ap)y = .(Pij)adﬁd, where 7] is some arbitrary spinor. But
we know that I5ij = P + zAkN, so if we pick i = M\, Ap will be independent of z.

Thus, all MHV vertices that connect to it will be z independent, except for the vertex
\ ) _
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connected to gluon 1. By postulation, [ has + helicity, so its shifted spinor A\ + zAg
shows up in the vertex’s denominator. Hence, the contribution for the vertices vanishes

as |z| — oo, and the rest of the amplitude along with it.

©2.5.1 An example: the Parke—Taylor MHV amplitude

The BCF recursion relations provide a very neat, quick proof of the expression (2.22)

(1m)

A(1—2+ . ,.m—.,-,n+) — ign—2 A2 (n=Lani)

<

for the MHV amplitude. We chqose to shift rﬁomenta 1 and 2 according to
;\1 - 5\1 - 2:\2, /\2 - )\2 + Z)\1

For the purposes of this example, we will take m > 3; the cases of m < 3 may be treated
similarly. In this case, there is only one choice of partition and intermediate helicity
for the propagator, specifically i = 2 and j = 3, for which neither of the amplitudes in
(2.53) vanish. This is illustrated in fig. 2.7. The momentum flowing across this split is
Py = py + ps3, so under the shift Py3(z)? vanishes when z = P& /(1|P|2]. Let us denote
by P the value Py3(z) takes for this choice of z.

- FIGURE 2.7: The only term contributing to the BCF recursion computation of the
A(1=2% . --nt) MHV amplitude. The vertex on the left is an MHV amplitude,
obtained by a lower-valence Parke-Taylor expression. The vertex on the right is a three-
gluon MHV amplitude. Missing lines are for +-helicity gluons. All external momenta

are out-going.

Assume that the Parke-Taylor expression is valid for MHV amplitudes with up to
n — 1 gluons. If we drop the coupling constant factors, the BCF recursion relations give

imyr .1 [23P

’ (2.54)
(@5)--(n1)(1 P)(P4) P% 3 P|[P2)

where we remind the reader that the hats above the numbers denote a shifted momen-
tum. First, P223 = 2ps-p3 = (23)[23]. Next, we remove the shifted pieces of the momenta.
Since we have only shifted the antiholomorphic part of p1, we can drop the hat from any
1 that occurs in a (), and likewise for any 2 in a pair of [] brackets. Next, we note that
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since Py;(z) = P;; 4+ 20y, for general spinors z and y

(z Py (2)[Pyy(2) 1] = ~(2| Py (2)|l] = —(a| P11, (2.55)

(k Byj(2))[Bij(2) y) = — (k| P (2)ly] = — (kI P51, (2.56)

' ‘ (2.57)

~ whence
i py— _(2+32 _(13B2
[P 2] (P 2]
and similarly
pay=-B3IBA gy A2AB2 g sy 1882
[P 2] (1P (1 P)

Inserting into (2.54), we find we readily obtain the Parke-Taylor expression for the MHV

amplitude.

2.5.2 A direct proof of the CSW rules

By a modification of the BCF recursion relations (studied in section 2.5), Risager ob-
tained a direct proof of the CSW rules of section 2.4, and we refer the interested reader
to ref. [16] wherein. is documented the exact reasoning. The essence of Riséger’s proof
is to construct a shift of the momenta such that each propagator that occurs in a CSW
rules graph is shifted. This will occur if the antiholomorphic spinor of the momentum
of every negative helicity gluon is shifted and the shift is crafted such that no proper
subset of them vanishes. With this shift, any possible MHV sub-amplitude vanishes, énd
'S0 one reasons inductively that the CSW construction must give the correct amplitude

if the lower-valence sub-amplitudes to either side of partition do as well.

.2.5.3 Application to other field theories

Although the BCF recursion relations were introduced in the context of Yang-Mills
theory and multi-gluon scattering, their derivation only makes use of the fact that shifted
amplitudes are vanishing in the complex infinity limit, and that at tree-level they contain
only simple, physical poles. From a knowledge of these poles, the BCF recursion relations
provide a mechanism to determine tree-level amplitudes.

There is much literature on the application of BCF recursion relations to amplitudes
of other particle content. CSW rules and BCF recursion relations for QED were derived
in [19]). Ref. [20] adds massless férm_ions to the QCD relations, with massive fermions
in [21]. Recursion relations for amplitudes involving massive propagating scalars can be

found in [22] (which is of particular use in the cut construction of loop amplitudes, cf.
(2.37) and section 2.6), and with massive vector bosons and fermions in ref. (23]. BCF

~ relations for gravity were found in [24,25] with the proof that the amplitudes vanish as

|z| — oo appearing in ref. [26].
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2.6 Loop level techniques

In this section we discuss two techniques that are important for the calculation of one-
loop amplitudes. The first is (generalised) unitarity and cut construction, and the second
is the application of the CSW rules in one-loop diagrams. Of course, these are not the
only techniques on the market for loop amplitudes. Two others worth mentioning are
the twistor-space studies of Cachazo et al. [29-32]; and so-called ‘bootstrapping’ ap-
proaches [40-42,62], which combine unitarity with on-shell recursion relations to obtain
the rational parts of non-cut-constructible amplitudes. We refer the interested reader to

the literature for further details on these approaches.

2.6.1 Unitarity, generalised unitarity, and cut conétruction

The so-called ‘cut construction’ of loop amplitudes stems from the observation that, on
general grounds, a gauge theory loop amplitude can be written as a rational function of
kinematical invariants, plus some linear combination with rational coefficients over a ba-
sis of loob integrals that contain branch cuts in their kinematic invariants. By studying
an amplitude’s cuts, one can (in certain circumstances) deduce the loop integrals’ coeffi-
cients; the advantage of this is that, at one loop, these discontinuities can be computed
from a knowledge of on-shell tree-level amplitudes.

Although in general the rational pieces cannot be determined this way, in a number
of theories all the rational terms are associated to functions that do contain cuts. Such
theories are termed cut-constructible, and in [34] Bern, Dixon, Dunbar and Kosower
found a power-counting criterion that is satisfied by these theories. For an amplitude in
a massless theory, this criterion is that its n-point loop integrals have in their numerators
not more than one power of the loop momentum for n = 2, and not more than n — 2
powers of the loop momentum for n > 2, i.e. given the n-point loop integral with

momentum p; flowing out of the #*! point

d*=%L P(L) ,
I,[P] := 2.58
il o ey A A ) A et s B
‘where P is a pblynomial, then
» 1 n=2
deg P(L) < A ) . (2.59)

n—-2 (n>2)

A key result of [34] was showing that supersymmetric Yang-Mills amplitudes satisfy this
criterion. . ' '

If the external momenta are all four dimensional, integrals satisfying this criterion
can be processed using a variety of reduction techniques [63-72] through which it can be
shown [34] that they can be reduced to linear combinations of scalar box, triangle and
bubble functions (i.e. those of the form I4[1] I3[1] and I3[1] in (2.58)). These are all one-
loop integrals for diagrams with a massless scalar running between each of the external
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points; the external momenta are partitioned amongst. these points, the momentum
flowing from each point being the sum of those in its partition. For n > 4 gluons, this
set is listed with diagrams in section 2.A and summarised here as: »

: ; 4m 3m 2me 72mh 7lm Om‘.
e the box functions Jg7y,;, I3 ., 1655, 155, 147 and I9F;

e the triangle functions Ig’:’;‘k;i, Igf]r};i, Ilm: and
‘e the bubble function 127,

The subscripts denote how the external momenta are partitioned, starting at ¢ and put
into partitions of length j, &k and I. The external momenta are taken to be on-shell,
but when there is more than one in a particular partition, their sum will in general
not be null. A m-mass function (noted in the superscripts of the functions above) has
m such points. For box functions when m = 2, there are two possible (cyclically)
distinct configurations: when the two null legs are opposing, the so-called ‘two-mass
easy’ function I77¢ (shown in fig. 2.12(c)); and the ‘two-mass hard’ function I3%? when
they are adjacent (as in fig. 2.12(d)).

FIGURE 2.8: Schematic diagram of the two-particle cut in the plane of the (pi+-ﬁ —+p;)?
invariant. The blobs represent the tree amplitudes A{™® and Afree in the text.

The procédure used by BDDK to extract the rational coefficients may be summarised

as follows:

1. For the amplitude being constructed, consider a particular kinematical channel
‘(characterised by a partition into two of the external momenta), and draw all
planar cut diagrams that contribute in this channel. (Remember from section 2.2.2
that we only need the leading one-loop partial amplitude.) These are constructed
by connecting tree amplitudes either side of the cut, Atre® and A¥®, together
with propagators as shown in fig. 2.8. The propagators connect to adjacent lines
in the amplitudes, whose remaining lines connect to external states according to
colour order and helicity configuration. The discontinuity in the 'bfanch cut of this
channel’s kinematic invariant is obtained by integrating over the two-particle phase
space of the internal particles instead of over the propagators viz. the Cutkosky
rules [73-75]:

Z / d4L 5+4(L%)5+4(L3)A§reeAgree’

spin
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where L1 = L and Ly = Ly —p; —- - - —p;, and 6+4(p?) = 6(p*)64(p?). The sum here
is over the admissible spin configurations of the internal particles, as determined
by the helicity configuration of the particles on either side of the cut.

2. Reconstruct the Feynman integral. To do this, promote the 6+4(p?) functions to

Z / d4 L — Atree Atree
L2 L2

spin

propagators i/p%.

The resulting Feynman integral has the same cut in the channel under considera-
~ tion as the amplitude. One may use L? = L% = 0 in the numerator above. Now the
Passarino—-Veltman procedure is applied to the reconstructed integral to express it

in terms of the basis of scalar integrals with rational coefficients.

3. By considering the reconstructed integrals of the cuts in all kinematic channels
without over-counting each scalar integral’s contribution, one deduces the rational

coefficients and obtains the full amplitude.

Note that by reconstructing the integral algebraically in step 2, one avoids having to
explicitly calculate the channel’s discontinuity. ‘

QCD is a theory that does not satisfy the BDDK criterion (2.59) and so-cannot be
reconstructed from knowledge of the four-dimensional cuts alone. However, we have the
supersymmetric decompositions (2.37) and (2.38), so many terms in QCD amplitudes
are cut-constructible. This leaves the scalar loops as the source of the BDDK violation.
(Indeed, in situations where (2.59) is not satisfied, the reduction procedure can result in
additional tensor functions (i.e. those of the form I,[L¥LY ---] in (2.58)). In this case,
as [34] notes, one can construct linear combinations of these and the scalar functions with
rational coefficients that are rational functions in four dimensions.) Nevertheless, the
cut-containing terms in the scalar loop amplitudes can be obtained through unitarity.
The rational pieces left over must be obtained by other means, such as on-shell recursion
relations [{40-42, 62] which use the cut-constructible pieces as inputs, or more direct

methods that extract the rational terms from the original Feynman integrals [37-39).

Quadruple cuts

N = 4 amplitudes have a particularly special decomposition: they can be constructed .

purely from scalar box integrals [34] i.e.

o= ) bl +Z(cuffme+d BN+ D gl 8+ fmid i (2:60)
1 )

ijk ijkl

b, ¢, d, g and f are rational coefficients and in [36], Britto, Cachazo and Feng use genér-
alised unitarity to deduce the rational coefficients of these functions. In this approach,

one cuts two or more lines by replacing their propagators i/p? — 6t4(p?). By choosing
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different sets of lines to cut, we can isolate the discontinuities of different éuts in the

kinematic variables.10

FIGURE 2.9: Quadruple cut of an amplitude that contributes the coefficient of the box
function ff;‘kl;i (see fig. 2.12(a)). The circular blobs represent the tree-level amplitudes
AY'S% 4 in the text.

Britto, Cachazo and Feng compute the quadruple cuts of the LHS of (2.60), and
there are a number of such cuts parametrised by the partitioning of the gluon labels
into four. An example is shown in fig. 2.9: /this particular cut is given by an expression

proportional to

' Z/d4L 5+4(L1)6+4 (L2)5+4 (L3)5+4(L4) A'ireeAgreeAgreeAgree (2.61)
spin .
where Ly = L, Ly = L; —p; — - -+ — pj—1, etc. and the sum is over the permissible spin

configurations of the internal particles. (Since all internal lines are put on shell by the
cut, one must take care to deal with the vanishing of the three-particle tree amplitudes
for partitions containing just one external gluon. In [36] this is handled by working
in (2,2) signature; alternatively, one can use complex momenta.) In four dimensions a
quadruple cut freezes the momentum integral so that L has discrete set of solutions‘ S

to leave us with an expression proportional to

Z AtireeAgreeAtéreeAZree‘

spin;S
On the other hand, the quadruple cut of a box function is unique to that box function;
that is, there is only one box function on the RHS of (2.60) with the cut computed in
(2.61) — namely, the one with the corresponding external momentum configuration. As

such, its coefficient must be proportional to the product of tree amplitudes computed

as given-above.

(Generalised) unitarity in 4 — 2¢ dimensions

. While only the supersymmetric Yang-Mills theories are cut-constructible in four di-
mensions, by analytically continuing to 4 — 2¢ dimensions BDDK-violating theories also

Generalised unitarity is a rich topic, and we refer the reader to chapter 2 of [33] for a thorough
treatment. .
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become so [76]. This can be understood on dimensional grounds: terms in the ampli-
tudes must contain factors of the form (—K?2)™¢ for some kinematic invariant K? and
so have have cuts in the complex plane that allow us to deduce the presence of terms
that are rational in the four-dimensional limit. This was used in [77] to obtain the
(++-++) amplitude with a scalar in the loop by considering unitarity cuts, and later
in [35] with generalised unitarity (using triple and quadruple cuts) to re-derive the one-
loop (++++), (—+++), four-gluon MHV and (+++++) amplitudes in QCD. These
amplitudes vanish for supersymmetric theories, and so are equal to those with just a
complex scalar in the loop — thereby avoiding the complications of 4 — 2¢-dimensional

polarisations in the internal states. In particular, we reproduce here the result [77]

2ig* | '[1 2](3 4]
(4r)2—e Ka (12)(34)

Ay (1T2F73147) = AgRler(1t2t3tet) = (2.62)

where Ky is the 4 — 2e-dimensional box function,

P / di-2L A (269
! (4m)e=2 | (2m)4-2 L2(L —p1)2(L — p1 — p2)%(L + p4)? '

As € — 0, K4 — —1/6, leaving a rational expression.
The scalar’s D-dimensional loop' momentum Lp is split into two parts, L in four
dimensions and v in a —2e-dimensional orthogonal spacelike subspace, and so the loop

integration can be expressed as two over these subspaces:

dPL d*L d%v
/ (27f)g =/ (2m)* (2m) =2 ' (264)

Since Lp is the only 4 — 2e-dimensional quantity present (all external momenta are kept
four-dimensional), the —2e-dimensional parts only show up as v? the integrand!! so the
integration over v above can be traded for one over v? when it comes to actually evalu-
ating‘ or analysing the integral. Since LZD = L% -2, the massless scalar in D dimensions
may be treated in the four dimensional tree amplitudes used to obtain unitarity cuts as

a massive scalar of mass v.

2.6.2 MHYV amplitudes and loops

Following the success of the CSW rules at computing tree-level gluon scattering, one
might consider applying them at one loop (and beyond). Brandhuber, Spence and
Travaglini (BST) developed a method for applying the CSW rules at one loop, initially
in the context of ' = 4 scattering amplitudes in [43]. In that paper, their procedure
was used to obtain an expression for AMIV (the leading one-loop partial amplitude), in
exact agreement with the result obtained by cut construction in ref. [58]. To compute

partial amplitudes using the BST construction:

1'We take 2 to be the scalar product with respect to a (4 - - +)-signature metric on the subspace.
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1. Draw, all planar graphs with a scalar loop and the external lines matching the
specified configuration. Use the MHV amplitudes as vertices, and connect legs of

opposing helicities with scalar propagators.

2. Continue the internal lines off-shell as per the CSW prescription using a null

reference momentum u = 7. o

3. Integrate over the loop momentum using a measure that splits the loop integrél

into one over phase space and a dispersive integral.

The momenta L; carried on each internal line in the loop can be written using (2.39) as
Li =1 + zip,

where z; = L? /2l; - u, and I; is the null momentum whose spinors feature in the MHV
vertices. The integral over d*L; is traded for one over phase-space and z; by using [43,78]

d4 Ll dzi d3 lz

L2 +ie  z+ie 200’

where to regulate the IR divergences, the phase-space integral over [ is continued to
4 — 2¢ dimensions. However, without a full extension of the vertices to 4 — 2e dimensions,
this process can only be expected to return the correct cut-constructible parts of non-

supersymmetric amplitudes [44].

(b+1)*

FIGURE 2.10: Contribution to the multi-gluon one-loop MHV amplitude with a scalar
running in the loop, constructed using MHV diagrams. N

With this in mind, in [44] the technique was applied to the scalar loop contributions
to the pure Yang-Mills MHV amplitude with the two negé,tjve—helicity gluons adjacent,
and for five gluons in both of the two independent helicity configurations. The generié
graph for the MHV amplitude, with gluons ¢ and j of negative helicity, is shown in
fig. 2.10; note that for complex scalar, helicity should be understood as charge. The

measure for this, incorporating propagators and momentum-conserving ¢ function, is

d*L, d'L,

—_ 8%(Ly — Ly — Py).
L%+ieL%+ie (I 2 L)
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Now define Pr., such that Ly — Ly — Py, - ly —la — Py, so the full integral is re-written
as one over Pr., [43]: '

4P,

: QMWH(Pg;Z)dLIPS(lg, ~l1; Pr;z),

where the last differential is the two-particle phase space measure that enforces [ — Iy =
Pr.,. Note that the phase space integral computes the unitarity cut in the Pf; ., channel,
and the dispersion integral reconstructs the terms in the amplitude that have that cut
(see e.g. [33]); the sum over all diagrams of fig. 2.10 computes the sum of these integrals
over all kinematic channels. The phase-space integration is extended to 4—2¢ dimensidns
and both integrals are then evaluated, the details of which may be found in [44], wherein
the cut-constructible parts of the MHV loop amplitudes specified above are recovered.
The articles of refs. [79, 80] apply this method to N/ = 1 supersymmetric Yang- .
Mills theory to calculate its one-loop MHV amplitude“. In ref. [45], the authors make
arguments for the validity of their method (for supersymmetric theories), demonstrating
its covariance by using the Feynman Tree Theorem [81], and that all the discontinuities
and soft and collinear singularities are the same as those computed using traditional

methods. -

Yang—Mills inspired approach

In [82], the authors take a different approach to integrating over the loop momentum
which in fnany ways makes contact with the field theory-driven approach to the CSW
rules we will explore in detail in chapteré 3 and 4 . Again, they compute the scalar
loop part of non-supersymmetric amplitudes using the integr_al measure of (2.64) and
- the protocol described thereunder to split the loop momentum across the four- and —2e-
dimensional subspaces. The vertices used are taken from the light-cone gauge Yang-
 Mills theory coupled to a complex scalar, and they depend on the null vector u = 07
_that defines the gauge. They also contract the D-dimensional loop momentum with
4-dimensional spinors corresponding to an external momentum and 7, and this has two
important effects. First, it means that —2e-dimensional part of the loop momentum
can be discarded in the vertices. Secondly, the scalar’s off-shell momentum is projected
down to a null vector in the vertex according to (2.39). As a result, one obtains precisely
the scalar-gluon vertex one would have by applying the CSW prescription with 7 as the
reference spinor to the associated amplitude. This is something we will come across in
more detail in our studies in section 3.2.2. _

Using this method, Brandhuber et al. were able to obtain the correct expression for the
one-loop (————) amplitude. This amplitude vanishes in supersymmetric theories (see
e.g. supérsymmetric Ward identities, section 2.3.1) and being rational in four dimensions
is not cut constructible. By considering' the diagrams of fig. 2.11 and their rotations, it
was found that this method leads, after performing Passarino-Veltman reduction — a

purely algebraic manipulation — to an expression in terms of 4 — 2¢-dimensional box,
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FIGURE 2.11: The box and typical triangle and bubble contributions to the one-loop
(————) amplitude with a scalar running in the loop, constructed using MHV diagrams.
Dashed lines are scalars, solid lines gluons, and all momenta are out-going.

triangle and bubble integrals. The triangle and bubble functions’ contributions cancel

to leave the known answer .
2ig? (12)(34)

(am)2—< ‘1 2[34] (2:65)

As the authors of [82] note, the survival of this piece arises from a cancellation between
the ¢! supplied by the underlying 4 — 2e-dimensional integration over the propagators,
and the factor of ¢ provided by keeping track of the factors of v in the numerator.

2.7 A summary of the state of the art up to one loop

The methods described in sections 2.4 and 2.5 (the latter in particular) for the an-
alytic computation of tree-level amplitudes involving many external gluons have lead
to considerable ad\}aqcement in our ability to compute new results. From an automa-
tion standpoint, the discovery of algorithms with complexity gfowing no faster than the
- square of the number of external partons has lead many to consider the tree-level prob-
lem ‘solved’. Numerical techniques useful to builders of Monte Carlo simulations should
" not be overlooked, either. A recent analysis in [83] concluded that for numerical calcu-
lations of tree-level amplitudes, the Berends-Giele off-shell recursion relations [56] were
fastest for nine or more external partons, whereas on-shell recursion relations offered
better performance in cases with fewer.

Table 2.7 shows the current state-of-the-art for one-loop gluon amplitudes. As can
be seen, analyt;ié expressions for gluon loop amplitudes have been obtained via a num-
ber of methods and there is extensive literature on the subject. The highest valence
with analytic results for all helicity configurations is six gluons. - The higher-point am-
plitudes are, at time of writing, still awaiting the various other components required for
assembly. On the other hand, numerical programmes have been forging ahead and for
the more demanding phenomenologist, results in ref. [84] have been published for up
to twenty gluons evaluated using Rocket, a program which implements the algorithms

and techniques given in refs. [85,86).
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Amplitude(s)

Methodology
5 gluons String based calculation [87]
6 gluons N = 4 part via unitarity [34]; A = 1 MHV in [34],

NMHYV in [88,89]; scalar by unitarity [90], rational
terms by Feynman integrals [39] :

(——+++++)

Bootstrap [42]

Up to 20 gluons

Numerical, selected regions of phase space [84]

N =1 n gluons MHV

Unitarity [34]

N = 4 n gluons MHV

Unitarity [58]

N =4 n gluons NMHV

Unitarity [91]

(£4+-+) Recursive techniques [92]
n gluon MHV Cuts of scalar pieces by MHV diagrams in [44], ra-
tional terms by on-shell recursion relations in [93]
(=== ) Unitarity [89]
(————+4) Bootstrap leading to recursive solution in [94] (with

numerical results given for 7 and 8 gluon cases)

TABLE 2.1: Summary of the current state-of-the-art in gluon loop amplitudes and
when and how they were first derived.

2.8 Closing statement: From the CSW rules to field theory

We are now in a position to méke more concrete the context and spirit of the remainder

of this thesis. The CSW rules described in section 2.4 were originally derived based

on observations in twistor string theory. As the foregoing bears witness, a lot of work

has been undertaken to develop these ideas at tree and loop level, powered mostly by

applied understanding of the analytic structure of scattering amplitudes and twistor-
space geometry.

While highly inspired, this is perhaps not so satisfying from a field theorist’s point
of view. The CSW rules look qualitatively like the end product of quantising some kind
of field theory, albeit one with an infinite series of vertices of increasing valence joined
together by a scalar propagator. One might therefore ask: Is it possible to construct the
field theory QCD in such a way that the CSW rules are made manifest? In other words,
can we write down an action for QCD with-a scalar propagator and an infinite series of
vertices that take the form of MHV amplitudes? Such a formulation would make the
construction accessible to the well—estai)lished framework of quantum field theory, as
well as indicate how to incorporate (the as-yet missing) regulation structure needed for
quantum corrections. For a start, the formalisms we have seen so far are fundamentally

tied to four dimensions. Might deriving the CSW rules from an action viewpoint lead
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to a dimensionally regulated version of the construction?'%:13

It turns out that these suspicions are well-founded. Without wishing to give away
too much at this stage one can construct a transformation of light-cone gauge Yang—
Mills that re- -writes the usual action in precisely the ‘MHV lagrangian’ form we desire.
The bulk of this thesis, chapters 3-5, is devoted to obtaining this transformation and
studying the lagrangians it constructs. As well as deriving the CSW rules at the action
level from a field theoretic point of view, we will see that this approach provides extra
structure that can answer certain questions concerning the apparent incompleteness of
the CSW rules. In particular, we note here that with MHV vertices alone, one simply
cannot assemble a graph for the one-loop (+- -« +) amplitudes.

2.A 4D cut-constructible loop integrals

Here we list the set of functions that can appear in cut-constructible amplitudes satis-
fying the BDDK criteria with four or more external particles. These are also given in-

Figures 1-3 of [34], along with explicit expressions in Appendix I of the same reference.

i+j+k i+j+k

i+j
i ~\ i+
i+j+keH
% % i
(@) I35t (b) I35 : (9 1355
i+j
i
i i .
(d) 12m8 (e) 137 R

FIGURE 2.12: Cut-constructible box integral contributions, n > 4.

\

12Here we are talking about a full dimensional regularisation of amplitudes consisting of purely gluonic
components, i.e. accounting for the changing number of degrees of freedom this introduces. This is in
contrast to the calculations mentioned in the foregoing (such as MHV amplitudes in loop diagrams and
4 — 2¢-dimensional cut construction) with a complex scalar in the loop.

13We note that there are other regulators that work within four dimensions, such as that of ref. [95], but
thanks largely to its Lorentz and gauge invariance (ignoring chiral anomalies) dimensional regularisation
has emerged as the phenomenologists’ favourite.
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FIGURE 2.13: Cut-constructible triangle integral contributions, n > 4.

K3

FIGURE 2.14: Cut-constructible bubble integral contribution IZ7.




Chapter- 3

An MHV Lagrangian for Pure
Yang—Mills

In the previous chapter, we studied the MHV rules of Cachazo, Svréek and Witten and
how they are applied to the calculation of multi-gluonic scattering amplitudes. There,
we hinted that the construction is reminiscent of a field theory with an infinite set of
MHYV vertices connected by scalar propagators. However, the CSW construction lies
outside the framework of Lagrangian mechanics as usually applied to quantum‘ field
theory and the well understood machinery thereof.

In this chapter, we will show how to put the MHV rules within the Lagranglan
framework by means of a canonical transformation of the field variables of light-cone
gauge Yang-Mills theory. The result is the Canonical MHV Lagrangian, consisting of
an infinite series of MHV-like vertices in the new field variables. The structure of the
rest of this chapter is as follows. In section 3.1, we derive the actioh for light-cone
Yang-Mills, and in sections 3.2-3.3 we specify and solve the field transformation that
gives us an MHV lagrangian. Next, in section 3.4 we compute explicitly terms in our
MHYV lagrangian for up to 5 gluons and demonstrate that (up to polarisation factors)
these are the Parke-Taylor amplitudes of (2.22). Finally we draw our conclusions on
this work in section 3.5.

This work was published in [48].

3.1 Light-cone. gauge Yang—Mills Theory

In this section, we detail the preliminaries underlying the construction of the Canonical
MHYV Lagrangian, specifically our choice of co-ordinates and normalisation, and derive

the Yang-Mills action fixed to the light-cone gauge.

48
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3.1.1 Light-cone co-ordinates

The forthcoming analysis is adapted to a light-cone co-ordinate system, which is defined
by '

20 = \_}—i(t —z%), 20 =.:/1—§('t +z%), z= —\%—5(:101 + ir?), z= %(ml —iz?). (3.1)
Here, t and z* are the usual Minkowski co-ordinates. Note here the presence of the 1 /2
factors that preserve the normalisation of the volume form. Since we will frequently
be dealing with specific components of morrienta, we will make use of the short-hand
(o, Pg, P2, Pz) = (P, B, p, p) for the components of 1-forms. For the n*® external momen-
tum, we write the number with the émbellishments so that the momentum’s components

are (7, 7,7,7n). In these co-ordinates, the Lorentz invariant is
A-B=AB+AB—-AB-AB. (3.2)

It will also turn out to be useful to define the following quantities which are bilinear

in’ their momentum arguments:
(12):=12-21, {12}:=12-21 (3.3)

These quantities have a simple relationship with the (---) and [---] spinor brackets of
(2.8). We will not make much use of the latter in the forthcoming, but it will be necessary
to understand this relationship in order to compare the techniques we have developed
. with established results. First, we begin by writing the bispinor representation of a

4-vector p of (2.5) in light-cone co-ordinates:
P 7 ) . | (3.4)
If p is null, then pp = pp and this matrix factorises as (p: 7)aa = Ao, where we can

A = 2/t (‘%ﬁ) and g = 214 <‘%ﬁ> | 35)

choose

Hence the spinor brackets can be expressed as

(12)
Viz

3.1.2 Gauge-fixing the action

and [12] = ed'g.)\ld,)\w = \/5{—1\/'% (3.6)

(1 2) = Gaﬁ)\lakzﬂ = \/5

Mansfield’s programme for the construction of the Canonical MHV Lagrangian begins
with light-cone gauge Yang—Mills theory, which we will derive in this section. We start
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with non-gauge-fixed Yang-Mills action
S=2 [diz wFmr
=572 |- T tr s | (3.7)

where d*z is the usual Minkowski 4-volume element, and our field strength tensor,

covariant derivative and gauge potential are defined according to

. ig
Fuv =D D], Du=08u+ Ay Au= \/_A;‘;T“ (3.8)
Note that here, and throughout the SU(N¢) generators T* are normalised as in chapter

2, i.e.
[T%, T = ivV2f%°Te, tr(T°T®) = 6. (3.9)

We will quantise the theory on a null 3-surface % of constant z°. This has a normal
vector u = (1,0,0,1)/v/2 in Minkowski co-ordinates. Light-cone gauge imposes the
condition g - A = A = 0 for which the Faddeev-Popov ghosts decouple (contributing an
overall infinite constant factor to the path integral, which we discard). Now, with this

condition in force, we find that (3.7) becomes

S = 212 d'a tr(Ca + La -+ L) | (3.10)

where (after integrating by parts)

= 2(A[08 — 05| A+ ABA— ABBA - 2A aA+Aa2A+Aa2A+AaaA)

| (3.11)
L3 = 4(0A|A, Al + BA[A, A) — A[A, A] — HA[A, A)), (3.12)
Ly = 2([A, A A, A]). (3.13)

Importantly, we notice here that the lagrangian density (3.11)—(3.13) is quadratic in A.
Furthermore, it is non-dynamical with respect to light-cone time (i.e. it there are no G,
operators acting on it). Therefore we will integrate it out of the action.

To see how this is done, consider briefly a toy model field theory with a hermitian,
algebra-valued field ¢, and a set of other independent fields which we will label ¥;. Let
K (¥) be a hermitian, algebra-valued function of the ¥;. We can write this theory’s

partition function as
/ D DV exp / diz ik {36071 + K(U)¢] + L(D)}, (3.14)

where k is a constant, A™! is a differential operator, and L(¥) is a real function of the

¥, only. Now make the following change of variables:

¢ — ¢ = ¢+ AK(T), © (3.15)
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where we assume a regularisation prescription that allows A to ex1st Since this is a
shift, its jacobian is unity and the path 1ntegral becomes

/D¢' DY exp/d4x ik {tr[3¢/ A7 ¢ — LK(V)AK(T)] + L(T)}. (3.16)

The first term above calculates det(—kA~')~!/2. In the case that A~! is field-independent,

this is a divergent but physically irrelevant factor in the path integral. We may therefore

discard the ¢’ terms in the action of (3.16). _
Now for (3.13), the analogue of K (¥) is the coefficient of A found the trace therein,

specifically
Kym = 4([0A, A] + [0A, A — 00A — BOA). (3.17)

The operator %A‘l = 262, and so by (3.16), we drop all terms in (3.10) that contain A
and replace them with ' ’

29 dz tr 1KYM8 2KYM : (3.18)

We plug (3.17) into (3.18) and after some algebra (where we take derivatives and inverse
derivatives to commute) and integration by parts, we arrive at the light-cone Yang-Mills

action:

Suovu = 5 / 0Lt + L7+ 4 L 4 L) (3.:;9)’
where
L= tr / d*x A(80 - 98) A, (3.20)
L+ = —tr /E Bx (3671A) [A, 8.4, (3.21)
L+ = —tr / &Bx |4, 5.4) (8671 A), (3.22)
L+ = / Px 4,04 02 (A4, (3.23)

The result, as seen above, is a relatively simple form for the Yang-Mills action in
terms of the physical degrees' of freedom alone.! This is the motivation behind this
choice, not least because it allows us to identify A and A with positive and negative
helicity, respectively. To see this, consider the standard polarisation vectors (2.10) for a

massless on-shell vector boson of momentum p = A\, which we reprint here:

Va)\o'z _ )\a'ﬂd
(Et)ac = \/5(1/ A) and  (E-)ag = \/5 2 By .

1We note here that there is still some residual gauge freedom left over in (3.19), something to which
we will turn our attention later.
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Let us choose the reference vector to be v = p, the null vector normal to the quantisa-

tion surface ¥. Since (3.5) is singular for u, instead we choose

. _
Vo = U = 24 <0) : (3.24)

Substituting into (2.10) and comparing the bispinor components with (3.4), we find that
the polarisation vectors’ non-zero components are £, = E_ = —1 and F4. Scattering
amplitudes are formed by the application of LSZ reduction to correlation functions of '
the A fields. Schematically, for outgoing momenta {p;} and helicities {h;},

(P17, P 1S10) = (=i)" lim pf Pl (B Ay BT AL (325)
(up to normalisation). By considering the invariant (3.2), we see that each + (—)
external state gluon on the LHS above is associated with an insertion of A (A) in the
correlation function on the RHS. The 1 component couples to A, which vanishes by
gauge choice. The scalar propagator of (3.20) connects A to A and vice versa, so when
the LSZ procedure ‘amputates’ these propagators, we come to identify the A and A as
the positive and negative helicity fields, respectively. | "

3.2 Structure of the MHYV lagrangian

Let us now begin to construct and explore the field transformation that takes us from
(3.19) to a lagrangian that makes manifest the CSW construction.

3.2.1° Form of the transformation and lagrangian

In [46], Mansfield defines the field transformation that gives the new gauge fields B and
Bas ’
LA A+ L™t [A,A = L™ F[B,B. ' (3.26)

This transformation is to be performed entirely in the quantisation surface ¥, so that
all the fields involved have the same z0 ‘time’ dependence (which we will henceforth
suppress unless clarity dictates otherwise). At first, it might seem rather odd to absorb
the interacting part of one field theory into the kinetic term of another. However, we
‘recognise the LHS of (3.26) as the Chalmers—Siegel self-dual truncation of Yang-Mills
theory [96]; this is a classically free theory® [60] which we are mapping onto another free
theory.
The momentum conjugate to 4%(x) is
’ o SL+

1%(z) = W = —0A%(z),

?Inasmuch as all of its tree-level amplitudes are of the form (— + - - +) and therefore vanish on shell.
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and as such the path integral measure

, DADA = H A%(z)A%(x)
v z,a
is proportional to the phase space measure. In the interest of simplicity, we would like
this measure to be preserved, and this will be so if the field transformation is canonical
(in the sense of Hamiltonian mechaniés). Section 3.A explains canonical transformations
and their properties in more detail, but what we need to know here is that we can
‘construct one by starting with a transformation of the canonical co-ordinates alone —
in the case here by postulating that A be a functional of just B. One important outcome
of this choice is (3.70), which links the new and old momenta, and since (3.26) is defined
on a surface of constant z° and preserves the form of the kinetic part, —B%(z) is the
momentum conjugate to B%(x) so '

~— | bix) . _
8B(y) = /2 x ggﬂgyiaﬂ(x). (3.27)

Let us write out (3.26) explicitly:
tr / d3x{BAOA — wABA+ [CA, ADA} = tr / d*x{9BIB — wBHB} (3.28)
2 x

where we have introduced the differential operators w := 83/8 and ¢ = §/8. Substi-
tuting with (3.27) into its LHS, we can eliminate the leading terms on either side and

obtain

(:r/ d3x{wA8Afi—' [CA, A]éﬂ} = tr/ d®*x wBAB. o (3.29)
z )

We can again use (3.27) to eliminate 85 in favour of .4, and noting that A is arbitrary

here, it follows that A has a power series expansion in B of the form
A =B+ 0(B?, (3.30)

and from (3.27) that A has an expansion in B and a single power of B in each term, i.e.

of the form
A = B+ O(BB). (3.31)

The remaining part of the YangQMills lagrangian is L=+ + L=—** and it follows
from (3.30) and (3.31) that upon substitution for .A and A in terms of B and B that this
will generate an infinite series of terms with the helicity content required to be identified
as a MHV lagrangian: terms with an increasing number n4 > 1 of B fields, but only
ever two B fields. These interaction terms, together with the B kinetic term, form what
we refer to as the Canonical MHV Lagrangian. In more detail, inspection of (3.22)
and (3.23) shows that the fields are within traces and all possible helicity arrangements
thereunder occur. If we now work in momentum space on the quantisation surface, we
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can write the general n-gluon term of the MHV lagrangian as

T | i _
L=~ ==Y / Ve tr(BiBs - - - Bs- - Br). (3.32)

Note that by the cyclicity of the trace, we can always arrange for the first field in (3.32)
to be a B. We have introduced a number of new notations here: the subscripts are
the 3-momentum arguments, with a bar dénoting negation, e.g. Bj = B(—~p;), and the

momentum integral short-hand is defined via

/1 ) H / dk dk dk (339

Now since (3.32) must conserve momentum, it will often be convenient to factor off the

implicit 62 function as

Vi = @PS(Sy p) V(1o on). (3.34)

The presence of the 63 function above should be taken as an indication that the vertices
V¢ are only defined when the sum of their arguments is zero. (We could have restricted
the upper limit of the sum in (3.32) to [n/2 + 1| and obtained all possible helicity
arrangements, but by writing it this way we get the same thing except for in the s =
n/2 + 1 term when n is even, which is is accompanied by a factor of % We will defer

discussing the significance of this momentarily.)

3.2.2 Amplitudes, vertices and the CSW rules

Let us show that this construction coincides with the CSW rules [15], as described in .
section 2.4. First, inspection of (3.26) tells us that the propagator associated with the

new fields is

(BB) = —-;-’;;5 < (BB) Z% (3.35)
using (3.8), i.e. a scalar propagator.

We must next show that the vertices of the Canonical MHV Lagrangian constructed
in this manner coincide with the Parke-Taylor amplitudes and that we recover the CSW
off-shell prescription. First, let us address the off-shell continuation of the Weyl spinors.
The choice (3.5) depend only on three of the four momentum components, and makes
sense even for off-shell momenta. For A and X obtained from a 4-momentum p, their

product corresponds to the null vector given by

P P

(Poull)ac = /\,aj\d = \/5 <pp/p —P> o (3.36)
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It is easy to see, e.g. by subtracting (3.36) from (3.4) that p,uy = p + au where a =
pp/p — P = —p?/2u-p and p = v is the null vector normal to the quantisation surface,
its spinors given by (3.24). But this is just the CSW prescription of (2.39), coinciding
with (3.5) by choosing the arbitrary spinor 7 oc . '
Turning to the vertices themselves, we first note that the Canonical MHV Lagrangian
is defined in terms of the new B fields. We would expect to formulate S-matrix elements
by applying the LSZ theorem to correlation function in A and A as in (3.25), but by the
equivalence theorem (explained in section 3.B), at tree level for generic momenta we can
equally well use B and B in their places when we attach external lines to the interaction
vertices in the Feynman graphs. This is because higher order terms in the expansion
of A (and likewise A) introduce products of multiple B fields, whose momenta must
sum to that of the original A. Geherically, their propagators cannot generate the poles
required for such terms to survive as the LSZ procedure takes the external momenta
on shell®. Now consider formulating an on-shell partial amplitude using (3.32): since
such an object is defined as the term in an S-matrix element that multiplies a given
colour trace, it is therefore clear that to extract a colour-ordered MHV amplitude using
(3.32), one simply contracts the external momentum and gauge indices into the trace as
appropriate and multiplies by the relevant polarisation and quantum mechanical factors.
Thus contracting an external MHYV state into the MHV lagrangian to obtain a partial
amplitude amounts to pulling out the term with the relevant helicity content and colour

'ordering and replacing

B(xo,pj),[;’(zo,pj) — —1x —ig—exp(i;ﬁjxo) T%
‘ V2

in (3.32) and symmetrising as appropriate. (The significance of the factor of % for the
s =n/2+1 term in (3.32) when n is even is now apparent: this term has a symmetry
under the index shift i — i+n/2 mod n, and in such a circumstance there are two ways
to contract the external state into it for a given colour order. The factor of %— absorbs
this, assuming V¢ is symmetrised accordingly.)

Given what we know about tree-level gluon scattering, we can equate this with the

known Parke-Taylor form of the MHV amplitude to put

. Cn v
%/d:co Viin (%) exp{i(i+ - )z} tr (T2 ... T)

| | L
= ig" " (2m)?6" (pr + -+ Pu) gy <<:L _) oy T T (33)

3This is assuming that the transformation does not generate a pole as an external momentum is taken
on shell in such a way that higher-order terms survive the LSZ reduction. We note here that there exist
certain conditions within the context of the MHV lagrangian where the equivalence theorem is evaded.
Specifically, these include when off-shell at tree-level, in certain non-physical on- shell situations, and at
loop-level. However, this is outside the sequence in which the topic was developed and is addressed in
more detail in chapter 4.
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Of course, this just tells us that the vertex is the MHV amplitude on-shell, specifically
that '

s _ . n— <1 S>4
Vi(1---n) = (—iv?2) 4<12)...<n—1,n)(n1>
S | (3.38)

= (—i)”igz(l 2)--(n—1Ln)(nl)’

using (3.6). It remains for us to show that this is also true off-shell as per the CSW
prescription, and to do so we follow the argument given by Mansfield in [46]. Now since
we constructed Vi . to be independent of 20, carrying out the integration on the LHS

above gives

@m)dd + -+ a)(—iv2)r Ve, = .
| (1s)*
(12)---(n—1,n)(nl)

@m)6(1+ - + 1) (2m)°6° (1 + - + pn) (3.39)
We would like to simply cancel the §(1 + --- + 7) on either side here and claim (3.38)
applies off-shell, but we cannot do this: we must demonstrate the absence of terms in
the action that vanish on the support of the § function if such a claim is to have any
merit. ‘

This will be so if the vertices are holomorphic, in the sense that they contain no
~ 9 derivatives (or equivalently 13 momentum factors). First, for n > 3, any term that
_vanishes on the support of this § function must depend on a subset of the p; when all

the momenta are on shell, since p = pp/p. The n = 3 case is exceptional, since .
[(12)2
)

As we are dealing with real momenta, (12) must vanish on the support of the é function,

14+24+43= =
. 12(1 +

D

even though it is independent of any p;. Ne_vertheless, we can (and will) check by
" computing the relevant terms using the explicit form of the transformation that (3.38)
still holds off shell for the case of n = 3. .
Now; we will show that the terms of the MHV lagrangian are holomorphic explicitly
in section 3.3 when we solve the transformation, but it is worthwhile noting here that
Mansfield showed that this was so in a rather elegant manner by considering the action

of the homogeneous part of gauge transformation
SA=[A4,0(2)], 6A=[A,06(2) | (3.40)

for an infinitesimal algebra-valued function 6 of z alone on the canonical transformation
(3.26): under the above shift, its LHS transforms as

S(L™* + LH) = /2 d3x [ A, 50(2)](0A + 57114, 8.A)).
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However, the same shift in L=+ + L~** can be achieved by just shifting 04 by
80A = |A,06(Z)]

and changing nothing else, so vafying OA has the same effect on the canonical trans-
formation as (3.40). However, the vertices of the MHV lagrangian are generated by
L==%+ L=~*% and this is invariant under (3.40). Thus the MHV lagrangian can con-
tain no 0 dependence, and hence for n > 3 the vertices contain no terms that generically
vanish on mass shell. |

We will test this for up to five gluons in section 3.4 by explicitly, computing the
relevant terms of the MHV lagrangian.

3.3 Explicit form of the transformation

In this section, we will solve for the power series expansibns of A and A to all or-
ders in B and B. To do this, we derive recurrence relations from the definition of the

transformation (3.26) and (3.27), which follows from it being canonical.

3.3.1 A series to all orders

Taking (3.29), we eliminate 5B using (3.27) and, droppmg the OA factor, arrive at the

following momentum space equation:

: . 0A ~
wiAr +1 | (3[A2,A3)d(p1 — P2 — P3) = / Bf, 5Bb1 (3.41)
23 . P

Here, we use the momentum;space analogues of the w and { operators, defined as

wp = and (p:=

SN
’ml“@.

As noted earlier, we postulate a solution for A as a power series in B. In momentum

space, we write this in the form
Z n)Bz Br(2m)*6(3 71 pe)- (3.42)

Our task now is to obtain the T coefficients. Note that we have absorbed the various
arrangements of B strings in the terms of (3.42) into Y coefficient. Indeed, brief inspec-
- tion of (3.41) shows the the various strings that emerge this way may be expressed as
nested commutators of the B;, thereby ensuring the tracelessness of both sides of (3.42).

By cyclicity of the trace, this condition leads us to the result that
~ Y(123---n)+TA34---n2)+ -+ T(A,n,2,...,n—2,n-1) =0, (3.43)

i.e. an off-shell dual Ward identity.
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At the lowest order, one can inspect (3.41) and conclude that for non-vanishing
momenta, A; = By (i.e. T(12) = 1). To do this we had to cancel w; on either side of
(3.41), so we cannot rule out A4 also having terms with §(p) and/or &(5) support. To deal
this, we notice that there is some residual gauge freedom left in the light-cone Yang-Mills
action (3.19), which we obtained by gauge-fixing A= 0 and integrating out A. Thus,

0 are not fixed

gauge motions of the form 6. A = [D, 8] where 6 does not depend on z
by this. (Should 6 depend on z°, the form of the transformation would be complicated"
when we integrate out A.) Let us study the case where 6 is a function of just z, i.e.

holomorphic gauge transformations, under which the terms of (3.19) transform as

L™t = ¢r / d3x A[09,0.A], (3.44)
z
SL™*T = tr / d*x A[BA,80), A (3.45)
I ' .
L% = —tr / d®x {|A, 84100671 A,6] — [[H.A, A],010571 A} - (3.46)
- . ,

SLH = —tr / Bx {4, 54157206, 5.4)
v | by (3.47)

— [[6.4, A), 006724, 54). - [[DA, A}, 010724, 6.A)}

(Notice that this requires us to interpret 89716(z) = 87186(z) = 0, in line with the
Mandelstam-Leibbrandt prescription [97,98]. Similarly, it follows that the lagrangian
is also invariant when 6 is a function of just z.) Significantly, we notice from the above
that the LHS of (3.26) is invariant under holomorphic gauge transformations; this would
imply that B and B are also invariant. Now under such a transformation 4 — A +
90(z) + [A,0(z)]. If we apply this to the leading order term of (3.42) and take the -

Fourier transform, we obtain

dk

Alp,5) = 10 0p) (21)65) + [ 55 1A~ b,9),6(0)) = Bp,D).

Thus we will interpret the form of (3.42) as tantamount to further gauge fixing.
That aside, we substitute (3.42) into. (3.41), remove the momentum-conserving ¢

functions and carefully relabel to yield the recurrence relation

. n-1 .
—1
r1l--n)= —m j — ()Y (=2, , )Y (—,5+1,---,n). (3.48
( ) w1+---twnjz=;.(<”1’" C25) T( | D=5+ ). (3.48)
Here, we have made use of the following new notation: first, an argument “—” in T (and
in other related coefficients that we will encounter later in this work) stands for minus
the sum of the remaining arguments, as per conservation of momentum. Secondly_, we
have (i := ((Pjx) where Py, := Zf:j p;- We will use a similar short-hand for w below.
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By iterating (3.48), we obtain the following coefficients:

(3 — (2

_ 1 (6= C3)(¢aa—=Ca) | (Ga—Ca3)(G3—(2)
T(1234) - w1 +we + w3z +wy W34 — W3 — Wy + Wog — Wo — W3 (3'50)

At first glance, these seem to not be holomorphic. However, if we use conservation of
_ momentum to express these in terms of independent momenta and simplify, we obtain

the following very compact expressions:

T(123) = i—

23)’
v i3
T(1234) = 23)(3 4):
134
T(12345) = (23)(34)(45)

whence we conjecture

.T(l om) = (3.51)

iy i34..
(23)(34)---(n—1,n)’

for n > 3.

We prove this by induction on n. Clearly, the above expressions for the lower order
coefficients provide the initial step. For the inductive step, we substitute (3.51) into the
RHS of (3.48) and pull out as many j independent factors as possible to obtain

— Z ,/\ {PZ] +1n}
n) j=2

1(LU1+ +w

To evaluate this sum, we expand (7,5 + 1) so the sum becomes

[ ' n—1~ n o~ :
Zi‘ Ppj-1 Pin} =Y %{sz Pjt1n} Z% {P2,j-1 Pin} — {P2 Pjs1n})
j=3 §=2 j=2 , '

where the end cases are dealt with by defining F;; := p; + - ot Prn+P1 + -+« +p; when
j < i, hence P, ;-1 = 0. Upon substituting Pj, = —p1 — P,,;-1 and similarly for P10,
the sum collapses to —i(w; + -+ + wy), and the claim (3.51) is proved.
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3.3.2 A expansion to all orders
Differentiating (3.42) with respect to B and substituting the inverse into (3.27) implies
a ¥ momentum space expansion for 4 of the form
_ o0 m § * . '
Ar=> / 27Y12 - m) By Be=g BBy - B (2m)%5(p1 — 7, i)
et e fyom 1
(3.52)

where the superscript on = indicates the relative position of B in the string, not the

momentum argument. To extract a recurrence relation, we use the fact that

i

tr / d3x DADA = tr / d3x BB, (3.53)
= b

which follows from the properties of a canonical transform, si)eciﬁcally (3.71). Since all |

the fields have the same 20 dependence, and none of the T coefficients depend on zY,

HA = ZZ 'r(1 c--n)Bs -8Bz B, (2m) 53(21_ pl) (3.54)
n=2r=2 . Co
which we substitute into the LHS of (3.53) along with (3.52). By considering each order
in powers of B, using the cyclic property of the trace to move 8B to the front of each
string, matching up the position of B in the strings on both sides, and then carefully v

relabelling the momentum arguments, we arrive at

n+l—l  r4i-1 (m)
E1on)== > > T(-n-r+3,- ,m-r+1)x

r=2 m=max(r,3)

- m( m—r+2,- .7n—r+2) (3.55)

(n— m+2)

(the braces’ labels indicate the number of arguments they enclose). The momentum
“indices on the RHS should be interpreted cyclically (i.e. modulo n) Note that in the
case where the upper limit of the inner sum is less than the lower limit, the sum should
be taken as zero (specifically, this happens when r = 2 and [ = 1).
To obtain concrete expressions for the = vcoefﬁcie‘nts from (3.55), we begin by noting
that 2(12) = 1, as required by the fact that the leading term in the expansion of A is
B. We can now iterate (3.55) directly to compute the first few non-trivial coefficients:

=1(123) = —71(231) = —%T(123), | (3.56)
22(123) = ~T(312) = —éx‘(123). ., (3.57)

-y
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Continuing, we have

=1(1234) = —T(2 + 3,4, 1)E}(1 + 4,2, 3) — T(2341)
‘ _ o 2(+3) 4
T (41)(23) (34)(41)
22+ 3)(34) +24(23)

(41)(23)(34)
53 5

for which we have used the Bianchi-like identity (4.76), and similarly,

52(1234) = —T(3+4,1,2) E1(142,3,4) — T(2+3,4,1)E2(1+4,2,3) — T(3412)

~

- —%T(1234),

- 2%(1234) = ~T(3+4,1,2) E2(1+2,3,4) — T(4123)

4
i

T(1234). |

From this, we claim that R
=-1(1...n) = —%T(l coon) (3.58)

forn>2and 2 <s<n.

The proof of this claim follows by induction on n. The low-order coefficients above
clearly supply the initial step. The inductive part can be provéd by substituting (3.58)
into the RHS of (3.55). We pull out the r and m independent factors to obtain

— i...4
)" l+1 X
O ey T e L D)

n+zl:_l 7331 (m—-rr—l—l,m—r+2)(n—r—+—2,n—r+3)Pn_r.,,g,m_r“

m—r+1 m—1+2 n—r+2 n-ri3

)

r=2 m=max(r,3)
so the proof follows if we can show that the nested sum here equals

_(12)(r1) (3.59)
127
and so the RHS equals the LHS as given by (3.58). First, we evaluate the inner sum.

By performing the change of variables j = m — r + 1, this becomes one of the form

(i1 7\ s b1 s a4 | '
Z PU ‘7/\ - Z’* = Pib — IjiaT - Pa-}-l,b) (360)
j=a j+1 J) b+1 a :
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so we are left with
n41-1

(n—r+2,n—r+3) = I+1, g+1 .
— ——" 9 —FPoi+ =P _ri3] — =—Fn—rt3,q+1 3.61
; n—r+2 n-r¥3 gt i+ 1 n—r+ 7+1 n—r+3,9+ ( )

where ¢ = 1 if r = 2, otherwise ¢ = 0. We note that the expression in the braces vanishes
when 7 = 2 and [ = 1 given the wrap-around interpretation of P;;. This is consistent
with our statement earlier that this quantity is taken to vanish the lower limit of the
inner sum exceeds the upper limit. .

We now evaluate the remaining sum (3.61). First, we.vs(ill treat the end case I =n—1

separately: here, the sum has only one term, r = 2, and (3.61) becomes
nl 2 . nl) [~ = 2. .
( ){ P3n 1+~ Pln— "§P12}=£7:—){1+2—§(1+2)}_

Al nlv

1

. which is clearly equal to (3.59). For the remaining | < n—1, we obtain a telescoping sum
from the first term plus two sums of the form (3.60) from the remaining terms (treating

the r = 2 term separately as necessary) to obtain

(1 ¥\ afid . [+1- i3\
P | = s +o(=-1)+ P3l+ hs =P -2-=
I I+1 no\ 2 I+1

=] =2
[N]

2

[+1
+ 1<P2l+l+1+ Pl+21>

Applying conservation of momentum, this collapses to

and thus the assertion of (3.58) is proved. .
We note here that we have proved explicitly that T and E, and hence the vertices
formed by substituting their parent series (3.42) and (3.52) into (3.22) and (3.23) are
holomorphic, in line with Mansfield’s analytical argument. If follows that these vertices
give the CSW continuation of the Parke-Taylor MHV amplitudes when taken off-shell.

3.4 Examples |

Let us now verify that the field transformation as described above results in vertices pro-
portional to the Parke-Taylor amplitudes. We will do this by computing the interaction
terms in the MHV lagrangian for up to five gluons.
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3.4.1 Three-gluon vertex

Since A (A) is B (B) to the lowest order, the three-gluon vertex is simply the vertex
(3.22):

3
V3(123) = i<(12).
i (123) = ix(12)
Conversely, (3.38) says it is :
3 (23

lrr
12(23)(31)
and conservation of momentum implies that (12) = (2 3) = (31), so the two expressions

are equal and V2 is of the Parke-Taylor form.

3.4.2 Four-glilon vertices

The four—gludn MHYV vertices are the first to receive contribut_ions from the next-to-
leading order terms in (3.42) and (3.52), and so are more interesting tests of the tech-
nique. Both receive contributions from L™~% of (3.22), and (3.23), which is

L+ = / {W2(1234) tr(A1AzAzA;z)
1234
1 - -
+ 5 W3(1234) tr(-AiAi-AﬁAa)} (2m)*6*(Tisi pi), (3.62)
written in ¥ momentum space, where the coefficients
13424

W2(1234)=—m and W3(1234) =

after symmetrization.
First, consider A(1~2-3+4%), which is proportional to V2(1234) by (3.38). It com-

v

prises four terms in turn from substituting for:
1. tHe first A in (3.22) with the O(BB) term in (3.52);
2. the second A in (3.22) with the O(BB) term in (3.52);
3. the A in (3.22) with the O(5?) term in (3.42);‘and
4. the fields in (3.62) at the trivial leading order.

This gives
V2(1234) = %V2(523)52(541)+§V2(154)El(523)+V2(125)T(534)+W2(1234), (3.63)

where ps is determined by momentum-conservation in each term (thus e.g. in the first
term ps = p1+p4). To compare this formula to the expected result (3.38), we must write

both as unique functions of indepehden’c momenta. We eliminate p4 using conservation
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of momentum, and simplifying by partial fractions with the help of computer algebra,
both (3:38) and (3.63) give:

A+22d2-21)  2(i+2+%(2-20) 13(12 - 21)
Q[(i 93 - 31 - 37 12+3)(23-32 202 +3)(12+13-21-30)
Thus we conclude that
V2(1234) = ____GL)E}__
(23)(34)(41)°

We treat A(172+374%) similarly, and after symmetrization,.

V3(1234) = = V2(352)22(541) + g V2(512)21(534)

U} =

. ) : 3 .
+ g V2(154) E2(523) + 3 V2(534)21(512) + W3(1234), (3.64)

and it is straightforward to confirm as above that this agrees with (3.38):

3 24 (13)* A
VB = e aE @D | /

3.4.3 Five-gluon vertices

Finally, we calculate the coefficients of the five-gluon terms in the MHV lagrangian,
V2(12345) and V3(12345). This calculation involves substituting up to the first three
terms in the expansions (3.42) and (3.52) into both original vertices (3.22) and (3.23).
We ﬁnd that ~

1]

V2(12345) = 5 V2(612) E1(6345) + % V2(726)T(634) Z2(751) + V?(126) Y (6345)

V2(764) E1(623) Z2(751) + % V2(167)E1(623)T(745)
2(165) 21 (6234) + W2(1236) T (645) + W2(1265)Y(634)
W2(1645) E1 (623) + % W2(6234) 22(851),

(612)”1(6345) + é V2(634) 22(6512) + (15 V2(637)”1(612) (745)

- 1 1=
V2(675) 51(612)5 (734) + ?2 V2(672) 21 (634) E2(751)

~

3

V2(674) E2(651) =2(723) + p V2(167) Z2(623) Y (745)

> @)l QL O > Ov| >
< ~] G ~P| L

_ i ‘ _ 3 _
2(165) 22(6234) + % V2(362) 23(6451) + g W?2(1645) 22(623)

3

+3 W2(6345) E1(612) + = 7 W3(1265) Z2(634) + = W3(3462) =2(651)

+ W3(1236)T(645)
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(where, like before, indices 6 and 7 label momenta that are uniquely determined in terms
of the first five by momentum conservation). Again, we eliminate ps in favour of the
first four momenta and doing likewise for the corresponding right hand sides of (3.38),

- we find the expressions agree, and thus confirm that

V?2(12345) = ~iv/2 (12)°
L (23)(34)(45)(51)’

(13)
(12)(23)(34)(5)(5 1)

V3(12345) = —iv2

3.5 . Summary and discussion

In this chapter, we have reviewed the construction of ref. [46] in which a lagrangian that
produces the CSW rules of ref. [.15] at tree-level is obtained by means of a canonical
transformation of the gauge field variables A and A of light-cone gauge Yang-Mills
theory. This transformation absorbs the kinetic term and MHV vertex into the kinetic

term of the theory in terms of the new variables B and B according to

LA, A+ LA, A = L~ (B, B),

‘and the interaction part of the MHV lagrangian comes from expressing L™~ + L=+

in terms of B and B.
We then solved for the explicit form of A4 and A as power series in B andB and found

that the coefficients take a particularly simple form. We summarise these results below:

. -Al = Z \ T(l s n)BQ ce Bﬁ (27’(’)3(53(2«?:1 pt)a

_ x0 m §2 B . .
Ar=3, Z/ S T(L--m)Bs - Bs- - B (2m)°0(721 i),
m=2 s=3/2m 1 _ .
where the coefficient - o
13---n—1
e e = (- n ,
Tm) = ) gy 1)

We note that this transformation is local in light-cone time, but non-local in the quan-
tisation surface. The validity of this was tested by computing the terms of the MHV
lagrangian for up to five gluons and showing that the vertices are the Parke-Taylor MHV
amplitudes, continued off-shell by the CSW prescription. Essential to this is the holo-
morphic nature of the transformation, and hence the vertices, which is demonstrated
explicitly. The algebraic manipulations used in this process were greatly aided by the
use of (3.6) to express the spinor invariants in terms of Iight—cone co-ordinates.

The significance of this work lies in the field-theoretic understanding it gives to the
CSW construction, which here is seen to be underpinned by light-cone quantisation.
P\lrtherrﬁore, since they have now been shown to have a Lagrangian formulation, we

can proceed to apply well understood quantum field theory techniques. Of particular
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relevance to the phenomenological programme is the calculation of quantum corrections,
and hence the regularisation of the MHV lagrangian: we simply take our favourite
regulator, and observe the consequences unfold as we apply the transformation This will
be considered further in the next chapter, where we will perform such an analysis for
dimensional regularisatioﬁ; unfortunately, we will see that this comes at the expense of

the simplicity of formalism that we have in four dimensions.

- 3.5.1 The Case of the Missing Amplitudes

We hinted at the end of section 2.8 the CSW rules were in a sense ‘incomplete’,. in
that it was impossible using vertices with an MHV helicity content alone to construct
loop amplitudes with up to one gluon of negative helicity and an arbitrary number of
positive helicity. This is a partiéular annoyance since in pure Yang~Mills, amplitudes
like (++++) at one loop are non-vanishing viz. (2.62). Even more Vfu'ndamentally, the
MHV amplitude is ‘also missing. This takes the value
- . [23p
A(1™,27,37) = ng[T]Tl]—zT. ' (3.65)
For this to be non-vanishing in the on-shell limit, we need to work with complex momenta
or a space-time with a (2, 2) signature metric; in either circumstance, X is not necessarily
the complex conjugate of A, so [i j] does not have to vanish as p; - p; o (i j)[i j] — O.
But all is not lost: the next chapter addresses this issue by showing that under certain

circumstances the transformation ‘evades’ the S-matrix equivalence theorem, bringing

in contributions that allow us to recover precisely these missing pieces.

3.A Canonical transformations

The aim of this appendix is not to give a complete treatment of the subject of canonical
transformations (which may be found in the literature, e.g. [99]), but rather develop the
points and results relevant to the main text.

A canonical transformation is a map from one set of phase space co-ordinates q =
(¢',...;q") and p = (p1, ..., pn) (the conjugate momenta) for a system with hamiltonian
H onto another set Q, P with hamiltonian K such that this map preserves the form of

Hamilton’s equations of motion, ¢.e..

a\ _ (0 +1\(eH/6a) _ = [(Q\_(0 +1 aK/éQ (5.66)
p/ \-1 0 )\oH/op P/ \-1 o)\ekpop)

There are a number of equivalent ways to approach the analysis of canonical transforma-
tions. First, let us consider the generating function approach. Hamilton’s equations of
motion (3.66) may be obtained from the variational principle: under an arbitrary varia- -

tion § of the phase space co-ordinates, the action in both variables must be stationary,




Chapter 3 An MHV Lagrangian for Pure Yang-Mills ' 67

i.€.
b .
5/(qui—H)dt=0,
o
5/(Q‘Pi—K)dt=0.

where a dot denotes a total derivative with respect to time, ¢t. Now in order that both

of these are satisfied, we must have

A¢'pi— H) = Q’R ~K+ id];:. (3.67)
Here, F may depend on t and any of the phase space co-ordinates (in which it must
have continuous second derivatives). We can add a total time derivative of it on the
RHS abpve since the variation is taken to vanish at t = a and ¢ = b, and so it does not
affect the variational integrals. We can then obtain expressions relating the two sets of
phase space co-ordinates in terms of partial derivatives of F', hence it is referred to as
the generating function.

Let us study the particular case where

F(q,P) = f{(q)P; - Q'P, (3.68)
where the Q' on the RHS may be regarded as functions of q and P.* Then

dF _ ;0f7

L+ f@b- QR - QR

which we plug into the RHS of (3.67) (setting A = 1 by scaling the co-ordinates in a
straightforward manner if necessary). Since we may regard q and P as independent

variables, this equation is only satisfied if

H = K,

Q' = f{a), (3.69)
_o9f, 09, |

p; = o7 P;= o7 P;. _ » (3.70)

Under these conditions, F' vanishes and one immediate consequence from (3.67) is that

i'pi = Q°P.. - (3.71)

Let us now generalise to contact transformations, time-independent transformations
of the phase space co-ordinates (both co-ordinates and momenta); clearly, the transfor-
mation described above is an example of this. The hamiltonian is invariant under such

a transformation, i.e. H = K, which can be shown by extending the generating function

4This is a particular case of the ‘Type 2’ canonical transform in chapter 9 of [99].
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approach to other forms of F' using Legendre transforms, or alternatively by considering
the hamiltonian as a scalar function on the phase space manifold. Taking this geomet-
ric viewpoint, we can deduce soine important conditions that canonical transformations
must satisfy in general. If we apply the chain rule to the first equation of (3.66), we

4\ _ 4(Q,P) Q)
b d(q,p) \P
_9(Q,P) +1\ (0K/6Q
~ 9(a,p) \-1 0K /OP
_0(Q,P) +1\ 8(Q,P)* [8H/dq
"~ 8(a,p) \-1 0(q,p) \0H/dp)’

have

where the Jacobian n’iatrix

8(Q,P) _ (0Q/6a 0Q/dp)
d(q,p) ~ \oP/dq OP/3p)’

Comparing with the first equation in (3.66), we infer that a canonical transform must

| +1)"_ 9(Q,P) +1\ 8(Q,P)" ‘
<—1 )— 6(a,p) (—1 > 8ap) &)

This leads us immediately to an important result for canonical transformations: a the-

satisfy

orem, due to Liouville, that states the phase space volume element is invariant under a
canonical transformation. In particular,
9(Q,P)

dQ A dP = |det —=—~|dq A dp,
<Q ' 3(q,p)‘f]l p

but taking the determinant of both sides of (3.72) tells us that

aet XXP) _

8(q,p)
and thus the claim is proved.

The important point of this appendix is that we have shown that an arbitrary change
of the canonical co-ordinates given by (3.69) induces a canonical transformation given
that the momenta transform as (3.70), and that this transformation preserves the kinetic
term (3.71) and the phase space measure. It should be noted here that these results
hold also for mixtures of c-number and Grassman-valued dynamical variables, provided
the order of the factors is preserved. When generalising to field theory, of course the
partial derivatives are promoted to functional derivatives, and the sums over co-ordinate

indices to integrals.
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3.B The S-matrix equivalence theorem

The S-matrix equivalence theorem [100] states that while an invertible change of field
variables modifies correlation functions, it does not affect the S-matrix elements derived
thereof, up to a wavefunction renormalisation.

Let us illustrate this concretely usmg a toy scalar model. We compute correlatlon :

functions from the model’s partition function

2li) = [Ds ewi{niel+ [dwis) .79

for some action I [¢] by taking functional derivatives with respect to j(z) at j = 0. Then
the LSZ theorem gives us the S-matrix elements as

~

W0 (x;

§ 20
X dty; et UViAT
H/ s i )zéy(y]) 20 |j=0

(@i anlSIp1- - Pn) = Z5 (m+")/2H / s PN ()
| (3.74)

where A™! is the kinetic operator, Z5 is the ﬁeld strength renormalisation, and Zj is
the free partition function.

Now let us write the action in terms of a new ﬁeld variable ¢’ given implicitly by
the invertible transformation ¢ = ¢' + F[¢',0,¢',0,0,¢',...], where F is a regular
function(al) of ¢ and its derivatives. (If this change of variables has a non-unit jacobian,

we can ignore it for the purposes of this discussion.) Then (3.73) becomes
20 = [ D4 expi {-I[¢' +F+ [t (o +F)}. | (3.75)

If we define a new action

I'l¢') = I[¢' + F]

then the equivalence theorem tells us that we can just as well use

= / D¢ expi{f’[¢']+ / d*z j¢>’} h (3.76)

in (3.74) as the original Z[j].

Upon taking functional derivatives with respect to j, we see that additional terms of
g and highér powers hidden in F' are pulled down from the exponential: an insertion
of ¢'™(z) will connect to n propagators, whose momenta sum-to that associated with x
by the Fourier transform. Unlike when n = 1, these propagators will not,‘ in general,
cancel the inverse propagator from LSZ Teduction'and thus vanish in the on-shell limit.
Hence, we can ‘truncate the source term in (3.75) to [ d*zj¢’. At the quantum level, self-
energy-like terms can be made from insertions of ¢"(z), but these will alter scattering

' amplitudes by at most a wavefunction renormalisation.




Chapter 4

Equivalence Theorem Evasion
and Dimensional Regularisation

k)

In the previous chapter, we saw that by applying a canonical change of variables to
light-cone Yang-Mills theory, we obtained the Canonical MHV Lagrangian: one with
Parke-Taylor MHV vertices and Feynman rules that follow the CSW rules. In our
closing comments in section 3.5, we noted a number of shortcomings. First, there are
the so-called ‘missing’ amplitudes: using the vertex content alone, it is impossible to
construct certain non-vanishing objects, significantly the one-loop amplitudes with at
most one negative-helicity gluon (something we also mentioned in our review in section
2.8). It was also noted that the MHV amplitude at tree-level, which does not vanish
for complex momenta or in (2, 2)-signature space-times, does not appear in the theory. -
Seéondly, we note that the CSW rules don’t appear to suggest in a natural manner how
one should go about imposing a regularisation structure, which would be required for a
complete treatment of the theory at the quantum level. Can our lagrangian formulation
be extended to provide this? In this chapter, we will begin to address these issues.

- This chapter may be considered to be divided into two segments. The first, in section
4.1, introduces the notion of completion vertices: contributions to the S-matrix that
arise from the canonical transformation itself. We use these to recover the tree-level
(—++) amplitude by a mechanism that evades S-matrix equivalence theorem. We then
consider their role in tree-level amplitudes in general.

The second segment (sections 4.3 and 4.4) works towards understanding the con-
struction of the missing one-loop all-+ amplitudes in pure Yang-Mills. We begin by
applying the canonical transformation to a light-cone Yang-Mills theory which has been
extended to D dimensions in a particular manner, which we use to derive D-dimensional
‘completion coefficients and associated completion vertices. Equivalence theorem evading
contributions are used to construct the one-loop (++++) amplitude, and we analyse
their cuts to demonstrate that the quadruple cut of the propagators coincides with that
of the known one-loop (++++) amplitude. Then we demonstrate that [for a partic-
ular momentum routing topology] that the equivalence theorem evading contributions

70
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sum up precisely to the amplitude one would have obtained using light-cone Yang-Mills
theory. ’ ‘

Finally, we draw our conclusions on this chapter in section 4.5.

This work was published in {49]. ' |

4.1 MHY completion vertices and evading the equivalence
theorem
Let us re-visit (3.26), which defined the canonical transformation by absérbing the MHV

vertex into the kinetic part of the theory in terms of B and B. Written in quantisation

surface momentum space, the MHV vertex is

LTt =tr [ V2(123) ApAsAs (21)%6% (1 + p2 + P3) (4.1)
123 ’
where 5 ‘ ‘
72(123) = i%{l 2}. (4.2)

Now had we written (3.41) retaining V2 rather than writing it out explicitly, we would

have arrived at the following recurrence relation for T:

1 n—1

T n)= e > V(Poy P, V(= 2, ., )T (=5 +1,...,n), (43)
1(21’:1 wi) §=2 ] .

whence

T(123) = —— V2(231) 2V%(231)

= . (4.4)
l(wl + wy + w;),) 1(P1 + Py + P3) ‘

Here, P, := p?/4, and the second line follows using (4.78).

Now clearly this can be performed for any choice of V2. Furthermore, the derivation of
the series for A in section 3.3.2 does not involve V2, so the recurrence relation (3.55) still
-holds and taken together with (4.3), we have a recipe for computing the series expansions
of A and A. This is an important indicator as to how amplitudes involving the ‘missing’
MHV vertex V? are recovered, and to demonstrate that the recovery mechanism is
generic in any theory where a canonical transformation is used to absorb a three-point

vertex into a kinetic term.

4.1.1 Defining completion vertices

At the end of.section 3.1.2, we commented on how scattering amplitudes can be formed
by applying the LSZ reduction to correlation functions of A and A fields. Let us write

such a (momentum space) correlation function somewhat schematically as

(A Alg)).
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tovo—+ —1

F1GURE 4.1: The MHV completion vertices:  graphical representations of the T and

= coefficients of the series expansion of .4 and 4. The wavy lines with a +(—) denote

insertions of .A(A) operators in correlation functions; B and B attach to the straight
lines. All momenta are outgoing.

However, it is now the B ﬁel.ds which propagate in the theory. Therefore, we must regard
A and A above as functions of B and B and make the replacements from the series; again,
schematically we can write this as (neglecting the field normalisation factors and integral

symbols for clarity)

8 g =
(- (Z Yp2..mBs - --Bﬁ) <_25:q2}_n3§...35; -'Bﬁ) ). (4.5)
n n,8

~

Order-by-order, we take Wick contractions between the B.field’s operators using its
propagator. This naturally lends itself to a Feynman graph representation where we
have vertices for the coefficients of the series (3.42) and (3.52), and they are shown
in fig. 4.1. We refer to these vertices as ‘MHV completion vertices’ and graphs built
from them as ‘MHV completion graphs’ since they allow the construction of amplitudes
otherwise absent from the theory. Each vertex, which we have drawn here with an empty
circle, corresponds to the insertion of an A or A operator, labelled diagrammatically by
the sign on the curly line. Of course, B propagators attach only to the straight lines.
Note that the figure shows the vertices appropriate for A4, B, etc. so that the normal-
isafion factors of (3.8) can be omitted for clarity. If one wishes to work with canonical

normalisation, as we will do in the rest of this chapter, we make the replacements

%Vs(l---n) R % <—%>nv3(1---n); (4.6)
T(l---1‘1) N (_%>n—g T(l"‘ﬁ)a | (4.7)
=) = (‘7%)2:0”) | | (48)

which for V¢ also includes the normalisation of the action.
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4.1.2 Equivalence theorem evasion: the tree-level (—++) amplitude

Let us now use the completion yertices to recover the tree-level (—++) amplitude. By
(3.25), this is obtained by amputating the (AAA) correlation function. The diagrams for
this are shown in fig. 4.2, from which we see we need to take the limit as p?, p2,p% — 0
of '

ig 3 11 111_, 1114
ipipsps X | ——= | x (—1)° % —7T1(123) — == =z=(231) — -—=7=2"(312
plied x (~4) x (-) {23<>p§p%2<) 575012
=fg_12_<z;%+g%+g_§>
2(23)\1 2 3

(4.9)

In the first line, the leading factor of —¢ comes from an un-cancelled inverse propagator,
the second from the restoration of the canonical normalisation using (3.8), and the third
is the gluon polarisation factor. Three-particle kinematics mean that this does not vanish
in the null limit: using (4.77) cancels the factor of (2 3) in the denominator but leaves a
{13} = —{23} in the numerator, giving the MHV amplitude. However, we can see this
in a more direct manner if we use the first equalities of (3.56) and (3.57) to substitute
for Z! and Z? in favour of T,! then use (4.4) and notice that for (4.2)

~

_ 12 _ . 12
V?(231) = §V2(312)

=V?3(123
57 (123),
the first line of (4.9) simplifies immediately to
gV2V%(231),

which is precisely the MHV amplitude we sought. Notice that this occurred before taking
the on-shell limit, and without any reference to the specific form of V2. Evaluating V2

and using (3.6), we arrive at the result

23]°

9T (4.10)

A(1™, 2t 3%) — gVaTY( (231) = zg\/_u{2 3} =

b

which is precisely the Parke-Taylor MHV amplitude given in (3.65)

The origin of equivalence theorem evasion

It would appear here that the S-matrix equivalence theorem, as described in section 3.B
has been violated, since recovering a non-vanishing amplitude from a theory in which it

is ostensibly absent is certainly not a wave-function renormalisation. Clearly, what has

!We note here that in (3.56) and (3.57), and the following three formulae for the four-point =
coefficients, the first equality in each is derived directly from the recurrence relation (3.55), and as such
is independent of the exact form of V2 The subsequent equalities depend on knowmg the form of T
and hence V2.
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FIGURE 4.2: Contributions to the tree-level (—++) amplitude, before applying LSZ
reduction.

happened is that the transformation itself does not completely satisfy the hypothesis of
the theorem, in particular regarding locality.

The presence of momenta in the denominators of Y, or equivalently inverse deriva-
tives, shows that the transformation is non-local on the quantisation surface. However, it
is local in light-cone time; moreover, it contains no 20 dependence, hence the absence of
any terms in $. As such, one would not expect it to generate the factor of 1/p? required
to cancel the inverse propagator from the L.SZ reduction to allow the graph to survive
the on-shell limit. It is therefore somewhat remarkable that there exist conditions under
which the theorem is circumvented: what we have seen here is the terms in the first
factor of the recurrence relation (4.3) collecting together so that the factor }; pg /7 is
formed (by (4.78)) despite such terms being independent of p. '

4.2 Higher order tree-level amplitudes

The proof given in section 3.2.2 that the vertices of the Canonical MHV Lagrangian
were the Parke-Taylor amplitudes continued off shell by the CSW prescription relied
on the tree-level amplitudes and vertices agreeing (up to polarisation) when on shell.
One might begin to worry at this point that the presence of these corﬁpletion vertices
could contribute to MHV amplitudes and spoil this. Indeed, it is pdssible to construct
tree diagrams involving completion vertices that contribute to MHV (and higher) helic-
ity configurations. For example, fig. 4.3 shows the completion vertex contributions to
A(17273%74%). Consider the first, fig. 4.3(a): the contribution of this graph is propor-
tional to ' | '

iP=t(4,1,2 4+ 3) V(4 +1,2,3)

(p1 + pa)?
. 2V2%(2+3,4,1) 1
1P+ >
. P+ Prs+ Py) (p1 + p4a)

~ V3(4+1,2,3),

For generic momenta, the momentum g7 + p4 which runs through the gluon propagator
will not be null, and as such the expression above cannot produce the 1/ pZ pole required
for it to survive the on-shell limit. By considering the other diagrams similarly, we see

that théy also make no contribution in the on-shell limit.
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q+ 3+

(@ (b) : (©)

4+

(d) (e ®)

FIGURE 4.3: Graphs containing completion vertices that contribute to the amplitude

A(17273%4%). These annihilated in the on-shell limit of the LSZ reduction since the

momentum in the propagator is generically off-shell, and the completion vertices cannot
provide the 1/p? pole required.

More generally this happens because the helicity content of MHV and N"MHYV (r > 1)
amplitudes require tﬁat any completion vertex/vertices is/are attached to a propaga-
tor(s) which at tree-level will carry non-null momenta. By considering the explicit form
of T, or moreover by inspecting (4.3), it is clear that the completion vertices cannot
generate the required poles to ensure their survival of the LSZ reduction. Thus, MHV
completion vertices make no contribution to the non-vanishing tree-level on-shell ampli-
tudes for four or more gluons, and the proof at the end of section 3.2 still holds.

What of the A(172%...n™) tree-level amplitude for n > 47 Its helicity configuration
permits contributions of the form of a single completion vertex connected to no internal
propagators, which we mlght expect to survive. The completlon vertex contrlbutlon to

this amplitude is proportional to the on-shell limit of

n

ipY E: PERIYG L m 1, = 1),

Now we can see from (3.55) that all terms but one in a =, namely a lone T with the
same number of arguments as the Z, consist of products of Ts with generically off-shell
momentum arguments. We therefore discard these terms for the same reasons as above
(they cannot generate the poles required for survival of LSZ), and make the replacement
E(1---n)—>Y(r+1,...,n,1,...,7) to obtain ‘

I(PL+ - +P)TA-n). . ' (4.11)
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However, for n > 4 we know that all other contributions to this amplitude vanish, as
does the amplitude itself, so (4.11)-must also vanishes on shell. It is easy to see that it
does simply by inspection using the explicit form of T(1234---n) in (3.51), which has

only co-linear singularities.

'4.2.1 Tree-level off-shell reconstruction

Although completion vertices have no contribution to on-shell tree-level amblitudes,
we expect them to contribute off shell to recover the underlying light-cone Yang-Mills
theory. That this is so is strongly hinted at by the recurrence relations (4.3) and’(3.55)
which express the T and E vertices as sums of terms proportional to V? vertices in
a mannér that consistently matches up the external helicities (after amputation). So,
although the individual graphs of fig. 4.3 do not correspond to LCYM graphs due to
the denominator in the leading factor on the RHS of (4.3), we might expect that when
summed and added to the contributions from the graphs constructed with MHV vertices,
the inverse propagators supplied by the LSZ reduction cancel the denominators to leave
the LCYM graphs, before taking the on-shell limit.

An example: tree-level A(12-3+4+)

Let us demonstrate this in the case of A(1727314%). By a fairly straightforward calcu-
lation, we can see that by taking the sum of the graphs of fig. 4.3, multiplying by the
inverse propagators, and then adding the contribution from V2(1234) (the (——++) ver-
tex from the Canonical MHV Lagrangian shown in (3.63)), we reconstruct algebmicdlly
the off-shell amplitude as computed with LCYM Feynman rules. It is instructive to
‘jllustrate at least in part how this works, and since the topology of the momentum rout-
ing between the vertices on the MHV lagrangian side must match that of the LCYM
graphs we seek to recover, we can consider just the (1,2) channel, i.e. the contribution
from figs. 4.3(e) and 4.3(f) and from the third term in (3.63) (its first two terms clearly
have the topology of the (1,4) channel, and the last term is just the (— — ++) vertex
from light-cone Yang-Mills theory). Restoring the normalisation of 4, fchese terms are,

respectively

ig?V?(1,2,3+4)Y(1+2,3,4)

1 :
+1ig°V?(1,2,3+4
7V )(p1+p2)2(

3
g 145 .
+1ig?V2(1,2,3 + 4) ! E (—H )51(4,1+2,3) 4P

(p1 + P2

Piys
P o+ P+ Py

= 2g° L 21/?(1,2,3+4)V2(3,4,1+2){

(p1 + p2)

+ P + i
Pis+P3+P; Pyo+P3+Py|’
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where we have used the first equality of (3.56) and (3.57) to evaluate Z! and Z2. This
is of course trivially equal to
1~ 2+

%+ ) i
_ =2¢°V%(1,2,3 +4)———V2(3,4, 1+ 2).
. o g°V*( )(p1+p2)2 ( )

We shall see in section 4.4 that the same features are responsible for the recovery of the

all-+ one-loop amplitudes.

4.3 The D-Dimensional Canonical MHYV Lagrangian

The treatment of quant'urr'l corrections to amplitudes in the canonical MHV lagrangian
formalism will require that the theory be regulated, and we will do so by dimensional
regularisation. It turns out that we can then apply the canonical transformation proce-
dure essentially as before, save for the fact that pieces outside four dimensions result in

‘much richer structure and hence more complicated MHV rules.

4.3.1 Light-cone Yang-Mills in D dimensions

We write the co-ordinates in D = 4 — 2¢ dimensions as:

D- I -1 . 2l
x0=%(t—x b, ' z‘=712=(x2 +iz"),
0 D- I 2I-1 _ ;. 2I
0= Ler 5P = L )

.where the index I runs over the %(2 — 2¢) pairs of transverse-directions. In these co-
ordinates, the metric takes block diagonal form with non-zero components go5 = ggo = 1,
g,150 = gz1,0 = —0ry. Again, we introduce a more compact notation for the compo-
nents of 1-forms and momenta, for which we write (po, pg,p,1,P057) = (P, , pr,Pr), with
(7,7, ny,Ay) for momenta labelled by a number. ' |

The reason we make this choice of basis is that it will lead us again to a lagrangian
with an MHV structure and thus inherit some of the simplicity of MHV rules in four
space-time dimensions, for example the tree-level properties that the first non-vanishing
vertices are MHV vertices, that NMHV amplitudes are constructed by joining precisely
two such vertices together by the propagator and so on.
| In these co-ordinates, the invariant becomes

A-B=AB+ AB- A1B; — A;By, : (4.12)

where we have assumed the summation convention that a repeated capital Roman index

in a product is summed over 1,...,1 —e. The bilinears of (3.3) become

(12); =12, -21;, {12};:=12;,-21;. - "(4.13)
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They amount to our D dimensional generalisation of the familiar spinor brackets (3.6).

Scalar producvts‘between these will often be shortened to -

(1 2)-{1 2} = (1 é)]{l 2}],

A

where the dot is obviously redundant when the bilinears are purely four-dimensional.
The Yang-Mills action is written as before in Minkowski co-ordinates as

S = %5 dPz tr FH¥ F,. - (414)
The field-strength tensor and group generators are defined as before in'(3.8)., The
quantisation procedure is similar to that in four dimensions. It takes place on surfaces
¥ with normal p = (1,0,...,0,1)/v/2 (i.e. of constant %) in Minkowski co-ordinates,
subject to the axial gauge condition u - A = A =0 We apply the gauge condition
and integrate A out of the lagrangian by the same procedure as in section 3.1, extended
, td accommodate the additional degrees of freeddm, and are left with a D-dimensional

light-cone action in the form (3.19), where now

L=t = tr] dP~1x A;(86 — 878, Ar, . (4.15)
. b :
[t = —tr/ dP-1x (51./4][5_1.«41,3/1]] + 51AJ[5_1AI,5AJ]); (4.16)
z
s g / dP~1x (914167 AL, A7) + 01 4167 Ar, 6.A4)), (4.17)
)

L = —tr /E dP-1x ( %[éAI,/L] 52 1547, A))
1 . A ~ =

+ L1641, 4,672 (547, AJ]

f ) - (4.18)

~ {1041, A1 67 (DA, A)] -

- T AL Al - 1A A 4]

It may be shown with integration by parts that these expressions reduce in four dimen-
sions to (3.20)—(3.23).

4.3.2 ' The transformation

We will now specify the change of field variables from .4 and A to B and B. From (4.15),

we see that the momentum conjugate to A; is I1;(z) = —8.Ar(x), and as such
DADI = [[ dAs(z) dil;(z) (4.19)
z,J )

is proportional (up to a constant) to the path integral measure DADA; therefore under

"a canonical field transformation the jacobian will be unity. Again we choose A to be a
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functional of B alone, and by (3.70) and (3.71),

s L 0B (2% y) o
as,.0 _ D-—-1 J )
G5 ) = [ aPly ST OB "), - (420)
tr/ dP~1x 54415/{1:&/ dP-1x 6B; HB;. (4.21')
% b

Again, working in momentum space on the quantisation surface, we express A as a

series in B, but this time the series coefficients carry extra indices for the new transverse

Ar (p1) Z/ Trtn(l-°n) Bp(=p2) -+ Br,(=pn) - (4.22)

n=2

where Y75(12) = 6(p1 + p2)drs. The integral short-hand used here is

1—¢
[~ Mg | T
l.n I=1- ;

and for later use we introduce the §-function stripped form of a coefficient, given (as the
first factor on the right-hand side) by

Yroz,(1---n)="YA"M .. .nln) (27)3-253"2%(p; + .- + p,) (4.23)

and similarly for the other vertices Z, V and W, defined below. They should only be
considered to be defined when the sum of their momentum -argurnents is 0. Repeated
transverse indices in the superscripts are also subject to the summation convention. For
convenience, we will often also subsume the index into the momentum label when the
" association is obvious (e.g. Y(171 .- ni») — Y(1-..n) above). |

The canonical transformation removes the (~++) terms from the lagrangian by ab-

sorbing them into the kinetic term for B:
A Al + LT [A, A] = L™ T(B, B]. (4.24)

Briefly delving into momentum space on the quantisation surface, it is seen that the
term on the right-hand side of (4.24) supplies the tree-level propagator

(B1By) = _“Ldl.]- (4.25)

Similarly, from the quantisation surface Fourier transform of (4.16), expanding the com-

mutator and re-labelling leads us to
L™t = tr/ VIZJK(123) AiDA;(2)A(3) . (4.26)
123 , :

where

oy Ky _ {3 1‘}J5KI {23}15JKl :
V(1127358 = < 5+ - ) | (4.27)




Chapter 4 Equivalence Theorem Evasion and Dimensional Regularisation 80

It obviously follows from (4.24) and the light-cone lagrangian that this is the D dimen-
sional equivalent of the (++—) MHYV vertex for the A field, and this is reflected in our
choice of notation. A , _

- The remaining pieces of the lagrangian, (4.17) and (4.18), form MHYV vertices in 4—2¢
dimensions, as explained in the next section. To obtain the Y coefficients, we take the

explicit expression of (4.24) and use (4.20) and (4.21), as before, to further reduce it to

98, 5 4 sigr_ 9sig satlog_ [ gy A0 (88
(B -mran i -S540, 0a0 ) 0 = [y 35089 (52) s
’ (4.28)

By again transforming to momentum space and substituting the series expansion for A
into both sides of (4.28) above, carefully rearranging the fields, and comparing terms
order-by-order in B, we extract successive T coeflicients. At (9([32), one finds

T(17273%) = m (2{23}k 615 +3{23}s6k1) . (4.29)

_1 V273K
1(Q +Qp + )
V2273510
p2/1+p3/2+p%/3

(4.30)

_2
1

and for compactness we have defined

Again, substituting the series ansatze for A in the definition of the transformation and

working order-by-order in B leads to the recurrence relation

n—1
T(1---n)= Z 2P PR, DY 2, )Y (=B + 1, n),
(4.31)
a particularly useful case of which is
. o ] .
T(1234) = —7——1{ V2(2,54,1) V?(3,4,54)
10 { TU5(Qs + Q3 + Q) - 32)

o 1 _ .
+V2(54,4,1)< —V?%(2,3,54) 3.
( 7 )5(Q5 +92+Q3) ( )
Note that here (and thrdughout) Ps is a dummy momentum with scope limited to each
term, and that its value should be taken to be the negative of the sum of the other

arguments that accompany it in each term.
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Differentiating (4.22) with respect to B and inserting the inverse into (4.20) suggests

a series expansion for A of the form

oo n ~
_ : S o _ _ :
A(-p) =03 [ $EIL (12 m) By (-pa) B (-pe) -+ Bry(—pa). (439)
. n=2s=pJ/2n :
Now, inserting (4.22) and (4.33) into (4.21), and then comparing coefficients order-by-
order in B, we may obtain expressions for the Z coefficients in terms of other =s and YT's

of lower order. The results
s1(11273K) = —(273K11) and =?(17273%) = —71(3%1727) (4.34)

will be of particular relevance to the forthcoming. By careful examination of the expan-
sion of (4.21) at the (n — 1)*® order in B, one finds that this recursion relation

. n+l-s r+s—1

E(lm)== Y > r(=43-r... ,m+1-r1)

r=max(2,4—s) m=max(r,3)

><ET““m(—A,m—}-Q-—r,...,2—r).

(4.35)

holds, given that Z(1/27) = ;i

As in section 4.1.1, we introduce a diagrammatic representation of T and E in the '
form of D-dimensional MHV completion vertices, the first few of which are shown in
fig. 4.1. We note that the process of deriving T and Z in 4 — 2¢ dimensions differs
only from that in four dimensions by the presence of extra transverse indices, which are
seen to each ride alongside (and can therefore be built into) a momentum index. It is
therefore not surprising that the relationship between T and = is, from this point of

view, identical to that in four dimensions.

fxmwo——7 2 =4,

- 212’+
111,+'n'm< =T .nln)
nin + .
2,4+
11’;*"“’”@%35,— = -2z .. nln)
I 1
_ nT,+

FIGURE 4.4: Completion vertices for the D-dimensional Canonical MHV Lagrangian. »
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4.3.3 4 — 2e-dimensional MHYV vertices

We will now extract the 4 — 2e-dimensional generalisations of the three and four gluon
MHYV vertices. The interaction part of the lagrangian takes the same form as (3.32)
except that the vertices carry polarisation indices to contract into the corresponding Bs
and Bs:

: > Vien(n) (B (—p1)Br(=p2) - Br(~ps) - B,In(-bn)]
22 Jim |

The Feynman rule for a particular B vertex is thus 4iV(11...nfn)/g? ((4.6) applies
in the canonical normalisation), and this follows from its definition as the sum of all
contractions of external lines into the term in the action with the matching colour
factor, while accounting for the cyclic symmetry of the trace.

Thevthree—point MHYV vertex follows trivially from L~~7 using the leading order

terms in the series for A and A. In quantisation surface momentum space, (4.17) reads

It =t [ V20123 AMA@AB) (4.36)
- 123
where 31,6 23),6 :
V2(1I2J3K)=—i_(( )QJ x )iI ‘”‘>. | (4.37)

Since A = B and A = B toleading order, upon substituting (4.22) and (4.33) into (4.36),

we immediately see that V2(17273%) is the Br(1)B;(2)Bx(3) colour-ordered vertex.
We note that the BBBB and BBBB colour-ordered vertices receive contributions from

L==*[A] and L~~*"[A]. Upon writing the latter in momentum-space, we have

L~ = tr / (W3 k1 (1234) A (DA, @) Ac(G)AL@)
1234

| (4.38)
+ W3k (1234) A;(1)A;(2) Ak (3)AL(4)}
where
15 1 34
WH284E) = Guxcdys + drubor (4:39)
. 1 12+ 34 id+23\
w3(11273K 4L 818 + 6170k —e | . 4.40) -
( | ) = IL JK(1 AE 1J KL(1 23)2 .( )

We substitute (4.22) and (4.33) into L™+ [A]+ L~ ~1*[A], and collect the terms of each
colour (trace) order of O(B*). Contracting external lines in a colour-ordered manner

into these terms, we have

i _ 5 A
V3(1234) = g1/2(5;A23)E2(5*‘z11) + -§V2(15A4)51(5A23) (4.41)

+V2(125%) T (5434) + W?(1234)
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for the Br(1)B(2)Bk(3)BL(4) vertex, and

i _ 3 .
V3(1234) = gVz(sf‘34)51 (5412) + §V2(15A4)52(5A23)

f§V2(5A12)52(5A34) + %V2(35A2)51(5A41’) (4.42)
+2W3(1234)
for the 51(1)‘3‘](2)8}{(3)8[,(4) vertex.

That these expressions reduce in four dimensions should be obvious by comparing the
forms of (4.41) and (4.42) to their four-dimensional analogs in section 3.4.2 and noting
the reduction of the individual factors. '

It is worthwhile noting here that unlike in the four-dimensional case, the vertices
(4.41) and (4.42) contain terms which vanish on shell. Furthermore, the transformation
coefficients and the resulting vertices are no longer holomorphic (owing to the scalar
product in the denominator of (4.29) preventing cancellation of the antiholomorphic
bilinear, something possible in four dimensiohs) or have a simple form. The CSW rules
are an inherently four-dimensional construction, and nor do we have any known D-
dimensional generalisation of the Parke-Taylor amplitudes with which :to compare. As
~ such, we simply take (4.41), (4.42), and higher vertices computed using this programme
as the definitions of the D-dimensional MHYV vertices. v '

4.4 The one-loop (++++) amplitude

It is not possible to construct a one-loop (++4+) amplitude using only the B vertices
of the canonical MHV lagrangian. Nevertheless, we know it is non-vanishing and given
by (2.62). We will see that it arises (as it indeed must) from equivélence theorem
evading pieces, constructed from the MHV completion vertices of fig. 4.4. In all, we can
construct four classes of graphs for this contribution: boxes, triangles, two classes of .
bubbles (corresponding to the two possible arrangements of external lines on either side
of the loop), and the tadpoles. ’
In the next three subsections, we will consider the quadruple cut of these diagrams.
We will restrict ourselves to analysing the cuts that arise from the singularities provided
by the propagators, which we refer to as standard 'c_uts. From general consider/ations (33]
we expect other non-standard cuts arising from the singular denominators in the vertices.
This is true both of the D dimensional version we have here and the four dimensional
Parke-Taylor forms (2.22), but from the earlier derivation it is clear that this singu_lar
behaviour is restricted to the quantisation surface (they have no dependence on p).
These cuts therefore depend on the orientation of the quantisation surface, i.e. u, and
are thus gauge artifacts which should all cancel out in any complete on-shell amplitude.
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FIGURE 4.5: Box contributions to the one-loop (++++) amplitude. All external
momenta are taken as outgoing. .

4.4.1 Off'—shell quadruple cut

The (++++) amplitude is obtained by amputating (AAAA4), the box diagram for which
is shown in fig. 4.5. This gives a contribution of

APK(L* 2¥ 5 4%y = G gt PIPAPSPS dD mLa .
{VZ(_qi), 1) qf)‘—/2(_Qfx7 aq2B)V2(—QZ 73’ a3 )Vz(_QS ’4 a4 )
+ VZ(LQI y — 4y )V2(2 QZ y 1 )V2(3 Q3 ) )V2 4 Q4 y )}
: mm

where we have already used (4.30) and (4.34), the internal momenta are defined as
gi = q — Pi1;, and we define the short-hand '

2 2 2
NP5 (4.44)
qj qj-1 b
(indices interpreted cyclically). Note that the external momenta pi,...,ps are in four

dimensions and thus their transverse indices have all been set to one.

Before going on to compute the quadruple standard cut of the box, as an aside we
will show that its double and triple standard cuts vanish for on-shell external momenta.
Consider cutting any three internal lines of fig. 4.5, keeping the remaining internal line
strictly off-shell. Without loss of generality, we choose these internal lines to be g1, g2
and g3. In order that the amplitude survives LSZ reduction, the correlator must generate
a singularity in p%p%p%pi. Cleariy, the ¥y and T3 denominators provide a singularity
p%p% once the internal lines are cut. We now claim that the triple cut vanishes as follows:
the required singularity in p?p3 must come from the denominators in the remaining tree
graph connecting p; and py. The relevant factors from (4.43) are the g4 propagator, and

the X, and X4 denominators, i.e.

-1 —1
Lk i ) (k)
@Z\G G D da g3 Da
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Upon setting g% and qg to zero and discarding (the non-vanishing) factors of momenta
that appear on the numerator, we arrive at

The above factors clearly cannot cancel p%p?l so long as g2 # 0. Hence this cut vanishes
as we take all the external momenta on shell. By similar consideration, one can also see
that both possible double cuts of this graph also vanish.

Now, we will compute the standard quadruple cut. This is obtained by putting all four -
internal lines on shell [33,35,36]. The external momenta are kept off shell momentarily.
We see that the X; reduce to p? / ¢ factors upon cutting, producing poles which thus cancel
the factors of pf from LSZ reduction and the 1 /i factors. The remaining terms have a
finite non-vanishing? on-shell limit and it.is already clear that they are exactly what we
obtain from the four-cut box contribution using the light cone Yang-Mills action (3.19).

For the purposes of demonstrating that precisely this contribution arises from the
four-cut MHV cbmpletion box graph within the present formalism we do not need to
go any further. However, let us show how this contribution can be straightforwardly

computed within the formalism we have developed here.

4.4.2 Explicit evaluation of box quadruple cut

We begin with (4.43), and substitute for V2 using (4.27). For the moment, the external
momenta, p; are four-dimensional and off-shell, whereas the loop momentum ¢ = ¢4 in

the integral is D-dimensional. To compute the cut, we replace the four propagators with

574(q1)8+*(92)67(43)6 (au),

and by splitting the integral over momentu_m space as in section 2.6.1, these  functions
enforce the four constraints g2 = 0. This in turn fixes the four-dimensional part of ¢
to a discrete set of solutions (in fact two) in term of the remaining, orthogonal —2e
components v. It is now safe to take the p; on-shell and, assuming solution to the

constraints exist, we are left with

1 dv—2%
51 @

8g%(1 - q1}{q—1,2}{g+4,3}{g 4}. (4.45)
Some comments are in order here. First, note that the {-- -} bilinears above have their
index set to 1, but this has been dropped for clarity. Now by their ¢ dependence, the
bilinears abové are functions of v, but we can say more: since ¢ can only contract with
either itself or the four-dimensional external momenta, we see that these solutions can
in fact only depend on ' '

v? = 2(qrqr — 49)- , (4.46)

2Recall that four-cut solutions are non-vanishing because they use compléx external and internal
momenta [33, 35, 36).
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We would also like to point out the factor of (1—¢) comes from dimensional regularisation
of the gauge field degrees of freedom ( cf. the four-dimensional helicity scheme [101], which
extends only the loop momentum to D dimensions and therefore lacks this factor).

What remains is to obtain expressions for the bilinears in terms of v/2. In the following,
since the momenta are complex, {¢g 1} is not related by complex conjugation to (g 1).
First, consider (¢ 1)-{g 1}. Since, ¢? = ¢® = p? = 0, (4.75), or (4.77), implies that this
vanishes. Splitting away the four-dimensional part and using (4.46) gives

(gD){g1} +1%2/2 =0, (4.47)

and similarly
(g—-1,2){g—1,2} +2%?/2 =0 and (4.48)
(@9){g4} +3%2/2=0. (4.49)

&

* We eliminate v? between (4.47), and (4.49), and then use (4.76) to eliminate (¢ 4) and

its conjugate. This gives

alal) D, {el}
G+a92 44380 9
19" {1y
Similarly, ehmlnatlng v? between (4.47) and (4.48) leads to
o alal) | s{el}
g—1+ 2—— sU g, (4.50)
(1 {12} -
Subtracting, and using (4.47) to eliminate {q 1} yields the quadratic equation
- 12,2 | '
oalg)?+1(ql)~a 5 = 0 (4.51)
where i 5 ) 5
I L S . S 4.52
“=0ey a2 “TUag 0z (4:52)
This has solutions
g _»
(@) =-5-(1£F), {el}=- 14:[3) B=V1+2aa? (4.53)
Next, the Bianchi-like identity (4.76) gives
i{g—1,2} =2{q1} + (¢ - I){12}. (4.54)
Using (4.50) and (4.53) gives
2 {12} :
- - = ——-—=(1%p). 4.55
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Similarly, we find

_ 4 {1 4}
To obtain the final bilinear {g+4,3}, we use (4.76) twice to obtain it in terms of {g 1}
and {q4}. (4.77) is then applied to eliminate a quotient of (---) bilinears present in one

of the terms in favour of conjugate bilinears, giving

_1023){(34) |
Assembling the product of the {-- -} bilinears from (4.53), (4.55), (4.56) and (4.57),

we have

o {23134} iasa {12}{34}
11}{g—1,2}{qg+4,3}{q 4} = —31° 29,0 2334} _ 15535 0 :
for either of the solutions (4.53), where in the second assertion we have used the fact
that the right-hand side of (4.77) is zero for null p,. Using this in (4.45) and reinstating

the propagators we arrive at

{12}{34} [d'qd?*v ! :
2(1 - 99" (12)(34) (2m)P  qiq3diq}’ (4.59)

Thus we conclude that (4.43) has precisely the quadruple cut of the 4 — 2e-dimensional
box function Ky, as expected of this amplitude [77,87,92,102,103].

4.4.3 Triangle, bubble and tadpole contributions

Typical triangle, bubble and tadpole contributions to the one-loop (++++) amplitude
3

with internal helicities running from — to + in a clockwise sense
4.7 and 4.8.

are shown in figs. 4.6,

FIGURE 4.6: One-loop MHV completion triangle graphs for the (++-+) amplitude.
Note that the propagator carrying an external momentum is attached to the = vertex
differently in each case.

Despite appearances, these diagrams do have quadruple cuts as a result of the singu-
larities in the vertices. We therefore have to consider also cutting the vertices. Let us

3The “sense” of internal helicity orientation is always defined here as propagating from — to +.
‘ ) i
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(a) : (b)

FIGURE 4.7: MHV completion bubble graphs. In (a) we show a 2|2 bubble. There

are three other graphs like it (up to shifting the external momentum labels once by

i — i+ 1) obtained by swapping the external momentum propagators between gluons

1 and 4, and between gluons 2 with 3. The 3|1 bubble is shown in (b); there are two

additional graphs (up to rotations of the labels), in this case obtained by associating
‘the curly line attached to the five-point = with gluon 2 or 3 instead of 4.

q4

FIGURE 4.8: Tadpole MHV completion graphs. Notice that the coupling of the six-
point E to the A field (denoted by the curly line) is associated with a different gluon
in each case.

first consider the quadruple cut of the triangle graph. We can restrict our analysis to
the graphs fig. 4.6. Their contribution to the (++++) amplitude is

i Lge Pidipd [ dPq didads
Rdmdni—04” 12314 J (2m)P ¢fdia

{5<1q1, € EN 2, 6B —a)E (3, 0F —aB)

4
P2
gy 1

3 y —@q }
( Q3 .2)pf

[I]

- 224, 1,4, ~4§)22(2, 47, —af')

(4.60)

Using the recurrence relations (4.31) and (4.35) to evaluate the Es, we can re-write this

as

hm  Lgt PAPPEPE / dPq 16 X Tid T4
p2.p2.p3,p3—0 4 1234 (2m)P ¢2¢2¢2 | G1Z1528384(X1 + 24) \ P p?

D)
4

L Y ( 1 1 ) i+ i\

( 21)2 4):2)33 21+4 E1‘|‘24 \ % pL21
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with

X =V2(*Q4D’ 1, qf‘)vz(—qfla 2’ qZB)V2(“q2Ba 3; Q:?)‘_ﬂ(—qg, 47 (h]i)), ’ (462)
Y =V2(4,1,2+3°)V%(=¢f , 1 +4°, ¢ )V (=¢f,2,¢7)V?(~4,3,65),  (4.63)
g4 := q3 — p4 flowing “through” the vertex attached to p; (or p4) as part.of a box-like

“momentum-flow topology (see section 4.4.4 below for a further investigation of this),

and we define the following extensions of ¥; as

2 2 2 '

a4 g5 , (p1+p4)
21 4= = = 4 4.64
* q1 - g3 14+ 4 ( . )

2 2 2

' i pi (p1+p4)
C=—I\—+T_—I\—_-I\_l . 4.65
S T R (4.65)

Note that one can write down expressions for the analogues of X and Y from graphs
with internal helicities of an anti-clockwise sense. (It is easy to check for the case at hand
(where V2 is the three-point MHV vertex), that these are the same as in the clockwise
“scenario.)

Now, recall that we are only studying the standard cuts. We will extract such a
 quadruple cut contribution here, by keeping the external momenta off the mass shell,
and look for any terms containing 1/q7 in addition to the three propagators already
appearing in (4.61). Clearly, by inspection of the ¥; factors in (4.61), no such 1 /g3 are
generated. Indeed it is impossible to generate such terms from the vertices since the
singularity in 1/¢2 is not restricfed to the quantisation surface. Although the inverse
¥;s and X144 appear in (4.44) and above to yield singularities that look superficially
similar to those from propagators, by (4.78) these terms do not contain ¢ components
and thus their singularities lie entirely within the quantisation surface. '

A similar analysis of the graphs of figs. 4.7 and 4.8 leads one quickly to the same con-
clusion: they have no contribution to the quadruple cut for off-shell external momenta,
because in this region none of the denominators from their Z vertices form the necessary .
propagators. Hence, we see that for the one-loop (++++) amplitude in the Canonical
MHV Lagrangian’s formalism, if we keep the external momenta off shell until after the

cuts, only the box graph of fig. 4.5 contributes to the quadruple cut.

4.4.4 Light-cone Yang—Mills reconstructions

As with section 4.2.1, expressions (4.43), (4.62) and (4.63) expose the relationship be-
tween between the MHV completion graphs of figs. 4.5-4.8 and the Feynman graphs
one would use to compute the same amplitude in conventional perturbative LCYM.
We already see parallels -of the latter in the topology of the linking arhongst V2 MHV

vertices.*

“Recall that these are the same as the ++— vertices in light-coné Yang—Mills.
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FIGURE 4.9: Typical LCYM Feynman graphs that contribute to the (+4-44) ampli-

tude. Shown topologies are the (a) box, (b) triangle, (c) bubble, (d) typical external

leg correction, and (e) one of the tadpoles. (there is another tadpole not shown here
with the loop attached to the central leg of the tree instead).

Starting with expression (4.43) for the box graph, it is immediately apparent that
the momentum routing through the V2s yields the two box-like topologies in LCYM:
"one with the internal helicities arranged in a clockwise sense (from the first term in the
- curly braces, shown in fig. 4.9(a)), and another with an anticlockwise arrangement.

The triangle MHV completion graphs of fig. 4.6 reveal a mixture of topologies in the
momentum routing. Naturally, one would expect the triangle diagram of fig. 4.9(b),
and indeed this arises from the factor Y in (4.61). The MHV completion triangle graph
also has terms with factors of X, which we know is nothing but one of the vertex
configurations found in (4.43) of box topology, i.e. fig. 4.9(a). (As we have seen however,
in this case the fourth propagator is missing.)

The bubble and tadpole graphs can be processed in a similar manner: the graph of
fig. 4.7(a) contains the topology of, and therefore contributes to the reconstruction of, the
LCYM self-energy correction graph in fig. 4.9(c); similarly fig. 4.7(b) contributes to the
reconstruction of the external leg corrections (an example of which is seen in fig.-4.9(d)).
The MHV completion tadpole graphs in fig. 4.8 contain terms of topology of the LCYM
tadpoleé of fig. 4.9(e) (these are ill-defined but we can take them to vanish in dimensional
regularisation just as we would for the LCYM tadpole), as well as contributing pieces
with the self-energy and external leg cérrection topologies. Additionally, both MHV
completion bubbles and tadpoles contribute to the reconstruction of box and triangle
LCYM graphs.

Full reconstruction of the light-cone Yang—Mills box contribution

We saw in section 4.2.1 for the case of the (——++) tree-level amplitude that although
individual completion vertex. graphs are identical to LCYM graphs, the sum of all com-
pletion -and MHV graphs with a given momentum-routing topology did recover the
off-shell LCYM graphs of that topology. In this section, we will demonstrate this at the




Chapter 4 Equivalence Theorem Evasion and Dimensional Regularisation 91

loop level for the (++++) amplitude. Again, rather than do this for all graphs displayed

in fig. 4.9, we will concentrate on the diagr'amse of box topology with the internal helicity

configuration as displayed in fig. 4.9(a) (note the sense of the signs on the internal lines).
This corresponds to terms containing the factor X of (4.62). |

The MHV completion box graph of fig. 4.5 provides a contribution to the amplitude,

given in (4.43). of ‘ '
g [ o _xC

- (@m)P gtd3ddal

This is clearly of the box momentum-routing topology, as we remind the reader that X

(4.66)

is simply the product of MHYV vertices in a box configuration. The factor C is

_ P PBPPy

Chox = —o223°4 .
box Y Yayata (4.67)

We can repeat this analysis for the two triangle configurations in fig. 4.6, whose contri-
bution is given in (4.61). We multiply the integrand by ¢3/q? and extract the relevant
C factor to obtain

. P2P3 Q4 P]. P4 .
C,. =2 _x* - _ = 4,
triangle YoXigXa+ X1 \Xg X3 s . ( - 68)
where we have introduced the short-hand Q; := ¢2/g;. By a similar procedure, the

C factors for the bubble and tadpole graphs are obtained. The algebra for this is
fairly straightforward, and we simply state the results. For the four possible bubble
configurations of fig. 4.7(a) (see the caption for the description of these configurations),

Q2 Py Pz) Q4 <P1 P4>
Cp=2— 2 -2 ) 2 (F -2 4.69
W T 4o\ 3 T3/ Ti+m \3y %) (4.69)
The three bubble configurations of fig. 4.7(b) have
c =ﬂQ2Q3{ P __P+Ph P+P+ P } (4.70)
MTT 5 (C+20)% (Ce+23)% (T +23)(Te+23+ %) [’

and finally the tadpoles of fig. 4.8 yield

c _ Q10Q2Q3 1 - P
tadpole = T C1+ ) (B + 22+ 23) (B2 + B3+ 24)(T3 + Za)%4
n P+ Py _ P+ P+ P
(1 + 22)(23 + 24)24 ‘ (21 +'22)(21 + 35+ 23)24

(4.11)

We must now account for additional contributions that arise from the images of the
graphs under cyclic permutations of the external momenta. These permutations can be
‘effected in the expressions (4.67)-(4.71) by permuting all the momentum labels. Now,
the box graph is invariant under these cycles so provides only one contribution; the
triangles, 3|1 bubbles and tadpole graphs all provide three extra contributions obtained
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from the three label shifts 7 — i+ 1 in (4.68), (4.70) and (4.71); the 2|2 bubbles provide

one extra contribution from the shift i — i + 2 acting on (4.69).

Adding these contributions and simplifying leads to, after some considerable but
straightforward algebra, the satisfying result that C = 1, i.e. the sum of all the MHV
completion graphs contributing to the box topology is nothing other than what we would
have obtained using LCYM Feynman rules. Note that this happened before taking on-
shell limits or performing any integration; recovering the missing amplitude is a purely

algebraic processes.

Taking the external momenta on-shell first

In section 4.4.1, we reproduced the correct standard quadruple cut contribution to the
one-loop (++++) amplitude by starting with off-shell external momenta, then cutting
the internal lines, and finally taking the external momenta on shell. Now it follows that
if the cut is well-defined (and it should be, given the correspondence between MHV
completion and LCYM graphs is algebraic), it should not matter in which order we take
these limits. v '

Inspecting (4.67) and (4.69)—(4.71), it is clear that the order in which these limits
are taken will ‘switch off’ different contributions. For instance, it is clear to see that
upon cutting all the internal lines by letting ¢? and hence Q; — 0, only the box (4.67)
will survive. Conversely, we see that when we take the external momenta on shell first,

P; — 0 so only the tadpole contribution

o _ Q1Q2Qs3 1. _ Q1Q2Q3
tadpole ™ 5 (21 + ) (P1+ T+ 83)  (Q1 - Qu)(Q2 — Qa)(Ws — Q4()4"72)

and its three cyclic permutations survive. When one sums over these permutations, one
finds that C = 1 so the correct quadruple cut is again dbtained. Choosing other, more
mixed limits would produce more complicated combinations of terms surviving from the
various C coefficients. ‘ -

As an interesting aside, the reason that the tadpole is the sole survivor in this limit
may be understood from the structure of the T vertices: the tadpole provides the only
configuration in which the correct poles are generated to cancel the inverse propagators
from the LSZ reduction. Consider the tadpole graphs shown in fig. 4.8: their contribution

is

;

14 [ dPq G — A A =3 A A
2 94) _p=4(1,2,3,4,¢f, —af) — P32, 3,4, ¢, —gf, 1
4!] / @n)D ¢ 12%( a,—95) 5= ( 9454y )

- P3E2(3)4> qfa _qu) 1, 2) - P4E'1(4aq:14’ _qfa L, 2:3)} (473)

Inspecting (4.35), we see that they all contain the term ~T(qf, ~qu, 1,2,3,4). Since

we are concerned only with the box topology, we can ignore the other terms in (4.35) .
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since they correspond to the topologies of tree decorations to triangles, bubbles and
tadpoles. A similar argument simplifies the extraction of the box topology terms from
T: to extract the terms in Y (g2, —¢*, 1,. .. ,n), where g, = g, with an n-gonal topology,
we keep only the terms in (4.31) with ¢ in each term, so in this situation we can make

the replacement

V2(—QE_1,7L, q';?)’r(qf—l) _qAa 11 Y (e 1)
@n(Qqn - Qq + Z?:l Qi)

Y(gd, - 1,...,n) - —
Iterating this for n = 4 gives

\2(_,B A B __A
T(qf,—qA-,1,2,3,4)=—V( Q3,47q )T(QZ}, q a1a2,3)

Ga D
X 1 1
4129394 S0 1 P Y i1 P+ Q3 — Q4
1 ) 1

X = . )
Y1 P+ Q2 —Qud i P+ @Q1—Qa

using (4.78).
Making these replacements in (4.73), reinstating the propagators by multiplying the
integrand by ¢?/q? (i = 1,2,3) and taking the limit P; — 0, it is easy to see that (4.72)

and hence (4.71) are recover.e‘d directly.

4.5 Conclusion

In this chapter, we have seen that the amplitudes that cannot be built from the CSW
rules arise in the Canonical MHV Lagrangian framework as a result of terms in the
field transformation that evade the S-matrix equivalence theorem in the LSZ reduction.
In detail, we found that the series coefficients of the field transformation, T and Z,
furnish a set of ‘completion vertices’ that supplant insertions of A and A, respectively,
in correlation functions with products of B and B fields. '

To demonstrate this, we recovered the three-gluon MHV amplitude (which is non-
vanishing in (2,2) signature or for complex momenta), computed in light-cone Yang-
Mills theory using the V2 vertex eliminated from the lagrangian by the transformation.
This is constructed by the LSZ reduction of the correlation function (4AA). Now not
only does this have the correct pole structure to survive the on-shell limit, it recovers
the off-shell MHV vertex V2 algebraically.

For the treatment of amplitudes at the quantum level, we applied dimensional regu-
larisation to the light-cone Yang-Mills lagrangian and used the field transformation to
obtain D-dimensional versions of the MHV and completion vertices. We augmented the
light-cone co-ordinates in such a way that the ideas of positive and negative ‘helicity’ are

preserved (exact in the four-dimensional limit). It also allows a clean separation of the
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i

two ‘helicities’ into canonical co-ordinates and momenta, as before. The result is clearly
an MHYV lagrangian, insomuch as its vertices contain just two fields of negative ‘helicity’
and one or more positive, joined together with a helicity-flipping propdgator. The field
transformation that results has a similar structure to, the four-dimensional case, but
unlike it lacks the simple, holomorphic expressions for the vertices and transformation
coefficients.

Using this technology, we to constructed the one-loop (++++) arhplitude, whose
corresponding correlation function consists only of completion vertices. We first studied
its generalised unitarity cuts, finding that when the external momenta are kept off-
shell, only the box graphs of fig. 4.5 contribute to the cut. Furthermore, only the °
quadruple cut of this MHV completion graph is non-vanishing, and we computed it
-directly and demonstrated that it reproduces prec1sely the quadruple cut of the D-
dlmensmnal massless box function Kjy.

It was then seen that, like at the tree-level, the sum of the MHV completion diagrams
reduces to the LCYM expression for the amplitude, even before integrating the loop
momentum or taking any on-shell limits. That the loop amplitude is recovered in such a |
straightforward way is evidence contrary to the twistor-space inspired suggestion in [29]
that the (++++) and (— + ++) amplitudes come from new local vertices. -

The precise circumstances under which the completion vertices must be used is a
subject for further investigation. We have seen that they are not required for on-shell tree
amplitudes. We presume that they may also not be required for amplitudes where only
certain legs are off shell. Nevertheless, they are required for the complete construction
of off-shell tree amplitudes, and on shell at the loop level due to the existence of regions
of propagator phase space that give rise to poles that cancel inverse propagators from
the LSZ reduction. :

In keeping with the field theory spirit which motivated this work, one might also
consider the possibility of directly evaluating individual MHV completlon graphs. How-
ever, defining the integrals poses a technical challenge when it comes to dealing with
the unusual, gauge-dependent singularity structures hidden in the completion vertices.
Convérsely, given that we have seen that off-shell LCYM is recovered algebraically be-
fore any integration takes place, one might question the wisdom of this; again, without
knowing the conditions under which completion vertices must be used, it is hard to see

whether this would provide any computational advantage over LCYM. .

4.A Light-cone vector identities

The appendix gives some-of the identities particular to vectors in D-dimensional light-
cone co-ordinates. Some of these appear in a different form in [104]. First, for any two

D-vectors p and ¢,
pa){pa}=-3(Gq—-qdp)° o (4.74)

s
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from which it is clear that for null P, q,
(pa){pa} =pdp-q o (4.75)

The Bianchi-like identity _
i k) +j(k3) + k@ 5) =0 ~ (470)

holds also under replacement of the hat with any transverse component i; or i, and
replacement of the bilinear with its. adjoint.

For a set of momenta {p;} that sum to zero,

S

J

L)

' (s){ia} _ PadPj
=) S (4.77)
J j
for any p and q. This is the D-dimensional, off-shell generalisation of the spinor identity

>0 i a) = (Pl(32;19)13Dlg) = 0. In four dimensions the above identity looks the
same except that the dot product is simply multiplication. Also,

1R |
> ;= —527. (4.78)
j j -

(In four dimensions the left hand side has wj in place of Q;.)

J




Chapter 5

The Canonical MHV Lagrangian
for Massless QCD -

In this chapter, we will extend the work of chapter 3 and develop the ideas sketched
by Mansfield in section 3 of [46] to construct an MHV lagrangian for massless QCD.
The structure of this chapter is as follows. In section 5.1, we start with the manifestly
Lorentz-covariant action for massless QCD, and then fix it to the light-cone gauge, and
integrate out the non-dynamical degrees of freedom. Then, in section 5.2, we specify the
field transformation that eliminates the MHV-like vertices from the action. We estab-
lish what form this transformation will take, and argue that the lagrangian that results
will have an infinite series of terms with MHV helicity content, and that these continue

off-shell by the CSW prescription as in [28]. We solve explicitly for this transformation

as a perturbative series. Next, in section 5.3, we demonstrate explicitly that this la-
grangian does indeed contain vertices corresponding to the known expressions for MHV
amplitudes containing quarks for the cases of: two quarks and two gluons, four quarks,
and two quarks and three gluons in the (13’2"'3”4“’5(—; )} configuration. Finally, we draw
conclusions on this chapter in section 5.4.

This work was published in [50].

5.1 The light-cone action for massless QCD

Let us begin with the action for a massless QCD theory with SU(N¢) gauge symmetry.

Its action is

1 4 - 27 1 ) 4‘ v .
SQCD——-'Q‘; dezg 1/)@1,[)—%—2;5 d'z tr F* F. (5.1)

Here, we will use the chiral Weyl representation of the Dirac matrices
= 0 o ,
A\g* 0 :

96

v
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and the spinors
Y= (O‘+HB+HB_’O[—)T and 1/-} = (B+,5é+,6_¥—,,3—)

are the quark field and its conjugate. They have the canonical normalisation and are
in the fundamental representation of SU(N¢). Note that the superscripts + in the
components denote the physical helicity for outgoing particles, as we shall later see; that
at = (a™)* should be understood, and similarly for 3. A, D, F, and the gauge group
generator matrices are defined as in the pure Yang-Mills case of chapter 3, given in (3.8).
As before, we quantise the theory on surfaces ¥ of constant z°, i.e. those with normal

w = (1,0,0,1)/v/2 in Minkowski co-ordinates, and fix to the same axial gauge - A =
A= 0, for which the Faddeev-Popov ghosts are completely decoupled. We can set
this gauge condition immediately (and discard the infinite, field-independent factor the
Faddeev-Popov procedure produces). With this condition in force, the Dirac term in
(5.1) may be expressed as '
—2% 292 i{@ (00— A5 — Ao) p+w (05 + Ao + A5)@}

+tr {202 i(@ T% ¢ + w T5@)T* A}, |

where for compactness we have split 1, 1 into Weyl spinors:
¢ = (gi) ,

w* = (@_,B——),
o = (B, a7).

(Note that the meaning of o and & as either a 4-vector, or light-cone co-ordinate compo--
nent thereof, should be clear from the context.) That done, the lagrangian is quadratic
in A and we can integrate it out. In section 3.1, we did this by finding the coefficient
of A imder the trace in (3.10), calling it Kym, and replaced all terms in the action
containing A with :
1 A—

.—T‘gz/tr%K\/Ma ZKYM‘

This time, we must put Kym — Kym + Ky, where

Ky = 2% i(@ T° ¢ + w T°6@)T°

o o R R M L R
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. is the coefficient of the Dirac term linear in A under the % g2 [tr. Hence, all terms in

(5.1) containing .4 should be replaced with

tr {~%K¢5_2K¢ - %K¢5_ZKYM - %KYMé_zKYM} _ (5.2)

The first term here is a four-fermion effective vertex arising from the integrated-out
gauge degree of freedom; similarly, the second term accounts for the interaction with
unphysical gluon states. The last term produces contributions that result in the same
gluonic terms as before (cf. (3.21)-(3.23)). If we evaluate (5.2), integrating by parts as
necessary, and use it to substitute for the A terms in (5.1), we arrive at the action

SLcqep = /%(C_”L + L7t LT 4 LT
. g (5.3)

+ Ly + Loay + Ljay + Lyaiy + Lgydy

where

Ly =i{pd op+wd ca}, . (5.4)°

£¢A¢=i{¢[&53‘1—0 ]g0+w[0881+0)./4] }
ﬁ@jd,—z{go[aaa1—U)A]g0+w[088 +0)A
£¢M¢—z{g082([8AA]+[8AA]a<p+w8 ([BA,

A +[0A, A5},
Liviy = 39°5°07%%, * =0T o +w T :
Let us study the quark kinetic terms (5.4) above. Written out, they are

Ly, =iV2{BT0B™ + f*00~ +atdB™ +atda”
+a dat = a 8" - f~dat + f7H5T)
from which it is clear that 8+ and §* are non-dynamical with respect to d. Since the
terms in (5.3) that couple only non-dynamical fields contain no. other fields, evaluating
their path integral amounts to computing the determinant of a non-field-dependent
object (specifically 5). Therefore this integration can be carried out just as well by

replacing the non-dynamicél fields according to their classical equations of motion. These

are
3/8_ =_—DO[-,
86T =atA-da,
56" = Dat,

86~ =0a~ —a A

M~
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Substituting back into (5.3), we finally arrive at the following gauge-fixed action that

features only dynamical components:

_ . -
Stoaep = 5 / de®(L™t + L™t + L7+ L7y
| ’ 5 ; ) _ o (5.5)

where L=+, L=+, L=+ and L=~** form the same Yang-Mills sector of the theory

from chapter 3, set out in egs. (3.21)—(3.23), and the new terms involving the fermions

are
LYY = zg d3 { NG u))oﬁ +a (0- w)a+}, ) (5.6)
L¥H = / d3x Y Aa)+a"AdI ot
| | (5.7)
— &t (857 Aya~ — a-(éé—lA)a+},
v _ 9 { atA86 " a +a-96" (Aat)
VB s (5.8)

— &t (86 Ao - a-(aéfl,&)w},
_ 2 R o
LY = —% / dx {6+ A5 (Aa") + &= A (Aa?)
’ . b))
+ a8 2L~ AD Ao~ + at G (DAA - ADA)am  (59)
+a 67 2(AA — AbA)at +a O 2(BAA - ADA)at }

= - 4 ~ ! )
L"/”‘l”(ﬁw — f_6 / dSX jaa_zja, ja = \/§(d+T“a_ +.&_Taa+)_ (510)
5 .

5.2 The MHV QCD field transformation

Let us now construct the field transformation that results in a MHV lagrangian for
massless QCD. We label the new algebra-valued gauge fields B and B as before, and the
new fundamental representation fermions £+, £, €= and £ their Lorentz transforma-
tion properties are the same as those of the old fields with similar embellishments. We
remove terms in the light-cone lagrangian with a (—++) helicity structure by absorbing

them into the kinetic terms of the new fields as follows:

—HA, A + LA, A] + L [a®, 6] + LY [A, o, aF] = LT (B, B] + L¥¥[¢*, &%),

| | | (5.11)

We remark that this appears sensible, since the theory formed by the truncation on the

LHS of (5.11) is classically free. The remaining terms in the lagrangian, (3.22), (3.23)
and (5.8)—(5.10) form the MHV vertices, as wé-will show in the next section.
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5.2.1 Form of the transformation and MHYV lagrangian

First, let us establish the general form of the field transformation and the resulting

lagrangian. We note that the canonical (co-ordinate, momentum) pairs of the system

(5. 5) are
. . 2
A, ;—5./1 , (a+,—£g—d“) and (a",——zg—a"')
A=A e -
and likewise for the new fields (by replacing A — B and o — £ above). We have
defined the momenta with respect to the lagrangian under the integral in (5.5). The

path integral measure
DADADatD&a™ Da~Dat,

is therefore the phase-space measure (up to an irrelevant constant), and it will be pre-
served if the transformation is canonical. This, and our demands on the helicity content
of the resulting lagrangian, restrict the form of the transformation as follows. ‘
Again; we choose a canonical trahsfoi‘mation of the form generated by (3.68), A will
be a functional of B alone. Since the transformation takes place entirely on X (i.e. no
explicit 20 dependence), and preserves the form of the kinetic part of the lagrangian,

the new (co-ordinate, momentum) pairs are
\

®,-08), (e-%) aa (e —75+)

We remind the reader that they satisfy (3.70), which in this case implies that

s 7 5B (y) ig? 5E* (y) - ) ) } |
%(x) = 3y b(y) — £+ . (5.12
0aw) = [ #y{ BB - L (cmEeS + ey )| 612
~ (Note that we take all derivatives with respect to Grassman variables as acting from
the left. Also the order of the fermion co-ordinate and momentum factors above is the

opposite of that of (3.70), and as such these terms pick up an extra factor of -1.)
By charge conservation, and the requirement that this will be a canonical transfor-

mation that results in a lagrangian whose vertices have MHV helicity content, tells us

that the fermion co-ordinate transformation takes the form
- [ &y B y) o= ). (5.13)
T .

~ The superscript of R* refers to the chirality of the Weyl spinor from which the field
components originate: + for right-handed, — for left-handed. R* is a matrix-valued
* functional of A. Putting additional factors of A into the RHS of (5.13) would result in
terms in the resulting lagrangian with more than two fields of negative helicity; likewise

with extra quark fields, since charge conservation requires these to be added in (+-)
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helicity pairs. Conversely, the behaviour of the canqnical momenta must be

a*(x) = /2433' €5 (y) R¥[Al(y, x), - (5.14)
It will also be useful to define the inverse transformations

o) = [ @y STARY) &0 (5.15)

as well. .

At this point we can immediately read off the propagators for the new fields from
(5.11) as _

2 _ 19 _F sy _ .5 h '
(BB) = —gp7 end (€Y =(FE) = 2\/5?. - (5.16)

By using (3.8), one obtains the canonically normalised propagator (BB) = i/p?, and
indeed in practical calculations with the MHV lagrangian it is often more convenient
to absorb powers of this factor into the lagrangian’s vertices and transformation series
coefficients, as was done in chapter 4. For the purposes of thié chapter, however, we will
account for these factors at the end of the calculations we present in the next section.

If we now assume solutions for R and S as infinite series in A, it is not hard to see
that, upon substitution into the remaining terms of the light-cone QCD lagrangian, this
choice of transformation gives a set of terms with no more tha;n two fields of negative
helicity (B , €~ and £7) in each, but an increasing number of B fields as shown in table 5.1.
(The number of positive-helicity quark fields present is, of course, strictly constrained
by charge conservation.) The sum of these terms has precisely the helicity and colour
structure required to be identified as the interaction part of a MHV lagrangian, and we
claim here that the Feyﬁman rules of its.tree-level perturbation theory follow the CSW
rules. We will address the proof of this in section 5.2.3. |

LCQCD term New field content

L=—* 1?33..., 55_35, £§E§B .
L——t+ BBBB.--., E&EBB..., ELEEBB---
Lv-v EB, EBB---, EEB--

Ly+—¥ 5:51_%' SRR 3331: A0

L¥wve €€§§, £6¢EB - -

TABLE 5.1: The contents of the new vertices provided by our choice of field trans-

formation. The new fermion fields, &, always occur in bilinear pairs and as such &¢ is

the sum of a term containing exactly one — helicity quark, and another term with one

— helicity antiquark. An ellipsis --- denotes an infinite series wherein the field to its
immediate left is repeated.

We can deduce from the forms of the light-cone Yang-Mills lagrangian (5.6)—(5.10)
and the transformation that terms containing a single quark-antiquark pair are of the

|
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form
oo n—1

/ ZZZ&ZI:BQ B_£ 2q1 n’ . (517)

T n=3 j=2

Clearly this is coincident with the colour structure of (2.16). Similarly, for two quark-
antiquark pairs, we expect a contribution to the lagrangian of the form

co n—1

=i —h; shihg

/1 PSS {é%“Bz Brpt 6 Brgr - Bmrta ™ Vi
J1l.on =3

M op—4 = (hl,hj)EH

L :
+ N—Cf%lBQ B Gy By Bamréss Vj(;?f)"l n}S(hl, hj). (5.18)
Here, H = {(+:4),(+,-), (=, )}, and

1/2 (hi=hy)

S(h1,hj) = .
1 (otherwise)

is a symmetry factor whose function is similar to the factor of 1/2 in (3.32) (i.e. it
absorbs potential over-counting issues due to two possible external contractions leading
to the same colour structure). -We interpret any B-string to be the identity above when it
exceeds the bounds at either end of the ellipsis. This clearly corresponds to the structure
of (2.18_).1 Both terms have the same relative sign due to the swapping of the fermion
fields induced by the SU(N¢) Fierz rearrangement.

We will refer to these forms later in section 5.3 when we construct explicit examples
of Vaq and Vyq for a few low-order cases. Note that we will also use the same notation
as (3.34) to factor out ¢ functions.

5.2.2 Solution to the transformation

Extracting explicit solutions proceeds much like in the pure gluon case. We will obtain
the old field variables as perturbative series expansions in the gauge field B.

A and quark transformation R*

Let us begin with (5.11). We write it out explicitly, making use of (5.12), (5.13) and
(5.14) to substitute for A, a* and £* respectively. For clarity, we Show below only the

~ !Since much of the literature works with U(Nc¢) gauge symmetry, many of the two—quark -pair ampli-
tudes given there only correspond to the O(Nc®) piece, i.e. partial amplitudes distilled from qu};l hn
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left-handed chiral fermion components:

/ {wA+14,¢A}(x Ma(?) 0B°(y) — \/g xyz{wA-l— [A, CAT} (2)

X, g2 -
{s 0 e +(Y)+rh} 2 / [E(0{ R () iAW)
+wy R (x,y) — Cy[R x,y)AY)] ot (y) + r.h.]

/wBac'?Ba \/_ xy{f_(x)me_(?c?y)a+(y)+r.h.}. (5.19)

We have adopted the convenient short-hand fxy--- = [5d®x d3 -, and defined the
differential operator ¢ = o/ 8. Now recall from chapter 3 we expressed A as a series in
B, given in egs. (3.42) and (3.51). This was obtained by solving (3.41), reproduced here

in configuration space:

/{wA+ A4, CA Y (x )Ma((i)) = wB'(y),

so by substituting for .4 with (3.42), we can eliminate the first terms from either side of
(5.19). Furthermore, we can use (3.41) on the LHS of (5.19) to trade the 6R~ /A for
dR~ /6B, and we arrive at '

[ 0 { v ey - wpr) e Lo )

= @ {GR xy)AY)] - R (x,y)[CAly }a . (5.20)

XYz

The same procedure yields a similar equation for the right-handed sector:

| e {erumie - [wB%z')]‘S—R;ﬁ%)y)} o (y)

= | & {[GRT(xy)AlY ) - R+(X Y)CAMI} o~ (y). (5.21)

Xyz .
As the quark fields are arbitrary, equations (5.20) and (5.21) determine the solutions for
R* in terms of B. We switch to momentum space on X, and postulate a series solution

of the form

[ o]
RE(12) = (2m)%8%(p1+ p2) + ) RE(12;3---n)Bs - - By (2m)%6% (™, pi)
n=343-m
Here, momenta p;, and py are associated with the Fourier transforms. of x and y, re-
spectively, in (5.13). For future purposes, it will often be convenient to absorb the first
term above into the sum by defining R*(12;) = 1. As the quark fields are arbitrary,
we can drop them and the integrals over x and y in (5.20) and (5.21) and what is left
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determines the solutions for R* in terms of B.
Writing equations (5.20) and (5.21) in momentum space and using (3.42) to substitute
for A leads to the following two recurrence relations:

R™(12;3---n) = |
. n—i N ’
—1 {2’Pj+1 n} - . ., ‘
———= R (1,2+Pj11;3...5)T(—,j+1,--- ,n) (5.22
w1+...+wnj=2 2Pj+1,n J i ) ( )
and
R*(12;3---n) =

» nf (2, Piy1n} RH(1,24Pjy1n;3. .. )T(=, j+1 n), (5.23)
= = ) j+1,ny 9 - ™ T ‘
wi+ -+ wp prs (2+-Pj+1,n) Pj+1,n Tharln

where, as before, we define the momentum space analogue of the w operator as wy, :=
pp/D, Pyj = Zizz Pk, and — as a momentum argument denotes the negative of the sum
of the other arguments. We notice immediately from the above that if we put

1 , ‘
R (12;3--.n) = —-§R+(12; 3---m) (5.24)

into (5.22), we recover (5.23); note that this only fixes the numerator 1 above, whereas
the sign and the denominator follow by noting that the lowest-order coefficients R¥(12;) =
1 are defined for conserved momentum (i.e. at py = —pg). Thus, we need only solve for
Rt. .

Now one could obtain (and prove) a form for the R™ coefficients by direct iteration of
(5.23) and induction on 7, but in fact it turns out that the recurrence relation (5.23) is

nothing other than a re-labelling of the T recurrence relation (3.48), reproduced below:

. . ‘n-1 > 'S :
T(1--n)= — ¥ Bovtn B )y g )0(= 541, m).
Wit Fwn i \ Piin Py '

The solution to this was proved to be (3.51), so if we now put

53...m—1

1334 (n—Ln) (5.25)

RY(12:3---n) = Y(213---n) = (=i)"

into (5.23) (and swap momenta 1 and 2), we arrive at (3.48), and (5.25) is thereby

proved.
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Quark inverse transformation S*

The inverse fermion transformation, S*, may be obtained from R* in an order-by-order

manner. Let us begin by writing it as
*(12) Z / 51(12 3...n)B;- (27r)363(2 L Pi)s
where momenta p; and pg correspond to the Fourier transforms of x and y in (5.15),

* and we have absorbed the O(B°) (i.e. n = 2) term into the sum by defining S*(12;) = 1.

The S* coefficients satisfy the recurrence relations
n_ .
S*(12;3--n) = =) §F(1,~;3... j)R*(~,2+1,--- ,n). (5.26)
Now it is clear from (5.24) that

S+(12;3mn)=-%S‘(12;3-~n) . (527)

where again the overall normalisation is fixed by the lowest order coefficient.
Direct iteration of (5.26) gives the first few non-trivial S:

57(12;3) = 2(3 %)’ (5.28)
. i |
S7(12;34) = GOED)’ | (5.29)
and so-on, from which we claim that
i4.-.-a
— L., (A" : — ..n2 .
S7(12;3---n) = (—1) B =L 2 T(13:--n2) (5 30)

where in the case of S7(12;3) only the first factor in the numerator and the last factor
in the denominator are retained. The proof is by induction on n. Expressions (5.28)
and (5.29) provide the initial steps. For the inductive step, we use (5.30) to substitute
for S, so the lRHS of (5.26) becomes

(—iyr 14 n—1 3 8 Gt 2+ Paa
| (34)--+(n=1,n) | (3,2+Ps) (5,24 Pjn) (+1,2+ Pit1,0)

=

—

y 14T =
=Gy 1w (“3 * ;yﬂ')

where ’ o
Gi+1) 24 P 3
N : ’ and ;= e
Y= G2 Pp) G+1, 2+ Piy1m) 77 (G, 24 Ppn)
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Now notice that z; + y; = 41, so the sum on the RHS of (5.26) collapses to

;on 121 n/——\l

and the proof is complete.?
Let us now summarise the quark field transformations we have found here:

ar =§ ‘*‘Z/ { }T(l )E;‘Bg- 5 (2m)36°3 (20 pi), (5.31)

a1—£1+2 . {2/1}< ) By Bt (P (), (532

where the stacked expressions in braces take their value in accordance with the upper

or lower choice of sign.

A transformation

Finally, we obtain an expression for A. Owing to the form of the canonical transforma-
tion, condition (3.71) still holds and gives

/{traAaA———/d“" x(a~ Bt + atda )}
_ snAR _ Y9 By (E= BT + T 5~
[‘_/x{trBBaB \/g/dx(ﬁ 08T +E£70¢ )}-

Now consider the functional form of 84 as given by (5.12). We can split into two piecés,

(5.33)

A =84 + HAF, ' (5.34)

where the first term depends only on B and B,‘and the second contains the fermion
-dependence. If we substitute this into (5.33), we find the terms

tr | ABA® and tr [ HBIB. ' (5.35)

o Ix : , x .
on the left- and right-hand sides, respectively. Now, these are the left- and right-hand
side respectively of (3.53), which we solved in chapter 3 to obtain A in the pure Yang—
Mills case. Thus, we can consistently identify 8.4° with the first term in (5.12) and
eliminate (5.35) from (5.33) by using the same solution, but this time for A%. In quan-
tisation surface momentum space,

32

2We could, of course, have obtained S in a manner similar to R? by deriving an explicit recurrence
relation and then mapping it to that for T, but we believe this to be a quicker route.
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From this, we immediately see that the pure-gauge MHV lagrangian of chapter 3 is
recovered via the terms that A% contributes to A when used in L=—% and L=+,
Next, we turn to AF. From (5.12) and (5.34), we know that in momentum-space .AF
is given by '
P g2 + =40
AF = F-+F}), F*= /
1 \/g( 5
where we have substituted with (5. 13) and then (5.15). We could, in principle, use
the known expressions for R* and S* to evaluate this, but this is a laborious process.

R* (a'y

o ST, (6D

Instead, we will solve for it outright, as follows. _
First, let us study the series expansion for F£. Consider the form of the objects
between ¢ and ¢ in (5.37): since .A depends only on B, we see that it must be expressable

in the form

S0 [ (coeig. x By B 60n + )T By B (539

n=2 j=1

Thus,

oo n—1 _
___ZZ/ Ai(s)(lg...n){gi. s1s§+1 5 B

n=3 s=2

(5s+13m' - BalBs - Bs—_‘fﬁéF)}(27T)353(P1 = 2iaPi) (5.39)

Where we have used the SU(Nc) Fierz identity (2.15) to evaluate the sum over the gauge
generators. Note the sign change due to the Grassman nature of ¢+ and £+, and that
the O(1 /Nc) term is proportional to the identity matrix. Our goal now is to compute
ATG)(1...n), wheren >3and 2<s<n- L

Next, we return to (5.33). With (5.35) eliminated, its momentum-space representa-

tion is left with

-—tr/c‘)AllAF f/ Bt -+ f/§1851+5851>

We substltute for a® and &% using the momentum-space representations of (5.15) and
(5.14), and this becomes

r /1 BANFT + Fff) = - / NG (a7)(05~(AB))€% + EL R (a)(9S* (18))¢5 }
K ' (5.40)
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We can split this into left- and right-handed chiral pieces and sblve for F* and F~
separately. Let us first study the terms on the RHS of (5.40).

- [ Er*amiestase
afy - |

=t E5ES R (a)[0S*(3B)]
afy '
co n—1 n

=try > Z Ri s+1,—;5+2,...,0)8%(=,s5;1+1,...,n,1,...,s—1)x

n=3 s=2 [=s5+1

(B)n,s x (27f) 5(21—1 P,
(5.41)

- where we use ;che short-hand
(B)n,s 'E 5313@ . .fs €s+1 ST Bn.

The LHS of (5.40) is

1

00 oo k-1
o [omrE = o [3 ZZ / [t A1 k)
1 24 J 20 k!

1= 2 j=2k=31

x OB+ 3132, Bl—Ifl, §z+1' s BBz Byt

(27) 5(2:.,1:1. Pm)d(p1 - Zﬁ:z Pn),

summed over the + superscript. Notice that the O(1/Nc) piece has vanished since it is
proportional to the identity matrix, and OA is traceless. After carefully relabelling the

momenta, starting with 7 — 1, this becomes
oo n—1 n—~1 min(m-2,n—s—1)

—trZZZ Z ’I‘(—;n——j)—k1,...,n,1,...,m—p—1)

n=3 s=2 m=2 p=max(0,m—s)
x AT (= p)(Bns
Now fix n and s above.’ The following change of variables
g=n—-p, r=m-—-p-—1
allows us to write the coefficient of (B)ﬁ,s as

-1

—ATE)(1...n) — ZT P)AEETTH) (1,0 n)
n—1 s—1 ’
= >3 (g4 1,1, AT (Cr 1) (542)
g=s+1r=1 '
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We can now equate the coefficients of (B)n,s from (5.41) and (5.42) to obtain the following
recurrence relation for A* 3: . : .

; A
AEE) (1. p) = — RE(s+1,—;5+2,...,9)8 (=, s;q+1,...,m,1,...,5—1
( ) q;l (S S v ’q) ( ’87g y ?n"r b ’S )
(g—s-1) (n+s—q+1)
s—1 - .
- ZT(—,I,...,T Ai(s“r+1)(—,r+ 1,...,n
2, T2l o7 Lo
(r+1) (n—r+1) .
n—1 s-—1
- Z ZT(—, g+1,...,n,1,... ,r)Ai(s_TH)(—,r'—i— 1,...,9).
-~ v e e
g=s+lr=1 (n—g+r+1) _ ‘ (g-r+1) ‘
(5.43)

The numbers below the underbraces denote the number of arguments they enclose. In
cases where the upper limit of a sum is less than the lower limit — such as when s = 2
in the sum over r in the second term, or when s = n — 1 in the sum over q in the thlrd
-— the sum is taken to vanish.

Now if we notice that, using (5.24) and (5.27),

R+(s—+-1,—;s+2,...,q)5+(—,s;q+1,...,n,1,...,s—-1)

— _ps+1,q _ 8 v
‘ s+1 Pq+1,n+P13 :

><R“(s-%—1,—;s+2,...,q)S“(—,s;q+1,...,n,l,...,s—1)

~

5 _
‘=v-—/+\1R_(s+1,—;s+2,...,q)S (=,85¢+1,...,n,1,...,5 —1).
s ‘ , :
(since Pis + Pyy1,n = —Ps41,4 0n account of conservation of momentum) and place this

into (5.43) for AT, it is easy to see that putting

AHO (1. n) = o A O ) (5.44)

E] + s+1
leads back to (5.43) for A~. Hence, we will solve for just A~ and use the above rela-
tionship to obtain AT,

Let us computé by hand ﬁrst few A~ coefficients. First,

. 3
1 .
(23)
3Note that in the interest of clarity concerning the origin of certain terms in the forthcomlng, we
have not substituted for R* and S* in terms of T.

A~@(123) = -5 (32%1) = -
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Next,

A~ (1234) = -7 (—,4,1)A"P(~,2,3) — §7(32;41) — R™(3,—;4)5(—,2;1)

32
(23)(34)

Similarly, we can obtain next few coefficients:

'A‘(S)(1234) = —(73-:;’?37)
N

A=) (12345) = i(?E)‘(%Zil)_(zl_Ls)’ _»

. 372

A~()(12345) = i(Z—?))—g‘ZL)——(—I;),

A~"(12345) = im)—%—w—),

from which we conjecture \
A=6)1...n) = _(_i)n(z £4§’,4(:j - - _H/i\lT(l ) | (5.45)

This can be proved by induction on n. The foregoing calculations of the lowest-order
coefficients obvidusly furnish the initial step. For the inductive part, we substitute (5.45)
into the recurrence relation. For each term on the RHS of (5.43), we can pull out a factor
of .
i...%
(12)--(n1)

leaving telescoping sums of the form (3.60). (In the second term of (5.43), two such
sums are nested.) One might worry about the cases discussed below (5.43) where certain
terms are taken to vanish. It turns out that we can handle these cases consistently by
understanding the sum P;; = p; +pit1+ - +Pn+p1+ - +p; when j <. When this
is so and we evaluate the sums using (3.60), we find that they vanish in these particular
conditions because of terms of the form P;;_1 = 0. To complete the proof, Qhe simply
evaluates the sums and does the algebra while applying the conservation of momentum.
This results in an expression on the RHS of (5.43) equal to the given for A=G)(1-- . n)
in (5.45).
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To finish this section, we state the series expansion of A, assembled from (5.34),
(5.36) and (5.39), and using (5.44) and (5.45):

oz 82 =
A= Y0 [ ST By B B oSS B

Lty 12 |
92 oo n—1 -3 )
' . Coom) . + . B~
— *12«5?,;;/2..%{@}T‘1 | ”){Bz Bemré3 B+ Bat

§s+18m-'-3ﬁ35--~8;7€§} x (2m)*6% (i, pi)-

But there is one further simplification we can apply: if we relabel the fields in the
O(1/N¢) terms, we can use the dual Ward identity (3.43) to evaluate the sum over s in

this term to leave

o0 m A2
A=) Z/ L1 -m)By - Bs+ - B (2W)35(Zi=1 P:)
m=2 s=27 2"
g2 oo n—1 _3
+ 7 | T(1 2 VB, F _
iz 82;/&.% ( n)[s=2{s+1} & BS‘T§85+1 = ++Ba

+i{ﬁ £ - BnTn}X(%)W’(Z L po). (5.46)

Completion vertices

Naturally, one can define completion vertices for massless QCD by the same protocol as
used in the pure-gauge scenario. From (5.31), (5.32) and (5.46), we can write down the
rules for the completion vertices, and the non-trivial ones are shown in fig. 5.1. These
augment those from the pure-gauge theory, shown in fig. 4.1. (Note that the figure shows
the vertices as appropriate for the normalisation of A, B, etc. so that the .normalisation
factors from (3.8) can be omitted for clarity) For an example of these vertices in action,
see section 5.3.5, where they are used to reconstruct the ‘missing’ A(1+2+3 ) partial

amplitude.

5.2.3 An indirect proof of MHV vertices -

We now return to the discussion started at the end of section 5.2.1. There we claimed
that the vertices of the transformed lagrangian are proportional to the MHV amplitudes
continued off-shell by the CSW prescription (in this case by using the choice (3.5) for

the Weyl spinors). To prove this, let us first review the proof from the pure gauge case.
First, for each vertex in the Canonical MHV Lagrangian, its unique helicity and colour
structure means that it is the sole contributor to the corresponding tree-level MHV
amplitude on shell. This was first stated in section 3.2.2, and later in section 4.2 we
plugged a possible hole in this claim by showing that for on-shell tree-level amplitudes,
diagrams constructed using completion vertices were annihilated in the LSZ reduction
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FIGURE 5.1: The non-trivial MHV completion vertices for massless QCD. Curly and

solid, arrowless lines are as in fig. 4.1. Solid lines with arrows represent correlation

function insertions of a® (&%) when the arrow points outwards (inwards), and ¢+ (£%),

attach to the dotted lines with the arrows pointing inwards (outwards). The direction

of the arrow shows charge flow in both cases, and the missing lines are for -+-helicity

gluons. (Stacked expressions in braces take their value in accordance with the upper
" or lower choice of sign for the fermion helicities.)

procedure, . and so did not contribute. Then to show that the vertex was also valid off
shell, we argued that due to the holomorphicity of the vertices, they could contain no
terms vanishing on the support of the on-shell condition.

It is straightforward to extend this argument to the QCD theory studied in this
chapter. First, it is quite clear that the vertex coupling a —-helicity gluon :_to a quark-

antiquark pair in the MHV lagrangian is the same as that of light-cone gauge QCD, i.e. L
(5.8). The helicity configuration precludes any contribution from completion vertices. .

For higher order vertices, we can see again from the form of the completion vertices shown
fig. 5.1 that the diagrams through which they contribute terrﬁs in MHV amplitudes do
not survive LSZ reduction for generic momenta (for the same reason as in the pure-
gauge case; notice that they are all proportional to T). Finally, that there are no terms
that vanish on-shell follows since the transformation is performed on a surface of equal
light-cone time and has no z° dependence, and transformed lagrangian is manifestly
holomorphic (cf. (5.9), (5.10), (5.31), (5.32) and (5.46)). This completes the proof that
the vertices of the transformed lagrangian are indeed MHYV vertices.
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5.3 Example vertices

We now have all-orders expressions for the ‘old’ fields A, A, a* and &t in terms of
their new counterparts B, l';’,' ¢* and £%. Let us now verify explicitly that the vertices
obtained by substituting for the old fields in remaining terms of the LCYM lagrangian,
(3.22) and (3.23), are proportional off-shell to the known tree-level MHV amplitudes.

5.3.1 On external states, vertices and amplitudes

As in section 3.4, a partiai MHV amplitude is obtained from the MHV lagrangian
by contracting an external state into the vertex with the relevant helicity and charge
" content, and summing if there is more than once contraction which picks out the desired
colour structure. . |
-We must define the polarisation vectors and spinors. As before, the relevant compo-
nents of the gluon polarisation vectors are given by (2.10) of section 3.4. In co-ordinates,
E, = E_ = —1 so again by the LSZ theorem, when an external + (—) polarisation state

is contracted into a A (A) vertex from the lagrangian, it contributes a factor of
ig
V2

where the second factor accounts restores the canonical normalisation of the gauge field
from (3.8). For the polarisation spinors for the massless quarks, we must solve the Dirac

equation pyp = 0. This has the following positive-energy solutions for 1:

-1 x

@t (p) = (¢(p),0) and @ (p) = (O,w(p)).

For the purposes of the LSZ theorem (or, more simply as polarisation spinors contracted
into 4 matrices for external lines in Feynman diagrams), these chreSpbnd to positive-

and negative—helicity outgo'ing quarks, respectively. Similarly, the negative-energy solu-

vt = “(p) and v (p) = 0 |
(:0)—< 0 ) d v (p= <go(p)>

for outgoing antiquarks, where again the sign in the superscript denotes physical helicity.
Here we have used the following definitions for the Weyl spinors:

p(p) = 2'/* <—112—;/5> ,. (5.47)

5(p) = 2/4 (p&) - 649
@(p) = 2Y4(~p/\/3, V), (5.49)

w(p) = 2V*(V/B.p/V/P), o (5.50)

tions are

e SN e




J
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These are such that the Dirac spinors have the conventional phenomenologlsts normal-
isation of uf(p)u(p) = 2p°.

Let us consider the LSZ reduction béfore we remove the non—dynainical fermionic
degrees of freedom. For example, in this context, an outgoing + helicity quark with

momentum p produces a term

| . _ , - B~
Tt @) (~ip) ) = Pa(=ip- o) (a_ ),
. B
where —ip - o is the inverse of the propagator obtained from (5.6).v We can now com-
pute the correlation function using the partition function generated by the MHV la-
grangian. Since ¢; = (~ is replaced by its equation of motion, one might expect this

non-propagating component to complicate things. Fortunately,

R _ 1 2 '
so it does not arise in the computation. We proceed to replace o = a~ with its
expression in terms of the new variables, and note that momentum conservation implies
only the leading order term £~ survives the on-shell limit for generic momenta at tree-
level. The propagator (¢€7¢%) of (5.16) cancels factors in (5.51) to leave a polarisation

214\ /p.

One may show similarly that the same expression applies for the — helicity state, and
for the anti-quarks. In summary, we state the polarisation spinors and the fields in the

factor

lagrangian associated with each outgoing state in table 5.2.

State Polarisation Fie_ld
. + o(p) &t
article T
P - w() £+
L @(p) 3
antiparticle _
P ¢(p) 3

TABLE 5.2: The polarisation spinor and lagrangian field associated with each outgoing
quark state.

Let us now frame this in the context of the lagrangian vertices Voq and Viq, used -

to express the general form of the quark-gluon interaction terms in (5.17) and (5.18).
As we noted before, these contain the only terms in the MHV QCD lagrangian that
contribute to tree-level MHV quark-gluon amplitudes, and as in the pure-gluon case of
section 3.2 we extract partial amplitudes by contracting external states into these terms
in a manner that picks out the desired colour order. As with the purely gluonic case,
our outgoing states are constructed by having annihilation operators act to the right
on the ‘out’ vacuum state (0|. We note that when dealing with fermions, we must take
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extra care with statistics, which essentially comes down to a choice of sign convention,
or equivalently annihilation operator ordering. Now in section 2.3.1, we obtained SUSY
partial amplitudes uéing supersymmetric Ward identities by associating them with S-
matrix elements where the order of the annihilation operators placed between the free
and physical vacua was the same as that of the arguments of the partial amplitude. Since.
we wish to compare the output of the MHV lagrangian with SWI-derived amplitudes,
we will adopt the same convention when defining the outgoing states.

. First, consider the MHV amplitude with one quark-antiquark pair. Its external state
is .

(Olg A5 -~ A7 - AY a7

This contracts into the vertex in (5.17) multiplied by an external state factor of

9? V2

Considering the factors delimited by x symbols, the first comes from Fermi statistics;

. . n—2
(-1) x hid X <___zg_) (—1)"2 x 21/4y/1 x 2Y/4V/A.

the second from the path integral; the third from gluon polarisation and normalisation;
and the final two from the external state spinors (see above). Thus, when the partial
amplitude is defined as in (2.16),

AQE 2t (e ) = 202 i gnmt VEE(1 - n). (5.52)
With two quark-antiquark pairs, we would contract the external state
<0| h1A+~-A+ =Ry th'+ AT ~—h1
a1 A2 j—295-1 957 541 n—19n

into (5.18), taking care with the fermion statistics. By construction S(hy, h;) drops out
so we are left with
A(1h o+ oVt ()P P iyt _1)F _—hl)'
(lq’z)""(j ) 1(.7 )c‘; J’Qi(]"ﬁ) ""’(n ) 1 1
= 95-n/2nF1gn=6,/1 5 ] A VIMM (1. ), (5.53)

4q

and similarly for the sub-leading partial amplitudes

. —hy R . Lo n—hy
A(l)(lgl,TL,...,(]—-2)‘*,71(—1h'1;jq’,(j—!—l)‘*',...,(n——l)"',(j—l)al 7

= 25201 G T A VI (L n).

5.3.2 Two quarks and two gluons

Let us now consider the partial amplitude A(172%*3747). In the colour structure decom-
position of the S-matrix, this arises as the coefficient of (7927%3),,*. This amplitude is
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known to Be (see (2.43))
o (13)(43)°

T 22 3)(4)

(sorhething which can be obtained most easily using supersymmetric Ward identities —

(5.54)

see (2.29)). We wish to compare this to the result of (5.52); we just have to compute
V23&+(1234). Note that this amplitude has a single quark-antiquark pair, and as such we
may safely discard any (O(1/N¢) terms that arise in the analysis. Were we to retain
these terms, we would find they vanish anyway due to antisymmetries in the gluonic
coefficients. ,

Lookihg table 5.1, we see that, based upon field content, the term we are considering
receives contributions from from L==+, L¥*~¥ and L¥¥ (in (3.22), (5.9) and (5.8)

respectively). Let us consider each in turn. Written in momentum space, (3.22) is
. 3 .
L =itr =(12) A1 Az A3, (5.55)
23 : ,

where here and in the foregoing, a momentum-conserving ¢ function of the sum of all
the momenta in the integral measure is omitted for clarity. We start by substituting for
A: the term in f;‘ Bgl?g{a_ comes from the second A being replaced with the £T¢~ term
in (5.46). Relabelling the momenta, the contribution from (5.55) to the vertex is
5 nn
9° 24 (32) 7
TALA2AD 1 BsBséy
VB i 31 +22(41) 1 t
Next, consider the contribution from L+, here, only the leading order substitu-
tions are needed for the fields involved so we simply extract the relevant term from the

momentum-space representation of (5.9), giving

\/_/234 1+4 2364

Finally L‘z“/’, which in momentum space is
5 ig? 3 2 54+3 2\ __ . .
= —% {<§ - 2) ey + (2+3 2) 1 Aia;}’ - (8:56)

contributes two terms from the next-to-leading order substitutions for @+ and A from
(5.15) and (5.46), leading to

il +2(43) 2 1Y) s,
V8 1234{ 34 (1 2)+21(i+21)2 (23)} T B3B3E; -

This is clearly of the form (5.17).
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The sum of these coefficients is, accounting for conservation of momentum, the vertex

3; g2 2 (13)(43)?
Vaa (1234) = — e T e AT

| Plugging this into the RHS of (5.52) gives us ‘ _ -

_’i ,V12 (13)(43)2
T 3/a12)23)[41)

which may be shown to equal (5.54) using (3.6).

One may also show that the remaining three partial amplitudes bearing this colour
structure can be obtained in a similar manner by considering the other possible choices

of substitutions. We reproduce these amplitudes below:

e 5V s (13)%
A(132'3749) = "92\53(12)(23)(41)— zg2(12)<23)(41>’
b V1B (24 , (24)°
AT2T3Mg) = ~ig" s e EhE — Y e e oA

L3VE (12224, (12)%(29)

A2 = 0 e eeanEn = Y aEaa

in agreement with the known expressions.

5.3.3 Four quarks

In amplitﬁdes with two or more quark-antiquark pairs, terms O(1/Nc¢) and higher con-
tribute at the tree-level through the sub-leading colour structures. Thus we must keep
track of these terms in the analysis. '

Let us first compute the terms in the MHV lagrangian containing just" two quark-
antiquark pairs. To that end, we note théy receive contributions from L¥~% and LY¥¥Y.

In momentum space, these are given by (5.56) and

4 p ' _
Py _ 9 111 g
k -8 /1234{ <(i+21)2 + Nc (1 +2)2 (@7 05 6505 + 67 a5 a5a7)

1
——afafaza] + — %
(d+3) . c(1+2)

We substitute for A in (5.56) using the leading order fermion terms in (5.46) and for
the fermions in (5.57). Summing and symmetrising over the momentum labels as much
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as possible leads to the following terms in the MHV lagrangian:

-1-(2—4 __:|._ 1_—+__.+_>
8 /234{22414)32)( G&a | 0_51’521535@

1 (13)? iz ir
e (F9EE + EaEY)

+ 213(14)(32)

(34)° 1 -,
_W(' 166 Ngffﬁaﬁs%)}- (5.58)

The colour structure in each of these terms is 6%26™ — 6162 /Ng. Clearly this conforms

to (5.18) with V5455 (1234) = V&M (1234) and
: V3 ++(1234) fM (24)° , (5.59)

8 34(14)(32)
VETT(1234) = %13((114?;)(; 5 (5.60)
Vig' (1284) = ‘%3&(134?(23 ) (561

We see that there are three independent colour-ordered four-quark partial amplitudes
here: A(13273747), A(17243;43) and A(1725374%). It suffices to check the leading-

q4q9q %
in-1/N¢g amplitudes and we shall check them all in turn. By plugging (5.59) and (5.60)
into (5.53), we obtain .
A(1F273%47) = 2, [13_(24° = z‘g""—<—2‘i ‘ | (5.62)
a-arar 51(14)(32) (14)(32)° '
and . ' .
%4 (13)? o (13)2
T iy ——r = jg? 5.63
AL 34 =0 {Raes ¢ 6D (563)

respectively. These are readily seen to be the known results (2.44). (They may also
be checked against a calculation made e.g. using the light-cone QCD Feynman rules
obtained from (5.8)—(5.10), discussed in section 5.A. The helicity arrangements here are
such that both partial amplitudes lift to the same colour trace on the SUSY side, and
so they will both contribute to the SUSY partial amplitude. As such, we cannot obtain
these QCD amplitudes from supersymmetric Ward identities.) Finally, putting (5 61)
into (5.53) gives '

~

i3 @4, (34?
31(14(32) Y (14)(32)

[N}

A(1+2+3 43) = —ig® (5.64)

in agreement with the known result in (2.44). (Otherwise it can be quickly checked either
by direct cBmputation or by using SWIs to compute the gluino amplitudes with the
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same colour structure; we note that unlike the previous case, the helicity arrangemehts
constrain the QCD — SUSY mapping such that it is one-to-one.)

5.3.4 Two quarks and three gluons

Finally, we consider A(152*374%57), which is given by (2.43) as

(13)(35)°

(5.65)

This partial amplitude is tied to the (T92T%T%),,% colour structure. In the MHV
lagrangian, the term we.seek is f;' BQBgB;{S_ 1{2:31+(12345) and it receives contributions
from L=, L==*+, L¥~¥ and L¥*~¥, so we will write it as?

/12345(W—_Jr W WY W) & B:B3Bigs.  (5.66)

Let us consider each of the Ws in turn. First, we observe from (5.55) and the structures
of (5.46) that L=~ yields four terms with the structure of (5.66) coming from the
different possible choices substitution for A. We carry this out and carefully relabel the

momenta while accounting for the anticommuting nature of the fermions to obtain

2 93(2,3+4) 3 ,
W= TS TH 0 y(-,3,4)AT (= 51
v@{u+ 12(34+4)23+4 ( ) ( )
34(2+3,4) . 3 9
+— _T(—,2,3)AT® (= 5,1
1+5)22+3)22+3 ( ) ( )
+A%@4? A+@H—JLL2)+:3952—A+@N—3&5J) . (5.67)
- 3(3+4)2 3(2 + 3)2 ,

We remind the reader here that in the argument lists of T, A, etc., — is a placeholder
whose value should be taken to be the negative of the sum of the other momenta passed

to that coefficient.
Next, L=~ has terms of the form tr(AAAA) and tr(AA4.AA), of which only the

former contribute terms to (5.66). In momentum space, this is

t —— + ——— A7 A5 A5 A5,
r/1234{(3+4)2 M)Z} As s A

4Note that we will retain R*, §* and A¥ explicitly here and in other forthcoming examples (rather
than used their expressions in T) to elucidate the origin of each term.




Chapter 5 The Canonical MHV Lagrangian for Massless QCD 120

Substituting for each A in turn using the lowest-order terms in (5.39) gives

. 1 (ii+5) i+ »
L (4d+5)  2i+5) AYO(=,5,1) 5. (5.68)

145\ (34+4)2 (2+3)2
L¥=¥ contributes four terms in the structure of (5.66), owing to the fact that we
will now also see terms from the fermion series expansions (5.15) and (5.14) when these
are substituted into (5.56). Upon re-arrangement and re-labelling of the momenta, we

_arrive at the contribution

a i+5 3 -
w¥ f#: __\/_§{<4+5 - §) R*(1,-;2)8™(-,5;4)
~ 2 .
3 5 3+14
+<m)(5 3+4)R+<1*2>T< 39

A N2 - = o~ x '

3 445 243 '
+ | —— - =) Y(—,2,3)87(—,5,4) ;. (5.69
<2+ (555 - 555 ) T 2,957 )}()

. 2 1 5-3 . '
Lo =~ -+ 22 ) at Az Aszaf
Bl | \3+4  (3+32) 17
‘ 2_3 _+ e — ‘ .
+ Gr3e a7 AzAzeg -+ Lh. pieces ¢,

contributes four terms to (5.66) from substitutions for A and the fermions:

9 A a . PN
- g 1 3—4 + . 2-3 +(_ E.
Wit u::_%{(A — + )R (1,—,2)+(Q+3)2S (—,5;4)
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We take the sum of (5.67), (5.68), (5.69) and (5.70) to be Vé%;+(12345) and when
plugged into (5.52), its RHS becomes

LB VI (13)(35)°
V2 3v5 (12)(23)(34)(45)(51)°

which may be shown to equal (5.65) using (3.6).

5.3.5 On missing amplitudes

We learned in chapter 4 that contributions to the S-matrix from completion vertices
(arising from the series expansions of the transformations themselves) are required to
- obtain certain ‘missing’ amplitudes. In particular, we demonstrated this by calcu-
lating A(172%3%) at tree-level (which has no vertex in the MHV lagrangidn, and is
non-vanishing for complex momenta), and by showing that A(172+3+4%) at one-loop
matches what would be obtained were one to compute it using light-cone'.Yang—Mills
theory. .

The situation with quarks added is no different: quark-gluon amplitudes whose con-
struction requires erstwhile MHV-like vertices are recovered through completion vertices
found in (5.14), (5.15), (3.42) and (5.46). As an example of this, let us study the partial
amplitude A(1F2%37). Is it easy to evaluate this from either light-cone QCD, and it is

given by
A(1F2%37) =g 21 (5.71)
q q [3 1] ’ ’
The LSZ reduction gives this amplitude as
— —ip? _ : v
AQF2P37) = lim  ipd x it 5 (o] Az al). (5.72)

p?.p3.p3—0 21/4\/— 21/4/3

Here, the first factor contributes the gluon polarisation and inverse propagators; and
the second and third factors are (5.51) for the quarks. The correlation function may be
~ computed by substituting for each of the fields involved with their next-to-leading-order
expressions from (5.31); (5.32) and (5.46) (in the case of A taking the right-handed
fermionic part), or equivalently by evaluating the sum of the three diagrams of fig. 5.2,
constructed from the vertices of fig. 5.1. Thus, (5.72) becomes (accounting for the
normalisation of 4, which simply amounts to using (3.8) to substitute for the gauge

fields in the series):

_ ' 1349, i1 13 3
A(1F2737) = ———p2pip? ——5==3Y 231)+ —— ig T(312) + — — ig =Y(123)
(a278) = = o3PiPars p}p} 22 (@31) P} v} ( pip 1

_ 29\/‘ ( p2+P3>

3
= igV/2= f{31}
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FIGURE 5.2: Contributions to the tree-level A(172%37) amplitude, before applying
LSZ reduction. All momenta are directed out of the diagrams, arrows indicate colour
flow.

Note that the first term on the first line acquires an extra factor of —1 since we need to
transpose the quark fields to evaluate the correlation function. This expression may be
shown to equal (5.71) using (3.6). (Note that we make use of (4.77) to obtain the final

line.)

5.4 Conclusion

In this chapter, we extended the canonical MHV lagrangian formalism of [46] and chap-
ters 3 and 4 to a full massless QCD theory with SU(N¢) gauge symmetry. We started
with massless QCD in the light-cone gauge with the non-dynamical field components
integrated out. By applying a canonical transformation to the field variables, we ob-
tain a lagrangian incorporating gluon-gluon and quark-gluon interactions whose vertices
are proportional (up to polarisation factors) to the MHV amplitudes in the literature
(obtained, for example, by supersymmetry). This has been checked explicitly for ampli-
‘tudes with two quarks and two gluons, with four quarks, and with two quarks and three
gluons in the (172t374%57) configuration. The field transformations for the fermions
and A are summarised in (5.31), (5.32) and (5.46).

The MHV QCD lagrangian we have found maintains a certain ‘backward compati-
bility’ with the pure-gauge case found in chapter 3. The solution for A in terms of B
is the same, whereas A acquires new terms in the new fermion fields brought on by the
requirement that the transformation is canonical. As in the pure—gauge case, the ex-

_plicit form of this transformation as a series expansion has coefficients that have simple,
holomorphic expressions in the momenta.

As we found out in chapter 4, the S-matrix receives contributions beyond the vertex
content of an MHV lagrangian — specifically, the completion vertices that originate in
the transformation itself. These allow us to construct otherwise missing amplitudes,
notably those eliminated by the choice of field transformation; we demonstrated this
for the MHV QCD lagrangian in the simple case of the otherwise missing (17 2+37)
partial amplitude. Similarly, we would expect the completion vertices to be important
for recovery of the full off-shell theory, and for on-shell loop-level amplitudes.

VL A sl R
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FIGURE 5.3: Feynman graphs from light-cone gauge QCD that contribute to the
8;26;2 — 6;20;2/ N¢ term of the (172437 4F) amplitude.

13 13 13 713 q¥q 7q

5.A On SUSY and A(1}2:3747) and A(17273;4%)

a7 d4-qq qQ-47q "q

In the main text, we compared the the expressions given in (5.62) and (5.63) for the
partial amplitudes A(1}27 3447) and A1y 2}2F 35 43;), respectively, with those obtained
by directly by light-cone gauge QCD. This is because mapping these results onto the
SUSY theory to check that they then satisfy the SWIs requires some care, which we
alluded to in section 2.3.1: these helicity arrangements are such that both partial am-

plitudes lift to the same colour trace on the SUSY side, and so they will both contribute -

to the SUSY partial amplitude. As such, we cannot obtain these QCD amplitudes from
supersymmetric Ward identities. |

First, we outline the light—cone QCD calculation used to obtain these amplitudes. For
the case of A(1y 23’35 4?;), the contributing diagrams are shown in fig. 5.3. From these,

we pull out the terms proportional to 6:12 52;‘ - (SZ1 63; /Nc. (There are no such terms in

the (1,2) channel, hence the absence of these graphs from fig. 5.3.) The coefficient of

this colour structure found this way is

2ig%v1234 1 {14}(23) (14){32}
(2+3)2 {1+(P2+P3)2[ 34 BT ]}

and by putting all momenta on shell and simplifying, this expression can be shown to
be equal to (5.63). o .

. Now let us see precisely how the corréspondence to the SUSY partial amplitude
works in this case. Note that A(1}253147) and A(4g 13 2433 ) (a re-labelling of (5.63))
have the same helicity arrangement, and suggest comparison with A(Af’ Ay A;AZ); that
this mixes quark and antiquark is of no éoncern here as the SUSY amplitude does not
distinguish - the two, the gluinos being in the adjoint representation. This particular
SUSY partial amplitude contains contributions from gluon exchanges in both the (1,4)
and (1,2) channels, and it is associated with the tr(T92792T9T%) colour structure
(shown on the right of fig. 2.4). On the QCD side, A(13253147) is -associated with

the dffdfg leading-order colour structure (see fig. 2.4 left) corresponding to a (1,4) gluon -

exchange, and —A(4; 1:{ 27 3;-;) with 63;‘ 6;2 (see fig. 2.4 centre), implying a (1, 2) exchange.

Since both colour structures lift to tr(7%17927%7T%%), we would expect that the SUSY
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partial amplitude is the sum of the two QCD partial amplitudes, ¢.e.: .

ANTAZATAT) = AT 233547) ~ A(4513238)
2 (13)(24)°

Y 3B

i @4 ey

W a9By 1264/’

in agreement with the result from SWIs. The — sign for the second term on the first’
line above comes from Fermi statistics. Note that we have used the Schouten identity

(2.13).




Chapter 6
Discussion

“As noted in the introduction, the isolation of New Physics signatures and improved
measurements of the QCD coupling constant at the LHC requiré the theoretical com-
munity to have a good understanding of QCD processes, particularly those involving
multiple partons, at leading and next-to-leading order [12]. The past two decades have
seen considerable advancement in .technolog'y for computing amplitudes for multipar-
tonic processes, driven by the observation that gauge theories appear to have structures
much simpler than the traditional calculation techniques would imply. The Parke—
Taylor formula (2.22) for the tree-level MHV amplitude is a remarkably simple expres-
sion in.light of the number of Feynman diagrams that would be reqﬁired to compute
it. Subsequent developments have yielded tree-level computational techniques that pro-
vide polynomial-in-n time algorithms for n gluon amplitudes. In particular the BCF
recursion relations between on-shell amplitudes have been very useful in pushing for-
ward the set of known analytic expressions for tree-level amplitudes (see section 2.5 for
background and references to its applicationé), as have comparable numerical techniques
based upon Berends-Giele recursion relations [56]. Taking a more formal approach, the
CSW rules (explained in section 2.4) used insight from twistor-string. theory to show
tree-level amplitudes could be obtained by sewing Parke-Taylor MHV amplitudes to-
gether with scalar propagators. This superficially looks like a field theory of a charged
scalar with an infinite tower of vertices of ever-increasing valence, and thus grows no
faster than n?, again a significant improvement over Feynman diagrams. The natural
question to ask is what field theoretic motivation underpins this, and how this can be
extended to quantum corrections.

Developments at the loop level have not been so straightforward, but significant
progress has been made using a number of techniques. In particular, the CSW rules have
been applied successfully at one loop for supersymmetric theories [43,79,80] and the cut-
constructible parts of pure Yang-Mills amplitudes [44, 45] (reviewed in section 2.6.2).
Many parts of QCD amplitudes can be obtained by unitarity in four dimensions [34,
58,89-91) (indeed, all of the supersymmetric components are cut-constructible) leading
one to promising ideas such as loop-level on-shell recursion relations/bootstrapping [40,

125
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42), unitarity (77] and generalised unitarity [35] outside four dimensions, and direct
computation of the rational parts from Feynman diagrams [37-39].

In this thesis, we have seen how one of these modern techniques, the CSW rules,
may be understood from the field theory point of view at the action level, both for pure

Yang-Mills and massless QCD, and admit the addition of dimensional regularisation

structure.

6.1 Summary of work undertaken

This section is intended as an overview of the research described in chapters 3-5. For
detailed discussions we refer the reader to the relevant concluding section in each, specif-
ically sections 3. 5 4.5 and 5.4.

The CSW rules are underwritten by field theory, as shown by Mansfield [46] and
demonstrated explicitly in chapter 3. In particular, the CSW rules are obtained by a
canonical transformation of the fields of light-cone gauge Yang-Mills theory that absorbs
the (—++) vertex into the kinetic term of the theory expressed in the new variables. The
‘'series‘solution this entails expresses the remaining pieces of the LCYM lagrahgian as an
infinite tower of terms with an MHV helicity content, each a Parke-Taylor amplitude
continued off shell by the: CSW prescription. Of particular utility in this process was
moving from the spinor formalism to light-cone co-ordinates. '

The precise form of this transformation has series coefficients with a simple, holo-
morphic form. Chapter 4 showed how these provide additional vertices at the level
of correlation functions and hence contribute terms to S-matrix elements via the LSZ
reduction. That under certain circumstances these contributions do not vanish is a
peculiarity of the non-local nature of the transformation that allows it to evade the
equivalence theorem. These vertices ‘complete’ the CSW rules by recovering the parts
of Yang-Mills theory that required the (—+-) vertex for their construction, in what (ul-
timately) turns out to be an algebraic re-arrangement of the contributions arising from
this eliminated vertex. In particular we showed this to occur for the one—loop (++++)
amphtude

By exploiting the links we made to Yang-Mills theory, the transformation can be
applied to derive MHV vertices in D dimensions and hence indicates how to apply
dimensional regularisation to MHV techniques. Unfortunately, the price we pay for this
is the destruction of the pleasing holomorphic character of the transformation as well as
the simple form of the series coefficients. _

In chapter 5, the transformation was extended to include massless quarks in the
fundamental representation. This again resulted in an MHV-form lagrangian, with off-
shell vertices coincident to on-shell amplitudes and Feynman rules following the CSW

prescription as laid out in [28].
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6.2 Related developments

Field transformation techniques have since been applied to a variety of theories in order
to obtain an MHV lagrangiah and/or obtain specific results at the action level. In [105],
Feng and Huang use two field transformations (one of which is canonicél) to obtain
a MHV lagrangian for N' = 4 supersymmetric Yang-Mills. In ref. [106], the authors
use a field transformation to make manifest the KLT relations [107] for the three- and
four-graviton vertices at the action level. " ' '
Ref. ‘[82] describes a field transformation that is holomorphic but not canonical, giving
rise to a non-unit jacobian in the path integral. The authors argue that this jacobian
gives rise to one-loop amplitudes with at most one gluon of negative helicity. In ref.
[108] a superset of these authors address the issues of the missing amplitudes (and
the rational pieces of amplitudes with non-vanishing cuts) by using the transformation
associated with the Canonical MHV Lagrangian of chapter 3 in conjunction with a four-
* dimensional ‘light-cone world-sheet friendly’ regulator of Qiu, Thorn and Chakrabarti
[95,104,109]. This regulator violates Lorentz covariance by giving the gluon propagator
a non-vanishing ++ component. This must be removed by a counterterm. By applying
the field transformation to the fields in this counterterm, it was demonstrated that
one could recover the one-loop (+-+++) amplitude, and it was argued that he all-+ -
amplitude could be recovered similarly. ‘ '
Boels et al. have been pursuing formal developments complementary to those herein
in a series of papers that trace their origins back to the (ambi)twistor Yang-Mills studies
of Mason and Skinner [110,111]. The crux of this idea is that the twistor-space Yang-
Mills action has a larger gauge group than that of the usual space-time formulation. By
making local, linear gauge transformations on the twistor side that are inaccessible from
‘space-time, the effect on the theory pushed forward to space-time is that it undergoes a
non-local, non-linear transformation that recovers the traditional formulation of Yang-
Mills, or one which makes the CSW rules manifest [112]. In other words, the MHV
lagrangﬁan arises as a result of a choice of gauge fixing in twistor space. Twistor actions
that lead to space-time MHV lagrangians have been constructed for pure Yang-Mills,
extended to include adjoint scalars and fundamental fepresentation fermions [112}, and
used in the background gauge to study renormalisability [113]. In [114,115], CSW
rules for a massive scalar are obtained using both the twistor action and space-time
field transformation. The research in [116] showed explicitly that these two approaches

_produce identical field transformations, and initiates a study at the loop-level.

6.3 Flituré work

It is not yet clear how to decide for a given amplitude and order in perturbation the-
ory when to use the completion vertices. Ideally one would like an algorithmic means of
making this decision. We know that by the validity of the CSW construction, completion
vertices do not contribute to on-shell tree amplitudes in space-times with a Minkowski
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signature. Yet we have seen that they are required for the construction of certain classes
of non-vanishing amplitudes. One might also guess that keeping subsets of momenta
on shell might eliminate the need for certain subsets of diagrams constructed with com-
pletion vertices. The fact that only the tadpole MHV completion graph contributes to
the [box topology of the] one-loop (+-+++) amplitude (when all external momenta are
taken on shell from the beginning) has been used as starting point to an attempt to
tackle these questions in recent research [117]. It is hoped that a sfudy'of how the field
transformation behaves under BRST transformation might shed some light on this.

The issue of direct evaluation of individual MHV completion diagrams is, at time
of writing, an unresolved challenge. It is not completely clear at present what pole
prescription is required to correctly define the integrals in the face of the non-standard
singularity structure of the completion vertices. Of course, one might question why one
would even consider this, given algebraic reconstruction of LCYM before integration —
all the more reason to get to grips with the points raised in the previous paragraph.

Whether the MHV lagrangian will lead to a better paradigm for pefturbati‘on theory
is uncertain at this time. Even if the ideas explored herein do not yield any new com-
putational advantage, we believe it has provided insight into the mechanism underlying
methodologies such as the CSW construction and its progeny. More generally, the ap-
plication of the technology underlying the MHV lagrangian may yet yield insight into
possible simplifications hidden in other field theories.




Bibliography

1]

(2

[10]

(11

(12]

13

M. E. Peskin and D. V. Schroeder, “An Introduction to Quantum Field Theory”.
Addison-Wesley, 1995. :

T. DeGrand and C. E. Detar, Lattice methods for quantum chromodynamics.
World Scientific, 2006.

D. J. Gross and F. Wilczek, “Ultraviolet behavior of non-abelian gauge theories,”
Phys. Rev. Lett. 30 (1973) 1343-13486.

H. D. Politzer, “Reliable perturbative results for strong interactions?,” Phys. |
Rev. Lett. 30 (1973) 1346-1349. '

K. G. Wilson, “Quantum Chromodynamics on a Lattice.” Presented at Cargese
Summer Inst., Cargese, France, Jul 12-31, 1976.

- I. Montvay and G. Munster, Quantum fields on a lattice. Cambridge University

Press, 1994.

~J. M. Maldacena, “The large N“limit of superconformal field theories and

supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231-252,
arXiv:hep-th/9711200.

G. Sterman, “Partons, factorization and resumn_lation,” arXiv:hep-ph/9606312.

W. K. Tung, “Perturbﬁtive QCD and the parton structure of the nucleon,” in At
the frontier of particle physics, M. Shifman, ed., vol. 2, pp. 887-971. 2001.

Particle Data Group Collaboration, W. M. Yao et al., “Review of particle
physics,” J. Phys. G33 (2006) 1-1232.

S. P. Martin, “A supersymmetry primer,” arXiv:hep-ph/9709356.

C. Buttar et al., “Les Houches physics at TeV colliders 2005, standard model,
QCD, EW, and Higgs working group: Summary report,”
arXiv:hep-ph/0604120.

S. J. Parke and T. R. Taylor, “An Amplitude for n Gluon Scattering,” Phys..
Rev. Lett. 56 (1986) 2459.

129




W

BIBLIOGRAPHY ' 130

[14]

[15]

[16]

[17]

(18]

[19]

20]

F. A. Berends and W. T. Giele, “Multiple Soft Gluon Radiation in Parton
Processes,” Nucl. Phys. B313 (1989) 595.

F. Cachazo, P. Svrcek, and E. Witten, “MHYV vertices and tree amplitudes in
gauge theory,” JHEP 09 (2004) 006, arXiv:hep-th/0403047.

K. Risager, “A direct proof of the CSW rules,” JHEP 12 (2005) 003,
arXiv:hep-th/0508206.

R. Britto, F. Cachazo, and B. Feng, “New recursion relations for tree amplitudes
of gluons,” Nucl. Phys. BT15 (2005) 499-522, arXiv:hep-th/0412308.

R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of tree-level
recursion relation in Yang- Mills theory,” Phys. Rev. Lett. 94 (2005) 181602,
arXiv:hep-th/0501052.

K. J..Ozeren and W. J. Stirling, “MHV techniques for QED processes,” JHEP
11 (2005) 016, arXiv:hep-th/0509063.

M.-x. Luo and C.-k. Wen, “Recursion relations for tree amplitudes in super
gauge theories,” JHEP 03 (2005) 004, arXiv:hep-th/0501121.

K. J. Ozeren and W. J. Stirling, “Scattering amplitudes with massive fermions

~using BCFW recursion,” Fur. Phys. J. C48 (2006) 159-168,

[22]

[23]

[24]

[25]

(26]

[27]

arXiv:hep-ph/0603071.

S. D. Badger, E. W. N. Glover, V. V. Khoze, and P. Svreek, “Recursion relations
for gauge theory amplitudes with massive particles,” JHEP 07 (2005) 025,
arXiv:hep-th/0504159.

S. D. Badger, E. W. N. Glover, and V. V..Khoze, “Recursion relations for gauge
theory amplitudes with massive vector bosons and fermions,” JHEP 01 (2006)
066, arXiv:hep-th/0507161.

J. Bedford, A. Brandhuber, B. J. Spence, and G. Travaglini, “A recursion
relation for gravity amplitudes,” Nucl. Phys. B721 (2005) 98-110,
arXiv:hep-th/0502146. : '

F. Cachazo and P. Svrcek, “Tree level recursion relations in general relativity,”
arXiv:hep-th/0502160.

P. Benincasa, C. Boucher-Veronneau, and F. Cachazo, “Taming tree amplitudes
in general relativity,” JHEP 11 (2007) 057, arXiv:hep-th/0702032.

G. Georgiou and V. V. Khoze, “Tree amplitudes in gauge theory as scalar MHV
diagrams,” JHEP 05 (2004) 070, arXiv:hep-th/0404072.




BIBLIOGRAPHY : 131

(28]

[29]
(30]
[31]

2]

[35]

(36]

[41]

J.-B. Wu and C.-J. Zhu, “MHYV vertices an'd fermionic scattering amplitudes in
gauge theory with quarks and gluinos,” JHEP 09 (2004) 063,
arXiv:hep-th/0406146.

F. Cachazo, P. Svrcek, and E. Witten, “T'wistor space structure of one-loop
amplitudes in gauge theory,” JHEP 10 (2004) 074, arXiv:hep-th/0406177.

F. Cachazo, P. Svrcek, and E. Witten, “Gauge theory amplitudes in twistor
space and holomorphic anomaly,” JHEP 10 (2004) 077, arXiv:hep-th/0409245.

F. Cachazo, “Hoiomorphic anomaly of unitarity cuts and one-loop gauge theory
amplitudes,” arXiv:hep-th/0410077.

R. Britto, F. Cachazo, and B. Feng, “Computing one-loop amplitudes from the
holomorphic anomaly of unitarity cuts,” Phys. Rev. D71 (2005) 025012,

+arXiv:hep~th/0410179.

R. J. Eden, P. V. Landshoff, D. 1. Olive, and J. C. Polkinghorne, The Analytic

.S-Matriz. Cambridge University Press, 1966.

Z. Bern, L. J. Dixon, D. C. Dunbar, and D A. Kosower, “Fusing gauge theory
tree amplitudes into loop amplitudes,” Nucl. Phys. B435 (1995) 59-101,
arXiv:hep-ph/9409265.

A. Brandhuber, S. McNamara, B. J. Spence, and G. Travaglini, “Loop

“amplitudes in pure Yang-Mills from generalised unitarity,” JHEP 10 (2005) 011,

arXiv:hep-th/0506068.

R. Britto, F. Cachazo, and B. Feng, “Generalized unitarity and one-loop
amplitudes in N = 4 super-Yang-Mills,” Nucl. Phys. B725 (2005) 275-305,
arXiv:hep—th/O412103;

Z. Xiao, G. Yang, and C.-J. Zhu, “The rational part of QCD amplitude. I: The
general formalism,” Nucl. Phys. B758 (2006) 1-34, arXiv:hep-ph/0607015.

X. Su, Z. Xiao, G. Yang, and C.-J. Zhu, “The rational part of QCD amplitude.
II: The five-gluon,” Nucl. Phys. B758 (2006) 35-52, arXiv:hep-ph/0607016.

Z. Xiao, G. Yang, and C.-J. Zhu, “The rational part of QCD amplitude. III: The
six-gluon,” Nucl. Phys. B758 (2006) 53-89, arXiv:hep-ph/0607017.

Z. Bern, L. J. Dixon, and D. A. Kosower, “On-shell recurrence relations for
one-loop QCD amplitudes,” Phys. Rev. D71 (2005) 105013,
arXiv:hep-th/0501240.

Z. Bern, L. J. Dixon, and D. A. Kosower, “The last of the finite loop amplitudes
in QCD,” Phys. Rev. D72 (2005) 125003, arXiv:hep-ph/0505055.




BIBLIOGRAPHY ' : 132

[42]

[43]
[44]

[45]
[46]
(47]

(48]

[50]

[5.1]

[52]'

[54]

(55

Z. Bern, L. J. Dixon, and D. A. Kosower, “Bootstrapping multi-parton loop
amplitudes in QCD,” Phys. Rev. D73 (2006) 065013, arXiv:hep-ph/0507005.

A. Brandhuber, B. J. Spénce, and G. Travaglini, “One-loop gauge theory
amplitudes in N = 4 super Yang-Mills from MHYV vertices,” Nucl. Phys. B706
(2005) 150-180, arXiv:hep-th/0407214.

J. Bedford, A. Brandhuber, B. J. Spence, and G. ’I‘ravaélini,
“Non-supersymmetric loop amplitudes and MHV vertices,” Nucl. Phys. B712
(2005) 59-85, arXiv:hep—th/O412108.

A. Brandhuber, B. Spence, and G. Travaglini, “From trees to loops and back,”
JHEP 01 (2006) 142, arXiv:hep- th/0510253

P. Mansfield, “The Lagranglan origin of MHV rules,” JHEP 03 (2006) 037,
arXiv:hep-th/0511264.

A. Gorsky and A. Rosly, “From Yang-Mills Lagrangian to MHV diagrams,”
JHEP 01 (2006) 101, arXiv:hep-th/0510111.

J. H. Ettle and T. R. Morris, “Structure of the MHV-rules Lagrangian,” JHEP
08 (2006) 003, arXiv:hep-th/0605121.

J. H. Ettle, C.-H. Fu, J. P. Fudger, P. R. W. Mansfield, and T. R. Morris,
“S-Matrix Equivalence Theorem Evasion and Dimensional Regularisation with
the Canonical MHV Lagrangian,” JHEP 05 (2007) 011, arXiv:hep-th/0703286.

J. H. Ettle, T. R. Morris, and Z. Xiao, “The MHV QCD Lagrangian,”
arXiv:0805.0239 [hep-th].

S. Weinberg, “The quantum theory of fields. Vol. 2: Modern applications,”.
Cambridge, UK: Univ. Pr. (1996) 489 p.

R. Kleiss and H. Kuijf,‘ “Multi-gluon cross-sections and five jet production at -
hadron colliders,” Nucl. Phys. B312 (1989) 616.

E. Witten, “Perturbative gauge theory as a string theory in twistor space,”
Commun. Math. Phys. 252 (2004) 189-258, arXiv:hep-th/0312171.

M. L. Mangano and S. J. Parke, “Multiparton amplitudes in gauge theories,”
Phys. Rept. 200 (1991) 301-367, arXiv:hep-th/0509223.

G. ’t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B72

© (1974) 461.

F. A. Berends and W. T. éielé, “Recursive Célculations for Processes with n
Gluons,” Nucl.‘Phys. B306 (1988) 759.




BIBLIOGRAPHY ‘ ' 133

[57]

58)
9]
60)

[61]

7. Bern and D. A. Kosower, “Color decomposition of one loop amplitudes in -
gauge theories,” Nucl. Phys. B362 (1991) 389-448.

Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “One loop n point
gauge theory amplitudes, unitarity and collinear limits,” Nucl. Phys. B425
(1994) 217-260, arXiv:hep-ph/9403226.

M. T. Grisaru, H. N. Pendleton, and P. van Nieuwenhuizen, “Supergravity and
the S Matrix,” Phys. Rev. D15 (1977) 996. '

L. J. Dixon, “Calculating scattering amplitudes efficiently,”
arXiv:hep-ph/9601359.

M. T. Grisaru and H. N. Pendleton, “Some Properties of Scattering Amplitudes

~ in Supersymmetric Theories,” Nucl. Phys. B124 (1977) 81.

[62]

[65]

[66]

[67]

[68]

(69]

[70]

[71]

(72]

C. F. Berger, “Bootstrapping one-loop QCD amplitudes,” AIP Conf Proc. 903
(2007) 157-160, arXiv:hep-ph/0608027.

L. M. Brown and R. P. Feynman, “Radiative corrections to Compton
scattering,” Phys. Rev. 85 (1952) 231-244. "

G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e-
Annihilation Into mu+ mu- in the Weinberg Model,” Nucl. Phys. B160 (1979)
151. '

G. ’t Hooft and M. J. G. Veltman, “Scalar One Loop Integrals,” Nucl. Phys.
B153 (1979) 365-401.

R. G. Stuart, “Algebraic reduction of one loop Feynman diagrams to scalar
integrals,” Comput. Phys. Commun. 48 (1988) 367-389.

R. G Stuart and A. Gongora, “Algebraic reduction of one loop Feynman
diagrams to scalar integrals 2,” Comput. Phys. Commun. 56 (1990) 337-350.

W. L. van Neerven and J. A. M.’Vermaseren, “Large loop integrals,” Phys. Lett.
B137 (1984) 241.

D. B. Melrose, “Reduction of Feynman diagrams,” Nuovo Cim. 40 (1965)
181-213.

G. J. van Oldenborgh and J. A. M. Vermaseren, “New Algorlthms for One Loop
Integrals,” Z. Phys. C46 (1990) 425-438.

G. J. van Oldenborgh, One loop calculations with massive particles. PhD thesis,
University of Amsterdam, 1990. RX-1313 (AMSTERDAM).

A. Aeppli. PhD thesis, University of Zurich, 1992.




BIBLIOGRAPHY . " 134

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

[86]

L. D. Landau, “On analytic properties of vertex parts in quantum field theory,”
Nucl. Phys. 13 (1959) 181-192.

S. Mandelstam, “Analytic properties of transition amplitudes in perturbation
theory,” Phys. Rev. 115 (1959) 1741-1751.

R. E. Cutkosky, “Singularities and discontinuities of Feynman amplitudes,” J.
Math. Phys. 1 (1960) 429-433.

W. L. van Neerven, “Dimensional régularization of mass and infrared
singularities in two loop on-shell vertex functions,” Nucl. Phys. B268 (1986) 453.

Z. Bern and A. G. Morgan, “Massive Loop Amplitudes from Unitarity,” Nucl.
Phys. B467 (1996) 479-509, arXiv:hep-ph/9511336.

V. P. Nair, “A current algebra for some gauge. theory amplitudes,” Phys. Lett.
B214 (1988) 215.

C. Quigley and M. Rozali, “One-loop MHV amplitudes in supersymmetric gauge
theories,” JHEP 01 (2005) 053, arXiv:hep-th/0410278.

J. Bedford, A. Brandhubér B. J. Spence, and G. Travaglini, “A twistor approach
to one-loop amplitudes in N = 1 supersymmetric Yang-Mills theory,” Nucl.
Phys. B706 (2005) 100-126, arXiv:hep-th/0410280.

R. P. Feynman, “Closed loop and tree diagrams,”. In *J R Klauder, Magic
Without Magic*, San Francisco 1972, 355-375.

A. Brandhuber, B. Spence, and G. Travaglini, “Amplitudes in pure Yang-Mills
and MHV diagrams,” JHEP 02 (2007) 088, arXiv:hep-th/0612007.

M. Dinsdale, M Ternick, and S. Weinzierl, “A comparison of efficient methods
for the computation of Born gluon amplitudes,” JHEP 03 (2006) 056,
arXiv:hep-ph/0602204.

W. T. Giele and G. Zanderighi,” “On the Numerical Evaluation of One-Loop
Amplitudes: the Gluonic Case,” arXiv:0805.2152 [hep-ph].

R. K. Ellis, W. T. Giele, and G. Zaﬁderighi, “The one-loop amplitude for
six-gluon scattering,” JHEP 05 (2006) 027, arXiv:hep-ph/0602185.

W. T. Giele, Z. Kunszt, and K. Melnikov, “Full one-loop amplitudes from tree
amplitudes,” JHEP 04 (2008) 049, arXiv:0801.2237 [hep—ph].

Z. Bern L. J. Dixon, and D. A. Kosower, “One loop corrections to five gluon
amplitudes,” Phys Rev. Lett. 70 (1993) 26772680, arXiv:hep- ph/9302280




- BIBLIOGRAPHY : " 135

[88]

[89]
[90]

[91]

[94]

99
[96]
o7
98]
199

[100]

[101]

[102]

S. J. Bidder, N. E. J. Bjerrum-Bohr, L. J. Dixon, and D. C. Dunbar, “N =1
supersymmetric one-loop amplitudes and the holomorphic anomaly of unitarity
cuts,” Phys. Lett. B606 (2005) 189-201, arXiv:hep-th/0410296.

R. Britto, E. Buchbinder, F. Cachazo, and B. Feng, “One-loop amplitudes of |
gluons in SQCD,” Phys. Rev. D72 (2005). 065012, arXiv:hep-ph/0503132.

R. Britto, B. Feng, and P. Mastrolia, “The cut-constructible part of QCD
amplitudes,” Phys. Rev. D73 (2006) 105004, arXiv:hep-ph/0602178.

Z. Bern, L. J. Dixon,'and D. A. Kosower, “All next-to-maximally
helicity-violating one-loop gluon amplitudes in N = 4 super-Yang-Mills theory,”
Phys. Rev. D72 (2005) 045014, arXiv:hep-th/0412210.

G. Mahlon, “Multi - gluon helicity amplitudes involving a quark loop,” Phys.
Rev. D49 (1994) 4438-4453, arXiv:hep-ph/9312276.

C:. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kosower, “All one-loop
maximally helicity violating gluonic amplitudes in QCD,” Phys Rev. D75
(2007) 016006, arXiv:hep-ph/0607014.

C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kosower, “Bootstrapping
one-loop QCD amplitudes with general helicities,” Phys. Rev. D74 (2006) |
036009, arXiv:hep-ph/0604195. .

C. B. Thorn, “Notes on one-loop calculations in light-cone gauge,”
arXiv:hep-th/0507213."

G. Chalmers and W. Siegel, “The self-dual sector of QCD amplitudes,” Phys.
Rev. D54 (1996) 7628-7633, arXiv:hep~th/9606061.

S. Mandelstam, “Light-Cone Superspace and the Ultraviolet Finiteness of the
N=4 Model,” Nucl. Phys. B213 (1983) 149-168.

G. Leibbrandt, “The Light Cone Gauge in Yang-Mills Theory,” Phys Rev. D29
(1984) 1699.

Goldstein, Herbet and Poole, Charles and Safko, John, vC’lassical Mechanics.
Addison-Wesley, third ed., 2002.

C. Itzykson and J. B. Zuber, Quantum Field Theory. McGraw-Hill, 1980.

Z. Bern and D. A. Kosower, “The Computation of loop amplitudes in gauge

theories,” Nucl. Phys. B379 (1992) 451-561.

A Bern, L. J. Dixon, and D. A. Kosower, “New QCD results from string theory,”
arXiv:hep-th/9311026.




BIBLIOGRAPHY | : - 136

(103] Z. Bern, G. Chalmers, L. J. Dixon, and D. A. Kosower, “One loop N gluon
 amplitudes with maximal helicity violation via collinear limits,” Phys. Rev. Lett.
© 72 (1994) 2134-2137, arXiv:hep-ph/9312333. '

(104] D. Chakrabarti, J. Qiu, and C. B. Thorn, “Scattering of glue by glue on the
* light-cone worldsheet. I: Helicity non-conserving ampliﬁudes,” Phys. Rev. DT2
(2005) 065022, arXiv:hep-th/0507280.

[105] H. Feng and Y.-t. Huang, “MHYV lagrangian for N = 4 super Yang-Mills,”
arXiv:hep-th/0611164.

[106] S. Ananth and S. Theisen, “KLT relations from the Einstein-Hilbert
Lagrangian,” Phys. Lett. B652 (2007) 128-134, arXiv:0706.1778 [hep-th].

(107] H. Kawai, D. C. Lewellen, and S. H. H. Tye, “A Relation Between Tree
Amplitudes of Closed and Open Strings,” Nucl. Phys. B269 (1986) 1.

[108] A. Brandhuber, B. Spénce, G. Travaglini, and K. Zoubos, “One-loop MHV Rules
and Pure Yang-Mills,” JHEP 07 (2007) 002, arXiv:0704.0245 [hep-th].

[109] D. Chakrabarti, J. Qiu, and C. B. Thorn, “Scattering of glue by glue on the
light-cone worldsheet. II: Helicity conserving amplitudes,” Phys. Rev. D74
(2006) 045018, arXiv:hep-th/0602026. ‘

(¥10] L. J. Mason and D. Skinner, “An ambitwistor Yang-Mills Lagrangian,” Phys.
Lett. B636 (2006) 60-67, arXiv:hep-th/0510262.

[111} R. Boels, L. Mason, and D. Skinner, “Supersymmeﬁric gauge theories in twistor
 space,” JHEP 02 (2007) 014, arXiv:hep-th/0604040.

[112] R. Boels, L. Mason, and D. Skinner, “From twistor actions to MHV diagrams,”
Phys. Lett. B648 (2007) 90-96, arXiv:hep-th/0702035.

(113] R. Boels, “A quantization of twistor Yang-Mills theory through the background
field method,” Phys. Rev. D76 (2007) 105027, arXiv:hep-th/0703080.

[114] R. Boels and C. Schwinn, “CSW rules for a massive scalar,” Phys. Lett. B662
(2008) 80-86, arXiv:0712.3409 [hep-th]. :

[115] R. Boels, C. Schwinn, and S. Weinzierl, “Recent developments for multi-leg QCD
amplitudes with massive particles,” arXiv:0712.3506 [hep-ph].

[116] R. Boels and C. Schwinn, “CSW rules for massive matter legs and glue loops,”
arXiv:0805.4577 [hep-th].

[117] Fudger, Jonathan P. and Morris, Tim R. (in preparation), 2008.




