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This thesis is concerned with the guidance and control problem for autonomous hom-
ing and docking tasks using an autonomous undérwater vehicle. The tasks will play a
key réle in long‘-term underwater applications in the future. Current technology allows
most vehicles capable of short-term operation. Because of limitations of energy stéf-
age and sensor capabiliﬁy, uﬁderwater vehicles considered in large networks are unable
to of)erate continuously in completing a large task assignment for extended periods
of time. To extend a large scope of the missions, autonomous homing and docking
tasks are therefore required allowing a vehicle to automatically return to the docking
station and then recharge its own battery and exchange data before continuing the

operations.

The thesis describes work towards guidance and control systems to enablé a nonholo-
nomic torpedo shaped underwater vehicle to perform automatic homing and docking
preparation tasks. The artificial potential field and the vector field path generation
~ methods construct the predefined trajectory by extracting position information from
surrounding sensor nodes. »Thus, the predefined path leads an AUV relatively close to
the docking station with obstacle avoidance. With ‘an enhanced model, the switching
weighted vector field technique applies a set of varying weights. This technique shapes

a trajectory which a docking preparation manoeuvre can improve. The Line-of-Sight
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guidance law with the control system then forces the vehicle to follow its predefined
path to the desired destination with the proper briéntation at the dock. The sliding
mode- controller is designed for both heading and depth control. A subsystem using
sliding mode is applied to obtain a robust controller for handling nonlinear system
behaviours. . Due to a problem of chattering effects caused by the standard sliding
mode control, the high-order sliding mode control solves it with success whilst its
main characteristic is maintained. To improve.performan'ce.of t\he controllers, the
optimal control technique via state-dependent Riccati equation is explored. Finally,
a novel method integrates the guidance and control laws with optimal waypoint guid-
ance algorithm for smooth ‘commanded transitions. Based on the Lyapunov stability
theorem, the guidahce—contfol system guarantees stability of tracking. The feasibility
of this approach is analytically formulated and the simulation is numerically démon—

strated using an autonomous underwater vehicle.
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Chaphter 1

Introduction

This thesis considers the p\roblem of homing and docking tasks for long-term appli-
cations, hence a guidance-control framework using an autonomous underwater vehicle
is propésed. In this chapter, the motivation for this work is introducéd, and followed
by the requirement for long-term application and the general guidance-navigation-
control concept. Building upon the general framework, the research objectives are
stated and the proposed approach is described. Finally an outline of the thesis is

described, and publications for this work are summarised.

1.1 Motivation

The oce&;ns embody extraordinarily dynamic and complex environments. Immense bi-
ological and mineral resources from thev oceans are largely unexplored and unknown.
Underwater exploration and surveying are needed thus they can be managed to al—l
low both use and protection of ocean resources. Some operations in the underwater

environment, for instance, deep sea and under-iceberg can be deeply unfriendly to

humans. Underwater tools and robots are desirable for these missions. The robotics
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community has currently playéd attention to a field of unmanned underwater vehi- |
cles which encompasses a widé range of research topics. One of the largest focus
areas is the development of robotic vehicles and the investigations into their poSsiBle

applications.

The re(juirement for autonomy in vehicle design and for automatic control technol-
ogy, is however increasing at a big rate and it is a prevalent issue in many situations
and various environments. The communication between the operator and vehicle is a
main factor to classify whether it is a Remotely Operated Vehicle (ROV) or an Au-
tonomous Underwater Vehicle (AUV). For example, an automatic control is required
'Ias opposed to a remote control in underwater environments where communication
with a unmanned or manned vehicle is possible. Although ROVs have been the dom-
inant robotic field of interest with researchers for many years and they are useful
for many underwater operations such as collectihg biological and mineral resources,
there are some limitations for those vehicles during long-term operations in hostile
environments. It is well known that ROVs are linked to the support ship by an um-
bilical cable and remotely operated by a human pilot, whereas AUVs do not have
this inhibition and are therefore playing a vital role in underwater explofation\ allow-
" ing humans to explbre great depths in various new underwater worlds. AUVs are
self-contained and are able to have predefined solutions built into their architecture
and to take control actions more accurately and reliably without human intervention.
Thus, an AUV is-an alternative in complex underwater operations. Examples of such
) operations are seabéd mapping and surveying, studying underwater environment and
disasters, underwater inspections and constructions, and under-ice explorations [51).
Hvowever,' the development of AUVs have been relatixfely slow due to their high level
of complexity in technology and at a high operational cost [87]. In addition there are
three main ongoing areas for AUV technology, namely scientific reseafch, commercial

sector and military. In summary, table 1.1 shows examples of current development
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of the AUV technology and their applications., This exemplifies why AUVs have var-

ious potential applications and great advantages in terms of operational ranges éund

reliable operations [160].

- Table 1.1: Examples of current development of the AUVs

Reference Vehicle name Year Range| Depth| Purpose
- | (m) | (m) |
MBARI [104] Dorado- 2008 | 55-85 | 6,000 | Seafloor mapping
IFREMER ([110] | ASTER 2008 | 100 3,000 | Environmental
survey
Kongsberg (75] | HUGIN-3000 2006 | 440 3,000 | Environmental
- ‘ monitoring
Hydroid [56] REMUS-6000 2006 | 420 6,000 | Environmental -
) survey
MARIDAN [8] | MARIDAN-600 2001 | 100 1,500 | Offshore .indus-
try and military
- AQUA Ex-2 (73] | AQUA Explorer 2 | 2001 | 420 | 2,000 | Environmental
_ o survey
JAMSTEC [65] | URASHIMA 1998 | 300 3,500 | Bottom survey-
, ing
Griffiths [52] Autosub-1 01995 | 220 750 Environmental
) monitoring

1.2 Requirements for Long-Term Application

Studies have been made of AUVs over the past thirty years [160], still AUV technology

limitations remain. In long-term operations, energy and data storages are critical

factors [51]. In-long-term experimentation, a vehicle should operate continuously to

complete a large scope of a mission for extended periods of time. Therefore most

underwater vehicles are typically capable of short-term operation. To continue the

mission, a vehicle requires both software and hardware to be turned off before its-

batteries can be manually recharged or replaced whilst operators manually download

data from each mission. It can be seen that current state of technology for power

capability and data storage capacity is not fully supported in such operations.
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(f)

Figure 1.1: Various designs of AUVs: (a) AutoSub 2 [52], (b)
Urashima [157], (¢) Maridan (8], (d) Hugin 3000 [61], (¢) Aqua
Explorer 2 [73], (f) REMUS-6000 [56].
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Table 1.2: Current development of power source for various AUVs -

Reference Vehicle Name | Displace- Power Source | Mission
| ment (tonne) Endurance

Kongsberg [75] | HUGIN-3000 14 Semi-fuel 50-60

] Cell, 45kWh | hours"
McPhail [100] Autosub-1 1 MN-alkaline | 50 hours
JAMSTEC (65]. | URASHIMA 10 Fuel Cell | 43 hours

' » . ' 4kW-120V
Hydroid [56] REMUS-6000 8.6 Li-ion, 22 hours
11kWh :
MARIDAN [g] SeaOtter-MKkI 15 NiMH  bat- | 15 hours
C , tery
AQUA Ex-2 [73] | AQUA Explorer 2 | 2.6 "Rechargeable | 10 hours
e ' Lithium '

Table 1.2 shows various types of power source and operation -time for current
AUVs technology. Its short operational periods limit the Scopes of each undersea
exploration. - For future development, AUVs do require high-efficiency power source
and high-volume storages thus they have the ability to Widely explore in large un-
known environments, especially for long;term missions. Figure 1.1 shows various
AUVs that could be potentially used for undersea long-term tasks. In addition, mod-
ern AUVs techno.logy can be realised on large undersea networks in long-term appli-
cations. Ocean networks will provide the data necessary to widely explore underwater
environments. Small sized AUVs can be applicable for complex and wider missions.
However as mentioned previously, current technology fof unlimited battery power and

larger data storage is unavailable. To overcome the limitations of onboard battery |
| capacity, data storage and sensor ranges, floating docking platforms are required to

provide a large area of poteﬁtial missions. By focusing on homing and docking op-
erations, this allows a vehicle to return in the midst of the mission to the docking
platform and then to recharge its own battery. This also allows an exchange informa-
tion between the ship and the AUV before continuing its normal operations. To be

able to perform its docking mission accurately, the guidance, navigation and control
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system must be reliable. Path planning and tracking for homing and docking are also
required in the task. The field of autonomous system for homing and docking for
underwater exploration is still open and have been extensively studied in the research

and development communities.

EGuidance Control | %
System System Plant
Navigation |
System

Figure 1.2: Ilustration of the basic block diagram of Guidance,
Navigation and Control system for marine applications.

1.3 Guidance, Navigation and Control

As reported in [39], a control system for a robotic system or a marine vehicle is
constructed as three building blocks denoted as the Guidance, Navigation and Control

(GNC), shown in figure 1.2. Simply, GNC can be described by three fundamental

questions:

« Where am I going ? Firstly, the guidance can be defined as the process
of determining the desired position, velocity and acceleration of the vehicle
that will achieve target conditions despite changes in the vehicle’s motion and
its environment, to be used by the control system. If the vehicle states and
environmental conditions are exactly known and do not change, the guidance

will be a relatively simple enough, requiring only an open-loop control system.
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« Where am I ? Secondly, the navigation problem is to find the vehicle kinematic
states (position, velocity and acceleration). Its information is managed by a .
device known as the inertial measurement unit (IMU), which is essentially an
arrangement of accelerometers and rate gyros. More complex devices includes
the Inertial Navigation System‘ (INS) and the Kalman filter techniques applied
to doppler velbcity logs and acoustic Idoppler. These devices continuously track

. the position, orientation and've‘locity of a vehicle without the need for external

references.

« How should I go there ? F inally, the control is the actipn to maintain the
vehicle states commanded by the guidance system. Design of the vehicle con-
trol must satisfy objectives, for instanée, feedback control laws, path following,
trajectory tracking and energy minimising. The vehicle stability is the primary
and most difficult criterion to satisfy. Its requirements are often contradictory
to the speed of response of the control algorithms and the actions. This would

be an interesting questidn to be answefed. '

1.4 Approach

There are many ways to solve_the problem of automated homing and guidance of
an AUV to a stationary docking platform, for example, an AUV is able té detect
when the batteries need recharging of when information needs transferring. A reason
for doéking‘criterion is either the voltage has reducedz, or the storage capacity is
saturated. By de-termining a factor, an AUV is able to predict how long it should be
for a safe return to the platform. In the homing and docking tasks, an AUV must
be placed relétively close to the docking station. With a navigation system, an AUV
is able to determine positional information with existing sensor technology such as
underwater acoustic devices. Two stages for returning and docking preparation are

developed. In the guidance system, the potential and vector field technique generate a
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predefined trajectory with a desired position and orientation for an AUV in those twb
stages. In the tracking control problem, the sliding mode is generally used to obtain
a robust controller for nonlinear system behaviour. The .path following technique
with available control actions forces an AUV to follow its trajectory with the speed
profile from any given starting position inl the workspace, to a desired destination
location with pfoper orientation at the dock. The entire system guarantees stability of
tracking positions and orientation whilst following the pvredeﬁned path until reaching

the docking platform.

1.5 Objectives
The three priricipal'objectives of the research are summarised,

» To give an analytical robust control algorithm as a tool ensuring system sta-
bility that may be disturbed by uncertainties and disturbance caused by ocean

currents and waves.

« To propose a novel path planning concept for generating a predefined trajectory

which converges closer to the destination (docking point).

« To develop a new approach for guidance and control for homing and docking
tasks using an AUV. The objective of this task is that an AUV is to follow and
. track the predefined trajectory, whilst a control design can guarantee a stability

for both position and orientation.

1.6 Scopes, Assumptions and Limitations

In this thesis, the following are considered:

 The concept of a homing and docking manoeuvre; guidance based path following

with control efforts are considered.
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« The underwater vehicle which is considered in a set of simulation studies, is not
a fully actuated system. The nonholonomic torpedo shaped underwater vehicle
is considered and used to demonstrate the case studied for homing and docking

tasks.

« This study only deals with time-continuous plants. Studies and analyses for

discrete plants are not included here. :
o Parameters includes dimensions and hydrodynamic model used in the simula-
tion studies [54]. All plant models considered are of known' structure. Sorne

parameters of the models, however may or may not be known.

« A navigation system is not covered in this work. It is therefore assumed that
‘an underwater vehicle equipped with sensors is able to track position and ori-
entation from the sensor networks, for example responder-transponder arrays.

Output feedback designs and controller/observer designs are not considered.

1.7 Brief of Sensor Networks

The field of navigation covers a very wide range of interesting areas and techniques -
employed by ROVs/AUVs. Underwater vehicles can get information from outside
(environments). Sensors are therefore very necessary information providers and are
heavily used in ROVs/AUVs application_. ‘However, as mentioned prévjously, the nav-
igation system is not considered in this work. Such that only a brief review of nav-
igatibnal sensor for vehicles is given in this section. Future works would allow the

complete system for an autonomous underwater vehicle.

Sensor network system is considered as an array of the acoustic equipment which
give the range and the bearing from a vehicle based transceiver to seafloor transpon-

ders and floating station or surface ship’s transceivers. Acoustic navigation systems
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work best in open water. The vehicle sends out an acoustic signal which is then re-
turned by each transponders as it is received. The measurements can be represented
in the spherical coordinates, as such the position relative to the surface ship, the ve-
hicle and each array node can be calculated. Figure 1.3 shows one example diagram

of the acoustic systems. Following details are collected from reference [76].

Surface ship/Station

AUV with transceiver .. .
e —

Transponder array

Figure 1.3: Illustration of the Long baseline acoustic positioning
system diagram.

Ultra Short Baseline System (USBL)

Ultra short baseline system consists of a transceiver, which is mounted underneath a
surface ship, and a transponder/responder on the seafloor, and/or on an underwater
vehicle. The range and bearing are derived from a USBL system with respect to the
transceiver mounted to the vehicle. An acoustic pulse is converted into range whilst
a phase-differencing within transducer array is used to calculate the bearing to the
subset transponder. The advantage of USBL system is that it has single transducer

assembly on the surface vessel to locate the transponder on the ROVs/AUVs.
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Short Baseline System (SBL)

A short baseline system derives a bearing _to' a beacon from multiple surface mounted
transceivers. This bearing is derived as a ping passes each of the transceivers and
the relative time of arrival is detected. A time of flight interrogation technique will

provide a range to the beziconT The position will.be with respect to the transceivers.

Long Baseline System (LBL)

A long baseline system derives a position- with respect to a seafloor deployed ar--
ray of transponders in combination with a hydrophone on the surface vessel to locate
ROVs/ AUVs. The position is generated from using three or more time of flight ranges
to/from the seafloor platforms. This system gives the position.in absolute or relative
seafloor coordinates and does not require additional sensors.. The main advantage of
the LBL posi‘tioning system is excellent and constant accﬁrdcy whatever the move-
ments and the position of the vehicles being tracked over the area. The accuracy is
independent of depth if environmental parameters are properly compensated. This

type of acoustic equipments would suit for the sensor networks providing the positions

for the large scope of applications.

1.8 Main Contributions and Outline of the Thesis
The main thesis contributions are summarised below: 4

« Optimal sliding mode control scheme
An optimal sliding mode controller is introduced. The model is proposed so it -
~ solves the problem of convergence and stability of a nonlinear system by consid-
ering the Lyapunov theorem. Firstly, the traditional sliding mode is described.

By enhancing the design, the high-order sliding mode is capable of tracking the

error whilst eliminating the chattering effects for the common decoupled depth
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and heading subsystemsvof an AUV. Secondly, an optimal control input is de-
termined by solving algebraic Riccati equatioﬁ.' The intégration of two control
schemes is then proposed to eﬁsure stabilisation and effective means of designing
the AUV subsystems in the presence of small input additional disturbances [63].
To illustréte the control law developed in this work, only computer simulation

results are presented in the thesis.

+ Predefined path for homing and docking preparation strategy
Two strategies, namely homing and docking path generation are proposed so
that they provide a predefined trajectory for an AUV to a close neighborhood of
é target position with desired orientation. Firstly, a homing strategy is achieved
by generating a virtual path using an artificial potential field method. This
virtual path is obstacle free whilst cbnverging to an area-for docking preparation
stage. Secondly, the conventional method is modified to the so-called vector field
method for a docking strategy. This is to ensure a predefined trajectory for an
AUV to be able to follow the path with a final desired orientation. Constant
and switching weight set are further studied .for a better fnodel of predefined
path closer to the target. Simulation results using MATLAB® software are

demonstrated in a later chapter [62].

» Guidance-control approach
Trajectory tracking and: path following of an underwater vehicle to a target
with desired orientation is achieved by means of the propbsed method. A novel
guidance-control approach is proposed. Line-of-Sight guidance algorithm is used
to solve path following whilst a robust sliding mode control is derived that yields

the convergence of the predefined path. A ‘proposed optimal waypoint gives a .

smooth command transition. Simulations results are presented in 2D and 3D
T ' to illustrate the behaviour of the proposed control scheme. The model shows

statistic results of cdnvergence and stabilisation of the system to an arbitrarily

A

|
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- small errors in position and orientation.
The outline is shown in figure 1.4, and detailed as following: -

o+ Chapter 2 explores a literature review on the.development of control algorithm
designed for marine vehicles by the researcher and academic communities. The
aim is to provide-advantages énd disadvantages of the different control schemes
developed in the field of marine applications, and to comment on which methods
that seem most promising from a practical viewpoint. This is followed by a brief
mathematical model for kinematics and. dynamics of marine vehicle. A fully

" coupled six degrees of freedom of an underwater vehicle is considered. State

space representations using Euler angles are presented.

o Chapter 3 presenté the design of a sliding mode controllers for an underwater
vehicle. Common decoupled subsystems, nglmely depth and heading subsystem
of sliding mode controllers are presented. The controller is a géneral controller
which utilises sliding surfaces based in time. A discussion on how this general
controller can be used for tracking errors of desired states is given. Then, a focus
is dedicated to an optimal high-order sliding mode éontrol vi;'a state-dependent
Riccati equation for decoupled systems. .The proposed controller not orﬂy keeps
the advantage of the standard sliding mode, but also eliminates the chattering

‘effects. Another issue in the designed approximate niethod is to select an ap-
propriate sliding surface. The work determines an optimal sliding surface by
involving a state-dependent Riccati equation techﬁique. Simulation results are
shown that the sliding modé contrpller is able to keep steady state »érror small

due to disturbances and give an enhancement of the controller performances.

e Chapter 4 introduces a trajectory planning for a homing and doéking pioblem.
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