
UNIVERSITY OF SOUTHAMPTON 

FACULTY OF LAW, ARTS AND SOCIAL 
SCIENCE 

SCHOOL OF MANAGEMENT 

Solving Two-Dimensional layout Optimization Problems with 
Irregular Shapes by Using Meta-Heuristic 

By 

Kumaran Ramakrishnan 

Thesis for the degree of Master of Philosophy in Management Science 

December 2008 



UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
FACULTY OF LAW, ARTS AND SOCIAL 

SCIENCE 
SCHOOL OF MANAGEMENT 

Master of Philosophy 

Solving Two-Dimensional Layout Optimization Problems with Irregular Shapes by 
Using Meta-Heuristic 

by Kumaran Ramakrishnan 

The focus of this thesis is developing methodologies for 2-dimensional problems that 

involve irregular shapes, where the objective is to find an arrangement of the irregular 

pieces in order to minimise waste material. There are two main approaches popular with 

researchers; in this research project we will group them into iterative constructive 

heuristics (ICH) and those heuristics which search over the physical layout (SOL). ICH 

seeks to generate good layouts by placing pieces on the stock sheet piece by piece 

according to a placement rule. The orders the pieces are placed is controlled by a search 

algorithm. SOL works with the physical layout and tries to improve the solution by 

moving the placement position of pieces. Overlap is often permitted and penalised in the 

cost function in order to generate new solutions. 

Both approaches are competitive and each new publication brings better results with 

respect to the benchmark data sets. Although this can be credited to better algorithm 

design, it could also be argued that researchers are getting better at incorporating 

sophisticated specific features in their algorithms to handle the 17 benchmark data sets. 

In this research we intend to investigate the two representations of the problem and 

establish some principles of the strengths and weaknesses of each method with respect to 

data type. In order to conduct this research the algorithms will be developed using only 

the basic principles of both approaches and discarding any special features found in the 

literature. The aim is to deduct from the experimental results an understanding of what 

solution representation should be applied given the data type, performance requirements 

and number of pieces. 
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1 Introduction 

Cutting and packing problems has attracted the interest of researches for many years. 

This problem occurs across a great variety of industries for example textile, paper, wood, 

metal and glass. Many of the industries involved in cutting and packing generate huge 

volumes of sales to fulfill the accelerating global demand of products made from textile, 

paper, wood, metal and glass. For example all of us need clothing in our daily lives, the 

fumiture we use may be made from wood or metal and all sorts of household and 

industrial items will have components cut from various materials. 

Cutting and packing problems arise in a wide variety of industries and include many 

problem types such as cutting lengths of pipe (I-dimensional problem), cutting sheets of 

glass or loading pallets (2-dimensional) or loading a container (3-dimensional). The focus 

of this proposal is developing methodologies for 2-dimensional problems that involve 

irregular shapes, where the objective is to find an arrangement of the irregular pieces in 

order to minimise waste material. Examples of this problem type include garment 

manufacturing, leather hide cutting, ship building, and tool manufacturing. Although 

commercial software exists for generating layouts, the underlying algorithms are 

generally unsophisticated and can not compete with solutions generated by expelis. 

Classification of cutting and packing problem type can be found in Dyckhoff (1990) and 

Waescher et al. (2007). Our research interest in on the variant of packing problem 

commonly known as 2-dimensional strip packing problem in the literature or as 2-

dimensional irregular open dimension problems (2D irregular ODP) as classified by 

Waescher et al. (2007). We will be using 2D irregular ODP to refer to this problem type 

throughout this thesis, 2D irregular refers to the dimensions and shapes of the pieces to be 

packed and OD refers to the stock sheet. An assumption is made that sufficient space is 

available to pack all the pieces on the stock sheet. For example in the gan11ent 

manufacturing industry the stock sheet (i.e. rolls of textile) is rectangular in shape, it has 

a constrained width but unconstrained length so that all the pieces that are required to 



manufacture the garment can be conveniently placed on the stock sheet. There are two 

key solution approaches used to solve the 2D irregular ODP problems; iterative 

construction heuristics (e.g. Gomes and Oliveira, 2002; Dowsland et al., 2002; Burke et 

al., 2006), and searching over the layout (Bennell and Dowsland, 2001; Oliveira and 

Ferreira, 1993; Heckmann and Lengauer, 1995). The focus of this research is not to 

compete with the best results published in the literature with respect to the benchmark 

data sets but rather to investigate the two solution approaches and gain some insights into 

the strengths and weaknesses of each solution approach with respect to the benchmark 

data. We aim to do this by stripping the special features that are used to enhance 

performance often embedded in these solution approaches and creating a focus on the 

basic behaviour of the two key solution approaches. Hence a level playing field for 

computational results comparison is created. 

The next section is an introduction to cutting and packing problems and some of the 

issues that need to be considered. Subsequently we will discuss the research problem that 

we will be investigating and how we intend to approach it. In the final section we will set 

our goals for this project. 

1.1 The problem 

Bennell and Oliveira, 2008 define 2D irregular ODP to be a problem, "where more than 

one piece of irregular shape must be placed in a configuration with the other pieces(s) in 

order to optimise an objective". The 2D irregular ODP is NP-hard (e.g. Egeblad et al., 

2003) hence exact methods cannot be used to solve this problem. The geometric 

properties of the shapes to be packed or cut add another dimension of complexity to this 

problem. Huge cost savings could be derived from a good quality cutting or packing 

solution. The reasons given above make this problem a very important research area in 

academia as well as in industry. Figure 1.1 (generated from author's computational 

experiment run) is a good example of an irregular packing layout in the garment 

manufacturing industry; it shows the cutting pattern for pairs of trousers. 
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Figure i.i: An example layout for pairs of trousers 

Referring to Figure 1.1 there are in total 52 pieces that needs to be packed onto the stock 

sheet and the objective is to pack them as close together as possible in order to minimize 

the wastage of material. In the literature the quality of packing layouts produced is 

measured in terms of the shortest strip length or highest area utilization. The cutting and 

packing layout is constrained by shape of the stock sheet. For example in the textile 

industry, rolls of textile will have a fixed width and we normally assume sufficient length 

of material is available to pack all the required pieces, although in reality this may not be 

the case. In the literature this type of problem is referred to as a strip packing problem. 

Whereas in the leather industry the packing layout is restricted by the size and shape of 

the leather hide, hence more than one may be required to pack all the pieces. The problem 

we are interested in is the strip packing problem variant. 

One of the mam obstacles for researchers working with 2D irregular ODP is 

implementing the computational geometric tools to prevent pieces from overlapping one 

another as they are placed on the layout. In regular shapes like rectangle or circles the 

overlap calculation can be trivial but detecting overlap between the irregular shapes 

requires non-trivial computational geometric techniques. The next chapter will cover the 

details of the overlap detection techniques. Once the overlap detection tool is in place we 

can investigate the optimization methodologies. There are two main solution approaches 

popular with researchers. In this research we will group them into iterative constructive 

heuristics (ICH) and those which search over the physical layout (SOL). ICH applies a 

placement policy to pieces in a predetermined order of pieces. The placement policy 
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seeks to find good positions for placing a piece on the layout. The predetermined order 

can be generated using a ranking criteria or using local search. This approach aims to 

produce a locally optimum ordering of pieces that would lead to an optimized layout. 

Overlap is not permitted while placing the pieces on the layout. SOL starts with an initial 

layout and seeks to improve this layout by moving pieces around within the layout. 

Usually overlap is pennitted when placing the pieces on the layout but it is penalized 

with a cost function. The aim is for the final optimized layout to be free from overlaps. 

Due to the computational intensiveness of the solution methods many researches embed 

enhancements and special features in their algorithm to improve the solution quality and 

the computational speed. Further, it is common for researches to add features to their 

implementations to exploit certain problem specific properties. As a result it is difficult to 

judge which representation of local search method perfomls best. 

1.2 Aims and objectives 

The purpose of this research is to investigate the effectiveness of the ICH (e.g. Gomes 

and Oliveira, 2002; Dowsland et aI., 2002; Burke et aI., 2006), and SOL (Bennell and 

Dowsland, 2001; Oliveira and FelTeira, 1993; Heckmann and Lengauer, 1995) from a 

neutral standpoint. Both approaches are competitive and each new publication brings 

better results with respect to the benchmark data sets. Although this can be credited to 

better algorithm design, it could also be argued that researchers are getting better at 

incorporating sophisticated specific features in their algorithms to handle the 17 

benchmark data sets available from the EURO Special Interest Group on Cutting and 

Packing (ESICUP) website. 

In this research we intend to investigate these two key solution approaches of the problem 

(ICH and SOL) and establish some principles of the strengths and weaknesses of each 

method with respect to data type. In order to conduct this research the algorithms will be 

developed using only the basic principles of both approaches and discarding any special 

features found in the literature. The aim is to deduct from the experimental results an 
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understanding of what solution representation should be applied given the data type, 

performance requirements and number of pieces. 

1.3 Structure of Thesis 

This thesis will be divided into literature reVIew, methodology, implementation, 

experimental results and conclusion chapters. In the literature review we will discuss the 

geometric aspects of irregular packing problem and will discuss some important 

published work from both solution approaches. In our methodology chapter we will 

discuss our strategy for algorithm design for ICH and SOL. In our implementation 

chapter we will be setting our test parameters for computational experiments and in the 

results chapter we will discuss the findings from our computational runs and deduct a 

conclusion based on our empirical results. 

1.4 Summary 

In this chapter we introduced the problem we will be investigating, discussed the aims 

and objectives of our research project and presented the outline for our thesis. In the next 

chapter we will review the important published work that use ICH and SOL and also 

discuss the geometric aspect of the irregular packing problems. 
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2 Literature Review 

Our literature survey will concentrate on 2D irregular ODP as this is the area of our 

research focus. Although there exists a substantial amount of literature in cutting and 

packing, most concentrates on the regular or rectangular packing problem (Dowsland and 

Dowsland, 1992; Dyckhoff, 1992). Dowsland and Dowsland (1995) have written a 

survey that focuses exclusively on 2D ODP involving irregular shapes. A more recent 

survey was written by Lodi et ai. (2002), (2003). The earliest work on 2D irregular ODP 

was done by Art (1966). However, it was only in the late 90's 2D irregular ODP started 

getting more attention from researches. Researchers have noted that the complex 

computational geometry involved in such problems has stifled academic research in this 

area (Bennell and Oliveira, 2008). Some of the research work was aimed at solving 

specific problems from the packing industries. Adamowicz and Albano (1976) laid the 

foundation for solving packing problem in textile industry which was followed by 

Heckmann and Lengauer (1995). Heistermann and Langauer (1995) produced a 

specialized algorithm for the leather industry. Prasad et ai. (1991), (1995); Nye (2001) 

and Jain (1992) focused on optimal pattern nesting of metal blanks. Reference to 

algorithms applied to solve 2D irregular ODP problems can be found in Hopper and 

Turton (2001) and in the introductory section of Bennell and Dowsland (1999). 

In the two key solution approaches used to solve the 2D irregular ODP problems; 

iterative construction heuristics (e.g. Gomes and Oliveira, 2002; Dowsland et ai., 2002; 

Burke et aI., 2006), and searching over the layout (Bennell and Dowsland, 2001; Oliveira 

and Ferreira, 1993; Heckmann and Lengauer, 1995). Iterative constructive heuristics 

attempt to generate a good layout based on a selection and placement rule to arrange the 

pieces on the layout. The selection rule selects the next piece to be packed from the pool 

of available pieces and the placement rule identifies the best position for this piece on the 

layout. In these solution approaches the order in which the pieces are selected to be 

packed has a direct impact on the solution quality thus local search tec1miques are 

normally used to continuously improve the solution, by reordering the pieces. In contrast, 

searching Over the layout starts from an initial layout with pieces already arranged on the 
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stock sheet and seeks to design a better layout by moving these pieces around within the 

stock sheet. An important difference in this approach is that pieces are allowed to overlap 

one another on the layout. This is done to allow greater freedom for positioning pieces 

anywhere on the layout. A penalty value is then assigned to each piece in an overlap 

situation. This penalty value is used in a cost function which will guide the search for a 

better placement position on the layout with the objective of removing all overlaps within 

the layout. The final improved layout will be free from any overlaps; otherwise we have 

an infeasible solution. 

In section 2.3 and 2.4 we will discuss the literature published on both solution approaches 

in more detail. Although this will not be a complete survey, it will cover most of the best 

known methods and solutions published so far. We will discuss the variants of the local 

search techniques and the geometric techniques to gain a better understanding of the 

underlying foundations used to solve 2D irregular ODP. Once we have covered the 

geometric and search techniques, understanding the concepts used in the literature survey 

in section 2.3 and 2.4 will become much easier. 

2.1 Search Methods 

2.1.1 Basic Local Search 

A local search is an iterative search where the algorithm moves from one solution to 

another based on a predefined move criteria. This move criteria explores the solution 

space in a systematic manner to reach a better solution whilst escaping local minima. It is 

common practice to define the solution space in tenns of a neighbourhood structure when 

using these search methods. A move is usually defined as the change made to a current 

solution that will result in another solution. All solutions that can be reached by a move 

are called neighbours. For example, consider an initial order list of 5 pieces sorted by 

their decreasing area size. The initial solution is the sequence in which these pieces will 

be packed onto the layout. A neighbour can be generated by swapping two pieces in 

sequence, e.g. if the initial sequence is (1,2,3,4,5), a neighbour could be (2,1,3,4,5). The 
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neigbourhood size is the maximum number of neighbours that could be generated in this 

way, for this example the resulting neighbourhood size would be 4, and the respective 

neighbours are (2,1,3,4,5), (1,3,2,4,5) and (1,2,4,3,5) and (1,2,3,5,4). Depending on the 

evaluation criteria, one of the four neighbours, usually the one that improves on the initial 

solution will be selected as the current best solution. The search then continues by using 

the current best solution to generate a new set of neighbours, evaluate these neighbours 

and choose the best one as the current best solution. Every time a current best solution is 

chosen it will be checked against the previous best solution and the better one will be 

stored in the memory as the best solution which will be returned when the search 

algorithm terminates. This search cycle is repeated again and again until the stopping 

criteria predefined in the search algorithm is reached. Generally there are two types of 

search strategies; 1) those that attempt to visit all the solutions within a neighbourhood 

and select the best, 2) those that select a neighbouring solution randomly and stop the 

search upon finding an improving solution. The former strategy is known as steepest 

descent search and the latter as random descent search. 

The main disadvantage of using a basic local search is the likelihood of getting stuck in a 

local optimum. This is because these searches generally do not accept non-improving 

solutions. More advanced local search techniques, popularly known as metaheuristic, aim 

to diversify the search away from local optimum. This is done by allowing non­

improving solutions in a controlled manner with the aim of discovering better solutions 

and getting closer to a global optimum. We will look into metaheuristic which have been 

applied successfully to solve 2D Irregular OPD in the following subsections. A 

pseudocode for a generic basic local search is given in Figure 2.1 (Reeves, 1993). 
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Generic Local Basic Search for a minimization problem 

with solution space S, neighbourhood size N and cost function! 

Step 1: Select a starting solution So C S 

Set Sbes! = So 

Step 2: Repeat 

Select s such thatf(s) < f (so) 

Replace So by s 

untilf(s) > f (so) for all s C N(so) 

Step 4: If f(s) < f (SbestJ 

Sbes! = S 

Step 3: If stopping condition not true 

Return to Step 2 

Otherwise stop 

Figure 2.1 Pseudocode of a Basic Local Search Algorithm (Reeves, 1993) 

2.1.2 Tabu Search 

Tabu search was fonnalized by Glover in 1986. Tabu search uses a memory system to 

restrict the choice of the next solution from the neighborhood of a given solution. When 

this memOlY system is applied to the steepest descent local search, it will be transfonned 

into a tabu search. The basic structure of a Tabu search has the following components: 

Local search procedure 

Neighborhood structure 

Aspiration conditions 

Fonn of tabu moves 

Tabu list 

Maximum size of tabu list 

Stopping rule 
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A tabu list records forbidden moves, which are referred to as tabu moves. It is common 

practice to store attributes of a neighbourhood structure as elements of a tabu move, for 

example the neighbourhood move that resulted in that solution. In essence we want to 

prevent the search from recycling through a few good solutions. The longer the tabu list 

the more aggressive the search will be for making non-improving moves, thus visiting 

more local optima. However tabu restrictions can also be broken. When a tabu move has 

an evaluation where it would result in a solution better than any visited so far, then its 

tabu restriction is overridden. A condition that allows such an override to occur is called 

an aspiration criterion. Figure 2.2 (Reeves, 1993) shows the standard pseudocode for a 

generic tabu search algorithm and Figure 2.3 shows the flow chart of a standard tabu 

search algorithm. 

Generic Tabu search for a minimization problem 

with solution space S, neighbourhood size N and cost function! 

N(so,h) denotes neighbouring solutions not contained within the tabu list 

Step 1: Select a starting solution So € S 

Select tabu list length I 

Set tabu history h empty 

Set SbeSI So 

Step 2: Repeat 

Select S such thatf(s) < f (so) 

Replace So by s 

untilf(s) > f (so) for all s € N(so,h) 

Step 4: If f(s) < f (SbesJ 

Sbesl = S 

Step 3: If stopping condition not true 

Return to Step 2 

Otherwise stop 

Figure 2.2 Pseudocode of a Simple Tabu Search Algorithm (Reeves, 1993) 
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Update Tabu and 
Aspiration 
Conditions 

No 

Create a candidate 
list of solutions r--~ 

Stopping 
conditions 
satisfied? 

Evaluate solutions 

Choose the best 
admissible solution 

Figure 2.3 Flow Chart of a Tabu Search Algorithm 

The application of tabu search to 2D irregular OPD is scarce. The main papers on the use 

of tabu search for solving irregular packing problems are Blazewicz et al. (1993), (1995). 

2.1.3 Simulated Annealing 

The concept of simulated annealing (SA) was first published by Metropolis et al (1953). 

The annealing process is modeled based on the cooling of a material in a heat bath. 

Material, when cooled slowly, will tum into crystals but if fast cooling is implemented 

the crystals fonned will contain some imperfections. The increase or decrease in energy 

during the stages of the cooling has a direct impact on the resulting state of the material. 

Kirkpatrick (1983) used SA which mimics the annealing process to solve optimization 

problems. The law of thennodynamic states that at temperature t, the probability of an 

increase in an energy of magnitude bE is given by, 

P(JE) = exp(JElkt), (2.4) 

where Ie is a physical constant known a Boltzmann's constant. The main idea of SA is to 

use a probabilistic approach to avoid getting stuck at a local optimum by perfonning 

controlled uphill moves. It uses a temperature parameter that controls the search. The 
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temperature parameter usually starts off high and is slowly "cooled" or lowered in each 

iteration. This is called a cooling schedule. During each iteration if energy has decreased 

Metropolis' SA accepts the corresponding neighbourhood move and if the energy has 

decreased then the corresponding neighbourhood move is accepted according to the 

probability given in equation 2.4. At each temperature a predetermined number of 

iterations are preformed to diversify the search within the restricted neighbourhood 

structure. Simulated annealing has a similar search strategy as of a random descent local 

search (Reeves 1993). A random descent local search samples a neighbourhood at 

random and chooses the first improving solution, whereas simulated annealing differs 

with random local search by probabilistically accepting worse solutions. The probability 

of doing so is directly dependent on the temperature. This process sometime helps to 

identify a new region of the search space in hope of finding a better local optimum. 

Figure 2.4 (Reeves, 1993) provides a mapping of the problem specific parameters of all 

local search procedures with SA. Figure 2.5 (Reeves, 1993) shows the standard 

pseudocode for a generic SA algorithm. One of the earliest references that utilizes SA for 

solving irregular packing problem is Dagli and Hajakbari (1990). Lutfiyya (1992), 

Marques et al (1991), Oliveira and Ferreira (1993), Jain (1992), Theodoracatos and 

Grimsley (1995), Heckmann and Langauer (1995), Han et al. (1996), Burke and Kendall 

(1999), Faina (1999) and Hifi (2003) also successfully implemented SA to solve the 

irregular packing problem. 

System States --7 Set of Feasible Solutions 

Energy --7 Cost 

Change in State --7 Neighbourhood Solution 

Temperature --7 Control Parameter 

Frozen State --7 Heuristic Solution 

Figure 2.4 Mapping of attributes of SA with that of a Local Search (Reeves, 1993) 
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Generic Simulated Annealing Search for a minimization problem 

with solution space S, neighbourhood size N and cost function! 

Step 1: Select a starting solution So € S 

Select and initial temperature to > ° 
Select a temperature reduction function a 

Set Sbes! = So 

Step 2: Repeat 

Randomly select S € N(s) 

J = f(s) - f(so) 

If J < ° 
Replace So by s 

Else 

Generate random number x in the range (0,1) 

If x < exp(-Mt) 

Replace So by s 

until iteration_count = nrep 

Set t = art) 

Step 4: If f(s) < f (SbesJ 

Sbes! = S 

Step 3: If stopping condition not true 

Return to Step 2 

Otherwise stop 

Figure 2.5 Pseudocode of a Simple SA Search Algorithm (Reeves, 1993) 
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2.1.4 Genetic Algorithm 

A Genetic algorithm (GA) is also a probabilistic approach adopting a similar search 

strategy as a random descent local search. Although genetic algorithms were first 

conceived by Fraser in 1957 and Bremermann in 1958, it was made popular by Holland 

in 1975. Genetic algorithms are inspired by models of natural evolution of species and 

use the principle of natural selection which favors individuals that are more adapted to a 

specific environment for survival and further evolution. In a similar way, in finding better 

solution to complex problems, we can apply this principal to combine pieces of existing 

solutions. Each individual in a GA algorithm typically represents a solution with an 

associated fitness value. The three main operators used are selection, mutation, and 

recombination. Selection prefers fitter individuals to be chosen for the next generation 

and for the application of the mutation and recombination operator. Mutation is a unary 

operator that introduces random modifications to an individual. Recombination combines 

the genetic material of two individuals, also called parents, by means of a crossover 

operator to generate new individuals, called offsprings. 

In the first GA applications, the solutions or individuals were usually represented as 

string of Os and Is, which is commonly known as a binary representation. This type of 

representation however proved to be insufficient to efficiently attack certain types of 

combinatorial problems, like permutation problems (permutation problems are problems 

in which a solution may be represented by a permutation of the numbers, which are 

naturally encoded in other ways. Therefore, for such problems usually more general, 

problem specific encodings are applied. For example in 2D ODP the sequence of pieces 

to be placed on the strip layout is usually encoded as the representation of the 

chromosomes, this is commonly known as a permutation representation. The crossover 

operator is usually understood as the main operator driving the search in genetic 

algorithms. The idea of crossover is to exchange useful information between two 

individuals and in this way to generate a hopefully better offspring. Mutation is 

understood as a background operator which introduces small, random modifications to an 
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individual. The selection operator is used to keep the population at a constant size, 

choosing preferably individuals with higher fitness (survival of the fittest). Each 

individual encodes a solution to the problem, and its fitness value corresponds to the 

objective function value of that solution. The complete cycle of recombination, mutation 

and selection is called generation. The basic steps in a GA are given in Figure 2.6. 

Among the papers that investigated the suitability of GA with irregular packing problem 

are Fujita et al. (1993), Ismail et al.(1995), Dighe and Jakiela (1996), Jakobs (1996), 

Bounsaythip et al. (1996), Jain et al.(1998), Hopper (1999), Cheng and Rao (2000), 

Ramesh Babu and Ramesh Babu (2001), (1998), Tay et al. (2002), Yeung et al. (2003). 

Basic Genetic Algorithm Framework 

Step 1 Initialization 

Choose an initial population (usually randomly) containing P solutions 

Step 2 Evaluation 

For each member of the current population, evaluate its fitness 

Step 3 Selection 

Create a mating pool by selecting solutions in the current population, where the 

probability of selection is based on the fitness function. 

Step 4 Crossover 

Forms pairs of elements from the mating pool and perfonn crossover on each pair to 

create offspring 

Step 5 Mutation 

Mutate the elements of the strings obtained from crossover with a given probability 

Step 6 Recombination 

Form a new generation from the offspring obtained from cross and mutation. 

Step 7 Termination test 

Test whether the algorithm should terminate, go to the evaluation step 

Figure 2.6 Basic Framework of a Genetic Algorithm 
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2.2 Geometric Solutions 

Why do we need geometric computation? It is because the computer is not like the 

human eye. Imagine two arbitrarily placed shapes on the computer screen, it is trivial for 

the human eye to detect if these two pieces overlap, touch each other, or are placed a 

distance apart from one another but how can we build this intelligence into an algorithm? 

Below some of the popular geometric approach will be discussed, most of the 

infonnation given below was extracted from the detailed description of the geometric 

tutorial given by Bennell and Oliveira (2008). 

Since the focus of this research is on the irregular variant, let us start by defining irregular 

shapes. "Irregular shapes are defined as simple polygons, and in some cases, polygons 

that may contain holes" (Bennell and Oliveira, 2008). An irregular shape needs some 

complex geometrical technique to detect overlap between them, for example a circle 

cannot be classed as an irregular shape as the overlap between two circles can be easily 

calculated by using the center and radius values of both circles. 

2.2.1 Pixel/Raster Method 

The pixel/raster method digitizes the stock sheet into a continous array of pixels 

representing grid points on the layout. These grid points based on pixels is a standard 

with any computer aided drafting tools, e.g. AutoCAD. Once this has been done placing a 

shape on this grid will result in some pixels or grid points being occupied by the shape 

and some not. This infonnation will be used and represented in a coding scheme. For 

example a simple coding scheme proposed by Oliveira and Ferreira (1993) uses a value 

of 1 to code the existence of a piece and a value of 0 to represent empty space on the 

layout as illustrated in Fig 2.7. Every time a piece occupies a grid point a value of 1 is 

added to the memory buffer of this particular grid pint, hence if 2 pieces occupies the 

same grid point the value in the memory buffer will be 2. Once this information is 
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available detecting overlap is as simple as checking the value in the memory buffer where 

a value greater than 1, indicates an overlap on the layout. 

Other more complex coding schemes were proposed by Segenreich and Braga (1986) and 

Ramesh Babu and Ramesh Babu (2001). The advantage of the pixellraster method is the 

simplicity of implementing it in a computer program to detect and resolve overlap 

between two pieces on the layout. However the disadvantage of using this method is the 

memory intensive nature of its implementation and inability to accurately represent 

shapes with non-orthogonal edges. 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 1 1 1 0 0 

0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Figure 2.7 0 -1 Pixel/Raster Representation of a Shape 

2.2.2 Direct Trigonometry and D functions 

This method enables accurate representation of the shapes. The shapes are approximated 

as polygons. Overlap between two shapes can be detected using their relative position on 

the layout. This is done by using functions of direct trigonometry to test for intersections 

between the edges of these two shapes. The tests are broken down into high level and low 

level tests. The high level test aims to detect non-overlap situations at a very early stage 

using relatively easy calculations based on direct trigonometry as shown in Figure 2.8. 

Figure 2.8 (a) shows that if two polygons are in an overlapping position, the bounding 
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boxes of the two polygons must overlap. The same principle applied to the intersecting 

edges of the two polygons shows that the bounding box of the edges must also intersect 

as shown in Figure 2.8 (b). The direct trigonometry consists of a series of test on line 

intersection and point inclusion. The low level test is a computational intensive test to 

analyze polygonal edges between the two shapes and find out if they intersect, hence 

overlap. D-function proposed by Konopasek (1981) is used during the edge analysis 

phase to accurately test for an intersection between two edges. D-function analyses the 

edges between two shapes with respect to their orientation and vertex and translate this 

infonnation into finding if they intersect or not. 

[------------, 
I 
I 
I 
I 

A 

'------'- ____________ --'----' 
(a) 

A 

(b) 

Figure 2.8 (a) If two polygons overlap, then the rectangle bounding boxes of the pieces 

must overlap (b) If two edges intersect, then the rectangle bounding boxes of the edges 

must intersect. 

The D-function can be defined as follows: 

(1) 

Given an oriented edge AB and a point P, the D-function identifies the relative position 

of this point to the oriented edge as shown in Figure 2.9. 
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P. 

A 

Figure 2.9 Analysis of D-Function 

The following analysis is used for the D-function: if DAB? > 0 then point P is on the left 

side of the supporting line of edge AB; if DAB? < 0 then point P is on the right side of the 

supporting line of edge AB; if DAB? = 0 then point P is on the supporting line of edge AB. 

During the edge analysis phase of the low level test, six different conditions will be tested 

out using D-functions to accurately identify the relative position of the two oriented 

edges. This method can accurately represent the shapes of the polygons, however because 

of the rigorous computational calculations that must be performed for every overlap test; 

it makes this method a less efficient choice for the 2D ODP problem when it is solved 

using iterative search methods. 

2.2.3 The Nofit Polygon (NFP) 

There are three approaches found in the literature to develop the NFP generator; the 

orbiting algorithm (Mahadevan, 1984; Burke et aI., 2007), minkowski sums (Milenkovic 

et aI., 1991; Bennell and Song, 2008) and decomposition into star shapes polygons (Li 

and Milenkovis, 1995) or convex polygon (Watson and Tobias, 1999; Agarwal et aI., 

2002). We will not go into details of these approaches as it is beyond the scope of this 

thesis. However we will briefly describe the Minkowsi sums approach since the NFP for 

this thesis work was provided by the authors of Bennell and Song (2008). The concept is 

as follows: given two arbitrary point sets, A and B, the Minkowski sum of A and B is 

defined by the following: 
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A cp B = {a + b: a C A, b C B} 

In order to produce no-fit polygons the Minkowski difference can be used, A <l> -B. This 

is equivalent to the two input polygons in opposing orientations and is easily shown 

through simple vector algebra (Bennell et al., 2001). 

The NFP is a polygon formed as a result of combining components of two polygons 

together. It works together with a vector algebra that uses the relative positions of two 

polygons and calculates the vector difference between them. The result of this vector 

difference is then used to find out if the calculated vector point is in, outside or on the 

NFP which can be interpreted as the two polygons overlapping, separated or touching 

each other. Given two polygons A and B the construction of the NFP ofB in relation to A 

can be found in the following way. The NFP is derived by placing two polygons (A and 

B) so that they touch each other but do not intersect and moving one of them (B) around 

the other, respectivelys. The resulting polygon that is generated as B moves around A is 

denoted as NFP A.B. While this is happening both A and B maintain a fixed orientation, 

touch each other but do not overlap. We need to define the origin on A, Band NFP A,B and 

the reference point on B before NFP A,B is generated. Bennell (1998) defined the bottom 

left comer of the enclosing rectangle of both polygons as the origin of A and B. As a 

result the origin of NFP A,B will be the top right comer of the enclosing rectangle of the 

tracing polygon B. The reference point can be any point on polygon B, we have chosen 

this point as the bottom left comer of enclosing rectangle of polygon B. As polygon B 

moves along polygon A in a clockwise direction the reference point on B will trace the 

path it follows, this will be called NFP A,B. Figure 2.10 show the step by step process in 

obtaining the no-fit-polygon, origin for polygon A,B, NFP A,B and reference point on 

polygon B is defined as described above. 

Having derived NFP A,B detecting overlap between piece A and B is achieved using a 

point inclusion geometric test to find if a given point on the layout is inside, outside or on 

NFP A,B. Before the point is used in the test, it has to translated by (-x,-y), where (x,y) 

refers to the relative origin of polygon A on the layout. 
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If this translated point is inside NFP A,B this indicates an overlap situation, if it is outside 

then they don't overlap and if it is on NFP A,B both polygons touch each other but do not 

overlap, Figure 2.11 illustrates this process, given piece A is already positioned at point 

(0,3) on the layout and piece B is about to be placed at point (4,3). The resultant of vector 

difference, u - v gives us point (4, 0) which lies inside NFP A,B indicating an overlap in the 

layout. This illustration helps us to understand that detecting overlap using the NFP is not 

just a simple point inclusion test but it has the complexity of O(n), where n represents the 

number of edges in the NFP. 
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Figure 2.11 Detecting overlap in the layout using the NFP 

The advantage of using NFP A,B IS the quality of layouts obtained by accurately 

representing the shapes as polygons. By preprocessing the no-fit-polygons the execution 

speed of overlap detection can be increased. However the complexity involved in 

calculating and generating the no-fit-polygon hinders many researchers from 

implementing it. 

2.2.4 Phi Functions 

The phi-function is another method in overlap detection between two polygons (Stoyan et 

al., 2004). It is made up of a mathematical function that defines the relationship between 

two polygons with regards to their position in the layout. The calculated phi value is 

greater than zero in a non-overlap situation, equal to zero if they are touching each other 

and less than zero if they overlap. However this method is not widely adopted due to the 

lack of algorithmic know how by the wider community. 
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2.3 Iterative Constructive Heuristics (ICH) 

Having surveyed the geometric techniques for detecting overlaps in the layout, we will 

now concentrate on the heuristics routine. In this section we will focus on approaches that 

we will call Iterative Constructive Heuristic (ICH). We will be reviewing the literature 

published on ICH but first we will explain some of the key steps of ICH. This involves a 

selection rule to select pieces to be packed on the layout from a pool of available pieces, a 

placement rule to find the best position for this piece on the layout with regards to the 

objective function and a search strategy to continuously improve the packing quality. 

In these heuristics pieces are selected or ordered and then packed one by one onto the 

strip layout. When selecting or ordering the pieces to be packed a specific rule is used. In 

earlier research a sophisticated approach was used to choose the next piece to be packed 

dynamically in order to minimize wastage of area (Art, 1966, Albano and Sapuppo, 

1980). More recently local search techniques have become increasingly popular to select 

a good ordering of the pieces by beginning with an initial presorted order of pieces and 

searching through this predefined solution space based on a neigbourhood structure 

(Gomes and Oliveira, 2002, Burke et ai., 2006). 

Having selected the piece to be packed next, there are several ways of finding the feasible 

placement points on the layout to position this piece. Feasible placement points are 

generated based on a resolution of grid points on the layout or using the boundary of no­

fit-polygon. In ICH pieces are not allowed to overlap one another on the layout. Some 

algorithms allow hole filling, e.g. placing pieces in between gaps of already placed 

pieces. We have now selected the piece to be packed and have identified several feasible 

locations on the layout, now this piece will be positioned on the layout based on a 

placement rule. This placement rule will select the best position in the layout to achieve 

the defined objective function. 
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Next is the iterative optimization phase, as the name suggests several different packing 

orders are generated depending on the specific rules embedded in the algorithm and the 

solution that produces the best layout measured in terms of minimizing wastage, usually 

the shortest strip length or highest area utilization will be returned when the algorithm 

terminates. In this iterative optimization phase metaheuristic search techniques (e.g. tabu 

search, simulated annealing, genetic algorithm) have become quite popular in recent 

times to prevent the search from getting stuck in a local optimum. The algorithms 

tenninates based on a termination criteria, which is normally the number of iterations or 

elapsed time. To illustrate the phases in Iterative Constructive Heuristic, figure 2.12 

below will be helpful. 

Order the pieces 

(Spec~"1cl Rules) 

Loop 

Feasible Placement 
Points 

Placement 
Rules 

Yes 

Figure 2.12 Phases of Iterative Constructive Heuristics 

The literature will be sectioned into describing the placement heuristic first, identifying 

the commonly used approaches and then moving into the search techniques to get a good 

overview of the various ways research has been carried out to solve this problem. 
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2.3.1 Placement Rules 

Art (1966) introduced the concept similar to today's well known no fit polygon (NFP) 

and called it 'shape envelope'. The 'shape envelope' defines the feasible positions on the 

stock sheet for placing polygons without overlaps. This concept later became a standard 

for generating feasible placement positions on the strip layout (e.g. Albano and Sapuppo, 

1980, Gomes and Oliveira, 2002, Dowsland et aI., 2002, and Burke et aI., 2006) these are 

positions on the layout where pieces can be placed without overlapping one another. 

Art (1966) also introduced the bottom left placement heuristic for positioning the pieces 

on the layout. This will be the choice of location when placing the pieces on the layout, 

as close as possible to the bottom and left of the strip layout. Bottom left heuristics have 

became a popular placement rule for positioning pieces on the strip layout. 

The jostle approach (Dowsland, et aI., 1998) places the pieces by jostling between a left 

most and right most placement policy_ A leftmost/rightmost policy places pieces towards 

the left/right of the stock sheet according to a predefined set of rules. Unlike Art (1966) 

biasness is not just towards the bottom instead pieces are positioned as close a possible 

towards either the bottom or top of the stock sheet. Hole filling is permitted by generating 

a sequence of feasible positions, x co-ordinates from zero onwards and y co-ordinates 

from zero to W-w, where W is the width of the stock sheet and w is the width of the 

current piece being placed. This algorithm was inspired by the fact that by shaking up and 

down a granular product stored in a container will let them settle into their natural 

position, removing any unevenness in the initial form. 

Oliveira et ai. (2000) worked on an algorithm which they named TOPOS. In this work 

the pieces are placed one by one onto the strip layout building a partial solution that 

grows from a floating point origin. Every time a new piece is placed on the layout, an 

NFP is formed using the external contour around the pieces already placed in the layout. 

This will be used to determine feasible placement points on the layout. When choosing 
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where to position this piece a best fit criteria is used based on 3 measure; i) minimizing 

the area of rectangular enclosure of two pieces, ii) minimizing the length of rectangular 

enclosure of two pieces and iii) maximizing the overlap between the rectangular 

enclosure of two pieces. Once this new piece is positioned in the layout a geometric 

algorithm is used to merge this piece with the existing pieces on the layout to form a new 

external contour. 

Bennell and Song (2007) modified the work carried out by Oliveira et al. (2000) on 

TOPOS. The changes in the new TOPOS include an NFP generator based on the concept 

of Minkowski sums (Bennell and Song, 2008) that retained the gaps between polygons as 

they are merged. 

Dowsland, et al. (2002) describe a step by step procedure for implementing the bottom 

left strategy with hole filling for packing irregular shapes. They begin the search for a 

feasible placement point by finding the leftmost point from the set of the NFP vertices, 

which will be the required bottom-leftmost point on the layout for the piece selected to be 

packed, where ties are broken by choosing the lowest y co-ordinates. If this selected 

position passes all the NFP point inclusion tests then a feasible placement point is found 

otherwise a standard trigonometry test is used to get all the intersection points between a 

vertical line generated from this point and the NFP edges. This will generate test 

positions at intermediate points on the NFP edges. All these positions are tested in their 

ascending order. If none of these positions are overlap free the search resumes again from 

the next bottom-leftmost point in sequence. This is a computationally demanding test so 

some important aspects were given to improve the algorithm efficiency. The algorithm 

was implemented on four datasets used in Dowsland et al. (1998) together with the 

dataset used by Blazewicz and Walkowiak (1993) and compared with the basic BL 

algorithm. The results reported improvement in layout length and suggested some minor 

performance improvements were achieved when some piece ordering/sorting strategy 

was introduced to the experiments. 
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Gomes and Oliveira (2002) used a bottom left placement heuristic similar to that of 

(Dowsland, et aI., 2002). A step by step procedure is given to reduce the infinite non­

convex feasible placement points to a discrete and finite set of points; hence the search 

for bottom left placement points becomes quite easy. This was accomplished by 

following this set of rules. Given any two shapes i and k, the no-fit polygon of i and k 

,denoted NFPi,k defines the shape of area where placement of k will result in overlap with 

i. For piecek to be placed among other pieces already on the layout: 1) Get the vertex 

coordinates of NFPi,k and the inner-fit-rectangle IFRk, 2) Get the intersection points 

between two edges of two no-fit-polygon NFPi,k and NFPj,k and 3) Get the intersection 

points between the edges of inner-fit-rectangle IFRk and an edge of a no-fit-polygon 

NFPi,k . The inner-fit-rectangle is derived using the NFP and it represents the feasible 

placement points that will contain this piece within the layout. Sort this collection of 

points according to their lowest x coordinate, ties are broken by selecting the smaller y 

coordinate and start the search for a feasible placement point moving through this sorted 

list. 

Burke et aI. (2006) introduced an alternative new bottom-left-fill heuristic with hole 

filling. This heuristic places the first shape at the lower left comer in the layout. It then 

tests the allowable rotation for this piece and deternlines the best rotation based on the 

defined performance measure. For the next shape in the packing order it starts from the 

lower left comer if this piece type is not already on the layout, otherwise it starts from 

where this same piece type was placed last on the layout and attempts to find a feasible 

placement point in a positive vertical direction (up the y axis). If this piece intersects with 

already placed pieces it uses an overlap resolution technique during the search process for 

a feasible placement position. If overlap is not resolved the search is continued by 

moving along the positive x axis direction by one increment (known as resolution) and 

proceeding to search vertically again. The search continues in this fashion until a feasible 

location is found to place the shapes. 
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Having identified the most popular placement rule for positioning pieces on the strip 

layout let us now consider the various different rules for selecting the pieces to be packed 

next on the layout as this is often the key to achieving better layouts. 

2.3.2 Selection Rule 

Art (1966) used single pass heuristic with a selection rule based on three criteria to 

choose the piece to be packed next. These criteria are used successively to narrow down 

the choice of piece selection step by step until finally choosing the best one. The first 

criteria select the pieces that could produce lowest x values on the envelope. This x value 

is within a defined tolerance limit and is determined by the placement heuristic according 

to the probable position of this piece on the layout. The second criteria will be applied to 

the pieces selected from the first criteria. It will select the pieces based on their area. The 

pieces with area greater than a fixed fraction will be chosen. The fixed fraction is 

calculated as the area of the chosen piece over the maximum area, which is given by the 

piece with the largest area among pieces selected under criteria one. The final criteria will 

select from these pieces the ones that produce a minimum "probable waste" on the left 

hand side of the layout, this waste is calculated according to a defined formulation. Ties 

are broken with pieces having the lowest y value on the envelope. 

Albano and Sapuppo (1980) discuss a procedure which claims to produce a locally 

optimal arrangement of irregular pieces. The best ordering of pieces is achieved by 

performing a tree search to find the locally optimal path from an "initial state" to a "goal 

state". Backtracking through the search path is allowed in order to not restrict the search. 

A cost function is used to find the cost of the path between two states. This is calculated 

based on the waste generated by the piece selected to be packed next. The waste is 

calculated by examining the net change to the area on the right hand side of the profile. 

Therefore the best solution is the best arrangement of a set of given pieces achieved by 

finding the minimum cost from the "initial state" to the "final state". Hole filling 
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capability is not included in this algorithm. The main application discussed is that of 

cloth layout and leather cutting. 

Blazewicz, et aI. (1993) extended the work done by Albano and Sapuppo (1980). 

Additional feature included is the capability to fill holes in the layout. The initial solution 

is generated by sorting the pieces according to decreasing area and then packing them one 

by one onto the strip layout. Tabu search is used to improve the quality of the initial 

solution. The method is implemented in such a way that a single piece is chosen and its 

position is changed at each step of the algorithm. The algorithm terminates if no 

improvement to solution quality is achieved after a predetermined number of iterations. 

The jostle approach algorithm (Dowsland, et aI., 1998) is based on a single pass 

algorithm ("combines piece ordering with a placement policy"). It starts by placing the 

initially randomly ordered pieces by following a left most placement policy. Once the 

first pass is complete the pieces are re-ordered in decreasing order of their right-most 

points (x coordinates) and packed using the right-most policy. Once this packing is 

complete the pieces are re-ordered in increasing order of their left-most points (x 

coordinates) and packed again using the left-most policy and the process is continued for 

a fixed numbers of iterations. This method was tested with D-functions and NFP, with 

NFP reporting significant savings in computational time. 

Oliveira et aI. (2000) worked on an algorithm which they named TOPOS. The criteria 

used for choosing the piece to be placed next is an initial sort based on a set of criteria or 

is determined by local search heuristics which iterates through the unique pieces left to 

pack and chooses the one based on a best fit measure. The TOPOS algorithm produces 

two approaches for adding a new piece to the layout: initial sorting or local search. In the 

initial sort pieces are ordered based on one of the following criteria: i) decreasing length, 

ii) decreasing area, iii) decreasing concavity, iv) increasing rectangularity (based on the 

difference between the piece area and the area of the respective enclosing rectangle) and 

iv) total area (based on numbers of similar pieces available). The local search heuristic 

evaluates the partial solution using a best fit measure. The best fit measure is based on 
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three fonnulated criteria; i) Waste, ii) Overlap and iii) Distance. Taking into account the 

combination of all criteria from both approaches a total of 126 variants were used for the 

computational tests It was observed that the best result could not be associated with a 

particular variant of the algorithm. Furthennore it was concluded that the shape's 

geometric properties have a strong effect on the results. 

Gomes and Oliveira (2002) developed a 2-exchange heuristics. Neighbourhoods are 

generated by exchanging pair of pieces in a sequence. The solutions are evaluated based 

on i) first better solution found ii) best solution found and iii) randomly chosen solution 

among the better solution found. Computational results support the probabilistic approach 

with a longer neighbourhood size (distance between swapped pieces = 3). The ranking 

criteria used to build the initial layout are randomness, area, length, width, irregularity, 

and non-rectangularity but was reported that the choice strongly depended on the 

particular dataset and has no dominance over different data sets. The placement heuristic 

was reported to generate a layout in less than 20 seconds and was effective at filling holes 

at any stage of placement. 

Burke et al. (2006) used standard hill climbing and tabu search mechanism over an initial 

area or length pre-sorted arrangement of pieces in their experiments. A neighbourhood 

size of 5 solutions and a tabu list length of 200 were used throughout the experiments. 

The search technique uses a numerical operator between 1 to 4 and a random number N, 

1 removes a randomly chosen shape and inserts it at a random location in the sequence, 

2,3,4 and N swaps the equivalent number of shapes in the order. A new technique 

introduced in this paper is their ability to handle arced edges in the pieces without 

approximating by the polygon edges. The algorithm improved 20 of the 26 available 

literature problems. The average improvements for the 20 best solutions were in the range 

of4% to 6%. 

Bennell and Song (2007) modified the work by done by Oliveira et al. (2000) on TOPOS. 

They introduced 6 new fonnulation criteria and utilised a beam search heuristic for 

selecting the next piece to be placed. A beam search heuristic works in a similar manner 

30 



to a branch and bound algorithm where the tree is searched breadth first and aggressively 

pruned at each level. This allows for many parallel partial solutions to be evaluated. The 

best packing lengths were equal to, or better, than the best results reported in the 

literature in 7 out of 15 cases. Since multiple factors are involved, no clear conclusion 

could be made as to which could be selected as the best criteria. 

2.4 Searching Over Layout Heuristics 

For these methods an initial layout is formed and then pieces are repeatedly selected and 

moved to some other location on the layout. During this phase overlap is often allowed. 

To choose the piece to be moved and, the position to move it to, a cost function is used. 

The cost function used to choose the piece aims to select the piece with the maximum 

amount of overlap while for positioning the piece it aims to minimize the total amount of 

overlap on the layout. A feasible solution is found when overlap is totally eliminated 

from the layout. Several different solutions are generated depending on the 

neighbourhood structure and the solution that produces the best feasible, or zero overlap 

layout, measured in terms of minimizing waste, usually the shortest strip length or 

highest area utilization, is returned at the end of the desired number of iterations. The 

algorithm terminates based on a stopping criteria, which is usually number of iterations 

performed or duration of lapsed time. The solution space, with this method is infinite, 

meaning any piece can be placed in any location on the stock sheet. This can be seen as 

the major strength of SOL compared with ICH. Several different alternatives are 

available for defining the cost function and reaching better solutions from one layout to 

another. This will be discussed later in the literature review 

Simulated Annealing (SA) appears to be the most popular search engine applied by many 

researches in this approach. This maybe because it is better suited to infinite 

neighbourhoods. 

Jain (1992) used SA as a search engine. The application discussed was that of the metal 

blanks stamping. The shapes to be laid out on the metal stock sheet was restricted to not 
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more than three due to die stamping machine constraint. The focus was to cluster no more 

than 3 pieces together, finding the optimum arrangement of these pieces and repeating 

this pattern horizontally along the stock sheet. The placement rule as to how these pieces 

may best fit together is given by fixing the position of one of pieces and allowing the 

others to slide freely over the identified comer locations of a predefined bounded region 

in which the shapes may be placed and minimizing waste during placement. The aim was 

to form a "lock and key" arrangement. Overlap is allowed during placement. The cost 

function used in the position placement rule is scrap cost added to the weighted penalty 

of the overlap area. The overlap area is calculated by finding the boundary of the overlap 

region and then computing its area. 

Heckmann and Lengauer (1995) also used SA and specifically tailored the algorithm 

towards the requirement of the textile industry. Constraints are subdivided into three 

main categories, i) layout legality ii) technology limitations and iii) constraints for waste 

reduction and cutting time minimization. The search points available to SA are generated 

from a number of possible moves types. A move type consists of the allowed movements 

(translation, rotation, and exchange of two pieces on the layout) and a real number to 

denote how much to move, e.g. in a translation move type this will be the distance of the 

translation. The rationale behind this strategy is that as the SA temperature decreases 

short distance translations will be preferred. In each step of the SA a piece must be 

selected for movement and a move type must be chosen, these are controlled by assigning 

selection probability to each move type and this probability depends on the cost function. 

As the temperature decreases the cost function reduces the possibility of the selection of a 

move type. The cost function is a sum of three cost measures, which are i) weighted 

length, ii) weighted overlap and iii) weighted row and column load. The length of a 

generated layout is defined as the difference between the largest and smallest x­

coordinate of all the pieces, overlap is defined as the sum of overlap areas of all the 

pieces and row and column load are measures of the overlap produced by the pieces 

covering a specific row or column. The weights are preset initially and changed 

dynamically during the course of the algorithm. The annealing uses a dynamic cooling 

schedule and is used in 4 different stages in order to guarantee the final layout is free of 
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overlaps. The first stage is a rough placement, the second removes the remaining overlap, 

the third compacts layout to the left and last stage is a fine placement with original 

pieces. After the first stage overlap can still be present and a decision must be made as to 

which piece to choose and in what direction should this piece be moved. Moving this 

piece to the right of the layout will obviously eliminate the overlap but might result in an 

increase in the layout length. The following strategy was devised to tackle this problem, 

heavily penalize large overlaps in the horizontal direction and move the piece with the 

largest penalized overlap value in the vertical direction to the empty space. The empty 

space is reserved at the top and bottom margin of the layout during the first stage of 

annealing. An interesting claim made is that large overlap in horizontal direction implies 

small overlap in y direction and this is the rationale for translating the pieces in the 

vertical direction to remove this overlap. An interesting point to note here is the heavy 

intricacies involved in designing this algorithm specific to textile data types and the fine 

tunings made to guarantee the success of eliminating the overlaps. 

A hybrid algorithm approach was used by Gomes and Oliveira (2006). The generation of 

the initial layout was formed using the greedy bottom left placement heuristic which 

places the pieces one by one from a given sequence to the most bottom-left position on 

the strip layout. The NFP was used to prevent overlap in the layout. This was the same 

heuristic that was used previously by the same author, Gomes and Oliveira (2002), 

however a new criterion based on random weighted length was introduced for choosing 

the next piece to be packed. SA was used to guide the search towards better solution. 

Neighbourhood structure which they call LOCALCOMPACT was generated for 2 pieces 

chosen to be swapped; the two pieces are selected according to the 2 exchange heuristics 

proposed by the same author in a previous work, Gomes and Oliveira (2002). 

LOCALCOMPACT generates a number of neighbours based on all possible 

combinations of swapping the 2 pieces and their allowable orientations. The combination 

that leads to the best final layout is selected. A swap would lead to exchanging the 

positions of two pieces in the layout and would usually result in overlap on the layout. 

Overlap is removed by applying a linear programming model for layout separation and 

then using layout compaction model the placed pieces are moved as close as possible to 
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each other. The linear programming model for layout separation and layout compaction 

model has also been used by other authors (Li and Milenkovic, 1995; Bennell and 

Dowsland, 2001). Overlap is not permitted. For cases where the separation model could 

not resolve the overlaps, two different pieces are swapped and tried again. The 

computational test results were outstanding, it reported improvements averaging between 

6.8% - 8.84% against best result published on all problem instances. 

Bennell and Dowsland (1999) used a variant of the tabu search called the simple tabu 

thresholding (STT). STT, although very similar to tabu search, is based on a simple 

candidate list strategy and avoids extensive use of memory. A new approach is proposed 

to estimate overlap between the pieces on the layout. Overlap is estimated as the 

minimum horizontal distance a piece has to move to remove overlap. To avoid heavily 

penalizing small pieces, the respective widths of pieces in overlap situation are also 

included in the overlap function and the minimum of these are then selected as the 

overlap cost. This will give preference to move smaller pieces. The width and length of 

the stock sheet is fixed and an attempt is made to remove overlap within this constrained 

layout. Placement positions are generated by randomly selecting a vertical grid line on 

the layout. Using this as a column the algorithm starts to evaluate positions alternating 

from the lowest y coordinate, followed by the highest, next lowest etc. approaching 

towards the middle and stopping at the first found non overlapping position. If no zero 

overlap position exists then the search repeats itself from a new randomly generated 

vertical grid line on the layout. The starting solution is generated by randomly ordering 

the pieces and packing them into columns on the layout. While forming the columns, 

successive pieces are placed one above the other until reaching the top of the stock sheet. 

A new column is then generated and this process is repeated until all pieces are placed on 

the layout. The y coordinate is then fixed as given by the piece position and a randomly 

generated x coordinate is assigned to each piece. This will create overlap in the layout. 

The decisions that control the STT search were initially set based on observing the 

behaviour of the algorithm with respect to improving the layout, escaping local optima 

and minimizing overlaps. Among the observation made were the tendency to cycle within 

a few good positions, small pieces clustering together becoming sub-optimal and a 
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tendency to place pieces in large holes. Based on the success of the initial experiments 

further investigations were carried to explore the parameter space. Five variants of the 

algorithm, that combine two different special cost function and three different 

neighbourhoods, were derived and tested. This shows that problem specific knowledge 

has to be derived and applied to make the search mechanism effective. 

The authors continued their work in Bennell and Dowsland (2001), this time 

incorporating a layout compaction/separation routine in the optimization phase. Here the 

length of the stock sheet is not fixed. Instead the total length of the solution is evaluated 

and incorporated into the cost function so that both overlap and layout length is reduced 

simultaneously. The idea of using grid points as search points is abandoned and this time 

NFP edges were used instead. The properties of NFP were also used to aid in overlap 

detection and compaction routine. The LP formulation for the layout compaction was 

based on that of Li and Milenkovic (1995). The compaction/separation phase will start 

once the overlap value falls below a give threshold. The authors reported significant 

improvements over their previous work 

Egeblad, et al. (2007) presented a heuristic method based on simple local search and the 

meta-heuristic method Guided Local Search (GLS). The generation of the initial layout 

was based on randomly ordering the pieces and packing on the layout using some fast 

heuristic, e.g. a bottom left bounding box placement algorithm. The initial strip length is 

calculated and then reduced by some percentage. Pieces that are no longer contained 

within the reduced strip length are moved back into the feasible packing region. This will 

obviously create overlaps on the layout. The overlaps are iteratively removed using a 

simple local search. If the search gets stuck in a local minimum, i.e. there are no 

neighbouring solutions which could reduce the overlap, then the GLS mechanism will 

diversify the search away from this local minima. In each iteration the search may use 

one of the four options to move a piece depending on the given problem instance, i.e. 

horizontal translation, vertical translation, rotation or flipping. This piece is then moved 

and evaluated at each new position on the layout with respect to minimizing total amount 

of overlap in the layout. If minimizing overlap positions are found, this piece is then 
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moved to the position with least overlap and the search quits otherwise it chooses from 

the remaining available options for movement and repeats itself. The algorithm 

terminates when overlap in the layout is totally eliminated. GLS works by assigning a 

penalty value to a cost function. The penalty is based on the number and amount of pair 

wise overlaps for a given piece. Overlap is defined as the actual area of intersection 

between two pieces on the layout and the cost function is given by the total sum of pair 

wise overlap for a given piece. It was reported that most of the results from the 

experimental runs are also the current best published for problem instance tested. 

2.4 Summary 

We started this chapter by defining the cutting and packing problem and providing 

examples of the problem types. We classified this problem as two dimensional irregular 

open dimensional problems. We reviewed the geometric and search techniques popularly 

used in this problem type. We highlighted the two main approaches used for 2D irregular 

ODP problems; iterative construction heuristics and searching over the layout. Finally we 

reviewed some research carried out in this area with respect to the two main approaches. 
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3 Methodologies 

Having surveyed the literature and identified the components and tools for the irregular 

packing algorithm, we will now focus on the methodology adopted to develop our 

packing tools. The purpose of this research is to investigate the effectiveness of the two 

representations; iterative constructive heuristic and searching over layout heuristic from a 

neutral standpoint and not to compete with the best results found in the literature. In this 

research we intend to investigate the two approaches of the problem and establish some 

principles of the strengths and weaknesses of each approach with respect to data type. In 

order to conduct this research the algorithms will be developed using only the basic 

principles of both approaches and discarding any special features found in the literature. 

The aim is to deduct from the experimental results an understanding of what solution 

approach should be applied given the data type, performance requirements and number of 

pieces. Thus first we have to decide on the geometric tools to detect overlap, and the local 

search method to avoid getting stuck in local optima. We will also discuss piece selection 

and placement with respect to the Iterative Constructive Heuristic (ICH) and piece 

placement and movement with respect to the Searching Over Layout (SOL). 

3.1 Solution Methods 

3.1.1 Placement and Geometry 

The data of shapes to be packed and their corresponding stock sheet dimension has been 

gathered from the EURO Special Interest Group on Cutting and Packing (ESICUP) 

website. The shapes are made of simple polygons and represented by a set of vertices. 

Some of data sets allow the shapes to be rotated, usually by 90 or 180 degrees. The stock 

sheet, on which to place the pieces, will normally have a constrained width and 

unconstrained length. The geometric evaluations are handled using the no-fit-polygon 

(NFP) both for identifying overlap and selecting feasible placement positions. The no-fit­

polygons of all pairs of shapes, represented as sets of polygonal vertices, were provided 
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by the authors of Bennell and Song (2008). Having stored the NFP data of all the 

different shapes in the memory of the computer program we will use them to test overlap. 

The overlap test is a point inclusion test based on a ray crossing algorithm; the code was 

made available from a geometric library, (O'Rourke, 1998). This test will tell us if a 

selected point on the layout is inside or outside of the NFP. If the search point is an 

infeasible point (will result in overlap) it is inside the NFP and feasible if it is either on or 

outside the NFP. For placing the pieces onto the layout we have selected the bottom left 

placement heuristic. The bottom left placement heuristic places pieces as close as 

possible to the bottom of the layout, followed by the left most feasible position, as shown 

in Figure 3.1 for packing piece A , Band C onto the layout. 

S 

4 

3 

n 
G 7 8 9 2 3 4 S G 7 8 9 

23 4S G7 89 S G 7 8 9 

Figure 3.1 Illustration of Bottom Left Heuristic 
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If the shapes have more than one allowable orientation, each shape is placed by the 

heuristic in all allowable orientation and the one the produces the most bottom left 

placement is chosen. Fig 3.2 shows two pieces being evaluated for their best position in 

the layout in their allowable orientations. 

Figure 3.2 Placing Pieces in their Allowable Orientations 

The shapes input data represents the shapes of the pieces to be packed on the layout. We 

have adopted a standard way to represent this piece on the layout. Each shape is imagined 

to be contained within a rectangle and the origin of the shape is always the bottom left 

corner of this rectangle as show in Figure 3.3, thus the initial origin of any irregularly 

shaped piece will always be (0,0). Using this origin positioning this piece anywhere on 

the layout is as simple as adding the (x,y) coordinates of the selected position on the 

layout with the vertices input data of this shape. 

0,0 

A {(0,0),(2,0),(1 ,2),(0,0)} 
A's vertices 

rigin of A (0,0) 
rigin of B (0,0) 

0,0 -----------

B {(0,1 ),(1 ,0),(2, 1 ),(1 ,2),(0,1)} 
B's vertices 

Figure 3.3 Origin Definition of a Piece 
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In the geometry section we have described that during the NFP generation phase we need 

to define the origin of the static piece, NFP and a reference point on the moving piece. 

We have chosen to fix both the origin and reference point as the bottom left point of the 

shape's enclosing rectangle. We can now utilize the data generated by the NFP generator 

more effectively. 

We will first discuss the point inclusion test for detecting overlaps and how we use it, 

followed by an explanation of how we find intersections between two NFPs. 

3 

Stock Sheet 

Feasible placement 

3 4 

(a) 

, , 

, , , 

4 

3 

~ 1 

0, , , , 
4 

" ,,( 
Relative Origin 

ofA(1,0) 
, , 
'lil _______ .... /" (0,0)-7(0-1,0-0)-7(-1,0) 

(0,1 )-7(0-1,1-0)-7(-1,1) 

(b) 

Figure 3.4 Searchingfor Feasible Placement Point using the NFP 

Assume piece A is fixed at position at (0,0) and we need to detennine the best position 

for piece Busing NFP. Referring to figure 3.4 (a) the points (0,0), (0,1) and (1,0) are 

inside the NFP A,B so these are infeasible search points and points (0,2), (0,3), (2,0) are 

feasible points as it is either on or outside NFP A,B; the point inclusion test is based on a 

ray crossing algorithm described in O'Rourke (1998). This test will tell us if a given point 

is inside or outside the given polygon NFP A,B; note that search points do not have to be 

integers. Since the most bottom left feasible point is point (0,2), piece B will be placed 

here. Now assume piece A is fixed at position at (1,0) as in figure 3.4(b) and using the 
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same NFP we have to determine feasible positions for piece B. In this case the placement 

points have to be translated appropriately before testing them with NFP A,B. This translated 

placement point is then used in the point inclusion test; the explanation of this was given 

in chapter 2, section 2.2.3 where we talked about using the resultant of vector difference 

u - v, where u = {Xl, YI} and v = {X2, Y2}. For example placement point (0,0) will be 

translated by (0-1, 0-0); where {X2, Y2} the relative origin of piece A is (1,0). This will 

give us the translated placement point (-1,0) and this new point is inside NFP A,B . 

Likewise for placement point (0,1) the translated point is (-1,1) and this new point is 

feasible as it is on the vertex of NFP A,S. Thus for any search point we use this convention 

for vector translation before testing it with the respective NFP; where {X2, Y2} is the 

relative origin of the piece already on the layout. 

To find intersection between two NFP we will need to define the relative position of their 

NFP on the layout first. In figure 3.5 (a) we can see NFP A,B for piece A on the layout, this 

preprocessed NFP data has been entered into the computer program. In figure 3.5 (b) 

piece B is similar to piece A but the relative origin of piece B on the layout is (2,0), so we 

will translate the coordinates of NFP A,B to relative origin of piece B on the layout. This 

will give us the NFPA',B as shown in figure 3.5 (b). With these two NFP's in their relative 

position on the layout we can calculate their intersection point, the intersection points 

(circled) are shown in figure 3.5 (b). The intersection calculation is based on line segment 

to segment intersection algorithm as described by O'Rourke (1998). We will explain how 

we use these intersection points when we describe the approach of Gomes and Oliveria 

(2002) to generate feasible placement points on the stock sheet. 
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Figure 3.5 Finding Intersection between two NFP 

We can start positioning the pieces onto the layout as we have defined the input data for 

vertices of the pieces to be packed and have generated their corresponding NFPs. We will 

discuss two strategies for generating our search points to position the pieces on the 

layout, one based on the grid point based search and the other adopted the approach of 

Gomes and Oliveria (2002), who used a specific method to generate a set of search points 

and limit the search within these points. We will explain the grid based search first, 

followed by the alternative method. 

The packing layout represented as grid points is shown in Fig 3.6 (a). The resolution of 

the grid points can be controlled easily by multiplying the numbers of grid point by a 

certain factor to increase the precision of the available points on the layout. 
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The Stock Sheet The Stock Sheet 
(Width 5, Length 10) represented by (5X10) grid 

3 

2 

(0,0 1 2 3 4 5 6 7 8 9 10 

(a) (b) 

Figure 3.6 Grid Based Placement Points 

In Fig 3.6(b) precision to the nearest 2 decimal point is obtained by multiplying the (x,y) 

grids with a factor of 10. Having defined the positions available on the layout to position 

the incoming pieces we will look into how we pack these pieces onto this grid based 

layout. Let us assume the two pieces to be packed on the layout are A and B and the 

packing order is pack A first then B. Assuming the bottom left most placement, we will 

position piece A to (0,0), this is the absolute origin of this piece and we have the pre­

defined input data of this piece, so no translation needed, we can use the vertices input 

data of this piece to represent it on the layout as shown in figure 3.7. 
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Figure 3.7 Placing Pieces on a Grid based Layout 
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The next piece to be packed is B, we will now use NFP A,B , the pre-processed vertices 

input data of NFP A,B has been pre-calculated and stored. We have a stock sheet divided 

into discrete grid points indicating the placement points available on the layout, we need 

to formulate an efficient way to search through the grid points on the layout and locate 

the best placement for a given piece. Assuming we are implementing the bottom left most 

placement rule in our algorithm, thus the search for a bottom left most point will start 

from point (0,0) on the grid layout and increment in the direction of y axis until reaching 

the top of the stock sheet, if during the search a non-overlapping position is found, the 

search terminates. Otherwise the search increments 1 grid unit to the right of the layout 

and continues up the y axis again. This pattern is repeated until the whole area of search 

points in the stock sheet is searched. Referring to figure 3.7 the first search point is 

coordinate (0,0), obviously this point is inside the NFP A,B, thus it is a non-feasible point. 

Incrementing up the y axis the next coordinate is (0,1), this too is inside NFP A,B. Next is 

point (0,2), this is on the vertex of NFP A,B, we have found a feasible placement point. 

Using the pre-defined input coordinates of piece and translating the coordinates by (0,2) 

will position piece B to its bottom left most position on the layout as shown in figure 3.7. 

The grid based search algorithm is relatively easy to implement and is quick for low 

resolution grid. The quality of the solution produced depends directly on the resolution of 

the grid point but on the other hand using a finer grid may mean deteriorating the 

computational speed of the algorithm as we now have to search a bigger area of search 

points. 

Thus in addition to the grid based search point we adopted the approach of Gomez and 

Oliveria (2002). They define a set of search points based on a collection of points derived 

from the no-fit-polygon, inner-fit-rectangle (IFR) and intersections between the lines of 

these polygons. We will be using the figures below to explain this concept more clearly. 

The inner-fit-rectangle is a rectangle derived by sliding the shape to be packed within the 

stock sheet as shown in figure 3.8 (a). Placing shape C within the IFR will ensure that 

this piece is contained within the stock sheet. Hence our first set of search points are the 

points from the vertex of IFRc as shown in figure 3.8 (a). Our second set of points will be 
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extracted from the vertices of the NFPs' of the pieces already placed on the stock sheet. 

Assuming pieces A and B are already placed on the layout, we will position NFP A,C and 

NFPB,c translated to the relative origin (x,y) of piece A and piece B on the layout. Our 

third sets of points are the intersection points between edges of NFP A,C , NFPB,c and IFRc 

as shown in figure 3.8 (c). To find the intersection points we pick an edge on the NFP of 

a piece and cycle through all edges on the NFP of the other pieces and IFR on the layout 

and calculate their intersections. 
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This process will cover every edge on every NFP. Now that we have a collection of 

search point we will eliminate the search points which are not contained within 1FRc 

using the point inclusion test. This will leave us with the remaining search point as shown 

in figure 3 .8 (d). We sort these points by their lowest x coordinate, breaking ties with the 

lowest y coordinate following the bottom most heuristic placement rule. The search for a 

feasible position will start from this sorted list of search points and will be subjected to 

the point inclusion test using piece C's corresponding NFPs as explained earlier in this 

section. Thus piece C will be positioned to its feasible bottom most position, see figure 

3.8 (d). The flow chart in figure 3.9 gives the steps required to generate the set of search 

points as explained above. 

For j = 0 to j = i-1 
Translate NFPj,i to its relative position 

G 
Forj=Otoi-1 

enerate Generate Search Points 
Search 1) Vertex of NFPj,i ,2) Intersection between NFPj,i and NFPk,1 

'----1-----' 3) Intersection between NFPj,i and IFRi. 

Eliminate placing pieces outside boundary of stock 
sheet by eliminating search pOints outside of IFRi. 

Sort search point by lowest x coordinate 
breaking ties with lowest y coordinate 

For p. points = 0 to n 
For j = 0 to i-1 (NFPj,i) 

Test for overlap and eliminate points using point 
inclusion test 

Figure 3.9 

Flow Chart showing steps to generate feasible placement points 
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In our SOL we permit overlaps and we have to determine how we measure the layout 

between two pieces. The literature highlighted two main techniques, measuring exact 

overlap between the pieces or an approximation of overlap. We selected the later as our 

choice of approach as it is simple yet powerful in terms of quick computation time. Our 

approach is taken from Bennell and Dowsland (1999) where overlap is estimated as the 

minimum horizontal distance a piece has to move to remove overlap. We observed that 

using this approach it is possible to have more that one piece with the same overlap 

measure thus we made a slight modification to the overlap measure, we introduced 

overlap measure as the sum of minimum extent in both x and y direction as shown in 

figure 3.10, ties are broken randomly. We will be using this overlap measure in our cost 

function to select and position the pieces on the layout. 

x 

)' 

Figure 3.10 Measure afOverlap 

The overlap cost function, for a given piece from a set of pieces, (Jj 

described in the equation shown below; 

f(i,p) = I~~l Oij(i,p) , where i,j E (Jj and Oij(i,p) = 0 for i = j; 

{sl, ... ,sn} IS 

(3.1) 

Oij(i,p) is a measure of the overlap between pieces si and sj at placement p as described 

in figure 3.10. A placement p such thatf(i,p) = ° implies that at position p piece si 

contains no overlap. 
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3.1.2 Tabu Search for ICH 

To recap ICB from our previous chapter; IeB involves a selection rule to select pieces to 

be packed on the layout from a pool of available pieces, a placement rule to find the best 

position for this piece on the layout with regards to the objective function and a search 

strategy to continuously improve the packing quality. With the geometric and placement 

heuristic algorithm in place, we will consider the components of tabu search which will 

produce the best order in which the pieces are to be packed. 

In the literature two metaheuristic techniques were popular among the researches; tabu 

search and simulated annealing. We have chosen tabu search for our experiments as this 

search technique was proven successful in both iterative constructive and searching over 

layout approach from the literature review (Burke et al., 2006; Bennell and Dowsland, 

1991). Tabu search uses a flexible memory system to restrict the next solution choice to 

some sub set of neighborhood of current solution. 

In order to use tabu search we need to define a neighbourhood structure. This is because 

the combinatorial nature of the problem makes it impossible to search through all 

possible combinations; hence we need to limit the search within local neighbours with the 

objective of improving the solution and reaching a local optimum. The tabu search will 

search through the defined neighbourhood and return the best solution within this 

neighbourhood. Let us start by defining our neighbourhood and solution representation. 

A neighbourhood is defined as a small change made to the solution representation, which 

will lead us to another solution. A solution representation in our case is a sequence of 

pieces and the corresponding solution is the length of the final layout achieved once all 

the pieces in the current sequence are packed onto the layout using a placement rule; in 

our case we are using bottom left most heuristic as our placement rule. 

We start by formulating a swap based neighbours and limit the distance of the swap to 

five consecutive pieces in sequence. For example consider 10 pieces in the sequence: 

1,2,3,4,5,6,7,8,9,10. The possible sequences obtained by swapping piece 1 with the next 5 
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piece In original sequence will gIve us the following set of 5 sequences : { 

(2,1,3,4,5,6,7,8,9,10), (3,2,1,5,6,7,8,9,10), (4,2,3,1,5,6,7,8,9,10), (5,2,3,4,1,6,7,8,9,10), 

(6,2,3,4,5,1,7,8,9,10) }. If we continue to swap in this manner, we will get 5 new 

sequences for each piece in the original sequence but notice that when we reach piece 6 

there will not be enough pieces left to get 5 swaps, there is no piece 11 to swap with, we 

tackled this by allowing the swap to be taken from the start of the sequence. The 

resulting set of 5 sequences {(1,2,3,4,5,7,6,8,9,10), (1,2,3,5,8,7,6,9,10), 

(1,2,3,4,5,9,7,8,6,10), (1,2,3,4,5,6,10,8,9,6), (6,2,3,4,5,1,7,8,9,10)}. However we are 

aware that there might be more than one identical piece type in the sequence and 

swapping these pieces will give us the same solution, so to improve the algorithm we 

eliminated these types of neighbours from the neighbourhood. We shall refer to this 

search operator as OptNl (d), where d defines the swap distance. 

In addition to this we introduced a smaller sized neighbourhood structure; here we restrict 

the number of swaps in the following manner. Using the same sequence example above 

with a swap distance of five, we start by swapping piece 1 with the next 5 pieces in the 

sequence. Unlike the previous search operator, we do not proceed to swap for all other 

pieces in the sequence but stop here for the first iteration. The reason for doing this is to 

enable the search algorithm to make more tabu moves. In the next iteration we start 

swapping piece 2 with the next 5 pieces in the sequence, in the following iteration we 

start swapping piece 3 with the next 5 piece in sequence. By proceeding in this manner 

we give the search a chance to sample the solution space more dynamically. If there are 

not enough pieces left to get five swaps we allow the swap to be taken from the start of 

the sequence similar to our representation one. We also do not allow swaps of identical 

pieces in the sequence similar to OptN 1 (d). We shall call this search operator as 

OptN2(d), where d defines the swap distance. 

In addition to this two search operators, we have also introduced an alternative 

neighbourhood structure where we apply a random sampling of 10% on neighbours 
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generated using search operator OptNI (d). We shall call this third search operator as 

OptN3(d), where d defines the swap distance. 

During the search for a locally optimum solution, at each iteration all solution 

representation generated by the specific neighbourhood structure will be evaluated with 

respect to the objective of minimizing the length of the packing layout and the solution 

that produces the best strip length will be chosen according to the criteria determined by 

the local search used. This best solution representation will be called a move. There are 

many types of local search strategies that could be used during this stage; in a single 

descent local search, a first found improve type will stop once a first improving solution 

is found within the neighbourhood structure while a best found improve type will search 

the entire solution neighbourhood and choose the best. Once we have completed with the 

first iteration and found the best solution within this set of neighbours, we can use this 

current solution to start the next iteration and evaluate the next set of solution choosing 

the best each time. We proceed in this way until the search gets stuck in a local 

minimum, i.e. no improving moves can be found after a fixed number of iterations or 

computational runs. The following describes our tabu search algorithm for ICH. 

Algorithm 1 Tabu search for ICH 

Solution space S 

Neighbourhood size N 

Cost functionf(s) = Length of Layout 

N(so,h) denotes neighbouring solutions not contained within the tabu list 

Bottom-Left-Heuristic is implemented according to steps given in Figure 3.9 

Input: Problem Shapes and their NFPs, SOlied Orderings, Quantities, Allowable 

Rotations and Sheet Size 

Step 1: 

Build an initial solution, so = Bottom-Left-Heuristic(Sort _ Ordering) 

Select tabu list length, I 

Set tabu history h(l) empty 
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Step 2: 

Set sbest = so 

Initialize aspiration criteria = sbest 

Select Search Operator = {OptNl(d),OptN2(d),OptN3(d)} 

Repeat 

Apply the selected search operator for defining the neighbourhood to explore 

Explore this neigbourhood using the Bottom-Left-Heuristic 

Select s such thatf(s) < f (so) 

Replace so by s; 

Untilf(s) > f(so) for all s € N(so,h) or the aspiration criteria is met 

Step 3: 

sbest = s 

Tabu move = sequence of pieces swapped to get sbest 

Update tabu history h(l) = tabu move 

Update aspiration criteria = the best sbest found so far 

Step 4: 

If stopping condition not true 

Return to Step 2 

Otherwise stop 

Our tabu search is based on the best found improve method but unlike the best found 

improve we accept worse solution from successive iterations (see Step 4) and carryon 

with the search for a fixed duration of time. Applying the principles of tabu search to our 

neighbourhood of solutions representation will mean that using the best improving 

solution representation found a tabu move is the record of pieces swapped to generate this 

solution representation. The tabu list will record this forbidden move, e.g. if 

(2,1,3,4,5,6,7,8,9,10) is the best solution representation from one of the iterations then the 

tabu list will record {(2,1)}, the pieces swapped as one of its forbidden move. In the next 

successive iteration when the possible solution representations are generated according to 

the defined neighbourhood structure this pieces will not be allowed to swap as they are in 
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the tabu list unless the aspiration criteria is met, a move from the tabu list can result in a 

solution better than the best solution found so far. In all iterations, from the best solution 

representation of that iteration, the swapped positions will be stored in the tabu list. Once 

the maximum size of tabu list is reached the oldest tabu move in this list will be removed 

and the new tabu move will occupy its place. We can experiment with different tabu list 

length sizes to determine the effects this length has on the final solution achieved. Figure 

3.11 below demonstrates a sample run from tabu search for leB. 

Initial Solution 
Strip Length = 28.15 

After 2nd iteration 
Strip Length = 27.48 
Swapped piece 20,21 (Add to TABU LIST) 

After 1 st iteration 
Strip Length = 27.69 
Swapped piece 8,13 (Add to TABU LIST) 

1 st 8,13 

nd 20,21 

5,6 

th 9,14 

5th 17,18 

Tabu List Size = 5 

Figure 3.11 Stages during tabu search execution 
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3.1.3 Tabu search for SOL 

To recap SOL from our previous chapter; SOL starts from an initial layout with pieces 

already arranged on the stock sheet and seeks to design a better layout by moving these 

pieces around within the stock sheet. An important difference in this approach is pieces 

are allowed to overlap one another on the layout. Having defined our overlap measure let 

us move on to steps involved in generating an initial solution for SOL. 

The literature reviewed many ways of how the initial solution may be generated. Our 

initial solution is similar to that of Egeblad et al. (2007). Here we randomly order the 

pieces and pack the pieces on the layout using the bottom-left most placement heuristic. 

Then we find out the strip length for this initial layout, reduce the strip length by some 

value and move all the pieces not contained within this strip length to a random position 

on the layout within this new strip length, this will result in overlap on the layout. We 

will then attempt to eliminate overlap by moving pieces around this constrained layout. 

The following describes our tabu search algorithm for SOL. 

Algorithm 2 Tabu search for SOL 

Search positions p are generated according to the algorithm in Figure 3.8 

f(i,p) = cost function, calculates overlap measure of each piece with other pieces III 

layout, see equation 3.1 

N(po,h) denotes neighbouring solutions not contained within the tabu list 

Bottom-Left-Heuristic is implemented according to steps given in Figure 3.9 

Input: Problem Shapes and their NFPs, Sorted Orderings, Quantities, Allowable 

Rotations and Sheet Size 

Step 1: 

Build an initial solution, so = Bottom-Left-Heuristic(Sort_ Ordering) 

Select tabu list length,} 

Set tabu history hO) empty 

Set sbest = so - 1, strip length 

Set aspiration criteria = 0 (zero overlap in entire layout) 
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Step 2: 

Move pieces not contained within the new layout length into the layout 

Repeat 

Step 3: 

Calculate total overlap cost,J(i,p) for each piece on the layout 

Choose the piece with the maximum cost,J(i,po) = f(i,p) 

Rotate Piece = true or false (determined at random) 

Generate search positions for this chosen piece 

Explore these search positions 

Select a search position such that f(i,p) < f(i,po) for all p € N(po,h) or the 

aspiration criteria is met 

Move this piece to this new position on the layout 

Tabu move = piece type and the old position in layout 

Update tabu history hO) = tabu move 

Until overlap cost of all the pieces on the layout = 0 

If stopping condition not true 

sbes! = so - 1 

Return to Step 2 

Otherwise stop 

To identify the pieces that are in overlapping positions we use the point inclusion test by 

cycling through NFPs' of this piece with already placed pieces on the layout. Once an 

overlapping piece is selected we need to formulate where this piece will be relocated. The 

literature suggests many ways of doing this as we have seen in section 2.4. We have 

introduced a new approach. Our set of search points generated for this piece will be based 

on collection of points derived from the no-fit-polygon, inner-fit-rectangle (IFR) and 

intersections between them as explained in Section 3.1.1. 

Referring to figure 3.12c let's say piece 41 is the piece selected to be move within the 

restricted layout, search points will be generated for this piece similar to the approach 

given by Gomes and Oliveria (2002), assuming that all other pieces are already placed on 
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the layout and piece 41 is the next piece to be packed. We decided these as our placement 

positions because in these positions piece 41 will be contained within the restricted layout 

and will be touching with at least one other or more piece in the layout. The search 

attempts to eliminate the overlaps within this fixed strip length. Once an overlap free 

layout is obtained the strip length will be reduced again and the same process continues 

again and again to reach better solutions. 

Unlike in ICH where the neighbourhood structure was based on the positions of pieces in 

the predefined sequence, here the neighbourhood will be based on the generated 

placement points on the layout. Thus in our search all the possible placement positions 

will be considered. The first step of any search algorithm is formulating the initial 

solution, we construct our initial solution by ordering the pieces either randomly or 

presorted by decreasing area size of the pieces and packing them one by one onto the 

strip layout (Figure 3.12a). 

(a) 

(c) 

Figure 3.12 SOL in Execution 
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Overlap eliminated 
Strip length = 68 

(d) 



Once we have this initial solution we will attempt to improve the initial strip length, we 

reduce the initial strip length by some value (usually by one) and translate pieces no 

longer contained within these reduced length back into the layout (Figure 3.12a and c), 

this will create overlaps in the layout. We allow overlap and use our tabu search to reduce 

and eliminate the overlaps within the layout which brings us to the second component of 

the tabu search, the evaluation function. 

We will be introducing a cost function to evaluate and choose the piece to be relocated on 

the layout and where it will be positioned. This cost function is described by equation 3.1 

in section 3.1.1. For choosing the piece to be moved we will select the piece having the 

largest total sum of overlap in the layout, this will be the total sum of overlap between 

this piece and the rest of the piece on the layout as given in equation 3.1. Referring to 

figure 3.12c, the total sum of overlap for piece 41 will be the sum of overlap measure of 

this piece with piece 31 and 37. After having selected a piece we randomly rotate this 

piece to its allowable orientation or use the non-rotated form. We then evaluate where to 

position this piece to within the layout. Since our neighbourhood structure is all available 

placement points on the layout, generated using Gomes and Oliveira (2002) approach, all 

of these positions will be evaluated individually and the position that yields the smallest 

total sum of overlap will be selected. This piece will then be moved to this new position. 

The objective of this search is therefore to attempt to reduce and ultimately eliminate any 

overlaps in the layout. If there are no more pieces in overlap positions then the first 

iteration terminates otherwise the same cycle is repeated again and again till there are no 

more overlap in the layout. 

The reasons for choosing maximum and minimum overlap measure as our cost function 

for selecting and moving the piece within the layout is because this is the widely popular 

choice used in SOL (e.g. Egeblad et al. (2006), Bennell and Dowsland (1999)). Once 

overlap is eliminated the strip length will be reduced again and the whole process is 

repeated again and again till the search gets stuck and can no longer eliminate overlaps 

within the layout. 

56 



If there are no restrictions as to which piece or search position could be selected we could 

end up in a situation where the solution will keep cycling by picking the same piece or 

position again and again, we would like to avoid this in our algorithm by using an 

appropriate tabu list. Tabu list contains record of the forbidden move; in our case we 

selected piece and its position on the layout as this forbidden move. Recall from the 

previous section that we choose the piece and move it around in the layout based on our 

cost function, once the piece is selected and relocated to a new position on the layout, this 

piece and its old position (before being moved) will be stored into the tabu list. The piece 

and its position recorded in our tabu list will not to be selected in the next successive 

iterations until they expire from the tabu list unless the aspiration criteria is met, a move 

from the tabu list can result in a overlap free layout. The pieces and its conesponding 

position recorded in our tabu list will prevent pieces on the tabu list from being 

positioned back to their historical position on the layout as long as they are still on the 

tabu list. By controlling the tabu list length we can easily experiment with the behaviour 

of the algorithm, a shorter tabu list length possibly restrict movements within overlapping 

pieces only and a longer tabu list might force pieces in non overlapping positions to be 

moved, introducing a big perturbation to the search. Similar to the tabu search introduced 

with ICH we can experiment with different initial solution to start the search and tabu list 

sizes to determine the effects this has on the final solution achieved. 

3.2 Summary 

In this chapter we have introduced the geometric computation routines common to 

irregular packing problems and how we have tackled them. We also described our 

placement strategy and our search strategy for ICH and SOL. In the next chapter we will 

be looking at the test parameters that we will be defining for ICH and SOL 

implementations. 
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4 Implementation 

We have gIven a detailed description of the methodologies and tools that we have 

developed for solving the packing of irregular shapes in the previous chapter. As we have 

mentioned earlier the shapes data were drawn from the EURO Special Interest Group on 

Cutting and Packing (ESICUP) website and their corresponding NFP data provided by 

Bennell and Song (2008). With this we are ready to test the two mainstream approaches 

used to solve a two dimensional irregular packing problem and we will investigate their 

perfonnances using the packing tools that we have developed. In this section we will look 

into the experimental design of our algorithm implementation to be used on the 

benchmark datasets that we have gathered from ESICUP. We have outlined this section 

into looking at our experimental data sets, placement heuristic, search heuristic, 

evaluation function, solution space and neighbourhood structure, and our starting solution 

with respect to our ICH and SOL. 

The programming language we have chosen for this project is Microsoft Visual C++.Net 

2003 edition as this software provides the platfonn for graphical utilities which is useful 

in displaying the final solution of the packed layout graphically. The coded algorithm was 

executed on a desktop PC which uses a Pentium IV, 2.8 GHz and 504MB of RAM. 

4.1 Experimental Data 

Appendix A shows the IO data sets used for the experimental study, their corresponding 

author name, year published, the problem name as known in the literature, number of 

pieces and types, stock sheet width and their pennitted rotations. These data sets can be 

divided into 3 groups; the first group (see Appendix A.I) is an artificial data set, group 2 

is a real data set from the industry (see Appendix A.2) and the third group (see Appendix 

A.3) is a jigsaw puzzles whose optimum solutions are known. 
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4.2 Iterative Constructive Heuristics (ICH) 

4.2.1 Placement Heuristic 

Given the set of input data compnsmg the shapes of pieces to be packed, their 

corresponding stock sheet sizes and their NFPs' we can start positioning the pieces onto 

the layout. We have implemented two representations for generating placement points on 

the layout, one is the grid based placement point and the other is the set of points derived 

from collections of points from the no-fit-polygon, inner-fit-rectangle (IFR) and 

intersections between the lines of these polygons as described in the methodology 

section. However we decided to use the latter in analysis of our final results. This was 

based on our initial investigation where the latter proved to be more efficient in tenns of 

computational speed and quality of solution especially when the data sets are of highly 

irregular shapes and require double digit decimal precision results. These characteristic 

are typical of industrial data as shown in Appendix A.2. 

The placement heuristic will be based on bottom most heuristic. We have described in 

our methodology section. We have discussed how bottom most heuristic became the most 

popular choice for placement heuristic in chapter 2. 

4.2.2 Search Heuristic 

The main search method used will be Tabu Search as we have mentioned in the previous 

chapter. We experimented with five different tabu list length; these are 5, 10, 20, 50 and 

100. As is nonnal in tabu search we accept non-tabu move even it is non-improving. This 

prevents cycling and diversifies the search away from its current best solution, hoping our 

search will explore into other regions of the solution space. 
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4.2.3 Evaluation Function 

Our evaluation function is based on the minimum strip length in that particular iteration 

or neighbourhood of solution once all the pieces are packed onto the layout. Our strip 

length can be found by keeping track of the relative position of the pieces as they are 

placed on the layout and locating the vertex with the highest x coordinates and storing it 

in the memory. 

4.2.4 Solution Space and Neighbourhood Structure 

We have introduced in the previous chapter the concept of solution and neighbours and 

how these are used to aid in the search towards finding a better strip length. Our solution 

is the sequence or the order list of pieces and their corresponding strip length once all the 

pieces in the sequence are packed one by one onto the layout. We have designed quite an 

extensive neigbourhood structure for our experiments as quite often this is the key to 

achieving good solutions. A good neighbourhood structure will enable the search to 

sample the infinite solution space most efficiently. Thus we have come up with a 

number of alternatives for our neighbourhood structure. Our basic idea is similar to the 

one we have described in the previous chapter, generating neighbours using swap 

distance. The bigger the neighbourhood size the more solutions will be sampled but will 

increase the computational overhead. We have introduced sampling into the 

neighborhood structure where only a small percentage from the entire set of possible 

solutions in the neighborhood will be sampled; this will be a random sampling of 10%. 

Thus we have defined three representations for our neighbourhood structure, the first one 

is based on the set of possible permutation within a given swap distance, the second is a 

subset of the first representation derived by applying a special restricting condition and 

the third is applying random sampling of 10% to our first representation. These 

representations are discussed in detail in the Chapter 3, Section 3.1.2. 
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Manipulating our three solution representations we then come up with a total of five 

different neighbourhood structures types to be used with our search engine. These are 

generated by applying a specific swap distance on the first, second and third 

representation of our neighbourhood structure. This will give us five different types of 

neighbourhood structures. We will call them OptNI(5), OptN2(5), OptN2(IO), OptN3(5) 

and OptN3(IO), refer to Chapter3, Section 3.1.2. OptNI(5) is our biggest neighbourhood 

while OptN2(5) is our smallest. 

4.2.5 Starting Solution 

To generate the initial starting solution we test two different ranking criteria; i) SOli the 

pieces to be packed by their decreasing area and ii) generate a random packing order. We 

then pack them one by one onto the layout using the bottom most placement heuristic, 

this will give us our initial strip length. 

4.3 Searching Over Layout 

4.3.1 Search Heuristic 

We will also be using Tabu Search as our main search engine for SOL. We implemented 

two tabu representations. The first one uses the piece that was moved in the layout as the 

tabu candidate. The second uses the combination of the piece that was moved and the 

position of this piece in the layout. To avoid piece from being placed in close proximity 

to its' previous position, we imposed a tolerance of +/- one unit way from its previous 

position. 

In the first representation our tabu list size is restricted by the quantity of shapes in a 

shapes data file. For example referring to Appendix A.l, data set 1 has 43 pieces so we 

could not have a tabu size length exceeding 43 since this would lead to all the pieces 

being on the tabu list and none can be moved again. 
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We decided to have three different tabu sizes and we will call them as type low, medium 

and high. A low tabu size length will be calculated as one quarter of the quantity of the 

shapes rounded down to the nearest integer, a medium type as half of the quantity of the 

shapes rounded down to the nearest integer and a high type as three quarter of the 

quantity of the shapes rounded down to the nearest integer. For example using shapes 

data 1, a low type tabu size length is 10, medium is 21 and high is 32. In our second 

representation we are not restricted by the quantity of the shapes so we will tryout 5 

different tabu list sizes like ICH; 5, 10,20, 50 and 100. 

4.3.2 Evaluation Function 

As we have explained in the previous chapter the cost function will store the total amount 

of overlap for a given piece within the layout. The overlap measure (see Fig. 3.10, 

Chapter 3, Section 3.1.1) can be used to determine whether polygons overlap and how 

much they overlap. Thus to find the total amount of overlap for a given piece, we will 

calculate the overlap amount of this piece with one other piece on the layout, equation 3.1 

in Section 3.1.1 of Chapter 3 describes this evaluation cost function. 

If this piece is in an overlapping position with more than one piece then we will calculate 

all the overlaps and add them up to find the total amount of overlap for this piece. The 

evaluation cost function used for choosing the piece to be moved on the layout is based 

on maximum amount of overlap and to position this chosen piece within the layout the 

position that yields the least amount of overlap will be used. We keep moving the pieces 

around within the restricted strip length until the overlap is totally eliminated before 

proceeding to further reduce the strip length, refer to Chapter 3, Section 3.1.3. 
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4.3.3 Solution Space and Neighbourhood Structure 

Unlike ICH the entire neighbourhood will be searched. A neighbour is defined as all the 

available placement positions on the layout. The available placement positions for the 

piece chosen to move on the layout are given by the set of points derived from the no-fit­

polygon, inner-fit-rectangle (IFR) and intersections between the lines of these polygons 

for this chosen piece as explained in detail in the previous chapter. This idea of 

generating the placement points was originally implemented for ICH by Gomez and 

Oliveria (2002) but we are the first ever to apply it for SOL. The rationale for doing this 

is that search positions generated this way are position where this piece will be touching 

with at least one other piece on the layout. 

4.3.4 Starting Solution 

To generate the initial starting solution we tested two different criteria; i) sort the pieces 

to be packed in their decreasing area size and ii) generate a random packing order. We 

then pack them one by one onto the layout using the bottom most placement heuristic as 

we did with ICH. We calculate the initial strip length from this layout and we then 

decrease this length by one. Pieces which are no longer contained within the reduced strip 

length are translated horizontally back into the feasible packing region, which then 

creates the overlaps in the layout. These steps are explained clearly in the chapter3, 

section 3.3.3, where we also discuss which aspects of the work of Egeblad et al. (2007) 

we adapted to develop our SOL mechanism. 
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4.4 Summary 

In this chapter we gave an overview of our implementation of IeB and SOL heuristics 

which consists of placement heuristics, tabu search heuristic, evaluation function, 

neighbourhood structure and their initial solutions. We also described the comparison test 

parameters that we have developed. We are now ready report on our experiments on both 

approaches and evaluate the effects of the different test parameters on the solution 

quality. In the next chapter we will discuss the results and draw some conclusions with 

respect to strengths and weakness of these approaches. 
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5 Experimentation and Results 

We will break down this section into discussing results we obtained during our initial 

ICH and SOL algorithm design phase especially the search heuristic and the 

neighbourhood structure. These results greatly influenced our final experimentation 

strategy which we then used to compare solution from both ICH and SOL. 

5.1 Iterative Constructive Heuristics (ICH) 

We carried out extensive experiments using the placement and search heuristic strategy 

as explained in the implementation chapter. Recall that the available search points were 

derived from the no-fit-polygon and inner-fit-rectangle, we employed a bottom left most 

placements heuristic and our search strategy was based on tabu search. The motivation 

behind our neighbourhood structure design strategy was to develop a structure that will 

sample the solution space most effectively. We have implemented 5 types of 

neighbourhood structure which we OptNl(5), OptN2(5), OptN2(10), OptN3(5) and 

OptN3(10), refer to Chapter3, Section 3.1.2. OptNl(5) is our biggest neighbourhood 

while OptN2(5) is our smallest. The impact of the neighbourhood size is, the bigger the 

size the longer it will take for the tabu search to accept a move while the smaller it is the 

faster it will accept a move. However with bigger sizes the tabu search is allowed to 

sample more neighbouring solution thus increasing the chances to reaching a better 

solution within a promising neighbourhood structure. This is what we are interested in 

finding out with our computational experiments. We have also implemented two types of 

ranking criteria test for the initial packing order, the first is based on area decreasing 

packing order and the next is a random packing order. 

Initially we wanted to evaluate the effectiveness of the different types of neighbourhood 

structure that we have proposed using our ICH based on tabu search. Thus we limited our 

experiments to only five data sets to test the algorithm; these are ShapeO, Shape2, 

Trousers, Shirt and Dagli. 
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The reason for choosing these data sets is because they are quite popular with researchers 

as the best benchmark data sets. However in our final experiments we will be considering 

10 data sets in total. Our tabu search will be tested using five different tabu lists of 

varying lengths; which are 5, 10,20, 50 and 100. We will be running the experiments for 

the duration of 30 minutes so that we can evaluate the effectiveness of the neighbourhood 

structure more accurately. We realize that during the course of the iterations there may 

exist more than one solution or packing order that produces the shortest strip length, so 

we break ties by selecting one of these arbitrarily. The experiments were replicated five 

times for each of the five tabu list given and best solution from this five runs will be 

reported. Using all this parameters we will generate a total of 50 experiments of 30 

minutes each for a data set, to run the experiments for the one data sets will take us 

around 25 hours in total for a neighbourhood structure type, thus for the 5 types we need 

125 hours. Thus to complete the entire experiment for the five data sets we need 625 

hours or almost 4 weeks. 

The table of results is given in Table 5.1 (decreasing area initial packing order) and Table 

5.2 (random initial packing order) where the best results are shown in bold. Referring to 

table 5.1, it is not a surprise that we are getting consistent result with our OptNI(5), 

OptN2(5) and OptN2(lO) neighbourhood structures where best result and the average 

from the five replications of the experiments appears to be the same. It is natural for the 

search algorithm initialized with the area sorted ordering to converge to better solutions 

faster and the systematic manner in which the neighbourhood was generated as explained 

in Chapter 4, Section 4.2.4 makes the search for better solution very deterministic. 

However our OptN3(5) and OptN3(lO) has the element of randomness in their solution as 

we used a random sampling strategy to generate their neighbourhood. We also observed 

that OptN3(5) structure was consistently giving good quality solutions in all five data set 

tested. OptNI (5) structure did not do particularly well on Shape O. This can be explained 

because these data sets contain large quantity of pieces making each neighbourhood 

highly computationally expensive and thus reducing numbers of neighbourhood searched 
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within the restricted run. The fact that Shape 0 is not allowed to rotate can also lead to 

some good positions being ignored by the algorithm. We drew this conclusion because 

OptNI (5) was performing better in data set Trousers and Shirt which have bigger 

neighbourhood sizes compared to Shape 0 but as these shapes are allowed to rotate they 

produced competitive results. When considering the tabu list length we found the best 

solution obtained from any of the structure types always falls within tabu list length of 

10, 20 and 50. Only in some instances the best results obtained by tabu list length of 5 

and 100 matched that of 10,20 and 50. However it was never a better performer. 

ICH Neighbourhood Structure Experiments 

Sorted Order 
Neighbour Shape 0 Shape 2 Trousers Shirt Dighel 

Structure Tabu L BastL AvgL BestL AvgL Best L Avg L Best L AvgL Best L Avg L 

0 5 66.00 66.00 27.16 27.38 251.31 251.61 63.88 64.69 125.41 125.41 
P 10 66.00 66.00 27.16 27.38 251.22 251.39 63.58 63.78 119.30 119.30 
T 20 66.00 88.00 27.00 27.38 249.75 250.17 63.58 63.78 112.07 112.07 

Nl 50 66.00 66.00 27.00 27.38 250.96 251.40 63.58 63.78 119.57 119.57 

(5) 100 66.00 66.00 27.00 27.38 251.31 251.49 63.58 63.78 120.27 120.27 

0 5 64.99 64.99 27.66 27.79 251.45 251.79 63.96 63.96 112.07 112.07 

P 10 65.00 65.00 27.78 27.90 251.11 251.35 63.96 63.96 113.62 113.62 

T 20 63.00 63.00 27.54 27.61 250.00 250.57 63.96 63.96 113.69 113.69 

N2 50 65.00 65.00 27.86 27.89 249.59 251.05 63.96 63.96 122.79 122.79 

(5) 100 65.00 65.00 27.76 27.98 251.71 252.14 63.96 63.96 126.94 126.94 

0 5 64.00 64.00 27.48 27.49 249.61 251.67 63.65 63.81 112.82 112.82 

P 10 62.00 62.00 27.00 27.34 251.36 252.27 63.65 63.65 112.07 112.07 

T 20 63.00 63.00 27.40 27.47 250.96 251.11 63.65 63.66 112.82 112.82 

N2 50 63.00 63.00 27.49 27.49 249.61 251.37 63.65 63.75 113.93 113.93 
(10) 100 63.00 63.00 27.38 27.48 251.38 251.74 63.65 63.75 121.45 121.45 

0 5 64.00 64.33 27.40 27.52 250.42 251.47 63.73 64.17 112.82 112.82 

P 10 62.00 62.67 27.38 27.46 248.08 251.10 63.58 64.01 112.82 114.62 
T 20 63.00 63.83 27.50 27.55 248.08 251.25 63.63 64.03 112.07 113.64 

N3 50 62.49 63.16 27.00 27.31 248.08 251.25 63.63 64.13 119.75 122.45 

(5) 100 62.00 62.69 27.81 27.89 248.08 251.25 63.63 64.13 121.43 120.18 

0 5 62.00 62.67 27.34 27.52 251.24 251.48 63.97 64.20 112.82 112.82 
P 10 63.00 63.83 27.26 27.48 250.00 250.00 63.64 63.82 112.82 112.82 
T 20 62.99 64.00 27.20 27.57 250.00 250.00 63.62 63.81 112.82 113.19 

N3 50 63.00 64.33 27.26 27.48 250.00 250.00 64.42 65.10 112.82 116.40 
(10) 100 63.00 64.00 27.26 27.48 250.00 250.00 63.62 63.63 118.62 120.08 

Bast Know Solution 59.47 25.84 240.77 61.33 100.00 

Table 5.1 ICH Experimental Results with Area Decreasing Initial Order 
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ICH Neighbourhood Structure Experiments 
Random Order 

Neighbour Shape a Shape 2 Trousers Shirt Dighel 

Structure Tabu L BestL AvgL Best L AvgL Best L AvgL Best L Avg L BestL AvgL 

0 5 64.08 65.36 27.90 28.24 266.88 271.01 67.39 66.22 134.65 141.04 
P 10 64.08 66.03 28.16 28.32 258.95 266.16 66.80 67.09 113.69 125.57 

T 20 64.08 65.36 27.80 27.94 261,41 266.93 66.92 67,48 112.09 125.36 

N1 50 64.08 65.36 27.80 28.01 267.06 271.07 67.24 67.32 113.69 117.60 

(5) 100 64.08 65.36 27.80 28.01 258.95 264.14 67.37 69.65 125.44 126.04 

0 5 65.00 65.00 27.88 28.06 288.20 273.46 67.37 69.04 112.07 112.32 

P 10 64.83 65.11 27.81 28.03 265.51 269,41 66.13 67.40 112.09 115.02 

T 20 65.16 65.72 27.66 28.13 254.83 267.09 66.95 67.31 112.82 114.19 

N2 50 65.00 65.55 28.18 28.33 268.20 270.66 66.17 67.55 113.69 119.08 

(5) 100 64.58 64.88 28.03 28.26 257.27 264.06 66.13 68,43 122.07 126.88 

0 5 64.00 64.93 28.13 28.30 269.93 271.31 67.13 68,49 122.98 128.87 

P 10 64.00 65.33 27,49 27.74 270.00 274.12 66.58 66.74 112.07 116.97 

T 20 64.08 65.05 27.30 27.65 264.31 272.97 66.78 67.07 112.07 112.33 

N2 50 64.00 65.33 27.50 27.76 264.71 269.55 66.89 67.01 112.82 115.94 
(10) 100 64.00 65.33 27,49 27.84 261.25 267.09 66.58 69.09 117.77 121.89 

0 5 63.00 63.72 27.40 27.61 267.05 270.19 66.66 68.55 112.82 113.60 

P 10 64.00 65.00 27.34 27.46 267.05 270.09 66.86 86.55 112.82 113.10 

T 20 64.00 65.17 27.18 27.68 267.05 270.27 66.86 68.55 112.82 116.56 

N3 50 63.50 64.17 27.57 27.92 267.05 270.27 68.86 68.55 116.67 120.90 

(5) 100 64.50 65.08 28.15 28.25 267.05 270.27 68.86 68.55 118.22 121.88 

0 5 64.00 64.69 27.73 27.65 264.45 265.73 67.30 67.89 112.82 112.82 

P 10 62.99 63.69 27.73 27.82 264,45 265.73 66.35 66.89 112.07 112.57 

T 20 64.00 64.03 27.77 27.96 264.45 265.73 66.52 66.96 112.09 112.72 

N3 50 64.00 64.03 27.80 28.01 264.45 265.73 66.28 66.79 113.93 117.87 
(10) 100 64.00 64.03 27.80 28.01 264,45 265.73 67.42 69.53 119.90 126.84 

Best Know Solu1ion 59.47 25.84 240.77 61.33 100.00 

Table 5.2 ICH Experimental Results with Random Initial Order 

The sorted packing order ranking criteria dominated the best results achieved as shown in 

bold in Table 5.3. However random packing order did show some promise and matched 

some of the best results, as shown in bold italic in Table 5.3. Based on our results we did 

not perfonn better than the current best results achieved in the literature but this was not 

our goal when we started our research. However our result did perfonn better than 

previous best in the literature. Shapes 0 data set, achieved a strip length of 62 and this 

was better than best known solution of 63 till 2006 (Dowsland et al., 1998). Shapes 2 data 

sets achieved a best of 27 and this was better than previous best of 27.2 (Burke et a1., 

2006), the authors reported having to extend their initial experiments to achieve this 

result. Overall we feel that we have developed a good implementation of the ICH 

algorithm and we can now proceed with our SOL perfonnance testing. 
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Neighbourhood Shape 0 Shape 2 Trousers Shirt Dighe1 
Type Best Length Best Length Best Length Best Length Best Length 

Sorted Random Sorted Random Sorted Random Sorted Random Sorted Random 

OptN1(5) 66.00 64.08 27.00 27.80 249.75 258.95 63.58 66.80 112.07 112.09 

OptN2(5) 63.00 64.58 27.54 27.66 249.59 254.83 63.96 66.13 112.07 112.07 

OptN2(10) 62.00 64.00 27.00 27.30 249.61 261.25 63.65 66.58 112.07 112.07 

OptN3(5) 62.00 63.00 27.00 27.18 248.08 267.05 63.58 66.86 112.07 112.82 
OptN3(10) 62.00 62.99 27.20 27.73 250.00 264.45 63.62 66.28 112.82 112.07 
Best Known 59.47 25.84 240.77 61.33 100.00 

Table 5.3 ICH Best Result Comparison 

5.2 Searching Over Layout Heuristics (SOL) 

We carried out extensive experiments using the two SOL search strategies as explained in 

the implementation chapter 4, section 4.3. Recall that the available search points for the 

piece selected to move within the layout were derived from the no-fit-polygon and inner­

fit-rectangle (IFR). Our initial solution as with ICH is generated using the two ranking 

criteria as explained in section 5.1. We then use the bottom left most placement heuristic 

to position these pieces in the layout to build our initial solution. Next we improve the 

solution by decreasing the initial strip length and resolving overlaps as was explained in 

chapter 4, section 4.3.4. Our first representation of tabu search stores the piece that was 

selected to move into the tabu list. This strategy will be tested using 3 different tabu list 

length test parameters, which was classified as low, high and medium as explained in the 

previous chapter 4, section 4.3.1. Our second representation of tabu search stores the 

combination of the piece selected to move and its current position into the tabu list and 

five tabu list length types are tested. In the first strategy once a piece has been moved 

within the layout this piece will not be moved again until it drops off from the tabu list 

and this is determined by the tabu list length, the shorter the length the faster it will be 

available for a move and the longer the length, pieces which may not be in overlap 

positions will be selected to be moved within the layout. This will potentially create big 

gaps in the layout and force the algorithm to diversify the search. This is an interesting 

feature to be tested out, that was the reason for choosing the three types of tabu list 

lengths as explained above. In the second representation of tabu search although the same 

piece may be selected again and again to be moved within the layout, the tabu list 

restricts the piece from occupying its' historical positions on the layout. 
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As with ICH we will be running the experiments for the duration of 30 minutes so that 

we can evaluate the effectiveness of the two proposed strategies fairly. We realize that 

during the course of the iterations there may exists more than one piece that produces the 

largest overlap cost and more than one position that produces the smallest overlap cost, 

so we break ties by selecting one of these arbitrarily. This element of randomness could 

have an impact on the final solution quality, thus we decided to replicate the experiments 

five times as with the ICH approach. Based on the parameters given above we will be 

using 5 data sets (ShapeO, Shape2, Trousers, Shirt and Dagli) to test the algorithm. For 

the fist strategy this will generate a total of 30 experiments of 30 minutes each for a data 

set, to run the experiments for the 5 data sets will take us around 75 hours in total. For 

our second strategy this will generate a total of 50 experiments of 30 minutes each for a 

data set, to run the experiments for the 5 data sets will take us around 125 hours in total. 

Unlike ICH where it was relatively easy to manipulate the neighborhood structure this 

was not the case with ICH where our sensible options are limited. Table 5.4 and Table 

5.5 shows the results obtained using our first strategy and second strategy respectively 

and Table 5.6 shows the comparative results between these two tabu strategies for our 

SOL; best results are shown in bold. 

Piece Tabu 
Sorted Order 

I Shape 0 Shape 2 Trousers Shirt Dighe1 
Tabu Length Bestl Avg L Best L Avg L Best L Avg L BestL Avgl Bestl AvgL 
Low 63.50 65.70 27.27 28.59 284.40 286.60 66.24 67.44 100.00 129.97 
Mid 65.50 66.50 27.40 27.85 286.00 286.82 66.24 67.74 100.00 105.66 
Hi 65.50 67.30 27.90 28.15 284.40 286.76 66.24 67.54 100.00 112.87 
Best Known 59.47 25.84 240.77 61.33 00.00 

Random Order 
I Shape 0 Shape 2 Trousers Shirt Dighe1 
Tabu Length Bestl AvgL Best L Avg L Bestl AvgL Best L AvgL BestL Avgl 
Low 64.00 66.30 27.66 28.16 276.78 286.26 67.41 70.23 127.86 139.21 
Mid 65.00 67.30 28.16 28.51 279.00 288.17 68.31 70.33 120.21 126.99 
Hi 63.00 67.10 28.50 28.86 282.00 288.27 68.41 70.63 120.12 126.39 
Best Known 59.47 25.84 240.77 61.33 100.00 

Table 5.4 SOL Best Result llsing Tabu Strategy 1 
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Shape 0 

Piece + Placement Tabu 
Sorted Order 

Shape 2 Trousers Shirt Dighe1 
Tabu length BestL AvgL Best L Avg L Best L AvgL BestL AvgL BestL Avgl 

5 66.50 67.50 27.90 28.23 286.00 286.00 68.24 68.24 129.27 132.94 
10 67.50 68.19 27.90 28.23 286.00 286.13 68.24 68.24 117.98 127.17 
20 66.50 67.83 27.40 28.23 286.00 286.27 68.24 68.24 128.27 135.27 
50 67.50 67.83 28.40 28.40 286.00 286.13 68.24 68.24 135.27 136.60 

100 67.50 69.17 28.40 28.40 286.00 286.00 68.24 68.24 132.27 136.27 
Best Known 59.47 25.84 240.77 61.33 100.00 

Random Order 
Shape 0 Shape 2 Trousers Shirt Dighe1 

Tabu length Besll Avg l BestL Avg L Best L AvgL BeslL Avg L Bestl AvgL 
5 67.00 68.00 29.00 29.19 280.76 283.43 68.17 69.76 137.67 149.02 

10 66.00 67.67 28.17 29.01 275.32 288.43 67.35 69.92 145.21 149.40 
20 67.16 68.32 28.40 28.78 280.08 283.22 67.77 69.01 151.63 155.80 
50 67.00 67.67 29.16 29.40 278.77 282.32 69.17 69.51 141.67 151.78 

100 67.50 68.33 28.17 28.81 278.75 286.95 70.98 71.42 139.86 147.47 
Best Known 59.47 25.84 240.77 61.33 100.00 

Table 5.5 SOL Best Result using Tabu Strategy 2 

Best Results 
Piece tabu Piece + Placement tabu Best Known 
Best Length Best Length Solution 

Sorted Random Sorted Random 
ShapesO 63.5 63.00 66.5 66.00 59.47 
Shape2 27.27 27.66 27.4 28.17 25.84 
Trousers 284.4 276.78 286 275.32 240.77 
Shirt 66.24 67.41 68.24 67.35 61.33 
Dighe1 100 120.12 117.98 137.67 100 

Table 5.6 SOL Tabu Strategy Comparison 

From Table 5.6 we can see that our second strategy was not performing as well as our 

first strategy and it was worst in all instances. In some instances the result obtained were 

quite inferior in quality, example Shape 0 data. This can be the result of keeping allowing 

the same piece to be moved again and again in the layout thus slowing the algorithm from 

achieving good solution quickly. We can also derive from Table 5.4 and 5.5 that there are 

higher chances of obtaining good quality results in lower tabu list length, this maybe 

because longer tabu list lengths create greater diversification or disturbance in the 

behaviour of the algorithm and make it inefficient. Table 5.6 also shows the randomness 

of solution quality in SOL, unlike ICH where all the best results obtained were from 

sorted area ranking criteria; in SOL we seem to get best result from either ranking 

criteria. Based on our results we did not perform better than the current best results 

achieved in the literature except in Dighel. In Dighel our SOL using the first tabu 
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strategy matched the current best result of 100 in the literature; this is the known 

optimum solution for this jigsaw puzzle problem. The result of Dighe1 was also better 

than what the 112.07 that we have achieved using ICH. Shapes 0 data set, achieved a 

strip length of 63 and this matched the best known solution of 63 till 2006 (Dows1and et 

aI., 1998). Shapes2 data sets achieved a best of 27.27 and this was very close to the 

previous best of 27.2 (Burke et aI., 2006), the authors reported of having to extend their 

initial experiments to achieve this result. Overall even we are satisfied with the 

performance of our SOL as we have stated that our research goal was not to produce 

better results that the current best in the literature but our algorithm should produce 

reasonably competitive result to ascertain its effectiveness. Thus we decided to use the 

first tabu representation as our basis to compare results with ICH. 

5.3 ICR and SOL Comparison 

Based on this set of result we decided to set the parameters for comparing the results 

from the two approaches, ICH and SOL. For ICH we decided to fix the neighbourhood 

structure to OptN3(5) as this was identified to be consistent in producing good quality 

results. The tabu lists to be tested was reduced from five to three, we will only be using 

10, 20 and 50 as our tabu list lengths as from our experiments above this are the ones 

which produced good quality results. For SOL we will be using our first tabu 

representation with three tabu list lengths as described in section 5.2. For this final 

experimentation used to compare ICH with SOL we replicated the experiments 10 times 

for each shape data instances. This way we can be more confident in evaluating the 

quality of the solutions due to the element randomness as we have explained earlier. We 

will be evaluating a total of 10 datasets from the 16 datasets available on ESICUP to gain 

better insights into the effectiveness of both approaches. We left the six datasets out as 

these data sets allow the shapes to rotate in 4 different angles (0°, 90°, 180°, 270°) and 

this will require more computation time and will deteriorate the performance of the 

algorithm, so we decided to focus only on datasets with maximum two allowable 

rotations. Four out of these six datasets are of artificial type and the other two are 

garment shapes data. 
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The summary of results from our experiments is given in Figure 5.7 and 5.8 which shows 

comparison of result between area sorted and random ranking criteria for IeB and SOL; 

the best results are given in bold. For IeB no clear conclusion can be made as to which 

tabu list length was better in producing good results. Tabu list of size 10 produced the 

best result for all of the shapes expect Shape 1, Shapes2, Shirt and Dighe 1. Tabu list of 

size 20 produced good results in all except Shapes 0, Shapes 2, Albano and Dagli. Tabu 

list of size 50 produced good results in all except Shape1, Albano, Dagli and Dighel. 

ICH 
Sorted Random 

Tabu lenQth 10 20 50 10 20 50 
Bestl Avg l Best L AvgL Bestl Avg l Bestl Avgl Best l Avg l Best l AvgL 

Shape 0 62 63.499 63 63.783 62 63.466 63 64.707 63 64.183 63 64.632 
Shape 1 58 59.05 57 59 58 59.7 59 61.121 59 61.272 59 61.324 
Shape 2 26.94 27.499 27.19 27.558 26.8 27.499 27.25 27.699 27.18 27.612 27.5 27.806 
Albano 10247.19 10461.23 10248.44 10436.41 10354.07 10449.43 10304.4 10444.41 10341.27 10472.57 10418.07 10522.5 
Trousers 248.08 251.129 248.08 251.132 248.08 251.132 267.05 269.814 267.05 270.143 267.05 270.143 
Swim 6216.88 6441.959 6216.88 6431.873 6216.88 6431.873 6807.42 6956.731 6807.42 6978.349 8807.42 6978.349 
Shirt 63.58 63.982 63.47 63.966 63.47 63.966 66.86 68.167 66.86 68.167 66.86 88.167 
Daqli 60.24 61.122 60.31 61.185 60.91 61.563 60.71 62.213 60.59 62.558 61.66 62.886 
Dighe1 112.82 113.525 100 116.523 119.57 122.763 112.82 113.231 112.82 115.674 116.67 123.079 
Dighe2 100 100 100 100 100 101.632 100 100 100 100 100 101.171 

Table 5.7 ICH Best Result Comparison 

SOL 
Sorted Random 

Tabu length low Mid Hi low Mid Hi 
Bestl AvgL Bestl Avg l Bestl Avg l Bestl Avgl Best l AvgL Bestl Avgl 

Shape 0 63.5 65.7 65.5 66.5 65.5 67.3 64 66.296 65 67.296 63 67.096 
Shape 1 58 59.3 59 61.2 61 62.3 57 58.525 58.75 60.825 61 62.325 
Shape 2 27.27 28.587 27.4 27.85 27.9 28.15 27.66 28.156 28.16 28.506 28.5 28.856 
Albano 10399.93 10639.93 10499.93 10609.93 10599.93 10709.93 10607.01 10743.1 10514.72 10726.79 10545.02 10826.59 
Trousers 284.4 286.6 286 286.82 284.4 286.76 276.78 286.258 279 288.166 282 288.266 
Swim 6743.15 6973.15 6843.15 6973.45 6943.15 7073.15 6932.94 7098.732 7045.14 7173.808 7080.56 7203.01 
Shirt 66.24 67.44 86.24 67.74 66.24 67.54 67.41 70.232 68.31 70.332 68.41 70.632 
Dagli 61.2 63.883 62.2 63.937 62.2 66.372 62.96 63.613 63.08 63.907 63.27 64.504 
DiQhe1 100 129.97 100 105.66 100 112.87 127.86 139.209 120.21 126.992 120.12 126.393 
Dighe2 130.43 135.129 130.45 131.15 130.45 131.75 126.89 134.873 100 126.587 100 123.652 

Table 5.8 SOL Best Result Comparison 

Each tabu list length had an equal share in producing the best result so we can conclude 

that it is always better to experiment with a number of parameters of tabu list lengths in 

the packing algorithm. If we were to fix the tabu list length to only one length in some 

cases we would have produced inferior results given the variability of the input data. 

Again from the results in IeB we can see that random order ranking criteria was inferior 

in perfonnance compared to the sorted by area initial packing order. In SOL we notice 
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that the low tabu list length more frequently gets the best result. This conforms to the 

result obtained in our earlier experiments and we have explained in section 5.1 why we 

think this was an expected scenario. Similar to the observation we made in section 5.1 in 

SOL best solution are spread between sorted area ranking criteria and random order 

ranking criteria, thus no clear conclusion can be made as to which ranking criteria works 

best with SOL. 

When sorted area ranking criteria was used ICB performed better or equal to SOL in all 

data sets. When random ranking criteria was used, SOL matched the result in ShapeO and 

Dighe2 and was better than ICB in Shapel. However in rest of the shapes ICB performed 

better than SOL. 

Figure 5.10 summarizes the best result ofICH and SOL and in the last column the current 

best result in the literature and the name of the author is added; Egebald et aI., 2006; 

Gomes and Oliveira, 2006 and Bennell and Song, 2007. These are denoted as E, G and S 

respectively. Recall from our Chapter 2, Section 2.3 and 2.4 that E and G used the SOL 

approach while S used the ICH approach. 

Data Type ICH SOL Literature 
Best Length Std.Oev. Util(%) Length Std.Oev Util(%) Util(%) Author 

ShapesO 62 0.76 64.35% 63 1.20 63.33% 67.09% E 
Shape1 57 0.90 70.00% 57 1.57 70.00% 73.84% E 
Shapes2 26.8 0.26 80.60% 27.27 1.96 79.21% 83.59% G 
Albano 10247.19 87.34 84.95% 10797.28 110.59 80.63% 87.88% E 
Trousers 248.08 1.34 87.80% 276.78 0.88 78.69% 90.46% E 
Swim 6216.88 94.09 71.16% 6743.15 124.64 65.60% 75.04% S 
Shirt 63.47 0.37 85.08% 66.24 0.88 81.52% 88.05% S 
DagJi 60.24 0.64 84.19% 61.2 2.71 82.87% 87.99% S 
Dighe1 100 4.57 100.00% 100 14.56 100.00% 100.00% G 
Dighe2 100 2.98 100.00% 100 3.02 100.00% 100.00% G 

Table 5.9 ICH and SOL Best Results Comparison 
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Utilization percentage is calculated as below:­

Utilization percentage 

= (sum total area of all the pieces) / (best packing length X width of stock sheet) 

From the results shown ICH clearly performs better than SOL in all problem instances 

tested except Shapes! where SOL matched ICH's result and in Dighel where it was 

better than ICH and matched the current best result in the literature. ICH and SOL 

matched the current best result in literature in Dighe2. Overall ICH performs reasonably 

well compared to the best in literature. SOL produced worst results in three data sets; 

Trousers, Swim and Shirt. These three data sets are derived from the textile industry; 

these data sets can be found in figure 4.2. A common element of these data sets is the 

high irregularity and large quantities of shapes. This will cause a great problem when the 

strip length get shorter and shorter, the overlap becomes quite impossible to be resolved. 

This may be due to a number of factors, small pieces may be overlapping with larger 

pieces and it becomes difficult to separate these pieces. This might be the reason why 

researches quite often formulate special cost function and special penalty to overcome 

this problem. Bennell and Dowsland (1999) injected problem specific knowledge by 

observing the graphical animation of the algorithm in progress and made SOL more 

effective in removing the overlaps and reaching better solutions. To avoid heavily 

penalizing small pieces, the respective widths of pieces in overlap situation are also 

included in the overlap function and the minimum of these are then selected as the 

overlap cost. This will allow small pieces to be preferred to be moved. Gomes and 

Oliveira (2006) combined SOL with a separation and compaction routine using LP. The 

advantage of using ICH is that we do not need to wony about transfonning the solution 

from infeasible to feasible because we do not permit overlap and we are guaranteed a 

feasible solution every time. The experiments have proven that with ICH we can expect 

reasonably good solution in a short span of computation run. 
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5.4 Summary 

We introduced five alternative neighbourhood structures for ICH on 5 data sets. We used 

the learning outcome from these experiments to choose and fix our neighbourhood 

structure for the final comparison experiment between SOL and ICH. We investigated 2 

possible tabu search design for ICH and compared their computational results. We 

established the test parameters of our experiments to compare ICH and SOL. We made 

the conclusion that ICH is an effective algorithm and is able to reach a reasonably good 

solution quickly. We believe that SOL needs tweaks and tuning on the cost function 

parameters to enable the overlaps within the layout to be removed more effectively. The 

literature suggested that if this done SOL is capable excellent results as shown in the 

literature but to get there is not an easy task. ICH is simple, deterministic and once 

implemented the final solution generated is always a feasible solution, we do not need to 

worry about removing overlap from the layout. Further with ICH it is relatively easy to 

experiments with different neighbourhood structure which could be generated by 

swapping or inserting pieces within a packing order. 
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6 Conclusions and Future Work 

6.1 Background 

We set out off with the research aIm to compare the two common problem 

representations for 2D ODP; ICH and SOL. The literature reports both approaches as 

producing excellent results but if an OR practitioner were to choose either one as the 

preferred method of solution which one would it be. To do this we have stripped both 

approaches from any special features or sophistication and implemented them based on 

their basic principles. By doing this we have created a level playing field for comparison. 

We then used our computational experiments to analyze the success of both these 

approaches with regards to their success rate of producing good quality solutions over a 

range of different data sets, their strength and weakness with respect to the different data 

types and total number of pieces. In ICH we used a bottom left placement policy to 

position the pieces within the layout, we generated search positions based on NFP as 

explained in our methodology chapter and we used tabu search as our search engine to 

find the best packing solution within our predefined neighbourhood structure. In SOL we 

based our overlap measure on the sum of the extent of the horizontal and vertical overlap 

distance as explained in our methodology chapter, we used this measure as the penalty 

value in our cost function, we generated our placement positions based on NFP (similar 

to ICH) and also used tabu search as our search engine. The difference between the tabu 

search in ICH and SOL is that in the former the tabu list will contain the swap positions 

of the pieces that were swapped whereas in the latter the tabu list contains the piece 

identification and its historical position in the layout. This is because ICH seeks to find 

the best ordering of the pieces and SOL the best placement positions available in the 

layout to reach a near optimal packing solution. 

We have demonstrated based on our extensive computational experiments that ICH has 

several advantages over SOL. One of which is the guarantee of producing a feasible 

packing solution, on the other hand SOL cannot guarantee this and will potentially get 

stuck if it cannot eliminate the overlaps in the layout within the restricted computational 
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time. In rCB regardless of the shapes profile we consistently achieved good quality 

solutions within a short span of time. Our experiments have indicated this is not the case 

with SOL, the solution quality deteriorated when the shapes profiles contained high 

irregularity, ranging from very small pieces to very large pieces and large quantity of 

pieces, typical of industrial data set. We believe this is because as the layout gets 

compacted many small pieces may overlap with large ones and it becomes extremely 

difficult for the algorithm to resolve this. This observation was also mentioned in Bennell 

and Dowsland (1999) and they used a special cost function to overcome this problem. 

Although quite a number of researchers (e.g., Bennell and Dowsland, 1999, Gomes and 

Oliveira, 2006, Egeblad, et al., 2006) have indicated SOL as producing excellent packing 

result, we believe that this may be because of specific knowledge injected into the 

algorithm based on their experimental learning. Further more the benchmark data sets 

used by researches are limited to only 17 data sets. As a result it is possible that 

enhancement to the algorithms generate better performance against specific data leading 

to better and better solutions rather than in general. We have also shown tabu search as an 

excellent search tool as all the result obtained are close to the best produced in the 

literature and some even matched the known solutions (e.g. dighel, dighe2). 

6.2 Future Work 

As we have only experimented with only one local search technique we could not draw a 

conclusion as to which search technique is superior in terms of consistently achieving the 

best solution. Thus other search techniques like simulated annealing and genetic 

algorithm could be applied and tested. Implementation and comparison of different 

search techniques might alter the observations that we have made so far. 

The calculation of overlap measure might have a critical influence on the effectiveness of 

the SOL. Thus we suggest that the different available approaches to be compared against 

each other and analyzed in terms of the solution quality produced. Combination of this 

different overlap measure with the alternative search technique would yield a wide set of 

comparison results. We can also broaden our neighbourhood structure by implementing 

78 



other types of moves to produce the neighbourhood of solutions; this will widen our 

comparative experimental data to test the effectiveness of both approaches. Finally the 

data sets could be broadened and deduction made from our observations above could be 

tested with this new data sets. 
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APPENDIX A 
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Data Set 1 
Oliviera J. & 
Ferreira J. 
(1993) 
Shape 0 
43 pieces 
Width 40 
(0°) 

Data Set 2 
Oliviera J. & 
Ferreira J. 
(1993) 
Shape 1 
43 pieces 
Width 40 
(0°,180°) 

Data Set 3 
Blazewicz J. 
(1993) 
Shape 2 
28 pieces 
Width 15 
(0°,180°) 
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Data Set 4 
Albano & 
Sappupo 
(1980) 
Albano 
24 pieces 
Width 4900 
(0°,90°) 

Data Set 5 
Oliviera J. & 
Ferreira J. 
(2000) 
Trousers 
64 pieces 
Width 79 
(0°,180°) 

Data Set 6 
Oliviera J. & 
Ferreira J. 
(2000) 
Swim 
48 pieces 
Width 5752 
(0°,180°) 



Appendix A 

X1 DX1 X1 I 

X1 

/ ~ 
XU 

Figure A.2 continued 

93 

Data Set 7 
Oliviera J. & 
Ferreira J. 
(1993) 
Shirts 
99 pieces 
Width 40 
(0°,180°) 

Data Set 8 
Ratanapan & 
Dagli 
(1997) 
DagIi 
99 pieces 
Width 60 
(0°,180°) 
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Data Set 9 
Dighe & 
Jakie1a 
(1997) 
Dighe 
16 pieces 
Width 100 
(0°) 

Data Set 10 
Dighe & 
Jakiela 
(1997) 
Dighe 
10 pieces 
Width 100 
(0°) 


