
UNIVERSITY OF SOUTHAMPTON

FACULTY OF LAW, ARTS AND SOCIAL
SCIENCE

SCHOOL OF MANAGEMENT

Solving Two-Dimensional layout Optimization Problems with
Irregular Shapes by Using Meta-Heuristic

By

Kumaran Ramakrishnan

Thesis for the degree of Master of Philosophy in Management Science

December 2008

UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF LAW, ARTS AND SOCIAL

SCIENCE
SCHOOL OF MANAGEMENT

Master of Philosophy

Solving Two-Dimensional Layout Optimization Problems with Irregular Shapes by
Using Meta-Heuristic

by Kumaran Ramakrishnan

The focus of this thesis is developing methodologies for 2-dimensional problems that

involve irregular shapes, where the objective is to find an arrangement of the irregular

pieces in order to minimise waste material. There are two main approaches popular with

researchers; in this research project we will group them into iterative constructive

heuristics (ICH) and those heuristics which search over the physical layout (SOL). ICH

seeks to generate good layouts by placing pieces on the stock sheet piece by piece

according to a placement rule. The orders the pieces are placed is controlled by a search

algorithm. SOL works with the physical layout and tries to improve the solution by

moving the placement position of pieces. Overlap is often permitted and penalised in the

cost function in order to generate new solutions.

Both approaches are competitive and each new publication brings better results with

respect to the benchmark data sets. Although this can be credited to better algorithm

design, it could also be argued that researchers are getting better at incorporating

sophisticated specific features in their algorithms to handle the 17 benchmark data sets.

In this research we intend to investigate the two representations of the problem and

establish some principles of the strengths and weaknesses of each method with respect to

data type. In order to conduct this research the algorithms will be developed using only

the basic principles of both approaches and discarding any special features found in the

literature. The aim is to deduct from the experimental results an understanding of what

solution representation should be applied given the data type, performance requirements

and number of pieces.

Contents

Contents

List of Figures

List of Tables

Declaration of Authorship

Acknowledgements

1. Introduction

1.1. The Problem

1.2. Aims & Objective

1.3. Structure of Thesis

1.4. Summary

2. Literature Review

2.1. Search Methods

2.1.1

2.1.2

Basic Local Search

Tabu Search

2.1.3 Simulated Annealing

2.1.4 Genetic Algorithm

2.2. Geometric Solutions

2.2.1 Pixel/Raster Method

2.2.2 Direct Trigonometry & D-Function

2.2.3 The No-Fit Polygon (NFP)

2.2.4 Phi Function

2.3. Iterative Constructive Heuristics

2.3.1 Placement Rules

2.3.2 Selection Rules

2.4. Searching Over Layout Heuristics

2.5. Summary

11

V

VI

Vll

V111

1

2

4

5

5

6

7

7

9

11

14

16

16

17

19

22

23

25

28

31

36

Contents

3. Methodologies

3.1. Solution Methods

3.1.1 Placement & Geometry

3.1.2 Tabu Search for Iterative Constructive

Heuristics

3.1.3

3.2. Summary

4. Implementation

4.1. Experimental Data

Tabu Search for Searching Over Layout

4.2. Iterative Construction Heuristics (ICH)

4.2.1 Placement Heuristics

4.2.2

4.2.3

4.2.4

Search Heuristics

Evaluation Function

Solution Space & Neighbourhood

Structure

4.2.5 Starting Solution

4.3. Searching Over Layout (SOL)

4.3.1 Search Heuristics

4.3.2

4.3.3

4.3.4

4.4. Summary

5. Experiments & Results

Evaluation Function

Solution Space & Neighbourhood

Structure

Starting Solution

5.1. Iterative Constructive Heuristics (ICH)

5.2. Searching Over Layout (SOL)

5.3. ICH and SOL Comparison

5.4. Summary

III

37

37

37

47

52

57

58

58

59

59

59

60

60

61

61

6]

62

63

63

64

65

65

69

72

75

Contents

6. Conclusions & Future Work

6.1. Background

6.2. Future Work

Bibliography

Appendix A

IV

77

77

78

80

91

List of Figures

List of Figures

1.1 An example layout for pairs of trousers 3

2.1 Pseudocode of a Basic Local Search Algorithm 9

2.2 Pseudocode of a Simple Tabu Search Algorithm 10

2.3 Flow Chart of a Tabu Search Algorithm 11

2.4 Mapping of attributes of SA with that of a Local Search 12

2.5 Pseudocode of a Simple SA Search Algorithm 13

2.6 Basic Framework of a Genetic Algorithm 15

2.7 o -1 Raster Representation of a Shape 17

2.8(a) If two polygons overlap, then the rectangle bounding boxes of 18

the pieces must overlap

2.8(b) If two edges intersect, then the rectangle bounding boxes of

the edges must intersect 18

2.9 Analysis of D-Function 19

2.10 Step By Step Generation ofNFP 21

2.11 Detecting overlap in the layout using the NFP 22

2.12 Phases of Iterative Constructive Heuristics 24

3.1 Illustration of Bottom Left Heuristic 38

3.2 Placing Pieces in their Allowable Orientations 39

3.3 Origin Definition of a Piece 39

3.4 Searching for Feasible Placement Point using the NFP 40

3.5 Finding Intersection between two NFP 42

3.6 Grid Based Placement Points 43

3.7 Placing Pieces on a Grid based Layout 43

3.8 Generating Placement Points using the approach of

Gomes and Oliveria (2002) 45

3.9 Flow Chart showing steps to Generate Feasible Placement Points 46

3.10 Measure of Overlap 47

3.11 Stages during Tabu Search Execution 52

3.12 SOL in Execution 55

v

List of Tables

List of Tables

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

rCB Experimental Results with Area Decreasing Initial Order

ICB Experimental Results with Random Initial Order

ICB Best Result Comparison

SOL Best Result using Tabu Strategy 1

SOL Best Result using Tabu Strategy 2

SOL Tabu Strategy Comparison

ICB Best Result Comparison

SOL Best Result Comparison

ICB & SOL Best Results Comparison

VI

67

68

69

70

71

71

73

73

74

Acknowledgements

Acknowledgments

First and foremost I offer my sincerest gratitude to my supervisor, Dr Julia Bennell, who

has supported me throughout my thesis with her patience and expert knowledge whilst

allowing me the room to work in my own way. One simply could not wish for a better or

friendlier supervisor.

My special thanks to the School of Management's Research Secretary, Ms. Jayne Cook

for her dedication in assisting me with essential paperwork and other day-to-day related

matters.

A big thanks to my loving wife, Rajes, without your love, support, encouragement and

sacrifices this Masters degree and this thesis, too, would not have been completed or

written. Thank you so much, I love you.

V111

1 Introduction

Cutting and packing problems has attracted the interest of researches for many years.

This problem occurs across a great variety of industries for example textile, paper, wood,

metal and glass. Many of the industries involved in cutting and packing generate huge

volumes of sales to fulfill the accelerating global demand of products made from textile,

paper, wood, metal and glass. For example all of us need clothing in our daily lives, the

fumiture we use may be made from wood or metal and all sorts of household and

industrial items will have components cut from various materials.

Cutting and packing problems arise in a wide variety of industries and include many

problem types such as cutting lengths of pipe (I-dimensional problem), cutting sheets of

glass or loading pallets (2-dimensional) or loading a container (3-dimensional). The focus

of this proposal is developing methodologies for 2-dimensional problems that involve

irregular shapes, where the objective is to find an arrangement of the irregular pieces in

order to minimise waste material. Examples of this problem type include garment

manufacturing, leather hide cutting, ship building, and tool manufacturing. Although

commercial software exists for generating layouts, the underlying algorithms are

generally unsophisticated and can not compete with solutions generated by expelis.

Classification of cutting and packing problem type can be found in Dyckhoff (1990) and

Waescher et al. (2007). Our research interest in on the variant of packing problem

commonly known as 2-dimensional strip packing problem in the literature or as 2-

dimensional irregular open dimension problems (2D irregular ODP) as classified by

Waescher et al. (2007). We will be using 2D irregular ODP to refer to this problem type

throughout this thesis, 2D irregular refers to the dimensions and shapes of the pieces to be

packed and OD refers to the stock sheet. An assumption is made that sufficient space is

available to pack all the pieces on the stock sheet. For example in the gan11ent

manufacturing industry the stock sheet (i.e. rolls of textile) is rectangular in shape, it has

a constrained width but unconstrained length so that all the pieces that are required to

manufacture the garment can be conveniently placed on the stock sheet. There are two

key solution approaches used to solve the 2D irregular ODP problems; iterative

construction heuristics (e.g. Gomes and Oliveira, 2002; Dowsland et al., 2002; Burke et

al., 2006), and searching over the layout (Bennell and Dowsland, 2001; Oliveira and

Ferreira, 1993; Heckmann and Lengauer, 1995). The focus of this research is not to

compete with the best results published in the literature with respect to the benchmark

data sets but rather to investigate the two solution approaches and gain some insights into

the strengths and weaknesses of each solution approach with respect to the benchmark

data. We aim to do this by stripping the special features that are used to enhance

performance often embedded in these solution approaches and creating a focus on the

basic behaviour of the two key solution approaches. Hence a level playing field for

computational results comparison is created.

The next section is an introduction to cutting and packing problems and some of the

issues that need to be considered. Subsequently we will discuss the research problem that

we will be investigating and how we intend to approach it. In the final section we will set

our goals for this project.

1.1 The problem

Bennell and Oliveira, 2008 define 2D irregular ODP to be a problem, "where more than

one piece of irregular shape must be placed in a configuration with the other pieces(s) in

order to optimise an objective". The 2D irregular ODP is NP-hard (e.g. Egeblad et al.,

2003) hence exact methods cannot be used to solve this problem. The geometric

properties of the shapes to be packed or cut add another dimension of complexity to this

problem. Huge cost savings could be derived from a good quality cutting or packing

solution. The reasons given above make this problem a very important research area in

academia as well as in industry. Figure 1.1 (generated from author's computational

experiment run) is a good example of an irregular packing layout in the garment

manufacturing industry; it shows the cutting pattern for pairs of trousers.

2

Figure i.i: An example layout for pairs of trousers

Referring to Figure 1.1 there are in total 52 pieces that needs to be packed onto the stock

sheet and the objective is to pack them as close together as possible in order to minimize

the wastage of material. In the literature the quality of packing layouts produced is

measured in terms of the shortest strip length or highest area utilization. The cutting and

packing layout is constrained by shape of the stock sheet. For example in the textile

industry, rolls of textile will have a fixed width and we normally assume sufficient length

of material is available to pack all the required pieces, although in reality this may not be

the case. In the literature this type of problem is referred to as a strip packing problem.

Whereas in the leather industry the packing layout is restricted by the size and shape of

the leather hide, hence more than one may be required to pack all the pieces. The problem

we are interested in is the strip packing problem variant.

One of the mam obstacles for researchers working with 2D irregular ODP is

implementing the computational geometric tools to prevent pieces from overlapping one

another as they are placed on the layout. In regular shapes like rectangle or circles the

overlap calculation can be trivial but detecting overlap between the irregular shapes

requires non-trivial computational geometric techniques. The next chapter will cover the

details of the overlap detection techniques. Once the overlap detection tool is in place we

can investigate the optimization methodologies. There are two main solution approaches

popular with researchers. In this research we will group them into iterative constructive

heuristics (ICH) and those which search over the physical layout (SOL). ICH applies a

placement policy to pieces in a predetermined order of pieces. The placement policy

3

seeks to find good positions for placing a piece on the layout. The predetermined order

can be generated using a ranking criteria or using local search. This approach aims to

produce a locally optimum ordering of pieces that would lead to an optimized layout.

Overlap is not permitted while placing the pieces on the layout. SOL starts with an initial

layout and seeks to improve this layout by moving pieces around within the layout.

Usually overlap is pennitted when placing the pieces on the layout but it is penalized

with a cost function. The aim is for the final optimized layout to be free from overlaps.

Due to the computational intensiveness of the solution methods many researches embed

enhancements and special features in their algorithm to improve the solution quality and

the computational speed. Further, it is common for researches to add features to their

implementations to exploit certain problem specific properties. As a result it is difficult to

judge which representation of local search method perfomls best.

1.2 Aims and objectives

The purpose of this research is to investigate the effectiveness of the ICH (e.g. Gomes

and Oliveira, 2002; Dowsland et aI., 2002; Burke et aI., 2006), and SOL (Bennell and

Dowsland, 2001; Oliveira and FelTeira, 1993; Heckmann and Lengauer, 1995) from a

neutral standpoint. Both approaches are competitive and each new publication brings

better results with respect to the benchmark data sets. Although this can be credited to

better algorithm design, it could also be argued that researchers are getting better at

incorporating sophisticated specific features in their algorithms to handle the 17

benchmark data sets available from the EURO Special Interest Group on Cutting and

Packing (ESICUP) website.

In this research we intend to investigate these two key solution approaches of the problem

(ICH and SOL) and establish some principles of the strengths and weaknesses of each

method with respect to data type. In order to conduct this research the algorithms will be

developed using only the basic principles of both approaches and discarding any special

features found in the literature. The aim is to deduct from the experimental results an

4

understanding of what solution representation should be applied given the data type,

performance requirements and number of pieces.

1.3 Structure of Thesis

This thesis will be divided into literature reVIew, methodology, implementation,

experimental results and conclusion chapters. In the literature review we will discuss the

geometric aspects of irregular packing problem and will discuss some important

published work from both solution approaches. In our methodology chapter we will

discuss our strategy for algorithm design for ICH and SOL. In our implementation

chapter we will be setting our test parameters for computational experiments and in the

results chapter we will discuss the findings from our computational runs and deduct a

conclusion based on our empirical results.

1.4 Summary

In this chapter we introduced the problem we will be investigating, discussed the aims

and objectives of our research project and presented the outline for our thesis. In the next

chapter we will review the important published work that use ICH and SOL and also

discuss the geometric aspect of the irregular packing problems.

5

2 Literature Review

Our literature survey will concentrate on 2D irregular ODP as this is the area of our

research focus. Although there exists a substantial amount of literature in cutting and

packing, most concentrates on the regular or rectangular packing problem (Dowsland and

Dowsland, 1992; Dyckhoff, 1992). Dowsland and Dowsland (1995) have written a

survey that focuses exclusively on 2D ODP involving irregular shapes. A more recent

survey was written by Lodi et ai. (2002), (2003). The earliest work on 2D irregular ODP

was done by Art (1966). However, it was only in the late 90's 2D irregular ODP started

getting more attention from researches. Researchers have noted that the complex

computational geometry involved in such problems has stifled academic research in this

area (Bennell and Oliveira, 2008). Some of the research work was aimed at solving

specific problems from the packing industries. Adamowicz and Albano (1976) laid the

foundation for solving packing problem in textile industry which was followed by

Heckmann and Lengauer (1995). Heistermann and Langauer (1995) produced a

specialized algorithm for the leather industry. Prasad et ai. (1991), (1995); Nye (2001)

and Jain (1992) focused on optimal pattern nesting of metal blanks. Reference to

algorithms applied to solve 2D irregular ODP problems can be found in Hopper and

Turton (2001) and in the introductory section of Bennell and Dowsland (1999).

In the two key solution approaches used to solve the 2D irregular ODP problems;

iterative construction heuristics (e.g. Gomes and Oliveira, 2002; Dowsland et ai., 2002;

Burke et aI., 2006), and searching over the layout (Bennell and Dowsland, 2001; Oliveira

and Ferreira, 1993; Heckmann and Lengauer, 1995). Iterative constructive heuristics

attempt to generate a good layout based on a selection and placement rule to arrange the

pieces on the layout. The selection rule selects the next piece to be packed from the pool

of available pieces and the placement rule identifies the best position for this piece on the

layout. In these solution approaches the order in which the pieces are selected to be

packed has a direct impact on the solution quality thus local search tec1miques are

normally used to continuously improve the solution, by reordering the pieces. In contrast,

searching Over the layout starts from an initial layout with pieces already arranged on the

6

stock sheet and seeks to design a better layout by moving these pieces around within the

stock sheet. An important difference in this approach is that pieces are allowed to overlap

one another on the layout. This is done to allow greater freedom for positioning pieces

anywhere on the layout. A penalty value is then assigned to each piece in an overlap

situation. This penalty value is used in a cost function which will guide the search for a

better placement position on the layout with the objective of removing all overlaps within

the layout. The final improved layout will be free from any overlaps; otherwise we have

an infeasible solution.

In section 2.3 and 2.4 we will discuss the literature published on both solution approaches

in more detail. Although this will not be a complete survey, it will cover most of the best

known methods and solutions published so far. We will discuss the variants of the local

search techniques and the geometric techniques to gain a better understanding of the

underlying foundations used to solve 2D irregular ODP. Once we have covered the

geometric and search techniques, understanding the concepts used in the literature survey

in section 2.3 and 2.4 will become much easier.

2.1 Search Methods

2.1.1 Basic Local Search

A local search is an iterative search where the algorithm moves from one solution to

another based on a predefined move criteria. This move criteria explores the solution

space in a systematic manner to reach a better solution whilst escaping local minima. It is

common practice to define the solution space in tenns of a neighbourhood structure when

using these search methods. A move is usually defined as the change made to a current

solution that will result in another solution. All solutions that can be reached by a move

are called neighbours. For example, consider an initial order list of 5 pieces sorted by

their decreasing area size. The initial solution is the sequence in which these pieces will

be packed onto the layout. A neighbour can be generated by swapping two pieces in

sequence, e.g. if the initial sequence is (1,2,3,4,5), a neighbour could be (2,1,3,4,5). The

7

neigbourhood size is the maximum number of neighbours that could be generated in this

way, for this example the resulting neighbourhood size would be 4, and the respective

neighbours are (2,1,3,4,5), (1,3,2,4,5) and (1,2,4,3,5) and (1,2,3,5,4). Depending on the

evaluation criteria, one of the four neighbours, usually the one that improves on the initial

solution will be selected as the current best solution. The search then continues by using

the current best solution to generate a new set of neighbours, evaluate these neighbours

and choose the best one as the current best solution. Every time a current best solution is

chosen it will be checked against the previous best solution and the better one will be

stored in the memory as the best solution which will be returned when the search

algorithm terminates. This search cycle is repeated again and again until the stopping

criteria predefined in the search algorithm is reached. Generally there are two types of

search strategies; 1) those that attempt to visit all the solutions within a neighbourhood

and select the best, 2) those that select a neighbouring solution randomly and stop the

search upon finding an improving solution. The former strategy is known as steepest

descent search and the latter as random descent search.

The main disadvantage of using a basic local search is the likelihood of getting stuck in a

local optimum. This is because these searches generally do not accept non-improving

solutions. More advanced local search techniques, popularly known as metaheuristic, aim

to diversify the search away from local optimum. This is done by allowing non­

improving solutions in a controlled manner with the aim of discovering better solutions

and getting closer to a global optimum. We will look into metaheuristic which have been

applied successfully to solve 2D Irregular OPD in the following subsections. A

pseudocode for a generic basic local search is given in Figure 2.1 (Reeves, 1993).

8

Generic Local Basic Search for a minimization problem

with solution space S, neighbourhood size N and cost function!

Step 1: Select a starting solution So C S

Set Sbes! = So

Step 2: Repeat

Select s such thatf(s) < f (so)

Replace So by s

untilf(s) > f (so) for all s C N(so)

Step 4: If f(s) < f (SbestJ

Sbes! = S

Step 3: If stopping condition not true

Return to Step 2

Otherwise stop

Figure 2.1 Pseudocode of a Basic Local Search Algorithm (Reeves, 1993)

2.1.2 Tabu Search

Tabu search was fonnalized by Glover in 1986. Tabu search uses a memory system to

restrict the choice of the next solution from the neighborhood of a given solution. When

this memOlY system is applied to the steepest descent local search, it will be transfonned

into a tabu search. The basic structure of a Tabu search has the following components:

Local search procedure

Neighborhood structure

Aspiration conditions

Fonn of tabu moves

Tabu list

Maximum size of tabu list

Stopping rule

9

A tabu list records forbidden moves, which are referred to as tabu moves. It is common

practice to store attributes of a neighbourhood structure as elements of a tabu move, for

example the neighbourhood move that resulted in that solution. In essence we want to

prevent the search from recycling through a few good solutions. The longer the tabu list

the more aggressive the search will be for making non-improving moves, thus visiting

more local optima. However tabu restrictions can also be broken. When a tabu move has

an evaluation where it would result in a solution better than any visited so far, then its

tabu restriction is overridden. A condition that allows such an override to occur is called

an aspiration criterion. Figure 2.2 (Reeves, 1993) shows the standard pseudocode for a

generic tabu search algorithm and Figure 2.3 shows the flow chart of a standard tabu

search algorithm.

Generic Tabu search for a minimization problem

with solution space S, neighbourhood size N and cost function!

N(so,h) denotes neighbouring solutions not contained within the tabu list

Step 1: Select a starting solution So € S

Select tabu list length I

Set tabu history h empty

Set SbeSI So

Step 2: Repeat

Select S such thatf(s) < f (so)

Replace So by s

untilf(s) > f (so) for all s € N(so,h)

Step 4: If f(s) < f (SbesJ

Sbesl = S

Step 3: If stopping condition not true

Return to Step 2

Otherwise stop

Figure 2.2 Pseudocode of a Simple Tabu Search Algorithm (Reeves, 1993)

10

Update Tabu and
Aspiration
Conditions

No

Create a candidate
list of solutions r--~

Stopping
conditions
satisfied?

Evaluate solutions

Choose the best
admissible solution

Figure 2.3 Flow Chart of a Tabu Search Algorithm

The application of tabu search to 2D irregular OPD is scarce. The main papers on the use

of tabu search for solving irregular packing problems are Blazewicz et al. (1993), (1995).

2.1.3 Simulated Annealing

The concept of simulated annealing (SA) was first published by Metropolis et al (1953).

The annealing process is modeled based on the cooling of a material in a heat bath.

Material, when cooled slowly, will tum into crystals but if fast cooling is implemented

the crystals fonned will contain some imperfections. The increase or decrease in energy

during the stages of the cooling has a direct impact on the resulting state of the material.

Kirkpatrick (1983) used SA which mimics the annealing process to solve optimization

problems. The law of thennodynamic states that at temperature t, the probability of an

increase in an energy of magnitude bE is given by,

P(JE) = exp(JElkt), (2.4)

where Ie is a physical constant known a Boltzmann's constant. The main idea of SA is to

use a probabilistic approach to avoid getting stuck at a local optimum by perfonning

controlled uphill moves. It uses a temperature parameter that controls the search. The

11

temperature parameter usually starts off high and is slowly "cooled" or lowered in each

iteration. This is called a cooling schedule. During each iteration if energy has decreased

Metropolis' SA accepts the corresponding neighbourhood move and if the energy has

decreased then the corresponding neighbourhood move is accepted according to the

probability given in equation 2.4. At each temperature a predetermined number of

iterations are preformed to diversify the search within the restricted neighbourhood

structure. Simulated annealing has a similar search strategy as of a random descent local

search (Reeves 1993). A random descent local search samples a neighbourhood at

random and chooses the first improving solution, whereas simulated annealing differs

with random local search by probabilistically accepting worse solutions. The probability

of doing so is directly dependent on the temperature. This process sometime helps to

identify a new region of the search space in hope of finding a better local optimum.

Figure 2.4 (Reeves, 1993) provides a mapping of the problem specific parameters of all

local search procedures with SA. Figure 2.5 (Reeves, 1993) shows the standard

pseudocode for a generic SA algorithm. One of the earliest references that utilizes SA for

solving irregular packing problem is Dagli and Hajakbari (1990). Lutfiyya (1992),

Marques et al (1991), Oliveira and Ferreira (1993), Jain (1992), Theodoracatos and

Grimsley (1995), Heckmann and Langauer (1995), Han et al. (1996), Burke and Kendall

(1999), Faina (1999) and Hifi (2003) also successfully implemented SA to solve the

irregular packing problem.

System States --7 Set of Feasible Solutions

Energy --7 Cost

Change in State --7 Neighbourhood Solution

Temperature --7 Control Parameter

Frozen State --7 Heuristic Solution

Figure 2.4 Mapping of attributes of SA with that of a Local Search (Reeves, 1993)

12

Generic Simulated Annealing Search for a minimization problem

with solution space S, neighbourhood size N and cost function!

Step 1: Select a starting solution So € S

Select and initial temperature to > °
Select a temperature reduction function a

Set Sbes! = So

Step 2: Repeat

Randomly select S € N(s)

J = f(s) - f(so)

If J < °
Replace So by s

Else

Generate random number x in the range (0,1)

If x < exp(-Mt)

Replace So by s

until iteration_count = nrep

Set t = art)

Step 4: If f(s) < f (SbesJ

Sbes! = S

Step 3: If stopping condition not true

Return to Step 2

Otherwise stop

Figure 2.5 Pseudocode of a Simple SA Search Algorithm (Reeves, 1993)

13

2.1.4 Genetic Algorithm

A Genetic algorithm (GA) is also a probabilistic approach adopting a similar search

strategy as a random descent local search. Although genetic algorithms were first

conceived by Fraser in 1957 and Bremermann in 1958, it was made popular by Holland

in 1975. Genetic algorithms are inspired by models of natural evolution of species and

use the principle of natural selection which favors individuals that are more adapted to a

specific environment for survival and further evolution. In a similar way, in finding better

solution to complex problems, we can apply this principal to combine pieces of existing

solutions. Each individual in a GA algorithm typically represents a solution with an

associated fitness value. The three main operators used are selection, mutation, and

recombination. Selection prefers fitter individuals to be chosen for the next generation

and for the application of the mutation and recombination operator. Mutation is a unary

operator that introduces random modifications to an individual. Recombination combines

the genetic material of two individuals, also called parents, by means of a crossover

operator to generate new individuals, called offsprings.

In the first GA applications, the solutions or individuals were usually represented as

string of Os and Is, which is commonly known as a binary representation. This type of

representation however proved to be insufficient to efficiently attack certain types of

combinatorial problems, like permutation problems (permutation problems are problems

in which a solution may be represented by a permutation of the numbers, which are

naturally encoded in other ways. Therefore, for such problems usually more general,

problem specific encodings are applied. For example in 2D ODP the sequence of pieces

to be placed on the strip layout is usually encoded as the representation of the

chromosomes, this is commonly known as a permutation representation. The crossover

operator is usually understood as the main operator driving the search in genetic

algorithms. The idea of crossover is to exchange useful information between two

individuals and in this way to generate a hopefully better offspring. Mutation is

understood as a background operator which introduces small, random modifications to an

14

individual. The selection operator is used to keep the population at a constant size,

choosing preferably individuals with higher fitness (survival of the fittest). Each

individual encodes a solution to the problem, and its fitness value corresponds to the

objective function value of that solution. The complete cycle of recombination, mutation

and selection is called generation. The basic steps in a GA are given in Figure 2.6.

Among the papers that investigated the suitability of GA with irregular packing problem

are Fujita et al. (1993), Ismail et al.(1995), Dighe and Jakiela (1996), Jakobs (1996),

Bounsaythip et al. (1996), Jain et al.(1998), Hopper (1999), Cheng and Rao (2000),

Ramesh Babu and Ramesh Babu (2001), (1998), Tay et al. (2002), Yeung et al. (2003).

Basic Genetic Algorithm Framework

Step 1 Initialization

Choose an initial population (usually randomly) containing P solutions

Step 2 Evaluation

For each member of the current population, evaluate its fitness

Step 3 Selection

Create a mating pool by selecting solutions in the current population, where the

probability of selection is based on the fitness function.

Step 4 Crossover

Forms pairs of elements from the mating pool and perfonn crossover on each pair to

create offspring

Step 5 Mutation

Mutate the elements of the strings obtained from crossover with a given probability

Step 6 Recombination

Form a new generation from the offspring obtained from cross and mutation.

Step 7 Termination test

Test whether the algorithm should terminate, go to the evaluation step

Figure 2.6 Basic Framework of a Genetic Algorithm

15

2.2 Geometric Solutions

Why do we need geometric computation? It is because the computer is not like the

human eye. Imagine two arbitrarily placed shapes on the computer screen, it is trivial for

the human eye to detect if these two pieces overlap, touch each other, or are placed a

distance apart from one another but how can we build this intelligence into an algorithm?

Below some of the popular geometric approach will be discussed, most of the

infonnation given below was extracted from the detailed description of the geometric

tutorial given by Bennell and Oliveira (2008).

Since the focus of this research is on the irregular variant, let us start by defining irregular

shapes. "Irregular shapes are defined as simple polygons, and in some cases, polygons

that may contain holes" (Bennell and Oliveira, 2008). An irregular shape needs some

complex geometrical technique to detect overlap between them, for example a circle

cannot be classed as an irregular shape as the overlap between two circles can be easily

calculated by using the center and radius values of both circles.

2.2.1 Pixel/Raster Method

The pixel/raster method digitizes the stock sheet into a continous array of pixels

representing grid points on the layout. These grid points based on pixels is a standard

with any computer aided drafting tools, e.g. AutoCAD. Once this has been done placing a

shape on this grid will result in some pixels or grid points being occupied by the shape

and some not. This infonnation will be used and represented in a coding scheme. For

example a simple coding scheme proposed by Oliveira and Ferreira (1993) uses a value

of 1 to code the existence of a piece and a value of 0 to represent empty space on the

layout as illustrated in Fig 2.7. Every time a piece occupies a grid point a value of 1 is

added to the memory buffer of this particular grid pint, hence if 2 pieces occupies the

same grid point the value in the memory buffer will be 2. Once this information is

16

available detecting overlap is as simple as checking the value in the memory buffer where

a value greater than 1, indicates an overlap on the layout.

Other more complex coding schemes were proposed by Segenreich and Braga (1986) and

Ramesh Babu and Ramesh Babu (2001). The advantage of the pixellraster method is the

simplicity of implementing it in a computer program to detect and resolve overlap

between two pieces on the layout. However the disadvantage of using this method is the

memory intensive nature of its implementation and inability to accurately represent

shapes with non-orthogonal edges.

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Figure 2.7 0 -1 Pixel/Raster Representation of a Shape

2.2.2 Direct Trigonometry and D functions

This method enables accurate representation of the shapes. The shapes are approximated

as polygons. Overlap between two shapes can be detected using their relative position on

the layout. This is done by using functions of direct trigonometry to test for intersections

between the edges of these two shapes. The tests are broken down into high level and low

level tests. The high level test aims to detect non-overlap situations at a very early stage

using relatively easy calculations based on direct trigonometry as shown in Figure 2.8.

Figure 2.8 (a) shows that if two polygons are in an overlapping position, the bounding

17

boxes of the two polygons must overlap. The same principle applied to the intersecting

edges of the two polygons shows that the bounding box of the edges must also intersect

as shown in Figure 2.8 (b). The direct trigonometry consists of a series of test on line

intersection and point inclusion. The low level test is a computational intensive test to

analyze polygonal edges between the two shapes and find out if they intersect, hence

overlap. D-function proposed by Konopasek (1981) is used during the edge analysis

phase to accurately test for an intersection between two edges. D-function analyses the

edges between two shapes with respect to their orientation and vertex and translate this

infonnation into finding if they intersect or not.

[------------,
I
I
I
I

A

'------'- ____________ --'----'
(a)

A

(b)

Figure 2.8 (a) If two polygons overlap, then the rectangle bounding boxes of the pieces

must overlap (b) If two edges intersect, then the rectangle bounding boxes of the edges

must intersect.

The D-function can be defined as follows:

(1)

Given an oriented edge AB and a point P, the D-function identifies the relative position

of this point to the oriented edge as shown in Figure 2.9.

18

P.

A

Figure 2.9 Analysis of D-Function

The following analysis is used for the D-function: if DAB? > 0 then point P is on the left

side of the supporting line of edge AB; if DAB? < 0 then point P is on the right side of the

supporting line of edge AB; if DAB? = 0 then point P is on the supporting line of edge AB.

During the edge analysis phase of the low level test, six different conditions will be tested

out using D-functions to accurately identify the relative position of the two oriented

edges. This method can accurately represent the shapes of the polygons, however because

of the rigorous computational calculations that must be performed for every overlap test;

it makes this method a less efficient choice for the 2D ODP problem when it is solved

using iterative search methods.

2.2.3 The Nofit Polygon (NFP)

There are three approaches found in the literature to develop the NFP generator; the

orbiting algorithm (Mahadevan, 1984; Burke et aI., 2007), minkowski sums (Milenkovic

et aI., 1991; Bennell and Song, 2008) and decomposition into star shapes polygons (Li

and Milenkovis, 1995) or convex polygon (Watson and Tobias, 1999; Agarwal et aI.,

2002). We will not go into details of these approaches as it is beyond the scope of this

thesis. However we will briefly describe the Minkowsi sums approach since the NFP for

this thesis work was provided by the authors of Bennell and Song (2008). The concept is

as follows: given two arbitrary point sets, A and B, the Minkowski sum of A and B is

defined by the following:

19

A cp B = {a + b: a C A, b C B}

In order to produce no-fit polygons the Minkowski difference can be used, A <l> -B. This

is equivalent to the two input polygons in opposing orientations and is easily shown

through simple vector algebra (Bennell et al., 2001).

The NFP is a polygon formed as a result of combining components of two polygons

together. It works together with a vector algebra that uses the relative positions of two

polygons and calculates the vector difference between them. The result of this vector

difference is then used to find out if the calculated vector point is in, outside or on the

NFP which can be interpreted as the two polygons overlapping, separated or touching

each other. Given two polygons A and B the construction of the NFP ofB in relation to A

can be found in the following way. The NFP is derived by placing two polygons (A and

B) so that they touch each other but do not intersect and moving one of them (B) around

the other, respectivelys. The resulting polygon that is generated as B moves around A is

denoted as NFP A.B. While this is happening both A and B maintain a fixed orientation,

touch each other but do not overlap. We need to define the origin on A, Band NFP A,B and

the reference point on B before NFP A,B is generated. Bennell (1998) defined the bottom

left comer of the enclosing rectangle of both polygons as the origin of A and B. As a

result the origin of NFP A,B will be the top right comer of the enclosing rectangle of the

tracing polygon B. The reference point can be any point on polygon B, we have chosen

this point as the bottom left comer of enclosing rectangle of polygon B. As polygon B

moves along polygon A in a clockwise direction the reference point on B will trace the

path it follows, this will be called NFP A,B. Figure 2.10 show the step by step process in

obtaining the no-fit-polygon, origin for polygon A,B, NFP A,B and reference point on

polygon B is defined as described above.

Having derived NFP A,B detecting overlap between piece A and B is achieved using a

point inclusion geometric test to find if a given point on the layout is inside, outside or on

NFP A,B. Before the point is used in the test, it has to translated by (-x,-y), where (x,y)

refers to the relative origin of polygon A on the layout.

20

i

'. r-J ~l
'---1~ J-'

_-J I L

,J L..,
L'H-.d-, ,......L .',

,
-,-

I
I'""--r rJ..

If---! l---L

1
r-J ~l

'--, l~ r-'
-J I-~ L~

r-J ~l

~

~tl:'~ ~ L ,

-,-
I

I'""--r rJ..
..... --! l---L

r-J ~l

~
~

I '--, .-~ __ 1 1---1

~rJ~~--.',
• --l ,

-,-
I

I'""--r rJ..
..... --! l---L

Figure 2, J 0 Step By Step Generation of NFP

r"l
J ~l

l~ r-'
'-_, '-' L~

_-1 1---1

r-l

~
I '--, .-~

_-.1 1---1

If this translated point is inside NFP A,B this indicates an overlap situation, if it is outside

then they don't overlap and if it is on NFP A,B both polygons touch each other but do not

overlap, Figure 2.11 illustrates this process, given piece A is already positioned at point

(0,3) on the layout and piece B is about to be placed at point (4,3). The resultant of vector

difference, u - v gives us point (4, 0) which lies inside NFP A,B indicating an overlap in the

layout. This illustration helps us to understand that detecting overlap using the NFP is not

just a simple point inclusion test but it has the complexity of O(n), where n represents the

number of edges in the NFP.

21

(;
IS "'\ B

!it ...

A r"~l,
4'1 -

"-
"-

"-
1----- :! "-

, K ~ --"potl ntlal plaeem nt poll t ,
-' fori Ieee r---' :2

V "-I
U "-,

./
"-, "-, 'I ~ !;.--NFPA. V ,

, , 0, 1 :2 3

'~ 7

8 !I ,
I u-v = { (X2 - x,) , (Y2 - y,))
11----, ,-------1 ~---l- - ((4-0) , (3-3)) I -

I , I I = (4,0) , I I I , I 1 I

Figure 2.11 Detecting overlap in the layout using the NFP

The advantage of using NFP A,B IS the quality of layouts obtained by accurately

representing the shapes as polygons. By preprocessing the no-fit-polygons the execution

speed of overlap detection can be increased. However the complexity involved in

calculating and generating the no-fit-polygon hinders many researchers from

implementing it.

2.2.4 Phi Functions

The phi-function is another method in overlap detection between two polygons (Stoyan et

al., 2004). It is made up of a mathematical function that defines the relationship between

two polygons with regards to their position in the layout. The calculated phi value is

greater than zero in a non-overlap situation, equal to zero if they are touching each other

and less than zero if they overlap. However this method is not widely adopted due to the

lack of algorithmic know how by the wider community.

22

2.3 Iterative Constructive Heuristics (ICH)

Having surveyed the geometric techniques for detecting overlaps in the layout, we will

now concentrate on the heuristics routine. In this section we will focus on approaches that

we will call Iterative Constructive Heuristic (ICH). We will be reviewing the literature

published on ICH but first we will explain some of the key steps of ICH. This involves a

selection rule to select pieces to be packed on the layout from a pool of available pieces, a

placement rule to find the best position for this piece on the layout with regards to the

objective function and a search strategy to continuously improve the packing quality.

In these heuristics pieces are selected or ordered and then packed one by one onto the

strip layout. When selecting or ordering the pieces to be packed a specific rule is used. In

earlier research a sophisticated approach was used to choose the next piece to be packed

dynamically in order to minimize wastage of area (Art, 1966, Albano and Sapuppo,

1980). More recently local search techniques have become increasingly popular to select

a good ordering of the pieces by beginning with an initial presorted order of pieces and

searching through this predefined solution space based on a neigbourhood structure

(Gomes and Oliveira, 2002, Burke et ai., 2006).

Having selected the piece to be packed next, there are several ways of finding the feasible

placement points on the layout to position this piece. Feasible placement points are

generated based on a resolution of grid points on the layout or using the boundary of no­

fit-polygon. In ICH pieces are not allowed to overlap one another on the layout. Some

algorithms allow hole filling, e.g. placing pieces in between gaps of already placed

pieces. We have now selected the piece to be packed and have identified several feasible

locations on the layout, now this piece will be positioned on the layout based on a

placement rule. This placement rule will select the best position in the layout to achieve

the defined objective function.

23

Next is the iterative optimization phase, as the name suggests several different packing

orders are generated depending on the specific rules embedded in the algorithm and the

solution that produces the best layout measured in terms of minimizing wastage, usually

the shortest strip length or highest area utilization will be returned when the algorithm

terminates. In this iterative optimization phase metaheuristic search techniques (e.g. tabu

search, simulated annealing, genetic algorithm) have become quite popular in recent

times to prevent the search from getting stuck in a local optimum. The algorithms

tenninates based on a termination criteria, which is normally the number of iterations or

elapsed time. To illustrate the phases in Iterative Constructive Heuristic, figure 2.12

below will be helpful.

Order the pieces

(Spec~"1cl Rules)

Loop

Feasible Placement
Points

Placement
Rules

Yes

Figure 2.12 Phases of Iterative Constructive Heuristics

The literature will be sectioned into describing the placement heuristic first, identifying

the commonly used approaches and then moving into the search techniques to get a good

overview of the various ways research has been carried out to solve this problem.

24

2.3.1 Placement Rules

Art (1966) introduced the concept similar to today's well known no fit polygon (NFP)

and called it 'shape envelope'. The 'shape envelope' defines the feasible positions on the

stock sheet for placing polygons without overlaps. This concept later became a standard

for generating feasible placement positions on the strip layout (e.g. Albano and Sapuppo,

1980, Gomes and Oliveira, 2002, Dowsland et aI., 2002, and Burke et aI., 2006) these are

positions on the layout where pieces can be placed without overlapping one another.

Art (1966) also introduced the bottom left placement heuristic for positioning the pieces

on the layout. This will be the choice of location when placing the pieces on the layout,

as close as possible to the bottom and left of the strip layout. Bottom left heuristics have

became a popular placement rule for positioning pieces on the strip layout.

The jostle approach (Dowsland, et aI., 1998) places the pieces by jostling between a left

most and right most placement policy_ A leftmost/rightmost policy places pieces towards

the left/right of the stock sheet according to a predefined set of rules. Unlike Art (1966)

biasness is not just towards the bottom instead pieces are positioned as close a possible

towards either the bottom or top of the stock sheet. Hole filling is permitted by generating

a sequence of feasible positions, x co-ordinates from zero onwards and y co-ordinates

from zero to W-w, where W is the width of the stock sheet and w is the width of the

current piece being placed. This algorithm was inspired by the fact that by shaking up and

down a granular product stored in a container will let them settle into their natural

position, removing any unevenness in the initial form.

Oliveira et ai. (2000) worked on an algorithm which they named TOPOS. In this work

the pieces are placed one by one onto the strip layout building a partial solution that

grows from a floating point origin. Every time a new piece is placed on the layout, an

NFP is formed using the external contour around the pieces already placed in the layout.

This will be used to determine feasible placement points on the layout. When choosing

25

where to position this piece a best fit criteria is used based on 3 measure; i) minimizing

the area of rectangular enclosure of two pieces, ii) minimizing the length of rectangular

enclosure of two pieces and iii) maximizing the overlap between the rectangular

enclosure of two pieces. Once this new piece is positioned in the layout a geometric

algorithm is used to merge this piece with the existing pieces on the layout to form a new

external contour.

Bennell and Song (2007) modified the work carried out by Oliveira et al. (2000) on

TOPOS. The changes in the new TOPOS include an NFP generator based on the concept

of Minkowski sums (Bennell and Song, 2008) that retained the gaps between polygons as

they are merged.

Dowsland, et al. (2002) describe a step by step procedure for implementing the bottom

left strategy with hole filling for packing irregular shapes. They begin the search for a

feasible placement point by finding the leftmost point from the set of the NFP vertices,

which will be the required bottom-leftmost point on the layout for the piece selected to be

packed, where ties are broken by choosing the lowest y co-ordinates. If this selected

position passes all the NFP point inclusion tests then a feasible placement point is found

otherwise a standard trigonometry test is used to get all the intersection points between a

vertical line generated from this point and the NFP edges. This will generate test

positions at intermediate points on the NFP edges. All these positions are tested in their

ascending order. If none of these positions are overlap free the search resumes again from

the next bottom-leftmost point in sequence. This is a computationally demanding test so

some important aspects were given to improve the algorithm efficiency. The algorithm

was implemented on four datasets used in Dowsland et al. (1998) together with the

dataset used by Blazewicz and Walkowiak (1993) and compared with the basic BL

algorithm. The results reported improvement in layout length and suggested some minor

performance improvements were achieved when some piece ordering/sorting strategy

was introduced to the experiments.

26

Gomes and Oliveira (2002) used a bottom left placement heuristic similar to that of

(Dowsland, et aI., 2002). A step by step procedure is given to reduce the infinite non­

convex feasible placement points to a discrete and finite set of points; hence the search

for bottom left placement points becomes quite easy. This was accomplished by

following this set of rules. Given any two shapes i and k, the no-fit polygon of i and k

,denoted NFPi,k defines the shape of area where placement of k will result in overlap with

i. For piecek to be placed among other pieces already on the layout: 1) Get the vertex

coordinates of NFPi,k and the inner-fit-rectangle IFRk, 2) Get the intersection points

between two edges of two no-fit-polygon NFPi,k and NFPj,k and 3) Get the intersection

points between the edges of inner-fit-rectangle IFRk and an edge of a no-fit-polygon

NFPi,k . The inner-fit-rectangle is derived using the NFP and it represents the feasible

placement points that will contain this piece within the layout. Sort this collection of

points according to their lowest x coordinate, ties are broken by selecting the smaller y

coordinate and start the search for a feasible placement point moving through this sorted

list.

Burke et aI. (2006) introduced an alternative new bottom-left-fill heuristic with hole

filling. This heuristic places the first shape at the lower left comer in the layout. It then

tests the allowable rotation for this piece and deternlines the best rotation based on the

defined performance measure. For the next shape in the packing order it starts from the

lower left comer if this piece type is not already on the layout, otherwise it starts from

where this same piece type was placed last on the layout and attempts to find a feasible

placement point in a positive vertical direction (up the y axis). If this piece intersects with

already placed pieces it uses an overlap resolution technique during the search process for

a feasible placement position. If overlap is not resolved the search is continued by

moving along the positive x axis direction by one increment (known as resolution) and

proceeding to search vertically again. The search continues in this fashion until a feasible

location is found to place the shapes.

27

Having identified the most popular placement rule for positioning pieces on the strip

layout let us now consider the various different rules for selecting the pieces to be packed

next on the layout as this is often the key to achieving better layouts.

2.3.2 Selection Rule

Art (1966) used single pass heuristic with a selection rule based on three criteria to

choose the piece to be packed next. These criteria are used successively to narrow down

the choice of piece selection step by step until finally choosing the best one. The first

criteria select the pieces that could produce lowest x values on the envelope. This x value

is within a defined tolerance limit and is determined by the placement heuristic according

to the probable position of this piece on the layout. The second criteria will be applied to

the pieces selected from the first criteria. It will select the pieces based on their area. The

pieces with area greater than a fixed fraction will be chosen. The fixed fraction is

calculated as the area of the chosen piece over the maximum area, which is given by the

piece with the largest area among pieces selected under criteria one. The final criteria will

select from these pieces the ones that produce a minimum "probable waste" on the left

hand side of the layout, this waste is calculated according to a defined formulation. Ties

are broken with pieces having the lowest y value on the envelope.

Albano and Sapuppo (1980) discuss a procedure which claims to produce a locally

optimal arrangement of irregular pieces. The best ordering of pieces is achieved by

performing a tree search to find the locally optimal path from an "initial state" to a "goal

state". Backtracking through the search path is allowed in order to not restrict the search.

A cost function is used to find the cost of the path between two states. This is calculated

based on the waste generated by the piece selected to be packed next. The waste is

calculated by examining the net change to the area on the right hand side of the profile.

Therefore the best solution is the best arrangement of a set of given pieces achieved by

finding the minimum cost from the "initial state" to the "final state". Hole filling

28

capability is not included in this algorithm. The main application discussed is that of

cloth layout and leather cutting.

Blazewicz, et aI. (1993) extended the work done by Albano and Sapuppo (1980).

Additional feature included is the capability to fill holes in the layout. The initial solution

is generated by sorting the pieces according to decreasing area and then packing them one

by one onto the strip layout. Tabu search is used to improve the quality of the initial

solution. The method is implemented in such a way that a single piece is chosen and its

position is changed at each step of the algorithm. The algorithm terminates if no

improvement to solution quality is achieved after a predetermined number of iterations.

The jostle approach algorithm (Dowsland, et aI., 1998) is based on a single pass

algorithm ("combines piece ordering with a placement policy"). It starts by placing the

initially randomly ordered pieces by following a left most placement policy. Once the

first pass is complete the pieces are re-ordered in decreasing order of their right-most

points (x coordinates) and packed using the right-most policy. Once this packing is

complete the pieces are re-ordered in increasing order of their left-most points (x

coordinates) and packed again using the left-most policy and the process is continued for

a fixed numbers of iterations. This method was tested with D-functions and NFP, with

NFP reporting significant savings in computational time.

Oliveira et aI. (2000) worked on an algorithm which they named TOPOS. The criteria

used for choosing the piece to be placed next is an initial sort based on a set of criteria or

is determined by local search heuristics which iterates through the unique pieces left to

pack and chooses the one based on a best fit measure. The TOPOS algorithm produces

two approaches for adding a new piece to the layout: initial sorting or local search. In the

initial sort pieces are ordered based on one of the following criteria: i) decreasing length,

ii) decreasing area, iii) decreasing concavity, iv) increasing rectangularity (based on the

difference between the piece area and the area of the respective enclosing rectangle) and

iv) total area (based on numbers of similar pieces available). The local search heuristic

evaluates the partial solution using a best fit measure. The best fit measure is based on

29

three fonnulated criteria; i) Waste, ii) Overlap and iii) Distance. Taking into account the

combination of all criteria from both approaches a total of 126 variants were used for the

computational tests It was observed that the best result could not be associated with a

particular variant of the algorithm. Furthennore it was concluded that the shape's

geometric properties have a strong effect on the results.

Gomes and Oliveira (2002) developed a 2-exchange heuristics. Neighbourhoods are

generated by exchanging pair of pieces in a sequence. The solutions are evaluated based

on i) first better solution found ii) best solution found and iii) randomly chosen solution

among the better solution found. Computational results support the probabilistic approach

with a longer neighbourhood size (distance between swapped pieces = 3). The ranking

criteria used to build the initial layout are randomness, area, length, width, irregularity,

and non-rectangularity but was reported that the choice strongly depended on the

particular dataset and has no dominance over different data sets. The placement heuristic

was reported to generate a layout in less than 20 seconds and was effective at filling holes

at any stage of placement.

Burke et al. (2006) used standard hill climbing and tabu search mechanism over an initial

area or length pre-sorted arrangement of pieces in their experiments. A neighbourhood

size of 5 solutions and a tabu list length of 200 were used throughout the experiments.

The search technique uses a numerical operator between 1 to 4 and a random number N,

1 removes a randomly chosen shape and inserts it at a random location in the sequence,

2,3,4 and N swaps the equivalent number of shapes in the order. A new technique

introduced in this paper is their ability to handle arced edges in the pieces without

approximating by the polygon edges. The algorithm improved 20 of the 26 available

literature problems. The average improvements for the 20 best solutions were in the range

of4% to 6%.

Bennell and Song (2007) modified the work by done by Oliveira et al. (2000) on TOPOS.

They introduced 6 new fonnulation criteria and utilised a beam search heuristic for

selecting the next piece to be placed. A beam search heuristic works in a similar manner

30

to a branch and bound algorithm where the tree is searched breadth first and aggressively

pruned at each level. This allows for many parallel partial solutions to be evaluated. The

best packing lengths were equal to, or better, than the best results reported in the

literature in 7 out of 15 cases. Since multiple factors are involved, no clear conclusion

could be made as to which could be selected as the best criteria.

2.4 Searching Over Layout Heuristics

For these methods an initial layout is formed and then pieces are repeatedly selected and

moved to some other location on the layout. During this phase overlap is often allowed.

To choose the piece to be moved and, the position to move it to, a cost function is used.

The cost function used to choose the piece aims to select the piece with the maximum

amount of overlap while for positioning the piece it aims to minimize the total amount of

overlap on the layout. A feasible solution is found when overlap is totally eliminated

from the layout. Several different solutions are generated depending on the

neighbourhood structure and the solution that produces the best feasible, or zero overlap

layout, measured in terms of minimizing waste, usually the shortest strip length or

highest area utilization, is returned at the end of the desired number of iterations. The

algorithm terminates based on a stopping criteria, which is usually number of iterations

performed or duration of lapsed time. The solution space, with this method is infinite,

meaning any piece can be placed in any location on the stock sheet. This can be seen as

the major strength of SOL compared with ICH. Several different alternatives are

available for defining the cost function and reaching better solutions from one layout to

another. This will be discussed later in the literature review

Simulated Annealing (SA) appears to be the most popular search engine applied by many

researches in this approach. This maybe because it is better suited to infinite

neighbourhoods.

Jain (1992) used SA as a search engine. The application discussed was that of the metal

blanks stamping. The shapes to be laid out on the metal stock sheet was restricted to not

31

more than three due to die stamping machine constraint. The focus was to cluster no more

than 3 pieces together, finding the optimum arrangement of these pieces and repeating

this pattern horizontally along the stock sheet. The placement rule as to how these pieces

may best fit together is given by fixing the position of one of pieces and allowing the

others to slide freely over the identified comer locations of a predefined bounded region

in which the shapes may be placed and minimizing waste during placement. The aim was

to form a "lock and key" arrangement. Overlap is allowed during placement. The cost

function used in the position placement rule is scrap cost added to the weighted penalty

of the overlap area. The overlap area is calculated by finding the boundary of the overlap

region and then computing its area.

Heckmann and Lengauer (1995) also used SA and specifically tailored the algorithm

towards the requirement of the textile industry. Constraints are subdivided into three

main categories, i) layout legality ii) technology limitations and iii) constraints for waste

reduction and cutting time minimization. The search points available to SA are generated

from a number of possible moves types. A move type consists of the allowed movements

(translation, rotation, and exchange of two pieces on the layout) and a real number to

denote how much to move, e.g. in a translation move type this will be the distance of the

translation. The rationale behind this strategy is that as the SA temperature decreases

short distance translations will be preferred. In each step of the SA a piece must be

selected for movement and a move type must be chosen, these are controlled by assigning

selection probability to each move type and this probability depends on the cost function.

As the temperature decreases the cost function reduces the possibility of the selection of a

move type. The cost function is a sum of three cost measures, which are i) weighted

length, ii) weighted overlap and iii) weighted row and column load. The length of a

generated layout is defined as the difference between the largest and smallest x­

coordinate of all the pieces, overlap is defined as the sum of overlap areas of all the

pieces and row and column load are measures of the overlap produced by the pieces

covering a specific row or column. The weights are preset initially and changed

dynamically during the course of the algorithm. The annealing uses a dynamic cooling

schedule and is used in 4 different stages in order to guarantee the final layout is free of

32

overlaps. The first stage is a rough placement, the second removes the remaining overlap,

the third compacts layout to the left and last stage is a fine placement with original

pieces. After the first stage overlap can still be present and a decision must be made as to

which piece to choose and in what direction should this piece be moved. Moving this

piece to the right of the layout will obviously eliminate the overlap but might result in an

increase in the layout length. The following strategy was devised to tackle this problem,

heavily penalize large overlaps in the horizontal direction and move the piece with the

largest penalized overlap value in the vertical direction to the empty space. The empty

space is reserved at the top and bottom margin of the layout during the first stage of

annealing. An interesting claim made is that large overlap in horizontal direction implies

small overlap in y direction and this is the rationale for translating the pieces in the

vertical direction to remove this overlap. An interesting point to note here is the heavy

intricacies involved in designing this algorithm specific to textile data types and the fine

tunings made to guarantee the success of eliminating the overlaps.

A hybrid algorithm approach was used by Gomes and Oliveira (2006). The generation of

the initial layout was formed using the greedy bottom left placement heuristic which

places the pieces one by one from a given sequence to the most bottom-left position on

the strip layout. The NFP was used to prevent overlap in the layout. This was the same

heuristic that was used previously by the same author, Gomes and Oliveira (2002),

however a new criterion based on random weighted length was introduced for choosing

the next piece to be packed. SA was used to guide the search towards better solution.

Neighbourhood structure which they call LOCALCOMPACT was generated for 2 pieces

chosen to be swapped; the two pieces are selected according to the 2 exchange heuristics

proposed by the same author in a previous work, Gomes and Oliveira (2002).

LOCALCOMPACT generates a number of neighbours based on all possible

combinations of swapping the 2 pieces and their allowable orientations. The combination

that leads to the best final layout is selected. A swap would lead to exchanging the

positions of two pieces in the layout and would usually result in overlap on the layout.

Overlap is removed by applying a linear programming model for layout separation and

then using layout compaction model the placed pieces are moved as close as possible to

33

each other. The linear programming model for layout separation and layout compaction

model has also been used by other authors (Li and Milenkovic, 1995; Bennell and

Dowsland, 2001). Overlap is not permitted. For cases where the separation model could

not resolve the overlaps, two different pieces are swapped and tried again. The

computational test results were outstanding, it reported improvements averaging between

6.8% - 8.84% against best result published on all problem instances.

Bennell and Dowsland (1999) used a variant of the tabu search called the simple tabu

thresholding (STT). STT, although very similar to tabu search, is based on a simple

candidate list strategy and avoids extensive use of memory. A new approach is proposed

to estimate overlap between the pieces on the layout. Overlap is estimated as the

minimum horizontal distance a piece has to move to remove overlap. To avoid heavily

penalizing small pieces, the respective widths of pieces in overlap situation are also

included in the overlap function and the minimum of these are then selected as the

overlap cost. This will give preference to move smaller pieces. The width and length of

the stock sheet is fixed and an attempt is made to remove overlap within this constrained

layout. Placement positions are generated by randomly selecting a vertical grid line on

the layout. Using this as a column the algorithm starts to evaluate positions alternating

from the lowest y coordinate, followed by the highest, next lowest etc. approaching

towards the middle and stopping at the first found non overlapping position. If no zero

overlap position exists then the search repeats itself from a new randomly generated

vertical grid line on the layout. The starting solution is generated by randomly ordering

the pieces and packing them into columns on the layout. While forming the columns,

successive pieces are placed one above the other until reaching the top of the stock sheet.

A new column is then generated and this process is repeated until all pieces are placed on

the layout. The y coordinate is then fixed as given by the piece position and a randomly

generated x coordinate is assigned to each piece. This will create overlap in the layout.

The decisions that control the STT search were initially set based on observing the

behaviour of the algorithm with respect to improving the layout, escaping local optima

and minimizing overlaps. Among the observation made were the tendency to cycle within

a few good positions, small pieces clustering together becoming sub-optimal and a

34

tendency to place pieces in large holes. Based on the success of the initial experiments

further investigations were carried to explore the parameter space. Five variants of the

algorithm, that combine two different special cost function and three different

neighbourhoods, were derived and tested. This shows that problem specific knowledge

has to be derived and applied to make the search mechanism effective.

The authors continued their work in Bennell and Dowsland (2001), this time

incorporating a layout compaction/separation routine in the optimization phase. Here the

length of the stock sheet is not fixed. Instead the total length of the solution is evaluated

and incorporated into the cost function so that both overlap and layout length is reduced

simultaneously. The idea of using grid points as search points is abandoned and this time

NFP edges were used instead. The properties of NFP were also used to aid in overlap

detection and compaction routine. The LP formulation for the layout compaction was

based on that of Li and Milenkovic (1995). The compaction/separation phase will start

once the overlap value falls below a give threshold. The authors reported significant

improvements over their previous work

Egeblad, et al. (2007) presented a heuristic method based on simple local search and the

meta-heuristic method Guided Local Search (GLS). The generation of the initial layout

was based on randomly ordering the pieces and packing on the layout using some fast

heuristic, e.g. a bottom left bounding box placement algorithm. The initial strip length is

calculated and then reduced by some percentage. Pieces that are no longer contained

within the reduced strip length are moved back into the feasible packing region. This will

obviously create overlaps on the layout. The overlaps are iteratively removed using a

simple local search. If the search gets stuck in a local minimum, i.e. there are no

neighbouring solutions which could reduce the overlap, then the GLS mechanism will

diversify the search away from this local minima. In each iteration the search may use

one of the four options to move a piece depending on the given problem instance, i.e.

horizontal translation, vertical translation, rotation or flipping. This piece is then moved

and evaluated at each new position on the layout with respect to minimizing total amount

of overlap in the layout. If minimizing overlap positions are found, this piece is then

35

moved to the position with least overlap and the search quits otherwise it chooses from

the remaining available options for movement and repeats itself. The algorithm

terminates when overlap in the layout is totally eliminated. GLS works by assigning a

penalty value to a cost function. The penalty is based on the number and amount of pair

wise overlaps for a given piece. Overlap is defined as the actual area of intersection

between two pieces on the layout and the cost function is given by the total sum of pair

wise overlap for a given piece. It was reported that most of the results from the

experimental runs are also the current best published for problem instance tested.

2.4 Summary

We started this chapter by defining the cutting and packing problem and providing

examples of the problem types. We classified this problem as two dimensional irregular

open dimensional problems. We reviewed the geometric and search techniques popularly

used in this problem type. We highlighted the two main approaches used for 2D irregular

ODP problems; iterative construction heuristics and searching over the layout. Finally we

reviewed some research carried out in this area with respect to the two main approaches.

36

3 Methodologies

Having surveyed the literature and identified the components and tools for the irregular

packing algorithm, we will now focus on the methodology adopted to develop our

packing tools. The purpose of this research is to investigate the effectiveness of the two

representations; iterative constructive heuristic and searching over layout heuristic from a

neutral standpoint and not to compete with the best results found in the literature. In this

research we intend to investigate the two approaches of the problem and establish some

principles of the strengths and weaknesses of each approach with respect to data type. In

order to conduct this research the algorithms will be developed using only the basic

principles of both approaches and discarding any special features found in the literature.

The aim is to deduct from the experimental results an understanding of what solution

approach should be applied given the data type, performance requirements and number of

pieces. Thus first we have to decide on the geometric tools to detect overlap, and the local

search method to avoid getting stuck in local optima. We will also discuss piece selection

and placement with respect to the Iterative Constructive Heuristic (ICH) and piece

placement and movement with respect to the Searching Over Layout (SOL).

3.1 Solution Methods

3.1.1 Placement and Geometry

The data of shapes to be packed and their corresponding stock sheet dimension has been

gathered from the EURO Special Interest Group on Cutting and Packing (ESICUP)

website. The shapes are made of simple polygons and represented by a set of vertices.

Some of data sets allow the shapes to be rotated, usually by 90 or 180 degrees. The stock

sheet, on which to place the pieces, will normally have a constrained width and

unconstrained length. The geometric evaluations are handled using the no-fit-polygon

(NFP) both for identifying overlap and selecting feasible placement positions. The no-fit­

polygons of all pairs of shapes, represented as sets of polygonal vertices, were provided

37

by the authors of Bennell and Song (2008). Having stored the NFP data of all the

different shapes in the memory of the computer program we will use them to test overlap.

The overlap test is a point inclusion test based on a ray crossing algorithm; the code was

made available from a geometric library, (O'Rourke, 1998). This test will tell us if a

selected point on the layout is inside or outside of the NFP. If the search point is an

infeasible point (will result in overlap) it is inside the NFP and feasible if it is either on or

outside the NFP. For placing the pieces onto the layout we have selected the bottom left

placement heuristic. The bottom left placement heuristic places pieces as close as

possible to the bottom of the layout, followed by the left most feasible position, as shown

in Figure 3.1 for packing piece A , Band C onto the layout.

S

4

3

n
G 7 8 9 2 3 4 S G 7 8 9

23 4S G7 89 S G 7 8 9

Figure 3.1 Illustration of Bottom Left Heuristic

38

If the shapes have more than one allowable orientation, each shape is placed by the

heuristic in all allowable orientation and the one the produces the most bottom left

placement is chosen. Fig 3.2 shows two pieces being evaluated for their best position in

the layout in their allowable orientations.

Figure 3.2 Placing Pieces in their Allowable Orientations

The shapes input data represents the shapes of the pieces to be packed on the layout. We

have adopted a standard way to represent this piece on the layout. Each shape is imagined

to be contained within a rectangle and the origin of the shape is always the bottom left

corner of this rectangle as show in Figure 3.3, thus the initial origin of any irregularly

shaped piece will always be (0,0). Using this origin positioning this piece anywhere on

the layout is as simple as adding the (x,y) coordinates of the selected position on the

layout with the vertices input data of this shape.

0,0

A {(0,0),(2,0),(1 ,2),(0,0)}
A's vertices

rigin of A (0,0)
rigin of B (0,0)

0,0 -----------

B {(0,1),(1 ,0),(2, 1),(1 ,2),(0,1)}
B's vertices

Figure 3.3 Origin Definition of a Piece

39

In the geometry section we have described that during the NFP generation phase we need

to define the origin of the static piece, NFP and a reference point on the moving piece.

We have chosen to fix both the origin and reference point as the bottom left point of the

shape's enclosing rectangle. We can now utilize the data generated by the NFP generator

more effectively.

We will first discuss the point inclusion test for detecting overlaps and how we use it,

followed by an explanation of how we find intersections between two NFPs.

3

Stock Sheet

Feasible placement

3 4

(a)

, ,

, , ,

4

3

~ 1

0, , , ,
4

" ,,(
Relative Origin

ofA(1,0)
, ,
'lil _______ /" (0,0)-7(0-1,0-0)-7(-1,0)

(0,1)-7(0-1,1-0)-7(-1,1)

(b)

Figure 3.4 Searchingfor Feasible Placement Point using the NFP

Assume piece A is fixed at position at (0,0) and we need to detennine the best position

for piece Busing NFP. Referring to figure 3.4 (a) the points (0,0), (0,1) and (1,0) are

inside the NFP A,B so these are infeasible search points and points (0,2), (0,3), (2,0) are

feasible points as it is either on or outside NFP A,B; the point inclusion test is based on a

ray crossing algorithm described in O'Rourke (1998). This test will tell us if a given point

is inside or outside the given polygon NFP A,B; note that search points do not have to be

integers. Since the most bottom left feasible point is point (0,2), piece B will be placed

here. Now assume piece A is fixed at position at (1,0) as in figure 3.4(b) and using the

40

same NFP we have to determine feasible positions for piece B. In this case the placement

points have to be translated appropriately before testing them with NFP A,B. This translated

placement point is then used in the point inclusion test; the explanation of this was given

in chapter 2, section 2.2.3 where we talked about using the resultant of vector difference

u - v, where u = {Xl, YI} and v = {X2, Y2}. For example placement point (0,0) will be

translated by (0-1, 0-0); where {X2, Y2} the relative origin of piece A is (1,0). This will

give us the translated placement point (-1,0) and this new point is inside NFP A,B .

Likewise for placement point (0,1) the translated point is (-1,1) and this new point is

feasible as it is on the vertex of NFP A,S. Thus for any search point we use this convention

for vector translation before testing it with the respective NFP; where {X2, Y2} is the

relative origin of the piece already on the layout.

To find intersection between two NFP we will need to define the relative position of their

NFP on the layout first. In figure 3.5 (a) we can see NFP A,B for piece A on the layout, this

preprocessed NFP data has been entered into the computer program. In figure 3.5 (b)

piece B is similar to piece A but the relative origin of piece B on the layout is (2,0), so we

will translate the coordinates of NFP A,B to relative origin of piece B on the layout. This

will give us the NFPA',B as shown in figure 3.5 (b). With these two NFP's in their relative

position on the layout we can calculate their intersection point, the intersection points

(circled) are shown in figure 3.5 (b). The intersection calculation is based on line segment

to segment intersection algorithm as described by O'Rourke (1998). We will explain how

we use these intersection points when we describe the approach of Gomes and Oliveria

(2002) to generate feasible placement points on the stock sheet.

41

5 5 5

4
NFP.' 9

~
NFPA' 9

~
~;,/ ~;"

3 I 3 I 3 , ,
I ,

~
, ,

M " 2

I

I
,

, , I

/~ , , I , , , I I
,

/ 1 , I I
,

1 \ \ 1 I I
I , , , , I, , , , , , ' A' , , , 8 ® I , , ,

(0, t I 2 3 --- I '----

1 I (0, 1 2 3 I (0,0 I 2 3 , I
I I , I

I I , I
I I

\ \ , , ,~ NFPa.B ,
,~NFPA. , , , , , , , , , ,

'---------,
,

..... _-------"
,

(a) (b) (c)

Figure 3.5 Finding Intersection between two NFP

We can start positioning the pieces onto the layout as we have defined the input data for

vertices of the pieces to be packed and have generated their corresponding NFPs. We will

discuss two strategies for generating our search points to position the pieces on the

layout, one based on the grid point based search and the other adopted the approach of

Gomes and Oliveria (2002), who used a specific method to generate a set of search points

and limit the search within these points. We will explain the grid based search first,

followed by the alternative method.

The packing layout represented as grid points is shown in Fig 3.6 (a). The resolution of

the grid points can be controlled easily by multiplying the numbers of grid point by a

certain factor to increase the precision of the available points on the layout.

42

The Stock Sheet The Stock Sheet
(Width 5, Length 10) represented by (5X10) grid

3

2

(0,0 1 2 3 4 5 6 7 8 9 10

(a) (b)

Figure 3.6 Grid Based Placement Points

In Fig 3.6(b) precision to the nearest 2 decimal point is obtained by multiplying the (x,y)

grids with a factor of 10. Having defined the positions available on the layout to position

the incoming pieces we will look into how we pack these pieces onto this grid based

layout. Let us assume the two pieces to be packed on the layout are A and B and the

packing order is pack A first then B. Assuming the bottom left most placement, we will

position piece A to (0,0), this is the absolute origin of this piece and we have the pre­

defined input data of this piece, so no translation needed, we can use the vertices input

data of this piece to represent it on the layout as shown in figure 3.7.

3

/

~ 1

NFPA'~
,

~ , , ,

, ,
,

, , ,

" B ,,'
, / , , / , '/

)

" ",. ,.
~ , / /

Referenc~ -----~----.,

Point on B

Stock Sheet

Feasible placement point

, ,
2 3 4

~rigin of A and NFPAB

/ (0,0)

Figure 3.7 Placing Pieces on a Grid based Layout

43

The next piece to be packed is B, we will now use NFP A,B , the pre-processed vertices

input data of NFP A,B has been pre-calculated and stored. We have a stock sheet divided

into discrete grid points indicating the placement points available on the layout, we need

to formulate an efficient way to search through the grid points on the layout and locate

the best placement for a given piece. Assuming we are implementing the bottom left most

placement rule in our algorithm, thus the search for a bottom left most point will start

from point (0,0) on the grid layout and increment in the direction of y axis until reaching

the top of the stock sheet, if during the search a non-overlapping position is found, the

search terminates. Otherwise the search increments 1 grid unit to the right of the layout

and continues up the y axis again. This pattern is repeated until the whole area of search

points in the stock sheet is searched. Referring to figure 3.7 the first search point is

coordinate (0,0), obviously this point is inside the NFP A,B, thus it is a non-feasible point.

Incrementing up the y axis the next coordinate is (0,1), this too is inside NFP A,B. Next is

point (0,2), this is on the vertex of NFP A,B, we have found a feasible placement point.

Using the pre-defined input coordinates of piece and translating the coordinates by (0,2)

will position piece B to its bottom left most position on the layout as shown in figure 3.7.

The grid based search algorithm is relatively easy to implement and is quick for low

resolution grid. The quality of the solution produced depends directly on the resolution of

the grid point but on the other hand using a finer grid may mean deteriorating the

computational speed of the algorithm as we now have to search a bigger area of search

points.

Thus in addition to the grid based search point we adopted the approach of Gomez and

Oliveria (2002). They define a set of search points based on a collection of points derived

from the no-fit-polygon, inner-fit-rectangle (IFR) and intersections between the lines of

these polygons. We will be using the figures below to explain this concept more clearly.

The inner-fit-rectangle is a rectangle derived by sliding the shape to be packed within the

stock sheet as shown in figure 3.8 (a). Placing shape C within the IFR will ensure that

this piece is contained within the stock sheet. Hence our first set of search points are the

points from the vertex of IFRc as shown in figure 3.8 (a). Our second set of points will be

44

extracted from the vertices of the NFPs' of the pieces already placed on the stock sheet.

Assuming pieces A and B are already placed on the layout, we will position NFP A,C and

NFPB,c translated to the relative origin (x,y) of piece A and piece B on the layout. Our

third sets of points are the intersection points between edges of NFP A,C , NFPB,c and IFRc

as shown in figure 3.8 (c). To find the intersection points we pick an edge on the NFP of

a piece and cycle through all edges on the NFP of the other pieces and IFR on the layout

and calculate their intersections.

f
f

/
/

f
f

", ;~ NFPA.C , ,
,-------"

5 6 7

(a)

NFPB•C and NFPA.C

4 5 6

(c)

5

/ ,
/ "-

< > NFPa,C/ IFRc , / ~,' , / X
V

f
f

f
,

A f
,

/ , f

/ , X
f

>
,
" f' , / f x--

5 9 , / f (, 3 4 6 7
f

f \

9 X X
,
x- - - - --i

,~
NFPAc

(b)

5.-----~------------------------~

4
IFRc

8

Figure 3.8

Feasible IFRc

------------t.-f

3 4 5

(d)

6

I
I
I
I
I
I

9

Generating Placement Points using the approach a/Gomes and Oliveria (2002)

45

This process will cover every edge on every NFP. Now that we have a collection of

search point we will eliminate the search points which are not contained within 1FRc

using the point inclusion test. This will leave us with the remaining search point as shown

in figure 3 .8 (d). We sort these points by their lowest x coordinate, breaking ties with the

lowest y coordinate following the bottom most heuristic placement rule. The search for a

feasible position will start from this sorted list of search points and will be subjected to

the point inclusion test using piece C's corresponding NFPs as explained earlier in this

section. Thus piece C will be positioned to its feasible bottom most position, see figure

3.8 (d). The flow chart in figure 3.9 gives the steps required to generate the set of search

points as explained above.

For j = 0 to j = i-1
Translate NFPj,i to its relative position

G
Forj=Otoi-1

enerate Generate Search Points
Search 1) Vertex of NFPj,i ,2) Intersection between NFPj,i and NFPk,1

'----1-----' 3) Intersection between NFPj,i and IFRi.

Eliminate placing pieces outside boundary of stock
sheet by eliminating search pOints outside of IFRi.

Sort search point by lowest x coordinate
breaking ties with lowest y coordinate

For p. points = 0 to n
For j = 0 to i-1 (NFPj,i)

Test for overlap and eliminate points using point
inclusion test

Figure 3.9

Flow Chart showing steps to generate feasible placement points

46

In our SOL we permit overlaps and we have to determine how we measure the layout

between two pieces. The literature highlighted two main techniques, measuring exact

overlap between the pieces or an approximation of overlap. We selected the later as our

choice of approach as it is simple yet powerful in terms of quick computation time. Our

approach is taken from Bennell and Dowsland (1999) where overlap is estimated as the

minimum horizontal distance a piece has to move to remove overlap. We observed that

using this approach it is possible to have more that one piece with the same overlap

measure thus we made a slight modification to the overlap measure, we introduced

overlap measure as the sum of minimum extent in both x and y direction as shown in

figure 3.10, ties are broken randomly. We will be using this overlap measure in our cost

function to select and position the pieces on the layout.

x

)'

Figure 3.10 Measure afOverlap

The overlap cost function, for a given piece from a set of pieces, (Jj

described in the equation shown below;

f(i,p) = I~~l Oij(i,p) , where i,j E (Jj and Oij(i,p) = 0 for i = j;

{sl, ... ,sn} IS

(3.1)

Oij(i,p) is a measure of the overlap between pieces si and sj at placement p as described

in figure 3.10. A placement p such thatf(i,p) = ° implies that at position p piece si

contains no overlap.

47

3.1.2 Tabu Search for ICH

To recap ICB from our previous chapter; IeB involves a selection rule to select pieces to

be packed on the layout from a pool of available pieces, a placement rule to find the best

position for this piece on the layout with regards to the objective function and a search

strategy to continuously improve the packing quality. With the geometric and placement

heuristic algorithm in place, we will consider the components of tabu search which will

produce the best order in which the pieces are to be packed.

In the literature two metaheuristic techniques were popular among the researches; tabu

search and simulated annealing. We have chosen tabu search for our experiments as this

search technique was proven successful in both iterative constructive and searching over

layout approach from the literature review (Burke et al., 2006; Bennell and Dowsland,

1991). Tabu search uses a flexible memory system to restrict the next solution choice to

some sub set of neighborhood of current solution.

In order to use tabu search we need to define a neighbourhood structure. This is because

the combinatorial nature of the problem makes it impossible to search through all

possible combinations; hence we need to limit the search within local neighbours with the

objective of improving the solution and reaching a local optimum. The tabu search will

search through the defined neighbourhood and return the best solution within this

neighbourhood. Let us start by defining our neighbourhood and solution representation.

A neighbourhood is defined as a small change made to the solution representation, which

will lead us to another solution. A solution representation in our case is a sequence of

pieces and the corresponding solution is the length of the final layout achieved once all

the pieces in the current sequence are packed onto the layout using a placement rule; in

our case we are using bottom left most heuristic as our placement rule.

We start by formulating a swap based neighbours and limit the distance of the swap to

five consecutive pieces in sequence. For example consider 10 pieces in the sequence:

1,2,3,4,5,6,7,8,9,10. The possible sequences obtained by swapping piece 1 with the next 5

48

piece In original sequence will gIve us the following set of 5 sequences : {

(2,1,3,4,5,6,7,8,9,10), (3,2,1,5,6,7,8,9,10), (4,2,3,1,5,6,7,8,9,10), (5,2,3,4,1,6,7,8,9,10),

(6,2,3,4,5,1,7,8,9,10) }. If we continue to swap in this manner, we will get 5 new

sequences for each piece in the original sequence but notice that when we reach piece 6

there will not be enough pieces left to get 5 swaps, there is no piece 11 to swap with, we

tackled this by allowing the swap to be taken from the start of the sequence. The

resulting set of 5 sequences {(1,2,3,4,5,7,6,8,9,10), (1,2,3,5,8,7,6,9,10),

(1,2,3,4,5,9,7,8,6,10), (1,2,3,4,5,6,10,8,9,6), (6,2,3,4,5,1,7,8,9,10)}. However we are

aware that there might be more than one identical piece type in the sequence and

swapping these pieces will give us the same solution, so to improve the algorithm we

eliminated these types of neighbours from the neighbourhood. We shall refer to this

search operator as OptNl (d), where d defines the swap distance.

In addition to this we introduced a smaller sized neighbourhood structure; here we restrict

the number of swaps in the following manner. Using the same sequence example above

with a swap distance of five, we start by swapping piece 1 with the next 5 pieces in the

sequence. Unlike the previous search operator, we do not proceed to swap for all other

pieces in the sequence but stop here for the first iteration. The reason for doing this is to

enable the search algorithm to make more tabu moves. In the next iteration we start

swapping piece 2 with the next 5 pieces in the sequence, in the following iteration we

start swapping piece 3 with the next 5 piece in sequence. By proceeding in this manner

we give the search a chance to sample the solution space more dynamically. If there are

not enough pieces left to get five swaps we allow the swap to be taken from the start of

the sequence similar to our representation one. We also do not allow swaps of identical

pieces in the sequence similar to OptN 1 (d). We shall call this search operator as

OptN2(d), where d defines the swap distance.

In addition to this two search operators, we have also introduced an alternative

neighbourhood structure where we apply a random sampling of 10% on neighbours

49

generated using search operator OptNI (d). We shall call this third search operator as

OptN3(d), where d defines the swap distance.

During the search for a locally optimum solution, at each iteration all solution

representation generated by the specific neighbourhood structure will be evaluated with

respect to the objective of minimizing the length of the packing layout and the solution

that produces the best strip length will be chosen according to the criteria determined by

the local search used. This best solution representation will be called a move. There are

many types of local search strategies that could be used during this stage; in a single

descent local search, a first found improve type will stop once a first improving solution

is found within the neighbourhood structure while a best found improve type will search

the entire solution neighbourhood and choose the best. Once we have completed with the

first iteration and found the best solution within this set of neighbours, we can use this

current solution to start the next iteration and evaluate the next set of solution choosing

the best each time. We proceed in this way until the search gets stuck in a local

minimum, i.e. no improving moves can be found after a fixed number of iterations or

computational runs. The following describes our tabu search algorithm for ICH.

Algorithm 1 Tabu search for ICH

Solution space S

Neighbourhood size N

Cost functionf(s) = Length of Layout

N(so,h) denotes neighbouring solutions not contained within the tabu list

Bottom-Left-Heuristic is implemented according to steps given in Figure 3.9

Input: Problem Shapes and their NFPs, SOlied Orderings, Quantities, Allowable

Rotations and Sheet Size

Step 1:

Build an initial solution, so = Bottom-Left-Heuristic(Sort _ Ordering)

Select tabu list length, I

Set tabu history h(l) empty

50

Step 2:

Set sbest = so

Initialize aspiration criteria = sbest

Select Search Operator = {OptNl(d),OptN2(d),OptN3(d)}

Repeat

Apply the selected search operator for defining the neighbourhood to explore

Explore this neigbourhood using the Bottom-Left-Heuristic

Select s such thatf(s) < f (so)

Replace so by s;

Untilf(s) > f(so) for all s € N(so,h) or the aspiration criteria is met

Step 3:

sbest = s

Tabu move = sequence of pieces swapped to get sbest

Update tabu history h(l) = tabu move

Update aspiration criteria = the best sbest found so far

Step 4:

If stopping condition not true

Return to Step 2

Otherwise stop

Our tabu search is based on the best found improve method but unlike the best found

improve we accept worse solution from successive iterations (see Step 4) and carryon

with the search for a fixed duration of time. Applying the principles of tabu search to our

neighbourhood of solutions representation will mean that using the best improving

solution representation found a tabu move is the record of pieces swapped to generate this

solution representation. The tabu list will record this forbidden move, e.g. if

(2,1,3,4,5,6,7,8,9,10) is the best solution representation from one of the iterations then the

tabu list will record {(2,1)}, the pieces swapped as one of its forbidden move. In the next

successive iteration when the possible solution representations are generated according to

the defined neighbourhood structure this pieces will not be allowed to swap as they are in

51

the tabu list unless the aspiration criteria is met, a move from the tabu list can result in a

solution better than the best solution found so far. In all iterations, from the best solution

representation of that iteration, the swapped positions will be stored in the tabu list. Once

the maximum size of tabu list is reached the oldest tabu move in this list will be removed

and the new tabu move will occupy its place. We can experiment with different tabu list

length sizes to determine the effects this length has on the final solution achieved. Figure

3.11 below demonstrates a sample run from tabu search for leB.

Initial Solution
Strip Length = 28.15

After 2nd iteration
Strip Length = 27.48
Swapped piece 20,21 (Add to TABU LIST)

After 1 st iteration
Strip Length = 27.69
Swapped piece 8,13 (Add to TABU LIST)

1 st 8,13

nd 20,21

5,6

th 9,14

5th 17,18

Tabu List Size = 5

Figure 3.11 Stages during tabu search execution

52

3.1.3 Tabu search for SOL

To recap SOL from our previous chapter; SOL starts from an initial layout with pieces

already arranged on the stock sheet and seeks to design a better layout by moving these

pieces around within the stock sheet. An important difference in this approach is pieces

are allowed to overlap one another on the layout. Having defined our overlap measure let

us move on to steps involved in generating an initial solution for SOL.

The literature reviewed many ways of how the initial solution may be generated. Our

initial solution is similar to that of Egeblad et al. (2007). Here we randomly order the

pieces and pack the pieces on the layout using the bottom-left most placement heuristic.

Then we find out the strip length for this initial layout, reduce the strip length by some

value and move all the pieces not contained within this strip length to a random position

on the layout within this new strip length, this will result in overlap on the layout. We

will then attempt to eliminate overlap by moving pieces around this constrained layout.

The following describes our tabu search algorithm for SOL.

Algorithm 2 Tabu search for SOL

Search positions p are generated according to the algorithm in Figure 3.8

f(i,p) = cost function, calculates overlap measure of each piece with other pieces III

layout, see equation 3.1

N(po,h) denotes neighbouring solutions not contained within the tabu list

Bottom-Left-Heuristic is implemented according to steps given in Figure 3.9

Input: Problem Shapes and their NFPs, Sorted Orderings, Quantities, Allowable

Rotations and Sheet Size

Step 1:

Build an initial solution, so = Bottom-Left-Heuristic(Sort_ Ordering)

Select tabu list length,}

Set tabu history hO) empty

Set sbest = so - 1, strip length

Set aspiration criteria = 0 (zero overlap in entire layout)

53

Step 2:

Move pieces not contained within the new layout length into the layout

Repeat

Step 3:

Calculate total overlap cost,J(i,p) for each piece on the layout

Choose the piece with the maximum cost,J(i,po) = f(i,p)

Rotate Piece = true or false (determined at random)

Generate search positions for this chosen piece

Explore these search positions

Select a search position such that f(i,p) < f(i,po) for all p € N(po,h) or the

aspiration criteria is met

Move this piece to this new position on the layout

Tabu move = piece type and the old position in layout

Update tabu history hO) = tabu move

Until overlap cost of all the pieces on the layout = 0

If stopping condition not true

sbes! = so - 1

Return to Step 2

Otherwise stop

To identify the pieces that are in overlapping positions we use the point inclusion test by

cycling through NFPs' of this piece with already placed pieces on the layout. Once an

overlapping piece is selected we need to formulate where this piece will be relocated. The

literature suggests many ways of doing this as we have seen in section 2.4. We have

introduced a new approach. Our set of search points generated for this piece will be based

on collection of points derived from the no-fit-polygon, inner-fit-rectangle (IFR) and

intersections between them as explained in Section 3.1.1.

Referring to figure 3.12c let's say piece 41 is the piece selected to be move within the

restricted layout, search points will be generated for this piece similar to the approach

given by Gomes and Oliveria (2002), assuming that all other pieces are already placed on

54

the layout and piece 41 is the next piece to be packed. We decided these as our placement

positions because in these positions piece 41 will be contained within the restricted layout

and will be touching with at least one other or more piece in the layout. The search

attempts to eliminate the overlaps within this fixed strip length. Once an overlap free

layout is obtained the strip length will be reduced again and the same process continues

again and again to reach better solutions.

Unlike in ICH where the neighbourhood structure was based on the positions of pieces in

the predefined sequence, here the neighbourhood will be based on the generated

placement points on the layout. Thus in our search all the possible placement positions

will be considered. The first step of any search algorithm is formulating the initial

solution, we construct our initial solution by ordering the pieces either randomly or

presorted by decreasing area size of the pieces and packing them one by one onto the

strip layout (Figure 3.12a).

(a)

(c)

Figure 3.12 SOL in Execution

55

(b)

Overlap eliminated
Strip length = 68

(d)

Once we have this initial solution we will attempt to improve the initial strip length, we

reduce the initial strip length by some value (usually by one) and translate pieces no

longer contained within these reduced length back into the layout (Figure 3.12a and c),

this will create overlaps in the layout. We allow overlap and use our tabu search to reduce

and eliminate the overlaps within the layout which brings us to the second component of

the tabu search, the evaluation function.

We will be introducing a cost function to evaluate and choose the piece to be relocated on

the layout and where it will be positioned. This cost function is described by equation 3.1

in section 3.1.1. For choosing the piece to be moved we will select the piece having the

largest total sum of overlap in the layout, this will be the total sum of overlap between

this piece and the rest of the piece on the layout as given in equation 3.1. Referring to

figure 3.12c, the total sum of overlap for piece 41 will be the sum of overlap measure of

this piece with piece 31 and 37. After having selected a piece we randomly rotate this

piece to its allowable orientation or use the non-rotated form. We then evaluate where to

position this piece to within the layout. Since our neighbourhood structure is all available

placement points on the layout, generated using Gomes and Oliveira (2002) approach, all

of these positions will be evaluated individually and the position that yields the smallest

total sum of overlap will be selected. This piece will then be moved to this new position.

The objective of this search is therefore to attempt to reduce and ultimately eliminate any

overlaps in the layout. If there are no more pieces in overlap positions then the first

iteration terminates otherwise the same cycle is repeated again and again till there are no

more overlap in the layout.

The reasons for choosing maximum and minimum overlap measure as our cost function

for selecting and moving the piece within the layout is because this is the widely popular

choice used in SOL (e.g. Egeblad et al. (2006), Bennell and Dowsland (1999)). Once

overlap is eliminated the strip length will be reduced again and the whole process is

repeated again and again till the search gets stuck and can no longer eliminate overlaps

within the layout.

56

If there are no restrictions as to which piece or search position could be selected we could

end up in a situation where the solution will keep cycling by picking the same piece or

position again and again, we would like to avoid this in our algorithm by using an

appropriate tabu list. Tabu list contains record of the forbidden move; in our case we

selected piece and its position on the layout as this forbidden move. Recall from the

previous section that we choose the piece and move it around in the layout based on our

cost function, once the piece is selected and relocated to a new position on the layout, this

piece and its old position (before being moved) will be stored into the tabu list. The piece

and its position recorded in our tabu list will not to be selected in the next successive

iterations until they expire from the tabu list unless the aspiration criteria is met, a move

from the tabu list can result in a overlap free layout. The pieces and its conesponding

position recorded in our tabu list will prevent pieces on the tabu list from being

positioned back to their historical position on the layout as long as they are still on the

tabu list. By controlling the tabu list length we can easily experiment with the behaviour

of the algorithm, a shorter tabu list length possibly restrict movements within overlapping

pieces only and a longer tabu list might force pieces in non overlapping positions to be

moved, introducing a big perturbation to the search. Similar to the tabu search introduced

with ICH we can experiment with different initial solution to start the search and tabu list

sizes to determine the effects this has on the final solution achieved.

3.2 Summary

In this chapter we have introduced the geometric computation routines common to

irregular packing problems and how we have tackled them. We also described our

placement strategy and our search strategy for ICH and SOL. In the next chapter we will

be looking at the test parameters that we will be defining for ICH and SOL

implementations.

57

4 Implementation

We have gIven a detailed description of the methodologies and tools that we have

developed for solving the packing of irregular shapes in the previous chapter. As we have

mentioned earlier the shapes data were drawn from the EURO Special Interest Group on

Cutting and Packing (ESICUP) website and their corresponding NFP data provided by

Bennell and Song (2008). With this we are ready to test the two mainstream approaches

used to solve a two dimensional irregular packing problem and we will investigate their

perfonnances using the packing tools that we have developed. In this section we will look

into the experimental design of our algorithm implementation to be used on the

benchmark datasets that we have gathered from ESICUP. We have outlined this section

into looking at our experimental data sets, placement heuristic, search heuristic,

evaluation function, solution space and neighbourhood structure, and our starting solution

with respect to our ICH and SOL.

The programming language we have chosen for this project is Microsoft Visual C++.Net

2003 edition as this software provides the platfonn for graphical utilities which is useful

in displaying the final solution of the packed layout graphically. The coded algorithm was

executed on a desktop PC which uses a Pentium IV, 2.8 GHz and 504MB of RAM.

4.1 Experimental Data

Appendix A shows the IO data sets used for the experimental study, their corresponding

author name, year published, the problem name as known in the literature, number of

pieces and types, stock sheet width and their pennitted rotations. These data sets can be

divided into 3 groups; the first group (see Appendix A.I) is an artificial data set, group 2

is a real data set from the industry (see Appendix A.2) and the third group (see Appendix

A.3) is a jigsaw puzzles whose optimum solutions are known.

58

4.2 Iterative Constructive Heuristics (ICH)

4.2.1 Placement Heuristic

Given the set of input data compnsmg the shapes of pieces to be packed, their

corresponding stock sheet sizes and their NFPs' we can start positioning the pieces onto

the layout. We have implemented two representations for generating placement points on

the layout, one is the grid based placement point and the other is the set of points derived

from collections of points from the no-fit-polygon, inner-fit-rectangle (IFR) and

intersections between the lines of these polygons as described in the methodology

section. However we decided to use the latter in analysis of our final results. This was

based on our initial investigation where the latter proved to be more efficient in tenns of

computational speed and quality of solution especially when the data sets are of highly

irregular shapes and require double digit decimal precision results. These characteristic

are typical of industrial data as shown in Appendix A.2.

The placement heuristic will be based on bottom most heuristic. We have described in

our methodology section. We have discussed how bottom most heuristic became the most

popular choice for placement heuristic in chapter 2.

4.2.2 Search Heuristic

The main search method used will be Tabu Search as we have mentioned in the previous

chapter. We experimented with five different tabu list length; these are 5, 10, 20, 50 and

100. As is nonnal in tabu search we accept non-tabu move even it is non-improving. This

prevents cycling and diversifies the search away from its current best solution, hoping our

search will explore into other regions of the solution space.

59

4.2.3 Evaluation Function

Our evaluation function is based on the minimum strip length in that particular iteration

or neighbourhood of solution once all the pieces are packed onto the layout. Our strip

length can be found by keeping track of the relative position of the pieces as they are

placed on the layout and locating the vertex with the highest x coordinates and storing it

in the memory.

4.2.4 Solution Space and Neighbourhood Structure

We have introduced in the previous chapter the concept of solution and neighbours and

how these are used to aid in the search towards finding a better strip length. Our solution

is the sequence or the order list of pieces and their corresponding strip length once all the

pieces in the sequence are packed one by one onto the layout. We have designed quite an

extensive neigbourhood structure for our experiments as quite often this is the key to

achieving good solutions. A good neighbourhood structure will enable the search to

sample the infinite solution space most efficiently. Thus we have come up with a

number of alternatives for our neighbourhood structure. Our basic idea is similar to the

one we have described in the previous chapter, generating neighbours using swap

distance. The bigger the neighbourhood size the more solutions will be sampled but will

increase the computational overhead. We have introduced sampling into the

neighborhood structure where only a small percentage from the entire set of possible

solutions in the neighborhood will be sampled; this will be a random sampling of 10%.

Thus we have defined three representations for our neighbourhood structure, the first one

is based on the set of possible permutation within a given swap distance, the second is a

subset of the first representation derived by applying a special restricting condition and

the third is applying random sampling of 10% to our first representation. These

representations are discussed in detail in the Chapter 3, Section 3.1.2.

60

Manipulating our three solution representations we then come up with a total of five

different neighbourhood structures types to be used with our search engine. These are

generated by applying a specific swap distance on the first, second and third

representation of our neighbourhood structure. This will give us five different types of

neighbourhood structures. We will call them OptNI(5), OptN2(5), OptN2(IO), OptN3(5)

and OptN3(IO), refer to Chapter3, Section 3.1.2. OptNI(5) is our biggest neighbourhood

while OptN2(5) is our smallest.

4.2.5 Starting Solution

To generate the initial starting solution we test two different ranking criteria; i) SOli the

pieces to be packed by their decreasing area and ii) generate a random packing order. We

then pack them one by one onto the layout using the bottom most placement heuristic,

this will give us our initial strip length.

4.3 Searching Over Layout

4.3.1 Search Heuristic

We will also be using Tabu Search as our main search engine for SOL. We implemented

two tabu representations. The first one uses the piece that was moved in the layout as the

tabu candidate. The second uses the combination of the piece that was moved and the

position of this piece in the layout. To avoid piece from being placed in close proximity

to its' previous position, we imposed a tolerance of +/- one unit way from its previous

position.

In the first representation our tabu list size is restricted by the quantity of shapes in a

shapes data file. For example referring to Appendix A.l, data set 1 has 43 pieces so we

could not have a tabu size length exceeding 43 since this would lead to all the pieces

being on the tabu list and none can be moved again.

61

We decided to have three different tabu sizes and we will call them as type low, medium

and high. A low tabu size length will be calculated as one quarter of the quantity of the

shapes rounded down to the nearest integer, a medium type as half of the quantity of the

shapes rounded down to the nearest integer and a high type as three quarter of the

quantity of the shapes rounded down to the nearest integer. For example using shapes

data 1, a low type tabu size length is 10, medium is 21 and high is 32. In our second

representation we are not restricted by the quantity of the shapes so we will tryout 5

different tabu list sizes like ICH; 5, 10,20, 50 and 100.

4.3.2 Evaluation Function

As we have explained in the previous chapter the cost function will store the total amount

of overlap for a given piece within the layout. The overlap measure (see Fig. 3.10,

Chapter 3, Section 3.1.1) can be used to determine whether polygons overlap and how

much they overlap. Thus to find the total amount of overlap for a given piece, we will

calculate the overlap amount of this piece with one other piece on the layout, equation 3.1

in Section 3.1.1 of Chapter 3 describes this evaluation cost function.

If this piece is in an overlapping position with more than one piece then we will calculate

all the overlaps and add them up to find the total amount of overlap for this piece. The

evaluation cost function used for choosing the piece to be moved on the layout is based

on maximum amount of overlap and to position this chosen piece within the layout the

position that yields the least amount of overlap will be used. We keep moving the pieces

around within the restricted strip length until the overlap is totally eliminated before

proceeding to further reduce the strip length, refer to Chapter 3, Section 3.1.3.

62

4.3.3 Solution Space and Neighbourhood Structure

Unlike ICH the entire neighbourhood will be searched. A neighbour is defined as all the

available placement positions on the layout. The available placement positions for the

piece chosen to move on the layout are given by the set of points derived from the no-fit­

polygon, inner-fit-rectangle (IFR) and intersections between the lines of these polygons

for this chosen piece as explained in detail in the previous chapter. This idea of

generating the placement points was originally implemented for ICH by Gomez and

Oliveria (2002) but we are the first ever to apply it for SOL. The rationale for doing this

is that search positions generated this way are position where this piece will be touching

with at least one other piece on the layout.

4.3.4 Starting Solution

To generate the initial starting solution we tested two different criteria; i) sort the pieces

to be packed in their decreasing area size and ii) generate a random packing order. We

then pack them one by one onto the layout using the bottom most placement heuristic as

we did with ICH. We calculate the initial strip length from this layout and we then

decrease this length by one. Pieces which are no longer contained within the reduced strip

length are translated horizontally back into the feasible packing region, which then

creates the overlaps in the layout. These steps are explained clearly in the chapter3,

section 3.3.3, where we also discuss which aspects of the work of Egeblad et al. (2007)

we adapted to develop our SOL mechanism.

63

4.4 Summary

In this chapter we gave an overview of our implementation of IeB and SOL heuristics

which consists of placement heuristics, tabu search heuristic, evaluation function,

neighbourhood structure and their initial solutions. We also described the comparison test

parameters that we have developed. We are now ready report on our experiments on both

approaches and evaluate the effects of the different test parameters on the solution

quality. In the next chapter we will discuss the results and draw some conclusions with

respect to strengths and weakness of these approaches.

64

5 Experimentation and Results

We will break down this section into discussing results we obtained during our initial

ICH and SOL algorithm design phase especially the search heuristic and the

neighbourhood structure. These results greatly influenced our final experimentation

strategy which we then used to compare solution from both ICH and SOL.

5.1 Iterative Constructive Heuristics (ICH)

We carried out extensive experiments using the placement and search heuristic strategy

as explained in the implementation chapter. Recall that the available search points were

derived from the no-fit-polygon and inner-fit-rectangle, we employed a bottom left most

placements heuristic and our search strategy was based on tabu search. The motivation

behind our neighbourhood structure design strategy was to develop a structure that will

sample the solution space most effectively. We have implemented 5 types of

neighbourhood structure which we OptNl(5), OptN2(5), OptN2(10), OptN3(5) and

OptN3(10), refer to Chapter3, Section 3.1.2. OptNl(5) is our biggest neighbourhood

while OptN2(5) is our smallest. The impact of the neighbourhood size is, the bigger the

size the longer it will take for the tabu search to accept a move while the smaller it is the

faster it will accept a move. However with bigger sizes the tabu search is allowed to

sample more neighbouring solution thus increasing the chances to reaching a better

solution within a promising neighbourhood structure. This is what we are interested in

finding out with our computational experiments. We have also implemented two types of

ranking criteria test for the initial packing order, the first is based on area decreasing

packing order and the next is a random packing order.

Initially we wanted to evaluate the effectiveness of the different types of neighbourhood

structure that we have proposed using our ICH based on tabu search. Thus we limited our

experiments to only five data sets to test the algorithm; these are ShapeO, Shape2,

Trousers, Shirt and Dagli.

65

The reason for choosing these data sets is because they are quite popular with researchers

as the best benchmark data sets. However in our final experiments we will be considering

10 data sets in total. Our tabu search will be tested using five different tabu lists of

varying lengths; which are 5, 10,20, 50 and 100. We will be running the experiments for

the duration of 30 minutes so that we can evaluate the effectiveness of the neighbourhood

structure more accurately. We realize that during the course of the iterations there may

exist more than one solution or packing order that produces the shortest strip length, so

we break ties by selecting one of these arbitrarily. The experiments were replicated five

times for each of the five tabu list given and best solution from this five runs will be

reported. Using all this parameters we will generate a total of 50 experiments of 30

minutes each for a data set, to run the experiments for the one data sets will take us

around 25 hours in total for a neighbourhood structure type, thus for the 5 types we need

125 hours. Thus to complete the entire experiment for the five data sets we need 625

hours or almost 4 weeks.

The table of results is given in Table 5.1 (decreasing area initial packing order) and Table

5.2 (random initial packing order) where the best results are shown in bold. Referring to

table 5.1, it is not a surprise that we are getting consistent result with our OptNI(5),

OptN2(5) and OptN2(lO) neighbourhood structures where best result and the average

from the five replications of the experiments appears to be the same. It is natural for the

search algorithm initialized with the area sorted ordering to converge to better solutions

faster and the systematic manner in which the neighbourhood was generated as explained

in Chapter 4, Section 4.2.4 makes the search for better solution very deterministic.

However our OptN3(5) and OptN3(lO) has the element of randomness in their solution as

we used a random sampling strategy to generate their neighbourhood. We also observed

that OptN3(5) structure was consistently giving good quality solutions in all five data set

tested. OptNI (5) structure did not do particularly well on Shape O. This can be explained

because these data sets contain large quantity of pieces making each neighbourhood

highly computationally expensive and thus reducing numbers of neighbourhood searched

66

within the restricted run. The fact that Shape 0 is not allowed to rotate can also lead to

some good positions being ignored by the algorithm. We drew this conclusion because

OptNI (5) was performing better in data set Trousers and Shirt which have bigger

neighbourhood sizes compared to Shape 0 but as these shapes are allowed to rotate they

produced competitive results. When considering the tabu list length we found the best

solution obtained from any of the structure types always falls within tabu list length of

10, 20 and 50. Only in some instances the best results obtained by tabu list length of 5

and 100 matched that of 10,20 and 50. However it was never a better performer.

ICH Neighbourhood Structure Experiments

Sorted Order
Neighbour Shape 0 Shape 2 Trousers Shirt Dighel

Structure Tabu L BastL AvgL BestL AvgL Best L Avg L Best L AvgL Best L Avg L

0 5 66.00 66.00 27.16 27.38 251.31 251.61 63.88 64.69 125.41 125.41
P 10 66.00 66.00 27.16 27.38 251.22 251.39 63.58 63.78 119.30 119.30
T 20 66.00 88.00 27.00 27.38 249.75 250.17 63.58 63.78 112.07 112.07

Nl 50 66.00 66.00 27.00 27.38 250.96 251.40 63.58 63.78 119.57 119.57

(5) 100 66.00 66.00 27.00 27.38 251.31 251.49 63.58 63.78 120.27 120.27

0 5 64.99 64.99 27.66 27.79 251.45 251.79 63.96 63.96 112.07 112.07

P 10 65.00 65.00 27.78 27.90 251.11 251.35 63.96 63.96 113.62 113.62

T 20 63.00 63.00 27.54 27.61 250.00 250.57 63.96 63.96 113.69 113.69

N2 50 65.00 65.00 27.86 27.89 249.59 251.05 63.96 63.96 122.79 122.79

(5) 100 65.00 65.00 27.76 27.98 251.71 252.14 63.96 63.96 126.94 126.94

0 5 64.00 64.00 27.48 27.49 249.61 251.67 63.65 63.81 112.82 112.82

P 10 62.00 62.00 27.00 27.34 251.36 252.27 63.65 63.65 112.07 112.07

T 20 63.00 63.00 27.40 27.47 250.96 251.11 63.65 63.66 112.82 112.82

N2 50 63.00 63.00 27.49 27.49 249.61 251.37 63.65 63.75 113.93 113.93
(10) 100 63.00 63.00 27.38 27.48 251.38 251.74 63.65 63.75 121.45 121.45

0 5 64.00 64.33 27.40 27.52 250.42 251.47 63.73 64.17 112.82 112.82

P 10 62.00 62.67 27.38 27.46 248.08 251.10 63.58 64.01 112.82 114.62
T 20 63.00 63.83 27.50 27.55 248.08 251.25 63.63 64.03 112.07 113.64

N3 50 62.49 63.16 27.00 27.31 248.08 251.25 63.63 64.13 119.75 122.45

(5) 100 62.00 62.69 27.81 27.89 248.08 251.25 63.63 64.13 121.43 120.18

0 5 62.00 62.67 27.34 27.52 251.24 251.48 63.97 64.20 112.82 112.82
P 10 63.00 63.83 27.26 27.48 250.00 250.00 63.64 63.82 112.82 112.82
T 20 62.99 64.00 27.20 27.57 250.00 250.00 63.62 63.81 112.82 113.19

N3 50 63.00 64.33 27.26 27.48 250.00 250.00 64.42 65.10 112.82 116.40
(10) 100 63.00 64.00 27.26 27.48 250.00 250.00 63.62 63.63 118.62 120.08

Bast Know Solution 59.47 25.84 240.77 61.33 100.00

Table 5.1 ICH Experimental Results with Area Decreasing Initial Order

67

ICH Neighbourhood Structure Experiments
Random Order

Neighbour Shape a Shape 2 Trousers Shirt Dighel

Structure Tabu L BestL AvgL Best L AvgL Best L AvgL Best L Avg L BestL AvgL

0 5 64.08 65.36 27.90 28.24 266.88 271.01 67.39 66.22 134.65 141.04
P 10 64.08 66.03 28.16 28.32 258.95 266.16 66.80 67.09 113.69 125.57

T 20 64.08 65.36 27.80 27.94 261,41 266.93 66.92 67,48 112.09 125.36

N1 50 64.08 65.36 27.80 28.01 267.06 271.07 67.24 67.32 113.69 117.60

(5) 100 64.08 65.36 27.80 28.01 258.95 264.14 67.37 69.65 125.44 126.04

0 5 65.00 65.00 27.88 28.06 288.20 273.46 67.37 69.04 112.07 112.32

P 10 64.83 65.11 27.81 28.03 265.51 269,41 66.13 67.40 112.09 115.02

T 20 65.16 65.72 27.66 28.13 254.83 267.09 66.95 67.31 112.82 114.19

N2 50 65.00 65.55 28.18 28.33 268.20 270.66 66.17 67.55 113.69 119.08

(5) 100 64.58 64.88 28.03 28.26 257.27 264.06 66.13 68,43 122.07 126.88

0 5 64.00 64.93 28.13 28.30 269.93 271.31 67.13 68,49 122.98 128.87

P 10 64.00 65.33 27,49 27.74 270.00 274.12 66.58 66.74 112.07 116.97

T 20 64.08 65.05 27.30 27.65 264.31 272.97 66.78 67.07 112.07 112.33

N2 50 64.00 65.33 27.50 27.76 264.71 269.55 66.89 67.01 112.82 115.94
(10) 100 64.00 65.33 27,49 27.84 261.25 267.09 66.58 69.09 117.77 121.89

0 5 63.00 63.72 27.40 27.61 267.05 270.19 66.66 68.55 112.82 113.60

P 10 64.00 65.00 27.34 27.46 267.05 270.09 66.86 86.55 112.82 113.10

T 20 64.00 65.17 27.18 27.68 267.05 270.27 66.86 68.55 112.82 116.56

N3 50 63.50 64.17 27.57 27.92 267.05 270.27 68.86 68.55 116.67 120.90

(5) 100 64.50 65.08 28.15 28.25 267.05 270.27 68.86 68.55 118.22 121.88

0 5 64.00 64.69 27.73 27.65 264.45 265.73 67.30 67.89 112.82 112.82

P 10 62.99 63.69 27.73 27.82 264,45 265.73 66.35 66.89 112.07 112.57

T 20 64.00 64.03 27.77 27.96 264.45 265.73 66.52 66.96 112.09 112.72

N3 50 64.00 64.03 27.80 28.01 264.45 265.73 66.28 66.79 113.93 117.87
(10) 100 64.00 64.03 27.80 28.01 264,45 265.73 67.42 69.53 119.90 126.84

Best Know Solu1ion 59.47 25.84 240.77 61.33 100.00

Table 5.2 ICH Experimental Results with Random Initial Order

The sorted packing order ranking criteria dominated the best results achieved as shown in

bold in Table 5.3. However random packing order did show some promise and matched

some of the best results, as shown in bold italic in Table 5.3. Based on our results we did

not perfonn better than the current best results achieved in the literature but this was not

our goal when we started our research. However our result did perfonn better than

previous best in the literature. Shapes 0 data set, achieved a strip length of 62 and this

was better than best known solution of 63 till 2006 (Dowsland et al., 1998). Shapes 2 data

sets achieved a best of 27 and this was better than previous best of 27.2 (Burke et a1.,

2006), the authors reported having to extend their initial experiments to achieve this

result. Overall we feel that we have developed a good implementation of the ICH

algorithm and we can now proceed with our SOL perfonnance testing.

68

Neighbourhood Shape 0 Shape 2 Trousers Shirt Dighe1
Type Best Length Best Length Best Length Best Length Best Length

Sorted Random Sorted Random Sorted Random Sorted Random Sorted Random

OptN1(5) 66.00 64.08 27.00 27.80 249.75 258.95 63.58 66.80 112.07 112.09

OptN2(5) 63.00 64.58 27.54 27.66 249.59 254.83 63.96 66.13 112.07 112.07

OptN2(10) 62.00 64.00 27.00 27.30 249.61 261.25 63.65 66.58 112.07 112.07

OptN3(5) 62.00 63.00 27.00 27.18 248.08 267.05 63.58 66.86 112.07 112.82
OptN3(10) 62.00 62.99 27.20 27.73 250.00 264.45 63.62 66.28 112.82 112.07
Best Known 59.47 25.84 240.77 61.33 100.00

Table 5.3 ICH Best Result Comparison

5.2 Searching Over Layout Heuristics (SOL)

We carried out extensive experiments using the two SOL search strategies as explained in

the implementation chapter 4, section 4.3. Recall that the available search points for the

piece selected to move within the layout were derived from the no-fit-polygon and inner­

fit-rectangle (IFR). Our initial solution as with ICH is generated using the two ranking

criteria as explained in section 5.1. We then use the bottom left most placement heuristic

to position these pieces in the layout to build our initial solution. Next we improve the

solution by decreasing the initial strip length and resolving overlaps as was explained in

chapter 4, section 4.3.4. Our first representation of tabu search stores the piece that was

selected to move into the tabu list. This strategy will be tested using 3 different tabu list

length test parameters, which was classified as low, high and medium as explained in the

previous chapter 4, section 4.3.1. Our second representation of tabu search stores the

combination of the piece selected to move and its current position into the tabu list and

five tabu list length types are tested. In the first strategy once a piece has been moved

within the layout this piece will not be moved again until it drops off from the tabu list

and this is determined by the tabu list length, the shorter the length the faster it will be

available for a move and the longer the length, pieces which may not be in overlap

positions will be selected to be moved within the layout. This will potentially create big

gaps in the layout and force the algorithm to diversify the search. This is an interesting

feature to be tested out, that was the reason for choosing the three types of tabu list

lengths as explained above. In the second representation of tabu search although the same

piece may be selected again and again to be moved within the layout, the tabu list

restricts the piece from occupying its' historical positions on the layout.

69

As with ICH we will be running the experiments for the duration of 30 minutes so that

we can evaluate the effectiveness of the two proposed strategies fairly. We realize that

during the course of the iterations there may exists more than one piece that produces the

largest overlap cost and more than one position that produces the smallest overlap cost,

so we break ties by selecting one of these arbitrarily. This element of randomness could

have an impact on the final solution quality, thus we decided to replicate the experiments

five times as with the ICH approach. Based on the parameters given above we will be

using 5 data sets (ShapeO, Shape2, Trousers, Shirt and Dagli) to test the algorithm. For

the fist strategy this will generate a total of 30 experiments of 30 minutes each for a data

set, to run the experiments for the 5 data sets will take us around 75 hours in total. For

our second strategy this will generate a total of 50 experiments of 30 minutes each for a

data set, to run the experiments for the 5 data sets will take us around 125 hours in total.

Unlike ICH where it was relatively easy to manipulate the neighborhood structure this

was not the case with ICH where our sensible options are limited. Table 5.4 and Table

5.5 shows the results obtained using our first strategy and second strategy respectively

and Table 5.6 shows the comparative results between these two tabu strategies for our

SOL; best results are shown in bold.

Piece Tabu
Sorted Order

I Shape 0 Shape 2 Trousers Shirt Dighe1
Tabu Length Bestl Avg L Best L Avg L Best L Avg L BestL Avgl Bestl AvgL
Low 63.50 65.70 27.27 28.59 284.40 286.60 66.24 67.44 100.00 129.97
Mid 65.50 66.50 27.40 27.85 286.00 286.82 66.24 67.74 100.00 105.66
Hi 65.50 67.30 27.90 28.15 284.40 286.76 66.24 67.54 100.00 112.87
Best Known 59.47 25.84 240.77 61.33 00.00

Random Order
I Shape 0 Shape 2 Trousers Shirt Dighe1
Tabu Length Bestl AvgL Best L Avg L Bestl AvgL Best L AvgL BestL Avgl
Low 64.00 66.30 27.66 28.16 276.78 286.26 67.41 70.23 127.86 139.21
Mid 65.00 67.30 28.16 28.51 279.00 288.17 68.31 70.33 120.21 126.99
Hi 63.00 67.10 28.50 28.86 282.00 288.27 68.41 70.63 120.12 126.39
Best Known 59.47 25.84 240.77 61.33 100.00

Table 5.4 SOL Best Result llsing Tabu Strategy 1

70

Shape 0

Piece + Placement Tabu
Sorted Order

Shape 2 Trousers Shirt Dighe1
Tabu length BestL AvgL Best L Avg L Best L AvgL BestL AvgL BestL Avgl

5 66.50 67.50 27.90 28.23 286.00 286.00 68.24 68.24 129.27 132.94
10 67.50 68.19 27.90 28.23 286.00 286.13 68.24 68.24 117.98 127.17
20 66.50 67.83 27.40 28.23 286.00 286.27 68.24 68.24 128.27 135.27
50 67.50 67.83 28.40 28.40 286.00 286.13 68.24 68.24 135.27 136.60

100 67.50 69.17 28.40 28.40 286.00 286.00 68.24 68.24 132.27 136.27
Best Known 59.47 25.84 240.77 61.33 100.00

Random Order
Shape 0 Shape 2 Trousers Shirt Dighe1

Tabu length Besll Avg l BestL Avg L Best L AvgL BeslL Avg L Bestl AvgL
5 67.00 68.00 29.00 29.19 280.76 283.43 68.17 69.76 137.67 149.02

10 66.00 67.67 28.17 29.01 275.32 288.43 67.35 69.92 145.21 149.40
20 67.16 68.32 28.40 28.78 280.08 283.22 67.77 69.01 151.63 155.80
50 67.00 67.67 29.16 29.40 278.77 282.32 69.17 69.51 141.67 151.78

100 67.50 68.33 28.17 28.81 278.75 286.95 70.98 71.42 139.86 147.47
Best Known 59.47 25.84 240.77 61.33 100.00

Table 5.5 SOL Best Result using Tabu Strategy 2

Best Results
Piece tabu Piece + Placement tabu Best Known
Best Length Best Length Solution

Sorted Random Sorted Random
ShapesO 63.5 63.00 66.5 66.00 59.47
Shape2 27.27 27.66 27.4 28.17 25.84
Trousers 284.4 276.78 286 275.32 240.77
Shirt 66.24 67.41 68.24 67.35 61.33
Dighe1 100 120.12 117.98 137.67 100

Table 5.6 SOL Tabu Strategy Comparison

From Table 5.6 we can see that our second strategy was not performing as well as our

first strategy and it was worst in all instances. In some instances the result obtained were

quite inferior in quality, example Shape 0 data. This can be the result of keeping allowing

the same piece to be moved again and again in the layout thus slowing the algorithm from

achieving good solution quickly. We can also derive from Table 5.4 and 5.5 that there are

higher chances of obtaining good quality results in lower tabu list length, this maybe

because longer tabu list lengths create greater diversification or disturbance in the

behaviour of the algorithm and make it inefficient. Table 5.6 also shows the randomness

of solution quality in SOL, unlike ICH where all the best results obtained were from

sorted area ranking criteria; in SOL we seem to get best result from either ranking

criteria. Based on our results we did not perform better than the current best results

achieved in the literature except in Dighel. In Dighel our SOL using the first tabu

71

strategy matched the current best result of 100 in the literature; this is the known

optimum solution for this jigsaw puzzle problem. The result of Dighe1 was also better

than what the 112.07 that we have achieved using ICH. Shapes 0 data set, achieved a

strip length of 63 and this matched the best known solution of 63 till 2006 (Dows1and et

aI., 1998). Shapes2 data sets achieved a best of 27.27 and this was very close to the

previous best of 27.2 (Burke et aI., 2006), the authors reported of having to extend their

initial experiments to achieve this result. Overall even we are satisfied with the

performance of our SOL as we have stated that our research goal was not to produce

better results that the current best in the literature but our algorithm should produce

reasonably competitive result to ascertain its effectiveness. Thus we decided to use the

first tabu representation as our basis to compare results with ICH.

5.3 ICR and SOL Comparison

Based on this set of result we decided to set the parameters for comparing the results

from the two approaches, ICH and SOL. For ICH we decided to fix the neighbourhood

structure to OptN3(5) as this was identified to be consistent in producing good quality

results. The tabu lists to be tested was reduced from five to three, we will only be using

10, 20 and 50 as our tabu list lengths as from our experiments above this are the ones

which produced good quality results. For SOL we will be using our first tabu

representation with three tabu list lengths as described in section 5.2. For this final

experimentation used to compare ICH with SOL we replicated the experiments 10 times

for each shape data instances. This way we can be more confident in evaluating the

quality of the solutions due to the element randomness as we have explained earlier. We

will be evaluating a total of 10 datasets from the 16 datasets available on ESICUP to gain

better insights into the effectiveness of both approaches. We left the six datasets out as

these data sets allow the shapes to rotate in 4 different angles (0°, 90°, 180°, 270°) and

this will require more computation time and will deteriorate the performance of the

algorithm, so we decided to focus only on datasets with maximum two allowable

rotations. Four out of these six datasets are of artificial type and the other two are

garment shapes data.

72

The summary of results from our experiments is given in Figure 5.7 and 5.8 which shows

comparison of result between area sorted and random ranking criteria for IeB and SOL;

the best results are given in bold. For IeB no clear conclusion can be made as to which

tabu list length was better in producing good results. Tabu list of size 10 produced the

best result for all of the shapes expect Shape 1, Shapes2, Shirt and Dighe 1. Tabu list of

size 20 produced good results in all except Shapes 0, Shapes 2, Albano and Dagli. Tabu

list of size 50 produced good results in all except Shape1, Albano, Dagli and Dighel.

ICH
Sorted Random

Tabu lenQth 10 20 50 10 20 50
Bestl Avg l Best L AvgL Bestl Avg l Bestl Avgl Best l Avg l Best l AvgL

Shape 0 62 63.499 63 63.783 62 63.466 63 64.707 63 64.183 63 64.632
Shape 1 58 59.05 57 59 58 59.7 59 61.121 59 61.272 59 61.324
Shape 2 26.94 27.499 27.19 27.558 26.8 27.499 27.25 27.699 27.18 27.612 27.5 27.806
Albano 10247.19 10461.23 10248.44 10436.41 10354.07 10449.43 10304.4 10444.41 10341.27 10472.57 10418.07 10522.5
Trousers 248.08 251.129 248.08 251.132 248.08 251.132 267.05 269.814 267.05 270.143 267.05 270.143
Swim 6216.88 6441.959 6216.88 6431.873 6216.88 6431.873 6807.42 6956.731 6807.42 6978.349 8807.42 6978.349
Shirt 63.58 63.982 63.47 63.966 63.47 63.966 66.86 68.167 66.86 68.167 66.86 88.167
Daqli 60.24 61.122 60.31 61.185 60.91 61.563 60.71 62.213 60.59 62.558 61.66 62.886
Dighe1 112.82 113.525 100 116.523 119.57 122.763 112.82 113.231 112.82 115.674 116.67 123.079
Dighe2 100 100 100 100 100 101.632 100 100 100 100 100 101.171

Table 5.7 ICH Best Result Comparison

SOL
Sorted Random

Tabu length low Mid Hi low Mid Hi
Bestl AvgL Bestl Avg l Bestl Avg l Bestl Avgl Best l AvgL Bestl Avgl

Shape 0 63.5 65.7 65.5 66.5 65.5 67.3 64 66.296 65 67.296 63 67.096
Shape 1 58 59.3 59 61.2 61 62.3 57 58.525 58.75 60.825 61 62.325
Shape 2 27.27 28.587 27.4 27.85 27.9 28.15 27.66 28.156 28.16 28.506 28.5 28.856
Albano 10399.93 10639.93 10499.93 10609.93 10599.93 10709.93 10607.01 10743.1 10514.72 10726.79 10545.02 10826.59
Trousers 284.4 286.6 286 286.82 284.4 286.76 276.78 286.258 279 288.166 282 288.266
Swim 6743.15 6973.15 6843.15 6973.45 6943.15 7073.15 6932.94 7098.732 7045.14 7173.808 7080.56 7203.01
Shirt 66.24 67.44 86.24 67.74 66.24 67.54 67.41 70.232 68.31 70.332 68.41 70.632
Dagli 61.2 63.883 62.2 63.937 62.2 66.372 62.96 63.613 63.08 63.907 63.27 64.504
DiQhe1 100 129.97 100 105.66 100 112.87 127.86 139.209 120.21 126.992 120.12 126.393
Dighe2 130.43 135.129 130.45 131.15 130.45 131.75 126.89 134.873 100 126.587 100 123.652

Table 5.8 SOL Best Result Comparison

Each tabu list length had an equal share in producing the best result so we can conclude

that it is always better to experiment with a number of parameters of tabu list lengths in

the packing algorithm. If we were to fix the tabu list length to only one length in some

cases we would have produced inferior results given the variability of the input data.

Again from the results in IeB we can see that random order ranking criteria was inferior

in perfonnance compared to the sorted by area initial packing order. In SOL we notice

73

that the low tabu list length more frequently gets the best result. This conforms to the

result obtained in our earlier experiments and we have explained in section 5.1 why we

think this was an expected scenario. Similar to the observation we made in section 5.1 in

SOL best solution are spread between sorted area ranking criteria and random order

ranking criteria, thus no clear conclusion can be made as to which ranking criteria works

best with SOL.

When sorted area ranking criteria was used ICB performed better or equal to SOL in all

data sets. When random ranking criteria was used, SOL matched the result in ShapeO and

Dighe2 and was better than ICB in Shapel. However in rest of the shapes ICB performed

better than SOL.

Figure 5.10 summarizes the best result ofICH and SOL and in the last column the current

best result in the literature and the name of the author is added; Egebald et aI., 2006;

Gomes and Oliveira, 2006 and Bennell and Song, 2007. These are denoted as E, G and S

respectively. Recall from our Chapter 2, Section 2.3 and 2.4 that E and G used the SOL

approach while S used the ICH approach.

Data Type ICH SOL Literature
Best Length Std.Oev. Util(%) Length Std.Oev Util(%) Util(%) Author

ShapesO 62 0.76 64.35% 63 1.20 63.33% 67.09% E
Shape1 57 0.90 70.00% 57 1.57 70.00% 73.84% E
Shapes2 26.8 0.26 80.60% 27.27 1.96 79.21% 83.59% G
Albano 10247.19 87.34 84.95% 10797.28 110.59 80.63% 87.88% E
Trousers 248.08 1.34 87.80% 276.78 0.88 78.69% 90.46% E
Swim 6216.88 94.09 71.16% 6743.15 124.64 65.60% 75.04% S
Shirt 63.47 0.37 85.08% 66.24 0.88 81.52% 88.05% S
DagJi 60.24 0.64 84.19% 61.2 2.71 82.87% 87.99% S
Dighe1 100 4.57 100.00% 100 14.56 100.00% 100.00% G
Dighe2 100 2.98 100.00% 100 3.02 100.00% 100.00% G

Table 5.9 ICH and SOL Best Results Comparison

74

Utilization percentage is calculated as below:­

Utilization percentage

= (sum total area of all the pieces) / (best packing length X width of stock sheet)

From the results shown ICH clearly performs better than SOL in all problem instances

tested except Shapes! where SOL matched ICH's result and in Dighel where it was

better than ICH and matched the current best result in the literature. ICH and SOL

matched the current best result in literature in Dighe2. Overall ICH performs reasonably

well compared to the best in literature. SOL produced worst results in three data sets;

Trousers, Swim and Shirt. These three data sets are derived from the textile industry;

these data sets can be found in figure 4.2. A common element of these data sets is the

high irregularity and large quantities of shapes. This will cause a great problem when the

strip length get shorter and shorter, the overlap becomes quite impossible to be resolved.

This may be due to a number of factors, small pieces may be overlapping with larger

pieces and it becomes difficult to separate these pieces. This might be the reason why

researches quite often formulate special cost function and special penalty to overcome

this problem. Bennell and Dowsland (1999) injected problem specific knowledge by

observing the graphical animation of the algorithm in progress and made SOL more

effective in removing the overlaps and reaching better solutions. To avoid heavily

penalizing small pieces, the respective widths of pieces in overlap situation are also

included in the overlap function and the minimum of these are then selected as the

overlap cost. This will allow small pieces to be preferred to be moved. Gomes and

Oliveira (2006) combined SOL with a separation and compaction routine using LP. The

advantage of using ICH is that we do not need to wony about transfonning the solution

from infeasible to feasible because we do not permit overlap and we are guaranteed a

feasible solution every time. The experiments have proven that with ICH we can expect

reasonably good solution in a short span of computation run.

75

5.4 Summary

We introduced five alternative neighbourhood structures for ICH on 5 data sets. We used

the learning outcome from these experiments to choose and fix our neighbourhood

structure for the final comparison experiment between SOL and ICH. We investigated 2

possible tabu search design for ICH and compared their computational results. We

established the test parameters of our experiments to compare ICH and SOL. We made

the conclusion that ICH is an effective algorithm and is able to reach a reasonably good

solution quickly. We believe that SOL needs tweaks and tuning on the cost function

parameters to enable the overlaps within the layout to be removed more effectively. The

literature suggested that if this done SOL is capable excellent results as shown in the

literature but to get there is not an easy task. ICH is simple, deterministic and once

implemented the final solution generated is always a feasible solution, we do not need to

worry about removing overlap from the layout. Further with ICH it is relatively easy to

experiments with different neighbourhood structure which could be generated by

swapping or inserting pieces within a packing order.

76

6 Conclusions and Future Work

6.1 Background

We set out off with the research aIm to compare the two common problem

representations for 2D ODP; ICH and SOL. The literature reports both approaches as

producing excellent results but if an OR practitioner were to choose either one as the

preferred method of solution which one would it be. To do this we have stripped both

approaches from any special features or sophistication and implemented them based on

their basic principles. By doing this we have created a level playing field for comparison.

We then used our computational experiments to analyze the success of both these

approaches with regards to their success rate of producing good quality solutions over a

range of different data sets, their strength and weakness with respect to the different data

types and total number of pieces. In ICH we used a bottom left placement policy to

position the pieces within the layout, we generated search positions based on NFP as

explained in our methodology chapter and we used tabu search as our search engine to

find the best packing solution within our predefined neighbourhood structure. In SOL we

based our overlap measure on the sum of the extent of the horizontal and vertical overlap

distance as explained in our methodology chapter, we used this measure as the penalty

value in our cost function, we generated our placement positions based on NFP (similar

to ICH) and also used tabu search as our search engine. The difference between the tabu

search in ICH and SOL is that in the former the tabu list will contain the swap positions

of the pieces that were swapped whereas in the latter the tabu list contains the piece

identification and its historical position in the layout. This is because ICH seeks to find

the best ordering of the pieces and SOL the best placement positions available in the

layout to reach a near optimal packing solution.

We have demonstrated based on our extensive computational experiments that ICH has

several advantages over SOL. One of which is the guarantee of producing a feasible

packing solution, on the other hand SOL cannot guarantee this and will potentially get

stuck if it cannot eliminate the overlaps in the layout within the restricted computational

77

time. In rCB regardless of the shapes profile we consistently achieved good quality

solutions within a short span of time. Our experiments have indicated this is not the case

with SOL, the solution quality deteriorated when the shapes profiles contained high

irregularity, ranging from very small pieces to very large pieces and large quantity of

pieces, typical of industrial data set. We believe this is because as the layout gets

compacted many small pieces may overlap with large ones and it becomes extremely

difficult for the algorithm to resolve this. This observation was also mentioned in Bennell

and Dowsland (1999) and they used a special cost function to overcome this problem.

Although quite a number of researchers (e.g., Bennell and Dowsland, 1999, Gomes and

Oliveira, 2006, Egeblad, et al., 2006) have indicated SOL as producing excellent packing

result, we believe that this may be because of specific knowledge injected into the

algorithm based on their experimental learning. Further more the benchmark data sets

used by researches are limited to only 17 data sets. As a result it is possible that

enhancement to the algorithms generate better performance against specific data leading

to better and better solutions rather than in general. We have also shown tabu search as an

excellent search tool as all the result obtained are close to the best produced in the

literature and some even matched the known solutions (e.g. dighel, dighe2).

6.2 Future Work

As we have only experimented with only one local search technique we could not draw a

conclusion as to which search technique is superior in terms of consistently achieving the

best solution. Thus other search techniques like simulated annealing and genetic

algorithm could be applied and tested. Implementation and comparison of different

search techniques might alter the observations that we have made so far.

The calculation of overlap measure might have a critical influence on the effectiveness of

the SOL. Thus we suggest that the different available approaches to be compared against

each other and analyzed in terms of the solution quality produced. Combination of this

different overlap measure with the alternative search technique would yield a wide set of

comparison results. We can also broaden our neighbourhood structure by implementing

78

other types of moves to produce the neighbourhood of solutions; this will widen our

comparative experimental data to test the effectiveness of both approaches. Finally the

data sets could be broadened and deduction made from our observations above could be

tested with this new data sets.

79

Bibliography

BIBLIOGRAPHY

Adamowicz, M., Albano, A. 1976. Nesting Two-Dimensional Shapes in Rectangular

Modules. Computer Aided Design, vol. 8, pp. 27-33.

Agarwal, P.K., Flato, E., Halperin, D. 2002. Polygon Decomposition for Efficient

Construction of Minkowski Sums. Computational Geometry Theory and

Applications, vol. 21, pp. 39-61.

Albano, A., Sappupo, G. 1980. Optimal Allocation of Two-Dimensional Irregular

Shapes Using Heuristic Search Methods. IEEE Transactions on Systems, Man and

Cybernetics, vol. 10, no. 5, pp. 242- 248.

Art, R.C. 1966. An Approach to the Two Dimensional, Irregular Cutting Stock

Problem. Technical Report 36.Y08, IBM Cambridge Scientific Center.

Bennell, J.A, Dowsland, K.A. 2001. Hybridising Tabu Search with Optimisation

Techniques for Irregular Stock Cutting. Management Science, vol. 47, no.8, pp. 1160-

1172.

Bennell, J.A. 1998. Incorporating Problem Specific Knowledge into a Local Search

Framework for the Irregular Shape Packing Problem. PhD Dissertation, EBMS.

University of Wales, Swansea, UK.

Bennell, J.A., Dowsland, K.A. 1999. A Tabu Thresholding Implementation for the

Irregular Stock Cutting Problem. International Journal of Production Research, vol.

37, pp. 4259-4275.

Bennell, J.A., Oliveira, J.F. 2008. The Geometry of Nesting Problems: A Tutorial.

European Journal of Operational Research, vol. 184, no. 2, pp. 397-415.

80

Bibliography

Bennell, J.A., Song, X. 2007. A Beam Search Implementation for the Irregular Shape

Packing Problem. University of Southampton, Discussion Paper Series - Centre for

Operational Research, Management Science and Information Systems, CORMSIS-

07-01.

Bennell, J.A., Song, X. 2008. A Comprehensive and Robust Procedure for Obtaining

the Nofit Polygon Using Minkowski Sums. Computers and Operational Research.

Blazewicz, J., Hawryluk, P., Walkowiak, R. 1993. Using a Tabu Search Approach for

Solving the Two-Dimensional Inegular Cutting Problem. Annals of Operations

Research, vol. 41, pp. 313-325.

Blazewicz, J., Hawryluk, P., Walkowiak, R. 1993.Using Tabu Search Approach for

Solving the Two-Dimensional Irregular Cutting Problem. Annals of Operations

Research, vol. 41, pp. 313-325.

Blazewicz, J., Walkowiak, R. 1993. An Improved Version of Tabu Search for

Irregular Cutting Problem. In: Karmann, A., Mosler, K., Schader, M., Uebe, G.

(Eds.), Operations Research. Physica, Heidelberg, pp. lO2-104.

Blazewicz, J., Walkowiak, R. 1995. A local Search Approach for Two-Dimensional

Inegular Cutting Problem. OR Spektrum, vol. 17, pp. 93-98.

Blazewicz, J., Walkowiak, R. 1995. A Local Search Approach for Two-Dimensional

Inegular Cutting. OR Spektrum, vol. 17, pp. 93-98.

Bounsaythip, c., Maouche, S. 1996. A Genetic Approach to a Nesting Problem.

Proceedings of the Second Nordic Workshop of Genetics Algorithms, pp. 89-104.

Bremermann, H.J., 1958. The Evolution of Intelligence: The Nervous Systems as a

Model of its Environment. Technical Report, Technical Report No.1, Contract No.

477(17), Department of Mathematics, University of Washington Seattle.

81

Bibliography

Burke E.K., Hellier R.S.R., Kendall G., Whitwell G. 2007. Complete and Robust No­

Fit Polygon Generation for the Irregular Stock Cutting Problem. European Journal of

Operations Research, vol. 179, no. 1, pp. 27-49.

Burke, E.K. and Kendall, G. 1999. Applying Ant Algorithms and the No Fit Polygon

to the Nesting Problem. Proceedings of the 12th Australian Joint Conference on

Artificial Intelligence, Sydney, Australia, Lecture Notes in Artificial Intelligence, pp.

453-464.

Burke, E.K., Hellier, R., Kendall, G., Whitwell, G. 2007. Complete and robust no-fit

polygon generation for the irregular stock cutting problem. European Journal of

Operational Research, 179(1), pp. 27-49.

Burke, E.K., Hellier, R.S.R., Kendall, G., Whitwell, G. 2006. A New Bottom-left-Fill

Heuristic Algorithm for the 2D Irregular Packing Problem. Operations Research, voL

54, no. 3, pp. 587-601.

Burke, E.K., Kendall, G. 1999. Applying Evolutionary Algorithms and the No-Fit

Polygon to the Nesting Problem. Proceedings of the 1999 International Conference on

Articial Intelligence, vol. 1, pp. 51-57.

Burke, E.K., Kendall, G. 1999. Applying Simulated Annealing and the No Fit

Polygon to the Nesting Problem. Proceedings of WMC '99, World Manufacturing

Congress, Durham, UK, pp. 70-76.

Burke, E.K., Kendall, G., Whitwell G. 2004. A New Placement Heuristic for the

Orthogonal Stock-Cutting Problem. Operations Research, vol. 52, no. 4, pp. 655-671.

82

Bibliography

Cheng, S.K., Rao, K.P. 2000. Large-Scale Nesting of Irregular Patterns Using

Compact Neighborhood Algorithm. Journal of Materials Processing Technology, vol.

103, no. 1, pp. 135-140.

Dagli, C.H. 1990. Neural Network in Manufacturing: Possible Impacts on Cutting

Stock Problem. Proceedings of the 2nd International Conference on Computer

Integrated Manufacturing, IEEE Computer Society Press, pp. 531-537.

Dagli, C.H., Hajakbari, A. 1990. Simulated Annealing Approach for Solving Stock

Cutting Problem. Proc. IEEE Internat. Conf. Systems, Man, and Cybernetics, Los

Angeles, CA, pp. 221-223.

Dighe, R., Jakiela, M.J. 1996. Solving Pattern Nesting Problems with Genetic

Algorithms Employing Task Decomposition and Contact Detection. Evolutionary

Computation, pp. 239-266.

Dows1and, K.A., Dowsland, W.B. 1992. Packing Problems. European Journal of

Operational Research, vol. 56, pp. 2-14.

Dowsland, K.A., Dowsland, W.B. 1995. Solution Approaches to Irregular Nesting

Problems. European Journal of Operational Research, vol. 84, pp. 506-521.

Dowsland, K.A., Dowsland, W.B., Bennell, J.A. 1998. Jostling for Position: Local

Improvement for Irregular Cutting Patterns. Journal of the Operational Research

Society, vol. 49, pp. 647-658.

Dowsland, K.A., Vaid, S., Dowsland, W.B. 2002. An Algorithm for Polygon

Placement Using a Bottom-Left Strategy. European Journal of Operational Research,

vol. 141, pp. 371-381.

Dyckhoff, H. 1990. Typology of Cutting and Packing Problems. European Journal of

Operational Research, vol. 44, pp. 145-159.

83

Bibliography

Dyckhoff, H., Finke, U. 1992. Cutting and Packing in Production and Distribution.

Springer Verlag, Berlin.

Egeblad J., Nielsen B.K., Odgaard A. 2007. Fast Neighborhood Search for the

Nesting Problem. European Journal of Operational Research, vol. 183, no. 3, pp.

1249-1266.

Faina, L. 1999. Application of Simulated Annealing to the Cutting Stock Problem.

European Journal of Operational Research, vol. 114, pp. 542-556.

Fraser, A.S., 1957. Simulation of genetic systems by automatic digital computers.

Australia Journal of Biological Science, vol. 10, pp. 492-499.

Fujita, K., Akagji, S., Kirokawa, N. 1993. Hybrid Approach for Optimal Nesting

Using a Genetic Algorithm and a Local Minimisation Algorithm. Proceedings of the

19th Annual ASME Design Automation Conference, Albuquerque, NM, USA, pp.

477-484.

Glover, F. 1986. Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research, vol. 13, no. 5, pp. 533-549.

Gomes, A.M., Oliveira, J.F. 2002. A 2-Exchange Heuristic for Nesting Problems.

European Journal of Operations Research, vol. 141, pp. 359-370.

Gomes, A.M., Oliveira, J.F. 2006. Solving Irregular Strip Packing Problems by

Hybridising Simulated Annealing and Linear Programming. European Journal of

Operational Research, vol. 171, no. 3, pp. 811-829.

Han, G.c., Na, S.J. 1996. Two-Stage Approach for Nesting in Two-Dimensional

Cutting Problems Using Neural Network and Simulated Annealing, Journal of

Engineering Manufacture, vol. 210, pp. 509-519.

84

Bibliography

Heckmann, R., Lengauer, T. 1998. Computing Closely Matching Upper and Lower

Bounds on Textile Nesting Problems. European Journal of Operational Research, vol.

108, pp. 473-489.

Heckmann, R., Lengauer, T. 1995. A Simulated Annealing Approach to the Nesting

Problem in the Textile Manufacturing Industry. Annals of Operations Research, vol.

57, pp. 103-133.

Heistennann, J. and Lengauer, T. 1995. The Nesting Problem in the Leather

Manufacturing Industry. Annals of Operations Research, vol. 57, pp. 147-173.

Hifi, M., Paschos, V.T. 2003. A Simulated Annealing Approach for the Circular

Cutting Problem, European Journal of Operations Research.

Holland, John, H. 1975. Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor.

Hopper, E., Turton, B. 1999. A Genetic Algorithm for a 2D Industrial Packing

Problem. Computers and Industrial Engineering, vol. 37, no. 1-2, pp. 375-378.

Hopper, E., Turton, B.C. 2001. A Review of the Application of Meta-Heuristic

Algorithms to 2D Strip Packing Problems. Artificial Intelligence, vol. 16, no. 4, pp.

257-300.

Hopper, E., Turton, B.C.H. 1999. A genetic algorithm for a 2D industrial packing

problem. Comput. Indust. Engrg. 37375-378.

Imahori, S., Yagiura, M., Nagamochi, H. 2007. Practical Algorithms for Two­

Dimensional Packing. Handbook of Approximation Algorithms and Metaheuristics,

Gonzalez (ed.), Chapman & Hall/CRC in the Computer & Infonnation Science

Series.

85

Bibliography

Ismail, H.S., Hon, K.K.B. 1995. The Nesting of Two-Dimensional Shapes Using

Genetic Algorithms. IMechE Part B: Journal of Engineering Manufacture, vol. 209,

pp. 115-124.

Jain, P., Fenyes, P., Richter, R. 1992. Optimal Blank Nesting Using Simulated

Annealing. Journal of Mechanical Design, vol. 114, pp. 160-165.

Jain, S., Chang, H.G. 1998. Two-Dimensional Packing Problems using Genetic

Algorithms, Engineering Computing, vol. 14, pp. 206-213

Jakobs, S. 1996. On Genetic Algorithms for the Packing of Polygons. European

Journal of Operational Research, pp. 165-181.

Kim, Y., Gotoh, K., Toyosada, M. 2003. Automatic Two-Dimensional Layout Using

a Rule-Based Heuristic Algorithm. Journal of Marine Science and Technology, vol. 8,

pp.37-46.

Konopasek, M. 1981. Mathematical Treatments of Some Apparel Marking and

Cutting Problems. US Department of Commerce Report, 99-26-90857-10.

Li, Z., Milenkovic, V.J., 1995. Compaction and Separation Algorithms for Non­

Convex Polygons and their Applications. European Journal of Operational Research,

vol. 84, pp. 539-561.

Lodi, A., Martello, S., Monaci, M. 2002. Two-Dimensional Packing Problems: A

Survey. European Journal of Operational Research, vol. 141, pp. 241-252.

Lodi, A., Martello, S., Monaci, M. 2003. Two-Dimensional Packing Problems: A

Survey. European Journal of Operations Research, vol. 141, pp. 241-252.

86

Bibliography

Lutfiyya, H., McMillin, B., Poshyanonda, P., Dagli, C. 1992. Composite Stock

Cutting Through Simulated Annealing. Journal of Mathematical and Computer

Modelling, vol. 16, no. 2, pp. 57-74.

Mahadevan, A. 1984. Optimization in Computer Aided Pattern Packing. PhD

Dissertation, North Carolina State University, USA.

Marques, V.M.M., Bispo, C.F.G., Sentieiro, J.J.S. 1991. A System for the

Compaction of Two-Dimensional Irregular Shapes based on Simulated Annealing.

Proceedings of the 1991 International Conference on Industrial Electronics, Control

and Instrumentation, Kobe, Japan, pp. 1911-1916.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. 1953.

Equation of State Calculation by Fast Computing Machines. J. of Chern. Phys., vol.

21, pp. 1087-1091.

Milenkovic, V.J. 2002. Densest Translational Lattice Packing of Non-Convex

Polygons. Computational Geometry, vol. 22, pp. 205-222.

Milenkovic, V.J., Daniels K.M. Li, Z. 1991. Automatic Marker Making. Proceedings

of the Third Canadian Conference on Computational Geometry, pp. 243-246.

Nye, T.J. 2001. Optimal Nesting of Irregular Convex Blank in Strips via an Exact

Algorithm. International Journal of Machine Tools & Manufacture, vol. 41, pp. 991-

1002.

Oliveira, J.F. and Ferreira, J.S. 1993. Algorithms for Nesting Problems. Applied

Simulated Annealing, pp. 255-273.

Oliveira, J.F., Gomes, A.M., Ferreira, J.S. 2000. TOPOS - a New Constructive

Algorithm for Nesting Problems. OR Spektrum, vol. 22, pp. 263-284.

87

Bibliography

O'Rourke, J. 1998. Computational Geometry III C (Second Edition), Cambridge

University Press.

Poshyanonda, P., Bahrami, X. 1992. Artificial Neural Networks in Stock Cutting

Problems. Neural Networks in Manufacturing and Robotics, AS ME Press, New York,

pp. 143-153.

Poshyanonda, P., Dagli, C.H. 1992. A Hybrid Approach to Composite Stock Cutting.

Neural Network and Genetic Algorithms, Robotics and Manufacturing, Recent

Trends in Research, Education and Applications, vol. 4, pp. 775-780.

Prasad, Y.K.D., Somasundaram, S. 1991. CASNS - A Heuristic Algorithm for the

Nesting of Irregular Shaped Sheet Metal Blanks. Computer Aided Engineering

Journal, pp. 69-73.

Prasad, Y.K.D., Somasundaram, S., Rao, K.P. 1995. A Sliding Algorithm for Optimal

Nesting of Arbitrarily Shaped Sheet Metal Blanks. International Journal of

Production Research, vol. 33, pp. 1505-1520.

Qu, W., Sanders, J.L. 1987. A Nesting Algorithm for Irregular Parts and Factors

Affecting Trim Losses. International Journal of Operations Research, vol. 25, no. 3,

pp.381-397.

Ramesh Babu, A. , Ramesh Babu, N. 2001. A Generic Approach for Nesting of 2-D

Parts in 2-D Sheets Using Genetic and Heuristic Algorithms. Computer-Aided Design

vol. 33, no. 12, pp. 879-891.

Ramesh Babu, A., Ramesh Babu, N. 1998. A Genetic Approach for Nesting of Two­

Dimensional Complex Parts. The 14th International Conference on CAD/CAM,

Robotics and Factories of the Future.

88

Bibliography

Ramesh Babu, A., Ramesh Babu, N. 2001. A Generic Approach for Nesting of 2-D

Parts in 2-D sheets Using Genetic and Heuristic Algorithms. Computer-Aided

Design, vol. 33, no. 12, pp. 879-891

Reeves CR, 1993. Modern Heuristic Techniques for Combinatorial Problems.

Blackwell Publishing, London.

Segenreich, S.A. and Braga, L.M.P.F. 1986. Optimal Nesting of General Plane

Figures: A Monte Carlo Heuristical Approach. Computer and Graphics, vol. 10, pp.

229-237.

Stoyan, Y., Scheithauer, G., Gil, N., Romanova, T. 2004. <P-Functions for Complex

2D-Objects. Quarterly Journal of the Belgian, French and Italian Operations Research

Societies, vol. 2, no. 1, pp. 69-84.

Sweeney, P.E., Paternoster, E. 1992. Cutting and Packing Problems: A Categorised,

Application-Orientated Research Bibliography. Journal of the Operational Research

Society, vol. 43, pp. 691-706.

Tay, F.E.H., Chong, T.Y., Lee, F.e. 2002. Pattern Nesting on Irregular-Shaped Stock

Using Genetic Algorithms. Engineering Applications of Artificial Intelligence, voL

15,no.6,pp.551-558.

Theodoracatos, V.E., Grimsley, J.L. 1995. The Optimal Packing of Arbitrarily­

Shaped Polygons Using Simulated Annealing and Polynomial-Time Cooling

Schedules. Computer Methods in Applied Mechanics and Engineering, vol. 125, pp.

53-70.

Wascher, G. HauBner, H., Schumann, H. 2007. An Improved Typology of Cutting

and Packing Problems. European Journal of Operational Research, vol. 183, no. 3, pp.

1109-1130.

89

Bibliography

Watson, P.D., Tobias, A.M. 1999. An Efficient Algorithm for the Regular WI

Packing of Polygons in the Infinite Plane. Journal of the Operational Research

Society, vol. 50, pp. 1054-1062.

Whelan, P. F., Batchelor, B.G. 1993. Automated Packing Systems: Review of

Industrial Implementations. Machine Vision Architectures, Integration and

Applications, vol. 2064, pp. 358-369.

Yagiura, M., Ibaraki, T. 2001. Metaheuristic Algorithms for Combinatorial

Optimization Problems. Systems and Computers in Japan, vol. 32, no. 3, pp. 33-55.

Yeung, L.H.W., Tang, W.K.S. 2003. A Hybrid Genetic Approach for Garment

Cutting in the Clothing Industry. IEEE Transactions on Industrial Electronics, vol. 50,

no. 3, pp. 449-455.

90

Appendix A

APPENDIX A

Q X15

Q X15

jA\ X4
l \

I \
I \

X4

o

Data Set 1
Oliviera J. &
Ferreira J.
(1993)
Shape 0
43 pieces
Width 40
(0°)

Data Set 2
Oliviera J. &
Ferreira J.
(1993)
Shape 1
43 pieces
Width 40
(0°,180°)

Data Set 3
Blazewicz J.
(1993)
Shape 2
28 pieces
Width 15
(0°,180°)

~ ________________________ ~______J

FigureA.l

91

Appendix A

\ X2

X2

\ X2

r ~/ ~:~x41
X2

I X8

I X1c=J
x1~1 ============::,
X1;=1 =========-~
X1~1 ==========~ I X£:=J

I x11 ~--------------~
X2

X8

X3

XG

X3 X3

[~-!~
~"""--"'''--' X8

X1

X1 (/,,\ X4
! •
l \ '<, ~,

X1 X8

,_XG,r-'\
\

, \
~\. \

1'"'-, "\ (\
\. ___ J

\ I
X&,j XG

i~,-~-----'-'l

! \ I ~-----'-
~~~--'~ 

X3 

Figure A.2 

92 

Data Set 4 
Albano & 
Sappupo 
(1980) 
Albano 
24 pieces 
Width 4900 
(0°,90°) 

Data Set 5 
Oliviera J. & 
Ferreira J. 
(2000) 
Trousers 
64 pieces 
Width 79 
(0°,180°) 

Data Set 6 
Oliviera J. & 
Ferreira J. 
(2000) 
Swim 
48 pieces 
Width 5752 
(0°,180°) 



Appendix A 

X1 DX1 X1 I 

X1 

/ ~ 
XU 

Figure A.2 continued 

93 

Data Set 7 
Oliviera J. & 
Ferreira J. 
(1993) 
Shirts 
99 pieces 
Width 40 
(0°,180°) 

Data Set 8 
Ratanapan & 
Dagli 
(1997) 
DagIi 
99 pieces 
Width 60 
(0°,180°) 



Appendix A 

FigureA.3 

94 

Data Set 9 
Dighe & 
Jakie1a 
(1997) 
Dighe 
16 pieces 
Width 100 
(0°) 

Data Set 10 
Dighe & 
Jakiela 
(1997) 
Dighe 
10 pieces 
Width 100 
(0°) 


