
1: Introduction ... 6
1.1 Learning CLAN... 6
1.2 Installing CLAN .. 6
1.3 Starting CLAN... 6

2: Tutorial .. 7
2.1 Commands Window.. 7
2.2 Typing Command Lines.. 11
2.3 Sample Runs.. 14

2.3.1 Sample FREQ Runs .. 14
2.3.2 Sample MLU Run ... 15
2.3.3 Sample COMBO Run.. 15
2.3.4 Sample KWAL Run .. 16
2.3.5 Sample GEM Run ... 16

3: The Editor.. 19
3.1 The Modes... 19
3.2 CHAT Mode.. 21

3.2.1 File, Edit, and Font Menus ... 21
3.2.2 Setting Special Colors ... 21
3.2.3 Searching... 22
3.2.4 Keyboard Commands.. 22
3.2.5 Tiers Menu .. 22
3.2.6 Running CHECK Inside the Editor.. 23

3.3 Special Characters ... 23
3.3.1 Roman-Based Character Sets .. 23
3.3.2 Non-Roman Scripts ... 24
3.3.3 Font Definitions... 24

3.4 Preferences and Options.. 25
3.5 Disambiguator Mode... 27
3.6 Coder Mode... 27

3.6.1 Entering Codes ... 28
3.6.2 Setting Up Your Codes File ... 29

3.7 CA Mode ... 31
3.8 Sonic Mode ... 32
3.9 Transcriber Mode .. 33
3.10 Continuous Playback... 34
3.11 Sound Walker.. 35
3.12 Sonic Commands... 35

3.12.1 Waveform window.. 35
3.12.2 Editor window... 36
3.12.3 Continuous Playback... 36

3.13 Video Mode... 36
3.13.1 Manual Video Linking .. 37
3.13.2 Video Playback ... 38

3.14 DV Camera Mode ... 38
4: Features ... 39

4.1 Shell Commands ... 39

4.2 Online Help ... 40
4.3 Testing CLAN... 40
4.4 Bug Reports... 40
4.5 Feature Requests ... 41

5: Analysis Commands.. 42
5.1 CHAINS.. 43

5.1.1 Sample Runs.. 43
5.1.2 Unique Options ... 46

5.2 CHECK ... 46
5.2.1 How CHECK Works... 47
5.2.2 The Construction of the Depfile.. 47
5.2.3 CHECK in CA Mode .. 48
5.2.4 Running CHECK... 49
5.2.5 Some Hints .. 49
5.2.6 Unique Options ... 49

5.3 CHIP.. 50
5.3.1 The Tier Creation System ... 51
5.3.2 The Coding System ... 52
5.3.3 Word Class Analysis ... 53
5.3.4 Summary Measures ... 54
5.3.5 Unique Options ... 55

5.4 CHSTRING... 56
5.4.1 Unique Options ... 57

5.5 COLUMNS ... 58
5.5.1 Unique Options ... 60

5.6 COMPOUND.. 61
5.7 COMBO .. 61

5.7.1 Composing Search Strings .. 61
5.7.2 Examples of Search Strings... 62
5.7.3 Referring to Files in Search Strings .. 63
5.7.4 Cluster Pairs in COMBO... 63
5.7.5 Searching for Clausemates .. 63
5.7.6 Tracking Final Words.. 64
5.7.7 Tracking Initial Words .. 64
5.7.8 Adding Excluded Characters... 64
5.7.9 Limiting with COMBO ... 65
5.7.10 Adding Codes with COMBO .. 65
5.7.11 Unique Options ... 66

5.8 COOCUR .. 68
5.8.1 Unique Options ... 68

5.9 DATES.. 68
5.9.1 Unique Options ... 69

5.10 DIST.. 69
5.10.1 Unique Options ... 69

5.11 DSS.. 70
5.11.1 CHAT File Format Requirements ... 70

5.11.2 Selection of a 50-sentence Corpus .. 70
5.11.3 Automatic Calculation of DSS.. 71
5.11.4 Interactive Calculation .. 72
5.11.5 DSS Output ... 73
5.11.6 DSS Summary ... 73
5.11.7 Unique Options ... 75

5.12 FLO ... 76
5.13 FREQ... 76

5.13.1 What FREQ Ignores .. 76
5.13.2 Studying Lexical Groups... 77
5.13.3 Using Wildcards with FREQ... 77
5.13.4 Directing the Output of FREQ .. 79
5.13.5 Limiting in FREQ.. 79
5.13.6 TTR for Lemmas... 80
5.13.7 Studying Unique Words and Shared Words ... 81
5.13.8 Unique Options ... 81

5.14 FREQMERG ... 82
5.15 FREQPOS ... 83

5.15.1 Unique Options ... 83
5.16 GEM.. 84

5.16.1 Sample Runs.. 84
5.16.2 Limiting With GEM.. 85
5.16.3 Unique Options ... 85

5.17 GEMFREQ.. 86
5.17.1 Unique Options ... 86

5.18 GEMLIST.. 87
5.19 KEYMAP.. 87

5.19.1 Sample Runs.. 87
5.19.2 Unique Options ... 88

5.20 KWAL... 88
5.20.1 Tier Selection in KWAL ... 88
5.20.2 Unique Options ... 89

5.21 LINES.. 90
5.22 MAKEDATA.. 90

5.22.1 Unique Options ... 91
5.23 MAKEMOD.. 92
5.24 MAXWD... 93

5.24.1 Unique Options ... 93
5.25 MLT .. 94

5.25.1 MLT Defaults.. 95
5.25.2 Breaking Up Turns .. 95
5.25.3 Sample Runs.. 96
5.25.4 Unique Options ... 96

5.26 MLU.. 97
5.26.1 MLU Defaults .. 98
5.26.2 Sample Runs.. 99

5.26.3 Including and Excluding Utterances in MLU and MLT........................... 99
5.26.4 Unique Options ... 100

5.27 MODREP .. 102
5.27.1 Exclusions and Inclusions ... 102
5.27.2 Using a %mod Line... 103
5.27.3 MODREP and COMBO -- Cross-tier COMBO...................................... 103
5.27.4 Unique Options ... 104

5.28 MOR.. 104
5.28.1 Configuring Your MOR Files ... 105
5.28.2 Grammar and Lexicon Files... 106
5.28.3 Unique Options ... 107
5.28.4 MOR Lexicons .. 108
5.28.5 File Preparation ... 109
5.28.6 Lexicon Building... 110
5.28.7 A Formal Description of the Rule Files .. 110
5.28.8 Interactive Mode ... 117

5.29 PHONFREQ.. 118
5.29.1 Unique Options ... 119

5.30 POST ... 120
5.31 POSTLIST... 121
5.32 POSTTRAIN... 122
5.33 POSTMOD.. 123
5.34 RELY .. 123

5.34.1 Unique Options ... 123
5.35 SALTIN... 124

5.35.1 Unique Options ... 124
5.36 STATFREQ... 124
5.37 TEXTIN .. 126
5.38 TIMEDUR... 126
5.39 VOCD.. 127

5.39.1 Origin of the Measure ... 127
5.39.2 Calculation of D .. 128
5.39.3 Sample Size .. 129
5.39.4 Preparation of Files ... 129
5.39.5 The Output from VOCD ... 130
5.39.6 Unique Options .. 131

5.40 WDLEN .. 131
6: Options .. 132

6.1 +F Option .. 132
6.2 +K Option.. 133
6.3 +P Option .. 133
6.4 +R Option.. 134
6.5 +S Option .. 135
6.6 +T Option .. 136
6.7 +U Option.. 137
6.8 +V Option.. 137

6.9 +W Option... 138
6.10 +Y Option.. 138
6.11 +Z Option .. 138
6.12 Metacharacters for Searching.. 139

7: Exercises.. 141
7.1 Contrasting Four Measures ... 141
7.2 MLU50 Analysis ... 142
7.3 MLU5 Analysis ... 144
7.4 MLT Analysis ... 145
7.5 TTR Analysis .. 146
7.6 Generating Language Profiles... 147
7.7 Further Exercises... 149

8: References ... 151

1: Introduction
This manual describes the use of the CLAN program. The acronym CLAN stands for

Computerized Language Analysis. It is a program that is designed specifically to analyze
data transcribed in the format of the Child Language Data Exchange System (CHILDES).
CLAN was written by Leonid Spektor at Carnegie Mellon University. The current
version uses a graphic user interface and runs on both Macintosh and Windows machines.
Earlier versions also ran on DOS and Unix without a graphic user interface. CLAN
allows you to perform a large number of automatic analyses on transcript data. The
analyses include frequency counts, word searches, co-occurrence analyses, mean length
of utterance (MLU) counts, interactional analyses, text changes, and morphosyntactic
analysis.

This chapter explains how to install and learn CLAN. Chapter 2 provides a tutorial on

how to begin using CLAN. Chapter 3 explains how to use the editor. Chapter 4 explains
some additional features, how to access help, and how to report bugs. Chapter 5 provides
detailed descriptions of each of the CLAN commands. Chapter 6 provides details
regarding particular command options. Chapter 7 gives some exercises for learning
CLAN.

1.1 Learning CLAN
In order to learn CLAN, you will want to first work through the Tutorial in Chapter 2.
That tutorial will give you a basic understanding of the program. After going through
these initial steps, you will want to explore the features of the editor by working through
chapter 3 on the editor. Then you will want to learn each of the various analytic com-
mands, concentrating first on the five basic commands illustrated in the tutorial.

1.2 Installing CLAN
CLAN can be retrieved from http://childes.psy.cmu.edu using a Web Browser or it

can be copied from the CHILDES CD-ROM. On the Internet, Macintosh CLAN is
distributed in a StuffIt file with the extension .sit. You will need to have a copy of StuffIt
Expander™ to expand it. You drop this file onto StuffIt Expander and it will expand.
The CD-ROM version of Macintosh CLAN can be dragged onto your desktop.

Windows CLAN is distributed in a file called clanwin.exe. You can copy this file to

your hard drive from either the Internet or the CD-ROM. You then click on the file and it
will run InstallShield which then installs CLAN in c:\childes\clan.

1.3 Starting CLAN
To start CLAN, you can either click on the program icon or click on a file that is

linked to or “opened by” CLAN. On Windows, the installer configures the system to
allow files with the extensions .cha, .cdc, and .cut to be opened by CLAN. When learning
CLAN, you should open the program directly by clicking on its icon. A window titled
Commands opens up and you can type commands into this window. If the window does
not open automatically, then just type Control-d (Windows) or Option-d (Macintosh).

2: Tutorial
After you have installed CLAN according to the instructions in the previous chapter,

you start it by double-clicking on its icon. The window that comes up is called the Com-
mands window. Here is what the Commands window looks like:

2.1 Commands Window
This window controls many of the functions of CLAN. It remains active in the back-

ground until the program is terminated. The main components of the Commands
window are the command box in the center and the several buttons. The first thing you
need to do when running CLAN is to set the working and lib directories.

Setting the Working Directory

The working directory is the place where the files you would like to work with are lo-
cated. For this tutorial, we will use the CLAN library directory as both our Working
directory and our Library directory. To set the working directory:

1. Press the working button (see Figure 1).
2. Locate the directory that contains the desired files. Use the lib directory

inside the CLAN directory.
3. Press the Select Current Directory button (see next screen image).

After selecting the current directory, you will automatically return to the Commands

window. Please note that the selected directory will be listed to the right of the working
button. This is useful because you will always know what directory you are working in
without having to leave the Commands window.

After you have set the working directory, go through the same process to set the

library directory. You do not need to worry about setting the output directory. By default,
it is the same as the working directory. In order to see if CLAN is working, type “freq
sample.cha” into the Commands window. The window should then look like this:

After typing in “freq sample.cha” you can either hit the return key or press the Run
button. You should get the following output:

> freq sample.cha
freq sample.cha
Thu Jan 10 13:10:14 2002
freq (01-Dec-2001) is conducting analyses on:
ALL speaker tiers

**
From file <sample.cha>
1 a
1 any
1 are
3 chalk
1 chalk+chalk
1 delicious
1 do-'nt
1 eat
1 good
1 hey
1 i
1 is
1 it's
1 mommy
1 more
2 neat
1 nicky
1 not
2 oh
1 other
3 see
1 some
2 that
1 that's
2 there
3 to
1 toy+s
2 toy-s
3 want
1 what
2 what's
1 wonderful
2 yeah
2 you

34 Total number of different word types used
50 Total number of words (tokens)

0.680 Type/Token ratio

 The output continues down the page. The exact shape of this window will depend
on how you have sized it.

The Recall Button

If you want to see some of your old commands, you can use the recall function. Just
hit the Recall button and you will get a window of old commands. The Recall window
contains a list of the last 20 commands entered into the Commands window. These
commands can be automatically entered into the Commands window by double-clicking
on the line. This is particularly useful for repetitive tasks and tracking command strings.
Another way to access previously used commands is by using the ↑ arrow on the
keyboard. This will enter the previous command into the Commands window each time

the key is pressed. In the Windows version of CLAN, the recall function is implemented
by allowing you to scroll up and down to access old commands.

The HELP Button

The Help button can also give you some basic information about file and directory
commands that you may find useful. These commands may be used by entering them into
the command box. To test these out, just try typing dir into the Commands window. You
should get something like this in the CLAN Output window:

You may want to resize this window if text is being cut off.

The CLAN Button

The CLAN button gives you a list of CLAN analytic commands you can run. If you
already know which command you want to run, you may find it faster just to type the
name in the Commands window. However, just for practice, try clicking this button and
then selecting the FREQ command. The name of the command will then be inserted into
the Commands window.

The Files In Button

Once you have selected the FREQ command, you now see that the Files In button be-
comes available. Click on this button and you will get a dialog that asks you to locate
some input files in your working directory. It should look like this:

Scroll down to the file sample.cha and double-click on it to move it to the right. The files
on the right will be the ones used for analysis. The Remove button that appears under the
Files for Analysis scrolling list is used to eliminate files from the selected data set before
it is read in by CLAN. The Clear button removes all the files you have added. The Filter
text box shows the file extension of the selected data set. Those files with an extension
other than the one shown will not be visible to the user. In order to see all available files,
you will want to have the * symbol in the filter box. When you are finished adding files
for analysis, hit Done. After the files are selected and you have returned to the
Commands window, an @ is appended onto the command string. This symbol
represents the set of files listed.

2.2 Typing Command Lines
There are two ways to build up commands. You can build commands using buttons

and menus. Alternatively, you can just type them in. Let’s try entering a command just by
typing. Suppose we want to run an MLU analysis on the sample.cha file. Let us say that
we also want to restrict the MLU analysis so that it looks only at the child’s utterances.
To do this, we enter the following command into the window:

mlu +t*CHI sample.cha

In this command line, there are three parts. The first part gives the name of the command;
the second part tells the program to look at only the *CHI lines; and the third part tells the
program which file to analyze as input. If we type this directly in the window, the
window will look like this:

If you press the return key after entering this command, you should see a CLAN Out-

put window that gives you the result of this particular MLU analysis. Of course, you
must learn how to use the various options, such as +t or +f. One way to learn the options
is to use the various buttons in the graphic user interface as a way of learning what
CLAN can do. Once you have learned these options, it is often easier to just type in this
command directly. However, in other cases, it may be easier to use buttons to locate rare
options that are hard to remember. The decision of whether to type directly or to rely on
buttons is one that is left to each user.

What if you want to send the output to a permanent file and not just to the temporary

CLAN Output window? To do this you add the +f switch:

mlu +t*CHI +f sample.cha

Try entering this command, ending with a carriage return. You should see a message in
the CLAN Output window telling you that a new file called sample.mlu.cex has been
created. If you want to look at that file, type s-o or Control-o for Open File and you can
use the standard navigation window to locate the sample.mlu.cex file. It should be in the
same directory as your sample.cha file.

You do not need to worry about the order in which the options appear. In fact, the
only order rule that is used for CLAN commands is that the command name must come
first. After that, you can put the file name or any switch in any order you wish.

Wildcards

A wildcard uses the asterisk symbol (*) to take the place of something else. For
example, if you want to run this command across a group of ten files all ending with the
extension .cha, you can enter the command in this form:

mlu +t*CHI +f *.cha

wildcards can be used to refer to a group of files (*.cha), a group of speakers (CH*), or a
group of words with a common form (*ing). To see how these could work together, try
out this command:

freq *.cha +s*ing

This command runs the FREQ program on all the .cha files in the LIB directory and
looks for all words ending in “-ing.” The output is sent to the CLAN Output window
and you can set your cursor there and scroll back and forth to see the output. You can
print this window or you can save it to a file.

Output Files

When you run the command

mlu +f sample.cha

the program will create an output file with the name sample.mlu.cex. It drops the .cha ex-
tension from the input file and then adds a two-part extension to indicate which command
has run (.mlu) and the fact that this is CLAN output file (.cex). If you run this command
repeatedly, it will create additional files such as sample.ml0.cex, sample.ml1.cex, sam-
ple.ml2.cex, and the like. You can add up to three letters after the +f switch, as in:

mlu +fmot sample.cha
If you do this, the output file will have the name “sample.mot.cex.” As an example of a
case where this would be helpful, consider how you might want to have a group of output
files for the speech of the mother and another group for the speech of the father. The
mother’s files would be named *.mot.cex and the father’s files would be named *.fat.cex.

Redirection

Instead of using the +f switch for output, you may sometimes want to use the redirect
symbol (>). This symbol sends all of the output to a single file. The individual analysis of
each file is preserved and grouped into one output file that is named in the command
string. The use of the redirect syntax is illustrated in the following examples:

freq sample.cha > myanalyses
freq sample.cha >> myanalyses
freq sample.cha >& myanalyses

These three forms have slightly different results.
1. The single arrow overwrites material already in the file.
2. The double arrow appends new material to the file, placing it at the end of

material already in the file.
3. The single arrow with the ampersand writes both the analyses of the program

and various system messages to the file.

If you want to analyze a whole collection of files and send the output from each to a sepa-
rate file, use the +f switch instead.

2.3 Sample Runs
Now we are ready to try out a few sample runs with the five most basic CLAN com-

mands – FREQ, MLU, COMBO, KWAL, and GEM.

2.3.1 Sample FREQ Runs
 FREQ counts the frequencies of words used in selected files. It also calculates the

type– token ratio typically used as a measure of lexical diversity. In its simplest mode, it
generates an alphabetical list of all the words used by all speakers in a transcript along
with the frequency with which these words occur. The following example looks
specifically at the child’s tier. The output will be printed in the CLAN window in
alphabetical order:

freq +t*CHI 0042.cha

The output is:

> freq +t*CHI 0042.cha
FREQ +t*CHI 0042.cha
Wed May 5 16:30:13 1999
FREQ (04-May-99) is conducting analyses on:
ONLY speaker main tiers matching: *CHI;
**
From file <0042.cha>
1 ah
1 bow wow
1 bow+wow@
10 uh
1 vroom@o

5 Total number of different word types used
14 Total number of words (tokens)

0.357 Type/Token ratio

A statistical summary is provided at the end. In the above example there were a total
of 14 words or tokens used with only five different word types. The type–token ratio is
found by dividing the total of unique words by the total of words spoken. For our
example, the type–token ratio would be 5 divided by 14 or a ratio of 0.357.

The +f option can be used to save the results to a file. CLAN will automatically add

the .frq.cex extension to the new file it creates. By default, FREQ excludes the strings
xxx, yyy, www, as well as any string immediately preceded by one of the following
symbols: 0, &, +, -, #. However, FREQ includes all retraced material unless otherwise
commanded. For example, given this utterance:

*CHI: the dog [/] dog barked.

FREQ would give a count of two for the word “dog,” and one each for the words “the”
and “barked.” If you wish to exclude retraced material, use the +r6 option.

2.3.2 Sample MLU Run
The MLU command is used primarily to determine the mean length of utterance of a

specified speaker. It also provides the total number of utterances and of morphemes in a
file. The ratio of morphemes over utterances (MLU) is derived from those two totals. The
following command would perform an MLU analysis on the mother’s tier (+t*MOT)
from the file 0042.cha:

mlu +t*MOT 0042.cha

The output from this command looks like this:

> mlu +t*MOT 0042.cha
MLU +t*MOT 0042.cha
Wed May 5 16:31:13 1999
MLU (04-May-99) is conducting analyses on:
ONLY speaker main tiers matching: *MOT;
**
From file <0042.cha>
MLU for Speaker: *MOT:
MLU(xxx and yyy are EXCLUDED from the utterance and morpheme
counts):

Number of: utterances = 514, morphemes = 1553
Ratio of morphemes over utterances = 3.021
Standard deviation = 2.155

Thus, we have the mother’s MLU or ratio of morphemes over utterances (3.021) and her
total number of utterances (514).

2.3.3 Sample COMBO Run
 COMBO is a powerful program that searches the data for specified combinations of

words or character strings. For example, COMBO will find instances where a speaker
says kitty twice in a row within a single utterance. The following command would search
the mother’s tiers (+t*MOT) of the specified file 0042.cha:

combo +t*MOT +s"kitty^kitty" 0042.cha
Here, the string +t*MOT selects the mother’s speaker tier only for analysis. When
searching for a particular combination of words with COMBO, it is necessary to precede
the combination with +s (e.g., +s"kitty^kitty") in the command line. The symbol ^
specifies that the word kitty is immediately followed by the word kitty. A portion of the
output of the command used above would be as follows:

> combo +t*MOT +s"kitty^kitty" 0042.cha
((kitty^kitty))
COMBO +t*MOT +skitty^kitty 0042.cha
Mon May 17 12:40:37 1999
COMBO (04-May-99) is conducting analyses on:
ONLY speaker main tiers matching: *MOT;

**
From file <0042.cha>
--
*** File "0042.cha": line 2548.
*MOT: kitty kitty kitty .

1 1
--
*** File "0042.cha": line 2610.
*MOT: and kitty kitty .

1 1

Strings matched 2 times

2.3.4 Sample KWAL Run
 KWAL searches data for user-specified words and outputs those keywords in

context. The +s option is used to specify the words to be searched. The context or cluster
is a combination of main tier and the selected dependent tiers in relation to that line. The
following command searches for the keyword “bunny” and shows both the two sentences
preceding it, and the two sentences following it in the output.

kwal +sbunny -w2 +w2 0042.cha
The -w and +w options indicate how many lines of text should be included before and
after the search words. The output is as follows:

> kwal +sbunny -w2 +w2 0042.cha
KWAL +sbunny -w2 +w2 0042.cha
Wed May 5 16:31:59 1999
KWAL (04-May-99) is conducting analyses on:
ALL speaker tiers
**
From file <0042.cha>
--
*** File "0042.cha": line 2304. Keyword: bunny
*CHI: 0.
*MOT: see ?
*MOT: is the bunny rabbit jump-ing ?
*MOT: okay .
*MOT: wanna [: want to] open the book ?
--
*** File "0042.cha": line 2422. Keyword: bunny
*MOT: <<one chick break-es out of its shell> ["]> [>] .
*CHI: <0> [<] .
*MOT: <and a bunny go-es by hoppety+hoppety+hop@> ["] .
*MOT: <<baby koala bear ride-s on mother-'s back> ["]> [>] .
*CHI: <0> [<] .
--
*** File "0042.cha": line 2564. Keyword: bunny
*CHI: 0.
*MOT: hmm ?
*MOT: <the bunny> [>] .
*CHI: <0> [<] .
*MOT: <hop hop bunny> [>] .
--
*** File "0042.cha": line 2568. Keyword: bunny
*MOT: <the bunny> [>] .
*CHI: <0> [<] .
*MOT: <hop hop bunny> [>] .
*CHI: <0> [<] .
*MOT: you like that book ?

2.3.5 Sample GEM Run
GEM searches for previously tagged passages for further analyses. For example, we

might want to divide the transcript according to different social situations. By dividing
the transcripts in this manner, separate analyses can be conducted on each situation type.
One way of doing this is by “piping.” Piping directs the output from one command to
another.

gem +t*CHI +d 0012.cha | freq

The output is as follows:

> gem +t*CHI +d 0012.cha | freq
GEM +t*CHI +d 0012.cha
Wed May 5 16:33:56 1999
GEM (04-May-99) is conducting analyses on:
ONLY speaker main tiers matching: *CHI;
and ONLY header tiers matching: @BG:; @EG:;
**
From file <0012.cha>
FREQ
Wed May 5 16:33:57 1999
FREQ (04-May-99) is conducting analyses on:
ALL speaker tiers
**
From pipe input
2 box
1 bye+bye
1 do
1 go-ing
1 here
6 kitty
2 no+no
2 oh
5 this
1 to

10 Total number of different word types used
22 Total number of words (tokens)

0.455 Type/Token ratio

The majority of the effort involved in using GEM is in the coding of the gem entries.
There are three levels of coding:

1. Lazy GEM is the simplest form of GEM. It needs no @eg because each
gem begins with one @g and ends with the next @g.

2. The next level is basic GEM. It can be used when the gem is surrounded
 by unwanted material. It should be marked with @bg at the beginning and
with @eg at the end. Make sure all gems begin with @bg and end with @eg.

3. Tagged gems require the highest degree of care. They are good for
identifying speech segments defined by the activities they accompany. They
may be embedded with other segments but must be delineated by gem coding
with tags to differentiate them from surrounding GEM material.

By using the +t option in the command, you may limit the search to a specific speaker
or include the dependent tiers in the output. For example:

gem +t"*MOT" sample.cha

The output would be as follows:

> gem +t"*MOT" sample.cha
GEM +t*MOT sample.cha
Wed May 5 16:28:00 1999
GEM (04-May-99) is conducting analyses on:
ONLY speaker main tiers matching: *MOT;

and ONLY header tiers matching: @BG:; @EG:;
**
From file <sample.cha>
***** From file sample.cha; line 13.
@bg
MOT: you wanna [: want to] see # a [] more toy+s ?
*MOT: oh # I see .
@eg
***** From file sample.cha; line 25.
@bg
*MOT: what's that ?
*MOT: is there any delicious cha:lk ?
@eg

3: The Editor
CLAN includes an editor that is specifically designed to work cooperatively with

CHAT files. To open up an editor window, either type s-n (Control-n on Windows) for a
new file or s-o to open an old file (Control-o on Windows). This is what a new text win-
dow looks like on the Macintosh:

You can type into this editor window just as you would in any text editor.

3.1 The Modes
The editor works in several modes, each corresponding to a different function. You

can use the options in the Mode pulldown menu to turn these modes on and off. The

selection of different modes is done from the Mode pulldown menu.
1. Text Mode. There are three editor modes — Text Mode, CHAT Mode, and CA

Mode. In Text Mode, the editor functions as a basic ASCII editor. To indicate that
you are in Text Mode, the bar at the bottom of the editor window displays
[E][Text]. To enter Text Mode, you have to uncheck the CA Mode and CHAT
Mode buttons on the Mode pulldown menu.

2. CHAT Mode. In CHAT Mode, the editor facilitates the typing of new CHAT
files and the editing of existing CHAT files. If your file has the extension .cha,
you will automatically be placed into CHAT Mode when you open it. To indicate
that you are in CHAT Mode, the bar at the bottom of the editor window displays
[E][CHAT].

3. CA Mode. As an alternative to CHAT, you may wish to use CA format. This
mode is intended for use by researchers working in the field of Conversation
Analysis and should not be used for data in the CHILDES database or for data
that will be added to the CHILDES database. If your file has the extension .ca,
you will automatically be placed into CA Mode when you open it. To indicate
that you are in CA Mode, the bar at the bottom of the editor window displays
[E][CA].

2. Coder Mode. In Coder Mode [C], the editor provides a systematic interface for
inserting codes onto a new coding line from a predefined coding menu.

3. Disambiguator Mode. When the editor is in Disambiguator Mode, it is possible
to disambiguate the output of the MOR program on the %mor line. You can select
Disambiguator Mode from the Mode menu or by typing Esc-2.

4. Sonic Mode. In Sonic Mode (with the waveform displayed), you can link the
transcript in your file to a digitized sound file. A wave form is displayed at the
bottom of the screen and the beginnings and ends of sounds are indicated in the
transcript with millisecond values. Once these links are made, sounds may be di-
rectly played from the transcript.

5. Transcriber Mode. This mode is basically a much faster, but less precise variant
on sonic mode. It is intended for two uses. The first is for transcribers who wish
to link a digitized file to an already existing CHAT transcript. The second is for
transcribers who wish to produce a new transcript from a digitized file.

6. Continuous Playback Mode. There are two continuous playback modes — one
for sonic playback and the other for movie playback. They operate in similar
ways. In Continuous Sonic Playback Mode, the waveform display is turned off
and the machine plays back the entire transcript, one utterance after another, while
moving the cursor and adjusting the screen to continually display the current
utterances. This has somewhat the effect of “following the bouncing ball” as in
the old sing-along cartoons. In Continuous Movie Playback Mode, the video is
played as the cursor highlights utterances in the text.

7. Video Mode. Just as it is possible to link transcripts to digitized audio, it is also
possible to link them to digitized video with audio.

8. DV Camera Mode. You can use CLAN to control the playing of a videotape on

an external FireWire DV camera or deck.
9. Check Mode. This mode is equivalent to typing escape-L. It runs the CHECK

program from within the file.
10. Exclude Tiers. The function allows you to hid certain tiers. It is equivalent to

typing escape-4. If you want to exclude the %mor tier, you type Control-x Con-
trol-t (hold down the control key and type x and then t). Then you type e to ex-
clude a tier and %mor for the morphological tier. If you want to exclude all tiers,
you type just %. To reset the tiers and to see them all, you type Esc-4 and then r.

11. Send to Praat. This mode allows you to send a bulleted sound segment to the
Praat program. It only works on Windows. You must first start up the Praat win-
dow (download Praat from http://www.fon.hum.uva.nl/praat) and place your
cursor in front of a bullet for a sound segment. Selecting “send to Praat” then
sends that clip to the Praat window for further analysis. To run Praat in the back-
ground without a GUI, you can also send this command from a Perl or Tcl script:

system (“\”C:\\Program Files\\Praatcon.exe\” myPraatScript.txt

3.2 CHAT Mode
When you are first learning to use the editor, it is best to begin in CHAT mode. When

you start CLAN, it automatically opens up a new window for text editing. By default, this
file will be opened using CHAT mode. You can use this editor window to start learning
the editor or you can open an existing CHAT file using the option in the File menu. It is
probably easiest to start work with an existing file. To open a file, type s-o on Macintosh
or Control-o on Windows. You will be asked to locate a file. Try to open up the
sample.cha file that you will find in the Lib directory inside the CLAN directory or
folder. This is just a sample file, so you do not need to worry about accidentally saving
changes.

You should stay in CHAT mode until you have learned the basic editing commands.
You can insert characters by typing in the usual way. Movement of the cursor with the
mouse and arrow keys works the same way in this editor as it does in most graphic
editors. Functions like scrolling, highlighting, cutting, and pasting also work in the
standard way. You should try these functions right away. Use them to move around in the
sample.cha file. Try cutting and pasting sections and using the scroll bar, the arrow keys,
and the page up and page down keys. Try to type a few sentences.

3.2.1 File, Edit, and Font Menus
The basic functions of opening files, printing, cutting, undoing, and font changing are

common to all window-based text editors. These commands can be found under the File,
Edit, and Font menus in the menu bar. The keyboard shortcuts for pulling down these
menu items are listed next to the menu options. Note that there is also a File functions
called “Save Last Clip As ..” which you can use to save a time-delimited sound segment
as a separate file.

3.2.2 Setting Special Colors
Within the Font Menu, you will find options for setting the style of areas as

“smaller”, “larger”, “underline”, “italic”, or “color keyword”. It is best to avoid using

these formatting features unless necessary, since they tend to complicate the shape of the
CHAT file. However, underlining is a crucial component of CA transcription and must
be used when you are working in that format. You may also find it important to set the
color of certain tiers to improve the readability of your files. For the Macintosh, you can
do this in the following way. Select the “Color Keywords” option. In the dialog that
appears, type the tier that you want to color in the upper box. For example, you may
want to have %mor or *CHI in a special color. Then click on “add to list” and edit the
color to the type you wish. The easiest way to do this is to use the crayon selector. Then
make sure you select “color entire tier.” To learn the various uses of this dialog, try
selecting and applying different options.

3.2.3 Searching
In the middle of the Edit menu, you will find a series of commands for searching.

The Find command brings up a dialog that allows you to enter a search string and to
perform a reverse search. The Find Same command allows you to repeat the find
multiple times. The Go To command allows you to move to a particular line number. The
Replace command allows you to find a particular string and replace it. There is a dialog
on both Macintosh and Windows that allows you to enter your search string, your
replacement string, along with tabs or returns. When you need to perform a large series
of different replacements, you can set up a file of replacement forms in the two-column
form used by CHSTRING. You then are led through the words in this replacement file
one by one. On the Macintosh, you have to use the following keyboard commands that
are described at the bottom of the editor screen:
! replace all of them
n do not replace current occurrence
spacebar replace the current occurrence
Control-g abort this command

3.2.4 Keyboard Commands
In addition to the mouse and the arrow keys, there are many keyboard movement

commands based on the EMACS editor. However, most users will prefer to use mouse
movements and the commands available in the menu bar. For those familiar with
EMACS, a list of these commands can be written out by typing Esc-h. This creates a file
called keys list which you can then read, save, or print out. If you want to change the
binding of a key, you go through these steps:

1. Type Esc-k.
2. Enter a command name, such as “cursor-down.”
3. Enter a key, such as F4.
4. Then F4 should move the cursor down.

3.2.5 Tiers Menu
When you open a CHAT file with an @Participants line, the editor looks at each of

the participants declared for the file and inserts their codes into the Tiers menu. Each
speaker is associated with a keyboard command that lets you enter the name quickly.
Similarly, you can add up to four dependent tier names on the @Dependent header tier.

The line should look something like this:
@Dependent: spa, add, acc

If you make changes to the @Participants or @Dependent line, you can press the Update
button at the bottom of the menu to reload new speaker names.

3.2.6 Running CHECK Inside the Editor
You can run CHECK from inside the editor. You do this by typing Esc-L or selecting

Check Opened File from the Mode menu. If you are in CHAT Mode, CHECK will look
for the correct use of CHAT. If you are in CA Mode, CHECK will look for the correct
use of CA transcription. The use of CHECK is described in the section on CHECK on
page 46.

3.3 Special Characters
Both Macintosh and Windows systems provide extensive support for keyboards and

character sets that match up with different languages. The CLAN editor provides
extensive support for the display of non-ASCII Roman-based characters such as á, ñ, or
ç, as well as non-Roman characters from Cyrillic, Japanese, Chinese and other languages.
This support is available for Windows and Macintosh systems, using either system fonts,
or special fonts available from vendors. Increasingly, however, CLAN support for
different languages and the IPA symbol system is now relying on the Unicode standard
and new Unicode fonts.

3.3.1 Roman-Based Character Sets
Many languages use the basic characters of the Roman alphabet, along with some ad-

ditional characters and special diacritics. The basic characters of Roman are all present in
the 128 character ASCII set. The characters of ASCII are:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 2 3 4 5 6 7 8 9 0 - = [] ' ` ; / \ . ,
! @ # $ % ^ & * () _ + { } " ~ : ? | > <

This core set of characters is constant across computers, but the next 128 characters used
on many computers are not standardized. These additional 128 characters are called
extended ASCII. The exact assignment of special characters such as Spanish “ñ” to a
particular extended ASCII value varies from font to font on different systems. By default,
CHAT files use the Monaco font values on Macintosh and the Courier font values on
Windows. Languages with characters outside the extended set can be represented by
using special fonts.

The editor can display these various symbols by loading special fonts that are unique
to each machine. Here is an example of a file in Spanish:

@Begin
@Participants: CHI Target_Child, MOT Mother
*CHI: hasta mañana
*MOT: ¿qué? creo que sí.
@End

This file will look fine in other text editors on the Macintosh. However, if you move it to
another platform, the special characters will not look right unless you run the file through
MAKEDATA. If you plan to use MAKEDATA, you must use a font recognized by
MAKEDATA. With the introduction of Unicode fonts, MAKEDATA is now assuming
that non-Western languages use the Arial Unicode font that can be downloaded from
http://office.microsoft.com/downloads/2000/aruniupd.aspx. Macintosh Unicode fonts are
not yet complete, so we currently assume Taipei for Chinese and Osaka for Japanese.
Some specific @Font headers currently inserted by MAKEDATA are Taipei:12:2 for
Traditional Chinese on Mac or Win95:Arial Unicode MS:-13:136 for Unicode on
Windows 2000. Other standard font headers are added as needed.

3.3.2 Non-Roman Scripts
For scripts that are not based on Roman, we are even more dependent on particular

fonts that are supplied for particular machines. For example, when working with Cyrillic,
one can use the editor to create a file like this:

@Begin
@Participants: CHI Target_Child, MOT Mother
*CHI: ÏÓÎÓÍÓ?
*MOT: ÌÂÚ.
@End

This file is produced using the Apple TimesCY font. When this file is viewed without
this font installed, it will look like this:

@Font: Latinskij:9
@Begin
@Participants: CHI Target_Child, MOT Mother
*CHI: ÏÓÎÓÍÓ?
*MOT: ÌÂÚ.
@End

Fonts for Cyrillic, Korean, Chinese, Arabic, Hebrew, Japanese, and a variety of
Indian and European languages are now included with Mac OS9. For Windows, language
support is best under Windows 2000 where Microsoft provides many input methods,
convertors, and a full UniCode font called Arial Unicode. For Cantonese, it is also
necessary to install the HKSCS (Hong Kong Special Character Set) facilities for
processing additional special characters that is available from Microsoft at no cost.
Future versions of CLAN will rely increasingly on Unicode and it is best to try to do your
work in languages with non-Roman scripts using Unicode fonts.

3.3.3 Font Definitions
Each CHAT file includes a first line that declares the nature of the font used in the

file. In most cases, this font name also indicates the platform (Macintosh or Windows).
You can change these defaults by explicitly setting the font inside the editor. In order to
set the correct font for your file, use s-a or Control-a to select the whole file. Then go into
the Font menu and select the correct font. Your file should now appear in the correct
font. When you save the file, a hidden first line will be inserted that tells CLAN what font
to use and whether the file is a Macintosh or Windows file. You will also see the name of
the font in the black line at the bottom of the editor window. If you fail to set font in this

way under Windows, you will think that all is well until you attempt to take the file to
Macintosh. At this point, Macintosh CLAN will think your file is in Courier and the non-
Roman fonts will be all wrong. On the Macintosh, it is impossible to make this mistake,
because the setting of fonts is tightly linked to the operating system which provides the
correct information about the file to CLAN.

The use of special fonts on both Macintosh and Windows is usually linked to the use
of a special keyboard. For non-Roman scripts, such as those of Japanese or Korean, you
use a special entry method and keyboard which you can turn on or off. Turning the script
and keyboard on and off is done through the “auto-script” menu item in the Fonts menu
or, on the Macintosh, by pressing the option key twice.

3.4 Preferences and Options
You can set preferences by pulling down the Edit menu and selecting Options. The

following dialog box will pop up:

These options control the following features:
1. Checkpoint frequency. This controls how often your file will be saved. If you

set the frequency to 50, it will save after each group of 50 characters that you
enter.

2. Codes file. This file is used to specify a set of codes for Coder Mode, as de-
scribed in the section on Coder Mode on page 27. You can select this file by
hand when you start Coder Mode. However, if you select it here, you will have
it load automatically whenever you start Coder Mode.

3. Key-bind file. This file specifies a set of custom key bindings for specific com-
mands. If you are happy with the standard key bindings, you do not need to use
this file.

4. Limit of lines in CLAN output. This determines how many output lines will go
to your CLAN output screen. It is good to use a large number, since this will
allow you to scroll backwards through large output results.

5. Tier for disambiguation. This is the default tier for the Disambiguator Mode
function, which is described in the section on Disambiguator Mode on page 27.

6. Open Commands window at startup. Selecting this option makes it so that the
Commands window comes up automatically whenever you open CLAN.

7. No backup file. By default, the editor creates a backup file, in case the program
hangs. If you check this, CLAN will not create a backup file.

8. Start in CHAT Coder mode. Checking this will start you in Text Mode when
you open a new text window.

9. Start in CA Mode. Checking this will start you in CA Mode, when you open a
new text window.

10. Show cursor position in percentages. By default, the cursor position is shown
in terms of absolute line numbers.

11. Auto-wrap in Text Mode. This will wrap long lines when you type.
12. Auto-wrap CLAN output. This will wrap long lines in the output.
13. Recognize prosodic delimiters. This is a special option used by CHECK. It al-

lows you to use delimiters such as -?, rather than the standard question mark.
14. Check for @ID tier. This option instructs CHECK to look for the @ID field

that is used by commands like STATFREQ.
15. Check words for illegal characters. Checking this option forces the CHECK

program to look inside words for possible illegal characters.

3.5 Disambiguator Mode
Disambiguation is a special facility that is used to “clean up” the ambiguities in the

%mor tier that are created by MOR. Toggling the Disambiguator Mode option in the
Mode menu allows you to go back and forth between Disambiguator Mode and standard
Editor Mode. In Disambiguator Mode, you will see each ambiguous interpretation on a
%mor line broken into its alternative possibilities at the bottom of the editor screen. The
user double-clicks on the correct option and it is inserted. An ambiguous entry is defined
as any entry that has the ^ symbol in it. For example, the form N|back^Prep|back is
ambiguously either the noun “back” or the preposition “back.”

By default, Disambiguator Mode is set to work on the %mor tier. However, you may

find it useful for other tiers as well. To change its tier setting, select the Edit menu and
pull down to Options to get the Options dialog box. Set the disambiguation tier to the
tier you want to disambiguate. To test all of this out, edit the sample.cha file, reset your
default tier, and then type Esc-2. The editor should take you to the second %spa line
which has:

%spa: $RES:sel:ve^$DES:tes:ve

At the bottom of the screen, you will have a choice of two options to select. Once the
correct one is highlighted, you hit a carriage return and the correct alternative will be
inserted. If you find it impossible to decide between alternative tags, you can select the
UND or undecided tag, which will produce a form such as “und|drink” for the word
drink, when you are not sure whether it is a noun or a verb.

3.6 Coder Mode
Once you have learned to use CHAT Mode, you may wish to learn Coder Mode. Just

double-click on a file. Near the bottom of the text window is a line like this:

CLAN [E] [chat] sample.cha 1

The [E] entry indicates that you are in editor mode and the [chat] entry indicates that you

are in CHAT Mode. In order to begin coding, you first want to set your cursor on the first
utterance you want to code. You can use an file to do this. If the file already has %spa
lines coded, you will be adding additional codes. If none are present yet, Coder’s Editor
will be adding new %spa line. Once you have placed the cursor anywhere on the first
line you want to code, you are ready to leave CHAT Mode and start using Coder Mode.
To go into Coder Mode, type Esc-e. You will be asked to load a codes file. Just navigate
to your library directory and select one of the demo codes files beginning with the word
“code.” We will use codes1.cut for our example.

3.6.1 Entering Codes
Now the coding tier that appears at the top line of the codes1.cut file is shown at the

bottom of the screen. In this case it is %spa:. You can either double-click this symbol or
just hit the carriage return and the editor will insert the appropriate coding tier header
(e.g. %spa), a colon and a tab on the line following the main line. Next it will display the
codes at the top level of your coding scheme. In this case, they are $POS and $NEG. You
can select one of these codes by using either the cursor keys, the plus and minus keys or a
mouse click. If a code is selected, it will be highlighted. You can enter it by hitting the
carriage return or double-clicking it. Next, we see the second level of the coding scheme,
as in the following screen shot.

To get a quick overview of your coding choices, type Esc-s several times in

succession and you will see the various levels of your coding hierarchy. Then return back
to the top level to make your first selection. When you are ready to select a top-level
code, double-click on it with your mouse. Once you have selected a code on the top level

of the hierarchy, the coder moves down to the next level and you repeat the process until
that complete code is constructed. To test this out, try to construct the code
$POS:COM:VE.

The coding scheme entered in codes1.cut is hierarchical, and you are expected to go

through all the decisions in the hierarchy. However, if you do not wish to code lower
levels, type Esc-c to signal that you have completed the current code. You may then enter
any subsequent codes for the current tier.

Once you have entered all the codes for a particular tier, type Esc-c to signal that you

are finished coding the current tier. You may then either highlight a different coding tier
relevant to the same main line, or move on to code another main line. To move on to
another main line, you may use the arrow keys to move the cursor or you may
automatically proceed to next main speaker tier by typing Control-t. Typing Control-t
will move the cursor to the next main line, insert the highlighted dependent coding tier,
and position you to select a code from the list of codes given. If you want to move to yet
another line, skipping over a line, type Control-t again. Try out these various commands
to see how they work.

If you want to code data for only one speaker, you can restrict the way in which the

Control-t feature works by using Esc-t to reset the set-next-tier-name function. For
example, you confine the operation of the coder to only the *CHI lines, by typing Esc-t
and then entering CHI. You can only do this when you are ready to move on to the next
line.

If you receive the message “Finish coding current tier” in response to a command (as,

for example, when trying to change to editor mode), use Esc-c to extricate yourself from
the coding process. At that point, you can reissue your original command. Here is a sum-
mary of the commands for controlling the coding window.

Command Function
Control -c insert highlight code at cursor
Esc-c finish coding current code
Esc-c finish coding current tier
Control-t or F1 finish coding current tier and go to the next
Esc-t restrict coding to a particular speaker
Esc-Esc go on to the next speaker
Esc-s show subcodes under cursor
Control-g cancel illegal command

3.6.2 Setting Up Your Codes File
When you are ready to begin serious coding, you will want to create your own codes

file to replace our sample. When editing your codes file, make sure that you are in Text
Mode and not CHAT Mode. The first line of your codes.cut file should be something
like:

\ +b50 +d +l1 +s1

The options on the main line were described in the previous section on editor options.

In this example, the +b option sets the checkpoint buffer (that is, the interval at which the
program will automatically back up the work you have done so far in that session). If you
find the interval is too long or too short, you can adjust it by changing the value of b. The
+d option tells the editor not to keep a “.bak” backup of your original CHAT file. The +l
option reorders the presentation of the codes based on their frequency of occurrence.
There are three values of the +l option:

0 leave codes without frequency ordering
1 move most frequent code to the top
2 move codes up one level by frequency

If you use the +s option, the program assumes that all of the codes at a particular level

have the same codes symmetrically nested within them. For example, consider the
following codes.cut file:

\ +l1 +s1 +b50
%spa:
$MOT
:POS
:Que
:Res
:NEG
$CHI

The spaces in this file must be spaces and not tabs. This file is a shorthand for the
following complete listing of code types:

$MOT:POS:Que
$MOT:POS:Res
$MOT:NEG:Que
$MOT:NEG:Res
$CHI:POS:Que
$CHI:POS:Res
$CHI:NEG:Que
$CHI:NEG:Res

It is not necessary to explicitly type out each of the eight combinations of codes. With

the +s1 switch turned on, each code at a particular level is copied across the branches so
that all of the siblings on a given level have the same set of offspring. A more extensive
example of a file that uses this type of inheritance is given in the chapter on speech error
coding in the CHAT manual.

If you want to include a real space character at the beginning of one of your codes,

you should precede it with a quote. For example, to include spaces before the $MOT and
$CHI codes, the previous short form of the codes.cut file should be changed to look like
this:

\ +l1 +s1 +b50
%spa

' $MOT
:POS
:Que
:Res
:NEG
' $CHI

If not all codes at a given level occur within each of the codes at the next highest

level, each individual combination must be spelled out explicitly in codes.cut and the +s
option should not be used. The second line in the file should declare the name for your
dependent tier. It should end with a tab, so that the tab is inserted automatically in the line
you are constructing. A single codes.cut file can include coding systems for many
different dependent tiers with each system in order in the file and beginning with an
identifier such as $spa:.

Setting up the codes.cut file properly is the trickiest part of Coder Mode. Once

properly specified, however, it rarely requires modification. If you have problems getting
the editor to work, chances are the problem is with your codes.cut file.

3.7 CA Mode
A major alternative to the use of CHAT Mode for transcription is the system of CA

(Conversation Analysis) coding developed by Sacks, Schegloff, Jefferson (1974) and
their students. The CHAT manual describes the basic features of CA transcription. The
implementation of CA inside CLAN was guided by suggestions from Johannes Wagner,
Chris Ramsden, Michael Forrester, Tim Koschmann, Charles Goodwin, and Curt
LeBaron. Inside CLAN, the use of CA Mode is very much like the use of CHAT Mode.
All of the same basic editor functions, such as cut, paste, searching, replacing, and cursor
movement, work in both modes. In addition, it is possible to underline words in accord
with CA format. Here are some step-by-step instructions for learning to use CA Mode in
CLAN.

1. Retrieve a current version of CLAN and the CA font from childes.psy.cmu.edu
or your CD-ROM.

2. For Macintosh, you need to drag the CA font onto the System Folder to install
it. For Windows, the font will be installed along with the rest of CLAN. This
font includes symbols such as ↑ that are important components of CA
transcription.

3. In the Edit menu, open the CLAN options and check the box that says “Start in
CA Mode.”

4. Open the file sample.ca.
5. Open and close the bullets that link to the sound or movie tiers by typing Esc-A

once and then once more to close them.
6. Click on a bullet while holding down the command on the Macintosh or the

control key for the PC to play a sound or movie segment.
7. Each turn-constructional unit of a CA file is identified with a line number, fol-

lowed by a colon, and a participant code followed by a colon. Place your
cursor at the beginning of a line and press the F2 function key. This will insert

a new line number. Move the old line down by entering a carriage return. Then
type F3 and the line numbers will automatically be updated to reflect the new
insertion. You can do this at the end of the file too.

8. If your sample file has an @Participants line, you can use the Tiers menu to
insert turn numbers and participant codes automatically using the numbers
listed in that menu. After doing this, try typing F3 again to reorder numbers.
The form of this line is:

@Participants: fi, geo, do, car
9. Run CHECK by typing Esc-L. If you have made changes to the file, CHECK

may ask you to correct some of them.
10. CHECK looks for a few basic structural features in your CA files. They are:

The presence of a speaker code after the turn number.
The use of paired parentheses around pause durations.
Paired latching.
Paired parentheses around comments.
Paired overlap markers.
Paired superscripted zeroes.

11. The CA font allows you to enter three special symbols for CA Mode:
Table 1: CA Symbols

Symbol Macintosh Windows

§ Opt-6 Control-↑
D Opt-v Control-↓
º Opt-0 Control-0
• Opt-8 Control-*
‘ Opt-] Control-]
“ Opt-[Control-[
’ Alt-] Control-Shift-]
” Alt-[Control-Shift-[

3.8 Sonic Mode
In addition to the various modes for text editing, the CLAN editor provides methods

for linking the transcript to digitized audio and video. These modes are called Sonic
Mode and Video Mode. We will begin with a description of Sonic Mode. In order to use
Sonic Mode, you need to have a digitized audio file. For instructions on how to create a
digitized audio file, please consult the CHAT manual. Once you have created a digitized
sound file for the material you wish to transcribe, you are ready to start using sonic
CHAT.

To begin, you should launch CLAN and open a new file. Type in your basic header

tiers first. Then, go to the Mode pulldown menu and select “Sonic Mode” and you will be
asked to locate the digitized sound file. Once you have selected your file, the waveform

comes up, starting at the beginning of the file. Several functions are available at this
point:

1. Sound playing from the waveform. You can drag your cursor over a segment

of the waveform to highlight it. When you release your mouse, the segment will
play. As long as it stays highlighted, you can replay it by holding down the shift
key and clicking the mouse. At this point, it does not matter where your cursor is
positioned.

2. Waveform demarcation. You can move the borders of a highlighted region by
holding down the shift key and clicking your mouse to place the cursor at the
place to which you wish the region to move. You can use this method to either
expand or contract the highlighted region.

3. Transcription. While you are working with the wave form, you can repeatedly
play the sound by using shift-click. This will help you recognize the utterance
you are trying to transcribe. You then go back to the editor window and type out
the utterance that corresponds to the highlighted segment.

4. Linking. When you believe that the highlighted waveform corresponds correctly
to the utterance you have transcribed, you can click on the “s” button to the left
of the waveform display and a bullet will be inserted. This bullet contains
information regarding the exact onset and offset of the highlighted segment. You
can achieve the same effect using s-I (insert time code).

5. Changing the waveform window. The +V and -V buttons on the left allow you
to increase or decrease the amount of time displayed in the window. The +H and
-H buttons allow you to control the amplitude of the wave form.

6. Scrolling. At the bottom of the sound window is a scroll-bar that allows you to
move forward or backward in the sound file (please note that scrolling in the
sound file can take some time as the sound files for long recordings are very
large and take up processing capacity).

7. Waveform activation. In order to highlight the section of the waveform associ-
ated with a particular utterance, you need to triple-click on the bullet following
the utterance you want to replay. You must triple-click at a point just before the
bullet to get reliable movement of the waveform. If you do this correctly, the
waveform will redisplay. Then you can replay it by using shift-click.

8. Expanding and hiding the bullets. If you want to see the exact temporal refer-
ences that are hiding inside the bullet symbols, you can type Esc-A to expand
them. Typing Esc-A again will hide them again.

9. Time duration information. Just above the waveform, you will see the editor
mode line. This is the black line that begins with the word “CLAN”. If you click
on this line, you will see three additional numbers. The first is the beginning and
end time of the current window in seconds. The second is the position of the cur-
sor in hours:minutes:seconds.milliseconds. The third is the beginning and end of
the current selection in seconds. If you click once again on the mode line, you
will see sampling rate information for the audio file.

3.9 Transcriber Mode
This mode is basically a much faster, but less precise, variant on sonic mode.

However, it can also be used for video transcription. Transcriber mode is intended for
two uses. The first is for transcribers who wish to link a digitized file to an already
existing CHAT transcript. The second is for transcribers who wish to produce a new
transcript from a digitized file. Here are the steps involved in using this mode.

1. Set your working directory to the folder with your transcript file and your audio

or video files.
2. Open up the transcript in CLAN.
3. In the Mode menu, select Transcribe Sound or Movie or just press the F5 key.
4. Locate the movie that you wish to link to. The movie should then start running in

a QuickTime screen. The first portion of your text will be highlighted also.
5. As the video runs, you can insert new bullets (links to a portion of footage) for

the highlighted text by hitting the space bar. This will set a bullet for that section
and advance to the next portion of the transcript. If there is already a bullet for
that segment, this action will update its values.

6. If you missegment a portion of the video, you can highlight the previous correct
segment and just use F5 again. Continue this process until you have linked
the desired sections of your transcript.

7. After you are done adding bullets, double-click to stop the process. Go to the top
of the file, and insert @Begin and @Participants lines. Use the @Participants to
generate key shortcuts under the View menu. Then replay the first bullet,
transcribe it, and use the appropriate command-1 or command-2 key to enter the
speaker ID. Then go on to the next utterance and repeat the process. The result
will be a full transcription that is roughly linked to the audio.

 If you are linking to an old transcript, you place your cursor at the first utterance and

then press F5. You then press the space bar after each utterance and a time-mark bullet is
entered with the time from the last utterance to the end of the current utterance. These
marks will be as accurate as your own fast segmenting judgments. Dealing with overlaps
can be difficult. It is best not to be too demanding in this mode and clean up problems
later in Sonic Mode.

3.10 Continuous Playback
If you have a file that has been fully transcribed and then linked in Sonic Mode or

Video Mode, you can use Continuous Playback Mode to play through each utterance in a
file in sequence, highlighting each utterance as it goes. This allows you to hear the
transcript as you read it. You can turn on “Continuous Sonic Playback” or “Continuous
Movie Playback” from the Modes menu or by typing escape-8. Before turning on
Continuous Sonic Playback, you have to turn off Sonic Transcriber Mode. If you do not,
the editor will complain and ask you to turn it off. A single mouse-click pauses
Continuous Playback and a double-click terminates Continuous Playback and throws you
back to your previous mode. You can start Continuous Playback again by positioning the
cursor where you want it and selecting the mode again.

 If you only want to listen to a single utterance, rather than lots of utterances in se-

quence, you can do this by positioning your cursor on the bullet of the utterance you want

to listen to and using s-mouseclick or Control-mouseclick. As in Continuous Playback,
you need to have Sonic Transcriber Mode turned off to do this.

You can advance back and forth through the transcript one utterance at a time by

using the F6, F7, and F8 keys. The F7 key will play the current utterance. When you
press the F8 key, the cursor moves forward one utterance and plays it. The F6 key moves
backwards.

3.11 Sound Walker
 The Sound Walker facility is based on the conception implemented by Jack DuBois

at UC Santa Barbara. This controller allows you to step forward and backwards through
a digitized file, using a few function keys. It attempts to imitate the old transcriber foot
pedal, bu with some additional functionality. The options you can set are:

1. step length: This sets how long a segment you want to have repeated.
2. loop number: If you set 3, for example, the programs plays each step three times

before moving on.
3. step shift rate: This setting moves the current step forward or back a certain

amount once each loop is finished.
4. playback rate: This setting allows you to speed up or slow down your playback

rate.

The basic contrast here is between "stepping" which means moving one step forward

or back and "walking" which just keeps on stepping one step after another in the manner
you have specified with the above option. The keys you use are:

F7 play current step
F6 step backward
F8 step forward
shift F6 walk backward
shift F8 walk forward
space stop playing

You will find all of these options in the "Walker Controller" dialog that you open

under the Window menu. Before starting Sound Walker, you have to click on the
"Enable" box. If you do not enable Sound Walker, the F6, F7, and F8 keys go back to
their use as described in the previous section.

3.12 Sonic Commands

3.12.1 Waveform window
+V / -V buttons decreases/increases the length of the displayed sound wave
+H / -H buttons increases/decreases the display of the sound wave
S-button or Esc-i: links selected sound segment to utterance at cursor position
Scrollbar at bottom: move backwards/forwards in the sound file

Shift + click plays selected sound segment
Shift + drag changes the borders of a selected sound segment

3.12.2 Editor window
Esc-A expands bullet, reduces bullet
Esc-1 plays the sound segment associated with an utterance (cursor

needs to be right in front of the bullet’s position, or in front
 of the %snd-symbol in an expanded bullet)
triple-click on bullet highlights corresponding segment of the waveform

3.12.3 Continuous Playback
(Note: Sonic mode needs to be turned off)
Esc-8 turn on continuous playback
any key stops continuous playback
click pauses continuous playback

3.13 Video Mode
Video Mode works very much like Sonic Mode. In order to run Video Mode, you

need to first create a digitized video file. The instructions for doing this are given in the
CHAT manual. There are several sample movie files that we distribute over the Internet.
These are distributed along with transcription files. You may wish to use one of these
sample file sets. We will call the movie file sample.mov and the transcript file
sample.cha.

To play a file that has already been linked to a movie, you open the transcript file and

command-click (Windows: control-click) on the bullet following the utterance you wish
to play. This will open the movie and play the segment. You can also use Continuous
Playback Mode to play all the segments in the file. To test out this process, it is best to
first download video.zip which contains transcripts and a QuicktTime movie for the first
28 utterances in the "MyTheory" problem-based learning session analyzed in a special
issue of Discourse Processes (27:2) edited by Tim Koschmann. This is a 9.5MB file.
Using video.zip, you then:

1. Unzip the file.
2. If you have a recent version of CLAN and QuickTime or later, just double click

on 28lines.ca. If you don't have QuickTime 4 or above, you can download a copy
from http://www.apple.com/quicktime/download/

3. After the file opens, you will see some solid black bullets. These are the time
markers. If you type escape-A they will expand and you can see their values.
Then type escape-A again to close them.

4. Now place your cursor near the beginning of the file and type escape-8 for con-
tinuous playback. The video window should open and the file should play back.
When you want it to stop, double click.

5. To play back a single line, place your mouse just to the left of a bullet, press the
command key (Windows: control) and click the mouse. After a few second
pause, the segment will play.

6. Try playing different segments, as well as using the continuous movie playback
mode, showing and playing from thumbnails, and other video features found in
the "Mode" menu.

If you want to link your transcript to a movie or create a new transcript that is linked

to a movie, you can use two methods -- Transcriber Mode or Manual Linking Mode.
Transcriber Mode is described above. It is a quick and easy method which will prove
useful for beginning linking to a particular transcript. Using this method, however,
sacrifices a good deal of precision and efficiency in the links. It is then necessary to go
back and tighten up the links using the Manual Linking method.

3.13.1 Manual Video Linking
1. Review an existing link by holding down the "command" key (Windows: con-

trol) and clicking to the right of the bullet link.
2. The linked clip will play in the quicktime window.
3. Make sure your cursor in the CHAT editor window is correctly positioned and

press SAVE in the movie window.
4. You can now modify the link's begin and end times by using escape-A to open

the bullets and then typing the desired values into the appropriate text fields.
5. Alternatively, you can position the slide bar and clicking the set Begin point but-

ton or the set End point button.
6. Another method for adjusting the start and stop times is to use a set of additional

commands for control that are documented in the help screen indicated by the ?
in the bottom of the QuickTime window. This Help message is given below.

7. Clicking the Repeat button will play the footage between the begin and end point
values contained in the window.

8. Once you have verified that the correct footage is included, click the Save button
to set the link.

9. Test out the segment by playing it.
10. You may also wish to create links just by cutting and pasting old links and mod-

ifying the times by hand. Either method works fine.
 {INSERT HELP SCREEN HERE}
 The Help screen shows you some useful cursor commands that use the arrow keys.

Most of these functions require you to first place your cursor in the video window. Func-
tions described under 3, 4, 5, and 6 update the values in BOTH the video and transcript
windows.

1. <- will set back the current time. This function makes small changes at first and
then larger ones if you keep it pressed down.

2. -> will advance the current time. This function makes small changes at first and
then larger ones if you keep it pressed down.

3. control <- will decrease the beginning value for the segment in the text window
as well as the beginning value for the media in the video window. This function
makes small changes at first and then larger ones if you keep it pressed down.

4. control -> will decrease the beginning value for the segment in the text window
as well as the beginning value for the media in the video window. This function
makes small changes at first and then larger ones if you keep it pressed down.

5. command <- will decrease the beginning value for the segment in the text win-
dow as well as the beginning value for the media in the video window. This
function makes small changes at first and then larger ones if you keep it pressed
down.

6. command -> will decrease the beginning value for the segment in the text win-
dow as well as the beginning value for the media in the video window. This func-
tion makes small changes at first and then larger ones if you keep it pressed
down.

7. / pressing the button with the right slash with the start time active moves the
start time to current time. If the current time is active, it moves the current time
to the start time.

8. \ pressing the button with the left slash with the end time active moves the end
time to current time. If the current time is active, it moves the current time to the
end time.

9. Triple-clicking on the relevant cell has the same effect as the above two func-
tions.

10. You can play the current segment either by pressing the repeat button or the
space button when the video window is active. The behavior of the repeat play
function can be altered by inserting various values in the box to the right of “re-
peat”. These are illustrated in this way:

-400 add 400 milliseconds to the beginning of the segment to be repeated
+400 add 400 milliseconds to the end of the segment to be repeated
b400 play the first 400 milliseconds of the segment
e400 play the last 400 milliseconds of the segment

3.13.2 Video Playback
There are three ways to playback video segments. You can use escape-8 to play back

continuously from any bullet through the rest of the file. You can play a single segment
by holding down the command or control (Windows) key and clicking the cursor on a
bullet. Or you can use the “show movie thumbnails” function under the Mode Menu to
select the frames you want to use as start segments. If you have entered the symbol @t
on specific lines in your file, these will guide the selection of thumbnails.

3.14 DV Camera Mode
You can use this mode to control playback from a FireWire DV camera or deck

through a QuickTime movie window. This option only works on Macintosh. When you
select this option, the camera must be attached. This controller screen will pop up. The
use of the buttons is self-explanatory.

4: Features

4.1 Shell Commands
CLAN provides two types of commands. The first are the Shell commands. These are

utility commands like those in the old-style DOS or Unix shells. These commands are
available inside the Commands window. All of the commands except those marked with
an asterisk are available for both Macintosh and Windows versions of CLAN. The
following commands allow you to change your folder or directory, display information,
or launch a new program.

accept* This command applies only to Macintosh. If you only want to

have CLAN look at files that the Macintosh calls TEXT files,
then type: accept text. If you want to set this back to all files,
type accept all.

batch You can place a group of commands into a text file which you
then execute as a batch. The word batch should be followed by
the name of a file in your working directory. Each line of that
file is then executed as a CLAN command.

cd This command allows you to change directories. With two
dots, you can move up one directory. If you type a folder’s
name and the folder is in the current folder, you can move right
to that folder. If you type a folder’s absolute address, you can
move to that folder from any other folder. For example, the
command cd HardDisk:Applications:CLAN on the
Macintosh will take you to the CLAN directory.

copy If you want to copy files without going back to the Finder, you
can use this command. The -q option asks to make sure you
want to make the copy.

del This command allows you to delete files. Using this in
combination with the +re switch can be very dangerous. In this
combination, the command del * can delete all files from your
current working directory and those below it. Please be
careful!

dir This command lists all the files in your current directory.
info This command displays the available programs and commands.
list This command lists the files that are currently in your input

files list.
rmdir This command deletes a directory or folder.
ren* This command allows you to change file names in a variety of

ways. The rename command can use the asterisk as a wildcard
for files in which there is a period. You can change case by
using -u for upper and -l for lower. You can change extensions
by using wildcards in file names. The -c and -t switches allow
you to change the creator signature and file types recognized
by Macintosh. Usually, you will want to have TEXT file types.

CLAN produces these by default and you should seldom need
to use the -t option. You will find that the -c option is more
useful. On the Macintosh, if you want a set of files to have the
icon and ownership for CLAN, you should use this command:

ren -cMCED *.cha *.cha
 If you have spaces in these names, surround them with single

quotes. For example, to change ownership to the MPW shell,
you would need quotes in order to include the additional fourth
space character:

ren -c'MPS ' *.cha *.cha
 Or you could rename a series of files with names like

“child.CHA (Word 5),” using this command:
ren '*.CHA (Word 5)' *.cha

4.2 Online Help
CLAN has a limited form of online help. To use this help, you simply type the name

of the command without any further options and without a file name. The computer will
then provide you with a brief description of the command and a list of its available
options. To see how this works, just type freq and a carriage return and observe what
happens. If you need help remembering the various shell commands discussed in the
previous section, you can click on the Help button at the right of the Commands
window. If there is something that you do not understand about CLAN, the best thing
you can do is to try to find the answer to your problem in this manual.

4.3 Testing CLAN
It is a good idea to make sure that CLAN is conducting analyses correctly. In some

cases you may think that the program is doing something different from what it is
actually designed to do. In order to prevent misunderstandings and misinterpretations,
you should set up a small test file that contains the various features you want CLAN to
analyze. For example, if you are running a FREQ analysis, you can set a file with several
instances of the words or codes for which you are searching. Be sure to include items that
should be “misses” along with those that should be “hits.” For example, if you do not
want CLAN to count items on a particular tier, make sure you put some unique word on
that tier. If the output of FREQ includes that word, you know that something is wrong. In
general, you should be testing not for correct performance but for possible incorrect
performance. In order to make sure that you are using the +t and +s switches correctly,
make up a small file and then run KWAL over it without specifying any +s switch. This
should output exactly the parts of the file that you intend to include or exclude.

4.4 Bug Reports
Although CLAN has been extensively tested for years, it is possible that some

analyses will provide incorrect results. When this occurs, the first thing to do is to reread
the relevant sections of the manual to be sure that you have entered all of your commands
correctly. If a rereading of the manual does not solve the problem, then you can send e-
mail to macw@cmu.edu to try to get further assistance. In some cases, there may be true
“bugs” or program errors that are making correct analyses impossible. Should the
program not operate properly, please send e-mail to macw@cmu.edu with the following

information:
1. a description of the machine you are using and the operating system you are

running,
2. a copy of the file that the program was being run on,
3. the complete command line used when the malfunction occurred,
4. all the results obtained by use of that command, and
5. the date of compilation of your CLAN program, which you can find by

clicking on “About CLAN” at the top left of the menu bar on Macintosh or the
“Help CLAN” option at the top right of the menu bar for Windows.

Use WinZip or Stuffit to save the input and output files and include them as an e-mail at-
tachment. Please try to create the smallest possible file you can that will still illustrate the
bug.

4.5 Feature Requests
CLAN has been designed in response to information we have received from users

about the kinds of programs they need for furthering their research. Your input is
important, because we are continually designing new commands and improving existing
programs. If you find that these programs are not capable of producing the specific type
of analysis that you are trying to achieve, contact us and we will do our best to help.
Sometimes we can explain ways of using CLAN to achieve your goals. In other cases, it
may be necessary to modify the program. Each request must include a simple example of
an input file and the output you would like, given this input. Also, please explain how
this output will help you in your research. You can address inquiries by email to
macw@cmu.edu.

5: Analysis Commands
The analytic work of CLAN is performed by a series of commands that search for

strings and compute a variety of indices. These commands are all run from the
Commands window. In this section, we will examine each of the commands and the
various options that they take. The commands are listed alphabetically. The following
table provides an overview of the various CLAN commands.

Table 2: The Analysis Commands

Command Function

CHAINS on page 43 Tracks sequences of interactional codes across speakers.
CHECK on page 46 Verifies the accuracy of CHAT conventions in files.
CHIP on page 50 Examines parent-child repetition and expansion.
CHSTRING on page 56 Changes words and characters in CHAT files.
COLUMNS on page 58 Reformats the transcripts into columnar form.
COMBO on page 61 Searches for complex string patterns.
COOCUR on page 68 Examines patterns of co-occurence between words.
DATES on page 68 Uses the date and birthdate of the child to compute age.
DIST on page 69 Examines patterns of separation between speech act codes.
DSS on page 70 Computes the Developmental Sentence Score.
FLO on page 76 Reformats the file in simplified form.
FREQ on page 76 Computes the frequencies of the words in a file or files.
FREQMERG on page 82 Combines the outputs of various runs of FREQ.
FREQPOS on page 83 Tracks the frequencies in various utterance positions.
GEM on page 84 Finds areas of text that were marked with gem markers.
GEMFREQ on page 86 Computes frequencies for words inside gem markers.
GEMLIST on page 87 Lists the pattern of gem markers in a file or files.
KEYMAP on page 87 Lists the frequencies of codes that follow a target code.
KWAL on page 88 Searches for word patterns and prints the line.
MAKEDATA on page 90 Converts data formats for CHAT files across platforms.
MAKEMOD on page 92 Adds a %mod line for the target SAMPA phonology
MAXWD on page 93 Finds the longest words in a file.
MLT on page 94 Computes the mean length of turn.
MLU on page 97 Computes the mean length of utterance.
MODREP on page 102 Matches the child’s phonology to the parental model.
MOR on page 104 Inserts a new tier with part-of-speech codes.
PHONFREQ on page 118 Computes the frequency of phonemes in various positions.
POST on page 120 Probabilistic disambiguator for the %mor line
POSTLIST on page 121 Displays the patterns learned by POSTTRAIN
POSTTRAIN on page 122 Trains the probabilistic network used by POST
RELY on page 123 Measures reliability across two transcriptions.
SALTIN on page 124 Converts SALT files to CHAT format.
STATFREQ on page 124 Formats the output of FREQ for statistical analysis.

TEXTIN on page 126 Converts straight text to CHAT format.
TIMEDUR on page 126 Uses the numbers in sonic bullets to compute overlaps.
VOCD on page 127 Computes the VOCD lexical diversity measure.
WDLEN on page 131 Computes the length of utterances in words.

5.1 CHAINS
CHAINS is used to track sequences of interactional codes. These codes must be

entered by hand on a single specified coding tier. In order to test out CHAINS, you may
wish to try the file chains.cha which contains the following sample data.

@Begin
@Participants: CHI Sarah Target_child, MOT Carol Mother
*MOT: sure go ahead [c].
%cod: $A
%spa: $nia:gi
*CHI: can I [c] can I really [c].
%cod: $A $D. $B.
%spa: $nia:fp $npp:yq.
%sit: $ext $why. $mor
*MOT: you do [c] or you don't [c].
%cod: $B $C.
%spa: $npp:pa
*MOT: that's it [c].
%cod: $C
%spa: $nia:pa
@End

The symbol [c] in this file is used to delimit clauses. Currently, its only role is within
the context of CHAINS. The %cod coding tier is a project-specific tier used to code
possible worlds, as defined by narrative theory. The %cod, %sit, and %spa tiers have
periods inserted to indicate the correspondence between [c] clausal units on the main line
and sequences of codes on the dependent tier.

To change the order in which codes are displayed in the output, create a file called

codes.ord. This file could be located in either your working directory or in the
\childes\clan\lib directory. CHAINS will automatically find this file, no option is
required. If the file is not found then the codes are displayed in alphabetical order, as
before. In the codes.ord file, list all codes in any order you like, one code per line. You
can list more codes than could be found in any one file. But if you do not list all the
codes, the missing codes will be inserted in alphabetical order. All codes must begin
with the $ symbol.

5.1.1 Sample Runs
For our first CHAINS analysis of this sample file, let us look at the %spa tier. If you

run the command:

chains +t%spa chains.cha

you will get a complete analysis of all chains of individual speech acts for all speakers, as
in the following output:

> chains +t%spa chains.cha
CHAINS +t%spa chains.cha
Mon May 17 13:09:34 1999
CHAINS (04-May-99) is conducting analyses on:
ALL speaker tiers

and those speakers' ONLY dependent tiers matching: %SPA;
**
From file <chains.cha>

Speaker markers: 1=*MOT, 2=*CHI

$nia:fp $nia:gi $nia:pa $npp:pa $npp:yq line #
0 1 0 0 0 3
2 0 0 0 2 6
0 0 0 1 0 10
0 0 1 0 0 13

ALL speakers:
$nia:fp $nia:gi $nia:pa $npp:pa $npp:yq

chains 1 1 1 1 1
Avg leng 1.00 1.00 1.00 1.00 1.00
Std dev 0.00 0.00 0.00 0.00 0.00
Min leng 1 1 1 1 1
Max leng 1 1 1 1 1

Speakers *MOT:
$nia:fp $nia:gi $nia:pa $npp:pa $npp:yq

chains 0 1 1 1 0
Avg leng 0.00 1.00 1.00 1.00 0.00
Std dev 0.00 0.00 0.00 0.00 0.00
Min leng 0 1 1 1 0
Max leng 0 1 1 1 0
SP Part. 0 1 1 1 0
SP/Total 0.00 1.00 1.00 1.00 0.00

Speakers *CHI:
$nia:fp $nia:gi $nia:pa $npp:pa $npp:yq

chains 1 0 0 0 1
Avg leng 1.00 0.00 0.00 0.00 1.00
Std dev 0.00 0.00 0.00 0.00 0.00
Min leng 1 0 0 0 1
Max leng 1 0 0 0 1
SP Part. 1 0 0 0 1
SP/Total 1.00 0.00 0.00 0.00 1.00

It is also possible to use the +s switch to merge the analysis across the various speech act
codes. If you do this, alternative instances will still be reported, separated by commas.
Here is an example:

chains +d +t%spa chains.cha +s$nia:%

This command should produce the following output:

Speaker markers: 1=*MOT, 2=*CHI

$nia: line #
1 gi 3
2 fp 6

6
1 pa 13

ALL speakers:
$nia:

chains 2
Avg leng 1.50
Std dev 0.50
Min leng 1
Max leng 2

Speakers *MOT:
$nia:

chains 2
Avg leng 1.00
Std dev -0.00
Min leng 1
Max leng 1
SP Part. 2
SP/Total 0.67

Speakers *CHI:
$nia:

chains 1
Avg leng 1.00
Std dev 0.00
Min leng 1
Max leng 1
SP Part. 1
SP/Total 0.33

You can use CHAINS to track two coding tiers at a time. For example, one can look
at chains across both the %cod and the %sit tiers by using the following command. This
command also illustrates the use of the +c switch, which allows the user to define units of
analysis lower than the utterance. In the example file, the [c] symbol is used to delimit
clauses. The following command makes use of this marking:

chains +c"[c]" +d +t%cod chains.cha +t%sit

The output from this analysis is:

Speaker markers: 1=*MOT, 2=*CHI
$a $b $c $d line #
1 3
2 $ext $why 2 $ext $why 6

2 $mor 6
1 1 11

1 14

ALL speakers:
$a $b $c $d

chains 1 1 1 1
Avg leng 2.00 2.00 2.00 1.00
Std dev 0.00 0.00 0.00 0.00
Min leng 2 2 2 1
Max leng 2 2 2 1

Speakers *MOT:
$a $b $c $d

chains 1 1 1 0
Avg leng 1.00 1.00 2.00 0.00
Std dev 0.00 0.00 0.00 0.00
Min leng 1 1 2 0

Max leng 1 1 2 0
SP Part. 1 1 1 0
SP/Total 0.50 0.50 1.00 0.00

Speakers *CHI:
$a $b $c $d

chains 1 1 0 1
Avg leng 1.00 1.00 0.00 1.00
Std dev 0.00 0.00 0.00 0.00
Min leng 1 1 0 1
Max leng 1 1 0 1
SP Part. 1 1 0 1
SP/Total 0.50 0.50 0.00 1.00

5.1.2 Unique Options
At the end of our description of each CLAN command, we will list the options that

are unique to that command. The commands also use several options that are shared with
other commands. For a complete list of options for a command, type the name of the
command followed by a carriage return in the Commands window. Information regarding
the additional options shared across commands can be found in chapter 6: Options on
page 132.

+c The default unit for a CHAINS analysis is the utterance. You can use the
+c option to track some unit type other than utterances. The other unit type must
be delimited in your files with some other punctuation symbol that you specify
after the +c, as in +c"[c]" which uses the symbol [c] as a unit delimiter. If you
have a large set of delimiters you can put them in a file and use the form
+c@filename. To see how this switch operates try out this command:

chains +c"[c]" +d +t%cod chains.cha

+d Use this switch to change zeroes to spaces in the output. The following
command illustrates this option:

chains +d +t%spa chains.cha +s$nia:%

The +d1 value of this option works the same as +d, while also displaying every
input line in the output.

+sS This option is used to specify particular codes to track. For example, +s$b
will track only the $b code. A set of codes to be tracked can be placed in a file
and tracked using the form +s@filename. In the examples given earlier, the
following command was used to illustrate this feature:

chains +d +t%spa chains.cha +s$nia:%

+wN Sets the width between columns to N characters.

5.2 CHECK
Checking the syntactic accuracy of a file can be done in two ways. One method is to

work within the editor. In the editor, you can start up the CHECK program by just typing
Esc-L. Alternatively, you can run CHECK as a separate program. The CHECK program

checks the syntax of the specified CHAT files. If errors are found, the offending line is
printed, followed by a description of the problem.

5.2.1 How CHECK Works
CHECK makes two passes through each CHAT file. On the first pass it checks the

overall structure of the file. It makes sure that the file begins with @Begin and ends with
@End, that each line starts with either *, @, %, or a tab, and that colons are used
properly with main lines, dependent tiers, and headers that require entries. If errors are
found at this level, CHECK reports the problem and stops, because further processing
would be misleading. If there are problems on this level, you will need to fix them before
continuing with CHECK. Errors on the first level can mask the detection of further errors
on the second level. It is important not to think that a file has passed CHECK until all
errors have been removed.

The second pass checks the detailed structure of the file. To do this, it relies heavily

on depfile.cut, which we call the “depfile.” The depfile distributed with CLAN lists the
legitimate CHAT headers and dependent tier names as well as many of the strings
allowed within the main line and the various dependent tiers. When running CHECK,
you should have the depfile located either in the directory you are working in or in
\childes\clan\lib (or / childes/clan/lib on Unix). On the Macintosh, the depfile should be
kept inside the lib folder. If the programs cannot find the depfile, they will query you for
its location.

To get an idea of how CHECK operates, open up the file kid10.cha in the library

directory. That file has a large number of CHAT errors. Type Esc-L. Try to fix the errors.
If you can put the file into correct CHAT format so that it passes cleanly through
CHECK, you will have learned how to use CHECK to verify CHAT format.

5.2.2 The Construction of the Depfile
In order to maintain consistency in the use of CHAT across projects, we ask you to

avoid modification of the depfile. We occasionally make some additions to the depfile to
reflect new uses of CHAT, but we try to be conservative in regards to these changes. If
you need to extend CHAT in particular ways, you can create a file called 00depadd.cut
which you should place into the same directory as the files being checked. CHECK will
automatically pick up the additional codes in this file and use them to amplify the
standard depfile. If you use a 00depadd.cut file, it should remain with the data files to
which it applies as a form of documentation of the particular divergences from standard
CHAT.

In order to work effectively with CHECK, and in order to create lines in a 00depadd

file, it is helpful to understand the format of depfile.cut . The depfile is, in effect, a short-
hand summary of CHAT. The three components of the file are the definitions for headers,
the main line, and the dependent tiers. Some of the details of the rules for making
declarations in depfile.cut or 00depadd.cut are as follows:

1. Headers like @Begin that take no additional material are entered in just this

form, one on each line.
2. Headers that take additional information like @Comment are entered with a

following colon and tab and then an asterisk to allow any word.
3. For headers such as @Age that allow dates, the format is specified by using

“y” to indicate the year; “m” to indicate a month; and “d” to indicate a day.
Lowercase letters indicate numbers and uppercase letters indicate letters. For
dates, the standard form is @d<dd-MMM-yyyy>, as in 14-NOV-1956. For
ages, the standard form is @d<yy;mm.dd>, as in 2;5.17. For timing, the
standard form is @t<hh:mm-hh:mm>, as in 12:15-4:30. The name of a
particular participant such as “MOT” or “CHI” is indicated in headers such as
“Age of #” by the # sign.

4. Following the header definitions, the symbol *: appears on the left. This is the
marker for the main line. After this tier marker, the following characters
indicate possible strings. The first symbol is the asterisk. This allows CHECK
to accept all words that begin with alphabetic characters.

5. Next come the main line definitions for various prefixes and suffixes. The stan-
dard depfile is oriented toward coding in English and includes many English
prefixes and suffixes. These can be changed for other languages. In addition,
strings beginning with symbols like the dash and the square bracket must be
exhaustively listed. Suffixes are coded by using the notation *-suffix and
prefixes are coded by using the notation *prefix#.

6. The main line definition concludes with all the special forms of CHAT.
7. Following the definition for the main line are a series of definitions for the de-

pendent tiers. These have the same form as the definitions for the main line, al-
though they differ in content.

8. Unlike words on the main tier, words on the dependent tiers are not analyzed
into suffixes and prefixes. Because of this, if you want to explicitly include a
particular set of suffixes or prefixes on a dependent tier, you should add the
code [AFX] to that tier in your 00depadd file. If the main depfile does not have
an asterisk for a coding tier and your 00depadd does not have one either, then
you must explicitly list all of the word-affix combinations or types that you
want to use on that tier in your 00depadd file.

9. The %mor line includes the special symbol [UTD], which is designed to allow
for the inclusion of all utterance delimiters. If you do not want to have
utterance delimiters on the %mor line, you need to create a 00depadd.cut file
with an entry for the %mor line that includes [-UTD]. Adding this to the
00depadd file will override the [UTD] in the standard depfile. The %mod line
includes the special symbol [IGN] which is designed to turn off all checking of
characters on a particular dependent tier. This is particularly helpful for
transcripts that include glosses with two-byte characters such as Chinese and
Japanese.

5.2.3 CHECK in CA Mode
CHECK can also be used with files that have been produced using CA Mode (see the

section on CA Mode on page 31). The features that CHECK is looking for in CA Mode
are:

1. Each utterance should begin with a number and a speaker code in the form

#:speaker:<whitespace>.
2. There should be paired parentheses around pause numbers.
3. Numbers marking pause duration are allowed on their own line.
4. Latching should be paired.
5. The double parentheses marking comments should be paired.
6. Overlap markers should be paired.
7. Superscript zeros should be paired.
8. The up-arrow, down-arrow, and zeros are allowed inside words.

5.2.4 Running CHECK
There are two ways to run CHECK. If you are working on new data, it is easiest to

run CHECK from inside the editor. To do this, you type Esc-L and check runs through
the file looking for errors. It highlights the point of the error and tells you what the nature
of the error is. Then you need to fix the error in order to allow CHECK to move on
through the file.

The other way of running CHECK is to issue the command from the commands win-

dow. This is the best method to use when you want to check a large collection of files. If
you want to examine several directories, you can use the +re option to make check work
recursively across directories. It will use the 00depadd.cut files appropriate to each direc-
tory it examines. If you send the output of check to the CLAN Output window, you can
locate errors in that window and then triple-click on the file name and CLAN will take
you right to the problem that needs to be fixed. This is an excellent way of working when
you have many files and only a few errors.

5.2.5 Some Hints
1. Use CHECK early and often, particularly when you are learning to code in

CHAT. When you begin transcribing, check your file inside the editor using
Esc-L, even before it is complete. When CHECK complains about something,
you can learn right away how to fix it before continuing with the same error.

2. Learn how to add codes to 00depadd.cut. Try to avoid adding symbols such as
* or *$, because you will then lose the ability to trap certain types of errors on
coding lines.

3. If you are being overwhelmed by CHECK errors, you can use the +d1 switch
to limit error reports to one of each type. Or you can focus your work first on
eliminating main line errors by using the -t% switch.

4. Learn how to use the query-replace function in your text editor to make general
changes and CHSTRING to make changes across sets of files.

5.2.6 Unique Options
+c By default, CHECK will look in your directory for 00depadd.cut.

However, if you wish to use some other name for your depadd file, you need to
use this switch and follow it with the name of your file.

+d This option attempts to suppress repeated warnings of the same error type.
It is convenient to use this in your initial runs when your file has consistent
repeated divergences from standard CHAT form. However, you must be careful
not to rely too much on this switch, because it will mask many types of errors
you will eventually want to correct. The +d1 value of this switch represses
errors even more severely to only one of each type.

+e This switch allows the user to select a particular type of error for checking.
To find the numbers for the different errors, type:

check +e
 Then look for the error type you want to track, such as error #16, and type:

check +e16 *.cha

+g1 Setting +g1 turns on the treatment of prosodic contour markers such as -.
or -? as utterance delimiters, as discussed in the section on prosodic delimiters
in the CHAT manual. Setting -g1 sets the treatment back to the default, which is
to not treat these codes as delimiters.

+g2 By default, CHECK requires tabs after the colon on the main line and at
the beginning of each line. However, versions of Word Perfect before 5.0
cannot write out text files that include tabs. Other non-ASCII editors may also
have this problem. To get around the problem, you can set the -g2 switch in
CHECK which stops checking for tabs. If you want to turn this type of checking
back on, use the +g2 switch.

+g3 Without the +g3 switch, CHECK does minimal checking for the
correctness of the internal contents of words. With this switch turned on, the
program makes sure that words do not contain numbers, capital letters, or
spurious apostrophes.

CHECK also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.3 CHIP
CHIP was designed and written by Jeffrey Sokolov. The program analyzes specified

pairs of utterances. CHIP has been used to explore parental input, the relation between
speech acts and imitation, and individual differences in imitativeness in both normal and
language-impaired children. Researchers who publish work based on the use of this pro-
gram should cite Sokolov and MacWhinney (1990). There are four major aspects of
CHIP to be described: (1) the tier creation system, (2) the coding system, (3) the
technique for defining substitution classes, and (4) the nature of the summary statistics.

5.3.1 The Tier Creation System
CHIP compares two specified utterances and produces an analysis which it then

inserts onto a new coding tier. The first utterance in the designated utterance pair is the
“source” utterance and the second is the “response” utterance. The response is compared
to the source. Speakers are designated by the +b and +c codes. An example of a minimal
CHIP command is as follows:

chip +bMOT +cCHI chip.cha

We can run this command runs on the following seven-utterance chip.cha file which is
distributed with CLAN.

@Begin
@Participants: MOT Mother, CHI Child
*MOT: what-'is that?
*CHI: hat.
*MOT: a hat!
*CHI: a hat.
*MOT: and what-'is this?
*CHI: a hat !
*MOT: yes that-'is the hat .
@End

The output from running this simple CHIP command on this short file is as follows:

CHIP (04-May-99) is conducting analyses on:
ALL speaker tiers

**
From file <chip.cha>
*MOT: what-'is that ?
*CHI: hat .
%chi: $NO_REP $REP = 0.00
*MOT: a hat !
%asr: $NO_REP $REP = 0.00
%adu: $EXA:hat $ADD:a $EXPAN $DIST = 1 $REP = 0.50
*CHI: a hat .
%csr: $EXA:hat $ADD:a $EXPAN $DIST = 2 $REP = 0.50
%chi: $EXA:a-hat $EXACT $DIST = 1 $REP = 1.00
*MOT: and what-'is this ?
%asr: $NO_REP $REP = 0.00
%adu: $NO_REP $REP = 0.00
*CHI: that a hat !
%csr: $EXA:a-hat $ADD:that $EXPAN $DIST = 2 $REP = 0.67
%chi: $NO_REP $REP = 0.00
*MOT: yes that-'is the hat .
%asr: $NO_REP $REP = 0.00
%adu: $EXA:that $EXA:hat $ADD:yes $ADD:the $DEL:a $MADD:-'is $DIST
$REP = 0.50

 The output also includes a long set of summary statistics which are discussed
later. In the first part of this output, CHIP has introduced four different dependent tiers:

%chi This tier is an analysis of the child’s response to an adult’s utterance, so
the adult’s utterance is the source and the child’s utterance is the response.
%adu This tier is an analysis of the adult’s response to a child’s
utterance, so the child is the source and the adult is the response.

%csr This tier is an analysis of the child’s self repetitions. Here the child is both
the source and the response.
%asr This tier is an analysis of the adult’s self repetitions. Here the adult
is both the source and the response.

By default, CHIP produces all four of these tiers. However, through the use of the -n

option, the user can limit the tiers that are produced. Three combinations are possible:

1. You can use both -ns and -nb. The -ns switch excludes both the %csr tier and the
%asr tier. The -nb switch excludes the %adu tier. Use of both switches results in
an analysis that computes only the %chi tier.

2. You can use both -ns and -nc. The -ns switch excludes both the %csr tier and the
%asr tier. The -nc switch excludes the %chi tier. Use of both of these switches
results in an analysis that computes only the %adu tier.

3. You can use both -nb and -nc. This results in an analysis that produces only the
%csr and the %asr tiers.

It is not possible to use all three of these switches at once.

5.3.2 The Coding System
The CHIP coding system includes aspects of several earlier systems (Bohannon &

Stanowicz, 1988; Demetras, Post, & Snow, 1986; Hirsh-Pasek, Trieman, &
Schneiderman, 1984; Hoff-Ginsberg, 1985; Moerk, 1983; Nelson, Denninger, Bonvilian,
Kaplan, & Baker, 1984). It differs from earlier systems in that it computes codes
automatically. This leads to increases in speed and reliability, but certain decreases in
flexibility and coverage.

The codes produced by CHIP indicate lexical and morphological additions, deletions,

exact matches and substitutions. The codes are as follows:

$ADD additions of N continuous words
$DEL deletions of N continuous words
$EXA exact matches of N continuous words
$SUB substitutions of N continuous words from within a word list
$MADD morphological addition based on matching word stem
$MDEL morphological deletion based on matching word stem
$MEXA morphological exact match based on matching word stem
$MSUB morphological substitution based on matching word stem
$DIST the distance the response utterance is from the source
$NO_REP the source and response do not overlap
$LO_REP the overlap is below a user-specified minimum
$EXACT source-response pairs with no changes
$EXPAN pairs with additions but no deletions or substitutions
$REDUC pairs with deletions but no additions or substitutions
$SUBST source-response pairs with only exact-matches and

substitutions

$FRO an item from the word list has been fronted
$REP the percentage of repetition between source and response

Let us take the last line of the chip.cha file as an example:

*MOT: yes that-'is the hat .
%asr: $NO_REP $REP = 0.00
%adu: $EXA:hat $ADD:yes-that-'is-the $DEL:a $DIST = 1 $REP = 0.25

The %adu dependent tier indicates that the adult’s response contained an EXAct match of
the string “hat,” the ADDition of the string “yes-that-’is-the” and the DELetion of “a.”
The DIST=1 indicates that the adult’s response was “one” utterance from the child’s, and
the repetition index for this comparison was 0.25 (1 matching stem divided by 4 total
stems in the adult’s response).

CHIP also takes advantage of CHAT-style morphological coding. Upon encountering

a word, the program determines the word’s stem and then stores any associated prefixes
or suffixes along with the stem. During the coding process, if lexical stems match
exactly, the program then also looks for additions, deletions, repetitions, or substitutions
of attached morphemes.

5.3.3 Word Class Analysis
In the standard analysis of the last line of the chip.cha file, the fact that the adult and

the child both use a definite article before the noun hat is not registered by the default
CHIP analysis. However, it is possible to set up a substitution class for small groups of
words such as definite articles or modal auxiliaries that will allow CHIP to track such
within-class substitutions, as well as to analyze within-class deletions, additions, or exact
repetitions. To do this, the user must first create a file containing the list of words to be
considered as substitutions. For example to code the substitution of articles, the file
distributed with CLAN called articles.cut can be used. This file has just the two articles a
and the. Both the +g option and the +h (word-list file name) options are used, as in the
following example:

chip +cCHI +bMOT +g +harticles.cut chip.cha
The output of this command will add a $SUB field to the %adu tier:

*CHI: a hat!
*MOT: yes that-'is the hat.
%adu: $EXA:that $EXA:hat $ADD:yes $SUB:the $MADD:-'is $DIST = 1
$REP =0.50

The +g option enables the substitutions, and the +harticle.cut option directs CHIP to
examine the word list previously created by the user. Note that the %adu now indicates
that there was an EXAct repetition of hat, an ADDition of the string yes that-'is and a
within-class substitution of the for a. If the substitution option is used, EXPANsions and
REDUCtions are tracked for the included word list only. In addition to modifying the
dependent tier, using the substitution option also affects the summary statistics that are
produced. With the substitution option, the summary statistics will be calculated relative
only to the word list included with the +h switch. In many cases, you will want to run
CHIP analyses both with and without the substitution option and compare the contrasting
analyses.

You can also use CLAN iterative limiting techniques to increase the power of your
CHIP analyses. If you are interested in isolating and coding those parental responses that
were expansions involving closed-class verbs, you would first perform a CHIP analysis
and then use KWAL to obtain a smaller collection of examples. Once this smaller list is
obtained, it may be hand coded and then once again submitted to KWAL or FREQ
analysis. This notion of iterative analysis is extremely powerful and takes full advantage
of the benefits of both automatic and manual coding.

5.3.4 Summary Measures
In addition to analyzing utterances and creating separate dependent tiers, CHIP also

produces a set of summary measures. These measures include absolute and proportional
values for each of the coding categories for each speaker type that are outlined below.
The definition of each of these measures is as follows. In these codes, the asterisk stands
for any one of the four basic operations of ADD, DEL, EXA, and SUB.

Total # of Utterances The number of utterances for all speakers regardless of the

number of intervening utterances and speaker identification.

Total Responses The total number of responses for each speaker type regardless

of amount of overlap.

Overlap The number of responses in which there is an overlap of at

least one word stem in the source and response utterances.

No Overlap The number of responses in which there is NO overlap between

the source and response utterances.

Avg_Dist The sum of the DIST values divided by the total number of

overlapping utterances.

%_Overlap The percentage of overlapping responses over the total number

of responses.

Rep_Index Average proportion of repetition between the source and re-

sponse utterance across all the overlapping responses in the
data.

*_OPS The total (absolute) number of add, delete, exact, or

substitution operations for all overlapping utterance pairs in the
data.

%_*_OPS The numerator in these percentages is the operator being

tracked and the denominator is the sum of all four operator
types.

*_WORD The total (absolute) number of add, delete, exact, or

substitution words for all overlapping utterance pairs in the
data.

%_*_WORDS The numerator in these percentages is the word operator being

tracked and the denominator is the sum of all four word
operator types.

MORPH_* The total number of morphological changes on

exactlymatching stems.

%_MORPH_* The total number of morphological changes divided by the

number of exactly matching stems.

AV_WORD_* The average number of words per operation across all the over-

lapping utterance pairs in the data.

FRONTED The number of lexical items from the word list that have been

fronted.

EXACT The number of exactly matching responses.

EXPAN The number of responses containing only exact matches and

additions.

REDUC The number of responses containing only exact-matches and

deletions.

SUBST The number of responses containing only exact matches and

substitutions.

5.3.5 Unique Options
+b Specify that speaker ID S is an “adult.” The speaker does not actually have
to be an adult. The “b” simply indicates a way of keeping track of one of the
speakers.

+c Specify that speaker ID S is a “child.” The speaker does not actually have
to be a child. The “c” simply indicates a way of keeping track of one of the
speakers.

+d Using +d with no further number outputs only coding tiers, which are
useful for iterative analyses. Using +d1 outputs only summary statistics, which
can then be sent to a statistical program.

+g Enable the substitution option. This option is meaningful in the presence
of a word list in a file specified by the +h/-h switch, because substitutions are
coded with respect to this list.

+h Use a word list file. The target file is specified after the letter “h.” Words
to be included (with +h) or excluded (with -h) are searched for in the target file.
The use of an include file enables CHIP to compare ADD and DEL categories
for any utterance pair analyses to determine if there are substitutions within
word classes. For example, the use of a file containing a list of pronouns would
enable CHIP to determine that the instances of ADD of “I” and DEL of “you”
across a source and response utterance are substitutions within a word class.

 Standard CLAN wildcards may be used anywhere in the word list. When
the transcript uses CHAT-style morphological coding (e.g., I-’ve), only words
from the word list file will match to stems in the transcript. In other words,
specific morphology may not be traced within a word list analysis. Note that all
of the operation and word-based summary statistics are tabulated with respect to
the word list only. The word list option may be used for any research purpose
including grammatical word classes, number terms, color terms, or mental
verbs. Note also that the -h option is useful for excluding certain terms such as
“okay” or “yeah” from the analysis. Doing this often improves the ability of the
program to pick up matching utterances.

+n This switch has three values: +nb, +nc, and +ns. See the examples given
earlier for a discussion of the use of these switches in combination.

+qN Set the utterance window to N utterances. The default window is seven
utterances. CHIP identifies the source-response utterances pairs to code. When a
response is encountered, the program works backwards (through a window
determined by the +q option) until it identifies the most recent potential source
utterance. Only one source utterance is coded for each response utterance. Once
the source-response pair has been identified, a simple matching procedure is
performed.

+x Set the minimum repetition index for coding.

CHIP also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.4 CHSTRING
This program changes one string to another string in an ASCII text file. CHSTRING

is useful when you want to correct spelling, change subjects’ names to preserve
anonymity, update codes, or make other uniform changes to a transcript. This changing of
strings can also be done on a single file using a text editor. However CHSTRING is much
faster and allows you to make a whole series of uniform changes in a single pass over
many files.

It is important to note that CHSTRING is string-oriented, as opposed to word-

oriented. This means that the program treats the as the letters “t”, “h”, and “e” rather than
a single unique word the. Searching for the with this program will result in retrieving
words such as other, bathe, and there. Using spaces can help you to limit your search.
Knowing this will help you to specify the changes that need to be made on words. By
default, CHSTRING works only on the text and not on the dependent tiers or the headers.

5.4.1 Unique Options
+b Work only on material that is to the right of the colon which follows the
tier ID.

+c Often, many changes need to be made in data. You can do this by using a
text editor to create an ASCII text file containing a list of words to be changed
and what they should be changed to. This file should conform to this format:

" old string " " new string "
 The default name for the file listing the changes is changes.cut. If you
don’t specify a file name at the +c option, the program searches for changes.cut.
If you want to another file, the name of that file name should follow the +c. For
example, if your file is called mywords.cut, then the option takes the form
+cmywords.cut. To test out the operation of CHSTRING, try creating the
following file called changes.cut:

" the " " wonderful "
" eat " " quark "

 Then try running this file on the sample.cha file with the command:
chstring +c sample.cha

 Check over the results to see if they are correct. If you need to include the
double quotation symbol in your search string, use a pair of single quote marks
around the search and replacement strings in your include file. Also, note that
you can include extended ASCII symbols in your search string. For example,
the following changes.txt file would convert German text with extended ASCII
characters to basic ASCII:

"ä" '^a"'
"ö" '^o"'
"ü" '^u"'
"ß" "^ss"

+d This option turns off a number of CHSTRING clean-up actions. It turns
off the deletion of blank lines, the removal of blank spaces, the removal of
empty dependent tiers, the replacement of spaces after headers with a tab, and
the wrapping of long lines. All it allows is the replacement of individual strings.

+l Work only on material that is to the left of the colon which follows the tier
ID.

+n Work only on material that is to the right of the colon which follows the
tier ID.

+q CHAT requires that a three letter speaker code, such as *MOT:, be
followed by a tab. Often, this space is filled by three spaces instead. Although
this is undetectable visually, the computer recognizes tabs and spaces as

separate entities. The +q option brings the file into conformance with CHAT by
replacing the spaces with a tab.

+s Sometimes you need to change just one word, or string, in a file(s). These
strings can be put directly on the command line following the +s option. For
example, if you wanted to mark all usages of the word gumma in a file as child-
based forms, the option would look like this:

+s" gumma " " gumma@c "
 Please note the format of the previous example command line. The
original string gumma has spaces around it and is delimited by double quotes.
There is a space separating the quotes surrounding the replacement string
gumma@c from the original. The replacement string is also delimited by double
quotes and surrounded by spaces. If either the original or the replacement string
contains a double quote ("), then the whole string must be put between single
quotes (').

+x The default setting of CHSTRING does not treat the asterisk (*), the
underline (_), and the backslash (\) as metacharacters, because treating them as
metacharacters can often lead to bad results. Therefore, if the user really wants
to use them as metacharacters, CLAN requires this switch to be overtly set.
Using this option will make CHSTRING interpret these characters as
metacharacters.

CAUTION: Used incorrectly, CHSTRING can lead to serious losses of important

data. You must be quite careful when defining changes. If you do not accurately show the
strings to be changed, including spaces, the results can be disastrous. Consider what
happens when changing all occurrences of “yes” to “yeah.” If you use this command:

chstring +s"yes" "yeah" myfile.cha
every single occurrence of the sequence of letters y-e-s will be changed. This includes
words, such as “yesterday,” “eyes,” and “polyester,” which would become “yeahterday,”
“eyeah,” and “polyeahter,” respectively. Spaces should be inserted around strings in order
for the program to make the proper changes. A better version of this line would look like
this:

chstring +s" yes " " yeah " myfile.cha
Please note also that this option will cause all possible occurrences of yes to be

changed. It will also change those occurrences when followed by punctuation, because
the program recognizes final punctuation as a space. By default, chstring works only on
the text and not on the dependent tiers or the headers.

CHSTRING also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.5 COLUMNS
When viewing printed versions of CHAT files, it is often helpful to have a visual dis-

play that can separate the contributions of the child from those of the other speakers. A

traditional way of doing this is to place the child’s utterances in the left column, the other
speakers’ utterances in a middle column, and commentary in the right column. In order to
reformat a CHAT file in this way, you can run the columns program. For example, if you
want to get columned output for the first five utterances in the sample file, you can use
this command:

columns +h +nCHI +z5u sample.cha

This should produce output much like this:

hey Nicky wanna [: want to] see what
other neat toy-s there are?
%spa: $INI:sel:in $RFI:tes:ve

yeah. [+ Q]
%spa: $RES:sel:ve $DES:tes:ve

you wanna [: want to] see a [*] more toy-s?
%err: a = some $LEX
%spa: $RDE:sel:non $RFI:xxx:in

yeah. [+ Q]
%spa:$RES:sel:in $DES:tes:non
%add:mot

oh # I see.
%spa: $INI:xxx:non $CR:sel:in

In this output, the child’s speech is in the left column, the mother’s is in the right,

with the dependent tiers placed under the main tiers. If you want to have the dependent
tiers placed in a separate column, you can add the +d switch, as in this command:

columns +h +d +nCHI +z5u sample.cha

which will yield this output:

hey Nicky wanna
[: want to] see what
other neat toy-s there
are?

%spa: $INI:sel:in
$RFI:tes:ve

yeah. [+ Q]
%spa: $RES:sel:ve
$DES:tes:ve

you wanna [: want to]
see a [*] more toy-s?

%err: a = some $LEX
%spa: $RDE:sel:non
$RFI:xxx:in

yeah. [+ Q]
%spa: $RES:sel:in
$DES:tes:non
%add: mot

oh # I see.
%spa: $INI:xxx:non
$CR:sel:in

You can add speaker ID codes by omitting the +h switch. You can also suppress the
comments column altogether by adding a -t switch. In order to use the space of the
omitted comments column, you can change the columns for the second speaker to the

second 36 columns by using +b40 and +c76. You can move the mother’s utterances to
the left column by using the +nMOT switch instead of +nNIC. The next example shows
these changes:

columns +nMOT -t% +z5u +b40 +c76 sample.cha

The output of this version of the command is simply:

*MOT: hey Nicky wanna [: want to] see
what other neat toy-s there are?

*CHI: yeah. [+ Q]
MOT: you wanna [: want to] see a []
more toy-s?

*CHI: yeah. [+ Q]

Finally, for those who want to see as little CHAT coding and headers as possible, it is
possible to pipe the file through FLO using a command such as the following:

flo +d sample.cha | columns +nCHI +z5u +h +b40 +c76

This command will produce this type of very simple output:

hey Nicky wanna see what other
neat toys there are ?

yeah .
you wanna see a more toys ?

yeah .
oh I see .

5.5.1 Unique Options
+b Set the column in which the second speaker's utterances should start to N,
as in +b40 to start the second speaker in the column 40.

+c Set the column in which the dependent tiers should start to N, as in +c60
to start the dependent tiers in the sixtieth column.

+d Display the dependent tiers in a separate column.

+h Do not include the tier name in the output.

+n You must always use this switch in order to tell the program which
speaker should be placed in the first column. For example, +nCHI will select the
speaker.

COLUMNS also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.6 COMPOUND
This program changes pairs of words to compounds, to guarantee more uniformity in

morphological and lexical analysis. It requires that the user create a file of potential com-
pound words in a format with each compound on a separate line, as in this example.

night+night
Chatty+baby
oh+boy

Whenever the program finds “night night” in the text, whether it be written as
“night+night”, “night night” or “night-night,” it will be changed to “night+night”.

5.7 COMBO
COMBO provides the user with ways of composing Boolean search strings to match

patterns of letters, words, or groups of words in the data files. This program is
particularly important for researchers who are interested in syntactic analysis. The search
strings are specified with either the +s/-s option or in a separate file. Use of the +s switch
is obligatory in COMBO. When learning to use COMBO, what is most tricky is learning
how to specify the correct search strings.

5.7.1 Composing Search Strings
Boolean searching uses algebraic symbols to better define words or combinations of

words to be searched for in data. COMBO uses regular expressions to define the search
pattern. These six special symbols are listed in the following table:

Table 3: COMBO Strings

Meaning Type Symbol

immediately FOLLOWED by Boolean ^
inclusive OR Boolean +
logical NOT Boolean !
repeated character metacharacter *
single character metacharacter _
quoting metacharacter \

Inserting the ^ operator between two strings causes the program to search for the first

string followed by the second string. The + operator inserted between two strings causes
the program to search for either of the two strings. In this case, it is not necessary for both
of them to match the text to have a successful match of the whole expression. Any one
match is sufficient. The ! operated inserted before a string causes the program to match a
string of text that does not contain that string.

The items of the regular expression will be matched to the items in the text only if

they directly follow one another. For example, the expression big^cat will match only
the word big directly followed by the word cat as in big cat. To find the word big
followed by the word cat immediately or otherwise, use the metacharacter * between the

items big and cat, as in big^*^cat. This expression will match, for example, big black
cat. Notice that, in this example, * ends up matching not just any string of characters, but
any string of words or characters up to the point where cat is matched. Inside a word,
such as go*, the asterisk stands for any number of characters. In the form ^*^, it stands
for any number of words. The * alone cannot be used in conjunction with the +g or +x
option.

The underscore is used to “stand in for” for any single character. If you want to match

any single word, you can use the underscore with the asterisk as in +s"_*." which will
match any single word followed by a period. For example, in the string cat., the
underscore would match c, the asterisk would match at and the period would match the
period.

The backslash (\) is used to quote either the asterisk or the underline. When you want

to search for the actual characters * and _, rather than using them as metacharacters, you
insert the \ character before them.

Using metacharacters can be quite helpful in defining search strings. Suppose you

want to search for the words weight, weighs, weighing, weighed, and weigh. You could
use the string weigh* to find all of the previously mentioned forms. Metacharacters may
be used anywhere in the search string.

When COMBO finds a match to a search string, it prints out the entire utterance in

which the search string matched, along with any previous context or following context
that had been included with the +w or -w switches. This whole area printed out is what
we will call the “window.”

5.7.2 Examples of Search Strings
The following command searches the sample.cha file and prints out the window

which contains the word “want” when it is directly followed by the word “to.”
combo +swant^to sample.cha

If you are interested not just in cases where “to” immediately follows “want,” but also
cases where it eventually follows, you can use the following command syntax:

combo +s"want^*^to" sample.cha
The next command searches the file and prints out any window that contains both

“want” and “to” in any order:
combo +s"want^to" +x sample.cha

The next command searches sample.cha and sample2.cha for the words “wonderful”
or “chalk” and prints the window that contains either word:

combo +s"wonderful+chalk" sample*.cha
The next command searches sample.cha for the word “neat” when it is not directly

followed by the words “toy” or “toy-s.” Note that you need the ^ in addition to the ! in
order to clearly specify the exact nature of the search you wish to be performed.

combo +s"neat^!toy*" sample.cha
In this next example, the COMBO program will search the text for either the word

“see” directly followed by the word “what” or all the words matching “toy*.”
combo +s"see^(what+toy*)" sample.cha

You can use parentheses in order to group the search strings unambiguously as in the

next example:
combo +s"what*^(other+that*)" sample.cha

This command causes the program to search for words matching “what” followed by
either the word “that” or the word “other.” An example of the types of strings that would
be found are: “what that,” “what’s that,” and “what other.” It will not match “what is
that” or “what do you want.” Parentheses are necessary in the command line because the
program reads the string from left to right. Parentheses are also important in the next
example.

combo +s"the^*^!grey^*^(dog+cat)" sample2.cha
This command causes the program to search the file sample2.cha for the followed,

immediately or eventually, by any word or words except grey. This combination is then
to be followed by either dog or cat. The intention of this search is to find strings like the
big dog or the boy with a cat, and not to match strings like the big grey cat. Note the use
of the parentheses in the example. Without parentheses around dog+cat, the program
would match simply cat. In this example, the sequence ^*^ is used to indicate
“immediately or later.” If we had used only the symbol ^ instead of the ^*^, we would
have matched only strings in which the word immediately following the was not grey.

5.7.3 Referring to Files in Search Strings
Inside the +s switch, one can include reference to one, two, or even more groups of

words that are listed in separate files. For example, you can look for combinations of
prepositions with articles by using this switch:

+s@preps^@arts
To use this form, you first need to create a file of prepositions called “preps” with one

preposition on each line and a file of articles called “arts” with one article on each line.
By maintaining files of words for different parts of speech or different semantic fields,
you can use COMBO to achieve a wide variety of syntactic and semantic analyses. Some
suggestions for words to be grouped into files are given in the chapter of the CHAT
manual on word lists. Some particularly easy lists to create would be those including all
the modal verbs, all the articles, or all the prepositions. When building these lists,
remember the possible existence of dialect and spelling variations such as dat for that.

5.7.4 Cluster Pairs in COMBO
Most computer search programs work on a single line at a time. If these programs

find a match on the line, they print it out and then move on. Because of the structure of
CHAT and the relation between the main line and the dependent tiers, it is more useful to
have the CLAN programs work on “clusters” instead of lines. The notion of a cluster is
particularly important for search programs, such as COMBO and KWAL. A cluster can
be defined as a single utterance by a single speaker, along with all of its dependent tiers.
By default, CLAN programs work on a single cluster at a time. For COMBO, one can
extend this search scope to a pair of contiguous clusters by using the +b switch. However,
this switch should only be used when cross-cluster matches are important, because
addition of the switch tends to slow down the running of the program.

5.7.5 Searching for Clausemates
When conducting analyses on the %syn tier, researchers often want to make sure that

the matches they locate are confined to “clausemate” constituents. Consider the following

two %syn tiers:
%syn: (S V L (O V))
%syn: (S V (S V O))

If we want to search for all subjects (S) followed by objects (O), we want to make
sure that we match only patterns of the type found in the embedded clause in the second
example. If we use a simple search pattern such as +sS^*^O", we will match the first
example as well as both clauses in the second example. In order to prevent this, we need
to add parentheses checking to our search string. The string then becomes:

+s"S^*^(!\(+!\))^*^O
This will find only subjects that are followed by objects without intervening parenthe-

ses. In order to guarantee the correct detection of parentheses, they must be surrounded
by spaces on the %syn line.

5.7.6 Tracking Final Words
In order to find the final words of utterances, you need to use the complete delimiter

set in your COMBO search string. You can do this with this syntax (\!+?+.) where the
parentheses enclose a set of alternative delimiters. In order to specify the single word that
appears before these delimiters, you can use the asterisk wildcard preceded by an
underline. Note that this use of the asterisk treats it as referring to any number of letters,
rather than any number of words. By itself, the asterisk in COMBO search strings usually
means any number of words, but when preceded by the underline, it means any number
of characters. Here is the full command:

combo +s"_*^(\!+?+.)" sample.cha
This can then be piped to FREQ if the +d3 switch is used:

combo +s"_*^(\!+?+.)" +d3 sample.cha | freq

5.7.7 Tracking Initial Words
Because there is no special character that marks the beginnings of files, it is difficult

to compose search strings to track items at utterance initial position. To solve this
problem, you can run use CHSTRING to insert sentence initial markers. A good marker
to use is the ++ symbol, which is only rarely used for other purposes. You can use this
command:

chstring +c -t@ -t% +t* *.cha
You also need to have a file called changes.cut that has this one line:

": " ": ++"
In this one-line file, there are two quoted strings. The first has a colon followed by a tab;
the second has a colon followed by a tab and then a double plus.

5.7.8 Adding Excluded Characters
COMBO strings have no facility for excluding a particular set of words. However,

you can achieve this same effect by (1) matching a pattern, (2) outputting the matches in
CHAT format, (3) altering unwanted matches so they will not rematch, and (4) then
rematching with the original search string. Here is an example:

combo +s"*ing*" +d input.cha | chstring +c +d -f | combo +s"*ing*"
The goal of this analysis is to match only words ending in participial ing. First, COMBO
matches all words ending in ing. Then CHSTRING takes a list of unwanted words that
end in ing like during and thing and changes the ing in these words to iing, for example.
Then COMBO runs again and matches only the desired participial forms.

5.7.9 Limiting with COMBO
Often researchers want to limit their analysis to some particular group of utterances.

CLAN provides the user with a series of switches within each program for doing the sim-
plest types of limiting. For example, the +t/-t switch allows the user to include or exclude
whole tiers. However, sometimes these simple mechanisms are not sufficient and the user
will have to use COMBO or KWAL for more detailed control of limiting. COMBO is the
most powerful program for limiting, because it has the most versatile methods for string
search using the +s switch. Here is an illustration. Suppose that, in sample.cha, you want
to find the frequency count of all the speech act codes associated with the speaker *MOT
when this speaker used the phrase “want to” in an utterance. To accomplish this analysis,
use this command:

combo +t*MOT +t%spa sample.cha +s"want^to" +d | freq
The +t*MOT switch (Unix users should add double quotes for +t"*MOT") tells the

program to select only the main lines associated with the speaker *MOT. The +t%spa
tells the program to add the %spa tier to the *MOT main speaker tiers. By default, the
dependent tiers are excluded from the analysis. Then follows the file name, which can
appear anywhere after the program name. The +s"want^to" then tells the program to
select only the *MOT clusters that contain the phrase want to. The +d option tells the
program to output the matching clusters from sample.cha without any non-CHAT
identification information. Then the results are sent through a “pipe” indicated by the |
symbol to the FREQ program, which conducts an analysis on the main line. The results
could also be piped on to other programs such as MLU or KEYMAP or they can be
stored in files.

Sometimes researchers want to maintain a copy of their data that is stripped of the

various coding tiers. This can be done by this command:
combo +s* +o@ -t% +f *.cha

The +o switch controls the addition of the header material that would otherwise be
excluded from the output and the -t switch controls the deletion of the dependent tiers. It
is also possible to include or exclude individual speakers or dependent tiers by providing
additional +t or -t switches. The best way to understand the use of limiting for controlling
data display is to try the various options on a small sample file.

5.7.10 Adding Codes with COMBO
Often researchers leave a mark in a transcript indicating that a certain sentence has

matched some search pattern. For example, imagine that you want to locate all sentences
with a preposition followed immediately by the word “the” and then tag these sentences
in some way. You can use the COMBO +d4 switch to do this. First, you would create a
file with all the prepositions (one on each line) and call it something like prep.cut. Then
you would create a second support file with this line:

"@prep.cut^the" "$Pthe" "%cod:"
The first string in this line gives the term used by the standard +s search switch. The
second string says that the code produced will bye $Pthe. The third string says that this
code should be placed on a %cod line under the utterance that is matched. If there is no
%cod line there yet, one will be created. The COMBO command that uses this
information would then be:

combo +s"@combo.cut" +d4 filename.cha

The resulting file will have this line added:
%cod: $Pthe

You can include as many lines as you wish in the combo.cut file to control the addition of
additional codes and additional coding lines. Once you are done with this, you can use
these new codes to control better inclusion and exclusion of utterances and other types of
searches.

5.7.11 Unique Options
+b COMBO usually works on only one cluster at a time. However, when you
want to look at a contiguous pair of clusters, you can use this switch.

+d Normally, COMBO outputs the location of the tier where the match
occurs. When the +d switch is turned on you can output only each matched
sentence in a simple legal CHAT format. The +d1 switch outputs legal CHAT
format along with line numbers and file names. The +d2 switch outputs files
names once per file only. The +d3 switch outputs legal CHAT format, but with
only the actual words matched by the search string, along with @Comment
headers that are ignored by other programs. Try these commands:

combo +s"want^to" sample.cha
combo +s"want^to" +d sample.cha
combo +s"want^to" +d1 sample.cha | freq
combo +d2 +s"_*^." sample.cha | freq

 This final command provides a useful way of searching for utterance final
words and tabulating their frequency. The use of the +d4 switch was described
in the previous section.

+g COMBO can operate in either string-oriented or word-oriented mode. The
default mode is word-oriented. COMBO can be converted to a string-oriented
program by using the +g option. Word-oriented search assumes that the string of
characters requested in the search string is surrounded by spaces or other word
delimiting characters. The string-oriented search does not make this assumption.
It sees a string of characters simply as a string of characters. In most cases, there
is no need to use this switch, because the default word-oriented mode is usually
more useful.

The interpretation of metacharacters varies depending on the search mode. In
word-oriented mode, an expression with the asterisk metacharacter, such as
air*^plane, will match air plane as well as airpline plane or airy plane. It will
not match airplane because, in word-oriented mode, the program expects to find
two words. It will not match air in the plane because the text is broken into
words by assuming that all adjacent nonspace characters are part of the same
word, and a space marks the end of that word. You can think of the search string
air as a signal for the computer to search for the expressions: _air_, _air.,
air?, air!, and so forth, where the underline indicates a space.
 The same expression air*^plane in the string-oriented search will
match airline plane, airy plane, air in the plane or airplane. They will all be
found because the search string, in this case, specifies the string consisting of
the letters “a,” “i,” and “r”, followed by any number of characters, followed by

the string “p,” “l,” “a,” “n,” and “e.” In string-oriented search, the expression
(air^plane) will match airplane but not air plane because no space character
was specified in the search string. In general, the string-oriented mode is not as
useful as the word-oriented mode. One of the few cases when this mode is
useful is when you want to find all but some given forms. For example if you
are looking for all the forms of the verb kick except the ing form, you can use
the expression “kick*^! ^!ing” and the +g switch.

+o The +t switch is used to control the addition or deletion of particular tiers
or lines from the input and the output to COMBO. In some cases, you may want
to include a tier in the output that is not being included in the input. This
typically happens when you want to match a string in only one dependent tier,
such as the %mor tier, but you want all tiers to be included in the output. In
order to do this you would use a command of the following shape:

combo +t%mor +s"*ALL" +o% sample2.cha

+s This option is obligatory for COMBO. It is used to specify a regular
expression to search for in a given data line(s). This option should be
immediately followed by the regular expression itself. The rules for forming a
regular expression are discussed in detail earlier in this section.

+t Particular dependent tiers can be included or excluded by using the +t
option immediately followed by the tier code. By default, COMBO excludes the
header and dependent code tiers from the search and output. However, when the
dependent code tiers are included by using the +t option, they are combined
with their speaker tiers into clusters. For example, if the search expression is
the^*^kitten, the match would be found even if the is on the speaker tier and
kitten is on one of the speaker’s associated dependent tiers. This feature is useful
if one wants to select for analyses only speaker tiers that contain specific
word(s) on the main tier and some specific codes on the dependent code tier.
For example, if one wants to produce a frequency count of the words want and
to when either one of them is coded as an imitation on the %spa line, or neat
when it is a continuation on the %spa line, the following two commands could
be used:

combo +s(want^to^*^%spa:^*^$INI*)+(neat^*^%spa:^*^$CON*)
+t%spa +f +d sample.cha

freq +swant +sto +sneat sample.cmb
 In this example, the +s option specifies that the words want, to, and $INI
may occur in any order on the selected tiers. The +t%spa option must be added
in order to allow the program to look at the %spa tier when searching for a
match. The +d option is used to specify that the information produced by the
program, such as file name, line number and exact position of words on the tier,
should be excluded from the output. This way the output is in a legal CHAT
format and can be used as an input to another CLAN program, FREQ in this
case. The same effect could also be obtained by using the piping feature, which
is discussed in the section on FREQ on page 76.

+x COMBO searches are sequential. If you specify the expression dog^cat,

the program will match only the word “dog” directly followed by the word
“cat”. If you want to find clusters that contain both of these words, in any order,
you need to use the +x option. This option allows the program to find the
expressions in both the original order and in reverse order. Thus, to find a
combination of “want” and “to” anywhere and in any order, you use this
command:

combo +swant^to +x sample.cha
COMBO also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found on page 132.

5.8 COOCUR
The COOCCUR program tabulates co-occurences of words. This is helpful for

analyzing syntactic clusters. By default, the cluster length is two words, but you can reset
this value just by inserting any integer up to 20 immediately after the +n option. The
second word of the initial cluster will become the first word of the following cluster, and
so on.

cooccur +t*MOT +n3 sample.cha +f
The +t*MOT switch tells the program to select only the *MOT main speaker tiers.

The header and dependent code tiers are excluded by default. The +n3 option tells the
program to combine three words into a word cluster. The program will then go through
all of *MOT main speaker tiers in the sample.cha file, three words at a time. When
COOCCUR reaches the end of an utterance, it marks the end of a cluster, so that no
clusters are broken across speakers or across utterances. Co-ocurrences of codes on the
%mor line can be searched using commands such as this example:

cooccur +t%mor -t* +s*def sample2.cha

5.8.1 Unique Options
+d Strip the numbers from the output data that indicate how often a particular
cluster occurred.

+n Set cluster length to a particular number. For example, +n3 will set cluster
length to 3.

+s Select either a word or a file of words with @filename to search for.

COOCCUR also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.9 DATES
The DATES program takes two time values and computes the third. It can take the

child’s age and the current date and compute the child’s date of birth. It can take the date
of birth and the current date to compute the child’s age. Or it can take the child’s age and
the date of birth to compute the current date. For example, if you type:

dates +a 2;3.1 +b 12-jan-1962

you should get the following output:

@Age of Child: 2;3.1
@Birth of Child: 12-JAN-1962
@Date: 13-APR-1964

5.9.1 Unique Options
+a Following this switch, after an intervening space, you can provide the
child’s age in CHAT format.

+b Following this switch, after an intervening space, you can provide the
child’s birth date in day-month-year format.

+d Following this switch, after an intervening space, you can provide the
current date or the date of the file you are analyzing in day-month-year format.

DATES also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found on page 132.

5.10 DIST
This program produces a listing of the average distances between words or codes in a

file. DIST computes how many utterances exist between occurrences of a specified key
word or code. The following example demonstrates a use of the DIST program.

dist +t%spa -t* +b: sample.cha
This command line tells the program to look at the %spa tiers in the file sample.cha

for codes containing the : symbol. It then does a frequency count of each of these codes,
as a group, and counts the number of turns between occurrences. The -t* option causes
the program to ignore data from the main speaker tiers.

5.10.1 Unique Options

+b This option allows you to specify a special character after the +b. This
character is something like the colon that you have chosen to use to divide some
complex code into its component parts. For example, you might designate a
word as a noun on the dependent tier then further designate that word as a
pronoun by placing a code on the dependent tier such as $NOU:pro. The
program would analyze each element of the complex code individually and as a
class. For the example cited earlier, the program would show the distance
between those items marked with a $NOU (a larger class of words) and show
the distance between those items marked with $NOU:pro as a subset of the

larger set. The +b option for the example would look like this with a colon
following the +b:

dist +b: sample.cha
+d Output data in a form suitable for statistical analysis.

+g Including this switch in the command line causes the program to count
only one occurrence of each word for each utterance. So multiple occurrences of
a word or code will count as one occurrence.

+o This option allows you to consider only words that contain the character
specified by the b option, rather than all codes in addition to those containing
your special character.

DIST also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.11 DSS
This program is designed to provide an automatic computation of the Developmental

Sentence Score (DSS) of Lee (1974). This score is based on the assignment of scores for
a variety of syntactic, morphological, and lexical structures across eight grammatical do-
mains. The current version of dss is preliminary and incomplete. A fully automatic com-
putation of the DSS will be possible only when we complete work on the pars program.
Until this additional work is finished, automatic computation of DSS must be carefully
supplemented by manual correction of the automatically computed profile.

5.11.1 CHAT File Format Requirements
For DSS to run correctly on a file, the following CHAT conventions must be

followed:
1. All utterances must have delimiters, and imperatives must end with an

exclamation mark.
2. Incomplete or interrupted utterances must end either with the +... or the +/.

codes.
3. Only the pronoun I and the first letter of proper nouns should be uppercase.
4. Utterances that contain a noun and a verb in a subject-predicate relation in an

unusual word order must contain a [dss] code after the utterance delimiter.
5. DSS automatically excludes any child utterances that are imitations of the

immediately preceding adult utterance. If, however, the analyst feels that there
are additional child utterances that are imitations and should be excluded from
the analysis, the [+ imit] postcode must be included for these utterances.

5.11.2 Selection of a 50-sentence Corpus
DSS scores are based on analysis of a corpus of 50 sentences. The dss program is de-

signed to extract a set of 50 sentences from a language sample using Lee’s six inclusion
criteria.

1. The corpus should contain 50 complete sentences. A sentence is considered
complete if it has a noun and a verb in the subject-predicate relationship.
Imperatives such as “Look!” also are included. Imperative sentences must have
end with an exclamation mark. Immature sentences containing word order
reversals such as “car a garage come out” or “hit a finger hammer Daddy” also
should be included. However, these sentences must contain the [dss] code after
the utterance delimiter on the main tier to be included in the analysis.

2. The speech sample must be a block of consecutive sentences. To be
representative, the sentences constituting the corpora must occur consecutively
in a block, ignoring incomplete utterances. The analyst may use his or her
discretion as to which block of sentences are the most representative. The DSS
program automatically includes the first 50 consecutive sentences in the
transcript. To start the analysis at another point, use the +z switch, perhaps in
combination with KWAL and piping to DSS.

3. All sentences in the language sample must be different. Only unique child
sentences will be included in the corpora. Thus, DSS automatically analyzes
each sentence and excludes any repeated sentences .

4. Unintelligible sentences should be excluded from the corpus. The DSS pro-
gram automatically excludes any sentences containing unintelligible segments.
Thus, any sentence containing xxx, xx, yyy, and yy codes on the main tier will
be excluded from the analysis.

5. Echoed sentences should be excluded from the corpus. Any sentence that is
a repetition of the adult’s preceding sentence is automatically excluded.
Additionally, sentences containing a [+ imit] post-code also may be excluded
by using the -s option.

6. Incomplete sentences should be excluded. Any sentence which has the +... or
the +/. sentence delimiters, indicating that they were either incomplete or
interrupted, will not be included in the analysis.

7. DSS analysis can only be used if at least 50% of the utterances are
complete sentences as defined by Lee. If fewer than 50% of the sentences are
complete sentences, then the Developmental Sentence Type analysis (DST) is
appropriate instead.

5.11.3 Automatic Calculation of DSS
In order to compute DSS, the user must first complete a morphological analysis of the

file using the MOR program with the +c option. After completing the MOR analysis, the
%mor line should be disambiguated using POST.

Once the disambiguated %mor is created, the user can run DSS to compute the

Developmental Sentence Analysis. The DSS program has two modes: automatic and
interactive. The automatic mode generates a DSS table without a final Developmental
Sentence Score. The use of the +e option invokes the automatic mode. A basic automatic

DSS command has this shape:
dss +b*CHI +e sample.mor

5.11.4 Interactive Calculation
In the interactive mode, DSS analyzes each sentence in the corpora and then allows

the user to add additional sentence points or attempt marks where appropriate. An
additional sentence point is assigned to each sentence if it “meets all the adult standard
rules” (Lee, p. 137). Sentence points also should be withheld for errors outside the eight
categories analyzed by DSS, such as errors in the use of articles, prepositions, plural and
possessive markers, and word-order changes. In addition, sentence points should be
withheld for semantic errors including neologisms such as “sitting-thing” for “chair” or
“letterman” for “mailman” (Lee, p. 137).

Grammatical category points should be assigned only to those structures that meet all

of Lee’s requirements. If a grammatical structure is attempted but produced incorrectly
then attempt marks should be inserted in the place of a numerical score. When using the
interactive mode, the DSS program displays each sentence and asks the user to determine
if it should or should not receive the additional sentence point and allows the user the op-
portunity to add attempt marks or edit the scoring. When assigning the sentence point, the
user can assign a point by typing p, can assign no sentence point by typing n, or can
modify the point values for each of the categories by typing e and then typing p or n.

It is also possible to modify the points given for each category. Here is an example of

a display of category points:
Sentence |IP |PP |PV |SV |NG |CNJ|IR |WHQ|

what this say. | 1 | | | | | | | 2 |
To edit this display, you should type the name of the column and a plus or minus with a
number for how you want the score raised or lowered. For example, if you wish to raise
the IP column by 2 points, you type: ip+2. Adding attempt marks is done in a similar
fashion. To add the “-” attempt mark to primary verbs you type: pv+0. To remove the “-
” attempt marker from primary verbs, you type pv-0.

For example, in the sentence “what this say” the user might want to add attempt
markers to both the primary verb (PV) and the interrogative reversal (IR) categories
indicating the nature of the grammatical errors. To add an attempt mark for the primary
verb category, the user would type: pv+0 and get the following changes:

Sentence |IP |PP |PV |SV |NG |CNJ|IR |WHQ|
what this say. | 1 | | - | | | | | 2 |

To add an attempt mark for the interrogative reversal category the user would type ir+0,
which would produce:

Sentence |IP |PP |PV |SV |NG |CNJ|IR |WHQ|
what this say. | 1 | | - | | | | - | 2 |

The DSS program allows the user to make multiple changes simultaneously. There
should be no spaces between the ir the + and the 0. This interactive component also
enables users to add or subtract point values from grammatical categories in the same
way as adding or removing attempt marks.

Warning: The automatic form of DSS is unable to correctly assign points for the fol-

lowing three forms. If these forms are present, they would have to be scored using
interactive DSS after use of automatic DSS.

1. The pronominal use of “one” as in “One should not worry about one’s life.”

These constructions should receive 7 points as personal pronouns.
2. The distinction between non-complementing infinitive structures (e.g,. I stopped

to play) which receives 3 points as secondary verb and later infinitival comple-
ment structures (e.g., I had to go), which receive 5 points as secondary verbs.
When these constructions occur in the analysis the DSS program presents both
the 3 and the 5 point value, and the user needs to differentiate these.

3. Wh-questions with embedded clauses that do not contain a conjunction (e.g.,
Why did the man we saw yesterday call you?) in contrast to those where the em-
bedded clause is marked with a conjunction (e.g., What did the man that we saw
yesterday say to you?).

5.11.5 DSS Output
Once all 50 sentences have been assigned sentence points, the DSS program

automatically generates a table. For both the automatic and interactive modes, each
sentence is displayed on the left hand column of the table with the corresponding point
values. For the interactive mode, the attempt markers for each grammatical category,
sentence point assignments, and the DSS score also are displayed. The Developmental
Sentence Score is calculated by dividing the sum of the total values for each sentence by
the number of sentences in the analysis.

The output of the table has specifically been designed for users to determine “at a

glance” areas of strength and weakness for the individual child for these eight
grammatical categories. The low points values for both the indefinite and personal
pronoun (IP, PP) categories in the table below indicate that this child used earlier
developing forms exclusively. In addition, the attempt mark for the primary verb (PV)
and interrogative reversal (IR) categories suggest possible difficulties in question
formulation.

Sentence |IP |PP |PV |SV |NG |CNJ|IR |WHQ|S|TOT|
I like this. | 1 | 1 | 1 | | | | | |1| 4|
I like that. | 1 | 1 | 1 | | | | | |1| 4|
I want hot dog. | | 1 | 1 | | | | | |0| 2|
I like it . | 1 | 1 | 1 | | | | | |1| 4|
what this say. | 1 | | - | | | | - | 2 |0| 3|

Developmental Sentence Score: 4.2

5.11.6 DSS Summary
DSS has been designed to adhere as strictly as possible to the criteria for both

sentence selection and scoring outlined by Lee. The goal is the calculation of DSS scores
based upon Lee’s (1974) criteria, as outlined below. The numbers indicate the scores
assigned for each type of usage.

Indefinite Pronouns (IP)

1 it, this, that
3 no, some, more, all, lot(s), one(s), two (etc.), other(s), another,

something, somebody, someone
4 nothing, nobody, none, no one
7 any, anything, anybody, anyone,
 every, everything, everybody, everyone,
 both, few, many, each, several, most, least, last, second, third (etc.)

Personal Pronouns (PP)
1 1st and 2nd person: I, me, my, mine, your(s)
2 3rd person: he, him, his, she, her(s)
3 plurals: we, us, our(s) they, them, their, these, those
5 reflexives: myself, yourself, himself, herself, itself, themselves,

ourselves
6 Wh-pronouns: who, which, whose, whom, what,, how much
 Wh-word + infinitive: I know what to do, I know who(m) to take.
7 (his) own, one, oneself, whichever, whoever, whatever

Main Verb (MV)
1 uninflected verb
 copula, is or ’s
 is + verb + ing
 2 -s and -ed
 irregular past
 copula am, are, was, were\
 auxiliary am, are, was, were
4 can, will may + verb
 obligatory do + verb
 emphatic do + verb
6 could, would, should, might + verb
 obligatory does, did + verb
 emphatic does, did +verb
7 passive including with get and be
 must, shall + verb
 have + verb + en
 have got
8 have been + verb + ing, had been + verb + ing
 modal + have + verb + en
 modal + be + verb + ing
 other auxiliary combinations (e.g., should have been sleeping)

Secondary Verbs (SV)
2 five early developing infinitives
 I wanna see, I’m gonna see, I gotta see, Lemme see, Let’s play
3 noncomplementing infinitives: I stopped to play
4 participle, present or past: I see a boy running

5 early infinitives with differing subjects in basic sentences:
 I want you to come
 later infinitival complements: I had to go
 obligatory deletions: Make it [to] go
 infinitive with wh-word: I know what to get
7 passive infinitive with get: I have to get dressed
 with be: I want to be pulled.
8 gerund: Swinging is fun.

Negative (NG)
1 it, this, that + copula or auxiliary is, ’s + not: It’s not mine.
 This is not a dog.
4 can’t don’t
5 isn’t won’t
7 uncontracted negatives
 pronoun-auxiliary or pronoun-copula contraction
 auxiliary-negative or copula-negative contraction

Conjunction (CNJ)
3 and
5 but, so, and so, so that, or, if
8 where, when, how, while, whether, (or not), till, until, unless,

since,
 before, after, for, as, as + adjective + as, as if, like, that, than
 obligatory deletions: I run faster than you [run].
 elliptical deletions (score 0)
 wh-words + infinitive: I know how to do it.

Interrogative Reversal (IR)
1 reversal of copula: isn’t it red?
4 reversal of auxiliary be: Is he coming?
6 obligatory -do, -does, -did Do they run?
 reversal of modal: Can you play?
 tag questions: It’s fun isn’t it?
8 reversal of auxiliary have: Has he seen you?
 reversal with two or three auxiliaries: Has he been eating?

Wh-question (WHQ)
2 who, what, what + noun
 where, how many, how much, what....do, what....for
5 when, how, how + adjective
7 why, what it, how come, how about + gerund
8 whose, which, which + noun

5.11.7 Unique Options
+b Designate which speaker to be analyzed.

+c Determine the number of sentences to be included in analysis. The default
for this option is 50 sentences. These sentences must contain both a subject and
a verb, be intelligible, and be unique and non-imitative. A strict criteria is used
in the development of the corpora. Any sentences containing xxx yyy and www
codes will be excluded from the corpora.

+e Automatically generate a DSS table.

+s This switch has specific usage with DSS. To include sentences marked
with the [dss] code, the following option should be included on the command
line: +s"[dss]". To exclude sentences with the [+ imit] postcode, the user should
include the following option on the command line: -s"<+ imit>". These are the
only two uses for the +s/-s option.

5.12 FLO
The FLO program creates a simplified version of a main CHAT line. This simplified

version strips out markers of retracing, overlaps, errors, and all forms of main line
coding. The only unique option in FLO is +d, which replaces the main line, instead of
just adding a %flo tier.

FLO also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.13 FREQ
One of the most powerful programs in clan is the freq program for frequency anal-

ysis. It is also one of the easiest programs to use and a good program to start with when
learning to use clan. The freq program constructs a frequency word count for user-
specified files. A frequency word count is the calculation of the number of times a word,
as delimited by a punctuation set, occurs in a file or set of files. The freq program
produces a list of all the words used in the file, along with their frequency counts, and
calculates a type–token ratio. The type–token ratio is found by calculating the total
number of unique words used by a selected speaker (or speakers) and dividing that
number by the total number of words used by the same speaker(s). It is generally used as
a rough measure of lexical diversity. Of course, the type–token ratio can only be used to
compare samples of equivalent size, because, as sample size increases, the increase in the
number of types starts to level off.

5.13.1 What FREQ Ignores
The CHAT manual specifies two special symbols that are used when transcribing dif-

ficult material. The xxx symbol is used to indicate unintelligible speech and the www
symbol is used to indicate speech that is untranscribable for technical reasons. The FREQ
program ignores these symbols by default. Also excluded are all the words beginning
with one of the following characters: 0, &, +, -, #. If you wish to include them in your

analyses, list them, along with other words you are searching for, in a file and use the +s/-
s option to specify them on the command line. The FREQ program also ignores header
and code tiers by default. Use the +t option if you want to include headers or coding tiers.

5.13.2 Studying Lexical Groups
The easiest way of using freq is to simply ask it to give a complete frequency count

for all the words in a transcript. However, freq can also be used to study the development
and use of particular lexical groups. If you are interested, for example, in how children
use personal pronouns between the ages of 2 and 3 years, a frequency count of these
forms would be helpful. Other lexical groups that might be interesting to track could be
the set of all conjunctions, all prepositions, all morality words, names of foods, and so on.
In order to get a listing of the frequencies of such words, you need to put all the words
you want to track into a text file and then use the +s switch with the name of the file
preceded by the @ sign, as in this example:

freq +s@articles.cut +f sample.cha
This command would conduct a frequency analysis on all the articles that you have

put in the file called articles.cut.

5.13.3 Using Wildcards with FREQ
Some of the most powerful uses of freq involve the use of wildcards. Wildcards are

particularly useful when you want to analyze the frequencies for various codes that you
have entered into coding lines. Here is an example of the use of wildcards with codes.
One line of Hungarian data in sample2.cha has been coded on the %mor line for syntactic
role and part of speech, as described in the CHAT manual. It includes these codes:
N:A|duck-ACC, N:I|plane-ACC, N:I|grape-ALL, and N:A|baby-ALL, where the suffixes
mark accusative and illative cases and N:A and N:I indicate animate and inanimate
nouns. If you want to obtain a frequency count of all the animate nouns (N:A) that occur
in this file, use this command line:

freq +t%mor +s"N:A|*" sample2.cha
The output of this command will be:
1 n:a|baby-all
1 n:a|ball-acc
1 n:a|duck-acc

Note that material after the +s switch is enclosed in double quotation marks to
guarantee that wildcards will be correctly interpreted. For Macintosh and Windows, the
double quotes are the best way of guaranteeing that a string is correctly interpreted. On
Unix, double quotes can also be used. However, in Unix, single quotes are necessary
when the search string contains a $ sign.

The next examples give additional search strings with asterisks and the output they

will yield when run on the sample file. Note that what may appear to be a single
underline in the second example is actually two underline characters.

String Output

*-acc 1 n:a|ball-acc
 1 n:a|duck-acc

 1 n:i|plane-acc

*-a__ 1 n:a|baby-all
 1 n:a|ball-acc
 1 n:a|duck-acc
 1 n:i|grape-all
 1 n:i|plane-acc

N:*|*-all 1 N:A|baby-all
 1 N:I|grape-all

These examples show the use of the asterisk as a wildcard. When the asterisk is used,
FREQ gives a full output of each of the specific code types that match.

If you do not want to see the specific instances of the matches, you can use the
percentage wildcard, as in the following examples:

String Output

N:A|% 3 N:A|
%-ACC 3 -ACC
%-A__ 3 -ACC
 2 -ALL
N:%|%-ACC 3 N:|-ACC
N:%|% 5 N:|

It is also possible to combine the use of the two types of wildcards, as in these
examples:

String Output

N:%|*-ACC 1 N:|ball-acc
 1 N:|duck-acc
 1 N:|plane-acc
N:*|% 3 N:A|
 2 N:I|

Researchers have also made extensive use of FREQ to tabulate speech act and
interactional codes. Often such codes are constructed using a taxonomic hierarchy. For
example, a code like $NIA:RP:NV has a three-level hierarchy. In the INCA-A system
discussed in the chapter on speech act coding in the CHAT manual, the first level codes
the interchange type; the second level codes the speech act or illocutionary force type;
and the third level codes the nature of the communicative channel. As in the case of the
morphological example cited earlier, one could use wildcards in the +s string to analyze
at different levels. The following examples show what the different wildcards will
produce when analyzing the %spa tier. The basic command here is:

freq +s"$*" +t%spa sample.cha

String Output
$* frequencies of all the three-level

codes in the %spa tier

$*:% frequencies of the interchange types

$%:*:% frequencies of the speech act codes

$RES:*: % frequencies of speech acts within the
RES category

$*:sel:% frequencies of the interchange types that have SEL
speech acts

If some of the codes have only two levels rather than the complete set of three levels,

you need to use an additional % sign in the +s switch. Thus the switch
+s"$%:*:%%"

will find all speech act codes, including both those with the third level coded and those
with only two levels coded.

5.13.4 Directing the Output of FREQ
When FREQ is run on a single file, output can be directed to an output file by using

the +f option:
freq +f sample.cha

This results in the output being sent to sample.frq.cex. If you wish, you may specify a file
extension other than .frq.cex for the output file. For example, to have the output sent to a
file with the extension .mot.cex, you would specify:

freq +fmot sample.cha
Suppose, however, that you are using FREQ to produce output on a group of files

rather than on a single file. The following command will produce a separate output file
for each .cha file in the current directory:

freq +f *.cha
To specify that the frequency analysis for each of these files be computed separately

but stored in a single file, you must use the redirect symbol (>) and specify the name of
the output file. For example:

freq *.cha > freq.all
This command will maintain the separate frequency analyses for each file separately and
store them all in a single file called freq.all. If there is already material in the freq.all file,
you may want to append the new material to the end of the old material. In this case, you
should use the form:

freq *.cha >> freq.all
Sometimes, however, researchers want to treat a whole group of files as a single data-

base. To derive a single frequency count for all the .cha files, you need to use the +u
option:

freq +u *.cha
Again, you may use the redirect feature to specify the name of the output file, as in the
following:

freq +u *.cha > freq.all

5.13.5 Limiting in FREQ
An important analytic technique available in clan is the process of “limiting” which

allows you to focus your analysis on the part of your data files that is relevant by
excluding all other sections. Limiting is based on use of the +s, +t, and +z switches.
Limiting is available in most of the clan string search programs, but cannot be done
within special purpose programs such as chstrinG or check.

1. Limiting by including or excluding dependent tiers. Limiting can be used to

select out particular dependent tiers. By using the +t and -t options, you can
choose to include certain dependent tiers and ignore others. For example, if you
select a particular main speaker tier, you will be able to choose the dependent
tiers of only that particular speaker. Each type of tier has to be specifically se-
lected by the user, otherwise the programs follow their default conditions for se-
lecting tiers.

2. Limiting by including or excluding main tiers. When the -t* option is com-
bined with a switch like +t*MOT, limiting first narrows the search to the utter-
ances by MOT and then further excludes the main lines spoken by MOT. This
switch functions in a different way from -t*CHI, which will simply exclude all of
the utterances of CHI and the associated dependent tiers.

3. Limiting by including or excluding sequential regions of lines or words. The
next level of limiting is performed when the +z option is used. At this level only
the specified data region is chosen out of all the selected tiers.

4. Limiting by string inclusion and exclusion. The +s/-s options limit the data that
is passed on to subsequent programs.

Here is an example of the combined use of the above four limiting techniques. There

are two speakers, *CHI and *MOT, in sample.cha. Suppose you want to create a
frequency count of all variations of the $ini codes found on the %spa dependent tiers of
*CHI only in the first 20 utterances. This analysis is accomplished by using this
command:

freq +t*CHI +t%spa +s"$INI*" -t* +z20u sample.cha
The +t*CHI switch tells the program to select the main and dependent tiers associated

only with the speaker *CHI. The +t%spa tells the program to further narrow the selection.
It limits the analysis to the %spa dependent tiers and the *CHI main speaker tiers. The -t*
option signals the program to eliminate data found on the main speaker tier for NIC from
the analysis. The +s option tells the program to eliminate all the words that do not match
the $INI* string from the analysis. Quotes are needed for this particular +s switch in
order to guarantee correct interpretation of the asterisk. In general, it is safest to always
use pairs of double quotes with the +s switch. The +z20u option tells the program to look
at only the first 20 utterances. Now the FREQ program can perform the desired analysis.
This command line will send the output to the screen only. You must use the +f option if
you want it sent to a file. By default, the header tiers are excluded from the analysis.

5.13.6 TTR for Lemmas
If you run FREQ on the data on the main speaker tier, you will get a type-token ratio

that is grounded on whole word forms, rather than lemmas. For example, “run,” “runs,”
and “running” will all be treated as separate types. If you want to treat all forms of the
lemma “run” as a single type, you should run the file through MOR and POST to get a
disambiguated %mor line. Then you can run FREQ in a form such as this to get a

lemma-based TTR.
freq -t* +t%mor +s"*\|*-%" +s"*\|*" sample.mor.pst

Depending on the shape of your morphological forms, you may need to add some
additional +s switches to this sample command.

5.13.7 Studying Unique Words and Shared Words
With a few simple manipulations, FREQ can be used to study the extent to which

words are shared between the parents and the child. For example, we may be interested in
understanding the nature of words that are used by the child and not used by the mother
as a way of understanding the ways in which the child’s social and conceptual world is
structured by forces outside of the immediate family. In order to isolate shared and
unique words, you can go through three steps. To illustrate these steps, we will use the
sample.cha file.

1. Run freq on the child’s and the mother’s utterances using these two commands:

freq +d1 +t*MOT +f sample.cha
freq +d1 +t*CHI +f sample.cha

 The first command will produce a sample.frq.cex file with the mother’s words
and the second will produce a sample.fr0.cex file with the child’s words.

2. Next you should run freq on the output files:
freq +y +o +u sample.f*

 The output of these commands is a list of words with frequencies that are either 1
or 2. All words with frequencies of 2 are shared between the two files and all
words with frequencies of 1 are unique to either the mother or the child.

3. In order to determine whether a word is unique to the child or the mother, you
can run the previous command through a second filter that uses the COMBO
program. All words with frequencies of 2 are unique to the mother. The words
with frequencies of 1 are unique to the child. Commands that automate this pro-
cedure are:

freq +y +o +u sample.f* | combo +y +s"2" +d | freq +y +d1 >
shared.frq

freq +y +o +u *.frq

 The first command has three parts. The first FREQ segment tags all shared words
as having a frequency of 2 and all non-shared words as having a frequency of 1.
The COMBO segment extracts the shared words. The second FREQ segment
strips off the numbers and writes to a file. Then you compare this file with your
other files from the mother using a variant of the command given in the second
step. In the output from this final command, words with a frequency of 2 are
shared and words with a frequency of 1 are unique to the mother. A parallel
analysis can be conducted to determine the words unique to the child. This same
procedure can be run on collections of files in which both speakers participate, as
long as the speaker ID codes are consistent.

5.13.8 Unique Options
+c Find capitalized words only.

+d Perform a particular level of data analysis. By default the output consists

of all selected words found in the input data file(s) and their corresponding
frequencies. The +d option can be used to change the output format. Try these
commands:

freq sample.cha +d0
freq sample.cha +d1
freq sample.cha +d2 +t@ID=eng|samp|*

 Each of these three commands produces a different output.

+d0 When the +d0 option is used, the output consists of all selected words
found in the input data file(s), their corresponding frequencies, and line numbers
where each word is located in the file.

+d1 This option outputs each of the words found in the input data file(s) one
word per line with no further information about frequency. Later this output
could be used as a word list file for KWAL or COMBO programs to locate the
context in which those words or codes are used.

+d2 With this option, the output is sent to a file in a very specific form that is
useful for input to STATFREQ. This option also creates a stat.out file to keep
track of multiple .frq.cex output files. You do not need to use the +f option with
+d2, because this is assumed. Note that you must include a +t specification in
order to tell the +d2 option which speaker to track for the STATFREQ analysis.
You can provide this specification either in the @ID form or in the +t*CHI
form. For further discussion of the @ID codes, see the section on STATFREQ
on page124.

+d3 This output is essentially the same as that for +d2, but with only the
statistics on types, tokens, and the type–token ratio. This option also creates a
“stat.out” file to keep track of multiple .frq.cex output files. Word frequencies
are not placed into the output. You do not need to use the +f option with +d3,
since this is assumed.

+d4 This switch allows you to output just the type–token information.

+o Normally, the output from FREQ is sorted alphabetically. This option can
be used to sort the output in descending frequency. The +o1 level will sort to
create a reverse concordance.

FREQ also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.14 FREQMERG
If you have collected a large number of freq output files and you want to merge these

counts together, you can use freqmerg to combine the outputs of several runs of the freq
program. For example, you could run this command:

freq sample*.cha +f
This would create sample.frq.cex and sample2.frq.cex. Then you could merge these two
counts using this command:

freqmerg *.frq.cex
The only option that is unique to freqmerg is +o, which allows you to search for a

specific word on the main speaker tier. To search for a file that contains a set of words
use the form +o@filename.

FREQMERG also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.15 FREQPOS
The freqpos program is a minor variant of freq. What is different about freqpos is the

fact that it allows the user to track the frequencies of words in initial, final, and second
position in the utterance. This can be useful in studies of early child syntax. For example,
using freqpos on the main line, one can track the use of initial pronouns or auxiliaries.
For open class items like verbs, one can use freqpos to analyze codes on the %mor line.
This would allow one to study, for example, the appearance of verbs in second position,
initial position, final position, and other positions.

To illustrate the running of freqpos, let us look at the results of this simple command:
freqpos sample.cha

Here are the first six lines of the output from this command:

1 a initial = 0, final = 0, other = 1, one word = 0
1 any initial = 0, final = 0, other = 1, one word = 0
1 are initial = 0, final = 1, other = 0, one word = 0
3 chalk initial = 0, final = 3, other = 0, one word = 0
1 chalk+chalk initial = 0, final = 1, other = 0, one word = 0
1 delicious initial = 0, final = 0, other = 1, one word = 0

We see here that the word “chalk” appears three times in final position, whereas the

word “delicious” appears only once and that is not in either initial or final position. In
order to study occurrences in second position, we must use the +d switch as in:

freqpos +d sample.cha

5.15.1 Unique Options
+d Count words in either first, second, or other positions. The default is to
count by first, last, and other positions.

+g Display only selected words in the output. The string following the +g can
be either a word or a file name in the @filename notation.

-s The effect of this option for freqpos is different from its effects in the
other CLAN programs. Only the negative -s value of this switch applies. The

effect of using -s is to exclude certain words as a part of the syntactic context. If
you want to match a particular word with freqpos, you should use the +g switch
rather than the +s switch.

FREQPOS also uses several options that are shared with other commands. For a com-

plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.16 GEM
The gem program is designed to allow you to mark particular parts of a transcript for

further analysis. Separate header lines are used to mark the beginning and end of each in-
teresting passage you want included in your gem output. These header tiers may contain
“tags” that will affect whether a given section is selected or excluded in the output. If no
particular tag information is being coded, you should use the header form @bg with no
colon. If you are using tags, you must use the colon, followed by a tab. If you do not
follow these rules, check will complain.

5.16.1 Sample Runs
By default, gem looks for the beginning marker @bg without tags and the ending

marker @eg, as in this example command:
gem sample.cha

If you want to be more selective in your retrieval of gems, you need to add code
words or tags to both the @bg: and @eg: lines. For example, you might wish to mark all
cases of verbal interchange during the activity of reading. To do this, you must place the
word “reading” on the @bg: line just before each reading episode, as well as on the @eg:
line just after each reading episode. Then you can use the +sreading switch to retrieve
only this type of gem, as in this example:

gem +sreading sample2.cha
Ambiguities can arise when one gem without a tag is nested within another or when

two gems without tags overlap. In these cases, the program assumes that the gem being
terminated by the @eg line is the one started at the last @bg line. If you have any sort of
overlap or embedding of gems, make sure that you use unique tags.

GEM can also be used to retrieve responses to particular questions or particular

stimuli used in an elicited production task. The @bg entry for this header can show the
number and description of the stimulus. Here is an example of a completed header line:

@bg: Picture 53, truck
One can then search for all of the responses to picture 53 by using the +s"53" switch

in GEM.

The / symbol can be used on the @bg line to indicate that a stimulus was described

out of its order in a test composed of ordered stimuli. Also the & symbol can be used to
indicate a second attempt to describe a stimulus, as in 1a& for the second description of
stimulus 1a, as in this example:

@bg: 1b /
*CHI: a &b ball.
@bg: 1a /

*CHI: a dog.
@bg: 1a &
*CHI: and a big ball.

Similar codes can be constructed as needed to describe the construction and ordering
of stimuli for particular research projects.

When the user is sure that there is no overlapping or nesting of gems and that the end

of one gem is marked by the beginning of the next, there is a simpler way of using GEM,
which we call lazy GEM. In this form of GEM, the beginning of each gem is marked by
@g: with one or more tags and the +n switch is used. Here is an example:

@g: reading
*CHI: nice kitty.
@g: offstage
*CHI: who that?
@g: reading
*CHI: a big ball.
@g: dinner

In this case, one can retrieve all the episodes of “reading” with this command:
gem +n +sreading

5.16.2 Limiting With GEM
GEM also serves as a tool for limiting analyses. The type of limiting that is done by

GEM is very different from that done by KWAL or COMBO. In a sense, GEM works
like the +t switches in these other programs to select particular segments of the file for
analysis. When you do this, you will want to use the +d switch, so that the output is in
CHAT format. You can then save this as a file or pipe it on to another program, as in this
command.:

gem +sreading +d sample2.cha | freq
Note also that you can use any type of code on the @bg line. For example, you might

wish to mark well-formed multi-utterance turns, teaching episodes, failures in
communications, or contingent query sequences.

5.16.3 Unique Options
+d The +d0 level of this switch produces simple output that is in legal CHAT
format. The +d1 level of this switch adds information to the legal CHAT output
regarding file names, line numbers, and @ID codes.

+g If this switch is used, all of the tag words specified with +s switches must
appear on the @bg: header line in order to make a match. Without the +g
switch, having just one of the +s words present is enough for a match.

gem +sreading +sbook +g sample2.cha
 This will retrieve all of the activities involving reading of books.

+n Use @g: lines as the basis for the search. If these are used, no overlapping
or nesting of gems is possible and each @g must have tags. In this case, no @eg
is needed, but CHECK and GEM will simply assume that the gem starts at the
@g and ends with the next @g.

+s This option is used to select file segments identified by words found on
the @bg: tier. Do not use the -s switch. See the example given above for +g. To

search for a group of words found in a file, use the form +s@filename.

GEM also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132..

5.17 GEMFREQ
This program combines the basic features of the FREQ and GEM programs. Like

GEM, it analyzes portions of the transcript that are marked off with @bg and @eg
markers. For example, gems can mark off a section of bookreading activity with @bg:
bookreading and @eg: bookreading. Once these markers are entered, you can then run
GEMFREQ to retrieve a basic FREQ-type output for each of the various gem types you
have marked. For example, you can run this command:

gemfreq +sarriving sample2.cha

and you would get the following output:
GEMFREQ +sarriving sample2.cha
Wed May 12 15:54:35 1999
GEMFREQ (04-May-99) is conducting analyses on:
ALL speaker tiers
and ONLY header tiers matching: @BG:; @EG:;

**
From file <sample2.cha>
2 tiers in gem " arriving":
1 are
1 fine
1 how
1 you

5.17.1 Unique Options
+d The d0 level of this switch produces simple output that is in legal CHAT
format. The d1 level of this switch adds information to the legal CHAT output
regarding file names, line numbers, and @ID codes.

+g If this switch is used, all of the tag words specified with +s switches must
appear on the @bg: header line in order to make a match. Without the +g
switch, having just one of the +s words present is enough for a match.

gem +sreading +sbook +g sample2.cha
 This will retrieve all of the activities involving reading of books.

+n Use @g: lines as the basis for the search. If these are used, no overlapping
or nesting of gems is possible and each @g must have tags. In this case, no @eg
is needed, and both CHECK and GEMFREQ will simply assume that the gem
starts at the @g and ends with the next @g.

+o Search for a specific word on the main speaker tier. To search for a file of
words use the form +o@filename.

5.18 GEMLIST
The GEMLIST program provides a convenient way of viewing the distribution of

gems across a collection of files. For example, if you run GEMLIST on both sample.cha
and sample2.cha, you will get this output:

From file <sample.cha>
12 @BG
3 main speaker tiers.
21 @EG
1 main speaker tiers.
24 @BG
3 main speaker tiers.
32 @EG
From file <sample2.cha>
18 @BG: just arriving
2 main speaker tiers.
21 @EG: just arriving
22 @BG: reading magazines
2 main speaker tiers.
25 @EG: reading magazines
26 @BG: reading a comic book
2 main speaker tiers.
29 @EG: reading a comic book

GEMLIST can also be used with files that use only the @g lazy gem markers. In that
case, the file should use nothing by @g markers and GEMLIST will treat each @g as im-
plicitly providing an @eg for the previous @g. Otherwise, the output is the same as with
@bg and @eg markers.

The only option unique to GEMLIST is +d which tells the program to display only

the data in the gems. GEMLIST also uses several options that are shared with other
commands. For a complete list of options for a command, type the name of the command
followed by a carriage return in the Commands window. Information regarding the
additional options shared across commands can be found in chapter 6: Options on
page 132.

5.19 KEYMAP
 The KEYMAP program is useful for performing simple types of interactional and

contingency analyses. KEYMAP requires users to pick specific initiating or beginning
codes or “keys” to be tracked on a specific coding tier. If a match of the beginning code
or key is found, KEYMAP looks at all the codes on the specified coding tier in the next
utterance. This is the “map.” The output reports the numbers of times a given code maps
onto a given key for different speakers.

5.19.1 Sample Runs
Here is a file fragment with a set of codes that will be tracked by KEYMAP:
*MOT: here you go.
%spa: $INI
*MOT: what do you say?
%spa: $INI
*CHI: thanks.
%spa: $RES
*MOT: you are very welcome.
%spa: $CON

If you run the KEYMAP program on this data with the $INI as the +b key symbol,

the program will report that $INI is followed once by $INI and once by $RES. The key
($INI in the previous example) and the dependent tier code must be defined for the
program. On the coding tier, KEYMAP will look only for symbols beginning with the $
sign. All other strings will be ignored. Keys are defined by using the +b option
immediately followed by the symbol you wish to search for. To see how KEYMAP
works, try this example:

keymap +b$INI* +t%spa sample.cha
For Unix, this command would have to be changed to quote metacharacters as

follows:
keymap +b\$INI* +t%spa sample.cha

KEYMAP produces a table of all the speakers who used one or more of the key sym-
bols, and how many times each symbol was used by each speaker. Each of those speakers
is followed by the list of all the speakers who responded to the given initiating speaker,
including continuations by the initial speaker, and the list of all the response codes and
their frequency count.

5.19.2 Unique Options
+b This is the beginning specification symbol.

+s This option is used to specify the code or codes beginning with the $ sign
to treat as possible continuations. For example, in the sample.cha file, you might
only want to track $CON:* codes as continuations. In this case, the command
would be as follows.

keymap +b$* +s"$CON:*" +t%spa sample.cha
KEYMAP also uses several options that are shared with other commands. For a com-

plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.20 KWAL
The KWAL program outputs utterances that match certain user-specified search

words. The program also allows the user to view the context in which any given keyword
is used. In order to specify the search words, use the +s option, which allows you to
search for either a single word or a whole group of words stored in a file. It is possible to
specify as many +s options on the command line as you like.

Like COMBO, the KWAL program works not on lines, but on “clusters.” A cluster is

a combination of the main tier and the selected dependent tiers relating to that line. Each
cluster is searched independently for the given keyword. The program lists all keywords
that are found in a given cluster tier. A simple example of the use of KWAL is:

kwal +schalk sample.cha
The output of this command tells you the file name and the absolute line number of

the cluster containing the key word. It then prints out the matching cluster.

5.20.1 Tier Selection in KWAL
Sometimes you may want to create new files in which some of the tiers in your

original files are systematically deleted. For example, you may wish to drop out certain

coding tiers that interfere with the readability of your transcript, or you may wish to drop
out a tier that will be later recomputed by a program. For example, in order to drop out
the %mor tier for all speakers, except CHI, you can use this command:

kwal +t*chi +t%mor +o@ +o* -o%mor +d +f t.cha
The two +t switches work as a matched pair to preserve the %mor tier for CHI. The first
+o@ switch will preserve the header tiers. The second and third +o switches work as a
pair to exclude the %mor lines in the other speakers. However, the -o%mor switch keeps
all of the dependent tiers except for %mor. The +t switch is used for selecting parts of
the transcript that may also be searched using the +s option. The +o switch, on the other
hand, only has an impact on the shape of the output. The +d switch specifies that the
output should be in CHAT format and the +f switch sends the output to a file. In this
case, there is no need to use the +s switch. Try out variations on this command with the
sample files to make sure you understand how it works.

Main lines can be excluded from the analysis using the -t* switch. However, this

exclusion affects only the search process, not the form of the output. It will guarantee that
no matches are found on the main line, but the main line will be included in the output. If
you want to exclude certain main lines from your output, you can use the -o switch, as in:

kwal +t*CHI +t%spa -o* sample.cha
You can also do limiting and selection by combining FLO and KWAL:
kwal +t*CHI +t%spa +s"$*SEL*" -t* sample.cha +d |
flo -t* +t%

To search for a keyword on the *MOT main speaker tiers and the %spa dependent
tiers of that speaker only, include +t*MOT +t%spa on the command line, as in this
command.

kwal +s"$INI:*" +t%spa +t*MOT sample.cha

5.20.2 Unique Options
+a Sort the output alphabetically. Choosing this option can slow down
processing significantly.

+d Normally, KWAL outputs the location of the tier where the match occurs.
When the +d switch is turned on you can output each matched sentence without
line number information in a simple legal CHAT format. The +d1 switch
outputs legal CHAT format along with file names and line numbers. Try these
commands:

kwal +s"chalk" sample.cha
kwal +s"chalk" +d sample.cha
kwal +s"chalk" +d1 sample.cha

 The +d and +d1 switches can be extremely important tools for performing
analyses on particular subsets of a text. For example, in one project, a central
research question focused on variations in MLU as a function of the nature of
the addressee. In order to analyze this, each utterance was given a %add line
along with a code that indicated the identity of the addressee. Using sample.cha
as an example, the following KWAL line was used:

kwal +t%add +t*CHI +s"mot" +d sample.cha | mlu
 This produced an MLU analysis on only those child utterances that are
directed to the mother as addressee.

+/-nS Include or exclude all utterances from speaker S when they occur
immediately after a match of a specified +s search string. For example, if you
want to exclude all child utterances that follow questions, you can use this
command

kwal +t*CHI +s"?" -nCHI *.cha

+o The +t switch is used to control the addition or deletion of particular tiers
or lines from the input and the output to KWAL. In some cases, you may want
to include a tier in the output that is not being included in the input. This
typically happens when you want to match a string in only one dependent tier,
such as the %mor tier, but you want all tiers to be included in the output. In
order to do this you would use a command of the following shape:

kwal +t%mor +s"*ACC" +o% sample2.cha
 In yet another type of situation, you may want to include tiers in the
KWAL output that are not normally included. For example, if you want to see
output with the ages of the children in a group of files you can use this
command:

kwal +o@Age -t* *.cha

+w It is possible to instruct the program to enlarge the context in which the
keyword was found. The +w and -w options let you specify how many clusters
after and before the target cluster are to be included in the output. These options
must be immediately followed by a number. Consider this example:

kwal +schalk +w3 -w3 sample.cha
 When the keyword chalk is found, the cluster containing the keyword and
the three clusters above (-w3) and below (+w3) will be shown in the output.

KWAL also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found on page 141.

5.21 LINES
When working with a printed transcript, it is often helpful to be able to refer to parts

of a transcript by using line numbers. The LINES program allows you to add line
numbers and then remove them. You must remember to remove the line numbers before
doing any analysis of your files with CLAN.

The only option unique to LINES is +n which removes all the line/tier numbers that

were inserted by an earlier run of LINES. LINES also uses several options that are shared
with other commands. For a complete list of options for a command, type the name of the
command followed by a carriage return in the Commands window. Information regarding
the additional options shared across commands can be found on page 132.

5.22 MAKEDATA
This program allows you to take files in Macintosh, DOS, or Unix format and convert

them to files in one of the other formats. It is intended to convert whole directories or

trees of directories at a single time. It converts all of the files in your current working
directory as well as all of the subdirectories contained in that directory. The output of the
conversion is stored in a new directory at the same level as the top of the tree being
analyzed, so that the originals are not touched. Consider the following command:

makedata +w +om

This command will take all files in your current working directory and the directories
below it. It will assume that they originally came from a Macintosh and that you wish to
convert them to Windows format.

Based on information in the command line, font header lines, and the shape of the
file, makedata will take one of three courses of action:

1. If the file has the extension .cha and is a text file, makedata will convert it to

Windows format and will convert extended ASCII characters or remap font
names for two-byte fonts.

2. If the file is a text file, but has an extension other than .cha, makedata will only
convert the carriage returns to Windows style returns.

3. If the file is not a text file, makedata will simply copy the file without changing
it.

The folders created by makedata will often have files of all three types, each processed in
one of these three ways. To make sure that makedata has correctly reformatted files, you
may want to run check recursively with the +re switch after running makedata.

5.22.1 Unique Options
+a Create data for MAC only.

+b Override font in original CHAT files with font specified in the +o switch.

+d Create data for DOS only.

+m Create data for Macintosh only.

+o If the font header is missing, define the font according to this scheme:
 +od for standard DOS 850 format
 +op for Portuguese DOS 860 format
 +om for Macintosh Monaco format
 +oc for Macintosh Courier format
 +ow for Windows Courier format

+u Create data for Unix only.

+w Create data for Windows only.

MAKEDATA also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.23 MAKEMOD
This program uses the CMU Pronouncing Dictionary to insert phonological forms in

SAMPA notation. The dictionary is copyrighted by Carnegie Mellon University and can
be retrieved from http://www.speech.cs.cmu.edu/cgi-bin/cmudict/ Use of this dictionary,
for any research or commercial purpose, is completely unrestricted. For MAKEMOD, we
have created a reformatting of the CMU Pronouncing Dictionary that uses SAMPA. In
order to run MAKEMOD, you must first retrieve the large cmulex.cut file from the server
and put it in your library directory. Then you just run the program by typing

makemod +t* filename
By default, the program analyzes all speakers. However, you can control this using the +t
switch. Also, by default, it only inserts the first of the alternative pronunciations from the
CMU Dictionary. However, you can use the +a switch to force inclusion of all of them.
The beginning of the cmulex.cut file gives the acknowledgements for construction of the
file and the following set of

CMU Word full CMU SAMPA
AA odd AAD A
AE at AE T {
AH hut HH AH T @
AO ought AO T O
AW cow K AW aU
AY hide HH AY D aI
B be B IY b

CH cheese CH IY Z tS
D dee D IY d

DH thee DH IY D
EH Ed EH D E
ER hurt HH ER T 3
EY ate EY T eI
F fee F IY f
G green G R IY N g

HH he HH IY h
IH it IH T I
IY eat IY T i
JH gee JH IY dZ
K key K IY k
L lee L IY l
M me M IY m
N knee N IY n

NG ping P IH NG N

OW oat OW T o
OY toy T OY OI
P pee P IY p
R read R IY D r
S sea S IY s

SH she SH IY S
T tea T IY t

TH theta TH EY T AH T
UH hood HH UH D U
UW two T UW u
V vee V IY v
Y yield Y IY L D j
Z zee Z IY z

ZH seizure S IY ZH ER Z

The CMU Pronouncing Dictionary tone markings were converted to SAMPA in the
following way. L0 stress was unmarked. A double quote preceding the syllable marked
L1 stress and a percentage sign preceding the syllable being stressed marked L2 stress.

5.24 MAXWD
This program locates, measures, and prints either the longest word or the longest

utterance in a file. MAXWD reads through a set of files looking for the longest word or
utterance. When searching for the longest word, the MAXWD output consists of: the
word, its length in characters, the line number on which it was found, and the name of the
file where it was found. When searching for the longest utterance with the +g option, the
output consists of: the utterance itself, the total length of the utterance, the line number on
which the utterance begins, and the file name where it was found. By default, MAXWD
only analyzes data found on the main speaker tiers. The +t option allows for the data
found on the header and dependent tiers to be analyzed as well. Try out the following
command which should report the longest word in sample.cha.

maxwd sample.cha
You can also use MAXWD to track all of the utterances of a certain length. For

example, the following command will locate all of the utterances with only one word in
them:

maxwd +x1 +g2 sample.cha

5.24.1 Unique Options
+b You can use this switch to either include or exclude particular morpheme
delimiters. By default the morpheme delimiters #, ~, and - are understood to
delimit separate morphemes. You can force MAXWD to ignore all three of
these by using the -b#-~ form of this switch. You can use the +b switch to add
additional delimiters to the list.

+c This option is used to produce a given number of longest items. The
following command will print the seven longest words in sample.cha.

maxwd +c7 sample.cha

+d The +d level of this switch produces output with one line for the length
level and the next line for the word. The +d1 level produces output with only the
longest words, one per line, in order in legal CHAT format.

+g This switch forces MAXWD to compute not word lengths but utterance
lengths. It singles out the sentence that has the largest number of words or
morphemes and prints that in the output. The way of computing the length of
the utterance is determined by the number following the +g option. If the
number is 1 then the length is in number of morphemes per utterance. If the
number is 2 then the length is in number of words per utterance. And if the
number is 3 then the length is in the number of characters per utterance. For
example, if you want to compute the MLU and MLT of five longest utterances
in words of the *MOT, you would use the following command:

maxwd +g2 +c5 +d1 +t*MOT sample.cha | mlu
 The +g2 option specifies that the utterance length will be counted in terms
of numbers of words. The +c5 option specifies that only the five longest
utterances should be sent to the output. The +d1 option specifies that individual
words, one per line, should be sent to the output. The | symbol sends the output
to analysis by MLU.

+j If you have elected to use the +c switch, you can use the +j switch to
further fine-tune the output so that only one instance of each length type is
included. Here is a sample command:

maxwd +c8 +j sample.cha

+o The +o switch is used to force the inclusion of a tier in the output. In order
to do this you would use a command of the following shape:

maxwd +c2 +j +o%mor sample2.cha

+x This option allows you to start the search for the longest item at a certain
item length. As a result, all the utterances or words shorter than a specified
number will not be included in a search. The number specifying the length
should immediately follow the +x option. Try this command:

maxwd sample.cha +x6
MAXWD also uses several options that are shared with other commands. For a com-

plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in the chapter on.

5.25 MLT
 The MLT program computes the mean number of utterances in a turn, the mean

number of words per utterance, and the mean number of words per turn. A turn is defined
as a sequence of utterances spoken by a single speaker. Overlaps are not taken into
account in this computation. Instead, the program simply looks for sequences of repeated
speaker ID codes at the beginning of the main line. These computations are provided for
each speaker separately. Note that none of these ratios involve morphemes. If you want to

analyze morphemes per utterances, you should use the MLU program.

5.25.1 MLT Defaults
 The exact nature of the MLT calculation depends both on what the program in-

cludes and what it excludes. The default principles that it uses are as follows:
1. MLT excludes material in angle brackets followed by either [/] or [//]. This can

be changed by adding any of these switches:
+s+"</>" +s+"<//>"

2. In order to exclude utterances with a specific postcode, such as [+ bch], you can
use the -s switch:

-s"[+ bch]"
 Similarly, you can use +s to include lines that would otherwise be excluded. For

example, you may want to use +s”[+ trn]” to force inclusion of lines marked with
[+ trn].

3. The following strings are also excluded:
www 0* &* +* -* #* $*.

 Here the asterisk indicates any material following the first symbol until a delim-
iter. Unlike the MLU program, MLT does not exclude utterances with xxx and
yyy by default.

4. The program considers the following symbols to be word delimiters:
. ? ! , ; [] < >

 The space is also a word delimiter.
5. The program considers the following three symbols to be utterance delimiters:
 . ! ?
 as well as the various complex symbols such as +..., which end with one of these

three marks.
6. The special symbols xxx and yyy are not excluded from the data. Thus if the ut-

terance consists of those symbols only it will still be counted.
7. Utterances with no speech on the main line can be counted as turns if you add the

[+ trn] code, as in this example:
CHI: 0. [+ trn]
%spa: gestures to mother

 In order to count this utterance as a turn, you can use this switch:
+s+"[+ trn]"

 The second + after the s is used to mark the inclusion of something that is usually
excluded. This method for including nonverbal activities in mlt was developed
by Pan (1994).

5.25.2 Breaking Up Turns
Sometimes speakers will end a turn and no one takes over the floor. After a pause, the

initial speaker may then start up a new turn. In order to code this as two turns rather than
one, you can insert a “dummy” code for an imaginary speaker called XXX, as in this ex-
ample from Rivero, Gràcia, and Fernández-Viader (1998):

*FAT: ma::.
%act: he touches the girl’s throat
*FAT: say mo::m.
@EndTurn
*FAT: what’s that?
%gpx: he points to a picture that is on the floor

*FAT: what’s that?

Using the @EndTurn marker, this sequence would be counted as two turns, rather than as
just one.

5.25.3 Sample Runs
The following example demonstrates a common use of the MLT program:

mlt sample.cha

5.25.4 Unique Options
+cS Look for unit marker S. If you want to count phrases or narrative units
instead of sentences, you can add markers such as [c] to make this segmentation
of your transcript into additional units. Compare these two commands:

mlt sample.cha
mlt +c[c] sample.cha

+d You can use this switch, together with the @ID specification described for
STATFREQ to produce numbers for a statistical analysis, one per line. The
command for the sample file is:

mlt +d +t@ID=*=CHI sample.cha
 The output of this command should be:

eng samp sample 0110 CHI 6 6 8 1.333 1.000 1.333
 This output gives 11 fields in this order: language, corpus, file, age,
participant id, number of utterances, number of turns, number of words,
words/turn, utterances/ turn, and words/utterance. The first five of these fields
come from the @ID field. The next six are computed for the particular
participant for the particular file. In order to run this type of analysis you must
have an @ID header for each participant you wish to track. Alternatively, you
can use the +t switch in the form +t*CHI. In this case, all of the *CHI lines will
be examined in the corpus. However, if you have different names for children
across different files, you need to use the @ID fields.

+d1 This level of the +d switch outputs data in another systematic format, with
data for each speaker on a single line. However, this form is less adapted to
input to a statistical program than the output for the basic +d switch. Also this
switch works with the +u switch, whereas the basic +d switch does not. Here is
an example of this output:

*CHI: 6 6 8 1.333 1.000 1.333
*MOT: 8 7 43 6.143 1.143 5.375

+g You can use the +g option to exclude utterances composed entirely of
particular words. For example, you might wish to exclude utterances composed
only of hi, bye, or both of these words together. To do this, you should place the
words to be excluded in a file, each word on a separate line. The option should
be immediately followed by the file name. That is to say, there should not be a
space between the +g option and the name of this file. If the file name is
omitted, the program displays an error message: “No file name for the +g option
specified!”

+s This option is used to specify a word to be used from an input file. This
option should be immediately followed by the word itself. In order to search for
a group of words stored in a file, use the form +s@filename. The -s value of this
switch excludes certain words from the MLT count. This is a reasonable thing to
do. The +s switch bases the count only on the included words. It is difficult to
imagine why anyone would want to do such an analysis.

MLT also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132..

5.26 MLU
 The MLU program computes the mean length of utterance, which is the ratio of

morphemes to utterances. The predecessor of the current MLU measure was the “mean
length of response” or MLR devised by Nice (1925). The MLR corresponds to what we
now call MLUw or mean length of utterance in Words. Brown (1973) emphasized the
value of thinking of MLU in terms of morphemes, rather than words. Brown was
particularly interested in the ways in which the acquisition of grammatical morphemes
reflected syntactic growth and he believed that MLUm or mean length of utterance in
morphemes would reflect this growth more accurately than MLUw. Brown linked growth
in MLU to movement through six stages from MLU 1.75 to MLU 4.5. Subsequent
research (Klee, Schaffer, May, Membrino, & Mougey, 1989) shows that MLU is
correlated with age until about 48 months. Rondal, Ghiotto, Bredart, and Bachelet (1987)
found that MLU is highly correlated with increases in grammatical complexity between
MLU of 1 and 3. However, after MLU of 3.0, the measure was not well correlated with
syntactic growth, as measured by LARSP. A parallel study by Blake, Quartaro, and
Onorati (1970) with a larger subject group found that MLU was correlated with LARSP
until MLU 4.5. Even better correlations between MLU and grammatical complexity have
been reported when the IPSyn is used to measure grammatical complexity (Scarborough,
Rescorla, Tager-Flusberg, Fowler, & Sudhalter, 1991).

When conducting an MLU analysis, it is important to decide whether you want to ex-

amine the whole file or just a consistent subsegment. For example, many researchers use
a section of 50 or 100 utterances to calculate MLU. To do this, you can use the +z switch,
which is described in the section on the +Z Option on page 138. Brown recommended us-
ing 100 utterances. He also suggested that these should be taken from the second page of
the transcript. In effect, this means that roughly the first 25 utterances should be skipped.
The switch that would achieve this effect in the MLU program is +z25u-125u.

The computation of MLU requires you to morphemicize words. To save time, you

may wish to consider using MLU to compute MLUw (mean length of utterance in
words), rather than MLU. Malakoff, Mayes, Schottenfeld, and Howell (1999) found that
MLU correlates with MLUw at .97 for English; Aguado (1988) found a correlation of .99
for Spanish; and Hickey (1991) found a correlation of .99 for Irish. If you wish to
compute MLUw instead of MLU, you can simply refrain from dividing words into

morphemes on the main line. If you wish to divide them, you can use the +b switch to tell
MLU to ignore your separators.

5.26.1 MLU Defaults
The CHAT manual explains how to morphemicize words on the main line. The alter-

native to main line morphemicization is the computation of a full %mor line. If you are
just analyzing one or two files at a time, it is probably easier to do main line
morphemicization. However, for larger projects, we recommend using the MOR program
and the %mor tier instead. By default, MLU operates on the main tier. If you want to
compute MLU from the %mor tier, you will need to use the +t%mor switch, as in this
example:

mlu +t%mor sample2.cha
The way in which particular symbols are processed by MLU is described next. These

procedures attempt to implement the guidelines laid out by Brown (1973) in his table on
page 54. However, these guidelines are a bit incomplete and there are sometimes reasons
to modify and Brown’s suggestions. Brown wants MLU to be calculated by skipping the
first page of a transcript and then counting the next 100 utterances. If we assume that a
page contains about 10 child utterances, this would be implemented by the use of the
switch +z10u-110u. However, use of a larger number of utterances, if they are available,
would certainly make the resultant MLU a better indicator.

1. MLU excludes from all counts material in angle brackets followed by either [/]

or [//]. This can be changed by adding any of these switches:
 +s+"</>" +s+"<//>"
2. In order to exclude utterances with a specific postcode, such as [+ bch], you can

use the -s switch:
 -s"[+ bch]"
 The use of postcodes needs to be considered carefully. Brown suggested that all

sentences with unclear material be excluded. Brown wants exact repetitions to be
included and does not exclude imitations. However, other researchers recom-
mend also excluding imitation, self-repetitions, and single-word answers to
questions.

3. The following strings are also excluded:
 xxx yyy www uh um 0* &* +* -* #* $*
 where the asterisk indicates any material following the exclusion symbol. If xxx,

yyy, or www occur, the whole utterance is skipped. However, the utterance is not
skipped for the other symbols, although they are not counted as morphemes. The
symbols xx and yy are counted as morphemes. In fact, the symbols xx and yy are
used as variants of xxx and yyy specifically to avoid exclusion in the MLU pro-
gram. If the utterance consists of only excludable material, the whole utterance
will be ignored. In addition, suffixes, prefixes, or parts of compounds beginning
with a zero are automatically excluded and there is no way to modify this exclu-
sion. Brown recommends excluding mm and oh by default. However, if you want
to exclude these filler words, you will need to list them in a file and use the -s
switch, as in:

 mlu -s@excludewords sample.cha
 You can use +s to include lines that would otherwise be excluded. For example,

you may want to use +s”[+ trn]” to force inclusion of lines marked with [+ trn].
 You can also use the -sxxx switch to change the exclusionary behavior of MLU.

In this case, the program stops excluding sentences that have xxx from the count,
but still excludes the specific string “xxx”.

3. The program considers the following symbols to be word delimiters:
. ? ! , ; [] < >

 The space character is also a word delimiter.
4. The program considers the following three symbols to be morpheme delimiters:

- # ^
 If you want to change this list, you should use the +b option described below. For

Brown, compounds and irregular forms were monomorphemic. This means that
+ and & should not be treated as morpheme delimiters for an analysis that
follows his guidelines.

5. The program considers the following three symbols to be utterance delimiters:
. ! ?

 as well as the various complex symbols such as +... which end with one of these
three marks.

Brown also explicitly lists a number of forms that he considers monomorphemic in

young children. They include: diminutives, auxiliaries, and catentives (gonna, wanna,
hafta). To follow Brown’s guidelines, you should use only the delimiter & or no delimiter
at all inside such words. To achieve this systematically, you may need to modify the
operation of MOR, since it tends to treat these words as morphologically composed.

5.26.2 Sample Runs
By default, MLU computes MLU counts for each speaker in the file separately on the

basis of the main tier. The following example demonstrates a common use of the MLU
program:

mlu sample.cha

Researchers often wish to conduct MLU analyses on particular subsets of their data.

As discussed in greater detail in the section on KWAL on page88, this can be done using
commands such as:

kwal +t*CHI +t%add +s"mot" sample.cha +d | mlu
This command looks at only those utterances spoken by the child to the mother as ad-

dressee. KWAL outputs these utterances through a pipe to the MLU program. The pipe
symbol | is used to indicate this transfer of data from one program to the next. If you
want to send the output of the MLU analysis to a file, you can do this with the redirect
symbol, as in this version of the command:

kwal +t*CHI +t%add +s"mot" sample.cha +d | mlu > file.mlu

5.26.3 Including and Excluding Utterances in MLU and MLT
The inclusion of certain utterance types leads to an underestimate of MLU. However,

there is no clear consensus concerning which sentence forms should be included or
excluded in an MLU calculation. The MLU program uses postcodes to accommodate
differing approaches to MLU calculations. To exclude sentences with postcodes, the -s
exclude switch must be used in conjunction with a file of postcodes to be excluded. The

exclude file should be a list of the postcodes that you are interested in excluding from the
analysis. For example, the sample.cha file is postcoded for the presence of responses to
imitations [+ I], yes/ no questions [+ Q], and vocatives [+ V].

For the first MLU pass through the transcript, you can calculate the child’s MLU on

the entire transcript by typing:
mlu +t*CHI sample.cha

For the second pass through the transcript you can calculate the child’s MLU
according to the criteria of Scarborough (1990). These criteria require excluding the
following: routines [+ R], book reading [+ "], fillers [+ F], imitations [+ I], self-
repetitions [+ SR], isolated onomatopoeic sounds [+ O], vocalizations [+ V], and partially
unintelligible utterances [+ PI]. To accomplish this, an exclude file must be made which
contains all of these postcodes. Of course, for the little sample file, there are only a few
examples of these coding types. Nonetheless, you can test this analysis using the
Scarborough criteria by creating a file called “scmlu” with the relevant codes in angle
brackets. Although postcodes are contained in square brackets in CHAT files, they are
contained in angle brackets in files used by CLAN. The scmlu file would look something
like this:

<+ R>
<+ ">
<+ V>
<+ I>

Once you have created this file, you then use the following command:
mlu +t*CHI -s@scmlu sample.cha

For the third pass through the transcript you can calculate the child’s MLU using a
still more restrictive set of criteria, also specified in angle brackets in postcodes and in a
separate file. This set also excludes one word answers to yes/no questions [$Q] in the file
of words to be excluded. You can calculate the child’s MLU using these criteria by
typing:

mlu +t*CHI -s@resmlu sample.cha
In general, exclusion of these various limited types of utterances tends to increase the

child’s MLU.

5.26.4 Unique Options
+b You can use this switch to either include or exclude particular morpheme
delimiters. By default the morpheme delimiters ~, #, and - are understood to
delimit separate morphemes. You can force MLU to ignore all three of these by
using the -b#-~ switch. You can use the +b switch to add additional delimiters
to the list.

+cS Look for unit marker S. If you want to count phrases or narrative units
instead of sentences, you can add markers such as [c] to make this segmentation
of your transcript into additional units. Compare these two commands:

mlu sample.cha
mlu +c[c] sample.cha

+d You can use this switch, together with the ID specification described for
STATFREQ to produce numbers for a statistical analysis, one per line. The
command for the sample file is:

mlu +d +t@ID=*CHI sample.cha
 The output of this command should be:

eng samp sample 0110 CHI 5 7 1.400 0.490
 This output gives nine fields in this order: language, corpus, file, age,
participant id, number of utterances, number of morphemes,
morphemes/utterances, and the standard deviation of morphemes/utterances.
The first five of these fields come from the @ID field. The next four are
computed for the particular participant for the particular file. In order to run this
type of analysis, you must have an @ID header for each participant you wish to
track. Alternatively, you can use the +t switch in the form +t*CHI. In this case,
all of the *CHI lines will be examined in the corpus. However, if you have
different names for children across different files, you need to use the @ID
fields.

+d1 This level of the +d switch outputs data in another systematic format, with
data for each speaker on a single line. However, this form is less adapted to
input to a statistical program than the output for the basic +d switch. Also this
switch works with the +u switch, whereas the basic +d switch does not. Here is
an example of this output:

*CHI: 5 7 1.400 0.490
*MOT: 8 47 5.875 2.891

+g You can use the +g option to exclude utterances composed entirely of
particular words from the MLT analysis. For example, you might wish to
exclude utterances composed only of hi or bye. To do this, you should place the
words to be excluded in a file, each word on a separate line. The option should
be immediately followed by the file name. That is to say, there should not be a
space between the +g option and the name of this file. If the file name is
omitted, the program displays an error message: “No file name for the +g option
specified!”

+s This option is used to specify a word to be used from an input file. This
option should be immediately followed by the word itself. In order to search for
a group of words stored in a file, use the form +s@filename. The -s switch
excludes certain words from the analysis. This is a reasonable thing to do. The
+s switch bases the analysis only on certain words. It is more difficult to see
why anyone would want to conduct such an analysis. However, the +s switch
also has another use. One can use the +s switch to remove certain strings from
automatic exclusion by MLU. The program automatically excludes xxx, 0, uh,
and words beginning with & from the MLU count. This can be changed by
using this command:

mlu +s+uh +s+xxx +s0* +s&* file.cha
MLU also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.27 MODREP
The MODREP program matches words on one tier with corresponding words on

another tier. It works only on tiers where each word on tier A matches one word on tier
B. When such a one-to-one correspondence exists, MODREP will output the frequency
of all matches. Consider the following sample file distributed with CLAN as modrep.cha:

@Begin
@Participants: CHI Child
*CHI: I want more.
%pho: aI wan mo
%mod: aI want mor
*CHI: want more bananas.
%pho: wa mo nAnA
%mod: want mor bAn&nAz
*CHI: want more bananas.
%pho: wa mo nAnA
%mod: want mor bAn&nAz
*MOT: you excluded [//] excluded [/] xxx yyy www

&d do?
%pho: yu du
%mod: yu du
@End

You can run the following command on this file to create a model-and-replica
analysis for the child’s speech:

modrep +b*chi +c%pho +k modrep.cha
The output of MODREP in this case should be as follows:

From file <modrep.cha>
1 I

1 aI
2 bananas

2 nAnA
3 more

3 mo
3 want

1 wan
2 wa

This output tells us that want was replicated in two different ways, and that more was
replicated in only one way twice. Only the child’s speech is included in this analysis and
the %mod line is ignored. Note that you must include the +k switch in this command in
order to guarantee that the analysis of the %pho line is case-sensitive. By default, all
CLAN programs are case-insensitive. However, on the %pho line, UNIBET uses
capitalization to distinguish between pairs of different phonemes.

5.27.1 Exclusions and Inclusions
By default, MODREP ignores certain strings on the model tier and the main tier.

These include xxx, yyy, www, material preceded by an ampersand, and material
preceding the retracing markers [/] and [//]. To illustrate these exclusions, try this
command:

modrep +b* +c%pho +k modrep.cha

The output of this command will look like this:

MODREP +b* +c%PHO +k modrep.cha

Thu May 13 13:03:26 1999
MODREP (04-May-99) is conducting analyses on:
ALL speaker main tiers

and those speakers' ONLY dependent tiers matching: %PHO;
**
From file <modrep.cha>
Model line:
you zzz do ?

is longer than Rep line:
yu du

In File "modrep.cha" in tier cluster around line 13.

If you want to include some of the excluded strings, you can add the +q option. For

example, you could type:
modrep +b* +c%pho +k modrep.cha +qwww

However, adding the www would destroy the one-to-one match between the model line
and the replica line. When this happens, CLAN will complain and then die. Give this a
try to see how it works. It is also possible to exclude additional strings using the +q
switch. For example, you could exclude all words beginning with “z” using this
command:

modrep +b* +c%pho +k modrep.cha -qz*
However, because there are no words beginning with “z” in the file, this will not change
the match between the model and the replica.

If the main line has no speech and only a 0, MODREP will effectively copy this zero

as many times as in needed to match up with the number of units on the %mod tier that is
being used to match up with the main line.

5.27.2 Using a %mod Line
A more precise way of using MODREP is to construct a %mod line to match the

%pho line. In modrep.cha, a %mod line has been included. When this is done the
following type of command can be used:

modrep +b%mod +c%pho +k modrep.cha
This command will compare the %mod and %pho lines for both the mother and the child
in the sample file. Note that it is also possible to trace pronunciations of individual target
words by using the +o switch as in this command for tracing words beginning with /m/:

modrep +b%mod +c%pho +k +om* modrep.cha

5.27.3 MODREP and COMBO -- Cross-tier COMBO
modrep can also be used to match codes on the %mor tier to words on the main line.

For example, if you want to find all the words on the main line that match words on the
%mor line with an accusative suffix in the mother’s speech in sample2.cha, you can use
this command:

modrep +b%mor +c*MOT +o"*ACC" sample2.cha
The output of this command is:
From file <sample2.cha>
1 n:a|ball-acc

1 labda't
1 n:a|duck-acc

1 kacsa't
1 n:i|plane-acc

1 repu"lo"ge'pet
If you want to conduct an even more careful selection of codes on the %mor line, you

can make combined use of MODREP and COMBO. For example, if you want to find all
the words matching accusatives that follow verbs, you first select these utterances by run-
ning COMBO with the +d switch and the correct +s switch and then pipe the output to
the MODREP command we used earlier. This combined use of the two programs can be
called “cross-tier COMBO.”

combo +s"v:*^*^n:*-acc" +t%mor sample2.cha +d |
modrep +b%mor +c*MOT +o"*acc"

The output of this program is the same as in the previous example. Of course, in a
large input file, the addition of the COMBO filter can make the search much more
restrictive and powerful.

5.27.4 Unique Options
+b This switch is used to set the model tier name. There is no default setting.
The model tier can also be set to the main line, using +b* or +b*chi.

+c You can use this switch to change the name of the replica tier. There is no
default setting.

+n This switch limits the shape of the output from the replica tier in
MODREP to some particular string or file of strings. For example, you can cut
down the replica tier output to only those strings ending in “-ing.” If you want to
track a series of strings or words, you can put them in a file and use the
@filename form for the switch.

+o This switch limits the shape of the output for the model tier in MODREP
to some particular string or file of strings. For example, you can cut down the
model tier output to only those strings ending in “-ing” or with accusative
suffixes, and so forth. If you want to track a series of strings or words, you can
put them in a file and use the @filename form for the switch.

+q The +q switch allows you to include particular symbols such as xxx or &*
that are excluded by default. The -q switch allows you to make further
exclusions of particular strings. If you want to include or exclude a series of
strings or words, you can put them in a file and use the @filename form for the
switch.

MODREP also uses several options that are shared with other commands. For a com-

plete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.28 MOR
The MOR program is used to generate a %mor tier for all main tiers in a CHAT file.

Successful use of MOR requires a full understanding of the operation of the program, the
process of lexicon building, and the use of methods for improving the morphological

analysis. MOR is a complex program that is intended for the serious user who is willing
to commit a large amount of time and effort in order to achieve a major improvement in
analytic capabilities.

The computational design of MOR was guided by Roland Hausser’s (1990) MORPH

system and was implemented by Mitzi Morris. The system has been designed to
maximize portability across languages, extendability of the lexicon and grammar, and
compatibility with the CLAN programs. The basic engine of the parser is language
independent. Language-specific information is stored in separate data files. The rules of
the language are in data files that can be modified by the user. The lexical entries are also
kept in ASCII files and there are several techniques for improving the match of the
lexicon to a particular corpus. In order to avoid having too large a lexical file, only stems
are stored in the lexicon and inflected forms appropriate for each stem are compiled at
run time.

MOR automatically generates a %mor tier of the type described in the chapter of the

CHAT manual on morphosyntactic coding. Words are labeled by their syntactic category
or “scat”, followed by the pipe separator |, followed by the word itself, broken down into
its constituent morphemes.

*CHI: the people are making cakes .
%mor: det|the n|people v:aux|be&PRES v|make-ING

n|cake-PL .
The MOR program looks at each word on the main tier, without regard to context,

and provides all possible grammatical categories and morphological analyses, as in the
following example with the words “to” and “back.” The caret ^ denotes the multiple
possibilities for each word on the main tier.

*CHI: I want to go back.
%mor: pro|I v|want inf|to^prep|to

v|go adv|back^n|back^v|back .
In order to select the correct form for each ambiguous case, the user can either edit

the file using Disambiguator Mode (as described in the section on Disambiguator Mode
on page 27) or use POST, as described in the section on POST on page 120.

One way of restricting the possible categories inserted by MOR is to use the replace-

ment symbol [: text] on the main line for difficult cases. For example, the English form
“wanna” could mean either “want to” or “want a”. Similarly, “gotta” could be either “got
to” or “got a.” The transcriber can commit to one of these two readings on the main line
by using this method:

*CHI: I wanna [:want to] go back.
%mor: pro|I v|want inf|to^prep|to v|go adv|back^n|back^v|back .

In this example, MOR will only attend to the material in the square brackets and will
ignore the form “wanna.”

5.28.1 Configuring Your MOR Files
For MOR to run successfully, you need to configure your grammar files and lexicon

files into their proper positions in the MOR library directory. You will want to create a
specific library directory for MOR that is distinct from the general CLAN lib directory.
It is often convenient to place this MOR library inside the CLAN lib directory. In the

MOR library directory, you need these three grammar files on top: ar.cut, cr.cut, and
sf.cut. Optionally, you may also want to have a file called dr.cut. Within this directory,
you then need to have a subdirectory called lex, which contains all of the various closed
and open class lexicon files such as adj.cut, clo.cut, prep.cut, or n.cut. If you have
retrieved the MOR grammar from the Internet or the CD-ROM, the materials will already
be configured in the correct relative positions. Each separate grammar should be stored
in its own folder and you should select the grammar you wish to use by setting the
MORLIB location in the commands window.

5.28.2 Grammar and Lexicon Files
MOR relies on three files to specify the morphological processes of the language.

They are:

1. The allomorph rules file. This file lists the ways in which morphemes vary in
shape. The rules that describe these variations are called “arules.” The name of
this file should be ar.cut.

2. The concatenation rules file. This file lists the ways in which morphemes can
combine or concatenate. The rules which describe allowable concatenations are
called “crules”. The name of this file should be cr.cut.

3. The special form markers file. The CHAT manual presents a series of special
form markers that help identify lexical types such as neologisms, familial words,
onomatopoeia, or second-language forms. MOR can use these markings to di-
rectly insert the corresponding codes for these words onto the %mor line. The
engsf.cut file includes all of these special form markers. In addition, these types
must be listed in the first declaration in the engcr.cut file. For English, all this is
already done. If you are creating a grammar for another language, you can model
your materials on the English example. The syntax of the lines in the engsf.cut
file is fairly simple. Each line has a special form marker, followed by the cate-
gory information you wish to see inserted in the %mor line. If you wish to pull
out capitalization words as being proper nouns, despite the shape of the special
form marker, you can place \c to indicate uppercase before the special form
marker. You must then add \l on another line to indicate what you want to have
done with lowercase examples. See the English sf.cut file for examples.

In addition to these three grammar files, MOR uses a set of lexicon files to specify the

shapes of individual words and affixes. These forms are stored in a group of files in the
lexicon folder. The affix.cut file includes the prefixes and suffixes for the language. The
other files contain the various open and closed class words of the language. At run time,
MOR used the grammar rules to “blow up” the content of the lexicon files into a large bi-
nary tree that represents all the possible words of the language.

The first action of the parser program is to load the ar.cut file. Next the program reads

in the files in your lexicon folder and uses the rules in ar.cut to build the run-time lexicon.
If your lexicon files are fairly big, you will need to make sure that your machine has
enough memory. On Macintosh, you can explicitly assign memory to the program. On

Windows, you will have to make sure that your machine has lots of memory. Once the
run-time lexicon is loaded, the parser then reads in the cr.cut file. Additionally, if the +b
option is specified, the dr.cut file is also read in. Once the concatenation rules have been
loaded the program is ready to analyze input words. As a user, you do not need to
concern yourself about the run-time lexicon. Your main concern is about the entries in
the lexicon files. The rules in the ar.cut and cr.cut files are only of concern if you wish to
have a set of analyses and labelings that differs from the one given in the chapter of the
CHAT manual on morphosyntactic coding, or if you are trying to write a new set of
grammars for some language.

5.28.3 Unique Options
+b Use the *dr.cut disambiguation rules.

+c With this option, clitics such as 'd, n't , and 'll will be treated as separate
words. This option must be used when creating the %mor tier for DSS analysis.

+eS Show the result of the operation of the arules on either a stem S or stems
in file @S. This output will go into a file called debug.cdc in your library
directory. Another way of achieving this is to use the +d option inside
“interactive MOR” which is described in the section on Interactive Mode on
page 117.

+xi Run MOR in the interactive test mode. You type in one word at a time to
the test prompt and MOR provides the analysis on line. This facility makes the
following commands available in the CLAN Output window:

word - analyze this word
:q quit- exit program
:c print out current set of crules
:d display application of arules.
:l re-load rules and lexicon files
:h help - print this message

 If you type in a word, such as “dog” or “perro,” MOR will try to analyze it
and give you its components morphemes. If you change the rules or the lexicon,
use :l to reload and retest. The :c and :d switches will send output to a file
called debug.cdc in your library directory.

+xl Run MOR in the lexicon building mode. This mode takes a series of .cha
files as input and outputs a small lexical file with the extension .ulx with entries
for all words not recognized by MOR. This helps in the building of lexicons.

MOR also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.28.4 MOR Lexicons
Before running MOR on a set of CHAT files, it is important to make sure that MOR

will be able to recognize all the words in these files. This means that either the word itself
or the stem of the word must be listed in the lexicon. It is extremely unlikely that every
word in any large corpus of child language data would be listed in even the largest MOR
lexicon. Therefore, users of MOR need to understand how to supplement the basic
lexicons with additional entries. Before we look at the process of adding new words to
the lexicon, we first need to examine the way in which entries in the disk lexicon are
structured.

The disk lexicon contains truly irregular forms of a word as well as citation forms.

For example, the verb “go” is stored in the disk lexicon, along with the past tense “went,”
since this latter form is suppletive and does not undergo regular rules. The disk lexicon
contains any number of lexical entries, stored at most one entry per line. The lexicon may
be annotated with comments, which will not be processed. A comment begins with the
percent sign and ends with a new line. A lexical entry consists of these parts:

1. The surface form of the word.
2. Category information about the word, expressed as a set of feature-value pairs.

Each feature-value pair is enclosed in square brackets and the full set of feature-
value pairs is enclosed in curly braces. All entries must contain a feature-value
pair that identifies the syntactic category to which the word belongs, consisting
of the feature “scat” with an appropriate value. Words that belong to several cat-
egories will be followed by several sets of feature structures, each separated by a
backslash.

3. If the word has multiple readings, each additional reading is entered by inserting
a backslash and then putting the next reading on the next line.

4. Following the category information is information about the lemmatization of ir-
regular forms. This information is given by having the citation form of the stem
followed by the & symbol as the morpheme separator and then the grammatical
morphemes it contains.

5. Finally, if the grammar is for a language other than English, you can enter the
English translation of the word preceded by the = sign.

The following are examples of lexical entries:

can {[scat v:aux]} \
{[scat n]}

a {[scat det]}
an {[scat det]} "a"
go {[scat v] [ir +]}
went {[scat v] [tense past]} "go&PAST"

When adding new entries to the lexicon it is usually sufficient to enter the citation form
of the word, along with the syntactic category information, as in the illustration for the
word “a” in the preceding examples. When working with languages other than English,
you may wish to add English glosses and even special character sets to the lexicon. For
example, in Cantonese, you could have this entry:

ping4gwo2 {[scat n]} =apple
To illustrate this, here is an example of the MOR output for an utterance from Cantonese:

*CHI: sik6 ping4gwo2 caang2 hoeng1ziu1 .
%mor: v|sik6=eat n|ping4gwo2=apple

n|caang2=orange n|hoeng1ziu1=banana .
In languages that use both Roman and non-Roman scripts, such as Chinese, you may also
want to add non-Roman characters after the English gloss. This can be done using this
form in which the $ sign separates the English gloss from the representation in characters:

pinyin {[scat x]} “lemmatization” =gloss$characters=

MOR will take the forms indicated by the lemmatization, the gloss, and the characters
and append them after the category representation in the output. The gloss,
lemmatization, and characters should not contain spaces or the morpheme delimiters +, -,
and #. Instead of spaces or the + sign, you can use the underscore character to represent
compounds.

5.28.5 File Preparation
Before starting on the process of lexicon building, you need to verify that your files

are in good CHAT format. You do this by running the CHECK program. At this point, it
is important that you use the +g3 switch in CHECK, because this will detect many word-
internal spelling errors. Cleaning up the various errors noted by CHECK will move you
closer to being able to run MOR successfully.

 After you have run CHECK, you may wish to scan over the words in your corpus

by eye. This can be done by running this FREQ command:
freq +r2 -s*@* +d1 +k +f +u *.cha

Here is a reminder of the meaning of all the switches:

+r2 show words with their parentheses included as in “(a)bout” to
make searching easier

-s*@* ignore words with special form markers
+d1 makes a list of words, without frequency numbers
+k case sensitivity to reveal inappropriate capitalization
+f send to file
+u all results go to one output file

The output will go into a .frq.cex file with a name derived from the first file in your

file set. Capitalized words will appear at the beginning of this file. You should check over
the capitalized words to make sure they are proper nouns. Also, you may run into words
with apostrophes in them, such as o' which may mean “over” or “of”. You can solve this
ambiguity inside the file by filling in the missing information in parenthesis, as in o(ver)
and o(f).

After you have cleaned up the spellings and typos, you will then need to find the

words with @ signs and make decisions about whether or not they are appropriately
marked. Typical problems with blurred @ sign assignations occur when unclear
distinctions have been made between babbling/word play, neologisms, child forms, word
play and familial forms. Forms ending in @n and @f need to be entered in the lexicon.
Forms in @c or @wp do not. A true @c word is one that the child made up and used

consistently. False @c words may need to be changed to @b, @w, or @o. Whenever
possible, mispronunciations or shortening should be noted without special form markers,
as in hosie@c => ho(r)sie or faum@c => faum [: farm].

5.28.6 Lexicon Building
Once the file is thoroughly CHECK-ed and its words have been scanned, you are

ready to make a first run of MOR. The command is simply:
mor +xl *.mor

(If you are working with a language other than English, you will need to add the +g and
+l switches.) When MOR is run with the +xl flag, the output is a single file with the
extension .ulx which contains templates for the lexical entries for all unknown words in a
collection of files. Duplicates are removed automatically when MOR creates the .ulx file.
A fragment of the output of this command might look something like this:

ta {[scat ?]}
tag {[scat ?]}
tags {[scat ?]}
talkative {[scat ?]}
tambourine {[scat ?]}

You must then go through this file and determine whether to discard, complete, or
modify these entry templates. For example, it may be impossible to decide what category
“ta” belongs to without examining where it occurs in the corpus. In this example, a scan
of the Sarah files in the Brown corpus (from which these examples were taken), reveals
that “ta” is a variant of the infinitive marker “to”:

*MEL: yeah # (be)cause if it's gon (t)a be a p@l it's
got ta go that way.

Therefore, the entry for “ta” is amended to:
ta {[scat inf]} "to"

The corpus includes both the form “tag” and “tags.” However, because the former
can be derived from the latter, it is sufficient to have just the entry for “tag” in the
lexicon. The forms “talkative” and “tambourine” are low-frequency items that are not
included in the standard lexicon file eng.lex. Inasmuch as these are real words, the ?
should be replaced by the codes “adj” and “n”, respectively. For the example fragment
given above, the resulting .ulx file should look like this:

ta {[scat inf]} "to"
tag {[scat n]}
talkative {[scat adj]}
tambourine {[scat n]}

Once all words have been coded, you need to insert each new word into one of the

lexicon files. If you do not want to edit the main files, you can create new ones such as
adj2.cut for all your new adjectives or vir2.cut for additional irregular verbs.

5.28.7 A Formal Description of the Rule Files
Users working with languages for which grammar files have already been built do not

need to concern themselves with the remaining sections on MOR. However, users who
need to develop grammars for new languages or who find they have to modify grammars
for existing ones will need to understand how to create the two basic rule files
themselves. You do not need to create a new version of the sf.cut file for special form
markers. You just copy this file and give it a name such as dansf.cut, if the prefix you
want to use for your language is something like “dan” for Danish.

 In order to build new versions of the arules and crules files for your language, you

will need to study the English files or files for a related language. For example, when
you are building a grammar for Portuguese, it would be helpful to study the grammar that
has already been constructed for Spanish. This section will help you understand the basic
principles underlying the construction of the arules and crules.

5.28.7.1 Declarative structure
Both arules and crules are written using a simple declarative notation. The following

formatting conventions are used throughout:

1. Statements are one per line. Statements can be broken across lines by placing the
continuation character \ at the end of the line.

2. Comments begin with a % character and are terminated by the new line. Com-
ments may be placed after a statement on the same line, or they may be placed on
a separate line.

3. Names are composed of alphanumeric symbols, plus these characters:
 ^ & + - _ : \ @ . /

Both arule and crule files contain a series of rules. Rules contain one or more clauses,
each of which is composed of a series of condition statements, followed by a series of
action statements. In order for a clause in rule to apply, the input(s) must satisfy all
condition statements. The output is derived from the input via the sequential application
of all the action statements.

Both condition and action statements take the form of equations. The left hand side of

the equation is a keyword, which identifies the part of the input or output being
processed. The right hand side of the rule describes either the surface patterns to be
matched or generated, or the category information that must be checked or manipulated.

The analyzer manipulates two different kinds of information: information about the

surface shape of a word, and information about its category. All statements that match or
manipulate category information must make explicit reference to a feature or features.
Similarly, it is possible for a rule to contain a literal specification of the shape of a stem
or affix. In addition, it is possible to use a pattern matching language in order to give a
more general description of the shape of a string.

5.28.7.2 Pattern-matching symbols
The specification of orthographic patterns relies on a set of symbols derived from the

regular expression (regexp) system in Unix. The rules of this system are:

1. The metacharacters are: * [] | . ! All other characters are interpreted
literally.

2. A pattern that contains no metacharacters will only match itself, for example the
pattern “abc” will match only the string “abc”.

3. The period . matches any character.

4. The asterisk * allows any number of matches (including 0) on the preceding
character. For example, the pattern '.*' will match a string consisting of any num-
ber of characters.

5. The brackets [] are used to indicate choice from among a set of characters. The
pattern [ab] will match either a or b.

6. A pattern may consist of a disjunctive choice between two patterns, by use of the
| symbol. For example, the pattern will match all strings which end in x, s, sh, or
ch.

7. It is possible to check that some input does not match a pattern by prefacing the
entire pattern with the negation operator !.

5.28.7.3 Variable notation
A variable is used to name a regular expression and to record patterns that match it. A

variable must first be declared in a special variable declaration statement. Variable decla-
ration statements have the format: “VARNAME = regular-expression” where
VARNAME is at most eight characters long. If the variable name is more than one
character, this name should be enclosed in parenthesis when the variable is invoked.

Once declared, the variable can be invoked in a rule by using the operator $. If the

variable name is longer than a single character, the variable name should be enclosed in
parentheses when invoked. For example, the statement X = .* declares and initializes a
variable named “X.” The name X is entered in a special variable table, along with the
regular expression it stands for. Note that variables may not contain other variables.

The variable table also keeps track of the most recent string that matched a named

pattern. For example, if the variable X is declared as above, then the pattern $Xle will
match all strings that end in “le”. In particular, the string “able” will match this pattern;
“ab” will match the pattern named by “X”, and “le” will match the literal string “le”.
Because the string “ab” is matched against the named pattern X, it will be stored in the
variable table as the most recent instantiation of X, until another string matches X.

5.28.7.4 Category Information Operators
The following operators are used to manipulate category information: ADD [feature

value], and DEL [feature value]. These are used in the category action statements. For ex-
ample, the crule statement “RESULTCAT = ADD [num pl]” adds the feature value pair
[num pl] to the result of the concatenation of two morphemes.

5.28.7.5 Arules
The function of the arules is to expand the entries in the disk lexicon into a larger

number of entries in the on-line lexicon. Words that undergo regular phonological or
orthographic changes when combined with an affix only need to have one disk lexicon
entry. The arules are used to create on-line lexicon entries for all inflectional variants.
These variants are called allos. For example, the final consonant of the verb “stop” is
doubled before a vowel-initial suffix, such as “-ing.” The disk lexicon contains an entry
for “stop,” whereas the online lexicon contains two entries: one for the form “stop” and
one for the form “stopp”.

An arule consists of a header statement, which contains the rulename, followed by

one or more condition-action clauses. Each clause has a series of zero or more conditions
on the input, and one or more sets of actions. Here is an example of a typical condition-
action clause from the larger n-allo rule in the English ar.cut file:

LEX-ENTRY:
LEXSURF = $Yy
LEXCAT = [scat n]
ALLO:
ALLOSURF = $Yie
ALLOCAT = LEXCAT, ADD [allo nYb]
ALLO:
ALLOSURF = LEXSURF
ALLOCAT = LEXCAT, ADD [allo nYa]

This is a single condition-action clause, labeled by the header statement “LEX-EN-
TRY:” Conditions begin with one of these two keywords:

1. LEXSURF matches the surface form of the word in the lexical entry to an ab-

stract pattern. In this case, the variable declaration is
 Y = .*[^aeiou]
 Given this, the statement “LEXSURF = $Yy” will match all lexical entry surfac-

es that have a final y preceded by a nonvowel.
2. LEXCAT checks the category information given in the matched lexical item

against a given series of feature value pairs, each enclosed in square brackets and
separated by commas. In this case, the rule is meant to apply only to nouns, so
the category information must be [scat n]. It is possible to check that a feature-
value pair is not present by prefacing the feature-value pair with the negation op-
erator !.

Variable declarations should be made at the beginning of the rule, before any of the
condition-action clauses. Variables apply to all following condition-action clauses inside
a rule, but should be redefined for each rule.

After the condition statements come one or more action statements with the label AL-

LO: In most cases, one of the action statements is used to create an allomorph and the
other is used to enter the original lexical entry into the run-time lexicon. Action clauses
begin with one of these three keywords:

 1. ALLOSURF is used to produce an output surface. An output is a form that will

be a part of the run-time lexicon used in the analysis. In the first action clause, a
lexical entry surface form like “pony” is converted to “ponie” to serve as the
stem of the plural. In the second action clause, the original form “pony” is kept
because the form “ALLOSURF = LEXSURF” causes the surface form of the
lexical entry to be copied over to the surface form of the allo.

 2. ALLOCAT determines the category of the output allos. The statement “ALLO-
CAT = LEXCAT” causes all category information from the lexical entry to be
copied over to the allo entry. In addition, these two actions add the morphologi-
cal classes such as [allo nYa] or [allo nYb] in order to keep track of the nature of
these allomorphs during the application of the crules.

3. ALLOSTEM is used to produce an output stem. This action is not necessary in
this example, because this rule is fully regular and produces a noninflected stem.
However, the arule that converts “postman” into “postmen” uses this AL-
LOSTEM action:

 ALLOSTEM = $Xman&PL

 The result of this action is the form postman&PL which is placed into the %mor

line without the involvement of any of the concatenation rules.

Every set of action statements leads to the generation of an additional allomorph for

the online lexicon. Thus, if an arule clause contains several sets of action statements, each
labeled by the header ALLO:, then that arule, when applied to one entry from the disk
lexicon, will result in several entries in the online lexicon. To create the online lexicon,
the arules are applied to the entries in the disk lexicon. Each entry is matched against the
arules in the order in which they occur in the arules file. This ordering of arules is an
extremely important feature. It means that you need to order specific cases before
general cases to avoid having the general case preempt the specific case.

As soon as the input matches all conditions in the condition section of a clause, the
actions are applied to that input to generate one or more allos, which are loaded into the
on-line lexicon. No further rules are applied to that input, and the next entry from the disk
lexicon is read in to be processed. The complete set of arules should always end with a
default rule to copy over all remaining lexical entries that have not yet been matched by
some rule. This default rule must have this shape:

% default rule- copy input to output
RULENAME: default
LEX-ENTRY:
ALLO:

5.28.7.6 Crules
The purpose of the crules is to allow stems to combine with affixes. In these rules,

sets of conditions and actions are grouped together into if then clauses. This allows a rule
to apply to a disjunctive set of inputs. As soon as all the conditions in a clause are met,
the actions are carried out. If these are carried out successfully the rule is considered to
have “fired,” and no further clauses in that rule will be tried.

There are two inputs to a crule: the part of the word identified thus far, called the

“start,” and the next morpheme identified, called the “next.” The best way to think of this
is in terms of a bouncing ball that moves through the word, moving items from the not-
yet-processed chunk on the right over to the already processed chunk on the left. The
output of a crule is called the “result.” The following is the list of the keywords used in
the crules:

condition keywords function
STARTSURF check surface of start input against some pattern
STARTCAT check start category information
NEXTSURF check surface of next input against some pattern

NEXTCAT check next category information
MATCHCAT check that start and next have the same value for

 all the feature-value pairs of the type specified
RESULTCAT output category information

Here is an example of a piece of a rule that uses most of these keywords:
S = .*[sc]h|.*[zxs] % strings that end in affricates
O = .*[^aeiou]o % things that end in o
% clause 1 - special case for "es" suffix
if
STARTSURF = $S
NEXTSURF = es|-es
NEXTCAT = [scat vsfx]
MATCHCAT [allo]
then
RESULTCAT = STARTCAT, NEXTCAT [tense], DEL [allo]
RULEPACKAGE = ()

This rule is used to analyze verbs that end in -es. There are four conditions that must
be matched in this rule:

1. The STARTSURF is a stem that is specified in the declaration to end in an affri-

cate. The STARTCAT is not defined.
2. The NEXTSURF is the -es suffix that is attached to that stem.
3. The NEXTCAT is the category of the suffix, which is “vsfx” or verbal suffix.
4. The MATCHCAT [allo] statement checks that both the start and next inputs have

the same value for the feature allo. If there are multiple [allo] entries, all must
match.

The shape of the result surface is simply the concatenation of the start and next surfaces.
Hence, it is not necessary to specify this via the crules. The category information of the
result is specified via the RESULTCAT statement. The statement “RESULTCAT =
STARTCAT” causes all category information from the start input to be copied over to the
result. The statement “NEXTCAT [tense]” copies the tense value from the NEXT to the
RESULT and the statement “DEL [allo]” deletes all the values for the category [allo].

In addition to the condition-action statements, crules include two other statements: the

CTYPE statement, and the RULEPACKAGES statement. The CTYPE statement
identifies the kind of concatenation expected and the way in which this concatenation is
to be marked. This statement follows the RULENAME header. There are two special
CTYPE makers: START and END. “CTYPE: START” is used for those rules that
execute as soon as one morpheme has been found. “CTYPE: END” is used for those rules
that execute when the end of the input has been reached. Otherwise, the CYTPE marker
is used to indicate which concatenation symbol is used when concatenating the
morphemes together into a parse for a word. According to CLAN conventions, # is used
between a prefix and a stem, - is used between a stem and suffix, and ~ is used between a
clitic and a stem. In most cases, rules that specify possible suffixes will start with
CTYPE: -. These rules are neither start nor end rules and they insert a suffix after the
stem.

Rules with CTYPE START are entered into the list of startrules. Startrules are the set
of rules applied as soon as a morpheme has been recognized. In this case, the beginning
of the word is considered as the start input, and the next input is the morpheme first
recognized. As the start input has no surface and no category information associated with
it, conditions and actions are stated only on the next input.

Rules with CTYPE END are entered into the list of endrules. These rules are invoked

when the end of a word is reached, and they are used to rule out spurious parses. For the
endrules, the start input is the entire word that has just been parsed, and there is no next
input. Thus conditions and actions are only stated on the start input.

The RULEPACKAGES statement identifies which rules may be applied to the result

of a rule, when that result is the input to another rule. The RULEPACKAGES statement
follows the action statements in a clause. There is a RULEPACKAGES statement associ-
ated with each clause. The rules named in a RULEPACKAGES statement are not tried
until after another morpheme has been found. For example, in parsing the input
“walking”, the parser first finds the morpheme “walk,” and at that point applies the
startrules. Of these startrules, the rule for verbs will be fired. This rule includes a
RULEPACKAGES statement specifying that the rule which handles verb conjugation
may later be fired. When the parser has further identified the morpheme “ing,” the verb
conjugation rule will apply, where “walk” is the start input, and “ing” is the next input.

Note that, unlike the arules which are strictly ordered from top to bottom of the file,

the crules have an order of application that is determined by their CTYPE and the way in
which the RULEPACKAGES statement channels words from one rule to the next.

5.28.7.7 Drules
In languages like English, French, or Chinese, words often have many alternative

readings. For example, the word “back” can be a noun, adjective, verb, or preposition.
MOR enters alternative readings into the %mor line using the ^ symbol to join
alternative. MOR also provides a method for eliminating some of these ambiguities,
even before they are entered into the output file. The use of drules is controlled by the +b
option. If you do not add the +b, no disambiguation is attempted. To use this option, you
need to build a file of drules or disambiguation rules that are structured much like the
arules. Here is an example of a drule from the English dr.cut file:

RULENAME: adj
choose
CURCAT = [scat adj]
when
PREVCAT = [scat OR det det:poss qn]
NEXTCAT = [scat OR n adj pro:indef]

 This rule selects the adjective reading from a set of alternatives when the previous
word is a determiner and the following word is a noun or adjective, as in “the back gate”.
The application of the drules is strictly ordered, so specific rules should be ordered before
general rules. The drule facility should be used with caution. One alternative to use of
the drules is hand disambiguation (see the section on the Disambiguator Mode on page
27). The other alternative is to use the POST program (see the section on POST on page
120).

5.28.8 Interactive Mode
When building a grammar for a new language, it is best to begin with a paper-and-

pencil analysis of the morphological system in which you lay out the various affixes of
the language, the classes of stem allomorphy variations, and the forces that condition the
choices between allomorphs. This work should can be guided by a good descriptive
grammar of the morphology of the language. Once this work is finished, you should
create a small lexicon of the most frequent words. You may want to focus on one part-
of-speech at a time. For example, you could begin with the adverbs, since they are often
monomorphemic. Then you could move on to the nouns. The verbs should probably
come last. You can copy the sf.cut file from English and rename it.

Once you have a simple lexicon and a set of rule files, you will begin a long process

of working with interactive MOR. When using MOR in the +xi or interactive mode,
there are several additional options that become available in the CLAN Output window.
They are:

word - analyze this word
:q quit- exit program
:c print out current set of crules
:d display application of a rules.
:l re-load rules and lexicon files
:h help - print this message

If you type in a word, such as “dog” or “perro,” MOR will try to analyze it and give you
its component morphemes. If all is well, you can move on the next word. If it is not, you
need to change your rules or the lexicon. You can stay within CLAN and just open these
using the Editor. After you save your changes, use :l to reload and retest.

When you begin work with the grammar, you want to focus on the use of the +xi

switch, rather than the analysis of large groups of files. As you begin to elaborate your
grammar, you will want to start to work with sets of files. These can be real data files or
else files full of test words. When you shift to working with files, you will be combining
the use of interactive MOR and the +xi switch with use of the lexicon testing facility
using +xl. As you move through this work, make copies of your MOR grammar files and
lexicon frequently, because you will sometimes find that you have made a change that
makes everything break and you will need to go back to an earlier stage to figure out
what you need to fix. We also recommend using a fast machine with lots of memory.
You will find that you are frequently reloading the grammar using the :l function.
Having a fast machine will greatly speed this process.

To begin the process, start working with the sample minimal MOR grammars

available from the net. These files should allow you to build up a lexicon of uninflected
stems. Try to build up separate files for each of the parts of speech in your language. As
you start to feel comfortable with this, you should begin to add affixes. To do this, you
need to create a lexicon file, such as aff.cut. Using the technique found in unification
grammars, you want to set up categories and allos for these affixes that will allow them to
match up with the right stems when the crules fire. For example, you might want to call
the plural a [{scat nsfx]} in order to emphasize the fact that it should attach to nouns.
And you could give the designation [allo mdim] to the masculine diminutive suffix -ito in
Spanish in order to make sure that it only attaches to masculine stems and produces a

masculine output.

As you progress with your work, continually check each new rule change by

entering :l (colon followed by “l” for load) into the CLAN Output window. If you have
changed something in a way that produces a syntactic violation, you will learn this
immediately and be able to change it back. If you find that a method fails, you should
first rethink your logic. Consider these factors:

1. Arules are strictly ordered. Maybe you have placed a general case before a spe-

cific case.
2. Crules depend on direction from the RULEPACKAGES statement.
3. There has to be a START and END rule for each part of speech. If you are get-

ting too many entries for a word, maybe you have started it twice. Alternatively,
you may have created too many allomorphs with the arules.

4. If you have a MATCHCAT allos statement, all allos must match. The operation
DEL [allo] deletes all allos and you must add back any you want to keep.

5. Make sure that you understand the use of variable notation and pattern matching
symbols for specifying the surface form in the arules.

However, sometimes it is not clear why a method is not working. In this case, you

will want to check the application of the crules using the :c option in the CLAN Output
window. You then need to trace through the firing of the rules. The most important
information is often at the end of this output.

If the stem itself is not being recognized, you will need to also trace the operation of

the arules. To do this, you should either use the +e option in standard MOR or else the :d
option in interactive MOR. The latter is probably the most useful. To use this option,
you should create a directory called testlex with a single file with the words your are
working with. Then run

mor +xi +ltestlex
Once this runs, type :d and then :l and the output of the arules for this test lexicon will go
to debug.cdc. Use your editor to open that file and try to trace what is happening there.

As you progress with the construction of rules and the enlargement of the lexicon,

you can tackle whole corpora. At this point you will occasionally run the +xl analysis.
Then you take the problems noted by +xl and use them as the basis for repeated testing
using the +xi switch and repeated reloading of the rules as you improve them. As you
build up your rule sets, you will want to annotate them fully using comments preceded by
the % symbol.

5.29 PHONFREQ
The PHONFREQ program tabulates all of the segments on the %pho line. For

example, using PHONFREQ with no further options on modrep.cha will produce this
output:

2 A initial = 0, final = 1, other = 1
1 I initial = 0, final = 1, other = 0
3 a initial = 1, final = 1, other = 1
2 m initial = 2, final = 0, other = 0

3 n initial = 1, final = 1, other = 1
2 o initial = 0, final = 2, other = 0
2 w initial = 2, final = 0, other = 0

This output tells you that there were two occurrences of the segment /A/, once in final
position and once in other or medial position.

If you create a file called alphabet file and place it in your working directory, you can

further specify that certain digraphs should be treated as single segments. This is
important if you need to look at diphthongs or other digraphs in UNIBET. In the strings
in the alphabet file, the asterisk character can be used to indicate any single character. For
example, the string *: would indicate any sound followed by a colon. If you have three
instances of a:, three of e:, and three of o:, the output will list each of these three
separately, rather than summing them together as nine instances of something followed
by a colon. Because the asterisk is not used in either UNIBET or PHONASCII, it should
never be necessary to specify a search for a literal asterisk in your alphabet file. A sample
alphabet file for English is distributed with CLAN. PHONFREQ will warn you that it
does not find an alphabet file. You can ignore this warning if you are convinced that you
do not need a special alphabet file.

If you want to construct a complete substitution matrix for phonological analysis, you

need to add a %mod line in your transcript to indicate the target phonology. Then you can
run PHONFREQ twice, first on the %pho line and then on the %mod line. To run on the
%mod line, you need to add the +t%mod switch.

If you want to specify a set of digraphs that should be treated as single phonemes or

segments, you can put them in a file called alphabet.cut. Each combination should be en-
tered by itself on a single line. PHONFREQ will look for the alphabet file in either the
working directory or the library directory. If it finds no alphabet.cut file, each letter will
be treated as a single segment. Within the alphabet file, you can also specify trigraphs
that should override particular digraphs. In that case, the longer string that should
override the shorter string should occur earlier in the alphabet file.

5.29.1 Unique Options
+b By default, PHONFREQ analyzes the %pho tier. If you want to analyze
another tier, you can use the +b switch to specify the desired tier. Remember
that you might still need to use the +t switch along with the +b switch as in this
command:

phonfreq +b* +t*CHI modrep.cha
+d If you use this switch, the actual words that were matched will be written
to the output. Each occurrence is written out.

+t You should use the +b switch to change the identity of the tier analyzed by
PHONFREQ. The +t switch is used to change the identity of the speaker being
analyzed. For example, if you want to analyze the main lines for speaker CHI,
you would use this command:

phonfreq +b* +t*CHI modrep.cha

PHONFREQ also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

The lexicon could be much smaller if more rules were written to handle derivational

morphology. These would handle prefixes such as “non#” and derivational suffixes such
as “-al.” The grammar still needs to be fine-tuned in order to catch common over-
regularizations, although it will never be able to capture all possible morphological
errors. Furthermore, attempts to capture over regularizations may introduce bogus
analyses of good forms, such as “seed” = “*see-PAST.” Other areas for which more rules
need to be written include diminutives, and words like “oh+my+goodness,” which should
automatically be treated as communicators.

5.30 POST
POST was written by Christophe Parisse of INSERM, Paris for the purpose of

automatically disambiguating the output of MOR. The POST package is composed of
four CLAN commands: POST, POSTTRAIN, POSTLIST, and POSTMOD. POST is the
command that runs the disambiguator. POST needs a database which contains
information about syntactic word order. Databases are created and maintained by
POSTTRAIN and can be dumped in a text file by POSTLIST. POSTMODRULES is a
utility for modifying Brill rules. In this section, we describe the use of the POST
command.

In order to use POST, you must first have a database of disambiguation rules

appropriate for your language. For English, this file is called eng.db. As our work with
POST progresses, we will make these available for additional languages. To run POST,
you can use this command format :

post *.cha
This command assumes the default values of the +f, +d, and +s switches described below.
The accuracy of disambiguation by POST will be above 95 percent. However, there will
be some errors. To make the most conservative use of POST, you may wish to use the
+s2 switch. The options for POST are:

-b do not use Brill rules (they are used by default)

+dF use POST database file F (default is "eng.db"). This file must have been
created by POSTTRAIN. If you do not use this switch, POST will try to locate
the eng.db file.

+e[1,2]c this option is a complement to the option +s2 and +s3 only. It
allows you to change the separator used (+e1c) between the different solutions,
(+e2c) before the information about the parsing process. (c can be any
character). By default, the separator for +e1 is # and for +e2, the separator is /.

+f send output to file derived from input file name. If you do not use this

switch, POST will create a series of output files named *.pst.

+fF send output to file F. This switch will change the extension to the output
files.

-f send output to the screen

+sN N=0 (default) replace ambiguous %mor lines with disambiguated ones
 N=1 keep ambiguous %mor lines and add disambiguated %pos lines,
 N=2 output as in N=1, but with slashes marking undecidable cases
 N=3 keep ambiguous %mor lines and add %pos lines with debugging info
 N=4 for develop use only

With the options +s0 and +s1, only the best candidate is outputted. With option +s2,
second and following candidates may be outputted, when the disambiguation process is
not able to choose between different solutions with the most probable solution displayed
first. With option +s3, information about the parsing process is given in three situations:
processing of unknown words (useful for checking these words quickly after the parsing
process), processing of unknown rules and no correct syntactic path obtained (usually
corresponds to new grammatical situations or typographic errors).

+tF use the stem tags in file F along with the other syntactic categories. The
tags created by MOR have the shape:

category | stem & fusional
 By default, the POST grammar only uses the category information to the
left of the bar symbol. However, in some cases, disambiguation can be
improved by including information to the right of the bar. To do this, simply
list the names of the stems or fusional categories in a file and use the +t switch.

5.31 POSTLIST
POSTLIST provides a list of tags used by POST. It is run on the *.db database file.

The options for POSTLIST are as follows:

+dF this gives the name of the database to be listed (default value: ‘eng.db’).
+fF specify name of result file to be F.
+m outputs all the matrix entries present in the database.
+r outputs all the rules present in the database.
+rb outputs rule dictionary for the Brill tagger.
+rn outputs rule dictionary for the Brill tagger in numerical order.
+t outputs the list of all tags present in the database.
+w outputs all the word frequencies gathered in the database.
+wb outputs word dictionary for the Brill tagger.

If none of the options is selected, then general information about the size of the database
is outputted.

5.32 POSTTRAIN
POSTTRAIN was written by Christophe Parisse of INSERM, Paris. In order to run

POST, you need to create a database file for your language. For several languages, this
have already been done. If there is no POST database file for your language or your
subject group, you can use the POSTTRAIN program to create this file. The default
name for this file is eng.db. Before running POSTTRAIN, you must make sure that all of
your files have a %mor line as described in the section on MOR on page 104. In
addition, your files must have a fully disambiguated %trn line. The %trn line has the
same form as the %mor line, but has no ambiguous entries. One way of creating files
with the %mor and %trn lines is to run MOR on your data, do a full hand disambiguation
using Disambiguator Mode (as described in the section on Disambiguator Mode on
page 27), rename %mor to %trn using CHSTRING, and then run MOR again to create a
%mor line. If a POST database file already exists for your language, then you do not
need to worry about using POSTTRAIN at all. However, the more you train a POST
database with good disambiguated input data, the more accurate it will become.

The options for POSTTRAIN are:

+a train word frequencies even on utterances longer than length 3.
+b : extended learning using Brill's rules
-b : Brill's rules training only
+boF append output of brill rule training to file F (default: send it to screen)
+bN parameter for Brill rules
 1- means normal Brill rules are produced (default)
 2- means only lexical rules are produced
 3- same as +b1, but eliminates rules redundant with binary rules
 4- same as +b2, but eliminates rules redundant with binary rules
+btN threshold for Brill rules (default=2). For example, if the value is 2, a rule
should correct 3 errors to be considered useful. To generate all possible rules,
use a threshold of 0.
+c create new POST database file with the name eng.db
+cF create new POST database file with the name F
-c add to an existing version of eng.db
-cF add to an existing POST database file with the name F
+mN load the disambiguation matrices into memory (about 700K)
 N=0 no matrix training
 N=2 training with matrix of size 2 (best for child corpora)
 N=3 training with matrix of size 3
 N=4 training with matrix of size 4
+oF append errors output to file F (default: send it to screen)
+sN N=0 error log listing mismatches between the %trn and %mor line.

 Lines that begin with @ indicate that the %trn and %mor
had different numbers of elements. Lines that do not begin with @
represent simple disagreement between the %trn and the %mor line in some
category assignment. For example, if %mor has “pro:dem^pro:exist” and
%trn has “co” three times. Then +s0 would yield:

3 there co (3 {1} pro:dem (2} pro:exist)
 N=1 similar output in a format designed more for developers.
 N=2 complete output of all date, including both matches and mismatches
+tF use the stem tags in file F along with the other syntactic categories

5.33 POSTMOD
This tool enables you to modify the Brill rules of a database. There are these
options:

+dF: use POST database file F (default is eng.db).

+rF: specify name of file (F) containing actions that modify rules.

+c : force creation of Brill's rules.

+lm: reduce memory use (but increase processing time).

5.34 RELY
This program has two functions. The first is to check reliability. When you are

entering a series of codes into files using the Coder Mode, you will often want to
compute the reliability of your coding system by having two or more people code a single
file or group of files. To do this, you can give each coder the original file, get them to
enter a %cod line and then use the RELY program to spot matches and mismatches. For
example, you could copy the sample.cha file to the samplea.cha file and change one code
in the samplea.cha file. In this example, change the word “in” to “gone” in the code on
line 15. Then enter the command

rely sample.cha samplea.cha +t%spa
The output in the sample.rly file will look like the basic sample.cha file, but with this

additional information for line 15:
%spa: $RDE:sel:non $RFI:xxx:gone:?"samplea.cha"

$RFI:xxx:in:?"sample.cha"
If you want the program to ignore any differences in the main line, header line, or

other dependent tiers that may have been introduced by the second coder, you can add the
+c switch. If you do this, the program will ignore differences and always copy
information from the first file. If the command is:

rely +c sample.cha samplea.cha +t%spa
then the program will use sample.cha as the master file for everything except the
information on the %spa tier.

The second function of the RELY program is to allow multiple coders to add a series

of dependent tiers to a master file. The main lines of master file should remain unchanged
as the coders add additional information on dependent tiers. This function is accessed
through the +a switch, which tells the program the name of the code from the secondary
file that is to be added to the master file, as in

rely +a orig.cha codedfile.cha +t%spa

5.34.1 Unique Options
+a Add tiers from second file to first, master, file.

+c Do not check data on nonselected tier.

RELY also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.35 SALTIN
This program takes SALT formatted files and converts them to the CHAT format.

SALT is a transcript format developed by Jon Miller and Robin Chapman at the
University of Wisconsin. By default, SALTIN sends its output to a file. Here is the most
common use of this program:

saltin file.cut
It may be useful to note a few details of the ways in which SALTIN operates on

SALT files:

1. When SALTIN encounters material in parentheses, it translates this material as
an unspecified retracing type, using the [/?] code.

2. Multiple comments are placed on separate lines on a single comment tier.
3. SALT codes in square brackets are converted to CHAT comments in square

brackets and left in the original place they occurred, unless the + symbol is added
to the SALT code. If it is present, the code is treated as a postcode and moved to
the end of the utterance when SALTIN runs. The CHSTRING program can be
used to insert + in the desired codes or in all codes, if required.

3. Times in minutes and seconds are converted to times in hours:minutes:seconds.
4. A %def tier is created for coding definitions.

5.35.1 Unique Options
+h Some researchers have used angle brackets in SALT to enter comments.
When the original contains text found between the < and the > characters this
option instructs SALTIN to place it between [% and]. Otherwise, material in
angle brackets would be coded as a text overlap.

+l Put all codes on a separate %cod line. If you do not select this option,
codes will be placed on the main line in the [$text] format.

SALTIN also uses several options that are shared with other commands. For a

complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.36 STATFREQ
The STATFREQ program provides a way of producing a summary of word or code

frequencies across a set of files. However, within each of the files, you can only look at
one speaker at a time. This summary can be sent on as the input to statistical analysis by

programs such as SAS or BMDP. Here is the output from a STATFREQ run on
sample.cha:

a cat chalk+chalk fine here just minute mommy neat no not
that the uhhuh what's white yeah
1.25.8.2 0 0 1 0 0 0 0 1 1 0 0 1 0 0
1 0 2
1.26.8.2 1 1 0 1 1 1 1 0 0 1 1 0 1 1
0 1 0

In order to get this type of output, you need to go through three steps. The actual run-
ning of STATFREQ is the last of these three steps.

1. First, you must assign appropriate @ID header lines to the files to be analyzed.
You can use the INSERT program which is currently only available on Win-
dows. There can be only one @ID header per speaker. These lines take the fol-
lowing shape:

@ID: language|corpus|speaker|age|sex|group|SES|role|situation
 an example would be:

@ID: eng|ne20|chi20|1;10.4|m||middle|target_child|situation
 Note, that the information here for “group” is missing and this is indicated by

having no information between the fifth and sixth bar marks. This header can be
produced automatically using the INSERT program which is currently not yet
included in CLAN.

2. Next, use FREQ with the +t option followed by the appropriate speaker code.
You must also use the +d2 option in the FREQ command line. This will produce
a temporary file called stat.out. Here is an example of a FREQ command that
outputs data for a STATFREQ analysis:

freq +d2 +t@ID=eng|samp|*|0110*CHI sample.cha
 This command selects out all the utterances in the sample data for 2-year-olds.

Because you will probably issue this command using NE20 as your working di-
rectory, the command could also have the form:

freq +d2 +t@ID=*|02* *.cha
 STATFREQ will produce one line for each file. If your @ID code matches more

than one speaker, frequency information from the various speakers that it match-
es will be merged together. Therefore, you want to make sure that you use the
various pieces of information in the @ID field to select out exactly the material
you want to match.

3. FREQ will tell you to run STATFREQ by typing:
statfreq stat.out +f +d

 The result of this command is stat.sat.cex. If the @ID header is not found in a
given file, the message NO ID GIVEN will be produced by the program.

if you used the +d, then you can import the StatFreq output in stat.sat.cex to Excel using
this procedure:

Start Excel
select open... from the File menu
choose *.sat.cex as your file
in “Text Import Wizard - Step 1 of 3” select “Delimited” in “Original Data Type”
press “Next >”
in “Text Import Wizard - Step 2 of 3” select “Space” only in “Delimiters”

make sure that “Treat consecutive delimiters as one” is selected
press “Finish”

The only option unique to STATFREQ is +d which removes the file headers so

that the data can be sent directly into a program for statistical analysis. It also replaces
missing values with a period, which is usually a symbol representing missing data for
statistical analysis. STATFREQ uses several options that are shared with other
commands. For a complete list of options for a command, type the name of the command
followed by a carriage return in the Commands window. Information regarding the
additional options shared across commands can be found in chapter 6: Options on
page 132.

5.37 TEXTIN
The TEXTIN program is quite simple. It takes a set of sentences in paragraph form

and converts them to a CHAT file. Blank lines are considered to be possible paragraph
breaks and are noted with @Blank headers. To illustrate the operation of TEXTIN, here
are the results of running TEXTIN on the previous three sentences:

@Begin
@Participants: T Text
*T: the textin program is quite simple.
*T: it takes a set of sentences in paragraph form and

converts
them to a chat file.

*T: blank lines are considered to be possible paragraph
breaks and
are noted with @blank headers.

@End
There are no options that are unique to textin. However, it uses several options that

are shared with other commands. For a complete list of options for a command, type the
name of the command followed by a carriage return in the Commands window.
Information regarding the additional options shared across commands can be found in
chapter 6: Options on page 132.

5.38 TIMEDUR
The TIMEDUR program computes the duration of the pauses between speakers and

the duration of overlaps. This program requires a %snd tier created through sonic CHAT.
The data is output in a form that is intended for export to a spreadsheet program.
Columns labeled with the speaker’s ID indicate the length of the utterance. Columns
labeled with two speaker ID’s, such as FAT-ROS, indicate the length of the pause
between the end of the utterance of the first speaker and the beginning of the utterance of
the next speaker. Negative values in these columns indicate overlaps.

The only unique option in TIMEDUR is +a, which you can use to specify that the
time markers should be taken from the %mov tier instead of the default %snd tier.
TIMEDUR also uses several options that are shared with other commands. For a
complete list of options for a command, type the name of the command followed by a
carriage return in the Commands window. Information regarding the additional options
shared across commands can be found in chapter 6: Options on page 132.

5.39 VOCD
The VOCD command was written by Gerard McKee of the Department of Computer

Science, The University of Reading. The research project supporting this work was
funded by grants from the Research Endowment Trust Fund of The University of
Reading and the Economic and Social Research Council (Grant no R000221995) to D. D.
Malvern and B. J. Richards, School of Education, The University of Reading, Bulmershe
Court, Reading, England RG6 1HY.

Measurements of vocabulary diversity are frequently needed in child language

research and other clinical and linguistic fields. In the past, measures were based on the
ratio of different words (Types) to the total number of words (Tokens), known as the
type–token Ratio (TTR). Unfortunately, such measures, including mathematical
transformations of the TTR such as Root TTR, are functions of the number of tokens in
the transcript or language sample — samples containing larger numbers of tokens give
lower values for TTR and vice versa (Richards & Malvern, 1997a). This problem has
distorted research findings (Richards & Malvern, 1997b). Previous attempts to overcome
the problem, for example by standardizing the number of tokens to be analyzed from
each child, have failed to ensure that measures are comparable across researchers who
use different baselines of tokens, and inevitably waste data in reducing analyses to the
size of the smallest sample.

The approach taken in the VOCD program is based on an analysis of the probability

of new vocabulary being introduced into longer and longer samples of speech or writing.
This probability yields a mathematical model of how TTR varies with token size. By
comparing the mathematical model with empirical data in a transcript, VOCD provides a
new measure of vocabulary diversity called D. The measure has three advantages: it is
not a function of the number of words in the sample; it uses all the data available; and it
is more informative, because it represents how the TTR varies over a range of token size.
The measure is based on the TTR versus token curve calculated from data for the
transcript as a whole, rather than a particular TTR value on it.

D has been shown to be superior to previous measures in both avoiding the inherent

flaw in raw TTR with varying sample sizes and in discriminating across a wide range of
language learners and users (Malvern & Richards, in press; Richards & Malvern, 1998).

5.39.1 Origin of the Measure
TTRs inevitably decline with increasing sample size. Consequently, any single value

of TTR lacks reliability as it will depend on the length in words of the language sample
used. A graph of TTR against tokens (N) for a transcript will lie in a curve beginning at
the point (1,1) and falling with a negative gradient that becomes progressively less steep
(see Malvern & Richards, 1997a). All language samples will follow this trend, but
transcripts from speakers or writers with high vocabulary diversity will produce curves
that lie above those with low diversity. The fact that TTR falls in a predictable way as the
token size increases provides the basis for our approach to finding a valid and reliable
measure. The method builds on previous theoretical analyses, notably by Brainerd (1982)
and in particular Sichel (1986), which model the TTR versus token curve mathematically

so that the characteristics of the curve for a transcript yields a valid measure of
vocabulary diversity.

Various probabilistic models were developed and investigated in order to arrive at a

model containing only one parameter which increases with increasing diversity and falls
into a range suitable for discriminating among the range of transcripts found in various
language studies. The model chosen is derived from a simplification of Sichel’s (1986)
type– token characteristic curve and is in the form an equation containing the parameter
D. This equation yields a family of curves all of the same general and appropriate shape,
with different values for the parameter D distinguishing different members of this family
(see Malvern & Richards, 1997). In the model, D itself is used directly as an index of
lexical diversity.

In order to calculate D from a transcript, the VOCD program first plots the empirical

TTR versus tokens curve for the speaker. It derives each point on the curve from an
average of 100 trials on subsamples of words of the token size for that point. The
subsamples are made up of words randomly chosen (without replacement) from
throughout the transcript. The program then finds the best fit between the theoretical
model and the empirical data by a curve-fitting procedure which adjusts the value of the
parameter (D) in the equation until a match is obtained between the actual curve for the
transcript and the closest member of the family of curves represented by the
mathematical model. This value of the parameter for best fit is the index of lexical
diversity. High values of D reflect a high level of lexical diversity and lower diversity
produces lower values of D.

The validity of D has been the subject of extensive investigation (Malvern &

Richards, 1997; Richards & Malvern, 1997a; Richards & Malvern, 1998; Malvern &
Richards, in press) on samples of child language, children with SLI, children learning
French as a foreign language, adult learners of English as a second language, and
academic writing. In these validation trials, the empirical TTR versus token curves for a
total of 162 transcripts from five corpora covering ages from 24 months to adult, two
languages and a variety of settings, all fitted the model. The model produced consistent
values for D which, unlike TTR and even Mean Segmental TTR (MSTTR) (see Richards
& Malvern, 1997a: pp. 35-38), correlated well with other well validated measures of
language. These five corpora also provide useful indications of the scale for D.

5.39.2 Calculation of D
In calculating D, VOCD uses random sampling of tokens in plotting the curve of TTR

against increasing token size for the transcript under investigation. Random sampling has
two advantages over sequential sampling. Firstly, it matches the assumptions underlying
the probabilistic model. Secondly, it avoids the problem of the curve being distorted by
the clustering of the same vocabulary items at particular points in the transcript.

In practice each empirical point on the curve is calculated from averaging the TTRs

of 100 trials on subsamples consisting of the number of tokens for that point, drawn at
random from throughout the transcripts. This default number was found by

experimentation and balanced the wish to have as many trials as possible with the desire
for the program to run reasonably quickly. The run time has not been reduced at the
expense of reliability, however, as it was found that taking 100 trials for each point on the
curve produced consistency in the values output for D without unacceptable delays.

Which part of the curve is used to calculate D is crucial. First, in order to have

subsamples to average for the final point on the curve, the final value of N (the number of
tokens in a subsample) cannot be as large as the transcript itself. Moreover, transcripts
vary hugely in total token count. Second, the equation is an approximation to Sichel’s
(1986) model and applies with greater accuracy at lower numbers of tokens. In an
extensive set of trials, D has been calculated over different parts of the curve to find a
portion for which the approximation held good and averaging worked well. As a result of
these trials the default is for the curve to be drawn and fitted for N=35 to N=50 tokens in
steps of 1 token. Each of these points is calculated from averaging 100 subsamples, each
drawn from the whole of the transcript. Although only a relatively small part of the curve
is fitted, it uses all the information available in the transcript. This also has the advantage
of calculating D from a standard part of the curve for all transcripts regardless of their
total size, further providing for reliable comparisons between subjects and between the
work of different researchers.

The procedure depends on finding the best fit between the empirical and theoretically

derived curves by the least square difference method. Extensive testing confirmed that
the best fit procedure was valid and was reliably finding a unique minimum at the least
square difference.

As the points on the curve are averages of random samples, a slightly different value

of D is to be expected each time the program is run. Tests showed that with the defaults
chosen these differences are relatively small, but consistency was improved by VOCD
calculating D three times by default and giving the average value as output.

5.39.3 Sample Size
By default, the software plots the TTR versus token curve from 35 tokens to 50

tokens. Each point on the curve is produced by random sampling without replacement.
VOCD therefore requires a minimum of 50 tokens to operate. However, the fact that the
software will satisfactorily output a value of D from a sample as small as 50 tokens does
not guarantee that values obtained from such small samples will be reliable. It should also
be noted that random sampling without replacement causes the software to run noticeably
more slowly when samples approach this minimum level.

5.39.4 Preparation of Files
Files should be prepared in correct CHAT format and should pass through CHECK,

using the +g3 switch to track down spelling and typographical errors. The FREQ
program should then be used to create a complete wordlist that can be scanned for further
errors. The output from FREQ also allows the researcher to see exactly what FREQ (and
therefore VOCD) will treat as a word type. From this information, an exclude file of non-
words can be compiled (e.g. hesitations, laughter, etc). These can then be filtered out of

the analysis using the -s switch.

5.39.5 The Output from VOCD
 To illustrate the functioning of VOCD, let us use a command that examines the

child’s output in the file 68.cha in the NE32 sample directory in the lib folder in the
CLAN distribution. The +r6 switch here excludes repetitions, the +s@exclude lists a file
of words to be excluded, and the +s”*-%%” instructs CLAN to merge across variations
of a base word.

VOCD +t"*CHI" +r6 -s@exclude +s"*-%%" 68.cha
 The output of this analysis has four parts:

1. A sequential list of utterances by the speaker selected shows the tokens that will
be retained for analysis.

2. A table shows the number of tokens for each point on the curve, average TTR
and the standard deviation for each point, and the value of D obtained from the
equation for each point. Three such tables appear, one for each time the program
takes random samples and carries out the curve-fitting.

3. At the foot of each of the three tables is the average of the Ds obtained from the
equation and their standard deviation, the value for D that provided the best fit,
and the residuals.

5. Finally, a results summary repeats the command line and file name and the type
and token information for the lexical items retained for analysis, as well as giv-
ing the thre optimum values of D and their average.

For the command given above, the last of the three tables and the results summary

are:
tokens samples ttr st.dev D
35 100 0.7963 0.067 54.470
36 100 0.8067 0.054 60.583
37 100 0.8008 0.059 59.562
38 100 0.7947 0.056 58.464
39 100 0.7831 0.065 55.124
40 100 0.7772 0.054 54.242
41 100 0.7720 0.064 53.568
42 100 0.7767 0.057 56.720
43 100 0.7695 0.051 55.245
44 100 0.7650 0.057 54.787
45 100 0.7636 0.053 55.480
46 100 0.7626 0.057 56.346
47 100 0.7543 0.052 54.403
48 100 0.7608 0.050 58.088
49 100 0.7433 0.058 52.719
50 100 0.7396 0.049 52.516

D: average = 55.770; std dev. = 2.289
D_optimum <55.63; min least sq val = 0.001>

VOCD RESULTS SUMMARY
====================

Command line: vocd +t*CHI +r6 -s@exclude +s*-%% 68.cha

File name: 68.cha
Types,Tokens,TTR: <129,376,0.343085>
D_optimum values: <55.36, 55.46, 55.63>
D_optimum average: 55.48

5.39.6 Unique Options
+a0 Calculate D_optimum using the split half with evens.

+a1 Calculate D_optimum using the split half with odds.

+c Include capitalized words only.

+d Outputs a list of utterances processed and number of types, tokens and
TTR, but does not calculate D.

+d4 Outputs number of types, tokens and TTR only.

+dsN The +ds switch allows separate analysis of odd and even numbered words
in the transcript. The results of this can then be fed into a split-half reliability
analysis. This switch can have one of two values: +ds0 (for even numbered
words) or +ds1 (for odd numbered words).

VOCD also uses several options that are shared with other commands. For a complete
list of options for a command, type the name of the command followed by a carriage
return in the Commands window. Information regarding the additional options shared
across commands can be found in chapter 6: Options on page 132.

5.40 WDLEN
The WDLEN program tabulates word lengths and prints a histogram. The program

reads through data files, tabulating the frequencies of various word and utterance lengths.
The output consists of word lengths (in characters) and utterance lengths (in words), the
frequencies of these lengths, and a histogram of these frequencies. The “Wdlen” in the
output represents the word length. The “Utt len” in the output represents the utterance
length. THe command allow for a maximum of 100 letters per word and 100 words or
morphemes per utterance. If you input exceeds these limits, you will receive an error
message. The basic use of the WDLEN program is as follows:

wdlen sample.cha
The only option unique to WDLEN is +h which allows you to extend the length of

the longest line on the histogram. WDLEN also uses several options that are shared with
other commands. For a complete list of options for a command, type the name of the
command followed by a carriage return in the Commands window. Information regarding
the additional options shared across commands can be found in chapter 6: Options on
page 132.

6: Options
This chapter describes the various options or switches that are shared across CLAN

commands. To see a list of options for a given program such as KWAL, type kwal
followed by a carriage return in the Commands window. You will see a list of available
options in the CLAN Output window.

Each option begins with a + or a -. There is always a space before the + or -. Multiple
options can be used and they can occur in any order. For example, the command:

kwal +f +t*MOT sample.cha
runs a KWAL analysis on sample.cha. The selection of the +f option sends the output
from this analysis into a new file called sample.kwa.cex. The +t*MOT option confines
the analysis to only the lines spoken by the mother. The +f and +t switches can be placed
in either order.

6.1 +F Option
This option allows you to send output to a file rather than to the screen. By default,

nearly all of the programs send the results of the analyses directly to the screen. You can,
however, request that your results be inserted into a file. This is accomplished by
inserting the +f option into the command line. The advantage of sending the program’s
results to a file is that you can go over the analysis more carefully, because you have a
file to which you can later refer.

The -f switch is used for sending output to the screen. For most programs, -f is the de-

fault and you do not need to enter it. You only need to use the -f switch when you want
the output to go to the screen for CHSTRING, FLO, and SALTIN. The advantage of
sending the analysis to the screen (also called standard output) is that the results are
immediate and your directory is less cluttered with nonessential files. This is ideal for
quick temporary analysis.

The string specified with the +f option is used to replace the default file name

extension assigned to the output file name by each program. For example, the command
freq +f sample.cha

would create an output file sample.frq.cex. If you want to control the shape of the
extension name on the file, you can place up to three letters after the +f switch, as in the
command

freq +fmot sample.cha
which would create an output file sample.mot.cex. If the string argument is longer than
three characters, it will be truncated. For example, the command

freq +fmother sample.cha
would also create an output file sample.mot.cex.

On the Macintosh, you can use the third option under the File menu to set the

directory for your output files. On Windows you can achieve the same effect by using the
+f switch with an argument, as in:

+fc: This will send the output files to your working directory on c:.
+f".res" This sets the extension for your output files.

+f"c:.res" This sends the output files to c: and assigns the extension .res.

When you are running a command on several files and use the +f switch, the output

will go into several files – one for each of the input files. If what you want is a combined
analysis that treats all the input files as one large file, then you should use the +u switch.
If you want all of the output to go into a single file for which you provide the name, then
use the > character at the end of the command along with an additional file name. The >
option can not be combined with +f.

6.2 +K Option
This option controls case-sensitivity. A case-sensitive program is one that makes a

distinction between uppercase and lowercase letters. The CLAN programs, except for
CHSTRING, are not case-sensitive by default. Use of the +k option in all of the other
programs overrides the default state and allows them to become case-sensitive as well.
For instance, suppose you are searching for the auxiliary verb “may” in a text. If you
searched for the word “may” in a case-sensitive program, you would obtain all the
occurrences of the word “may” in lower case only. You would not obtain any
occurrences of “MAY” or “May.” Searches performed for the word “may” using the +k
option produce the words “may,” “MAY,” and “May” as output.

6.3 +P Option
This option allows you to define a custom punctuation set. Because most of the pro-

grams in the CLAN system are word-oriented, the beginning and ending boundaries of
words must be defined. This is done by defining a punctuation set. The default
punctuation set for CLAN includes the space and these characters:

, . ; ? ! [] < >
This punctuation set applies to the main lines and all coding lines with the exception

of the %pho and %mod lines which use the UNIBET and PHONASCII systems. Because
those systems make use of punctuation markers for special characters, only the space can
be used as a delimiter on the %pho and %mod lines.

All of the word-oriented programs have the +p option. This option allows the user to

redefine the default punctuation set. This is useful because the CHAT coding conventions
use special characters that at times are used as delimiters and other times as parts of
words. For example, sometimes the - character is used as a morpheme boundary marker
and, therefore, should not be considered part of the word. This is also quite useful when
you are working on a language that uses diacritics. To change the punctuation set, you
must create a small file that lists all the punctuation marks present in the file. You do this
by simply typing out all the punctuation marks on a single line with no spaces between
them. This line will change the punctuation set of the main speaker tiers and the code
tiers. The name of your new punctuation file should immediately follow the +p in the
command line. Here is an example situation. Suppose you wish to change both the main
speaker tier and the code tier punctuation sets from the default to the set in newpunct.cut.
The contents of the newpunct.cut file are as follows:

$*&^!
This line indicates the desired punctuation set for the main line and coding tier. You

can now issue commands such as the following:

freq +pnewpunct.cut sample.cha
If you use the +p switch with no file name, the programs look for a file called

punct.cut in the current working directory. If you do not use the +p switch at all, the
programs look for a punctuation file called punct.cut. If the punct.cut file is not found, the
program will then use the default built-in punctuation set. It is advisable to create a
punct.cut file when the punctuation characters of the language being analyzed are
different from the default punctuation characters. The punct.cut file should contain the
new punctuation set and should be located in the current working directory. Because the
punct.cut file is referred to automatically, this feature allows you to change the
punctuation set once for use with all the CLAN programs. If you do not want CLAN to
ever change the default punctuation set, make sure you do not have a punct.cut file in
your current working directory and make sure you do not use the +p switch.

6.4 +R Option
This option deals with the treatment of material in parentheses.

+r1 Removing Parentheses. Omitted parts of words can be marked by
parentheses, as in “(be)cause” with the first syllable omitted. The +r1 option
removes the parentheses and leaves the rest of the word as is.

+r2 Leaving Parentheses. This option leaves the word with parentheses.

+r3 Removing Material in Parentheses. This option removes all of the
omitted part.

 Here is an example of the use of the first three +r options and their
resulting outputs, if the input word is “get(s)”:

 Option Output
 "no option" gets
 "+r1" gets
 "+r2" get(s)
 "+r3" get

+r4 Removing Prosodic Symbols in Words. By default, symbols such as #,
/, and : are ignored when they occur inside words. Use this switch if you want to
include them in your searches. If you do not use this switch, the strings cat and
ca:t will be seen as the same. If you use this switch, they will be seen as
different. The use of these prosodic marker symbols is discussed in the CHAT
manual.

+r5 Text Replacement. By default, material in the form [: text] replaces the
material preceding it in the string search programs. If you do not want this
replacement, use this switch.

+r6 Retraced Material. By default, material in retracings is included in

searches and counts. However, this material can be excluded by using the +r6
switch. In the MLU and MODREP programs, retracings are excluded by
default. For these programs, the +r6 switch can be used to include material in
retracings.

6.5 +S Option
This option allows you to search for a particular string. The +s option allows you to

specify the keyword you desire to find. You do this by putting the word in quotes directly
after the +s switch, as in +s"dog" to search for the word “dog.” You can also use the +s
switch to specify a file containing words to be searched. You do this by putting the file
name after the +s preceded by the @ sign, as in +s@adverbs, which will search for the
words in a file called adverbs.cut. If you want to look for the literal character @, you
need to precede it with a backslash as in +s"\@".

By default, the programs will only search for this string on the main line. Also by de-

fault, this switch treats material in square brackets as if it were a single “opaque” form. In
effect, unless you include the square brackets in your search string, the search will ignore
any material that is enclosed in square brackets. The COMBO program is the only one
that allows you to specify regular expressions with this option. The only programs that
allow you to include delimiters in the search string are COMBO, FREQ, and KWAL.

It is possible to specify as many +s options on the command line as you like. Use of

the +s option will override the default list. For example, the command
freq +s"word" data.cut

will search through the file data.cut looking for “word.”

The +s/-s switch is usually used to include or exclude certain words. However, it can

actually be used with five types of material: (1) words, (2) codes or postcodes in square
brackets, (3) text in angle brackets associated with particular codes within square
brackets, (4) whole utterances associated with particular postcodes, and (5) particular
postcodes themselves. The effect of the switch for the five different types is as follows.

Table 4: Search Strings for Five Types of Material

Level +s -s +s+
Word +s"dog" -s"dog" +s+xxx
 only the word “dog” all words except “dog” all words plus “dog”
[code] +s"[//]" by default, all codes are

excluded

+s+"[//]"

 only this code all text plus this code
<text>[x] +s"<//>" -s"<//>" +s+"<//>"
 only text marked by

this code
all text except material
marked by this code

all text plus material
marked by this code

Utterance +s"<+imi>" -s"<+imi>" by default, all utterances
are included

 utterances marked with
this postcode

 utterances not marked
with this postcode

Postcode +s"[+imi]" by default, all postcodes
are excluded

+s+"[+imi]"

 only this postcode all text plus postcode

Multiple +s strings are matched as exclusive or’s. If a string matches one +s string, it

cannot match the other. The most specific matches are processed first. For example, if
your command is

freq +s$gf% +s$gf:a
and your text has these codes

$gf $gf:a $gf:b $gf:c
your output will be

$gf% 3
$gf 1

Because $gf:a matches specifically to the +s$gf:a, it is excluded from matching +s$gf%.

One can also use the +s switch to remove certain strings from automatic exclusion.

For example, the MLU program automatically excludes xxx, 0, uh, and words beginning
with & from the MLU count. This can be changed by using this command:

mlu +s+uh +s+xxx +s+0* +s+&* file.cha

6.6 +T Option
This option allows you to include or exclude particular tiers. In CHAT formatted

files, there exist three tier code types: main speaker tiers (denoted by *), speaker-
dependent tiers (denoted by %), and header tiers (denoted by @). The speaker-dependent
tiers are attached to speaker tiers. If, for example, you request to analyze the speaker
*MOT and all the %cod dependent tiers, the programs will analyze all of the *MOT main
tiers and only the %cod dependent tiers associated with that speaker.

The +t option allows you to specify which main speaker tiers, their dependent tiers,

and header tiers should be included in the analysis. All other tiers, found in the given file,
will be ignored by the program. For example, the command

freq +t*CHI +t%spa +t%mor +t"@Group of Mot" sample.cha
tells FREQ to look at only the *CHI main speaker tiers, their %spa and %mor dependent
tiers, and @Situation header tiers. When tiers are included, the analysis will be done on
only those specified tiers.

The -t option allows you to specify which main speaker tiers, their dependent tiers,

and header tiers should be excluded from the analysis. All other tiers found in the given
file should be included in the analysis, unless specified otherwise by default. The
command

freq -t*CHI -t%spa -t%mor -t@"Group of Mot" sample.cha
tells FREQ to exclude all the *CHI main speaker tiers together with all their dependent
tiers, the %spa and %mor dependent tiers on all other speakers, and all @Situation header
tiers from the analysis. All remaining tiers will be included in the analysis.

When the transcriber has decided to use complex combinations of codes for speaker
IDs such as *CHI-MOT for “child addressing mother,” it is possible to use the +t switch
with the # symbol as a wildcard, as in these commands:

freq +t*CHI-MOT sample.cha
freq +t*#-MOT sample.cha
freq +t*CHI-# sample.cha

When tiers are included, the analysis will be done on only those specified tiers. When
tiers are excluded, however, the analysis is done on tiers other than those specified.
Failure to exclude all unnecessary tiers will cause the programs to produce distorted
results. Therefore, it is safer to include tiers in analyses than to exclude them, because it
is often difficult to be aware of all the tiers present in any given data file.

If only a tier-type symbol (*, %, @) is specified following the +t/-t options, the pro-

grams will include all tiers of that particular symbol type in the analysis. Using the option
+t@ is important when using KWAL for limiting (see the description of the KWAL pro-
gram), because it makes sure that the header information is not lost.

The programs search sequentially, starting from the left of the tier code descriptor, for

exactly what the user has specified. This means that a match can occur wherever what has
been specified has been found. If you specify *M on the command line after the option,
the program will successfully match all speaker tiers that start with *M, such as *MAR,
*MIK, *MOT, and so forth. For full clarity, it is best to specify the full tier name after the
+t/-t options, including the : character. For example, to ensure that only the *MOT
speaker tiers are included in the analysis, use the +t*MOT: notation.

As an alternative to specifying speaker names through letter codes, you can use the

form:
+t@id=idcode

In this form, the “idcode” is any character string that matches the type of string that has
been declared at the top of each file using the @ID header tier. The basic form of this
code is language.corpus.file.age=XXX where XXX is the participant code.

All of the programs include the main speaker tiers by default and exclude all of the

dependent tiers, unless a +t% switch is used.

6.7 +U Option
This option merges specified files together. By default, when the user has specified a

series of files on the command line, the analysis is performed on each individual file. The
program then provides separate output for each data file. If the command line uses the +u
option, the program combines the data found in all the specified files into one set and out-
puts the result for that set as a whole. If too many files are selected, CLAN may
eventually be unable to complete this merger.

6.8 +V Option
This switch gives you the date when the current version of CLAN was compiled.

6.9 +W Option
This option controls the printing of additional sentences before and after a matched

sentence. This option can be used with either KWAL or COMBO. These programs are
used to display tiers that contain keywords or regular expressions as chosen by the user.
By default, KWAL and COMBO combine the user-chosen main and dependent tiers into
“clusters.” Each cluster includes the main tier and its dependent tiers. (See the +u option
for further information on clusters.)

The -w option followed by a positive integer causes the program to display that

number of clusters before each cluster of interest. The +w option followed by a positive
integer causes the program to display that number of clusters after each cluster of interest.
For example, if you wanted the KWAL program to produce a context larger than a single
cluster, you could include the -w3 and +w2 options in the command line. The program
would then output three clusters above and two clusters below each cluster of interest.

6.10 +Y Option
This option allows you to work on non-CHAT files. Most of the programs are

designed to work best on CHAT formatted data files. However, the +y option allows the
user to use these programs on non-CHAT files. The program considers each line of a
non-CHAT file to be one tier. There are two values of the +y switch. The +y value works
on lines and the +y1 value works on utterances as delimited by periods, question marks,
and exclamation marks. Some programs do not allow the use of the +y option at all.
Workers interested in using CLAN with nonconversational data may wish to first convert
there files to CHAT format using the TEXTIN program described on page 126 in order to
avoid having to avoid the problematic use of the +y option.

6.11 +Z Option
This option allows the user to select any range of words, utterances, or speaker turns

to be analyzed. The range specifications should immediately follow the option. For
example:

+z10w analyze the first ten words only.
+z10u analyze the first ten utterances only.
+z10t analyze the first ten speaker turns only.
+z10w-20w analyze 11 words starting with the 10th word.
+z10u-20u analyze 11 utterances starting with the 10th utterance.
+z10t-20t analyze 11 speaker turns starting with the 10th turn.
+z10w- analyze from the tenth word to the end of file.
+z10u- analyze from the tenth utterance to the end of file.
+z10t- analyze from the tenth speaker turn to the end of file.

If the +z option is used together with the +t option to select utterances from a particular
speaker, then the counting will be based only on the utterances of that speaker. For
example, this command

mlu +z50u +t*CHI 0611.cha
will compute the MLU for the first 50 utterances produced by the child. If the +z option

is used together with the +s option, the counting will be dependent on the working of the
+s option and the results will seldom be as expected. To avoid this problem, you should
use piping, as in this example:

kwal +d +z1-3u +t*CHI sample.cha | kwal +sMommy
If the user has specified more items than exist in the file, the program will analyze

only the existing items. If the turn or utterance happens to be empty, because it consists
of special symbols or words that have been selected to be excluded, then this utterance or
turn is not counted.

The usual reason for selecting a fixed number of utterances is to derive samples that

are comparable across sessions or across children. Often researchers have found that
samples of 50 utterances provide almost as much information as samples of 100
utterances. Reducing the number of utterances being transcribed is important for
clinicians who have been assigned a heavy case load.

You can use the +z switch with KWAL and pipe the results to a second program,

rather than using it directly with FREQ or MLU. For example, in order to specifically
exclude unintelligible utterances in an MLU analysis of the first 150 utterances from the
Target Child, you could use this form:

kwal +z150u +d +t*CHI 0042.cha -syyy -sxxx | mlu

You can also use postcodes to further control the process of inclusion or exclusion.

6.12 Metacharacters for Searching
Metacharacters are special characters used to describe other characters or groups of

characters. Certain metacharacters may be used to modify search strings used by the +s/-s
switch. However, in order to use metacharacters in the CHSTRING program a special
switch must be set. The CLAN metacharacters are:

* Any number of characters matched
% Any number of characters matched and removed
%% As above plus remove previous character
_ Any single character matched
\ Quote character

 Suppose you would like to be able to find all occurrences of the word “cat” in a

file. This includes the plural form “cats,” the possessives “cat-'s,” “cat-s'” and the
contractions “cat-'is” and “cat-'has.” Using a metacharacter (in this case, the asterisk)
would help you to find all of these without having to go through and individually specify
each one. By inserting the string cat* into the include file or specifying it with +s option,
all these forms would be found. Metacharacters can be placed anywhere in the word.

 The * character is a wildcard character; it will find any character or group of con-

tinuous characters that correspond to its placement in the word. For example, if b*s were
specified, the program would match words like “beads,” “bats,” “bat-'s,” “balls,” “beds,”
“bed-s,” “breaks,” and so forth.

 The % character allows the program to match characters in the same way that the

* symbol does. Unlike the * symbol, however, all the characters matched by the % will
be ignored in terms of the way of which the output is generated. In other words, the
output will treat “beat” and “bat” as two occurrences of the same string, if the search
string is b%t. Unless the % symbol is used with programs that produce a list of words
matched by given keywords, the effect of the % symbol will be the same as the effect of
the * symbol.

 When the percentage symbol is immediately followed by a second percentage

symbol, the effect of the metacharacter changes slightly. The result of such a search
would be that the % symbol will be removed along with any one character preceding the
matched string. Without adding the additional % character, a punctuation symbol
preceding the wildcard string will not be matched ane will be ignored. Adding the second
% sign can be particularly useful when searching for roots of words only. For example, to
produce a word frequency count of the stem “cat,” specify this command:

freq +s"cat-%%" file.cha.
The first % sign matches the suffixes and the second one matches the dash mark.

Thus, the search string specified by the +s option will match words like: “cat,” “cat-s,”
“cat-'s,” and “cat-s” and FREQ will count all of these words as one word “cat.” If the data
file file.cha had consisted of only those four words, the output of the FREQ program
would have been: 4 cat. The limitation of this search is that it will not match words like
“cats” or “cat's,” because the second percentage symbol is used to match the punctuation
mark. The second percentage symbol is also useful for matching hierarchical codes such
as $NIA:RP:IN.

 The underline character _ is similar to the * character except that it is used to

specify any single character in a word. For example, the string b_d will match words like
“bad,” “bed,” “bud,” “bid,” and so forth. For detailed examples of the use of the
percentage, underline, and asterisk symbols, see the section on FREQ on page 76.

 The quote character (\) is used to indicate the quotation of one of the characters

being used as metacharacters. Suppose that you wanted to search for the actual symbol
(*) in a text. Because the (*) symbol is used to represent any character, it must be quoted
by inserting the (\) symbol before the (*) symbol in the search string to represent the
actual (*) character, as in “string*string.” To search for the actual character (\), it must
be quoted also. For example, “string\\string” will match “string” followed by “\” and then
followed by a second “string.”

7: Exercises
This chapter presents exercises designed to help you think about the application of

CLAN for specific aspects of language analysis. The illustrations in the section below are
based on materials developed by Barbara Pan originally published in Chapter 2 of
Sokolov and Snow (1994). The original text has been edited to reflect subsequent
changes in the programs and the database. Many thanks to Barbara Pan for devising the
initial form of this extremely useful set of exercises.

7.1 Contrasting Four Measures
One approach to transcript analysis focuses on the computation of particular measures

or scores that characterize the stage of language development in the children or adults in
the sample.

1. One popular measure (Brown, 1973) is the MLU or mean length of utterance,

which can be computed by the MLU program.
2. A second measure is the MLU of the five longest utterances in a sample, or

MLU5. Wells (1981) found that increases in MLU of the five longest utterances
tend to parallel those in MLU, with both levelling off after about 42 months of
age. Brown suggested that MLU of the longest utterance tends, in children de-
veloping normally, to be approximately three times greater than MLU.

3. A third measure is MLT or Mean Length of Turn which can be computed the the
MLT program.

4. A fourth popular measure of lexical diversity is the type–token ratio of Templin
(1957).

In these exercises, we will use CLAN to generate these four measures of spontaneous

language production for a group of normally developing children at 20 months. The goals
are to use data from a sizeable sample of normally developing children to inform us as to
the average (mean) performance and degree of variation (standard deviation) among chil-
dren at this age on each measure; and to explore whether individual children's
performance relative to their peers was constant across domains. That is, were children
whose MLU was low relative to their peers also low in terms of lexical diversity and
conversational participation? Conversely, were children with relatively advanced
syntactic skills as measured by MLU also relatively advanced in terms of lexical diversity
and the share of the conversational load they assumed?

The speech samples analyzed here are taken from the New England corpus of the

CHILDES database, which includes longitudinal data on 52 normally-developing
children. Spontaneous speech of the children interacting with their mothers was collected
in a play setting when the children were 14, 20, and 32 months of age. Transcripts were
prepared according to the CHAT conventions of the Child Language Data Exchange
System, including conventions for morphemicizing speech, such that MLU could be
computed in terms of morphemes rather than words. Data were available for 48 of the 52
children at 20 months. The means and standard deviations for MLU5, TTR, and MLT
reported below are based on these 48 children. Because only 33 of the 48 children

produced 50 or more utterances during the observation session at 20 months, the mean
and standard deviation for MLU50 is based on 33 subjects.

For illustrative purposes, we will discuss five children: the child whose MLU was the

highest for the group (68.cha), the child whose MLU was the lowest (98.cha), and one
child each at the first (66.cha), second (55.cha), and third (14.cha) quartiles. Transcripts
for these five children at 20 months can be found in the /ne20 directory in the /lib
directory distributed with CLAN.

Our goal is to compile the following basic measures for each of the five target

children: MLU on 50 utterances, MLU of the five longest utterances, TTR, and MLT. We
then compare these five children to their peers by generating z-scores based on the means
and standard deviations for the available sample for each measure at 20 months. In this
way, we were will generate language profiles for each of our five target children.

7.2 MLU50 Analysis
The first CLAN analysis we will perform calculates MLU for each child on a sample

of 50 utterances. By default, the MLU program excludes the strings xxx, yyy, www, as
well as any string immediately preceded by one of the following symbols: 0, &, +, -, #, $,
or : (see the CHAT manual for a description of transcription conventions). The MLU
program also excludes from all counts material in angle brackets followed by [/], [//], or
[% bch] (see the CLAN manual for list of symbols CLAN considers to be word,
morpheme, or utterance delimiters). Remember that to perform any CLAN analysis, you
need to be in the directory where your data is when you issue the appropriate CLAN
command. In this case, we want to be in /childes/clan/lib/ne20. The command string we
used to compute MLU for all five children is:

mlu +t*CHI +z50u +f *.cha
+t*CHI Analyze the child speaker tier only
+z50u Analyze the first 50 utterances only
+f Save the results in a file
*.cha Analyze all files ending with the extension .cha

The only constraint on the order of elements in a CLAN command is that the name of

the program (here, MLU) must come first. Many users find it good practice to put the
name of the file on which the analysis is to be performed last, so that they can tell at a
glance both what program was used and what file(s) were analyzed. Other elements may
come in any order.

The option +t*CHI tells CLAN that we want only CHI speaker tiers considered in the

analysis. Were we to omit this string, a composite MLU would be computed for all
speakers in the file.

The option + z50u tells CLAN to compute MLU on only the first 50 utterances. We

could, of course, have specified the child’s first 100 utterances (+z100u) or utterances
from the 51st through the 100th (+z51u-100u). With no +z option specified, MLU is
computed on the entire file.

The option +f tells CLAN that we want the output recorded in output files, rather than

simply displayed onscreen. CLAN will create a separate output file for each file on which
it computes MLU. If we wish, we may specify a three-letter file extension for the output
files immediately following the +f option in the command line. If a specific file extension
is not specified, CLAN will assign one automatically. In the case of MLU, the default ex-
tension is .mlu.cex. The .cex at the end is mostly important for Windows, since it allows
the Windows operating system to know that this is a CLAN output file.

Finally, the string *.cha tells CLAN to perform the analysis specified on each file

ending in the extension .cha found in the current directory. To perform the analysis on a
single file, we would specify the entire file name (e.g., 68.cha). It was possible to use the
wildcard * in this and following analyses, rather than specifying each file separately,
because:

1. All the files to be analyzed ended with the same file extensions and were in the

same directory; and
2. in each file, the target child was identified by the same speaker code (i.e., CHI),

thus allowing us to specify the child’s tier by means of +t*CHI.

Utilization of wildcards whenever possible is not only more efficient than repeatedly
typing in similar commands, but also cuts down on typing errors.

By default, CLAN computes MLU in morphemes, rather than words, if the transcript

is morphemicized on the main line. The user may override this default and have CLAN
ignore morphemicization symbols by using the option, followed by those symbols to be
ignored. For example, -c# would instruct CLAN to ignore the prefix symbol in words
such as un#tie; -c#-would result in both the # and - symbols in un#tie-ed being
disregarded. Thus, researchers can choose not to count morphemes they believe the child
is not yet using productively. To have all morphemicization symbols ignored, one would
use -c#&- .

 For illustrative purposes, let us suppose that we ran the above analysis on only a

single child (68.cha), rather than for all five children at once (by specifying *.cha). We
would use the following command:

mlu +t*CHI +z50u 68.cha

The output for this command would be as follows:

> mlu +t*CHI +z50u 68.cha
mlu +t*CHI +z50U 68.cha
Wed Oct 20 11:46:51 1999
mlu (18-OCT-99) is conducting analyses on:
ONLY speaker main tiers matching: *CHI;

**
From file <68.cha>
MLU for Speaker: *CHI:
MLU (xxx and yyy are EXCLUDED from the utterance and morpheme

counts):

Number of: utterances = 50, morphemes = 133
Ratio of morphemes over utterances = 2.660
Standard deviation = 1.570

 MLU reports the number of utterances (in this case, the 50 utterances we specified),

the number of morphemes that occurred in those 50 utterances, the ratio of morphemes
over utterances (MLU in morphemes), and the standard deviation of utterance length in
morphemes. The standard deviation statistic gives some indication of how variable the
child’s utterance length is. This child’s average utterance is 2.660 morphemes long, with
a standard deviation of 1.570 morphemes.

Check line 1 of the output for typing errors in entering the command string. Check

lines 3 and possibly 4 of the output to be sure the proper speaker tier and input file(s)
were specified. Also check to be sure that the number of utterances or words reported is
what was specified in the command line. If CLAN finds that the transcript contains fewer
utterances or words than the number specified with the +z option, it will still run the
analysis but will report the actual number of utterances or words analyzed.

7.3 MLU5 Analysis
The second CLAN analysis we will perform computes the mean length in morphemes

of each child’s five longest utterances. To do this, we direct the output of one program to
a second program for further analysis. This process is called piping. Although we could
accomplish the same goal by running the first program on each file, sending the output to
files and then performing the second analysis on the output files, piping is more efficient.
The trade-off is that the analysis must be done on one file at a time (by specifying the full
file name), rather than by using the * wildcard. The CLAN command string we use is:

maxwd +t*CHI +g1 +c5 +dl 68.cha | mlu > 68.ml5.cex

+t*CHI Analyze the child speaker tier only
+gl Identify the longest utterances in terms of morphemes
+c5 Identify the five longest utterances
+dl Output the data in CHAT format
68.cha The child language transcript to be analyzed
| mlu Pipe the output to the MLU program
> Send the output of MLU to a file
68.ml5.cex Create a file for the output, called ml5.cex

If we run simply the first part of this command up to the pipe symbol, the output

would look like this:

*CHI: <I want to see the other box> [?] .
*CHI: that-'is [= book] the <morning # noon and night> ["] .
*CHI: there-'is a dolly in there [= box] .
*CHI: it-'is [= contents of box] crayon-s and paper .
*CHI: pop go-es the weasel .

By adding the MLU command after the pipe, we are telling CLAN to take this initial
output from MAXWD and send it on for further processing by MLU.

The string +g1 tells MAXWD to identify longest utterances in terms of morphemes

per utterance. If length is to be determined instead by the number of words per utterance,
the string +g2 would be used; if by number of characters per utterance, +g3 would be
used. For the +g1 switch to work well, we need to either break words into morphemes on
the main line (as described in the CHAT manual) or else run this command on the %mor
line.

The string +c5 tells MAXWD to identify the five longest utterances.

The string +d1 tells MAXWD to send output to the output file in CHAT form, that is,

in a form that can be analyzed by other CLAN programs.

The piping symbol | (upright bar or vertical hyphens) separates the first CLAN com-

mand from the second, and indicates that the output of the first command is to be used as
the input to the second.

Finally, the redirect symbol > followed by the output file name and extension

specifies where the final output file is to be directed (i.e., saved). Omission of the redirect
symbol and file name will result in output being displayed on-screen rather than recorded
in a file. Here we are specifying that the output from MLU should be recorded in an
output file called 68.ml5.cex. The contents of this file are as follows:

MLU for Speaker: *CHI:
MLU (xxx and yyy are EXCLUDED from the utterance and morpheme

counts):
Number of: utterances = 5, morphemes = 31
Ratio of morphemes over utterances = 6.200
Standard deviation = 0.748

The procedure for obtaining output files in CHAT format differs from program to

program but it is always the +d option that performs this operation. You must check the
+d options for each program to determine the exact level of the +d option that is required.
We can create a single file to run this type of analysis. This is called a batch file. The
batch file for this particular analysis would be:

maxwd +t*CHI +g1 +c5 +dl 14.cha | mlu > 14.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 55.cha | mlu > 55.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 66.cha | mlu > 66.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 68.cha | mlu > 68.ml5.cex
maxwd +t*CHI +g1 +c5 +dl 98.cha | mlu > 98.ml5.cex

To run all five commands in sequence automatically, we put the batch file in our working
directory with a name such as batchml5.cex and then enter the command

batch batchml5
This command will produce five output files.

7.4 MLT Analysis
The third analysis we will perform is to compute MLT (Mean Length of Turn) for

both child and mother. Note that, unlike the MLU program, the CLAN program MLT

includes the symbols xxx and yyy in all counts. Thus, utterances that consist of only
unintelligible vocal material still constitute turns, as do nonverbal turns indicated by the
postcode [+ trn] as illustrated in the following example:

*CHI: 0.[+ trn]
%gpx: CHI points to picture in book

We can use a single command to run our complete analysis and put all the results into a
single file.

mlt *.cha > allmlt.cex

In this output file, the results for the mother in 68.cha are:

MLT for Speaker: *MOT:
MLT (xxx and yyy are INCLUDED in the utterance and morpheme

counts):
Number of: utterances = 331, turns = 227, words = 1398

Ratio of words over turns = 6.159
Ratio of utterances over turns = 1.458
Ratio of words over utterances = 4.224

There is similar output data for the child. This output allows us to consider Mean Length
of Turn either in terms of words per turn or utterances per turn. We chose to use words
per turn in calculating the ratio of child MLT to mother MLT, reasoning that words per
turn is likely to be sensitive for a somewhat longer developmental period. MLT ratio,
then, was calculated as the ratio of child MLT over mother MLT. As the child begins to
assume a more equal share of the conversational load, the MLT ratio should approach
1.00. For this example, the MLT ratio would be: 2.241 ÷ 6.159 = 0.3638.

7.5 TTR Analysis
The fourth CLAN analysis we will perform for each child is to compute the TTR or-

type–token ratio. For this we will use the FREQ command. By default, FREQ ignores the
strings xxx (unintelligible speech) and www (irrelevant speech researcher chose not to
transcribe). It also ignores words beginning with the symbols 0, &, +, -, or #. Here we
were interested not in whether the child uses plurals or past tenses, but how many
different vocabulary items she uses. Therefore, we wanted to count “cats” and “cat” as
two tokens (i.e., instances) of the word-type “ca”. Similarly, we wanted to count “play”
and “played” as two tokens under the word-type “play”. When computation is done by
hand, the researcher can exercise judgment online to decide whether a particular string of
letters should be counted as a word type. Automatic computation, however, is much more
literal: Any unique string will be counted as a separate word type. In order to have
inflected forms counted as tokens of the uninflected stem (rather than as different word
types), we morphemicized inflected forms in transcribing. That is, we transcribed “cats”
as “cat-s” and “played” as “play-ed”. Using our morphemicized transcripts, we then
instructed FREQ to ignore anything that followed a hyphen (-) within a word. The
command string used was:

freq +t*CHI +s"*-%%" +f *.cha
+t*CHI Analyze the child speaker only
+s"*-% % " Ignore the hyphen and subsequent characters

+f Save output in a file
*.cha Analyze all files ending with the extension .cha

The only new element in this command is +s"*-%%". The +s option tells FREQ to

search for and count certain strings. Here we ask that, in its search, FREQ ignore any hy-
phen that occurs within a word, as well as whatever follows the hyphen. In this way,
FREQ produces output in which inflected forms of nouns and verbs are not counted as
separate word types, but rather as tokens of the uninflected form. The output generated
from this analysis goes into five files. For the 68.cha input file, the output is 68.frq.cex.
At the end of this file, we find this summary analysis:

85 Total number of different word types used
233 Total number of words (tokens)
0.365 Type/Token ratio

We can look at each of the five output files to get this summary TTR information for
each child.

7.6 Generating Language Profiles
Once we have computed these basic measures of utterance length, lexical diversity,

and conversational participation for our five target children, we need to see how each
child compares to his or her peers in each of these domains. To do this, we use the means
and standard deviations for each measure for the whole New England sample at 20
months, as given in the following table.

Table 5: New England 20 Means

Measure Mean SD Range
MLU50 1.400 0.400 1.02-2.64

MLU5 longest 2.848 1.310 1.00-6.20
TTR 0.433 0.102 0.266-0.621

MLT Ratio 0.246 0.075 0.126-0.453

The distribution of MLU50 scores was quite skewed, with the majority of children

who produced at least 50 utterances falling in the MLU range of 1.00-1.20. As noted
earlier, 15 of the 48 children failed to produce even 50 utterances. At this age the
majority of children in the sample are essentially still at the one-word stage, producing
few utterances of more than one word or morpheme. Like MLU50, the shape of the
distributions for MLUS and for MLT ratio were also somewhat skewed toward the lower
end, though not as severely as was MLU50.

Z-scores, or standard scores, are computed by subtracting each child’s score on a par-

ticular measure from the group mean and then dividing the result by the overall standard
deviation:

(child's score - group mean) ÷ standard deviation
The results of this computation are given in the following table.

Table 6: Z-scores for Five Children

Child MLU50 MLU5 TTR MLT Ratio
14 0.10 0.12 1.84 -0.90
55 -0.70 -0.65 -0.15 -0.94
66 -0.25 -0.19 -0.68 -1.14
68 3.10 2.56 -0.67 1.60
98 -0.95 -1.11 -0.55 0.31

 We would not expect to see radical departures from the group means on any of the
measures. For the most part, this expectation is borne out: we do not see departures
greater than 2 standard deviations from the mean on any measure for any of the five
children, except for the particularly high MLU50 and MLU5 observed for Subject 068.

It is not the case, however, that all five of our target children have flat profiles. Some

children show marked strengths or weaknesses relative to their peers in particular
domains. For example, Subject 14, although very close to the mean in terms of utterance
length (MLU5O and MLU5), shows marked strength in lexical diversity (TTR), even
though she shoulders relatively little of the conversational burden (as measured by MLT
ratio). The strengths of Subject 68, on the other hand, appear to be primarily in the area of
syntax (at least as measured by MLU50 and MLU5); her performance on both the lexical
and conversational measures (i.e., TTR and MLT ratio) is only mediocre. The subjects at

the second and third quartile in terms of MLU (Subject 055 and Subject 066) do have
profiles that are relatively flat: Their z-scores on each measure fall between -1 and 0.
However, the child with the lowest MLU50 (Subject 098) again shows an uneven profile.
Despite her limited production, she manages to bear her portion of the conversational
load. You will recall that unintelligible vocalizations transcribed as xxx or yyy, as well as
nonverbal turns indicated by the postcode [+ trn], are all counted in computing MLT.
Therefore, it is possible that many of this child’s turns consisted of unintelligible
vocalizations or nonverbal gestures.

What we have seen in examining the profiles for these five children is that, even

among normally developing children, different children may have strengths in different
domains, relative to their age mates. For illustrative purposes here I have considered only
three domains, as measured by four indices. In order to get a more detailed picture of a
child’s language production, we might choose to include other indices, or to further refine
the measures we use. For example, we might compute TTR based on a particular number
of words, or we might time-sample by examining the number of word types and word
tokens the child produced in a given number of minutes of mother–child interaction. We
might also consider other measures of conversational competence, such as number of
child initiations and responses; fluency measures, such as number of retraces or
hesitations; or pragmatic measures, such as variety of speech acts produced. Computation
of some of these measures would require that codes be entered into the transcript prior to
analysis; however, the CLAN analyses themselves would, for the most part, simply be
variations on the techniques I have discussed in this chapter. In the exercises that follow,
you will have an opportunity to use these techniques to perform analyses on these five
children at both 20 months and 32 months.

7.7 Further Exercises
The files needed for the following exercises are in two directories in the /lib folder:

NE20 and NE32. No data are available for Subject 14 at 32 months.

1. Compute the length in morphemes of each target child’s single longest utterance
at 20 months. Compare with the MLU of the five longest utterances. Consider
why a researcher might want to use MLU of the five longest rather than MLU of
the single longest utterance.

 2. Use the +z option to compute TTR on each child’s first 50 words at 32 months.
Then do the same for each successive 50-word band up to 300. Check the output
each time to be sure that 50 words were in fact found. If you specify a range of
50 words where there are fewer than 50 words available in the file, FREQ still
performs the analysis, but the output will show the actual number of tokens
found. What do you observe about the stability of TTR across different samples
of 50 words?

3. Use the MLU and FREQ programs to examine the mother’s (*MOT) language to
her child at 20 months and at 32 months.What do you observe about the
length/complexity and lexical diversity of the mother’s speech to her child? Do
they remain generally the same across time or change as the child’s language de-
velops? If you observe change, how can it be characterized?

4. Perform the same analyses for the four target children for whom data are avail-
able at age 32 months. Use the data given earlier to compute z-scores for each
target child on each measure (MLU 50 utterances, MLU of five longest utteranc-
es, TTR, MLT ratio). Then plot profiles for each of the target children at 32
months. What consistencies and inconsistencies do you see from 20 to 32
months? Which children, if any, have similar profiles at both ages? Which chil-
dren's profiles change markedly from 20 to 32 months?

5. Conduct a case study of a child you know to explore whether type of activity
and/or interlocutor affect mean length of turn (MLT). Videotape the child and
mother engaged in two different activities (e.g., bookreading, having a snack to-
gether, playing with a favorite toy). On another occasion, videotape the child en-
gaged in the same activities with an unfamiliar adult. If it is not possible to
videotape, you may audiotape and supplement with contextual notes. Transcribe
the interactions in CHAT format. You may wish to put each activity in a separate
file (or see CLAN manual for how to use the program GEM). Compare the MLT
ratio for each activity and adult–child pair. Describe any differences you observe.

8: References
Aguado, G. (1988). Appraisal of the morpho-syntactic competence in a 2.5 month old

child. Infancia y Aprendizaje, 43, 73-95.
Blake, J., Quartaro, G., & Onorati, S. (1970). Evaluating quantitative measures of gram-

matical complexity in spontaneous speech samples. Journal of Child Language, 20,
139-152.

Bohannon, N., & Stanowicz, L. (1988). The issue of negative evidence: Adult responses
to children's language errors. Developmental Psychology, 24, 684-689.

Brainerd, B. (1982). The type–token relation in the works of S. Kierkegaard. In: R. W.
Bailey (ed.) Computing in the humanities (pp. 97-109). Amsterdam: North-Holland.

Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard.
Demetras, M., Post, K., & Snow, C. (1986). Feedback to first-language learners. Journal

of Child Language, 13, 275-292.
Hausser, R. (1990). Principles of computational morphology. Computational Linguistics,

47.
Hickey, T. (1991). Mean length of utterance and the acquisition of Irish. Journal of Child

Language, 18, 553-569.
Hirsh-Pasek, K., Trieman, R., & Schneiderman, M. (1984). Brown and Hanlon revisited:

Mother sensitivity to grammatical form. Journal of Child Language, 11, 81-88.
Hoff-Ginsberg, E. (1985). Some contributions of mothers' speech to their children's

syntactic growth. Journal of Child Language, 12, 367-385.
Klee, T., Schaffer, M., May, S., Membrino, S., & Mougey, K. (1989). A comparison of

the age-MLU relation in normal and specifically language-impaired preschool
children. Journal of Speech and Hearing Research, 54, 226-233.

Lee, L. (1974). Developmental Sentence Analysis. Evanston, IL: Northwestern University
Press.

Malakoff, M.E., Mayes, L. C., Schottenfeld, R., & Howell, S. (1999) Language
production in 24-month-old inner-city children of cocaine-and-other-drug-using
mothers. Journal of Applied Developmental Psychology, 20, 159-180..

Malvern, D. D., & Richards, B. J., (1997). A new measure of lexical diversity. In: A.
Ryan and A. Wray (Eds.) Evolving models of language. Clevedon: Multilingual
Matters.

Malvern, D. D., & Richards, B. J. (in press). Validation of a new measure of lexical
diversity. In B. v. d. Bogaerde & C. Rooijmans (Eds.), Proceedings of the 1997
Child Language Seminar, Garderen, Netherlands. Amsterdam: University of
Amsterdam.

Moerk, E. (1983). The mother of Eve as a first language teacher. Norwood, NJ: Ablex.
Nelson, K. E., Denninger, M. S., Bonvilian, J. D., Kaplan, B. J., & Baker, N. D. (1984).

Maternal input adjustments and non-adjustments as related to children’s linguistic
advances and to language acquisition theories. In A. D. Pellegrini & T. D. Yawkey
(Eds.), The development of oral and written language in social contexts. Norwood,
NJ: Ablex.

Nice, M. (1925). Length of sentences as a criterion of a child’s progress in speech.
Journal of Educational Psychology, 16, 370-379.

Pan, B. (1994). Basic measures of child language. In J. Sokolov & C. Snow (Eds.), Hand-

book of research in language acquisition using CHILDES (pp. 26-49). Hillsdale NJ:
Lawerence Erlbaum Associates.

Richards, B. J., & Malvern, D. D, (1997a). Quantifying lexical diversity in the study of
language development. Reading: University of Reading, The New Bulmershe
Papers.

Richards, B. J., & Malvern, D. D. (1997b). type–token and Type-Type measures of
vocabulary diversity and lexical style: an annotated bibliography. Reading: Faculty
of Education and Community Studies, The University of Reading. (Also available on
the World Wide Web at: http://www.rdg.ac.uk/~ehsrichb/home1.html)

Richards, B. J., & Malvern, D. D, (1998). A new research tool: mathematical modelling
in the measurement of vocabulary diversity (Award reference no. R000221995).
Final Report to the Economic and Social Research Council, Swindon, UK.

Rivero, M., Gràcia, M., & Fernández-Viader, P. (1998). Including non-verbal
communicative acts in the mean length of turn analysis using CHILDES. In A. Aksu
Koç, E. Taylan, A. Özsoy, & A. Küntay (Eds.), Perspectives on language
acquisition (pp. 355-367). Istanbul: Bogaziçi University Press.

Rondal, J., Ghiotto, M., Bredart, S., & Bachelet, J. (1987). Age-relation, reliability and
grammatical validity of measures of utterance length. Journal of Child Language,
14, 433-446.

Scarborough, H. S. (1990). Index of productive syntax. Applied Psycholinguistics, 11, 1-
22.

Scarborough, H. S., Rescorla, L., Tager-Flusberg, H., Fowler, A., & Sudhalter, V. (1991).
The relation of utterance length to grammatical complexity in normal and language-
disordered groups. Applied Psycholinguistics, 12, 23-45.

Sichel, H. S. (1986). Word frequency distributions and type–token characteristics. Mathe-
matical Scientist, 11, 45-72.

Snow, C. E. (1989). Imitativeness: a trait or a skill? In G. Speidel & K. Nelson (Eds.),
The many faces of imitation. New York: Reidel.

Sokolov, J. L., & MacWhinney, B. (1990). The CHIP framework: Automatic coding and
analysis of parent-child conversational interaction. Behavior Research Methods, In-
struments, and Computers, 22, 151-161.

Templin, M. (1957). Certain language skills in children. Minneapolis, MN: University of
Minnesota Press.

Wells, G. (1981). Learning through interaction: The study of language development.
Cambridge, Cambridge University Press.

	1:Introduction
	1.1Learning CLAN
	1.2Installing CLAN
	1.3Starting CLAN

	2:Tutorial
	2.1Commands Window
	2.2Typing Command Lines
	2.3Sample Runs
	2.3.1Sample FREQ Runs
	2.3.2Sample MLU Run
	2.3.3Sample COMBO Run
	2.3.4Sample KWAL Run
	2.3.5Sample GEM Run

	3:The Editor
	3.1The Modes
	3.2CHAT Mode
	3.2.1 File, Edit, and Font Menus
	3.2.2Setting Special Colors
	3.2.3Searching
	3.2.4Keyboard Commands
	3.2.5Tiers Menu
	3.2.6 Running CHECK Inside the Editor

	3.3Special Characters
	3.3.1Roman-Based Character Sets
	3.3.2Non-Roman Scripts
	3.3.3Font Definitions

	3.4Preferences and Options
	3.5Disambiguator Mode
	3.6Coder Mode
	3.6.1 Entering Codes
	3.6.2 Setting Up Your Codes File

	3.7CA Mode
	3.8Sonic Mode
	3.9Transcriber Mode
	3.10Continuous Playback
	3.11Sound Walker
	3.12Sonic Commands
	3.12.1Waveform window
	3.12.2Editor window
	3.12.3Continuous Playback

	3.13Video Mode
	3.13.1Manual Video Linking
	3.13.2Video Playback

	3.14DV Camera Mode

	4:Features
	4.1Shell Commands
	4.2Online Help
	4.3Testing CLAN
	4.4Bug Reports
	4.5Feature Requests

	5:Analysis Commands
	5.1CHAINS
	5.1.1Sample Runs
	5.1.2Unique Options

	5.2CHECK
	5.2.1How CHECK Works
	5.2.2The Construction of the Depfile
	5.2.3CHECK in CA Mode
	5.2.4Running CHECK
	5.2.5Some Hints
	5.2.6Unique Options

	5.3CHIP
	5.3.1The Tier Creation System
	5.3.2The Coding System
	5.3.3Word Class Analysis
	5.3.4Summary Measures
	5.3.5Unique Options

	5.4CHSTRING
	5.4.1Unique Options

	5.5COLUMNS
	5.5.1Unique Options

	5.6COMPOUND
	5.7COMBO
	5.7.1Composing Search Strings
	5.7.2Examples of Search Strings
	5.7.3Referring to Files in Search Strings
	5.7.4Cluster Pairs in COMBO
	5.7.5Searching for Clausemates
	5.7.6Tracking Final Words
	5.7.7Tracking Initial Words
	5.7.8Adding Excluded Characters
	5.7.9Limiting with COMBO
	5.7.10Adding Codes with COMBO
	5.7.11Unique Options

	5.8COOCUR
	5.8.1Unique Options

	5.9DATES
	5.9.1Unique Options

	5.10DIST
	5.10.1Unique Options

	5.11DSS
	5.11.1CHAT File Format Requirements
	5.11.2Selection of a 50-sentence Corpus
	5.11.3Automatic Calculation of DSS
	5.11.4Interactive Calculation
	5.11.5DSS Output
	5.11.6DSS Summary
	5.11.7Unique Options

	5.12FLO
	5.13FREQ
	5.13.1What FREQ Ignores
	5.13.2Studying Lexical Groups
	5.13.3Using Wildcards with FREQ
	5.13.4Directing the Output of FREQ
	5.13.5Limiting in FREQ
	5.13.6TTR for Lemmas
	5.13.7Studying Unique Words and Shared Words
	5.13.8Unique Options

	5.14FREQMERG
	5.15FREQPOS
	5.15.1Unique Options

	5.16GEM
	5.16.1Sample Runs
	5.16.2Limiting With GEM
	5.16.3Unique Options

	5.17GEMFREQ
	5.17.1Unique Options

	5.18GEMLIST
	5.19KEYMAP
	5.19.1Sample Runs
	5.19.2Unique Options

	5.20KWAL
	5.20.1Tier Selection in KWAL
	5.20.2Unique Options

	5.21LINES
	5.22MAKEDATA
	5.22.1Unique Options

	5.23MAKEMOD
	5.24MAXWD
	5.24.1Unique Options

	5.25MLT
	5.25.1MLT Defaults
	5.25.2Breaking Up Turns
	5.25.3Sample Runs
	5.25.4Unique Options

	5.26MLU
	5.26.1 MLU Defaults
	5.26.2Sample Runs
	5.26.3Including and Excluding Utterances in MLU and MLT
	5.26.4Unique Options

	5.27MODREP
	5.27.1Exclusions and Inclusions
	5.27.2Using a %mod Line
	5.27.3MODREP and COMBO -- Cross-tier COMBO
	5.27.4Unique Options

	5.28MOR
	5.28.1Configuring Your MOR Files
	5.28.2 Grammar and Lexicon Files
	5.28.3Unique Options
	5.28.4MOR Lexicons
	5.28.5File Preparation
	5.28.6Lexicon Building
	5.28.7A Formal Description of the Rule Files
	5.28.7.1Declarative structure
	5.28.7.2Pattern-matching symbols
	5.28.7.3Variable notation
	5.28.7.4Category Information Operators
	5.28.7.5Arules
	5.28.7.6Crules
	5.28.7.7Drules

	5.28.8Interactive Mode

	5.29PHONFREQ
	5.29.1Unique Options

	5.30POST
	5.31POSTLIST
	5.32POSTTRAIN
	5.33POSTMOD
	5.34RELY
	5.34.1Unique Options

	5.35SALTIN
	5.35.1Unique Options

	5.36STATFREQ
	5.37TEXTIN
	5.38TIMEDUR
	5.39VOCD
	5.39.1Origin of the Measure
	5.39.2Calculation of D
	5.39.3 Sample Size
	5.39.4Preparation of Files
	5.39.5The Output from VOCD
	5.39.6 Unique Options

	5.40WDLEN

	6:Options
	6.1+F Option
	6.2+K Option
	6.3+P Option
	6.4+R Option
	6.5+S Option
	6.6+T Option
	6.7+U Option
	6.8+V Option
	6.9+W Option
	6.10+Y Option
	6.11+Z Option
	6.12Metacharacters for Searching

	7:Exercises
	7.1Contrasting Four Measures
	7.2MLU50 Analysis
	7.3MLU5 Analysis
	7.4MLT Analysis
	7.5TTR Analysis
	7.6Generating Language Profiles
	7.7Further Exercises

	8:References

